
Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger
Zoltán Ésik (Eds.)

 123

39th International Symposium, MFCS 2014
Budapest, Hungary, August 25-29, 2014
Proceedings, Part II

Mathematical
Foundations of
Computer Science 2014LN

CS
 8

63
5

AR
Co

SS

Lecture Notes in Computer Science 8635
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger Zoltán Ésik (Eds.)

Mathematical
Foundations of
Computer Science 2014

39th International Symposium, MFCS 2014
Budapest, Hungary, August 25-29, 2014
Proceedings, Part II

13

Volume Editors

Erzsébet Csuhaj-Varjú
Eötvös Loránd University
Faculty of Informatics
Budapest, Hungary
E-mail: csuhaj@inf.elte.hu

Martin Dietzfelbinger
Technische Universität Ilmenau
Fakultät für Informatik und Automatisierung
Ilmenau, Germany
E-mail: martin.dietzfelbinger@tu-ilmenau.de

Zoltán Ésik
Szeged University
Institute of Informatics
Szeged, Hungary
E-mail: ze@inf.u-szeged.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44464-1 e-ISBN 978-3-662-44465-8
DOI 10.1007/978-3-662-44465-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945809

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The series of MFCS symposia has a long and well-established tradition. The
MFCS conferences encourage high-quality research into all branches of theo-
retical computer science. Their broad scope provides an opportunity to bring
together researchers who do not usually meet at specialized conferences. The
first symposium was held in 1972. Until 2012 MFCS symposia were organized
on a rotating basis in Poland, the Czech Republic, and Slovakia. The 2013 edi-
tion took place in Austria, and in 2014 Hungary joined the organizing countries.
The 39th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2014) was held in Budapest during August 25–29, 2014.

Due to the large number of accepted papers, the proceedings of the conference
were divided into two volumes on a thematical basis: Logic, Semantics, Automata
and Theory of Programming (Vol. I) and Algorithms, Complexity and Games
(Vol. II). The 95 contributed papers were selected by the Program Committee
(PC) out of a total of 270 submissions. All submitted papers were peer reviewed
and evaluated on the basis of originality, quality, significance, and presentation
by at least three PC members with the help of external experts. The PC decided
to give the Best Paper Award, sponsored by the European Association of Theo-
retical Computer Science (EATCS), to the paper “Zero Knowledge and Circuit
Minimization”written by Eric Allender and Bireswar Das. In addition, the paper
entitled “The Dynamic Descriptive Complexity of k-Clique” by Thomas Zeume
earned the Best Student Paper Award.

The scientific program of the symposium included seven invited talks by:

– Krishnendu Chatterjee (IST Austria, Klosterneuburg, Austria)
– Achim Jung (University of Birmingham, UK)
– Dániel Marx (MTA SZTAKI, Hungary)
– Peter Bro Miltersen (Aarhus University, Denmark)
– Cyril Nicaud (Université Paris-Est Marne-la-Vallé, France)
– Alexander Sherstov (University of California, Los Angeles, USA)
– Christian Sohler (Technische Universität Dortmund, Germany)

We are grateful to all invited speakers for accepting our invitation and for
their excellent presentations at the symposium. We thank all authors who sub-
mitted their work for consideration to MFCS 2014. We deeply appreciate the
competent and timely handling of the submissions of all PC members and ex-
ternal reviewers.

The members of the Organizing Committee were Erzsébet Csuhaj-Varjú
(chair, Budapest), Zsolt Gazdag (Budapest), Katalin Anna Lázár (Budapest)
and Krisztián Tichler (Budapest).

The website design and maintenance were carried out by Zoltán L. Németh
(University of Szeged). The publicity chair was Szabolcs Iván (University of
Szeged).

VI Preface

The editors express their gratitude to Zsolt Gazdag, Katalin Anna Lázár,
and Krisztián Tichler for their valuable contribution to the technical edition of
the two volumes of proceedings.

We thank Andrej Voronkov for his EasyChair system, which facilitated the
work of the PC and the editors considerably.

June 2014 Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger

Zoltán Ésik

Conference Organization

The organization of the scientific part of the conference was supported by the
Faculty of Informatics, Eötvös Loránd University, Budapest, and the Institute
of Computer Science, Faculty of Science and Informatics, University of Szeged.

Some parts of the local arrangements were taken care of by the ELTE-Soft
Non-Profit Organization and Pannonia Tourist Service.

Program Committee Chairs

Zoltán Ésik, chair University of Szeged, Hungary
Erzsébet Csuhaj-Varjú,

co-chair Eötvös Loránd University, Hungary
Martin Dietzfelbinger,

co-chair Technische Universität Ilmenau, Germany

Program Committee

Albert Atserias Technical University of Catalonia, Spain
Giorgio Ausiello Sapienza University of Rome, Italy
Jos Baeten CWI, The Netherlands
Therese Biedl University of Waterloo, Canada
Miko�laj Bojańczyk University of Warsaw, Poland
Gerth Stølting Brodal Aarhus University, Denmark
Christian Choffrut Paris Diderot University, France
Rocco De Nicola IMT Institute for Advanced Studies Lucca,

Italy
Manfred Droste Leipzig University, Germany
Robert Elsässer University of Salzburg, Austria
Uli Fahrenberg IRISA/Inria Rennes, France
Fedor V. Fomin University of Bergen, Norway
Fabio Gadducci University of Pisa, Italy
Anna Gál The University of Texas at Austin, USA
Dora Giammarresi University of Tor Vergata, Rome, Italy

VIII Conference Organization

Roberto Grossi University of Pisa, Italy
Anupam Gupta Carnegie Mellon University, USA
Michel Habib Paris Diderot University, France
Kristoffer Arnsfelt Hansen Aarhus University, Denmark
Edith Hemaspaandra Rochester Institute of Technology, USA
Kazuo Iwama Kyoto University, Japan
Yoshihiko Kakutani The University of Tokyo, Japan
Juhani Karhumäki University of Turku, Finland
Bakhadyr Khoussainov University of Auckland, New Zealand
Elias Koutsoupias University of Oxford, UK
Jan Kratochv́ıl Charles University, Prague, Czech Republic
Stefan Kratsch Technical University of Berlin, Germany
Rastislav Královič Comenius University in Bratislava, Slovakia
Amit Kumar Indian Institute of Technology Delhi, India
Kim G. Larsen Aalborg University, Denmark
Frédéric Magniez Paris Diderot University, France
Ralph Matthes IRIT (CNRS and University of Toulouse),

France
Madhavan Mukund Chennai Mathematical Institute, India

Jean-Éric Pin LIAFA CNRS and Paris Diderot University,
France

Alexander Rabinovich Tel Aviv University, Israel
Peter Rossmanith RWTH Aachen University, Germany
Jan Rutten CWI and Radboud University Nijmegen,

The Netherlands
Wojciech Rytter Warsaw University and Copernicus University

in Torun, Poland
Luigi Santocanale Aix-Marseille University, France
Christian Scheideler University of Paderborn, Germany
Thomas Schwentick TU Dortmund University, Germany
Alex Simpson University of Edinburgh, UK
Mohit Singh Microsoft Research Redmond, USA
Klaus Sutner Carnegie Mellon University, USA
Gábor Tardos Rényi Institute, Hungary
György Turán University of Illinois at Chicago, USA
Peter Widmayer ETH Zürich, Switzerland
Philipp Woelfel University of Calgary, Canada

Steering Committee

Juraj Hromkovič ETH Zürich, Switzerland
Antońın Kučera (chair) Masaryk University, Czech Republic
Jerzy Marcinkowski University of Wroc�law, Poland
Damian Niwinski University of Warsaw, Poland
Branislav Rovan Comenius University in Bratislava, Slovakia
Jǐŕı Sgall Charles University, Prague, Czech Republic

Conference Organization IX

Additional Reviewers

Abel, Andreas
Aceto, Luca
Acher, Mathieu
Aghazadeh, Zahra
Ahrens, Benedikt
Allender, Eric
Ambos-Spies, Klaus
Andrews, Matthew
Anselmo, Marcella
Bacci, Giorgio
Bacci, Giovanni
Baertschi, Andreas
Balbiani, Philippe
Barceló, Pablo
Bartha, Miklós
Barto, Libor
Basavaraju, Manu
Basold, Henning
Baumeister, Dorothea
Béal, Marie-Pierre
Ben-Amram, Amir
Berenbrink, Petra
Berthé, Valérie
Bilò, Davide
Bilò, Vittorio
Blanchet-Sadri, Francine
Bliznets, Ivan
Boasson, Luc
Bodlaender, Hans L.
Böhmova, Katerina
Bollig, Benedikt
Bonchi, Filippo
Bonelli, Eduardo
Bonfante, Guillaume
Bonifaci, Vincenzo
Bonsma, Paul
Boudjadar, A. Jalil
Bozzelli, Laura
Breveglieri, Luca
Brinkmann, André
Broadbent, Christopher
Brotherston, James
Brunet, Paul

Buss, Sam
Cal̀ı, Andrea
Carayol, Arnaud
Carpi, Arturo
Caucal, Didier
Cechlárová, Kataŕına
Chang, Richard
Christophe, Reutenauer
Chroboczek, Juliusz
Colcombet, Thomas
Colin de Verdière, Éric
Cook, Stephen
Cosme Llópez, Enric
Cranen, Sjoerd
Crescenzi, Pierluigi
Crespi Reghizzi, Stefano
Cyriac, Aiswarya
Czeizler, Elena
D’Alessandro, Flavor
D’Souza, Deepak
Dalmau, Victor
Damaschke, Peter
Datta, Samir
de Boysson, Marianne
de Mesmay, Arnaud
de Rougemont, Michel
de Wolf, Ronald
Dell, Holger
Demetrescu, Camil
Diekert, Volker
Dinneen, Michael
Drange, P̊al Grøn̊as
Dube, Simant
Dück, Stefan
Dürr, Christoph
Duparc, Jacques
Durand, Arnaud
Eikel, Martina
Elahi, Maryam
Elbassioni, Khaled
Elberfeld, Michael
Epifanio, Chiara
Esṕırito Santo, José

Facchini, Alessandro
Faliszewski, Piotr
Feldmann, Andreas Emil
Fernau, Henning
Ferreira, Francisco
Fertin, Guillaume
Fici, Gabriele
Finocchi, Irene
Firmani, Donatella
Fitzsimmons, Zack
Forisek, Michal
Fortier, Jérôme
Forys, Wit
Fournier, Hervé
François, Nathanaël
Fratani, Séverine
Fredriksson, Kimmo
Freivalds, Rusins
Frid, Anna
Frigioni, Daniele
Frougny, Christiane
Fusy, Éric
Gairing, Martin
Gasieniec, Leszek
Gaspers, Serge
Gastin, Paul
Gavalda, Ricard
Gawrychowski, Pawel
Gharibian, Sevag
Giustolisi, Rosario
Gliozzi, Valentina
Gmyr, Robert
Goldwurm, Massimiliano
Golovach, Petr
Grigorieff, Serge
Gualà, Luciano
Guillon, Bruno
Gupta, Sushmita
Habermehl, Peter
Harju, Tero
Hatami, Pooya
Hellerstein, Lisa
Hemaspaandra, Lane A.

X Conference Organization

Henglein, Fritz
Hertrampf, Ulrich
Hill, Cameron
Hirvensalo, Mika
Holzer, Stephan
Honda, Kentaro
Horn, Florian
Hovland, Dag
Huang, Chien-Chung
Huang, Sangxia
Huang, Zhiyi
Huber, Stefan
Hung, Ling-Ju
Hyvernat, Pierre
Imreh, Csanád
Inaba, Kazuhiro
Iván, Szabolcs
Ivanyos, Gábor
Jancar, Petr
Jansen, Bart M.P.
Jansen, Klaus
Jeřábek, Emil
Kaaser, Dominik
Kabanets, Valentine
Kaminski, Michael
Kamiński, Marcin
Kanté, Mamadou

Moustapha
Kara, Ahmet
Kari, Jarkko
Kawamoto, Yusuke
Kerenidis, Iordanis
Kieronski, Emanuel
Kimura, Daisuke
Klasing, Ralf
Klein, Philip
Klimann, Ines
Klin, Bartek
Kling, Peter
Kniesburges, Sebastian
Kociumaka, Tomasz
Kollias, Konstantinos
Komm, Dennis
Konrad, Christian
Kontchakov, Roman

Kosowski, Adrian
Koutris, Paraschos
Koutsopoulos, Andreas
Královič, Richard
Kratsch, Dieter
Krebs, Andreas
Krokhin, Andrei
Křetinský, Jan
Kučera, Petr
Kufleitner, Manfred
Kuhnert, Sebastian
Kuperberg, Denis
Kutrib, Martin
Kuznets, Roman
La Torre, Salvatore
Labarre, Anthony
Labbé, Sébastien
Labella, Anna
Ladra, Susana
Laura, Luigi
Le Gall, François
Lecroq, Thierry
Leroy, Julien
Liaghat, Vahid
Limouzy, Vincent
Liu, Jiamou
Lluch Lafuente, Alberto
Lodaya, Kamal
Lohrey, Markus
Lokshtanov, Daniel
Lombardy, Sylvain
Lomonaco, Sam
Lonati, Violetta
Loreti, Michele
Lubiw, Anna
Luttik, Bas
Madelaine, Florent
Madonia, Maria
Malcher, Andreas
Maletti, Andreas
Mamageishvili, Akaki
Mamcarz, Antoine
Manlove, David
Markovski, Jasen
Martens, Wim

Martin, Barnaby
Marx, Dániel
Mathieson, Luke
Matoušek, Jǐŕı
Maudet, Nicolas
Mayr, Richard
Mendler, Michael
Mihal’ák, Matúš
Mikulski, Lukasz
Mio, Matteo
Miyazaki, Shuichi
Momigliano, Alberto
Monmege, Benjamin
Montanari, Sandro
Morton, Jason
Mouawad, Amer
Mühlenthaler, Moritz
Müller, Moritz
Nagy-György, Judit
Narayanaswamy, N.S.
Nederlof, Jesper
Negri, Sara
Neven, Frank
Nichterlein, André
Niewerth, Matthias
Nishimura, Naomi
Nisse, Nicolas
Niwinski, Damian
Nonner, Tim
Nyman, Ulrik
Ochremiak, Joanna
Okhotin, Alexander
Olesen, Mads Chr.
Ouaknine, Joël
Palfrader, Peter
Pandey, Omkant
Panella, Federica
Paperman, Charles
Parberry, Ian
Pardubska, Dana
Parekh, Ojas
Paulusma, Daniel
Pavan, Aduri
Perevoshchikov, Vitaly
Perrin, Dominique

Conference Organization XI

Petersen, Holger
Pi ↪atkowski, Marcin
Pignolet, Yvonne-Anne
Pinsker, Michael
Piperno, Adolfo
Plandowski, Wojciech
Poulsen, Danny Bøgsted
Pozzato, Gian Luca
Praveen, M.
Pröger, Tobias
Proietti, Guido
Quaas, Karin
Quyen, Vuong Anh
Radoszewski, Jakub
Raffinot, Mathieu
Reidl, Felix
Rettinger, Robert
Reutenauer, Christophe
Ribichini, Andrea
Ricciotti, Wilmer
Riscos-Núñez, Agust́ın
Riveros, Cristian
Ronchi Della Rocca,

Simona
Rossman, Benjamin
Rubin, Sasha
Saarela, Aleksi
Sabharwal, Yogish
Sadakane, Kunihiko
Salo, Ville
Salomaa, Kai
Salvati, Sylvain
Santini, Francesco
Sau, Ignasi
Sauerwald, Thomas
Saurabh, Saket
Savicky, Petr
Schabanel, Nicolas
Schaefer, Marcus
Schmidt, Jens M.
Schmidt, Johannes

Schwartz, Roy
Schweitzer, Pascal
Segoufin, Luc
Selečéniová, Ivana
Serre, Olivier
Seto, Kazuhisa
Setzer, Alexander
Sgall, Jiŕı
Shallit, Jeffrey
Shen, Alexander
Siebertz, Sebastian
Silva, Alexandra
Skrzypczak, Micha�l
Spoerhase, Joachim
Srivathsan, B.
Stacho, Juraj
Stephan, Frank
Stiebitz, Michael
Straubing, Howard
Strozecki, Yann
Studer, Thomas
Sun, He
Suresh, S.P.
Svensson, Ola
Szörényi, Balázs
Tadaki, Kohtaro
Talebanfard, Navid
Tamaki, Suguru
Tan, Li-Yang
Tanabe, Yoshinori
Tantau, Till
Telikepalli, Kavitha
ten Cate, Balder
Thierry, Éric
Thomas, Rick
Tillich, Jean-Pierre
Törmä, Ilkka
Trinker, Horst
Tschager, Thomas
Tuosto, Emilio
Tzameret, Iddo

Umboh, Seeun
van ’t Hof, Pim
van Breugel, Franck
van Hulst, Allan
van Leeuwen, Erik Jan
van Raamsdonk, Femke
Vanier, Pascal
Variyam, Vinodchandran
Vatan, Farrokh
Velner, Yaron
Vigo, Roberto
Villaret, Mateu
Volkov, Mikhail
Vrt’o, Imrich
Wagner, Uli
Waldmann, Johannes
Walen, Tomasz
Walter, Tobias
Wanka, Rolf
Warnke, Lutz
Weidner, Thomas
Weiner, Mihály
Wieder, Udi
Willemse, Tim
Williams, Ryan
Winter, Joost
Witkowski, Piotr
Wu, Zhilin
Xiao, David
Xue, Bingtian
Ye, Deshi
Zantema, Hans
Zdanowski, Konrad
Zemek, Petr
Zeume, Thomas
Zhang, Liyu
Ziegler, Martin
Zielonka, Wieslaw
Živný, Stanislav

Table of Contents – Part II

Algorithms, Complexity and Games

On r -Simple k -Path . 1
Hasan Abasi, Nader H. Bshouty, Ariel Gabizon, and Elad Haramaty

Low-Depth Uniform Threshold Circuits and the Bit-Complexity of
Straight Line Programs . 13

Eric Allender, Nikhil Balaji, and Samir Datta

Zero Knowledge and Circuit Minimization . 25
Eric Allender and Bireswar Das

A Tight Lower Bound on Certificate Complexity in Terms of Block
Sensitivity and Sensitivity . 33

Andris Ambainis and Krǐsjānis Prūsis

Õ(
√
n)-Space and Polynomial-Time Algorithm for Planar Directed

Graph Reachability . 45
Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and
Osamu Watanabe

Forbidden Induced Subgraphs and the Price of Connectivity for
Feedback Vertex Set . 57

Rémy Belmonte, Pim van ’t Hof, Marcin Kamiński, and
Daniël Paulusma

Network-Based Dissolution . 69
René van Bevern, Robert Bredereck, Jiehua Chen, Vincent Froese,
Rolf Niedermeier, and Gerhard J. Woeginger

On Unification of QBF Resolution-Based Calculi . 81
Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota

Minimum Planar Multi-sink Cuts with Connectivity Priors 94
Ivona Bezáková and Zachary Langley

The Price of Envy-Freeness in Machine Scheduling 106
Vittorio Bilò, Angelo Fanelli, Michele Flammini,
Gianpiero Monaco, and Luca Moscardelli

On the Complexity of Some Ordering Problems . 118
Beate Bollig

XIV Table of Contents – Part II

The Relationship between Multiplicative Complexity and
Nonlinearity . 130

Joan Boyar and Magnus Gausdal Find

Dual Connectedness of Edge-Bicolored Graphs and Beyond 141
Leizhen Cai and Junjie Ye

Combinatorial Voter Control in Elections . 153
Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and
Nimrod Talmon

An Improved Deterministic #SAT Algorithm for Small De Morgan
Formulas . 165

Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh

On the Limits of Depth Reduction at Depth 3 Over Small Finite
Fields . 177

Suryajith Chillara and Partha Mukhopadhyay

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 189
Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Micha�l Pilipczuk

Probabilistic Analysis of Power Assignments . 201
Maurits de Graaf and Bodo Manthey

Existence of Secure Equilibrium in Multi-player Games with Perfect
Information . 213

Julie De Pril, János Flesch, Jeroen Kuipers,
Gijs Schoenmakers, and Koos Vrieze

An Efficient Quantum Algorithm for Finding Hidden Parabolic
Subgroups in the General Linear Group . 226

Thomas Decker, Gábor Ivanyos, Raghav Kulkarni,
Youming Qiao, and Miklos Santha

A Note on the Minimum Distance of Quantum LDPC Codes 239
Nicolas Delfosse, Zhentao Li, and Stéphan Thomassé

Minimum Bisection is NP-hard on Unit Disk Graphs 251
Josep Dı́az and George B. Mertzios

Query-Competitive Algorithms for Cheapest Set Problems under
Uncertainty . 263

Thomas Erlebach, Michael Hoffmann, and Frank Kammer

Streaming Kernelization . 275
Stefan Fafianie and Stefan Kratsch

A Reconfigurations Analogue of Brooks’ Theorem . 287
Carl Feghali, Matthew Johnson, and Daniël Paulusma

Table of Contents – Part II XV

Intersection Graphs of L-Shapes and Segments in the Plane 299
Stefan Felsner, Kolja Knauer, George B. Mertzios, and
Torsten Ueckerdt

Autoreducibility and Mitoticity of Logspace-Complete Sets for NP and
Other Classes . 311

Christian Glaßer and Maximilian Witek

Editing to a Connected Graph of Given Degrees . 324
Petr A. Golovach

Circuit Complexity of Properties of Graphs with Constant Planar
Cutwidth . 336

Kristoffer Arnsfelt Hansen, Balagopal Komarath, Jayalal Sarma,
Sven Skyum, and Navid Talebanfard

On Characterizations of Randomized Computation Using Plain
Kolmogorov Complexity . 348

Shuichi Hirahara and Akitoshi Kawamura

New Results for Non-Preemptive Speed Scaling . 360
Chien-Chung Huang and Sebastian Ott

Lower Bounds for Splittings by Linear Combinations 372
Dmitry Itsykson and Dmitry Sokolov

On the Complexity of List Ranking in the Parallel External Memory
Model . 384

Riko Jacob, Tobias Lieber, and Nodari Sitchinava

Knocking Out Pk-free Graphs . 396
Matthew Johnson, Daniël Paulusma, and Anthony Stewart

Relating the Time Complexity of Optimization Problems in Light of
the Exponential-Time Hypothesis . 408

Peter Jonsson, Victor Lagerkvist, Johannes Schmidt, and
Hannes Uppman

Affine Consistency and the Complexity of Semilinear Constraints 420
Peter Jonsson and Johan Thapper

Small Complexity Classes for Computable Analysis 432
Akitoshi Kawamura and Hiroyuki Ota

Two Results about Quantum Messages . 445
Hartmut Klauck and Supartha Podder

Parameterized Approximations via d-Skew-Symmetric Multicut 457
Sudeshna Kolay, Pranabendu Misra, M.S. Ramanujan, and
Saket Saurabh

XVI Table of Contents – Part II

On the Clique Editing Problem . 469
Ivan Kováč, Ivana Selečéniová, and Monika Steinová

On the Complexity of Symbolic Verification and Decision Problems in
Bit-Vector Logic . 481

Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, and
Armin Biere

Computational Complexity of Covering Three-Vertex Multigraphs 493
Jan Kratochv́ıl, Jan Arne Telle, and Marek Tesař

Finding Maximum Common Biconnected Subgraphs in Series-Parallel
Graphs . 505

Nils Kriege and Petra Mutzel

On Coloring Resilient Graphs . 517
Jeremy Kun and Lev Reyzin

Document Retrieval with One Wildcard . 529
Moshe Lewenstein, J. Ian Munro, Yakov Nekrich, and
Sharma V. Thankachan

An Hn/2 Upper Bound on the Price of Stability of Undirected Network
Design Games . 541

Akaki Mamageishvili, Matúš Mihalák, and Simone Montemezzani

Traveling Salesman Problems in Temporal Graphs 553
Othon Michail and Paul G. Spirakis

Inferring Strings from Lyndon Factorization . 565
Yuto Nakashima, Takashi Okabe, Tomohiro I, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Betweenness Centrality – Incremental and Faster . 577
Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran

Deterministic Parameterized Algorithms for the Graph Motif
Problem . 589

Ron Y. Pinter, Hadas Shachnai, and Meirav Zehavi

The Two Queries Assumption and Arthur-Merlin Classes 601
Vyas Ram Selvam

Flexible Bandwidth Assignment with Application to Optical Networks
(Extended Abstract) . 613

Hadas Shachnai, Ariella Voloshin, and Shmuel Zaks

Table of Contents – Part II XVII

Approximation Algorithms for Bounded Color Matchings via Convex
Decompositions . 625

Georgios Stamoulis

Author Index . 637

Table of Contents – Part I

Invited Contributions

Partial-Observation Stochastic Reachability and Parity Games 1
Krishnendu Chatterjee

Random Deterministic Automata . 5
Cyril Nicaud

Communication Complexity Theory: Thirty-Five Years of Set
Disjointness . 24

Alexander A. Sherstov

What Does the Local Structure of a Planar Graph Tell Us About Its
Global Structure? . 44

Christian Sohler

Logic, Semantics, Automata and Theory of
Programming

Choiceless Polynomial Time on Structures with Small Abelian Colour
Classes . 50

F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa

Sofic-Dyck Shifts . 63
Marie-Pierre Béal, Michel Blockelet, and Cătălin Dima

A Logical Characterization of Timed (non-)Regular Languages 75
Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro

Asymptotic Monadic Second-Order Logic . 87
Achim Blumensath, Olivier Carton, and Thomas Colcombet

Towards Efficient Reasoning Under Guarded-Based Disjunctive
Existential Rules . 99

Pierre Bourhis, Michael Morak, and Andreas Pieris

Alternating Parity Krivine Automata . 111
Florian Bruse

Advances in Parametric Real-Time Reasoning . 123
Daniel Bundala and Joël Ouaknine

Universal Lyndon Words . 135
Arturo Carpi, Gabriele Fici, Štěpán Holub, Jakub Opršal, and
Marinella Sciortino

XX Table of Contents – Part I

Subword Complexity and Decomposition of the Set of Factors 147
Julien Cassaigne, Anna E. Frid, Svetlana Puzynina, and
Luca Q. Zamboni

Cyclic Complexity of Words . 159
Julien Cassaigne, Gabriele Fici, Marinella Sciortino, and
Luca Q. Zamboni

Classifying Recognizable Infinitary Trace Languages Using Word
Automata . 171

Namit Chaturvedi and Marcus Gelderie

Bounded Variable Logic, Parameterized Logarithmic Space, and
Savitch’s Theorem . 183

Yijia Chen and Moritz Müller

An Algebraic Characterization of Unary Two-Way Transducers 196
Christian Choffrut and Bruno Guillon

Size-Change Abstraction and Max-Plus Automata 208
Thomas Colcombet, Laure Daviaud, and Florian Zuleger

Alternating Vector Addition Systems with States . 220
Jean-Baptiste Courtois and Sylvain Schmitz

Information Rate of Some Classes of Non-regular Languages:
An Automata-Theoretic Approach (Extended Abstract) 232

Cewei Cui, Zhe Dang, Thomas R. Fischer, and Oscar H. Ibarra

Relating Nominal and Higher-Order Rewriting . 244
Jesús Domı́nguez and Maribel Fernández

Expressivity and Succinctness of Order-Invariant Logics on
Depth-Bounded Structures . 256

Kord Eickmeyer, Michael Elberfeld, and Frederik Harwath

Two Recursively Inseparable Problems for Probabilistic Automata 267
Nathanaël Fijalkow, Hugo Gimbert, Florian Horn, and
Youssouf Oualhadj

Monadic Second-Order Logic with Arbitrary Monadic Predicates 279
Nathanaël Fijalkow and Charles Paperman

Transforming Two-Way Alternating Finite Automata to One-Way
Nondeterministic Automata . 291

Viliam Geffert and Alexander Okhotin

Measure Properties of Game Tree Languages . 303
Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and
Micha�l Skrzypczak

Table of Contents – Part I XXI

On Upper and Lower Bounds on the Length of Alternating Towers 315
Štěpán Holub, Galina Jirásková, and Tomáš Masopust

LaxF: Side Conditions and External Evidence as Monads 327
Furio Honsell, Luigi Liquori, and Ivan Scagnetto

The Monoid of Queue Actions . 340
Martin Huschenbett, Dietrich Kuske, and Georg Zetzsche

Undecidable Properties of Self-affine Sets and Multi-tape Automata 352
Timo Jolivet and Jarkko Kari

Complexity and Expressivity of Uniform One-Dimensional Fragment
with Equality . 365

Emanuel Kieroński and Antti Kuusisto

A Unifying Approach for Multistack Pushdown Automata 377
Salvatore La Torre, Margherita Napoli, and Gennaro Parlato

Definability and Transformations for Cost Logics and Automatic
Structures . 390

Martin Lang, Christof Löding, and Amaldev Manuel

Generalised Lyndon-Schützenberger Equations . 402
Florin Manea, Mike Müller, Dirk Nowotka, and Shinnosuke Seki

Complexity of Equivalence and Learning for Multiplicity Tree
Automata . 414

Ines Marusic and James Worrell

Monadic Datalog and Regular Tree Pattern Queries 426
Filip Mazowiecki, Filip Murlak, and Adam Witkowski

Model Checking Concurrent Recursive Programs Using Temporal
Logics . 438

Roy Mennicke

Decidability of the Interval Temporal Logic AĀBB̄ over the Rationals . . . 451
Angelo Montanari, Gabriele Puppis, and Pietro Sala

Reachability in Pushdown Register Automata . 464
Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos

A Generalization of the Loś-Tarski Preservation Theorem over Classes
of Finite Structures . 474

Abhisekh Sankaran, Bharat Adsul, and Supratik Chakraborty

Determinising Parity Automata . 486
Sven Schewe and Thomas Varghese

XXII Table of Contents – Part I

Tight Bounds for Complementing Parity Automata 499
Sven Schewe and Thomas Varghese

On Infinite Words Determined by Indexed Languages 511
Tim Smith

A Pumping Lemma for Two-Way Finite Transducers 523
Tim Smith

Tractability Frontier for Dually-Closed Ord-Horn Quantified Constraint
Satisfaction Problems . 535

Micha�l Wrona

The Dynamic Descriptive Complexity of k -Clique . 547
Thomas Zeume

Author Index . 559

On r-Simple k-Path

Hasan Abasi, Nader H. Bshouty, Ariel Gabizon�, and Elad Haramaty��

Department of Computer Science Technion, Haifa, Israel

Abstract. An r-simple k-path is a path in the graph of length k that
passes through each vertex at most r times. The r-SIMPLE k-PATH
problem, given a graph G as input, asks whether there exists an r-simple
k-path in G. We first show that this problem is NP-Complete. We then
show that there is a graph G that contains an r-simple k-path and no
simple path of length greater than 4 log k/ log r. So this, in a sense, moti-
vates this problem especially when one’s goal is to find a short path that
visits many vertices in the graph while bounding the number of visits at
each vertex.

We then give a randomized algorithm that runs in time

poly(n) · 2O(k·log r/r)

that solves the r-SIMPLE k-PATH on a graph with n vertices with one-
sided error. We also show that a randomized algorithm with running time
poly(n) · 2(c/2)k/r with c < 1 gives a randomized algorithm with running
time poly(n) · 2cn for the Hamiltonian path problem in a directed graph
- an outstanding open problem. So in a sense our algorithm is optimal
up to an O(log r) factor in the exponent.

The crux of our method is to use low degree testing to efficiently test
whether a polynomial contains a monomial where all individual degrees
are bounded by a given r.

1 Introduction

Let G be a directed graph on n vertices. A path ρ is called simple if all the
vertices in the path are distinct. The SIMPLE k-PATH problem, given G as
input, asks whether there exists a simple path in G of length k. This is a gener-
alization of the well known HAMILTONIAN-PATH problem that asks whether
there is a simple path passing through all vertices, i.e., a simple path of length
n in G. As HAMILTONIAN-PATH is NP-complete, we do not expect to find
polynomial time algorithms for SIMPLE k-PATH for general k. Moreover, we
do not even expect to find good approximation algorithms for the corresponding

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 257575.

�� This research was partially supported by the Israel Science Foundation (grant num-
ber 339/10).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 H. Abasi et al.

optimization problem: the longest path problem, where we ask what is the length
of the longest simple path in G. This is because Björklund et al. [6] showed
that the longest path problem cannot be approximated in polynomial time to
within a multiplicative factor of n1−ε, for any constant ε > 0, unless P=NP. This
(in addition to being a natural problem in parameterized complexity) motivates
finding algorithms for SIMPLE k-PATH with running time whose dependence
on k is as small as possible. The first result in this venue by Monien [17] achieved
a running time of k! · poly(n). Since then, there has been extensive research on
constructing algorithms for SIMPLE k-PATH running in time f(k) ·poly(n), for
a function f(k) as small as possible [5,2,16,10,13]. The current state of the art
is 2k · poly(n) by Williams [19] for directed graphs and O(1.657k) · poly(n) by
Björklund [7] for undirected graphs.

1.1 Our Results

In this paper we look at a further generalization of SIMPLE k-PATH which we
call r-SIMPLE k-PATH. In this problem instead of insisting on ρ being a simple
path, we allow ρ to visit any vertex a fixed number of times. We now formally
define the problem r-SIMPLE k-PATH.

Definition 1. Fix integers r ≤ k. Let G be a directed graph.

– We say a path ρ in G is r-simple, if each vertex of G appears in ρ at most
r times. Obviously, ρ is a simple path if and only if it is a 1-simple path.

– The r-SIMPLE k-PATH problem, given G as input, asks whether there exists
an r-simple path in G of length k.

At first, one may wonder whether for some fixed r > 1, r-SIMPLE k-PATH
always has a polynomial time algorithm. We show this is unlikely by showing
that for any r, for some k r-SIMPLE k-PATH is NP-complete. See Theorem 3
in Section 3 for a formal statement and proof of this. Thus, as in the case of
SIMPLE k-PATH, one may ask what is the best dependency of the running time
on r and k that can be obtained in an algorithm for r-SIMPLE k-PATH.

Our main result is

Theorem 2. Fix any integers r, k with 2 ≤ r ≤ k. There is a randomized
algorithm running in time

poly(n) · O
(
r

2k
r +O(1)

)
= poly(n) · 2O(k·log r/r)

solving r-SIMPLE k-PATH on a graph with n vertices with one-sided error.

One may ask how far from optimal is the dependency on k and r in Theorem
2. Theorem 3 implies that a running time of poly(n) · 2o(k/r) would give an
algorithm with running time 2o(n) for HAMILTONIAN-PATH Moreover, even
a running time of poly(n) · 2c·k/r, for a small enough constant c < 1/2, would
imply a better algorithm for HAMILTONIAN-PATH than those of [19,7] which
are the best currently known. So, in a sense our algorithm is optimal up to an

On r-Simple k-Path 3

O(log r) factor. We find closing this O(log r) gap, e.g. by a better reduction to
HAMILTONIAN-PATH or a better algorithm for r-SIMPLE k-PATH, to be an
interesting open problem.

1.2 r-Monomial Detection

As will be explained later on, the main step of our algorithm is, given a circuit
computing a multivariate polynomial f , to efficeintly check whether f contains a
monomial where all individual degrees are at most r. Let us refer to this problem
as r-monomial detection. As the problem of 1-monomial detection, or multilinear
monomial detection, has proven to be central to parameterized complexity (cf.
Koutis and Williams [14]), we believe the r-monomial detection problem will
prove useful.

1.3 Comparision to the Method of Koutis and Williams

Koutis [13] uses group algebras over F2 in a clever way to solve multilinear
monomial detection. An extension of his method by Williams [19] to group al-
gebras over extension fields of the form F2t gives the current best randomized
algorithm for SIMPLE k-PATH on directed graphs. It is possible that working

with the group algebra Frt [Z
O(k/r)
r] in a similar way could give an algorithm

for r-monomial detection with running times comparable to the algorithm of
this paper. However, this seems difficult to analyze: [13] and [19] only need to
distiniguish between products in the algebra corresponding to independent and
dependent vectors; whereas here the situation will be more complex. Moreover,
this method has the potential of working only for prime r, whereas our algorithm
works for all r (albeit giving the best running time when r + 1 is prime).

2 Overview of the Proof of Theorem 2

We give an informal sketch of Theorem 2. We are given a directed graph G on n
vertices, and integers r ≤ k. We wish to decide if G contains an r-simple path of
length k. There are two main stages in our algorithm. The first is to reduce the
task to another one concerning multivariate polynomials. This part, described
below, is very similar to [1].

Reduction to a question about polynomials. We want to associate our graph G
with a certain multivariate polynomial pG.

We associate with the i’th vertex a variable xi. The monomials of the poly-
nomial will correspond to the paths of length k in G. So we have

pG(x) =
∑

i1→i2→···→ik∈G

xi1 · · ·xik ,

where i1 → i2 → · · · → ik ∈ G means that i1, i2, · · · , ik is a directed path in
G. An important issue is over what field F is pG defined? A central part of the

4 H. Abasi et al.

algorithm is indeed choosing the appropriate field to work over. Another issue
is how efficiently pG can be evaluated? (Note that it potentially contains nk

different monomials.) Williams shows in [19] that using the adjacency matrix of
G it can be computed in poly(n)-time. See Section 5. For now, think of pG as
defined over Q, i.e., having integer coefficients. It is easy to see that G contains
an r-simple path of length k if and only if pG contains a monomial such that
the individual degrees of all variables are at most r. Let us call such a monomial
an r-monomial. Thus our task is reduced to checking whether a homogenous
polynomial of degree k contains an r-monomial.

Checking whether pG contains an r-monomial. Let us assume in this overview
for simplicity that p = r + 1 is prime. Let us view pG as a polynomial over
Fp. One problem with doing this is that if we have p directed paths of length k
passing through the same vertices in different order, this translates in pG to p
copies of the same monomial summing up to 0. To avoid this we need to look at
a variant of pG that contains auxiliary variables that prevent this cancelation.
For details on this issue see [1] and Section 5. For this overview let us assume
this does not happen. Recall that we have the equality ap = a for any a ∈ Fp.
Let us look at a monomial that is not an r-monomial, say xr+1

1 · x2 = xp1 · x2.
The equality mentioned implies this monomial is equivalent as a function from
Fn
p to Fp to the monomial x1 · x2. By the same argument, any monomial that is

not an r-monomial will be ‘equivalent’ to one of smaller degree. More generally,
pG that is homogenous of degree k over Q will be equivalent to a polynomial
of degree smaller than k as a function from Fn

p to Fp if and only if it does
not contain an r-monomial. Thus, we have reduced our task to the problem of
low-degree testing. In this context, this problem is as follows: Given black-box
access to a function f : Fn

p → Fp of degree at most k, determine whether it has
degree exactly k or less than k, using few queries to the function. Here, for a
function f : Fn

p → Fp, by its degree we mean the total degree of the lowest-degree
polynomial p ∈ Fp[x1, . . . , xn] representing it. Haramati, Shpilka and Sudan [12]
gave an optimal solution (in terms of the number of queries) to this problem for
prime fields. An important observation is that for the right choice of parameters,
the test of [12] can be performed in linear time in the number of queries. See
Section 6 for details. For details on dealing with the case that r+ 1 is not prime,
see Section 7.

3 Definitions and Preliminary Results

In this section we give some definitions and preliminary results that will be used
throughout this paper.

Let G(V,E) be a directed graph where V is the set of vertices and E ⊆ V ×V
the set of edges. We denote by n = |V | the number of vertices in the graph and
by m = |E| the number of edges in the graph. A k-path or a path of length k is a
sequence ρ = v1, . . . , vk such that (vi, vi+1) is an edge in G for all i = 1, . . . , k−1.
A path is a k-path for some integer k > 0. A path ρ is called simple if all the

On r-Simple k-Path 5

vertices in the path are distinct. We say that a path ρ in G is r-simple, if each
vertex of G appears in ρ at most r times. Obviously, a simple path is a 1-simple
path.

Given as input a directed graph G on n vertices, the r-SIMPLE k-PATH
problem asks for a given G whether it contains an r-simple path of length k.
When r = 1 then the problem is called SIMPLE k-PATH. The r-SIMPLE PATH
problem asks for a given G and integer k whether G contains an r-simple k-path
of length k.

We show that r-SIMPLE PATH is NP-complete.

Theorem 3. For any r the decision problem r-SIMPLE PATH is NP-complete.

The proof of the theorem is deferred to the full version. The idea is to create
a copy v′ of each vertex v, accessible only from v. A Hamiltonian path in the
original graph translates into a long r-simple path by repeatedly going from v
to v′ back and forth after reaching v in the Hamiltonian path. The above result
implies

Corollary 1. If r-SIMPLE k-PATH can be solved in T (r, k, n,m) time then
HAMILTONIAN-PATH can be solved in T (r, 2rn− n + 2, 2n,m+ 2n).

In particular, if there is an algorithm for r-SIMPLE k-PATH that runs in
time poly(n) · 2(c/2)(k/r) then there is an algorithm for HAMILTONIAN-PATH
that runs in time poly(n) · 2cn.

4 Gap

In this section we show that the gap between the longest simple path and the
longest r-simple path can be exponentially large even for r = 2.

We first give the following lower bound for the gap

Theorem 4. If G contains an r-simple path of length k then G contains a simple
path of length � log k

log r �.

Proof: Let t = 	 log k−1
log r
. Let ρ be an r-simple path whose first vertex is v0. We

will use ρ to construct a simple path ρ̄ of length 	 log k
log r
. We denote ρ0 = ρ. As v0

appears at most r times in ρ0, there must be a subpath ρ1 of ρ0 of length at least
(k − r)/r where v0 does not appear. Let v1 be the first vertex of ρ1. Similarly,
for 1 < i ≤ t, we define the subpath ρi of ρi−1 to be a subpath of length at least

(k − r − . . .− ri)/ri ≥ (k − ri+1)/ri,

where v1, . . . , vi−1 do not appear, and define vi to be the first vertex of ρi. Note
that we can always assume there is an edge from vi−1 to vi as we can start ρi
just after an appearance of vi−1 in ρi−1. Note that for 1 ≤ i ≤ t, such a vi as
defined indeed exists as (k − ri+1)/ri ≥ 1 when

k ≥ 2 · ri+1 ↔ i + 1 ≤ (log k − 1)/ log r

Thus, v0 · · · vt−1 is a simple path of the desired length. �

6 H. Abasi et al.

Before we give the upper bound we give the following definition. A full r-tree
is a tree where each vertex has r children and all the leaves of the tree are in
the same level. The root is on level 1.

Theorem 5. There is a graph G that contains an r-simple path of length k and
no simple path of length greater than 4 log k/ log r.

Proof: We first give the proof for r ≥ 3. Consider a full (r − 1)-tree of depth
�logn/ log(r− 1)�. Remove vertices from the lowest level (leaves) so the number
of vertices in the graph is n. Obviously there is an r-simple path of length k ≥ n.
Any simple tour in this tree must change level at each step and if it changes from
level � to level � + 1 it cannot go back in the following step to level �. So the
longest possible simple path is 2�logn/ log(r − 1)� − 2 ≤ 3.17(log k/ log r).

For r = 2 we take a full binary tree (2-tree) and add an edge between every two
children of the same vertex. The 2-simple path starts from the root v, recursively
makes a tour in the left tree of v then moves to the root of the right tree of v
(via the edge that we added) then recursively makes a tour in the right tree of
v and then visit v again. Obviously this is a 2-simple path of length k > n. A
simple tour in this graph can stay in the same level only twice, can move to a
higher level or can move to a lower level. Again here if it moves from level � to
� + 1 it cannot go back in the following step to level �. Therefore the longest
simple path is of length at most 4 logn ≤ 4 log k. �

5 From r-Simple k-Path to Multivariate Polynomial

The purpose of this section is to reduce the question of whether a graph G
contains an r-simple k-path, to that of whether a certain multivariate polynomial
contains an r-monomial, as defined below.

Definition 6 (r-monomial). Fix a field F. Fix a monomial M = M(z) =
zi11 · · · zitt .

– We say M is an r-monomial if no variable appears with degree larger than
r in M . That is, for all 1 ≤ j ≤ t, ij ≤ r.

– Let f(z) be a multivariate polynomial over F. We say f contains an r-
monomial, if there is an r-monomial M(z) appearing with a nonzero co-
efficient c ∈ F in f .

We now describe this reduction.
Let G(V,E) be a directed graph where V = {1, 2, . . . , n}. Let A be the ad-

jacency matrix and B be the n × n matrix such that Bi,j = xi · Ai,j where
xi, i = 1, . . . , n are indeterminates. Let 1 be the row n-vector of 1s and x =
(x1, . . . , xn)T . Consider the polynomial pG(x) = 1 ·Bk−1 · x. It is easy to see

pG(x) =
∑

i1→i2→···→ik∈G

xi1 · · ·xik

where i1 → i2 → · · · → ik ∈ G means that i1, i2, · · · , ik is a directed path in G.

On r-Simple k-Path 7

Obviously, for field of characteristic zero there is an r-simple k-path if and
only if pG(x) contains an r-monomial. For other fields the later statement is not
true. For example, in undirected graph, k = 2, and r = 1 if (1, 2) ∈ E and the
field is of characteristic 2 then the monomial x1x2 occurs twice and will vanish
in pG(x). We solve the problem as follows.

Let B(m) be an n × n matrices, m = 2, . . . , k, such that B
(m)
i,j = xi ·

ym,i · Ai,j where xi and ym,i are indeterminates. Let, y = (y1, . . . ,yk) and
ym = (ym,1, . . . , ym,n). Let x �y = (x1y1,1, . . . , xny1,n). Consider the polynomial
PG(x,y) = 1B(k)B(k−1) · · ·B(2)(x � y). It is easy to see that

PG(x,y) =
∑

i1→i2→···→ik∈G

xi1 · · ·xiky1,i1 · · · yk,ik

Obviously, no two paths have the same monomial in PG. Note that as PG contains
only {0, 1} coefficients, we can define it over any field F. It will actually be
convenient to view it as a polynomial PG(x) whose coefficients are in the field
of rational functions F(y). Therefore, for any field, there is an r-simple k-path
if and only if PG(x,y) contains an r-monomial in x. We record this fact in the
lemma below.

Lemma 1. Fix any field F. The graph G contains an r-simple k-path if and
only if the polynomial PG, defined over F(y), contains an r-monomial M(x).

6 Low Degree Tester

In this section we present a tester that determines whether a function f : Fn
p →

Fp of degree at most d has, in fact, degree less than d. The important point
is that the tester will be able to do this using few black-box queries to f . The
results of this section essentially follow from the work of Haramaty, Sudan and
Shpilka [12]. A crucial observation is that for a certain choice of parameters the
low-degree test of [12] can be performed in linear time in the number of queries.

First, let us say precisely what we mean by the degree of a function f : Fn
p →

Fp. We define this to be the degree of the lowest degree polynomial f ′ ∈ Fp[x]
that agrees with f as a function from Fn

p to Fp. It is known from the theory of
finite fields that there is a unique such f ′, and that the individual degrees of
all variables in f ′ are smaller than p. Moreover, given any polynomial g ∈ Fp[x]
agreeing with f as a function from Fn

p to Fp, f ′ can be derived from g by
replacing, for any 1 ≤ i ≤ n, occurrences of xti with xti mod xpi − xi (i.e.,

x
((t−1) mod (p−1))+1
i when t = 0). We do not prove these basic facts formally

here. They essentially follow from the fact that ap = a for a ∈ Fp.
This motivates the following definition.

Definition 7. Fix positive integers n, d and a prime p. Let f ∈ Fp[x] =
Fp[x1, . . . , xn]. We define degp(f) to be the degree of the polynomial f when re-

placing, for 1 ≤ i ≤ n, xti by (xti mod xpi−xi). More formally, degp(f) � deg(f ′)
where

8 H. Abasi et al.

f ′(x1, . . . , xn) � f(x1, . . . , xn) mod xp1 − x1, . . . , mod xpn − xn.

Moreover, for a function g : V → Fp where V ⊆ Fn
p is a subspace of dimension

k, we define degp(g) = minf degp(f) where f ∈ Fp[x1, ..., xn] and f |V = g. Here
g can be regarded as a function in Fp[x1, . . . , xk].

We note that this notion of degree is affine invariant, i.e doesn’t change after
affine transformations. In addition it has the property that for any affine subspace
V , degp(f |V) ≤ degp(f).

We now present the main result of this section.

Lemma 2. There is a randomized algorithm A running in time poly(n)·p� d
p−1�+1

that determines with constant one-sided error whether a function f of degree at
most d has degree less than d. More precisely, given black-box access to a function
f : Fn

p → Fp with degp(f) ≤ d,

– If degp(f) = d, A accepts with probability at least 99/100.
– If degp(f) < d, A rejects with probability one.

The proof of Lemma 2 is can be found in the full version.

7 Testing if PG Contains an r-Monomial

In this section we present a method for testing whether the polynomial PG,
described in Section 5, contains an r-monomial. This is done using the low-
degree tester from the previous section.

As stated in Lemma 1, this is precisely equivalent to whether G contains an
r-simple k-path. Recall we viewed PG as a polynomial over a field of rational
functions Fp(y). To obtain efficient algorithms, we first reduce the question to
checking whether a different polynomial defined over Fp rather than Fp(y) con-
tains an r-monomial. It is important in the next Lemma that we are able to do
this reduction for any p, in particular a ‘small’ one.

Lemma 3. Fix any integers r, k, with r ≤ k. Let p be any prime and t =
�logp 10k�. Let G be a directed graph on n vertices. Given an adjacency ma-
trix AG for G, we can return in poly(n)-time poly(n)-size circuits computing
polynomials f1

G, . . . , f
t
G : Fn

p → Fp on inputs in Fn
p such that

– For 1 ≤ i ≤ t, f i
G is (either the zero polynomial or) homogenous of degree k.

– If G contains an r-simple k-path then with probability at least 9/10, for some
1 ≤ i ≤ t, f i

G contains an r-monomial.
– If G does not contain an r-simple k-path, for all 1 ≤ i ≤ t, f i

G does not
contain an r-monomial.

Proof: Note that the discussion in Section 5 implies we can compute PG in
poly(n)-time over inputs in F2n

p . We choose random b ∈ Fn
pt and let

On r-Simple k-Path 9

fG(x) � PG(x,b).

Suppose PG, as a polynomial over F(y), contains an r-monomial M ′(x). The
coefficient cM ′(y) of M ′ in PG is a nonzero polynomial of degree k. So, by the
Schwartz-Zippel Lemma, cM ′(b) = 0 with probability at most k/pt ≤ 1/10. In
the event that cM ′(b) = 0, fG(x) is a homogenous polynomial of degree k in
Fpt [x] containing an r-monomial. Let us assume from now on, we chose a b such

that indeed aM ′ � cM ′ (b) = 0. We now discuss how to end up with polynomials
having coefficients in Fp rather than Fpt .

Let T1, . . . , Tt : Fpt → Fp be independent Fp-linear maps. Suppose fG =∑
M aM ·M(x). For 1 ≤ i ≤ t, define a polynomial f i

G ∈ Fp[x] by

f i
G(x) �

∑
M

Ti(aM) ·M(x).

Note that for all 1 ≤ i ≤ t, f i
G is the zero polynomial or homogenous of degree

k. As aM ′ = 0, for some i, Ti(aM ′) = 0. For this i, f i
G is homogenous of degree k

and contains an r-monomial, specifically, the r-monomial aM ′ ·M ′(x). We claim
that for all 1 ≤ i ≤ t, f i

G can be computed by a poly(n)-size circuit on inputs
a ∈ Fn

p . This is because fG and Ti are efficiently computable, and because for
a ∈ Fn

p ,

Ti(fG(a)) = Ti

(∑
M

aM ·M(a)

)
=

∑
M

Ti(aM) ·M(a) = f i
G(a),

where the second equality is due to the Fp-linearity of Ti.
�

The above lemma implies

Corollary 2. Fix any prime p. Suppose that given black-box access to a poly-
nomial g ∈ Fp[x] that is homogenous of degree k, we can determine in time
poly(n) · S if it contains an r-monomial. Then we can also determine in time
poly(n) · S whether PG as a polynomial over Fp(y) contains an r monomial.

Our reduction to low-degree testing is based on the following simple obser-
vation that, for the right p and for homogenous polynomials, containing an
r-monomial is equivalent to having a certain degp-degree.

Lemma 4. Suppose g ∈ Fp[x] is a homogenous polynomial of degree k. Suppose
r = p− 1. Then degp(g) = k if and only if g contains an r-monomial.

Proof: If g contains an r-monomial M then, as r < p, degp(M) = k, which
implies that degp(g) = k. If g does not contain an r-monomial, then for every
monomial M in g there is an i ∈ [n] such that the degree of xi in M is at least
r + 1 = p. So replacing xpi by xi will reduce the degree of M and therefore
degp(M) < k. Since this happens for all monomials of g, degp(g) < k. �

We introduce another element on notation that will be convenient in the rest
of this section.

10 H. Abasi et al.

Definition 8. Fix integers n, d and prime p. Let f ∈ Fp[x] be an n-variate
polynomial of degree at most d. We define LDT (f, n, d, p) to be 1 if degp(f) = d,
and 0 otherwise.

Before proceeding, we note that the results of Section 6 imply that given n, d, p
and black-box access to f , LDT (f, n, d, p) can be computed in time poly(n) ·
O(p�d/(p−1)�+1). In particular, if given a ∈ Fn

p , we can compute f(a) in poly(n)-

time, then we can compute LDT (f, n, d, p) in time poly(n) · O(p�d/(p−1)�+1).
The following lemma is an easy corollary of Lemma 4.

Lemma 5. Fix integers r, k with r ≤ k. Suppose p = r + 1 is prime. Let g ∈
Fp[x] be homogenous of degree k and computable in poly(n)-time. There is a
randomized algorithm running in time

poly(n) ·O((r + 1)�k
r �+1)

determining whether g contains an r-monomial.

Proof: The algorithm simply returns LDT (g, n, d = k, p = r + 1). The running
time follows from the discussion above. The correctness follows from Lemma 4. �

We wish to have a similar result when r + 1 is not a prime.

Lemma 6. Fix integers r, k with r ≤ k. Let p be the smallest prime such that
p−1
r ∈ Z. Let g ∈ Fp[x] be homogenous of degree k and computable by a poly(n)-

size circuit. There is a randomized algorithm running in time poly(n)·O(p�k
r �+1)

determining whether g contains an r-monomial.

Proof: Denote l � p−1
r and define

h(x1, x2, . . . , xn) := g(xl1, x
l
2, . . . , x

l
n).

The algorithm returns LDT (h, n, d = k · l, p).
Note that h is homogenous of degree k · l. Note also that h contains an r · l-

monomial if and only if g contains an r-monomial. As r · l + 1 = p correctness
now follows from Lemma 4.

�
The best known bound for the smallest prime number p that satisfies r|p− 1

is r5.5 due to Heath-Brown [18]. This gives a randomized algorithm running in
time

poly(n) · O(r
5.5k
r +O(1)).

Schinzel, Sierpinski, and Kanold have conjectured the value to be 2 [18]. In the
following Theorem we give a better bound. We first give the following

Lemma 7. Fix integers r, k with r ≤ k. Let p be the smallest prime such that
there is an l ∈ Z for which r · l ≤ p − 1 and (r + 1) · l > p − 1. Let g ∈ Fp[x]
be homogenous of degree k and computable by a poly(n)-size circuit. There is a
randomized algorithm running in time

poly(n) · O
(
p�

l·k
p−1�+1

)
determining whether g contains an r-monomial.

On r-Simple k-Path 11

Proof: As in the proof of Lemma 6, we define h(x1, x2, ..., xn) � g(xl1, x
l
2, ..., x

l
n).

The algorithm returns LDT (h, n, d = k · l, p). As in the proof of Lemma 6, h
is homogenous of degree k · l and contains an (r · l)-monomial if and only if g
contains an r-monomial. Furthermore, as r ·l ≤ p−1 and (r+1)·l ≥ p, h contains
a (p − 1)-monomial if and only if g contains an r-monomial. Correctness now
follows from Lemma 4.

�
The main result of this section contains two results. The first is unconditional.

The second is true if Cramer’s conjecture is true. Cramer’s conjecture states that
the gap between two consecutive primes pn+1 − pn = O(log2 pn), [9].

Theorem 9. (Unconditional Result) Fix any integers r, k with 2 ≤ r ≤ k. Let
g ∈ Fp[x] be homogenous of degree k and computable by a poly(n)-size circuit.
There is a randomized algorithm running in time

poly(n) ·O
(
r

2k
r +O(1)

)
determining whether g contains an r-monomial.

(Conditional Result) If Cramer’s Conjecture is true then the time complexity
of the algorithm is

poly(n) ·O
(
r

k
r +o(k

r)
)
.

Proof: We will find p and l as required in Lemma 7. Fix a prime p such that r2 +
r + 1 < p < 2r2 + 2r ≤ 3r2 . (This can be done as for any positive integer t > 3,
there is always a prime between t and 2t.)

Define l � 	p−1
r
. We have

r · l = r · 	p− 1

r

 ≤ p− 1

(r + 1) · l ≥ (r + 1) · (p− 1

r
− 1) = (p− 1) +

p− 1

r
− r − 1 > (p− 1)

The first claim now follows from Lemma 7 and Corollary 2.
If Cramer’s conjecture is true then there is a constant c such that for every in-

teger x there is a prime number in [x, x + c log2(x)] . Then there is a prime num-
ber p in the interval [2cr log2 r, 2cr log2 r + c log2(2cr log2 r)] and we can choose
l = 2c log2 r. Then the time complexity will be

poly(n) ·O
(
r

k
r +o(k

r)
)
.

�
In the full version we summarize the running times attained for r ≤ 11.

12 H. Abasi et al.

References

1. Abasi, H., Bshouty, N.H.: A simple algorithm for undirected hamiltonicity. Elec-
tronic Colloquium on Computational Complexity (ECCC) 20, 12 (2013)

2. Alon, N., Yuster, R., Zwick, U.: Color-Coding. J. ACM 42(4), 844–856 (1995)
3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.

J. Assoc. Comput. Mach. 9, 61–63 (1962)
4. Bellman, R.: Combinatorial processes and dynamic programming, Combinatorial

Analysis. In: Bellman, R., Hall, M. (eds.) Proceedings of Symposia in Applied
Mathematics 10, American Mathematical Society, pp. 217–249 (1960)

5. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algo-
rithm. 14(1), 1–23 (1993)

6. Björklund, A., Husfeldt, T., Khanna, S.: Approximating Longest Directed Paths
and Cycles. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004)

7. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. CoRR abs/1007.1161 (2010)

8. Baker, R.C., Harman, G., Pintz, J.: The Difference between Consecutive Primes.
II. Proc. London Math. Soc. 83(3), 532–562 (2001)

9. Cramer, H.: On the order of magnitude of the difference between consecutive prime
numbers. Acta Arithmetica 2, 23–46 (1936)

10. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Proc. 18th Annual ACM SIAM Symposium on Discrete
Algorithms, SODA 2007, Philadelphia, PA, USA, pp. 298–307 (2007)

11. Gabow, H.N., Nie, S.: Finding Long Paths, Cycles and Circuits. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 752–763.
Springer, Heidelberg (2008)

12. Haramaty, E., Shpilka, A., Sudan, M.: Optimal Testing of Multivariate Polynomials
over Small Prime Fields. SIAM J. Comput. 42(2), 536–562 (2013)

13. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

14. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-
ized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

15. Karger, D.R., Motwani, R., Ramkumar, G.D.S.: On Approximating the Longest
Path in a Graph. Algorithmica 18(1), 82–98 (1997)

16. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-Color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

17. Monien, B.: How to find long paths efficiently. Annals of Discrete Mathematics 25,
239–254 (1985)

18. Ribenboim, P.: The New Book of Prime Number Records. Springer, New York
(1996)

19. Williams, R.: Finding paths of length k in O∗(2k). Inform. Process Lett. 109(6),
301–338 (2009)

Low-Depth Uniform Threshold Circuits

and the Bit-Complexity of Straight
Line Programs

Eric Allender1, Nikhil Balaji2, and Samir Datta2

1 Department of Computer Science, Rutgers University, USA
allender@cs.rutgers.edu

2 Chennai Mathematical Institute, India
{nikhil,sdatta}@cmi.ac.in

Abstract. We present improved uniform TC0 circuits for division, ma-
trix powering, and related problems, where the improvement is in terms
of “majority depth” (as studied by Maciel and Thérien). As a corollary,
we obtain improved bounds on the complexity of certain problems involv-
ing arithmetic circuits, which are known to lie in the counting hierarchy.

1 Introduction

How hard is it to compute the 10100-th bit of the binary expansion of
√

2? Datta
and Pratap [6], and Jeřábek [15] considered the question of computing the m-th
bit of an algebraic number. Jeřábek [15] showed that this problem has uniform
TC0 circuits1 of size polynomial in m (which is not so useful when m = 10100).
Earlier, Datta and Pratap showed a related result: when m is expressed in binary,
this problem lies in the counting hierarchy. More precisely, Datta and Pratap
showed that this problem is reducible to the problem of computing certain bits
of the quotient of two numbers represented by arithmetic circuits of polynomial
size.2 Thus, we are led to the problem of evaluating arithmetic circuits. In this
paper, we focus on arithmetic circuits without input variables. Thus an
arithmetic circuit is a (possibly very compact) representation of a number.

Arithmetic circuits of polynomial size can produce numbers that require
exponentially-many bits to represent in binary. The problem3 known as BitSLP
(= {(C, i, b) : the i-th bit of the number represented by arithmetic circuit C is
b}) is known to be hard for #P [3]. It was known that BitSLP lies in the counting
hierarchy [3], but the best previously-known bound for this problem is the bound

mentioned in [3] and credited there to [2]: PHPPPPPP
PP

. That bound follows via a
straightforward translation of a uniform TC0 algorithm presented in [12].

1 For somewhat-related TC0 algorithms on sums of radicals, see [14].
2 It is mistakenly claimed in [6] that this problem lies in PHPPPP

. In this paper, we

prove the weaker bound that it lies in PHPPPPPP

.
3 “SLP” stands for “straight-line program”: a model equivalent to arithmetic circuits.
Throughout the rest of the paper, we will stick with the arithmetic circuit formalism.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 E. Allender, N. Balaji, and S. Datta

In this paper, we improve this bound on the complexity of BitSLP to PHPPPPPP

.
In order to do this, we present improved uniform TC0 algorithms for a number of
problems that were already known to reside in uniform TC0. The improvements
that we provide are related to the depth of the TC0 circuits. There are several
possible variants of “depth” that one could choose to study. For instance, several
papers have studied circuits consisting only of majority gates, and tight bounds
are known for the depth required for several problems, in that model. (See, for
instance [10,24,27,23] and other work referenced there.) Since our motivation
comes largely from the desire to understand the complexity of problems in the
counting hierarchy, it turns out that it is much more relevant to consider the
notion of majority depth that was considered by Maciel and Thérien [20]. In this
model, circuits have unbounded-fan-in AND, OR, and MAJORITY gates (as

well as NOT gates). The class T̂C
0

d consists of functions computable by families
of threshold circuits of polynomial size and constant depth such that no path
from an input to an output gate encounters more than d MAJORITY gates.

Thus the class of functions with majority depth zero, T̂C
0

0, is precisely AC0. In

order to explain the connection between T̂C
0

d and the counting hierarchy, it is
necessary to define the levels of the counting hierarchy.

Define CH1 = PP, and CHk+1 = PPCHk .

Proposition 1. (Implicit in [3, Theorem 4.1].) Let A be a set such that for some

k, some poly-time function f and some dlogtime-uniform T̂C
0

d circuit family Cn:

x ∈ A iff C|x|+2|x|k (x, f(x, 1)f(x, 2) . . . f(x, 2|x|
k

)) accepts. Then A ∈ PHCHd .

(One important part of the proof of Proposition 1 is the fact that, by Toda’s

theorem [25], for every oracle A, PPPH
A

⊆ PPP
A

. Thus all of the AC0 circuitry

inside the T̂C
0

d circuit can be swallowed up by the PH part of the simulation.)
Note that the dlogtime-uniformity condition is crucial for Proposition 1. Thus,

for the remainder of this paper, all references to T̂C
0

d will refer to the dlogtime-
uniform version of this class, unless we specifically refer to nonuniform circuits.
Table 1 compares the complexity bounds that Maciel and Thérien obtained in
the nonuniform setting with the bounds that we are able to obtain in the uniform
setting. (Maciel and Thérien also considered several problems for which they gave
uniform circuit bounds; the problems listed in Table 1 were not known to lie in
dlogtime-uniform TC0 until the subsequent work of [12].) All previously-known
dlogtime-uniform TC0 algorithms for these problems rely on the CRR-to-binary
algorithm of [12], and thus have at least majority-depth 4 (as analyzed by [2]);
no other depth analysis beyond O(1) was attempted.

In all of the cases where our uniform majority-depth bounds are worse than
the nonuniform bounds given by [20], our algorithms also give rise to nonuniform
algorithms that match the bounds of [20] (by hardwiring in some information
that depends only on the length), although in all cases the algorithms differ in
several respects from those of [20].

Low-Depth Uniform Threshold Circuits 15

Nonuniform Uniform
Problem Majority-Depth [20] Majority-Depth [This Paper]

Iterated multiplication 3 3
Division 2 3
Powering 2 3

CRR-to-binary 1 3
Matrix powering O(1) [21,12] 3

All of the TC0 algorithms that are known for the problems considered in this
paper rely on partial evaluations or approximations. The technical innovations
in our improved algorithms rely on introducing yet another approximation, as
discussed in Lemmas 2 and 3.

Table 1 also lists one problem that was not considered by Maciel and Thérien:
given as input 1m and a k×k matrix A, produce Am. For any fixed k, this problem
was put in nonuniform TC0 [21]; and by [12] it is also in dlogtime-uniform TC0.
The corresponding problem of computing large powers of a k × k matrix (i.e.,
when m is given in binary) has been discussed recently; see the final section of

[22]. We show that this version of matrix powering is in PHPPPPPP

.
In addition to BitSLP, there has also been interest in the related problem

PosSLP (= {C : the number represented by arithmetic circuit C is positive})
[9,18,17,19]. PosSLP ∈ PHPPPP

, and is not known to be in PH [3], but in contrast
to BitSLP, it is not known (or believed [9]) to be NP-hard. Our theorems do not
imply any new bounds on the complexity of PosSLP, but we do conjecture that
BitSLP and PosSLP both lie in PHPP. This conjecture is based mainly on the
heuristic that says that, for problems of interest, if a nonuniform circuit is known,
then corresponding dlogtime-uniform circuits usually also exist. Converting from
CRR to binary can be done nonuniformly in majority-depth one, and there is
no reason to believe that this is not possible uniformly – although it seems clear
that a different approach will be needed, to reach this goal.

The well-studied Sum-of-Square-Roots problem reduces to PosSLP [3], which
in turn reduces to BitSLP. But the relationship between PosSLP and the matrix
powering problem (given a matrix A and n-bit integer j, output the jth bit of a
given entry of Aj) is unclear, since matrix powering corresponds to evaluating
very restricted arithmetic circuits. Note that some types of arithmetic involving
large numbers can be done in P; see [13]. Might matrix powering also lie in PH?

We provide a very weak “hardness” result for the problem of computing the
bits of large powers of 2-by-2 matrices, to shed some dim light on this question.
We show that the Sum-of-Square-Roots problem reduces to this problem via
PHPP-Turing reductions. Due to lack of space, we defer the proof to the full
version of this paper.

16 E. Allender, N. Balaji, and S. Datta

2 Preliminaries

Given a list of primes Π = (p1, . . . , pm) and a number X , the CRRΠ represen-
tation of X is the list (X mod p1, . . . , X mod pm). We omit the subscript Π if
context makes clear. For more on complexity classes such as AC0,TC0,NC1, as
well as a discussion of dlogtime uniformity, see [26].

3 Uniform Circuits for Division

Theorem 1. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n), and 0m and

producing as output the binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof. This task is trivial if Y = 1; thus assume that Y ≥ 2. Computing the bi-
nary expansion of Z/Y correct to m places is equivalent to computing 	2mZ/Y
.
Thus we will focus on the task of computing 	X/Y
, given integers X and Y .

Our approach will be to compute Ṽ (X,Y), a strict underestimate of X/Y ,

such that X/Y − Ṽ (X,Y) < 1/Y . Since Y > 1, we have that 	X/Y
 = 	(X +
1)/Y
 if and only if (X+1)/Y = 	X/Y
+1. It follows that in all cases 	X/Y
 =

	Ṽ (X + 1, Y)
, since⌊
X

Y

⌋
≤ X

Y
=

X + 1

Y
− 1

Y
< Ṽ (X + 1, Y) <

X + 1

Y
.

Note: in order to compute 	XY
, we compute an approximation to (X + 1)/Y .

The approximation Ṽ (X,Y) is actually defined in terms of another ratio-

nal approximation W (X,Y), which will have the property that Ṽ (X,Y) ≤
W (X,Y) < X/Y . We postpone the definition of Ṽ (X,Y), and focus for now
on W (X,Y), an under approximation of X

Y with error at most 2−(n+1). .
Using AC0 circuitry, we can compute a value t such that 2t−1 ≤ Y < 2t.
Let u = 1− 2−tY . Then u ∈ (0, 12]. Thus, Y −1 = 2−t(1− u)−1 = 2−t(1 + u+

u2 + . . .). Set Y ′ = 2−t(1 + u+ u2 + . . . + u2n+1), then

0 < Y −1 − Y ′ ≤ 2−t
∑

j>2n+1

2−j < 2−(2n+1)

Define W (X,Y) to be XY ′. Hence, 0 < X
Y −W (X,Y) < 2−(n+1).

We find it useful to use this equivalent expression for W (X,Y):

W (X,Y) =
X

2t

2n+1∑
j=0

(1− Y

2t
)j =

1

22(n+1)t

2n+1∑
j=0

X(2t − Y)j2(2n+1−j)t;

W (X,Y) = 1
22(n+1)t

∑2n+1
j=0 Wj(X,Y), where Wj(X,Y) = X(2t−Y)j(2(2n+1−j)t).

Lemma 1. (Adapted from [6]) Let Π be any set of primes such that the product

M of these primes lies in (2n
c

, 2n
d

) for some d > c ≥ 3. Then, given X,Y,Π we
can compute the CRRΠ representations of the 2(n + 1) numbers Wj(X,Y) (for

j ∈ {0, . . . , 2n + 1}) in T̂C
0

1.

Low-Depth Uniform Threshold Circuits 17

Proof. Using AC0 circuitry, we can compute 2t − Y , 2j mod p for each prime

p ∈ Π and various powers j, as well as finding generators mod p. In T̂C
0

1 we can
compute X mod p and (2t − Y) mod p (each of which has O(log n) bits). Using
those results, with AC0 circuitry we can compute the powers (2t−Y)j mod p and
then do additional arithmetic on numbers of O(log n) bits to obtain the product
X(2t−Y)j(2(2n+1−j)t) mod p for each p ∈ Π . (The condition that c ≥ 3 ensures
that the numbers that we are representing are all less than M .) ��

Having the CRRΠ representation of the number Wj(X,Y), our goal might be
to convert the Wj(X,Y) to binary, and take their sum. For efficiency, instead we
compute an approximation (in binary) to W (X,Y)/M where M =

∏
p∈Π p. In

Lemma 3 we build on this to compute our approximation Ṽ (X,Y) to W (X,Y).

Recall that W (X,Y) = 1
22(n+1)t

∑2n+1
j=0 Wj(X,Y). Thus 22(n+1)tW (X,Y) is

an integer with the same significant bits as W (X,Y).

Lemma 2. Let Π be any set of primes such that the product M of these primes

lies in (2n
c

, 2n
d

) for a fixed constant d > c ≥ 3, and let b be any natural number.
Then, given X,Y,Π we can compute the binary representation of a good approx-

imation to 22(n+1)tW (X,Y)
M in T̂C

0

2 (where by good we mean that it under-estimates

the correct value by at most an additive term of 1/2n
b

).

Proof. Let hΠp = (M/p)−1 mod p for each prime p ∈ Π .

If we were to compute a good approximation ÃΠ to the fractional part of:

AΠ =
∑
p∈Π

(22(n+1)tW (X,Y) mod p)hΠp
p

i.e. if ÃΠ were a good approximation to AΠ − 	AΠ
, then ÃΠM would be a
good approximation to 22(n+1)tW (X,Y). This follows from observing that the

fractional part of AΠ is exactly 22(n+1)tW (X,Y)
M (as in [12,3]).

Instead, we will compute a good approximation Ã′
Π to the fractional part of

A′
Π =

∑
p∈Π

2n+1∑
j=0

(Wj(X,Y) mod p)hΠp
p

.

Note: the two quantities AΠ , A
′
Π are not equal but their fractional parts are.

Since we are adding 2(n + 1)|Π | approximate quantities it suffices to compute
each of them to bm = 2nb + 2(n + 1)|Π | bits of accuracy to ensure:

0 ≤ W (X,Y)

M
− Ã′

Π <
1

2nb .

Now we analyze the complexity. By Lemma 1, we obtain in T̂C
0

1 the CRRΠ

representation of Wj(X,Y) ∈ [0, 2n) for j ∈ {0, . . . , O(n)}. Each hΠp is com-

putable in T̂C
0

1, and poly-many bits of the binary expansion of 1/p can be ob-
tained in AC0. Using AC0 circuitry we multiply together the O(log n)-bit numbers

18 E. Allender, N. Balaji, and S. Datta

hΠp and Wj(X,Y) mod p, to obtain the binary expansion of ((Wj(X,Y) mod

p)hΠp) · (1/p) (since multiplying an n-bit number by a logn bit number can be
done in AC0). Thus, with one more layer of majority gates, we compute

A′
Π =

∑
p∈Π

2n+1∑
j=0

(Wj(X,Y) mod p)hΠp
p

and strip off the integer part, to obtain the desired approximation. ��

Corollary 1. Let Π be any set of primes such that the product M of these

primes lies in (2n
c

, 2n
d

) for a fixed constant d > c ≥ 3. Then, given Z in CRRΠ

representation and the numbers hΠp for each p ∈ Π, we can compute the binary

representation of a good approximation to Z
M in T̂C

0

1

Now, finally, we present our desired approximation. Ṽ (X,Y) is 2n
c ·V ′(X,Y),

where V ′(X,Y) is an approximation (within 1/2n
2c

) of

V (X,Y) =
W (X,Y)

∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

.

W (X,Y)− 2n
c

V (X,Y) = W (X,Y)− 2n
cW (X,Y)

∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

= W (X,Y)− W (X,Y)
∏nc

i=1 (Mi − 1)∏nc

i=1Mi

< W (X,Y)
nc

2nc <
22nnc

2nc

and

2n
c

V (X,Y)− Ṽ (X,Y) = 2n
c

V (X,Y)− 2n
c

V ′(X,Y)

= 2n
c

(V (X,Y)− V ′(X,Y))

≤ 2n
c

(
1

2n2c) =
2n

c

2n2c .

Thus X/Y − Ṽ (X,Y) = (X/Y − W (X,Y) + (W (X,Y) − 2n
c

V (X,Y)) +

(2n
c

V (X,Y)− Ṽ (X,Y)) < 2−(n+1) + nc22n/2n
c

+ 2n
c

/2n
2c

< 1/Y .

Lemma 3. Let Πi for i ∈ {1, . . . , nc} be nc pairwise disjoint sets of primes

such that Mi =
∏

p∈Πi
p ∈ (2n

c

, 2n
d

) (for some constants c, d : 3 ≤ c < d). Let

Π = ∪nc

i=1Πi. Then, given X,Y and the Πi, we can compute Ṽ (X,Y) in T̂C
0

3.

Proof. In T̂C
0

1 we compute the CRRΠ representation of each Mi, and the num-
bers Wj mod p (using Lemma 1). Also, as in Lemma 2, we get the values hΠp .

Low-Depth Uniform Threshold Circuits 19

Then, with one more layer of majority gates we can compute the CRR rep-
resentation of

∏
i (Mi − 1)/2 and of 22(n+1)tW (X,Y) =

∑2n+1
j=0 Wj(X,Y). The

CRR representation of the product 22(n+1)tW (X,Y) ·
∏

i (Mi − 1)/2 can then be
computed with AC0 circuitry to obtain the CRR representation of the numerator
of the expression for V (X,Y). (It is important to note that 22(n+1)tW (X,Y) ·∏

i (Mi − 1)/2 <
∏

iMi, so that it is appropriate to talk about this CRR rep-
resentation. Indeed, that is the reason why we divide each factor Mi − 1 by
two.)

This value can then be converted to binary with one additional layer of ma-
jority gates, via Corollary 1, to obtain Ṽ (X,Y). ��

This completes the proof of Theorem 1. ��

Corollary 2. Let Π be any set of primes such that the product M of these

primes lies in (2n
c

, 2n
d

) for a fixed constant d > c ≥ 3. Then, given Z in CRRΠ

representation, the binary representation of Z can be computed in T̂C
0

3

Proof. Recall from the proof of Theorem 1 that, in order to compute the bits of
Z/2, our circuit actually computes an approximation to (Z + 1)/2. Although, of
course, it is trivial to compute Z/2 if Z is given to us in binary, let us consider how
to modify the circuit described in the proof of Lemma 3, if we were computing
Ṽ (Z + 1, 2), where we are given Z in CRR representation.

With one layer of majority gates, we can compute the CRRΠ representation
of each Mi and the values hΠp for each prime p. (We will not need the numbers
Wj mod p.)

Then, with one more layer of majority gates we can compute the CRR rep-
resentation of

∏
i (Mi − 1)/2. In place of the gates that store the value of the

CRR representation of 22(n+1)tW (X,Y), we insert the CRR representation of Z
(which is given to us as input) and using AC0 circuitry store the value of Z + 1.
The CRR representation of the product Z + 1 ·

∏
i (Mi − 1)/2 can then be com-

puted with AC0 circuitry to obtain the CRR representation of the numerator of
the expression for V (Z + 1, 2).

Then this value can be converted to binary with one additional layer of ma-
jority gates, from which the bits of Z can be read off. ��

It is rather frustrating to observe that the input values Z are not used un-

til quite late in the T̂C
0

3 computation (when just one layer of majority gates
remains). However, we see no simpler uniform algorithm to convert CRR to
binary.

For our application regarding problems in the counting hierarchy, it is useful
to consider the analog to Theorem 1 where the values X and Y are presented in
CRR notation.

Theorem 2. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n) (in CRR) as
well as 0m, and producing as output the binary expansion of X/Y correct to m

places is in T̂C
0

3.

20 E. Allender, N. Balaji, and S. Datta

Proof. We assume that the CRR basis consists of pairwise disjoint sets of primes
Mi, as in Lemma 3.

The algorithm is much the same as in Theorem 1, but there are some impor-
tant differences that require comment. The first step is to determine if Y = 1,
which can be done using AC0 circuitry (since the CRR of 1 is easy to recognize).
The next step is to determine a value t such that 2t−1 ≤ Y < 2t. Although this
is trivial when the input is presented in binary, when the input is given in CRR
it requires the following lemma:

Lemma 4. (Adapted from [1,7,3]) Let X be an integer from (−2n, 2n) specified

by its residues modulo each p ∈ Πn. Then, the predicate X > 0 is in T̂C
0

2

Since we are able to determine inequalities in majority-depth two, we will
carry out the initial part of the algorithm from Theorem 1 using all possible
values of t, and then select the correct value between the second and third levels
of MAJORITY gates.

Thus, for each t, and for each j, we compute the values Wj,t(X + 1, Y) =
(X + 1)(2t − Y)j(2(2n+1−j)t) in CRR, along with the desired number of bits of
accuracy of 1/p for each p in our CRR basis.

With this information available, as in Lemma 3, in majority-depth one we can
compute hΠp , as well as the CRR representation of each Mi, and thus with AC0

circuitry we obtain (Wj,t(X + 1, Y) and the CRR for each (Mi − 1)/2.
Next, with our second layer of majority gates we sum the values Wj,t(X +

1, Y) (over all j), and at this point we also will have been able to determine
which is the correct value of t, so that we can take the correct sum, to obtain
22(n+1)tW (X,Y).

Thus, after majority-depth two, we have obtained the same partial results as
in the proof of Lemma 3, and the rest of the algorithm is thus identical. ��

Proposition 2. Iterated product is in uniform T̂C
0

3.

Proof. The overall algorithm is identical to the algorithm outlined in [20], al-
though the implementation of the basic building blocks is different. In majority-
depth one, we convert the input from binary to CRR. With one more level of
majority gates, we compute the CRR of the product.

Simultaneously, in majority-depth two we compute the bottom two levels of
our circuit that computes from CRR to binary, as in Corollary 2.

Thus, with one final level of majority gates, we convert the answer from CRR
to binary. ��

3.1 Consequences for the Counting Hierarchy

Corollary 3. BitSLP ∈ PHPPPPPP

.

Proof. This is immediate from Proposition 1 and Corollary 2.
Let f be the function that takes as input a tuple (C, (p, j)) and if p is a

prime, evaluates the arithmetic circuit C mod p and outputs the j-th bit of the

Low-Depth Uniform Threshold Circuits 21

result. This function f , taken together with the T̂C
0

3 circuit family promised by
Corollary 2, satisfies the hypothesis of Proposition 1. (There is a minor subtlety,
regarding how to partition the set of primes into the groupings Mi, but this
is easily handled by merely using all of the primes of a given length, at most
polynomially-larger than |C|.) ��

Via essentially identical methods, using Theorem 2, we obtain:

Corollary 4. {(CX , CY , i) : the i-th bit of the quotient X/Y , where X and Y

are represented by arithmetic circuits CX and CY , respectively, is in PHPPPPPP

.

4 Integer Matrix Powering

Theorem 3. The function MPOW(A,m, p, q, i) taking as input a (d×d) integer

matrix A ∈ {0, 1}d2n, p, q, 1i, where p, q ∈ [d], i ∈ [O(n)] and producing as output

the i-th bit of the (p, q)-th entry of Am is in T̂C
0

3.

For a (d×d) matrix, the characteristic polynomial χA(x) : Z→ Z is a univari-
ate polynomial of degree at most d. Let q, r : Z→ Z be univariate polynomials
of degree at most (m − d) and (d − 1) such that xm = q(x)χA(x) + r(x). By
the Cayley-Hamilton theorem, we have that χA(A) = 0. So, in order to compute
Am, we just have to compute r(A).

Lemma 5. Given a (d × d) matrix A of n-bit integers, the coefficients of the

characteristic polynomial of A in CRR can be computed in T̂C
0

1.

Proof. We convert the entries of A to CRR and compute the determinant of (xI−
A). This involves an iterated sum of O(2dd!) integers each of which is an iterated

product of d n-bit integers. The conversion to CRR is in T̂C
0

1. Since addition,
multiplication, and powering of O(1) numbers of O(log n) bits is computable
in AC0, it follows that the coefficients of the characteristic polynomial can be

computed in T̂C
0

1.

Lemma 6. Given the coefficients of the polynomial r, in CRR, and given A in
CRR, we can compute Am in CRR using AC0 circuitry.

Proof. Recall that Am = r(A). Let r(x) = r0 + r1x+ . . .+ rd−1x
d−1. Computing

any entry of r(A) in CRR involves an iterated sum of O(1) many numbers which
are themselves an iterated product of O(1) many O(log n)-bit integers. ��

Lemma 7. (Adapted from [11]) Let p be a prime of magnitude poly(m). Let g(x)
of degree m and f(x) of degree d be monic univariate polynomials over GFp, such
that g(x) = q(x)f(x) + r(x) for some polynomials q(x) of degree (m − d) and
r(x) of degree (d− 1). Then, given the coefficients of g and f , the coefficients of

r can be computed in T̂C
0

1.

22 E. Allender, N. Balaji, and S. Datta

Proof. Following [11], let f(x) =
∑d

i=0 aix
i, g(x) =

∑m
i=0 bix

i, r(x) =
∑d−1

i=0 rix
i

and q(x) =
∑m−d

i=0 qix
i. Since f, g are monic, we have ad = bm = 1. Denote by

fR(x), gR(x), rR(x) and qR(x) respectively the polynomial with the i-th coef-
ficient ad−i, bm−i, rd−i−1 and qm−d−i respectively. Then note that xdf(1/x) =
fR(x), xmg(1/x) = gR(x), xm−dq(1/x) = qR(x) and xd−1r(1/x) = rR(x).

We use the Kung-Sieveking algorithm (as implemented in [11]). The algorithm
is as follows:

1. Compute f̃R(x) =
∑m−d

i=0 (1− fR(x))i via interpolation modulo p.

2. Compute h(x) = f̃R(x)gR(x) = c0 + c1x+ . . . + cd(m−d)+mx
d(m−d)+m. from

which the coefficients of q(x) can be obtained as qi = cd(m−d)+m−i.
3. Compute r(x) = g(x)− q(x)f(x).

To prove the correctness of our algorithm, note that we have g(1/x) =
q(1/x)f(1/x) + r(1/x). Scaling the whole equation by xm, we get gR(x) =
qR(x)fR(x) + xm−d+1rR(x). Hence when we compute h(x) = f̃R(x)gR(x) in
step 2 of our algorithm, we get

h(x) = f̃R(x)gR(x) = f̃R(x)qR(x)fR(x) + xm−d+1f̃R(x)rR(x).

Note that f̃R(x)fR(x) = f̃R(x)(1 − (1 − fR(x))) =
∑m−d

i=0 (1 − fR(x))i −∑m−d
i=0 (1 − fR(x))i+1 = 1 − (1 − fR(x))m−d+1 (a telescoping sum). Since f is

monic, fR has a constant term which is 1 and hence (1− fR(x))m−d+1 does not
contain a monomial of degree less than (m − d + 1). This is also the case with
xm−d+1f̃R(x)rR(x), and hence all the monomials of degree less than (m− d+ 1)
belong to qR(x).

To see that this can be done in T̂C
0

1, first note that given f(x) and g(x),
the coefficients of fR(x) and gR(x) can be computed in NC0. To compute the
coefficients of f̃R(x), we use interpolation via the discrete Fourier transform
(DFT) using arithmetic modulo p. Find a generator w of the multiplicative
group modulo p and substitute x = {w1, w2, . . . , wp−1} to obtain a system of
linear equations in the coefficients F of f̃R(x) : V ·F = Y , where Y is the vector
consisting of f̃R(wi) evaluated at the various powers of w. Since the underlying
linear transformation V (w) is a DFT, it is invertible; the inverse DFT V −1(w)
is equal to V (w−1) · (p − 1)−1, which is equivalent to −V (w−1) mod p. We can
find each coefficient of f̃R(x) evaluating V −1Y , i.e., by an inner product of a row

of the inverse DFT-matrix with the vector formed by evaluating
∑(m−d+1)

i=1 (1−
fR(x))i−1 at various powers of w and dividing by p− 1. The terms in this sum
can be computed in AC0, and then the sum can be computed in majority-depth
one, to obtain the coefficients of f̃R(x). The coefficients of h(x) in step 2 could
be obtained by iterated addition of the product of certain coefficients of f̃R and
gR, but since the coefficients of f̃R are themselves obtained by iterated addition
of certain terms t, we roll steps 1 and 2 together by multiplying these terms t
by the appropriate coefficients of gR. Thus steps 1 and 2 can be accomplished
in majority-depth 1. Then step 3 can be computed using AC0 circuitry. ��

Low-Depth Uniform Threshold Circuits 23

Proof. (of Theorem 3)

Our T̂C
0

3 circuit C that implements the ideas above is the following:

0. At the input, we have the d2 entries Aij , i, j ∈ [d] of A, and a set Π of short
primes (such that Π can be partitioned in to nc sets Πi that are pairwise
disjoint, i.e., Π = ∪nc

i=1Πi).
1. In majority-depth one, we obtain (1) Aij mod p for each prime p in our

basis, and (2) Mi =
∏

p∈Πi
p for all the nc sets that constitute Π , and (3)

the CRR of the characteristic polynomial of A (via appeal to Lemma 5).

2. In the next layer of threshold gates, we compute (1)
∏nc

i (Mi−1)/2 in CRR,
and (2) the coefficients of the polynomial r in CRR, by appeal to Lemma 7.

3. At this point, by Lemma 6, AC0 circuitry can obtain r(A) = Am in CRR,
and with one more layer of MAJORITY gates we can convert to binary, by
appeal to Corollary 2.

��

5 Open Questions and Discussion

Is conversion from CRR to binary in dlogtime-uniform T̂C
0

1? This problem has

been known to be in P-uniform T̂C
0

1 starting with the seminal work of Beame,
Cook, and Hoover [4], but the subsequent improvements on the uniformity condi-
tion [5,12] introduced additional complexity that translated into increased depth.
We have been able to reduce the majority-depth by rearranging the algorithmic
components introduced in this line of research, but it appears to us that a fresh
approach will be needed, in order to decrease the depth further.

Is BitSLP in PHPP? An affirmative answer to the first question implies an
affirmative answer to the second, and this would pin down the complexity of

BitSLP between P#P and PHPP.
Is PosSLP in PH? Some interesting observations related to this problem were

announced recently [8,16].
Is it easy to compute bits of large powers of small matrices? Recall that some

surprising things about large powers of integers can be computed [13].

Acknowledgments. The first author acknowledges the support of NSF grants
CCF-0832787 and CCF-1064785.

References

1. Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and Arithmetic circuits. Jour-
nal of Computer and System Sciences 60(2), 395–421 (2000)

2. Allender, E., Schnorr, H.: The complexity of the BitSLP problem (2005) (unpub-
lished manuscript)

3. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

24 E. Allender, N. Balaji, and S. Datta

4. Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related
problems. SIAM Journal on Computing 15, 994–1003 (1986)

5. Chiu, A., Davida, G.I., Litow, B.: Division in logspace-uniform NC1. Informatique
Théorique et Applications 35(3), 259–275 (2001)

6. Datta, S., Pratap, R.: Computing bits of algebraic numbers. In: Agrawal, M.,
Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 189–201. Springer,
Heidelberg (2012)

7. Dietz, P., Macarie, I., Seiferas, J.: Bits and relative order from residues, space
efficiently. Information Processing Letters 50(3), 123–127 (1994)

8. Etessami, K.: Probability, recursion, games, and fixed points. talk presented at
Horizons in TCS: A Celebration of Mihalis Yannakakis’ 60th Birthday (2013)

9. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed
points. SIAM J. Comput. 39(6), 2531–2597 (2010)

10. Goldmann, M., Karpinski, M.: Simulating threshold circuits by majority circuits.
SIAM J. Comput. 27(1), 230–246 (1998)

11. Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields of char-
acteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 672–683. Springer, Heidelberg (2006)

12. Hesse, W., Allender, E., Barrington, D.: Uniform constant-depth threshold cir-
cuits for division and iterated multiplication. Journal of Computer and System
Sciences 65, 695–716 (2002)

13. Hirvensalo, M., Karhumäki, J., Rabinovich, A.: Computing partial information
out of intractable: Powers of algebraic numbers as an example. Journal of Number
Theory 130, 232–253 (2010)

14. Hunter, P., Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: Computing rational
radical sums in uniform TC0. In: FSTTCS, pp. 308–316 (2010)

15. Jeřábek, E.: Root finding with threshold circuits. Theoretical Computer Sci-
ence 462, 59–69 (2012)

16. Jindal, G., Saranurak, T.: Subtraction makes computing integers faster. CoRR
abs/1212.2549 (2012)

17. Kayal, N., Saha, C.: On the sum of square roots of polynomials and related prob-
lems. TOCT 4(4), 9 (2012)

18. Koiran, P., Perifel, S.: The complexity of two problems on arithmetic circuits.
Theor. Comput. Sci. 389(1-2), 172–181 (2007)

19. Koiran, P., Perifel, S.: Interpolation in Valiant’s theory. Computational Complex-
ity 20(1), 1–20 (2011)

20. Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Com-
put. 146(1), 55–83 (1998)

21. Mereghetti, C., Palano, B.: Threshold circuits for iterated matrix product and
powering. ITA 34(1), 39–46 (2000)

22. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence se-
quences. In: SODA, pp. 366–379 (2014)

23. Sherstov, A.A.: Powering requires threshold depth 3. Inf. Process. Lett. 102(2-3),
104–107 (2007)

24. Siu, K.Y., Roychowdhury, V.P.: On optimal depth threshold circuits for multipli-
cation and related problems. SIAM J. Discrete Math. 7(2), 284–292 (1994)

25. Toda, S.: PP is as hard as the polynomial time hierarchy. SIAM J. Comput. 20,
865–877 (1991)

26. Vollmer, H.: Introduction to Circuit Complexity. Springer (1999)
27. Wegener, I.: Optimal lower bounds on the depth of polynomial-size threshold cir-

cuits for some arithmetic functions. Inf. Process. Lett. 46(2), 85–87 (1993)

Zero Knowledge and Circuit Minimization

Eric Allender1 and Bireswar Das2

1 Department of Computer Science, Rutgers University, USA
allender@cs.rutgers.edu
2 IIT Gandhinagar, India
bireswar@iitgn.ac.in

Abstract. We show that every problem in the complexity class SZK
(Statistical Zero Knowledge) is efficiently reducible to the Minimum
Circuit Size Problem (MCSP). In particular Graph Isomorphism lies in
RPMCSP.

This is the first theorem relating the computational power of Graph
Isomorphism and MCSP, despite the long history these problems share,
as candidate NP-intermediate problems.

1 Introduction

For as long as there has been a theory of NP-completeness, there have been at-
tempts to understand the computational complexity of the following two prob-
lems:

– Graph Isomorphism (GI): Given two graphs G and H , determine if there is
permutation τ of the vertices of G such that τ(G) = H .

– The Minimum Circuit Size Problem (MCSP): Given a Boolean function f
on n variables, represented by its truth table of size 2n, and a number i,
determine if f has a circuit of size i. (There are different versions of this
problem depending on precisely what measure of “size” one uses (such as
counting the number of gates or the number of wires) and on the types of
gates that are allowed, etc. For the purposes of this paper, any reasonable
choice can be used.)

Cook [Coo71] explicitly considered the graph isomorphism problem and men-
tioned that he “had not been able” to show that GI is NP-complete. Similarly,
it has been reported that Levin’s original motivation in defining and studying
NP-completeness [Lev73] was in order to understand the complexity of GI [PS03],
and that Levin delayed publishing his work because he had hoped to be able to
say something about the complexity of MCSP [Lev03]. (Trakhtenbrot has written
an informative account, explaining some of the reasons why MCSP held special
interest for the mathematical community in Moscow in the 1970s [Tra84].)

For the succeeding four decades, GI and MCSP have been prominent can-
didates for so-called “NP-Intermediate” status: neither in P nor NP-complete.
No connection between the relative complexity of these two problems has been
established. Until now.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 25–32, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

26 E. Allender and B. Das

It is considered highly unlikely that GI is NP-complete. For instance, if the
polynomial hierarchy is infinite, then GI is not NP-complete [BHZ87]. Many
would conjecture that GI ∈ P; Cook mentions this conjecture already in [Coo71].
However this is still very much an open question, and the complexity of GI has
been the subject of a great deal of research. We refer the reader to [KST93, AT05]
for more details.

In contrast, comparatively little was written about MCSP, until Kabanets
and Cai revived interest in the problem [KC00], by highlighting its connection
to the so-called Natural Proofs barrier to circuit lower bounds [RR97]. Kabanets
and Cai provided evidence that MCSP is not in P (or even in P/poly); it is
known that BPPMCSP contains several problems that cryptographers frequently
assume are intractable, including the discrete logarithm, and several lattice-
based problems [KC00, ABK+06]. The integer factorization problem even lies in
ZPPMCSP [ABK+06].

Is MCSP complete for NP? Kraj́ıček discusses this possibility [Kra11], although
no evidence is presented to suggest that this is a likely hypothesis. Instead, ev-
idence has been presented to suggest that it will be difficult to reduce SAT
to MCSP. Kabanets and Cai define a class of “natural” many-one reductions;
after observing that most NP-completeness proofs are “natural” in this sense,
they show that any “natural” reduction from SAT to MCSP yields a proof that
EXP ⊆ P/poly. Interestingly, Vinodchandran studies a problem called SNCMP,
which is similar to MCSP, but defined in terms of strong nondeterministic cir-
cuits, instead of deterministic circuits [Var05]. (SNCMP stands for Strong Non-
deterministic Circuit Minimization Problem.) Vinodchandran shows that any
“natural” reduction from graph isomorphism to SNCMP yields a nondetermin-
istic algorithm for the complement of GI that runs in subexponential time for
infinitely many lengths n.

We show that GI ∈ RPMCSP; our proof also shows that GI ∈ RPSNCMP. Thus,
although it would be a significant breakthrough to give a “natural” reduction
from GI to SNCMP, no such obstacle prevents us from establishing an RP-Turing
reduction.

One of the more important results about GI is that GI lies in SZK: the class
of problems with statistical zero-knowledge interactive proofs [GMW91]. After
giving a direct proof of the inclusion GI ∈ RPMCSP in Section 3, we give a proof
of the inclusion SZK ⊆ BPPMCSP in Section 4. We conclude with a discussion of
additional directions for research and open questions.

But first, we present the basic connection betweenMCSP and resource-bounded
Kolmogorov complexity, which allows us to invert polynomial-time computable
functions (on average), using MCSP.

2 Preliminaries and Technical Lemmas

A small circuit for a Boolean function f on n variables constitutes one form
of a short description for the bit string of length 2n that describes the truth
table of f . In fact, as discussed in [ABK+06, Theorem 11], there is a version of

Zero Knowledge and Circuit Minimization 27

time-bounded Kolmogorov complexity (denoted KT) that is roughly equivalent
to circuit size. That is, if x is a string of length m representing the truth table
of a function f with minimum circuit size s, it holds that(

s

logm

)1/4

≤ KT(x) ≤ O(s2(log s + log logm)).

The connection with Kolmogorov complexity is relevant, because of this simple
observation: The output of a pseudorandom generator consists of strings with
small time-bounded Kolmogorov complexity. Thus, with an oracle for MCSP,
one can take as input a string x and accept iff x has no circuits of size, say,√
|x|, and thereby ensure that one is accepting a very large fraction of all of the

strings of length n (since most x encode functions that require large circuits),
and yet accept no strings x such that KT(x) ≤ nε. Such a set is an excellent
test to distinguish the uniform distribution from the distribution generated by a
pseudorandom generator. Using the tight connection between one-way functions
and pseudorandom generators [HILL99], one obtains the following result:

Theorem 1. [ABK+06, Theorem 45] Let L be a language of polynomial den-
sity such that, for some ε > 0, for every x ∈ L, KT(x) ≥ |x|ε. Let f(y, x) be
computable uniformly in time polynomial in |x|. There exists a polynomial-time
probabilistic oracle Turing machine N and polynomial q such that for any n
and y

Pr
|x|=n,s

[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n),

where x is chosen uniformly at random and s denotes the internal coin flips
of N .

Here, “polynomial density” means merely that L contains at least 2n/nk

strings of each length n, for some k. That is, let fy be a collection of func-
tions indexed by a parameter y, where fy(x) denotes f(y, x). Then, if one has
access to an an oracle L that contains many strings but no strings of small KT-
complexity, one can use the probabilistic algorithm N to take as input fy(x) for
a randomly-chosen x, and with non-negligible probability find a z ∈ f−1

y (fy(x)),
that is, a string z such that fy(z) = fy(x).

Note that such a set L can be recognized in deterministic polynomial time
with an oracle for MCSP, as well as with an oracle for SNCMP. One could also
use an oracle for RKT, the KT-random strings: RKT = {x : KT(x) ≥ |x|}.

3 Graph Isomorphism and Circuit Size

Theorem 2. GI ∈ RPMCSP.

Proof. We are given as input two graphs G and H , and we wish to determine
whether there is an isomorphism from G to H .

Consider the polynomial-time computable function f(G, τ) that takes as input
a graph G on n vertices and a permutation τ ∈ Sn and outputs τ(G). We will

28 E. Allender and B. Das

use the notation fG(τ) to denote f(G, τ). That is, fG takes a permutation τ as
input, and produces as output the adjacency matrix of the graph obtained by
permuting G according to τ . Observe that fG is uniformly computable in time
polynomial in the length of τ .

Thus, by Theorem 1, there is a polynomial-time probabilistic oracle Turing
machine N and polynomial q such that for any n and G

Pr
τ∈Sn,s

[fG(NMCSP(G, fG(τ), s)) = fG(τ)] ≥ 1/q(n),

where τ is chosen uniformly at random and s denotes the internal coin flips of N .
Now, given input (G,H) to GI, our RPMCSP algorithm does the following for

100q(n) independent trials:

1. Pick τ and probabilistic sequence s uniformly at random.
2. Compute τ(G).

3. Run NMCSP(H, τ(G), s) and obtain output π.
4. Report “success” if π(H) = τ(G).

The RPMCSP algorithm will accept if at least one of the 100q(n) independent
trials are successful.

Note that if H and G are not isomorphic, then there is no possibility that the
algorithm will succeed.

On the other hand, if H and G are isomorphic, then τ(G) does appear in
the image of fH . In fact, the distributions τ(G) and τ(H) are identical over τ
picked uniformly at random. Thus, with probability at least 1/q(n) (taken over
the choices of τ and s), the algorithm will succeed in any given trial. Thus the
expected number of trials that will succeed is at least 100, and hence, by the
Chernoff bounds, the probability of having at least one success is well over 1/2.

��

Since truth-tables that require large strong nondeterministic circuits also re-
quire large deterministic circuits, it is immediate that this reduction can be
carried out also with SNCMP.

Corollary 1. GI ∈ RPSNCMP ∩ RPRKT .

4 Zero Knowledge

In this section, we show SZK ⊆ BPPMCSP. Note that SZK is best defined not as a
class of languages but as a class of “promise problems”. A promise problem con-
sists of a pair of disjoint languages (Y,N) where Y consists of “yes-instances”
and N consists of “no-instances”. Thus the inclusion SZK ⊆ BPPMCSP is perhaps
more properly stated in terms of “promise” BPPMCSP. That is, we will show that,
for every (Y,N) ∈ SZK there is a probabilistic polynomial time oracle Turing
machine M with the property that x ∈ Y implies M(x) accepts with probability

Zero Knowledge and Circuit Minimization 29

at least 2/3 when given oracle MCSP, and x ∈ N implies M(x) accepts with
probability at most 1/3 when given oracle MCSP. M may exhibit any behavior
on inputs outside of N ∪ Y .

It was shown by Chailloux et al. [CCKV08] that SZK is equal to a class that
Ben-Or and Gutfreund [BOG03] defined and called NISZK|h. Importantly for us,
Ben-Or and Gutfreund showed that a promise problem they called IID (Image
Intersection Density) is complete for NISZK|h (and thus, by [CCKV08], IID is also
complete for SZK). The yes-instances of IID consist of pairs of circuits (C0, C1),
each of size n, taking m-bit inputs, such that the distributions C0(x) and C1(x)
(where x is chosen uniformly at random) have statistical distance at most 1/n2.
The no-instances of IID consist of pairs of circuits (C0, C1) with the property
that Pr|x|=m[∃y C1(y) = C0(x)] < 1/n2.

We will not work directly with IID, but rather with a related problem that
is shown to be complete for NISZK|h in [BOG03, Lemma 20], which is just like
IID but with different parameters. Let us call this problem PIID for “polarized
IID”. The yes-instances of PIID consist of triples (n,D0, D1), where each Di is
an m-input circuit of size at most nk (for some fixed k), such that the distribu-
tions D0(x) and D1(x) (where x is chosen uniformly at random) have statistical
distance at most 1/2n. The no-instances of PIID consist of triples (n,D0, D1)
with the property that Pr|x|=m[∃y D1(y) = D0(x)] < 1/2n.

Furthermore, we need to make use of the fact that we can assume that the
length m of the inputs to the circuits D0 and D1 may be assumed without loss
of generality to be at least nδ for some fixed δ > 0. This can be accomplished by
simply adding dummy input variables. It is easy to check that adding dummy
variables to both circuits does not change the statistical difference. Similarly,
this does not alter the probability that the output produced by a random input
to the first circuit is in the support of the second circuit.

Theorem 3. SZK ∈ BPPMCSP

Proof. It will suffice to show that PIID ∈ BPPMCSP.
Consider the polynomial-time computable function F (C, x) that takes as in-

put a Boolean circuit C (on m-bit inputs), and a string x of length m, and
outputs C(x). We will use the notation FC(x) to denote F (C, x). Since the
length of x is polynomially-related to the size of C in the instances of PIID that
we consider, it follows that FC is uniformly computable in time polynomial in
the length of x.

Thus, by Theorem 1, there is a polynomial-time probabilistic oracle Turing
machine N and polynomial q such that for any m and C

Pr
|x|=m,s

[FC(NMCSP(C,FC(x), s)) = FC(x)] ≥ 1/q(m),

where x is chosen uniformly at random and s denotes the internal coin flips of N .
Now, given input (n,D0, D1) to PIID, our BPPMCSP algorithm does the fol-

lowing for n� independent trials (for an � to be determined later):

30 E. Allender and B. Das

1. Pick m-bit input x and probabilistic sequence s uniformly at random.
2. Compute z = D0(x).

3. Run NMCSP(D1, z, s) and obtain output y.
4. Report “success” if D1(y) = z.

The BPPMCSP algorithm will accept if at least logn of the n� independent trials
are successful.

If (n,D0, D1) is a no-instance of PIID, then the probability that any given
trial succeeds is at most 1/2n. Thus, for all large n the expected number of the
n� trials that will succeed is at most n�/2n < 1. By the Chernoff bounds, the
probability that logn trials will succeed is less than 1/3.

If (n,D0, D1) is a yes-instance of PIID, then D0(x) and D1(x) have statistical
distance at most 1/2n.

Note that

Pr
|x|=m,s

[FD1(NMCSP(D1, FD0(x), s)) = FD0(x)]

=
∑
z

Pr
|x|=m,s

[FD1(NMCSP(D1, z, s)) = z|z = FD0(x)] Pr[z = FD0(x)]

=
∑
z

Pr
|x|=m,s

[FD1(NMCSP(D1, z, s)) = z|z = FD1(x)] Pr[z = FD0(x)]

Also,

Pr
|x|=m,s

[FD1(NMCSP(D1, FD1(x), s)) = FD1(x)]

=
∑
z

Pr
|x|=m,s

[FD1(NMCSP(D1, z, s)) = z|z = FD1(x)] Pr[z = FD1(x)]

Thus the difference of these two probabilities is∑
z

Pr
|x|=m,s

[FD1(NMCSP(D1, z, s)) = z|z = FD1(x)]×

(Pr[z = FD0(x)]− Pr[z = FD1(x)])

≤
∑
z

1 · (Pr[z = FD0(x)] − Pr[z = FD1(x)])

≤ 1/2n

Since Pr|x|=m,s[FD1(NMCSP(D1, FD1(x), s)) = FD1(x)] > 1/q(m) > 1/q(nk), it

follows that each trial has probability at least 1/q(nk)−1/2n of success. Thus, the
expected number of the n� trials that will succeed is at least n�(1/q(nk)−1/2n).
Picking � so that n� is enough greater than q(nk) guarantees that this expected
value is at least n. Thus, by the Chernoff bounds the probability that at least
logn trials succeed is greater than 2/3. ��

In the above proof, notice that we obtain one-sided error on those instances
(n,D0, D1) of PIID where Pr|x|=m[∃y D1(y) = D0(x)] = 0, instead of merely

Zero Knowledge and Circuit Minimization 31

being bounded by 1/2n. In particular, the promise problem known as SD1,0

(consisting of pairs of circuits (D0, D1) where, for the yes-instances, D0 and D1

represent identical distributions, and the no-instances have disjoint images) is in
RPMCSP. It was shown in [KMV07] that this problem is complete for the class of
problems that have “V-bit” perfect zero knowledge protocols; this class contains
most of the problems that are known to have perfect zero-knowledge protocols,
including the problems studied in [AD08].

5 Conclusions and Open Problems

We are the first to admit that there appears to be no reason why these results
could not have been proved earlier. The techniques involved have been available
to researchers for years, and the proofs have much the same flavor as the re-
ductions of factoring, discrete logarithm, and other cryptographic problems to
MCSP that were presented in [ABK+06]. Perhaps the only missing ingredient
is that the earlier work involved using MCSP (or, equivalently, RKT) to break
pseudorandom generators that were constructed from one-way functions that
people actually believed were cryptographically secure. In contrast, the func-
tions fG considered here have never seemed like promising candidates to use, in
constructing pseudorandom generators.

It is natural to wonder if better reductions are also possible. Is GI ∈ PMCSP?
Or in ZPPMCSP?

Equally temptingly, is it possible to build on these ideas to reduce larger
classes to MCSP? The Wikipedia article on “NP-Intermediate Problems” (as
of April 10, 2014) says “. . .MCSP is believed to be NP-complete” [Wik14]. We
are unaware of much evidence for this “belief” being very widespread in the
complexity theory community, but it is certainly an intriguing possibility.

Alternatively, is it possible to tie MCSP more closely to SZK? For instance,
what is the complexity of the promise problem whose yes-instances consist
of strings with KT-complexity at most

√
n, and whose no-instances consist of

strings with KT-complexity > n/2?

Acknowledgments. We acknowledge helpful comments from Lance Fortnow,
Valentine Kabanets, Rahul Santhanam, Bruce Kapron, and Salil Vadhan. The
first author acknowledges the support of NSF grants CCF-0832787 and CCF-
1064785. This work was performed while the second author was a DIMACS
postdoctoral fellow at Rutgers University, under support provided by the Indo-
US Science and Technology Forum.

References

[ABK+06] Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneb-
urger, D.: Power from random strings. SIAM Journal on Computing 35,
1467–1493 (2006)

32 E. Allender and B. Das

[AD08] Arvind, V., Das, B.: SZK proofs for black-box group problems. Theory
Comput. Syst. 43(2), 100–117 (2008)

[AT05] Arvind, V., Torán, J.: Isomorphism testing: Perspective and open prob-
lems. Bulletin of the EATCS 86 (2005)

[BHZ87] Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive
proofs? Information Processing Letters 25(2), 127–132 (1987)

[BOG03] Ben-Or, M., Gutfreund, D.: Trading help for interaction in statistical zero-
knowledge proofs. J. Cryptology 16(2), 95–116 (2003)

[CCKV08] Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.P.: Interactive and
noninteractive zero knowledge are equivalent in the help model. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 501–534. Springer, Hei-
delberg (2008)

[Coo71] Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Sym-
posium on Theory of Computing (STOC), pp. 151–158 (1971)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems.
Journal of the ACM 38(3), 691–729 (1991)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom genera-
tor from any one-way function. SIAM Journal on Computing 28, 1364–1396
(1999)

[KC00] Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: ACM Sympo-
sium on Theory of Computing (STOC), pp. 73–79 (2000)

[KMV07] Kapron, B., Malka, L., Srinivasan, V.: A characterization of non-interactive
instance-dependent commitment-schemes (NIC). In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 328–339. Springer, Heidelberg (2007)

[Kra11] Kraj́ıček, J.: Forcing with Random Variables and Proof Complexity. Cam-
bridge University Press (2011)

[KST93] Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its
Structural Complexity. Birkhauser Verlag, Basel (1993)

[Lev73] Levin, L.A.: Universal sequential search problems. Problems of Information
Transmission 9, 265–266 (1973)

[Lev03] Levin, L.: Personal communication (2003)
[PS03] Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Com-

binatorics and Graph Theory with Mathematica. Cambridge University
Press, New York (2003)

[RR97] Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System
Sciences 55, 24–35 (1997)

[Tra84] Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-
force searches) algorithms. IEEE Annals of the History of Computing 6(4),
384–400 (1984)

[Var05] Variyam, V.N.: Nondeterministic circuit minimization problem and de-
randomizing Arthur-Merlin games. Int. J. Found. Comput. Sci. 16(6),
1297–1308 (2005)

[Wik14] Wikipedia (2014), http://en.wikipedia.org/wiki/NP-intermediate

http://en.wikipedia.org/wiki/NP-intermediate

A Tight Lower Bound on Certificate Complexity

in Terms of Block Sensitivity and Sensitivity�

Andris Ambainis and Krǐsjānis Prūsis

Faculty of Computing, University of Latvia, Raina bulv. 19, R̄ıga, LV-1586, Latvia

Abstract. Sensitivity, certificate complexity and block sensitivity are
widely used Boolean function complexity measures. A longstanding open
problem, proposed by Nisan and Szegedy [7], is whether sensitivity and
block sensitivity are polynomially related. Motivated by the construc-
tions of functions which achieve the largest known separations, we study
the relation between 1-certificate complexity and 0-sensitivity and 0-
block sensitivity.

Previously the best known lower bound was C1(f) ≥ bs0(f)
2s0(f)

, achieved

by Kenyon and Kutin [6]. We improve this to C1(f) ≥ 3bs0(f)
2s0(f)

. While this
improvement is only by a constant factor, this is quite important, as it
precludes achieving a superquadratic separation between bs(f) and s(f)
by iterating functions which reach this bound. In addition, this bound is
tight, as it matches the construction of Ambainis and Sun [3] up to an
additive constant.

1 Introduction

Determining the biggest possible gap between the sensitivity s(f) and block
sensitivity bs(f) of a Boolean function is a well-known open problem in the
complexity of Boolean functions. Even though this question has been known for
over 20 years, there has been quite little progress on it.

The biggest known gap is bs(f) = Ω(s2(f)). This was first discovered by Ru-

binstein [8], who constructed a function f with bs(f) = s2(f)
2 , and then improved

by Virza [9] and Ambainis and Sun [3]. Currently, the best result is a function
f with bs(f) = 2

3s
2(f)− 1

3s(f) [3]. The best known upper bound is exponential:

bs(f) ≤ s(f)2s(f)−1 [2] which improves over an earlier exponential upper bound
by Kenyon and Kutin [6].

In this paper, we study a question motivated by the constructions of functions
that achieve a separation between s(f) and bs(f). The question is as follows:

� This research has received funding from the EU Seventh Framework Programme
(FP7/2007-2013) under projects QALGO (No. 600700) and RAQUEL (No. 323970)
and ERC Advanced Grant MQC. Part of this work was done while Andris Ambainis
was visiting Institute for Advanced Study, Princeton, supported by National Science
Foundation under agreement No. DMS-1128155. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 33–44, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

34 A. Ambainis and K. Prūsis

Let sz(f), bsz(f) and Cz(f) be the maximum sensitivity, block sensitivity and
certificate complexity achieved by f on inputs x: f(x) = z. What is the best
lower bound of C1(f) in terms of s0(f) and bs0(f)?

The motivation for this question is as follows. Assume that we fix s0(f) to a
relatively small value m and fix bs0(f) to a substantially larger value k. We then
minimize C1(f). We know that s1(f) ≤ C1(f) (because every sensitive bit has to
be contained in a certificate). We have now constructed an example where both
s0(f) and s1(f) are relatively small and bs0(f) large. This may already achieve
a separation between bs0(f) and s(f) = max(s0(f), s1(f)) and, if s1(f) > s0(f),
we can improve this separation by composing the function with OR (as in [3]).

While this is just one way of achieving a gap between s(f) and bs(f), all the
best separations between these two quantities can be cast into this framework.
Therefore, we think that it is interesting to explore the limits of this approach.

The previous results are as follows:

1. Rubinstein’s construction [8] can be viewed as taking a function f with
s0(f) = 1, bs0(f) = k and C1(f) = 2k. A composition with OR yields [3]
bs(f) = 1

2s
2(f);

2. Later work by Virza [9] and Ambainis and Sun [3] improves this construction
by constructing f with s0(f) = 1, bs0(f) = k and C1(f) =

⌊
3k
2

⌋
+ 1. A

composition with OR yields bs(f) = 2
3s

2(f)− 1
3s(f);

3. Ambainis and Sun [3] also show that, given s0(f) = 1 and bs0(f) = k, the
certificate complexity C1(f) =

⌊
3k
2

⌋
+ 1 is the smallest that can be achieved.

This means that a better bound must either start with f with s0(f) > 1 or
use some other approach;

4. For s0(f) = m and bs0(f) = k, it is easy to modify the construction of

Ambainis and Sun [3] to obtain C1(f) =
⌊
3�k/m�

2

⌋
+ 1 but this does not

result in a better separation between bs(f) and s(f);
5. Kenyon and Kutin [6] have shown a lower bound of C1(f) ≥ k

2m . If this was
achievable, this could result in a separation of bs(f) = 2s2(f).

The gap between the construction C1(f) = 3k
2m + O(1) and the lower bound of

C1(f) ≥ k
2m is only a constant factor but the constant here is quite important.

This gap corresponds to a difference between bs(f) = (23+o(1))s2(f) and bs(f) =
2s2(f), and, if we achieved bs(f) > s2(f), iterating the function f would yield
an infinite sequence of functions with a superquadratic separation bs(f) = s(f)c,
where c > 2.

In this paper, we show that for any f

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
.

This matches the best construction up to an additive constant and shows that
no further improvement can be achieved along the lines of [8,9,3]. Our bound is
shown by an intricate analysis of possible certificate structures for f .

Since we now know that bs0(f) ≤
(
2
3 + o(1)

)
C1(f)s0(f), it is tempting to

conjecture that bs0(f) ≤
(
2
3 + o(1)

)
s1(f)s0(f). If this was true, the existing

separation between bs(f) and s(f) would be tight.

A Tight Lower Bound on Certificate Complexity 35

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function on n variables. The i-th variable
of input x is denoted by xi. For an index set S ⊆ [n], let xS be the input obtained
from an input x by flipping every bit xi, i ∈ S. Let a z-input be an input on
which the function takes the value z, where z ∈ {0, 1}.

We briefly define the notions of sensitivity, block sensitivity and certificate
complexity. For more information on them and their relations to other com-
plexity measures (such as deterministic, probabilistic and quantum decision tree
complexities), we refer the reader to the surveys by Buhrman and de Wolf [4]
and Hatami et al. [5].

Definition 1. The sensitivity complexity s(f, x) of f on an input x is defined
as |{i | f(x) = f(x{i})}|. The z-sensitivity sz(f) of f , where z ∈ {0, 1}, is defined
as max{s(f, x) |x ∈ {0, 1}n, f(x) = z}. The sensitivity s(f) of f is defined as
max{s0(f), s1(f)}.

Definition 2. The block sensitivity bs(f, x) of f on input x is defined as the
maximum number b such that there are b pairwise disjoint subsets B1, . . . , Bb of
[n] for which f(x) = f(xBi). We call each Bi a block. The z-block sensitivity
bsz(f) of f , where z ∈ {0, 1}, is defined as max{bs(f, x) |x ∈ {0, 1}n, f(x) = z}.
The block sensitivity bs(f) of f is defined as max{bs0(f), bs1(f)}.

Definition 3. A certificate c of f on input x is defined as a partial assignment
c : S → {0, 1}, S ⊆ [n] of x such that f is constant on this restriction. If f is
always 0 on this restriction, the certificate is a 0-certificate. If f is always 1, the
certificate is a 1-certificate.

We denote specific certificates as words with ∗ in the positions that the cer-
tificate does not assign. For example, 01∗∗∗∗ denotes a certificate that assigns
0 to the first variable and 1 to the second variable.

We say that an input x satisfies a certificate c if it matches the certificate in
every assigned bit.

The number of contradictions between an input and a certificate or between
two certificates is the number of positions where one of them assigns 1 and the
other assigns 0. For example, there are two contradictions between 0010∗∗ and
100∗∗∗ (in the 1st position and the 3rd position).

The number of overlaps between two certificates is the number of positions
where both have assigned the same values. For example, there is one overlap
between 001∗∗∗ and ∗0000 (in the second position). We say that two certificates
overlap if there is at least one overlap between them.

We say that a certificate remains valid after fixing some input bits if none of
the fixed bits contradicts the certificate’s assignments.

Definition 4. The certificate complexity C(f, x) of f on input x is defined as
the minimum length of a certificate that x satisfies. The z-certificate complexity
Cz(f) of f , where z ∈ {0, 1}, is defined as max{C(f, x) |x ∈ {0, 1}n, f(x) = z}.
The certificate complexity C(f) of f is defined as max{C0(f), C1(f)}.

36 A. Ambainis and K. Prūsis

3 Background

We study the following question:

Question: Assume that s0(g) = m and bs0(g) = k. How small can we make
C1(g)?

Example 1. Ambainis and Sun [3] consider the following construction.
They define g0(x1, . . . , x2k) = 1 if and only if (x1, . . . , x2k) satisfies one of k

certificates c0, . . . , ck−1 with ci (i ∈ {0, 1, . . . , k − 1}) requiring that

(a) x2i+1 = x2i+2 = 1;
(b) x2j+1 = 0 for j ∈ {0, . . . , k − 1}, j = i;
(c) x2j+2 = 0 for j ∈ {i + 1, . . . , i + 	k/2
} (with i + 1, . . . , i + 	k/2
 taken

modk).

Then, we have:

– s0(g0) = 1 (it can be shown that, for every 0-input of g0, there is at most
one ci in which only one variable does not have the right value);

– s1(g0) = C1(g0) = 	3k/2
 + 1 (a 1-input that satisfies a certificate ci is
sensitive to changing any of the variables in ci and ci contains 	3k/2
 + 1
variables);

– bs0(g0) = k (the 0-input x1 = · · · = x2k = 0 is sensitive to changing any of
the pairs (x2i+1, x2i+2) from (0, 0) to (1, 1)).

This function can be composed with the OR-function to obtain the best known
separation between s(f) and bs(f): bs(f) = 2

3s
2(f)− 1

3s(f)[3]. As long as s0(g) =
1, the construction is essentially optimal: any g with bs0(g) = k must satisfy
C1(g) ≥ s1(g) ≥ 3k

2 −O(1).
In this paper, we explore the case when s0(g) > 1. An easy modification of

the construction from [3] gives

Theorem 1. There exists a function g for which s0(g) = m, bs0(g) = k and

C1(f) =
⌊
3�k/m�

2

⌋
+ 1.

Proof. To simplify the notation, we assume that k is divisible by m. Let r = k/m.
We consider a function g(xm1, . . . , xm,2r) with variables xi,j (i ∈ {1, . . . ,m}

and j ∈ {1, . . . , 2r}) defined by

g(x11, . . . , xm,2r) = ∨m
i=1g0(xi,1, . . . , xi,2r). (1)

Equivalently, g(x11, . . . , xm,2r) = 1 if and only if at least one of the blocks
(xi,1, . . . , xi,2r) satisfies one of the certificates ci,0, . . . , ci,r−1 that are defined
similarly to c0, . . . , ck−1 in the definition of g0.

It is easy to see [3] that composing a function g0 with OR gives s0(g) =
ms0(g0), bs0(g) = mbs0(g0) and C1(g) = C1(g0), implying the theorem.

While this function does not give a better separation between s(f) and bs(f),
any improvement to Theorem 1 could give a better separation between s(f) and
bs(f) by using the same composition with OR as in [3].

A Tight Lower Bound on Certificate Complexity 37

On the other hand, Kenyon and Kutin [6] have shown that

Theorem 2. For any f with s0(g) = m and bs0(g) = k, we have C1(f) ≥ k
2m .

4 Separation between C1(f) and bs0(f)

In this paper, we show that the example of Theorem 1 is optimal.

Theorem 3. For any Boolean function f the following inequality holds:

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (2)

Proof. Without loss of generality, we can assume that the maximum bs0 is
achieved on the all-0 input denoted by 0. Let B1, ..., Bk be the sensitive blocks,
where k = bs0(f). Also, we can w.l.o.g. assume that these blocks are minimal
and that every bit belongs to a block. (Otherwise, we can fix the remaining bits
to 0. This can only decrease s0 and C1, strengthening the result.)

Each block Bi has a corresponding minimal 1-certificate ci such that the
word ({0}n)Bi satisfies this certificate. Each of these certificates has a 1 in every
position of the corresponding block (otherwise the block would not be minimal)
and any number of 0’s in other blocks.

We construct a complete weighted graph G whose vertices correspond to cer-
tificates c1, . . ., ck. Each edge has a weight that is equal to the number of
contradictions between the two certificates the edge connects. The weight of a
graph is just the sum of the weights of its edges. We will prove

Lemma 1. Let w be the weight of an induced subgraph of G of order m. Then

w ≥ 3

2

m2

s0(f)
− 3

2
m. (3)

Proof. The proof is by induction. As a basis we take induced subgraphs of order
m ≤ s0(f). In this case,

3

2

m2

s0(f)
− 3

2
m ≤ 0 (4)

and w ≥ 0 is always true, as the number of contradictions between two certifi-
cates cannot be negative.

Let m > s0(f). We assume that the relation holds for every induced subgraph
of order < m. Let G′ be an induced subgraph of order m. Let H ⊂ G′ be its
induced subgraph of order s0(f) with the smallest total weight.

Lemma 2. For any certificate ci ∈ G′ \H in G′ not belonging to this subgraph
H the weight of the edges connecting ci to H is ≥ 3.

Proof. Let t be the total weight of the edges in H . Let us assume that there
exists a certificate cj /∈ H such that the weight of the edges connecting cj to H

38 A. Ambainis and K. Prūsis

is ≤ 2. Let H ′ be the induced subgraph H ∪ {cj}. Then the weight of H ′ must
be ≤ t + 2.

We define the weight of a certificate ci ∈ H ′ as the sum of the weights of all
edges of H ′ that involve vertex ci. If there exists a certificate ci ∈ H ′ such that
its weight in H ′ is ≥ 3, then the weight of H ′ \ {ci} would be < t, which is a
contradiction, as H was taken to be the induced subgraph of order s0(f) with
the smallest weight. Therefore the weight of every certificate in H ′ is at most 2.

In the next section, we show

Lemma 3. Let f be a Boolean function for which the following properties hold:
f({0}n) = 0 and f has such k minimal 1-certificates that each has at most 2
contradictions with all the others together. Furthermore, for each input position,
exactly one of these certificates assigns the value 1. Then, s0(f) ≥ k.

This lemma implies that s0(f) ≥ |H ′| which is in contradiction with |H ′| =
s0(f) + 1. Therefore no such cj exists.

We now examine the graph G′ \H . It consists of m − s0(f) certificates and
by the inductive assumption has a weight of at least

3

2

(m− s0(f))2

s0(f)
− 3

2
(m− s0(f)). (5)

But there are at least 3(m− s0(f)) contradictions between H and G′ \H , thus
the total weight of G′ is at least

3

2

(m− s0(f))2

s0(f)
− 3

2
(m− s0(f)) + 3(m− s0(f)) (6)

=
3

2

m2 − 2ms0(f) + s0(f)2

s0(f)
+

3

2
m− 3

2
s0(f) (7)

=
3

2

m2

s0(f)
− 3m +

3

2
s0(f) +

3

2
m− 3

2
s0(f) (8)

=
3

2

m2

s0(f)
− 3

2
m. (9)

This completes the induction step.

By taking the whole of G as G′, we find a lower bound on the total number
of contradictions in the graph:

3

2

k2

s0(f)
− 3

2
k. (10)

Each contradiction requires one 0 in one of the certificates and each 0 contributes
to exactly one contradiction (since for each position exactly one of ci assigns a
1). Therefore, by the pigeonhole principle, there exists a certificate with at least

3

2

k

s0(f)
− 3

2
(11)

A Tight Lower Bound on Certificate Complexity 39

zeroes. As each certificate contains at least one 1, we get a lower bound on the
size of one of these certificates and C1(f):

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (12)

5 Functions with s0(f) Equal to Number of 1-certificates

In this section we prove Lemma 3.

5.1 General Case: Functions with Overlaps

Let c1, . . . , ck be the k certificates. We start by reducing the general case of
Lemma 3 to the case when there are no overlaps between any of c1, . . . , ck.

Note that certificate overlaps can only occur when two certificates assign 0
to the same position. Then a third certificate assigns 1 to that position. This
produces 2 contradictions for the third certificate, therefore it has no further
overlaps or contradictions. For example, here we have this situation in the 3rd
position (with the first three certificates) and in the 6th position (with the last
three certificates): ⎛⎜⎜⎜⎜⎝

1 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 1 1 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 1 1 1 ∗ ∗
0 ∗ ∗ ∗ ∗ 0 ∗ ∗ 1 1

⎞⎟⎟⎟⎟⎠ . (13)

Let t be the total number of such overlaps. Let D be the set of certificates
assigning 1 to positions with overlaps, |D| = t. We fix the position of every
overlap to 0. Since the remaining function contains the word {0}n, it is not
identically 1. Every certificate not in D is still a valid 1-certificate, as they
assigned either nothing or 0 to the fixed positions. If they are no longer minimal,
we can minimize them, which cannot produce any new overlaps or contradictions.

The certificates in D are, however, no longer valid. Let us examine one such
certificate c ∈ D. We denote the set of positions assigned to by c by S. Let i be
the position in S that is now fixed to 0. We claim that certificate c assigns value
1 to all |S| positions in c. (If it assigned 0 to some position, there would be at
least 3 contradictions between c and other certificates: two in position i and one
in position where c assigns 0.)

If |S| = 1, then the remaining function is always sensitive to i on 0-inputs, as
flipping xi results in an input satisfying c.

If |S| > 1, we examine the 2|S|−1 subfunctions obtainable by fixing the re-
maining positions of S. We fix these positions to the subfunction that is not
identically 1 with the highest number of bits fixed to 1, we will call this the
largest non-constant subfunction. If it fixes 1 in every position, it is sensitive to

40 A. Ambainis and K. Prūsis

i on 0-inputs, as flipping it produces a word which satisfies c. Otherwise it is
sensitive on 0-inputs to every other bit fixed to 0 in S besides i, as flipping them
would produce a word from a subfunction with a higher amount of bits fixed to
1. But that subfunction is identically 1 or we would have fixed it instead.

In either case we obtain at least one sensitive bit in S on 0-inputs in the
remaining function. Furthermore, every certificate not in D is still valid, if not
minimal. But we can safely minimize them again.

We can repeat this procedure for every certificate in D. The resulting function
is not always 1 and, on every 0-input, it has at least t sensitive bits among the
bits that we fixed. Furthermore, we still have k−t non-overlapping valid minimal
1-certificates with no more than 2 contradictions each. In the next section, we
show that this implies that it has 0-sensitivity of at least k − t (Lemma 4).
Therefore, the original function has a 0-sensitivity of at least k − t + t = k.

5.2 Functions with No Overlaps

Lemma 4. Let f be a Boolean function, such that f is not always 1 and f has
such k non-overlapping minimal 1-certificates that each has at most 2 contradic-
tions with all the others together. Then, s0(f) ≥ k.

Proof. To prove this lemma, we consider the weighted graph G on these k certifi-
cates where the weight of an edge in this graph is the number of contradictions
between the two certificates the edge connects.

We examine the connected components in this graph, not counting edges with
weight 0. There can be only 4 kinds of components – individual certificates, two
certificates with 2 contradictions between them, paths of 2 or more certificates
with 1 contradiction between every two subsequent certificates in the path and
cycles of 3 or more certificates with 1 contradiction between every two subsequent
certificates in the cycle. As there are no overlaps between the certificates, each
position is assigned to by certificates from at most one component.

We will now prove by induction on k that we can obtain a 0-input with as
many sensitive bits in each component as there are certificates in it.

As a basis we take k = 0. Since f is not always 1, s0(f) is defined, but
obviously s0(f) ≥ 0.

Then we look at each graph component type separately.

Individual Certificates. We first examine individual certificates. Let us denote
the examined certificate by c and the set of positions it assigns by S. We fix all
bits of S except for one according to c and we fix the remaining bit of S opposite
to c. The remaining function cannot be always 1, as otherwise the last bit in
S would not be necessary in c, but c is minimal. Therefore on 0-inputs the
remaining function is also sensitive to this last bit, as flipping it produces a
word which satisfies c.

Afterwards the remaining certificates might no longer be minimal. In this
case we can minimize them. This cannot produce any more contradictions and no
certificate can disappear, as the function is not always 1. Therefore the remaining

A Tight Lower Bound on Certificate Complexity 41

function still satisfies the conditions of this lemma and has k − 1 minimal 1-
certificates, with each certificate having at most 2 contradictions with the others.

Then by induction the remaining function has a 0-sensitivity of k−1. Together
with the sensitive bit among the fixed ones, we obtain s0(f) ≥ k.

Certificate Paths. We can similarly reduce certificate paths. A certificate path
is a structure where each certificate has 1 contradiction with the next one and
there are no other contradictions. For example, here is an example of a path of
length 3: ⎛⎜⎜⎝

i
1 1 0 ∗ ∗ ∗ ∗
∗ ∗ 1 1 0 ∗ ∗
∗ ∗ ∗ ∗ 1 1 1

⎞⎟⎟⎠ . (14)

We note that every certificate in a path assigns at least 2 positions, otherwise
its neighbours would not be minimal.

We then take a certificate c at the start of a path, which is next to a certificate
d. Let S be the set of positions c assigns. Let i be the position where c and d
contradict each other.

We then fix every bit in S but i according to c, and we fix i according to d. The
remaining function cannot be always 1, as otherwise i would not be necessary in
c, but c is minimal. But on 0-inputs the remaining function is also sensitive to i
because flipping it produces a word which satisfies c.

We note that in the remaining function the rest of d (not all of d was fixed
because d assigns at least 2 positions) is still a valid certificate, since it only
assigns one of the fixed bits and it was fixed according to d. Similarly to the first
case we can minimize the remaining certificates and obtain a function with k−1
certificates satisfying the lemma conditions.

Then by induction the remaining function has a 0-sensitivity of k−1. Together
with the sensitive bit i, we obtain s0(f) ≥ k.

Two Certificates with Two Contradictions. Let us denote these 2 certifi-
cates as c and d and the two positions where they contradict as i and j. For
example, we can have 2 certificates like this:⎛⎝ i j

1 1 1 0 ∗
∗ ∗ 0 1 1

⎞⎠ . (15)

Let S be the set of positions c assigns and T be the set of positions d assigns.
We then fix every bit in S except j according to c but we fix j according to d.
The remaining function cannot be always 1 because, otherwise, j would not be
necessary in c, but c is minimal. But on 0-inputs the remaining function is also
sensitive to j, as flipping it produces a word which satisfies c.

If |T | = 2, then on 0-inputs the remaining function is also sensitive to i because
flipping the ith variable produces a word which satisfies d.

42 A. Ambainis and K. Prūsis

If |T | > 2, we examine the 2|T |−2 subfunctions obtainable by fixing the re-
maining positions of T . We can w.l.o.g. assume that d assigns the value 1 to each
of these. Similarly to section 5.1, we find the largest non-constant subfunction
among these – the subfunction that is not identically 1 with the highest number
of bits fixed to 1. Then on 0-inputs we obtain a sensitive bit either at i if this
subfunction fixes all these positions to 1 or at a fixed 0 otherwise.

Therefore we can always find at least one additional sensitive bit among T .
Again we can minimize the remaining certificates and obtain a function with

k − 2 certificates satisfying the conditions of the lemma.
Then by induction the remaining function has a 0-sensitivity of k−2. Together

with the two additional sensitive bits found, we obtain s0(f) ≥ k.

Certificate Cycles. A certificate cycle is a sequence of at least 3 certificates
where each certificate has 1 contradiction with the next one and the last one has
1 contradiction with the first one. For example, here is a cycle of length 5:⎛⎜⎜⎜⎜⎜⎜⎝

j5,1 j1,2 j2,3 j3,4 j4,5
1 1 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 1 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ 0 0 ∗
0 ∗ ∗ ∗ ∗ ∗ 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (16)

Every certificate in a cycle assigns at least 2 positions, otherwise its neighbours
in the cycle would overlap. We denote the length of the cycle by m. Let c1, . . . , cm
be the certificates in this cycle, let S1, . . . , Sm be the positions assigned by them,
and let j1,2, . . . , jm,1 be the positions where the certificates contradict.

We assign values to variables in c2, . . . , cm in the following way. We first assign
values to variables in S2 so that the variable j2,3 contradicts c2 and is assigned
according to c3, but all other variables are assigned according to c2.

We have the following properties. First, the remaining function cannot be
always 1, as otherwise j2,3 would not be necessary in c2, but c2 is minimal.
Second, any 0-input that is consistent with the assignment that we made is
sensitive to j2,3 because flipping this position produces a word which satisfies c2.
Third, in the remaining function c3, . . ., cm are still valid 1-certificates because we
have not made any assignments that contradict them. Some of these certificates
ci may no longer be minimal. In this case, we can minimize them by removing
unnecessary variables from ci and Si.

We then perform a similar procedure for ci ∈ {3, . . . ,m}. We assume that
the variables in S2, . . ., Si−1 have been assigned values. We then assign values
to variables in Si. If ci and ci+1 contradict in the variable ji,i+1, we assign it
according to ci+1. (If i = m, we define i + 1 = 1.) If ci and ci+1 no longer
contradict (this can happen if ji,i+1 was removed from one of them), we choose
a variable in Si arbitrarily and assign it opposite to ci. All other variables in Si

are assigned according to ci.
We now have similar properties as before. The remaining function cannot be

always 1 and any 0-input that is consistent with our assignment is sensitive to

A Tight Lower Bound on Certificate Complexity 43

changing a variable in Si. Moreover, ci+1, . . . , cm are still valid 1-certificates and,
if they are not minimal, they can be made minimal by removing variables.

At the end of this process, we have obtained m−1 sensitive bits on 0-inputs: for
each of c2, . . ., cm, there is a bit, changing which results in an input satisfying
ci. We now argue that there should be one more sensitive bit. To find it, we
consider the certificate c1.

During the process described above, the position j1,2 where c1 and c2 contra-
dict was fixed opposite to the value assigned by c1. The position jm,1 where c1
and cm contradict is either unfixed or fixed according to c1. All other positions
of c1 are unfixed.

If there are no unfixed positions of c1, then changing the position j1,2 in a
0-input (that satisfies the partial assignment that we made) leads to a 1-input
that satisfies c1. Hence, we have m sensitive bits.

Otherwise, let T ⊂ S1 be the set of positions in c1 that have not been assigned
and let p = |T |. W.l.o.g, we assume that c1 assigns the value 1 to each of those
positions. We examine the 2p subfunctions obtainable by fixing the positions of
T in some way. Again we find the largest non-constant subfunction among these
– the subfunction that is not identically 1 with the highest number of bits fixed
to 1. Then on 0-inputs we obtain a sensitive bit either at j1,2 if this subfunction
fixes all these positions to 1 or at a fixed 0 otherwise.

Similarly to the first three cases, we can minimize the remaining certificates
and obtain a function with k − m certificates satisfying the conditions of the
lemma. By induction, the remaining function has a 0-sensitivity of k −m. To-
gether with the m additional sensitive bits we found, we obtain s0(f) ≥ k.

6 Conclusions

In this paper, we have shown a lower bound on 1-certificate complexity in relation
to the ratio of 0-block sensitivity and 0-sensitivity:

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (17)

This bound is tight, as the function constructed in Theorem 1 achieves the
following equality:

C1(f) =
3

2

bs0(f)

s0(f)
+

1

2
. (18)

The difference of 1 appears as the proof of Theorem 3 requires only a single 1 in
each certificate but the construction of Theorem 1 has two.

Thus, we have completely solved the problem of finding the optimal relation-
ship between s0(f), bs0(f) and C1(f). For functions with s1(f) = C1(f), such
as those constructed in [3,8,9], this means that

bs0(f) ≤
(

2

3
+ o(1)

)
s0(f)s1(f). (19)

That is, if we use such functions, there is no better separation between s(f) and
bs(f) than the currently known one.

44 A. Ambainis and K. Prūsis

For the general case, it is important to understand how big the gap between
s1(f) and C1(f) can be. Currently, we only know that

s1(f) ≤ C1(f) ≤ 2s0(f)−1s1(f), (20)

with the upper bound shown in [2]. In the general case (17) together with this
bound implies only

bs0(f) ≤
(

2

3
+ o(1)

)
2s0(f)−1s0(f)s1(f). (21)

However, there is no known f that comes even close to saturating the upper
bound of (20) and we suspect that this bound can be significantly improved.

There are some examples of f with gaps between C1(f) and s1(f), though.
For example, the 4-bit non-equality function of [1] has s0(NE) = s1(NE) = 2
and C1(NE) = 3 and it is easy to use it to produce an example s0(NE) = 2,
s1(NE) = 2k and C1(NE) = 3k. Unfortunately, we have not been able to
combine this function with the function that achieves (18) to obtain a bigger
gap between bs(f) and s(f).

Because of that, we conjecture that (19) might actually be optimal. Proving
or disproving this conjecture is a very challenging problem.

References

1. Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst.
Sci. 72(2), 220–238 (2006)

2. Ambainis, A., Bavarian, M., Gao, Y., Mao, J., Sun, X., Zuo, S.: Tighter relations
between sensitivity and other complexity measures. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 101–113.
Springer, Heidelberg (2014)

3. Ambainis, A., Sun, X.: New separation between s(f) and bs(f). CoRR,
abs/1108.3494 (2011)

4. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

5. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the Sensitivity Conjecture.
Graduate Surveys, vol. 4. Theory of Computing Library (2011)

6. Kenyon, C., Kutin, S.: Sensitivity, block sensitivity, and l-block sensitivity of Boolean
functions. Inf. Comput. 189(1), 43–53 (2004)

7. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials.
Computational Complexity 4, 301–313 (1994)

8. Rubinstein, D.: Sensitivity vs. block sensitivity of Boolean functions. Combinator-
ica 15(2), 297–299 (1995)

9. Virza, M.: Sensitivity versus block sensitivity of Boolean functions. Inf. Process.
Lett. 111(9), 433–435 (2011)

Õ(
√
n)-Space and Polynomial-Time Algorithm

for Planar Directed Graph Reachability

Tetsuo Asano1, David Kirkpatrick2, Kotaro Nakagawa3,
and Osamu Watanabe3

1 Japan Advanced Institute of Technology, Japan
2 Department of Computer Science, University of British Columbia, Canada

3 Department of Math. and Comput. Sci., Tokyo Institute of Technology, Japan

Abstract. The directed graph reachability problem takes as input an
n-vertex directed graph G = (V,E), and two distinguished vertices v0,
and vertex v∗. The problem is to determine whether there exists a path
from v0 to v∗ in G. The main result of this paper is to show that the
directed graph reachability problem restricted to planar graphs can be
solved in polynomial time using only Õ(

√
n) space1.

1 Introduction and Motivation

For a directed graph G = (V,E), its underlying graph is the undirected graph
‘G = (V, ‘E), where the vertex pair {u, v} belongs to ‘E if and only if at least one
of (u, v) or (v, u) belongs to E. The planar directed graph reachability problem
is a special case of the directed graph reachability problem where we restrict
attention to input graphs whose underlying graph is planar.

The general directed graph reachability problem is a core problem in compu-
tational complexity theory. It is a canonical complete problem for nondetermin-
istic log-space, NL, and the famous open question L = NL is essentially asking
whether the problem is solvable deterministically in log-space. The standard
breadth first search algorithm and Savitch’s algorithm are two of the most fun-
damental algorithms known for solving the directed graph reachability problem.
The former uses space and time linear in the number of edges of the input graph
and the latter uses only O((log n)2)-space but requires Θ(nlog n) time. Hence a
natural and significant question is whether we can design an algorithm for di-
rected graph reachability that is efficient in both space and time. In particular,
can we design a polynomial-time algorithm for the directed graph reachability
problem that uses only O(nε)-space for some small constant ε < 1? This question
was asked by Wigderson in his excellent survey paper [13], and it remains unset-
tled. The best known result in this direction is the two decades old bound due to
Barns, Buss, Ruzzo and Schieber [4], who showed a polynomial-time algorithm

for the problem that uses O(n/2
√
logn) space. Note that this space bound is only

1 In this paper “Õ(s(n))-space” means O(s(n))-words intuitively and precisely
O(s(n) log n)-space.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 45–56, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

46 T. Asano et al.

slightly sublinear, and improving this bound remains a significant open ques-
tion. In fact, there are indications that it may be difficult to improve this bound
because there are matching lower bounds known for solving the directed graph
reachability problem on a certain model of computation known as NNJAG; see,
e.g., [5]. Though NNJAG is a restrictive model, all the known algorithms for the
directed reachability can be implemented in NNJAG without significant blow
up in time and space.

Some important progress has been made for restricted graph classes. The most
remarkable one is the log-space algorithm of Reingold (which we will refer as
UReach) for the undirected graph reachability [12]. Recently, Asano and Doerr [2]

gave a Õ(n1/2+ε)-space and nO(1/ε)-time algorithm for the reachability problem
restricted to directed grid graphs. Inspired by this result Imai et al. proposed [8]

an Õ(n1/2+ε)-space and nO(1/ε)-time algorithm for the planar graph reachability

problem. It has been left open to design an Õ(n1/2)-space and yet polynomial-
time algorithm. More recently, Asano and Kirkpatrick [3] introduced a more

efficient way to control the recursion, thereby succeeding to obtain an Õ(
√
n)-

space and polynomial time algorithm for the reachability problem restricted to
directed grid graphs. The main result of this paper is to show that this technique
can be adapted to design an Õ(

√
n)-space and polynomial-time algorithm for the

planar graph reachability problem.

2 Background

The Planar Separator Theorem, shown first by Lipton and Tarjan [10], asserts
that, for any n-vertex undirected planar graph G, there is a polynomial-time
algorithm for computing an O(

√
n)-size “separator” for G, i.e. a set of O(

√
n)

vertices whose removal separates the graph into two subgraphs of similar size.
The key idea of the Õ(n1/2+ε)-space algorithm of Imai et al. is to use an space-
constrained algorithmic version of the Planar Separator Theorem. For a given
input instance (G, v0, v∗), they first compute a separator S of the underlying pla-
nar graph of G that separates G into two smaller subgraphs G0 and G1. They
then consider a new directed graph H on S∪{v0, v∗}; it has a directed edge (a, b)
if and only if there is a path from a to b in either G0 or G1. Clearly, reachability
(of v∗ from v0) in H is equivalent to the original reachability. On the other hand,
since S has O(

√
n) vertices, the standard linear-space and polynomial-time al-

gorithm can be used to solve the reachability problem in H by applying the
algorithm recursively to G0 and G1 whenever it is necessary to know if an edge
(a, b) exists in H . It should be mentioned that the idea of using separators to
improve algorithms for the reachability and related problems is natural, and in
fact it has been proposed by several researchers; see, e.g., [7]. The main contri-
bution of [8] is to show how to implement this idea by giving a space efficient
separator algorithm based on the parallel separator algorithms of Miller [9] and
Gazit and Miller [6].

The algorithm of Asano and Kirkpatrick uses a recursive separation of a grid
graph; at each level a separator is formed by the set of vertices on one of the grid

Õ(
√
n)-Space Algorithm for Planar Directed Graph Reachability 47

center lines. In order to get a polynomial time bound, Asano and Kirkpatrick
introduce a kind of budgeted recursion, controlled by a “universal sequence”,
that restricts the time complexity of each recursive execution on smaller grids.
Here we use the same idea for the general planar graph reachability. To mimic
the grid-based algorithm of Asano and Kirkpatrick we need a simple separator
that allows us to express/identify a hierarchy of subgraphs succinctly/simply.
The main technical contribution of this paper is to describe a space efficient way
to construct such a simple separator together with a succinct way to express
the separated subgraphs. (We note that it is not immediately clear whether
the sublinear-space algorithm of [8] always yields such a simple separator. Here
instead of analyzing the separator algorithm of [8], we show how to modify a
given separator to obtain a suitable cycle-separator.)

3 Planar Graph Reachability Algorithm

3.1 Preliminaries

Let G = (V,E) denote an arbitrary directed graph. For any subset U of V we
use G[U] to denote the subgraph of G induced by U . For two graphs G1 and
G2, by G1 ∪ G2 we mean the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). For any
graph G, consider any subgraph H of G and any vertex v of G that is not in
H ; then by H �G v we denote an induced subgraph of G obtained from H by
adding vertex v; that is, H �G v = G[V (H)∪{v}]. Similarly, for an arbitrary set
A ⊂ V , we use H �G A to denote G[V (H) ∪ A].

Recall that a graph is planar if it can be drawn on a plane so that the edges
intersect only at end vertices. Such a drawing is called a planar embedding. Here
we use the standard way to specify a planar embedding of G; that is, a sequence of
vertices adjacent to v in a clockwise order around v under the planar embedding,
for all v ∈ V . We use N(v) to denote this sequence for v, which is often regarded
as a set. For a planar graph and its planar embedding, its triangulation (w.r.t.
this planar embedding) means to add edges to the planar graph until all its
faces under the planar embedding (including the outer one) are bounded by
three edges. We note that, in assuming that the input of our algorithm is a
planar graph, we assume only that a planar embedding exists, not that it is
given as part of the input.

3.2 The Algorithm

We now describe our algorithm for planar graph reachability. To illustrate the
idea of the algorithm we consider first the case in which the input graph G is
a subgraph of a bi-directed grid graph like Figure 1(a). Here we assume that
the original bi-directed grid graph is a (2h − 1) × (2h − 1) square grid. Let ‘G
denote the undirected version of this original grid. Note that both G and ‘G
have n = (2h − 1)× (2h − 1) vertices.

Although reachability is determined by the edges of G, the computation is
designed based on the underlying graph ‘G. Consider a set S of vertices that are

48 T. Asano et al.

(a) (b) (c)

Fig. 1. Example grid graph G and a path from v0 to v∗

on the horizontal center line. We call S a grid-separator because ‘G is separated
to two disconnected subgraphs by removing S. Our strategy is to determine, for
every vertex v ∈ G, the reachability from v0 in each subgraph independently,
thereby saving the space for the computation. More specifically, we consider a
subgraph ‘G0 (resp., ‘G1) of ‘G consisting of vertices below (resp., above) S
including S (cf. Figure 1(b)), and compute the reachability from v0 on G in
the area defined by each subgraph. A crucial point is that we need to keep the
reachability information only for vertices in S in order to pass the reachability
information to the next computation on the opposite subarea. Also for showing
the Õ(

√
n)-space bound, it is important that S consists of 2h− 1 =

√
n vertices,

and that both subgraphs ‘G0 and ‘G1 are almost half of ‘G.
Suppose that v∗ is reachable from v0 in G. We explain concretely our strategy

to confirm this by identifying some directed path that witnesses the reachability
from v0 to v∗. Notice here that such a path p is divided into some x subpaths
p1, . . . , px such that the following holds for each j ∈ [x− 1] (cf. Figure 1(c)): (i)
the end vertex wj of pj (that is the start vertex of pj+1) is on S, and (ii) all
inner vertices of pj are in the same V b for some b ∈ {0, 1}, where V 0 and V 1 are
respectively the set of vertices below and above the separator S. Then it is easy
to see that we can find that w1 is reachable from v0 by searching vertices in S
that are reachable from v0 in G[S ∪ V 0]. Next we can find that w2 is reachable
(from v0) by searching vertices in S that are reachable in G[S ∪ V 1] from some
vertex in S for which we know already its reachability; in fact, by the reachability
from w1 we can confirm that w2 is reachable from v0. Similarly, the reachability
of w3, . . . , wx−1 is confirmed, and then by considering the subgraph G[S ∪ V 1]
we confirm that v∗ is reachable from v0 because it is reachable from wx−1. This
is our basic strategy. Note that the reachability in each subgraph can be checked
recursively.

Since a path can cross the separator Θ(
√
n) times, we cannot avoid making

as many recursive calls at each level of recursion as there are vertices in the
separator at that level. Consequently, without some modification the algorithm
as described cannot hope to terminate in time bounded by some polynomial
in n. In order to achieve polynomial-time computability, we introduce the idea

Õ(
√
n)-Space Algorithm for Planar Directed Graph Reachability 49

of “budgeted recursion”: the computation time allocated to individual recursive
calls for checking the reachability in each subgraph is restricted in accordance
with a predetermined sequence. Since the time required to trace a connecting
path within an individual subgrid is not known in advance, we rely on a univer-
sality property of the sequence: eventually every subproblem will be allocated
a budget sufficiently large to complete the required computation within that
subproblem.

Asano and Kirkpatrick [3] describe the construction of a “universal sequence”
suitable for this purpose. A similar universal sequence has been used in the con-
text of oblivious algorithms; see [11], for example. Here we consider the following
version.

For any s ≥ 0, the universal sequence σs order s is defined inductively by

σs =

{
〈1〉 if s = 0, and

σi−1 � 〈2i〉 � σi−1 otherwise,

where � signifies concatenation of sequences. By the definition, each element of
the sequence is a power of 2. The length of the sequence σs is 2s+1 − 1. For
example, σ2 = 〈1, 2, 1, 4, 1, 2, 1〉. We will use the following properties of universal
sequences in the design and analysis of our algorithm. Their proof is straightfor-
ward, and is omitted here due to space constraints.

Lemma 1. (a) The sequence σs = 〈c1, . . . , c2s+1−1〉 is 2s-universal in the sense
that for any positive integer sequence 〈d1, . . . , dx〉 such that

∑
i∈[x] di ≤ 2s, there

exists a subsequence 〈ci1 , . . . , cix〉 of σs such that dj ≤ cij holds for all j ∈ [x];
(b) the sequence σs contains exactly 2s−i appearances of the integer 2i, for all
i ∈ [s], and nothing else; and (c) the sequence σs is computable in O(2s)-time

and Õ(1)-space.

Now we define our reachability algorithm following the strategy explained
above. The technical key point here is to define a sequence of separators dividing
subgraphs into two parts in a way that we can specify a current target subgraph
succinctly. For this we introduce the notion of “cycle-separator.” Intuitively, a
cycle-separator S of a graph G is a set of cycles S = {C1, . . . , Ch} that separates
G into two subgraphs, those consisting of vertices located left (resp., right) of
the cycles (including cycle vertices). In section 4 we outline how such a simple
cycle-separator can be efficiently computed from any given separator. Based on
this we have the following lemma.

Lemma 2. There exists an Õ(
√
n)-space and polynomial-time algorithm (which

we refer as CycleSep) that computes a cycle-separator S for a given undirected
graph G = (V,E) with its triangulated planar embedding. The size of the sepa-
rator is at most csep

√
n. Furthermore, there is a way to define subsets V 0 and

V 1 of V with the following properties: (a) V 0 ∪ V 1 = V , V 0 ∩ V 1 = S, and (b)
|V b| ≤ (2/3)|V |+ csep

√
n for each b ∈ {0, 1}.

Intuitively we can use cycle-separators like grid-separators to define a sequence
of progressively smaller subgraphs of a given planar directed graph G. (Note that

50 T. Asano et al.

its underlying graph ‘G is used for defining the subgraphs.) From technical rea-
son2, however, we need to add some edges to the outer faces of ‘G[V b] to get it tri-
angulated under the current embedding. We can show that the number of added
edges is bounded by O(|S|) and that there is an algorithm AddTri that computes

these edges and their planar embedding in Õ(|S|)-space and polynomial-time.
We refer to this information as an additional triangulation edge list T and con-
sider it with a cycle-separator S and a Boolean label b. By [‘G]bS,T we mean both

a graph obtained from ‘G[V b] by adding those triangulation edges specified by
T and its planar embedding obtained by modifying the original planar embed-
ding by T . In general, for any sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of such
triples of a label, a cycle-separator and an edge list, we define [‘G]S by

[‘G]S =

[
· · ·

[
[‘G]b1S1,T1

]b2
S2,T2

· · ·
]bt
St,Tt

,

which we call a depth t subarea of G. We should note here that it is easy to
identify a depth t subarea by using S; for a given S, we can determine whether
v ∈ V is in the subarea [‘G]S by using only O(log n)-space.

Armed with this method of constructing/specifying subareas we now imple-
ment our algorithm idea discussed above as a recursive procedure ExtendReach

(see Algorithm 1). First we explain what it computes. We use global variables
to keep the input graph G, the triangulated planar embedding of its underly-
ing graph ‘G, the start vertex v0, and the goal vertex v∗. As we will see in the
next section, the triangulated planar embedding is O(log n)-space computable.
Hence, we can compute it whenever needed; thus, for simplicity we assume here
that the embedding is given also as a part of the input. Note that for the space
complexity this additional input data is not counted. On the other hand, we
define global variables A and R that are kept in the work space. The variable A

is for keeping grid-separator vertices that are currently considered; the vertices
v0 and v∗ are also kept in A. The array R captures the reachability information
for vertices in A; for any v ∈ A, R[v] = true iff the reachability of v from v0 has
been confirmed. Besides these data in the global variables, the procedure takes
arguments S and �, where S specifies the current subarea of ‘G and � is a bound
on the length of path extensions. Our task is to update the reachability from v0
for all vertices in A by using paths of length ≤ � in the current subarea. More
precisely, the procedure ExtendReach(S, �) does the following: for each vertex
v ∈ A, it sets R[v] = true if and only if there is a path to v in G[A ∪ VS] of
length ≤ � from some vertex u ∈ A whose value R[u] before the execution equals
true, where VS is the set of vertices of the current subarea of ‘G specified by
S. Since any vertex in G that is reachable from v0 is reachable by a path of
length at most 2�logn�, the procedure ExtendReach can be used to determine

2 The algorithm CycleSep is defined based on the separator algorithm of Lemma 4
that assumes a triangulated graph as input. Thus, in order to apply CycleSep to
divide ‘G[V b] further, we need to get it triangulated.

Õ(
√
n)-Space Algorithm for Planar Directed Graph Reachability 51

the reachability of vertex v∗ from v0 as follows, which is our planar graph reach-
ability algorithm: (1) Set A ← {v0, v∗}, R[v0] ← true, and R[v∗] ← false; and
(2) Execute ExtendReach(〈 〉, 2�log n�), and then output R[v∗].

Next we give some additional explanation concerning Algorithm 1. Consider
any execution of ExtendReach for given arguments S and � (together with data
kept in its global variables). Let VS be the set of vertices of the subarea [‘G]S
specified by S. There are two cases. If VS has less than 144c2sep vertices, then
the procedure updates the value of R in a straightforward way. As we will see
later G[A ∪ VS] has at most O(

√
n) vertices; hence, we can use any standard

linear-space and polynomial-time algorithm (e.g., breadth-first search) to do
this task. Otherwise, ExtendReach divides the current subarea [‘G]S into two
smaller subareas with new separator vertex set S′

t+1 that is added to A. It then
explore two subareas by using numbers in the universal sequence σs to control
the length of paths in recursive calls.

The correctness of Algorithm 1 is demonstrated in Lemma 3 below. From this,
as summarized in Theorem 1, it is clear that our algorithm correctly determines
the reachability of vertex v∗ from vertex v0 in the input graph G.

Lemma 3. For any input instance G, v0, and v∗ of the planar graph reachability
problem, consider any execution of ExtendReach(S, �) for some S = 〈(b1, S1, T1),
. . . , (bt, St, Tt)〉 and � = 2s. Let VS denote the set of vertices of [‘G]S. For each
vertex v that is in A before the execution, R[v] is set to true during the execution
if and only if there is a path to v in G[A ∪ VS] of length at most 2s, from some
vertex u ∈ A whose value R[u] before the execution equals true.

Proof. Suppose that there is a path p = u0, u1, . . . , uh in G[A∪VS], where (i) u0
and uh both belong to A, (ii) h ≤ 2s, and (iii) R[u0] = true before executing the
procedure. For the lemma, it suffices to show that R[uh] is set true during the
execution of the procedure.

We prove our assertion by induction on the size of VS. If |VS| ≤ 144c2sep,
then it is clear from the description of the procedure. Consider the case where
|VS| > 144c2sep. Then the part from line 7 of the procedure is executed. Let
St+1, T 0

t+1, and T 1
t+1 be the separator and the edge lists computed there. For

any b ∈ {0, 1}, let Sb denote 〈(b1, S1, T1), . . . , (bt, St, Tt), (b, St+1, T
b
t+1)〉; also let

‘Gb = [‘G]Sb (= [[‘G]S](b,St+1,T b
t+1)

) and V b = V(‘Gb) \ St+1.

We observe that p can be decomposed into some number x ≤ |A ∪ St+1| − 1
of subpaths p1, p2, . . . , px, such that (i) both start(pj) and end(pj) belong to
A ∪ St+1 for each j ∈ [x], (ii) the internal vertices of pj belong either to V 0 or
V 1 for each j ∈ [x], and (iii) end(pj) = start(pj+1) for each j ∈ [x− 1], where by
start(pj) and end(pj) we mean the start and end vertices of pj respectively. Let hj
denote the number of edges in path pj . By construction (i) hj ≥ 1 for all j ∈ [x],
and (ii)

∑
j∈[x] hj = h ≤ 2s. Then by Lemma 1(a), the sequence 〈h1, . . . , hx〉 is

dominated by the universal sequence σs = 〈c1, . . . , c2s+1〉. That is, there exists a
subsequence 〈ck1 , ck2 , . . . ckx〉 of σs such that hj ≤ ckj for all j ∈ [x]. Thus, for
any j ∈ [x], if R[start(pj)] = true before the execution of ExtendReach(S0, ckj),

52 T. Asano et al.

Algorithm 1. ExtendReach(S, �)

Given: (as arguments) A sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of triples of a
binary label, a cycle-separator, and an additional triangulation edge list, and a
bound � = 2s on the length of path.
// In this description we use VS to denote the set of vertices of [‘G]S.
(as global variables) The input graph G, its triangulated planar embedding, the
source vertex v0, the goal vertex v∗, a set A of the currently considered vertices,
and a Boolean array R specifying known reachability from v0, for all v ∈ A.

Task: For each vertex v ∈ A, set R[v] = true if there is a path to v in G[A ∪ VS] of
length at most 2s from some vertex u ∈ A whose value R[u] before the current
procedure execution equals true.
// Invariant: A = {v0, v∗} ∪

⋃
i∈[t] Si. R[v] = true ⇒ v is reachable from v0 in G.

1: if the number of vertices of Vt is less than 144c2sep then
2: Rt ← {u ∈ A : R[u] = true};
3: for each vertex v ∈ A do
4: R[v] ← true iff v is reachable from some u ∈ Rt in G[A ∪ VS] by a path of

length ≤ �; // Use any linear space and polynomial-time algorithm here.
5: end for
6: else
7: Use CycleSep and AddTri to create a new cycle separator St+1 of [‘G]S and its

additional triangulation edge lists T 0
t+1 and T 1

t+1;
8: S′

t+1 ← St+1 \ A; A ← A ∪ S′
t+1;

9: R[v] ← false for each vertex v ∈ S′
t+1;

10: for each ci = 2si in the universal sequence σs (where i ∈ [2s+1 − 1]) do
11: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (0, St+1, T

0
t+1)〉, ci);

12: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (1, St+1, T
1
t+1)〉, ci);

13: end for
14: A ← A \ S′

t+1;
15: end if

then we have R[end(pj)] = true after the execution because of the induction
hypothesis. Hence, by executing the fragment:

ExtendReach(S0, ck1); ExtendReach(S1, ck1); · · · ExtendReach(S0, ckx−1);
ExtendReach(S1, ckx−1); ExtendReach(S0, ckx); ExtendReach(S1, ckx);

we have R[end(px)] = true since R[start(p1)] = true by our assumption. There-
fore, R[uh] (where uh = end(px)) is set true as desired since the above fragment
must be executed as a part of the execution of line 10–13 of the procedure. �

By analyzing the time and space complexity of our algorithm, we conclude as
follows.

Theorem 1. For any input instance G, v0, and v∗ of the planar directed graph
reachability problem (where n is the number of vertices of G), our planar graph
reachability algorithm determines whether there is a path from v0 to v∗ in G in
Õ(
√
n) space and polynomial-time.

Õ(
√
n)-Space Algorithm for Planar Directed Graph Reachability 53

Proof. The correctness of the algorithm follows immediately from Lemma 3. For
the complexity analysis, we consider the essential part, that is, the execution of
ExtendReach(〈 〉, 2�log n�).

As a key step for estimating the space and time bounds, we show here a bound
on the depth of recursion during the execution. Let tmax denote the maximum
depth of recursive calls in the execution, for which we would like to show that
tmax ≤ 2.5 logn holds. Consider any depth t recursive call of ExtendReach; in
other words, the execution of ExtendReach(S, �) with a sequence S of length
t. (Thus, the inital call of ExtendReach is regarded as depth 0 recursive call.)
Here some depth t subarea [‘G]S is examined; let nt be the number of vertices
of this subarea. Assume that nt ≥ 144c2sep. Then two smaller subareas of [‘G]S
are created and ExtendReach is recursively executed on them. Let nt+1 denote
the number of vertices of a lager one of these two smaller subareas. Then by
Lemma 2 we have nt+1 ≤ 2nt/3 + csep

√
nt ≤ 3nt/4 since nt ≥ 144c2sep. Hence,

tmax is bounded by 2.5 logn as desired because n(3/4)2.5 logn < 144c2sep.

We bound the memory space used in the execution ExtendReach(〈 〉, 2�log n�).
For this, it is enough to bound the number of vertices in A because the number
of words needed to keep in the work memory space during the execution is
proportional to |A|. Note further that A = {v0, v∗} ∪

⋃
i∈[t] Si at any depth t

recursive call of ExtendReach. On the other hand, by using the above notation,
it follows from the above and Lemma 2 we have

|A \ {v0, v∗}| ≤
∑

i∈[tmax]

|Si| ≤
∑

i∈[tmax]

csep
√
ni

≤
∑

i∈[tmax]

csep

√(
3

4

)i−1

n ≤
(
csep

√
n
)⎛⎝∑

i≥0

(
3

4

)i/2
⎞⎠ = O(

√
n),

which gives us the desired space bound.
For bounding the time complexity by some polynomial, it suffices to show

that the total number of calls of ExtendReach is polynomially bounded. To see
this, we estimate N(t, 2s), the max. number of calls of ExtendReach during
any depth t recursive call of ExtendReach(S, 2s) that occurs in the execution
of ExtendReach(〈 〉, 2�log n�). (Precisely speaking, N(t, 2s) = 0 if no call of type
ExtendReach(S, 2s) occurs.) Clearly, N(tmax, 2

s) = 0 for any s. Also it is easy to
see that N(t, 20) = 2+2N(t+1, 20) for any t < tmax; hence, we have N(t, 20) ≤ 2·
(2tmax−t−1) ≤ 2tmax−t+1. Consider any t < tmax and s ≥ 1. From the description
of ExtendReach and the property of the universal sequence σs (Lemma 1(b)),
we have

N(t, 2s) = 2
∑

i∈[2s+1]

(1 + N(t + 1, ci)) = 2s+2 +
∑

0≤j≤s

2s−jN(t + 1, 2j),

from which we can derive N(t, 2s) = 2N(t + 1, 2s) + 2N(t, 2s−1). Then by in-
duction we can show

N(t, 2s) ≤ 2tmax−t+s+1

(
tmax − t + s

s

)
.

54 T. Asano et al.

Thus, N(0, 2�logn�), the total number of calls of ExtendReach is polynomially
bounded. �

4 Cycle-Separators

We expand here the notion of a cycle-separator and Lemma 2 used in the pre-
vious section. Throughout this section, we consider only undirected graphs. In
particular, we fix any sufficiently large planar undirected graph G = (V,E) and
discuss a cycle-separator for G; all symbols using G are used to denote some
graph related to G.

Roughly speaking, a cycle-separator is a separator S consisting of cycles. In
this paper, we assume some orientation for each cycle, and our cycle-separators
is required to separate G into two subgraphs by considering a part located left
(resp., right) of cycles (cf. Figure 2).

(a) (b)

S consists of cycles C1, C2, C3, each of which has an orientation specified as in
the figure. Dashed lines indicate the cuts corresponding to edges located in the
(a) left and (b) right of each cycle. These cuts are used to identify G[V 0] and G[V 1]

Fig. 2. An example of a cycle-separator

Recall that we do not assume that our input graph comes equipped with
a planar embedding. This is unnecessary for our purposes since Allender and
Mahajan [1] showed that the problem of computing a planar embedding can
be reduced to the undirected graph reachability problem. Hence, by using the
algorithm UReach of Reingold, we can compute a planar embedding of G by using
O(log n)-space. Also it is also easy to to obtain some triangulation w.r.t. this
embedding, and thus we may assume an O(log n)-space algorithm that computes
a triangulated planar embedding for a give planar graph. In our reachability
algorithm, this O(log n)-space algorithm is used (implicitly) before starting the
actual computation and so in the description that follows we proceed as though
our input graph G is given with some triangulated planar embedding.

The Planar Separator Theorem guarantees that every planar graph has a
separator of size O(

√
n) that disconnects a graph into two subgraphs each of

which has at most 2n/3 vertices, which we call a 2/3-separator. Imai et al. has
shown an algorithm that computes a 2/3-separator by using O(

√
n)-space and in

polynomial-time. Though we use such a separator algorithm as a blackbox, we

Õ(
√
n)-Space Algorithm for Planar Directed Graph Reachability 55

introduce some modification so that we can specify two subgraphs disconnected
by a separator in order to use them in the context of sublinear-space computa-
tion. A labeled-separator of G is a pair of a separator S and a set τ = {v1, . . . , vk}
of vertices of G (which we simply denote by Sτ) such that no two vertices of τ
belong to the same connected component of G[V \S]. Graphs G0

Sτ and G1
Sτ are

two disconnected subgraphs of G[V \ S] defined by Sτ ; G0
Sτ =

⋃k
i=1Ki where

each Ki is the connected component of G[V \ S] containing vi, and G1
Sτ is a

subgraph of G consisting of all the other connected components of G[V \ S].
By the planarity, we can show that G[V \ S] has at most 2|S| − 4 connected
components. (Recall that we assumed G is triangulated and hence connected.)

Thus, each labeled-separator can be stored in Õ(|S|)-space. Furthermore, by
using UReach, we can identify, for each vi ∈ τ , the connected component Ki con-
taining vi in O(log n)-space. Since counting is also possible in O(log n)-space, for
a given 2/3-separator, we can in fact collect connected components K1, . . . ,Kk of
G[V \S] (and their representative vertices v1, . . . , vk) so that |V(G0

Sτ)| ≤ 2|V |/3
and |V(G1

Sτ)| ≤ 2|V |/3 hold with τ = {v1, . . . , vk}. In summary, we have the
following separator algorithm that is the basis of our cycle-separator algorithm.

Lemma 4. There exists an Õ(
√
n)-space and polynomial-time algorithm that

yields a 2/3-labeled-separator of size ≤ csep
√
n for a given planar graph, where

csep is some constant, which has been used in the previous section.

Recall that we assume some planar embedding of G; the following notions are
defined with respect to this embedding. For any cycle C of G, we use a sequence
〈u1, . . . , ur〉 of vertices of G in the order of appearing in C under one direction.
We call such a sequence as a cycle representation. With this orientation, we
define the left and the right of the cycle C. Our main technical lemma (see
a technical report version [ECCC, TR14-071] for the full proof) is to show a
way to compute a set S′ of cycles from a given separator S that can be used
as a separator in Õ(|S|)-space and polynomial-time. More specifically, by using
cycles in S′, we define two subsets V 0 and V 1 of V as sets of vertices respectively
located left and right of the cycles. Then they satisfy Lemma 2; that is, G[V 0]
and G[V 1] are subgraphs covering G and sharing only vertices in S′, which
corresponds to ‘G0, ‘G1, and the separator S in the grid case. Furthermore,
their size is (approximately) bounded by 2n/3, and since S′ ⊆ S as a set, we
have |S′| ≤ csep

√
n. This S′ is called a cycle-separator in this paper. We also

provide a way to identify graphs G[V 0] and G[V 1], which is used as a basis of
an algorithm identifying [‘G]S.

5 Conclusion

It should be noted that, though restricted to grid graphs, the problem studied
by Asano et al. in [2,3] is the shortest path problem, a natural generalization of
the reachability problem. In order to keep the discussion in this paper as simple
as possible, and focus on the key ideas, we have restricted our attention here to
the graph reachability problem. However, it is not hard to see that our algorithm

56 T. Asano et al.

for reachability can be modified to the shortest path problem (with a modest
increase in the polynomial time bound).

Similarly, the focus in Asano et al. in [2,3] is on space efficient and yet prac-
tically useful algorithms, including time-space tradeoffs. In this paper, on the
other hand, our motivation has been in extending a graph class that is solv-
able in Õ(

√
n)-space and polynomial-time, and the specific time complexity of

algorithms is not so important so long as it is within some polynomial. In fact,
since the algorithm of Reingold for the undirected reachability is used heavily,
we need very large polynomial to bound our algorithm’s running time.

Since we use Reingold’s undirected reachability algorithm, our algorithm (and
also the one by Imai et al.) have no natural implementation in the NNJAG model.
While the worst-case instances for NNJAG given in [5] are non-planar, it is an
interesting question whether we have similar worst-case instances based on some
planar directed graphs. A more important and challenging question is to define
some model in which our algorithm can be naturally implemented and show
some limitation of space efficient computation.

References

1. Allender, E., Mahajan, M.: The complexity of planarity testing. Information and
Computation 189(1), 117–134 (2004)

2. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path problem.
In: Proc. of the 23th Canadian Conf. on Comp. Geometry, CCCG 1993 (2011)

3. Asano, T., Kirkpatrick, D.: A O(
√
n)-space algorithm for reporting a shortest path

on a grid graph (in preparation)
4. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial

time algorithm for directed s-t connectivity. In: Proc. Structure in Complexity
Theory Conference, pp. 27–33. IEEE (1992)

5. Edmonds, J., Poon, C.K., Achlioptas, D.: Tight lower bounds for st-connectivity
on the NNJAG model. SIAM J. Comput. 28(6), 2257–2284 (1999)

6. Gazit, H., Miller, G.L.: A parallel algorithm for finding a separator in planer graphs.
In: Proc. of the 28th Ann. Sympos. on Foundations of Comp. Sci. (FOCS 1987),
pp. 238–248 (1987)

7. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. Journal of Comput. Syst. Sci. 55, 3–23 (1997)

8. Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N.V., Watanabe, O.: An

O(n
1
2
+ε)-space and polynomial-time algorithm for directed planar reachability. In:

Proc. of the 28th Conf. on Comput. Complexity, pp. 277–286 (2013)
9. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.

J. Comput. Syst. Sci. 32(3), 265–279 (1986)
10. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal

on Applied Mathematics 36(2), 177–189 (1979)
11. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2),

361–381 (1979)
12. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
13. Wigderson, A.: The complexity of graph connectivity. In: Havel, I.M., Koubek, V.

(eds.) MFCS 1992. LNCS, vol. 629, pp. 112–132. Springer, Heidelberg (1992)

Forbidden Induced Subgraphs and the Price

of Connectivity for Feedback Vertex Set

Rémy Belmonte1,�, Pim van ’t Hof2,��,
Marcin Kamiński3,���, and Daniël Paulusma4,†

1 Dept. of Architecture and Architectural Engineering, Kyoto University, Japan
remybelmonte@gmail.com

2 Department of Informatics, University of Bergen, Norway
pim.vanthof@ii.uib.no

3 Institute of Computer Science, University of Warsaw, Poland
mjk@mimuw.edu.pl

4 School of Engineering and Computing Sciences, Durham University, UK
daniel.paulusma@durham.ac.uk

Abstract. Let fvs(G) and cfvs(G) denote the cardinalities of a minimum
feedback vertex set and a minimum connected feedback vertex set of
a graph G, respectively. For a graph class G, the price of connectivity
for feedback vertex set (poc-fvs) for G is defined as the maximum ratio
cfvs(G)/fvs(G) over all connected graphs G in G. It is known that the
poc-fvs for general graphs is unbounded. We study the poc-fvs for graph
classes defined by a finite family H of forbidden induced subgraphs. We
characterize exactly those finite families H for which the poc-fvs for H-
free graphs is bounded by a constant. Prior to our work, such a result
was only known for the case where |H| = 1.

1 Introduction

A feedback vertex set of a graph is a subset of its vertices whose removal yields
an acyclic graph, and a feedback vertex set is connected if it induces a connected
graph. We write fvs(G) and cfvs(G) to denote the cardinalities of a minimum
feedback vertex set and a minimum connected feedback vertex set of a graph G,
respectively. Let G be a class of graphs. The price of connectivity for feedback
vertex set (poc-fvs) for G is defined to be the maximum ratio cfvs(G)/fvs(G)
over all connected graphs G in G. Graphs consisting of two disjoint cycles that
are connected to each other by an arbitrarily long path show that the poc-fvs
for general graphs is not upper bounded by a constant, and the same clearly
holds for planar graphs. Interestingly, Grigoriev and Sitters [6] showed that the

� Supported by the ELC project (Grant-in-Aid for Scientific Research on Innovative
Areas, MEXT Japan).

�� Supported by the Research Council of Norway (197548/F20).
��� Supported by Foundation for Polish Science (HOMING PLUS/2011-4/8) and Na-

tional Science Center (SONATA 2012/07/D/ST6/02432).
† Supported by EPSRC (EP/G043434/1) and Royal Society (JP100692).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 57–68, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

58 R. Belmonte et al.

poc-fvs for planar graphs of minimum degree at least 3 is at most 11. Schweitzer
and Schweitzer [7] later improved this upper bound from 11 to 5, and showed
the upper bound of 5 to be tight.

In a previous paper [1], we studied the poc-fvs for graph classes characterized
by a single forbidden induced subgraph. We proved that the poc-fvs for H-free
graphs is bounded by a constant cH if and only if H is a linear forest, i.e.,
a disjoint union of paths. In fact, we obtained a more refined tetrachotomy
result that determines, for every graph H , which of the following cases holds:
(i) cfvs(G) = fvs(G) for every connected H-free graph G; (ii) there exists a
constant cH such that cfvs(G) ≤ fvs(G) + cH for every connected H-free graph
G; (iii) there exists a constant cH such that cfvs(G) ≤ cH · fvs(G) for every
connected H-free graph G; (iv) there does not exist a constant cH such that
cfvs(G) ≤ cH · fvs(G) for every connected H-free graph G.

The concept of “price of connectivity”, introduced by Cardinal and Levy [4],
has been studied for other parameters as well. One such parameter is the ver-
tex cover number of a graph. Let τ(G) and τc(G) denote the cardinalities of a
minimum vertex cover and a minimum connected vertex cover of a graphs G,
respectively. For a graph class G, the price of connectivity for vertex cover for G
is defined as the worst-case ratio τc(G)/τ(G) over all connected graphs G in G.
It is known that for general graphs, the price of connectivity for vertex cover is
upper bounded by 2, and this bound is sharp [2]. Cardinal and Levy [4] showed
that for n-vertex graphs with average degree εn, this bound can be improved
to 2/(1 + ε). Camby et al. [2] provided forbidden induced subgraph character-
izations of graph classes for which the price of connectivity for vertex cover is
upper bounded by 1, 4/3, and 3/2, respectively.

The price of connectivity for dominating set (poc-ds) for a graph class G
is defined as the maximum ration γc(G)/γ(G) over all connected graphs G in
G, where γc(G) and γ(G) denote the domination number and the connected
domination number of G, respectively. It is easy to prove that the poc-ds for
general graphs is upper bounded by 3 [5]. Motivated by the work of Zverovich [8],
Camby and Schaudt [3] studied the poc-ds for (Pk, Ck)-free graphs for several
values of k. Their results show that the poc-ds for (P8, P9)-free graphs is upper
bounded by 2, while the general upper bound of 3 is asymptotically sharp for
(P9, C9)-free graphs.

Our Contribution. We continue the line of research on the price of connectivity
for feedback vertex set we initiated in [1]. For a family of graphs H, a graph G is
calledH-free if G does not contain an induced subgraph isomorphic to any graph
H ∈ H. The vast majority of well-studied graph classes have forbidden induced
subgraphs characterizations, and such characterizations can often be exploited
when proving structural or algorithmic properties of these graph classes. In fact,
for every hereditary graph class G, that is, for every graph class G that is closed
under taking induced subgraphs, there exists a family H of graphs such that G is
exactly the class of H-free graphs. Notable examples of graphs classes that can
be characterized using a finite family of forbidden induced subgraphs include
claw-free graphs, line graphs, proper interval graphs, split graphs and cographs.

Forbidden Induced Subgraphs and the Price of Connectivity 59

Our main result establishes a dichotomy between the finite families H for
which the price of connectivity for feedback vertex set for H-free graphs is upper
bounded by a constant cH and the families H for which such a constant cH does
not exist. This can be seen as an extension of the case (iii) from [1] (mentioned
above) from monogenic to finitely defined classes of graphs. In order to formally
state our main result, we need to introduce some terminology.

For two graphs H1 and H2, we write H1 +H2 to denote the disjoint union of
H1 and H2. We write sH to denote the disjoint union of s copies of H . For any
r ≥ 3, we write Cr to denote the cycle on r vertices. For any three integers i, j, k
with i, j ≥ 3 and k ≥ 1, we define Bi,j,k to be the graph obtained from Ci + Cj

by choosing a vertex x in Ci and a vertex y in Cj , and adding a path of length
k between x and y.

It is clear that the price of connectivity for feedback vertex set for the class of
all butterflies is not bounded by a constant, since fvs(Bi,j,k) = 2 and cfvs(Bi,j,k)=
k+ 1 for every i, j ≥ 3 and k ≥ 1. Roughly speaking, our main result states that
the price of connectivity for feedback vertex set for the class of H-free graphs
is bounded by a constant cH if and only if the forbidden induced subgraphs in
H prevent arbitrarily large butterflies from appearing as induced subgraphs. To
make this statement concrete, we need the following definition.

Definition 1. Let i, j ≥ 3 be two integers, let H be a family of graphs, and let
N = 2 ·maxH∈H |V (H)|+1. The family H covers the pair (i, j) if H contains an
induced subgraph of Bi,j,N . A graph H covers the pair (i, j) if {H} covers (i, j).

The following theorem provides a sufficient and necessary condition for a
finite family H to have the property that the poc-fvs for H-free graphs is upper
bounded by a constant.

Theorem 1. Let H be a finite family of graphs. Then the poc-fvs for H-free
graphs is upper bounded by a constant cH if and only if H covers the pair (i, j)
for every i, j ≥ 3.

Section 2 is devoted to the proof of Theorem 1. In Section 3, we prove a
sequence of lemmata that show exactly which graphs H cover which pairs (i, j).
In Section 4, we present some applications of the results in Sections 2 and 3.
In particular, we describe a procedure that, given a positive integer k, yields an
explicit description of all the minimal graph families H with |H| = k for which
the poc-fvs for H-free graphs is upper bounded by a constant. For k = 1, this
immediately yields the aforementioned result from [1], stating that the poc-fvs
for H-free graphs is upper bounded by a constant if and only if H is a linear
forest (Corollary 1). We also demonstrate the procedure for the case k = 2, and
obtain an explicit description of exactly those families {H1, H2} for which the
poc-fvs for {H1, H2}-free graphs is upper bounded by a constant (Corollary 2).
Section 5 contains some concluding remarks.

We end this section by defining some additional terminology that will be used
throughout the paper. For any k, p, q ≥ 1, let Pk denote the path on k vertices,
and let T p,q

k denote the graph obtained from Pk + Pp + Pq by making a new

60 R. Belmonte et al.

vertex adjacent to one end-vertex of each path. For any k ≥ 0 and r ≥ 3, let Dr
k

denote the graph obtained from Pk +Cr by adding an edge between a vertex of
the cycle and an end-vertex of the path; in particular, Dr

0 is isomorphic to Cr.

2 Proof of Theorem 1

In this section, we prove the dichotomy result given in Theorem 1. We will make
use of the following simple observation.

Observation 1. Let i, j, k, � be integers such that i, j ≥ 3 and � ≥ k ≥ 1. A
graph on at most k vertices is an induced subgraph of Bi,j,k if and only if it is
an induced subgraph of Bi,j,�.

Proof (of Theorem 1). First suppose there exists a pair (i, j) with i, j ≥ 3 such
that H does not cover (i, j). For contradiction, suppose there exists a constant
cH as in the statement of the theorem. By Definition 1, H does not contain an
induced subgraph of Bi,j,N , and hence Bi,j,N is H-free. As a result of Obser-
vation 1, Bi,j,k is H-free for every k ≥ N . In particular, the graph Bi,j,N+2cH
is H-free. Note that fvs(Bi,j,N+2cH) = 2 and cfvs(Bi,j,N+2cH) = N + 2cH + 1.
This implies that cfvs(Bi,j,N+2cH) > cH · fvs(Bi,j,N+2cH), yielding the desired
contradiction.

For the converse direction, suppose H covers the pair (i, j) for every i, j ≥ 3.
Let G be a connected H-free graph. Observe that cfvs(G) = fvs(G) if G is a
cycle or a tree, so we assume that G is neither a cycle nor a tree. Let F be a
minimum feedback vertex set of G, and without loss of generality assume that
each vertex in F lies on a cycle and has degree at least 3 in G. Below, we will
prove that the distance in G between any two vertices of F is at most 5N . To
see why this suffices to prove the theorem, observe that we can transform F into
a connected feedback vertex set of G of size at most 5N · |F | = 5N · fvs(G) by
choosing an arbitrary vertex x ∈ F and adding, for each y ∈ F \ {x}, all the
internal vertices of a shortest path between x and y.

Let x, y ∈ F , and let P be a shortest path from x to y. For contradiction,
suppose P has length at least 5N + 1. Recall that by the definition of F , there
exist cycles Cx and Cy that contain x and y, respectively; assume, without loss
of generality, that Cx and Cy are induced cycles in G. Let X = {v ∈ V (Cx) |
dG[V (Cx)](v, x) ≤ N}. Note that X induces the cycle Cx in case |V (Cx)| ≤ 2N ,
and X induces a path of length at most 2N otherwise. We also define Y =
{v ∈ V (Cy) | dG[V (Cy)](v, y) ≤ N}. We partition the vertex set of P into three
sets: L = {v ∈ V (P) | dG(v, x) ≤ 2N + 1}, M = {v ∈ V (P) | dG(v, x) ≥
2N + 2 and dG(v, y) ≥ 2N + 2}, and R = {v ∈ V (P) | dG(v, y) ≤ 2N + 1}. For
any two distinct vertices u and v on the path P , we say that u is to the left of
v (and, equivalently, v is to the right of u) if the subpath of P from x to u does
not contain v.

Claim 1. G[X ∪ L] contains a graph in {Di
N | i ≥ 3} ∪ {TN,N

N } as an induced
subgraph.

Forbidden Induced Subgraphs and the Price of Connectivity 61

We prove Claim 1 as follows. Let x′ be the vertex of P closest to y that has a
neighbor x1 ∈ X \{x}; possibly x′ = x. Let P ′ be the subpath of P from x to x′.
By the definition of X , the distance between x1 and x is at most N , implying
that dG(x, x′) ≤ N + 1. Since P is a shortest path from x to y, we find that the
length of P ′ is at most N + 1. Let x′′ be the unique vertex of P such that x′′ is
to the right of x′ and dG(x′′, x′) = N , and let P ′′ be the subpath of P from x′

to x′′. Since |L| = 2N + 2, path P ′ has length at most N + 1, and path P ′′ has
length N , it follows that V (P ′′) ⊆ L. Observe that x′ is the only vertex of P ′′

that has a neighbor in X \ {x}.
Suppose x = x′. Then X∩V (P) = {x}, and hence G[X∪V (P ′′)] is isomorphic

to either D
|V (Cx)|
N or TN,N

N , implying that the claim holds in this case. From now
on, we assume that x′ = x. We distinguish two cases, depending on how many
neighbors x′ has in X .

If x′ has at least two neighbors in X , then x′ has two neighbors x1, x2 in
X such that there is a path in X from x1 to x2 whose internal vertices are
not adjacent to x′. This path, together with the edges x1x

′ and x2x
′, forms an

induced cycle C in G. Then G[V (C) ∪ V (P ′′)] is isomorphic to D
|V (C)|
N , so the

claim holds.
Now suppose x′ has exactly one neighbor x1 ∈ X . If X induces a cycle in G,

then the cycle G[X], the path P ′′, and the edge x′x1 together form a graph

that is isomorphic to D
|X|
N , so the claim holds. Suppose X induces a path in G;

recall that this path has exactly 2N + 1 vertices, and x is the middle vertex
of this path. If x1 = x, then G[X ∪ V (P ′′)] is isomorphic to TN,N

N . Suppose
x1 = x. Let PX be the unique path in G[X] from x1 to x. Then the graph
G[V (PX) ∪ V (P ′)] contains an induced cycle C such that x′ lies on C, and the

graph G[V (C) ∪ V (P ′′)] is isomorphic to D
|V (C)|
N . This completes the proof of

Claim 1.
Let Gx be an induced subgraph of G[X ∪ L] that is isomorphic to a graph in

{Di
N | i ≥ 3} ∪ {TN,N

N } and that is constructed from the cycle Cx in the way
described in the proof of Claim 1. In particular, let x′′ be the vertex of Gx that
is closest to y in G. Recall that x′′ is a vertex of P and has degree 1 in Gx. It is
clear from the construction of Gx that every vertex in Gx has distance at most
2N + 1 to x. By symmetry, we can define an induced subgraph Gy of G[Y ∪R]
and a vertex y′′ in Gy in an analogous way, that is, Gy is isomorphic to a graph

in {Di
N | i ≥ 3} ∪ {TN,N

N }, and y′′ is the vertex of Gy that is closest to x in G.
Let P ∗ be the subpath of P from x′′ to y′′. The fact that P is a shortest path

from x to y implies that x′′ and y′′ are the only two vertices of Gx and Gy that
are adjacent to internal vertices of P ∗. Moreover, there are no edges between
Gx and Gy, as otherwise there would be a path from x to y of length at most
4N + 2, contradicting the fact that P is a shortest path from x to y. Let G∗

denote the induced subgraph of G obtained from Gx +Gy by connecting x′′ and
y′′ using the path P ∗. We distinguish four cases, and obtain a contradiction in
each case. We will repeatedly use the fact that in each case, G∗ can be obtained
from a “large” butterfly by deleting at most two vertices.

62 R. Belmonte et al.

Case 1. Gx is isomorphic to Di
N and Gy is isomorphic to Dj

N for some i, j ≥ 3.

In this case, G∗ is isomorphic to Bi,j,k for some k ≥ 2N . Since H covers the pair
(i, j), there exists a graph H ∈ H such that H is an induced subgraph of Bi,j,N

by Definition 1. Due to Observation 1, H is also an induced subgraph of G∗ and
hence also of G. This contradicts the assumption that G is H-free.

Case 2. Gx is isomorphic to Di
N for some i ≥ 3 and Gy is isomorphic to TN,N

N .

Since H covers the pair (i, 2N), there exists a graph H ∈ H such that H is an
induced subgraph of Bi,2N,N . Since |V (H)| ≤ N , the graph H contains at most
one cycle, and this cycle, if it exists, is of length i. Hence it is clear that H is
also an induced subgraph of G∗. This contradicts the assumption that G and
thus G∗ is H-free.

Case 3. Gx is isomorphic to TN,N
N and Gy is isomorphic to Di

N for some i ≥ 3.

By symmetry, we obtain a contradiction in the same way as in Case 2.

Case 4. Both Gx and Gy are isomorphic to TN,N
N .

Since H covers the pair (2N, 2N), there exists a graph H ∈ H such that H is
an induced subgraph of B2N,2N,N . This graph H has at most N vertices, which
implies that H has no cycle. But then H is an induced subgraph of G∗, again
yielding the desired contradiction. This completes the proof of Theorem 1. ��

3 Which Graphs H Cover Which Pairs (i, j)?

Recall that by Definition 1, a graph H covers a pair (i, j) if and only if H is an
induced subgraph of Bi,j,N , where N = 2 · |V (H)| + 1. In particular, if a graph
H is not an induced subgraph of a butterfly, then H does not cover any pair
(i, j). However, it is important to note that some induced subgraphs of Bi,j,N

cover more pairs than others. For example, as we will see in Lemma 6, a linear
forest covers all pairs (i, j) with i, j ≥ 3, but this is not the case for any induced
subgraph of Bi,j,N that is not a linear forest.

In this section, we will prove exactly which pairs (i, j) are covered by which
graphs H . For convenience, we first describe all the possible induced subgraphs
of Bi,j,N in the following observation.

Observation 2. Let H be a graph, let N = 2 · |V (H)|+1, and let i, j ≥ 3 be two
integers. Then H is an induced subgraph of Bi,j,N if and only if H is isomorphic
to the disjoint union of a linear forest (possibly on zero vertices) and at most
one of the following graphs:

(i) Di
� for some � ≥ 0;

(ii) Dj
� for some � ≥ 0;

(iii) Di
� + Dj

�′ for some �, �′ ≥ 0;
(iv) T p,q

k for some k, p, q ≥ 1 such that p + q + 2 ≤ max{i, j};
(v) T p,q

k + T p′,q′
k′ for some k, p, q, k′, p′, q′ ≥ 1 such that p + q + 2 ≤ i and

p′ + q′ + 2 ≤ j;

Forbidden Induced Subgraphs and the Price of Connectivity 63

(vi) Di
� + T p,q

k for some � ≥ 0 and k, p, q ≥ 1 such that p + q + 2 ≤ j;

(vii) Dj
� + T p,q

k for some � ≥ 0 and k, p, q ≥ 1 such that p + q + 2 ≤ i.

The lemmata below show, for each of the induced subgraphs described in Ob-
servation 2, exactly which pairs (i, j) they cover. In the statement of each of the
lemmata, we refer to a table in which the set of covered pairs is depicted. This will
be helpful in the applications presented in Section 4. The rather straightforward
proofs of Lemmata 2–5 have been omitted due to page restrictions.

Lemma 1. Let H be a graph, let p ≥ 3, and let X be the set consisting of the
pairs (i, j) with i, j ≥ 3 and p ∈ {i, j}; see the left table in Figure 1 for an
illustration of the pairs in X .

(i) If H is an induced subgraph of Dp
k for some k ≥ 0, then H covers all the

pairs in X .
(ii) If Dp

k is an induced subgraph of H for some k ≥ 0, then H covers only
pairs in X .

Proof. Let N = 2 · |V (H)|+1. Suppose H is an induced subgraph of Dp
k for some

k ≥ 0. Then H is also an induced subgraph of Bi,j,N for every i, j ≥ 3 such that
p ∈ {i, j}. Hence, by Definition 1, H covers the pairs (p, j) and (i, p) for every
i, j ≥ 3.

Now suppose Dp
k is an induced subgraph of H for some k ≥ 0. Then H

contains a cycle of length p. Hence it is clear that if H is an induced subgraph of
a butterfly Bi,j,N , then we must have p ∈ {i, j}. This shows that H only covers
pairs that belong to X . ��

i

j
3 · · · · · · p · · · · · ·

3 �
.
.
. �
.
.
. �

p � � � � � �
.
.
. �
.
.
. �

i

j
3 · · · p · · · q · · ·

3

.

.

.

p �
.
.
.

q �
.
.
.

Fig. 1. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic
to Dp

k for some k ≥ 0 (left table) and when H is isomorphic to Dp
k +Dq

k for some k ≥ 0
(right table)

64 R. Belmonte et al.

Lemma 2. Let H be a graph, let p, q ≥ 3, and let X = {(p, q), (q, p)}; see the
right table in Figure 1 for an illustration of the pairs in X .

(i) If H is an induced subgraph of Dp
k +Dq

k for some k ≥ 0, then H covers all
the pairs in X .

(ii) If Dp
k + Dq

k is an induced subgraph of H for some k ≥ 0, then H covers
only pairs in X .

i

j
3 · · · · · ·

p
+

q
+

2

· · · · · ·

3 � � �
.
.
. � � �
.
.
. � � �

p+ q+2 � � � � � �
.
.
. � � � � � �
.
.
. � � � � � �

i

j
3 · · ·

p
+

q
+

2

· · ·

p
′ +

q′
+

2

· · ·

3

.

.

.

p+ q+2 � �
.
.
. � �

p′+q′+2 � � � �
.
.
. � � � �

Fig. 2. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to T p,q
r for some r ≥ 1 (left table) and when H is isomorphic to T p,q

r + T p′,q′
r for some

r ≥ 1 (right table)

Lemma 3. Let H be a graph, let p, q ≥ 1, and let X be the set consisting of the
pairs (i, j) with i, j ≥ 3 and max{i, j} ≥ p + q + 2; see the left table in Figure 2
for an illustration of the pairs in X .

(i) If H is an induced subgraph of T p,q
r for some r ≥ 1, then H covers all the

pairs in X .
(ii) If T p,q

r is an induced subgraph of H for some r ≥ 1, then H covers only
pairs in X .

Lemma 4. Let H be a graph, let p, q, p′, q′ ≥ 1 be such that p+ q ≤ p′ + q′, and
let X consist of all the pairs (i, j) with min{i, j} ≥ p + q + 2 and max{i, j} ≥
p′ + q′ + 2; see the right table in Figure 2 for an illustration of the pairs in X .

(i) If H is an induced subgraph of T p,q
r +T p′,q′

r for some r ≥ 1, then H covers
all the pairs in X .

(ii) If T p,q
r +T p′,q′

r is an induced subgraph of H for some r ≥ 1, then H covers
only pairs in X .

Forbidden Induced Subgraphs and the Price of Connectivity 65

i

j
3 · · · p · · ·

p
′ +

q′
+

2

· · ·

3

.

.

.

p � �
.
.
.

p′+q′+2 �
.
.
. �

i

j
3 · · ·

p
′ +

q′
+
2

· · · p · · ·

3

.

.

.

p′+q′+2 �
.
.
. �

p � � � �
.
.
. �

Fig. 3. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1 in the case where p < p′ + q′ + 2 (left table)
and in the case where p > p′ + q′ + 2 (right table)

i

j
3 · · · p · · · · · ·

3

.

.

.

p � � �
.
.
. �
.
.
. �

Fig. 4. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1 in the case where p = p′ + q′ + 2

Lemma 5. Let H be a graph, let p ≥ 3 and p′, q′ ≥ 1, and let X be the set
consisting of the pairs (i, j) with either i = p and j ≥ p′ + q′ +2 or i ≥ p′ + q′ +2
and j = p; see the left and right tables in Figure 3 and the table in Figure 4 for
an illustration of the pairs in X in the cases where p < p′+q′+2, p > p′ +q′+2,
and p = p′ + q′ + 2, respectively.

(i) If H is an induced subgraph of Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1, then
H covers all the pairs in X .

(ii) If Dp
k + T p′,q′

r is an induced subgraph of H for some k ≥ 0 and r ≥ 1, then
H covers only pairs in X .

66 R. Belmonte et al.

Lemma 6. A graph H covers every pair (i, j) with i, j ≥ 3 if and only if H is
a linear forest.

Proof. If H is a linear forest, then H is an induced subgraph of a path on
2 · |V (H)| vertices. Hence H is also an induced subgraph of Bi,j,2|V (H)|+1 for
every i, j ≥ 3. By Definition 1, H covers every pair (i, j) with i, j ≥ 3.

For the reverse direction, suppose H covers every pair (i, j) with i, j ≥ 3. For
contradiction, suppose H is not a linear forest. Then, as a result of Definition 1
and Observation 2, either H contains T p,q

r as an induced subgraph for some
p, q, r ≥ 1, or H contains Dp

k as an induced subgraph for some p ≥ 3 and k ≥ 0.
In the first case, it follows from Lemma 3(ii) that H does not cover the pair
(3, 3). In the second case, it follows from Lemma 1(ii) that H does not cover any
pair (i, j) with r ∈ {i, j}. In both cases, we obtain the desired contradiction. ��

4 Applications of Our Results

In this section, we show how we can apply Theorem 1 and the lemmata from
Section 3 in order to obtain some concrete characterizations. Let us first remark
that the following result, previously obtained in [1], immediately follows from
Theorem 1 and Lemma 6.

Corollary 1 ([1]). Let H be a graph. Then the poc-fvs for H-free graphs is
upper bounded by a constant cH if and only if H is a linear forest.

Obtaining similar characterizations for finite families H with |H| ≥ 2 is more
involved, but can be done using the procedure we informally describe below. We
then illustrate the procedure in Corollary 2 below for the case where |H| = 2.

Let k ≥ 2. Suppose we want to characterize the families of graphs H with
|H| = k for which the poc-fvs for H-free graphs is upper bounded by a constant.
It follows from Theorem 1 and Lemma 6 that the poc-fvs for H-free graphs is
bounded whenever H contains a linear forest. What about families H that do
not contain a linear forest?

Consider the infinite table containing all the pairs (i, j) with i, j ≥ 3. From
Lemmata 3–5 and Figures 1–4, we can observe two important things. First, the
only graphs H that cover the pair (3, 3) are induced subgraphs of 2D3

� for some
� ≥ 0. Second, the only graphs H that cover infinitely many rows and columns of
this table are induced subgraphs of T p,q

r +T p′,q′
r for some r, p, q, p′, q′ ≥ 1. Hence,

any finite family H that covers all pairs (i, j) must contain at least one graph
of both types. Formally, we have the following observation (observe that every
linear forest is an induced subgraph of 2D3

� for some � ≥ 0 and of T p,q
r + T p′,q′

r

for some r, p, q, p′, q′ ≥ 1):

Observation 3. Let H be a finite family of graphs such that |H| ≥ 2. If the
poc-fvs for H-free graphs is upper bounded by a constant cH, then H contains an
induced subgraph of 2D3

� for some � ≥ 0 and an induced subgraph of T p,q
r +T p′,q′

r

for some r, p, q, p′, q′ ≥ 1.

Forbidden Induced Subgraphs and the Price of Connectivity 67

Suppose H is a family of k graphs such that the poc-fvs for H-free graphs
is bounded by a constant. By Observation 3, H contains a graph H1 that is an
induced subgraph of T p,q

r + T p′,q′
r for some r, p, q, p′, q′ ≥ 1.

If H1 is also an induced subgraph of T p,q
r for some r, p, q ≥ 1, or if H contains

another graph that is of this form, then Lemma 3 and Figure 2 show that there
are only finitely many pairs (i, j) that are not covered by H1. These cells need to
be covered by the remaining graphs in H. Using Lemmata 3–5, we can determine
exactly which combination of graphs covers exactly those remaining pairs.

Suppose H does not contain induced subgraph of T p,q
r for any r, p, q ≥ 1.

Then, by Lemma 4, there are finitely many rows and columns in which no pair is
covered by H1. In particular, since p, q, p′, q′ ≥ 1, the pairs (i, 3) and (3, j) are not
covered for any i, j ≥ 3. From the lemmata in Section 3 and the corresponding
tables, it it clear that the only graphs H that cover infinitely many pairs of this
type are induced subgraphs of T p,q

r for some r, p, q ≥ 1 or of D3
r′ +T p,q

r for some
r′ ≥ 0 and p, q ≥ 1. Hence, H must contain a graph H2 that is isomorphic to
such an induced subgraph. Similarly, if the pairs (i, 4) and (4, j) are not covered
for any i, j ≥ 3, then H must contain an induced subgraph of T p,q

r for some
r, p, q ≥ 1 or of D4

r′ + T p,q
r for some r′ ≥ 0 and p, q ≥ 1, etcetera. Once all rows

and columns contain only finitely many pairs that are not covered yet, we can
determine all possible combinations of graphs that cover those last pairs.

To illustrate the above procedure, we now give an explicit description of ex-
actly those families {H1, H2} for which the poc-fvs for {H1, H2}-free graphs is
upper bounded by a constant.

Corollary 2. Let H1 and H2 be two graphs, and let H = {H1, H2}. Then the
poc-fvs for H-free graphs is upper bounded by a constant cH if only if there exist
integers � ≥ 0 and r ≥ 1 such that one of the following conditions holds:

– H1 or H2 is a linear forest;
– H1 and H2 are induced subgraphs of D3

� and 2T 1,1
r , respectively;

– H1 and H2 are induced subgraphs of 2D3
� and T 1,1

r , respectively.

Proof. First suppose that the price of connectivity for feedback vertex set for
H-free graphs is bounded by some constant cH, and suppose that neither H1 nor
H2 is a linear forest. Due to Observation 3, we may without loss of generality
assume that H1 is an induced subgraph of 2D3

� for some � ≥ 0 and H2 is an

induced subgraph of T p,q
r + T p′,q′

r for some r, p, q, p′, q′ ≥ 1. From Lemmata 1
and 2 and the assumption that H1 is not a linear forest, it follows that H1 does
not cover the pair (4, 4). Hence H2 must cover this pair. This, together with
Lemma 4, implies that p = q = p′ = q′ = 1, i.e., H2 is an induced subgraph of
2T 1,1

r for some r ≥ 1.
If H1 is an induced subgraph of D3

�′ for some �′ ≥ 0, then the second condition
holds and we are done. Suppose this is not the case. Then H1 covers only the
pair (3, 3) due to Lemma 2. This means that all the pairs (i, j) with i, j ≥ 3 and
3 ∈ {i, j}, apart from (3, 3), must be covered by H2. From Lemma 3 and 4 it is
clear that this only holds if H2 is an induced subgraph of T 1,1

r′ for some r′ ≥ 1.
Hence the third condition holds.

68 R. Belmonte et al.

The converse direction follows by combining Theorem 1 with Lemma 6, Lem-
mata 1 and 4, and Lemmata 2 and 3, respectively. ��

5 Conclusion

Recall that in [1], we proved for every graph H which of the following cases
holds: (i) cfvs(G) = fvs(G) for every connected H-free graph G; (ii) there exists
a constant cH such that cfvs(G) ≤ fvs(G)+cH for every connected H-free graph
G; (iii) there exists a constant cH such that cfvs(G) ≤ cH · fvs(G) for every
connected H-free graph G; (iv) there does not exist a constant cH such that
cfvs(G) ≤ cH · fvs(G) for every connected H-free graph G. Theorem 1 extends
the case of (iii) to all finite familiesH. A natural question to ask is to characterize
all finite families H for (i) and (ii) as well.

Another natural question to ask is whether Theorem 1 can be extended to
families H which are not finite, i.e., to all hereditary classes of graphs. Defini-
tion 1 and Theorem 1 show that for any finite family H, the poc-fvs for H-free
graphs is bounded essentially when the graphs in this class do not contain ar-
bitrarily large induced butterflies. The following example shows that when H
is infinite, it is no longer only butterflies that can cause the poc-fvs to be un-
bounded. Let G be a graph obtained from K3 by first duplicating every edge
once, and then subdividing every edge arbitrarily many times. Let G be the class
of all graphs that can be constructed this way. In order to make G hereditary,
we take its closure under the induced subgraph relation. Let G′ be the resulting
graph class. Observe that graphs in this class have arbitrarily large minimum
connected feedback vertex sets, while fvs(G) ≤ 2 for every graph G ∈ G′. Hence,
the poc-fvs for G′ is not bounded. However, no graph in this family contains a
butterfly as an induced subgraph.

References

1. Belmonte, R., van ’t Hof, P., Kamiński, M., Paulusma, D.: The price of connectivity
for feedback vertex set. In: Eurocomb 2013. CRM Series, vol. 16, pp. 123–128 (2013)

2. Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The price of connectivity for vertex
cover. Discrete Mathematics & Theoretical Computer Science 16(1), 207–224 (2014)

3. Camby, E., Schaudt, O.: A note on connected dominating set in graphs without long
paths and cycles. Manuscript, arXiv:1303.2868 (2013)

4. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput.
Sci. 411(26-28), 2581–2590 (2010)

5. Duchet, P., Meyniel, H.: On Hadwiger’s number and the stability number. Ann.
Discrete Math. 13, 71–74 (1982)

6. Grigoriev, A., Sitters, R.: Connected feedback vertex set in planar graphs. In: Paul,
C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 143–153. Springer, Heidelberg
(2010)

7. Schweitzer, P., Schweitzer, P.: Connecting face hitting sets in planar graphs. Inf.
Process. Lett. 111(1), 11–15 (2010)

8. Zverovich, I.E.: Perfect connected-dominant graphs. Discuss. Math. Graph The-
ory 23, 159–162 (2003)

Network-Based Dissolution

René van Bevern1, Robert Bredereck1, Jiehua Chen1, Vincent Froese1,
Rolf Niedermeier1, and Gerhard J. Woeginger2

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
2 Department of Mathematics and Computer Science,

TU Eindhoven, The Netherlands

Abstract. We introduce a graph-theoretic dissolution model that ap-
plies to a number of redistribution scenarios such as gerrymandering in
political districting or work balancing in an online situation. The central
aspect of our model is the deletion of certain vertices and the redistribu-
tion of their loads to neighboring vertices in a perfectly balanced way.

We investigate how the underlying graph structure, the pre-knowledge
of which vertices should be deleted, and the relation between old and
new vertex loads influence the computational complexity of the under-
lying graph problems. Our results establish a clear borderline between
tractable and intractable cases.

1 Introduction

Motivated by applications in areas like political redistricting, economization,
and distributed systems, we introduce a class of graph modification problems
that we call network-based dissolution. We are given an undirected graph where
each vertex carries a load consisting of discrete entities (e.g. voters, tasks, data).
These loads are balanced : all vertices carry the same load. Now a certain number
of vertices has to be dissolved, that is, they are to be deleted from the graph and
their loads are to be redistributed among their neighbors such that afterwards
all loads are balanced again.

Indeed, our dissolution problem comes in two flavors called Dissolution

and Biased Dissolution. Dissolution is the basic version, as described in
the preceding paragraph. Biased Dissolution is a variant that is motivated
by gerrymandering in the context of political districting. It is centered around a
bipartisan scenario with two types A and B of discrete entities. The goal is to find
a redistribution that maximizes the number of vertices in which the A-entities
form a majority. See Section 2 for a formal definition of these models.

Our main focus lies on analyzing the computational complexity of network-
based dissolution problems, and in getting a good understanding of polynomial-
time solvable and NP-hard cases.

Three Application Scenarios. We discuss three example scenarios for disso-
lution applications in some detail. The first and third example relate to Biased

Dissolution, while the second example is closer to Dissolution.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 69–80, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

70 R. van Bevern et al.

Our first example comes from political districting, the process of setting elec-
toral districts. Let us consider a situation with two political parties (A and B)
and an electorate of voters that each support either A or B. The electorate is
currently divided into n districts, each consisting of precisely s individual voters.
A district is won by the party that receives the majority of votes in this district.
The local government performs an electoral reform that reduces the number of
districts, and the local governor (from party A) is in charge of the redistricting
process. His goal is of course to let party A win as many districts as possible
while dissolving some districts and moving their voters to adjacent districts. All
resulting new districts should have equal sizes snew (where snew > s). In the
network-based dissolution model, the districts and their neighborhoods are rep-
resented by an undirected graph: vertices represent districts and edges indicate
that two districts are adjacent.

Our second example concerns economization in a fairly general form. Let us
consider a company with n employees, each producing s units of a desirable good
during an eight-hour working day; for concreteness, let us say that each employee
proves s theorems per working day. Now, due to the increasing support of au-
tomatic theorem provers, each employee is able to prove snew theorems per day
(snew > s). Hence, without lowering the total number of proved theorems per
day, some employees may be moved to a special task force for improving auto-
matic theorem provers: this will secure the company’s future competitiveness in
proving theorems, without decreasing the overall theorem output. By company
regulations, all theorem proving employees have to be treated equally and should
have identical workloads. In the network-based dissolution model, employees cor-
respond to vertices. Employees in the special task force are dissolved and disap-
pear from the scene of action; their workload is to be taken over by neighboring
employees who are comparable in qualification and research interests.

Our third and last example concerns storage updates in parallel or distributed
systems. Let us consider a distributed storage array consisting of n storage nodes,
each having a capacity of s storage units, of which some space is free. As the
prices on cheap hard disk space are rapidly decreasing, the operators want to
upgrade the storage capacity of some nodes and to deactivate other nodes for
saving energy and cost. As their distributed storage concept takes full advan-
tage only in case all nodes have equal capacity, they want to upgrade all (non-
deactivated) nodes to the same capacity snew and move capacities from deacti-
vated nodes to non-deactivated neighboring nodes. In the resulting system, every
non-deactivated node should only use half of its storage capacity.

Related Work. We are not aware of any previous work on our network-based
dissolution problem. Our main inspiration comes from the area of political dis-
tricting, and in particular from gerrymandering [8, 11, 12] and from supervised
regionalization methods [5]. Of course, graph-theoretic models have been em-
ployed before for political districting; for instance Mehrota et al. [10] draws a
connection to graph partitioning, and Duque [4] and Maravalle and Simeone
[9] use graphs to model geographic information in the regionalization problem.
These models are tailored towards very specific applications and are mainly

Network-Based Dissolution 71

used for the purpose of developing efficient heuristic algorithms, often relying on
mathematical programming techniques. The computational hardness of district-
ing problems has been known for many years [1].

Remark on Nomenclature. For the ease of presentation, throughout the
paper we will adopt a political districting point of view on network-based disso-
lution: the words districts and vertices are used interchangeably, and the entities
in districts are referred to as voters or supporters.

Contributions and Organization of This Paper. We propose two simple
models Dissolution and Biased Dissolution for network-based dissolution
(Section 2). In the main body of the paper, we provide a variety of computa-
tional tractability and intractability results for both models. Furthermore, we
investigate how the structure of the underlying graphs or an in-advance fixing of
vertices to be dissolved influence the computational complexity (mainly in terms
of polynomial-time solvability versus NP-hard cases).

– In Section 3, with network flow techniques we show that Biased Dissolu-

tion is polynomial-time solvable if the set of districts to be dissolved and
the set of districts to be won are both specified as part of the input. The
general version is NP-hard for every fixed s ≥ 3.

– Section 4 presents a complexity dichotomy for Dissolution and Biased

Dissolution with respect to the old district size s and the increase Δs

in district size (= difference between new and old district size). Dissolu-

tion is polynomial-time solvable for s = Δs, and Biased Dissolution is
polynomial-time solvable for s = Δs = 1; all other cases are NP-hard.

– Section 5 analyzes the complexity of Dissolution and Biased Dissolu-

tion for various specially structured graphs, including planar graphs (NP-
hard), cliques (polynomial-time solvable), and graphs of bounded treewidth
(linear-time solvable if s and Δs are constant).

Due to the lack of space many proofs are only contained in the full version of
the paper, which is available on arXiv (arXiv:1402.2664 [cs.DM]).

2 Formal Setting

Let G = (V,E) be an undirected graph representing n districts. Let s,Δs ∈
N+ be the district size and district size increase, respectively. For a subset V ′ ⊆
V of districts, let Z(V ′, G) = {(x, y) | x ∈ V ′ ∧ y ∈ V (G) \ V ′ ∧ {x, y} ∈ E(G)}
be the set of pairs of districts in V ′ and their neighbors that are not in V ′. The
central notion for our studies is that of a dissolution , which basically describes
a valid movement of voters from dissolved districts into remaining districts. The
formal definition is the following:

Definition 1 (Dissolution). Let G = (V,E) be an undirected graph and let
D ⊂ V be a subset of districts to dissolve and z : Z(D,G) → {0, . . . , s} be a
function that describes how many voters shall be moved from one district to its
non-dissolved neighbors. Then, (D, z) is called an (s,Δs)-dissolution for G if

72 R. van Bevern et al.

n = 5

s = 3

Δs = 2

Fig. 1. An illustration of a 1-biased (3, 2)-dissolution (left) and a 2-biased (3, 2)-
dissolution (right). Black circles represent A-supporters while white circles represent
B-supporters. The graph on the top shows a neighborhood graph of five districts, each
district consisting of three voters. The task is to dissolve two districts such that each
remaining district contains five voters. The graphs in the middle show two possible
realizations of dissolutions. The graphs on the bottom show the two corresponding
outcomes. The arrows point from the districts to be dissolved to the “goal districts”
and the black/white circle labels on the arrows indicate which kind of voters are
moved along the arrows.

a) no voter remains in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = s, and

b) the size of all remaining (non-dissolved) districts increases by Δs:

∀v ∈ V \D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = Δs.

Throughout this work, we use snew := s + Δs to denote the new district size,
d := |D| = |V | · Δs/snew to denote the number of dissolved districts, and r :=
|V | − d to denote the number of remaining, non-dissolved districts.

We write dissolution instead of (s,Δs)-dissolution when s and Δs are clear
from the context. By definition, a dissolution only ensures that the numbers of
voters moving between districts fulfill the given constraints on the district sizes,
that is, the size of each remaining district increases by Δs. Figure 1 gives an
example illustrating two possible (3, 2)-dissolutions for a 5-vertex graph.

Motivated from social choice application scenarios, we additionally assume
that each voter supports one of two parties A and B. We then seek a dissolution

Network-Based Dissolution 73

such that the number of remaining districts won by party A is maximized. Here,
a district is won by the party that is supported by a strict majority of the voters
inside the district. This yields the notion of a biased dissolution, which is defined
as follows:

Definition 2 (Biased dissolution). Let G be an undirected graph and let
α : V (G) → {0, . . . , s} be an A-supporter distribution, where α(v) denotes the
number of A-supporters in district v ∈ V . Let (D, z) be an (s,Δs)-dissolution
for G. Let rα ∈ N be the minimum number of districts that party A shall win af-
ter the dissolution and zα : Z(D,G) → {0, . . . , s} be an A-supporter movement,
where zα(v′, v) denotes the number of A-supporters moving from district v′ to
district v. Finally, let Rα ⊆ V (G) \ D be a size-rα subset of districts. Then,
(D, z, zα, Rα) is called an rα-biased (s,Δs)-dissolution for (G,α) if and only if

c) a district cannot receive more A-supporters from a dissolved district than the
total number of voters it receives from that district:

∀(v′, v) ∈ Z(D,G) : zα(v′, v) ≤ z(v′, v),

d) no A-supporters remain in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

zα(v′, v) = α(v′), and

e) each district in Rα has a strict majority of A-supporters:

∀v ∈ Rα : α(v) +
∑

(v′,v)∈Z(D,G)

zα(v′, v) >
s + Δs

2
.

We also say that a district wins if it has a strict majority of A-supporters and
loses otherwise.

Figure 1 shows two biased dissolutions: one with rα = 1 and the other one
with rα = 2. We are now ready to formally state the definitions of the two
dissolution problems that we discuss in this work:

Dissolution

Input: An undirected graph G = (V,E) and positive integers s and Δs.
Question: Is there an (s,Δs)-dissolution for G?

Biased Dissolution

Input: An undirected graph G = (V,E), positive integers s,Δs, rα, and an
A-supporter distribution α : V → {0, . . . , s}.

Question: Is there an rα-biased (s,Δs)-dissolution for (G,α)?

Note that Dissolution is equivalent to Biased Dissolution with rα = 0.
As we will see later, both Dissolution and Biased Dissolution are NP-hard
in general. In this work, we additionally look into special cases of our dissolution
problems and investigate where the causes of intractability lie.

74 R. van Bevern et al.

3 Complexity for Partially Known Dissolutions

In this section, we discuss some relevant special cases of our (in general) NP-
hard dissolution problems. These include situations where the districts to be
dissolved or to win are fixed in advance. We see that Biased Dissolution is
only polynomial-time solvable if both are fixed, and NP-hard otherwise.

Sometimes, the districts to be dissolved and the districts to win are already
determined beforehand. For this case, we show that Biased Dissolution can
be modeled as a network flow problem which can be solved in polynomial time.

Theorem 1. Let I = (G = (V,E), s,Δs, rα, α) be a Biased Dissolution in-
stance, and let D,Rα ⊂ V be two disjoint subsets of districts. The problem of
deciding whether (G,α) admits an rα-biased (s,Δs)-dissolution in which D is the
set of dissolved districts and in which all districts in Rα are won can be reduced
in linear time to a maximum flow problem with 2|V |+ 2 nodes, 2|V |+ 3|E| arcs,
and maximum arc capacity max(s,Δs).

With the above flow network construction we can design a polynomial-time
algorithm for Biased Dissolution when the number of districts is a constant.

Corollary 1. Any instance ((V,E), s,Δs, α) of Biased Dissolution can be
solved in time O(3|V | · (max(s,Δs) · |V | · |E|+ |V |3)).

On the contrary, we obtain NP-hardness for Biased Dissolution once one
of the two sets D and Rα is unknown. For the case that only the set D of
dissolved districts is given beforehand, the remaining task is to decide how many
A-supporters are moved to a certain non-dissolved district. However, we will see
in Section 4.2 that in the hardness construction for Theorem 2 it is already
determined which districts are to be dissolved. Furthermore, Dissolution is
the special case of Biased Dissolution with rα = 0 (which implies Rα = ∅)
and Dissolution is NP-hard for the case of s = Δs (Theorem 2).

4 Complexity Dichotomy with Respect to District Sizes

In this section, we study the computational complexity of Dissolution and
Biased Dissolution with respect to the ratio of the two integers: old district
size s and district size increase Δs. We start by showing some useful structural
observations for dissolutions in Section 4.1 before we come to the results for
Dissolution in Section 4.2 and for Biased Dissolution in Section 4.3.

4.1 Structural Properties

Using the flow construction from Theorem 1, we can show the equivalence of
(s,Δs)-dissolutions and star partitions for the cases where s is any multiple
of Δs.

Lemma 1. There exists a (t ·Δs, Δs)-dissolution for an undirected graph G if
and only if G has a t-star partition.

Network-Based Dissolution 75

We observe a symmetry concerning the district size s and the district size in-
creaseΔs in the sense that exchanging their values yields an equivalent instance of
Dissolution. Intuitively, the idea behind the following lemma is that the roles of
dissolved and non-dissolved districts in a given (s,Δs)-dissolution can in fact be
exchanged by “reversing” the movement of voters to obtain a (Δs, s)-dissolution.

Lemma 2. There exists an (s,Δs)-dissolution for an undirected graph G if and
only if there exists a (Δs, s)-dissolution for G.

4.2 Complexity Dichotomy for Dissolution

In this subsection, we show a P vs. NP dichotomy of Dissolution with respect
to the district size s and the size increase Δs. Using Lemma 1, we can show that
finding an (s, s)-dissolution essentially corresponds to finding a perfect matching
and can thus be done in polynomial time. If s = Δs, then Dissolution becomes
NP-hard. We use Bézout’s identity to encode the NP-complete Exact Cover

by t-Sets problem into our dissolution problem.

Theorem 2. If s = Δs, Dissolution is solvable in O(nω) time (where ω is
the matrix multiplication exponent); otherwise the problem is NP-complete.

Proof. Let I = (G, s,Δs) be a Dissolution instance with Δs = s. Set t :=
s/Δs = 1. Lemma 1 implies that I is a yes-instance if and only if G has a t-star
partition. A t-star partition with t = 1 is indeed a perfect matching, which can
be computed in O(nω) time, where ω is the smallest exponent such that matrix
multiplication can be computed in O(nω) time. Currently, the smallest known
upper bound of ω is 2.3727 [13].

For the case s = Δs, we show that Dissolution is NP-complete if s > Δs.
Due to Lemma 2, this also transfers to the cases where s < Δs. First, given a
Dissolution instance (G, s,Δs) and a function z : Z(D,G) → {0, . . . , s} where
D ⊂ V (G), one can check in polynomial time whether (D, z) is an (s,Δs)-
dissolution. Thus, Dissolution is in NP.

To show the NP-hardness result, we give a reduction from the NP-complete
Exact Cover by t-Sets problem [6] for t := (s + Δs)/g > 2, where g :=
gcd(s,Δs) ≤ Δs is the greatest common divisor of s and Δs. Given a finite
set X and a collection C of subsets of X of size t, Exact Cover by t-Sets asks
whether there is a subcollection C′ ⊆ C that partitions X , that is, each element
of X is contained in exactly one subset in C′.

Let (X, C) be an Exact Cover by t-Sets instance. We construct a Disso-

lution instance (G, s,Δs) with a neighborhood graph G = (V,E) defined as
follows: For each element u ∈ X , add a clique Cu of properly chosen size q to
G and let vu denote an arbitrary fixed vertex in Cu. For each subset S ∈ C,
add a clique CS of properly chosen size r ≥ t to G and connect each vu for
u ∈ S to a unique vertex in CS . Figure 2 shows an example of the constructed
neighborhood graph for t = 3.

Next, we explain how to choose the values of q and r. We set q := xq+yq, where
xq ≥ 0 and yq ≥ 0 are integers satisfying xqs − yqΔs = g. Such integers exist

76 R. van Bevern et al.

v1 v2 v3 v4 v5 v6

CS1 CS2 CS3

Fig. 2. The constructed instance for t = 3

by Bézout’s identity. The intuition behind is as follows: Dissolving xq districts
in Cu and moving the voters to yq districts in Cu creates an overflow of exactly g
voters that have to move out of Cu. Notice that the only way to move voters into
or out of Cu is via district vu. Moreover, in any dissolution, exactly xq districts
in Cu are dissolved because dissolving more districts leads to an overflow of at
least g+ s+Δs > s voters, which is more than vu can move, whereas dissolving
less districts yields a demand of at least s + Δs − g > Δs voters, which is more
than vu can receive. Thus, vu must be dissolved since there is an overflow of g
voters to move out of Cu and this can only be done via district vu.

The value of r ≥ t is chosen in such a way that, for each S ∈ C and each u ∈ S,
it is possible to move g voters from vu to CS (recall that vu must be dissolved).
In other words, we require CS to be able to receive in total t · g = s+Δs voters
in at least t non-dissolved districts. Thus, we set r := xr + yr, where xr ≥ 0 and
yr ≥ t are integers satisfying xrs − yrΔs = −(s + Δs). Again, since −(s + Δs)
is divisible by g, such integers exist by our preliminary discussion. It is thus
possible to dissolve xr districts in CS moving the voters to the remaining yr
districts in CS such that we end up with a demand of s+Δs voters in CS . Note
that the only other possibility is to dissolve xr +1 districts in CS in order to end
up with a demand of zero voters. In this case, no voters of any other districts
connected to CS can move to CS . By the construction of Cu above, it is clear
that it is also not possible to move any voters out of CS because no vu can
receive voters in any dissolution. Thus, for any dissolution, it holds that either
all or none of the vu connected to some CS move g voters to CS .

The proof of correctness is as follows. Suppose (X, C) is a yes-instance, that is,
there exists a partition C′ ⊆ C of X . We can thus dissolve xq districts in each Cu

(including vu) and move the voters such that all yq non-dissolved districts receive
exactly Δs voters. This is always possible since Cu is a clique. If we do so, then,
by construction, g voters have to move out of each vu. Since C′ partitions X ,
each u ∈ X is contained in exactly one subset S ∈ C′. We can thus move the
g voters from each vu to CS . Now, for each S ∈ C′, we dissolve any xr districts
that are not adjacent to any vu and for the subsets in C \ C′, we simply dissolve
xr +1 arbitrary districts in the corresponding cliques. By the above discussion of
the construction, we know that this in fact yields an (s,Δs)-dissolution. Hence,
(G, s,Δs) is a yes-instance.

Now assume that there exists an (s,Δs)-dissolution for (G, s,Δs). As we have
already seen in the above discussion, any (s,Δs)-dissolution generates an over-
flow of g voters in each Cu that has to be moved over vu to some district in CS .

Network-Based Dissolution 77

Furthermore, each CS either receives g voters from all its adjacent vu or no
voters at all. Therefore, the subsets S corresponding to cliques CS that receive
t · g voters form a partition of X , showing that (X, C) is a yes-instance. ��

4.3 Complexity of Biased Dissolution

Since Dissolution is a special case of Biased Dissolution, the NP-hardness
results for s = Δs transfer to Biased Dissolution. It remains to see whether
Biased Dissolution remains polynomial-time solvable when s = Δs. Interest-
ingly, this is true for s = Δs = 1.

We introduce a notion called “edge set” for a given dissolution (D, z) of a
given graph G. Let Ez ⊆ E(G) contain all edges {x, y} with (x, y) ∈ Z(D,G)
and z(x, y) > 0. Then, we call Ez the edge set used by the dissolution (D, z).

The following lemma shows that finding an rα-biased (1, 1)-dissolution essen-
tially corresponds to finding a maximum-weight perfect matching.

Lemma 3. Let (G = (V,E), s = 1, Δs = 1, rα, α) be a Biased Dissolution

instance. There exists an rα-biased (1, 1)-dissolution for (G,α) if and only if
there exists a perfect matching of weight at least rα in (G,w) with w({x, y}) := 1
if α(x) = α(y) = 1 and w({x, y}) := 0 otherwise.

As shown in the proof of Theorem 2, the edge set used by a (1, 1)-dissolution
is a perfect matching. By appropriately setting α and rα we can enforce that the
edge set used by any rα-biased (2, 2)-dissolution only induces cycles of lengths di-
visible by four. We end up with a restricted two-factor problem which was already
studied in the literature [7] and can be used to show NP-hardness (Theorem 3).

Lemma 4. Let G = (V,E) be an undirected graph with 4q vertices (q ∈ N).
Then G has a two-factor E′ whose cycle lengths are all multiples of four, if and
only if (G,α) admits a q-biased (2, 2)-dissolution where α(v) = 1 for all v ∈ V .

Theorem 3. Biased Dissolution on graphs G = (V,E) can be solved in
O(|V |(|E|+ |V | log |V |)) time if s = Δs = 1; otherwise it is NP-complete for any
constant value s = Δs ≥ 2.

5 Complexity on Special Graph Classes

In a companion paper [3], we have shown that computing star partitions—and
hence by Lemma 1 also Dissolution—remains NP-hard even on subcubic grid
graphs and split graphs. In this section, we discuss the complexity of Biased

Dissolution on special graph classes.
An interesting special case of Biased Dissolution occurs if voters can move

from any district to any other district, that is, the neighborhood graph is a clique.
Then, the existence of an (s,Δs)-dissolution depends only on the number |V |
of districts, the district size s, and the size increase Δs. Clearly, a Dissolu-

tion instance is a yes-instance if and only if d := |V | ·Δs/(s+Δs) is an integer.

78 R. van Bevern et al.

We show that Biased Dissolution can likewise be solved in polynomial time if
the neighborhood graph is a clique. Yuster [14, Theorem 2.3] showed that the H-

Factor problem is solvable in linear time on graphs of bounded treewidth when
the size of H is constant. This includes the case of finding x-star partitions, that
is, (x, 1)-dissolutions resp. (1, x)-dissolutions when x is constant. We can show
that the more general problem Biased Dissolution is solvable in linear time
on graphs of bounded treewidth when s and Δs are constants. By a polynomial-
time reduction from the NP-hard Perfect Planar H-Matching problem [2],
we get NP-hardness for Dissolution on planar graphs.

Theorem 4

(1) Biased Dissolution is solvable in O(|V |2) time on cliques.
(2) Biased Dissolution is solvable in linear time on graphs of bounded

treewidth when s and Δs are constant.
(3) Dissolution on planar graphs is NP-complete for all s = Δs such that

Δs divides s or s divides Δs. It is polynomial-time solvable for s = Δs.

Proof (Sketch for (1)). In fact, we show how to solve the optimization version
of Biased Dissolution, where we maximize the number rα of winning dis-
tricts. Intuitively, it appears to be a reasonable approach to dissolve districts
pursuing the following two objectives: Any losing district should contain as few
A-supporters as possible and any winning district should contain exactly the
amount that is required to have a majority. Dissolving districts this way min-
imizes the number of “wasted” A-supporters. We now show that this greedy
strategy is indeed optimal.

Let G = (V,
(
V
2

)
) be a clique, let α be an A-supporter distribution over V ,

and let s and Δs be the district size and the district size increase. With G
being complete, we are free to move voters from any dissolved district to any
non-dissolved district. Let μ := 	(s + Δs)/2
 + 1 be the minimum number of
A-supporters required to win a district. Thus, a district with less than (μ−Δs)
A-supporters can never win. Denote by L := {v ∈ V | α(v) < μ−Δs} the set of
non-winnable districts.

Our first claim corresponds to the first objective above, that is, the losing
districts should contain a minimal number of A-supporters.

Claim 1. Let v, w ∈ V be two districts with α(v) ≤ α(w). If there exists an rα-
biased dissolution where v is winning and w is losing, then there also exists
an rα-biased dissolution where v is losing and w is winning.

The next claim basically corresponds to the second objective, in the sense that
districts with a large number of A-supporters (possibly more than the required)
should be dissolved in order to distribute the voters more efficiently.

Claim 2. Let v, w ∈ V be two districts with α(v) ≤ α(w). Assume that there exists
an rα-biased dissolution where rα is optimal. If v is dissolved, then the following
holds: (i) If w is losing, then there also exists an rα-biased dissolution where w is
dissolved and v is losing. (ii) If w is winning and v is winnable, that is, v ∈ L, then
there exists an rα-biased dissolution where w is dissolved and v is winning.

Network-Based Dissolution 79

Using the two claims above, we now show how to compute an optimal biased
dissolution. In order to find a biased dissolution with the maximum number
of winning districts, we seek a dissolution which loses a minimum number of
remaining districts. Thus, for each � ∈ {0, . . . , r}, we check whether it is possible
to dissolve d districts such that at most � of the remaining r districts lose. To this
end, assume that the districts v1, . . . , vn are ordered by increasing number of A-
supporters, that is, α(v1) ≤ α(v2) ≤ . . . ≤ α(vn) and let V� := {v1, . . . , v�}. Now,
if there exists an (r−�)-biased dissolution, then there also exists an (r−�)-biased
dissolution where the losing districts are exactly V�. This follows by repeated
application of the exchange arguments of Claim 1 and Claim 2(i). Hence, given �,
we have to check whether there is a set D ⊆ V \ V� of d districts that can be
dissolved in such a way that all non-dissolved districts in V \ (V� ∪D) win and
the districts in V� lose.

First, note that in order to achieve this, all districts in L \ V� have to be
dissolved because they cannot win in any way. Clearly, if |L \ V�| > d, then it is
simply not possible to lose only � districts and we can immediately go to the next
iteration with � := � + 1. Therefore, we assume that |L \ V�| ≤ d and let d′ :=
d− |L \ V�| be the number of additional districts to dissolve in V \ (L ∪ V�). By
Claim 2(ii), it follows that we can assume that the d′ districts with the maximum
number of A-supporters are dissolved, that is, V d′

:= {vn−d′+1, . . . , vn}. Thus,
we set D := L\V�∪V d′

and check whether there are enough A-supporters in D
to let all r − � remaining districts in V \ (V� ∪D) win.

Sorting the districts by the number of A-supporters (as preprocessing) requires
O(n log n) arithmetic operations. For up to n values of �, to check whether the
remaining districts in V \ (V� ∪D) can win requires O(n) arithmetic operations
each. Thus, assuming constant-time arithmetics, we end up with O(n2) time. ��

6 Conclusion

We initiated a graph-theoretic combinatorial approach to concrete redistribu-
tion problems occurring in various application domains. Obviously, the two ba-
sic problems Dissolution and Biased Dissolution concern highly simplified
situations and will not be able to model all interesting aspects of redistribution
scenarios. For instance, our constraint that before and after the dissolution all
vertex loads are perfectly balanced may be too restrictive for many applications.
All in all, we consider our simple (and yet fairly realistic) models as a first step
into a fruitful research direction that might yield a stronger linking of graph-
theoretic concepts with districting methods and other application scenarios.

We end with a few specific challenges for future research. We have left open
whether the P vs. NP dichotomy for general graphs fully carries over to the planar
case: it might be possible that planar graphs allow for some further tractable
cases with respect to the relation between old and new district sizes. More-
over, with redistricting applications in mind it might be of interest to study
special cases of planar graphs (such as grid-like structures) in quest of finding
polynomial-time solvable special cases of network-based dissolution problems.

80 R. van Bevern et al.

Having identified several NP-hard special cases of Dissolution and Biased

Dissolution, it is a natural endeavor to investigate their polynomial-time ap-
proximability and their parameterized complexity; in the latter case one also
needs to identify fruitful parameterizations.

Acknowledgments. René van Bevern was supported by the DFG, project
DAPA (NI 369/12), Robert Bredereck by the DFG, project PAWS (NI 369/10),
Jiehua Chen by the Studienstiftung des Deutschen Volkes, Vincent Froese by
the DFG, project DAMM (NI 369/13), and Gerhard J. Woeginger while visiting
TU Berlin by the Alexander von Humboldt Foundation, Bonn, Germany.

References

[1] Altman, M.: Districting Principles and Democratic Representation. PhD thesis,
California Institute of Technology (1998)

[2] Berman, F., Johnson, D., Leighton, T., Shor, P.W., Snyder, L.: Generalized planar
matching. Journal of Algorithms 11(2), 153–184 (1990)

[3] van Bevern, R., Bredereck, R., Bulteau, L., Chen, J., Froese, V., Niedermeier, R.,
Woeginger, G.J.: Star partitions of perfect graphs. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 174–185.
Springer, Heidelberg (2014)

[4] Duque, J.C.: Design of Homogeneous Territorial Units: A Methodological Proposal
and Applications. PhD thesis, University of Barcelona (2004)

[5] Duque, J.C., Ramos, R., Surinach, J.: Supervised regionalization methods: A sur-
vey. International Regional Science Review 30(3), 195–220 (2007)

[6] Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman (1979)
[7] Hell, P., Kirkpatrick, D.G., Kratochv́ıl, J., Kŕız, I.: On restricted two-factors.

SIAM Journal on Discrete Mathematics 1(4), 472–484 (1988)
[8] Landau, Z., Su, F.: Fair division and redistricting. Social Choice andWelfare 32(3),

479–492 (2009)
[9] Maravalle, M., Simeone, B.: A spanning tree heuristic for regional clustering. Com-

munications in Statistics—Theory and Methods 24(3), 625–639 (1995)
[10] Mehrota, A., Johnson, E.L., Nemhauser, G.L.: An optimization based heuristic

for political districting. Management Science 44(8), 1100–1114 (1998)
[11] Puppe, C., Tasnádi, A.: A computational approach to unbiased districting. Math-

ematical and Computer Modelling 48, 1455–1460 (2008)
[12] Puppe, C., Tasnádi, A.: Optimal redistricting under geographical constraints: Why

“pack and crack” does not work. Economics Letters 105(1), 93–96 (2009)
[13] Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-

Winograd. In: Proc. 44th STOC, pp. 887–898. ACM (2012)
[14] Yuster, R.: Combinatorial and computational aspects of graph packing and graph

decomposition. Computer Science Review 1(1), 12–26 (2007)

On Unification of QBF Resolution-Based Calculi

Olaf Beyersdorff1, Leroy Chew1, and Mikoláš Janota2

1 School of Computing, University of Leeds, United Kingdom
2 INESC-ID, Lisbon, Portugal

Abstract. Several calculi for quantified Boolean formulas (QBFs) ex-
ist, but relations between them are not yet fully understood. This paper
defines a novel calculus, which is resolution-based and enables unifica-
tion of the principal existing resolution-based QBF calculi, namely Q-
resolution, long-distance Q-resolution and the expansion-based calculus
∀Exp+Res. All these calculi play an important role in QBF solving. This
paper shows simulation results for the new calculus and some of its vari-
ants. Further, we demonstrate how to obtain winning strategies for the
universal player from proofs in the calculus. We believe that this new
proof system provides an underpinning necessary for formal analysis of
modern QBF solvers.

1 Introduction

Traditionally, classifying a problem as NP-hard was ultimately understood as
evidence for its infeasibility. Sharply contrasting this view, we have today fast
algorithms for many important computational tasks with underlying NP-hard
problems. One particularly compelling example of tremendous success is the area
of SAT solving [25] where fast algorithms are being developed and tested for the
classical NP-complete problem of satisfiability of propositional formulas (SAT).
Modern SAT-solvers routinely solve industrial instances with even millions of
variables. However, from a theoretical perspective, this success of SAT solvers is
not well understood. The main theoretical approach to it comes via proof com-
plexity. In particular, resolution and its subsystems have been very successfully
analysed in terms of proof complexity and sharp bounds are known on the size
and space for many important principles in resolution (cf. [6]). This is very im-
portant information as the main algorithmic approaches to SAT such as DPLL
and CDCL are known to correspond to (systems of) resolution [2,7,14,26], and
therefore bounds on size and space of proofs directly translate into bounds on
running time and memory consumption of SAT solvers.

In the last decade, there has been ever-increasing interest to transfer the
successful approach of SAT-solving to the more expressive case of quantified
propositional formulas (QBF). Due to its PSPACE completeness, QBF is far
more expressive than SAT and thus applies to further fields such as formal ver-
ification or planning [27,4]. As for SAT, proof complexity provides the main
theoretical approach towards understanding the performance and limitations of
QBF-solving. However, compared to proof complexity of classical propositional

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 81–93, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

82 O. Beyersdorff, L. Chew, and M. Janota

logic, QBF proof complexity is at a much earlier stage and also poses additional
challenges. Currently, a handful of systems exist, and they correspond to differ-
ent approaches in QBF-solving. In particular, Kleine Büning et al. [20] define
a resolution-like calculus called Q-resolution. There are several extensions of Q-
resolution; notably long-distance Q-resolution [1], which is believed to be more
powerful than plain Q-resolution [10]. Q-resolution and its extensions are impor-
tant as they model QBF solving based on CDCL [12]. Apart from CDCL, another
main approach to QBF-solving is through expansion of quantifiers [5,3,16]. Re-
cently, a proof system ∀Exp+Res was introduced with the motivation to trace
expansion-based QBF solvers [15]. ∀Exp+Res also uses resolution, but is con-
ceptually very different from Q-resolution. The precise relation of ∀Exp+Res
to Q-resolution is currently open (cf. [17]), but we conjecture that the two sys-
tems are incomparable as it has been shown that expansion-based solving can
exponentially outperform DPLL-based solving.

In general, it is fair to say that relations between the different types of QBF
systems mentioned above are currently not well understood. The objective of
the present paper is to unify these approaches. Towards this aim we define a
calculus that is able to capture the existing QBF resolution-based calculi and
yet remains amenable to machine manipulation. Our main contributions are as
follows. (1) We introduce two novel calculi IR-calc and IRM-calc, which are
shown to be sound and complete for QBF. (2) IR-calc p-simulates Q-resolution
and ∀Exp+Res, i.e., proofs in either Q-resolution or ∀Exp+Res can be efficiently
translated into IR-calc. (3) The variant IRM-calc p-simulates long-distance Q-
resolution. (4) We show how to extract winning strategies for the universal player
from proofs in IR-calc and IRM-calc. Indeed, unified certification of QBF solvers
or certification of solvers combining expansion and DPLL is of immense practical
importance [13,1,10] and presents one of the main motivations for our research.
To the best of our knowledge, constructions of strategies from expansion-based
solvers were not known prior to this paper.

The rest of the paper is structured as follows. Section 2 overviews concepts
and notation used throughout the paper. Section 3 introduces novel calculi and
Section 4 shows how winning strategies for the universal player are constructed;
this is used as an argument for soundness. Section 5 shows p-simulation results
for the new calculi. Finally, Section 6 concludes the paper with a discussion. Due
to space restrictions some proofs are sketched or omitted.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is
complementary to the literal ¬x and vice versa. If l is a literal, ¬l denotes the
complementary literal, i.e. ¬¬x = x. A clause is a disjunction of zero or more
literals. The empty clause is denoted by ⊥, which is semantically equivalent to
false. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
Whenever convenient, a clause is treated as a set of literals and a CNF formula

On Unification of QBF Resolution-Based Calculi 83

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 1. The rules of Q-Res [20]

as a set of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C and var(ψ) for a CNF ψ.

A proof system (Cook, Reckhow [8]) for a language L over alphabet Γ is a
polynomial-time computable partial function f : Γ � ⇁ Γ � with rng(f) = L.
An f -proof of string y is a string x such that f(x) = y. In the systems that we
consider here, proofs are sequences of clauses; a refutation is a proof deriving ⊥.
A proof system f for L p-simulates a system g for L if there exists a polynomial-
time computable function t that translates g-proofs into f -proofs, i.e., for all
x ∈ Γ � we have g(x) = f(t(x)).

Quantified Boolean Formulas (QBFs) [19] extend propositional logic with
quantifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth
assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified
otherwise, we assume that QBFs are in closed prenex form with a CNF matrix,
i.e., we consider the form Q1X1 . . .QkXk. φ, where Xi are pairwise disjoint sets
of variables; Qi ∈ {∃, ∀} and Qi = Qi+1. The formula φ is in CNF and is defined
only on variables X1 ∪ . . .∪Xk. The propositional part φ of a QBF is called the
matrix and the rest the prefix. If a variable x is in the set Xi, we say that x is
at level i and write lv(x) = i; we write lv(l) for lv(var(l)). A closed QBF is false
(resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between the
universal and the existential player. In the i-th step of the game, the player Qi

assigns values to the variables Xi. The existential player wins the game iff the
matrix φ evaluates to 1 under the assignment constructed in the game. The
universal player wins iff the matrix φ evaluates to 0. A QBF is false iff there
exists a winning strategy for the universal player, i.e. if the universal player can
win any possible game.

2.1 Resolution-Based Calculi for QBF

This section gives a brief overview of the main existing resolution-based calculi
for QBF. Q-resolution (Q-Res), by Kleine Büning et al. [20], is a resolution-like
calculus that operates on QBFs in prenex form where the matrix is a CNF.
The rules are given in Figure 1. Long-distance resolution (LD-Q-Res) appears
originally in the work of Zhang and Malik [33] and was formalized into a calcu-
lus by Balabanov and Jiang [1]. It merges complementary literals of a universal

84 O. Beyersdorff, L. Chew, and M. Janota

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 =
l2 �= z∗. U1, U2 contain only universal literals with var(U1) = var(U2). For each
u ∈ var(U1) we require lv(x) < lv(u). If for w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u
then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as {u∗ | u ∈ var(U1)}.

Fig. 2. The rules of LD-Q-Res [1]

(Axiom)
{lτl | l ∈ C, l is existential}∪ {τ (l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.
τl are partial assignments obtained by restricting τ to variables u with lv(u) < lv(l).

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Fig. 3. The rules of ∀Exp+Res (adapted from [18])

variable u into the special literal u∗. These special literals prohibit certain res-
olution steps. In particular, different literals of a universal variable u may be
merged only if lv(x) < lv(u), where x is the resolution variable. The rules are
given in Figure 2. Note that the rules do not prohibit resolving w∗ ∨ x∨C1 and
u∗ ∨ ¬x ∨ C2 with lv(w) ≤ lv(u) < lv(x) as long as w = u.

A different calculus ∀Exp+Res based on expansions was introduced in [18].
In Figure 3 we present an adapted version of this calculus so that it is con-
gruent with the other resolution-based calculi (semantically it is the same as
in [18]). The ∀Exp+Res calculus operates on clauses that comprise only existen-
tial variables from the original QBF; but additionally, each existential variable
x is annotated with a substitution to those universal variables that precede x in
the quantification order. For instance, the clause x ∨ b0/u can be derived from
the original clause x ∨ u under the prefix ∃x∀u∃b.

Besides the aforementioned resolution-based calculi, there is a system by
Klieber et al. [23,22], which operates on pairs of sets of literals, rather than
clauses; this system is in its workings akin to LD-Q-Res. Van Gelder defines an
extension of Q-Res, called QU-resolution, which additionally supports resolution
over universal variables [32]. Another extension of Q-Res are variable dependen-
cies [29,30,31] which enable more flexible ∀-reduction than traditional Q-Res.

On Unification of QBF Resolution-Based Calculi 85

For proofs of true QBFs term-resolution was developed [11] or models in the form
of Boolean functions [21] but those do not provide polynomially-verifiable proof
systems. Some limitations of term-resolution were shown by Janota et al. [15].
A comparison of sequent calculi [24] and Q-Res was done by Egly [9].

3 Instantiation-Based Calculi IR-calc and IRM-calc

We begin by setting up a framework allowing us to define our new calculi. The
framework hinges on the concept of annotated clauses. An extended assignment
is a partial mapping from the boolean variables to {0, 1, ∗}. An annotated clause
is a clause where each literal is annotated by an extended assignment to univer-
sal variables. For an extended assignment σ to universal variables we write l[σ]

to denote an annotated literal where [σ] = {c/u ∈ σ | lv(u) < lv(l)}. Two (ex-
tended) assignments τ and μ are called contradictory if there exists a variable
x ∈ dom(τ) ∩ dom(μ) with τ(x) = μ(x).

Further we define operations that let us modify annotations of a clause by
instantiation. For (extended) assignments τ and μ, we write τ � μ for the as-
signment σ defined as follows: σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = μ(x)
if x ∈ dom(μ). The operation τ � μ is referred to as completion because μ
provides values for variables that are not defined in τ . The operation is asso-
ciative and therefore we can omit parentheses. In contrast, it is not commuta-
tive. The following properties hold: (i) For non-contradictory μ and τ , we have
μ � τ = τ � μ = μ∪ τ . (ii) τ � τ = τ .

We consider an auxiliary function inst(τ, C), which for an extended assignment
τ and an annotated clause C returns

{
l[σ � τ] | lσ ∈ C

}
.

Our first new system IR-calc operates on clauses annotated with usual as-
signments with range {0, 1}. The calculus introduces clauses from the matrix and
allows to instantiate and resolve clauses; hence the name IR-calc. It comprises
the rules in Figure 4.

(Axiom){
x[τ] | x ∈ C, x is existential

}

C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 4. The rules of IR-calc

86 O. Beyersdorff, L. Chew, and M. Janota

Axiom and instantiation rules as in IR-calc in Figure 4.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1)∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bμ ∨ bσ (Merging)
C ∨ bξ

dom(μ) = dom(σ). ξ = {c/u | c/u ∈ μ, c/u ∈ σ}∪ {∗/u | c/u ∈ μ, d/u ∈ σ, c �= d}

Fig. 5. The rules of IRM-calc

Our second system IRM-calc is an extension of IR-calc where we allow ex-
tended assignments with range {0, 1, ∗}. To introduce ∗ we include a new rule
called merging. IRM-calc is defined in Figure 5. The resolution rule can now deal
with ∗, but when σ = ξ = ∅ we have exactly the resolution rule from Figure 4.

Example 1. Consider the (true) QBF ∃x∀uw∃b. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ b) ∧
(u ∨w ∨ ¬b). In both calculi axioms yield x ∨ b0/u, ¬x ∨ b1/u, and ¬b0/w,0/u. In
IR-calc we resolve to get b0/u ∨ b1/u. IRM-calc further derives b∗/u by merging.
Intuitively, b0/u ∨ b1/u means that the existential player must play so that for
any assignment to w either b = 1 if u = 0, or b = 0 if u = 1. So for instance, the
player might choose to play b = 1 if w = 0 and u = 1, and if w = 1 and u = 0.
The clause b∗/u can be seen as a shorthand for the clause b0/u ∨ b1/u. Note that
it would be unsound to derive the clause b (with no annotation). This would
mean that b must be 1 regardless of the moves of the universal player. However,
b needs to be 0 when u = w = 0 due to the third axiom. �

Note that in ∀Exp+Res, propositional variables are introduced so that their
annotations assign all relevant variables. Like so each literal corresponds to a
value of a Skolem function in a specific point. In contrast, in IR-calc, variables are
annotated “lazily”, i.e. it enables us to reason about multiple points of Skolem
functions at the same time. This is analogous to specializaion of free variables by
constants in first-order logic (FOL). Similarly, resolution in IR-calc is analogous
to resolution in Robinson’s FOL resolution [28]. IRM-calc additionally enables
“compressing” literals with contradictory annotations.

4 Soundness and Extraction of Winning Strategies

The purpose of this section is twofold: show how to obtain a winning strategy
for the universal player given an IRM-calc proof, and, to show that IRM-calc
is sound (and therefore also IR-calc). First we show how to obtain a winning
strategy for the universal player from a proof. From this, the soundness of the
calculus follows because a QBF is false if and only if such strategy exists.

On Unification of QBF Resolution-Based Calculi 87

The approach we follow is similar to the one used for Q-Res [13] or LD-Q-
Res [10]. Consider a QBF Γ = ∃E∀U.Φ, where E and U are sets of variables
and Φ is a QBF (potentially with further quantification). Let π be an IRM-
calc refutation of Γ , and let ε be a total assignment to E. The assignment ε
represents a move of the existential player. Reduce π to a refutation πε of ∀U.Φ|ε.
To obtain a response of the universal player, we construct an assignment μ to
the variables U such that reducing πε by μ gives a refutation of Φ|ε∪μ.

Let πε,μ be the proof resulting from reducing πε by μ. The game continues
with φ|ε∪μ and πε,μ. In each of these steps, two quantifier levels are removed
from the given QBF and a refutation for each of the intermediate formulas is
produced. This guarantees a winning strategy for the universal player because in
the end the existential player will be faced with an unsatisfiable formula without
universal variables. We follow this notation for the rest of the section.

To reduce a refutation π by the existential assignment ε, we reduce the leaves
of π by ε and repeat the steps of π with certain modifications. Instantiation steps
are repeated with no discrimination. Merging is repeated in the reduced proof
unless either of the merged literals is not in the reduced clause and then the clause
is left as it is. Whenever a resolution step is possible, repeat it in the reduced
proof. If it is not possible, the resolvent in the reduced proof is obtained from
the antecedent that is not � and does not contain the pivot literal. If such does
not exist, the resolvent is marked as � (effectively removing it from the proof).
When producing a resolvent from a single antecedent, additional instantiation
is required. This instantiation is the same one as done by the original resolution
step but any ∗ is replaced by 0 (indeed, we can choose the constant arbitrarily).
Like so, domains of annotations are preserved. In the end, any clauses marked
as � are removed.

To obtain an assignment to the variables U , collect all the assignments μ
to U appearing in annotations in πε; any variable not appearing in πε is given
an arbitrary value. To obtain πε,μ, remove occurrences of U -variables from the
annotation in the proof πε. This will leave us with a valid refutation because we
will show in Theorem 3 that for each variable in U only a single value constant
annotation can appear in the entire proof πε.

To show that this procedure is correct, we need to argue that the reduction
returns a valid IRM-calc refutation πε, and that πε does not contain annotations
giving contradictory values to variables in U . We start with the first claim.

Lemma 2. The above reduction yields a valid IRM-calc refutation πε of ∀U.Φ|ε.

We omit the proof, which proceeds by induction on the derivation depth.

Lemma 3. Let π be an IRM-calc refutation of a QBF formula starting with a
block of universally quantified variables U . Consider the set of annotations μ on
variables U that appear anywhere in π. Then μ is non-contradictory and does
not contain instances of ∗.

Proof. The proof proceeds by induction on the derivation depth. Let μC denote
the set of annotations to variables in U appearing anywhere in the derivation of

88 O. Beyersdorff, L. Chew, and M. Janota

C (i.e., we only consider the connected component of the proof dag with sink
C). The induction hypothesis states:

(i) The set μC is non-contradictory.
(ii) For every literal lσ ∈ C, it holds that μC ⊆ σ.
(iii) ∗/u /∈ μC , for any u ∈ U .

Base Case. Condition (i) is satisfied by the axioms because we are assuming
there are no complementary literals in clauses in the matrix. Condition (ii) is
satisfied because all existential literals are at a higher level than the variables of
U . Condition (iii) holds because we do not instantiate by ∗/u in the axiom rule.

Instantiation. Let u ∈ U and C = inst(c/u, C′) in the proof π. By induction
hypothesis, u either appears in the annotations of all the literals lξ in C′ or
it does not appear in any of them. In the first case, the instantiation step is
ineffective. In the second case, c/u is added to all literals in C. By induction
hypothesis u does not appear in any annotation of any clause in the sub-proof
deriving C′, and hence C is the first clause containing u.

Resolution. Let C be derived by resolving xτ ∪ ξ ∨ C1 and ¬xτ ∪σ ∨ C2. Let
u ∈ U , consider the following cases.

Case 1. For some c ∈ {0, 1}, c/u ∈ σ and u /∈ dom(ξ). By induction hypothesis,
u does not appear in the annotations of C1. Hence inst(σ,C1) adds c/u to all the
annotations in C1.

Case 2. c/u ∈ τ . By induction hypothesis, c/u appears in all annotations of
C1, C2 and hence in all annotations of the resolvent.

Case 3. u /∈ dom(τ) ∪ dom(σ) ∪ dom(ξ). Then u does not appear as annotation
anywhere in the derivation of either of the antecedents and neither it will appear
in the resolvent.

Merging. Because of (i) we do not obtain ∗ for variables in U . ��

Therefore we obtain winning strategies:

Theorem 4. The construction above yields a winning strategy for the universal
player.

The soundness of IRM-calc follows directly from Theorem 4.

Corollary 5. The calculi IR-calc and IRM-calc are sound.

5 Completeness and Simulations of Known QBF Systems

In this section we prove that our calculi simulate the main existing resolution-
based QBF proof systems. As a by-product, this also shows completeness of our
proof systems IR-calc and IRM-calc. We start by simulating Q-resolution, which
is even possible with our simpler calculus IR-calc.

On Unification of QBF Resolution-Based Calculi 89

Theorem 6. IR-calc p-simulates Q-Res.

Proof (Sketch). Let C1, . . . , Ck be a Q-Res proof. We translate the clauses into
D1, . . . , Dk, which will form the skeleton of a proof in IR-calc.

– For an axiom Ci in Q-Res we introduce the same clause Di by the axiom
rule of IR-calc, i.e., we remove all universal variables and add annotations.

– If Ci is obtained via ∀-reduction from Cj , then Di = Dj .
– Consider now the case that Ci is derived by resolving Cj and Ck with pivot

variable x. Then Dj = xτ∨Kj and Dk = xσ∨Kk. We instantiate to get D′
j =

inst(σ,Dj) and D′
k = inst(τ,Dk). Define D′

i as the resolvent of D′
j and D′

k.
In order to obtain Di we must ensure that there are no identical literals with
different annotations. For this consider the set ζ = {c/u | c/u ∈ t, lt ∈ D′

i}
and define Di = inst(ζ,D′

i). This guarantees that we will always have fewer
literals in Di than in Ci, and we get a refutation.

We have to prove that the resolution steps are valid, by showing that τ and
σ are not contradictory and ζ does not contain contradictory annotations. This
follows from the next claim, which can be proven by induction (omitted here).

Claim. For all existential literals l we have l ∈ Ci iff lt ∈ Di for some annota-
tion t. Additionally, if 0/u ∈ t for a literal u, then u ∈ Ci (where for a variable
x, we equivalently denote the annotation 1/x by 0/¬x). ��

Despite its simplicity, IR-calc is powerful enough to also simulate the expan-
sion based proof system ∀Exp+Res from [18].

Theorem 7. IR-calc p-simulates ∀Exp+Res.

Proof. Let C1, . . . , Ck be an ∀Exp+Res proof. We transform it into an IR-calc
proof D1, . . . , Dk as follows. If Ci is an axiom from clause C and assignment τ
we construct Di by taking the axiom in IR-calc of C and then instantiating with
inst(τ, C). If Ci is derived by resolving Cj , Ck over variable xτ , then Di is derived
by resolving Dj , Dk over variable xτ . This yields a valid IR-calc proof because
lt ∈ Di iff lt ∈ Ci, which is preserved under applications of both rules. ��

We now come to the simulation of a more powerful system than Q-resolution,
namely LD-Q-Res from [1]. We show that this system is simulated by IRM-calc.
The proof uses a similar, but more involved technique as in Theorem 6.

Theorem 8. IRM-calc p-simulates LD-Q-Res.

Proof (Sketch). Consider an LD-Q-Res refutation C1, . . . , Cn. We construct
clauses D1, . . . , Dn, which will form the skeleton of the IRM-calc proof. The
construction will preserve the following four invariants for i = 1, . . . , n.

(1) For an existential literal l, it holds that l ∈ Ci iff lt ∈ Di for some t.
(2) The clause Di has no literals lt1 and lt2 such that t1 = t2.
(3) If lt ∈ Di with 0/u ∈ t, then u ∈ Ci or u∗ ∈ Ci, likewise if lt ∈ Di with

1/u ∈ t, then ¬u ∈ Ci or u∗ ∈ Ci.
(4) If lt ∈ Di with ∗/u ∈ t, then u∗ ∈ Ci.

90 O. Beyersdorff, L. Chew, and M. Janota

The actual construction proceeds as follows. If Ci is an axiom, Di is con-
structed by the axiom rule from the same clause. If Ci is a ∀-reduction of Cj

with j < i, then we set Di equal to Dj . If Ci is obtained by a resolution step
from Cj and Ck with j < k < i, the clause Di is obtained by a resolution step
from Dj and Dk, yielding clause K, and by performing some additional steps on
K. Firstly, we let θ = {c/u | c ∈ {0, 1}, c/u ∈ t, lt ∈ K}∪ {0/u | ∗/u ∈ t, lt ∈ K}
and perform instantiation on K by substitutions in θ, in any order, to derive
K ′. Like so, all annotations in K ′ have the same domain. We merge all pairs of
literals lσ, lτ ∈ K ′ with τ = σ (in any order) to derive Di.

To show that this construction yields a valid IRM-calc refutation, we first
need to prove the invariants above. This proceeds by induction on i. We omit
the base case and the ∀-reduction and just sketch the case of a resolution step.

For this consider Cj , Ck being resolved in LD-Q-Res to obtain Ci. As only the
resolved variable is removed, which is removed completely due to condition (2),
Di fulfills (1). By induction hypothesis we know that there can be at most two
copies of each variable when we derive K. Their annotations have the same
domain in K ′, because instantiation by θ applies the entire domain of all anno-
tations in the clause to all its literals. It then follows that all copies of identical
literals are merged into one literal in Di. Therefore (2) holds for Di.

To prove (3) consider the case where lt ∈ Di with 0/u ∈ t. The case with 1/u ∈ t
is analogous. We know that 0/u appearing inDi means that 0/umust appear inK ′

as merging cannot produce a new annotation 0/u. Existence of 0/u in K ′ means
that either ∗/u appears in K or 0/u appears in K. No new annotations are created
in a resolution step, so either ∗/u or 0/umust appear in one or more ofDj, Dk. By
induction hypothesis this means that u or u∗ appears in Cj ∪Ck, hence also in Ci.

To show condition (4), let lt ∈ Di with ∗/u ∈ t. Then either ∗/u is present
in K ′, or 0/u and 1/u are present in K ′ and will be merged. In the first case
it is clear that some ∗/u annotation appears in K and thus in Dj or in Dk, in
which case from (4) of the induction hypothesis u∗ must appear in Ci. In the
second case it is possible that 0/u in K ′ was obtained from ∗/u in K. Thus as
already argued, u∗ must appear in Ci. If instead 1/u, 0/u are both present in K
then they must come from the original clauses Dj , Dk. If they both appear in
the same clause Dj , then by condition (3) it must be the case that u∗ appears
in Cj and thus in Ci. If, however, they appear in different clauses, then by (3)
either of the clauses Cj , Ck contains u∗ or they contain literals over u of opposite
polarity. Both situations merge the literals to u∗ ∈ Ci .

We now show that these invariants imply that we indeed obtain a valid IRM-
calc proof. We only need to consider the resolution steps. Suppose xt1 ∈ Dj and
¬xt2 ∈ Dk where Cj and Ck are resolved on x to get Ci in the LD-Q-Res proof.
To perform the resolution step between Dj and Dk we need to ensure that we do
not have c/u ∈ t1, d/u ∈ t2 where c = d or c = d = ∗. Assume on the contrary
that ∗/u ∈ t1 and c/u ∈ t2. By (4) we have u∗ ∈ Cj , and by (3) some literal of
u is in Ck. But as lv(u) < lv(x) the LD-resolution of Cj and Ck on variable x
is forbidden, giving a contradiction. Similarly, if there is 0/u ∈ t1 and 1/u ∈ t2,
then either we get the same situation or we have two opposite literals of u in

On Unification of QBF Resolution-Based Calculi 91

the different clauses Cj , Ck. In either case the resolution of Cj , Ck is forbidden.
Hence the IRM-calc proof is correct.

It is not difficult to see that the IRM-calc proof is indeed a refutation and all
steps of the construction can be performed in polynomial time, thus we obtain
a p-simulation. ��

6 Conclusion

This paper introduces two novel calculi for quantified Boolean formulas. Both of
these calculi are anchored in a common framework of annotated clauses. The first
calculus, IR-calc, provides the rules of resolution and instantiation of clauses. The
second calculus, IRM-calc, additionally enables merging literals with contradic-
tory annotations. The paper demonstrates that the simple calculus IR-calc al-
ready p-simulates Q-resolution and the expansion-based system ∀Exp+Res. The
extended version IRM-calc additionally p-simulates long-distance Q-resolution.
The paper further demonstrates that refutations in the introduced calculi enable
generation of winning strategies of the universal player—a favorable property
from a practical perspective [1].

The contribution of the paper is both practical and theoretical. From a practi-
cal perspective, a calculus unifying the existing calculi for QBF enables a uniform
certification of off-the-shelf QBF solvers. From a theoretical perspective, a unify-
ing calculus provides an underpinning necessary for complexity characterizations
of existing solvers as well as for furthering our understanding of the strengths of
the underlying proof systems.

Acknowledgments. This work was supported by FCT grants ATTEST (CMU-
PT-/ELE/0009/2009), POLARIS (PTDC/EIA-CCO/123051/2010), INESC-
ID’s multiannual PIDDAC funding PEst-OE/EEI/LA0021/2013, grant no.
48138 from the John Templeton Foundation, and a Doctoral Training Grant
from EPSRC (2nd author).

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods in System Design 41(1), 45–65 (2012)

2. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

3. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer,
Heidelberg (2005)

4. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. JSAT 5(1-4), 133–191 (2008)

5. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

6. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl.
Logic 163(7), 906–917 (2012)

92 O. Beyersdorff, L. Chew, and M. Janota

7. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL algorithms with clause learning. Logical
Methods in Computer Science 4(4) (2008)

8. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

9. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)

10. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer,
Heidelberg (2013)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. JAIR 26(1), 371–416 (2006)

12. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)

13. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In: IJCAI (2011)

14. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
p-simulate general propositional resolution. In: AAAI (2008)

15. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS,
vol. 8312, pp. 473–489. Springer, Heidelberg (2013)

16. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

17. Janota, M., Marques-Silva, J.: ∀Exp+Res does not P-Simulate Q-resolution. In:
International Workshop on Quantified Boolean Formulas (2013)

18. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82.
Springer, Heidelberg (2013)

19. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Hand-
book of Satisfiability, pp. 735–760. IOS Press (2009)

20. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

21. Kleine Büning, H., Subramani, K., Zhao, X.: Boolean functions as models for quan-
tified boolean formulas. J. Autom. Reasoning 39(1), 49–75 (2007)

22. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free
variables. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer,
Heidelberg (2013)

23. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

24. Kraj́ıček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded
arithmetic. Mathematical Logic Quarterly 36(1), 29–46 (1990)

25. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability, IOS Press (2009)

26. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525 (2011)

27. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: AAAI, pp. 1045–1050. AAAI Press (2007)

On Unification of QBF Resolution-Based Calculi 93

28. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

29. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

30. Slivovsky, F., Szeider, S.: Variable dependencies and Q-Resolution. In: Interna-
tional Workshop on Quantified Boolean Formulas (2013)

31. Van Gelder, A.: Variable independence and resolution paths for quantified Boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Hei-
delberg (2011)

32. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer,
Heidelberg (2012)

33. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: ICCAD, pp. 442–449 (2002)

Minimum Planar Multi-sink Cuts

with Connectivity Priors�

Ivona Bezáková and Zachary Langley

Rochester Institute of Technology, Rochester, NY, USA
{ib,zbl9222}@cs.rit.edu

Abstract. Given is a connected positively weighted undirected planar
graph G embedded in the plane, a source vertex s, and a set of sink
vertices T . An (s, T)-cut in G corresponds to a cycle or a collection of
edge-disjoint cycles in the planar dual graph G∗ that define a planar
region containing s but not T . A cut with a connectivity prior does not
separate the vertices in T from each other: we focus on the most natural
prior where the cut corresponds to a (simple, i. e., no repeated vertices)
cycle in G∗. We present an algorithm that finds a minimum simple (s, T)-
cut in O(n4) time for n vertices. To the best of our knowledge, this is
the first polynomial-time algorithm for minimum cuts with connectiv-
ity priors. Such cuts have applications in computer vision and medical
imaging.

1 Introduction

We address the problem of finding a minimum simple single-source-multi-sink
cut in a positively weighted undirected planar graph G = (V,E,w) embedded in
the plane. In particular, given a source vertex s, and a set of sink vertices T , a
cut S ⊆ V is said to be a simple (s, T)-cut if S contains s and does not contain
any vertex in T and the dual edges of the cut edges {(u, v) | u ∈ S, v ∈ S} form a
simple cycle, i. e., no repeated vertices, in the dual graph. We present an O(n4)
algorithm that finds a simple (s, T)-cut of the smallest weight in a positively
weighted planar graph with n vertices. For a small example, see Figure 1(b).

Graph cuts are an important algorithmic tool in computer vision, see, e. g.,
[7,6,13]. For example, in the simplest form of image segmentation, a user is asked
to identify a point (seed) inside an object and in the background. Viewing the
input image as a graph, typically the 2D grid of pixels with edge weights rep-
resenting (dis)similarity of neighboring pixels, a natural segmentation approach
isolates the object by identifying a minimum cut between the two seeds. However,
if the object contains thin parts (for example, if trying to isolate a vein on an
ultrasound image), it is likely that a minimum cut will opt to sever the thin parts

� This material is based upon work supported by the National Science Foundation,
Award No. CCF-1319987. Part of the work was done while the first author visited
the Simons Institute for the Theory of Computing at the University of California,
Berkeley.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 94–105, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Minimum Planar Multi-sink Cuts with Connectivity Priors 95

(a):

s

t2t1

(b):

s

t2t1

(c):

s

t2t1

(d):

s

t2t1

Fig. 1. (a) Minimum (s, T)-cut, weight 4ε: thick edges are of weight ∞, the five dashed
edges of weight ε, and the other four edges of weight 1. (b) Minimum simple (s, T)-cut,
weight 4 + 2ε. (c)-(d) Common pitfalls involving shortest paths between sinks in the
dual graph: (c) Merge all involved faces into a single face f and compute minimum
(s, f)-cut; here results in weight 2∞. (d) Cut the plane along the shortest paths, find
a shortest cycle that separates s from the “cut-out” face; here results in a non-simple
cut (the middle two faces are visited twice). Small circles denote dual vertices.

from the object, see, e. g., [13]. A typical solution is to ask the user to identify
multiple seeds inside the object. This might still result in the cut set containing
several disconnected regions, as seen in the example in Figure 1(a). The problem
can be remedied by enforcing a connectivity prior on the cut [13,6,14]. In other
words, we do not look for a minimum cut but instead look for a smallest cut
that somehow “connects” the seeds inside the object. Arguably the most natural
connectivity prior is to require both the cut set as well as its complement to in-
duce a connected graph. For connected planar inputs, this corresponds to finding
a simple dual cycle that separates the seeds inside the object from the seed(s)
outside. We also briefly discuss a connectivity prior where the cut corresponds
to a non-self-crossing tour. While we admit that our running time is prohibitive
for large inputs, we note that several applications first preprocess the input by
contracting subcomponents, obtaining a much smaller graph. Our algorithms
are to the best of our knowledge the first provably polynomial algorithms for
minimum (s, T)-cut problems with connectivity priors.

The algorithms are based on a dynamic programming approach along a dual
shortest path tree connecting the sinks. We first observe that there is a minimum
simple (s, T)-cut such that its corresponding dual cycle does not cross this tree.
However, the cycle might touch the tree arbitrarily many times, even along the
same tree branch from both sides. In such case we form the cycle by concatenat-
ing paths that connect pairs of vertices on the tree. The tricky part is to ensure
that the paths separate the source from the sinks and that the concatenation
results in a simple cycle.

Instead of exactly computing the minimum length of such separating paths,
we merely bound it to speed up the algorithm. In particular, we either get the
shortest possible length, or the quantity we compute is smaller than the shortest
length yet larger than the value of a minimum (s, T)-cut in which case the
quantity will be eventually eliminated from the minimum cut computation. To
guarantee that the cycle does not cross the tree, we “cut” the plane along the
tree, thus preventing paths from crossing it. This involves duplicating each tree
vertex as many times as is its degree in the tree, with no edges between the copies
of the same vertex. The most challenging aspect of the computation is to ensure

96 I. Bezáková and Z. Langley

that we do not go through multiple copies of the same vertex – this is a problem
with forbidden pairs of vertices, searching for a shortest cycle separating s and
T , using at most one vertex of each forbidden pair. Our polynomial-time result
contrasts with a related forbidden pair problem searching for a shortest cycle
through a given vertex s, which is NP-hard even if the graph is planar and all
forbidden pairs are on the outerface [8].

We remark that two natural, fast, and seemingly working approaches based
on finding shortest sink-sink paths in the dual graph and contracting/merging
components along the paths do not yield correct algorithms for this problem;
see Figure 1(c)-(d).

We note that the single-source-multi-sinks problem in directed planar graphs
remains open as our techniques are specific to undirected graphs since we expect
to be able to traverse a path in both directions.

Related Works. The case of a single sink t has been extensively studied as any
minimum (s, t)-cut is simple. The latest algorithms run in time O(n log logn)
for undirected graphs due to �La̧cki and Sankowski [12], and in O(n logn) time
for directed graphs, see, e. g., Borradaile and Klein [4] and the references within.
Chalermsook, Fakcharoenphol, and Nanongkai [9] gave an O(n log2 n) algorithm
that finds an overall minimum cut (no pre-specified vertices to separate).

For multiple sinks, Chambers, de Verdière, Erickson, Lazarus, and Whittle-
sey [11] showed that the problem of finding a minimum simple multi-source-
multi-sink cut in a planar graph is NP-hard (see the proof of Theorem 3.1).
Bienstock and Monma [3] designed a polynomial-time algorithm that finds a
shortest circuit separating a set of vertices from the outerface.

Several recent papers address various “multi” cut and flow problems in pla-
nar graphs. Bateni, Hajiaghayi, Klein, and Mathieu [1] designed a PTAS to
approximate the weight of a minimum multiway cut where a set of terminals
needs to be separated from each other. Borradaile, Klein, Mozes, Nussbaum,
and Wulff-Nilsen [5] gave a near-linear algorithm for the multi-source-multi-sink
flow problem.

For surfaces with genus g, Chambers, Erickson, and Nayyeri [10] designed
gO(g)n logn algorithms for finding minimum single-source-single-sink cuts in
surface-embedded graphs. Chambers et al. [11] showed that the problem of find-
ing a shortest splitting (i. e., simple and not homeomorphic to a disk) cycle is
NP-hard but fixed parameter tractable with respect to g. Cabello [8] studied
shortest contractible (i. e., homotopic to a constant function) and shortest sep-
arating (i. e., that split the surface into two connected components) cycles in
embedded graphs, showing that a shortest contractible cycle can be found in
polynomial time and the shortest separating cycle problem is NP-hard.

In a recent work [2], we investigated the existence and counting of “contigu-
ous” cuts among all minimum single-source-multi-sink cuts in planar graphs.
Unfortunately, the results heavily rely on the max-flow min-cut duality and do
not extend to problems that go beyond minimum cuts.

Minimum Planar Multi-sink Cuts with Connectivity Priors 97

2 Preliminaries

Let G = (V,E,w) be a connected positively weighted undirected planar graph
embedded in the plane. Its dual (multi-)graph G∗ = (V ∗, E∗, w∗) is defined
as follows. V ∗ is the set of faces of G. For every edge e ∈ E bordering faces
f1, f2, the set E∗ contains the edge e∗ = (f1, f2) of the same weight as e, i. e.,
w∗(e∗) = w(e). The planar embedding of G yields the corresponding planar
embedding of G∗. For a given vertex s ∈ V and a set of vertices T ⊆ V , s ∈ T ,
an (s, T)-cut is a set of vertices S ⊆ V such that s ∈ S and S ∩ T = ∅. The
edges cut by the cut, i. e., {(u, v) ∈ E | u ∈ S, v ∈ S}, correspond to dual edges
C = {(u, v)∗ | u ∈ S, v ∈ S}. If C forms a simple cycle (no repeated vertices in
the dual graph), then we say that the (s, T)-cut is simple or a bond. We allow
C to be of length 1 (a dual self-loop), as well as of length 2 (formed by two
different dual edges). The weight of an (s, T)-cut is the sum of the edge weights
cut by the cut, i. e.,

∑
(u,v)∈E:u∈S,v ∈S w(u, v). For simple (s, T)-cuts this directly

corresponds to the length of the corresponding dual cycle.

Observation 1. A simple (s, T)-cut exists if and only if, after removing s from
G, the sinks are still connected.

Therefore, we assume that a simple (s, T)-cut exists. We also assume that
|T | > 1 since for |T | = 1 any minimum (s, T)-cut is simple. Moreover, we assume
that the degree of every vertex is > 1, as vertices of degree 1 can be merged with
their neighbor. By a “cycle” or a “path” we mean a simple cycle or a simple
path (no repeated vertices). If p is a path or a cycle, we denote by |p| its length,
i. e., the sum of the weights of edges on p. As we work with embedded graphs, we
abuse terminology and identify a path or a cycle with the corresponding curve.

Let α and β be (possibly closed) non-self-intersecting curves in the plane. We
say that α and β cross if there is a maximal curve χ (possibly just a point x)
in α ∩ β such that β continues on different sides of α at the end-points of χ; we
refer to such χ as a cross segment. If α and β do not cross at χ, they touch at
χ. If α ∩ β = ∅ and they share more than just their end-points, we say that α
and β intersect.

Let G0 be a graph obtained from G by enlarging each u ∈ T ∪ {s} into a
small new face u∗ with ∞-weighted edges bounding it. Notice that there is a
straightforward bijection between simple (s, T)-cuts in G and simple cycles in
G∗

0−{u∗ | u ∈ T ∪{s}} that define a planar region containing s∗ but no t∗ ∈ T ∗,
where T ∗ := {t∗ | t ∈ T }. We refer to such cycles in G∗

0 as (s∗, T ∗)-separating
cycles. To simplify our language, the remainder of this text takes place in the
dual graph G∗

0. In particular, unless otherwise specified, by vertices and edges we
mean vertices and edges of G∗

0 and by the source and sinks we mean s∗ and T ∗.
Let copt be a minimum (s∗, T ∗)-separating cycle in G∗

0. In this extended ab-
stract we focus on the computation of the weight |copt|; the algorithm can be
extended to obtain the corresponding cut within the same running time.

98 I. Bezáková and Z. Langley

3 Graph H: Cutting along a Shortest Path Tree

Choose an arbitrary t∗1 ∈ T ∗ and build a shortest1 path tree τ from t∗1 to every
t∗2 ∈ T ∗, see Figure 2(a). Notice that every leaf of τ is a sink and that no sink
nor s∗ is an internal vertex of τ due to the ∞-weighted edges. Due to space
constraints we omit the proof of the following lemma.

Lemma 1. There exists a minimum (s∗, T ∗)-separating cycle c such that c does
not cross τ .

Remark 1. We could have considered shortest paths between every pair of sinks
which, in most cases, would have sped up the algorithm in practice. In the worst
case, however, the union of all such paths forms a tree; using a tree simplifies
the exposition in the paper.

Suppose we do a clockwise depth-first traversal of τ from t∗1 until we process
the entire tree and return back to t∗1. In a clockwise traversal, the neighbors of
every vertex are considered in a clockwise cyclic manner (that is, if we use edge
(u1, v) to get to v, then we continue with edge (v, u2) where u2 is the clockwise
next neighbor of v after u1). Let a0, a1, . . . , a�−1 be the sequence of vertices
encountered by the traversal, in this order and with repetitions – each vertex
appears in the sequence as many times as is its degree in τ . See Figure 2(a).

We associate certain edges of G∗
0 with each ax: let vx,0, vx,1, . . . , vx,dx+1 be the

neighbors of ax listed in the clockwise order from ax−1 to ax+1, where a−1 :=
a�−1 and a� := a0.

We construct a graph H analogous to G∗
0 that will prevent us from crossing τ .

Intuitively, the graph H corresponds to “cutting” the plane along the tree τ . We
remove all vertices in τ and add a new vertex bx for each ax; we include edges
of G∗

0 that do not involve τ , plus edges (bx, bx+1) for each x, and edges from bx
to each vx,i for 1 ≤ i ≤ dx. (If vx,i = ak, then let vx,i := bk.) See Figure 2(b).
Formally,

V (H) = V ∗
0 − V (τ) ∪ {bx | x ∈ {0, 1, . . . , �− 1}},

E(H) = {(u, v) ∈ E∗
0 | u, v ∈ V ∗

0 − V (τ)} ∪ {(bx, bx + 1) | 0 ≤ x < �} ∪
{ex,i := (bx, vx,i) | 1 ≤ i ≤ dx}.

For convenience we define ex,0 := (bx−1, bx) and ex,dx+1 := (bx, bx+1). To simplify
our expressions, we define bx+y := b(x+y) mod � for 0 ≤ x < � and y ∈ Z such
that x+y ∈ {0, 1, . . . , �−1}. Also, let B = {b0, . . . , b�−1}. Notice that every sink
t∗ ∈ T ∗ corresponds to a unique axt and therefore there is a unique corresponding
vertex bxt in H . We abuse notation and use T ∗ and s∗ to refer to the sinks and
the source in H . Also, b0, . . . , b�−1 is a cycle in H that bounds a single face fB.

From now on the entire discussion takes place in H .
By clockwise distance from bx to by, x, y ∈ {0, 1, . . . , � − 1}, we mean y − x

if x ≤ y and � + y − x if x > y. Intuitively, this is the number of vertices,

1 We allow the paths to use two ∞-weighted edges, at the start and at the end.

Minimum Planar Multi-sink Cuts with Connectivity Priors 99

τ

a0 = t∗1

t∗2 = a4

t∗3 = a6 t∗4

a1

a2

a3

a5 a7

a8

b0 = t∗1

t∗2 = b4

t∗3 = b6 t∗4

b1

b2

b3

b5 b7

b8

e9,1

e9,3

b7

b33

p

s∗

(a) (b) (c)

Fig. 2. (a) Tree τ , vertices ax (notice that a2 = a8, a3 = a5 = a7, etc.). (b) Graph
H : vertices bx and edges ex,0, . . . , ex,dx+1 (depicted are e9,0 = (b8, b9), e9,1, e9,2, e9,3,
e9,4 = (b9, b10)); face fB is shaded. (c) Region Rp, here shown for a b7-b33 source-sinks
separating path p.

with repetition, we encounter during the traversal of τ from ax to ay. We write
bx ≺ by ≺ bz for x, y, z ∈ {0, 1, . . . , � − 1} if x < y < z, or, if x > z, then either
x < y or y < z. We say that such by is clockwise between bx and bz.

Lemma 2. Let bi1 , bi2 , bi3 , bi4 be such that bi1 ≺ bi2 ≺ bi3 ≺ bi4 ≺ bi1 . Then,
ai1 = ai3 and ai2 = ai4 cannot be both true.

Proof. Suppose ai1 = ai3 and suppose that as we traverse τ from ai1 , we en-
counter ai2 before returning back to ai1 = ai3 . Then, by the nature of the
depth-first traversal, we must have processed all copies of ai2 before returning
back to ai1 . Therefore, ai2 = ai4 . �

Notice that any (s∗, T ∗)-separating cycle in G∗
0 that does not cross τ cor-

responds to a cycle in H that separates s∗ from all T ∗. The converse is not
always true since a cycle in H may visit bx, by where x = y and hence bx = by,
yet ax = ay, leading to a non-simple cycle in G∗

0. We say that a cycle in H is
(s∗, T ∗)-separating if it yields a (simple) (s∗, T ∗)-separating cycle in G∗

0.

4 Source-Sinks Separating Paths

If a minimum (s∗, T ∗)-separating cycle in G∗
0 corresponds to a cycle in H that

touches fB, we will form it by concatenating paths between pairs of vertices in
B. We need to be careful about concatenation of intersecting paths, as well as
about separating s∗ from T ∗.

Definition 1. Let p be a bx-by path in H that does not go through the source or
any of the sinks, and, if it goes through a vertex bz ∈ B, then bx ! bz ! by. We
define the path-region(s) Rp as the planar region(s) on the right of p, bounded
by p and the clockwise bx-by part of the boundary of fB. We say that p is source-
sinks separating if s∗ ∈ Rp and that p is no-B if, except for bx and by, it does
not go through any vertices in B.

100 I. Bezáková and Z. Langley

Algorithm 1. Bounding the length of a shortest ex,i-ey,j no-B source-sink sep-
arating path

1. Let q be a shortest ey,j-s
∗ path in H .

2. ConstructHq by “cutting” the plane open along q and removing vertices in B∪{s∗}.
In particular, for every vertex u on q−{by , s∗}, replace it by two new vertices u1, u2,
and for every v such that (u, v) ∈ E(H), add edge (u1, v) if v is on the left of q, or
(u2, v) if it is on the right of q. Additionally, add edges (u1, u

′
1) and (u2, u

′
2) for every

(u, u′) on q and (v1, v2) for every v1, v2 ∈ V (H)−B− q such that (v1, v2) ∈ E(H).
Use the same edge weights as in H .

3. For every u ∈ q, compute the shortest distance distHq [vx,i, u1] from vx,i to u1 where
ex,i = (bx, vx,i). Let distq [u, by] be the distance from u to by along q.

4. return β[ex,i, ey,j] := w(ex,i) + minu∈q−{by,s∗} distHq [vx,i, u1] + distq[u, by].

The definition is depicted in Figure 2(c). Notice that all the sinks that lie
clockwise between bx and by are strictly inside Rp ∪ fB.

In this section we bound the length of a shortest bx-by no-B source-sink sep-
arating path p that starts with the edge ex,i and ends with the edge ey,j. We
refer to such paths as ex,i-ey,j no-B source-sink separating paths. Algorithm 1
summarizes the computation. It relies on the following lemmas; we omit their
proofs due to space constraints. The proof of Lemma 4 is of a similar flavor as
the forthcoming proof of Lemma 7. We note that the algorithm works even if
x = y (when searching for a no-B cycle c through bx, the only vertex in B on c).

Lemma 3. Let q be a shortest ey,j-s∗ path in H − B ∪ {by}. There exists a
shortest ex,i-ey,j no-B source-sink separating path that does not cross q.

Lemma 4. Suppose there exists an ex,i-ey,j no-B source-sink separating path
in H; let p be a shortest such path. Then, the quantity computed by Algorithm 1
satisfies β[ex,i, ey,j] ≤ |p|. Moreover, if β[ex,i, ey,j] holds a numerical value, then
β[ex,i, ey,j] = |p|, or β[ex,i, ey,j] > |copt|.

Lemma 5. Algorithm 1 can be implemented in time O(n). Moreover, across
different ex,i, ey,j pairs, the computation of the length of the shortest ex,i-ey,j
no-B source-sink separating path can be done in overall time O(n2 logn).

5 Minimum (s∗, T ∗)-Separating Cycle

If a minimum (s∗, T ∗)-separating cycle goes through B, we decompose it into
source-sinks separating paths of the following type.

Definition 2. For bx, by ∈ B, bx = by, and i, j such that 0 ≤ i ≤ dx and
1 < j ≤ dy + 1, let P [x, i, y, j] be the set of all bx-by source-sinks-separating
paths p in H such that
1. p leaves bx by an edge ex,i′ where i < i′,
2. p enters by by an edge ey,j′ where j′ < j, and
3. az1 = az2 for every bz1 , bz2 on p where bz1 = bz2 .

Minimum Planar Multi-sink Cuts with Connectivity Priors 101

bx

by

by′
bz2

bz1

s∗

bx by

bz s∗

bx

by

by′
bz2

bz1

s∗2

s∗1

(a) (b) (c)

Fig. 3. (a)-(b): Possibilities for a shortest ex,i-ey,j source-sinks separating path,
schematic view: (a) Case 1: there exists by′ between bx and by such that ay′ = ay;
the path is split into three subpaths p1, p2 (non-dashed, no-B), and p3. (b) Case 3:
there is no such by′ or bx′ . (c): Proof of Lemma 8, paths found by Algorithm 2 might
intersect: Region R′

s∗ . We show two possible locations for s∗: if s∗ = s∗1, then s∗ is in
a region bounded by subpaths of p′1, p

′
2, and p′3 and L[x, i, y, j] > |copt|; if s∗ = s∗2, we

get a contradiction with the selection of p′1, p
′
2, and p′3.

For bx = by, i < j, let P [x, i, y, j] be the set containing a single path, bx, of
length 0.

In other words, p ∈ P [x, i, y, j] is a bx-by source-sinks-separating path that
leaves bx by an edge that comes after ex,i, enters by by an edge that comes
before ey,j, and it gives rise to a simple path in G∗

0 (i. e., repeated vertices are
not allowed). Recall also that a bx-by source-sink separating path visits only
those vertices in B that are clockwise between bx and by.

We bound the length of a shortest path p ∈ P [x, i, y, j] using dynamic pro-
gramming. In particular, we compute L[x, i, y, j] such that L[x, i, y, j] = |p|, or
|p| ≥ L[x, i, y, j] > |copt|. The algorithm, summarized in Algorithm 2, proceeds
by gradually increasing the clockwise distance of bx and by. Step 3 deals with
the base case, bx = by. For the inductive case, we distinguish three possibilities
based on the relative position of bx and by, as shown in Figure 3(a)-(b). Consider
the bx, bx+1, . . . , by path in H and the corresponding walk ax, ax+1, . . . , ay in G∗

0.
Steps 7-9 (case 1) deal with the case when ay is visited multiple times by the
walk, steps 10-12 (case 2) with the case when ax is visited multiple times, and
steps 13-14 (case 3) with the case when both ax and ay are visited exactly once.

The following lemma analyzes the structure of a shortest path p in P [x, i, y, j]
and provides rationale for steps 7-9 of the algorithm; we defer analogous lemmas
for steps 13-14 and 15 to the full version of the paper. The two subsequent
lemmas provide bounds on L[x, i, y, j].

Lemma 6. Let p be a shortest path in P [x, i, y, j]. If bx, by follow case 1, then
there exist z1, k1, z2, k2 satisfying the conditions in step 9 such that p is a con-
catenation of paths p1, p2, and p3, where p1 ∈ P [x, i, z1, k1], p2 is an ez1,k1-ez2,k2

no-B source-sinks-separating path, and p3 ∈ P [z2, k2, y, j].

102 I. Bezáková and Z. Langley

Algorithm 2. Computing the weight of a minimum (s∗, T ∗)-separating cycle

1. Create graph Hb by contracting B into a single vertex b. Let L0 be the weight of
the minimum (s∗, b)-cut in Hb.

2. Compute β[] for H using Algorithm 1.
3. Let L[x, i, y, j] = 0 if x = y and i < j. Otherwise, L[x, i, y, j] is undefined.
4. for d from 1 to �− 1 do
5. for every x, y such that bx and by are at clockwise distance d and ax �= ay do
6. for every i, j, 0 ≤ i ≤ dx + 1, 0 ≤ j ≤ dy + 1 do
7. if there is a by′ , bx ≺ by′ ≺ by, such that ay = ay′ then
8. Let by′ be such that bx ≺ by′ ≺ by , ay = ay′ , and the clockwise distance

from bx to by′ is smallest possible.
9. Let

L[x, i, y, j] := min
z1,k1,z2,k2

{L[x, i, z1, k1] + β[ez1,k1 , ez2,k2] + L[z2, k2, y, j]},

where z1, k1, z2, k2 range over all possibilities such that
• bx � bz1 ≺ by′ ≺ bz2 � by ,
• ax �= az1 or bx = bz1 , and az2 �= ay or bz2 = by, and
• if bx = bz1 then i < k1, and if bz2 = by then k2 < j.

10. else
11. if there is a bx′ , bx ≺ bx′ ≺ by, such that ax = ax′ then
12. Computation of L[x, i, y, j] is analogous to the computation above.
13. else
14. Let

L[x, i, y, j] := min
i′,z,k

{β[ex,i′ , ez,k] + L[z, k, y, j]},

where i′, z, k range over all possibilities where i < i′ and bx ≺ bz � by.
15. return L∗ := min{L0,minx,i,y,j{β[ey,j , ex,i] + L[x, i, y, j]}}, where x, i, y, j range

over all possibilities such that either bx = by and i < j, or ax �= ay, i > 0 and
j ≤ dy .

Proof. Since ay = ay′ , path p needs to “jump” over by′ because of condition 3 of
Definition 2. Let bz1 ∈ p, bx ! bz1 ≺ by′ , be such that the clockwise distance from
bz1 to by′ is smallest possible. Such z1 must exist since p starts in B but it leaves
it before it reaches by′ . Let bz2 be the next vertex in B, after bz1, encountered
when traversing p from bz1 . Note that bz2 exists as p eventually gets to by ∈ B.
Thus, p can be decomposed into several segments: a bx-bz1 path p1, a bz1-bz2
no-B path p2, and a bz2-by path p3.

Notice that by′ ≺ bz2 ! by. This is because p enters vertices in B only between
bx and by and the p1 segment blocks off access to B between bx and bz1, and
bz1 is the clockwise closest vertex to by′ such that bz1 ∈ p and bx ! bz1 ≺ by′ .
Also notice that for every bz′ on p3, it must be that bz2 ! bz′ ! by, as access to
vertices in B between bx and bz2 is blocked off by p1 and p2. Similarly, for every
bz′ on p1, it must be that bx ! bz′ ! bz1 . Therefore, all the p1, p2, p3 segments
are source-sinks separating, since s∗ ∈ Rp.

Next we argue that p1 ∈ P [x, i, z1, k1], where k1 is such that p leaves bz1 by
the edge ez1,k1 . If bx = bz1 , then, since p ∈ P [x, i, y, j], condition 1 of Definition

Minimum Planar Multi-sink Cuts with Connectivity Priors 103

2 implies that i < k1. Therefore, we have p1 = bx and p1 ∈ P [x, i, z1, k1]. If
bx = bz1 , then condition 1 of Definition 2 holds for p1 ∈ P [x, i, z1, k1] because
p ∈ P [x, i, y, j] and p and p1 share the starting edge. Condition 3 holds for
p1 since it holds for p. Condition 2 holds because if p1 entered bz1 by an edge
ez1,k′ , k1 ≤ k′, yet p leaves bz1 by the edge ez1,k1 and then it continues to bz2 ,
bx ! bz1 ≺ bz2, we would get a loop, a contradiction with p being a path. Thus,
p1 ∈ P [x, i, z1, k1].

By analogous reasons we have that p3 ∈ P [z2, k2, y, j], where k2 is such that
p enters bz2 by the edge ez2,k2 . �

Lemma 7. If P [x, i, y, j] = ∅, then L[x, i, y, j] ≤ |p|, where p is a shortest path
in P [x, i, y, j].

Proof. The proof proceeds by induction on the clockwise distance from bx to by.
The base case, bx = by, follows from step 3 of Algorithm 2. For the inductive
case, we distinguish the three cases for positions of bx and by.

If bx, by follow case 1, then p can be decomposed into p1, p2, and p3 as
described in Lemma 6. Let z1, k1, z2, k2 be the corresponding values. Then,
L[x, i, y, j] ≤ L[x, i, z1, k1]+β[ez1,k1 , ez2,k2]+L[z2, k2, y, j], since L[] is computed
as a minimization that considers z1, k1, z2, k2 as one of the options. By Lemma
4, β[ez1,k1 , ez2,k2] ≤ |p2|. By the inductive hypothesis, L[x, i, z1, k1] ≤ |p′1| ≤ |p1|,
where p′1 is a shortest path in P [x, i, z1, k1]. Similarly, L[z2, k2, y, j] ≤ |p2|. There-
fore, L[x, i, y, j] ≤ |p1|+ |p2|+ |p3| = |p|. Cases 2 and 3 are analogous. �

Lemma 8. If L[x, i, y, j] holds a numerical value, then L[x, i, y, j] = |p|, where
p is a shortest path in P [x, i, y, j], or L[x, i, y, j] > |copt|.

Proof. We proceed by induction on the clockwise distance from bx to by. For the
base case, we have bx = by, and step 3 computes L[x, i, y, j] correctly.

For the inductive case, suppose that bx and by fall under case 1. Let z′1, k
′
1, z

′
2,

k′2 be the values that minimize the expression in step 9. Then, L[x, i, y, j] =
L[x, i, z′1, k

′
1] + β[ez′

1,k
′
1
, ez′

2,k
′
2
] + L[z′2, k

′
2, y, j]. By the inductive hypothesis,

L[x, i, z′1, k
′
1] > |copt| or L[x, i, z′1, k

′
1] = |p′1|, and β[ez′

1,k
′
1
, ez′

2,k
′
2
] > |copt| or

β[ez′
1,k

′
1
, ez′

2,k
′
2
] = |p′2|, where p′1 and p′2 are shortest paths in P [x, i, z′1, k

′
1] and

P [z′2, k
′
2, y, j], respectively. By Lemma 4, β[ez′

1,k
′
1
, ez′

2,k
′
2
] > |copt| or

β[ez′
1,k

′
1
, ez′

2,k
′
2
] = |p′2|, where p′2 is a shortest ez′

1,k
′
1
-ez′

2,k
′
2

no-B source-sinks sep-
arating path. If L[x, i, z′1, k

′
1] > |copt| or L[z′2, k

′
2, y, j] > |copt| or β[ez′

1,k
′
1
, ez′

2,k
′
2
] >

|copt|, we have L[x, i, y, j] > |copt| since L[x, i, z′1, k1], β[ez′
1,k

′
1
, ez′

2,k
′
2
], and

L[z′2, k′2, y, j] are nonnegative.
It remains to deal with the case when L[x, i, z′1, k

′
1] = |p′1|, β[ez′

1,k
′
1
, ez′

2,k
′
2
] =

|p′2|, and L[z′2, k
′
2, y, j] = |p′3|. By Lemma 7, we have L[x, i, y, j] = |p′1| + |p′2| +

|p′3| ≤ |p|. Let p′ be the concatenation of p′1, p′2, and p′3. We will show that either
p′1, p′2, and p′3 do not intersect, in which case p′ ∈ P [x, i, y, j] and, therefore,
L[x, i, y, j] = |p′| = |p|; or they do intersect, in which case L[x, i, y, j] > |copt|.

Claim. For every bu, bv, bu = bv, on p′, we have au = av.

104 I. Bezáková and Z. Langley

Proof: Suppose, by contradiction, that there are bu, bv, bx ! bu ≺ bv ! by, on
p′ such that au = av. Since p′1 ∈ P [x, i, z′1, k

′
1], it cannot be that both bu and bv

are on p′1 due to condition 3 in Definition 2. Similarly, bu and bv cannot both
be on p′3. And, as p′2 is a no-B path and az′

1
= az′

2
due to Lemma 2 applied to

z′1, y
′, z′2, y, vertices bu and bv cannot both be on p′2. Recall also that p′1 does not

contain a vertex bx′ with ax′ = ay, as by′ has the smallest clockwise distance from
bx and it comes after bz′

1
. Thus, bu is on p′1 and bv on p′3. Since au = av = ay,

we get bu ≺ by′ ≺ bv ≺ by, a contradiction with Lemma 2. ♦
If p′1, p′2, and p′3 do not intersect, then p′ ∈ P [x, i, y, j]; this is due to the above

claim and the p′k’s being from their respective P []. Thus, L[x, i, y, j] = |p′| = |p|.
If p′1, p′2, and p′3 intersect, their concatenation results in a walk with one or

more loops, not a path. Let us look at the path-regions Rp′
1
, Rp′

2
, and Rp′

3
.

The union of these regions and fB contains all the sinks between bx and by
strictly inside. Its complement contains the source. Let R′ be the complement of
Rp′

1
∪Rp′

2
∪Rp′

3
∪fB. Let R′

s∗ be the maximal simply connected planar region in
R′ that contains s∗. If R′

s∗ borders no bv, by ! bv ! bx, then R′
s∗ is bounded by

sub-paths of p′1, p′2 and p′3, see Figure 3(c) where we assume s∗ = s∗1. Let c be
the cycle in G∗

0 corresponding to the boundary of R′
s∗ ; notice that c is simple.

Since R′
s∗ does not contain any sinks, c is an (s∗, T ∗)-separating cycle. Then,

L[x, i, y, j] = |p′1|+ |p′2|+ |p′3| > |c| ≥ |copt|.
Finally, if R′

s∗ borders some bv for by ! bv ! bx, see Figure 3(c) (assume
s∗ = s∗2), then R′

s∗ is enclosed by the clockwise by-bx part of the boundary of
fB and by a bx-by path p′′ that is formed by concatenating segments of p′1, p′2,
and p′3. Observe that p′′ ∈ P [x, i, y, j] and |p′′| < |p′1|+ |p′2|+ |p′3| ≤ |p|. This is
a contradiction with p being a shortest path in P [x, i, y, j]. �

Corollary 1. If P [x, i, y, j] = ∅, then L[x, i, y, j] = |p| where p is a shortest path
in P [x, i, y, j], or L[x, i, y, j] > |copt|. If P [x, i, y, j] = ∅, then either L[x, i, y, j]
is undefined, or L[x, i, y, j] > |copt|.

The corollary follows from observing that if P [x, i, y, j] = ∅, then L[x, i, y, j]
holds a numerical value. Now we are ready for the main theorem and the sketch
of its proof; we defer the complete proof to the full version of the paper.

Theorem 1. Algorithm 2 computes the weight of a minimum (s∗, T ∗)-separating
cycle in G∗

0 (and a minimum simple (s, T)-cut in G). It runs in time O(n4).

Proof (sketch). Similarly as in Lemma 7, we get L∗ ≤ |copt|. Suppose L∗ <
|copt|. Since the value of L0 corresponds to an (s∗, T ∗)-separating cycle, we get
|copt| ≤ L0. Thus, L∗ = β[ey′,j′ , ex′,i′] + L[x′, i′, y′, j′] for some x′, i′, y′, j′. If
either quantity is > |copt|, we get |copt| < |copt|, a contradiction. If both quantities
are computed correctly, we get a shorter (s∗, T ∗)-separating cycle than copt, a
contradiction. Therefore, L∗ = |copt|.

The running time is O(n4) because there are O(n2) possibilities for (x, i), (y, j)
since they correspond to a pair of edges; and the computation L[x, i, y, j] con-
siders another O(n2) pairs of (z1, k1), (z2, k2). �

Minimum Planar Multi-sink Cuts with Connectivity Priors 105

Remark 2 (Extensions). The presented approach can be used for other connec-
tivity priors. For example, a cut is contiguous if the dual cut-edges form a non-
crossing tour that separates s∗ from T ∗ (we allow repeated vertices but not edges
as long as the tour can be drawn in a non-self-crossing manner in the infinitesimal
neighborhood of each vertex). In a prior work [2], we computed how many of the
minimum (s, T)-cuts are contiguous; however, the earlier approach did not extend
to finding, among all contiguous cuts, the one with the smallest weight. Algorithm
2 can be modified to allow ax = ay, but one has to be careful not to use the edges
of τ more than once. We leave the details for the journal version of this paper.

References

1. Bateni, M., Hajiaghayi, M., Klein, P.N., Mathieu, C.: A polynomial-time approxi-
mation scheme for planar multiway cut. In: Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). pp. 639–655 (2012)

2. Bezáková, I., Langley, Z.: Contiguous minimum single-source-multi-sink cuts in
weighted planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 49–60. Springer, Heidelberg (2012)

3. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)

4. Borradaile, G., Klein, P.N.: An O(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2) (2009)

5. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 170–179 (2011)

6. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: Theories and applica-
tions. In: Handbook of Mathematical Models in Computer Vision. Springer (2006)

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

8. Cabello, S.: Finding shortest contractible and shortest separating cycles in embed-
ded graphs. ACM Trans. on Algorithms 6(2) (2010); Ext. abstr. in SODA 2009

9. Chalermsook, P., Fakcharoenphol, J., Nanongkai, D.: A deterministic near-linear
time algorithm for finding minimum cuts in planar graphs. In: Proceedings of the
15th Annual ACM-SIAM Symp. on Discr. Algorithms (SODA), pp. 828–829 (2004)

10. Chambers, E.W., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous
cycles. In: Proceedings of the 25th Annual ACM Symposium on Computational
Geometry (SCG), pp. 377–385 (2009)

11. Chambers, E.W., de Verdière, É.C., Erickson, J., Lazarus, F., Whittlesey, K.: Split-
ting (complicated) surfaces is hard. Comput. Geom. 41(1-2), 94–110 (2008)

12. �L ↪acki, J., Sankowski, P.: Min-cuts and shortest cycles in planar graphs in
O(n log log n) time. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 155–166. Springer, Heidelberg (2011)

13. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with
connectivity priors. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR (2008)

14. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-
flow algorithm for topology preserving segmentation in N-D images. Computer
Vision Image Understanding 112, 81–90 (2008)

The Price of Envy-Freeness

in Machine Scheduling�

Vittorio Bilò1, Angelo Fanelli2, Michele Flammini3,
Gianpiero Monaco3, and Luca Moscardelli4

1 University of Salento, Italy
vittorio.bilo@unisalento.it
2 CNRS, (UMR-6211), France
angelo.fanelli@gmail.com

3 Gran Sasso Science Institute, L’Aquila, Italy
{michele.flammini,gianpiero.monaco}@univaq.it

4 University of Chieti-Pescara, Italy
luca.moscardelli@unich.it

Abstract. We consider k-envy-free assignments for scheduling problems
in which the completion time of each machine is not k times larger than
the one she could achieve by getting the jobs of another machine, for a
given factor k ≥ 1. We introduce and investigate the notion of price of
k-envy-freeness, defined as the ratio between the makespan of the best
k-envy-free assignment and that of an optimal allocation achievable with-
out envy-freeness constraints. We provide exact or asymptotically tight
bounds on the price of k-envy-freeness for all the basic scheduling mod-
els, that is unrelated, related and identical machines. Moreover, we show
how to efficiently compute such allocations with a worsening multiplica-
tive factor being at most the best approximation ratio for the minimum
makespan problem guaranteed by a polynomial time algorithm for each
specific model. Finally, we extend our results to the case of restricted as-
signments and to the objective of minimizing the sum of the completion
times of all the machines.

1 Introduction

The evolution of scheduling closely tracked the development of computers. Given
m machines that have to process n jobs, minimizing the makespan of an assign-
ment of the jobs to the machines is one of the most well-studied problem in the
Theory of Algorithms [12,16,17,19]. In more details, assuming that the process-
ing of job i on machine j requires time pij > 0, the completion time of machine
j (under a certain assignment) is given by the sum of the processing times of all
the jobs allocated to j. The makespan of an assignment is the maximum com-
pletion time among all the machines (we stress that an assignment is not forced
to use all the available machines) and the objective of the scheduling problem is
to find an assignment of minimum makespan.

� This research was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia (Algorithmics for Social Technological Networks), funded by the Ital-
ian Ministry of University and Research.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 106–117, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Price of Envy-Freeness in Machine Scheduling 107

In the literature, three different models of machines have been adopted. The
general setting illustrated above is called scheduling problem with unrelated
machines [19]. An interesting particular scenario is the case with related ma-
chines [17], where each job i has a load li > 0 and each machine j has a speed of
processing sj > 0, and thus the processing time of job i on machine j is given by
pij = li/sj . Finally, the even more specific setting in which the speed of each ma-
chine is 1 is referred to as the scheduling problem with identical machines [12,16].
Even this latter problem is NP-hard [16].

The approximability of the scheduling problem has been well understood for
all the three models described above. However, all the proposed solutions do not
envisage fair allocations in which no machine prefers (or envies) the set of the
tasks assigned to another machine, i.e., for which her completion time would be
strictly smaller. In the literature, such fairness property is referred to as “envy-
freeness” [8,9]. Specifically, consider a scenario in which a set of tasks (jobs)
has to be allocated among employees (machines) in such a way that the last
task finishes as soon as possible. It is natural to consider fair allocations, that
is allocations where no employee prefers (or envies) the set of tasks assigned to
some other employee, i.e., a set of tasks for which her completion time would be
strictly smaller than her actual one.

It is possible to consider two different variants of this model, depending on
the fact that an employee (i) can envy the set of tasks assigned to any other
employee or (ii) can only envy the set of tasks of other employees getting at
least one job: in the latter case, employees not getting any job do not create
envy. In the following, we provide some scenarios motivating both variants.

For the first variant, consider a company that receives an order of tasks that
must be assigned among its m employees. For equity reasons, in order to make
the workers satisfied with their task assignment so that they are as productive
as they can, the tasks should be assigned in such a way that no envy is induced
among the employees.

For the second variant, consider a scenario in which a company, in order to
fulfill a complex job composed by several tasks, has to engage a set of employees
that, for law or trade union reasons have to be all paid out the same wage. Again,
for making the workers as productive as they can, it is required that no envy is
induced, but in this case we are interested only in the envy among the engaged
employees, i.e. the ones receiving at least a task to perform.

We notice that the existence of envy-free schedules is not guaranteed in the
first variant of the model. For instance, consider a scenario where the number of
machines is strictly greater than the number of jobs. Clearly at least one machine
would not get any job and all the machines getting at least one job would be
envious. Therefore, in the following of this paper we focus on the second varant
of the model, in which envy-freeness is required only among machines getting at
least one job.

We adopt a more general definition of envy-free allocations, namely the k-
envy-freeness (for any k ≥ 1): Given an assignment and two machines j, j′ (where
both j and j′ get jobs), we say that j k-envies j′ if the completion time of j

108 V. Bilò et al.

is at least k times the completion time she would have when getting the set of
jobs assigned to j′. In other words, an assignment is k-envy-free if no machine
would decrease her completion time by a factor at least k by being assigned
all the jobs allocated to another machine. Notice that a k-envy-free assignment
always exists: a trivial one can be obtained by allocating all the jobs to a single
machine, even if it might have a dramatically high makespan.

We are interested in analyzing the loss of performance due to the adoption of
envy-free allocations. Our study has an optimistic nature and, then, aims at quan-
tifying the efficiency loss in the best k-envy-free assignment. Therefore, we intro-
duce the price of k-envy-freeness, defined as the ratio between the makespan
of the best k-envy-free assignment and that of an optimal assignment. In the lit-
erature, other papers performed similar optimistic studies, see, for instance, [1,6].
The price of k-envy-freeness represents an ideal limitation to the efficiency achiev-
able by any k-envy-free assignment. In our work, we also show how to efficiently
compute k-envy-free assignments which nicely compare with the performance of
the best possible ones. We point out that the computation of non-trivial k-envy-
free assignments is necessary to achieve good quality solutions, since the ratio be-
tween the makespan of the worst k-envy-free assignment and that of an optimal
assignment can be very high. In particular, it is unbounded for unrelated machines,
n smax

smin
for related ones, where smax (resp. smin) is the maximum (resp. minimum)

speed among all the machines, and n for identical machines.

Related Work. The scheduling problem with unrelated machines has been
studied in [19]. The authors provide a 2-approximation polynomial time algo-
rithm and show that the problem cannot be approximated in polynomial time
within a factor less than 3/2. Polynomial time approximation schemes for related
and identical machines have been presented in [17] and [16], respectively.

The problem of fair allocation is a longstanding issue, thus, the literature on
this topic includes hundreds of references. For a nice review, we refer the reader
to the book [4]. One common notion of fairness, recurring in many papers and
therefore adopted for central problems, is that of envy-freeness. For instance, the
classical Vickrey auctions [23], as well as some optimal Bayesian auctions [2,20],
generate envy-free outcomes. An interesting paper explicitly dealing with envy-
free auctions is [13]. Studies on envy-free divisions, typically referred to as envy-
free cake cutting, can be found in [3,8,9]. Furthermore, [10,14] consider algorith-
mic issues related to the envy-free pricing problem, that is a scenario in which
a seller has to set (envy-free) prices and allocations of items to buyers in order
to maximize the total revenue.

Concerning scheduling problems, an important stream of research is the one fo-
cusing on envy-free algorithmic mechanism design. Roughly speaking, algorithmic
mechanism design is the attempt of motivating the machines, through payments
or incentives, to follow desired behaviors (truthful mechanisms). Upper and lower
bounds on the approximation ratio achieved by truthful mechanisms have been
given in [7,18,22]. However, such papers are not concerned with fair allocations.
To the best of our knowledge, envy-free mechanisms for the scheduling problem
with unrelated machines have been first considered in [15]. the authors prove a

The Price of Envy-Freeness in Machine Scheduling 109

lower bound of 2 − 1/m and an upper bound of (m + 1)/2 on the performance
guarantee of envy-free truthful mechanisms. Such upper and lower bounds have

been improved in [5] to O(logm) and Ω
(

logm
log logm

)
, respectively. Recently, [11]

shows that no truthful mechanism can guarantee an envy-free allocation with a
makespan less than a factor of O(logm) the optimal one, thus closing the gap. It
is worth noticing that, for k = 1, our model can be seen as a special case of the
one considered in [5,11,15] when the same payment is provided to all the machines
receiving at least a job, while no payment is given to the other machines.

The work most closely related to our study is [6]. The authors consider the
envy-free scheduling problem with unrelated machines with some substantial
differences with respect to our setting. Specifically, i) they only consider 1-envy-
free assignments (while we consider k-envy-free assignments, for any k ≥ 1);
ii) the objective in their work is that of minimizing the sum of the completion
times of all jobs (while we mainly consider the makespan); iii) in their setting
all the machines contribute to create envy (while in our setting only machines
getting at least one job are considered for the envy-freeness). Not surprisingly,
the authors prove that, in their setting, the price of envy-freeness is unbounded.

Our Results. We consider the price of k-envy-freeness in the scheduling prob-
lem, that is, the ratio between the makespan of the best k-envy-free assignment
and that of an optimal assignment. We investigate the cases of unrelated, related
and identical machines and provide exact or asymptotically tight bounds on the
price of k-envy-freeness. We stress that low values of k implies a greater attitude
to envy, which tremendously reduces the set of k-envy-free assignments. A nat-
ural threshold that arose in our analysis of the cases with related and identical
machines is the value k = 2, as it can be appreciated in the following table where
we summarize our main results. They are fully described in Section 3.

Identical Related Unrelated

k = 1 UB and LB min{n,m} min{n,m} 2min{n,m}−1

k ∈ (1, 2)
UB 2k

k−1 2k
√

m
k−1

(
1 + 1

k

)min{n,m}−1

LB Ω
(

2k
k−1

)
Ω

(√
m

k−1

) (
1 + 1

k

)min{n,m}−1

k ≥ 2
UB 1 + 1

k 2 + max
{

1,
√

m
k

} (
1 + 1

k

)min{n,m}−1

LB 1 + 1
k max

{
1,

√
m
k

} (
1 + 1

k

)min{n,m}−1

A further result derives from the fact that our upper bound proofs are construc-
tive and, therefore, they de facto provide polynomial time algorithms able to
calculate good k-envy-free assignments. Such an extension is discussed in Sec-
tion 3.4. Furthermore, in Subsection 4.1 we also consider the restricted scheduling
problem, where each job can be assigned only to a subset of machines. More-
over, besides considering the problem of minimizing the makespan, we consider
in Subsection 4.2 the problem of minimizing the sum of the completion times of
all the machines.

Due to space constraints, some proofs are omitted.

110 V. Bilò et al.

2 Preliminaries

In the scheduling problem, there are m ≥ 2 machines and n indivisible jobs to
be assigned to the machines. In the unrelated case, the time of running job i on
machine j is given by pij > 0. In the related setting, each job i has a load li > 0,
each machine has a speed of processing sj > 0, and the processing time of job
i on machine j is given by pij = li/sj. We refer to the specific setting in which
the speed of each machine is 1 as identical, where pij = li.

For an integer h > 0, define [h] := {1, . . . , h}. In the related and identical
setting, we denote with L =

∑
i∈[n] li the total load of all the jobs and with

lmax = maxi∈[n] li the maximum load of a job.
An assignment or solution N is specified by a partition of the set of jobs into m

components, i.e., (Nj)j∈[m], where Nj denotes the set of jobs assigned to machine
j. Let Q be a set of jobs, we use the notation Cj(Q) to denote the completion
time of machine j on the set Q, i.e., Cj(Q) =

∑
i∈Q pij . Thus Cj(Nj) denotes

the completion time of machine j under the assignment N. For the related and
identical settings, let Lj(N) be the total load of the jobs assigned by N to
machine j ∈ [m], i.e., Lj(N) =

∑
i∈Nj

li and Lmin(N) = min{Lj(N) : j ∈ [m] ∧
Nj = ∅} (resp. Lmax(N) = max{Lj(N) : j ∈ [m]∧Nj = ∅}) the minimum (resp.
maximum) load of the non-empty machines in N. Notice that, in the related
setting, we have Cj(Nj) = Lj(N)/sj and, for the identical one, Cj(Nj) = Lj(N).
The makespan of assignment N is defined as M(N) = maxj∈[m] Cj(Nj), that is
the maximum processing time among all the machines. An optimal assignment
is one minimizing the makespan. We denote by O an optimal assignment.

Given an assignment N, a real value k ≥ 1, and two machines j, j′ such that
Nj = ∅ and Nj′ = ∅, we say that j k-envies j′ if Cj(Nj) > kCj(Nj′). An
assignment N is k-envy-free if Cj(Nj) ≤ kCj(Nj′) for every pair of machines
(j, j′) such that Nj = ∅ and Nj′ = ∅. Notice that a k-envy-free assignment
can always be obtained by assigning all jobs to a single machine. The price
of k-envy-freeness (PoEFk) is defined as the ratio between the makespan of
the best k-envy-free assignment and the makespan of an optimal assignment.
More formally, let Fk be the set of the k-envy-free assignments, then PoEFk =

minN∈Fk

M(N)
M(O) .

We conclude this section with some preliminary general results.

Proposition 1. For the scheduling problem with related machines, PoEFk ≤
min {n,m} for any k ≥ 1.

Proof. Assume that machine 1 is the fastest one, i.e., s1 ≥ sj for each j ∈ [m].
Clearly, the solution N assigning all jobs to machine 1 is k-envy-free for any
k ≥ 1 and has M(N) = L

s1
≤ nlmax

s1
. By M(O) ≥ lmax

s1
and M(O) ≥ L

ms1
, we

obtain the claim. ��
Such a simple upper bound on the price of k-envy-freeness proves to be tight

when k = 1 even for the setting of identical machines.

Proposition 2. For the scheduling problem with identical machines, there exists
an instance for which PoEFk = min{n,m} when k = 1.

The Price of Envy-Freeness in Machine Scheduling 111

We now show that, for finite values of k, a price of k-envy-freeness equal to 1
cannot be achieved even in the setting of identical machines.

Proposition 3. For the scheduling problem with identical machines, no value
of k (possibly depending on n and m) can guarantee PoEFk = 1.

In the next lemma, we give an important result which helps to characterize
the performance of k-envy-free solutions in the case of related machines.

Lemma 1. For a value k ≥ 1, an instance of the scheduling problem with related

machines, and an integer 2 ≤ h ≤ min
{
m,

⌊
L(k−1)
klmax

⌋}
, there always exists a k-

envy-free solution N using exactly h machines and such that M(N) ≤ L/h+lmax

sh
,

where sh is the speed of the h-th fastest machine.

3 Results

3.1 Identical Machines

In this subsection, we consider the scheduling problem with identical machines.
For the case of k ≥ 2, we can prove a constant upper bound on the price of
k-envy freeness.

Theorem 1. For the scheduling problem with identical machines, PoEFk ≤ 1 +
1/k for any k ≥ 2.

Proof. We argue that applying Algorithm 1 to any initial assignment S, we get
a k-envy free assignment N with makespan at most M(S)(1 + 1/k). The claim
follows by choosing as the starting assignment S an optimal solution O.

Initially Algorithm 1 manipulates the starting assignment in such a way that
it becomes an assignment with makespan 1 with the minimal number of non-
empty machines, and such that the machines are numbered so that to a smaller
index corresponds a larger or equal load. After the first phase we assume that
the jobs are assigned to machines in [m].

Since machine m is the least loaded one, if Lm(S) ≥ 1/k, then S is k-envy-free
and the claim follows. On the other side, if Lm(S) < 1/k, we move all the jobs
in S from machine m to machine m− 1 obtaining a new assignment N which is
k-envy-free. In fact, in the new assignment N, machine m− 1 gets a load larger
than 1, thus becoming the most loaded machine, whereas any other machine
has a load smaller than 1. Machine m − 1 does not envy any other machine,
since Lm−1(N) = Lm−1(S) + Lm(S) ≤ 2Lm−1(S) ≤ kLm−1(S) ≤ kLj(N), for
each j ≤ m − 1 and k ≥ 2. Thus, we can conclude that the new assignment
is k-envy-free. Finally we see that the makespan of N is at most Lm−1(N) =
Lm−1(S) + Lm(S) ≤ Lm−1(S) + 1/k ≤ (1 + 1/k)Lm−1(N) ≤ M(S)(1 + 1/k).
The claim follows. ��

The next result shows that the above upper bound is tight for any k ≥ 2.

112 V. Bilò et al.

Algorithm 1.

1: Input: assignment S
2: Rescale the loads in such a way that M(S) = 1
3: while there exists a pair of machines (j, j′) s.t. Lj(S) + Lj′(S) ≤ 1 do
4: Sj ← Sj ∪ Sj′

5: Sj′ ← ∅
6: end while
7: Renumber the machines in non-increasing order of loads

Lj(S) ≥ Lj+1(S) for each j ∈ [m− 1]
8: Let [m] be the set of machines with at least one job assigned
9: Create a new assignment N defined as follows
10: if Lm(S) < 1/k then
11: Nj ← Sj for each j < m− 1
12: Nm−1 ← Sm−1 ∪ Sm

13: Nj ← ∅ for each j > m− 1
14: else
15: Nj ← Sj for each j ∈ [m]
16: end if
17: return N

Proposition 4. For the scheduling problem with identical machines, given any
k ≥ 2, there exists an instance for which PoEFk ≥ 1 + 1/k − ε, for any ε > 0.

For the remaining case of k ∈ (1, 2), the following bounds hold.

Theorem 2. For the scheduling problem with identical machines, PoEFk ≤
min

{
2k
k−1 , n,m

}
for any k ∈ (1, 2).

Theorem 3. For the scheduling problem with identical machines, given any k ∈
(1, 2), there exists an instance for which PoEFk = Ω

(
min

{
2k
k−1 , n,m

})
.

3.2 Related Machines

In this subsection, we consider the scheduling problem with related machines.

Theorem 4. For the scheduling problem with related machines, PoEFk ≤ 2 +

max
{

1,
√

m
k

}
for any k ≥ 2.

Proof. Given an instance of the scheduling problem with related machines, con-
sider any assignment S. Let us normalize the machine speeds and the loads of the
jobs so that the fastest machine has speed 1 and the makespan of solution S is 1,
i.e., M(S) = 1. Let us rename the machines in such a way that sj ≥ sj+1 for any
j = 1, . . . ,m−1; notice that L1(S) ≤ 1 and we can assume that Lj(S) ≥ Lj+1(S)
for any j = 1, . . . ,m− 1 (otherwise by swapping Sj and Sj+1 a solution having
equal or better makespan could be obtained).

Denote by M1 = {1, . . . , |M1|} the set of machines having load at least 1/k
in S, i.e., Lj(S) ≥ 1/k for any j ∈ M1, and by M2 the set of the remaining

The Price of Envy-Freeness in Machine Scheduling 113

machines. Note that it also holds sj ≥ 1/k for any j ∈ M1. Moreover, it is easy
to check that no pair (j, j′) of machines in M1 is such that j k-envies j′.
In the following we build a new allocation N starting from allocation S.

Let Li
j be the load of each machine j at the moment in which the job i is

considered for allocation by Algorithm 2. The new assignment N is obtained as
described in Algorithm 2.

Algorithm 2.

1: Input: assignment S
2: N ← S
3: M ′ ← ∅
4: j′ ← |M1|
5: while j′ < m do
6: j ← j′ + 1
7: if k > m or

∑
p≥j Lp(S) ≤

√
m
k

then
8: for each job in i ∈

⋃
p≥j Sp do

9: Let j′′ ∈ M1 ∪M ′ be the machine with the current smallest load
10: if Li

1 + li ≤ kLi
j′′ then

11: N1 ← N1 ∪ {i} 	 Assign job i to machine 1
12: else
13: Nj′′ ← Nj′′ ∪ {i} 	 Assign job i to machine j′′

14: end if
15: end for
16: j′ ← m
17: else
18: M ′ ← M ′ ∪ {j}
19: Let j′ such that 1

k
− Lj(S) ≤

∑j′
p=j+1 Lp(S) ≤ 2

k
− Lj(S)

20: Nj ←
⋃j′

p=j Sp

21: end if
22: end while
23: return N

Assignment N is initially set equal to assignment S. When lines 18–20 are exe-
cuted, it means that k ≤ m and

∑
p≥j Lp(S) >

√
m
k . It follows that Lj(S) > 1√

mk

(and therefore also sj > 1√
mk

). In this case, the only machine receiving some

new jobs is machine j. Since the load of any machine in M2 is less than 1/k,
we can gather all the jobs of machines j + 1, j + 2, . . . , j′ of total load between
1
k − Lj(S) and 2

k − Lj(S), and add in N all such jobs to machine j. We obtain

Cj(Nj) =
Lj(N)

sj
≤

2
k
1√

m
√

k

= 2
√

m
k . Notice that machine j cannot be k-envied by

any other machine, and (since k ≥ 2) cannot k-envy other machines with load at
least 1/k (all the machines in M1 ∪M ′ have load at least 1/k in assignment N).

Note that lines 8–16 can be executed only once. When they are executed, it
means that k > m or

∑
p≥j Lp(S) ≤

√
m
k . When k > m, the load in S of each

machine in M2 is at most 1/m and the total load of all machines in M2 is at

114 V. Bilò et al.

most 1. Therefore, in any case, the total load of all machines p ≥ j is at most

max
{

1,
√
m√
k

}
. Notice that, since (i) k ≥ 2, (ii) the load of each machine in M1 is

at least 1/k already in allocation S and (iii) the load of each job to be assigned
is at most 1/k, it is always possible to maintain k-envy-free an allocation by
assigning each job either to machine 1 or (in case the assignment to machine
1 would result in a state non being k-envy-free) to the machine of M1 ∪ M ′

having the smallest load at that moment. In fact, consider any job i belonging
in S to some machine p ≥ j, and, for any j ∈ M1 ∪ M ′, let Li

j be the load
of machine j at the moment in which the job i is considered for assignation by
Algorithm 2. Assigning job i to machine j′′ results in a k-envy-free state because
Li
j′′ + li ≤ kLi

j′′ as conditions (i), (ii) and (iii) hold.
Let us now compute the makespan of assignment N, by considering only the

machines receiving some new jobs in lines 8–16 of Algorithm 2:

The total load added to machine 1 is at most max
{

1,
√
m√
k

}
and therefore

the total load C1(N1) of machine 1 at the end of the process is at most 1 +

max
{

1,
√
m√
k

}
.

For any machine j ∈M1\{1}, let last(j) be the last job assigned to machine j
and �j = llast(j) its load. Since last(j) has not been assigned to machine 1, it must

hold that L
last(j)
1 + �j > kL

last(j)
j′ for some j′ ∈M1 \{1}. In particular, L

last(j)
1 +

�j > kL
last(j)
j because last(j) has been assigned to the machine with minimum

load at that moment. Since the total load that can be given to machine 1 is at

most 1 + max
{

1,
√

m
k

}
, it follows that L

last(j)
j <

L
last(j)
1 +�j

k ≤
1+max

{
1,
√

m
k

}
k .

Finally, since last(j) is the last job assigned to machine j, Lj(N) = L
last(j)
j +

�j ≤ L
last(j)
j + 1/k and the completion time of machine j is Cj(Nj) =

Lj(N)
sj

≤

L
last(j)
j +1/k

1/k ≤ k

⎛⎝1+max

{
1,
√

m
k

}
k + 1

k

⎞⎠ = 2 + max
{

1,
√

m
k

}
.

The claim follows by choosing O = S. ��
For the case of k ∈ (1, 2), the following upper bound holds.

Theorem 5. For the scheduling problem with related machines, PoEFk ≤
min

{
n,m, 2k

√
m

k−1

}
for any k ∈ (1, 2).

We now show that the two upper bounds proved in Theorems 4 and 5 are
asymptotically tight.

Proposition 5. For the scheduling problem with related machines, given any
k ≥ 1, there exists an instance for which PoEFk ≥ max

{
1,

√
m
k

}
. Moreover, for

any k ∈
(

1, 3+
√
11

6

)
, there exists an instance for which PoEFk = Ω

(√
m

k−1

)
.

Note that, for each k ∈
[
3+

√
11

6 , 2
)

, it holds PoEFk ≤ 2k
√

m
k−1 = O(

√
m) by

Theorem 5, while, by Proposition 5, we have PoEFk ≥ max
{

1,
√

m
k

}
= Ω(

√
m).

The Price of Envy-Freeness in Machine Scheduling 115

This shows that all the bounds on the PoEFk presented in this subsection are
asymptotically tight.

3.3 Unrelated Machines

In this subsection, we consider the scheduling problem with unrelated machines.
In this case we are able to give an exact characterization of the price of k-envy-
freeness as witnessed by the upper and lower bounds given in the following.

Theorem 6. For the scheduling problem with unrelated machines, PoEFk ≤(
1 + 1

k

)min{n,m}−1
for any k ≥ 1.

Proposition 6. For the scheduling problem with unrelated machines, given
any k ≥ 1 and ε > 0, there exists an instance for which PoEFk =(

1 + 1
k+ε

)min{n,m}−1

.

3.4 Complexity

An important feature of the proofs we used to upper bound the PoEFk in the
various cases is that they rely on polynomial time algorithms constructing k-
envy-free assignments of reasonable low makespan. In particular, for identical
machines with k ∈ (1, 2), the algorithm used in the proof of Theorem 2 does not
require any information to be executed; hence, it indeed constructs a k-envy-free
assignment whose performance guarantee coincides with the upper bound on the
PoEFk.

For all the other cases, given an input solution S, all the designed algorithms
rearrange the allocations defined by S so as to obtain in polynomial time a k-
envy-free assignment N such that M(N) ≤ PoEFk · M(S). This means that,
when given as input a solution S such that M(S) ≤ α · M(O), each algorithm
computes in polynomial time a k-envy-free assignment N such that M(N) ≤
α · PoEFk · M(O). By recalling that there exists a PTAS for the scheduling
problem with related and identical machines and a 2-approximation algorithm
for the case of unrelated ones and by the fact that our upper bounds of PoEFk

are tight or asymptotically tight, it follows that we are able to compute in
polynomial time k-envy-free assignments of best possible quality, when dealing
with related and identical machines, and of at least half the best possible quality,
when dealing with unrelated ones.

4 Extensions

4.1 Restricted Scheduling

In this subsection, we focus on the case in which a job cannot be assigned to every
machine: for any job i there is a set Mi ⊆ {1, . . . ,m} containing the machines
being admissible for job i. We have to clarify the definition of k-envy-freeness

116 V. Bilò et al.

in this setting: in assignment N, machine j k-envies machine j′ if Cj(Nj) >
kCj(Nj′) and for each job i ∈ Nj′ , j ∈ Mi. It can be easily verified that also
in the case of restricted scheduling an envy–free solution always exists. In fact,
starting from any feasible assignment, an envy–free solution can be obtained as
follows: while there exist two machines j and j′ such that j k-envies j′, assign
to machine j also all the jobs of machine j′.

As already remarked in the introduction, the setting of unrelated machines
studied in Subsection 3.3 includes the case of restricted (unrelated) machines, as
it is possible to assign a very large value to pij whenever machine j ∈Mi, so that
neither an optimal solution, nor a k-envy-free one minimizing the makespan can
assign a job to a machine not being admissible for it. Therefore, for the restricted
case, it remains to analyze the related and identical settings. In the related case,
for which the upper bound provided in Theorem 6 clearly holds, it is possible to
modify the instance exploited in Proposition 6 so that it becomes a restricted
instance of the related setting, and the following theorem holds.

Proposition 7. For the restricted scheduling problem with related machines,
given any k ≥ 1 and ε > 0, there exists an instance for which PoEFk =(

1 + 1
k+ε

)min{n,m}−1

.

Finally, for the case of identical machines, a trivial upper bound equal to
min{n,m} holds as any solution (k-envy–free or not) approximates an optimal
one by at most min{n,m}, and the following lower bound holds.

Proposition 8. For the restricted scheduling problem with identical machines,
given any k ≥ 1, there exists an instance for which PoEFk = Ω(min{n,m}).

4.2 Sum of Completion Times

In this subsection, we extend our study to the case where the objective is that
of minimizing the sum of the completion times of all the machines. We refer
to such a case as scheduling SUM problem. Formally, given an assignment N
where Cj(Nj) denotes the completion time of machine j under the assignment
N, an optimal assignment minimizes the sum

∑m
j=1 Cj(Nj). We notice that an

optimal solution can be trivially determined by assigning each job to the machine
providing it the minimum possible processing time.

By exploiting ideas used for the minimum makespan we are able to show
that PoEFk = 1 for related (and then identical) machines, and that PoEFk =(
1 + 1

k

)min{n,m}−1
for unrelated machines. All the details will be given in the

full version of the paper.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Rough-
garden, T.: The Price of Stability for Network Design with Fair Cost Allocation.
SIAM Journal on Computing 38(4), 1602–1623 (2008)

The Price of Envy-Freeness in Machine Scheduling 117

2. Bulow, J., Roberts, J.: The Simple Economics of Optimal Auctions. The Journal
of Political Economy 97(5), 1060–1090 (1989)

3. Brams, S.J., Taylor, A.D.: An Envy-Free Cake Division Protocol. The American
Mathematical Monthly 102(1), 9–18 (1995)

4. Brams, S.J., Taylor, A.D.: Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press (1996)

5. Cohen, E., Feldman, M., Fiat, A., Kaplan, H., Olonetsky, S.: Envy-Free Makespan
Approximation. SIAM Journal on Computing 41(1), 12–25 (2012)

6. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The Efficiency
of Fair Division. Theory of Computing Systems 50(4), 589–610 (2012)

7. Christodoulou, G., Koutsoupias, E., Vidali, A.: A Lower Bound for Scheduling
Mechanisms. Algorithmica 55(4), 729–740 (2009)

8. Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. American Mathematical
Monthly 68, 1–17 (1961)

9. Foley, D.: Resource allocation and the public sector. Yale Economics Essays 7,
45–98 (1967)

10. Feldman, M., Fiat, A., Leonardi, S., Sankowski, P.: Revenue maximizing envy-
free multi-unit auctions with budgets. In: Proceedings of the ACM Conference on
Electronic Commerce (EC), pp. 532–549 (2012)

11. Fiat, A., Levavi, A.: Tight Lower Bounds on Envy-Free Makespan Approximation.
In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 553–558. Springer,
Heidelberg (2012)

12. Graham, R.L.: Bounds for Certain Multiprocessing Anomalies. Bell System Tech-
nical Journal 45, 1563–1581 (1966)

13. Goldberg, A.V., Hartline, J.D.: Envy-free auctions for digital goods. In: Proceed-
ings of the ACM Conference on Electronic Commerce (EC), pp. 29–35 (2003)

14. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,
F.: On profit-maximizing envy-free pricing. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1164–1173 (2005)

15. Hartline, J., Ieong, S., Mualem, A., Schapira, M., Zohar, A.: Multi-dimensional
envy-free scheduling mechanisms. Technical Report 1144, The Hebrew Univ (2008)

16. Hochbaum, D.S., Shmoys, D.B.: Using Dual Approximation Algorithms for
Scheduling Problems: Theoretical and Practical Results. Journal of ACM 34(1),
144–162 (1987)

17. Hochbaum, D.S., Shmoys, D.B.: A Polynomial Approximation Scheme for Schedul-
ing on Uniform Processors: Using the Dual Approximation Approach. SIAM Jour-
nal on Computing 17(3), 539–551 (1988)

18. Koutsoupias, E., Vidali, A.: A Lower Bound of 1 + ϕ for Truthful Scheduling
Mechanisms. Algorithmica 66(1), 211–223 (2013)

19. Lenstra, J.K., Shmoys, D.B.: E Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programing 46, 259–271 (1990)

20. Myerson, R.B.: Optimal Auction Design. Mathematics of Operations Research 6,
58–73 (1981)

21. Nagura, J.: On the interval containing at least one prime number. Proceedings of
the Japan Academy, Series A 28, 177–181 (1952)

22. Nisan, N., Ronen, A.: Algorithmic Mechanism Design. Games and Economic Be-
havior 35(1-2), 166–196 (2001)

23. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. Jour-
nal of Finance 16, 8–37 (1961)

On the Complexity of Some Ordering Problems

Beate Bollig�

TU Dortmund, LS2 Informatik, Germany

Abstract. Two different ordering problems are investigated. Ordered
binary decision diagrams (OBDDs) are a popular data structure for
Boolean functions. Some applications work with a restricted variant
called complete OBDDs. This model has also been investigated in com-
plexity theory, e.g., in property testing. It is well-known that the size of
an OBDD for the representation of a given function may depend signifi-
cantly on the chosen variable ordering but the computation of an optimal
ordering is NP-hard. Since optimal variable orderings for OBDDs are not
necessarily optimal for the complete model, the complexity to find an op-
timal variable ordering for complete OBDDs is investigated. Here, using
a new reduction idea it is shown that the problem is NP-hard. Among
the many areas of applications OBDDs have been used in the design and
analysis of implicit graph algorithms where the choice of a good vertex
encoding is of additional importance to represent a given input graph in
small size. The computational complexity of the vertex encoding prob-
lem is unknown but in the paper a first step is done to determine its
complexity by showing that a restricted case is NP-hard.

1 Introduction

Ordered binary decision diagrams (OBDDs), introduced by Bryant in his sem-
inal paper in 1986 [9], are a popular data structure for Boolean functions and
among the many areas of applications are verification, model checking, computer
aided design, and also the design and analysis of implicit graph algorithms (for
a survey see, e.g., [25]). Complete OBDDs are a restricted variant of OBDDs
which are closely related to deterministic finite automata for so-called Boolean
languages L, where L ⊆ {0, 1}n, n ∈ N. Already in [19] the model has been
applied to design parallel algorithms for fundamental Boolean operations by a
breadth first search approach. Furthermore, complete OBDDs have been used in
the analysis of implicit graph algorithms [21,27] and to represent simple games
and to solve computational problems on them [1]. Moreover, also in complexity
theory complete OBDDs have been investigated, e.g., in property testing (see,
e.g., [8,14,17,20]). Therefore, complete OBDDs seem to be a fundamental model.
Maybe the most important issue of OBDDs is the possibility to choose the vari-
able ordering and in applications it is an important problem to pick a good
one since the size of an OBDD representing a function f , defined on n Boolean

� The author is supported by DFG project BO 2755/1-2.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 118–129, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On the Complexity of Some Ordering Problems 119

variables and essentially dependent on all of them, heavily depends on the cho-
sen variable ordering and may vary between linear and exponential size with
respect to n. An example for such a function is the most significant bit of binary
addition. Therefore, the choice of good variable orderings is a key problem for
the usability of OBDDs. It is well-known that we cannot expect efficient algo-
rithms for the computation of optimal variable orderings for a function given by
an OBDD representation since the corresponding optimization problem is NP-
hard [6]. Even more we cannot hope to design efficient approximation algorithms
unless NP = P [22]. Optimal variable orderings for OBDDs do not necessarily
carry over to optimal variable orderings for the complete model representing the
same function. An example is the multiplexer, also called direct storage access
function, (for a formal definition see Section 4). Hence, it seems to be a natural
question to ask for the computational complexity of the variable ordering prob-
lem for complete OBDDs. The NP-completeness or nonapproximability proofs
for OBDDs do not work for the complete model because one key idea in the
reductions is the property that in OBDDs not all variables have to be tested on
a path from the source to one of the sinks. Here, we prove that the decision vari-
ant of the problem to compute an optimal variable ordering for a function given
by a complete OBDD is NP-complete. The problems for OBDDs and complete
OBDDs look quite similar but it is unclear how to relate the complexity of the
problems directly. Therefore, for the reduction we choose the same NP-complete
problem as in the NP-completeness proof for OBDDs but our construction is
different and we use a new reduction idea. Although many exponential lower
bounds on the size of (complete) OBDDs for Boolean functions are known and
the method how to obtain such bounds is simple, there are only few functions
where the size of (complete) OBDDs is asymptotically known exactly (see, e.g.,
[2,5,7].) Therefore, the proof may also be interesting on its own right in order to
strengthen the ability to prove tight lower bounds. Moreover, knowledge on the
relation of good variable orderings and Boolean functions is fundamental for the
design of heuristics to compute good orderings.

Given the rapid growth of application-based networks, an heuristic approach
to deal with very large structured graphs are implicit OBDD-based graph algo-
rithms (see, e.g., [12,15,21,27]). Vertices of an input graph are binary encoded
and the edge set of the input graph is represented by its characteristic func-
tion. Since OBDDs are able to take advantage over the presence of regular sub-
structures, this approach leads sometimes to sublinear graph representations
[13,16,18]. Here, the vertex encoding problem is of additional importance in or-
der to deal with OBDDs of reasonable size (for a simple example see Section 4).
The computational complexity of the vertex encoding problem is unknown but
in the paper a first step is done to determine the complexity.

The rest of the paper is organized as follows. In Section 2 we recall the main
definitions concerning OBDDs and complete OBDDs. Furthermore, we give a
short summary on the known results how the sizes of the two models are re-
lated. Section 3 is devoted to the NP-completeness proof of the variable ordering
problem for complete OBDDs. We describe carefully why the NP-completeness

120 B. Bollig

proof for OBDDs does not work for the complete variant. In the last section
we start to investigate the computational complexity of the problem to improve
a given vertex encoding with respect to the corresponding OBDD size in the
implicit setting. For a restricted class of vertex encodings we can prove that the
corresponding optimization problem is NP-hard. As a by-product there is a nice
observation about optimal variable orderings and the conjunction of Boolean
functions.

2 Preliminaries

We briefly recall the main notions concerning OBDDs and discuss the relation
between OBDDs and complete OBDDs.

On (Complete) Ordered Binary Decision Diagrams. OBDDs are a popu-
lar dynamic data structure in areas working with Boolean functions, like circuit
verification or model checking. (For a history of results on binary decision dia-
grams see, e.g., [25]).

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is given by a permutation on {1, . . . , n} leading to the ordered
list xπ(1), . . . , xπ(n) of the variables. A π-OBDD on Xn is a directed acyclic graph
G = (V, E) whose sinks are labeled by the Boolean constants 0 and 1 and whose
non-sink (or decision) nodes are labeled by Boolean variables from Xn. Each
decision node has two outgoing edges, one labeled by 0 and the other by 1. The
edges between decision nodes have to respect the variable ordering π, i.e., if an
edge leads from an xi-node to an xj-node, then π−1(i) < π−1(j) (xi precedes
xj in xπ(1), . . . , xπ(n)). Each node v represents a Boolean function fv ∈ Bn,
i.e., fv : {0, 1}n → {0, 1}, defined in the following way. In order to evaluate
fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node choose the outgoing
edge with label bi until a sink is reached. The label of this sink defines fv(b).
The size of a π-OBDD G is equal to the number of its decision nodes. A π-
OBDD of minimal size for a given function f and a fixed variable ordering π is
unique up to isomorphism. A π-OBDD for a function f is called reduced if it is
the minimal π-OBDD for f . The π-OBDD size or complexity of a function f ,
denoted by π-OBDD(f), is the size of the reduced π-OBDD representing f . An
OBDD is a π-OBDD for an arbitrary variable ordering π. The OBDD size of f
is the minimum of all π-OBDD(f).

A variable ordering is called a natural variable ordering if π is the identity
1, 2, . . . , n. Obviously a variable ordering π can be identified with the correspond-
ing ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from the con-
text. A k-interleaved variable ordering on k variable vectors x(i) = (x(i)

1 , . . . , x
(i)
n),

1 ≤ i ≤ k, is defined in the following way:

x
(1)
τ(1), . . . , x

(k)
τ(1), x

(1)
τ(2), . . . , x

(k)
τ(2), . . . , x

(k)
τ(n),

where τ is a permutation on {1, 2, . . . , n}.

On the Complexity of Some Ordering Problems 121

Complete OBDDs are closely related to nonuniform finite automata for Boolean
languages L, where L ⊆ {0, 1}n (see, e.g., Section 3.2 in [25]). Here, there are only
edges between nodes labeled by neighboring variables, i.e., if an edge leads from an
xi-node to an xj-node, then π−1(i) = π−1(j) − 1.

Definition 2. An OBDD on Xn is complete if all paths from the source to
one of the sinks have length n. The width of a complete OBDD is the maximal
number of nodes labeled by the same variable. A complete π-OBDD of mini-
mal size for a given function f and a fixed variable ordering π is unique up to
isomorphism. A π-OBDD for a function f is called quasi-reduced if it is the
minimal complete π-OBDD for f . The complete π-OBDD size of a function f ,
denoted by π-QOBDD(f), is the size of the quasi-reduced π-OBDD representing
f . A complete OBDD, or QOBDD for short, is a complete π-OBDD for an
arbitrary variable ordering π. The complete OBDD size or QOBDD size of f is
the minimum of all π-QOBDD(f).

Complete OBDDs with respect to natural variable orderings differ from deter-
ministic finite automata only in the minor aspect that there can also be nodes
that represent the constant function 0.

Let f be a Boolean function on the variables x1, . . . , xn. The subfunction
f|xi=c, 1 ≤ i ≤ n and c ∈ {0, 1}, is defined as f(x1, . . . , xi−1, c, xi+1, . . . , xn).
A function f depends essentially on a Boolean variable z if f|z=0 �= f|z=1. The
size of the (quasi-)reduced π-OBDD representing f is described by the following
result.

Proposition 1 ([23]). Let a1, . . . , ai−1 ∈ {0, 1}. The number of xπ(i)-nodes in
the quasi-reduced (reduced) π-OBDD for f is equal to the number of different
subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 (that essentially depend on xπ(i)).

In a reduced OBDD each node encodes a different function, whereas in a quasi-
reduced OBDD each node labeled by the same variable represents a different
function.

On the Relation between OBDDs and QOBDDs. Wegener has compared
the size of quasi-reduced OBDDs with the size of reduced OBDDs for functions
defined on n Boolean variables. For the natural variable ordering he has proved
that the quotient is at most 1 + O(2−n/3 · n) for almost all Boolean functions,
i.e., all but a fraction of O(2−n/3). This result does not rule out the possibility
that for many functions there exists some ordering of the variables where the
difference is significantly larger but it has also been shown that the maximal
quotient of the quasi-reduced OBDD and the size of the reduced OBDD with
respect to the same variable ordering for a function f where the maximum is
taken over all variable orderings is at most 1+O(2−n/3 ·n) for almost all Boolean
functions (Theorem 3 and 4 in [26]). Nevertheless, one may ask for the quotient
of the representation sizes not for almost all but for some important Boolean
functions. It is obvious that π-QOBDD(f) ≤ (n + 1)π-OBDD(f) for all Boolean

122 B. Bollig

functions f ∈ Bn. Furthermore, it is not difficult to see that π-QOBDD(f) =
Θ(n · (π-OBDD(f))) for some function f that depends essentially on all n vari-
ables. The multiplexer (see Section 4 for the formal definition) is an example for
such a function and a variable ordering where the address variables are tested
before the data variables. In [7] the question whether there exists a Boolean
function f ∈ Bn that depend essentially on all variables and QOBDD(fn) =
Θ(n · OBDD(fn)) has been answered in the affirmative. Therefore, we can con-
clude that the OBDD size of a function may be a size factor of Θ(n) smaller
that its QOBDD size. The multiplexer has been a good candidate for a func-
tion with the largest possible gap between the OBDD and the QOBDD size but
it has turned out that the multiplexer only leads to a size gap of Θ(n/ log n).
Despite all these results we hardly know anything about the relation between
the variable orderings that lead to minimal OBDDs and variable orderings for
minimal QOBDDs for a given function f .

3 On the Variable Ordering Problem for Complete
OBDDs

The complexity of the problem OPTIMAL QOBDD is investigated.

Definition 3 (Optimal QOBDD). Given a QOBDD G and a size bound s,
the answer to the problem OPTIMAL QOBDD is yes iff the function represented
by G can be represented by a QOBDD (respecting an arbitrary variable ordering)
with at most s nodes.

Theorem 1. The problem OPTIMAL QOBDD is NP-complete.

Sketch of Proof
The problem OPTIMAL QOBDD is in NP. A QOBDD can be guessed. The
equivalence of QOBDDs with respect to different variable orderings can be ver-
ified similarly to the case for OBDDs in deterministic polynomial time [11]. As
in [6,24] our NP-hardness proof uses a polynomial time reduction from the well-
known NP-complete problem Optimal Linear Arrangement (OLA for short).

Definition 4 (Optimal Linear Arrangement). Given an undirected graph
H = (V = {1, 2, . . . , n}, E) and a bound b, the answer to the problem Optimal
Linear Arrangement (OLA) is yes iff there is a permutation τ on {1, 2, . . . , n}
such that

cost(τ) :=
∑

{u,v}∈E

|τ−1(u) − τ−1(v)| ≤ b.

The cost of τ measures the length of all edges if the vertices of H are arranged
in linear order with respect to τ .

In the following we present a polynomial time reduction from OLA to OPTI-
MAL QOBDD. Let H = (V, E) and b be given and m := |E|. W.l.o.g. we assume
that the degree of each vertex, i.e., the number of its neighbors, is at least 2. For
the polynomial reduction we have to transform the input (H, b) for OLA into an

On the Complexity of Some Ordering Problems 123

input (G, s) for OPTIMAL QOBDD such that the QOBDD size of the function
represented by G is at most s iff the cost of an optimal linear arrangement for H
is at most b. For the ith edge {j, k}, 1 ≤ i ≤ m and j, k ∈ {1, 2, . . . , n}, we intro-
duce an edge-function fi(v1, v2, . . . , vn) = (vj ∨vk). It is easy to see that the size
of a quasi-reduced QOBDD representing fi with respect to a variable ordering
vπ(1), vπ(2), . . . , vπ(n) is n + |π−1(j) − π−1(k)| plus additional nodes representing
the constant function 0.

Now, we are faced with two problems. First, in order to obtain a single Boolean
function the edge functions have to be combined to one function. Second, we
have to make sure that representations for different edge functions do not share
nodes. Also in the NP-hardness proof for OBDDs for each edge of the input
graph for OLA a corresponding Boolean function has been defined (which is
different from our edge function). In order to avoid the sharing of nodes for
different edge functions, in case of OBDDs different edge functions have been
defined on disjoint sets of variables. To ensure that the orderings for the variables
of the different edge functions are not completely independent but correspond
to an ordering of the vertices of the input graph for OLA, another function
has been added. Its representation size is very large and and its OBDD size is
optimal if all variables that correspond to the same vertex in the input graph
for OLA are tested one after another. Unfortunately, this idea does not work
for QOBDDs. Hence, we use another construction to combine the edge function
and to prevent the unwanted sharing of BDD nodes. The idea is to use two
simple functions to frame the edge functions. For the framing we use counting
functions. We will show that there exists an optimal variable ordering where the
variables that represent the vertices of the input graph for OLA are tested in
the middle. Therefore, in the corresponding QOBDD the representations for the
edge functions cannot share BDD nodes.

For a variable vector z = (z1, . . . , zn), n ∈ N, let ‖ z ‖ be
∑n

i=1 zi. The
function F ∈ B2m+n is defined on the variable vectors u = (u1, u2, . . . , um),
v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wm), and

F (u, v, w) :=
m∨

i=1
(‖ u ‖= i) ∧ fi(v) ∧ (‖ w ‖= i).

The u- and the w-variables are called weight variables and the v-variables are
called vertex variables since they represent the vertices of the input graph H
for OLA. We call a vertex variable vj essential for an edge function fi iff j is
incident to the ith edge in H . F is symmetric on the u-variables and on the
w-variables, respectively. Here, a function is symmetric on two variables xi and
xj if the function does not change when exchanging the variables xi and xj , and
symmetry is an equivalent relation on the set of variables a function is defined
on. If P = {i1, . . . , im} is the set of positions of the u-variables (or w-variables,
respectively) in a variable ordering π, it does not matter which u-variable is
tested on which position in P for the corresponding size of a QOBDD for F .
Moreover, the roles of the u-and the w-variables are exchangeable, therefore, in
the remaining part of the section we assume w.l.o.g. that the u-variables are

124 B. Bollig

tested in the ordering u1, u2, . . . , um and the w-variables in w1, w2, . . . , wm and
u1 is the first variable of all u- and w-variables.

Our transformation computes the (quasi-reduced) OBDD representing F with
respect to the ordering u1, u2, . . . , um, v1, v2, . . . , vn, w1, w2, . . . , wm in polyno-
mial time.

A sandwich variable ordering is a variable ordering where the v-variables are
tested between the u- and the w-variables, and all u-variables as well as all
w-variables are tested one after another.

The following lemma is not difficult to prove.

Lemma 1. Let π be a sandwich variable ordering and let π′ be the subordering
of π on the v-variables. Then the π-QOBDD size of F (u, v, w) is

m · (m + 1)/2 + n · m + cost(π′) + m · (m + 1)/2 + (m − 1) + (n + m).

We are now able to define the size bound s in our reduction:

s := m · (m + 1)/2 + n · m + b + m · (m + 1)/2 + (m − 1) + (n + m).

In order to prove the correctness of our reduction we have to show that the
input graph H for OLA has a linear arrangement whose cost is bounded by b
iff F can represented by a QOBDD with at most s nodes. Using Lemma 1 the
only-if-part is easy. The if-part of the correctness proof is more involved. By our
considerations above it remains to prove that some optimal variable ordering of
F = (u, v, w) is a sandwich variable ordering.

The idea is to change a given (optimal) variable ordering π in three phases
until it is a sandwich variable ordering. If each phase does not increase the
size of the BDD representation, we are done. In all phases we do not change
the ordering among the u-variables, among the v-variables, and among the w-
variables, respectively. Remember that the roles of the u- and the w-variables
are symmetric, therefore, we assume w.l.o.g. that the first weight variable is a u-
variable. First, we ensure that all u-variables are tested before all w-variables. We
do this by exchanging the positions of the first w-variable in the variable ordering
and the following u-variable without increasing the size of the corresponding
QOBDD. Since the procedure can be iterated, we are done.

Lemma 2. Let π be a variable ordering on the u-, v-, and w-variables and let
ik be the position of the variable uk and jk be the position of the variable wk,
1 ≤ j ≤ m. Furthermore, let j1 be between il and il+1, l ∈ {1, . . . , m − 1}.
Let π′ be the variable ordering where the variable w1 is at position il+1 and
ul+1 is at position j1 and all other variables are ordered according to π. Then
π′-QOBDD(F) is not larger than π-QOBDD(F).

Next, we change the variable ordering in such a way that the u-variables are
tested in the beginning.
Lemma 3. Let π be a variable ordering on the u-, v-, and w-variables where all
u-variables are before the w-variable. Let π′ be the variable ordering that starts
with the u-variables followed by the remaining variables in the same order as in
π. Then π′-QOBDD(F) is not larger than π-QOBDD(F).

On the Complexity of Some Ordering Problems 125

Finally, we modify the variable ordering such that the w-variables are tested in
the end. This is the most laborious part of the correctness proof and we have to
count the QOBDD nodes very carefully using a sophisticated accounting method
solving some combinatorial problems which may be interesting on their own
right. The w-variables are divided into blocks of maximal length that consist
only of w-variables. If the number of vertex variables between the u-variables
and the first w-variable in the given variable ordering and the length of the
first block of w-variables, is not too large, the first vertex variable after the first
block of w-variables jumps in the ordering at the position just before the first
block of w-variables. Otherwise, all vertex variables jump at once before the w-
variables. In the first case the procedure is iterated until the w-variables are the
last variables in the variable ordering.
Lemma 4. Let π be a variable ordering on the u-, v-, and w-variables that
starts with the u-variables. Let π′ be the variable ordering where the u-variables
are in the beginning of the ordering, the v-variables are ordered in the same
suborder as in π, and the w-variables are the last variables in the ordering. Then
π′-QOBDD(F) is not larger than π-QOBDD(F).
By Lemma 2-4 we have shown the following result.

Corollary 1. There exists a sandwich variable ordering that is optimal for the
function F (u, v, w).

4 On the Optimal Vertex Encoding Problem

This section is devoted to the vertex encoding problem in the implicit setting. It
seems to be a natural idea to represent highly regular graphs by means of data
structures smaller than adjacency matrices or adjacency lists. Boolean encodings
for the vertices can be used to characterize sets of vertices or edges by their
characteristic Boolean functions, and data structures like OBDDs can be used
to represent and manipulate the input graphs. Let G = (V, E) be a graph with
N vertices v0, . . . vN−1 and |z|2 :=

∑n−1
i=0 zi2i, where z = (z0, . . . , zn−1) ∈ {0, 1}n

and n =
log N�. Now, E can be represented by its characteristic function, where
x, y ∈ {0, 1}n and χE(x, y) = 1 ⇔ (|x|2, |y|2 < N)∧(v|x|2 , v|y|2) ∈ E. Undirected
edges can be represented by symmetric directed ones.

Several very natural and large graph classes have OBDD representations which
yield a much better space behavior than that of explicit representations (see,
[13,16,18]). Obviously, besides the choice of the variable ordering, the encoding
of the vertices can influence the size of the OBDD-based graph representations.
A simple example is the following graph Gn = (V, E) defined on 2n vertices
vi, 0 ≤ i ≤ 2n − 1, and 2n−2 edges (see Figure 1). To present a bad vertex
encoding, we start with the definition of the hidden weighted bit function (HWB)
introduced by Bryant [10].
Definition 5. The hidden weighted bit function HWBn : {0, 1}n → {0, 1} com-
putes the bit bsum on the input b = (b1, . . . , bn), where sum :=

∑n
i=0 bi and

b0 := 0.

126 B. Bollig

The OBDD complexity HWBn is exponential [10], and the best lower bound is
Ω(2n/5) [4]. Another interesting property of HWBn is that exactly half of the in-
puts are mapped to the function value 1. Now, let bi = (bi

0, . . . , bi
n−1) be the binary

representation of an integer i ∈ {0, . . . , 2n − 1}. There exists an edge between a
vertex vi and a vertex vj iff i = 2n−1 +j and bi

R = (bi
0, . . . , bi

n−2) is in HWB−1
n−1(1).

...
...

...
...

Fig. 1. The graph Gn used as an example for a good and a bad vertex encoding. Gn

has 2n vertices and 2n−2 edges.

It is not difficult to show that in this case the complexity of the OBDD
representation for Gn is exponential. To be more precise, it can be proved
that the size of an OBDD for the representation of the characteristic function
of E is Ω(n−1/22(n−1)/5) (for a similar proof see [3]). The isomorphic graph
G′

n = (V, E′) has an edge between a vertex vi and a vertex vj iff bi
n−1 =

bi
n−2 = 1, bj

n−1 = bj
n−2 = 0 and bi

k = bj
k for j ∈ {0, . . . , n − 3} (or vice

versa). Using Proposition 1 it is easy to see that the π-OBDD size for the
characteristic function of the edge set E′ is 4 + 3(n − 2), where π is the 2-
interleaved variable ordering xn−1, yn−1, xn−2, . . . , x0, y0. There are four nodes
to check whether xn−1, yn−1, xn−2, yn−2 are set to 1010 and an equality check
for xR = (xn−3, . . . , x0) and yR = (yn−3, . . . , y0). Summarizing, we have seen
that a re-encoding of the vertices of a given graph may have a large impact on
the OBDD representation size. Therefore, we define the following problem.

Definition 6 (Optimal Vertex Encoding). Let Bn,n be the set of multiple
output Boolean functions that map inputs from {0, 1}n to the set {0, 1}n, and
let g be a bijective function in Bn,n. Furthermore, let XE be the characteristic
Boolean function of an implicitly defined graph G = (V, E) and XEg be the
characteristic Boolean function of the graph Gg = (V, Eg) that is isomorphic to
G with respect to g.

Let π be an arbitrary variable ordering on 2n variables. Given a π-OBDD H
representing XE and a size bound s, the answer to the problem Optimal Vertex
Encoding (OVE) is yes iff there exists a bijective function h, h ∈ Bn,n, such that
the π-OBDD size for XEh

is at most s.

The computational complexity of the problem OVE is unknown. We start to
investigate a restricted class of vertex encodings, where the encoding function
h, h : {0, 1}n → {0, 1}n, can be described by a permutation of the variables h is
defined on, i.e., h(x0, . . . , xn−1) = xπ(0), . . . , xπ(n−1) for a given permutation π
on the set {0, . . . , n − 1}. Let ROVE (Restricted Optimal Vertex Encoding) be
the corresponding optimization problem.

On the Complexity of Some Ordering Problems 127

Theorem 2. The problem ROVE is NP-hard.

The problem ROVE looks similar to the classical NP-complete problem Op-
timal OBDD: given an OBDD for a function fn and a size bound s in N, we ask
whether there exists an OBDD with respect to an arbitrary variable ordering
representing fn with at most s nodes [6]. Therefore, it seems to be obvious to
choose the problem Optimal OBDD for a polynomial time reduction to ROVE.
We have to transform the input (F, s) for Optimal OBDD into an input (H, s′)
for ROVE in polynomial time, where H is an OBDD with respect to a fixed
variable ordering π representing the characteristic function of the edge relation
of an input graph G. The transformation has to guarantee that there exists an
OBDD with at most s nodes representing the same function as the OBDD F iff
there exists a restricted vertex encoding h such that the π-OBDD size for the
implicit representation of Gh is at most s′.

First, we discuss an approach which does not work. The motivation for the
investigation is to learn more about the properties of variable orderings for (com-
plete) OBDDs hoping that more insights lead to better heuristics for the corre-
sponding problems. The idea is the following. We use a similar construction as
presented above for the bad vertex encoding. Let F be a π-OBDD for the function
fn defined on the variables x0, . . . , xn−1. We construct a bipartite graph G on
2n+1 vertices vi, 0 ≤ i ≤ 2n+1 −1, and |f−1

n (1)| edges. Again let bi = (bi
0, . . . , bi

n)
be the binary representation of an integer i ∈ {0, . . . , 2n+1 − 1}. There exists an
edge between a vertex vi and a vertex vj iff i = 2n + j and bi

R = (bi
0, . . . , bi

n−1) is
an input in f−1

n (1). If F is a π-OBDD for fn, we can easily construct in polyno-
mial time an OBDD with respect to a 2-interleaved variable ordering according
to π on the variables x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) representing the
function f ′

n(x, y) := fn(x)∧ EQn(x, y). Next, we extend the 2-interleaved vari-
able ordering by starting with two new variables xn, yn. Afterwards, we compute
in polynomial time another OBDD H with respect to the new variable ordering
for the function (xn ⊕ yn) ∧ f ′

n(x, y). It is not difficult to see that H represents
the characteristic function of G’s edge relation. The intuition is that an opti-
mal 2-interleaved variable ordering for the representation of G’s edge relation
leads to an optimal variable ordering for the representation of fn by deleting the
variable xn and all y-variables. The following proposition gives a hint why this
polynomial transformation fails.

Proposition 2. Let fn and gn be Boolean functions in Bn, and let π be an
optimal variable ordering for fn, i.e., π-OBDD(fn) = OBDD(fn). Furthermore
the function gn has the property that the size of a reduced OBDD representing
gn is independent of the choice of the variable ordering, i.e., π′-OBDD(gn) =
OBDD(gn) for every variable ordering π′. Let hn be the conjunction of fn and
gn. Then π is not necessarily an optimal variable ordering for the OBDD repre-
sentation of hn.

Proof. Our counterexample to prove Proposition 2 is the following one. The
function gn is the parity function and fn is the multiplexer, often also called
direct storage access function, which is defined in the following way.

128 B. Bollig

Definition 7. Let n = 2k. The multiplexer MUXn is defined on n + k variables
ak−1, . . . , a0, x0, . . . , xn−1. The output of MUXn(a, x) is x|a|2 .

The variable ordering π is a0, a1, . . . , ak, x0, x1, . . . , xn−1 and π′ is the variable
ordering ak−1, ak−2, . . . , ak−m, x0, x1, . . . , xn−1, ak−m−1, . . . , a0. The variable or-
dering π is optimal for the multiplexer [5]. Using Proposition 1 it is not difficult
to see that π-OBDD(h) is Θ(n2) but π′-OBDD(h) is O(n2/ log n). The proof
does also work for the combination of fn and gn by disjunction. �

Proposition 2 justifies why in the transformation above the size bound s′ for
the input of ROVE cannot easily be adapted. In the remaining part of the section
we present the idea how to prove Theorem 2. Again the aim is to construct a
polynomial reduction from Optimal OBDD to ROVE. Let F be a π-OBDD for
the function fn defined on the variables x0, . . . , xn−1. We construct a bipartite
graph G on 2n+1 vertices vi, 0 ≤ i ≤ 2n+1 − 1, and 2n · |f−1(1)| edges. Again let
bi = (bi

0, . . . , bi
n) be the binary representation of an integer i ∈ {0, . . . , 2n+1 −1}.

There exists an edge between a vertex vi and a vertex vj iff i ≥ 2n, j ≤ 2n, and
bi

R = (bi
0, . . . , bi

n−1) is in f−1
n (1).

If F is a π-OBDD for fn, we can easily construct in linear time two OBDDs Hx

and Hy with respect to a 2-interleaved variable ordering according to π on the
variables x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) representing the functions
fn(x) and fn(y). Next, we extend the 2-interleaved variable ordering adding two
new variables xn and yn at the beginning. Afterwards, we compute in linear time
two OBDDs H ′

x and H ′
y for the functions (xnyn) ∧ fn(x) and (xnyn) ∧ fn(y). In

the last step we construct an OBDD H for the disjunction of these two functions.
It is not difficult to see that H represent the characteristic function of G’s edge
relation. Let s be the bound of the size in the input for Optimal OBDD, then
we set the size bound s′ in the input for ROVE to 2s + 3. It remains to prove
the correctness of the polynomial reduction.

References

1. Berghammer, R., Bolus, S.: On the use of binary decision diagrams for solving
problems on simple games. European Journal of Operational Research 222(3),
529–541 (2012)

2. Bollig, B.: On the size of (generalized) OBDDs for threshold functions. Inf. Process.
Lett. 109(10), 499–503 (2009)

3. Bollig, B.: On symbolic representations of maximum matchings and (un)directed
graphs. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp.
286–300. Springer, Heidelberg (2010)

4. Bollig, B., Löbbing, M., Sauerhoff, M., Wegener, I.: On the complexity of the
hidden weighted bit function for various BDD models. Theoretical Informatics and
Applications 33, 103–115 (1999)

5. Bollig, B., Range, N., Wegener, I.: Exact OBDD bounds for some fundamental
functions. Theory of Computing Systems 47(2), 593–609 (2010)

6. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Computers 45(9), 993–1002 (1996)

On the Complexity of Some Ordering Problems 129

7. Bollig, B., Wegener, I.: Asymptotically optimal bounds for OBDDs and the solution
of some basic OBDD problems. Journal of Computing and System Science 61(3),
558–579 (2000)

8. Brody, J., Matulef, K., Wu, C.: Lower bounds for testing computability by small
width OBDDs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648,
pp. 320–331. Springer, Heidelberg (2011)

9. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

10. Bryant, R.: On the complexity of VLSI implementations and graph representa-
tions of boolean functions with application to integer multiplication. IEEE Trans.
Computers 40, 205–213 (1991)

11. Fortune, F., Hopcroft, J., Schmidt, E.: The complexity of equivalence and contain-
ment for free single variable program schemes. In: Ausiello, G., Böhm, C. (eds.)
ICALP 1978. LNCS, vol. 62, pp. 227–240. Springer, Heidelberg (1978)

12. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connec-
tivity related problems. Algorithmica 50(1), 120–158 (2008)

13. Gillé, M.: OBDD-based representation of interval graphs. In: Brandstädt, A.,
Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 286–297. Springer,
Heidelberg (2013)

14. Goldreich, O.: On testing computability by small width OBDDs. In: Serna, M.,
Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS,
vol. 6302, pp. 574–587. Springer, Heidelberg (2010)

15. Hachtel, G., Somenzi, F.: A symbolic algorithm for maximum flow in 0-1 networks.
Formal Methods in System Design 10, 207–219 (1997)

16. Meer, K., Rautenbach, D.: On the OBDD size for graphs of bounded tree- and
clique-width. Discrete Mathematics 309(4), 843–851 (2009)

17. Newman, I.: Testing membership in languages that have small width branching
programs. SIAM J. Comput. 31(5), 1557–1570 (2002)

18. Nunkesser, R., Woelfel, P.: Representations of graphs by OBDDs. Discrete Applied
Mathematics 157(2), 247–261 (2009)

19. Ochi, H., Yasuoka, K., Yajima, S.: Breadth-first manipulation of very large binary-
decision diagrams. In: ICCAD, pp. 48–55 (1993)

20. Ron, D., Tsur, G.: Testing computability by width-two OBDDs. Theor. Comput.
Sci. 420, 64–79 (2012)

21. Sawitzki, D.: The complexity of problems on implicitly represented inputs. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)

22. Sieling, D.: The nonapproximability of OBDD minimization. Information and Com-
putation 172(2), 103–138 (2002)

23. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 3, 3–12 (1993)

24. Tani, S., Hamagushi, K., Yajima, S.: The complexity of the optimal variable order-
ing problems of a shared binary decision diagram. In: Ng, K.W., Balasubramanian,
N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 389–396.
Springer, Heidelberg (1993)

25. Wegener, I.: Branching programs and binary decision diagrams: theory and appli-
cations. SIAM (2000)

26. Wegener, I.: The size of reduced OBDDs and optimal read-once branching programs
for almost all boolean functions. IEEE Trans. Computers 43(11), 1262–1269 (1994)

27. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discrete Algorithms 4(1),
51–71 (2006)

The Relationship between Multiplicative

Complexity and Nonlinearity

Joan Boyar and Magnus Gausdal Find

Department of Mathematics and Computer Science,
University of Southern Denmark

Abstract. We consider the relationship between nonlinearity and multi-
plicative complexity for Boolean functions with multiple outputs, study-
ing how large a multiplicative complexity is necessary and sufficient to
provide a desired nonlinearity. For quadratic circuits, we show that there
is a tight connection between error correcting codes and circuits comput-
ing functions with high nonlinearity. Using known coding theory results,
the lower bound proven here, for quadratic circuits for functions with n
inputs and n outputs and high nonlinearity, shows that at least 2.32n
AND gates are necessary. We further show that one cannot prove stronger
lower bounds by only appealing to the nonlinearity of a function; we show
a bilinear circuit computing a function with almost optimal nonlinear-
ity with the number of AND gates being exactly the length of such a
shortest code. For general circuits, we exhibit a concrete function with
multiplicative complexity at least 2n− 3.

1 Definitions and Preliminaries

Let F2 be the finite field of order 2 and Fn
2 the n-dimensional vector space over

F2. We denote by [n] the set {1, . . . , n}. An (n,m)-function is a mapping from
Fn
2 to Fm

2 and we refer to these as the Boolean functions.
It is well known that every (n, 1)-function f can be written uniquely as a

multilinear polynomial over F2

f(x1, . . . ,xn) =
∑

X⊆[n]

αX

∏
i∈X

xi.

This polynomial is called the Zhegalkin polynomial or the algebraic normal form
of f . For the rest of this paper most, but not all, arithmetic will be in F2. We
trust that the reader will find it clear whether arithmetic is in F2, F2n , or R
when not explicitly stated, and will not address it further.

The degree of f is the largest |X | such that αX = 1. For an (n,m)-function f ,
we let fi be the (n, 1)-function defined by the ith output bit of f , and say that
the degree of f is the largest degree of fi for i ∈ [m]. A function is affine if it
has degree 1, and quadratic if it has degree 2. For T ⊆ [m] we let

fT =
∑
i∈T

fi,

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 130–140, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Relationship between Multiplicative Complexity and Nonlinearity 131

and for v ∈ Fn
2 we let |v| denote the Hamming weight of v, that is, the number

of nonzero entries in v, and let |u + v| be the Hamming distance between the
two vectors u and v.

We will use several facts on the nonlinearity of Boolean functions. We refer
to the two chapters [6,7] by Carlet for proofs and references. The nonlinearity
of an (n, 1)-function f is the Hamming distance to the closest affine function,
more precisely

NL(f) = 2n − max
a∈Fn

2 ,b∈F2

|{x ∈ Fn
2 | 〈a,x〉+ b = f(x)}|,

where 〈a,x〉 =
∑n

i=1 aixi. For an (n,m)-function f , the nonlinearity is defined
as

NL(f) = min
T⊆[m],T =∅

{NL(fT)}.

The nonlinearity of an (n,m)-function is always between 0 and 2n−1 − 2
n
2 −1.

The (n,m)-functions meeting this bound are called bent functions. Bent (n, 1)
functions exist if and only if n is even. A standard example of a bent (n, 1)-
function is the inner product, on n = 2k variables, defined as:

IP2k(x1, . . . ,xk,y1, . . . ,yk) = 〈x,y〉 .

This function is clearly quadratic. If we identify Fn
2 with F2n , a standard example

of a bent (2n, n)-function is the finite field multiplication function:

f(x,y) = x · y (1)

where multiplication is in F2n .

If n = m, NL(f) is between 0 and 2n−1−2
n−1
2 [8], and functions meeting this

bound are called almost bent. These exist only for odd n. As remarked by Carlet,
this name is a bit misleading since the name indicates that they are suboptimal,
which they are not. Again, if we identify Fn

2 and F2n , for 1 ≤ i ≤ n−1
2 and

gcd(i, n) = 1, the so called Gold functions defined as

G(x) = x2i+1 = x ·
(
x2i

)
(2)

are almost bent. This function is quadratic since the mapping x $→ x2 is affine in
Fn
2 , and each output bit of finite field multiplication is quadratic in the inputs,

see also [7].
An XOR-AND circuit is a Boolean circuit where each of the gates is either ⊕

(XOR, addition in F2), ∧ (AND, multiplication in F2) or the constant 1. In this
paper we are mainly concerned with the number of ∧ gates, so we allow ⊕-gates
to have unbounded fan-in while ∧-gates have fan-in 2. A circuit is quadratic if
every AND gate computes a quadratic function. A quadratic circuit is bilinear if
the input is partitioned into two sets, and each input to an AND gate is a linear
combination of variables from one of these two sets, with the other input using
the opposite set of the partition.

132 J. Boyar and M.G. Find

The multiplicative complexity of an (n,m)-function, f , is the smallest number
of AND gates in any XOR-AND circuit computing f . Some relations between
nonlinearity and multiplicative complexity are known. In particular, if an (n, 1)-
function is to have a certain nonlinearity, it is known exactly how many AND
gates are necessary and sufficient.

Corollary 1 ([1]). If the (n, 1)-function, f , has multiplicative complexity M , it
has nonlinearity at most 2n−1− 2n−M−1. Furthermore this is tight: for M ≤ n

2 ,
there exists a simple quadratic function with this nonlinearity.

The upper bound holds for all M , but gives something nontrivial only when
M < n

2 .

1.1 Linear Codes

Most bounds in this paper will come from coding theory. In this subsection, we
briefly review the necessary facts. For more information, see chapter 17 in [10]
or the older but comprehensive [20].

A linear (error correcting) code of length s is a linear subspace, C of Fs
2. The

dimension of a code is the dimension of the subspace, C, and the elements of C
are called codewords. The (minimum) distance d of C is defined as

d = min
x =y∈C,

|x + y|.

The following fact is well known

Proposition 1. For every linear code, C, the distance is exactly the minimum
weight among non-zero codewords.

Let L(m, d) be the length of the shortest linear m-dimensional code over F2

with distance d. We will use lower and upper bounds on L(m, d). One lower
bound is the following [16], see also [20], page 563.

Theorem 1 (McEliece, Rodemich, Rumsey, Welch). For 0 < δ < 1/2,
let C ⊆ {0, 1}s be a linear code with dimension m and distance δs. Then the
rate R = m

s of the code satisfies R ≤ min0≤u≤1−2δ B(u, δ), where B(u, δ) =

1 + h(u2) − h(u2 + 2δu + 2δ), h(x) = H2

(
1−√

1−x
2

)
, and H2(x) = −x log x −

(1− x) log(1− x).

An upper bound is the following, see [10].

Theorem 2 (Gilbert-Varshamov). A linear code C ⊆ {0, 1}s of dimension

m and distance d exists provided that
∑d−2

i=0

(
s−1
i

)
< 2s−m.

The Relationship between Multiplicative Complexity and Nonlinearity 133

2 Introduction

In several practical settings, such as homomorphic encryption and secure mul-
tiparty computation (see e.g. [23] and [13]), the number of AND gates is signif-
icantly more important than the number of XOR gates, hence one is interested
in (n,m)-functions with as few AND gates as possible.

Encryption functions should have high nonlinearity to be resistant against
linear and differential attacks (see again [7] and the references therein). This is an
explicit design criteria for modern cryptographic systems, such as AES, [9], which
has been used has a benchmark for several implementations of homomorphic
encryption. A natural question to ask is how these nonlinearity and multiplicative
complexity are related to each other: how large does one measure need to be in
order for the other to have at least a certain value? As stated in Section 1,
for every desired nonlinearity, it is known exactly how many AND gates are
necessary and sufficient for an (n, 1)-function to achieve this. We study this
same question for functions with multiple bits of output.

Our Contributions. Let f be an (n,m)-function with nonlinearity 2n−1−2n−M−1.
We show that any quadratic circuit with s AND gates computing f defines an
m-dimensional linear code Fs

2 with distance M , so lower bounds on the size of
such codes show lower bounds on the number of AND gates in such a circuit.
In particular this implies that any quadratic circuit computing an almost bent
function must have at least L(n, n−1

2) AND gates, and that any quadratic func-
tion from 2n bits to n bits with optimal nonlinearity requires quadratic circuits
with L(n, n) AND gates. Since the finite field multiplication function is bent,
the L(n, n) lower bound applies, so the well known result in [3,15], described in
the section 2.1, follows immediately as a corollary.

On the other hand, we show that appealing only to the nonlinearity of a func-
tion cannot lead to much stronger lower bounds on the multiplicative complexity,
by showing the existence of quadratic (in fact, bilinear) circuits with L

(
n, n2

)
AND gates computing a function from n bits to n bits with nonlinearity at least
2n−1 − 2

n
2 +3

√
n which is close to the optimum.

Although almost all Boolean functions with n inputs and one output have
multiplicative complexity at least 2n/2 − O(n) [2], no concrete function of this
type has been shown to have multiplicative complexity more than n−1. We give
a concrete function with n inputs and n outputs with multiplicative complexity
at least 2n− 3.

Using known coding theory bounds, the lower bound proven here, for quadratic
circuits for functions with n inputs and n outputs and high nonlinearity, shows
that at least 2.32n AND gates are necessary. Using a known upper bound
on L

(
n, n2

)
gives that circuits for (n, n)-functions with nonlinearity at least

2n−1− 2
n
2 +3

√
n can be designed using at most 2.95n AND gates. This is a factor

less than 6 times larger than the multiplicative complexity of (n, 1)-functions
with similar nonlinearity.

134 J. Boyar and M.G. Find

2.1 Related Results

To the best of our knowledge, our lower bound of 2.32n AND gates is the largest
lower bound on the number of AND gates for quadratic circuits. Previous results
showing relations between error correcting codes and bilinear and quadratic cir-
cuits include the work of [3,15] where it is shown that a bilinear or quadratic
circuit computing finite field multiplication of two Fqn elements induces an error
correcting code over Fq of dimension n and distance n. For q = 2, Theorem 1
implies that such a circuit must have at least 3.52n multiplications (AND gates).
If n is the number of input bits, this corresponds to a lower bound of 1.76n. For
q > 2, the gates (or lines in a straight-line program) have field elements as inputs,
and the total number of multiplications and divisions is counted. Kaminski and
Bshouty show a lower bound of 3n − o(n) for bilinear circuits [12] and extend
it to general circuits [4]. This proof is not based on coding theoretic techniques,
but rather the study of Hankel matrices related to the bilinear transformation.

Suppose some (n,m)-function f has a certain nonlinearity D. If we identify
f1, . . . , fm, x1, . . . , xn and the constant 1 with their truth tables as vectors in
F2n

2 , then C = span{f1, . . . , fm, x1, . . . , xn, 1} is a code in F2n

2 with dimension
n+m+ 1 and distance D, and limitations and possibilities for codes transfer to
results on nonlinearity (see the survey [7] and the references therein). However
this says nothing about the multiplicative complexity of the function f .

The structure of quadratic circuits has itself been studied by Mirwald and
Schnorr [17]. Among other things they show that for quadratic (n, 1)- and (n, 2)-
functions, quadratic circuits are optimal. It is still not known whether this is true
for (n,m)-functions in general.

3 Lower Bounds on Multiplicative Complexity

The multiplicative complexity of an (n, 1)-function is between 0 and (1 + o(1)) 2n/2

[18] (see also [11]), and almost all such functions have multiplicative complexity at
least 2n/2−O(n) [2]. However, there is no value ofnwhere a concrete (n, 1)-function
has been exhibited with a proof that more than n− 1 AND gates are necessary to
compute it. A lower bound of n− 1 follows by the simple degree bound1: a function
with degree d has multiplicative complexity at least d− 1 [19]. Here we show that
repeated use of the degree bound gives a concrete (n, n)-function, exhibiting a lower
bound of 2n−3. To the best of our knowledge this is the first example of lower bound
on the multiplicative complexity for (n, n)-functions.

Theorem 3. The (n, n)-function f defined as fi(x) =
∏

j∈[n]\{i} xj , has multi-
plicative complexity at least 2n− 3.

Proof. Consider the first AND gate, A, with degree at least n− 1. Such a gate
exists since the outputs have degree n−1. By the degree bound, A must have at
least p ≥ n− 3 AND gates with degree at most n− 2 in its subcircuit. Call these

1 Notice that despite the name, this is not the same as Strassen’s degree bound as de-
scribed in [21] and Chapter 8 of [5].

The Relationship between Multiplicative Complexity and Nonlinearity 135

AND gates A1, . . . , Ap. None of these AND gates can be an output gate. Suppose
there are q additional AND gates (including A), where some of these must have
degree at least n− 1. Call these AND gates B1, . . . , Bq. Then, for every i ∈ [n],
there exist Pi ⊆ [p] and Qi ⊆ [q] such that fi =

∑
j∈Pi

Aj +
∑

j∈Qi
Bj . We can

think of each Bj as a vector in Fn
2 , where the ith coordinate is 1 if the term∏

k∈[n]\{i} xk is present in the Zhegalkin polynomial of the function computed
by Bj . Since each Aj has degree at most n−2, all the Aj are zero vectors in this
representation, so span(A1, . . . , Ap, B1, . . . , Bq) = span(B1, . . . , Bq). It follows
that {f1, . . . , fn} ⊆ span(B1, . . . , Bq). Since

n = dim({f1, . . . , fn}) ≤ dim(span(B1, . . . , Bq)) ≤ q,

we conclude that the circuit has at least q + p ≥ 2n− 3 AND gates. ��

4 Nonlinearity and Multiplicative Complexity

This section is devoted to showing a relation between the nonlinearity and the
multiplicative complexity of quadratic circuits. We first show a connection be-
tween nonlinearity, multiplicative complexity and certain linear codes. Applying
this connection, Theorem 1 gives a bound on any quadratic (n,m)-function.

Theorem 4. Let the (n,m)-function, f , have NL(f) ≥ 2n−1 − 2n−M−1, where
M ≤ n

2 . Then a quadratic circuit with s AND gates computing f exhibits an
m-dimensional linear code over Fs

2 with distance M .

Proof. Let C be a quadratic circuit with s AND gates computing f , and let
A1, . . . , As, be the AND gates. Since C is quadratic, for each i ∈ [m] there exist
Si ⊆ [s] and Xi ⊆ [n] such that fi can be written as

fi =
∑
j∈Si

Aj +
∑
j∈Xi

xj .

Without loss of generality, we can assume that Xi = ∅ for all i, since both
nonlinearity and multiplicative complexity are invariant under the addition of
affine terms. For each i ∈ [m], we define the vector vi ∈ Fs

2, where vi,j = 1 if and
only if there is a directed path from Aj to the ith output. By the nonlinearity
of f , we have that for each i ∈ [m],

NL(fi) ≥ 2n−1 − 2n−M−1.

Applying Corollary 1, the multiplicative complexity of fi is at least M , hence
|vi| ≥M . Similarly, for any nonempty T ⊆ [m] we can associate a vector vT by
setting

vT =
∑
i∈T

vi.

Since the circuit is quadratic, it holds that if |vT | ≤ p, the multiplicative com-
plexity of fT =

∑
i∈T fi is at most p. Applying the definition of nonlinearity

136 J. Boyar and M.G. Find

to fT , NL (fT) ≥ 2n−1 − 2n−M−1. Corollary 1 implies that the multiplicative
complexity of fT is at least M , so we have that |vT | ≥M when T = ∅.

In conclusion, every nonzero vector in the m dimensional vector space C =
spanF2{v1, . . . ,vm} has Hamming weight at least M . By Proposition 1, C is a
linear code with dimension m and distance at least M . ��

Applying this theorem to quadratic almost bent functions, we have that a
quadratic circuit computing such a function has at least L(n, n−1

2) AND gates.
Combining this with Theorem 1, calculations show:

Corollary 2. Any quadratic circuit computing an almost bent (n, n)-function
has at least L(n, n−1

2) AND gates. For sufficiently large n,
L(n, n−1

2) > 2.32n.

The corollary above applies to e.g. the almost bent Gold functions G defined in
Eqn. (2). For bent (2n, n)-functions, using Theorem 4 with M = n and applying
Theorem 1, calculations show:

Corollary 3. A quadratic circuit computing any bent (2n, n)-function has at
least L(n, n) AND gates. For sufficiently large n, L(n, n) > 3.52n.

This applies to e.g. the finite field multiplication function as defined in Eqn. (1),
reproving the known result on multiplicative complexity for quadratic circuits
for field multiplication mentioned in Section 2.1.

For both Corollaries 2 and 3, any improved lower bounds on codes lengths
would give an improved lower bound on the multiplicative complexity. For Corol-
lary 2 this technique cannot prove better lower bounds than L(n, n−1

2). Theo-
rem 2 implies that L(n, n−1

2) ≤ 2.95n. Below we show that this is not merely
a limitation of the proof strategy; there exist quadratic circuits with L(n, n−1

2)
AND gates with nonlinearity close to the optimal. To the best of our knowl-
edge this is the first example of highly nonlinear (n, n)-functions with linear
multiplicative complexity, and therefore it might be a useful building block for
cryptographic purposes.

Before proving the next theorem, we need a technical lemma on the probability
that a random matrix has small rank. A simple proof of this can be found in
e.g. [14].

Lemma 1 (Komargodski, Raz, Tal). A random k × k matrix has rank at

most d with probability at most 2k−(k−d)2 .

Theorem 5. There exist (n, n)-functions with multiplicative complexity at most
L(n, n−1

2) and nonlinearity at least 2n−1 − 2
n
2 +3

√
n−1.

Proof. For simplicity we show the upper bound for L(n, n2) AND gates. It is ele-
mentary to verify that it holds for L(n, n−1

2) AND gates as well. We give a prob-
abilistic construction of a quadratic (in fact, bilinear) circuit with s = L(n, n2)
AND gates, then we show that with high probability, the function computed by
this circuit has the desired nonlinearity.

The Relationship between Multiplicative Complexity and Nonlinearity 137

For the construction of the circuit, we first define the value computed by the
ith AND gate as Ai(x) = Li(x)Ri(x) where Li is a random sum over x1, . . . ,xn/2

and Ri is a random sum over xn/2+1, . . . ,xn. In the following, we will identify
sums over x1, . . . ,xn with vectors in Fn

2 and sums over A1, . . . , As with vectors
in Fs

2.
Let C be an n-dimensional code of length L(n, n2) with distance n

2 and let
y1, . . . ,yn ∈ Fs

2 be a basis for C. Now we define the corresponding sums over
A1, . . . , As to be the outputs computed by the circuit. This completes the con-
struction of the circuit. Now fix r(x) ∈ spanF2{y1, . . . ,yn}, r = 0. We want to
show that r has the desired nonlinearity with high probability. By an appropriate
relabeling of the AND gates, we can write r as

r(x) =

q∑
i=1

Ai(x) =

q∑
i=1

Li(x)Ri(x) (3)

for some q ≥ n
2 . We now assume that

t = rk{R1, . . . , Rq} ≥
n

2
− 3

√
n

2
. (4)

At the end of the proof, we will show that this is true with high probability. Again
by an appropriate relabeling, we let {R1, . . . , Rt} be a basis of span{R1, . . . , Rq}.
If q > t, for j > t, we can write Rj =

∑t
i=1 αj,iRi. In particular for j = q, we

can substitute this into (3) and obtain

r(x) =

q−1∑
i

(Li(x) + αq,iLq(x))Ri(x)

where we let αq,i = 0 for i > t. If {L1, . . . , Lq} are independently, uniformly ran-
domly distributed, then so are {L1+αq,1Lq, . . . , Lq−1+αq,q−1Lq}. Continuing this

process, we get that for n
2 ≥ t ≥ n

2 −
3
√
n

2 , there are sums L′
1, . . . , L

′
t, R

′
1, . . . , R

′
t

such that

r(x) =

t∑
i=1

L′
i(x)R′

i(x)

where the {L′
1, . . . , L

′
t} are independently, uniformly random and the {R′

1, . . . , R
′
t}

are linearly independent. We now further assume that

u = rk(L′
1, . . . , L

′
t) ≥ t− 3

√
n

2
. (5)

Again, we will show at the end of this proof that this is true with high probability.
Applying a similar procedure as above, we get that for some

u ≥ t− 3
√
n

2
≥ n

2
− 3
√
n

138 J. Boyar and M.G. Find

there exist sums L̃1, . . . , L̃u and R̃1, . . . , R̃u, such that

r(x) =

u∑
i=1

L̃i(x)R̃i(x),

where all L̃1, . . . , L̃u and all R̃1, . . . R̃u are linearly independent. Thus, there
exists a linear bijection (x1, . . . ,xn) $→ (z1, . . . , zn) with z1 = L̃1, . . . , zu =

L̃u, zu+1 = R̃1, . . . , z2u = R̃u, such that

r̃(z) = z1zu+1 + . . . , zuz2u

where r and r̃ are equivalent up to a linear bijection on the inputs. Since non-
linearity is invariant under linear bijections, we just need to determine the non-
linearity of r̃. Given the high nonlinearity of IPn, it is elementary to verify that

NL(r̃) = 2n−2u
(
22u−1 − 2u−1

)
= 2n−1 − 2n−u−1.

If u ≥ n
2 − 3

√
n, this is at least 2n−1 − 2

n
2 +3

√
n−1.

Now it remains to show that the probability of either (4) or (5) occurring is
so small that a union bound over all the 2n− 1 choices of r gives that with high
probability, every r ∈ span{y1, . . . ,yn} has at least the desired nonlinearity.

For (4), we can think of the q ≥ n
2 vectors R1, . . . , Rq as rows in a q × n

2
matrix. We will consider the upper left n

2 ×
n
2 submatrix. By Lemma 1 this has

rank at most n
2 −

3
√
n

2 with probability at most

2
n
2 −

(
n
2 −(n

2 − 3
√

n
2)

)2

= 2
n
2 − 9n

4 = 2−
7n
4

Similarly for (5) we can consider the n
2 ≥ t ≥ n

2 −
3
√
n

2 vectors L′
1, . . . , L

′
t as the

rows in a t× n
2 matrix. Consider the top left t×t submatrix. Again, by Lemma 1,

the probability of this matrix having rank at most t− 3
√
n

2 is at most

2
t−

(
t−(t− 3

√
n

2)
)2

≤ 2
n
2 − 9n

4 = 2−
7n
4

There are 2n − 1 choices of r, so by the union bound, the total probability of at
least one of (4) or (5) failing for a least one choice is at most 2 · (2n − 1) · 2− 7n

4 ,
which tends to zero, so in fact the described construction will have the desired
nonlinearity with high probability. ��

We should note that it is not hard to improve in the constants in the proof and
show that in fact the described function has nonlinearity at least 2n−1−2

n
2 +c

√
n

for some constant c < 3. However, the proof given does not allow improvement
to e.g. c = 2.

5 Open Problems

Strassen [22] (see also [5], Proposition 14.1, p. 351) proved that for an infinite
field, K, if the quadratic function F : Kn → Km can be computed with M multi-
plications/divisions, then it can be computed in M multiplications by a quadratic

The Relationship between Multiplicative Complexity and Nonlinearity 139

circuit. However, it is unknown whether a similar result holds for finite fields in
particular for F2. Mirwald and Schnorr [17] showed that for quadratic (n, 1)- and
(n, 2)-functions, quadratic circuits are optimal. It is still not known whether this
is true for (n,m)-functions in general. It would be very interesting to determine
if the bounds proven here for quadratic circuits also hold for general circuits.

When inspecting the proof of Theorem 4, one can make a weaker assumption
on the circuit than it being quadratic. For example, it is sufficient if it holds that
for every AND gate, A, there is a unique AND gate, A′ (which might be equal
to A), such that every path from A to an output goes through A′. Can one find
a larger, interesting class of circuits where the proof holds?

The function defined in Theorem 3 has multiplicative complexity at least
2n− 3 and at most 3n− 6. What is the exact value?

References

1. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G.,
Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg
(2013), eprint with correction available at the Cryptology ePrint Archive, Report
2013/633 (2013), http://eprint.iacr.org/

2. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean
functions over the basis (∧, ⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

3. Brown, M.R., Dobkin, D.P.: An improved lower bound on polynomial multiplica-
tion. IEEE Trans. Computers 29(5), 337–340 (1980)

4. Bshouty, N.H., Kaminski, M.: Polynomial multiplication over finite fields: from
quadratic to straight-line complexity. Computational Complexity 15(3), 252–262
(2006)

5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer (1997)

6. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, ch. 8, pp. 257–397. Cambridge University
Press, Cambridge (2010)

7. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer,
P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, ch. 9, pp. 398–469. Cambridge Univ. Press, Cambridge (2010)

8. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Security and Cryptology. Springer (2002)

10. Jukna, S.: Extremal Combinatorics: with Applications in Computer Science, 2nd
edn. Texts in Theoretical Computer Science. Springer (2011)

11. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Hei-
delberg (2012)

12. Kaminski, M., Bshouty, N.H.: Multiplicative complexity of polynomial multiplica-
tion over finite fields. J. ACM 36(1), 150–170 (1989)

http://eprint.iacr.org/

140 J. Boyar and M.G. Find

13. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

14. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demor-
gan formula size. In: FOCS, pp. 588–597 (2013)

15. Lempel, A., Seroussi, G., Winograd, S.: On the complexity of multiplication in
finite fields. Theor. Comput. Sci. 22, 285–296 (1983)

16. McEliece, R.J., Rodemich, E.R., Rumsey Jr., H., Welch, L.R.: New upper bounds
on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. In-
form. Theory 23(2), 157–166 (1977)

17. Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic Boolean
forms. Theor. Comput. Sci. 102(2), 307–328 (1992)

18. Nechiporuk, E.I.: On the complexity of schemes in some bases containing nontrivial
elements with zero weights. Problemy Kibernetiki 8, 123–160 (1962) (in Russian)

19. Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T.
(ed.) AAECC 1988. LNCS, vol. 357, pp. 45–58. Springer, Heidelberg (1989)

20. Sloane, N., MacWilliams, F.: The Theory of Error Correcting Codes. North-
Holland Math. Library 16 (1977)

21. Strassen, V.: Die berechnungskomplexität von elementarsymmetrischen funktionen
und von interpolationskoeffizienten. Numerische Mathematik 20(3), 238–251 (1973)

22. Strassen, V.: Vermeidung von Divisionen. Journal für die reine und angewandte
Mathematik 264, 184–202 (1973)

23. Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomor-
phic encryption. In: Ostrovsky, R. (ed.) FOCS, pp. 5–16. IEEE (2011)

Dual Connectedness of Edge-Bicolored Graphs

and Beyond

Leizhen Cai� and Junjie Ye

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

{lcai,jjye}@cse.cuhk.edu.hk

Abstract. Let G be an edge-bicolored graph where each edge is colored
either red or blue. We study problems of obtaining an induced subgraph
H from G that simultaneously satisfies given properties for H ’s red graph
and blue graph. In particular, we considerDually Connected Induced

Subgraph problem — find from G a k-vertex induced subgraph whose
red and blue graphs are both connected, and Dual Separator problem
— delete at most k vertices to simultaneously disconnect red and blue
graphs of G.

We will discuss various algorithmic and complexity issues for Du-

ally Connected Induced Subgraph and Dual Separator prob-
lems: NP-completeness, polynomial-time algorithms, W[1]-hardness, and
FPT algorithms. As by-products, we deduce that it is NP-complete and
W[1]-hard to find k-vertex (resp., (n− k)-vertex) strongly connected in-
duced subgraphs from n-vertex digraphs. We will also give a complete
characterization of the complexity of the problem of obtaining a k-vertex
induced subgraph H from G that simultaneously satisfies given heredi-
tary properties for H ’s red and blue graphs.

Keywords: Edge-bicolored graph, dually connected, dual separator.

1 Introduction

Edge-colored graphs are fundamental in graph theory and have been extensively
studied in the literature, especially for alternating cycles, monochromatic sub-
graphs, heterchromatic subgraphs and partitions [1,12]. In this paper, we focus
on edge-bicolored graphs — simple undirected graphs G where each edge is
uniquely colored by either blue or red, and we use Gb and Gr to denote the
red and blue graphs of G respectively. We are interested in finding an induced
subgraph from G that simultaneously satisfies specified properties for its red
and blue graphs. In particular, we study the following three closely related prob-
lems concerning the fundamental property of being connected for edge-bicolored
graphs G.

� Partially supported by GRF grant CUHK410212 of the Research Grants Council of
Hong Kong.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 141–152, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

142 L. Cai and J. Ye

• Dually Connected Induced Subgraph: Does G contain exactly k ver-
tices V ′ such that both Gb[V

′] and Gr[V ′] are connected?
• Dually Connected Deletion: Does G contain exactly k vertices V ′ such

that both Gb − V ′ and Gr − V ′ are connected?
• Dual Separator: Does G contain at most k vertices V ′ such that both
Gb − V ′ and Gr − V ′ are disconnected?

Related Work: In connection with our dually connected subgraph problems,
Gai et al. [7] defined a common connected component of two graphs G1 and G2 on
the same vertex set V as a maximal subset V ′ ∈ V such that induced subgraphs
G1[V ′] and G2[V ′] are both connected, and they also mentioned three typical
applications in computational biology. Using partition refinement to maintain
connectivity dynamically, they obtained an algorithm for finding all common
connected components in O(n log n + m log2 n) time. For the same problem,
Bin-Xuan et al. [2] used their technique of competitive graph search to produce
an algorithm with running time O(n + m log2 n). We also note that when both
G1 and G2 are paths, the problem of finding all common connected subgraphs
coincides with the well studied problem of finding all common intervals of two
permutations [18], a problem with many applications.

On the other hand, despite an enormous amount of work on induced subgraph
and vertex deletion problems on uncolored graphs, we are unaware of any sys-
tematic investigation of the type of problems we study in this paper.

Our Contributions: We study both traditional and parameterized complexities
of the above three problems, which has further inspired general induced subgraph
problems on edge-bicolored graphs. The following list summarizes our results.

1. Dually Connected Induced Subgraph is NP-complete and W[1]-hard
even when both Gb and Gr are trees, but is solvable in O(n2α(n2, n)) time
when G is a complete graph, where α(n2, n) is inverse of Ackermann’s func-
tion.

2. Dually Connected Deletion is NP-complete and W[1]-hard but admits
an FPT algorithm when both Gb and Gr are trees.

3. Dual Separator is NP-complete.
4. It is NP-complete and W[1]-hard to obtain k-vertex (resp. (n − k)-vertex)

strongly connected induced subgraphs from n-vertex digraphs.
5. We give a complete characterization of both classical and parameterized

complexities of the Induced (Πb, Πr)-Subgraph problem for hereditary
properties Πb and Πr: Does an edge-bicolored graph G contain a k-vertex
induced subgraph whose blue and red graphs simultaneously satisfy proper-
ties Πb and Πr respectively?

6. We give FPT algorithms for parametric dual problems of Induced (Πb, Πr)-
Subgraph when properties Πb and Πr admit finite forbidden induced sub-
graph characterizations.

Notation and Definitions: For a graph G, V (G) and E(G) denote its vertex
set and edge set respectively, and n and m, respectively, are numbers of vertices

Dual Connectedness of Edge-Bicolored Graphs and Beyond 143

and edges of G. For a subset V ′ ⊆ V (G), NG(V ′) denotes the neighbors of V ′ in
V (G)−V ′ and G[V ′] the subgraph of G induced by V ′. A graph property Π is a
collection of graphs, and it is hereditary if every induced subgraph of a graph in
Π also belongs to Π . It is well-known that Π is hereditary iff it has a forbidden
induced subgraph characterization.

For an edge-bicolored graph G = (V,Eb∪Er), Gb = (V,Eb) and Gr = (V,Er),
respectively, denote the blue graph and red graph of G. We say that G is dually
connected if both Gb and Gr are connected, and a dual tree if both Gb and Gr are
trees. A dually connected component of G is a maximal dually connected induced
subgraph of G. A subset V ′ ⊆ V (G) is a dual separator of G if both Gb−V ′ and
Gr − V ′ are disconnected. We use α(n2, n) for inverse of Ackermann’s function.

Remark: In this paper we require monochromatic subgraphs to be spanning
subgraphs of G, but for some applications we may disregard isolated vertices
in monochromatic subgraphs. For example, we can define Gb = G[Eb] or Gb =
(Vb, Eb) with Vb ⊆ V . Our results in the paper are also valid for these two
alternative definitions of monochromatic subgraphs, except our FPT algorithm
for Dually Connected Deletion on dual trees (see Problem 1 in Section 5).

2 Dually Connected Induced Subgraphs

Although all dually connected components in an edge-bicolored graph can be
found in O(n+m log2 n) time [2], it is surprisingly difficult to determine whether
an edge-bicolored graph contains a dually connected induced subgraph on exactly
k vertices. We will show that Dually Connected Induced Subgraph is
solvable in O(n2α(n2, n)) time when G is a complete graph, but NP-complete
and W[1]-hard when G is a dual tree, i.e., both blue and red graphs of G are
trees, which rules out efficient ways to list all common connected subgraphs of
two trees. We begin with a lemma for edge-bicolored complete graphs.

Lemma 1. A dually connected edge-bicolored complete graph G contains, for
every 4 ≤ k ≤ n, a k-vertex dually connected induced subgraph.

Proof. For a vertex v, if G − v remains dually connected, we can delete v from
G and regard the smaller graph as G. Therefore, we need only consider the case
that G contains a vertex v such that G − v is not dually connected. W.l.o.g.,
we may assume that v is a cut vertex of Gb. Since Gr is connected, v is not an
isolated vertex of Gr and hence not adjacent to all vertices of Gb. Therefore Gb

has a vertex x such that dGb
(v, x) = 2. Let y be a vertex of Gb − v not in the

component containing x. Then we have dGb
(x, y) ≥ 3.

We now use a breadth-first search from v to obtain k ≥ 4 vertices S, including
{v, x, y}, such that Gb[S] is connected. Since dGb[S](x, y) ≥ dGb

(x, y) ≥ 3, we see
that in Gb[S], no vertex is adjacent to both x and y, and hence every vertex is
adjacent to at least one of x and y in the complement of Gb[S], i.e., graph Gr[S].
Since {x, y} is an edge in Gr[S], any pair of vertices in Gr[S] has distance at
most 3 and hence Gr[S] is connected, implying that G[S] is dually connected.

144 L. Cai and J. Ye

Theorem 1. Dually Connected Induced Subgraph can be solved in
O(n2α(n2, n)) time for edge-bicolored complete graphs G.

Proof. First we find a largest dully connected component H in G. If G itself is
dully connected, then set H to G. Otherwise, one of Gb or Gr is disconnected,
and G’s dually connected components are equivalent to its maximal strong mod-
ules [11], which can be found in linear time by modular decomposition [11]. If
k ≤ 3 or |V (H)| < k, then the answer is “No”; otherwise the answer is “Yes” by
Lemma 1.

Now we discuss how to find a k-vertex dully connected subgraph inside H . Or-
der vertices of H as v1, v2, . . . , vh with h = |V (H)| > k, and let Vi = {v1, . . . , vi}.
By Lemma 1, we only need to find the smallest index i > k such that H [Vi] is du-
ally connected but H [Vi−1] is not, and then find our required k-vertex subgraph
inside H [Vi].

For this purpose, we construct H by adding v1, v2, . . . , vh one by one in this
order and, in the process, we use disjoint sets to dynamically maintain compo-
nents of Hb[Vi] and Hr[Vi]. For the blue graph Hb (similar for the red graph Hr),
blue sets are components of Hb[Vk] initially. In adding vertex vi to H (i > k), we
create a blue singleton set {vbi } for vertex vi, and for each blue edge vivj with
j < i, we merge {vbi } with the blue set containing vbj . The procedure stops once
there is only one blue set and one red set, i.e., H [Vi] is dually connected but
H [Vi−1] is not. Now we can use the proof of Lemma 1 to find a k-vertex dually
connected subgraph in O(n2) time. Using standard Union-Find data structure,
we can find the required H [Vi] in O(n2α(n2, n)) time, which is also an upper
bound of our algorithm.

We now introduce a structure called dual 2t-path that will be useful in prov-
ing the intractability of Dually Connected Induced Subgraph and also
Dually Connected Deletion in the next section. For any t ≥ 3, a dual
2t-path P ∗ is the edge-bicolored graph formed by taking the union of a blue
path Pb = v1v2 . . . v2t and red path Pr = v2tv2t−2 . . . v4v2v2t−1v2t−3 . . . v3v1 (see
Figure 1 for an example). We denote the two ends v1 and v2t of P ∗ by vb and
vr respectively.

v2 v3 v4 v5 v6v1

v1 = vb v6 = vr
vb vr

Represented by

Blue edge

Red edge

Fig. 1. Dual 2t-path for t = 3

Lemma 2. In an edge-bicolored graph G = (V,Eb ∪ Er), if V ∗ ⊆ V induces a
dual 2t-path P ∗ with ends vb and vr such that the only edges between V ∗ and
V −V ∗ are blue edges (resp., red edges) between vb (resp., vr) and V −V ∗, then
for any dually connected induced subgraph G′ of G that contains a vertex in V ∗

and a vertex in V − V ∗, G′ must contain all vertices of V ∗.

Dual Connectedness of Edge-Bicolored Graphs and Beyond 145

Proof. Deleting some but not all vertices in V ∗ of P ∗ will disconnect the blue
or red graph of G′.

Theorem 2. Dually Connected Induced Subgraph is NP-complete and
W[1]-hard for dual trees.

Proof. The problem is clearly in NP, and we give a polynomial and FPT re-
duction from the classical NP- and W[1]-complete Clique problem [8] to prove
the theorem. For an instance (G, k) of Clique, we construct an edge-bicolored
graph G′ such that both G′

b and G′
r are trees (see Figure 2 for an example):

1. Set p = k(k − 1) and create a new vertex v∗.
2. Replace every vertex v of G by a dual p-path P ∗

v with end vertices vb and
vr, and refer to vertices in P ∗

v as path-vertices. Add blue edge vbv∗ and red
edge vrv∗.

3. For each edge e = uv of G, create edge-vertex ẽ, and replace e by blue edge
ubẽ and red edge vr ẽ.

da b c

G

ar ab br bb cr cb dr dbãb b̃c c̃d

v∗

ãc
G′

Red edge

Blue edge

Dual p-path

Fig. 2. Construction of G′ from G

It is easy to see that the construction of G′ takes polynomial time, and that G′
b

and G′
r are both trees. We claim that G has a k-clique iff G′ has k′ = 1+kp+p/2

vertices S such that G′[S] is dually connected.
Assume that G has a k-clique {v1, v2, . . . , vk}. Let S be the union of {v∗},

path-vertices of all vi and edge-vertices of all vivj . The size of |S| is 1 + kp +
k(k−1)/2 = k′. Since edge-vertex of each vivj is dually connected to v∗ through
vbi and vrj , G′[S] is dually connected.

Conversely, suppose that G′ contains k′ vertices S such that G′[S] is du-
ally connected. Since all dual p-paths are dually connected through v∗, S must
contain v∗. Also by Lemma 2, S contains either all or no vertices of any dual
p-path P ∗

v . Therefore S contains path-vertices of at most k dual p-paths as
|S| = 1 + kp + p/2. Furthermore, since an edge-vertex x̃y is dually connected
to v∗ through both vertices xb and yr, S must contain both xb and yr when S
contains an edge-vertex x̃y. Thus S contains at most k(k − 1)/2 edge-vertices.
It follows that S contains path-vertices of exactly k dual p-paths, and their
corresponding vertices in G form a k-clique of G.

We can regard the complement graph of G′ in the above proof as a graph
with the third color, and obtain the following result to complement Theorem 1.

146 L. Cai and J. Ye

Corollary 1. Given an edge-tricolored complete graph, it is NP-complete and
W[1]-hard to find an induced subgraph on exactly k vertices that is connected in
every monochromatic graph.

3 Dual Connectedness by Vertex Deletion

The intractability of Dually Connected Induced Subgraph calls for an in-
vestigation of the parameterized complexity of its dual problem Dually Con-

nected Deletion: Can we delete exactly k vertices from an edge-bicolored
graph so that the resulting graph is dually connected?

We show that Dually Connected Deletion is also W[1]-hard but be-
comes FPT for dual trees, which is in contrast to the W[1]-hardness of Dually

Connected Induced Subgraph on dual trees. Our FPT algorithm uses the
following connection with a vertex cover problem that is solvable by the random
separation method of Cai, Chan and Chan [4].

Lemma 3. For any dual tree T and k vertices S of T , T − S is a dual tree iff
S covers exactly 2k edges.

Proof. Note that both blue and red graphs of T − S are forests, and an n-
vertex dual tree contains 2(n − 1) edges. Therefore T − S contains at most
2(n − k − 1) = 2(n − 1) − 2k edges, and thus S covers at least 2k edges. This
min-max relation implies our lemma.

Theorem 3. Dually Connected Deletion is NP-complete and W[1]-hard,
but FPT on dual trees.

Proof. We start with an FPT algorithm for the problem on dual trees T . By
Lemma 3, it suffices to find k vertices in T that cover exactly 2k edges. We use
a modification of the random separation algorithm of Cai, Chan and Chan [4]
for finding a subset of vertices to cover exactly k edges.

First, we regard T as an uncolored graph and produce a random black-white
coloring for the vertices of T . We begin by using black to color all vertices
with degree more than 2k, and then we randomly and independently color each
uncolored vertex by black or white with probability 1

2 . Given a black-white
coloring of vertices of T , a set S of k vertices is a well-colored solution if

1. S covers exactly 2k edges, and
2. all vertices in S are white and all vertices in NT (S) are black.

Let Vw denote the set of white vertices, and refer to connected components
of T [Vw] as white components. For a white component Hi, let ni be the number
of vertices in Hi and ei the number of edges covered by vertices of Hi. Then a
well-colored solution consists of a collection H′ of white components satisfying∑

Hi∈H′
ni = k and

∑
Hi∈H′

ei = 2k.

Dual Connectedness of Edge-Bicolored Graphs and Beyond 147

Therefore we can easily formulate the problem of finding a well-colored solution
as a 0-1 knapsack problem, and solve it in O(kn) time using the standard dy-
namic programming algorithm for the 0-1 knapsack problem. Note that it takes
O(n) time to compute all ni and ei.

Since a well-colored solution S satisfies |S ∪NT (S)| ≤ 3k, our random black-
white coloring has probability at least 2−3k to produce a well-colored solution.
Therefore when T has a solution, we can find it with probability at least 2−3k in
O(kn) time. We can derandomize the algorithm by a family of (n, 3k)-universal
sets of size 8kkO(log k) logn [16], and thus obtain a deterministic FPT algorithm
running in time 8kkO(log k)n logn.

For our problem on general edge-bicolored graphs, we give an FPT reduction
from the classical W[1]-complete Independent Set problem [6] to show W[1]-
hardness. For an arbitrary instance (G, k) of Independent Set, we construct
an edge-bicolored graph G′ from G as follows (see Figure 3 for an example):

1. Replace each edge uv of G by the replacement gadget Huv in Figure 3.
2. Create a dual 2k-path P ∗ with end vertices vb and vr, and connect every

vertex of G to vb by a blue edge and to vr by a red edge.

d

a

cb

G

vr

G′
d

b

a

c

vb

P ∗

Replacement gadget Huv

Blue edge

Red edge

Dual 2k-path

u v

Fig. 3. Construction of G′ by using the replacement gadget Huv

The construction clearly takes polynomial time, and we show that G has
an independent k-set iff we can deleting k vertices from G′ to obtain a dually
connected graph.

If G contains an independent set S with k vertices, then for each edge e of G,
at least one end-vertex, say v, of e remains in G′ − S. It is easy to verify that
G′ − S is dually connected as all vertices of He in G′ − S are dually connected
to v, which is dully connected to the dual path P ∗ in Step 2.

Conversely, suppose that G′ contains k vertices S such that G′ − S is dually
connected. By the property of dual paths (Lemma 2), neither dual 2k-path P ∗

nor dual 2k-path in any He contains any vertex from S. Therefore all vertices
in S are vertices of G, and we show that S is an independent set of G. For any
two vertices u, v ∈ S, if uv is an edge of G, then the dual 2k-path in Huv is
disconnected from G′ after deleting S, contrary to the assumption that G′ − S
is dually connected. Therefore no two vertices in S are adjacent in G, and thus
S is an independent k-set of G.

148 L. Cai and J. Ye

4 Dual Separators

Complimenting dual connectedness, we now consider problems of disconnecting
blue and red graphs simultaneously by vertex deletion. In particular, we study
Dual Separator and Dual Separator For Two Terminals: Is it possible
to disconnect two given vertices s and t in both Gb and Gr of an edge-bicolored
graph G by removing ≤ k vertices?

Although minimum separators in uncolored graphs can be found in polynomial
time, it is intractable to find minimum-size dual separators in edge-bicolored
graphs as we will show that both dual separator problems are NP-complete.
However, the parameterized complexity of these two problems remain open.

Theorem 4. Dual Separator For Two Terminals is NP-complete.

Proof. The problem is clearly in NP, and we prove the theorem by a reduction
from Vertex Cover on cubic graphs, whose NP-completeness was established
by Garey, Johnson and Stockmeyer [9]. Given a cubic graph G = (V,E), we
construct an edge-bicolored graph G′ as follows (see Figure 4 for an example):

1. Partition edges of G into two bipartite graphs Gb = (Xb, Yb;Eb) and Gr =
(Xr, Yr;Er), and color all edges of Gb blue and all edges of Gr red.

2. Introduce two new vertices s and t as terminals.
3. Connect s with every vertex in Xb by a blue edge and every vertex in Xr by

a red edge. Similarly, connect t with every vertex in Yb by a blue edge and
every vertex in Yr by a red edge.

4. Turn the above multigraph into a simple graph by subdividing each blue
edge incident with s or t.

G

a

G′

s tcb

d

a

b
c

d

Fig. 4. In graph G′, blue edges are solid and red edges are dashed

The above construction takes polynomial time since we can partition edges of
any cubic graph G into two bipartite graphs Gb and Gr in polynomial time by
using, for instance, a proper edge 4-coloring of G.

In G′, it is easy to see that every monochromatic (s, t)-path goes through some
edge of G, and every edge of G is contained in some monochromatic (s, t)-path
of G′. This clearly implies that for any set S of vertices of G, S is a vertex cover

Dual Connectedness of Edge-Bicolored Graphs and Beyond 149

of G iff it is a dual (s, t)-separator of G′. Furthermore, we notice that if an (s, t)-
separator S′ of G′ involves some vertices V ∗ used for subdividing blue edges, we
can always replace V ∗ by its neighbors in Xb ∪ Yb to get an (s, t)-separator S
with |S| ≤ |S′|. Therefore we can conclude that G admits a vertex cover with
≤ k vertices iff G′ has an (s, t)-separator with ≤ k vertices, and hence we have
a required polynomial reduction.

The above theorem enables us to show the hardness of Dual Separator.

Theorem 5. Dual Separator is NP-complete.

Proof. We give a polynomial reduction from Dual Separator For Two Ter-

minals by constructing a new graph G′′ from the graph G′ in the proof of Theo-
rem 4. Let S′

b (resp., T ′
b) denote vertices that subdivide blue edges incident with

s and t in G′. To duplicate a vertex v, we create a new vertex v′ and add all
blue (resp., red) edges between v and vertices corresponding to NG′

b
(v) (resp.,

NG′
r
(v)). We construct G′′ as follows:

1. Take graph G′, and duplicate k copies of s and t. Denote by S vertex s and
its k duplicates, and denote by T vertex t and its k duplicates.

2. Make k duplicates of each vertex in S′
b (resp., T ′

b). Denote by S′′
b (resp., T ′′

b)
vertices S′

b (resp., T ′
b) and all their duplicates.

3. Between S′′
b (resp., T ′′

b) and T (resp., S), add all possible edges and color
them red.

It is easy to see that G′ has a dual (s, t)-separator of size k iff G′′ has a dual
(S, T)-separator of size k. We claim that G′′ has a dual (S, T)-separator of size
k iff it has a dual separator of size k, which will prove the theorem.

A dual (S, T)-separator is certainly a dual separator of G′′. Conversely, sup-
pose that G′′ does not have a dual (S, T)-separator of size k. Then after deleting
k vertices V ∗, we will get a graph G∗ such that S and T are connected in G∗

b or
G∗

r . Note that each vertex in W = S ∪ T ∪ S′′
b ∪ T ′′

b has k+ 1 copies, and thus it
is useless to delete any vertices in W . Hence we can assume that V ∗ ∩W = ∅.
Suppose that S and T are connected in G∗

r . Since V (G) = Xr∪Yr, each vertex in
V (G)∩ V (G∗) is adjacent to a vertex in S or T with red edges. Furthermore all
vertices in S′′

b ∪T ′′
b are adjacent to S or T with red edges by Step 3 in construct-

ing G′′, implying that G∗
r is connected. By a similar argument, we can deduce

that G∗
b is connected when S and T are connected in G∗

b . Thus we have proved
this theorem.

5 Concluding Remarks

Results on connectedness and separators for edge-bicolored graphs have shown a
rich diversity of the complexity of induced subgraph problems on edge-bicolored
graphs, which extends an invitation for studying various induced subgraph prob-
lems on edge-bicolored graphs. In fact we have obtained a complete characteri-
zation of Induced (Πb, Πr)-Subgraph on edge-bicolored graphs for hereditary
properties Πb and Πr, and also obtained FPT algorithms for its parametric dual

150 L. Cai and J. Ye

problems for properties with finite forbidden induced subgraph characterizations.
Furthermore, the work in the paper also enables us to obtain some results for
digraphs. Due to space limit, proofs for the following theorems are omitted and
will appear in the full paper.

Building on a characterization of Khot and Raman [13] for induced subgraph
problems on uncolored graphs and Ramsey’s theorem, we completely character-
ize the complexity of Induced (Πb, Πr)-Subgraph on edge-bicolored graphs for
hereditary properties Πb and Πr, which depends on whether Πb and Πr include
all complete graphs Ki or trivial graphs Ki (see Figure 5 for an illustration).

Poly

NP-hard
but FPT

NP-hard &
W[1]-hard

¬∀Ki

∀Ki

¬∀Ki

¬∀Ki

∀Ki

¬∀Ki

∀Ki

∀Ki

∀Ki

∀Ki

∀Ki

¬∀Ki

¬∀Ki

∀Ki

¬∀Ki

¬∀Ki

Πb

Πr

Fig. 5. For a property Π , ∀Ki = “Π includes all complete graphs” and ¬∀Ki = “Π
excludes some complete graphs”. Similar for trivial graphs Ki.

Theorem 6. For hereditary properties Πb and Πr, the complexity of Induced
(Πb, Πr)-Subgraph is completely determined as follows:

1. NP-hard and W[1]-hard if one of Πb and Πr includes all trivial graphs, and
the other excludes some complete graphs but includes all trivial graphs or
vice versa.

2. NP-hard but FPT if both Πb and Πr include all complete graphs and all
trivial graphs.

3. Polynomial-time solvable if both Πb and Πr exclude some trivial graphs, or
one of Πb and Πr excludes some complete graphs and some trivial graphs.

We remark that the above theorem implies a complete characterization of the
Dual Π-Subgraph problem, i.e., Induced (Π,Π)-Subgraph, for hereditary
Π (see the main diagonal of Figure 5).

For the parametric dual problem of Induced (Πb, Πr)-Subgraph, i.e., delet-
ing k vertices to obtain an induced (Πb, Πr)-graph, we can easily deduce the fol-
lowing general result on edge-colored multigraphs as a corollary of a well-known
result of the first author regarding graph modification problems [3].

Theorem 7. Let G1, . . . , Gt be graphs, and Π1, . . . , Πt graph properties charac-
terizable by finite forbidden induced subgraphs. It is FPT to determine whether
there are k vertices in V =

⋃t
i=1 V (Gi) such that G[V (Gi) ∩ V] is a Πi-graph

for every 1 ≤ i ≤ t.

Dual Connectedness of Edge-Bicolored Graphs and Beyond 151

Edge-bicolored graphs also have close connections with digraphs, and dually
connected graphs resemble strongly connected digraphs. We may use ideas in
this paper to study subgraph problems on digraphs. In particular, we can easily
modify proofs of Theorem 2 and Theorem 3 to obtain the following results for
strongly connected subgraphs.

Theorem 8. It is NP-complete and W[1]-hard to determine whether a digraph
G contain exactly k vertices V ′ such that G[V ′] (resp., G− V ′) is strongly con-
nected.

We hope that our work will stimulate further research on simultaneous sub-
graph problems for edge-bicolored graphs and edge-bicolored multigraphs in gen-
eral. Indeed, many fundamental and interesting problems are awaiting to be
investigated, and we list some open problems here.

Problem 1. Determine whether Dually Connected Deletion is FPT on
“dual trees” when blue and red graphs are defined by G[Eb] and G[Er], instead
of (V,Eb) and (V,Er).

Problem 2. Determine the parameterized complexity of Dual Separator and
Dual Separator For Two Terminals.

For hereditary properties Π not covered by Theorem 7, the parameterized
complexity of Dual Π-Graph Deletion is open for various fundamental prop-
erties Π . We note that for every property Π in the following problem, FPT
algorithm exists for turning an uncolored graph into a Π-graph by deleting k
vertices [10,5,17,14,15].

Problem 3. Determine parameterized complexities of Dual Π-Graph Dele-

tion for Π being acyclic, bipartite, chordal, and planar graphs, respectively.

For a different flavor, we may also consider modifying an edge-bicolored graph
into a required graph by edge recoloring. We have obtained some interesting
results in connection with dual connectedness and separators, and we will report
our findings in a separate paper.

Problem 4. Determine complexities of turning an edge-bicolored graph into a
dual Π-graph for Π being acyclic, bipartite, chordal, and planar graphs, respec-
tively, by edge recoloring.

We expect many exciting results concerning simultaneous subgraphs in edge-
bicolored graphs and edge-colored multigraphs in general, which may also shed
light on other graph problems such as problems on digraphs.

Acknowledgement. We are grateful to Michel Habib for bringing our attention
to the work on common connected components and common intervals.

152 L. Cai and J. Ye

References

1. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multi-
graphs: a survey. Discrete Mathematics 165, 39–60 (1997)

2. Bui-Xuan, B.M., Habib, M., Paul, C.: Competitive graph searches. Theoretical
Computer Science 393(1), 72–80 (2008)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

4. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

5. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory of Com-
puting Systems 41(3), 479–492 (2007)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

7. Gai, A.T., Habib, M., Paul, C., Raffinot, M.: Identifying common connected com-
ponents of graphs. Technical Report RR-LIRMM-03016, LIRMM, Université de
Montpellier II (2003)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

9. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1(3), 237–267 (1976)

10. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computer and System Sciences 72, 1386–1396 (2006)

11. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Computer Science Review 4(1), 41–59 (2010)

12. Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored
graphs-a survey. Graphs and Combinatorics 24(4), 237–263 (2008)

13. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theoretical Computer Science 289(2), 997–1008 (2002)

14. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4),
747–768 (2010)

15. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorith-
mica 62(3-4), 807–822 (2012)

16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of the 36th Annual Symposium of Foundations of Computer
Science, pp. 182–191 (1995)

17. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

18. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica 26(2), 290–309 (2000)

Combinatorial Voter Control in Elections�

Jiehua Chen1, Piotr Faliszewski2, Rolf Niedermeier1, and Nimrod Talmon1

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{jiehua.chen@tu-berlin.de,rolf.niedermeier}@tu-berlin.de,

nimrodtalmon77@gmail.com
2 AGH University of Science and Technology, Krakow, Poland

faliszew@agh.edu.pl

Abstract. Voter control problems model situations such as an external
agent trying to affect the result of an election by adding voters, for exam-
ple by convincing some voters to vote who would otherwise not attend
the election. Traditionally, voters are added one at a time, with the goal
of making a distinguished alternative win by adding a minimum number
of voters. In this paper, we initiate the study of combinatorial variants of
control by adding voters: In our setting, when we choose to add a voter v,
we also have to add a whole bundle κ(v) of voters associated with v. We
study the computational complexity of this problem for two of the most
basic voting rules, namely the Plurality rule and the Condorcet rule.

1 Introduction

We study the computational complexity of control by adding voters [2, 18],
investigating the case where the sets of voters that we can add have some com-
binatorial structure. The problem of election control by adding voters models
situations where some agent (e.g., a campaign manager for one of the alterna-
tives) tries to ensure a given alternative’s victory by convincing some undecided
voters to vote. Traditionally, in this problem we are given a description of an
election (that is, a set C of alternatives and a set V of voters who decided to
vote), and also a set W of undecided voters (for each voter in V ∪W we assume
to know how this voter intends to vote which is given by a linear order of the
set C; we might have good approximation of this knowledge from preelection
polls). Our goal is to ensure that our preferred alternative p becomes a winner,
by convincing as few voters from W to vote as possible (provided that it is at
all possible to ensure p’s victory in this way).

Control by adding voters corresponds, for example, to situations where sup-
porters of a given alternative make direct appeals to other supporters of the
alternative to vote (for example, they may stress the importance of voting, or

� JC was supported by the Studienstiftung des Deutschen Volkes. PF was supported
by the DFG project PAWS (NI 369/10). NT was supported by the DFG Research
Training Group “Methods for Discrete Structures” (GRK 1408). This work has been
partly supported by COST Action IC1205 on Computational Social Choice.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 153–164, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

154 J. Chen et al.

help with the voting process by offering rides to the voting locations, etc.). Un-
fortunately, in its traditional phrasing, control by adding voters does not model
larger-scale attempts at convincing people to vote. For example, a campaign
manager might be interested in airing a TV advertisement that would motivate
supporters of a given alternative to vote (though, of course, it might also moti-
vate some of this alternative’s enemies), or maybe launch viral campaigns, where
friends convince their own friends to vote. It is clear that the sets of voters that
we can add should have some sort of a combinatorial structure (e.g., a TV ad-
vertisement appeals to a particular group of voters and we can add all of them
at the unit cost of airing the advertisement).

The goal of our work is to formally define an appropriate computational prob-
lem modeling a combinatorial variant of control by adding voters and to study
its computational complexity. Specifically, we focus on the Plurality rule and
the Condorcet rule, mainly because the Plurality rule is the most widely used
rule in practice, and it is one of the few rules for which the standard variant of
control by adding voters is solvable in polynomial time [2], whereas for the Con-
dorcet rule the problem is polynomial-time solvable for the case of single-peaked
elections [14]. For the case of single-peaked elections, in essence, all our hard-
ness results for the Condorcet rule directly translate to all Condorcet-consistent
voting rules, a large and important family of voting rules. We defer the formal
details, definitions, and concrete results to the following sections. Instead, we
state the high-level, main messages of our work:

– Many typical variants of combinatorial control by adding voters are in-
tractable, but there is also a rich landscape of tractable cases.

– Assuming that voters have single-peaked preferences does not lower the
complexity of the problem (even though it does so in many election prob-
lems [6, 9, 14]). On the contrary, assuming single-crossing preferences does
lower the complexity of the problem.

We believe that our setting of combinatorial control, and—more generally—
combinatorial voting, offers a very fertile ground for future research and we
intend the current paper as an initial step.

Related Work. In all previous work on election control, the authors always as-
sumed that one could affect each entity of the election at unit cost only (e.g.,
one could add a voter at a unit cost; adding two voters always was twice as ex-
pensive as adding a single voter). Only the paper of Faliszewski et al. [15], where
the authors study control in weighted elections, could be seen as an exception:
One could think of adding a voter of weight w as adding a group of w voters of
unit weight. On the one hand, the weighted election model does not allow one
to express rich combinatorial structures as those that we study here, and on the
other hand, in our study we consider unweighted elections only (though adding
weights to our model would be seamless).

The specific combinatorial flavor of our model has been inspired by the seminal
work of Rothkopf et al. [23] on combinatorial auctions (see, e.g., Sandholm [24]
for additional information). There, bidders can place bids on combinations of

Combinatorial Voter Control in Elections 155

items. While in combinatorial auctions one “bundles” items to bid on, in our
scenario one bundles voters.

In the computational social choice literature, combinatorial voting is typically
associated with scenarios where voters express opinions over a set of items that
themselves have a specific combinatorial structure (typically, one uses CP-nets to
model preferences over such alternative sets [5]). For example, Conitzer et al. [10]
studied a form of control in this setting. In contrast, we use the standard model
of elections (where all alternatives and preference orders are given explicitly),
but we have a combinatorial structure of the sets of voters that can be added.

2 Preliminaries

We assume familiarity with standard notions regarding algorithms and complex-
ity theory. For each nonnegative integer z, we write [z] to mean {1, . . . , z}.
Elections. An election E := (C, V) consists of a set C of m alternatives and a
set V of |V | voters v1, v2, . . . , v|V |. Each voter v has a linear order &v over the
set C, which we call a preference order. We call a voter v ∈ V a c-voter if she
prefers c ∈ C the best. Given a set C of alternatives, if not stated explicitly, we
write 〈C〉 to denote an arbitrary but fixed preference order over C.

Voting Rules. A voting rule R is a function that given an election E outputs
a (possibly empty) set R(E) ⊆ C of the (tied) election winners. We study the
Plurality rule and the Condorcet rule. Given an election, the Plurality score
of an alternative c is the number of voters that have c at the first position
in their preference orders; an alternative is a Plurality winner if it has the
maximum Plurality score. An alternative c is a Condorcet winner if it beats
all other alternatives in head-to-head contests. That is, c is a Condorcet win-
ner in election E = (C, V) if for each alternative c′ ∈ C \ {c} it holds that
|{v ∈ V | c &v c′}| > |{v ∈ V | c′ &v c}|. Condorcet’s rule elects the (unique)
Condorcet winner if it exists, and returns an empty set otherwise. A voting rule
is Condorcet-consistent if it elects a Condorcet winner when there is one (how-
ever, if there is no Condorcet winner, then a Condorcet-consistent rule is free to
provide any set of winners).

Domain Restrictions. Intuitively, an election is single-peaked [4] if it is possible to
order the alternatives on a line in such a way that for each voter v the following
holds: If c is v’s most preferred alternative, then for each two alternatives ci
and cj that both are on the same side of c (with respect to the ordering of
the alternatives on the line), among ci and cj, v prefers the one closer to c.
For example, single-peaked elections arise when we view the alternatives on the
standard political left-right spectrum and voters form their preferences based
solely on alternatives’ positions on this spectrum. There are polynomial-time
algorithms that given an election decide if it is single-peaked and, if so, provide
a societal axis for it [1, 13]. Single-crossing elections, introduced by Roberts [22],
capture a similar idea as single-peaked ones, but from a different perspective.
This time we assume that it is possible to order the voters so that for each two

156 J. Chen et al.

alternatives a and b either all voters rank a and b identically, or there is a single
point along this order where voters switch from preferring one of the alternatives
to preferring the other one. There are polynomial-time algorithms that decide if
an election is single-crossing and, if so, produce the voter order witnessing this
fact [12, 7].

Combinatorial Bundling Functions. Given a voter set X , a combinatorial bun-
dling function κ : X → 2X (abbreviated as bundling function) is a function
assigning to each voter a subset of voters. For convenience, for each subset X ′ ⊆
X , we let κ(X ′) =

⋃
x∈X′ κ(x). For x ∈ X , κ(x) is called x’s bundle (and for this

bundle, x is called its leader). We assume that x ∈ κ(x) and so κ(x) is never
empty. We typically write b to denote the maximum bundle size under a given κ
(which will always be clear from context). Intuitively, we use combinatorial bun-
dling functions to describe the sets of voters that we can add to an election at
a unit cost. For example, one can think of κ(x) as the group of voters that join
the election under x’s influence.

We are interested in various special cases of bundling functions. We say that
κ is leader-anonymous if for each two voters x and y with the same preference
order κ(x) = κ(y) holds. Furthermore, κ is follower-anonymous if for each two
voters x and y with the same preference orders, and each voter z, it holds that x ∈
κ(z) if and only if y ∈ κ(z). We call κ anonymous if it is both leader-anonymous
and follower-anonymous. The swap distance between two voters vi and vj is
the minimum number of swaps of consecutive alternatives that transform vi’s
preference order into that of vj . Given a number d ∈ N, we call κ a full-d bun-
dling function if for each x ∈ X , κ(x) is exactly the set of all y ∈ X such that
the swap distance between the preference orders of x and y is at most d.

Central Problem. We consider the following problem for a given voting rule R:

R Combinatorial Constructive Control by Adding Voters

(R-C-CC-AV)
Input: An election E = (C, V), a set W of (unregistered) voters with V ∩
W = ∅, a bundling function κ : W → 2W , a preferred alternative p ∈ C,
and a bound k ∈ N.
Question: Is there a subset of voters W ′ ⊆ W of size at most k such
that p ∈ R(C, V ∪ κ(W ′)), where R(C,X) is the set of winners of the
election (C,X) under the rule R ?

We note that we use here a so-called nonunique-winner model. For a control
action to be successful, it suffices for p to be one of the tied winners. Throughout
this work, we refer to the set W ′ of voters such that p wins election (C, V ∪κ(W ′))
as the solution and denote k as the solution size.
R-C-CC-AV is a generalization of the well-studied problem R Construc-

tive Control by Adding Voters (R-CC-AV) (in which κ is fixed so that
for each w ∈ W we have κ(w) = {w}). The non-combinatorial problem CC-AV

is polynomial-time solvable for the Plurality rule [2], but is NP-complete for the
Condorcet rule [20].

Combinatorial Voter Control in Elections 157

Table 1. Computational complexity classification of Plurality-C-CC-AV
(since the non-combinatorial problem CC-AV is already NP-hard for Condorcet’s rule,
we concentrate here on the Plurality rule). Each row and column in the table corre-
sponds to a parameter such that each cell contains results for the two corresponding
parameters combined. Due to symmetry, there is no need to consider the cells under
the main diagonal, therefore they are painted in gray. ILP-FPT means FPT based on a
formulation as an integer linear program.

m n k b d

alternatives (m)
Non-anonymous: W[2]-h wrt. k even if m = 2 [Thm. 2]

Anonymous: ILP-FPT wrt. m [Thm. 3]

unreg. voters (n) FPT wrt. n

solution size (k)
XP [Obs. 1]

Single-peaked & full-1 κ:
W[1]-h wrt. k [Thm. 8]

Anonymous & b = 3:
W[1]-h wrt. k [Thm. 1]

max. bundle size (b)
b = 2 : NP-h [Thm. 4] and P for full-d κ [Thm. 5]
b = 3 : NP-h even for full-d κ [Thm. 6]
b ≥ 4 : NP-h even for full-1 κ [Thm. 7]

max. swap dist. (d)
d = 1: W[1]-h wrt. k [Thm. 8]

Single-crossing & full-d κ: P [Thm. 9]

Parameterized Complexity. An instance (I, k) of a parameterized problem
consists of the actual instance I and an integer k being the parameter [11]. A pa-
rameterized problem is called fixed-parameter tractable (is in FPT) if there is an
algorithm solving it in f(k) · |I|O(1) time, for an arbitrary computable function f
only depending on parameter k, whereas an algorithm with running-time |I|f(k)
only shows membership in the class XP (clearly, FPT ⊆ XP). One can show that
a parameterized problem L is (presumably) not fixed-parameter tractable by de-
vising a parameterized reduction from a W[1]-hard or a W[2]-hard problem to L. A
parameterized reduction from a parameterized problem L to another parameter-
ized problemL′ is a function that, given an instance (I, k), computes in f(k)·|I|O(1)

time an instance (I ′, k′), such that k′ ≤ g(k) and (I, k) ∈ L⇔ (I ′, k′) ∈ L′. Betzler
et al. [3] survey parameterized complexity investigations in voting.

Our Contributions. As R-C-CC-AV is generally NP-hard even for R being the
Plurality rule, we show several fixed-parameter tractability results for some of
the natural parameterizations of R-C-CC-AV; we almost completely resolve
the complexity of C-CC-AV, for the Plurality rule and the Condorcet rule, as
a function of the maximum bundle size b and the maximum distance d from a
voter v to the farthest element of her bundle. Further, we show that the problem
remains hard even when restricting the elections to be single-peaked, but that
it is polynomial-time solvable when we focus on single-crossing elections. Our
results for Plurality elections are summarized in Table 1.

3 Complexity for Unrestricted Elections

In this section we provide our results for the case of unrestricted elections, where
voters may have arbitrary preference orders. In the next section we will consider

158 J. Chen et al.

single-peaked and single-crossing elections that only allow “reasonable” prefer-
ence orders.

Number of Voters, Number of Alternatives, and Solution Size. We
start our discussion by considering parameters “the number m of alternatives”,
“the number n of unregistered voters”, and “the solution size k”. A simple brute-
force algorithm, checking all possible combinations of k bundles, proves that both
Plurality-C-CC-AV and Condorcet-C-CC-AV are in XP for parameter k,
and in FPT for parameter n (the latter holds because k ≤ n). Indeed, the same
result holds for all voting rules that are XP/FPT-time computable for the re-
spective parameters.

Observation 1. Both Plurality-C-CC-AV and Condorcet-C-CC-AV are
solvable in O(nk · n ·m · winner) time, where winner is the complexity of deter-
mining Plurality/Condorcet winners.

The XP result for Plurality-C-CC-AV with respect to the parameter k
probably cannot be improved to fixed-parameter tractability. Indeed, for param-
eter k we show that the problem is W[1]-hard, even for anonymous bundling
functions and for maximum bundle size three.

Theorem 1. Plurality-C-CC-AV is NP-hard and W[1]-hard when parame-
terized by the solution size k, even when the maximum bundle size b is three and
the bundling function is anonymous.

Proof (Sketch). We provide a parameterized reduction from the W[1]-hard prob-
lem Clique parameterized by the parameter h [11], which asks for the existence
of a complete subgraph with h vertices in an input graph G.

Let (G, h) be a Clique instance. Without loss of generality, we assume that
G is connected, that h ≥ 3, and that each vertex in G has degree at least h− 1.
We construct an election E = (C, V) with C := {p, w, g} ∪ {ce | e ∈ E(G)},
and set p to be the preferred alternative. The registered voter set V consists of(
h
2

)
+h voters each with preference order w & 〈C \{w}〉, another

(
h
2

)
voters each

with preference order g & 〈C \ {g}〉, and another h voters each with preference
order p & 〈C \ {p}〉. For each vertex u ∈ V (G), we define C(u) := {ce | e ∈
E(G) ∧ u ∈ e}, and construct the set W of unregistered voters as follows:

(i) For each vertex u ∈ V (G), we add an unregistered g-voter wu with prefer-
ence order g & 〈C(u)〉 & 〈C \ ({g} ∪ C(u))〉 and we set κ(wu) = {wu}.

(ii) For each edge e = {u, u′} ∈ E(G), we add an unregistered p-voter we with
preference order p & ce & 〈C \ {p, ce}〉 and we set κ(we) = {wu, wu′ , we}.

Since all the unregistered voters have different preference orders (this is so be-
cause G is connected, h ≥ 3, and each vertex has degree at least h − 1), every
bundling function for our instance is anonymous. Finally, we set k :=

(
h
2

)
. ��

If we drop the anonymity requirement for the bundling function, then we
obtain a stronger intractability result. For parameter k, the problem becomes

Combinatorial Voter Control in Elections 159

W[2]-hard, even for two alternatives. This is quite remarkable because typically
election problems with a small number of alternatives are easy (they can be
solved either through brute-force attacks or through integer linear program-
ming attacks employing the famous FPT algorithm of Lenstra [19]; see the
survey of Betzler et al. [3] for examples, but note that there are also known
examples of problems where a small number of alternatives does not seem to
help [8]). Further, since our proof uses only two alternatives, it applies to almost
all natural voting rules: For two alternatives almost all of them (including the
Condorcet rule) are equivalent to the Plurality rule. The reduction is from the
W[2]-complete problem Set Cover parameterized by the solution size [11].

Theorem 2. Both Plurality-C-CC-AV and Condorcet-C-CC-AV param-
eterized by the solution size k are W[2]-hard, even for two alternatives.

If we require the bundling function to be anonymous, then C-CC-AV can
be formulated as an integer linear program where the number of variables and
the number of constraints are bounded by some function in the number m of
alternatives. Hence, C-CC-AV is fixed-parameter tractable due to Lenstra [19].

Theorem 3. For anonymous bundling functions, both Plurality-C-CC-AV

and Condorcet-C-CC-AV parameterized by the number m of alternatives are
fixed-parameter tractable.

Combinatorial Parameters. We focus now on the complexity of Plurality-
C-CC-AV as a function of two combinatorial parameters: (a) the maximum
swap distance d between the leader and his followers in one bundle, and (b) the
maximum size b of each voter’s bundle.

First, if b = 1, then C-CC-AV reduces to CC-AV and, thus, can be solved
by a greedy algorithm in polynomial time [2]. However, for arbitrary bundling
functions, Plurality-C-CC-AV becomes intractable as soon as b = 2.

Theorem 4. Plurality-C-CC-AV is NP-hard even if the maximum bundle
size b is two.

Proof (Sketch). We reduce from a restricted variant of 3SAT, where each clause
has either two or three literals, each variable occurs exactly four times, twice as
a positive literal, and twice as a negative literal. This variant is still NP-hard
(the proof is analogous to the one shown for [25, Theorem 2.1]). Given such a
restricted 3SAT instance (C,X), where C is the set of clauses over the set of
variables X , we construct an election (C, V) with C := {p, w} ∪ {ci | Ci ∈ C};
we call ci the clause alternatives. We set k := 4|X |. We construct the set V such
that the initial score of w is 4|X |, the initial score of each clause alternative ci
is 4|X | − |Ci| + 1, and the initial score of p is zero. We construct the set W of
unregistered voters as follows (we will often write �j to refer to a literal that
contains variable xj ; depending on the context, �j will mean either xj or ¬xj
and the exact meaning will always be clear):

160 J. Chen et al.

1. for each variable xj ∈ X , we construct four p-voters, denoted by pj1, p
j
2, p

j
3, p

j
4;

2. for each clause Ci ∈ C and each literal � contained in Ci, we construct a
ci-voter, denoted by c�i ; we call such voter a clause voter.

We define the assignment function κ as follows: For each variable xj ∈ X that
occurs as a negative literal (¬xj) in clauses Ci and Cs, and as a positive lit-

eral (xj) in clauses Cr and Ct, we set κ(pj1) = {pj1, c
¬xj

i }, κ(c
¬xj

i) = {c¬xj

i , pj2},
κ(pj2) = {pj2, c

xj
r }, κ(c

xj
r) = {cxj

r , pj3}, κ(pj3) = {pj3, c
¬xj
s)}, κ(c

¬xj
s) = {c¬xj

s , pj4},
κ(pj4) = {pj4, c

xj

t }, κ(c
xj

t) = {cxj

t , pj1}.
The general idea is that in order to let p win, all p-voters must be in κ(W ′) and

no clause alternative should gain more than (|Ci|− 1) points. We now show that
if (C,X) has a satisfying truth assignment, then there is a size-k subset W ′ ⊆W
such that p wins the election (C, V ∪ κ(W ′)) (recall that k = 4|X |). The proof
for the reverse direction is omitted.

Let β : X → {T, F} be a satisfying truth assignment function for (C,X).
Intuitively, β will guide us through constructing the set W ′ in the following way:

First, for each variable xj , we put into W ′ those voters c
�j
i for whom β sets �j to

false (this way in κ(W ′) we include 2|X | p-voters and, for each clause ci, at most

(|Ci|−1) ci-voters). Then, for each clause voter c
�j
i already in W ′, we also add the

voter pja, 1 ≤ a ≤ 4, that contains c
�j
i in his or her bundle (this way we include in

κ(W ′) additional 2|X | p-voters without increasing the number of clause voters
included). Formally, we define W ′ as follows: W ′ := {c¬xj

i , pja | ¬xj ∈ Ci ∧
β(xj) = T ∧ c

¬xj

i ∈ κ(pja)} ∪ {cxj

i , pja | xj ∈ Ci ∧ β(xj) = F ∧ c
¬xj

i ∈ κ(pja)}.
As per our intuitive argument, one can verify that all p-voters are contained in
κ(W ′) and each clause alternative ci gains at most (|Ci| − 1) points. ��

The situation is different for full-d bundling functions, because we can extend
the greedy algorithm by Bartholdi et al. [2] to bundles of size two.

Theorem 5. If κ is a full-d bundling function and the maximum bundle size b
is two, then Plurality-C-CC-AV is polynomial-time solvable.

However, as soon as b = 3, we obtain NP-hardness, by modifying the reduction
used in Theorem 4.

Theorem 6. If κ is a full-d bundling function, then Plurality-C-CC-AV is
NP-hard even if the maximum bundle size b is three.

Taking also the swap distance d into account, we find out that both Plural-

ity-C-CC-AV and Condorcet-C-CC-AV are NP-hard, even if d = 1. This
stands in contrast to the case where d = 0, where R-C-CC-AV reduces to the
CC-AV problem (perhaps for the weighted voters [15]), which, for Plurality
voting, is polynomial-time solvable by a simple greedy algorithm.

Theorem 7. Plurality-C-CC-AV is NP-hard even for full-1 bundling func-
tions and even if the maximum bundle size b is four.

Combinatorial Voter Control in Elections 161

4 Single-Peaked and Single-Crossing Elections

In this section, we focus on instances with full-d bundling functions, and we do so
because without this restriction the hardness results from previous sections eas-
ily translate to our restricted domains (at least for the case of the Plurality rule).
We find that the results for the combinatorial variant of control by adding voters
for single-peaked and single-crossing elections are quite different than those for
the non-combinatorial case. Indeed, both for Plurality and for Condorcet, the
voter control problems for single-peaked elections and for single-crossing elec-
tions are solvable in polynomial time for the non-combinatorial case [6, 14, 21].
For the combinatorial case, we show hardness for both Plurality-C-CC-AV

and Condorcet-C-CC-AV for single-peaked elections, but give polynomial-
time algorithms for single-crossing elections. We mention that the intractability
results can also be seen as regarding anonymous bundling functions because all
full-d bundling functions are leader-anonymous and follower-anonymous.

Theorem 8. Both Plurality-C-CC-AV and Condorcet-C-CC-AV param-
eterized by the solution size k are W[1]-hard for single-peaked elections, even for
full-1 bundling functions.

Proof (Sketch). We provide a parameterized reduction from the W[1]-complete
Partial Vertex Cover (PVC) parameterized by “solution size” h [17], which
asks for a set of at most h vertices in a graph G, which intersects with at least �
edges. Given a PVC instance (G, h, �), we set k := h, construct an election E =
(C, V) with C := {p, w}∪{ai, ai, bi, bi | ui ∈ V (G)}, and set p to be the preferred
alternative, such that the initial score of w is h + �, and is zero for all other
alternatives. We do so by creating h+ � registered voters who all have the same
preference order & such that it differs from the following canonical preference
order : p&w&a1&a1& . . .&a|V (G)|&a|V (G)|& b1& b1& . . .& b|V (G)|& b|V (G)| by
only the first pair {p, w}, which is swapped.

For each set P of disjoint pairs of alternatives, neighboring with respect to
the canonical preference order, we define the preference order diff-order(P) to
be identical to the canonical preference order, except that all the pairs of alter-
natives in P are swapped. The unregistered voter set W consists of the following
three types of voters:

(i) for each edge e = {ui, uj} ∈ E(G) we have an edge voter we with preference
order diff-order({{ai, ai}, {aj, aj}}),

(ii) for each edge e = {ui, uj} ∈ E(G) we have a dummy voter de with prefer-
ence order diff-order({{p, w}, {ai, ai}, {aj, aj}}), and

(iii) for each vertex ui ∈ V (G) we have a vertex voter wu
i with preference

order diff-order({{ai, ai}}).

The preference orders of the voters in V ∪W are single-peaked with respect to
the axis 〈B〉 & 〈A〉 & p & w & 〈A〉 & 〈B〉, where 〈B〉 := b|V (G)| & b|V (G)|−1 &
. . . & b1, 〈A〉 := a|V (G)| & a|V (G)|−1 & . . . & a1, 〈A〉 := a1 & a2 & . . . & a|V (G)|,
and 〈B〉 := b1 & b2 & . . . & b|V (G)|. Finally, we define the function κ such that
it is a full-1 bundling function. ��

162 J. Chen et al.

We now present some tractability results for single-crossing elections. Consider
anR-C-CC-AV instance ((C, V),W, d, κ, p ∈ C, k) such that (C, V ∪W) is single-
crossing. This has a crucial consequence for full-d bundling functions: For each
unregistered voter w ∈W , the voters in bundle κ(w) appear consecutively along
the single-crossing order restricted to only the voters in W .1 Using the following
lemmas, we can show that Plurality-C-CC-AV and Condorcet-C-CC-AV

are polynomial-time solvable in some cases.

Lemma 1. Let I = ((C, V),W, d, κ, p ∈ C, k) be a Plurality-C-CC-AV in-
stance such that (C, V ∪W) is single-crossing and κ is a full-d bundling function.
Then, the following statements hold:

(i) The p-voters are ordered consecutively along the single-crossing order.
(ii) If I is a yes instance, then there is a subset W ′ ⊆W of size at most k such

that all bundles of voters w ∈W ′ contain only p-voters, except at most two
bundles which may contain some non-p-voters.

Lemma 2. Let (C, V ∪κ(W ′)) be a single-crossing election with single-crossing
voter order 〈x1, x2, . . . , xz〉 and set Xmedian := {x�z/2�} ∪ {xz/2+1 if z is even},
where z = |V |+ |κ(W ′)|. Alternative p is a (unique) Condorcet winner in (C, V ∪
κ(W ′)) if and only if every voter in Xmedian is a p-voter.

Theorem 9. Both Plurality-C-CC-AV and Condorcet-C-CC-AV are po-
lynomial-time solvable for the single-crossing case with full-d bundling functions.

Proof. First, we find a (unique) single-crossing voter order for (C, V ∪ W) in
quadratic time [12, 7]. Due to Lemma 1 and Lemma 2, we only need to store
the most preferred alternative of each voter to find the solution set W ′. Thus,
the running-time from now on only depends on the number of voters. We start
with the Plurality rule and let α := 〈w1, w2, . . . , w|W |〉 be a single-crossing voter
order.

Due to Lemma 1 (ii), the two bundles in κ(W ′) which may contain non-p-
voters appear at the beginning and at the end of the p-voter block, along the
single-crossing order. We first guess these two bundles, and after this initial guess,
all remaining bundles in the solution contain only p-voters (Lemma 1 (i)). Thus,
the remaining task is to find the maximum score that p can gain by selecting
k′ bundles containing only p-voters. This problem is equivalent to the Maximum

Interval Cover problem, which is solvable in O(|W |2) time (Golab et al. [16,
Section 3.2]).

For the Condorcet rule, we propose a slightly different algorithm. The goal is
to find a minimum-size subset W ′ ⊆ W such that p is the (unique) Condorcet
winner in (C, V ∪ κ(W ′)). Let β := 〈x1, x2, . . . , xz〉 be a single-crossing voter
order for (C, V ∪W). Considering Lemma 2, we begin by guessing at most two
voters in V ∪W whose bundles may contain the median p-voter (or, possibly,
several p-voters) along the single-crossing order of voters restricted to the final

1 Note that for each single-crossing election, the order of the voters possessing the
single-crossing property is, in essence, unique.

Combinatorial Voter Control in Elections 163

election (for simplicity, we define the bundle of each registered voter to be its
singleton). The voters in the union of these two bundles must be consecutively
ordered. Let those voters be xi, xi+1, . . . , xi+j (where i ≥ 1 and j ≥ 0), let
W1 := {xs ∈ W | s < i}, and let W2 := {xs ∈ W | s > i + j}. We guess
two integers z1 ≤ |W1| and z2 ≤ |W1| with the property that there are two
subsets B1 ⊆ W1 and B2 ⊆ W2 with |B1| = z1 and |B2| = z2 such that the
median voter(s) in V ∪ B1 ∪ {xi, xi+1, . . . , xi+j} ∪ B2 are indeed p-voters (for
now, only the sizes z1 and z2 matter, not the actual sets). These four guesses
cost O(|V ∪W |2 · |W |2) time. The remaining task is to find two minimum-size
subsets W ′

1 and W ′
2 such that κ(W ′

1) ⊆ W1, κ(W ′
2) ⊆ W2, |κ(W ′

1)| = z1, and
|κ(W ′

2)| = z2. As already discussed, this can be done in O(|W |2) time [16]. We
conclude that one can find a minimum-size subset W ′ ⊆ W such that p is the
(unique) Condorcet winner in (C, V ∪ κ(W ′)) in O(|V ∪W |2 · |W |4) time. ��

5 Conclusion

We provide opportunities for future research. First, we did not discuss destructive
control and the related problem of combinatorial deletion of voters. For Plurality,
we conjecture that combinatorial addition of voters for destructive control, and
combinatorial deletion of voters for either constructive or destructive control
behave similarly to combinatorial addition of voters for constructive control.

Another, even wider field of future research is to study other combinatorial
voting models—this may include controlling the swap distance, “probabilistic
bundling”, “reverse bundling”, or using other distance measures than the swap
distance. Naturally, it would also be interesting to consider other problems than
election control (with bribery being perhaps the most natural candidate).

Finally, instead of studying a “leader-follower model” as we did, one might also
be interested in an “enemy model” referring to control by adding alternatives:
The alternatives of an election “hate” each other such that if one alternative is
added to the election, then all of its enemies are also added to the election.

References

[1] Bartholdi III, J.J., Trick, M.: Stable matching with preferences derived from a
psychological model. Oper. Res. Lett. 5(4), 165–169 (1986)

[2] Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election.
Math. Comput. Model. 16(8-9), 27–40 (1992)

[3] Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational
aspects of voting. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D.
(eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg
(2012)

[4] Black, D.: On the rationale of group decision making. J. Polit. Econ. 56(1), 23–34
(1948)

[5] Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. J. Artificial Intelligence Res. 21, 135–191 (2004)

164 J. Chen et al.

[6] Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.A.: Bypassing combi-
natorial protections: Polynomial-time algorithms for single-peaked electorates. In:
Proc. 24th AAAI, pp. 715–722 (2010)

[7] Bredereck, R., Chen, J., Woeginger, G.: A characterization of the single-crossing
domain. Soc. Choice Welf. 41(4), 989–998 (2013)

[8] Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices
matter for the parameterized complexity of shift bribery. In: Proc. 28th AAAI (to
appear, 2014)

[9] Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Ar-
tificial Intelligence Res. 35, 161–191 (2009)

[10] Conitzer, V., Lang, J., Xia, L.: How hard is it to control sequential elections via
the agenda? In: Proc. 21st IJCAI, pp. 103–108 (July 2009)

[11] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer (2013)

[12] Elkind, E., Faliszewski, P., Slinko, A.: Clone structures in voters’ preferences. In:
Proc. 13th EC, pp. 496–513 (2012)

[13] Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity.
In: Proc. 18th ECAI, pp. 366–370 (2008)

[14] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield
that never was: Societies with single-peaked preferences are more open to manip-
ulation and control. Inform. and Comput. 209(2), 89–107 (2011)

[15] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Weighted electoral con-
trol. In: Proc. 12th AAMAS, pp. 367–374 (2013)

[16] Golab, L., Karloff, H., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies.
In: In 35th PVLDB, vol. 2(1), pp. 574–585 (2009)

[17] Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover
variants. Theory Comput. Syst. 41(3), 501–520 (2007)

[18] Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: The com-
plexity of precluding an alternative. Artif. Intell. 171(5-6), 255–285 (2007)

[19] Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

[20] Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of
control problems in voting systems. Theor. Comput. Sci. 410, 2746–2753 (2009)

[21] Magiera, K., Faliszewski, P.: How hard is control in single-crossing elections? In:
Proc. 21st ECAI (to appear, 2014)

[22] Roberts, K.W.: Voting over income tax schedules. J. Public Econ. 8, 329–340
(1977)

[23] Rothkopf, M.H., Pekeč, A., Harstad, R.M.: Computationally manageable combi-
national auctions. Manage. Sci. 44(8), 1131–1147 (1998)

[24] Sandholm, T.: Optimal winner determination algorithms. In: Cramton, Shoham,
Steinberg (eds.) Combinatorial Auctions. ch. 14. MIT Press (2006)

[25] Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl.
Math. 8(1), 85–89 (1984)

An Improved Deterministic #SAT Algorithm

for Small De Morgan Formulas

Ruiwen Chen1, Valentine Kabanets1, and Nitin Saurabh2

1 Simon Fraser University, Burnaby, Canada
ruiwenc@sfu.ca, kabanets@cs.sfu.ca

2 Institute of Mathematical Sciences, Chennai, India
nitin@imsc.res.in

Abstract. We give a deterministic #SAT algorithm for de Morgan for-

mulas of size up to n2.63, which runs in time 2n−nΩ(1)

. This improves
upon the deterministic #SAT algorithm of [3], which has similar run-
ning time but works only for formulas of size less than n2.5.

Our new algorithm is based on the shrinkage of de Morgan formulas
under random restrictions, shown by Paterson and Zwick [12]. We prove
a concentrated and constructive version of their shrinkage result. Namely,
we give a deterministic polynomial-time algorithm that selects variables
in a given de Morgan formula so that, with high probability over the
random assignments to the chosen variables, the original formula shrinks
in size, when simplified using a deterministic polynomial-time formula-
simplification algorithm.

Keywords: de Morgan formulas, random restrictions, shrinkage, SAT
algorithms.

1 Introduction

Subbotovskaya [16] introduced the method of random restrictions to prove that
Parity requires de Morgan formulas of size Ω(n1.5), where a de Morgan formula
is a boolean formula over the basis {∨,∧,¬}. She showed that a random restric-
tion of all but a fraction p of the input variables yields a new formula whose size
is expected to reduce by at least the factor p1.5. That is, the shrinkage exponent
Γ for de Morgan formulas is at least 1.5, where the shrinkage exponent is defined
as the least upper bound on γ such that the expected formula size shrinks by
the factor pγ under a random restriction leaving p fraction of variables free.

Impagliazzo and Nisan [9] argued that Subbotovskaya’s bound Γ � 1.5 is not
optimal, by showing that Γ � 1.556. Paterson and Zwick [12] improved upon [9],
getting Γ � (5−

√
3)/2 ≈ 1.63. Finally, H̊astad [6] proved the tight bound Γ = 2;

combined with Andreev’s construction [1], this yields a function in P requiring
de Morgan formulas of size Ω(n3−o(1)).

While the original motivation to study shrinkage in [16,9,12,6] was to prove for-
mula lower bounds, the same results turn out to be useful also for designing non-
trivial SAT algorithms for small de Morgan formulas. Santhanam [14] strengthened

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 165–176, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

166 R. Chen, V. Kabanets, N. Saurabh

Subbotovskaya’s expected shrinkage result to concentrated shrinkage, i.e., shrink-
age with high probability, and used this to get a deterministic #SAT algorithm
(counting the number of satisfying assignments) for linear-size de Morgan formulas,
with the running time 2n−Ω(n). Santhanam’s algorithm deterministically selects a
most frequent variable in the current formula, and recurses on the two subformu-
las obtained by restricting the chosen variable to 0 and 1; after n−Ω(n) recursive
calls, almost all obtained formulas depend on fewer than the actual number of free
variables remaining, which leads to nontrivial savings over the brute-force SAT al-
gorithm for the original formula. A similar algorithm works also for formulas of size

less than n2.5, with the running time 2n−nΩ(1)

[3].
Motivated by average-case formula lower bounds, Komargodksi et al. [11]

(building upon [8]) showed a concentrated-shrinkage version of H̊astad’s optimal
result for the shrinkage exponent Γ = 2. Combined with the aforementioned
algorithm of Chen et al. [3], this yields a nontrivial randomized zero-error #SAT

algorithm for de Morgan formulas of size n3−o(1), running in time 2n−nΩ(1)

.
The main question addressed by our paper is whether there is a deterministic

#SAT algorithm, with similar running time, for formulas of size close to n3.
This question is interesting since getting a deterministic algorithm often yields
deeper understanding of the problem by revealing additional structural proper-
ties. It also provides better understanding of the role of randomness in efficient
algorithms, as part of research on derandomization.

We give a deterministic #SAT algorithm for formulas of size up to n2.63. In
the process, we refine the results of Paterson and Zwick [12] on shrinkage of de
Morgan formulas by making their results constructive in a certain precise sense.
We provide more details next.

1.1 Our Main Results and Techniques

Our main result is a deterministic #SAT algorithm for de Morgan formulas of

size up to n2.63, running in time 2n−nΩ(1)

.

Theorem 1 (Main). There is a deterministic algorithm for counting the num-
ber of satisfying assignments in a given de Morgan formula on n variables of size

at most n2.63 which runs in time at most 2n−nδ

, for some constant 0 < δ < 1.

As in [14,3], we use a deterministic algorithm to choose a next variable to
restrict, and then recurse on the two resulting restrictions of this variable to
0 and 1. Instead of Subbotovskaya-inspired selection procedure (choosing the
most frequent variable), we use the weight function introduced by Paterson and
Zwick [12], which measures the potential savings for each one-variable restriction,
and selects a variable with the biggest savings. Since [12] gives the shrinkage
exponent Γ ≈ 1.63, rather than Subbotovskaya’s 1.5, this could potentially lead
to an improved #SAT algorithm for larger de Morgan formulas.

However, computing the savings, as defined by [12], is NP-hard, as it requires
computing the size of a smallest logical formula equivalent to a given one-variable
restriction. In fact, the shrinkage result of [12] is nonconstructive in the following

An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas 167

sense: the expected shrinkage in size is proved for the minimal logical formula
computing the restricted boolean function, rather than for the formula obtained
from the original formula using efficiently computable simplification rules. In
contrast, the shrinkage results of [16,6] are constructive: the restricted formula
is expected to shrink in size when simplified using a certain explicit set of logical
rules, so that the new, simplified formula is computable in polynomial time from
the original restricted formula.

While the constructiveness of shrinkage is unimportant for proving formula
lower bounds, it is crucial for designing shrinkage-based #SAT algorithms for
de Morgan formulas, such as those in [14,3,11]. Our main technical contribution
is a proof of the constructive version of the result in [12]: we give deterministic
polynomial-time algorithms for formula simplification and extend the analysis of
[12] to show expected shrinkage of formulas with respect to this efficiently com-
putable simplification procedure. The same simplification procedure allows us
to choose, in deterministic polynomial-time, which variable should be restricted
next. The merit of deterministic variable selection and concentrated and con-
structive shrinkage, for a shrinkage exponent Γ , is that they yield a deterministic
satisfiability algorithm for de Morgan formulas up to size nΓ+1−o(1), using an
approach of [3].

Namely, once we have this constructive shrinkage result, based on restricting
one variable at a time, we apply the martingale-based analysis of [10,3] to derive
a concentrated version of constructive shrinkage, showing that almost all random
settings of the selected variables yield restricted formulas of reduced size, where
the restricted formulas are simplified by our efficient procedure. The shrinkage
exponent Γ = (5 −

√
3)/2 ≈ 1.63 is the same as in [12]. Using [3], we then get

a deterministic #SAT algorithm, running in time 2n−nΩ(1)

, that works for de
Morgan formulas of size up to nΓ+1−o(1) ≈ n2.63.

1.2 Related Work

The deep interplay between lower bounds and satisfiability algorithms has been
witnessed in several circuit models. For example, Paturi, Pudlak and Zane [13]
give a randomized algorithm for k-SAT running in time O(n2s2n−n/k), where n
is the number of variables and s is the formula size; they also show that PAR-
ITY requires depth-3 circuits of size Ω(n1/42

√
n). More generally, Williams [18]

shows that a “better-than-trivial” algorithm for Circuit Satisfiability, for a class
C of circuits, implies a super-polynomial lower bounds against the circuit class C
for some language in NEXP; using this approach, Williams [19] obtains a super-
polynomial lower bound against ACC0 circuits1 by designing a nontrivial SAT
algorithm for ACC0 circuits.

Following [14], Seto and Tamaki [15] get a nontrivial #SAT algorithm for
general linear-size formulas (over an arbitrary basis). Impagliazzo et al. [7] use
a generalization of H̊astad’s Switching Lemma [5], an analogue of shrinkage for

1 constant-depth, unbounded fanin circuits, using AND, OR, NOT, and (MOD m)
gates, for any integer m.

168 R. Chen, V. Kabanets, N. Saurabh

AC0 circuits2, to give a nontrivial randomized zero-error #SAT algorithm for

depth-d AC0 circuits on n inputs of size up to 2n
1/(d−1)

. Beame et al. [2] give
a nontrivial deterministic #SAT algorithm for AC0 circuits, however, only for
circuits of much smaller size than that of [7].

Recently, the method of (pseudo) random restrictions has also been used to get
pseudorandom generators (yielding additive-approximation #SAT algorithms)
for small de Morgan formulas [8] and AC0 circuits [17].

Remainder of the Paper. We give basic definitions in Section 2. Section 3 con-
tains our efficient formula-simplification procedures. We use these procedures in
Section 4 to prove a constructive and concentrated shrinkage result for de Mor-
gan formulas. This is then used in Section 5 to describe and analyze our #SAT
algorithm from Theorem 1. Section 6 contains some open questions. Some proofs
had to be omitted from this extended abstract due to space limitations; for a
more complete version, please see [4].

2 Preliminaries

A (de Morgan) formula is a binary tree where each leaf is labeled by a literal
(a variable x or its negation x) or a constant (0 or 1), and each internal node
is labeled by ∧ or ∨. A formula naturally computes a boolean function on its
input variables.

Let F be a formula with no constant leaves. We define the size of F , denoted
by L(F), as number of leaves in F . Following [12], we define a twig to be a
subtree with exactly two leaves. Let T (F) be the number of twigs in F . We
define the weight of F as w(F) = L(F) + α · T (F), where α =

√
3 − 1 ≈ 0.732.

For convenience, if F is a constant, we define L(F) = w(F) = 0. We say F is
trivial if it is a constant or a literal. Note that we define the size and weight only
for formulas which are either constants or with no constant leaves; this is without
loss of generality since constants can always be eliminated using a simplification
procedure below.

It is easy to see that L(F) +α 	 w(F) 	 L(F)(1 +α/2), since the number of
twigs in a formula is at least one and at most half of the number of leaves.

We denote by F |x=1 the formula obtained from F by substituting each ap-
pearance of x by 1 and x by 0; F |x=0 is similar. We say a formula ∨-depends
(∧-depends) on a literal y if there is a path from the root to a leaf labeled by y
such that every internal node on the path (including the root) is labeled by ∨
(by ∧).

3 Formula Simplification Procedures

3.1 Basic Simplification

We define a procedure Simplify to eliminate constants, redundant literals and
redundant twigs in a formula. The procedure includes the standard constant

2 constant-depth, unbounded fanin circuits, using AND, OR, and NOT gates.

An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas 169

simplification rules and a natural extension of the one-variable simplification
rules from [6].

Simplify(F):
If F is trivial, done. Otherwise, apply the following transformations
whenever applicable. We denote by y a literal and G a subformula.

1. Constant elimination.
(a) If a subformula is of the form 0 ∧G, replace it by 0.
(b) If a subformula is of the form 1 ∨G, replace it by 1.
(c) If a subformula is of the form 1 ∧G or 0 ∨G, replace it by G.

2. One-variable simplification.
(a) If a subformula is of the form y ∨ G and y or y appears in G,

replace the subformula by y ∨G|y=0.
(b) If a subformula is of the form y ∧ G and y or y appears in G,

replace the subformula by y ∧G|y=1.
(c) If a subformula G is of the form G1 ∨G2 for non-trivial G1 and

G2, and G ∨-depends on a literal y, then replace G by y∨G|y=0.
(d) If a subformula G is of the form G1 ∧G2 for non-trivial G1 and

G2, and G ∧-depends on a literal y, then replace G by y∧G|y=1.

We call a formula simplified if it is invariant under Simplify. Note that a
simplified formula may not be a smallest logically equivalent formula; e.g., (x ∧
y) ∨ (x ∧ y) is already simplified but it is logically equivalent to y.

The rules 1(a)–(c) and 2(a)–(b) are from [6,14]. Rules 2(c)–(d) are a natural
generalization of the one-variable rule of [6], which allow us to eliminate more
redundant literals and reduce the formula weight. For example, the formula
(x ∨ y) ∨ (x ∧ y) simplifies to x ∨ y under our rules but not the rules in [6,14].
For another example, the formula (x∨ y)∨ (z ∧w) with weight 4 + 2α simplifies
to x ∨ (y ∨ (z ∧ w)) with weight 4 + α.

The next lemma (proof omitted) shows Simplify is efficient.

Lemma 1. Simplify runs in polynomial time.

3.2 Simplification under All One-Variable Restrictions

Here we consider how a formula simplifies when one of its variables is restricted.
Let F be a formula. We define a recursive procedure RestrictSimplify which
produces a collection of formulas for F under all one-variable restrictions. We
denote the output of the procedure by {Fy}, where y ranges over all literals.
Note that each Fy is logically equivalent to F |y=1.

The idea behind the transformations in RestrictSimplify is the following.
When a formula simplifies to a literal under some one-variable restriction, then
the formula must be logically equivalent to some special form. For example, if
we know that F |x=1 simplifies to a literal y, then F itself must be logically
equivalent to (x ∧ y) ∨ (x ∧ G) for some G. This logically equivalent form may
help to simplify F under other one-variable restrictions.

170 R. Chen, V. Kabanets, N. Saurabh

RestrictSimplify(F):
If F is a constant c, then let Fy := c for all y. If F is a literal, then let
Fy := F |y=1 for all y.
If F is G ∨ H or G ∧ H , recursively call RestrictSimplify to com-
pute {Gy} and {Hy}, and initialize each Fy := Simplify(Gy ∨ Hy) or
Fy := Simplify(Gy ∧Hy), respectively. Then apply the following trans-
formations whenever possible. We suppose there are two literals x and y
over distinct variables such that Fx = y.
1. If Fx = y, then let Fw := y|w=1 for every literal w.
2. If Fx = z for some literal z /∈ {x, x, y}, then let Fw := Simplify((x∧

y) ∨ (x ∧ z)|w=1) for every literal w.
3. (a) If neither x nor x appears in Fy, then let Fy := 1; (b) otherwise,

let Fy := Simplify(x ∨ (Fy |x=0)).
4. (a) If neither x nor x appears in Fy, then let Fy := 0; (b) otherwise,

let Fy := Simplify(x ∧ (Fy |x=0)).
5. For z /∈ {x, x, y, y}, if neither x nor x appears in Fz , then let Fz := y.

Correctness of RestrictSimplify. The above transformations are based on logical
implications. In case 1, Fx = Fx = y implies that F ≡ y. In case 2, Fx = y and
Fx = z implies that F ≡ (x ∧ y) ∨ (x ∧ z). Note that in this case z might be y.
In case 3, we have Fy|x=1 ≡ Fx|y=1 = 1; if neither x nor x appears in Fy then
Fy = Fy|x=1 ≡ 1, otherwise Fy ≡ x ∨ (Fy |x=0). Case 4 is dual to case 3. In case
5, if neither x nor x appears in Fz then Fz = Fz |x=1 ≡ Fx|z=1 = y.

Remark 1. It is possible to introduce more simplifications rules in Restrict-
Simplify, e.g., when Fx is a constant for some literal x, or when, in case 5, x or
x appears in Fz

3. However, such simplifications are not needed for our proof of
constructive shrinkage.

It is easy to show that RestrictSimplify is efficient.

Lemma 2. RestrictSimplify runs in polynomial time.

The solo structure of a formula F is the relation on literals defined by x⇒ y
if Fx = y, where the collection of formulas {Fx} is produced by the procedure
RestrictSimplify. The following lemma gives all possible solo structures; it
resembles the characterization of solo structures for boolean functions from [12].

Lemma 3. The solo structure of a non-trivial formula F must be in one of the
following forms:

(i) the empty relation,
(ii) there exists y such that for all literals x /∈ {y, y} we have x ⇒ y in the

relation,
(iii) {x1 ⇒ y, . . . , xk ⇒ y} for some k � 1 and xi’s are over distinct variables,
(iv) {x⇒ y, y ⇒ x, x⇒ y, y ⇒ x},
(v) {x⇒ y, x⇒ z},

(vi) {x⇒ y, y ⇒ x},
(vii) {x⇒ y, y ⇒ x}.
3 then we could let Fz := (x ∧ y) ∨ (x ∧ Simplify(Fz|x=0)).

An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas 171

4 Constructive and Concentrated Shrinkage

Here we prove a constructive and concentrated version of the shrinkage result
from [12]. For each literal y of a given formula F , we define the savings (reduction
in weight of F) when we replace F by the new formula Fy , as computed by the
procedure RestrictSimplify. We first prove that the lower bound on the average
savings (over all variables of F) shown by [12] continues to hold with respect to
our efficiently computable one-variable restrictions Fy.

4.1 Average Savings under One-Variable Restrictions

Assume a formula F is simplified; otherwise, let F := Simplify(F). For a for-
mula F and a literal y, we define σy(F) = w(F)−w(Fy), where Fy is produced
by RestrictSimplify. Let σ(F) =

∑
x(σx(F) + σx(F)), where the summation

ranges over all variables of F . The quantity σ(F) measures the total savings
under all one-variable restrictions.

Theorem 2. For any formula F , it holds that σ(F)/w(F) � 2γ, where γ =
(5−

√
3)/2 ≈ 1.63.

The proof is by induction, as in [12]. The difficulty here is that we need to ap-
ply the “syntactic simplifications” defined by the procedure RestrictSimplify,
instead of using the smallest logically equivalent formulas as in [12].

For the base case, the following lemma can be proved by enumerating all
possible formulas of size at most 4 (the proof is omitted).

Lemma 4. For any simplified F of size at most 4, we have σ(F)/w(F) � 2γ.

For formulas of size larger than 4, we consider whether one child of the root is
trivial. Without loss of generality, we assume the root is labeled by ∨; the other
case is dual. The following lemma considers if one child of the root is trivial. The
proof is omitted here but it is similar to [12].

Lemma 5. If F is a simplified formula of the form x∨G for some literal x and
subformula G, and L(F) � 5, then σ(F)/w(F) � 2γ.

Now we consider formulas where both children of the root are non-trivial.

Lemma 6. Suppose F is of the form G ∨H with L(F) � 5 and G,H are non-
trivial. Then σ(F)/w(F) � 2γ.

Intuitively, we need to take care of the cases where both G and H simplify to
literals on distinct variables (thereby forming a new twig); otherwise the result
holds by the induction hypothesis. Suppose Gx ∨Hx is a twig for some literal x.
Then σx(F) = σx(G) + σx(H)− α, i.e., we get the savings from restricting x in
G and H , but then need to pay the penalty α for the twig created. We will argue
that there are “extra savings” from restricting other literals in the formula F
that can be used to compensate for the penalty α at x.

172 R. Chen, V. Kabanets, N. Saurabh

Proof. We shall need the following basic property of RestrictSimplify.

Claim. For F = G∨H or F = G∧H , we have w(Fy) 	 w(Gy) +w(Hy), for all
literals y except those where Gy and Hy are literals over distinct variables.

Proof (of Claim). Let F = G ∨ H ; the other case is identical. For Fy :=
Simplify(Gy ∨Hy), the required inequality holds initially. All transformations,
except 3(b) and 4(b), produce the smallest logically equivalent formula; rules
3(b) and 4(b) do not increase the weight of the formula. ��

We first prove that, for a literal x, if Gx and Hx are not literals over distinct
variables, then σx(F) � σx(G) + σx(H). Indeed, since w(F) = w(G) + w(H),
this follows from w(Fx) 	 w(Gx) + w(Hx), which holds by the claim above.

Next, let k be the number of different literals x such that Gx ∨Hx is a twig
(i.e., Gx and Hx are literals over distinct variables). Thus there are k twigs
created as we consider all possible one-variable restrictions. We will argue that,
for different cases of k, the weight kα of these new twigs can be compensated
from savings in other restrictions.

Case k = 0: We have σy(F) � σy(G) + σy(H) for all literals y, and thus
σ(F) � σ(G) + σ(H). The result is by the induction hypothesis on G and H .

Case 1 	 k 	 2: Let x be such that Gx = y and Hx = z. Without loss of
generality, assume x, y, z are distinct variables. Consider F under the restrictions
y = 1 and z = 1. We will argue that the extra savings from applying Simplify
on Gy ∨Hy and Gz ∨Hz are at least 2 > kα.

Since Gx = y, transformation 3(a)–(b) in RestrictSimplify guarantee that
either Gy is constant 1 or it ∨-depends on x. Similarly either Hz is constant
1 or it ∨-depends on x. Since Hy|x=1 ≡ Hx|y=1 = z, we get that Hy is not a
constant (it depends on z), and if it is a literal it must be z. Similarly Gz is not
a constant (it depends on y), and if it is a literal it must be y.

We first consider the case that either Gy or Hz is constant 1. If Gy = Hz = 1,
then there are at least 2 savings from simplifying Gy ∨ Hy and Gz ∨ Hz by
eliminating constants. If Gy = 1 and Hy is not a literal, then there are at least
2 savings from simplifying Gy ∨ Hy. If Gy = 1, Hy = z and Hz = 1, we first
have one saving from simplifying Gy ∨ Hy; then since Hy = z and Hz = 1, by
the transformation 3(b) in RestrictSimplify Hz ∨-depends on y, and since Gz

depends on y, we get another saving from simplifying Gz ∨Hz. The cases where
Hz = 1 are similar.

Next we consider that both Gy and Hz ∨-depends on x. In the following we
analyze different possibilities for Hy and Gz.

– If x appears in both Hy and Gz, then there are at least 2 savings from
simplifying Gy ∨Hy and Gz ∨Hz by eliminating x.

– If x appears in Hy but not Gz , then by the transformation 5 in Restrict-
Simplify we have Gz = y, and thus Gy ∨-depends on both x and z. Then
since Hy depends on both x and z, we have two savings from simplifying
Gy ∨Hy by eliminating both x and z from Hy.

An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas 173

– If x appears in Gz but not Hy, this is similar to the previous case.

– If x appears in neither Hy nor Gz , then by the transformation 5 in Re-
strictSimplify we have Gz = y and Hy = z. Thus Gy ∨-depends on both
x and z, and Hz ∨-depends on both x and y. Therefore we have at least 2
savings, one from simplifying Gy ∨ Hy by eliminating z, and another from
simplifying Gz ∨Hz by eliminating y.

Case k � 3: By Lemma 3, the solo structure of G and H must be one of cases
(ii), (iii), or (iv).

First assume that either G or H is in case (ii) of Lemma 3. Without loss of
generality, suppose G is in case (ii); then G is logically equivalent to a literal y
but itself is non-trivial, which implies that w(G) � 4 + α. (The smallest non-
trivial, simplified formula equivalent to a literal has size at least 4). We have
that w(Gz) = 1 for at least k literals z /∈ {y, y}, and w(Gy) = w(Gy) = 0. Then
by the fact that w(F) = w(G) + w(H) and the induction hypothesis on H , we
have

σ(F) � k(w(G) − 1) + 2w(G) + σ(H) − kα

� 2γ · w(F) + (2 + k − 2γ)w(G)− k(1 + α) � 2γ · w(F).

If both G and H are in case (iv), then, under each restriction, they reduce to
literals on the same variable. Since in case (iii) all xi’s are over distinct variables,
it is not possible that one of G and H is in case (iv) while the other is in case
(iii). Thus, we now only need to analyze if both G and H are in case (iii).

Without loss of generality, suppose that x1, . . . , xk, y, z are distinct variables
such that Gxi = y and Hxi = z for i = 1, . . . , k. By the transformation 3 in
RestrictSimplify, either Gy = 1 or Gy ∨-depends on x1, . . . , xk; and Hz is
similar.

If every xi appears in Hy, then there are k savings from simplifying Gy ∨Hy

by eliminating xi’s. Similarly, if every xi appears in Gz , there are also k savings
from simplifying Gz ∨Hz.

If some xi does not appear in Hy and some xi does not appear in Gz . By the
transformation 5 in RestrictSimplify, we have Hy = z and Gz = y. Therefore,

σxi(F) = w(F) − (2 + α), i = 1, . . . , k

σy(F) � 1 + (w(H) − 1) = w(H)

σz(F) � 1 + (w(G) − 1) = w(G)∑
v

σv(F) � L(F) � w(F)/(1 + α/2), v ranges over all variables of F

Summing the above cases together yields σ(F) � 2γ · w(F). ��

Proof (Theorem 2). The proof is by combining the base case in Lemma 4 and
the two inductive cases in Lemma 5 and Lemma 6. ��

174 R. Chen, V. Kabanets, N. Saurabh

4.2 Concentrated Shrinkage

Theorem 2 characterizes the average shrinkage of the weight of a formula when
a randomly chosen literal is restricted. Given a formula F on n variables, if
we randomly pick one variable and randomly assign it 0 or 1, the weight of
the restricted formula (produced by RestrictSimplify) reduces by at least γ ·
w(F)/n on average.

The procedure RestrictSimplify also allows us to deterministically pick the
variable with the best savings in polynomial time. That is, given a formula
F , we run RestrictSimplify to produce a collection of formulas {Fy}, and
then pick a variable x such that σx(F) + σx(F) is maximized. We show that
randomly restricting such a variable significantly reduces the expected weight of
the simplified formula.

Lemma 7. Let F be a formula on n variables. Let x be the variable such that
σx(F) +σx(F) is maximized. Let F ′ be Fx or Fx with equal probability. Then we
have w(F ′) 	 w(F) − 1 and E[w(F ′)] 	

(
1− 1

n

)γ · w(F).

Proof. Restricting one variable eliminates at least one leaf; therefore w(F ′) 	
w(F)− 1. By Theorem 2, n(σx(F) + σx(F)) � σ(F) � 2γ ·w(F). Then we have
E[w(F ′)] = w(F)− 1

2 (σx(F) + σx(F)) 	
(
1− γ

n

)
· w(F) 	

(
1− 1

n

)γ · w(F). ��

Next we use the martingale-based analysis from [10,3] to derive a “high-
probability shrinkage” result from Lemma 7. Let F0 = F be a formula on n
variables. For 1 	 i 	 n, let Fi be the (random) formula obtained from Fi−1 by
assigning the variable with the best savings with a random value Ri ∈ {0, 1}.
The following Lemma shows the weight of a given de Morgan formula reduces
with high probability under the restriction process. The proof, which is similar
to [3], is omitted here due to space constraints.

Lemma 8 (Concentrated weight shrinkage). For any de Morgan formula

F on n variables and any k > 10, Pr
[
w(Fn−k) � 2 · w(F) ·

(
k
n

)γ]
< 2−k/10.

Finally, by w(F)/(1 + α/2) 	 L(F) 	 w(F) for all F , we get from Lemma 8
the desired concentrated constructive shrinkage with respect to the restriction
process defined above.

Corollary 1 (Concentrated constructive shrinkage). Let F be an arbi-
trary de Morgan formula. There exist constants c, d > 1 such that, for any

k > 10, Pr
[
L(Fn−k) � c · L(F) ·

(
k
n

)γ]
< 2−k/d.

5 #SAT Algorithm for n2.63-size de Morgan Formulas

Here we prove our main result.

Theorem 3. There is a deterministic algorithm for counting the number of sat-
isfying assignments in a given formula on n variables of size at most n2.63 which

runs in time t(n) 	 2n−nδ

, for some constant 0 < δ < 1.

An Improved Deterministic #SAT Algorithm for Small De Morgan Formulas 175

Proof. Suppose we have a formula F on n variables of size n1+γ−ε for a small
constant ε > 0. Let k = nα such that α < ε/γ. We build a restriction decision
tree with 2n−k branches as follows:

Starting with F at the root, run RestrictSimplify to produce a collec-
tion {Fy}, pick the variable x which will make the largest reduction in
the weight of the current formula. Make the two formulas Fx and Fx the
children of the current node. Continue recursively on Fx and Fx until
get a full binary tree of depth exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n), since the
procedure RestrictSimplify runs in polynomial time. By Corollary 1, all but at
most 2−k/d fraction of the leaves have the formula size L(Fn−k) < c·L(F)

(
k
n

)γ
=

cn1−ε+γα.
To solve #SAT for all “big” formulas (those that haven’t shrunk), we use

brute-force enumeration over all possible assignments to the k free variables left.
The running time is at most 2n−k · 2−k/d · 2k · poly(n) 	 2n−k/d · poly(n).

For “small” formulas (those that shrunk to the size less than cn1−ε+γα), we
use memoization. First, we enumerate all formulas of such size, and compute
and store the number of satisfying assignments for each of them. Then, as we go
over the leaves of the decision tree that correspond to small formulas, we simply
look up the stored answers for these formulas.

There are at most 2O(n1−ε+γα)poly(n) such formulas, and counting the sat-
isfying assignments for each one (with k inputs) takes time 2kpoly(n). Includ-
ing pre-processing, computing #SAT for all small formulas takes time at most
2n−k · poly(n) + 2O(n1−ε+γα) · 2k · poly(n) 	 2n−k · poly(n).

The overall running time of our #SAT algorithm is bounded by 2n−nδ

for
some δ > 0. ��

6 Open Questions

The main open problem is to get a nontrivial deterministic #SAT algorithm for
de Morgan formulas of size up to n3−o(1). Can one derandomize the zero-error
algorithm of [11] that is based on H̊astad’s shrinkage result [6]?

Can one improve the analysis of the shrinkage result of [12] (by considering
more general patterns than just twigs), getting a better shrinkage exponent?
If so, this could lead to a deterministic #SAT algorithm for larger de Morgan
formulas.

References

1. Andreev, A.E.: On a method of obtaining more than quadratic effective lower
bounds for the complexity of π-schemes. Vestnik Moskovskogo Universiteta.
Matematika 42(1), 70–73 (1987); english translation in Moscow University Math-
ematics Bulletin

176 R. Chen, V. Kabanets, N. Saurabh

2. Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating AC0 by small height
decision trees and a deterministic algorithm for #AC0SAT. In: Proceedings of
the Twenty-Seventh Annual IEEE Conference on Computational Complexity,
pp. 117–125 (2012)

3. Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining cir-
cuit lower bound proofs for meta-algorithms. In: Proceedings of the Twenty-Ninth
Annual IEEE Conference on Computational Complexity (2014)

4. Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm
for small De Morgan formulas. Electronic Colloquium on Computational Complex-
ity (ECCC) 20, 150 (2013)

5. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 6–20
(1986)

6. H̊astad, J.: The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on
Computing 27, 48–64 (1998)

7. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC0.
In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 961–972 (2012)

8. Impagliazzo, R., Meka, R., Zuckerman, D.: Pseudorandomness from shrinkage. In:
Proceedings of the Fifty-Third Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 111–119 (2012)

9. Impagliazzo, R., Nisan, N.: The effect of random restrictions on formula size. Ran-
dom Structures and Algorithms 4(2), 121–134 (1993)

10. Komargodski, I., Raz, R.: Average-case lower bounds for formula size. In: Pro-
ceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 171–180 (2013)

11. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for DeMor-
gan formula size. In: Proceedings of the Fifty-Fourth Annual IEEE Symposium on
Foundations of Computer Science, pp. 588–597 (2013)

12. Paterson, M., Zwick, U.: Shrinkage of de Morgan formulae under restriction. Ran-
dom Structures and Algorithms 4(2), 135–150 (1993)

13. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago Journal of
Theoretical Computer Science (1999)

14. Santhanam, R.: Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In: Proceedings of the Fifty-First Annual IEEE Symposium on
Foundations of Computer Science, pp. 183–192 (2010)

15. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for for-
mulas over the full binary basis. In: Proceedings of the Twenty-Seventh Annual
IEEE Conference on Computational Complexity, pp. 107–116 (2012)

16. Subbotovskaya, B.: Realizations of linear function by formulas using ∨, &, −. Dok-
lady Akademii Nauk SSSR 136(3), 553–555 (1961); english translation in Soviet
Mathematics Doklady

17. Trevisan, L., Xue, T.: A derandomized switching lemma and an improved deran-
domization of AC0. In: Proceedings of the Twenty-Eighth Annual IEEE Conference
on Computational Complexity, pp. 242–247 (2013)

18. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.
In: Proceedings of the Forty-Second Annual ACM Symposium on Theory of Com-
puting, pp. 231–240 (2010)

19. Williams, R.: Non-uniform ACC circuit lower bounds. In: Proceedings of
the Twenty-Sixth Annual IEEE Conference on Computational Complexity,
pp. 115–125 (2011)

On the Limits of Depth Reduction at Depth 3

Over Small Finite Fields

Suryajith Chillara and Partha Mukhopadhyay

Chennai Mathematical Institute, Chennai, India
{suryajith,partham}@cmi.ac.in

Abstract. In a surprising recent result, Gupta et al. [GKKS13b] have
proved that over Q any nO(1)-variate and n-degree polynomial in VP can

also be computed by a depth three ΣΠΣ circuit of size 2O(
√
n log3/2 n)

1. Over fixed-size finite fields, Grigoriev and Karpinski proved that any
ΣΠΣ circuit that computes the determinant (or the permanent) polyno-
mial of a n×n matrix must be of size 2Ω(n). In this paper, for an explicit
polynomial in VP (over fixed-size finite fields), we prove that any ΣΠΣ
circuit computing it must be of size 2Ω(n log n). The explicit polynomial
that we consider is the iterated matrix multiplication polynomial of n
generic matrices of size n× n. The importance of this result is that over
fixed-size fields there is no depth reduction technique that can be used to
compute all the nO(1)-variate and n-degree polynomials in VP by depth
3 circuits of size 2o(n log n). The result of [GK98] can only rule out such
a possibility for ΣΠΣ circuits of size 2o(n).

We also give an example of an explicit polynomial (NWn,ε(X)) in
VNP (which is not known to be in VP), for which any ΣΠΣ circuit
computing it (over fixed-size fields) must be of size 2Ω(n log n). The poly-
nomial we consider is constructed from the combinatorial design of Nisan
and Wigderson [NW94], and is closely related to the polynomials con-
sidered in many recent papers where strong depth 4 circuit size lower
bounds were shown [KSS13,KLSS14,KS13b,KS14].

1 Introduction

In a recent breakthrough, Gupta et al. [GKKS13b] have proved that over Q, if
an nO(1)-variate polynomial of degree d is computable by an arithmetic circuit
of size s, then it can also be computed by a depth three ΣΠΣ circuit of size
2O(

√
d log d logn log s). Using this result, they get a ΣΠΣ circuit of size 2O(

√
n log n)

computing the determinant polynomial of a n× n matrix (over Q). Before this
result, no depth 3 circuit for Determinant of size smaller than 2O(n logn) was
known (over any field of characteristic = 2).

The situation is very different over fixed-size finite fields. Grigoriev and
Karpinski proved that over fixed-size finite fields, any depth 3 circuit for the de-
terminant polynomial of a n×n matrix must be of size 2Ω(n) [GK98]. Although

1 In a nice follow-up work, Tavenas has improved the upper bound to 2O(
√

n logn). The
main ingredient in his proof is an improved depth 4 reduction [Tav13].

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 177–188, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

178 S. Chillara and P. Mukhopadhyay

Grigoriev and Karpinski proved the lower bound result only for the determinant
polynomial, it is a folklore result that some modification of their argument can
show a similar depth 3 circuit size lower bound for the permanent polynomial
as well 2. Over any field, Ryser’s formula for Permanent gives a ΣΠΣ circuit of
size 2O(n) (for an exposition of this result, see [Fei09]). Thus, for the permanent
polynomial the depth 3 complexity (over fixed-size finite fields) is essentially
2Θ(n).

The result of [GKKS13b] is obtained through an ingenious depth reduction
technique but their technique is tailored to the fields of zero characteristic. In
particular, the main technical ingredients of their proof are the well-known mono-
mial formula of Fischer [Fis94] and the duality trick of Saxena [Sax08]. These
techniques do not work over finite fields. In contrast to the situation over Q
, over the fixed-size finite fields a natural question is to ask whether one can
find a new depth reduction technique over fixed-size finite fields such that any
nO(1)-variate and degree n polynomial in VP can also be computed by a ΣΠΣ
circuit of size 2o(n logn).

Question 1. Over any fixed-size finite field Fq, is it possible to compute any nO(1)-
variate and n-degree polynomial in VP by a ΣΠΣ circuit of size 2o(n lnn) ?

Note that any nO(1)-variate and n-degree polynomial can be trivially computed
by a ΣΠΣ circuit of size 2O(n log n) by writing it explicitly as a sum of all nO(n)

possible monomials.
We give a negative answer to the aforementioned question by showing that

over fixed-size finite fields, any ΣΠΣ circuit computing the iterated matrix mul-
tiplication polynomial (which is in VP for any field) must be of size 2Ω(n log n)

(See Subsection 2.1, for the definition of the polynomial). More precisely, we
prove that any ΣΠΣ circuit computing the iterated matrix multiplication poly-
nomial of n generic n × n matrices (denoted by IMMn,n(X)), must be of size
2Ω(n logn).

Previously, Nisan and Wigderson [NW97] proved a size lower bound of
Ω(nd−1/d!) for any homogeneous ΣΠΣ circuit computing the iterated matrix
multiplication polynomial over d generic n× n matrices. Kumar et al. [KMN13]
improved the bound to Ω(nd−1/2d). These results work over any field. Over
fields of zero characteristic, Shpilka and Wigderson proved a near quadratic
lower bound for the size of depth 3 circuits computing the trace of the iterated
matrix multiplication polynomial [SW01].

Recently Tavenas [Tav13], by improving upon the previous works of Agrawal
and Vinay [AV08], and Koiran [Koi12] proved that any nO(1)-variate, n-degree
polynomial in VP has a depth four ΣΠ [O(

√
n)]ΣΠ [

√
n] circuit of size 2O(

√
n log n).

Subsequently, Kayal et al. [KSS13] proved a size lower bound of 2Ω(
√
n log n)

for a polynomial in VNP which is constructed from the combinatorial design of
Nisan and Wigderson [NW94]. In a beautiful follow up result, Fournier et al.
[FLMS13] proved that a similar lower bound of 2Ω(

√
n logn) is also attainable by

2 Saptharishi gives a nice exposition of this result in his unpublished survey and he
attributes it to Koutis and Srinivasan [Sap13].

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields 179

the iterated matrix multiplication polynomial (see [CM14], for a unified analysis
of the depth 4 lower bounds of [KSS13] and [FLMS13]). The main technique
used was the method of shifted partial derivatives which was also used to prove
2Ω(

√
n) size lower bound for ΣΠ [O(

√
n)]ΣΠ [

√
n] circuits computing Determinant

or Permanent polynomial [GKKS13a]. Recent work of Kumar and Saraf [KS13a]
shows that the depth reduction as shown by Tavenas [Tav13] is optimal even for
the homogeneous formulas. This strengthens the result of [FLMS13] who proved
the optimality of depth reduction for the circuits. Very recently, a series of papers
show strong depth 4 lower bounds even for homogeneous depth 4 formulas with
no bottom fan-in restriction [KLSS14,KS13b,KS14].

Similar to the situation at depth 4, we also give an example of an explicit
n2-variate and n-degree polynomial in VNP (which is not known to be in VP)
such that over fixed-size finite fields, any depth three ΣΠΣ circuit computing
it must be of size 2Ω(n log n). This polynomial family, denoted by NWn,ε(X) (see
Subsection 2.1, for the definition of the polynomial) is closely related to the
polynomial family introduced by Kayal et al. [KSS13]. In fact, from our proof
idea it will be clear that the strong depth 3 size lower bound results that we
show for NWn,ε(X) and IMMn,n(X) polynomials are not really influenced by the
fact that the polynomials are either in VNP or VP. Rather, the bounds are
determined by a combinatorial property of the subspaces generated by a set of
carefully chosen derivatives. Our main theorem is the following.

Theorem 2. Over any fixed-size finite field Fq, any depth three ΣΠΣ circuit
computing the polynomials NWn,ε(X) or IMMn,n(X) must be of size at least
2δn logn, where the parameters δ and ε(< 1/2) are in (0, 1) and depend only
on q.

As an important consequence of the above theorem, we have the following
corollary.

Corollary 3. Over any fixed-size finite field Fq, there is no depth reduction tech-
nique that can be used to compute all the nO(1)-variate and n-degree polynomials
in VP by depth 3 circuits of size 2o(n logn).

The result of [GK98] only says that over fixed-size finite fields, not all the
nO(1)-variate and n-degree polynomials in VP can be computed by ΣΠΣ circuits
of size 2o(n). Our main theorem (Theorem 2) can also be viewed as the first
quantitative improvement over the result of [GK98].

Proof Idea

Our proof technique is quite simple and it borrows ideas mostly from the
proof technique of Grigoriev and Karpinski [GK98]. Recall that a ΣΠΣ cir-
cuit (over a field F) with s multiplication gates computes a polynomial of the

form
s∑

i=1

di∏
j=1

Li,j(x1, . . . , xn) where Li,js are affine linear functions over F and

180 S. Chillara and P. Mukhopadhyay

{x1, x2, . . . , xn} are the variables appearing in the polynomial. A recurring no-
tion in many papers related to ΣΠΣ circuits is the notion of rank of a product
gate. Let T = L1L2 . . . Ld be a product gate such that each Li is an affine linear
form over the underlying field. By rank of T , one simply means the maximum
rank of the homogeneous linear system corresponding to set of affine functions
{L1, L2, . . . , Ld}.

Over fixed-size finite fields, ΣΠΣ circuits enjoy a nice property that the
derivatives of the high rank product gates can be eliminated except for a few
erroneous points (denoted by E). This property was first observed by Grigoriev
and Karpinski in [GK98]. The intuition is simple. If a product gate has many
linearly independent functions, then it is likely that a large number of linear
functions will be set to zero if we randomly substitute the variables with elements
from the field. Then the derivatives (of relatively low order) of the polynomial
obtained from the product gate will disappear on a random point with very high
probability. To quantify the notion of high rank, Grigoriev and Karpinski fixed a
threshold for the rank of the product gates to Θ(n). Since they were looking for a
2Ω(n) lower bound for the Determinant of a n×nmatrix and the rank of the entire
derivative space of of the determinant polynomial is 2O(n), it was natural for
them to fix the threshold to be Θ(n). Since the dimension of the derivative spaces
of the polynomial families {NWn,ε(X)}n>0 and {IMMn,n(X)}n>0 is 2Ω(n log n), it
is possible for us to choose the threshold for the rank of the product gates to be
Θ(n log n). This allows us to bound the size of the error set meaningfully. We
formalize this in Lemma 4.

We now give a high level description of the proof technique in [GK98] to mo-
tivate our proof strategy. Roughly speaking, they consider the space H spanned
by Θ(n) order derivatives of the determinant. This makes the dimension of H
to be of the order of 2Θ(n). For a point a ∈ FN

q , the subspace Ha is the space
of functions in H that evaluate to zero at a. From the rank analysis on the
circuit side, they get that the dimension of the space of functions that may not
be zero outside the error set E is bounded. More precisely, codim(∩a ∈EHa) is
small. Grigoriev and Karpinski then considered the group of invertible matri-
ces G of order n × n over Fq. For any g ∈ G, they define a Fq-linear operator
Tg : H → H by the formula (Tg(f))(a) = f(ga). The fact that the deriva-
tive space of the determinant polynomial of a n × n matrix is invariant under
GLn(Fq) action was crucially used in defining the map. Then they consider the
plane P = ∩a∈G\EHa ⊂ H . Since codim(∩a ∈EHa) is bounded, the same bound
applies for codim(P) as well. The most remarkable idea in their work was to
prove that codim(∩b∈GHb) in H is small given that codim(P) is small. Notice
that the plane P is defined only on G \ E and not on the entire group G. To
achieve this, they prove that the full invertible group G can be covered by tak-
ing only a few translates of G \ E from G. This was done by appealing to a
graph theoretic lemma of Lovász [Lov75]. Now, it is not hard to see that we can
bound codim(∩b∈GHb) to a quantity smaller than dim(H). This shows us that
there exists a nonzero function in H that evaluates to zero on the entire group
G. Since the elements in H are only multilinear polynomials, they finally prove

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields 181

that it is impossible to have such a function in H by showing that no nonzero
multilinear polynomial can vanish over the entire group G.

The group symmetry based argument of [GK98] is tailored to the determi-
nant polynomial and it can not be directly applied to the polynomials that we
consider. The main technical contribution of this work is to replace the group
symmetry based argument by a new argument that makes the proof strategy ro-
bust enough to handle the family of polynomials that we consider. We carefully
choose a subspace H (of sufficiently large dimension) of the derivative spaces of
these polynomials which has an additional structure. The subspace H is spanned
by a downward closed set of monomials (see, Definition 8). Let Fq be the finite
field and N be the number of the variables in the polynomial under consid-
eration. The basic idea is to prove that the dimension of the space H of the
polynomial being considered is more than the dimension of the set of functions
in H which do not evaluate to zero over the entire space FN

q . Since the subspace
H contains only multilinear polynomials, we can then conclude that a nonzero
multilinear polynomial in H will evaluate to zero on entire FN

q , which is not
possible by combinatorial nullstellensatz [Alo99].

To implement this, we define a linear map Tu : H → H by Tu(f(X)) = f(X−u)
for any function f : FN

q → Fq and u ∈ FN
q . The map is well-defined by the

downward closed structure of the generating set for H . Also the map Tu is one
to one for any u ∈ FN

q . As before, for a point a ∈ FN
q , the subspace Ha is the

space of functions in H that evaluates to zero on a. Let P = ∩a∈FN
q \EHa. Then

by Lemma 4, we get that codimP = codim(∩a∈FN
q \EHa) is small. Notice that

the plane P is defined over FN
q \ E and not over the entire space FN

q . Similar
to the argument in [GK98], we also use the graph theoretic lemma of Lovász
to prove that the entire space FN

q can be covered by only a few translates of

FN
q \ E. Then it is simple to observe that codim(∩b∈FN

q
Hb) is small compared

to the dimension of H . As a consequence we get that a nonzero multilinear
polynomial in H must evaluate to zero over FN

q , which is not possible by the
combinatorial nullstellensatz.

1.1 Organization

We define the polynomial families {NWn,ε(X)}n>0 and {IMMn,n(X)}n>0 in Sec-
tion 2. We recall known results related to the derivative space of ΣΠΣ circuits
in Section 3. In section 4, we study the derivative spaces of our polynomial fam-
ilies. We prove Theorem 2 in Section 5. The omitted proofs (Lemma 4, Lemma
5, and Proposition 9) can be found in the full version of the paper [Chi14].

2 Preliminaries

2.1 The Polynomial Families

A multivariate polynomial family {fn(X) ∈ F[x1, x2, . . . , xn] : n ≥ 1} is in
the class VP if fn has degree at most poly(n) and can be computed by an

182 S. Chillara and P. Mukhopadhyay

arithmetic circuit of size poly(n). It is in VNP if it can be expressed as: fn(X) =∑
Y∈{0,1}m gn+m(X,Y), where m = |Y| = poly(n) and gn+m is a polynomial in

VP.

The Polynomial Family from the Combinatorial Design. Let F be any
field3. For integers n > 0 ranging over prime powers and 0 < ε < 1, we define a
polynomial family {NWn,ε(X)}n>0 in Fq[X] as follows.

NWn,ε(X) =
∑

a(z)∈Fn[z]

x1a(1)x2a(2) . . . xna(n)

where a(z) runs over all univariate polynomials of degree < εn. The finite field Fn

is naturally identified with the numbers {1, 2, . . . , n}. Notice that the number
of monomials in NWn,ε(X) is nεn. From the explicitness of the polynomial, it
is clear that {NWn,ε(X)}n>0 is in VNP for any ε ∈ (0, 1). In [KSS13], a very
similar family of polynomials was introduced where the degree of the univariate
polynomial was bounded by ε

√
n.

The Iterated Matrix Multiplication Polynomial. The iterated ma-
trix multiplication polynomial of n generic n × n matrices X(1),X(2), . . . ,X(n)

is the (1, 1)th entry of the product of the matrices. More formally, let
X(1),X(2), . . . ,X(n) be n generic n × n matrices with disjoint sets of variables

and x
(k)
ij be the variable in X(k) indexed by (i, j) ∈ [n] × [n]. Then the iterated

matrix multiplication polynomial (denoted by the family {IMMn,n(X)}n>0) is
defined as follows.

IMMn,n(X) =
∑

i1,i2,...,in−1∈[n]

x
(1)
1i1
x
(2)
i1i2

. . . x
(n−1)
i(n−2)i(n−1)

x
(n)
i(n−1)1

Notice that IMMn,n(X) is a n2(n− 2) + 2n-variate polynomial of degree n. For
our application, we consider n = 2m where m ranges over the positive integers.
Over any field F, the polynomial family {IMMn,n(X)}n>0 can be computed in
VP. This can be seen by observing that IMMn,n(X) can be computed by a poly(n)
sized algebraic branching program.

3 The Derivative Space of ΣΠΣ Circuits Over Small
Fields

In this section we fix the field F to be a fixed-size finite field Fq. Let C be a ΣΠΣ
circuit of top fan-in s computing a N = nO(1)-variate polynomial of degree n.
Consider a Π gate T = L1L2 . . . Ld in C. Let r be the rank of the (homogeneous)-
linear system corresponding to {L1, L2, . . . , Ld} by viewing each Li as a vector in

3 In the lower bound proof for NWn,ε(X), we will consider F to be any fixed finite field
Fq.

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields 183

FN+1
q . Fix a threshold for the rank of the system of linear functions r0 = βn lnn,

where β > 0 is a constant to be fixed later in the analysis. In our application,
the parameter N is at least n2, so the threshold for the rank is meaningful.
W.l.o.g, let {L1, L2, . . . , Lr} be a set of affine linear forms in {L1, L2, . . . , Ld}
whose homogeneous system forms a maximal independent set of linear functions.

Low Rank Gates : r ≤ r0 Over the finite field Fq, we have xq = x. We express
T : FN

q → Fq as a linear combination of {Le1
1 L

e2
2 . . . Ler

r : ei < q for all i ∈ [r]}.
Since, the derivatives of all orders lie in the same space, the dimension of the set
of partial derivatives of T of all orders is bounded by qr ≤ qr0 .

High Rank Gates : r > r0 Let the rank of a high rank gate T be yβn lnn
where y ≥ 1. We assign values to the variables uniformly at random from Fq and
compute the probability that at most n linearly independent functions evaluate
to zero.

Using the threshold for the rank of the product gates, the following lemma
can be easily proved. Essentially, the proof can be reworked from [GK98] for
suitable parameters. It shows that the derivative space of a ΣΠΣ circuit can be
approximated by just the derivative space of the low rank product gates of the
circuit over a large subset of FN

q .

Lemma 4. Let Fq be a fixed-size finite field. Then there exist constants 0 <
δ(q), β(q), μ(q) < 1 such that the following is true. Let C be a ΣΠΣ circuit of
top fan-in s ≤ eδn lnn computing a N = nO(1)-variate and n-degree polynomial
f(X) over the finite field Fq. Then, there exists a set E ⊂ FN

q of size at most

qNμn lnn such that the dimension of the space spanned by the derivatives of order
≤ n of C restricted to FN

q \ E is ≤ s qβn lnn.

In the proof, we need δn lnn to be strictly less than yβn
q lnn−n ln y. That is,

δ <
yβ

q
− ln y

lnn
. (1)

It is worth emphasizing that, when we consider the derivatives, what we really
mean is the formal derivatives of C as polynomials. In the above lemma we view
the derivatives as functions from FN

q → Fq. Then it follows from the above
analysis that the dimension of the space spanned by the functions corresponding
to the derivatives of order ≤ n of C restricted to FN

q \E is ≤ s qβn lnn. This way
of viewing derivatives either as formal polynomials or as functions is implicit in
the work of [GK98]. In Section 5, we show how to fix the parameters δ, β, and μ
which depend only on the field size q.

4 Derivative Spaces of the Polynomial Families

In this section, we study the derivative spaces of NWn,ε(X) and IMMn,n(X) poly-
nomials. Instead of considering the full derivative spaces, we focus on a set of
carefully chosen derivatives and consider the subspaces spanned by them.

184 S. Chillara and P. Mukhopadhyay

The Derivative Space of {NWn,ε(X)}n>0 Polynomial Family

A set of variables D = {xi1j1 , xi2j2 , . . . , xitjt} is called an admissible set if
iks (for 1 ≤ k ≤ t) are all distinct and εn ≤ t ≤ n. Let H be the
subspace spanned by the set of the partial derivatives of the polynomial
NWn,ε(X) with respect to the admissible sets of variables. More formally, H :=

Fq-span
{

∂NWn,ε(X)
∂D : D is an admissible set of variables

}
. Since the monomials

of the NWn,ε(X) polynomial are defined by the univariate polynomials of degree
< εn, each partial derivative with respect to such a set D yields a multilinear
monomial. If we choose ε such that n − εn > εn (i.e. ε < 1/2), then after the
differentiation, all the monomials of length n− εn are distinct. This follows from
the fact that the monomials are generated from the image of the univariate
polynomials of degree < εn.

Let us treat these monomials as functions from Fn2

q → Fq. The following sim-
ple lemma says that the functions corresponding to any set of distinct monomials
are linearly independent.

Lemma 5. Let m1(X),m2(X), . . . ,mk(X) be any set of k distinct multilinear
monomials in Fq[x1, x2, . . . , xN]. For 1 ≤ i ≤ k, let fi : FN

q → Fq be the function
corresponding to the monomial mi(X), i.e. fi(X) = mi(X). Then, fis are linearly
independent in the qN dimensional vector space over Fq.

Consider the derivatives of NWn,ε(X) corresponding to the sets
{x1a(1), x2a(2), . . . , xεna(εn)} for all univariate polynomials a of degree < εn.

From Lemma 5, it follows that dim(H) ≥ nεn = eεn lnn. W.l.o.g, we can assume

that the constant function 1 : Fn2

q → Fq given by ∀x,1(x) = 1 is also in H . This
corresponds to the derivatives of order n.

The Derivative Space of {IMMn,n(X)}n>0 Polynomial Family

For our application, we consider n = 2m where m ranges over the positive
integers. Consider the set of matrices X(1),X(3), . . . ,X(2m−1) corresponding to
the odd places. Let S be any set of m variables chosen as follows. Choose any
variable from the first row of X(1) and choose any one variable from each of the
matrices X(3), . . . ,X(2m−1). We call such a set S an admissible set.

If we differentiate IMMn,n(X) with respect to two different admissible sets
of variables S and S′, then we get two different monomials of length m each.
This follows from the structure of the monomials in the IMMn,n(X) polynomial,
whenever we fix two variables from X(i−1) and X(i+1), the variable from X(i) gets
fixed. So the number of such monomials after differentiation is exactly n2m−1 =
e(n−1) lnn.

Let mS be the monomial obtained after differentiating IMMn,n(X) by the
set of variables in S and var(mS) be the set of variables in mS . Consider the
derivatives of IMMn,n(X) with respect to the following sets of variables: {S ∪T :
T ⊆ var(mS)} where S ranges over all admissible sets.

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields 185

Let H be the subspace spanned by these derivatives. More formally, H :=

Fq-span
{

∂IMMn,n(X)
∂D : D = S ∪ T where T ⊆ var(mS);S is an admissible set

}
.

As before, we can assume that the constant function 1 is in H . From Lemma 5,
we know that dim(H) ≥ e(n−1) lnn. Now to unify the arguments for NWn,ε(X)
and IMMn,n(X) polynomials, we introduce the following notion.

Downward Closed Property

Definition 6. A set of multilinear monomials M is said to be downward closed
if the following property holds. If m(X) ∈ M and multilinear monomial m′(X)
is such that var(m′(X)) ⊆ var(m(X)), then m′(X) ∈ M.

Now we consider a downward closed set of monomials M over N variables.
These monomials can be viewed as functions from FN

q to Fq. W.l.o.g, we assume
that the constant function 1 is also in M (constant function 1 corresponds to a
monomial with an empty set of variables). Let H be the subspace spanned by
these functions in M.

For any u ∈ FN
q , define an operator Tu such that (Tu(f))(X) = f(X − u) for

any function f : FN
q → Fq. The following proposition is simple to prove.

Proposition 7. Let H be the subspace spanned by a downward closed set of
monomials M over the set of variables {x1, x2, . . . , xN}. Then for any u ∈ FN

q ,
Tu is a linear map from H to H. Moreover, the map Tu is one-one for any
u ∈ FN

q .

Proof. Let g(X) be an arbitrary function in H which can be expressed as fol-
lows: g(X) =

∑
i≥1 cimi(X) where mi(X) ∈ M, and ci ∈ Fq for all i ≥ 1.

Observe that, (Tu(g))(X) = g(X − u) =
∑

i≥1 cimi(X − u). It is sufficient to
prove that m(X − u) ∈ H for all m(X) ∈ M. We can express m(X − u) as
follows: m(X − u) =

∑
S⊆ var(m(X)) cS

∏
xr∈S xr . where cS ∈ Fq. For every

S ⊆ var(m(X)),
∏

xr∈Sxr ∈ M because M is downward closed. Since the
choice of S was arbitrary, m(X− u) ∈ H . It is obvious that Tu is a linear map.

To see that Tu is a one-one map, consider any nonzero function g(X) in H
which can be defined as g(X) =

∑
i≥1 cimi(X) where mi(X) ∈ M, and ci ∈ Fq

for all i ≥ 1. Now, we notice that the highest degree monomials always survive
in Tu(g(X)). Hence, the kernel of the map Tu is trivial for all u ∈ FN

q . ��

It is not difficult to observe that the derivative spaces that we select for
NWn,ε(X) and IMMn,n(X) are spanned by downward closed sets of monomials.

Lemma 8. The generator sets for the derivative subspaces H for NWn,ε(X) and
IMMn,n(X) polynomials are downward closed.

Proof. Let us consider the NWn,ε(X) polynomial first. Let m ∈ H be any

monomial and D be the admissible set such that m =
∂NWn,ε(X)

∂D . Let m′

be any monomial such that var(m′) ⊆ var(m). Then m′ =
∂NWn,ε(X)

∂D′ where
D′ = D ∪ (var(m) \ var(m′)).

186 S. Chillara and P. Mukhopadhyay

Similarly for the IMMn,n(X) polynomial, consider any m ∈ H . Then m =
∂IMMn,n(X)

∂D and D = S ∪ T for an admissible set S and T ⊆ var(mS). If m′

is any monomial such that var(m′) ⊆ var(m), then m′ =
∂IMMn,n(X)

∂D′ where
D′ = S ∪ (T ∪ (var(m) \ var(m′))). Clearly T ∪ (var(m) \ var(m′)) ⊆ var(mS). ��

5 A Covering Argument

In this section, we adapt the covering argument of [GK98] to prove the lower
bound results. In [GK98], the covering argument was given over the set of in-
vertible matrices. Here we adapt their argument suitably over the entire space
FN
q . As defined in the section 4, the subspace H represents the chosen derivative

subspace of either the NWn,ε(X) polynomial or the IMMn,n(X) polynomial.
Define the subspace Ha := {f ∈ H : f(a) = 0} for a ∈ FN

q . Let us recall that
E is the set of points over which some of the product gates with large rank may
not evaluate to zero. Let the set of points FN

q \E be denoted by A. Then Lemma
4 says that in H , we get that codim(

⋂
a∈AHa) < s qr0 . We note the following

simple observation.

Proposition 9. For any u, a ∈ FN
q , we have that Tu(Ha) = Hu+a.

Let P =
⋂

a∈AHa. Let S ⊂ FN
q be a set such that we can cover the entire

space FN
q by the shifts of A with the elements from S:

⋃
u∈S u + A = FN

q .
Now by applying the map Tu to P which is one-one, we get the following:
Tu(P) =

⋂
a∈A Tu(Ha) =

⋂
b∈u+AHb. By a further intersection over S, we get

the following. ⋂
u∈S

Tu(P) =
⋂
u∈S

⋂
b∈u+A

Hb =
⋂

b∈FN
q

Hb (2)

From Equation 2, we get the following estimate.

codim

⎛⎝ ⋂
b∈FN

q

Hb

⎞⎠ = codim

(⋂
u∈S

Tu(P)

)
≤ |S| codim(P) ≤ |S| s qr0 (3)

The codim
(⋂

b∈FN
q
Hb

)
refers to the dimension of the set of functions in H which

do not evaluate to zero over all the points in FN
q .

Next, we show an upper-bound estimate for the size of the set S. This follows
from a simple adaptation of the dominating set based argument given in [GK98].
Consider the directed graph G = (V,R) defined as follows. The points in FN

q are

the vertices of the graph. For u1, u2 ∈ FN
q , the edge u1 → u2 is in R iff u2 = u1+b

for any b ∈ A. Clearly the in-degree and out-degree of any vertex are equal to
|A|. Now, we recall Lemma 2 of [GK98] to estimate the size of S.

Lemma 10 (Lovász, [Lov75]). Let (V,R) be a directed (regular) graph with
|V | = m vertices and with the in-degree and the out-degree of each vertex both
equal to d. Then there exists a subset U ⊂ V of size O(md log(d + 1)) such that
for any vertex v ∈ V there is a vertex u ∈ U forming an edge (u, v) ∈ R.

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields 187

Let c0 be the constant fixed by the lemma in its O() notation. By Lemma 10, we

get the following estimate: |S| ≤ c0
|FN

q |
|A| log(|A|+1) ≤ c0

qN

qN−|E| log(qN−|E|+1) ≤
c0(log q) N qN

qN−|E| = O(N) (for fixed q). The last equation follows from the

estimate for |E| from the section 3.

Fixing the Parameters. Consider the inequality 1 which is δ < yβ
q −

ln y
lnn . Fix

the values for β, δ, and μ in Lemma 4 as follows. Set β = 1
10 ln q , δ = 1

20q ln q , ν = δ
2 ,

and μ = e−ν . Consider the function g(y) = y − 10q ln q
lnn ln y − 0.50. Since g(y) is

a monotonically increasing function (for n appropriately larger than a threshold
value depending on q) which takes the value of 0.50 at y = 1, g(y) > 0 for y ≥ 1
and thus δ < yβ

q −
ln y
lnn for the chosen values of β and δ. Also, yβ

q −
ln y
lnn − δ > ν

and thus |E| ≤ qNμn lnn.
From Section 4, we know that dim(H) for NWn,ε(X) is at least eεn lnn. Con-

sider the upper bound on codim
(⋂

b∈FN
q
Hb

)
given by the inequality 3. If we

choose ε in such a way that eεn lnn > |S| s qr0 , then there will be a multilinear
polynomial f in H such that f will evaluate to zero over all points in FN

q . Then,

dim(H) > nεn = eεn lnn =⇒ eεn lnn > |S| s qr0 = eδn lnn+(β ln q)n lnn+lnN . Con-
sidering the terms of the order of n lnn in the exponent, it is enough to choose
ε(< 1/2) such that the following holds: ε > δ + β ln q = 1

20q ln q + 1
10 .

Since the dim(H) for IMMn,n(X) is ≥ e(n−1) lnn, the chosen values of β and
δ clearly suffice. Finally, we recall from the combinatorial nullstellensatz [Alo99]
that no non-zero multilinear polynomial can be zero over FN

q . Thus, we get the
main theorem (restated from Section 1).

Theorem 11. For any fixed-size finite field Fq, any depth three ΣΠΣ circuit
computing the polynomials NWn,ε(X) or IMMn,n(X) must be of size at least
2δn logn where the parameters δ and ε(< 1/2) are in (0, 1) and depend only on q.

The main interesting open problem that remains after our work, is to prove
that over the fixed-size fields, any ΣΠΣ circuit computing the determinant
polynomial for a n× n matrix must be of size 2Ω(n log n).

References

[Alo99] Alon, N.: Combinatorial nullstellensatz. Combinatorics, Probability and
Computing 8 (1999)

[AV08] Agrawal, M.: V Vinay. Arithmetic circuits: A chasm at depth four. In:
Proceedings-Annual Symposium on Foundations of Computer Science,
pp. 67–75. IEEE (2008)

[Chi14] Chillara, S.: (2014), http://www.cmi.ac.in/~suryajith/Depth3.pdf
[CM14] Chillara, S., Mukhopadhyay, P.: Depth-4 lower bounds, determinantal

complexity: A unified approach. In: STACS, pp. 239–250 (2014)
[Fei09] Feige, U.: The permanent and the determinant (2009)
[Fis94] Fischer, I.: Sums of like powers of multivariate linear forms. Mathematics

Magazine 67(1), 59–61 (1994)

http://www.cmi.ac.in/~suryajith/Depth3.pdf

188 S. Chillara and P. Mukhopadhyay

[FLMS13] Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for
depth 4 formulas computing iterated matrix multiplication. In: To Ap-
pear in the proceedings of STOC 2014. Electronic Colloquium on Com-
putational Complexity (ECCC), vol. 20, p. 100 (2013)

[GK98] Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3
arithmetic circuits. In: STOC, pp. 577–582 (1998)

[GKKS13a] Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the
chasm at depth four. In: IEEE Conference on Computational Complexity,
pp. 65–73 (2013)

[GKKS13b] Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits:
A chasm at depth three. In: FOCS, pp. 578–587 (2013)

[KLSS14] Kayal, N., Limaye, N., Saha, C., Srinivasan, S.: An exponential lower
bound for homogeneous depth four arithmetic formulas. In: To appear in
the Proceedings of STOC 2014. Electronic Colloquium on Computational
Complexity (ECCC), vol. 21, p. 5 (2014)

[KMN13] Kumar, M., Maheshwari, G., Sarma M.N., J.: Arithmetic circuit lower
bounds via maxRank. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 661–672.
Springer, Heidelberg (2013)

[Koi12] Koiran, P.: Arithmetic circuits: The chasm at depth four gets wider.
Theor. Comput. Sci. 448, 56–65 (2012)

[KS13a] Kumar, M., Saraf, S.: The limits of depth reduction for arithmetic for-
mulas: It’s all about the top fan-in. In: To appear in the Proceedings
of STOC 2014. Electronic Colloquium on Computational Complexity
(ECCC), vol. 20, p. 153 (2013)

[KS13b] Kumar, M., Saraf, S.: Superpolynomial lower bounds for general ho-
mogeneous depth 4 arithmetic circuits. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 751–762. Springer, Heidelberg (2014)

[KS14] Kumar, M., Saraf, S.: On the power of homogeneous depth 4 arith-
metic circuits. Electronic Colloquium on Computational Complexity
(ECCC) 21, 45 (2014)

[KSS13] Kayal, N., Saha, C., Saptharishi, R.: A super-polynomial lower bound for
regular arithmetic formulas. In: To appear in the Proceedings of STOC
2014. Electronic Colloquium on Computational Complexity (ECCC),
vol. 20, p. 91 (2013)

[Lov75] Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete
mathematics 13(4), 383–390 (1975)

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst.
Sci. 49(2), 149–167 (1994)

[NW97] Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity 6(3), 217–234 (1997)

[Sap13] Saptharishi, R.: Personal communication (2013)
[Sax08] Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto,

L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71.
Springer, Heidelberg (2008)

[SW01] Shpilka, A., Wigderson, A.: Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity 10(1), 1–27 (2001)

[Tav13] Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In:
Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824.
Springer, Heidelberg (2013)

Hitting Forbidden Subgraphs in Graphs

of Bounded Treewidth�

Marek Cygan1, Dániel Marx2, Marcin Pilipczuk3, and Micha�l Pilipczuk3

1 Institute of Informatics, University of Warsaw, Poland
cygan@mimuw.edu.pl

2 Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Hungary

dmarx@cs.bme.hu
3 Department of Informatics, University of Bergen, Norway

{Marcin.Pilipczuk,Michal.Pilipczuk}@ii.uib.no

Abstract. We study the complexity of a generic hitting problem H-

Subgraph Hitting, where given a fixed pattern graph H and an input
graph G, we seek for the minimum size of a set X ⊆ V (G) that hits
all subgraphs of G isomorphic to H . In the colorful variant of the prob-
lem, each vertex of G is precolored with some color from V (H) and we
require to hit only H-subgraphs with matching colors. Standard tech-
niques (e.g., Courcelle’s theorem) show that, for every fixed H and the
problem is fixed-parameter tractable parameterized by the treewidth of
G; however, it is not clear how exactly the running time should depend
on treewidth. For the colorful variant, we demonstrate matching upper
and lower bounds showing that the dependence of the running time on
treewidth of G is tightly governed by μ(H), the maximum size of a min-
imal vertex separator in H . That is, we show for every fixed H that,
on a graph of treewidth t, the colorful problem can be solved in time

2O(tμ(H)) · |V (G)|, but cannot be solved in time 2o(t
μ(H)) · |V (G)|O(1),

assuming the Exponential Time Hypothesis (ETH). Furthermore, we
give some preliminary results showing that, in the absence of colors, the
parameterized complexity landscape of H-Subgraph Hitting is much
richer.

1 Introduction

The “optimality programme” is a thriving trend within parameterized com-
plexity, which focuses on pursuing tight bounds on the time complexity of
parameterized problems. Instead of just determining whether the problem is
fixed-parameter tractable, that is, whether the problem with a certain parame-
ter k can be solved in time f(k) · nO(1) for some computable function f(k), the

� The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 267959, and n. 280152, as
well as OTKA grant NK10564 and Polish National Science Centre grant DEC-
2012/05/D/ST6/03214.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 189–200, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

190 M. Cygan et al.

goal is to determine the best possible dependence f(k) on the parameter k. For
several problems, matching upper and lower bounds have been obtained for the
function f(k). The lower bounds are under the complexity assumption Exponen-
tial Time Hypothesis (ETH), which roughly states than n-variable 3SAT cannot
be solved in time 2o(n); see, e.g., the survey of Lokshtanov et al. [11].

One area where this line of research was particularly successful is the study of
fixed-parameter algorithms parameterized by the treewidth of the input graph
and understanding how the running time has to depend on the treewidth. Clas-
sic results on model checking monadic second-order logic on graphs of bounded
treewidth, such as Courcelle’s Theorem, provide a unified and generic way of
proving fixed-parameter tractability of most of the tractable cases of this param-
eterization [1,5]. While these results show that certain problems are solvable in
time f(t) ·n on graphs of treewidth t for some function f , the exact function f(t)
resulting from this approach is usually hard to determine and far from optimal.
To get reasonable upper bounds on f(t), one typically resorts to constructing a
dynamic programming algorithm, which often is straightforward, but tedious.

The question whether the straightforward dynamic programming algorithms
for bounded treewidth graphs are optimal received particular attention in 2011.
On the hardness side, Lokshtanov, Marx and Saurabh proved that many natural
algorithms are probably optimal [10,12]. In particular, they showed that there
are problems for which the 2O(t log t)n time algorithms are best possible, assum-
ing ETH. On the algorithmic side, Cygan et al. [6] presented a new technique,
called Cut&Count, that improved the running time of the previously known (nat-
ural) algorithms for many connectivity problems. For example, previously only
2O(t log t) ·nO(1) algorithms were known for Hamiltonian Cycle and Feedback

Vertex Set, which was improved to 2O(t) ·nO(1) by Cut&Count. These results
indicated that not only proving tight bounds for algorithms on tree decomposi-
tions is within our reach, but such a research may lead to surprising algorithmic
developments. Further work includes derandomization of Cut&Count in [3,8],
an attempt to provide a meta-theorem to describe problems solvable in single-
exponential time [13], and a new algorithm for Planarization [9].

We continue here this line of research by investigating a family of subgraph-
hitting problems parameterized by treewidth and find surprisingly tight bounds
for a number of problems. An interesting conceptual message of our results is
that, for every integer c ≥ 1, there are fairly natural problems where the best
possible dependence on treewidth is of the form 2O(tc).

Studied Problems and Motivation. In our paper we focus on the following generic
H-Subgraph Hitting problem: for a pattern graph H and an input graph G,
what is the minimum size of a set X ⊆ V (G) that hits all subgraphs of G that are
isomorphic to H? (Henceforth we call them H-subgraphs for brevity.) This prob-
lem generalizes a few ones studied in the literature, for example Vertex Cover

(for H = P2), where a tight 2t · tO(1) · |V (G)| time bound is known [10], or find-
ing largest induced subgraph of maximum degree at most Δ (for H = K1,Δ+1),
which is W [1]-hard for treewidth parameter if Δ is a part of the input [2], but,
to the best of our knowledge, no detailed study of treewidth parameterization

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 191

for constant Δ has been done before. We also study the following colorful vari-
ant Colorful H-Subgraph Hitting, where the input graph G is additionally
equipped with a coloring σ : V (G) → V (H), and we are only interested in hitting
H-subgraphs whose all vertices match their colors.

A direct source of motivation for our study is the work of Pilipczuk [13], which
attempted to describe graph problems admitting fixed-parameter algorithms with
running time of the form 2O(t) · |V (G)|O(1), where t is the treewidth ofG. The pro-
posed description is a logical formalism where one can quantify existence of some
vertex/edge sets, whose properties can be verified “locally” by requesting satisfac-
tion of a formula of modal logic in every vertex. In particular, Pilipczuk argued that
the language for expressing local properties needs to be somehow modal, as it can-
not be able to discover cycles in a constant-radius neighborhood of a vertex. This
claim was supported by a lower bound: unless ETH fails, for any constant � ≥ 5, the
problem of finding the minimum size of a set that hits all the cyclesC� in a graph of
treewidth t cannot be solved in time 2o(t

2) · |V (G)|O(1). Motivated by this result, we
think that it is natural to investigate the complexity of hitting subgraphs for more
general patterns H , instead of just cycles.

We may see the colorful variant as an intermediate step towards full under-
standing of the complexity of H-Subgraph Hitting, but it is also an interesting
problem on its own. It often turns out that the colorful variants of problems are
easier to investigate, while their study reveals useful insights; a remarkable ex-
ample is the kernelization lower bound for Set Cover and related problems [7].
In our case, if we allow colors, a major combinatorial difficulty vanishes: when
the algorithm keeps track of different parts of the pattern H that appear in the
graph G, and combines a few parts into a larger one, the coloring σ ensures
that the parts are vertex-disjoint. Hence, the colorful variant is easier to study,
whereas at the same time it reveals interesting insight into the standard variant.

Our Results and Techniques. In the case of Colorful H-Subgraph Hitting,
we obtain a tight bounds for the complexity of the treewidth parameterization.
First, note that, in the presence of colors, one actually can solve Colorful H-

Subgraph Hitting for each connected component of H independently; hence,
we may focus only on connected patterns H . Second, we observe that there
are two special cases. If H is a path then Colorful H-Subgraph Hitting

reduces to a maximum flow/minimum cut problem, and hence is polynomial-
time solvable. If H is a clique, then any H-subgraph of G needs to be contained
in a single bag of any tree decomposition, and there is a simple 2O(t)|V (G)|-time
algorithm, where t is the treewidth of G. Finally, for the remaining cases we show
that the dependence on treewidth is tightly connected to the value of μ(H), the
maximum size of a minimal vertex separator in H (a separator S is minimal if
there are two vertices x, y such that S is an xy-separator, but no proper subset
of S is). We prove the following matching upper and lower bounds.

Theorem 1. A Colorful H-Subgraph Hitting instance (G, σ) can be

solved in time 2O(tμ(H))|V (G)| in the case when H is connected and is not a
clique, where t is the treewidth of G.

192 M. Cygan et al.

Theorem 2. Let H be a graph that contains a connected component that is
neither a path nor a clique. Then, unless ETH fails, there does not exist an
algorithm that, given a Colorful H-Subgraph Hitting instance (G, σ) and

a tree decomposition of G of width t, resolves (G, σ) in time 2o(t
μ(H))|V (G)|O(1).

In all the theorems in this work we treat H as a fixed graph of constant size,
and hence the factors hidden in the O-notation may depend on the size of H .

In the absence of colors, we give preliminary results showing that the parame-
terized complexity of the treewidth parameterization of H-Subgraph Hitting

is more involved than the one of the colorful counterpart. In this setting, we
are able to relate the dependence on treewidth only to a larger parameter of
the graph H . Let μ�(H) be the maximum size of NH(A), where A iterates over
connected subsets of V (H) such that NH(NH [A]) = ∅, i.e., NH [A] is not a whole
connected component of H . Observe that μ(H) ≤ μ�(H) for any H . First, we
were able to construct a counterpart of Theorem 1 only with the exponent μ�(H).

Theorem 3. Assume H contains a connected component that is not a clique.
Then, given a graph G of treewidth t, one can solve H-Subgraph Hitting on

G in time 2O(tμ
�(H) log t)|V (G)|.

We remark that for Colorful H-Subgraph Hitting, an algorithm with

running time 2O(tμ
�(H))|V (G)| (as opposed to μ(H) in the exponent in Theo-

rem 1) is rather straightforward: in the state of dynamic programming one needs
to remember, for every subset X of the bag of size at most μ�(G), all forgot-
ten connected parts of H that are attached to X and not hit by the constructed
solution. To decrease the exponent to μ(H), we introduce a “prediction-like” def-
inition of a state of the dynamic programming, leading to highly involved proof
of correctness. For the problem without colors, however, even an algorithm with
the exponent μ�(H) (Theorem 3) is far from trivial. We cannot limit ourselves to
keeping track of forgotten connected parts of the graph H independently of each
other, since in the absence of colors these parts may not be vertex-disjoint and,
hence, we would not be able to reason about their union in latter bags of the
tree decomposition. To cope with this issue, we show that the set of forgotten
(not necessarily connected) parts of the graph H that are subgraphs of G can be
represented as a witness graph with O(tμ

�(H)) vertices and edges. As there are

only 2O(tμ
�(H) log t) possible graphs of this size, the running time bound follows.

We also observe that the bound of O(tμ
�(H)) on the size of a witness graph

is not tight for many patterns H . For example, if H is a path, then we are
able to find a witness graph with O(t) vertices and edges, and the algorithm of
Theorem 3 runs in 2O(t log t)|V (G)| time.

From the lower bound perspective, we were not able to prove an analog of
Theorem 2 in the absence of colors. However, there is a good reason for that:
we show that for any fixed h ≥ 2 and H = K2,h, the H-Subgraph Hitting

problem is solvable in time 2O(t2 log t)|V (G)| for a graph G of treewidth t. This
should be put in contrast with μ�(K2,h) = μ(K2,h) = h. Moreover, the lower

bound of 2o(t
h) can be proven if we break the symmetry of K2,h by attaching

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 193

a triangle to each of the two degree-h vertices of K2,h. This indicates that the
optimal dependency on t in an algorithm for H-Subgraph Hitting may heavily
rely on the symmetries of H , and may be more difficult to pinpoint.

2 Preliminaries

Graph Notation. In most cases, we use standard graph notation. A t-boundaried
graph is a graph G with a prescribed (possibly empty) boundary ∂G ⊆ V (G)
with |∂G| ≤ t, and an injective function λG : ∂G → {1, 2, . . . , t}. For a vertex
v ∈ ∂G the value λG(v) is called the label of v.

A colored graph is a graph G with a function σ : V (G) → L, where L is some
finite set of colors. A graph G is H-colored, for some other graph H , if L = V (H).
We also say in this case that σ is an H-coloring of G.

A homomorphism of graphs H and G is a function π : V (H) → V (G) such
that ab ∈ E(H) implies π(a)π(b) ∈ E(G). In the H-colored setting, i.e., when G
is H-colored, we also require that σ(π(a)) = a for any a ∈ V (H) (every vertex of
H is mapped onto appropriate color). The notion extends also to t-boundaried
graphs: if both H and G are t-boundaried, we require that whenever a ∈ ∂H
then π(a) ∈ ∂G and λG(π(a)) = λH(a). Note, however, that we allow that a
vertex of intH is mapped onto a vertex of ∂G.

An H-subgraph of G is any injective homomorphism π : V (H) → V (G). Recall
that in the t-boundaried setting, we require that the labels are preserved, whereas
in the colored setting, we require that the homomorphism respect colors. In the
latter case, we call it a σ-H-subgraph of G for clarity.

We say that a set X ⊆ V (G) hits a (σ-)H-subgraph π if X ∩ π(V (H)) = ∅.
The (Colorful) H-Subgraph Hitting problem asks for a minimum possible
size of a set that hits all (σ-)H-subgraphs of G.

Tree Decompositions. In this work, we view tree decompositions as rooted: in
a tree decomposition (T, β), T is a rooted tree and β(w) is a bag at node w ∈
V (T). We moreover define γ(w) =

⋃
w′�w β(w′), where the union iterates over

all descendants w′ of w in T, and α(w) = γ(w) \ β(w). In all our algorithms,
by using a recent 5-approximation algorithm for treewidth [4], we assume that
we are given a tree decomposition (T, β) where each bag is of size at most t;
this linear shift in the value of t is irrelevant for the complexity bounds, but
makes the notation much cleaner. Moreover, we assume that we are additionally
equipped with a labeling Λ : V (G) → {1, 2, . . . , t} that is injective on each bag
β(w); observe that it is straightforward to compute such a labeling in a top-down
manner on T. Consequently, we may treat each graph G[γ(w)] as a t-boundaried
graph with ∂G[γ(w)] = β(w) and labeling Λ|β(w).

Important Graph Invariants, Chunks And Slices. For two vertices a, b ∈ V (H), a
set S ⊆ V (H)\{a, b} is an ab-separator if a and b are not in the same connected
component of H \ S. The set S is additionally a minimal ab-separator if no
proper subset of S is an ab-separator. A set S is a minimal separator if it is a

194 M. Cygan et al.

Fig. 1. White and gray vertices denote a slice (left), chunk (centre) and separator
chunk (right) in a graph H being a path. The gray vertices belong to the boundary.

minimal ab-separator for some a, b ∈ V (H). For a graph H , by μ(H) we denote
the maximum size of a minimal separator in H .

For an induced subgraph H ′ = H [D], D ⊆ V (H), we define the boundary
∂H ′ = NH(V (H) \ D) and the interior intH ′ = D \ ∂H [D]; thus V (H ′) =
∂H ′ + intH ′. Observe that NH(intH ′) ⊆ ∂H ′. An induced subgraph H ′ of H is
a slice if NH(intH ′) = ∂H ′, and a chunk if additionally H [intH ′] is connected.
For a set A ⊆ V (H), we use p[A] (c[A]) to denote the unique slice (chunk) with
interior A (if it exists). The intuition behind this definition is that, when we
consider some bag β(w) in a tree decomposition, a slice is a part of H that may
already be present in G[γ(w)] and we want to keep track of it. If a slice (chunk)
p is additionally equipped with a injective labeling λp : ∂p→ {1, 2, . . . , t}, then
we call the resulting t-boundaried graph a t-slice (t-chunk, respectively).

By μ�(H) we denote the maximum size of ∂c, where c iterates over all chunks
of H . We remark here that both μ(H) and μ�(H) are positive only for graphs H
that contain at least one connected component that is not a clique, as otherwise
there are no chunks with nonempty boundary nor minimal separators in H .

Observe that if S is a minimal ab-separator in H , and A is the connected
component of H \ S that contains a, then NH(A) = S and c[A] is a chunk in
H with boundary S. Consequently, μ(H) ≤ μ�(H) for any graph H . A chunk c
for which ∂c is a minimal separator in H is henceforth called a separator chunk.
See also Figure 1 for an illustration.

3 General Algorithm for H-Subgraph Hitting

In this section we sketch an algorithm for H-Subgraph Hitting running in

time 2O(tμ
�(H) log t)|V (G)|, where t is the width of the tree decomposition we are

working on. The general idea is the natural one: for each node w of the tree
decomposition, for each set X̂ ⊆ β(w) and for each family P of t-slices, we would
like to find the minimum size of a set X ⊆ α(w) such that, if we treat G[γ(w)]
as a t-boundaried graph with ∂G[γ(w)] = β(w) and labeling Λ|β(w), then any

slice that is a subgraph of G[γ(w) \ (X ∪ X̂)] belongs to P. However, as there
can be as many as t|H| t-slices, we have too many choices for the family P.

The essence of the proof, encapsulated in the next lemma, is to show that
each “reasonable” choice of P can be encoded as a witness graph of essentially

size O(tμ
�(H)). Such a claim would give a 2O(tμ

�(H) log t) bound on the number
of possible witness graphs, and provide a good bound on the size of state space.

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 195

Lemma 1. Assume H contains a connected component that is not a clique.
Then, for any t-boundaried graph (G, λ) there exists a t-boundaried graph (Ĝ, λ)

that (a) is a subgraph of (G, λ), (b) ∂G = ∂Ĝ and G[∂G] = Ĝ[∂Ĝ], (c) Ĝ \
E(Ĝ[∂Ĝ]) contains O(tμ

�(H)) vertices and edges, and, (d) for any t-slice p and
any set Y ⊆ V (G) such that |Y |+ |V (p)| ≤ |V (H)|, there exists a p-subgraph in

(G \ Y, λ) if and only if there exists one in (Ĝ \ Y, λ).

Proof. We define Ĝ by a recursive procedure. We start with Ĝ = G[∂G]. Then,
for every t-chunk c = (H ′, λ′), we invoke a procedure enhance(c, ∅). The proce-
dure enhance(c, X), for X ⊆ V (G), first tries to find a c-subgraph π in (G\X,λ).
If there is none, the procedure terminates. Otherwise, it first adds all edges and
vertices of π(c) to Ĝ that are not yet present there. Second, if |X | < |V (H)|,
then it recursively invokes enhance(c, X ∪ {v}) for each v ∈ π(c).

We first bound the size of the constructed graph Ĝ. There are at most
2|V (H)|tμ

�(H) choices for the chunk, since a chunk c is defined by its vertex
set, and there are at most tμ

�(H) labellings of its boundary. The procedure
enhance(c, X) at each step adds at most one copy of H to G, and branches into
at most |V (H)| directions. The depth of the recursion is bounded by |V (H)|.
Hence, in total at most 2|V (H)|tμ

�(H) · (|V (H)| + |E(H)|) · |V (H)||V (H)| edges

and vertices are added to Ĝ, except for the initial graph G[∂G].

It remains to argue that Ĝ satisfies property (d). Clearly, since (Ĝ, λ) is a sub-
graph of (G, λ), the implication in one direction is trivial. In the other direction,
we start with the following claim.

Claim 4. For any set Z ⊆ V (G) of size at most |V (H)|, and for any t-chunk c,

if there exists a c-subgraph in (G \ Z, λ) then there exists also one in (Ĝ \ Z, λ).

Proof. Let π be a c-subgraph in (G\Z, λ). Define X0 = ∅. We will construct sets
X0 � X1 � . . ., where Xi ⊆ Z for every i, and analyse the calls to the procedure
enhance(c, Xi) in the process of constructing Ĝ.

Assume that enhance(c, Xi) has been invoked at some point during the con-
struction; clearly this is true for X0 = ∅. Since we assume Xi ⊆ Z, there exists
a c-subgraph in (G \ Xi, λ) — π is one such example. Hence, enhance(c, Xi)

has found a c-subgraph πi, and added its image to Ĝ. If πi is a c-subgraph
also in (Ĝ \ Z, λ), then we are done. Otherwise, there exists vi ∈ Z \ Xi that
is also present in the image of πi. In particular, since |Z| ≤ |V (H)|, we have
|Xi| < |V (H)| and the call enhance(c, Xi ∪ {vi}) has been invoked. We define
Xi+1 := Xi ∪ {vi}.

Since the sizes of sets Xi grow at each step, for some Xi, i ≤ |Z|, we reach

the conclusion that πi is a c-subgraph of (Ĝ \Z, λ), and the claim is proven.

Fix now a set Y ⊆ V (G) and a t-slice p with labeling λp and with |Y | +

|V (p)| ≤ |V (H)|. Let π be a p-subgraph of (G \ Y, λ). Let A1, A2, . . . , Ar be the
connected components of H [intp]. Define Hi = NH [Ai], and observe that each
Hi is a chunk with ∂Hi = NH(Ai) ⊆ ∂p. We define λi = λp|∂Hi to obtain a
t-chunk ci = (Hi, λi). By the properties of a t-slice, each vertex of p is present
in at least one graph ci, and vertices of ∂p may be present in more than one.

196 M. Cygan et al.

We now inductively define injective homomorphisms π0, π1, . . . , πr such that
of πi maps the subgraph of p induced by ∂p ∪

⋃
j≤iAj to (Ĝ \ Y, λ), and does

not use any vertex of
⋃

j>i π(Aj). Observe that πr is a p-subgraph of (Ĝ \ Y, λ).
Hence, this construction will conclude the proof of the lemma.

For base case, recall that π(∂p) ⊆ ∂G = ∂Ĝ and define π0 = π|∂p. For the
inductive case, assume that πi−1 has been constructed for some 1 ≤ i ≤ r. Define

Zi = Y ∪ π(∂p \ ∂Hi) ∪
⋃
j<i

πi−1(Aj) ∪
⋃
j>i

π(Aj).

Note that since π and πi−1 are injective and Y is disjoint with π(∂p), then
we have that Zi ∩ π(∂p) = π(∂p \ ∂Hi). This observation and the inductive
assumption on πi−1 imply that the mapping π|V (Hi) does not use any vertex
of Zi. Thus, π|V (Hi) is a ci-subgraph in (G \ Zi, λ). Observe moreover that
|Zi| ≤ |Y | + |V (p)| ≤ |V (H)|. By Claim 4, there exists a ci-subgraph π′

i in

(Ĝ\Zi, λ). Observe that, since π′
i and πi−1 are required to preserve labellings on

boundaries of their preimages, πi := π′
i∪πi−1 is a function and a homomorphism.

Moreover, by the definition of Zi, πi is injective and does not use any vertex of⋃
j>i π(Aj). Hence, πi satisfies all the required conditions, and the inductive

construction is completed. This concludes the proof of the lemma. ��

Using Lemma 1, we now define states of dynamic programming algorithm on
the input tree decomposition (T, β). For every node w ∈ V (T), a state is a pair

s = (X̂, Ĝ) where X̂ ⊆ β(w) and Ĝ is a graph with O(tμ
�(H)) vertices and edges

such that β(w) \ X̂ ⊆ V (Ĝ) and Ĝ[β(w) \ X̂] = G[β(w) \ X̂]. We treat Ĝ as a

t-boundaried graph with ∂Ĝ = β(w)\X̂ and labeling Λ|β(w)\X̂ . We say that a set

X ⊆ α(w) is feasible for w and s if for every Y ⊆ β(w)\X̂ and for every t-slice p

such that |Y |+ |V (p)| ≤ |V (H)|, if there is a p-subgraph in (G[γ(w) \ (X ∪ X̂ ∪
Y)], Λ|β(w)\(X̂∪Y)) then there is also one in (Ĝ \ Y, Λ|β(w)\(X̂∪Y)). For every w

and every state s, we would like to compute T [w, s], the minimum possible size
of a feasible set X . Note that the answer to the input H-Subgraph Hitting

instance is the minimum value of T [root(T), (∅, Ĝ)] where Ĝ iterates over all
graphs of with O(tμ

�(H)) vertices and edges that do not contain the t-slice (H, ∅)
as a subgraph. Hence, it remains to show how to compute the values T [w, s] in
a bottom-up manner in the tree decomposition, which is relatively standard.

4 Discussion on Special Cases of H-Subgraph Hitting

As announced in the introduction, we now discuss a few special cases of H-

Subgraph Hitting. First, let us consider H being a path, H = Ph for some h ≥
3. Note that μ(Ph) = 1, while μ�(Ph) = 2 for h ≥ 5. Observe that in the dynamic
programming algorithm of the previous section we have that G[γ(w)\ (X ∪Xw)]
does not contain an H-subgraph and, hence, the witness graph obtained through
Lemma 1 does not contain an H-subgraph as well. However, graphs excluding
Ph as a subgraph have very rigid structure: any their depth-first search tree has

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 197

depth bounded by h. Using this insight, we can derive the following improvement
of Lemma 1, that improves the running time of Theorem 3 to 2O(t log t)|V (G)|
for H being a path.1

Lemma 2. Assume H is a path. Then, for any t-boundaried graph (G, λ) that
does not contain an H-subgraph, there exists a witness graph as in Lemma 1 with
O(t) vertices and edges.

Second, let us consider H = K2,h (the complete biclique with 2 vertices on one
side, and h on the other), for some h ≥ 2. Observe that μ�(K2,h) = μ(K2,h) = h.
On the other hand, we note the following.

Lemma 3. Assume H = K2,h for some h ≥ 2. If the witness graph given by
Lemma 1 does not admit an H-subgraph, then it has O(t2) vertices and edges.

Proof. Since the constructed witness graph Ĝ does not admit an H-subgraph,
each two vertices v1, v2 ∈ ∂Ĝ have less than h common neighbours in Ĝ, as
otherwise there is a H-subgraph in Ĝ \ ∂Ĝ on vertices v1, v2 and h vertices of
NĜ(v1) ∩NĜ(v2). Hence

∑
v∈V (Ĝ)\∂Ĝ

(
|NĜ(v) ∩ ∂Ĝ|

2

)
≤ (h− 1)

(
|∂Ĝ|

2

)
≤ (h− 1)

(
t

2

)
. (1)

Let V (H)={a1, a2, b1, b2, . . . , bh}whereA :={a1, a2} andB :={b1, b2, . . . , bh}
are bipartition classes ofH . Note that there are only two types of proper chunks in
H : NH [ai], i = 1, 2 and NH [bj], 1 ≤ j ≤ h. Hence, one can easily verify that in the

construction of the witness graph Ĝ of Lemma 1 every vertex v ∈ Ĝ \ ∂Ĝ has at

least two neighbours in ∂Ĝ, and Ĝ \ ∂Ĝ is edgeless. Then we have |NĜ(v)∩ ∂Ĝ| ≤
2
(|NĜ(v)∩∂Ĝ|

2

)
for each v ∈ V (Ĝ) \ ∂Ĝ. Consequently, by (1) there are at most

2(h− 1)
(
t
2

)
edges of Ĝ with exactly one endpoint in ∂Ĝ, whereas there are at most(

t
2

)
edges in Ĝ[∂Ĝ]. The lemma follows. ��

Lemma 3 together with a dynamic programming as in Section 3 imply that
K2,h-Subgraph Hitting can be solved in 2O(t2 log t)|V (G)| time, in spite of the
fact that μ�(K2,h) = μ(K2,h) = h.

We now show that a slight modification of K2,h enables us to prove a much
higher lower bound. For this, let us consider a graph Hh for h ≥ 2 defined as K2,h

with triangles attached to both degree-h vertices. Note that μ(Hh) = μ�(Hh) =
h. One may view Hh as K2,h with some symmetries broken, so that the proof
of Lemma 3 does not extend to Hh. We observe that the lower bound proof of
Theorem 2 works, with small modifications, also for the case of Hh-Subgraph

Hitting.

Theorem 5. Unless ETH fails, for every h ≥ 2 there does not exist an algorithm
that, given a Hh-Subgraph Hitting instance G and a tree decomposition of G

of width t, resolves G in time 2o(t
h)|V (G)|O(1).

1 The proofs Lemma 2 and Theorem 5 are deferred to the full version of the paper.

198 M. Cygan et al.

Furthermore, the proof of Theorem 5 does not need to assume that h is a constant.
Thus, we obtain the following interesting double-exponential lower bound.

Corollary 1. Unless ETH fails, there does not exist an algorithm that, given
a graph G with a tree decomposition of width t, and an integer h = O(log |V (G)|),
finds in 22

o(t) |V (G)|O(1) time the minimum size of a set that hits all Hh-subgraphs
of G.

5 Overview of the Proof for Colorful Variant

5.1 Proof Sketch of Theorem 1

In this sketch, we focus on the definition of a state that will be used in the dy-
namic programming algorithm on the input tree decomposition (T, β). A poten-

tial chunk is a separator t-chunk c[A]. A state at node w ∈ V (T) is a pair (X̂,C)

where X̂ ⊆ β(w) and C is a family of potential chunks, where each chunk c in C:

(i) uses only labels of Λ−1(β(w) \ X̂); and (ii) the mapping π : ∂c → β(w) \ X̂
that maps a vertex of ∂c to a vertex with the same label is a homomorphism
from H [∂c] to G (in particular, it respects colors). Observe that, as |∂c| ≤ μ(H)
for any separator chunk c, there are O(tμ(H)) possible separator t-chunks, and

hence 2O(tμ(H)) possible states for a fixed node w.
The intuitive idea behind a state is that, for node w ∈ V (T) and state (X̂,C),

we investigate the possibility of the following: for a solution X we are looking
for, it holds that X̂ = X ∩ β(w) and the family C is exactly the set of possible
separator chunks of H that are subgraphs of G\X , where the subgraph relation
is defined as on t-boundaried graphs and G \ X is equipped with ∂G \ X =
β(w) \X and labeling Λw|β(w)\X . The difficult part of the proof is to show that
this information is sufficient, in particular, it suffices to keep track only of the
separator chunks, and not all proper chunks of H . We emphasize here that the
intended meaning of the set C is that it represents separator chunks present in
the entire G \X , not G[γ(w)] \X . That is, to be able to limit ourselves only to
separator chunks, we need to encode in the state some prediction for the future.
This makes our dynamic programming algorithm rather non-standard.

Let us proceed to a more formal definition of the dynamic programming table.
For a bag w and a state s = (X̂,C) at w we define the graph G(w, s) as follows.

We first take the graph G[γ(w)] \ X̂ and then, for each chunk c ∈ C we add
a disjoint copy of c to G(w, s) and identify the pairs of vertices with the same

label in ∂c and in β(w). Note that G[γ(w)] \ X̂ is an induced subgraph of
G(w, s): by the properties of elements of C, no new edge has been introduced
between two vertices of β(w). We make G(w, s) a t-boundaried graph in a natural

way: ∂G(w, s) = β(w) \ X̂ with labeling Λ|∂G(w,s). Here we exploit the crucial
property of the colored version of the problem: no two isomorphic chunks glued
to β(w) can participate together in any σ-H-subgraph, since their vertices have
the same colors. Therefore, attaching undeletable chunks of C explicitly to β(w)
is equivalent to just allowing these chunks to be present either in the future, or
in the forgotten part of the graph.

Hitting Forbidden Subgraphs in Graphs of Bounded Treewidth 199

For each bag w and for each state s = (X̂,C) we say that a set X ⊆ α(w) is
feasible if G(w, s)\X does not contain any σ-H-subgraph, and for any separator
t-chunk c of H , if there is a c-subgraph in G(w, s)\X then c ∈ C. We would like
to compute the value T [w, s] that equals the minimum size of a feasible set X ,
using the standard bottom-up dynamic programming. Observe that T [root(T), ∅]
is the minimum size of a solution for Colorful H-Subgraph Hitting.

5.2 Proof Sketch of Theorem 2

The proof of this theorem is inspired by the approach used in [13] for the lower
bound for C�-Subgraph Hitting.

Consider a minimal separator S in H such that μ := |S| = μ(H) and A,B are
two such distinct connected components of H \ S with NH(A) = NH(B) = S.

With some simple preprocessing, we may assume we are given n-variable 3-
CNF formula Φ where each variable appears exactly three times, at least once
positively and at least once negatively. Let s be a smallest integer such that
sμ ≥ 3n; s = O(n1/μ). We start by introducing a set M of sμ vertices wi,c,
1 ≤ i ≤ s, c ∈ S, with coloring σ(wi,c) = c. The set M is the central part of the
constructed graph G. In particular, each connected component of G \M will be
of constant size, immediately implying that G has treewidth O(n1/μ).

To each clause C of Φ, and to each literal l in C, assign a function fC,l :
S → {1, 2, . . . , s} such that fC,l = fC′,l′ for (C, l) = (C′, l′). Observe that this is
possible due to the assumption sμ ≥ 3n and the preprocessing step.

The main idea is as follows. For each clause C and literal l in C, we attach a
copy of H [NH [A]] and a copy of H [NH [B]] to {wfC,l(c),c | c ∈ S} in a natural way.
For each variable x we use constant-size gadgets to we wire up all the copies of
H [NH [A]] that correspond to an occurrence of that variable, so that with mini-
mum budget we may hit all copies corresponding to positive occurrences of x or all
copies corresponding to negative occurrences; this choice corresponds to the deci-
sion on the value of x. Similarly, for each clause C we use constant-size gadgets to
wire up all the copies of H [NH [B]] that correspond to literals in C, so that with
minimum budget we may hit all but one of these copies; this choice corresponds
to the decision which literal of C is satisfied by an assignment. Finally, we attach
to the construction a large number of copies of H \ (A ∪ B ∪ S), so that a small
solution needs to hit any σ-H-subgraph of (G, σ) in a vertex ofA∪B. The construc-
tion enforces that, whenever a clauseC chooses a literal l to satisfy C, it leaves the
corresponding copy of H [B] not hit, forcing the solution to hit the corresponding
copy of H [A], and therefore forcing the correct assignment of the variable in l.

6 Conclusions and Open Problems

Our preliminary study of the treewidth parameterization of the H-Subgraph

Hitting problem revealed that its parameterized complexity is highly involved.
Whereas for the more graspable colored version we obtained essentially tight
bounds, a large gap between lower and upper bounds remains for the standard

200 M. Cygan et al.

version. In particular, the following two questions arise: Can we improve the
running time of Theorem 3 to factor tμ(H) in the exponent? Is there any relatively
general symmetry-breaking assumption on H that would allow us to show a

2o(t
μ(H)) lower bound in the absence of colors?

In a broader view, let us remark that the complexity of the treewidth param-
eterization of minor-hitting problems is also currently highly unclear. Here, for
a minor-closed graph class G and input graph G, we seek for the minimum size
of a set X ⊆ V (G) such that G \ X ∈ G, or, equivalently, X hits all minimal
forbidden minors of G. A straightforward dynamic programming algorithm has
double-exponential dependency on the width of the decomposition. However, it
was recently shown that G being the class of planar graphs, a 2O(t log t)|V (G)|-
time algorithm exists [9]. Can this result be generalized to more graph classes?

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex
deletion parameterized by treewidth. Discrete Appl. Math. 160(1-2), 53–60 (2012)

3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I.
LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. In: FOCS,
pp. 499–508 (2013)

5. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

6. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: FOCS, pp. 150–159 (2011)

7. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and iDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg
(2009)

8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representa-
tive sets with applications in parameterized and exact algorithms. In: SODA,
pp. 142–151 (2014)

9. Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algo-
rithm. In: SODA, pp. 1802–1811 (2014)

10. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded
treewidth are probably optimal. In: SODA, pp. 777–789 (2011)

11. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

12. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: SODA, pp. 760–776 (2011)

13. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential
time: A logical approach. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 520–531. Springer, Heidelberg (2011)

Probabilistic Analysis of Power Assignments�

Maurits de Graaf1,2 and Bodo Manthey1

1 University of Twente, Department of Applied Mathematics,
Enschede, The Netherlands

{m.degraaf,b.manthey}@utwente.nl
2 Thales Nederland B.V., Huizen, The Netherlands

Abstract. A fundamental problem for wireless ad hoc networks is the
assignment of suitable transmission powers to the wireless devices such
that the resulting communication graph is connected. The goal is to
minimize the total transmit power in order to maximize the life-time of
the network. Our aim is a probabilistic analysis of this power assignment
problem. We prove complete convergence for arbitrary combinations of
the dimension d and the distance-power gradient p. Furthermore, we
prove that the expected approximation ratio of the simple spanning tree
heuristic is strictly less than its worst-case ratio of 2.

Our main technical novelties are two-fold: First, we find a way to
deal with the unbounded degree that the communication network in-
duced by the optimal power assignment can have. Minimum spanning
trees and traveling salesman tours, for which strong concentration re-
sults are known in Euclidean space, have bounded degree, which is heav-
ily exploited in their analysis. Second, we apply a recent generalization
of Azuma-Hoeffding’s inequality to prove complete convergence for the
case p ≥ d for both power assignments and minimum spanning trees
(MSTs). As far as we are aware, complete convergence for p > d has not
been proved yet for any Euclidean functional.

1 Introduction

Wireless ad hoc networks have received significant attention due to their many
applications in, for instance, environmental monitoring or emergency disaster
relief, where wiring is difficult. Unlike wired networks, wireless ad hoc networks
lack a backbone infrastructure. Communication takes place either through single-
hop transmission or by relaying through intermediate nodes. We consider the
case that each node can adjust its transmit power for the purpose of power
conservation. In the assignment of transmit powers, two conflicting effects have
to be taken into account: if the transmit powers are too low, the resulting network
may be disconnected. If the transmit powers are too high, the nodes run out of
energy quickly. The goal of the power assignment problem is to assign transmit
powers to the transceivers such that the resulting network is connected and the
sum of transmit powers is minimized [12].

� A full version with all proofs is available at http://arxiv.org/abs/1403.5882.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 201–212, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

202 M. de Graaf and B. Manthey

1.1 Problem Statement and Previous Results

We consider a set of vertices X ⊆ [0, 1]d, which represent the sensors, |X | = n,
and assume that ‖u − v‖p, for some p ∈ R (called the distance-power gradient
or path loss exponent), is the power required to successfully transmit a signal
from u to v. This is called the power-attenuation model, where the strength of
the signal decreases with 1/rp for distance r, and is a simple yet very common
model for power assignments in wireless networks [14]. In practice, we typically
have 1 ≤ p ≤ 6 [13].

A power assignment pa : X → [0,∞) is an assignment of transmit powers
to the nodes in X . Given pa, we have an edge between two nodes u and v if
both pa(x), pa(y) ≥ ‖x − y‖p. If the resulting graph is connected, we call it a
PA graph. Our goal is to find a PA graph and a corresponding power assignment
pa that minimizes

∑
v∈X pa(v). Note that any PA graph G = (X,E) induces a

power assignment by pa(v) = maxu∈X:{u,v}∈E ‖u− v‖p.
PA graphs can in many aspects be regarded as a tree as we are only interested

in connectedness, but it can contain more edges in general. However, we can
simply ignore edges and restrict ourselves to a spanning tree of the PA graph.

The minimal connected power assignment problem is NP-hard for d ≥ 2 and
APX-hard for d ≥ 3 [4]. For d = 1, i.e., when the sensors are located on a
line, the problem can be solved by dynamic programming [11]. A simple approx-
imation algorithm for minimum power assignments is the minimum spanning
tree heuristic (MST heuristic), which achieves a tight worst-case approximation
ratio of 2 [11]. This has been improved by Althaus et al. [1], who devised an
approximation algorithm that achieves an approximation ratio of 5/3. A first
average-case analysis of the MST heuristic was presented by de Graaf et al. [6]:
First, they analyzed the expected approximation ratio of the MST heuristic for
the (non-geometric, non-metric) case of independent edge lengths. Second, they
proved convergence of the total power consumption of the assignment computed
by the MST heuristic for the special case of p = d, but not of the optimal power
assignment. They left as open problems, first, an average-case analysis of the
MST heuristic for random geometric instances and, second, the convergence of
the value of the optimal power assignment.

1.2 Our Contribution

In this paper, we conduct an average-case analysis of the optimal power assign-
ment problem for Euclidean instances. The points are drawn independently and
uniformly from the d-dimensional unit hypercube [0, 1]d. We believe that prob-
abilistic analysis is better-suited for performance evaluation in wireless ad hoc
networks than worst-case analysis, as the positions of the sensors – in particular
if deployed in areas that are difficult to access – are subjected to randomness.

Roughly speaking, our contributions are as follows:

1. We show that the power assignment functional has sufficiently nice properties
in order to apply Yukich’s general framework for Euclidean functionals [16]
to obtain concentration results (Section 3).

Probabilistic Analysis of Power Assignments 203

2. Combining these insights with a recent generalization of the Azuma-Hoeff-
ding bound [15], we obtain concentration of measure and complete conver-
gence for all combinations of d and p ≥ 1, even for the case p ≥ d (Section 4).
In addition, we obtain complete convergence for p ≥ d for minimum-weight
spanning trees. As far as we are aware, complete convergence for p ≥ d has
not been proved yet for such functionals. The only exception we are aware
of are minimum spanning trees for the case p = d [16, Sect. 6.4].

3. We provide a probabilistic analysis of the MST heuristic for the geometric
case. We show that its expected approximation ratio is strictly smaller than
its worst-case approximation ratio of 2 [11] for any d and p (Section 5).

Our main technical contributions are two-fold: First, we introduce a transmit
power redistribution argument to deal with the unbounded degree that graphs
induced by the optimal transmit power assignment can have. The unbounded-
ness of the degree makes the analysis of the power assignment functional PA
challenging. The reason is that removing a vertex can cause the graph to fall
into a large number of components and it might be costly to connect these com-
ponents without the removed vertex. In contrast, the degree of any minimum
spanning tree, for which strong concentration results are known in Euclidean
space for p ≤ d, is bounded for every fixed d, and this is heavily exploited in the
analysis. (The concentration result by de Graaf et al. [6] for the power assign-
ment obtained from the MST heuristic also exploits that MSTs have bounded
degree.)

Second, we apply a recent generalization of Azuma-Hoeffding’s inequality by
Warnke [15] to prove complete convergence for the case p ≥ d for both power
assignments and minimum spanning trees. We introduce the notion of typically
smooth Euclidean functionals, prove convergence of such functionals, and show
that minimum spanning trees and power assignments are typically smooth. In
this sense, our proof of complete convergence provides an alternative and generic
way to prove complete convergence, whereas Yukich’s proof for minimum span-
ning trees is tailored to the case p = d. In order to prove complete convergence
with our approach, one only needs to prove convergence in mean, which is often
much simpler than complete convergence, and typically smoothness. Thus, we
provide a simple method to prove complete convergence of Euclidean function-
als along the lines of Yukich’s result that, in the presence of concentration of
measure, convergence in mean implies complete convergence [16, Cor. 6.4].

2 Definitions and Notation

Throughout the paper, d (the dimension) and p (the distance-power gradient)
are fixed constants. For three points x, y, v, we by xv the line through x and v,
and we denote by ∠(x, v, y) the angle between xv and yv.

A Euclidean functional is a function Fp for p > 0 that maps finite sets of
points from the unit hypercube [0, 1]d to some non-negative real number and is
translation invariant and homogeneous of order p [16, page 18]. From now on,

204 M. de Graaf and B. Manthey

we omit the superscript p of Euclidean functionals, as p is always fixed and clear
from the context.

PAB is the canonical boundary functional of PA (we refer to Yukich [16] for
boundary functionals of other optimization problems): given a hyperrectangle
R ⊆ Rd with X ⊆ R, this means that a solution is an assignment pa(x) of power
to the nodes x ∈ X such that

– x and y are connected if pa(x), pa(y) ≥ ‖x− y‖p,
– x is connected to the boundary of R if the distance of x to the boundary of
R is at most pa(x)1/p, and

– the resulting graph, called a boundary PA graph, is either connected or con-
sists of connected components that are all connected to the boundary.

Then PAB(X,R) is the minimum value for
∑

x∈X pa(x) that can be achieved
by a boundary PA graph. Note that in the boundary functional, no power is
assigned to the boundary. It is straight-forward to see that PA and PAB are
Euclidean functionals for all p > 0 according to Yukich [16, page 18].

For a hyperrectangle R ⊆ Rd, let diamR = maxx,y∈R ‖x − y‖ denote the
diameter of R. For a Euclidean functional F, let F(n) = F({U1, . . . , Un}), where

U1, . . . , Un are drawn uniformly and independently from [0, 1]d. Let γd,pF =

limn→∞
E

(
F(n)

)
n

d−p
d

. (In principle, γd,pF need not exist, but it does exist for all func-

tionals considered in this paper.)
A sequence (Rn)n∈N of random variables converges in mean to a constant γ

if limn→∞ E(|Rn − γ|) = 0. The sequence (Rn)n∈N converges completely to a
constant γ if we have

∑∞
n=1 P

(
|Rn − γ| > ε

)
<∞ for all ε > 0 [16, page 33].

Besides PA, we consider two other Euclidean functions: MST(X) denotes the
length of the minimum spanning tree with lengths raised to the power p. PT(X)
denotes the total power consumption of the assignment obtained from the MST
heuristic, again with lengths raised to the power p. The MST heuristic proceeds
as follows: First, we compute a minimum spanning tree of X . Then let pa(x) =
max{‖x − y‖p | {x, y} is an edge of the MST}. By construction and a simple
analysis, we have MST(X) ≤ PA(X) ≤ PT(X) ≤ 2 ·MST(X) [11].

For n ∈ N, let [n] = {1, . . . , n}.

3 Properties of the Power Assignment Functional

After showing that optimal PA graphs can have unbounded degree and providing
a lemma that helps solving this problem, we show that the power assignment
functional fits into Yukich’s framework for Euclidean functionals [16].

3.1 Degrees and Cones

As opposed to minimum spanning trees, whose maximum degree is bounded from
above by a constant that depends only on the dimension d, a technical challenge
is that the maximum degree in an optimal PA graph cannot be bounded by a

Probabilistic Analysis of Power Assignments 205

constant in the dimension. This holds even for the simplest case of d = 1 and
p > 1. We conjecture that the same holds also for p = 1, but proving this seems
to be more difficult and not to add much.

Lemma 3.1. For all p > 1, all integers d ≥ 1, and for infinitely many n, there
exist instances of n points in [0, 1]d such that the unique optimal PA graph is a
tree with a maximum degree of n− 1.

The unboundedness of the degree of PA graphs make the analysis of the
functional PA challenging. The technical reason is that removing a vertex can
cause the PA graph to fall into a non-constant number of components. The
following lemma is the crucial ingredient to get over this “degree hurdle”.

Lemma 3.2. Let x, y ∈ X, let v ∈ [0, 1]d, and assume that x and y have power
pa(x) ≥ ‖x− v‖p and pa(y) ≥ ‖y − v‖p, respectively. Assume further that ‖x−
v‖ ≤ ‖y − v‖ and that ∠(x, v, y) ≤ α with α ≤ π/3. Then the following holds:

(a) pa(y) ≥ ‖x− y‖p, i.e., y has sufficient power to reach x.
(b) If x and y are not connected (i.e., pa(x) < ‖x − y‖p), then ‖y − v‖ >

sin(2α)
sin(α) · ‖x− v‖.

For instance, α = π/6 results in a factor of
√

3 = sin(π/3)/ sin(π/6). In the
following, we invoke this lemma always with α = π/6, but this choice is arbitrary
as long as α < π/3, which causes sin(2α)/ sin(α) to be strictly larger than 1.

3.2 Deterministic Properties

In this section, we state properties of the power assignment functional. Subad-
ditivity (Lemma 3.3), superadditivity (Lemma 3.4), and growth bound (Lem-
ma 3.5) are straightforward.

Lemma 3.3 (subadditivity). PA is subadditive [16, (2.2)] for all p > 0 and
all d ≥ 1, i.e., for any point sets X and Y and any hyperrectangle R ⊆ Rd with
X,Y ⊆ R, we have PA(X ∪ Y) ≤ PA(X) + PA(Y) + O

(
(diamR)p

)
.

Lemma 3.4 (superadditivity). PAB is superadditive for all p ≥ 1 and d ≥
1 [16, (3.3)], i.e., for any X, hyperrectangle R ⊆ Rd with X ⊆ R and partition
of R into hyperrectangles R1 and R2, we have PAp

B(X,R) ≥ PAp
B(X ∩R1, R1) +

PAp
B(X ∩R2, R2).

Lemma 3.5 (growth bound). For any X ⊆ [0, 1]d and 0 < p and d ≥ 1, we

have PAB(X) ≤ PA(X) ≤ O
(

max
{
n

d−p
d , 1

})
.

The following lemma shows that PA is smooth, which roughly means that
adding or removing a few points does not have a huge impact on the function
value. Its proof requires Lemma 3.2 to deal with the fact that optimal PA graphs
can have unbounded degree.

206 M. de Graaf and B. Manthey

Lemma 3.6. The power assignment functional PA is smooth for all 0 < p ≤
d [16, (3.8)], i.e.,

∣∣PAp(X ∪ Y) − PAp(X)
∣∣ = O

(
|Y | d−p

d

)
for all point sets

X,Y ⊆ [0, 1]d.

Proof. One direction is straightforward: PA(X ∪ Y) − PA(X) is bounded by

Ψ = O
(
|Y | d−p

d

)
, because the optimal PA graph for Y has a value of at most Ψ

by Lemma 3.5. Then we can take the PA graph for Y and connect it to the tree
for X with a single edge, which costs at most O(1) ≤ Ψ because p ≤ d.

For the other direction, consider the optimal PA graph T for X∪Y . The prob-
lem is that the degrees degT (v) of vertices v ∈ Y can be unbounded (Lemma 3.1).
(If the maximum degree were bounded, then we could argue in the same way as
for the MST functional.) The idea is to exploit the fact that removing v ∈ Y
also frees some power. Roughly speaking, we proceed as follows: Let v ∈ Y be a
vertex of possibly large degree. We add the power of v to some vertices close to
v. The graph obtained from removing v and distributing its energy has only a
constant number of components.

To prove this, Lemma 3.2 is crucial. We consider cones rooted at v with the
following properties:

– The cones have a small angle α, meaning that for every cone C and every
x, y ∈ C, we have ∠(x, v, y) ≤ α. We choose α = π/6.

– Every point in [0, 1]d is covered by some cone.
– There is a finite number of cones. (This can be achieved because d is a

constant.)

Let C1, . . . , Cm be these cones. By abusing notation, let Ci also denote all
points x ∈ Ci ∩ (X ∪ Y \ {v}) that are adjacent to v in T . For Ci, let xi be the
point in Ci that is closest to v and adjacent to v (breaking ties arbitrarily), and
let yi be the point in Ci that is farthest from v and adjacent to v (again breaking
ties arbitrarily). (For completeness, we remark that then Ci can be ignored if
Ci ∩X = ∅.) Let �i = ‖yi − v‖ be the maximum distance of any point in Ci to
v, and let � = maxi �i.

We increase the power of xi by �p/m. Since the power of v is at least �p and
we have m cones, we can account for this with v’s power because we remove v.
Because α = π/6 and xi is closest to v, any point in Ci is closer to xi than to
v. According to Lemma 3.2(a), every point in Ci has sufficient power to reach
xi. Thus, if xi can reach a point z ∈ Ci, then there is an established connection
between them.

From this and increasing xi’s power to at least �p/m, there is an edge between
xi and every point z ∈ Ci that has a distance of at most �/ p

√
m from v. We recall

that m and p are constants.
Now let z1, . . . , zk ∈ Ci be the vertices in Ci that are not connected to xi

because xi has too little power. We assume that they are sorted by increasing
distance from v. Thus, zk = yi. We can assume that no two zj and zj′ are in the
same component after removal of v. Otherwise, we can simply ignore one of the
edges {v, zj} and {v, zj′} without changing the components.

Probabilistic Analysis of Power Assignments 207

Since zj and zj+1 were connected to v and they are not connected to each
other, we can apply Lemma 3.2(b), which implies that ‖zj+1−v‖ ≥

√
3 ·‖zj−v‖.

Furthermore, ‖z1 − v‖ ≥ �/ p
√
m by assumption. Iterating this argument yields

� = ‖zk−v‖ ≥
√

3
k−1‖z1−v‖ ≥

√
3
k−1 ·�/ p

√
m. This implies k ≤ log√3(p

√
m)+1.

Thus, removing v and redistributing its energy as described causes the PA graph
to fall into at most a constant number of components. Removing |Y | points
causes the PA graph to fall into at most O(|Y |) components. These components

can be connected with costs O(|Y | d−p
d) by choosing one point per component

and applying Lemma 3.5. ��
Lemma 3.7. PAB is smooth for all 1 ≤ p ≤ d [16, (3.8)].

Crucial for convergence of PA is that PA, which is subadditive, and PAB,
which is superadditive, are close to each other. Then both are approximately
both subadditive and superadditive. The following lemma states that indeed PA
and PAB do not differ too much for 1 ≤ p < d.

Lemma 3.8. PA is point-wise close to PAB for 1 ≤ p < d [16, (3.10)], i.e.,∣∣PAp(X)− PAp
B(X, [0, 1]d)

∣∣ = o
(
n

d−p
d

)
for every set X ⊆ [0, 1]d of n points.

3.3 Probabilistic Properties

For p > d, smoothness is not guaranteed to hold, and for p ≥ d, point-wise
closeness is not guaranteed to hold. But similar properties typically hold for
random point sets, namely smoothness in mean (Definition 3.10) and closeness
in mean (Definition 3.12). In the following, let X = {U1, . . . , Un}. Recall that
U1, . . . , Un are drawn uniformly and independently from [0, 1]d. We need the
following bound on the longest edge of an optimal PA graph.

Lemma 3.9 (longest edge). For every constant β > 0, there exists a constant
cedge = cedge(β) such that, with a probability of at least 1−n−β, every edge of an
optimal PA graph and an optimal boundary PA graph PAB is of length at most
redge = cedge · (logn/n)1/d.

Yukich gave two different notions of smoothness in mean [16, (4.13) and (4.20)
& (4.21)]. We use the stronger notion, which implies the other.

Definition 3.10 (smooth in mean [16, (4.20), (4.21)]). A Euclidean func-
tional F is called smooth in mean if, for every constant β > 0, there exists a
constant c = c(β) such that the following holds with a probability of at least
1− n−β:∣∣F(n)− F(n± k)

∣∣ ≤ ck ·
(
logn
n

)p/d
and

∣∣FB(n)− FB(n± k)
∣∣ = ck ·

(
logn
n

)p/d
.

for all 0 ≤ k ≤ n/2.

Lemma 3.11. PAB and PA are smooth in mean for all p > 0 and all d.

Definition 3.12 (close in mean [16, (4.11)]). A Euclidean functional F is

close in mean to its boundary functional FB if E (|F(n)− FB(n)|) = o(n
d−p
d).

Lemma 3.13. PA is close in mean to PAB for all d and p ≥ 1.

208 M. de Graaf and B. Manthey

4 Convergence

4.1 Standard Convergence

Our findings of Sections 3.2 yield complete convergence of PA for p < d (The-
orem 4.1). Together with the probabilistic properties of Section 3.3, we obtain
convergence in mean in a straightforward way for all combinations of d and p
(Theorem 4.2). In Sections 4.2 and 4.3, we prove complete convergence for p ≥ d.

Theorem 4.1. For all d and p with 1 ≤ p < d, there exists a constant γd,pPA such

that PAp(n)

n
d−p
d

converges completely to γd,pPA .

Theorem 4.2. For all p ≥ 1 and d ≥ 1, there exists a constant γd,pPA such that

limn→∞
E(PAp(n))

n
d−p
d

= limn→∞
E(PAp

B(n))

n
d−p
d

= γd,pPA .

4.2 Concentration with Warnke’s Inequality

McDiarmid’s or Azuma-Hoeffding’s inequality are powerful tools to prove con-
centration of measure for a function that depends on many independent random
variables, all of which have only a bounded influence on the function value. If we
consider smoothness in mean (see Lemma 3.11), then we have the situation that
the influence of a single variable is typically very small (namely O((log n/n)p/d)),
but can be quite large in the worst case (namely O(1)). Unfortunately, this sit-
uation is not covered by McDiarmid’s or Azuma-Hoeffding’s inequality. Fortu-
nately, Warnke [15] proved a generalization specifically for the case that the
influence of single variables is typically bounded and fulfills a weaker bound in
the worst case.

The following theorem is a simplified version (personal communication with
Lutz Warnke) of Warnke’s concentration inequality [15, Theorem 2], tailored to
our needs.

Theorem 4.3 (Warnke). Let U1, . . . , Un be a family of independent random
variables with Ui ∈ [0, 1]d for each i. Suppose that there are numbers cgood ≤ cbad
and an event Γ such that the function F : ([0, 1]d)n → R satisfies

max
i∈[n]

max
x∈[0,1]d

|F(U1, . . . , Un)− F(U1, . . . , Ui−1, x, Ui+1, . . . , Uk)|

≤
{
cgood if Γ holds and

cbad otherwise.
(1)

Then, for any t ≥ 0 and γ ∈ (0, 1] and η = γ(cbad − cgood), we have

P
(
|F(n)− E(F(n))| ≥ t

)
≤ 2 exp

(
− t2

2n(cgood+η)2

)
+ n

γ · P(¬Γ). (2)

Probabilistic Analysis of Power Assignments 209

Next, we introduce typical smoothness, which means that, with high prob-
ability, a single point does not have a significant influence on the value of F,
and we apply Theorem 4.3 for typically smooth functionals F. The bound of
c · (logn/n)p/d in Definition 4.4 below for the typical influence of a single point
is somewhat arbitrary, but works for PA and MST. This bound is also essentially
the smallest possible, as there can be regions of diameter c′ · (logn/n)1/d for
some small constant c′ > 0 that contain no or only a single point. It might be
possible to obtain convergence results for other functionals for weaker notions of
typical smoothness.

Definition 4.4 (typically smooth). A Euclidean functional F is typically
smooth if, for every β > 0, there exists a constant c = c(β) such that

maxx∈[0,1]d,i∈[n]

∣∣F(U1, . . . , Un)−F(U1, . . . , Ui−1, x, Ui+1, . . . , Un)
∣∣ ≤ c ·

(
logn
n

)p/d

with a probability of at least 1− n−β.

Theorem 4.5 (concentration of typically smooth functionals). Let p, d ≥
1. Assume that F is typically smooth. Then

P
(
|F(n)− E(F(n))| ≥ t

)
≤ O(n−β) + exp

(
− t2n

2p
d

−1

C(logn)2p/d

)
for an arbitrarily large constant β > 0 and another constant C > 0 that depends
on β.

Choosing t = n
d−p
d / logn yields a nontrivial concentration result that suffices

to prove complete convergence of typically smooth Euclidean functionals.

Corollary 4.6. Let p, d ≥ 1. Assume that F is typically smooth. Then

P
(
|F(n)− E(F(n))| > n

d−p
d / logn

)
≤ O

(
n−β + exp

(
− n

C(logn)2+
2p
d

))
(3)

for any constant β and C depending on β as in Theorem 4.5.

4.3 Complete Convergence for p ≥ d

In this section, we show that typical smoothness (Definition 4.4) suffices for
complete convergence. This implies complete convergence of MST and PA by
Lemma 4.8 below.

Theorem 4.7. Let p, d ≥ 1. Assume that F is typically smooth and F(n)/n
d−p
d

converges in mean to γd,pF . Then F(n)/n
d−p
d converges completely to γd,pF .

Although similar in flavor, smoothness in mean does not immediately imply
typical smoothness or vice versa: the latter makes only a statement about sin-
gle points at worst-case positions. The former only makes a statement about
adding and removing several points at random positions. However, the proofs
of smoothness in mean for MST and PA do not exploit this, and we can adapt
them to yield typical smoothness.

210 M. de Graaf and B. Manthey

Lemma 4.8. PA and MST are typically smooth.

Corollary 4.9. For all d and p with p ≥ 1, MST(n)/n
d−p
d and PA(n)/n

d−p
d

converge completely to constants γd,pMST and γd,pPA , respectively.

5 Average-Case Ratio of the MST Heuristic

In this section, we show that the average-case approximation ratio of the MST
heuristic for power assignments is strictly better than its worst-case ratio of 2.
First, we prove that the average-case bound is strictly (albeit marginally) better
than 2 for any combination of d and p. Second, we show a simple improved
bound for the 1-dimensional case.

5.1 The General Case

The idea behind showing that the MST heuristic performs better on average
than in the worst case is as follows: the weight of the PA graph obtained from
the MST heuristic can not only be upper-bounded by twice the weight of an
MST, but it is in fact easy to prove that it can be upper-bounded by twice the
weight of the heavier half of the edges of the MST [6]. Thus, we only have to

show that the lighter half of the edges of the MST contributes Ω(n
d−p
d) to the

value of the MST in expectation.
For simplicity, we assume that the number n = 2m + 1 of points is odd.

The case of even n is similar but slightly more technical. We draw points X =
{U1, . . . , Un} as described above. Let PT(X) denote the power required in the
power assignment obtained from the MST. Furthermore, let H denote the m
heaviest edges of the MST, and let L denote the m lightest edges of the MST.
We omit the parameter X since it is clear from the context. Then we have

H+ L = MST ≤ PA ≤ PT ≤ 2H = 2MST−2 L ≤ 2MST (4)

since the weight of the PA graph obtained from an MST can not only be upper
bounded by twice the weight of a minimum-weight spanning tree, but it is easy
to show that the PA graph obtained from the MST is in fact by twice the weight
of the heavier half of the edges of a minimum-weight spanning tree [6]. We can

show that E(L) = Ω(n
d−p
d). This yields the following result.

Theorem 5.1. For any d ≥ 1 and any p ≥ 1, we have

γd,pMST ≤ γd,pPA ≤ 2(γd,pMST − C) < 2γd,pMST

for some constant C > 0 that depends only on d and p.

By exploiting that PA converges completely, we can obtain a bound on the
expected approximation ratio from the above result.

Corollary 5.2. For any d ≥ 1 and p ≥ 1 and sufficiently large n, the expected
approximation ratio of the MST heuristic for power assignments is bounded from
above by a constant strictly smaller than 2.

Probabilistic Analysis of Power Assignments 211

5.2 An Improved Bound for the One-Dimensional Case

The case d = 1 is much simpler than the general case, because the MST is
just a Hamiltonian path starting at the left-most and ending at the right-most
point. Furthermore, we also know precisely what the MST heuristic does: assume
that a point xi lies between xi−1 and xi+1. The MST heuristic assigns power
PA(xi) = max{|xi − xi−1|, |xi − xi+1|}p to xi. The example that proves that
the MST heuristic is no better than a worst-case 2-approximation shows that it
is bad if xi is very close to either side and good if xi is approximately in the
middle between xi−1 and xi+1. By analyzing γ1,pMST and γ1,pPA carefully, we obtain
the following theorem.

Theorem 5.3. For all p ≥ 1, we have γ1,pMST ≤ γ1,pPA ≤ (2− 2−p) · γ1,pMST.

The high probability bounds for the bound of 2 − 2−p of the approximation
ratio of the power assignment obtained from the spanning tree together with
the observation that in case of any “failure” event we can use the worst-case
approximation ratio of 2 yields the following corollary.

Corollary 5.4. The expected approximation ratio of the MST heuristic is at
most 2− 2−p + o(1).

6 Conclusions and Open Problems

We have proved complete convergence of Euclidean functionals that are typi-
cally smooth (Definition 4.4) for the case that the distance-power gradient p
is larger than the dimension d. The case p > d appears naturally in the case
of transmission questions for wireless networks. As examples, we have obtained
complete convergence for the MST and the PA functional. To prove this, we have
used a recent concentration of measure result by Warnke [15]. His concentration
inequality might be of independent interest to the algorithms community. As
a technical challenge, we have had to deal with the fact that the degree of an
optimal power assignment graph can be unbounded.

To conclude this paper, let us mention some problems for further research:

1. Is it possible to prove complete convergence of other functionals for p ≥ d?
The most prominent one would be the traveling salesman problem (TSP).

2. Is it possible to prove improved bounds on the approximation ratio of the
MST heuristic?

3. Can our findings about power assignments be generalized to other problems
in wireless communication, such as the k-station network coverage problem
of Funke et al. [5], where transmit powers are assigned to at most k stations
such that X can be reached from at least one sender, or power assignments
in the SINR model [7, 9]? Interestingly, in the SINR model the MST turns
out to be a good solution to schedule all links within a short time [8, 10].
More general, can this framework also be exploited to analyze other ap-
proximation algorithms for geometric optimization problems? As far as we
are aware, besides partitioning heuristics [2, 16], the only other algorithm
analyzed within this framework is Christofides’ algorithm for the TSP [3].

212 M. de Graaf and B. Manthey

References

1. Althaus, E., Calinescu, G., Mandoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment for symmetric connectivity in static ad hoc
wireless networks. Wireless Networks 12(3), 287–299 (2006)

2. Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algorithms
for Euclidean functionals. Algorithmica 66(2), 397–418 (2013)

3. Bläser, M., Panagiotou, K., Rao, B.V.R.: A probabilistic analysis of Christofides’
algorithm. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
225–236. Springer, Heidelberg (2012)

4. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in
radio networks. Mobile Networks and Applications 9(2), 125–140 (2004)

5. Funke, S., Laue, S., Lotker, Z., Naujoks, R.: Power assignment problems in wire-
less communication: Covering points by disks, reaching few receivers quickly, and
energy-efficient travelling salesman tours. Ad Hoc Networks 9(6), 1028–1035 (2011)

6. de Graaf, M., Boucherie, R.J., Hurink, J.L., van Ommeren, J.K.: An average case
analysis of the minimum spanning tree heuristic for the range assignment prob-
lem. Memorandum 11259 (revised version), Department of Applied Mathematics,
University of Twente (2013)

7. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-
uniform wireless power. In: Proc. of the 24th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pp. 1595–1606. SIAM (2013)

8. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Rabani, Y.
(ed.) Proc. of the 23rd Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 516–526. SIAM (2012)

9. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: Proc. of the 22nd Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pp. 1549–1559. SIAM (2011)

10. Khan, M., Pandurangan, G., Pei, G., Vullikanti, A.K.S.: Brief announcement: A
fast distributed approximation algorithm for minimum spanning trees in the SINR
model. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 409–410. Springer,
Heidelberg (2012)

11. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. Theoretical Computer Science 243(1-2), 289–305 (2000)

12. Lloyd, E.L., Liu, R., Marathe, M.V., Ramanathan, R., Ravi, S.S.: Algorithmic
aspects of topology control problems for ad hoc networks. Mobile Networks and
Applications 10(1-2), 19–34 (2005)

13. Pahlavan, K., Levesque, A.H.: Wireless Information Networks. Wiley (1995)
14. Rappaport, T.S.: Wireless Communication. Prentice Hall (2002)
15. Warnke, L.: On the method of typical bounded differences. Computing Research

Repository 1212.5796 [math.CO], arXiv (2012)
16. Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems.

Lecture Notes in Mathematics, vol. 1675. Springer, Heidelberg (1998)

Existence of Secure Equilibrium

in Multi-player Games with Perfect Information

Julie De Pril1,�, János Flesch2, Jeroen Kuipers3,
Gijs Schoenmakers3, and Koos Vrieze3

1 Département de Mathématique, Université de Mons, Belgium
2 Department of Quantitative Economics, Maastricht University, The Netherlands
3 Department of Knowledge Engineering, Maastricht University, The Netherlands

Abstract. A secure equilibrium is a refinement of Nash equilibrium,
which provides some security to the players against deviations when a
player changes his strategy to another best response strategy. The con-
cept of secure equilibrium is specifically developed for assume-guarantee
synthesis and has already been applied in this context. Yet, not much
is known about its existence in games with more than two players. In
this paper, we establish the existence of secure equilibrium in two classes
of multi-player perfect information turn-based games: (1) in games with
possibly probabilistic transitions, having countable state and finite ac-
tion spaces and bounded and continuous payoff functions, and (2) in
games with only deterministic transitions, having arbitrary state and ac-
tion spaces and Borel payoff functions with a finite range (in particular,
qualitative Borel payoff functions). We show that these results apply to
several types of games studied in the literature.

1 Introduction

The Game: We examine multi-player perfect information turn-based games
with possibly probabilistic transitions. In such a game, each state is associated
with a player, who controls this state. Play of the game starts at the initial state.
At every state that play visits, the player who controls this state has to choose
an action from a given action space. Next, play moves to a new state according
to a probability measure, which may depend on the current state and the chosen
action. This induces an infinite sequence of states and actions, and depending on
this play, each player receives a payoff. These payoffs can be fairly general. For
example, they could arise as some aggregation of instantaneous rewards that the
players receive at the periods of the game. A frequently used aggregation would
be taking the discounted sum of the instantaneous rewards. As another example,
the payoffs could represent reachability objectives, then a player’s payoff would
be either 1 or 0 depending on whether a certain set of states is reached.

Two-player zero-sum games with possibly probabilistic transitions have been
applied in the model-checking of reactive systems where randomness occurs,

� F.R.S.-FNRS postdoctoral researcher. Work partially supported by the European
project CASSTING (FP7-ICT-601148).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 213–225, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

214 J. De Pril et al.

because they allow to model the interactions between a system and its envi-
ronment. However, complex systems are usually made up of several components
with objectives that are not necessarily antagonistic, that is why multi-player
non zero-sum games are better suited in such cases.

Nash Equilibrium: In these games, Nash equilibrium is a prominent solution
concept. A Nash equilibrium is a strategy profile such that no player can improve
his payoff by individually deviating to another strategy. In various classes of
perfect information games, a Nash equilibrium is known to exist [9,10,13].

Secure Equilibrium: Despite the obvious appeal of Nash equilibrium, cer-
tain applications call for additional properties. Chatterjee et al [4] introduced
the concept of secure equilibrium, which they specifically designed for assume-
guarantee synthesis. They gave a definition of secure equilibrium [4, Definition 8]
in qualitative n-player games1, and then a characterization [4, Proposition 4],
which however turns out not to be equivalent. With their definition, such kind
of equilibrium may fail to exist even in very simple games (cf. [7, Remark 1] or
[6, Example 2.2.34]). That is why we choose to call a strongly secure equilibrium
an equilibrium according to [4, Definition 8] (see Remark 1), and we choose to
call, as it has already been done in [1], a secure equilibrium an equilibrium ac-
cording to the alternative characterization given in [4, Proposition 4], extended
to the quantitative framework. Note that, with these definitions, every secure
equilibrium is automatically strongly secure if there are only two players.

Thus, a strategy profile is a secure equilibrium if it is a Nash equilibrium
and moreover the following security property holds: if any player individually
deviates to another best response strategy, then it cannot be the case that all
opponents are weakly worse off due to this deviation and at least one opponent
is even strictly hurt. For applications of secure equilibrium, we refer to [4,3,5].

Only little is known about the existence of secure equilibrium. To our knowl-
edge, the available existence results are for games with only two players2 and for
only deterministic transitions. Chatterjee et al [4] proved the existence of a se-
cure equilibrium in two-player games in which the payoff function of each player
is the indicator function of a Borel subset of plays. Recently, the existence of a
secure equilibrium, even a subgame-perfect secure equilibrium, has been shown
[1] in two-player games in which each player’s goal is to reach a certain set of
states and his payoff is determined by the number of moves it takes to get there.
Very recently, the existence of a secure equilibrium has been proved [2] in a class
of two-player quantitative games which includes payoff functions like sup, inf,
lim sup, lim inf, mean-payoff, and discounted sum.

Our Contribution: We address the existence problem of secure equilibrium
for multi-player perfect information games. We establish the existence of secure
equilibrium in two classes of such games. First, when probabilistic transitions

1 Note that Chatterjee et al [4] gave no existence result in the n-player case.
2 However, in [3], the existence of secure equilibria is proved in the special case of
3-player qualitative games where the third player can win unconditionally.

Existence of Secure Equilibrium in Multi-player Games 215

are allowed3, we prove that a secure equilibrium exists, provided that the state
space is countable, the action spaces are finite, and the payoff functions are
bounded and continuous. To our knowledge, it is the first existence result of
secure equilibria in multi-player quantitative games. Second, for games with only
deterministic transitions, we prove that a secure equilibrium exists if the payoff
functions are Borel measurable and have a finite range (in particular, for Borel
qualitative objectives). For the latter result, we impose no restriction on the
state and action spaces. We show that these results apply to several classes of
games studied in the literature. Regarding proof techniques, the proof of the first
result relies on an inductive procedure that removes certain actions of the game,
while the proof of the second result exploits a transformation of the payoffs.

Structure of the Paper: Section 2 is dedicated to the model. Section 3 presents
the main results and mentions some classes of games to which the results apply.
Sections 4 and 5 contain the formal proofs of the results (the proofs of the
intermediary lemmas can be found in [7]). Finally, Section 6 concludes with
some remarks and an algorithmic result for quantitative reachability objectives.

2 The Model

We distinguish two types of perfect information games: games that may contain
probabilistic transitions, and games that only has deterministic transitions.

Games with Probabilistic Transitions. A multi-player perfect information
game with possibly probabilistic transitions is given by:

1. A finite set of players N , with |N | ≥ 2.
2. A countable state space S, containing an initial state s̃.
3. A controlling player i(s) ∈ N for every state s ∈ S.
4. A nonempty and finite action space A(s) for every state s ∈ S.
5. A probability measure q(s, a) for every state s ∈ S and action a ∈ A(s),

which assigns, to every z ∈ S(s, a) (the set of possible successor states when
choosing action a in state s), the probability q(s, a)(z) of transition from
state s to state z under action a.
Let N = {0, 1, 2, . . .}. LetH be the set of all sequences of the form (s0, a0, . . . ,
sn−1, an−1, sn), where n ∈ N, such that s0 = s̃, and am ∈ A(sm) and sm+1 ∈
S(sm, am) for all m = 0, 1, . . . , n−1. Let P be the set of all infinite sequences
of the form (sm, am)m∈N such that s0 = s̃, and am ∈ A(sm) and sm+1 ∈
S(sm, am) for all m ∈ N. The elements of H are called histories and the
elements of P are called plays. We endow P with the topology induced by
the cylinder sets C(h) = {p ∈ P| p starts with h} for h ∈ H. In this topology,
a sequence of plays (pm)m∈N converges to a play p precisely when for every
k ∈ N there exists an Nk ∈ N such that pm coincides with p on the first k
coordinates for every m ≥ Nk.

6. A payoff function ui : P → R for every player i ∈ N , which is bounded and
Borel measurable.

3 Such games are also called turn-based multi-player stochastic games.

216 J. De Pril et al.

The game is played as follows at periods in N = {0, 1, 2, . . .}. Play starts at
period 0 in state s0 = s̃, where the controlling player i(s0) chooses an action
a0 from A(s0). Then, transition occurs according to the probability measure
q(s0, a0) to a state s1. At period 1, the controlling player i(s1) chooses an action
a1 from A(s1). Then, transition occurs according to the probability measure
q(s1, a1) to a state s2, and so on. The realization of this process is a play p =
(s0, a0, s1, a1, s2, . . .), and each player i ∈ N receives payoff ui(p).

We can assume w.l.o.g. that the sets S(s, a), for s ∈ S and a ∈ A(s), are
mutually disjoint, and their union is S. This means that each state can be visited
in exactly one way from the initial state s̃, so there is a bijection between states
and histories. For this reason, we will work with states instead of histories.

Strategies: For every player i ∈ N , let Si be the set of those states (histories)
which are controlled by him. A strategy for a player i ∈ N is a function σi that
assigns an action σi(s) ∈ A(s) to every state s ∈ Si. The interpretation is that
σi(s) is the recommended action if state s is reached. A strategy profile is a tuple
(σ1, . . . , σ|N |) where σi is a strategy for every player i. Given a strategy profile
σ = (σ1, . . . , σ|N |) and a player i, we denote by σ−i the profile of strategies
of player i’s opponents, i.e. σ−i = (σj)j∈N, j =i. A strategy profile σ induces a
unique probability measure on the sigma-algebra of the Borel sets of P . The
corresponding expected payoff for player i is denoted by ui(σ).

Nash Equilibrium: A strategy profile σ∗ is called a Nash equilibrium, if no
player can improve his expected payoff by a unilateral deviation, i.e. ui(τi, σ

∗
−i) ≤

ui(σ
∗) for every player i ∈ N and every strategy τi for player i. In other words,

every player plays a best response to the strategies of his opponents.

Secure Equilibrium: A strategy profile σ∗ is called a secure equilibrium, if
it is a Nash equilibrium and if, additionally, no player i ∈ N has a strategy τi
with ui(τi, σ

∗
−i) = ui(σ

∗) such that we have for all players j ∈ N \ {i} that
uj(τi, σ

∗
−i) ≤ uj(σ

∗) and for some player k ∈ N \ {i} that uk(τi, σ
∗
−i) < uk(σ∗).

The interpretation of the additional property is the following. Consider a Nash
equilibrium σ∗ and a strategy τi for some player i. By deviating to τi, player i
either receives a worse expected payoff than with his original strategy σ∗

i , or the
same expected payoff at best. In the former case, it is not in player i’s interest
to deviate to τi. In the latter case, however, even though player i is indifferent,
his opponents could get hurt. The property thus prevents the case that this
deviation is weakly worse for all opponents of player i, and that this deviation
is even hurting a player. So, in a certain sense, player is opponents are secure
against such deviations by player i.

An equivalent formulation of secure equilibrium is the following: a strategy
profile σ∗ is called a secure equilibrium, if it is a Nash equilibrium and if, addi-
tionally, the following property holds for every player i ∈ N : if τi is a strategy for
player i such that ui(τi, σ

∗
−i) = ui(σ

∗) and uj(τi, σ
∗
−i) < uj(σ

∗) for some player
j ∈ N , then there is a player k ∈ N such that uk(τi, σ

∗
−i) > uk(σ∗).

Remark 1. There is a refinement of secure equilibrium, which plays an important
role in the proofs of our main results, Theorems 1 and 2. We call a strategy profile

Existence of Secure Equilibrium in Multi-player Games 217

σ∗ a sum-secure equilibrium, if it is a Nash equilibrium and if additionally the
following property holds for every player i ∈ N : if τi is a strategy for player i
such that ui(τi, σ

∗
−i) = ui(σ

∗) then
∑

j∈N\{i} uj(τi, σ
∗
−i) ≥

∑
j∈N\{i} uj(σ

∗). In
fact, in Theorems 1 and 2, we prove the existence of sum-secure equilibria.

An even stronger concept is the following. A strategy profile σ∗ is called a
strongly secure equilibrium, if it is a Nash equilibrium and if additionally the
following property holds for every player i ∈ N : if τi is a strategy for player i
such that ui(τi, σ

∗
−i) = ui(σ

∗) then uj(τi, σ
∗
−i) ≥ uj(σ

∗) for all j = i. Note that
every secure equilibrium is also strongly secure if there are only two players. The
concept of strongly secure equilibrium has the serious drawback though that it
fails to exist even in very simple games (cf. [7, Remark 1] or [6, Example 2.2.34]).

Games with Deterministic Transitions. Another type of perfect information
games arises when the game has only deterministic transitions, i.e. when the set
S(s, a) is a singleton for every state s ∈ S and every action a ∈ A(s). In this
case, we do not need to take care of measurability conditions for the calculation
of expected payoffs. Hence, we can drop the assumptions that the state space is
countable and the action spaces are finite, and they can be arbitrary.

3 The Main Results

In this section, we present and discuss our main results for the existence of secure
equilibrium. First we examine the case of probabilistic transitions.

Theorem 1. Take a perfect information game, possibly having probabilistic tran-
sitions, with countable state and finite action spaces. If every player’s payoff func-
tion is bounded and continuous4, then the game admits a secure equilibrium.

By assuming that the state space is countable, we avoid measure theoretic com-
plications. Without the hypotheses that the action spaces are finite and the
payoff functions are continuous, even a Nash equilibrium may fail to exist (cf.
[7, Examples 1 and 2]).

For games with only deterministic transitions, we obtain the following result.

Theorem 2. Take a perfect information game with deterministic transitions,
with arbitrary state and action spaces. If every player’s payoff function is Borel
measurable and has a finite range, then the game admits a secure equilibrium.

Theorem 2 assumes that the range of the payoff functions is finite. This as-
sumption is only useful for deterministic transitions, otherwise the range of the
expected payoffs may become infinite. Without this assumption, even a Nash
equilibrium can fail to exist (cf. [7, Example 1]).

The methods of proving Theorems 1 and 2 are different. The proof of The-
orem 1 uses an inductive procedure that eliminates certain actions in certain
states. This procedure terminates with a game, in which one can identify an

4 Notice that any continuous function is Borel measurable.

218 J. De Pril et al.

interesting strategy profile that can be enhanced with punishment strategies to
be a secure equilibrium in the original game. The proof of Theorem 2 relies on a
transformation of the payoffs. In the new game, a Nash equilibrium exists, and
it is a secure equilibrium of the original game.

The above two theorems apply to various classes of games that have been
studied in the literature. We mention a number of them. We only discuss the
assumptions imposed on the payoff functions, as it is clear when a game satisfies
the rest of the assumptions:

1. In games with a finite horizon, the payoff functions are continuous, so The-
orem 1 is applicable to such games if the other hypotheses are satisfied. The
same observation holds for discounted games, where the players aggregate
instantaneous payoffs by taking the discounted sum.

2. All qualitative payoff functions have a finite range, so Theorem 2 directly im-
plies the existence of a secure equilibrium in multi-player games with deter-
ministic transitions and qualitative Borel objectives (in particular, objectives
like reachability, safety, (co–)Büchi, parity,. . .).

3. Now consider a game played on a graph with quantitative payoff functions.
For quantitative reachability objectives, by [1, Remark 2.5], we can use Theo-
rem 1 to find a secure equilibrium as long as the transitions are deterministic
(the transformation drastically changes expected payoffs). For quantitative
safety objectives, continuous payoff functions can also be defined: if Fi ⊆ S
is the safety set of player i, let ui(p) = 1 − 1

n+1 for any play p if, along p,
the set S \ Fi is reached at period n for the first time and let ui(p) = 1 if
S \ Fi is never reached along p. And in a similar way for quantitative Büchi
objectives : if Bi ⊆ S is the Büchi set of player i, let M(p) denote, for any
play p, the set of periods at which the play p is in a state in Bi. Then, define
ui(p) =

∑
k∈M(p)

1
2k .

4. Theorem 2 implies the existence of a secure equilibrium in games played
on finite weighted5 graphs with deterministic transitions, where the payoff
functions are computed as the sup, inf, lim sup or lim inf of the weights
appearing along plays (as in [2]). Indeed, these functions have finite range
in such games.

4 The Proof of Theorem 1

In this section, we provide a formal proof of Theorem 1. Consider a perfect
information game G, having possibly probabilistic transitions, with a countable
state and finite action spaces. Assume that the payoff function of every player
is bounded and continuous.

Preliminaries. We keep the game G fixed. We introduce some notation, define
some preliminary notions and state some properties of them.

For every player i ∈ N , we use the notation Σi for the set of strategies of player
i, so Σi = ×s∈SiA(s). We endow Σi with the product topology Ti. Since the set

5 Each edge of the graph is labelled by a |N |-tuple of real values.

Existence of Secure Equilibrium in Multi-player Games 219

Si is countable and the action spaces are finite, the topological space (Σi, Ti)
is compact and metrizable. Hence, the set of strategy profiles Σ = ×i∈NΣi,
endowed with the product topology T = ×i∈NTi, is also compact and metrizable.
So, these spaces are sequentially compact, meaning that every sequence in them
has a convergent subsequence. This is one of the main consequences of assuming
that the action spaces are finite.

We assumed that the payoffs are continuous on the set of plays. The next
lemma states that the expected payoffs are continuous as well.

Lemma 1. For all i ∈ N , the expected payoff function ui : Σ → R is continuous.

Given a state s ∈ S, we define the subgame G(s) as the game that arises when
state s is reached (i.e. past play has followed the unique history from the initial
state s̃ to s). Every strategy profile σ induces a strategy profile in G(s), as well
as an expected payoff for every player i, which we denote by ui(σ|s).

For every player i ∈ N , we derive a zero-sum perfect information game Gi

from G by making the following modification. There are two players: player i
and an imaginary player −i, who replaces the set of opponents N \ {i} of player
i. So, whenever a state is reached controlled by a player from N \ {i}, player
−i can choose the action. Player i tries to maximize his expected payoff given
by ui, whereas player −i tries to minimize this expected payoff, so u−i = −ui.
We say that this zero-sum game Gi has a value, denoted by vi, if player i has
a strategy σ∗

i and his opponents have a strategy profile σ∗
−i, which is thus a

strategy for player−i, such that ui(σ
∗
i , τ−i) ≥ vi for every strategy profile τ−i and

ui(τi, σ
∗
−i) ≤ vi for every strategy τi for player i. This means that σ∗

i guarantees
for player i that he receives an expected payoff of at least vi, and σ∗

−i guarantees
that player i does not receive an expected payoff of more than vi. We call the
strategy σ∗

i optimal for player i and the strategy profile σ∗
−i optimal for player i’s

opponents. Note that (σ∗
i , σ

∗
−i) forms a Nash equilibrium in Gi, and vice versa,

if (τi, τ−i) is a Nash equilibrium in Gi, then τi and τ−i are optimal. In a similar
way, we can also speak of the value of the subgame Gi(s) of Gi, for a state s ∈ S,
which we denote by vi(s).

The next lemma states that, for every player i ∈ N and state s ∈ S, the game
Gi(s) admits a value. Moreover, one can find a strategy for player i that induces
an optimal strategy in every game Gi(s), for s ∈ S, and player i’s opponents have
a similar strategy profile. This follows from the existence of a subgame-perfect
Nash equilibrium in our setting (where subgame-perfect Nash equilibrium refers
to a strategy profile that induces a Nash equilibrium in every subgame), see [11,
Theorem 1.2]. It is also an easy extension of [9, Corollary 4.2], with almost the
same proof (based on approximations of the game by finite horizon truncations).

Lemma 2. Take i ∈ N . The value vi(s) of the game Gi(s) exists for all s ∈ S.
Moreover, player i has a strategy σ∗

i such that σ∗
i induces an optimal strategy in

Gi(s), for all s ∈ S. Similarly, the opponents of player i have a strategy profile
σ∗
−i such that σ∗

−i induces an optimal strategy profile in Gi(s), for all s ∈ S.

220 J. De Pril et al.

For every player i ∈ N , every state s ∈ S and every action a ∈ A(s), define

vi(s, a) =
∑
z∈S

q(s, a)(z) · vi(z).

This is in expectation the value for player i in the subgame of G that arises if
player i(s) chooses action a in state s. Obviously, for the controlling player i(s)
we have

vi(s)(s) = max
a∈A(s)

vi(s)(s, a). (1)

Here, the maximum is attained due to the finiteness of A(s). Let us call an
action a ∈ A(s) optimal in state s if vi(s)(s) = vi(s)(s, a). We have for every
j ∈ N \ {i(s)} that

vj(s) = min
a∈A(s)

vj(s, a). (2)

Towards a Restricted Game with Only Optimal Actions. We now define
a procedure that inductively eliminates all actions that are not optimal and
terminates with a specific game G∞, in which all actions are optimal.

Take a nonempty set A′(s) ⊆ A(s) for every state s ∈ S. The sets A′(s), for
s ∈ S, induce a game G′ that we derive from G as follows: the set of states S′ of
G′ consists of those states z ∈ S for which the unique history that starts at s̃ and
ends at z only uses actions in the sets A′(s), for s ∈ S. These are the states that
a play can visit, with possibly probability zero, when the actions are restricted
to the sets A′(s), for s ∈ S. The action space of G′ in every state s ∈ S′ is then
A′(s). Further, the payoff functions of G′ are obtained by restricting the payoff
functions of G to plays corresponding to these new state and action spaces.

Let G0 be the game G, let S0 = S and let A0(s) = A(s) for every s ∈ S. Then,
at every state s ∈ S, we delete all actions that are not optimal. This results in
a nonempty action space A1(s) ⊆ A0(s) for every s ∈ S. Let G1 denote the
induced game, with state space S1. In the next step, at every state s ∈ S1, we
delete all actions from A1(s) that are not optimal in G1. This gives a nonempty
action space A2(s) ⊆ A1(s) for every s ∈ S1. Let G2 denote the induced game,
with state space S2. By proceeding this way, we obtain for each k ∈ N a game
Gk with state space Sk and nonempty action spaces Ak(s), for s ∈ Sk. Finally,
let S∞ = ∩k∈NS

k and A∞(s) = ∩k∈NA
k(s) for every s ∈ S∞. Note that the

initial state s̃ belongs to S∞, and also that, due to the finiteness of the action
spaces, the sets A∞(s), for s ∈ S∞, are nonempty. Let G∞ be the game induced
by the sets A∞(s), for s ∈ S∞. It is clear that the state space of G∞ is S∞.

We now define a function φ : S → N ∪ {∞}. Note that every state s ∈ S
belongs either to Sk \ Sk+1 for a unique k ∈ N or to S∞. In the former case, we
define φ(s) = k, whereas in the latter case we define φ(s) = ∞. So, this is the
latest iteration in which state s is still included. For notational convenience, we
extend the strategy space of player i in Gk, for k ∈ N ∪ {∞}, with strategies σi
for player i in G with the following property: for every s ∈ S, if φ(s) ≥ k then
σi(s) ∈ Ak(s), whereas if φ(s) < k then σi(s) is an arbitrary action in Aφ(s)(s).
By doing so, every strategy in Gk is also a strategy in Gm if m ≤ k.

Existence of Secure Equilibrium in Multi-player Games 221

Now we consider the subgames of the above defined games. For every k ∈
N ∪ {∞} and player i ∈ N , by Lemma 2, the game Gk

i (s) has a value vki (s)
for every s ∈ S. Moreover, player i has a strategy σk

i such that σk
i induces an

optimal strategy in the subgame Gk
i (s) for every s ∈ Sk. Similarly, the opponents

of player i have a strategy profile σk
−i such that σk

−i induces an optimal strategy
profile in the subgame Gk

i (s) for every s ∈ Sk. Note that σk
i can only use optimal

actions in Gk, so by construction, σk
i is also a strategy for player i in Gk+1.

Lemma 3. 1. vki (s) ≤ vk+1
i (s) for every k ∈ N, i ∈ N , and s ∈ Sk+1.

2. limk→∞ vki (s) = v∞i (s) for every i ∈ N and s ∈ S∞.

The next lemma shows that there is no need to continue the elimination proce-
dure in a transfinite way.

Lemma 4. Every action is optimal in G∞, i.e. for all s ∈ S∞ and a ∈ A∞(s),
we have for the controlling player i(s) that v∞i(s)(s) = v∞i(s)(s, a). Moreover, if τ

is a strategy profile in G∞, then ui(τ |s) ≥ v∞i (s) for all i ∈ N and s ∈ S∞.

The Secure Equilibrium. Thanks to the properties of G∞, we identify an
interesting strategy profile in G∞, which can be enhanced with punishment
strategies to become a secure equilibrium in G.

Recall that σ−i and respectively σ∞
−i are strategy profiles for player i’s oppo-

nents in G and respectively in G∞, such that they induce an optimal strategy
profile in Gi(s) and respectively G∞

i (s′), for all s ∈ S and s′ ∈ S∞. For each
j ∈ N\{i}, let σ−i,j and respectively σ∞

−i,j be player j’s strategy in these strategy
profiles. These strategies will play the role of punishing player i if he deviates.

Let ρ∗ be a strategy profile in G∞ which minimizes the sum of the ex-
pected payoffs of all the players, i.e. for any strategy profile ρ in G∞ we have∑

i∈N ui(ρ
∗) ≤

∑
i∈N ui(ρ). Such a strategy profile exists due to the compact-

ness of the set of strategy profiles in G∞ and due to Lemma 1. The idea is to
define a secure equilibrium in G in the following way: follow ρ∗, unless a devia-
tion occurs. If player i deviates, then his opponents should punish player i with
σ∞
−i as long as he chooses actions in G∞, and they should punish him with σ−i

as soon as he chooses an action out of G∞. Let us specify this strategy profile.
We first define a function L, which assigns to each state the player who has

to be punished from this state, or ⊥ if nobody has to be punished. The idea is
to remember the first player who deviated from the strategy profile ρ∗. For the
initial state s̃, we have L(s̃) = ⊥. For other states, we define it by induction.
Suppose that we have defined L(s) for some state s ∈ S. Then, for a state
s′ ∈ S(s, a), where a ∈ A(s), we set:

L(s′) :=

⎧⎪⎨⎪⎩
⊥ if L(s) = ⊥ and ρ∗i(s)(s) = a,

i(s) if L(s) = ⊥ and ρ∗i(s)(s) ∈ A(s) \ {a},
L(s) otherwise (i.e. when L(s) = ⊥).

222 J. De Pril et al.

Now we define a strategy τj for any player j ∈ N as follows: for any s ∈ Sj , let

τj(s) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ∗j (s) if L(s) = ⊥,

arbitrary action in A∞(s) if L(s) = j and s ∈ S∞,

arbitrary action in A(s) if L(s) = j and s ∈ S \ S∞,

σ∞
−i,j(s) if L(s) = i = j and s ∈ S∞,

σ−i,j(s) if L(s) = i = j and s ∈ S \ S∞.

Note that in the second case, when L(s) = j and s ∈ S∞, it is not necessary
to have any restriction on τj(s), and we only require τj(s) ∈ A∞(s) because it
simplifies the arguments of the proof.

We show that τ = (τj)j∈N is a secure equilibrium in G. Consider a strategy τ ′i
for player i. The first part of the following lemma says that, in any state s ∈ S∞,
it is strictly worse for player i to deviate to an action outside A∞(s), unless
another player deviated before him (that case is irrelevant for our goal to show
that τ is a secure equilibrium). With the help of this, we can handle deviations to
actions outside G∞. The second part of the lemma is about deviations to actions
inside G∞. It claims that player i does not get a better payoff if he deviates to
an action inside the game G∞, given no deviation has occurred before.

Lemma 5. (i) For each state s ∈ S∞
i such that L(s) ∈ {⊥, i} and τ ′i(s) ∈

A(s) \A∞(s), we have ui(τ
′
i , τ−i|s) < ui(τ |s).

(ii) For each state s ∈ S∞
i such that L(s) = ⊥ and τ ′i(s) ∈ A∞(s) \ {ρ∗i (s)},

we have ui(τ
′
i , τ−i|s) ≤ ui(τ |s).

It follows from Lemma 5 that ui(τ
′
i , τ−i) ≤ ui(τ), and so τ is a Nash equilibrium.

Furthermore, consider the case where ui(τ
′
i , τ−i) = ui(τ). Then, part (i) of

Lemma 5 implies that it has probability zero that a state s ∈ S∞
i with τ ′i(s) ∈

A(s) \ A∞(s) is reached under (τ ′i , τ−i). Consequently, when playing according
to (τ ′i , τ−i) the following properties hold in the game G: (1) only states in S∞

are visited, and (2) in all states s ∈ S∞
i that are reached, player i’s action τ ′i(s)

belongs to A∞(s), and (3) in all states s ∈ S∞
j , where j ∈ N \ {i}, that are

reached, player j plays the action given by ρ∗j (s) if L(s) = ⊥ and by σ∞
−i,j(s)

if L(s) = i. Hence, the strategy profile (τ ′i , τ−i) does not leave G∞ when it is
played. As ui(τ

′
i , τ−i) = ui(τ), the definition of ρ∗ yields∑

j∈N\{i}
uj(τ

′
i , τ−i) ≥

∑
j∈N\{i}

uj(ρ
∗) =

∑
j∈N\{i}

uj(τ).

Thus, τ is a secure equilibrium in G, and the proof of Theorem 1 is complete.

5 The Proof of Theorem 2

In this section, we provide a proof for Theorem 2. Consider a perfect information
game G with deterministic transitions, with arbitrary state and action spaces.
Assume that the payoff functions are Borel measurable and have a finite range

Existence of Secure Equilibrium in Multi-player Games 223

M , i.e. every player i’s payoff function ui is only taking values in M . Assume
also that M contains at least two elements, otherwise the game is trivial.

Let R = maxm∈M |m| and d = minm,m′∈M,m =m′ |m −m′|, and then choose
δ = d

2|N |R . We denote by Gδ the game G with a new payoff function uδi for every

player i ∈ N , defined as follows: for every play p ∈ P , let

uδi (p) = ui(p)− δ ·
∑

j∈N, j =i

uj(p).

Notice that, for two plays p, p′ ∈ P , if we have ui(p) < ui(p
′) then

uδ
i (p

′)−uδ
i (p) = (ui(p

′)−ui(p))− δ ·
∑

j∈N, j �=i

(uj(p
′)−uj(p)) ≥ d− δ · (|N |−1) ·2R > 0,

so uδi (p) < uδi (p
′) holds too. Consequently, uδi (p) ≥ uδi (p

′) implies ui(p) ≥ ui(p
′).

Now suppose that σ∗ is a Nash equilibrium in Gδ. Then, due to the previous
observation, σ∗ is also a Nash equilibrium in the original game G. Now we show
that σ∗ is a secure equilibrium in G. So, suppose that τi is a strategy for some
player i ∈ N such that ui(τi, σ

∗
−i) = ui(σ

∗). Since σ∗ is a Nash equilibrium in
Gδ, we also have uδi (τi, σ

∗
−i) ≤ uδi (σ

∗). Hence∑
j∈N, j =i

uj(τi, σ
∗
−i) ≥

∑
j∈N, j =i

uj(σ
∗),

which proves that σ∗ is a secure equilibrium in G indeed.
It remains to prove that Gδ admits a Nash equilibrium. We only provide a

sketch, since similar constructions are well known (cf. the result of Mertens and
Neyman in [13], and also [16]), and many of these ideas also appeared in the proof
of Theorem 1. The important property of Gδ is that the payoff functions uδi , for
i ∈ N , are Borel measurable and have a finite range. By applying a corollary of
Martin [12], for any i ∈ N , player i has a subgame-perfect optimal strategy σi
and his opponents have a subgame-perfect optimal strategy profile σ−i in the
zero-sum game Gi, in which player i maximizes uδi and the other players are
jointly minimizing uδi . It can be checked easily that the following strategy profile
is a Nash equilibrium in Gδ: every player i should use the strategy σi. As soon as
a player deviates, say player i plays another action, then the other players should
punish player i in the remaining game by switching to the strategy profile σ−i.

6 Concluding Remarks

Lexicographic Objectives: In the proof of Theorem 1, we in fact showed the
existence of a sum-secure equilibrium (see Remark 1). A very similar proof can
be given to show that, if F : R|N | → R is a continuous and bounded function,
then there exists a Nash equilibrium σ∗ such that the following property holds
for all i ∈ N : if τi is a strategy for player i such that ui(τi, σ

∗
−i) = ui(σ

∗) then
F ((uj(σ

∗))j∈N) ≤ F ((uj(τi, σ
∗
−i))j∈N). This is closely related to lexicographic

224 J. De Pril et al.

preferences: each player’s first objective is to maximize his payoff, but in case of
a tie between strategies, the secondary objective is to minimize the function F .

Subgame-Perfect Secure Equilibrium: Brihaye et al [1] introduced the con-
cept of subgame-perfect secure equilibrium, and showed its existence in two-
player quantitative reachability games. We do not know if Theorem 1 can be
extended to subgame-perfect secure equilibrium. Perhaps it is possible to make
use of the recently developed techniques for subgame-perfect equilibria in [8,14].

However, Theorem 2 cannot be extended to subgame-perfect secure equilib-
rium, as even a subgame-perfect equilibrium does not always exist in perfect
information games with deterministic transitions and finitely many payoffs [15].

Algorithmic Result: Take a multi-player quantitative reachability game played
on a finite graph, with deterministic transitions, where each payoff is determined
by the number of moves it takes to get in a particular set of states. As a corollary
of Theorem 1 and some results of [1] (the proof of Theorem 4.1, Proposition 4.5
and Remark 4.7), we derive an algorithm to obtain, in ExpSpace, a secure
equilibrium such that finite payoffs are bounded by 2 · |N | · |S| in the game. We
intend to further investigate algorithmic questions for other classes of objectives.

Acknowledgment. We would like to thank Dario Bauso, Thomas Brihaye,
Véronique Bruyère and Guillaume Vigeral for valuable discussions on the concept
of secure equilibrium.

References

1. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On (subgame perfect) secure
equilibrium in quantitative reachability games. Logical Methods in Computer Sci-
ence 9(1) (2013)

2. Bruyère, V., Meunier, N., Raskin, J.-F.: Secure equilibria in weighted games. In:
CSL-LICS (2014)

3. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007)

4. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria.
Theoretical Computer Science 365(1-2), 67–82 (2006)

5. Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing.
In: Formal Aspects of Computing, pp. 1–35 (2010)

6. De Pril, J.: Equilibria in multiplayer cost games. Ph.D. Thesis, Université de Mons,
Belgium (2013)

7. De Pril, J., Flesch, J., Kuipers, J., Schoenmakers, G., Vrieze, K.: Existence of secure
equilibrium in multi-player games with perfect information. CoRR, abs/1405.1615
(2014)

8. Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze,
K.: Perfect-information games with lower-semicontinuous payoffs. Mathematics of
Operations Research 35(4), 742–755 (2010)

9. Fudenberg, D., Levine, D.: Subgame-perfect equilibria of finite- and infinite-horizon
games. Journal of Economic Theory 31(2), 251–268 (1983)

Existence of Secure Equilibrium in Multi-player Games 225

10. Harris, C.J.: Existence and characterization of perfect equilibrium in games of
perfect information. Econometrica 53(3), 613–628 (1985)

11. Maitra, A.P., Sudderth, W.D.: Subgame-perfect equilibria for stochastic games.
Mathematics of Operations Research 32(3), 711–722 (2007)

12. Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
13. Mertens, J.-F.: Repeated games. In: Proceedings of the International Congress of

Mathematicians, pp. 1528–1577. American Mathematical Society (1987)
14. Purves, R.A., Sudderth, W.D.: Perfect information games with upper semicontin-

uous payoffs. Mathematics of Operations Research 36(3), 468–473 (2011)
15. Solan, E., Vieille, N.: Deterministic multi-player dynkin games. Journal of Mathe-

matical Economics 39(8), 911–929 (2003)
16. Thuijsman, F., Raghavan, T.E.: Perfect information stochastic games and related

classes. International Journal of Game Theory 26(3), 403–408 (1997)

An Efficient Quantum Algorithm for Finding

Hidden Parabolic Subgroups in the General
Linear Group

Thomas Decker5, Gábor Ivanyos1, Raghav Kulkarni2,
Youming Qiao2,3, and Miklos Santha2,4

1 Institute for Computer Science and Control,
Hungarian Academy of Sciences, Budapest, Hungary

Gabor.Ivanyos@sztaki.mta.hu
2 Centre for Quantum Technologies, National University of Singapore

kulraghav@gmail.com
3 Centre for Quantum Computation and Intelligent Systems,

University of Technology, Sydney
jimmyqiao86@gmail.com

4 LIAFA, Univ. Paris Diderot, CNRS, 75205 Paris, France
miklos.santha@liafa.univ-paris-diderot.fr

5 EXASOL, Nuremberg, Germany
t.d3ck3r@gmail.com

Abstract. In the theory of algebraic groups, parabolic subgroups form
a crucial building block in the structural studies. In the case of general
linear groups over a finite field Fq, given a sequence of positive integers
n1, . . . , nk, where n = n1 + · · · + nk, a parabolic subgroup of parameter
(n1, . . . , nk) in GLn(Fq) is a conjugate of the subgroup consisting of block
lower triangular matrices where the ith block is of size ni. Our main re-
sult is a quantum algorithm of time polynomial in log q and n for solving
the hidden subgroup problem in GLn(Fq), when the hidden subgroup is
promised to be a parabolic subgroup. Our algorithm works with no prior
knowledge of the parameter of the hidden parabolic subgroup. Prior to this
work, such an efficient quantum algorithm was only known for minimal
parabolic subgroups (Borel subgroups), for the case when q is not much
smaller than n (G. Ivanyos: Quantum Inf. Comput., Vol. 12, pp. 661-669).

1 Introduction

Background. The hidden subgroup problem (HSP for short) is defined as fol-
lows. A function f on a group G is said to hide a subgroup H ≤ G, if f satisfies
the following: f(x) = f(y) if and only if x and y are in the same left coset of H
(that is, x−1y ∈ H). When such an f is given as a black box, the HSP asks to
determine the hidden subgroup H . Note that the problem when the level sets
of the hiding f are demanded to be right cosets of H – that is, f(x) = f(y) if
and only if yx−1 ∈ H – is equivalent: composing f with taking inverses maps
a hiding function via right cosets to a hiding function via left cosets, and vice
versa. When we explicitly want to refer to this variant of the problem, we speak
about HSP via right cosets.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 226–238, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

An Efficient Quantum Algorithm 227

The complexity of a hidden subgroup algorithm is measured in terms of
the number of bits representing the elements of the group G, which is usually
O(log |G|). On classical computers, the problem has exponential query complex-
ity even for abelian groups. In contrast, the quantum query complexity of HSP
for any group is polynomial [10], and the HSP for abelian groups can be solved in
polynomial time with a quantum computer [5,21]. The latter algorithms are gen-
eralizations of Shor’s result on order finding and computing discrete logarithms
[24]. These algorithms can be further generalized to compute the structure of
finite commutative black-box groups [7].

To go beyond the abelian groups is well-motivated by its connection with
the graph isomorphism problem. Despite considerable attention, the groups for
which the HSP is tractable remain close to being abelian. For example, we know
polynomial-time algorithms for the following cases: groups whose derived sub-
groups are of constant derived length and constant exponent [11], Heisenberg
groups [2,1] and more generally two-step nilpotent groups [19], “almost Hamil-
tonian” groups [12], and groups with a large abelian subgroup and reducible
to the abelian case [16]. The limited success in going beyond the abelian case
indicates that the nonabelian HSP may be hard, and [23] shows some evidence
for this by providing a connection between the HSP in dihedral groups and some
supposedly difficult lattice problem.

Instead of considering various ambient groups, another direction is to pose
restrictions on the possible hidden subgroups. This can result in efficient algo-
rithms, even over fairly nonabelian ambient groups. For example, if the hidden
subgroup is assumed to be normal, then HSP can be solved in quantum poly-
nomial time in groups for which there are efficient quantum Fourier transforms
[14,15], and even in a large class of groups, including solvable groups [18]. The
methods of [22,13] are able to find sufficiently large non-normal hidden subgroups
in certain semidirect products efficiently.

Some restricted subgroups of the general linear groups were also considered
in this context. The result by Denney, Moore and Russell in [8] is an efficient
quantum algorithm that solves the HSP in the group of 2 by 2 invertible matrices
(and related groups) where the hidden subgroup is promised to be a so-called
Borel subgroup. In [17], Ivanyos considered finding Borel subgroups in general
linear groups of higher degree, and presented an efficient algorithm when the
size of the underlying field is not much smaller than the degree.

A well-known superclass of the family of Borel subgroups is the family of
parabolic subgroups, whose definition is given below. In this work, we follow the
line of research in [8,17], and consider the problem of finding parabolic subgroups
in general linear groups. Our main result will be a polynomial-time quantum
algorithm for this case, without restrictions on field size.

Parabolic Subgroups of the General Linear Group. Let q be a power of
a prime p. The field with q elements is denoted by Fq. The vector space Fn

q

consists of column vectors of length n over Fq. GLn(Fq) stands for the general
linear group of degree n over Fq. The elements of GLn(Fq) are the invertible
n× n matrices with entries from Fq. We also use GL(V) to denote the group of

228 T. Decker et al.

linear automorphisms of the Fq-space V . With this notation, we have GLn(Fq) ∼=
GL(Fn

q) and throughout the paper we will identify these two groups. As a matrix
is represented by an array of n2 elements from Fq, an algorithm is considered
efficient if its complexity is polynomial in n and log q.

We now present the definition of parabolic subgroups (see [25]). For a positive
integer k, and a sequence of positive integers n1, . . . , nk with n1 + · · ·+ nk = n,
the standard parabolic subgroup of GLn(Fq) with parameter (n1, . . . , nk) is the
subgroup consisting of the invertible lower block triangular matrices of diagonal
block sizes n1, . . . , nk. Any conjugate of the standard parabolic subgroup is called
a parabolic subgroup.

To see the geometric meaning of parabolic subgroups, we review the concept of
flags of vector spaces. Let 0 also denote the zero vector space. For Fn

q and k ≥ 1,
a flag F with the parameter (n1, . . . , nk) is a nested sequence of subspaces of
Fn
q , that is Fn

q = U0 > U1 > U2 > · · · > Uk−1 > Uk = 0, such that for
0 ≤ i ≤ k − 1, dim(Ui) = ni+1 + · · · + nk. k is called the length of F . For
g ∈ GLn(Fq), g stabilizes the flag F if for every i ∈ [k], g(Ui) = Ui. Then all
group elements in GLn(Fq) stabilizing F form a parabolic subgroup. On the other
hand, any parabolic subgroup corresponds to some flag F , namely it consists of
the elements in GLn(Fq) stabilizing F .

For example, the standard parablic subgroup B in GL5(Fq) with parameter

(2, 2, 1) consists of invertible matrices of the form

⎛
⎜⎜⎜⎜⎝

∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠. Let {e1, . . . , e5} be

the standard basis of F5
q. The flag stabilized by B is F5

q > 〈e3, e4, e5〉 > 〈e5〉 > 0.
A parabolic subgroup is maximal if there are no parabolic subgroups properly

containing it. It is minimal if it does not properly contain any parabolic subgroup.
A parabolic subgroup B in GLn(Fq) is maximal if and only if it is the stabilizer
of a flag of length 2, that is, it is the stabilizer of some nontrivial subspace. On
the other hand, B is minimal if it stabilizes a flag of length n. Borel subgroups
in GLn(Fq) are just minimal parabolic subgroups. They are conjugates of the
subgroup of invertible lower triangular matrices.

Our Results. The main result of this paper is a polynomial-time quantum
algorithm for finding parabolic subgroups in general linear groups.

Theorem 1. Any hidden parabolic subgroup in GLn(Fq) can be found in quan-
tum polynomial time (i.e., in time poly(log q, n)).

Note that this algorithm does not require one to know the parameter of the
hidden parabolic subgroup in advance. Neither does it pose any restriction on
the underlying field size, while the algorithm in [17] for finding Borel subgroups
requires the field size to be large enough. The basic idea behind the algorithm is
that in certain cases the superposition of the elements in a coset of the subgroup
is close to a superposition of the elements of a linear space of matrices. The latter
perspective allows the use of standard algorithms for abelian HSPs. Another
crucial idea is to make use of the subgroup of common stabilizers of all the
vectors on a random hyperplane, and examine its intersection with the hidden
parabolic subgroup.

An Efficient Quantum Algorithm 229

We state without proof the following result: consider certain subgroups of
Borel subgroups, namely the full unipotent subgroups. They are conjugates of
the subgroup of lower triangular matrices with 1’s on the diagonal. Following
a variant of the idea for Theorem 1, there exists an algorithm for finding full
unipotent subgroups whose complexity is polynomial in n and the field size.

The Structure of the Paper. In Section 2 we collect certain preliminaries for the
paper. In particular, in Section 2.2 we adapt the standard algorithm for abelian
HSP to linear subspaces, which forms the basis of our algorithms. We then
present an efficient quantum algorithm for finding maximal parabolic subgroups
in Section 3. Section 4 describes a main technical tool, a generalization of the
result of [22,8] for finding complements in affine groups. In Section 5 we present
the algorithm for finding parabolic subgroups, proving Theorem 1.

2 Preliminary

2.1 Notations and Facts

Throughout the article, q is a prime power. For n ∈ N, [n] = {1, . . . , n}. Mn(Fq)
is the set of n× n matrices over Fq. For a finite group G, we will be concerned
with finding a subgroup H in G, when it is promised that H is from a fixed
family of subgroups H. We use HSP(G,H) to denote the HSP problem with
this promise, and rHSP(G,H) to denote the HSP via right cosets of H ∈ H.
Let V be a vector space. For a subspace U ≤ V and G = GL(V), let GU

be the subgroup in G consisting of elements that act as pointwise stabilizers
on U . That is, GU = {X ∈ GL(V) : ∀u ∈ U,Xu = u}. Let G{U} be the
subgroup in G consisting of elements that act as setwise stabilizers on U . That
is, G{U} = {X ∈ GL(V) : XU = U}. Note that {G{U} : 0 < U < V } is just the
set of maximal parabolic subgroups.

Fact 1. For every prime power q, and for every positive integers n ≥ m, the
probability for a random n×m matrix M over Fq to have rank m is no less than
what we have in the case of q = 2, that is 1

2 ·
3
4 ·

7
8 · · · · ≈ 0.288788 > 1/4.

2.2 The Quantum Fourier Transform of Linear Spaces

In this part we briefly discuss slight generalizations of the Fourier transform of
linear spaces over Fq introduced in [17] and a version useful for certain linear
spaces of matrices. Let V ∼= Fm

q be a linear space over the field Fq and assume
that we are given a nonsingular symmetric bilinear function φ : V ×V → Fq. By
CV we denote the Hilbert space of dimension qm having a designated orthonor-
mal basis consisting of the vectors |v〉 indexed by the elements v ∈ Fm

q .

Let q = pr where p is a prime and let ω be the primitive pth root e
2πi
p of

unity. We define the quantum Fourier transform with respect to φ as the linear
transformation QFTφ of CV which maps

|v〉 to
1√
|V |

∑
u∈V

ωTr(φ(u,v))|u〉,

230 T. Decker et al.

where v ∈ V and Tr is the trace map from Fq to Fp defined as Tr(x) =
∑r−1

i=0 x
pi

.
It turns out that QFTφ is a unitary map and, if the vectors from V are rep-
resented by arrays of elements from Fq that are coordinates in terms of an
orthonormal basis of V with respect to φ (that is, φ is the standard inner prod-
uct of Fm

q) then QFTφ is just the mth tensor power of the QFT defined in

[9] for Fq. (This is the linear transformation of CFq that maps |x〉 (x ∈ Fq) to
1√
q

∑
y∈Fq

ωTr(xy)|y〉.) Therefore, in this case, by Lemma 2.2 of [9], QFTφ has a

polynomial time approximate implementation on a quantum computer. In the
general case, where elements of V are represented by coordinates in terms of
a not necessarily orthonormal basis w.r.t. φ, the map QFTφ can be efficiently
implemented by composing the above transform with linear transformations of
CV corresponding to appropriate basis changes for V .

For a subset A ⊆ V we adopt the standard notation |A〉 for the uniform
superposition of the elements of A, that is |A〉 = 1√

|A|
∑

a∈A |a〉. Assume that

we receive the uniform superposition |v0 + W 〉 = 1√
|W |

∑
v∈W |v0 + v〉 over the

a coset v0 + W of the Fq-linear subspace W of V and for some v0 ∈ V . Let
W⊥ stand for the subspace of V consisting of the vectors u from Fm

q such that
φ(u, v) = 0 for every v ∈ W . By results from [17], if we measure the state
after the Fourier transform, we obtain a uniformly random element of W⊥. If
instead of the uniform superposition over the coset v0 + W we apply the QFT
to the superposition |v0 + W ′〉 = 1√

|W ′|
∑

v∈W ′ |v0 + v〉 over a subset v0 + W ′

for ∅ = W ′ ⊆W , the resulting state is
∑

u∈V c′u|u〉, where

c′u = 〈u|QFTφ|v0 + W ′〉 =
ωTrφ(v0,u)√
|W ′||V |

∑
v∈W ′

ωTrφ(v,u).

For u ∈W⊥ we have

|c′u| =
|W ′|√
|W ′||V |

=

√
|W ′|√
|W |

· 1√
|W⊥|

, (1)

whence, after measurement the chance of obtaining a particular u ∈W⊥ is |W ′|
|W |

times as much as if we had in the case of the uniform distribution over W⊥.
In this paper we consider subspaces and certain subsets of the linear space

Mn(Fq). If we take the inner product φ0(A,B) = tr(ABT) the elementary ma-
trices form an orthonormal basis. It follows that QFTφ0, being just the n2th
tensor power of the QFT of Fq, can be efficiently approximated. However, for
the purposes of this paper it turns out to be more convenient using the in-
ner product φ(AB) = tr(AB). The map QFTφ is the composition of QFTφ0

with taking transpose (the latter is just a permutation of the matrix entries).
The main advantage of considering QFTφ is that it is invariant in the follow-
ing sense: we always obtain the same QFTφ even if we write matrices of linear
transformations of the space V = Fn

q in terms of various bases. In particular,
in our hidden subgroup algorithms we can think of our matrices in terms of a
basis a priori unknown to us in which the hidden subgroup has a natural form,
for example lower block triangular.

An Efficient Quantum Algorithm 231

2.3 A Common Procedure for HSP Algorithms

Suppose we want to find some hidden subgroup H in G = GLn(Fq). Let V =
Fn
q . We present the standard procedure that produce a uniform superposition

over a coset of the hidden subgroup. This part will be common in (most of)
the hidden subgroup algorithms presented in this paper. First we show how
to produce the uniform superposition over GL(V). The uniform superposition
1

qn2

∑
X∈Mn(Fq)

|X〉 overMn(Fq) can be produced using the QFT for Fn2

q . Then,

in an additional qubit we compute a Boolean variable according to whether
or not the determinant of X is zero. We measure this qubit, and abort if it
indicates that the matrix X has determinant zero. This procedure gives the
uniform superposition over GL(V) with success probability more than 1

4 .
Next we assume that we have the uniform superposition 1√

|GL(V)|
∑

X |X〉|0〉,
summing over X ∈ GL(V). Recall that f is the function hiding the subgroup.
We appended a new quantum register, initialized to zero, for holding the value of
f . We compute f(X) in this second register, measure and discard it. The result
is |AH〉 = 1√

|H|
∑

X∈H |AX〉 for some unknown A ∈ GL(V). A is actually

uniformly random, but in this paper we will not make use of this fact.

3 Maximal Parabolic Subgroups

In this section, we settle the HSP when the hidden subgroup is a maximal
parabolic subgroup, which will be used in the main algorithm in Section 5. It
also helps to illustrate the idea of the idea of approximating a subgroup in the
general linear group by a subspace in the linear space of matrices.

Recall that a parabolic subgroup H is maximal if it stabilizes some subspace
0 < U < Fn

q . We mentioned in Section 2.1 that they are just setwise stabilizers
of subspaces. Determining H is equivalent to finding U . Set V = Fn

q .

Proposition 1. Let G = GLn(Fq), and H = {G{U} : 0 < U < V }. HSP(G,H)
can be solved in quantum polynomial time.

Proof. Let H be the hidden maximal parabolic subgroup, stabilizing some (n−
d)-dimensional subspace U ≤ Fn. Note that d is unknown to us. Before describing
the algorithm, we observe the following: checking correctness of a guess for U , and
hence for H , can be done by applying the oracle to generators of the stabilizer
of U , as there are no inclusions between maximal parabolic subgroups.

Now we present the algorithm. First produce a coset superposition |AH〉 for
unknown A ∈ GL(V), as described in Section 2.3. Let W = {X ∈ Mn(Fq) :
XU ≤ U}. In a basis whose last n−d elements are from U , W is the subspace of

the matrices of the form

(
B
C D

)
, where B and C are not necessarily invertible,

and the empty space in the upper right corner means a d × (n − d) block of
zeros. Noting that such a matrix is invertiable if and only if B and C are both

invertible, we have H ⊂ W and |AH|
|AW | = |H|

|W | >
1

4×4 . Also, viewing in a basis

232 T. Decker et al.

in which W is block triangular, (AW)⊥A consists of the matrices of the form(
∗

)
, where ∗ stands for an arbitrary (n−d) times d matrix. This implies that

(AW)⊥ = {X ∈ Mn(Fq) : XV ≤ U and XU = 0}A−1.
If d ≥ n/2, we apply QFT to the left coset superposition |AH〉 and perform

a measurement, for any element X in (AW)⊥, the measurement will produce X
with probability no less than 1

16|(AW)⊥| . It follows that XA will be a particular

matrix from (AW)⊥A with at least 1
16|(AW)⊥| . Then more than 1

4 of the (n−d)×d
matrices have rank n−d. It follows that with probability at least 1

64 , the matrix
XA will be a matrix from (AW)⊥A whose image is U . As XV = XAV , we can
conclude that XV = U with probability more than 1

64 .
For the case d < n/2 we consider the HSP via right cosets of H , and let act

matrices on row vectors from the right. Via the same procedure as above, it will
reveal the dual subspace stabilized by H , which determines H uniquely as well.

Finally, though d is not known to us, depending on whether d ≥ n/2, one
of these two procedures with produce U correctly with high probability. So we
perform the two procedures alternatively, and use the checking procedure to
determine which produces the correct result. This concludes the algorithm.

4 A Tool: Finding Complements in Small Stabilizers

In this section, we introduce and settle a new instance of the hidden subgroup
problem. This will be an important technical tool for the main algorithm.

Consider the hidden subgroup problem in the following setting. The ambient

group G ≤ GLn(Fq) consists of the invertible matrices of the form

(
b
v I

)
, where

b ∈ Fq, v is a column vector from Fn−1
q and I is the (n − 1) × (n − 1) identity

matrix. The family of hidden subgroupsH consists of all conjugates of H0, where

H0 is the subgroup of diagonal matrices in G: H0 =

{(
b
I

)
: b ∈ F∗

q

}
. Note

that any conjugate of H0 is Hv =

{(
b

(b− 1)v I

)
: b ∈ F∗

q

}
, for some v ∈ Fn−1

q .

We will consider the HSP via right cosets in this setting.
The group G has an abelian normal subgroup N consisting of the matrices of

the form

(
1
v I

)
isomorphic to Fn−1

q , and the subgroups Hv are the semidirect

complements of N . For n = 2, G is the affine group AGL1(Fq). The HSP in
AGL1(Fq) is solved in quantum polynomial time in [22] over prime fields and in
[8] in the general case using the non-commutative Fourier transform of the group
AGL1(Fq). The algorithm served as the main technical ingredient in [8] for find-
ing Borel subgroups in GL(F2

q). A generalization for certain similar semidirect
product groups is given in [2]. To our knowledge, the first occurrence of the idea
of comparing with a coset state in a related abelian group is in [2]. Here, due to
the “nice” representation of the group elements, we can apply the same idea in a

An Efficient Quantum Algorithm 233

simpler way, while in [2] it was needed to be combined with a discrete logarithm
algorithm which is not necessary here.

Proposition 2. Let G and H be as above, and suppose q = Ω(n/ logn). Then
rHSP(G,H) can be solved in quantum polynomial time.

Proof. Assume that the hidden subgroup is H = Hv for some v ∈ Fn−1
q . As right

cosets of H are being considered, we have superpositions over right cosets HA
for some unknown A ∈ G. The actual information of each matrix X from G is
contained in X − I, a matrix from the n-dimensional space L of matrices whose
last n− 1 columns are zero. We will work in L. Set

W̃ ′ ={X−I : X ∈ H} =

{(
b
bv

)
: −1 = b ∈ Fq

}
and W =

{(
b
bv

)
: b ∈ Fq

}
.

Then W is a one-dimensional subspace of L. It turns out that W = WA for every
matrix A ∈ G (that is why it is convenient to consider the HSP via right cosets).
It follows that {(Y +I)A−I : Y ∈ W} = {Y A+(A−I) : Y ∈W} = W +A−I,
whence the set {XA− I : X ∈ H} = W ′ + A− I for W ′ = W̃ ′A.

Therefore, after an application of the QFT of L to the state |HA− I〉 =
|W ′ + A− I〉 and a measurement, we obtain every specific element of W⊥ with
probability at least q−1

q
1

|W⊥| . More generally, if we do the procedure for a product

of n − 1 superpositions over right cosets of H we obtain each specific (n − 1)-
tuple of vectors from W⊥ with probability at least (q−1

q)n−1 1
|W⊥|n−1 . Since the

probability that n− 1 random elements from a space of dimension n− 1 over Fq

span the space is at least 1
4 , therefore, the probability of getting a basis of W⊥

is Ω((q−1
q)n−1). Using this basis, we obtain a guess for W and H as H is the set

of invertible matrices from W + I. A correct guess will be obtained expectedly
with O((q

q−1)n−1) repetitions. This is polynomial if q is Ω(n/ logn).

Finally we note that for constant q, or more generally for constant charac-
teristic, [11] can be used to obtain a polynomial time algorithm. On the other
hand, it is intriguing to study the case of “intermediate” values of q.

5 The Main Algorithm

5.1 The Structure of the Algorithm

In this subsection, we describe the structure of an algorithm for finding parabolic
subgroups in general linear groups, proving Theorem 1. Let G = GLn(Fq), V =
Fn
q , and the hidden parabolic subgroup H be the stabilizer of the flag V >

U1 > U2 > · · · > Uk−1 > 0. Note that the parameter of the flag, including
k, is unknown to us. The algorithm will output the hidden flag, from which a
generating set of the parabolic subgroup can be constructed easily.

Let T = Uk−1 denote the smallest subspace in the flag. The algorithm relies
on the following subroutines crucially. These two subroutines are described in
Section 5.2 and Section 5.3, respectively.

234 T. Decker et al.

Proposition 3. Let G, H and T be as above. There exists a quantum polynomial-
time algorithm, that given access to an oracle hiding H in G, produces three sub-
spaces W1, W2 and W3, s.t. one of Wi is a nonzero subspace contained in T with
high probability.

Proposition 4. Let G, H and T be as above. There exists a classical polynomial-
time algorithm, that given access to an oracle hidingH inG, and some 0 < W ≤ V ,
determines whether W ≤ T , and in the case of W ≤ T , whether W = T .

Given these two subroutines, the algorithm proceeds as follows. It starts with
checking whether k = 1, that is whether H = G. This can be done easily: produce
a set of generators of G, and check whether the oracle returns the same on all
of them. If k = 1, return the trivial flag V > 0.

Otherwise, it repeatedly calls the subroutine in Proposition 3 until that sub-
routine produces subspaces W1, W2 and W3, such that for some i ∈ [3], we have
0 < Wi ≤ T . This can be verified by Proposition 4. Let W be this subspace. The
second subroutine then also tells whether W = T .

After getting 0 < W ≤ T , the algorithm fixes a subspace W ′ to be any
direct complement of W in V , and makes a recursive call to the HSP with a new
ambient group G′, and a new hidden subgroup H ′, as follows. G′ is {X ∈ GL(V) :
XW ′ ≤ W ′ and (X − I)W = 0}, which is isomorphic to GL(W ′) ∼= GL(V/W).
H ′ is the stabilizer of the flag W ′ > W ′ ∩ U1 > · · · > W ′ ∩ Uk−1 ≥ 0. Note that
the oracle restricted to G′ realizes a hiding function for H ′.

The recursive call then returns a flag in W ′ as W ′ > U ′
1 > U ′

2 > · · · > Uk′ > 0.
Let Ui = 〈U ′

i ∪W 〉, i ∈ [k′]. If W = T , then the algorithm outputs the flag V >
U1 > U2 > · · · > Uk′ > W > 0. If W < T , return V > U1 > U2 > · · · > Uk′ > 0.

It is clear that at most n recursive calls will be made, and the algorithm runs
in polynomial time given that the two subroutines run in polynomial time too.
We now prove Proposition 3 and 4 in the next two subsections.

5.2 Guessing a Part of the Flag

In this subsection we prove Proposition 3. Recall that G = GLn(Fq), the hidden
subgroup H stabilizing of the flag V > U1 > . . . > Uk−1 > 0, and T = Uk−1.
The algorithm of [8] for finding hidden Borel subgroups in 2 by 2 matrix groups
was based on computing the intersection with the stabilizer of a nonzero vector.
Here we follow an extension of the idea to arbitrary dimension n. We consider
the common stabilizer of n− 1 linearly independent vectors.

Pick a random subspace U ′ ≤ V of dimension n− 1. Recall that GU ′ denotes
the group of pointwise stabilizers of U ′. We also consider the group consisting
of the unipotent elements of GU ′ , N = {X ∈ GL(V) : (X − I)V ≤ U ′ and X ∈
GU ′}. Note that N is an abelian normal subgroup of GU ′ of size qn−1. Here we
illustrate the form of GU ′ and N when U ′ is put in an appropriate basis:

An Efficient Quantum Algorithm 235

⎛
⎜⎜⎜⎜⎝

1 ∗
1 ∗
1 ∗
1 ∗
∗

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 ∗
1 ∗
1 ∗
1 ∗
1

⎞
⎟⎟⎟⎟⎠ .

GU′ N

We will describe three procedures, whose success on producing some 0 < W ≤
T depend on d := dim(T) and the field size q. Each of these procedures only
works for a certain range of d and q, but together they cover all possible cases.
Thus, the algorithm needs to run each of these procedures, and return the three
results from them. The general idea behind these procedures is to examine the
intersection of the random hyperplane U ′ with T . As d = dim(T), the probability

that U ′ contains T is qn−d−1
qn−1 ∼ 1

qd
.

Assume first that U ′ does not contain T . We claim that in this case∑
X∈H∩GU′

(X − I)V = T (2)

and
∑

X∈H∩N

(X − I)V = U ′ ∩ T. (3)

To see this, pick vn ∈ T \U ′, and let v1, . . . , vn−1 be a basis for U ′ such that for
every 0 < j < k, the system vn−dim(Uj)+1, . . . , vn−dim(Uj+1) is a basis for Uj. In
the basis v1, . . . , vn, the matrices of the elements of N are the matrices with ones
in the diagonal, arbitrary elements in the last column except the lowest one, and
zero elsewhere. Among these the matrices of the elements of intersection with
H are those whose first n− d entries in the last column are also zero:

⎛
⎜⎜⎜⎜⎝

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1
1
1
1 ∗
∗

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1
1
1
1 ∗
1

⎞
⎟⎟⎟⎟⎠ .

H H ∩GU′ H ∩N

Based on the above analysis, the three procedures are as follows.
– If d > 1, then H∩N is nontrivial. As N is abelian, we can efficiently compute
H ∩N by the abelian hidden subgroup algorithm. Thus by Equation 3, we
can use it to compute W1 as a guess for a nontrivial subspace of T .

– If d = 1 and q ≥ n, we can compute H ∩ GU ′ in GU ′ by the algorithm in
Proposition 2, and use it to compute W2 as a guess for T by Equation 2.

– If d = 1 and q < n, with probability at least 1
q −

1
q2 = Ω(1q) = Ω(1

n), we

have that U ′ ≥ T but U ′ does not contain Uk−2. Then we have∑
X∈H∩N

(X − I)V = U ′ ∩ Uk−2. (4)

236 T. Decker et al.

To see this, pick vn ∈ Uk−1 \ {0}, vn−1 ∈ Uk−2 \ U ′, and v1, . . . , vn−2 s.t.
v1, . . . , vn−2, vn is a basis for U ′ and for every 0 < j < k, the system
vn−dim(Uj)+1, . . . , vn−dim(Uj+1) is a basis for Uj . In this basis the matrices
for the elements of N ∩H are those whose entries are zero except the ones
in the diagonal and except the other lowest dimUk−2 entries in the next to
last column: ⎛

⎜⎜⎜⎜⎝

∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 ∗
1 ∗
1 ∗
1
∗ 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1
1
1 ∗
1
∗ 1

⎞
⎟⎟⎟⎟⎠ .

H N H ∩N

Again, we can find H ∩ N by the abelian hidden subgroup algorithm and
use Equation 4 to compute V ′ = U ′ ∩ Uk−2. If dimV ′ = 1 then return
W3 = V ′ as the guess for T . Otherwise we take a direct complement V ′′ of
V ′ and restrict the HSP to the subgroup of the tranformations X such that
(X − I)V ′′ = 0 and XV ′ ≤ V ′ (which is isomorphic to GL(V ′)) and apply
the method in Proposition 1 to compute a subspace W3 as the guess for T .

5.3 Checking and Recursion

In this subsection we prove Proposition 4. Recall that the goal is to determine
whether some subspace 0 < W ≤ V is contained in T = Uk−1, the last member
of the flag V > U1 > · · · > Uk−1 > 0 stabilized by the hidden parabolic subgroup
H . If W ≤ V , we’d like to know whether W = T . This can be achieved with the
help of the following lemma, whose proof is omitted here.

Lemma 1. Let H be the stabilizer in GL(V) of the flag V > U1 > U2 > . . . >
Uk−1 > 0, and let 0 < W < V . Let W ′ be any direct complement of W in
V . Then Uk−1 ≥ W if and only if H ≥ {X ∈ GL(V) : (X − I)V ≤ W}.
Furthermore, if Uk−1 ≥W then Uk−1 = W if and only if

H ∩ {X ∈ GL(V) : (X − I)V ≤W ′ and (X − I)W ′ = 0} = {I}.

It is clear that this allows us to determine whether Uk−1 ≥W : form a gener-
ating set of {X ∈ GL(V) : (X − I)V ≤W}, and query the oracle to see whether
all element in the generating set evaluate the same. Similarly if Uk−1 ≥ W , we
can test whether Uk−1 = W .

Acknowledgements. The research is partially funded by the Singapore Min-
istry of Education and the National Research Foundation, also through the Tier
3 Grant “Random numbers from quantum processes,” MOE2012-T3-1-009. Re-
search partially supported by the European Commission IST STREP project
Quantum Algorithms (QALGO) 600700, by the French ANR Blanc program
under contract ANR-12-BS02-005 (RDAM project), and by the Hungarian Sci-
entific Research Fund (OTKA), Grant NK105645.

An Efficient Quantum Algorithm 237

References

1. Bacon, D.: How a Clebsch-Gordan transform helps to solve the Heisenberg hidden
subgroup problem. Quantum Inf. Comput. 8, 438–467 (2008)

2. Bacon, D., Childs, A., van Dam, W.: From optimal measurement to efficient quan-
tum algorithms for the hidden subgroup problem over semidirect product groups.
In: Proc. 46th IEEE FOCS, pp. 469–478 (2005)

3. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill, New York (1968)
4. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput. 24,

713–735 (1970)
5. Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In:

Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer,
Heidelberg (1995)

6. Cantor, D.G., Zassenhaus, H.: A New Algorithm for Factoring Polynomials Over
Finite Field. Math. Comput. 36, 587–592 (1981)

7. Cheung, K., Mosca, M.: Decomposing finite abelian groups. Quantum Inf. Com-
put. 1, 26–32 (2001)

8. Denney, A., Moore, C., Russell, A.: Finding conjugate stabilizer subgroups in
PSL(2;q) and related problems. Quantum Inf. Comput. 10, 282–291 (2010)

9. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift
problems. SIAM J. Comput. 36, 763–778 (2006)

10. Ettinger, M., Hoyer, P., Knill, E.: The quantum query complexity of the hidden
subgroup problem is polynomial. Inform. Proc. Lett. 91, 43–48 (2004)

11. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and
orbit coset in quantum computing. In: Proc. 35th STOC, pp. 1–9 (2003)

12. Gavinsky, D.: Quantum solution to the hidden subgroup problem for poly-near-
Hamiltonian groups. Quantum Inf. Comput. 4, 229–235 (2004)

13. Gonçalves, D.N., Portugal, R., Cosme, C.M.M.: Solutions to the hidden subgroup
problem on some metacyclic groups. In: Childs, A., Mosca, M. (eds.) TQC 2009.
LNCS, vol. 5906, pp. 1–9. Springer, Heidelberg (2009)

14. Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical algo-
rithms for the nonabelian Hidden Subgroup Problem. In: Proc. 33rd ACM STOC,
pp. 68–74 (2001)

15. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quan-
tum computation using group representations. SIAM J. Comp. 32, 916–934 (2003)

16. Inui, Y., Le Gall, F.: Efficient quantum algorithms for the hidden subgroup problem
over semi-direct product groups. Quantum Inf. Comput. 7, 559–570 (2007)

17. Ivanyos, G.: Finding hidden Borel subgroups of the general linear group. Quantum
Inf. Comput. 12, 661–669 (2012)

18. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some in-
stances of the non-Abelian hidden subgroup problem. Int. J. Found. Comp. Sci. 15,
723–739 (2003)

19. Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the
hidden subgroup problem in nil-2 groups. Algorithmica 63(1-2), 91–116 (2012)

20. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup prob-
lem. Computing in Science and Engineering 3, 34–43 (2001)

21. Yu. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem, Tech-
nical report arXiv:quant-ph/9511026 (1995)

22. Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection
in Fourier sampling: Hidden subgroup problems in affine groups. In: Proc. 15th
ACM-SIAM SODA, pp. 1106–1115 (2004)

238 T. Decker et al.

23. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33,
738–760 (2004)

24. Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring.
SIAM J. Comput. 26, 1484–1509 (1997)

25. Springer, T.A.: Linear Algebraic groups, 2nd edn. Progress in mathematics, vol. 9.
Birkhäuser, Basel (1998)

26. Watrous, J.: Quantum algorithms for solvable groups. In: Proc. 33rd ACM STOC,
pp. 60–67 (2001)

A Note on the Minimum Distance

of Quantum LDPC Codes

Nicolas Delfosse1, Zhentao Li2, and Stéphan Thomassé3

1 Département de Physique, Université de Sherbrooke,
Sherbrooke, Québec, J1K2R1, Canada
nicolas.delfosse@usherbrooke.ca

2 Département d’Informatique UMR CNRS 8548, École Normale Supérieure, France
zhentao.li@ens.fr

3 LIP, UMR 5668, École Normale Supérieure de Lyon - CNRS - UCBL - INRIA,
Université de Lyon, France

stephan.thomasse@ens-lyon.fr

Abstract. We provide a new lower bound on the minimum distance
of a family of quantum LDPC codes based on Cayley graphs proposed
by MacKay, Mitchison and Shokrollahi [14]. Our bound is exponential,
improving on the quadratic bound of Couvreur, Delfosse and Zémor [3].
This result is obtained by examining a family of subsets of the hypercube
which locally satisfy some parity conditions.

1 Introduction

A striking difference between classical and quantum computing is the unavoid-
able presence of perturbations when we manipulate a quantum system, which
induces errors at every step of the computation. This makes essential the use of
quantum error correcting codes. Their role is to avoid the accumulation of errors
throughout the computation by rapidly identifying the errors which occur.

One of the most satisfying construction of classical error correcting codes ca-
pable of a rapid determination of the errors which corrupt the data is the family
of Low Density Parity–Check codes (LDPC codes) [9]. It is therefore natural
to investigate their quantum generalization. Moreover, Gottesman remarked re-
cently that this family of codes can significantly reduce the overhead due to
the use of error correcting codes during a quantum computation [10]. Quan-
tum LDPC codes may therefore become an essential building block for quantum
computing.

Quantum LDPC codes have been proposed by MacKay, Mitchison, and Mac-
Fadden in [15]. One of the first difficulty which arises is that most of the families
of quantum LDPC codes derived from classical constructions lead to a bounded
minimum distance, see [20] and references therein. Such a distance is generally
not sufficient and it induces a poor error-correction performance.

Only a rare number of constructions of quantum LDPC codes are equipped
with an unbounded minimum distance. Most of them are inspired by Kitaev
toric codes constructed from the a tiling of the torus [12] such as, color codes

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 239–250, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

240 N. Delfosse, Z. Li, and S. Thomassé

which are based on 3-colored tilings of surfaces [1], hyperbolic codes which are
defined from hyperbolic tilings [8,21], or other constructions based on tilings
of higher dimensional manifolds [8,11]. These constructions are based on tilings
of surfaces or manifolds and their minimum distance depends on the homology
of this tiling. The determination of the distance of these codes is thus based
on homological properties and general bounds on the minimum distance can be
derived from sophisticated homological inequalities [6,4].

In this article, we study a construction of quantum LDPC codes proposed by
MacKay, Mitchison and Shokrollahi [15] based on Cayley graphs and studied
in [3]. This family does not rely on homological properties and thus homolog-
ical method cited earlier seems impossible to apply. We relate their minimum
distance to a combinatorial property of the hypercube. Then, using an idea of
Gromov, we derive a lower bound on the minimum distance of these quantum
codes which clearly improves the results of Couvreur, Delfosse and Zémor [3].

The remainder of this article is organized as follows. In Section 2, we recall
the definition of linear codes and a construction of quantum codes based on clas-
sical codes. Section 3 introduces the quantum codes of MacKay, Mitchison and
Shokrollahi [14]. In order to describe the minimum distance of these quantum
codes based on Cayley graphs, we introduced two families of subsets of these
graphs that we call borders and pseudo-borders in Section 4. We are then inter-
ested in the size of pseudo-borders of Cayley graphs. In Section 5, we reduce this
problem to the study of t-pseudo-borders of the hypercube, which are a local
version of pseudo-borders. Theorem 1, proved in Section 6, establishes a lower
bound on the size of t-pseudo-border. As a corollary, we derive a lower bound
on the minimum distance of Cayley graphs quantum codes.

2 Minimum Distance of Quantum Codes

A code of length n is defined to be a subspace of Fn
2 . It contains 2k elements, called

codewords, where k is the dimension of the code. The minimum distance d of a
code is the minimum Hamming distance between two codewords. By linearity, it
is also the minimum Hamming weight of a non-zero codeword. This parameter
plays an important role in the error correction capability of the code. Indeed,
assume we start with a codeword c and that t of its bits are flipped. Denote by
c′ the resulting vector. If t is smaller than (d − 1)/2 then we can recover c by
looking for the closest codeword to c′. Therefore, we can theoretically correct up
to (d− 1)/2 bit-flip errors. The parameters of a code are denoted [n, k, d].

Every code can be defined as the kernel of a binary matrix H , called a parity–
check matrix of the code. Alternatively, a code can be given as the space gener-
ated by the rows of a matrix called a generator matrix of the code. For instance,
the following parity–check matrix defines a code of parameter [7, 4, 3].

H =

⎛⎝1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞⎠ · (1)

The code which admits H as a generator matrix has parameters [7, 3, 4].

A Note on the Minimum Distance of Quantum LDPC Codes 241

The space Fn
2 is equipped with the inner product (x, y) =

∑n
i=1 xiyi, where

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The orthogonal of a code C of
length n is called the dual code of C. A code is said to be self-orthogonal if it
is included in its dual. For example, we can easily check that two rows of the
matrix H given in Eq.(1) are orthogonal which means the code generated by the
rows of H is self-orthogonal.

Quantum information theory studies the generalization of error correcting
codes to the protection of information written in a quantum mechanical system.
By analogy with the classical setting, a quantum error correcting code is defined
as the embedding of K qubits into N qubits. The CSS construction allows us
to define a quantum code from a classical self-orthogonal code [2,19]. As in the
classical setting, the minimum distance D of a quantum code is an important
parameter which measures the code’s performance. The following proposition
gives a combinatorial description of the parameters of these quantum codes.

Proposition 1. Let C be a classical code of parameters [n, k, d]. If C is self-
orthogonal, then we can associate withC a quantum code of parameters [[N,K,D]],
whereN = n,K = dimC⊥/C = n−2k and whenK = 0,D is the minimum weight
of codeword of C⊥ which is not in C: D = min{w(x) | x ∈ C⊥\C}.

Throughout this article, we only consider this combinatorial definition of the
parameters of quantum codes. A complete description of quantum error correct-
ing codes, starting from the postulates of quantum mechanics, can be found for
example in [18].

The minimum distance of the classical code C⊥ is d⊥ = min{w(x) | x ∈
C⊥\{0}}. If there exists a vector x ∈ C⊥\{0} of minimum weight which is
not in C, then the quantum minimum distance is D = d⊥. In that case, the
computation of the minimum distance corresponds to the computation of the
minimum distance of the classical code C⊥.

When, D is strictly larger than the classical minimum distance d⊥, the quan-
tum code is called degenerate. Then, we do not consider the codewords of C in
the computation of D. This essential feature can improve the performance of the
quantum code but also makes the determining the minimum distance strikingly
more difficult than in the classical setting. In the present work, we obtain a lower
bound on the minimum distance of a family of degenerate quantum codes.

3 A Family of Quantum Codes Based on Cayley Graphs

We consider a family of quantum codes constructed from Cayley graphs, which
we now define.

Definition 1. Let G be a group and S be a set of elements of G such that s ∈ S
implies s−1 ∈ S. The Cayley graph Γ (G,S) is the graph with vertex set G such
that two vertices are adjacent if they differ by an element in S.

In our case, the group G is always Fr
2 and S = {c1, c2, . . . , cn} is a gener-

ating set of Fr
2. Thus Γ (G,S) is a regular graph of degree n with 2r vertices.

242 N. Delfosse, Z. Li, and S. Thomassé

This graph is connected since S is a generating set. To simplify notation, we
assume that the vectors ci are the n columns of a matrix H ∈ Mr,n(F2). We
denote by G(H) this graph and A(H) the adjacency matrix of this graph.

For instance, the Cayley graph G(In), associated with the identity matrix of
size n, is the hypercube of dimension n. Indeed, its vertex set is Fn

2 and two
vertices x and y are adjacent if and only the vectors x and y differ in exactly
one component.

The following proposition proves that we can associate a quantum code with
these graphs [3].

Proposition 2. Let H ∈ Mr,n(F2) be a binary matrix. If n is an even integer,
then the adjacency matrix A(H) of the graph G(H) is the generating matrix of a
classical self-orthogonal code. We denote by C(H) this self-orthogonal code and
by Q(H) the corresponding quantum code.

We want to determine the minimum distance of these quantum codes Q(H).
Recall that a family of quantum codes associated with a family of self-

orthogonal codes (Ci) defines quantum LDPC codes if Ci admits a parity–check
matrix Hi which is sparse. In our case the generating matrix of the code C(H) is
the adjacency matrix A(H), which is typically sparse since each row is a vector
of length 2r and weight n. When n and r are proportional, each row of A(H)
has weight in O(logN), where N = 2r is the number of columns of A(H). Some
authors consider LDPC codes defined by a parity-check matrix with bounded
row weight. However, an unbouded row weight is needed for example to achieve
the capacity of the quantum erasure channel [5].

It turns out that regardless of the choice of generators, the resulting graph
G(H) is always locally isomorphic to the hypercube [3]. That is, the set of vertices
within some distance t, depending on H , of a vertex in G(H), is isomorphic to
the subgraph of the hypercube induced by all vertices within distance t of a
vertex in the hypercube.

We close this subsection with a sketch of the proof of this local isomorphism.
By ball of radius t centered at a vertex v in a graph G, we mean the subgraph
of G induced by all vertices at distance at most t from v. The neighbourhood
N(v) of a vertex v of the graph G(H) is the set of vertices incident to v.

The radius of the isomorphism depends on the shortest length d of a relation∑d
i=1 ci = 0 between columns ofH , which is, by definition, the minimum distance

of the code of parity-check matrix H .

Proposition 3. Let H ∈ Mr,n(F2) and let d be the minimum distance of the
code of parity–check matrix H. Then, there is a graph isomorphism between any
ball of radius (d− 1)/2 of G(H) and any ball of same radius in G(In) where In
is the identity matrix of size n.

Proof (sketch). The generating set S is the set of columns of H . The neig-
bourhood of a vertex x is {x + c1|c1 ∈ S} and the second neighbourhood is
{x + c1 + c2|c1 = c2 ∈ S}. If there is no relation between set of 4 different gen-
erators (i.e. there is no relation where the sum of four generators is 0) then except

A Note on the Minimum Distance of Quantum LDPC Codes 243

for x+ c1 + c2 and x+ c2 + c1 being equal, all these vertices are distinct. So by
mapping x to 0, ci to ei and ci + cj to ei + ej , we see that vertices at distance
at most two from x is isomorphic to the hypercube.

In the general case, we can also map each generator of G(H) to a generator
of G(In). ��

This result gives more information about the local structure of the graph
when we start with a parity–check matrix H defining a code of large distance d.
For instance, when H ∈ Mr,n(F2) is a random matrix chosen uniformly among
the matrices of maximal rank, the distance d is linear in n. We can also choose
H as the parity-check matrix of a known code equipped with a large minimum
distance.

Our result will be proved by only looking at vertices within distance (d−1)/2
of some central vertex and hence we may assume that we are in the hypercube
of dimension n.

4 Borders and Pseudo-borders of Cayley Graphs

The aim of this section is to provide a graphical description of the minimum
distance of the quantum codes Q(H) introduced in the previous section. This
quantum code is associated with the classical self-orthogonal code C(H) gener-
ated by the rows of the matrix A(H). By Proposition 1, the minimum distance
D of this quantum code is given by

D = min{w(x) | x ∈ C(H)⊥\C(H)}.

By definition, the codes C(H) and its dual C(H)⊥ are subspaces of FN
2 where

N = 2r is the size of the matrix A(H). Since the columns of A(H) are indexed
by the N vertices of the graph G(H), a vector x ∈ FN

2 can be regarded as the
indicator vector of a subset of the vertex set of G(H). We can then replace the
two conditions x ∈ C(H)⊥ and x /∈ C(H) by conditions on the set of vertices
corresponding to x. In order to describe the vectors x of C(H) and C(H)⊥, we
introduced two families of subsets of the vertex set of G(H): the borders and
the pseudo-borders.

Definition 2. Let S be a subset of the vertex set of G(H). The border B(S)
of S in the graph G(H) is the set of vertices of G(H) which belong to an odd
number of neighbourhoods N(v) for v ∈ S.

Equivalently, the border of a subset S is the symmetric difference of all the
neigborhoods N(v) for v ∈ S.

Definition 3. A pseudo-border in the graph G(H) is a family P of vertices of
G(H) such that the cardinality of N(v) ∩ P is even for every vertex v of G(H).

These borders and pseudo-borders correspond to the vectors of the classical
code C(H) and its dual.

244 N. Delfosse, Z. Li, and S. Thomassé

Proposition 4. Let x be a vector of FN
2 where N = 2r is the number of vertices

of G(H). Then x is the indicator vector of a subset Sx of the vertex set of G(H).
Moreover, we have

– x ∈ C(H) if and only if Sx is border,
– x ∈ C(H)⊥ if and only if Sx is pseudo-border.

The idea of the proof is to check the vector properties of A(H) (needed for
x ∈ C(H) or x ∈ C(H)⊥) translate to properties of neighbourhoods in G(H).

This proposition, combined with Proposition 2, shows that, when n is even,
every border is a pseudo-border. In some special cases, every pseudo-border is a
border. However, this is generally false and in these cases,, the minimum distance
of the quantum code associated with H is equal to

D = min{|S| | S is a pseudo-border which is not a border }.

Since the graph G(H) is locally isomorphic to the hypercube of dimension n,
(Proposition 3), it is natural to investigate the borders and pseudo-borders of
the hypercube.

5 Borders and Pseudo-borders of the Hypercube

In this section, we focus on the hypercube and we introduce a local version of the
pseudo-borders which is preserved by the local isomorphism of Proposition 3.

We gave the Cayley graph definion of a hypercube as G(In) in Section 3.
Here we give an alternate definition based on sets. We denote by [n] the set
{1, 2, . . . , n}. The vertex set of the hypercube is 2[n], all subsets of [n] (see Fig-
ure 1). Inspired by this graphical structure, for a subset v of [n], we write N(v)
for the neighbourhood centered at v, i.e. the family of all subsets of [n] that differ
by one element from v.

To motivate our new definitions, recall a simple lower bound on the cardinality
of a pseudo-border S which is not a border in G(H). Assume that the parameter
d is larger than 7, so that every ball of radius (d− 1)/2 = 3 of the graph G(H)
is isomorphic to a ball of the hypercube of dimension n by Proposition 3. The
pseudo-border S is not empty, otherwise it is a border. Therefore, it contains a
vertex u of G(H). We use the following arguments:

– u ∈ S,
– The cardinality of S ∩N(v) is even for every neighbour v of the vertex u,
– The ball B(u, 3) of the graph G(H) is isomorphic to a ball of the hypercube

of dimension n.

Then, each of the n neighbourhoods N(v) centered at v ∈ N(u), contains the
vertex u, thus it must contain at least another vertex of S. This provides n other
vertices of the set S. Since these vertices can appear in at most two different
sets N(v), the set S contains at least 1 + n/2 distinct vertices.

In order to extend this argument, we introduce t-pseudo-borders.

A Note on the Minimum Distance of Quantum LDPC Codes 245

Definition 4. Let t and n be two positive integers such that t < n. A t-pseudo-
border S of the hypercube 2[n] is a family of subsets of [n] such that

– ∅ ∈ S,
– The cardinality of S ∩N(v) is even for every v ⊂ [n] of size |v| ≤ t− 1,
– S is included in the ball of radius t centered in ∅ of the hypercube 2[n].

In other words, a t-pseudo-border is a subset of vertices of a ball of the hyper-
cube satisfying the conditions of the definition of a pseudo-border in this ball.
Starting from a pseudo-border of a Cayley graph G(H) and applying the local
isomorphism of Proposition 3, we obtain a t-pseudo-border of the hypercube.
We are interested in a lower bound on the size of t-pseudo-borders. Thus, we
aim to answer the following refinement of the question of the determination of
the minimum distance of the quantum codes Q(H).

Question 1. What is the minimum cardinality of a t-pseudo-border of the hy-
percube 2[n] which is not a border?

The results of [3] provide a polynomial lower bound in O(tn2). To our knowl-
edge, this is the best known lower bound on the cardinality of the t-pseudo-border
of the hypercube. Our main result is an exponential lower bound.

Theorem 1. The minimum cardinality of a t-pseudo-border of the hypercube
2[n] which is not a border is at least

i≤M∑
i=0

(n/2)i/2

i!
,

where M = min{t− 1,
√
n/2}. When t is larger than

√
n/2, this lower bound is

at least e
√

n/2.

This Theorem is proved in Section 6. As an application, we obtain a lower
bound on the minimum distance of the Cayley graph quantum codes Q(H).

Corollary 1. Let H ∈Mr,n(F2), with n an even integer, and let d be the min-
imum distance of the code of parity–check matrix H. The quantum code Q(H)
encodes K qubits into N = 2r qubits. If K = 0, then the minimum distance D
of Q(H) is at least

D ≥
i≤M∑
i=0

(n/2)i/2

i!
,

where M = min{(d − 3)/2,
√
n/2}. When d is larger than

√
n/2, this lower

bound is at least e
√

n/2.

Proof. We want to bound the minimum distance D of Q(H), which, by Propo-
sition 1, is the minimum weight of a vector x of C(H)⊥\C(H). Such a vector
x corresponds to a subset Sx of vertices of the graph G(H) which is a pseudo-
border and which is not a border by Proposition 4. By this bijection x $→ Sx,

246 N. Delfosse, Z. Li, and S. Thomassé

the weight of x corresponds to the cardinality of the set Sx. Therefore, D is the
minimum cardinality of a pseudo-border of G(H) which is not a border.

First, let us prove that such a pseudo-border exists. By Proposition 1, the
number of encoded qubits K, which is assumed to be positive, is the dimen-
sion of the quotient space K = dimC(H)⊥/C(H). We know, from Proposi-
tion 4, that C(H)⊥ and C(H) are in one-to-one correspondence with the sets of
pseudo-borders and borders respectively. Therefore the positivity of K implies
the existence of a pseudo-border S of G(H) which is not a border.

Let S be a pseudo-border of G(H) which is not a border of minimum cardi-
nality. Since S is not a border it is not empty. Let u be a vertex of S in G(H).
Applying the local isomorphism of Proposition 3, we can map the ball of ra-
dius (d − 1)/2 centered at u of G(H) to the ball of same radius centered at ∅
of the hypercube 2[n]. By this transformation, the restriction of S to the ball
B(u, (d− 1)/2) is sent onto a (d− 1)/2-pseudo-border Su of the hypercube 2[n].
The set Su is not a border, otherwise the set S\Su is a pseudo-border of G(H)
which is not a border of size strickly smaller than |S|. This graph isomorphism
cannot increase the size of S thus D is lower bounded by the minimum size of a
(d − 1)/2-pseudo-border of 2[n]: D ≥ |S| ≥ |Su|. Finally, Theorem 1 provides a
lower bound on |Su|. ��

6 Bound on the Size of Local Pseudo-borders of the
Hypercube

This section is devoted to the proof of Theorem 1. So our goal is to derive a
lower bound on the size of t-pseudo-borders of the hypercube which are not
borders. Here it is more convenient to use the language of sets. We work in
the hypercube 2[n] defined in Section 5, whose vertices correspond to subsets of
[n] = {1, 2, . . . , n}.

To show our bound, we consider a t-pseudo-border S of minimum size. In
order to exploit the minimality of this set, we introduce the following operation.

Definition 5. Let S be a family of subsets of [n] and v a subset of [n]. By
flipping S along v, we mean to swap elements and non-elements of S in the
border N(v).

Put differently, flipping S along v gives the symmetric difference SΔN(v). We
now show that flipping a minimum t-pseudo-border cannot decrease its size, a
key ingredient for our main result.

Lemma 1. Let S be a t-pseudo-border of 2[n] which is not a border, of minimum
cardinality. Then, flipping S along any number of subsets v such that 2 ≤ |v| ≤
t− 1 leads to a family of greater or equal cardinality.

Proof (sketch). By minimality of S, it suffices to check that this transformation
conserves the set of t-pseudo-borders which are not borders. ��

A Note on the Minimum Distance of Quantum LDPC Codes 247

6.1 Lower Bounds for 2-Subsets and 4-Subsets

In Section 5, we showed a first lower bound on the size of pseudo-borders. The
basic idea is to use the facts that ∅ ∈ S and there is an even number of elements
of S in N(v) when |v| = 1. This shows S has elements at distance 2 from ∅. It
is reasonable to expect that these subsets of S at distance 2 from ∅ will imply
the existence of subsets of S at distance 4 from ∅ and so on. However, as the
distance to ∅ increases, the local structure of the graph becomes more and more
complicated making this problem more complex.

In this section, as an example, we give a lower bound on the number of 4-
subsets of a minimal t-pseudo-borders which is not a border. The same tools
are then used in Section 6.2 to bound the number of k-subsets of a minimal
t-pseudo-border. A k-set (or k-subset) of a set [n] is a subset of [n] of size k.
k-sets are used to decompose the hypercube into layers (see Fig. 1).

∅ {1}

{3}

{2}

{1, 3}

{1, 2}

{2, 3} {1, 2, 3}

∅

{1}

{2}

{3}

{4}

{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

{1, 2, 3}

{1, 2, 4}

{1, 3, 4}

{2, 3, 4}

{1, 2, 3, 4}

Fig. 1. Left: Hypercube on the set [3]. Right: k-sets of the hypercube on [4].

Definition 6. An odd k-set with respect to S is a k-set (not necessarily in S)
containing an odd number of (k − 1)-subsets of S.

Stated differently, odd k-sets are the sets v such that the constraint |S ∩N(v)|
is even is not satisfied when we restrict S to the ball of radius k − 1 centered in
∅. Therefore, they can be used to deduce the existence of (k+ 1)-subsets of S as
proved in the following lemma.

Lemma 2. Let k < t − 1. If there are ok odd k-sets with respect to a minimal
t-pseudo-border S which is not a border then there are at least ok

k+1 sets of size
k + 1 in S.

Proof. The ball centered at each of these odd k-sets contains an even number of
elements of S and therefore contains at least one element of S of size k + 1.

On the other hand, each (k+1)-set contains k+1 k-sets and therefore at most
k + 1 odd k-sets of S. So we need at least ok

k+1 such sets to satisfy the parity
condition for all odd k-sets. ��

248 N. Delfosse, Z. Li, and S. Thomassé

We now need to lower bound the number of odd (k + 1)-sets in terms of the
number of k-sets. This bound is adapted from a result of Gromov, independently
proven by Linial, Meshulam [13], and Wallach [17] (and maybe by others). (See
also Lemma 3 of [16] and [7]). The following result is proved in Section6.3.

Theorem 2. For every 1 ≤ k ≤ t − 2, if there are sk k-sets in a minimal t-

pseudo-border S which is not a border then there are at least n−(k−1)k
k+1 sk odd

(k + 1)-sets with respect to S.

For example, let us consider the first layers of a minimal t-pseudo-border
which is not a border S. Assume that t ≥ 3. We can see that all 1-sets are odd
with respect to S. Since there are exactly n 1-sets, this remark immediately gives
us at least n

2 2-sets with respect to S. If t ≥ 5, applying Theorem 2 with k = 2,

we get at least n
2
n−2
3 = n(n−2)

2·3 odd 3-sets with respect to S. Then, we obtain at

least n(n−2)
2·3·4 4-sets in S.

6.2 Lower Bounds for t-Pseudo-borders

Combining Theorem 2 with Lemma 2, we obtain a lower bound on the number
of k-sets in a minimal t-pseudo-border which is not a border when k ≤

√
n/2.

This concludes the proof of Theorem 1.

Lemma 3. For any minimal t-pseudo-border S which is not a border and any

even k ≤ min{t− 1,
√
n/2}, S has at least nk/2

2k/2k!
k-sets.

Proof. Since k ≤
√
n/2, n− (k − 1)k ≥ n

2 .
We prove this by induction on k. Since ∅ ∈ S, it is true for k = 0. Suppose

this is true for k − 2. Then by Theorem 2, there are at least n
2(k−1)

n(k−2)/2

2(k−2)/2(k−2)!

odd (k + 1)-sets with respect to S. By Lemma 2, S contains at least

1

k

n

2(k − 1)

n(k−2)/2

2(k−2)/2(k − 2)!
=

nk/2

2k/2k!

k-sets, as required. ��

The bound in Lemma 3 is maximized at k =
√
n/2 and by Stirling’s formula

is at least e
√

n/2.
To obtain the lower bound on the size of t-pseudo-borders of 2[n] stated in

Theorem 1, we simply apply Lemma 3 to all the k-sets of a t-pseudo-border with
k < t and k ≤

√
n/2.

6.3 Lower Bounds for Odd Sets

Proof (Proof of Theorem 2). Let S be a minimal t-pseudo-border. We denote
by Sk the set of k-sets of S and by Ok+1 the odd (k + 1)-sets with respect to
S. For an element i ∈ [n], we write ∂i(Ok+1) for the sets of Ok+1 containing i,

A Note on the Minimum Distance of Quantum LDPC Codes 249

each with i removed (so ∂i(Ok+1) is a set of k-sets) and ∂i(Sk) for the set of
(k − 1)-sets consisting of all elements of Sk containing i with i itself removed
from each k-set.

Let i ∈ [n] be the index minimizing

|∂i(Ok+1)|+ (k − 1)|∂i(Sk)| ≤ 1

n

∑
i

(|∂i(Ok+1)|+ (k − 1)|∂i(Sk)|)

=
1

n

∑
i

|∂i(Ok+1)|+ k − 1

n

∑
i

|∂i(Sk)|

=
k + 1

n
|Ok+1|+

(k − 1)k

n
|Sk|.

Since S is minimal, we may flip on ∂i(Sk) and apply Lemma 1. We claim this
flip yields a family S ′ whose k-sets is exactly ∂i(Ok+1). Indeed, if f ∈ ∂i(Ok+1)
then f ∪ {i} ∈ Ok+1 which means f ∪ {i} contains an even number of elements
of Sk. But except for f itself, these elements of Sk all contain i. If f ∈ Sk,
f contains an even number of elements of ∂i(Sk) and is therefore not added
(flipped) to S ′. If f ∈ Sk, f contains an odd number of elements of ∂i(Sk) and
is therefore removed (flipped) when building S ′. The reverse inclusion is proved
similarly.

The only other sets affected by flipping on ∂i(Sk) are (k − 2)-sets and this
flips (gains) at most (k− 1)|∂i(Sk)| elements of size k− 2 (since each element of
∂i(Sk) has size k − 1 and contains at most k − 1 elements (of S) of size k − 2).

Therefore, by minimality (Lemma 1)

|Sk| ≤ |∂i(Ok+1|+ (k − 1)|∂i(Sk)| ≤ k + 1

n
|Ok+1|+

(k − 1)k

n
|Sk|.

Rearranging gives n−(k−1)k
k+1 |Sk| ≤ |Ok+1| and the theorem follows. ��

Acknowledgements. Nicolas Delfosse was supported by the Lockheed Martin
Corporation. Nicolas Delfosse acknowledges the hospitality of Robert Raussendorf
and the University of British Columbia where part of this article was written. The
authors wish to thank Benjamin Audoux, Alain Couvreur, Anthony Leverrier,
Jean-Pierre Tillich and Gilles Zémor for their comments and thank Jean-Sébastien
Séréni for fruitful discussions about Gromov result.

References

1. Bombin, H., Martin-Delgado, M.: Topological quantum distillation. Physical Re-
view Letters 97, 180501 (2006)

2. Calderbank, A., Shor, P.: Good quantum error-correcting codes exist. Physical
Review A 54(2), 1098 (1996)

3. Couvreur, A., Delfosse, N., Zémor, G.: A construction of quantum LDPC codes
from Cayley graphs. IEEE Transactions on Information Theory 59(9), 6087–6098
(2013)

250 N. Delfosse, Z. Li, and S. Thomassé

4. Delfosse, N.: Tradeoffs for reliable quantum information storage in surface codes
and color codes. In: Proc. of IEEE International Symposium on Information The-
ory, ISIT 2013, pp. 917–921 (2013)

5. Delfosse, N., Zémor, G.: Upper bounds on the rate of low density stabilizer codes
for the quantum erasure channel. Quantum Information & Computation 13(9-10),
793–826 (2013)

6. Fetaya, E.: Bounding the distance of quantum surface codes. Journal of Mathe-
matical Physics 53, 062202 (2012)

7. Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of ge-
ometric expanders. Journal für die reine und angewandte Mathematik (Crelles
Journal) 2012(671), 49–83 (2012)

8. Freedman, M., Meyer, D., Luo, F.: Z2-systolic freedom and quantum codes. Math-
ematics of Quantum Computation, pp. 287–320. Chapman & Hall/CRC (2002)

9. Gallager, R.: Low Density Parity-Check Codes. Ph.D. thesis, Massachusetts Insti-
tute of Technology (1963)

10. Gottesman, D.: What is the overhead required for fault-tolerant quantum compu-
tation? arXiv preprint arXiv:1310.2984 (2013)

11. Guth, L., Lubotzky, A.: Quantum error-correcting codes and 4-dimensional arith-
metic hyperbolic manifolds. arXiv preprint arXiv:1310.5555 (2013)

12. Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics
303(1), 27 (2003)

13. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Com-
binatorica 26(4), 475–487 (2006)

14. MacKay, D., Mitchison, G., Shokrollahi, A.: More sparse-graph codes for quantum
error-correction (2007),
http://www.inference.phy.cam.ac.uk/mackay/cayley.pdf

15. MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quan-
tum error correction. IEEE Transaction on Information Theory 50(10), 2315–2330
(2004)

16. Matousek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points.
arXiv preprint arXiv:1102.3515 (2011)

17. Meshulam, R., Wallach, N.: Homological connectivity of random k-dimensional
complexes. Random Structures & Algorithms 34(3), 408–417 (2009)

18. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st
edn. Cambridge University Press (2000)

19. Steane, A.: Multiple-particle interference and quantum error correction. Proc. of
the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences 452(1996), 2551–2577 (1954)

20. Tillich, J.P., Zémor, G.: Quantum LDPC codes with positive rate and minimum
distance proportional to n1/2. In: Proc. of IEEE International Symposium on In-
formation Theory, ISIT 2009, pp. 799–803 (2009)

21. Zémor, G.: On cayley graphs, surface codes, and the limits of homological coding
for quantum error correction. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C.
(eds.) IWCC 2009. LNCS, vol. 5557, pp. 259–273. Springer, Heidelberg (2009)

http://www.inference.phy.cam.ac.uk/mackay/cayley.pdf

Minimum Bisection Is NP-hard

on Unit Disk Graphs

Josep Dı́az1 and George B. Mertzios2,�

1 Departament de Llenguatges i Sistemes Informátics,
Universitat Politécnica de Catalunya, Spain

2 School of Engineering and Computing Sciences, Durham University, UK
diaz@lsi.upc.edu, george.mertzios@durham.ac.uk

Abstract. In this paper we prove that the Min-Bisection problem is
NP-hard on unit disk graphs, thus solving a longstanding open question.

Keywords: Minimum bisection problem, unit disk graphs, planar
graphs, NP-hardness.

1 Introduction

The problem of appropriately partitioning the vertices of a given graph into
subsets, such that certain conditions are fulfilled, is a fundamental algorithmic
problem. Apart from their evident theoretical interest, graph partitioning prob-
lems have great practical relevance in a wide spectrum of applications, such as
in computer vision, image processing, and VLSI layout design, among others,
as they appear in many divide-and-conquer algorithms (for an overview see [2]).
In particular, the problem of partitioning a graph into equal sized components,
while minimizing the number of edges among the components turns out to be
very important in parallel computing. For instance, to parallelize applications
we usually need to evenly distribute the computational load to processors, while
minimizing the communication between processors.

Given a simple graph G = (V,E) and k ≥ 2, a balanced k-partition of G =

(V,E) is a partition of V into k vertex sets V1, V2, . . . , Vk such that |Vi| ≤
⌈
|V |
k

⌉
for every i = 1, 2, . . . , k. The cut size (or simply, the size) of a balanced k-
partition is the number of edges of G with one endpoint in a set Vi and the other
endpoint in a set Vj , where i = j. In particular, for k = 2, a balanced 2-partition
of G is also termed a bisection of G. The minimum bisection problem (or simply,
Min-Bisection) is the problem, given a graph G, to compute a bisection of G
with the minimum possible size, also known as the bisection width of G.

Due to the practical importance of Min-Bisection, several heuristics and
exact algorithms have been developed, which are quite efficient in practice [2],
from the first ones in the 70’s [16] up to the very efficient one described in [7].
However, from the theoretical viewpoint, Min-Bisection has been one of the

� Partially supported by the EPSRC Grant EP/K022660/1.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 251–262, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

252 J. Dı́az and G.B. Mertzios

most intriguing problems in algorithmic graph theory so far. This problem is
well known to be NP-hard for general graphs [11], while it remains NP-hard
when restricted to the class of everywhere dense graphs [18] (i.e. graphs with
minimum degree Ω(n)), to the class of bounded maximum degree graphs [18],
or to the class of d-regular graphs [5]. On the positive side, very recently it
has been proved that Min-Bisection is fixed parameter tractable [6], while
the currently best known approximation ratio is O(log n) [20]. Furthermore, it
is known that Min-Bisection can be solved in polynomial time on trees and
hypercubes [9, 18], on graphs with bounded treewidth [13], as well as on grid
graphs with a constant number of holes [10, 19].

In spite of this, the complexity status of Min-Bisection on planar graphs,
on grid graphs with an arbitrary number of holes, and on unit disk graphs have
remained longstanding open problems so far [8,10,14,15]. The first two of these
problems are equivalent, as there exists a polynomial time reduction from planar
graphs to grid graphs with holes [19]. Furthermore, there exists a polynomial time
reduction from planar graphs with maximum degree 4 to unit disk graphs [8].
Therefore, since grid graphs with holes are planar graphs of maximum degree 4,
there exists a polynomial reduction of Min-Bisection from planar graphs to
unit disk graphs. Another motivation for studying Min-Bisection on unit disk
graphs comes from the area of wireless communication networks [1, 3], as the
bisection width determines the communication bandwidth of the network [12].

Our Contribution. In this paper we resolve the complexity of Min-Bisection

on unit disk graphs. In particular, we prove that this problem is NP-hard by
providing a polynomial reduction from a variant of the maximum satisfiability
problem, namely from the monotone Max-XOR(3) problem (also known as the
monotone Max-2-XOR(3) problem). Consider a monotone XOR-boolean formula
φ with variables x1, x2, . . . , xn, i.e. a boolean formula that is the conjunction of
XOR-clauses of the form (xi ⊕ xk), where no variable is negated. If, in addi-
tion, every variable xi appears in exactly k XOR-clauses in φ, then φ is called
a monotone XOR(k) formula. The monotone Max-XOR(k) problem is, given a
monotone XOR(k) formula φ, to compute a truth assignment of the variables
x1, x2, . . . , xn that XOR-satisfies the largest possible number of clauses of φ. Re-
call here that the clause (xi⊕xk) is XOR-satisfied by a truth assignment τ if and
only if xi = xk in τ . Given a monotone XOR(k) formula φ, we construct a unit
disk graph Hφ such that the truth assignments that XOR-satisfy the maximum
number of clauses in φ correspond bijectively to the minimum bisections in Hφ,
thus proving that Min-Bisection is NP-hard on unit disk graphs.

Organization of the Paper. Necessary definitions and notation are given in
Section 2. In Section 3, given a monotone XOR(3)-formula φ with n variables, we
construct an auxiliary unit disk graph Gn, which depends only on the size n of φ
(and not on φ itself). In Section 4 we present our reduction from the monotone
Max-XOR(3) problem to Min-Bisection on unit disk graphs, by modifying
the graph Gn to a unit disk graph Hφ which also depends on the formula φ

Minimum Bisection Is NP-hard on Unit Disk Graphs 253

itself. Finally we discuss the presented results and remaining open problems in
Section 5.

2 Preliminaries and Notation

We consider in this article simple undirected graphs with no loops or multiple
edges. In an undirected graph G = (V,E), the edge between vertices u and v
is denoted by uv, and in this case u and v are said to be adjacent in G. For
every vertex u ∈ V the neighborhood of u is the set N(u) = {v ∈ V | uv ∈ E}
of its adjacent vertices and its closed neighborhood is N [u] = N(u) ∪ {u}. The
subgraph of G that is induced by the vertex subset S ⊆ V is denoted G[S].
Furthermore a vertex subset S ⊆ V induces a clique in G if uv ∈ E for every
pair u, v ∈ S.

A graph G = (V,E) with n vertices is the intersection graph of a family
F = {S1, . . . , Sn} of subsets of a set S if there exists a bijection μ : V → F such
that for any two distinct vertices u, v ∈ V , uv ∈ E if and only if μ(u)∩μ(v) = ∅.
Then, F is called an intersection model of G. A graph G is a disk graph if
G is the intersection graph of a set of disks (i.e. circles together with their
internal area) in the plane. A disk graph G is a unit disk graph if there exists
a disk intersection model for G where all disks have equal radius (without loss
of generality, all their radii are equal to 1). Given a disk (resp. unit disk) graph
G, an intersection model of G with disks (resp. unit disks) in the plane is called
a disk (resp. unit disk) representation of G. Alternatively, unit disk graphs can
be defined as the graphs that can be represented by a set of points on the plane
(where every point corresponds to a vertex) such that two vertices intersect if
and only if the corresponding points lie at a distance at most some fixed constant
c (for example c = 1). Although these two definitions of unit disk graphs are
equivalent, in this paper we use the representation with the unit disks instead
of the representation with the points.

Note that any unit disk representation R of a unit disk graph G = (V,E) can
be completely described by specifying the centers cv of the unit disks Dv, where
v ∈ V , while for any disk representation we also need to specify the radius rv
of every disk Dv, v ∈ V . Given a graph G, it is NP-hard to decide whether G
is a disk (resp. unit disk) graph [4, 17]. Given a unit disk representation R of
a unit disk graph G, in the remainder of the paper we may not distinguish for
simplicity between a vertex of G and the corresponding unit disk in R, whenever
it is clear from the context. It is well known that the Max-XOR problem is NP-
hard. Furthermore, it remains NP-hard even if the given formula φ is restricted
to be a monotone XOR(3) formula. For the sake of completeness we provide in
the next lemma a proof of this fact.

Lemma 1. Monotone Max-XOR(3) is NP-hard.

254 J. Dı́az and G.B. Mertzios

3 Construction of the Unit Disk Graph Gn

In this section we present the construction of the auxiliary unit disk graph Gn,
given a monotone XOR(3)-formula φ with n variables. Note that Gn depends
only on the size of the formula φ and not on φ itself. Using this auxiliary graph
Gn we will then construct in Section 4 the unit disk graph Hφ, which depends
also on φ itself, completing thus the NP-hardness reduction from monotone Max-
XOR(3) to the minimum bisection problem on unit disk graphs.

We define Gn by providing a unit disk representation Rn for it. For simplicity
of the presentation of this construction, we first define a set of halflines on the
plane, on which all centers of the disks are located in the representation Rn.

3.1 The Half-lines Containing the Disk Centers

Denote the variables of the formula φ by {x1, x2, . . . , xn}. Define for simplicity
the values d1 = 5.6 and d2 = 7.2. For every variable xi, where i ∈ {1, 2, . . . , n},
we define the following four points in the plane:

– pi,0 = (2i · d1, 2(i− 1) · d2) and pi,1 = ((2i − 1) · d1, (2i− 1) · d2), which are
called the bend points for variable xi, and

– qi,0 = ((2i− 1) · d1, 2(i− 1) · d2) and ri,0 = (2i · d1, 2i · d2), which is called
the auxiliary points for variable xi.

Then, starting from point pi,j , where i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, we draw
in the plane one halfline parallel to the x-axis pointing to the left and one halfline
parallel to the y-axis pointing upwards. The union of these two halflines on the
plane is called the track Ti,j of point pi,j . Note that, by definition of the points
pi,j , the tracks Ti,0 and Ti,1 do not have any common point, and that, whenever
i = k, the tracks Ti,j and Tk,� have exactly one common point. Furthermore note
that, for every i ∈ {1, 2, . . . , n}, both auxiliary points qi,0 and ri,0 belong to the
track Ti,0.

We will construct the unit disk representation Rn of the graph Gn in such
a way that the union of all tracks Ti,j will contain the centers of all disks in
Rn.The construction of Rn is done by repeatedly placing on the tracks Ti,j

multiple copies of three particular unit disk representations Q1(p), Q2(p), and
Q3(p) (each of them including 2n6+2 unit disks), which we use as gadgets in our
construction. Before we define these gadgets we need to define first the notion
of a (t, p)-crowd.

Definition 1. Let ε > 0 be infinitesimally small. Let t ≥ 1 and p = (xp, yp) be
a point in the plane. Then, the horizontal (t, p)-crowd (resp. the vertical (t, p)-
crowd) is a set of t unit disks whose centers are equally distributed between
the points (xp − ε, yp) and (xp + ε, yp) (resp. between the points (xp, yp − ε)
and (xp, yp + ε)).

Note that, by Definition 1, both the horizontal and the vertical (t, p)-crowds
represent a clique of t vertices. Furthermore note that both the horizontal and

Minimum Bisection Is NP-hard on Unit Disk Graphs 255

the vertical (1, p)-crowds consist of a single unit disk centered at point p. For
simplicity of the presentation, we will graphically depict in the following a (t, p)-
crowd just by a disk with a dashed contour centered at point p, and having
the number t written next to it. Furthermore, whenever the point p lies on the
horizontal (resp. vertical) halfline of a track Ti,j , then any (t, p)-crowd will be
meant to be a horizontal (resp. vertical) (t, p)-crowd.

3.2 Three Useful Gadgets

Let p = (px, py) be a point on a track Ti,j . Whenever p lies on the horizontal
halfline of Ti,j , we define for any δ > 0 (with a slight abuse of notation) the
points p− δ = (px − δ, py) and p+ δ = (px + δ, py). Similarly, whenever p lies on
the vertical halfline of Ti,j , we define for any δ > 0 the points p−δ = (px, py−δ)
and p+δ = (px, py +δ). Assume first that p lies on the horizontal halfline of Ti,j .
Then we define the unit disk representation Q1(p) as follows:

– Q1(p) consists of the horizontal (n3, p + 0.9)-crowd, the horizontal
(2n6 − 2n3 + 2, p + 2.8)-crowd, and the horizontal (n3, p + 4.7)-crowd, as it
is illustrated in Figure 1(a).

Assume now that p lies on the vertical halfline of Ti,j, we define the unit disk
representations Q2(p) and Q3(p) as follows:

– Q2(p) consists of a single unit disk centered at point p, the vertical
(n6, p + 1.8)-crowd, a single unit disk centered at point p + 3.6, and the
vertical (n6, p + 5.4)-crowd, as it is illustrated in Figure 1(b).

– Q3(p) consists of a single unit disk centered at point p, the vertical
(n6, p + 1.7)-crowd, a single unit disk centered at point p + 3.6, and the
vertical (n6, p + 5.4)-crowd, as it is illustrated in Figure 1(c).

In the above definition of the unit disk representation Qk(p), where k ∈
{1, 2, 3}, the point p is called the origin ofQk(p). Note that the origin p of the rep-
resentation Q2(p) (resp. Q3(p)) is a center of a unit disk in Q2(p) (resp. Q3(p)).
In contrast, the origin p of the representation Q1(p) is not a center of any unit
disk of Q1(p), however p lies in Q1(p) within the area of each of the n3 unit disks
of the horizontal (n3, p + 0.9)-crowd of Q1(p). For every point p, each of Q1(p),
Q2(p), and Q3(p) has in total 2n6 + 2 unit disks (cf. Figure 1).

Furthermore, for any i ∈ {1, 2, 3} and any two points p and p′ in the plane,
the unit disk representation Qi(p

′) is an isomorphic copy of the representation
Qi(p), which is placed at the origin p′ instead of the origin p. Moreover, for
any point p in the vertical halfline of a track Ti,j , the unit disk representations
Q2(p) and Q3(p) are almost identical: their only difference is that the vertical
(n6, p + 1.8)-crowd in Q2(p) is replaced by the vertical (n6, p + 1.7)-crowd in
Q3(p), i.e. this whole crowd is just moved downwards by 0.1 in Q3(p).

Observation 1. Let k ∈ {1, 2, 3} and p ∈ Ti,j, where i ∈ {1, 2, . . . , n} and
j ∈ {0, 1}. For every two adjacent vertices u, v in the unit disk graph defined by
Qk(p), u and v belong to a clique of size at least n6 + 1.

256 J. Dı́az and G.B. Mertzios

Q3(p) :

p

n3 n3

0.9 1.9 1.9

2n6 − 2n3 + 2
Q1(p) :

(a)

p

n6

1.8

n6

1.8

1.8

Q2(p) :

(b)

p

n6

1.8

n6

1.9

1.7

Q3(p) :

(c)

Fig. 1. The unit disk representations Q1(p), Q2(p), and Q3(p), where p is a point on
one of the tracks Ti,j , where 1 ≤ i ≤ n and j ∈ {0, 1}

3.3 The Unit Disk Representation Rn of Gn

We are now ready to iteratively construct the unit disk representation Rn of the
graph Gn, using the above gadgets Q1(p), Q2(p), and Q3(p), as follows:

(a) for every i ∈ {1, 2, . . . , n} and for every j ∈ {0, 1}, add to Rn:

• the gadget Q1(p), with its origin at the point p = (0, (2(i− 1) + j) · d2),

(b) for every i ∈ {1, 2, . . . , n}, add to Rn:

• the gadgets Q1(qi,0), Q2(ri,0), Q3(pi,0), and Q3(pi,1),
• the gadgets Q1(p) and Q1(p′), with their origin at the points
p = (−d1, (2i− 1) · d2) and p′ = (−2d1, (2i − 1) · d2) of the track Ti,1,
respectively,

(c) for every i, k ∈ {1, 2, . . . , n} and for every j, � ∈ {0, 1}, where i = k, add
to Rn:

• the gadgets Q1(p) and Q2(p), with their origin at the (unique) point p
that lies on the intersection of the tracks Ti,j and Tk,�.

This completes the construction of the unit disk representation Rn of the
graph Gn = (Vn, En), in which the centers of all unit disks lie on some track Ti,j ,
where i ∈ {1, 2, . . . , n} and j ∈ {0, 1}.

Definition 2. Let i ∈ {1, 2, . . . , n} and j ∈ {0, 1}. The vertex set Si,j ⊆ Vn
consists of all vertices of those copies of the gadgets Q1(p), Q2(p), and Q3(p),
whose origin p belongs to the track Ti,j.

Minimum Bisection Is NP-hard on Unit Disk Graphs 257

For every v ∈ Vn let cv be the center of its unit disk in the representation Rn.
Note that, by Definition 2, the unique vertex v ∈ Vn, for which cv ∈ Ti,j ∩ Tk,�,
where i < k (i.e. cv lies on the intersection of the vertical halfline of Ti,j with
the horizontal halfline of Tk,�), we have that v ∈ Si,j . Furthermore note that
{Si,j : 1 ≤ i ≤ n, j ∈ {0, 1}} is a partition of the vertex set Vn of Gn. In the next
lemma we show that this is also a balanced 2n-partition of Gn, i.e. |Si,j | = |Sk,�|
for every i, k ∈ {1, 2, . . . , n} and j, � ∈ {0, 1}.

Lemma 2. For every i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, we have that |Si,j | =
4(n + 1)(n6 + 1).

Consider the intersection point p of two tracks Ti,j and Tk,�, where i = k.
Assume without loss of generality that i < k, i.e. p belongs to the vertical halfline
of Ti,j and on the horizontal halfline of Tk,�, cf. Figure 2(a). Then p is the origin
of the gadget Q2(p) in the representation Rn (cf. part (c) of the construction
of Rn). Therefore p is the center of a unit disk in Rn, i.e. p = cv for some
v ∈ Si,j ⊆ Vn. All unit disks of Rn that intersect with the disk centered at point
p is shown in Figure 2(a). Furthermore, the induced subgraph Gn[{v} ∪ N(v)]
on the vertices of Gn, which correspond to these disks of Figure 2(a), is shown
in Figure 2(c). In Figure 2(c) we denote by Kn6 and Kn3 the cliques with n6

and with n3 vertices, respectively, and the thick edge connecting the two Kn3 ’s
depicts the fact that all vertices of the two Kn3 ’s are adjacent to each other.

Now consider a bend point pi,j of a variable xi, where j ∈ {0, 1}. Then pi,j is
the origin of the gadget Q3(pi,j) in the representation Rn (cf. the first bullet of
part (b) of the construction of Rn). Therefore pi,j is the center of a unit disk in
Rn, i.e. p = cv for some v ∈ Si,j ⊆ Vn. All unit disks of Rn that intersect with the
disk centered at point pi,j are shown in Figure 2(b). Furthermore, the induced
subgraph Gn[{v} ∪N(v)] of Gn that corresponds to the disks of Figure 2(b), is
shown in Figure 2(d). In both Figures 2(a) and 2(b), the area of the intersection
of two crowds (i.e. disks with dashed contour) is shaded gray for better visibility.

Lemma 3. Consider an arbitrary bisection B of Gn with size strictly less
than n6. Then for every set Si,j, i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices
of Si,j belong to the same color class of B.

4 Minimum Bisection on Unit Disk Graphs

In this section we provide our polynomial-time reduction from the monotone
Max-XOR(3) problem to the minimum bisection problem on unit disk graphs.
To this end, given a monotone XOR(3) formula φ with n variables and m = 3n

2
clauses, we appropriately modify the auxiliary unit disk graph Gn of Section 3
to obtain the unit disk graph Hφ. Then we prove that the truth assignments
that satisfy the maximum number of clauses in φ correspond bijectively to the
minimum bisections in Hφ.

We construct the unit disk graph Hφ = (Vφ, Eφ) from Gn = (Vn, En) as
follows. Let (xi ⊕ xk) be a clause of φ, where i < k. Let p0 (resp. p1) be the

258 J. Dı́az and G.B. Mertzios

n6

n6

n3n3

p = cv

0.9 0.9

1.8

1.8

Ti,j

Tk,�

(a)

pi,j = cv

0.9

n3

Ti,j

n6

1.7

Ti,j

(b)

p = cvKn6

Kn3Kn3

Kn6

(c)

pi,j = cv
Kn3

Kn6

(d)

Fig. 2. The disks in Rn (a) around the intersection point p = cv of two tracks Ti,j

and Tk,
, where i < k, and (b) around the bend point pi,j = cv of a variable xi, where
j ∈ {0, 1}. (c) The induced subgraph of Gn on the vertices of part (a), and (d) the
induced subgraph of Gn for part (b).

unique point in the unit disk representation Rn that lies on the intersection of
the tracks Ti,0 and Tk,1 (resp. on the intersection of the tracks Ti,1 and Tk,0). For
every point p ∈ {p0, p1}, where we denote p = (px, py), we modify the gadgets
Q1(p) and Q2(p) in the representation Rn as follows:

(a) replace the horizontal (n3, p + 0.9)-crowd of Q1(p) by the horizontal
(n3 − 1, p+ 0.9)-crowd and a single unit disk centered at (px+0.9, py+0.02),

(b) replace the vertical (n6, p + 1.8)-crowd of Q2(p) by the vertical
(n6 − 1, p+ 1.8)-crowd and a single unit disk centered at (px+0.02, py+1.8).

That is, for every point p ∈ {p0, p1}, we first move one (arbitrary) unit disk of
the horizontal (n3, p + 0.9)-crowd of Q1(p) upwards by 0.02, and then we move
one (arbitrary) unit disk of the vertical (n6, p + 1.8)-crowd of Q2(p) to the right
by 0.02. In the resulting unit disk representation these two unit disks intersect,
whereas they do not intersect in the representation Rn. Furthermore it is easy to
check that for any other pair of unit disks, these disks intersect in the resulting
representation if and only if they intersect in Rn.

Denote by Rφ the unit disk representation that is obtained from Rn by per-
forming the above modifications for all clauses of the formula φ. Then Hφ is
the unit disk graph induced by Rφ. Note that, by construction, the graphs Hφ

and Gn have exactly the same vertex set, i.e. Vφ = Vn, and that En ⊂ Eφ. In
particular, note that the sets Si,j (cf. Definition 2) induce the same subgraphs
in both Hφ and Gn, and thus the next corollary follows directly by Lemma 3.

Corollary 1. Consider an arbitrary bisection B of Hφ with size strictly less
than n6. Then for every set Si,j, i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices
of Si,j belong to the same color class of B.

Minimum Bisection Is NP-hard on Unit Disk Graphs 259

Theorem 1. There exists a truth assignment τ of the formula φ that satisfies
at least k clauses if and only if the unit disk graph Hφ has a bisection with value
at most 2n4(n− 1) + 3n− 2k.

Proof (sketch). The (⇒) part of the proof is omitted due to lack of space.
(⇐) Assume that Hφ has a minimum bisection B with value at most 2n4(n−

1) + 3n − 2k. Denote the two color classes of B by blue and red, respectively.
Since the size of B is strictly less than n6, Corollary 1 implies that for every
i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices of the set Si,j belong to the same
color class of B. Therefore, all cut edges of B have one endpoint in a set Si,j and
the other endpoint in a set Sk,�, where (i, j) = (k, �). Furthermore, since B is a
bisection of Hφ, Lemma 2 implies that exactly n of the sets {Si,j : 1 ≤ i ≤ n, j ∈
{0, 1}} are colored blue and the other n ones are colored red in B.

First we will prove that, for every i ∈ {1, 2, . . . , n}, the sets Si,0 and Si,1

belong to different color classes in B. To this end, let t ≥ 0 be the number of
variables xi, 1 ≤ i ≤ n, for which both sets Si,0 and Si,1 are colored blue (such
variables xi are called blue). Then, since B is a bisection of Hφ, there must be
also t variables xi, 1 ≤ i ≤ n, for which both sets Si,0 and Si,1 are colored red
(such variables xi are called red), whereas n − 2t variables xi, for which one
of the sets {Si,0, Si,1} is colored blue and the other one red (such variables xi
are called balanced). Using the minimality of the bisection B, we will prove that
t = 0.

Every cut edge of B occurs at the intersection of the tracks of two variables
xi, xk, where either both xi, xk are balanced variables, or one of them is a bal-
anced and the other one is a blue or red variable, or one of them is a blue and the
other one is a red variable. Furthermore recall by the construction of the graph
Hφ from the graph Gn that every clause (xi ⊕ xk) of the formula φ corresponds
to an intersection of the tracks of the variables xi and xk. Among the m clauses
of φ, let m1 of them correspond to intersections of tracks of two balanced vari-
ables, m2 of them correspond to intersections of tracks of a balanced variable
and a blue or red variable, and m3 of them correspond to intersections of tracks
of a blue variable and a red variable. Note that m1 + m2 + m3 ≤ m.

Let 1 ≤ i < k ≤ n. In the following we distinguish the three cases of the
variables xi, xk that can cause a cut edge in the bisection B.

– xi and xk are both balanced variables: in total there are (n−2t)(n−2t−1)
2

such pairs of variables, where exactly m1 of them correspond to a clause
(xi⊕xk) of the formula φ. It is easy to check that, for every such pair xi, xk
that does not correspond to a clause of φ, the intersection of the tracks
of xi and xk contributes exactly 2n3 + 2n3 = 4n3 edges to the value of
B. Furthermore, for each of the m1 other pairs xi, xk that correspond to a
clause of φ, the intersection of the tracks of xi and xk contributes either 4n3

or 4n3 + 2 edges to the value of B. In particular, if the vertices of the sets
Si,0 and Sk,1 have the same color in B then the pair xi, xk contributes 4n3

edges to the value of B, otherwise it contributes 4n3 + 2 edges. Among these
m1 clauses, let m∗

1 of them contribute 4n3 edges each and the remaining
m1 −m∗

1 of them contribute 4n3 + 2 edges each.

260 J. Dı́az and G.B. Mertzios

– one of xi, xk is a balanced variable and the other one is a blue or
red variable: in total there are (n − 2t)2t such pairs of variables, where
exactly m2 of them correspond to a clause (xi ⊕ xk) of the formula φ. It is
easy to check that, for every such pair xi, xk that does not correspond to a
clause of φ, the intersection of the tracks of xi and xk contributes exactly
2n3 + 2n3 = 4n3 edges to the value of B. Furthermore, for each of the m2

other pairs xi, xk that correspond to a clause of φ, the intersection of the
tracks of xi and xk contributes 4n3 + 1 edges to the value of B.

– one of xi, xk is a blue variable and the other one is a red variable:
in total there are t2 such pairs of variables, where exactly m3 of them corre-
spond to a clause (xi⊕xk) of the formula φ. It is easy to check that, for every
such pair xi, xk that does not correspond to a clause of φ, the intersection of
the tracks of xi and xk contributes exactly 4 · 2n3 = 8n3 edges to the value
of B. Furthermore, for each of the m3 other pairs xi, xk that correspond to
a clause of φ, the intersection of the tracks of xi and xk contributes 8n3 + 2
edges to the value of B.

Therefore, the value of B can be computed (the exact details are omitted due
to lack of space) as 2n4 (n− 1) + 4n3t + 2(m1 − m∗

1) + m2 + 2m3. Note now
that 0 ≤ 2(m1 −m∗

1) + m2 + 2m3 ≤ 2m = 3n < 4n3. Therefore, since the value
of the bisection B is minimum by assumption, it follows that t = 0. Thus for
every i ∈ {1, 2, . . . , n} the variable xi of φ is balanced in the bisection B, i.e. the
sets Si,0 and Si,1 belong to different color classes in B. That is, m1 = m and
m2 = m3 = 0, and thus the value of B is equal to 2n4 (n− 1) + 2(m − m∗

1).
On the other hand, since the value of B is at most 2n4(n − 1) + 3n − 2k by
assumption, it follows that 2(m −m∗

1) ≤ 3n − 2k. Therefore, since m = 3n
2 , it

follows that m∗
1 ≥ k.

We define now from B the truth assignment τ of φ as follows. For every
i ∈ {1, 2, . . . , n}, if the vertices of the set Si,0 are blue and the vertices of the set
Si,1 are red in B, then we set xi = 0 in τ . Otherwise, if the vertices of the set
Si,0 are red and the vertices of the set Si,1 are blue in B, then we set xi = 1 in
τ . Recall that m∗

1 is the number of clauses of φ that contribute 4n3 edges each
to the value of B, while the remaining m −m∗

1 clauses of φ contribute 4n3 + 2
edges each to the value of B. Thus, by the construction of Hφ from Gn, for every
clause (xi ⊕ xk) of φ that contributes 4n3 (resp. 4n3 + 2) to the value of B, the
vertices of the sets Si,0 and Sk,1 have the same color (resp. Si,0 and Sk,1 have
different colors) in B. Therefore, by definition of the truth assignment τ , there
are exactly m∗

1 clauses (xi ⊕ xk) of φ where xi = xk in τ , and there are exactly
m −m∗

1 clauses (xi ⊕ xk) of φ where xi = xk in τ . That is, τ satisfies exactly
m∗

1 ≥ k of the m clauses of φ. This completes the proof of the theorem. ��

We can now state our main result, which follows by Theorem 1 and Lemma 1.

Theorem 2. Min-Bisection is NP-hard on unit disk graphs.

Minimum Bisection Is NP-hard on Unit Disk Graphs 261

5 Concluding Remarks

In this paper we proved that Min-Bisection is NP-hard on unit disk graphs by
providing a polynomial time reduction from the monotone Max-XOR(3) prob-
lem, thus solving a longstanding open question. As pointed out in the Intro-
duction, our results indicate that Min-Bisection is probably also NP-hard on
planar graphs, or equivalently on grid graphs with an arbitrary number of holes,
which remains yet to be proved.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38, 393–422 (2002)

2. Bichot, C.-E., Siarry, P. (eds.): Graph Partitioning. Wiley (2011)
3. Bradonjic, M., Elsässer, R., Friedrich, T., Sauerwald, T., Stauffer, A.: Efficient

broadcast on random geometric graphs. In: Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1412–1421 (2010)

4. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computa-
tional Geometry 9(1-2), 3–24 (1998)

5. Bui, T., Chaudhuri, S., Leighton, T., Sipser, M.: Graph bisection algorithms with
good average case behavior. Combinatorica 7, 171–191 (1987)

6. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum
bisection is fixed parameter tractable. In: Proceedings of the 46th Annual Sympo-
sium on the Theory of Computing, STOC (to appear, 2014)

7. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Exact combinatorial
branch-and-bound for graph bisection. In: Proceedings of the 14th Meeting on
Algorithm Engineering & Experiments (ALENEX), pp. 30–44 (2012)

8. Dı́az, J., Penrose, M.D., Petit, J., Serna, M.J.: Approximating layout problems on
random geometric graphs. Journal of Algorithms 39(1), 78–116 (2001)

9. Dı́az, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing
Surveys 34, 313–356 (2002)

10. Feldmann, A.E., Widmayer, P.: An O(n4) time algorithm to compute the bisection
width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011)

11. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman & Co. (1979)

12. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks - Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. In: Texts in Theoretical Computer Science. An EATCS
Series, Springer, Heidelberg (2005)

13. Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approxima-
tion schemes for Max-Bisection on planar and geometric graphs. SIAM Journal on
Computing 35(1), 110–119 (2005)

14. Kahruman-Anderoglu, S.: Optimization in geometric graphs: Complexity and ap-
proximation. PhD thesis, Texas A & M University (2009)

15. Karpinski, M.: Approximability of the minimum bisection problem: An algorithmic
challenge. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 59–67.
Springer, Heidelberg (2002)

262 J. Dı́az and G.B. Mertzios

16. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal 49(2), 291–307 (1970)

17. Kratochv́ıl, J.: Intersection graphs of noncrossing arc-connected sets in the plane.
In: Proceedings of the 4th Int. Symp. on Graph Drawing (GD), pp. 257–270 (1996)

18. MacGregor, R.: On partitioning a graph: A theoretical and empirical study. PhD
thesis, University of California, Berkeley (1978)

19. Papadimitriou, C.H., Sideri, M.: The bisection width of grid graphs. Mathematical
Systems Theory 29(2), 97–110 (1996)

20. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in
networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC), pp. 255–264 (2008)

Query-Competitive Algorithms for Cheapest Set

Problems under Uncertainty

Thomas Erlebach1, Michael Hoffmann1, and Frank Kammer2

1 Department of Computer Science, University of Leicester, England
{te17,mh55}@mcs.le.ac.uk

2 Institut für Informatik, Universität Augsburg, Germany
kammer@informatik.uni-augsburg.de

Abstract. Considering the model of computing under uncertainty where
element weights are uncertain but can be obtained at a cost by query
operations, we study the problem of identifying a cheapest (minimum-
weight) set among a given collection of feasible sets using a minimum
number of queries of element weights. For the general case we present
an algorithm that makes at most d · OPT + d queries, where d is the
maximum cardinality of any given set and OPT is the optimal number
of queries needed to identify a cheapest set. For the minimum multi-cut
problem in trees with d terminal pairs, we give an algorithm that makes
at most d ·OPT +1 queries. For the problem of computing a minimum-
weight base of a given matroid, we give an algorithm that makes at most
2 ·OPT queries, generalizing a known result for the minimum spanning
tree problem. For each of our algorithms we give matching lower bounds.

1 Introduction

Motivated by applications where exact input data is not always easily available,
we consider cheapest set problems under uncertainty: We are given a set E of
elements, and a collection S of feasible subsets of E, where S may be specified
explicitly or implicitly. Each element e ∈ E has an exact weight (or cost) we, but
initially only an uncertainty area Ae, which is a set that contains we, is known.
We assume that each uncertainty area Ae is either trivial (i.e., a singleton set
containing only we) or an open set with finite lower limit Le and finite upper
limit Ue (for example, an open interval (Le, Ue)). The task is to find a cheapest
set in S, i.e., a set S ∈ S such that

∑
e∈S we is minimized. It may not be possible

to identify a cheapest set based on just the given uncertainty areas. We assume
that it is possible to obtain the exact weight we of an element e ∈ E using a
query operation, but we wish to minimize the number of queries needed.

An algorithm solving the cheapest set problem under uncertainty may make
more queries than absolutely necessary. To assess the quality of an algorithm, we
use competitive analysis, i.e., for the given instance of the cheapest set problem
we compare the number of queries the algorithm makes with the best possible
number of queries, which we denote by OPT . An algorithm for a problem under
uncertainty that is measured competitively with respect to the number of queries
is also called a query-competitive algorithm. We restrict the uncertainty areas to

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 263–274, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

264 T. Erlebach, M. Hoffmann, and F. Kammer

be open sets or singleton sets because it is easy to see (as shown in [5] for the
minimum spanning tree problem) that there are no query-competitive algorithms
with non-trivial competitive ratio for the uncertainty problems that we consider
if closed intervals are allowed as uncertainty areas.

We consider the cheapest set problem under uncertainty both in the general
case, where the feasible sets can be arbitrary and are specified explicitly as part
of the input, and in special cases that arise when the feasible sets have a certain
structure. In the multi-cut problem for trees, the feasible sets are the sets of edges
that separate the given terminal pairs. In the minimum matroid base problem,
the feasible sets are the bases of a matroid. The minimum spanning tree problem
is a special case of the minimum matroid base problem where the independent
sets of the matroid are the spanning forests of the given graph.

Motivation for studying the cheapest set problem under uncertainty can be
found in numerous application areas. Many optimization problems can be viewed
as the problem of selecting a minimum-weight set among all feasible sets. Espe-
cially in distributed networks or mobile computing, it is often the case that the
exact weight of an element is known only approximately (e.g., an estimate for
the cost of a remote service or congestion of a remote link), but it may be possi-
ble to obtain the exact weight at an extra cost (e.g., a negotiation with a service
provider, or a query message and response exchanged over the network). If the
cost for obtaining the exact weight of an input element by a query is not neg-
ligible, the objective of minimizing the number of queries needed to solve the
problem becomes natural. For example, consider the problem of installing mon-
itoring equipment on links of a tree network so as to monitor all traffic between
d given terminal pairs. The cost of the installation on a specific link depends on
the total traffic on that link (generated by the terminal pairs and by background
traffic), as all packets traversing the link need to be processed. The exact cost of
a link can be determined by conducting traffic measurements, but this may be
costly. The problem of identifying a set of edges of minimum total cost for solving
the monitoring problem, while making a minimum number of traffic measure-
ments on different links, is the multi-cut problem in trees under uncertainty.

Our Results. For the cheapest set problem under uncertainty, we give an algo-
rithm that makes at most d·OPT +d queries, where d is the maximum cardinal-
ity of a feasible set in the given instance. We also give a matching lower bound,
showing that the algorithm is best possible among deterministic algorithms. For
the minimum multi-cut problem for d terminal pairs in trees under uncertainty,
we give an algorithm that makes at most d · OPT + 1 queries, and we prove
a matching lower bound. For the minimum matroid base problem under uncer-
tainty, we give an algorithm that makes at most 2 · OPT queries, generalizing
a known 2-competitive algorithm U-RED for minimum spanning trees under
uncertainty [5]. We remark that the generalisation is not straightforward since
in [5] properties of connected components are considered while the matroid set-
ting requires set oriented proofs. The known lower bound for minimum spanning
trees under uncertainty [5] implies that our algorithm for minimum matroid base
is best possible. Some proofs from Sections 4 to 6 are omitted.

Query-Competitive Algorithms 265

Related Work. The first study of query-competitive algorithms for problems
under uncertainty that we are aware of is the work by Kahan [9], who gives
query-competitive algorithms with optimal competitive ratio for the problems of
computing the maximum, the median and the minimum gap of n real values that
are constrained to fall into given real intervals. Bruce et al. [2] consider geometric
problems where input points are not known exactly but lie in given uncertainty
areas. They propose the concept of witness set algorithms that, in each step,
query a set S of elements with the property that any query solution must query
at least one element of S. Sets with this property are called witness sets. The
competitive ratio of a witness set algorithm is bounded by the maximum size
of a witness set. Bruce et al. present 3-competitive algorithms for computing
maximal points or the points on the convex hull of a given set of uncertain points
in two-dimensional space [2]. Erlebach et al. [5] give a 2-competitive algorithm
for computing minimum spanning trees in graphs with uncertain edge weights
and show that this is optimal for deterministic algorithms.

Feder et al. study the problem of minimizing the total cost of queries for
the problem of computing an approximation of the value of the median of n
uncertain values [7] or of the length of a shortest path in a graph with uncertain
edge weights [6]. They also consider algorithms that must specify the whole set of
queries in advance, rather than querying uncertain elements one by one as in our
model. Other related work exploring trade-offs between query cost and solution
accuracy includes [13] and [10]. Another line of work considers the problem of
computing, for an input with uncertain elements, the minimum and maximum
possible cost of an optimal solution, over all possible precise values of the input
[12,4]. In these problems, there is no concept of queries. There are also numerous
other models of optimization under uncertainty, e.g., min-max regret versions of
standard optimization problems [1].

For the standard version of the multi-cut problem in trees, Garg et al. [8]
show that the problem is NP-hard and MAX SNP-hard and admits a 2-approx-
imation (with respect to the cost of the multi-cut). The standard version of the
minimum matroid base problem can be solved by a greedy algorithm, see e.g. [3].
We conclude in Section 7.

2 Preliminaries

Based on the terminology of Section 1 we now formally define the cheapest
set problem under uncertainty (CSU). An instance of the CSU problem is rep-
resented by a quadruple (E,S, w,A) where E is the finite set of elements,
S ⊆ P(E) is a family of subsets of E, w is a real-valued weight function that
maps each element e ∈ E to its precise weight w(e), and A is a function that
maps each element e ∈ E to its uncertainty area A(e). From here on, we write
we and Ae for w(e) and A(e), respectively. Note that for the CSU problem we
allow we to be smaller than 0. The goal of the CSU problem is to find a cheapest
set S, i.e., a set S ∈ S such that

∑
e∈S we ≤

∑
e∈S′ we for all S′ ∈ S, using a

minimum number of queries. Let w′ be a function that maps elements to weights

266 T. Erlebach, M. Hoffmann, and F. Kammer

and let A′ be a function that maps elements to uncertainty areas. We say that
w′ is consistent with A′ if w′

e ∈ A′
e for all e ∈ E. Note that in any instance

(E,S, w,A) of the CSU problem w is consistent with A by definition. For e ∈ E,
we refer to all elements of Ae as potential weights of e. An instance (E,S, w,A)
is solved if there exists a set S ∈ S such that for every weight function w′ that is
consistent with A, S is a cheapest set in the instance (E,S, w′,A). If an instance
is solved and S satisfies the condition stated in the previous sentence, we also
say that S can be identified as cheapest set. An instance that is not solved is
also called unsolved. A query of an element e changes an instance (E,S, w,A) to
(E,S, w,A′) where A′ is the same as A apart from Ae being set to {we}.

We say that an element whose area of uncertainty is trivial (i.e., a singleton
set) is a certain element while an element whose area of uncertainty is non-trivial
is an uncertain element. For X ⊆ E, we denote by XU the set of its uncertain
elements and by XC the set of its certain elements.

For every instance (E,S, w,A), a query solution is a set of elements that
when queried results in a solved instance. A query solution of minimum car-
dinality is called an optimal query solution, and the size of an optimal query
solution is denoted by OPT . Throughout this paper, we consider only instances
where each area of uncertainty is trivial or a (bounded) open set. For an ele-
ment e ∈ E, we write Le for the lower limit and Ue for the upper limit of the
uncertainty area of e. If e has a trivial uncertainty area, then Le = Ue = we.
For any set T ⊆ E, we let Tmin =

∑
e∈T Le. Note that Tmin is a lower bound

on the exact weight of the set T . Tmax is defined analogously via Ue instead of
Le. Furthermore, we sometimes write Tw for

∑
e∈T we. We say that T ∈ S lies

within the uncertainty bounds of S ∈ S if for any potential weights of the ele-
ments in T there exist potential weights of the elements in S \ T such that S is
cheaper than T and (other) potential weights of the elements in S \ T such that
T is cheaper than S. Note explicitly that the definition implies T = S.

For an instance (E,S, w,A) the input of an algorithm is (E,S, A). The aim is
to make queries until the resulting instance is solved. The quality of an algorithm
is measured by the number of queries it makes compared to OPT of the initial
instance. As introduced in [2], for a given instance a set of elements is a witness
set if the instance cannot be solved without querying at least one element of the
set. Let I ′ be an instance that has resulted from querying some elements in an
instance I. Then a witness set of I ′ is also a witness set of I. Hence, we have the
following observation, which can be shown using similar arguments as in [2]:

Observation 1. If an instance I is solved by an algorithm that queries all ele-
ments of all sets U1, U2, . . . , Ul where Ui is a witness set of the instance resulting
from I after querying U1, . . . Ui−1, then the value OPT for the instance I is at
least l. If only k of the l sets Ui are witness sets, then the value OPT for the
instance I is at least k.

Definition 2. For an instance I = (E,S, w,A), a set S ∈ S is called a Robust
Potential Cheapest (RPC) set, if for any potential weights of elements in E\S,

Query-Competitive Algorithms 267

there exist potential weights for the elements in S such that S is a cheapest set
among all sets in S.

We also refer to an RPC set of an instance (E,S, w,A) as an RPC set in S
if the instance is clear from the context. The following observation is a direct
consequence of the definition. The next lemma is needed to prove Lemma 5.

Observation 3. Let S be an RPC set of an instance I. Then we have that
Smin = min{Xmin | X ∈ S}. Further, if S contains only certain elements, I is
solved and S is a cheapest set for the instance I.

Lemma 4. A set S is an RPC set if, for all X ∈ S\{S}, either 1. or 2. holds:
1. Smin < Xmin, or
2. Smin = Xmin and XU ⊂ SU , i.e., XU is not a proper subset of SU .

Proof. Let w′ denote an arbitrary choice of potential values for E \ S.
Consider any X ∈ S for which Condition 1 holds. As the potential values

for S can be chosen arbitrarily close to their lower limits (since the uncertainty
areas are open sets), there exist potential values wX

e for e ∈ S such that S is not
more expensive than Xmin and thus not more expensive than Xw′ .

Consider any X ∈ S for which Condition 2 holds. If XU = SU , the weights of
X and S are equal (and hence S is not more expensive than X) for all potential
values for e ∈ S. Therefore, assume that XU = SU . As XU is not a proper
subset of SU , there must exist an element e∗ in XU \ SU = (X \ S)U . Let
S′ = S \ X and X ′ = X \ S. Note that e∗ ∈ (X ′)U . By Condition 2, we also
have S′

min + (S ∩ X)min = Smin = Xmin = X ′
min + (S ∩ X)min, and hence

S′
min = X ′

min. As w′
e∗ > Le∗ and e∗ ∈ X ′, we can choose values wX

e for the
elements e ∈ S′ such that S′

wX < X ′
w′ . For any choice of values wX

e for the
elements of S ∩X , we then have SwX < Xw′ .

Combining the arguments from the two previous paragraphs, we have that for
each set X ∈ S\{S}, there exist values wX

e for e ∈ S such that S is not more
expensive than X . If we now choose w∗

e = minX∈S\{S}wX
e , the weights w∗

e for
e ∈ S are such that S is not more expensive than any of the sets in S \ {S}. As
the choice of w′ was arbitrary, we have shown that S is an RPC set. ��

Lemma 5. Every instance of the CSU problem has at least one RPC set.

Proof. We find an RPC set as follows: Initially, we choose any S such that
Smin ≤ Xmin for all X ∈ S. As long as there exists a set X ∈ S \ {S} with
Xmin = Smin and XU ⊂ SU , set S := X . This process must terminate as |SU |
decreases in each step. In the end, S will be an RPC set by Lemma 4. ��

Lemma 6. An instance is solved if and only if all cheapest sets are identified.
Moreover, in such an instance, Smin = Xmin and SU = XU for any two cheapest
sets S and X.

Proof. As the instance is solved, there is at least one set S that can be identified
as a cheapest set. Let X be another cheapest set. Assume that S contains an

268 T. Erlebach, M. Hoffmann, and F. Kammer

uncertain element e that is not in X . As all non-trivial areas of uncertainty are
open, there is a potential value for e that is higher than we. So Sw has the
potential to increase while Xw remains the same, and potentially Xw < Sw. A
contradiction to Sw being identified as a cheapest set.

Similarly, assume that X contains an uncertain element e that is not in S.
As all non-trivial areas of uncertainty are open there is a potential value for e
that is lower than we. So Xw has the potential to decrease while Sw remains the
same, and potentially Xw < Sw. A contradiction.

Consequently, XU = SU . Since Sw = Xw, the sum of all certain elements in
S and in X must also be the same, and Smin = Xmin. Hence, if S is identified
as a cheapest set, then also X must be identified as a cheapest set. ��

Lemma 7. Let I = (E,S, w,A) be an instance of the CSU problem. If S is an
RPC set but not a witness set of I, then S is a cheapest set and XU = SU for
each cheapest set X of I.

Proof. Let I ′ be the instance obtained after querying E \ S in I. As S is not a
witness set, the instance I ′ must be solved. Since S was an RPC set in I and no
element of S was queried, S is also an RPC set in I ′ and hence S is potentially
a cheapest set in I ′. As I ′ is solved, by Lemma 6 we have that S must be
identified either as being a cheapest set or as not being a cheapest set in I ′. As
S is potentially a cheapest set in I ′, it can only be the case that S is identified
as a cheapest set in I ′. Hence, S is a cheapest set of I.

Let X be another cheapest set in I, and therefore also in I ′. As I ′ is solved,
Lemma 6 implies that Xmin = Smin and XU = SU in I ′. Assume that an element
of X was queried by the query of E \ S. Then Xmin in I must be smaller than
Xmin in I ′ as all non-trivial areas of uncertainty are open. Hence, we must have
Xmin < Smin in I. This contradicts S being an RPC set in I. So no element of
X was queried by E \ S, and we have that XU = SU also in I. ��

3 Cheapest Set

We denote the maximum number of elements in any set of S by d. Let us define
algorithm SIMPLE for the CSU problem as an algorithm that, while the instance
is not solved, queries all elements of an RPC set. First, we need the next lemma.

Lemma 8. Let S ∈ S be an RPC set in S and let T ∈ S be such that T lies
within the uncertainty bounds of S. Then S is a witness set.

Proof. Assume that S is not a witness set. Then S is a cheapest set by Lemma 7,
and E \ S is a query solution. Let I ′ be the instance after querying E \ S. As
no element of S has been queried, T still lies within the uncertainty bounds of
S. Hence T is still potentially cheaper than S and S cannot be identified in I ′

as a cheapest set. So by Lemma 6, I ′ cannot be a solved instance. This is a
contradiction to E \ S being a query solution. So, S must be a witness set. ��

Theorem 9. Algorithm SIMPLE makes at most d ·OPT + d queries.

Query-Competitive Algorithms 269

Proof. Let t be the number of sets queried by the algorithm. For 1 ≤ i ≤ t, let
Si be the set queried by the algorithm in the ith iteration of the while-loop. We
claim that there is at most one i ∈ {1, . . . , t} such that Si is not a witness set
in iteration i. Choose i as small as possible such that Si is not a witness set in
iteration i. (If no such i exists, all t sets are witness sets, and the claim holds.)
By Lemma 7, Si is a cheapest set in iteration i. Assume for contradiction that
there exists j > i such that Sj is not a witness set. Again by Lemma 7, Sj is also
a cheapest set and SU

i = SU
j before iteration i. As SU

i was queried at iteration i,
at iteration j the set Sj does not contain uncertain elements. By Observation 3,
the instance is solved before iteration j. A contradiction.

The algorithm queries t sets of which at least t − 1 are witness sets. Hence,
OPT ≥ t− 1 and the algorithm makes at most dt ≤ d ·OPT + d queries. ��

In the following, we want to reduce the number of queries for variants of
the CSU problem that satisfy a special property. The next lemma allows us to
determine a witness set for any unsolved instance of the CSU problem.

Lemma 10. Let S, T ∈ S such that S is an RPC set in S and T is potentially
cheaper than S. Then S ∪ T is a witness set.

Proof. Assume that S ∪ T is not a witness set. Then it is possible to solve the
instance without querying any element of S∪T . As S ⊆ S∪T , S is not a witness
set either. By Lemma 7, S is a cheapest set. If we do not query any element of
S ∪T , T is potentially cheaper than S, and S cannot be identified as a cheapest
set. So there is at least one cheapest set that cannot be identified. By Lemma 6,
we cannot solve the instance, a contradiction. ��

We say that a variant (special case) of the CSU problem has the 1-gap property
if, for every unsolved instance (E,S, w,A) of that problem, there exist S, T ∈ S
such that (1) S is an RPC set in S, (2) T is potentially cheaper than S, and
(3) |S ∪ T | ≤ d+ 1. We now show that the following algorithm U-SET for 1-gap
CSU problems makes at most d ·OPT + 1 queries.

Algorithm 1. Algorithm U-SET for 1-gap CSU problems

1. while instance is not yet solved do
2. if there exist S, T ∈ S such that S is an RPC set

and T lies within the uncertainty bounds of S then query S
3. else query all uncertain elements of S ∪ T where S is an RPC set

and T is a potentially cheaper set than S such that |S ∪ T | ≤ d + 1

Lemma 11. When Step 3 in algorithm U-SET is executed any time except the
first time, the set S must contain a certain element.

Proof. The first situation that we consider is when Step 3 is executed for the
first time. Let us call the RPC set X and the set that is potentially cheaper
Y . The second situation we consider is when Step 3 is executed another time
(second, third, and so on). This is after the first, so X ∪Y has been queried and

270 T. Erlebach, M. Hoffmann, and F. Kammer

the algorithm now takes an RPC set S. Let us assume that S consists only of
uncertain elements. Then X and S must be disjoint. All elements of S had in
the first situation the same uncertainty information as in the second situation,
and S did not lie within the uncertainty bounds of X in the first situation. As
X and S are disjoint and X was an RPC set, X could have been potentially
cheaper than S for any weights of the elements of S in the first situation. So as S
did not lie within the uncertainty bounds of X , there must exist some potential
weight for the elements in S such that S cannot be cheaper than X . Since X
and S are disjoint, for any potential weight of elements in X , the set S can be
more expensive than X . In the second situation X ∪Y has been queried and the
weight of X is known precisely. So even for the queried set X , S can still be more
expensive than X . Since S is an RPC set, S can also be cheaper than X . Thus,
the queried set X lies with in the uncertainty bounds of S. Thus, in the second
situation, the algorithm would execute Step 2 and not Step 3. A contradiction.
Hence, our assumption that S does not contain any certain elements is false. ��

Theorem 12. For any uncertainty set problem with the 1-gap property, there
exists an algorithm that makes at most d ·OPT + 1 queries.

Proof. By Lemmas 8 and 10, all sets of queries performed by the algorithm are
witness sets. By Lemma 11, the algorithm requests a set of queries of size d+1 at
most once, and all other query sets are of size at most d. Hence, by Observation
1, the algorithm makes at most d · (OPT − 1) + d+ 1 queries. ��

4 Minimum Multicut in Trees

We now consider the minimum multicut problem in trees under uncertainty
(MMCTU). An instance of it is given by a tuple (E, (G,D), w,A), where G is an
undirected tree with edge set E, D is a set of d terminal pairs that need to be
cut, w maps each edge e ∈ E to its actual weight we > 0, and A maps each e ∈ E
to its uncertainty area Ae. The family S of feasible sets is not given explicitly,
but is determined by G and D: A set S ⊆ E is feasible if removing the edges
in S from the tree G separates all terminal pairs in D. In other words, S is the
family of all possible multicuts for the given terminal pairs. Multicuts containing
more than d edges can be ignored because they must contain redundant edges,
so we only need to consider multicuts consisting of at most d edges.

Let S be a potential minimum multicut. Then each element in S cuts at least
one terminal pair that is not cut by any other element of S. By considering the
elements of S = {s1, . . . , s|S|} one by one, a partition P = {P1, P2, . . . , P|S|} of
D is formed, where Pi is the set of terminal pairs that are cut by si and not
by any s1, . . . , si−1. We say P is a partition induced by S. We also say that the
element si ∈ S leads to the element Pi ∈ P .

Lemma 13. Let P and Q be two partitions of a finite set K. If, for all proper
subsets P ′ of P and Q′ of Q,

⋃
X∈P ′ X =

⋃
X∈Q′ X, then |P |+ |Q| ≤ |K|+ 1.

Lemma 14. The MMCTU problem has the 1-gap property.

Query-Competitive Algorithms 271

Proof. Let I = (E, (G,D), w,A) be an unsolved instance of the MMCTU prob-
lem. Let S be an RPC set of I. Let FS be the family of multicuts that are
potentially cheaper than S. Let T ∈ FS be such that |T \S| ≤ |T ′\S| for all
T ′ ∈ FS . Let D′ be the set of pairs that are not cut by S ∩ T . So, let P be a
partition of D′ induced by S\T and let Q be a partition of D′ induced by T \S.

Assume that there exist proper subsets P ′ of P and Q′ of Q with
⋃

X∈P ′ X =⋃
X∈Q′ X . Let S′ be the set of elements in S that lead to elements in P ′ and

similarly T ′ be the set of elements in T that lead to elements in Q′. Note that the
pairs of D\D′ are cut by S\S′ as well as by T \T ′. So the sets Mix = S′∪ (T \T ′)
and Mix ′ = T ′ ∪ (S\S′) are also cuts of all pairs in D. Since

S′
min + (S\S′)min = Smin

S is an RPC set
≤ Mix ′

min = T ′
min + (S\S′)min,

we have S′
min ≤ T ′

min. We now consider two cases.

Case 1. If S′
max ≤ T ′

min, then Mix is always cheaper than T . As T was poten-
tially cheaper than S, Mix also must be potentially cheaper than S. Moreover,
|Mix\S| = |(T \S)\T ′| < |T \S|, which is a contradiction to our choice of T .

Case 2. If S′
max > T ′

min, then S can be more expensive than Mix ′. This means
that Mix ′ is potentially cheaper than S, and |Mix ′\S| = |T ′| < |T \S|. The
existence of Mix ′ contradicts our choice of T .

Thus, no proper subsets P ′ of P and Q′ of Q as described above exist. Hence,
by Lemma 13, |SΔT | ≤ |D′|+1. As |S∩T | ≤ d−|D′| we get |S∪T | ≤ d+1. ��

Lemma 14 and Theorem 12 give us the following.

Theorem 15. For the MMCTU problem, there exists an algorithm that makes
at most d ·OPT + 1 queries.

5 Minimum Matroid Base

We present an algorithm for the minimum matroid base under uncertainty
(MMBU) problem using at most 2 · OPT queries. We first recall the basic no-
tation of matroids (see, e.g., [3]). A matroid M = (E, I) consists of a set of
elements E and a set of independent sets I ⊆ P(E) such that the following
properties are satisfied.

Non-emptiness: ∅ ∈ I,
Heredity: Every subset of a set in I is also in I,
Exchange: If S, T ∈ I and |S| < |T |, then ∃e ∈ T such that S ∪ {e} ∈ I.

Each element has a real-valued weight, which may be negative. A subset of
E that is not independent is called dependent. A circuit of M is a dependent
set over E such that all its proper subsets are independent. A set S ⊆ E is
called a base of M if S is independent and for any e ∈ E \ S the set S ∪ {e} is
dependent. We write circuit (or base) of M over E′ ⊆ E for a circuit (or base)
of (E′, {S ∩E′|S ∈ I}). When M is clear from the context, we write just circuit
or base over E′. The following observation is well known.

272 T. Erlebach, M. Hoffmann, and F. Kammer

Observation 16. Every base of a matroid M has the same number of elements.

Let M be a matroid with a weight function w that assigns each e ∈ E a
weight we. M is then called a weighted matroid. A minimum base of M is a base
such that the sum of the weights of its elements is minimum among all bases of
M . An instance of the MMBU problem is given by a tuple (E, I, w,A), where
M = (E, I) is a matroid, w maps each e ∈ E to its (actual) weight we, and A
maps each e ∈ E to its uncertainty area Ae.

Lemma 17. Let C be a circuit of M , and let B be a base of M containing an
element e ∈ C. Then there exists an element f ∈ C such that (B \ {e})∪ {f} is
a base of M .

It follows from the previous lemma that:

Corollary 18. Let C be a circuit of M , and let e be an element in C with a
highest weight among all elements in C. Then a minimum base of E \{e} is also
a minimum base of E.

Before introducing the algorithm we define an order of elements denoted by
<e. Let f and g be two elements in E. We say f <e g if Lf < Lg or (Lf = Lg

and Uf < Ug). Edges with the same upper and lower weight limit are ordered
arbitrarily. We also say E is indexed by <e if {e1, . . . , en} = E where ei <e ei+1.
Based on the order <e and the resulting indexing, the first circuit created by tak-
ing the lowest indexed elements of any set E′ ⊆ E is called the first circuit of E′.

Algorithm 2. U-RED2

1. fix <e; index E by <e; set E′ := E
2. repeatedly remove an element b from E′ that is a highest element of

some circuit C of E′, i.e., that satisfies Lb ≥ Uc for all c ∈ C \ {b}
3. if E′ is independent then
4. stop and output E′ as a minimum base of M
5. else
6. set C := the first circuit over E′

7. set h := an element in C with a maximum upper limit
8. set f := an element in C\{h} that could be potentially higher than h
9. query the witness set {f, h} and restart

Algorithm U-RED2 is shown in Algorithm 2. In Step 2, it repeatedly removes
an element that can be identified as a highest element in a circuit, based on just
the uncertainty areas that are known to the algorithm at that time. In Step 9,
we query {f, h}. The basic idea to prove that {f, h} is a witness set is as follows:
By the choice of h and f , on the one hand, h could be a highest element of C
and would then be excluded from any minimum base over E. On the other hand,
even if all elements except h and f are queried, C being the first circuit implies
that for each circuit C′ = C containing h, C′ contains an element higher than
Lh, i.e., h could be part of any minimum base over E. So, we must query at
least one element in {f, h}.

Query-Competitive Algorithms 273

Lemma 19. The set {f, h} in the algorithm U-RED2 is a witness set.

Lemma 20. Once the algorithm does not restart, E′ is a minimum base of M .

Proof. The set E′ is independent and hence does not contain any circuits. Thus,
E′ is the only, and therefore also minimum, base over E′. Since E′ was derived
from E by removing only highest elements of a circuit, by a repeated application
of Corollary 18, E′ is a also a base for E. ��

Finally we note that OPT ≥ k where k is the number of times the algorithm
restarts. Since the number of queries requested by the algorithm is 2k, U-RED2
makes at most 2 ·OPT queries.

Theorem 21. The U-RED2 algorithm solves the minimum matroid base under
uncertainty problem with at most 2 ·OPT queries.

6 Competitive Lower Bounds

In this section we present lower bounds on the competitive ratio of online algo-
rithms for cheapest set under uncertainty as well as its special cases.

An algorithm is called strongly ρ-competitive if ALG ≤ ρOPT for all instances
of the problem, and weakly ρ-competitive if there is a constant c such that
ALG ≤ ρOPT +c for all instances. Here, ALG is the number of queries made by
the algorithm, and OPT is the size of an optimal query solution. A lower bound
on the best possible competitive ratio of weakly competitive algorithms is also
a lower bound for strongly competitive algorithms. We can prove lower bounds
for weakly competitive algorithms, covering both the multiplicative ratio ρ and
the additive constant c. The proofs use only singleton sets and open intervals as
areas of uncertainty.

Definition 22. We say that a variant of the cheapest set problem with uncer-
tainty has (deterministic) lower bound λOPT + δ if the two conditions hold:
- Any algorithm that satisfies ALG ≤ ρOPT +O(1) for all instances has ρ ≥ λ.
- Any algorithm that satisfies ALG ≤ λOPT + c for all instances has c ≥ δ.

Theorem 23. CSU (MMCTU) has a lower bound of d·OPT +d (of d·OPT +1).

Finally, we remark that the lower bound proof in [5] implies the following:

Theorem 24. MMBU has a lower bound of 2 ·OPT .

7 Conclusion

In this paper, we have studied online and offline variants of cheapest set prob-
lems under uncertainty. While our lower bounds are tight for deterministic al-
gorithms, an interesting direction for future research is to determine whether

274 T. Erlebach, M. Hoffmann, and F. Kammer

query-competitive algorithms with better ratios are possible using randomiza-
tion. Another direction would be to identify further variants of cheapest set
problems whose structure admits better competitive ratios than the general case.

Acknowledgements. We would like to thank Gerhard Woeginger for pointing
out that Lemma 13 can be proved using Theorem 1 in [11]. The first author
would also like to thank Anita Maring for helpful discussions about lower bound
examples for the general cheapest set problem. The second author would like
to thank the University of Leicester to support this research in granting him
academic study leave.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of
combinatorial optimization problems: A survey. European Journal of Operational
Research 197(2), 427–438 (2009)

2. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory of Computing Systems 38(4),
411–423 (2005)

3. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. John Wiley and Sons, New York (1998)

4. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A.,
Seco, D.: On minimum-and maximum-weight minimum spanning trees with neigh-
borhoods. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846,
pp. 93–106. Springer, Heidelberg (2013)

5. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) 25th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2008).
LIPIcs, vol. 1, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (2008)

6. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. Journal of Algorithms 62(1), 1–18 (2007)

7. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. SIAM Journal on Computing 32(2), 538–547 (2003)

8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

9. Kahan, S.: A model for data in motion. In: 23rd Annual ACM Symposium on
Theory of Computing (STOC 1991), pp. 267–277 (1991)

10. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: 20th Sym-
posium on Principles of Database Systems (PODS 2001), pp. 171–182 (2001)

11. Lindström, B.: A theorem on families of sets. Journal of Combinatorial Theory (A)
13, 274–277 (1970)

12. Löffler, M., van Kreveld, M.: Largest and smallest tours and convex hulls for im-
precise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059,
pp. 375–387. Springer, Heidelberg (2006)

13. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: 26th International Conference on Very Large Data
Bases (VLDB 2000), pp. 144–155 (2000)

Streaming Kernelization�

Stefan Fafianie and Stefan Kratsch

TU Berlin, Germany
{stefan.fafianie,stefan.kratsch}@tu-berlin.de

Abstract. Kernelization is a formalization of preprocessing for combi-
natorially hard problems. We modify the standard definition for
kernelization, which allows any polynomial-time algorithm for the pre-
processing, by requiring instead that the preprocessing runs in a stream-
ing setting and uses O(poly(k) log |x|) bits of memory on instances (x, k).
We obtain several results in this new setting, depending on the number
of passes over the input that such a streaming kernelization is allowed
to make. Edge Dominating Set turns out as an interesting example
because it has no single-pass kernelization but two passes over the input
suffice to match the bounds of the best standard kernelization.

1 Introduction

When faced with an NP-hard problem we do not expect to find an efficient algo-
rithm that solves every instance exactly and in polynomial time (as this would
imply P = NP). The study of algorithmic techniques offers various paradigms for
coping with this situation if we are willing to compromise on efficiency, exact-
ness, or the generality of being applicable to all instances (or several of those).
Before we commit to such a compromise it is natural to see how much closer we
can come to a solution by spending only polynomial time, i.e., how much we can
simplify and shrink the instance by polynomial-time preprocessing. This is usu-
ally compatible with any way of solving the simplified instance and it finds wide
application in practice (e.g., as a part of ILP solvers like CPLEX), although,
typically, the applications are of a heuristic flavor with no guarantees for the
size of the simplified instance or the amount of simplification.

The notion of kernelization is one way of formally capturing preprocessing. A
kernelization algorithm applied to some problem instance takes polynomial time
in the input size and always returns an equivalent instance (i.e., the instances
will have the same answer) of size bounded by a function of some problem-specific
parameter. For example, the problem of testing whether a given graph G has a
vertex cover of size at most k can be efficiently reduced to an equivalent in-
stance (G′, k) where G′ has O(k) vertices and O(k2) total bit size. The study
of kernelization is a vibrant field that has seen a wealth of new techniques and
results over the last decade. (The interested reader is referred to recent surveys
by Lokshtanov et al. [10] and Misra et al. [11].) In particular, a wide-range of
problems is already classified into admitting or not admitting1 a polynomial

� Supported by the Emmy Noether-program of the DFG, KR 4286/1.
1 Unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 275–286, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

276 S. Fafianie and S. Kratsch

kernelization, where the guaranteed output size bound is polynomial in the cho-
sen parameter. It is seems fair to say that this shows a substantial theoretical
success of the notion of kernelization.

From a practical point of view, we might have to do more work to convince a
practitioner that our positive kernelization results are also worth implementing.
This includes choice of parameter, computational complexity, and also concep-
tual difficulty (e.g., number of black box subroutines, huge hidden constants).
Stronger parameterizations already receive substantial interest from a theoretical
point of view, see e.g., [6], and there is considerable interest in making kernel-
izations fast, see e.g., [14,7,13,9]. Conceptual difficulty is of course “in the eye of
the beholder” and perhaps hard to quantify.

In this work, we take the perspective that kernelizations that work in a re-
stricted model might, depending on the model, be provably robust and use-
ful/implementable (and hopefully also fast). Concretely, in the spirit of studying
restricted models, we ask which kernelizations can be made to work in a stream-
ing model where the kernelization has a small local memory and only gets to
look at the input once, or a bounded number of times. The idea is that the
kernelization should maintain a sufficiently good sketch of the input that in the
end will be returned as the reduced instance.

We think that this restricted model for kernelization has several further bene-
fits: First of all, it naturally improves the memory access patterns since the input
is read sequentially, which should be beneficial already for medium size inputs.
(It also works more naturally for huge inputs, but huge instances of NP-hard
problems are probably only really addressable by outright use of heuristics or
sampling methods.) Second, it is naturally connected to a dynamic/incremental
setting since, due to the streaming setting, the algorithm has not much choice
but to essentially maintain a simplified instance of bounded size that is equiva-
lent to the input seen so far (or be able to quickly produce one should the end
of the stream be declared). Thus, as further input arrives, the problem kernel is
adapted to the now slightly larger instance without having to look at the whole
instance again. (In a sense, the kernelization could run in parallel to the creation
of the actual input.) Third, it appears, at least in our positive results, that one
could easily translate this to a parallel setting where, effectively, several copies of
the algorithm work on different positions on the stream to simplify the instance
(this however would require that an algorithm may delete data from the stream).

Our results. In this work we consider a streaming model where elements of a
problem instance are presented to a kernelization algorithm in arbitrary order.
The algorithm is required to return an equivalent instance of size polynomial in
parameter k after the stream has been processed. Furthermore, it is allowed to
use O(poly(k) logn) bits of memory, i.e., an overhead factor of O(logn) is used
in order to distinguish between elements of an instance of size n.

We show that d-Hitting Set(k) and d-Set Matching(k) admit streaming
kernels of size O(kd log k) while using O(kd log |U |) bits of memory where U is
the universal set of an input instance. We then consider a single pass kernel
for Edge Dominating Set(k) and find that it requires at least m − 1 bits

Streaming Kernelization 277

of memory for instances with m edges. This rules out streaming kernels with
c ·poly(k) logn bits for instances with n vertices since for any fixed c and poly(k)
there exist instances with m − 1 > c · poly(k) logn. Insights obtained from this
lower bound allow us to develop a general lower bound for the space complexity
of single pass kernels for a class of parameterized graph problems.

Despite the lower bound for single pass kernels, we show that Edge Domi-

nating Set(k) admits a streaming kernel if it is allowed to make a pass over the
input stream twice. Finally, we use communication complexity games in order
to rule out similar results for Cluster Editing(k) and Minimum Fill-In(k)
and show that multi-pass streaming kernels for these problems must use Ω(n)
bits of local memory for graphs with n vertices, even when a constant number
of passes are allowed.

Related work. The data stream model is formalized by Henzinger et al. [8].
Lower bounds for exact and randomized algorithms with a bounded number
of passes over the input stream are given for various graph problems and are
proven by means of communication complexity. An overview is given by Babcock
et al. [2] in which issues that arise in the data stream model are explored. An
introduction and overview of algorithms and applications for data streams is
given by Muthukrishnan [12].

Organization. Section 2 contains preliminaries and a formalization of ker-
nelization algorithms in the data streaming setting. Single pass kernels for d-
Hitting Set(k) and d-Set Matching(k) are presented in Section 3. The lower
bounds for single pass kernels are given in Section 4. The 2-pass kernel for Edge
Dominating Set(k) is shown in Section 5 while lower bounds for multi-pass
kernels are given in Section 6. Finally, Section 7 contains concluding remarks.

2 Preliminaries

We use standard notation from graph theory. For a set of edges E, let V (E) be
the set of vertices that are incident with edges in E. For a graph G = (V,E),
let G[V] denote the subgraph of G induced by V . Furthermore, let G[E] be the
subgraph induced by E, i.e. G[E] = G(V (E), E).

A parameterized problem is a language Q ⊆ Σ∗ × N; the second compo-
nent k of instances (x, k) is called the parameter. A parameterized problem is
fixed-parameter tractable if there is an algorithm that decides if (x, k) ∈ Q in
f(k)|x|O(1) time, where f is any computable function. A kernelization algorithm
(kernel) for a parameterized problem Q ⊆ Σ∗×N is an algorithm that, for input
(x, k) ∈ Σ∗ × N outputs a pair (x′, k′) ∈ Σ∗ × N in (|x|+ k)O(1) time such that
|x′|, k′ < g(k) for some computable function g, called the size of the kernel, and
(x, k) ∈ Q⇔ (x′, k′) ∈ Q. A polynomial kernel is a kernel with polynomial size.

Kernelization in the Data-Streaming Model

An input stream is a sequence of elements of the input problem. We denote
the start of an input stream by 〈 and let 〉 denote the end, e.g. 〈e1, e2, . . . , em〉

278 S. Fafianie and S. Kratsch

denotes an input stream for a sequence of m elements. We use 〉| to denote a
halt in the stream and |〈 to denote its continuation, e.g. 〈e1, e2〉| and |〈e3, . . . , em〉
denote the same input stream broken up in two parts.

A streaming kernelization algorithm (streaming kernel) is an algorithm that
receives input (x, k) for a parameterized problem in the following fashion. The
algorithm is presented with an input stream where elements of x are presented
in a sequence, i.e. adhering to the cash register model [12]. Finally, the algorithm
should return a kernel for the problem upon request. A t-pass streaming kernel
is a streaming kernel that is allowed t passes over the input stream before a
kernel is requested.

If x is a graph, then the sequence of elements of x are its edges in arbitrary
ordering. In a natural extension to hypergraphs, if x is a family of subsets on some
ground set U , then the sequence of elements of x are the sets of this family in
arbitrary ordering. We assume that a streaming kernelization algorithm receives
parameter k and the size of the vertex set (resp. ground set) before the input
stream. Note that this way isolated vertices are given implicitly.

Furthermore, we require that the algorithm uses a limited amount of space at
any time during its execution. In the strict streaming kernelization setting the
streaming kernel must use at most p(k) log |x| space where p is a polynomial.
We will refer to a 1-pass streaming kernelization algorithm which upholds these
space bounds simply as a streaming kernelization.

We assume that words of size log |x| in memory can be compared in O(1)
operations when considering the running time of the streaming kernelization
algorithms in each step.

3 Single Pass Kernelization Algorithms

In this section we will show streaming kernelization algorithms for d-Hitting

Set(k) and d-Set Matching(k) in the 1-pass data-stream model. These al-
gorithms make a single pass over the input stream after which they output a
kernel. We analyze their efficiency with regard to local space and the worst case
processing time for a single element in the input stream.

d-Hitting Set(k) Parameter: k.
Input: A set U and a family F of subsets of U each of size at most d,
i.e. F ⊆

(
U
≤d

)
, and k ∈ N.

Question: Is there a set S of at most k elements of U that has a nonempty
intersection with each set in F?

In the following, we describe a single step of the streaming kernelization. After
Step t, the algorithm has seen a family Ft ⊆ F , where F denotes the whole family
of sets provided in the stream. The memory contains some subfamily F ′

t ⊆ Ft,
using for each F ∈ F ′

t a total of at most d logn = O(log n) bits to denote
the up to d elements therein. The algorithm maintains the invariant that the
number of sets F ∈ F ′

t that contain any C ∈
(

U
≤d−1

)
as a subset is at most

Streaming Kernelization 279

(d− |C|)! · (k + 1)d−|C|. For intuition, let us remark that this strongly relates to
the sunflower lemma [4]. Now, let us consider Step t + 1. The memory contains
some F ′

t ⊆ Ft and a new set F arrives.

1. Iterate over all subsets C of F , ordered by decreasing size.
2. Count the number of sets in F ′

t that contain C as a subset.
3. If the result equals (d− |C|)! · (k + 1)d−|C| then the algorithm decides not

to store F and ends the computation for Step t + 1, i.e., let F ′
t+1 = F ′

t.
4. Else, continue with the next set C.
5. If no set C ⊆ F gave a total of (d − |C|)! · (k + 1)d−|C| sets containing F

then the algorithm decides to store F , i.e., F ′
t+1 = F ′

t ∪ {F}. Note that this

preserves the invariant for all C ∈
(

U
d−1

)
since only the counts for C with C ⊆ F

can increase, but all those were seen to be strictly below the threshold (d−|C|)! ·
(k + 1)d−|C| so they can at most reach equality by adding F .

To avoid confusion, let us point out that at any time the algorithm only has
a single set F ′

t; the index t is used for easier discussion of the changes over time.

Observation 1 The algorithm stores at most d!(k + 1)d = O(kd) sets at any
point during the computation. This follows directly from the invariant when con-
sidering C = ∅.

Theorem 1. (�2) d-Hitting Set(k) admits a streaming kernelization which,
using O(kd log |U |) bits of local memory and O(kd) time in each step, returns an
equivalent instance of size O(kd log k).

The time spent in each step can be improved from O(|F ′
t |) = O(kd) to

O(log |F ′
t|) at the cost of an increase in local space by a constant factor. This

can be realized with a tree structure T in which the algorithm maintains the
number of sets in F ′

t that contain a set C ∈
(

U
≤d−1

)
as a subset.

Each C ⊆ F ′, F ′ ∈ F ′
t has a corresponding node in T and in this node the

number of supersets of C in F ′
t are stored. Let the root node represent C = ∅

with a child for each set C of size 1. In general, a node is assigned an element
in e ∈

⋃
F ′

t and represents C = C′ ∪ {e} where C′ is the set represented by its
parent, i.e. |C| = d for nodes with depth d. For each node, let ei be assigned to
child node ni. Let us assume that there is some arbitrary ordering on elements
that are in sets of F ′

t , e.g. by their identifier. Then we can treat sets C as if they
are ordered and we require that ei > e for each child.

Furthermore, each node has a dictionary, i.e. a collection of (key, value) pairs
(ei, ni) in order to facilitate quick lookup of its children. By utilizing the ordering
on elements, this dictionary can be implemented as a self-balancing binary search
tree. This allows us to find a child node and insert new child node in timeO(log h)
if there are h children.

Corollary 1. (�) d-Hitting Set(k) admits a streaming kernelization which,
using O(kd log |U |) bits of local memory and O(log k) time in each step, returns
an equivalent instance of size O(kd log k).

2 Proofs of statements marked with � are in the full paper [5].

280 S. Fafianie and S. Kratsch

d-Set Matching(k) Parameter: k.
Input: A set U and a family F of subsets of U each of size at most d,
i.e. F ⊆

(
U
≤d

)
, and k ∈ N.

Question: Is there a matching M of at least k sets in F , i.e. are there k sets
in F that are pairwise disjoint?

The streaming kernelization will mostly perform the same operations in a
single step as the algorithm described above such that only the invariant differs.
In this case it is maintained that the number of sets F ∈ F ′

t that contain any
C ∈

(
U

≤d−1

)
as a subset is at most (d− |C|)! · (d(k − 1) + 1)d−|C|.

Observation 2 The algorithm stores at most d!(d(k− 1) + 1)d = O(kd) sets at
any point during the computation. This follows directly from the invariant when
considering C = ∅.

Theorem 2. (�) d-Set Matching(k) admits a streaming kernelization which,
using O(kd log |U |) bits of local memory and O(kd) time in each step, returns an
equivalent instance of size O(kd log k).

Similar to the algorithm described in the previous section, the running time in
each step can be improved at the cost of an increase in local space by a constant
factor. We omit an explicit proof.

Corollary 2. d-Set Matching(k) admits a streaming kernelization which, us-
ing O(kd log |U |) bits of local memory and O(log k) time in each step, returns
an equivalent instance of size O(kd log k).

4 Space Lower Bounds for Single Pass Kernels

We will now present lower bounds on the memory requirements of single pass
streaming kernelization algorithms for a variety of graph problems. Before giving
a general lower bound we first illustrate the essential obstacle by considering the
Edge Dominating Set(k) problem. We show that a single pass kernel for
Edge Dominating Set(k) requires at least m− 1 bits of memory on instances
with m edges.

Edge Dominating Set(k) Parameter: k.
Input: A graph G = (V,E) and k ∈ N.
Question: Is there a set S of at most k edges such that every edge in E \ S
is incident with an edge in S?

An obstacle that arises for many problems, such asEdgeDominatingSet(k),
is that they are not monotone under adding additional edges, i.e., additional edges
do not always increase the cost of a minimum edge dominating set but may also
decrease it. This decrease, however, may in turn depend on the existence of a par-
ticular edge in the input. Thus, on an intuitive level, it may be impossible for a

Streaming Kernelization 281

streaming kernelization to “decide” which edges to forget, since worst-case anal-
ysis effectively makes additional edges behave adversarial. (Note that our lower
bound does not depend on assumptions on what the kernelization decides to store.)

Consider the following type of instance as a concrete example of this issue.
The input stream contains the number of vertices (immaterial for the example),
the parameter value k = 1, and a sequence of edges 〈{a, v1}, . . . , {a, vn}, {b, v}〉.
That is, the first n edges form a star with n leaves and center vertex a. In order
to use a relatively small amount of local memory the kernelization algorithm is
forced to do some compression such that not every edge belonging to this star
is stored in local memory. Now a final edge arrives and the algorithm returns a
kernel. Note that the status of the problem instance depends on whether or not
this edge is disjoint from the star: If it shares at least one vertex vi with the
star then there is an edge dominating set {a, vi} of size one. Otherwise, if it is
disjoint then clearly at least two edges are needed. Thus, from the memory state
after the final edge we must be able to extract whether or not v is contained
in {v1, . . . , vn}; in other words, this is equivalent to whether or not the output
kernelized instance is yes or no. (We assume that a, b /∈ {v1, . . . , vn} for this
example.) This, however, is a classic problem for streaming algorithms that is
related to the set reconciliation problem and it is known to require at least n
bits [12]; we give a short self-contained proof for our lower bound.

Theorem 3. (�) A single pass streaming kernelization algorithm for Edge

Dominating Set(k) requires at least m− 1 bits of local memory for instances
with m edges.

General Lower Bound for a Class of Parameterized Graph Problems

In the following we present space lower bounds for a number of parameter-
ized graph problems. By generalizing the previous argument we find a com-
mon property that can be used to quickly rule out single pass kernels with
O(poly(k) log |x|) memory. We then provide a list of parameterized graph prob-
lems for which a single pass streaming kernelization algorithm requires at least
|E| − O(1) bits of local memory.

Definition 1. Let Q ∈ Σ∗×N be a parameterized graph problem and let c, k ∈ N.
Then Q has a c-k-stream obstructing graph G = (V,E) if ∀ei ∈ E, there is a set
of edges Ri := R(ei) ⊆

(
V
2

)
\ E of size c such that ∀F ⊆ E, (G[F ∪ Ri], k) ∈ Q

if and only if ei ∈ F .

In other words, each edge ei ∈ E could equally be critical to decide if (G′, k) ∈
Q for a graph instance G′ induced by a subset F ⊆ E and a constant sized
remainder of edges Ri, depending on what Ri looks like. Note that G may
contain isolated vertices which can also be used to form edge sets Ri. We also
consider G to be a c-k-stream obstructing graph in the case that the above
definition holds except that ∀F ⊆ E, (G[F ∪ Ri], k) ∈ Q if and only if ei /∈ F .
We omit the proofs for this symmetrical definition in this section.

282 S. Fafianie and S. Kratsch

Lemma 1. (�) Let Q ∈ Σ∗ × N be a parameterized graph problem and let
c, k ∈ N. If Q has a c-k-stream obstructing graph G = (V,E) with m edges, then
a single pass streaming kernelization algorithm for Q requires at least m bits of
local memory for instances with at most m + c edges.

The following theorem is an easy consequence of Lemma 1 for problems that,
essentially, have stream obstructing graphs for all numbers m of edges. Intu-
itively, of course also having such graphs only for an infinite subset of N suffices
to get a similar bound.

Theorem 4. Let Q ∈ Σ∗ × N be a parameterized graph problem. If there exist
c, k ∈ N such that for every m ∈ N, Q has a c-k-stream obstructing graph G with
m edges, then a single pass streaming kernelization algorithm for Q requires at
least |E| − c bits of local memory.

Proof. Let A be a single pass streaming kernelization algorithm for Q. Assume
that there is a stream obstructing graph Gm = (Vm, Em) for Q with m edges for
every m ∈ N. Then for every m there is a group of instances G where for each
Gi = (Vi, Ei) ∈ G, Ei = F ∪ Ri for some F ⊆ Em and remainder of edges Ri

of size c, i.e. |Ei| ≤ m + c. Let us consider all graph instances G = (V,E) with
exactly |E| = m + c edges. Some of these instances are in G, i.e. E = Em ∪ Ri

for some Ri. By Lemma 1, A requires at least m = |E| − c bits of local memory
in order to distinguish these instances correctly. ��

The following corollary is a result of Theorem 4 and constructions of stream
obstructing graphs of arbitrary size for a variety of parameterized graph problems
(definitions for most of these are in [3]). These constructions can be found in the
full paper [5], where we also exhibit proofs of correctness for a few of them.

Corollary 3. For each of the following parameterized graph problems, a single
pass streaming kernelization requires at least |E| − O(1) bits of local memory:
Edge Dominating Set(k), Cluster Editing(k), Cluster Deletion(k),
Cluster Vertex Deletion(k), Cograph Vertex Deletion(k), Minimum

Fill-In(k), Edge Bipartization(k), Feedback Vertex Set(k), Odd Cy-

cle Transversal(k), Triangle Edge Deletion(k), Triangle Vertex

Deletion(k), Triangle Packing(k), s-Star Packing(k), Bipartite Col-

orful Neighborhood(k).

5 2-Pass Kernel for Edge Dominating Set

Despite the previously shown lower bound of m− 1 bits for a single pass kernel,
there is a space efficient streaming kernelization algorithm for Edge Dominat-

ing Set(k) if we allow it to make a pass over the input stream twice. We will
first describe a single step of the streaming kernelization during the first pass.
This is effectively a single pass kernel for finding a 2k-vertex cover. After Step t
the algorithm has seen a set At ⊆ E. Some subset A′

t ⊆ At of edges is stored in
memory. Let us consider Step t + 1 where a new edge e = {u, v} arrives.

Streaming Kernelization 283

1. Count the edges in A′
t that are incident with u; do the same for v.

2. Let A′
t+1 = A′

t if either of these counts is at least 2k + 1.
3. Otherwise, let A′

t+1 = A′
t ∪ {e}.

4. If |A′
t+1| > 4k2 + 2k, then return a no instance.

Lemma 2. (�) After processing any set At of edges on the first pass over the
input stream the algorithm has a set A′

t ⊆ At such that any set S of at most 2k
vertices is a vertex cover for G[At] if and only if S is a vertex cover for G[A′

t].

Let A′ be the edges stored after the first pass. If there are more than 2k
vertices with degree 2k + 1 in G[A′] then the algorithm returns a no instance.
We will continue with a description of a single step during the second pass. After
Step t the algorithm has revisited a set Bt ⊆ E. Some subset B′

t ⊆ Bt of edges is
stored along with A′. Now, let us consider Step t + 1 where the edge e = {u, v}
is seen for the second time.

1. Let B′
t+1 = B′

t ∪ {e} if u, v ∈ V (A′) and e /∈ A′.
2. Otherwise, let B′

t+1 = B′
t.

Let B′ be the edges stored during the second pass. The algorithm will return
G[A′ ∪B′], which is effectively G[V (A′)], after both passes have been processed
without returning a no instance.

Lemma 3. (�) After processing both passes the algorithm has a set A′∪B′ ⊆ E
such that there is an edge dominating set S of size at most k for G if and only
if there is an edge dominating set S′ of size at most k for G[A′ ∪B′].

Theorem 5. (�) Edge Dominating Set(k) admits a two-pass streaming ker-
nelization algorithm which, using O(k3 logn) bits of local memory and O(k2)
time in each step, returns an equivalent instance of size O(k3 log k).

If the algorithm stores a counter for the size of A′
t and a tree structure T

in which it maintains the number of sets (edges) in A′
t that are a superset of

C ⊆
(
V
≤2

)
as described in Section 3, then the operations in each step can be

performed in O(log k) time. We give the following corollary and omit the proof.

Corollary 4. Edge Dominating Set(k) admits a two-pass streaming kernel-
ization algorithm which, using O(k3 logn) bits of local memory and O(log k)
time in each step, returns an equivalent instance of size O(k3 log k).

6 Space Lower Bounds for Multi-pass Streaming Kernels

In this section we will show lower bounds for multi-pass streaming kernels for
Cluster Editing(k) and Minimum Fill-In(k). Similar to Edge Dominating

Set(k), it is difficult to return a trivial answer for these problems when the
local memory exceeds a certain bound at some point during the input stream.
Additional edges in the stream may turn a no instance into a yes instance and
vice versa, which makes single pass streaming kernels infeasible. Although there
is a 2-pass streaming kernel for Edge Dominating Set(k), we will show that a

284 S. Fafianie and S. Kratsch

t-pass streaming kernel for Cluster Editing(k) requires at least (n−2)/2t bits
of local memory for instances with n vertices. As a consequence, Ω(n) bits are
required when a constant number of passes are allowed. Furthermore, Ω(n/ logn)
passes are required when the streaming kernel uses at most O(log n) bits of
memory. We show a similar result for Minimum Fill-In(k).

Cluster Editing(k) Parameter: k.
Input: A graph G = (V,E) and k ∈ N.
Question: Can we add and/or delete at most k edges such that G becomes
a disjoint union of cliques?

Let us consider the following communication game with two players, P1 and
P2. Let N be a set of n′ vertices and let u, v /∈ N . The players are given a subset
of vertices, V1 ⊆ N and V2 ⊆ N respectively. Let C(V1) denote the edges of
a clique on V1 ∪ {u}. Furthermore, let S(V2) denote the edges of a star with
center vertex v and leaves V2 ∪ {u}. The object of the game is for the players to
determine if G = (N ∪ {u, v}, C(V1) ∪ S(V2)) is a disjoint union of cliques. The
cost of the protocol for this game is the number of bits communicated between
the players such that they can provide the answer. We can provide a lower bound
for this cost by using the notion of fooling sets as shown in the following lemma.

Lemma 4. ([1]) A function f : {0, 1}n′ × {0, 1}n′
has a size M fooling set if

there is an M -sized subset F ⊆ {0, 1}n′×{0, 1}n′
and value b ∈ {0, 1} such that,

(1) for every pair (x, y) ∈ S, f(x, y) = b
(2) for every distinct (x, y), (x′, y′) ∈ F , either f(x, y′) = b of f(x′, y) = b.

If f has a size-M fooling set then C(f) ≥ logM where C(f) is the minimum
number of bits communicated in a two-party protocol for f .

Let f be a function modeling our communication game where f(V1, V2) = 1
if G forms a disjoint union of cliques and f(V1, V2) = 0 otherwise. We provide a
fooling set for f in the following lemma.

Lemma 5. f has a fooling set F =
{

(W,W) | W ⊆ N
}

.

Proof. For every W ⊆ N we have G = (N∪{u, v}, C(W)∪S(W)) in which there
is a clique on vertices W ∪ {u, v} while the vertices in N \W are completely
isolated and thus form cliques of size 1, i.e. f(W,W) = 1 for every (W,W) ∈ F .
Now let us consider pairs (W,W), (W ′,W ′) ∈ F . We must show that either
f(W,W ′) = 0 or f(W ′,W) = 0. Clearly W = W ′ since (W,W) = (W ′,W ′). Let
us assume w.l.o.g. that W \W ′ = ∅, i.e. there is a vertex w ∈ W \W ′. Then
{v, w}, {v, u} ∈ S(W) since w ∈W . However, {u,w} /∈ C(W ′) since w /∈W ′ and
by definition also {u,w} /∈ S(W) since S(W) is a star with center v /∈ {u,w}.
Thus, G = (N ∪ {u, v}, C(W ′) ∪ S(W)) is not a disjoint union of cliques, i.e.,
f(W ′,W) = 0 and the lemma holds. ��

The size of F is 2n
′
, implying by Lemma 4 that the protocol for f needs at

least n′ bits of communication. Intuitively, if we use less than n′ bits, then by

Streaming Kernelization 285

the pigeonhole principle there must be some pairs (W,W), (W ′,W ′) ∈ F for
which the protocol is identical. Then the players cannot distinguish between the
cases (W,W), (W,W ′), (W ′,W), (W ′,W ′), i.e. for each case the same answer will
be given and thus the protocol is incorrect. We prove the following theorem by
considering how a multi-pass kernel for Cluster Editing(k) with small local
memory can be used to beat the lower bound of the communication game.

Theorem 6. A streaming kernelization algorithm for Cluster Editing(k) re-
quires at least (n− 2)/2t bits of local memory for instances with n vertices if it
is allowed to make t passes over the input stream.

Proof. Let us assume that the players have access to a multi-pass streaming
kernelization algorithm A for Cluster Editing(k). They can then use A to
solve the communication game for |N | = n′ = n−2 by simulating passes over an
input stream in the following way. First, P1 initiates A with budget k = 0. To let
A make a pass over C(V1)∪S(V2), P1 feeds A with partial input stream 〈C(V1)〉|.
It then sends the current content of the local memory of A to P2, which is then
able to resume A and feeds it with |〈S(V2)〉. In order to let A make multiple
passes, P2 can send the local memory content back to P1. Finally, when enough
passes have been made an instance can be requested from A for which the answer
is yes if and only if f(V1, V2) = 1.

Now suppose A is a t-pass streaming kernel with less than (n − 2)/2t bits
of local memory for instances with n vertices. In each pass the local memory is
transmitted between P1 and P2 twice. Then in total the players communicate
less than n− 2 = n′ bits of memory. This is a contradiction to the consequence
of Lemmata 4 and 5. Therefore A requires at least (n− 2)/2t bits. ��

Note that this argument also holds for Cluster Deletion(k) and Cluster

Vertex Deletion(k) where we can only delete k edges, respectively vertices.

Minimum Fill-In(k) Parameter: k.
Input: A graph G = (V,E) and k ∈ N.
Question: Can we add at most k edges such that G becomes chordal, i.e. G
does not contain an induced cycle of length 4?

Consider the following communication game with two players, P1 and P2. Let
N be a set of n vertices and let p, u, v /∈ N . The players are given a subset of
vertices, V1 ⊆ N and V2 ⊆ N respectively. Let Su(V1) denote the edges of a
star with center vertex u and leaves V1 ∪ {p}. Furthermore, let Sv(V2) denote
the edges of a star with center vertex v and leaves V2 ∪ {p}. The object of the
game is to determine if G = (N ∪ {p, u, v}, Su(V1) ∪ Sv(V2)) is a chordal graph.
Let f be a function modeling this communication game, i.e. f(V1, V2) = 1 if G
is chordal and f(V1, V2) = 0 otherwise. We provide a fooling set for f .

Lemma 6. f has a fooling set F =
{

(W,N \W) |W ⊆ N
}

.

The size of F is 2n, implying by Lemma 4 that the protocol for f needs at
least n bits of communication. The following results from a similar argument to
that of the proof of Theorem 6. We omit an explicit proof.

286 S. Fafianie and S. Kratsch

Theorem 7. A streaming kernelization algorithm for Minimum Fill-In(k) re-
quires at least (n− 3)/2t bits of local memory for instances with n vertices if it
is allowed to make t passes.

7 Conclusion

In this paper we have explored kernelization in a data streaming model. Our
positive results include single pass kernels for d-Hitting Set(k) and d-Set
Matching(k), and a 2-pass kernel for Edge Dominating Set(k). We provide
a tool for quick identification of a number of parameterized graph problems for
which a single pass kernel requires m−O(1) bits of local memory for instances
with m edges. Furthermore, we have shown lower bounds for the space complex-
ity of multi-pass kernels for Cluster Editing(k) and Minimum Fill-In(k).

References

1. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS, pp. 1–16. ACM (2002)

3. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer (2013)

4. Erdös, P., Rado, R.: Intersection theorems for systems of sets. Journal of the Lon-
don Mathematical Society 1(1), 85–90 (1960)

5. Fafianie, S., Kratsch, S.: Streaming kernelization. arXiv report 1405.1356 (2014)
6. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-

rithmics: Parameter ecology and the deconstruction of computational complexity.
Eur. J. Comb. 34(3), 541–566 (2013)

7. Hagerup, T.: Simpler Linear-Time Kernelization for Planar Dominating Set. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 181–193.
Springer, Heidelberg (2012)

8. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
External Memory Algorithms: DIMACS Workshop External Memory and Visual-
ization, May 20-22, vol. 50, p. 107. AMS (1999)

9. Kammer, F.: A Linear-Time Kernelization for the Rooted k-Leaf Outbranching
Problem. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS,
vol. 8165, pp. 310–320. Springer, Heidelberg (2013)

10. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – Preprocessing with a Guar-
antee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows
Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

11. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Opti-
mization 8(1), 110–128 (2011)

12. Muthukrishnan, S.: Data streams: Algorithms and applications. Now Publishers
Inc. (2005)

13. van Bevern, R.: Towards Optimal and Expressive Kernelization for d-Hitting Set.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434,
pp. 121–132. Springer, Heidelberg (2012)

14. van Bevern, R., Hartung, S., Kammer, F., Niedermeier, R., Weller, M.: Linear-Time
Computation of a Linear Problem Kernel for Dominating Set on Planar Graphs.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 194–206.
Springer, Heidelberg (2012)

A Reconfigurations Analogue

of Brooks’ Theorem

Carl Feghali, Matthew Johnson, and Daniël Paulusma�

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{carl.feghali,matthew.johnson2,daniel.paulusma}@durham.ac.uk

Abstract. Let G be a simple undirected graph on n vertices with max-
imum degree Δ. Brooks’ Theorem states that G has a Δ-colouring un-
less G is a complete graph, or a cycle with an odd number of vertices. To
recolour G is to obtain a new proper colouring by changing the colour
of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring
of G can be obtained by a sequence of O(n2) recolourings using only the
original k colours unless
– G is a complete graph or a cycle with an odd number of vertices, or
– k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two

neighbours of v are coloured alike.

We use this result to study the reconfiguration graph Rk(G) of the k-
colourings of G. The vertex set of Rk(G) is the set of all possible k-
colourings of G and two colourings are adjacent if they differ on exactly
one vertex. It is known that
– if k ≤ Δ(G), then Rk(G) might not be connected and it is possible

that its connected components have superpolynomial diameter,
– if k ≥ Δ(G) + 2, then Rk(G) is connected and has diameter O(n2).

We complete this structural classification by settling the missing case:
– if k = Δ(G)+1, then Rk(G) consists of isolated vertices and at most

one further component which has diameter O(n2).
We also describe completely the computational complexity classification
of the problem of deciding whether two k-colourings of a graph G of
maximum degree Δ belong to the same component of Rk(G) by settling
the case k = Δ(G) + 1. The problem is
– O(n2) time solvable for k = 3,
– PSPACE-complete for 4 ≤ k ≤ Δ(G),
– O(n) time solvable for k = Δ(G) + 1,
– O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes).

1 Introduction

Definitions and Background. Let G = (V,E) denote a simple undirected
graph and let k be a positive integer. A k-colouring of G is a function γ :
V → {1, 2, . . . , k} such that if uv ∈ E, γ(u) = γ(v). The k-colouring recon-
figuration graph of G has as its vertex set all possible k-colourings of G, and

� Author supported by EPSRC (EP/K025090/1).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 287–298, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

288 C. Feghali, M. Johnson, and D. Paulusma

two k-colourings γ1 and γ2 are joined by an edge if, for some vertex u ∈ V ,
γ1(u) = γ2(u), and, for all v ∈ V \ {u}, γ1(v) = γ2(v); that is, if γ1 and γ2
disagree on exactly one vertex. The reconfiguration graph is denoted by Rk(G).

The study of reconfiguration graphs of colourings began in [10,11]. The prob-
lem of deciding whether two 3-colourings of a graph G are in the same compo-
nent of R3(G) was shown to be solvable in time O(n2) in [12]; it was also proved
that the diameter of any component of R3(G) is O(n2). In contrast, in [5] the
analagous problem for k-colourings, k ≥ 4, was shown to be PSPACE-complete,
and examples of reconfiguration graphs with components of superpolynomial di-
ameter were given. In [2], reconfiguration graphs of k-colourings of chordal graphs
were shown to be connected with diameter O(n2) whenever k is more than the
size of the largest clique (and an infinite class of chordal graphs was described
whose reconfiguration graphs have diameter Ω(n2)). In [1] this was generalized
to show that if k is at least two greater than the treewidth tw(G) then, again,
Rk(G) is connected with diameter O(n2). (Notice that if k = tw(G) + 1, then
Rk(G) might not be connected since, for example, G might be a complete graph
on tw(G) + 1 vertices and then Rk(G) contains no edges.)

Our Results. We study reconfigurations of colourings for graphs of bounded
maximum degree. The celebrated theorem of Brooks [8] states that a graph G
with maximum degree Δ has a Δ-colouring unless it is the complete graph on
Δ + 1 vertices or a cycle with an odd number n of vertices; we denote these
two graphs by KΔ+1 and Cn respectively. The question we address is: given a k-
colouring γ of G, is there a path from γ to a Δ-colouring in Rk(G)? (Note that we
are abusing our terminology. When we are working with Rk(G), by a Δ-colouring
we mean a k-colouring in which only Δ colours appear on the vertices.) Our first
result provides a complete answer to this question. We require two definitions. A
k-colouring γ of a graph is frozen if, for every vertex v, every colour except γ(v)
is used on a neighbour of v. Notice that a frozen colouring is an isolated vertex
in Rk(G). The length of a shortest path between colourings α and β in Rk(G) is
denoted by dk(α, β). We state our results for connected graphs as other graphs
can be considered component-wise.

Theorem 1. Let G be a connected graph on n vertices with maximum degree Δ,
and let k ≥ Δ + 1. Let α be a k-colouring of G. If α is not frozen and G
is not KΔ+1 or, if n is odd, Cn, then there exists a Δ-colouring γ of G such
that dk(α, γ) is O(n2).

Note that α can only be frozen if k = Δ + 1, and only if G is Δ-regular. Let
us briefly note that such colourings do exist: for example a 3-colouring of C6 in
which each colour appears exactly twice on vertices at distance 3, or a 4-colouring
of the cube in which diagonally opposite vertices are coloured alike.

As we will see, the case k = Δ+1 is the only cause of difficulty in the proof of
our first result. Using Theorem 1, however, we can, with the aid of one further
lemma, give a characterization of RΔ+1(G) which is our next result.

A Reconfigurations Analogue of Brooks’ Theorem 289

Theorem 2. Let G be a connected graph on n vertices with maximum de-
gree Δ ≥ 3. Let α and β be (Δ + 1)-colourings of G. If α and β are not frozen
colourings, then dΔ+1(α, β) is O(n2). Moreover, it is possible to decide in time
O(n) whether or not there is a path between α and β in RΔ+1(G).

Theorem 2 implies that RΔ+1(G) contains a number of isolated vertices (repre-
senting frozen colourings) plus, possibly, one further component. It is possible
that the number of isolated vertices is zero (that is, there are no frozen (Δ+ 1)-
colourings; for example, consider 4-colourings of K3,3), or that there are only
isolated vertices (consider R4(K4) for instance; and Brooks’ theorem tells us
that complete graphs are the only graphs for which RΔ+1(G) is edgeless since
other graphs have colourings in which only Δ colours are used and by recolour-
ing any vertex with the unused colour we find a neighbouring colouring). We
observe that the requirement that Δ ≥ 3 is necessary since, for example R3(Cn),
n odd, has more than one component [10, 11].

Consequences of Our Results. Our theorems complete both structural and
algorithmic classifications for reconfigurations of colourings of graphs of bounded
maximum degree.

In [9] it was noted that if k ≥ Δ(G) + 2, Rk(G) is connected with diameter
O(n2). Combined with the results for general graphs noted above, and Theo-
rem 1, we have the following summary of the structure of reconfiguration graphs:
– if k ≤ Δ(G) then Rk(G) might not be connected and it is possible that its

connected components have superpolynomial diameter
– if k = Δ(G) + 1 then Rk(G) consists of zero or more isolated vertices and at

most one further component which has diameter O(n2) (if it exists).
– if k ≥ Δ(G) + 2 then Rk(G) is connected and has diameter O(n2).

And we summarise what is known about the computational complexity of the
problem of deciding, given a graph and two k-colourings, whether the two colour-
ings belong to the same connected component of Rk(G) using Theorem 2 for the
previously missing third case.
– O(n2) time solvable for k = 3,
– PSPACE-complete for 4 ≤ k ≤ Δ(G),
– O(n) time solvable for k = Δ(G) + 1,
– O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes).

Related Work. We note that reconfiguration graphs can be defined for any
search problem: vertices correspond to solutions and edges join solutions that
are “close” to one another; that is, solutions that differ as little as possible (for
a given problem, there might be more than one way to define an edge relation).
Reconfiguration graphs have been studied for a number of combinatorial prob-
lems; the questions asked are typically (as we have seen for colouring) is the
graph connected?, what is the diameter of the graph (or of its connected com-
ponents)?, how difficult is it to decide whether there is a path between a pair
of given solutions? Problems studied include boolean satisfiability [13,21],clique
and vertex cover [16], independent set [6, 20], list edge colouring [17],shortest

290 C. Feghali, M. Johnson, and D. Paulusma

path [3, 4], and subset sum [15] (see also a recent survey [14]). Recent work has
included looking at finding the shortest path in the reconfiguration graph be-
tween given solutions [19], and studying the fixed-parameter-tractability of these
problems [7, 18, 23, 24].

Further Preliminaries. The degree of a vertex v is denoted by deg(v). A graph
is k-degenerate if every induced subgraph has a vertex with degree at most k. It
is well-known that a graph is k-degenerate if and only if there exists a degeneracy
ordering v1, v2, . . . , vn of its vertices such that vi has at most k neighbours vj
with j < i. A graph is r-regular if for every vertex v, deg(v) = r.

A remark about our proofs. A common aim is to find a path between a pair
of colourings α and β in a reconfiguration graph. That is, to find a sequence
of colourings γ0, γ1, . . . , γt with α = γ0, β = γt such that adjacent colourings
disagree on a single vertex. We think of this sequence as a recolouring sequence.
If, for 1 ≤ i ≤ t, vi is the vertex on which γi and γi−1 disagree, then we can
think of β as being obtained from α by recolouring the vertices v1, . . . , vt in
order. Therefore, rather than explicitly considering the reconfiguration graph,
we will often seek to find a recolouring sequence; that is, to describe a sequence
of vertices and to say which colour each vertex should be recoloured with. Then
we will need to show that if we apply this recolouring sequence to α, we obtain
β, and that all the intermediate colourings obtained are proper.

2 Proofs of Theorems

To prove our theorems, we need a number of lemmas that are mostly concerned
with (Δ+ 1)-colourings which, as we shall see, present the only real difficulty in
proving Theorem 1. Some proofs are omitted for space reasons.

We define a number of terms we will use to describe vertices of G with respect
to some (Δ+1)-colouring. A vertex v is locked if Δ distinct colours appear on its
neighbours. A vertex that is not locked is free. Clearly a vertex can be recoloured
only if it is free. If v is locked and then one of its neighbour is recoloured and v
becomes free, we say that v is unlocked. A vertex v is superfree if there is a colour
c = Δ + 1 such that neither v nor any of its neighbours is coloured c. A vertex
can only be recoloured with a colour other than Δ + 1 if it is superfree. Note
there are Δ− 1 distinct colours that must appear on the Δ neighbours of v if it
is not superfree. We say that G is in (Δ + 1)-reduced form if for every vertex v
coloured with (Δ+ 1), v and each of its neighbours are locked. This implies that
the distance between any pair of vertices coloured (Δ + 1) is at least 3 as no
vertex can have two neighbours coloured (Δ + 1).

The key to proving Theorem 1 will be to show that from a (Δ+ 1)-colouring
one can recolour some of the vertices to arrive at a colouring in which colour
Δ + 1 appears on fewer vertices. We begin by considering the case where the
colour Δ + 1 appears on only one vertex. The following lemma is inspired by a
proof of Brooks’ theorem [22].

A Reconfigurations Analogue of Brooks’ Theorem 291

Lemma 1. Let G = (V,E) be a connected graph on n vertices with maximum
degree Δ ≥ 3, and let α be a (Δ + 1)-colouring of G with exactly one vertex v
coloured Δ + 1. If G does not contain KΔ+1 as a subgraph, then G can be
recoloured to a Δ-colouring in O(n) steps.

Proof. We can assume that G is in (Δ+ 1)-reduced form since if v is not locked
then we can immediately recolour it; if a neighbour of v is not locked then it can
be recoloured and this will unlock v and allow us to recolour it.

Let us fix a labelling of the neighbours of v: let xi be the neighbour such that
α(xi) = i, 1 ≤ i ≤ Δ. Our aim is to find a recolouring sequence that unlocks
v. There is one recolouring sequence that we will use several times. Suppose
that C is a connected component of a subgraph of G induced by two colours i
and j, Δ + 1 /∈ {i, j}, and no vertex coloured j in C is adjacent to v. First the
vertices coloured j are recoloured with Δ + 1. Then the vertices coloured i are
recoloured j, and finally the vertices initially coloured j are recoloured i. It is
clear that all colourings are proper and the overall effect is to swap the colours i
and j on C.

We say that any colouring γ where G is in (Δ + 1)-reduced form, only v is
coloured Δ + 1 and γ(xi) = i, 1 ≤ i ≤ Δ, is good. For any good colouring γ,
let Gγ

ij be the maximal connected component containing xi of the subgraph of
G induced by the vertices coloured i and j by γ.

We make some claims about good colourings. When we claim that v can be
unlocked, it is implicit that colour Δ+ 1 is not used on any other vertex in the
graph so that unlocking v allows us to reach a colouring where Δ+1 is not used.

Claim 1: If γ is good and xj /∈ Gγ
ij , then v can be unlocked.

If xj /∈ Gγ
ij , then the only vertex adjacent to v in Gγ

ij is xi. Thus the colours i
and j can be swapped on Gγ

ij . Then v has two neighbours with colour j and is
unlocked.

Claim 2: If γ is good and Gγ
ij is not a path from xi to xj , then v can be unlocked.

By Claim 1, we can assume that xi and xj are in Gγ
ij . They must have degree

1 in Gij since, as G is in (Δ + 1)-reduced form, they are locked. Suppose that
Gγ

ij is not a path and consider the shortest path in Gγ
ij from xi to xj , and the

vertex w nearest to xi on the path that has degree more than 2. Then w has at
least three neighbours coloured alike in G and is superfree and can be recoloured
with a colour other than i, j or Δ+ 1. Call this new colouring γ′ and note that,

by the choice of w, Gγ′
ij does not contain xj . Now Claim 1 implies Claim 2.

As G is KΔ+1-free, v and its neighbours are not a clique so we can assume
that x1 and x2 are not adjacent. Let u be the unique neighbour of x1 coloured 2.
For a good colouring γ, note that u is in Gγ

12, and let Hγ
23 be the component of

the subgraph of G induced by the vertices with colour 2 and 3 that contains u.

Claim 3: If γ is good and u has more than one neighbour in Hγ
23, then v can

be unlocked.

If Gγ
12 is not a path, then use Claim 2. Otherwise u has two neighbours coloured

1; if u has two neighbours in Hγ
23, then it also has two neighbours coloured 3

and is superfree. Recolour it and apply Claim 1.

292 C. Feghali, M. Johnson, and D. Paulusma

Claim 4: If γ is good and Hγ
23 is a path, then v can be unlocked.

By Claim 2 we can assume Gγ
23 is a path. If Hγ

23 = Gγ
23, then we can use Claim 3.

So we assume Hγ
23 = Gγ

23 and so x2, x3 /∈ H23 and H23 contains no neighbour
of v. Let γ′ be the colouring obtained by swapping the colours 2 and 3 on Hγ

23.
By Claim 3, u is an endvertex of Hγ

23. Let the other endvertex be w. (If w = u,
then u has no neighbour coloured 3 and can be recoloured. Then use Claim 2.)

If Gγ′
12 is not a path from x1 to x2, we use Claim 2. If it is such a path, then

let the unique neighbour of x1 in Gγ′
12 be y and clearly y ∈ Hγ

23. From x2 traverse

Gγ′
12 until the last vertex z that is also in Gγ

12 is reached. Let t be the next vertex

along from z towards x1 in Gγ′
12. Clearly t is also in Hγ

23. In fact, we can assume

that w = y = t since if y or t has degree 2 in H23 as well as in Gγ′
12 it has two

neighbours coloured 1 and two neighbours coloured 3 in γ′ and is superfree. It
can be recoloured and then Claim 2 is used.

So x1wz is coloured 131 in γ so is in Gγ
13. Then z is in both Gγ

13 and Gγ
12 so

is superfree and can be recoloured so that Claim 2 can be used. This completes
the proof of Claim 4.

To complete the proof: we know that the initial colouring α is good. If none
of the four claims can be used, then consider Hα

23. We know that u has degree 1
in H23 but H23 is not a path. So traversing edges away from u in Hα

23, let s be
the first vertex reached with degree 3. Then s is superfree and can be recoloured
so that H23 becomes a path, and then Claim 4 can be used. ��

In Lemma 3, we shall see how, for regular graphs, the number of vertices
coloured Δ + 1 can be reduced when more than one is present. First we need
some definitions and a lemma. Let P be a path:
– P is nearly (Δ + 1)-locked if its endvertices are locked and coloured Δ+ 1;
– P is (Δ + 1)-locked if it is nearly (Δ + 1)-locked and every vertex on the

path is locked.

Lemma 2. Let G be a graph in (Δ+ 1)-reduced form. If G has a (Δ+ 1)-locked
path P , then each endvertex of P is an endvertex of an (Δ + 1)-locked path of
length 3.

A path is nice if it is a nearly (Δ + 1)-locked path, it contains free vertices
and the endvertices and their neighbours are the only locked vertices. Notice
that a nice path is not necessarily induced and, in particular, may contain a
(Δ + 1)-locked subpath.

Lemma 3. Let G be a connected regular graph on n vertices with degree Δ ≥ 3,
let α be a (Δ+1)-colouring of G, and suppose that G is in (Δ+1)-reduced form.
If G has at least two (Δ + 1)-locked vertices and is not frozen, then there exists
a (Δ+ 1)-colouring γ of G, such that dΔ+1(α, γ) = O(n) and fewer vertices are
coloured Δ + 1 with γ than with α.

A Reconfigurations Analogue of Brooks’ Theorem 293

Proof. We consider a number of cases.

Case 1: There exists a free vertex u adjacent to a (Δ + 1)-locked path P .

Let b be the vertex on the path adjacent to u. As b is locked it has a neighbour
a coloured Δ+ 1. Let c be a neighbour of b on P other than a. As c is locked it
has a neighbour d coloured Δ + 1.

Since G is in (Δ + 1)-reduced form, u is not adjacent to a or d but might
be adjacent to c. In each case, it is routine to verify that by recolouring u to
Δ + 1, b and c can both be recoloured unlocking a and d and allowing them to
be recoloured. Thus the number of vertices coloured Δ+ 1 is reduced.

Case 2: G has a nice path.

Let P be a shortest nice path. Let the endpoints be v and w with neighbours s
and t on P respectively. If s and t are adjacent, then the path vstw is (Δ + 1)-
locked and has a free vertex adjacent to s so use Case 1. Thus assume that P is
induced since the presence of any other edge would imply either a shorter nice
path could be found or that the graph was not in (Δ + 1)-reduced form.

We use induction on the number � of free vertices in P to show that there
is a sequence of recolourings that lead to a colouring that has fewer vertices
coloured Δ + 1.

If � = 1, let u be the free vertex in P . Recolour u to Δ + 1. Now s and t
have two neighbours coloured Δ + 1 and can be recoloured. Then v and w are
unlocked and can both be recoloured, and this leaves one vertex on P coloured
Δ+ 1 rather than two.

Suppose that � = 2. Let P = vsu1u2tw where u1 and u2 are free vertices.

Subcase 2.1: u1 and u2 do not share a neighbour. Let x1 and x2 be neighbours
of u1 and u2 not in P . Clearly x1 = x2 and u1x2 and u2x1 are not edges.

Subcase 2.1.1: x1 is locked. We know x1 has a (Δ + 1)-locked neighbour, and
this must be v (if it is some other vertex z, then vsu1x1z is a nice path that is
shorter than P).

Suppose x1s is not an edge. Recolour u1 to Δ+ 1. This unlocks x1 which can
be recoloured with α(u1) which, in turn, unlocks v and allows us to recolour
it with α(x1). If u1 is free, it can be recoloured and the number of vertices
coloured Δ + 1 is reduced and we are done. If u1 is locked, then note that s
has been unlocked (as it no longer has a neighbour coloured α(u1)). Thus we
can recolour s and then recolour u1 with α(s) and again we have removed one
instance of the colour Δ + 1.

Suppose instead that x1s is an edge. Notice that α(s), α(u1) and α(x1) are
distinct as the three vertices form a triangle. Recolour u1 with Δ+ 1 and then s
with α(u1). Now v is unlocked and can be recoloured with α(s). If u1 is free,
then recolour it and we are done. Otherwise this sequence of recolourings leaves
u1 locked (with α(u1) and α(x1) as the colours on s and x1 respectively). So,
from α, we do the following instead: again start by recolouring u1 with Δ + 1,
but then recolour x1 with α(u1) to unlock v. Now that α(x1) is not used on a
neighbour of u1, u1 is free and can be recoloured.

294 C. Feghali, M. Johnson, and D. Paulusma

Subcase 2.1.2: x1 is free. If x2 is locked, we can, by symmetry, use the previous
subcase, so we can assume that both x1 and x2 are free. Recolour u2 to Δ + 1.
Then t is unlocked and can be recoloured which, in turn, unlocks w allowing
us to recolour it too. If u2 is free, we recolour it and are done. If u1 is free, we
recolour it and unlock u2 and, again, recolour it.

If u1 and u2 are both locked, observe that x1 is still free as it has no neighbour
coloured Δ+1 since u2x1 is not an edge. Recolour x1 to Δ+1, and then recolour
u1 to α(x1). Note that now s has no neighbour coloured α(u1) and is free and can
be recoloured so that v is unlocked and can also be recoloured. By recolouring
u1, we also unlock u2, so we recolour it and are done.

Subcase 2.2: u1 and u2 share a neighbour. Let x1 be a neighbour of u1 and u2.
Since P is induced, x1 is not in P . If x1 is locked, then let its neighbour coloured
Δ + 1 be y. Then vsu1x1y is a shorter nice path unless y = v. By an analagous
argument we need y = w. This contradiction tells us that x1 must be free.

If x1 is joined to both s and t, then vsx1tw is a shorter nice path. So, without
loss of generality, assume that x1t is not an edge. Thus as u2 has a neighbour
that is not adjacent to x1, x1 has a neighbour x3 that is not adjacent to u2.

Subcase 2.2.1: x3 = s. Recolour u1 with Δ+1 and then s with α(u1). Now v is
unlocked and can be recoloured with α(s). If u1 is free, then recolour it and we
are done. If u2 or x1 is still free, then recolour one of them to unlock u1, which
in turn can be recoloured and are done. Otherwise this sequence of recolourings
leaves u1, u2 and x1 locked so x1 is the only neighbour of u2 coloured α(x1). So,
from α, we do the following instead: recolour x1 with Δ+1 to unlock s and then
v. If x1 can be recoloured, then we do so and are done. Otherwise notice that
α(x1) is not used on a neighbour of u2. It is thus free and can be recoloured to
unlock x1 and allow us to recolour it.

Subcase 2.2.2: x3 = s, and x3 is free. First, suppose x3s is an edge. Recolour
u2 to Δ + 1, t to α(u2) and w to α(t). If either u2 or one of its neighbours is
now free, u2 can be recoloured and we are done. Otherwise u1, u2 and x1 are all
locked, but x3 is still free since it has no neighbour coloured Δ+ 1. Recolour x3
to Δ+ 1 to unlock x1; then recolour x1 to unlock and recolour u2. As x3s is an
edge, s has two neighbours coloured Δ + 1. Thus we recolour s to unlock v.

If x3t is an edge we can use a similar argument. So suppose x3s and x3t are
not edges. Recolour u2 to Δ+ 1, to unlock and recolour first t and then w. It is
possible to recolour u2 unless it and all its neighbours are locked. This implies
that u1, x1 and u2 are locked. We consider two subcases.

Subcase 2.2.2.1: u1x3 is not an edge. We recolour x3 to Δ + 1 to unlock and
recolour x1 and then u2. Notice that u1 is now free since it has no neighbour
coloured Δ + 1. Recoloured u1 unlocks s, so we recolour it, which in turn un-
locks v. Observe that x1 now has two neighbours u1 and x3 with colour Δ+ 1 so
is free. If u1 or u3 is free, we can recolour at least one of them directly and we
are done. Otherwise, we recolour x1 so that x3 and u1 can now be recoloured.

Subcase 2.2.2.2: u1x3 is an edge. Recolour u3 to Δ + 1, then recolour u1, s
and v. Observe that x1 now has two neighbours u2 and u3 with colour Δ + 1.

A Reconfigurations Analogue of Brooks’ Theorem 295

If u2 or u3 are free, we are done. Otherwise, recolour x1, then recolour u2 and
x3, and we are done.

Subcase 2.2.3: x3 = s, and x3 is locked. Then x3 has a (Δ + 1)-locked neigh-
bour y. If y = v, the path H = vx3x1u2tw is nice with two free vertices x1
and u2. Furthermore, u1 is free and a neighbour of x1 and u2, in which case
H satisfies the previous subcase unless x3 and t are adjacent in which case use
Subcase 2.1. A similar argument can be made if y = w or y ∈ {v, w}.

This completes the case � = 2.

Now suppose that for all i < �, if there is a nice path containing i free vertices,
the number of vertices coloured Δ+1 can be reduced. Suppose that the shortest
such path is P = vsu1u2 . . . u�tw where � ≥ 3. We recolour u� to Δ + 1, then
t and then w. If u� or one of its neighbours is free, then u� can be recoloured
and we are done. Otherwise, u� and u�−1 are locked. Consider the path P ′ =
vsu1 . . . u�−2u�−1u�. By our inductive hypothesis, the number of colour Δ + 1
vertices in P ′ can be reduced. Case 2 is complete.

After Cases 1 and 2 we are left with:

Case 3: There does not exist a free vertex adjacent to a (Δ + 1)-locked path
and G has no nice path.

As G contains more than one (Δ+1)-locked vertex, it contains a nearly (Δ+1)-
locked path; let P be the shortest and let v and w be its endvertices. As G is
in (Δ+ 1)-reduced form, v, w and their neighbours are locked. If P contains no
other vertices, it is (Δ + 1)-locked. Otherwise, since there are no nice paths, P
contains another locked vertex u. Let y be the neighbour of u coloured Δ+1. If y
is on P , then we can assume, without loss of generality, that it is not between v
and u. Then, whether or not y is on P , the subpath from v to u plus the edge uy
is a shorter nearly (Δ + 1)-locked path. This contradiction proves that G must
contain a (Δ + 1)-locked path.

As G is not frozen, it contains a free vertex. Let Q be the shortest path in G
that joins a free vertex to a (Δ + 1)-locked vertex. Let v be the (Δ + 1)-locked
endvertex. So v is an endpoint of a (Δ + 1)-locked path R, and, by Lemma 2,
we can assume that R has length 3.

Let u be the endvertex of Q that is free. By the minimality of Q, u is the
only free vertex in Q. Let a be the neighbour of u in Q. As a is locked it has a
(Δ + 1)-locked neighbour z. Thus we must have z = v and Q = vau.

Let R = wtsv. Observe that us, ut, uv and uw cannot be edges as no locked
path has a free neighbour. Thus the vertices of R and Q other than v are distinct.
Consider the (not necessarily induced) path M = wtsvau. Notice also that at is
not an edge else the free vertex u is adjacent to the (Δ + 1)-locked path vatw.

Suppose M is an induced path. Recolour u with Δ+ 1 to unlock and recolour
a and then v. If u is not locked, then recolour and we are done. Else notice that
the vertices v and s are free, and the vertices u, a, t, w are locked. Consequently,
we have that M is a nice path, and by Case 2 we are done.

The only edge that might be present among the vertices of M is as so suppose
this exists. Recolour u with Δ+ 1 to unlock and recolour first a and then v. If u

296 C. Feghali, M. Johnson, and D. Paulusma

or any of its neighbours are free, u can be recoloured and we are done. Otherwise
note that recoloured v unlocks s. It follows that the path H = uastw is nice,
and we can use Case 2. This completes Case 3.

As each vertex is recoloured a constant number of times, the lemma follows. ��

We need one final lemma before we prove Theorem 1.

Lemma 4. Let G = (V,E) be a connected graph on n vertices with maximum
degree Δ ≥ 1 and degeneracy Δ − 1. Let α be a (Δ + 1)-colouring of G. Then
there exists a Δ-colouring γ of G such that dΔ+1(α, γ) ≤ n2.

Proof (of Theorem 1). If k > Δ + 1, then, by Brooks’ Theorem, a Δ-colouring
γ exists in Rk(G) unless G is complete or an odd cycle. We know that, in this
case, Rk(G) is connected and has diameter O(n2) so certainly dk(α, γ) is O(n2).

Suppose that k = Δ + 1. If G is (Δ − 1)-degenerate, the result follows from
Lemma 4. We claim that the only graphs with maximum degree Δ that are not
(Δ− 1)-degenerate are Δ-regular graphs. To see this, consider a smallest possible
counterexample G that has degeneracy and maximum degree Δ and contains a
vertex v with deg(v) < Δ. Suppose G − v has degeneracy Δ. Then, by the
minimality of G, we find that G − v is Δ-regular. This would mean that every
neighbor of v in G has more than Δ neighbours, which is not possible. Hence,
G − v must have degeneracy Δ− 1. But every induced subgraph of G is either
an induced subgraph of G− v or contains v, and, in either case, must contain a
vertex of degree less than Δ contradicting the claim that G has degeneracy Δ.

So we can suppose now that G is Δ-regular and in (Δ+ 1)-reduced form with
α: if not, we try to recolour each vertex with colour Δ + 1 either directly or by
first recolouring one of its neighbours. Repeatedly applying Lemma 3 starting
from α, we obtain a (Δ + 1)-colouring γ′ in O(n2) steps such that at most one
vertex is coloured (Δ + 1) with γ′. Lemma 1 can now be applied to obtain
a Δ-colouring γ from γ′ in O(n) steps. Consequently dΔ+1(α, γ) ≤ O(n2) as
required. ��

We finish the section by considering Theorem 2. First we need:

Lemma 5. Let G = (V,E) be a connected graph on n vertices with maximum
degree Δ ≥ 3. Let γ1 and γ2 be Δ-colourings of G. Then dΔ+1(γ1, γ2) is O(n2).

The lemma says that there is a path between any pair of Δ-colourings, but,
because we are working with RΔ+1(G), the intermediate colourings might use
Δ+ 1 colours.

Proof (of Theorem 2). Theorem 1 implies that from each of α and β there is a
path in RΔ+1 to a Δ-colouring; Lemma 5 implies that there is a path between
these two Δ-colourings that completes the path from α to β. Consequently, it is
possible to decide in O(n) time whether or not there is a path between α and
β in RΔ+1(G): it is necessary only to check for each vertex v in G, for each of
α and β, whether v and its neighbours use every colour in {1, 2, . . . , Δ + 1}. If
they do not, neither colouring is frozen so there is a path between them. ��

A Reconfigurations Analogue of Brooks’ Theorem 297

3 Conclusions

We have completed the study of reconfiguration graphs of graphs of bounded
degree by considering the case where the number of colours is one more than
the maximum degree. In Theorem 2, we showed that the reconfiguration graph
contains isolated vertices and one further component. As it is easy to recognize a
frozen colouring, this also means that we can decide in polynomial time whether
a given pair of colourings belong to the same component. We make two additional
observations about when the reconfiguration graph can have isolated vertices.

Corollary 1. Let G be a connected regular graph on n vertices with maximum
degree Δ ≥ 3. If n ≡ 0 mod (Δ + 1) then RΔ+1(G) has diameter O(n2).

Proof. Let γ be a frozen colouring of G. Let V1, V2, . . . , VΔ+1 be the colour classes
of γ. Suppose there exist integers i, j such that |Vi| > |Vj |. Because γ is a frozen
colouring each v ∈ Vi has a neighbour in Vj . Hence there is a vertex u ∈ Vj with
at least two neighbours in Vi. Since u has Δ neighbours, it follows that u is free
and can thus be recoloured, a contradiction. Therefore |V1| = · · · = |VΔ+1|. We
have proved that whenever G has a frozen colouring, n ≡ 0 mod (Δ + 1), and
by Theorem 2 if there is no frozen colouring, RΔ+1(G) is connected. ��

Corollary 2. Let G be a connected graph with maximum degree Δ ≥ 3 and
degeneracy (Δ− 1). Then RΔ+1(G) is connected with diameter O(n2).

Proof. The result follows immediately from Theorem 2 by observing that a
(Δ − 1)-degenerate graph has a vertex with at most Δ − 1 neighbours and
is thus free in any (Δ + 1)-colouring of G. ��

Cereceda [9] conjectured that the diameter of the reconfiguration graph on
(k+2)-colourings of a k-degenerate graph on n vertices is O(n2). This conjecture
has been answered in the positive for values of k ∈ {1, Δ} [9]. By the previous
corollary, we further confirm this conjecture for the value k = Δ− 1.

References

1. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proc. LA-
GOS 2013. Electronic Notes in Discrete Mathematics, vol. 44, pp. 257–262 (2013)

2. Bonamy, M., Johnson, M., Lignos, I.M., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of
Combinatorial Optimization 27, 132–143 (2014)

3. Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 222–233. Springer,
Heidelberg (2012)

4. Bonsma, P.: Rerouting shortest paths in planar graphs. In: Proc. FSTTCS 2012.
LIPIcs, vol. 18, pp. 337–349 (2012)

5. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: Pspace-
completeness and superpolynomial distances. Theoretical Computer Science 410,
5215–5226 (2009)

298 C. Feghali, M. Johnson, and D. Paulusma

6. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. arXiv, 1403.0359 (2014)

7. Bonsma, P., Mouawad, A.: The complexity of bounded length graph recoloring.
arXiv, 1404.0337 (2014)

8. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of
the Cambridge Philosophical Society 37, 194–197 (1941)

9. Cereceda, L.: Mixing graph colourings. PhD thesis, London School of Economics
(2007)

10. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colourings. Discrete Mathematics 308, 913–919 (2008)

11. Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite
graphs. European Journal of Combinatorics 30(7), 1593–1606 (2009)

12. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
Journal of Graph Theory 67(1), 69–82 (2011)

13. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of boolean satisfiability: Computational and structural dichotomies. SIAM Journal
on Computing 38(6), 2330–2355 (2009)

14. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London. Mathematical Society
Lecture Notes Series, vol. 409 (2013)

15. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem.
In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 58–69. Springer,
Heidelberg (2011)

16. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412(12-14), 1054–1065 (2011)

17. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)

18. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Colouring recon-
figuration is fixed-parameter tractable. arXiv, 1403.6347 (2014)

19. Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412(39), 5205–5210 (2011)

20. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfig-
urability problems. Theoretical Computer Science 439, 9–15 (2012)

21. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem for
horn relations. Discrete Applied Mathematics 158(18), 2024–2030 (2010)

22. Melnikov, L.S., Vizing, V.G.: New proof of brooks’ theorem. Journal of Combina-
torial Theory 7(4), 289–290 (1969)

23. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and be-
yond. arXiv, 1402.4926 (2014)

24. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the param-
eterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

Intersection Graphs of L-Shapes

and Segments in the Plane�

Stefan Felsner1, Kolja Knauer2, George B. Mertzios3, and Torsten Ueckerdt4

1 Institut für Mathematik, Technische Universität Berlin, Germany
2 LIRMM, Université Montpellier 2, France

3 School of Engineering and Computing Sciences, Durham University, UK
4 Department of Mathematics, Karlsruhe Institute of Technology, Germany

felsner@math.tu-berlin.de, kolja.knauer@math.univ-montp2.fr,

george.mertzios@durham.ac.uk, torsten.ueckerdt@kit.edu

Abstract. An L-shape is the union of a horizontal and a verti-
cal segment with a common endpoint. These come in four rotations:
L,

L
, Land

L

. A k-bend path is a simple path in the plane, whose di-
rection changes k times from horizontal to vertical. If a graph admits
an intersection representation in which every vertex is represented by an
L, an L or

L
, a k-bend path, or a segment, then this graph is called an

{L}-graph, {L, L}-graph, Bk-VPG-graph or SEG-graph, respectively. Mo-
tivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics,
108(1):365–372, 1992], stating that every {L, L}-graph is a SEG-graph,
we investigate several known subclasses of SEG-graphs and show that
they are {L}-graphs, or Bk-VPG-graphs for some small constant k. We
show that all planar 3-trees, all line graphs of planar graphs, and all full
subdivisions of planar graphs are {L}-graphs. Furthermore we show that
all complements of planar graphs are B19-VPG-graphs and all comple-
ments of full subdivisions are B2-VPG-graphs. Here a full subdivision is
a graph in which each edge is subdivided at least once.

Keywords: Intersection graphs, segment graphs, co-planar graphs,
k-bend VPG-graphs, planar 3-trees.

1 Introduction and Motivation

A segment intersection graph, SEG-graph for short, is a graph that can be
represented as follows. Vertices correspond to straight-line segments in the plane
and two vertices are adjacent if and only if the corresponding segments intersect.
Such representations are called SEG-representations and, for convenience, the
class of all SEG-graphs is denoted by SEG. SEG-graphs are an important subject
of study strongly motivated from an algorithmic point of view. Indeed, having
an intersection representation of a graph (in applications graphs often come

� This work was partially supported by (i) the DFG ESF EuroGIGA projects COM-
POSE and GraDR, (ii) the EPSRC Grant EP/K022660/1 and (iii) the ANR Project
EGOS: ANR-12-JS02-002-01.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 299–310, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

300 S. Felsner et al.

along with such a given representation) may allow for designing better or faster
algorithms for optimization problems that are hard for general graphs, such as
finding a maximum clique in interval graphs.

More than 20 years ago, Middendorf and Pfeiffer [24], considered intersection
graphs of axis-aligned L-shapes in the plane, where an axis-aligned L-shape is
the union of a horizontal and a vertical segment whose intersection is an endpoint
of both. In particular, L-shapes come in four possible rotations: L,

L
, L, and

L

. For
a subset X of these four rotations, e.g., X = {L} or X = {L, L}, we call a graph
an X-graph if it admits an X-representation, i.e., vertices can be represented
by L-shapes from X in the plane, each with a rotation from X , such that two
vertices are adjacent if and only if the corresponding L-shapes intersect. Similarly
to SEG, we denote the class of all X-graphs by X . The question if an intersection
representation with polygonal paths or pseudo-segments can be stretched into a
SEG-representation is a classical topic in combinatorial geometry and Oriented
Matroid Theory. Middendorf and Pfeiffer prove the following interesting relation
between intersection graphs of segments and L-shapes.

Theorem 1 (Middendorf and Pfeiffer [24]). Every {L, L}-representation
has a combinatorially equivalent SEG-representation.

This theorem is best-possible in the sense that there are examples of {L, L}-
graphs which are no SEG-graphs [7, 24], i.e., such {L, L}-representations cannot
be stretched. We feel that Theorem 1, which of course implies that {L, L} ⊆ SEG,
did not receive a lot of attention in the active field of SEG-graphs. In particular,
one could use Theorem 1 to prove that a certain graph class G is contained
in SEG by showing that G is contained in {L, L}. For example, very recently
Pawlik et al. [25] discovered a class of triangle-free SEG-graphs with arbitrarily
high chromatic number, disproving a famous conjecture of Erdős [18], and it is
in fact easier to see that these graphs are {L}-graphs than to see that they are
SEG-graphs. To the best of our knowledge, the stronger result G ⊆ {L, L} has
never been shown for any non-trivial graph class G. In this paper we initiate
this research direction. We consider several graph classes which are known to be
contained in SEG and show that they are actually contained in {L}, which is a
proper subclass of {L,L} [7].

Whenever a graph is not known (or known not) to be an intersection graph of
segments or axis-aligned L-shapes, one often considers natural generalizations of
these intersection representations. Asinowski et al. [3] introduced intersection
graphs of axis-aligned k-bend paths in the plane, called Bk-VPG-graphs.
An (axis-aligned) k-bend path is a simple path in the plane, whose direction
changes k times from horizontal to vertical. Clearly,B1-VPG-graphs are precisely
intersection graphs of all four L-shapes; the union of Bk-VPG-graphs for all
k ≥ 0 is exactly the class STRING of intersection graphs of simple curves in the
plane [3]. Now if a graph G /∈ SEG is a Bk-VPG-graph for some small k, then
one might say that G is “not far from being a SEG-graph”.

Intersection Graphs of L-Shapes and Segments in the Plane 301

Our Results and Related Work
Let us denote the class of all planar graphs by PLANAR. A recent celebrated
result of Chalopin and Gonçalves [6] states that PLANAR ⊂ SEG, which was
conjectured by Scheinerman [26] in 1984. However, their proof is rather involved
and there is not much control over the kind of SEG-representations. Here we
give an easy proof for a non-trivial subclass of planar graphs, namely planar
3-trees. A 3-tree is an edge-maximal graph of treewidth 3. Every 3-tree can be
built up starting from the clique K4 and adding new vertices, one at a time,
whose neighborhood in the so-far constructed graph is a triangle.

Theorem 2. Every planar 3-tree is an {L}-graph.

It remains open to generalize Theorem 2 to planar graphs of treewidth 3 (i.e.,
subgraphs of planar 3-trees). On the other hand it is easy to see that graphs
of treewidth at most 2 are {L}-graphs [8]. Chaplick and the last author show
in [9] that planar graphs are B2-VPG-graphs, improving on an earlier result of
Asinowski et al. [3]. In [9] it is also conjectured that PLANAR ⊂ {L}, which
with Theorem 1 would imply the main result of [6], i.e., PLANAR ⊂ SEG.

Considering line graphs of planar graphs, one easily sees that these graphs
are SEG-graphs. Indeed, a straight-line drawing of a planar graph G can be
interpreted as a SEG-representation of the line graph L(G) of G, which has the
edges of G as its vertices and pairs of incident edges as its edges. We prove the
following strengthening result.

Theorem 3. The line graph of every planar graph is an {L}-graph.

Kratochv́ıl and Kuběna [21] consider the class of all complements of pla-
nar graphs (co-planar graphs), CO-PLANAR for short. They show that
CO-PLANAR are intersection graphs of convex sets in the plane, and ask
whether CO-PLANAR ⊂ SEG. As the Independent Set Problem in pla-
nar graphs is known to be NP-complete [15], Max Clique is NP-complete for
any graph class G ⊇ CO-PLANAR , e.g., intersection graphs of convex sets.
Indeed, the longstanding open question whether Max Clique is NP-complete
for SEG [22] has recently been answered affirmatively by Cabello, Cardinal and
Langerman [4] by showing that every planar graph has an even subdivision whose
complement is a SEG-graph. The subdivision is essential in the proof of [4], as
it still remains an open problem whether CO-PLANAR ⊂ SEG [21]. The largest
subclass of CO-PLANAR known to be in SEG is the class of complements of
partial 2-trees [14]. Here we show that all co-planar graphs are “not far from
being SEG-graphs”.

Theorem 4. Every co-planar graph is a B19-VPG graph.

Theorem 4 implies that Max Clique is NP-complete for Bk-VPG-graphs
with k ≥ 19. On the other hand, the Max Clique problem for B0-VPG-graphs
can be solved in polynomial time, while Vertex Colorability remains NP-
complete but allows for a 2-approximation [3]. Middendorf and Pfeiffer [24] show
that the complement of any even subdivision of any graph, i.e., every edge is

302 S. Felsner et al.

subdivided with a non-zero even number of vertices, is an {L, L}-graph. This
implies that Max Clique is NP-complete even for {L, L}-graphs.

We consider full subdivisions of graphs, that is, a subdivision H of a graph
G where each edge of G is subdivided at least once. It is not hard to see that
a full subdivision H of G is in STRING if and only if G is planar, and that if
G is planar, then H is actually a SEG-graph. Here we show that this can be
further strengthened, namely that H is in an {L}-graph. Moreover, we consider
the complement of a full subdivision H of an arbitrary graph G, which is in
STRING but not necessarily in SEG. Here, similar to the result of Middendorf
and Pfeiffer [24] on even subdivisions we show that such a graph H is “not far
from being SEG-graph”.

Theorem 5. Let H be a full subdivision of a graph G.

(i) If G is planar, then H is an {L}-graph.
(ii) If G is any graph, then the complement of H is a B2-VPG-graph.

The graph classes considered in this paper are illustrated in Figure 1. We
shall prove Theorems 2, 3, 4 and 5 in Sections 2, 3, 4 and 5, respectively, and
conclude with some open questions in Section 6. Due to lack of space, the full
proof of Theorem 2 is given in the full version [13].

B1 B2 B19· · · · · ·

STRING

SEG

COCOMP

• line graphs of planar graphs
• planar 3-trees
• full subdivisions of planar graphs

• complements of full subdivisions

• complements of planar graphs

• complements of
even subdivisions

• planar graphs

Fig. 1. Graph classes considered in this paper

Related Representations
In the context of contact representations, where distinct segments or k-bend
paths may not share interior points, it is known that every contact SEG-
representation has a combinatorially equivalent contact B1-VPG-representation,

Intersection Graphs of L-Shapes and Segments in the Plane 303

but not vice versa [20]. Contact SEG-graphs are exactly planar Laman graphs
and their subgraphs [10], which includes for example all triangle-free planar
graphs. Very recently, contact {L}-graphs have been characterized [8]. Necessary
and sufficient conditions for stretchability of a contact system of pseudo-segments
are known [1, 11].

Let us also mention the closely related concept of edge-intersection graphs of
paths in a grid (EPG-graphs) introduced by Golumbic et al. [16]. There are some
notable differences, starting from the fact that every graph is an EPG-graph [16].
Nevertheless, analogous questions to the ones posed about VPG-representations
of STRING-graphs are posed about EPG-representations of general graphs. In
particular, there is a strong interest in finding representations using paths with
few bends, see [19] for a recent account.

2 Proof of Theorem 2

Proof (main idea). Let G be a plane 3-tree with a xed plane embedding. We
construct an {L}-representation of G satisfying the additional property that for
every inner triangular face {a, b, c} of G there exists a subset of the plane, called
the private region of the face, that intersects only the L-paths for a, b and c, and
no other L-path. We remark that this technique has also been used by Chalopin
et al. [5] and refer to Figure 2 for an illustration. ��

a a

b c

v

(a)

a a

b c

v

(b)

Fig. 2. (a) Introducing an L-shape for vertex v into the private region for the trian-
gle {a, b, c}. (b) Identifying a pairwise disjoint private regions for the facial triangles
{a, b, v}, {a, c, v} and {b, c, v}.

3 Proof of Theorem 3

Proof. Without loss of generality let G be a maximally planar graph with a
fixed plane embedding. (Line graphs of subgraphs of G are induced subgraphs
of L(G).) Then G admits a so-called canonical ordering –first defined in [12]–,
namely an ordering v1, . . . , vn of the vertices of G such that

– Vertices v1, v2, vn form the outer triangle of G in clockwise order. (We draw
G such that v1, v2 are the highest vertices.)

304 S. Felsner et al.

– For i = 3, . . . , n vertex vi lies in the outer face of the induced embedded
subgraph Gi−1 = G[v1, . . . , vi−1]. Moreover, the neighbors of vi in Gi−1

form a path on the outer face of Gi−1 with at least two vertices.

We shall construct an {L}-representation of L(G) along a fixed canonical ordering
v1, . . . , vn of G. For every i = 2, . . . , n we shall construct an {L}-representation
of L(Gi) with the following additional properties.

For every outer vertex v of Gi we maintain an auxiliary bottomless rectangle
R(v), i.e., an axis-aligned rectangle with bottom-edge at −∞, such that:

– R(v) intersects the horizontal segments of precisely those rectilinear paths
for edges in Gi incident to v.

– R(v) does not contain any bends or endpoints of any path for an edge in Gi

and does not intersect any R(w) for w = v.

– the left-to-right order of the bottomless rectangles matches the order of ver-
tices on the counterclockwise outer v1, v2-path of Gi.

The bottomless rectangles act as placeholders for the upcoming vertices of L(G).
Indeed, all upcoming intersections of paths will be realized inside the correspond-
ing bottomless rectangles. For i = 2, the graph Gi consist only of the edge v1v2.
Hence an {L}-representation of the one-vertex graph L(G2) consists of only one
L-shape and two disjoint bottomless rectangles R(v1), R(v2) intersecting its hor-
izontal segment.

For i ≥ 3, we shall start with an {L}-representation of L(Gi−1). Let
(w1, . . . , wk) be the counterclockwise outer path of Gi−1 that corresponds
to the neighbors of vi in Gi−1. The corresponding bottomless rectangles
R(w1), . . . , R(wk) appear in this left-to-right order. See Figure 3 for an illus-
tration. For every edge viwj , j = 1, . . . , k we define an L-shape P (viwj) whose
vertical segment is contained in the interior of R(wj) and whose horizontal seg-
ment ends in the interior of R(wk). Moreover, the upper end and lower end
of the vertical segment of P (viwj) lies on the top side of R(wj) and below
all L-shapes for edges in Gi−1, respectively. Finally, the bend and right end of
P (viwj) is placed above the bend of P (viwj+1) and to the right of the right end
of P (viwj+1) for j = 1, . . . , k − 1, see Figure 3.

It is straightforward to check that this way we obtain an {L}-representation
of L(Gi). So it remains to find a set of bottomless rectangles, one for each
outer vertex of Gi, satisfying our additional property. We set R′(v) = R(v)
for every v ∈ V (Gi) \ {vi, w1, . . . , wk} since these are kept unchanged. Since
R(w1) and R(wk) are not valid anymore, we define a new bottomless rectangle
R′(w1) ⊂ R(w1) such that R′(w1) is crossed by all horizontal segments that cross
R(w1) and additionally the horizontal segment of P (viw1). Similarly, we define
R′(wk) ⊂ R(wk). And finally, we define a new bottomless rectangle R′(vi) ⊂
R(wk) in such a way that it is crossed by the horizontal segments of exactly
P (viw1), . . . , P (viwk). Note that for 1 < j < k the outer vertex wj of Gi−1 is
not an outer vertex of Gi. Then {R′(v) | v ∈ v(Gi)} has the desired property.
See again Figure 3. ��

Intersection Graphs of L-Shapes and Segments in the Plane 305

v1 v2

w2

w1 w4
w3

vi

Gi−1

R(v1) R(v2)

R(w1) R(w2) R(w3) R(w4)

R′(w1) R′(vi) R′(w4)

Fig. 3. Along a canonical ordering a vertex vi is added to Gi−1. For each edge
between vi and a vertex in Gi−1 an L-shape is introduced with its vertical seg-
ment in the corresponding bottomless rectangle. The three new bottomless rectangles
R′(w1), R

′(vi), R′(wk) are highlighted.

4 Proof of Theorem 4

Proof. Let G = (V,E) be any planar graph. We shall construct a Bk-VPG
representation of the complement Ḡ of G for some constant k that is independent
of G. Indeed, k = 19 is enough. To find the VPG representation we make use
of two crucial properties of G: A) G is 4-colorable and B) G is 5-degenerate.
Indeed, our construction gives a B2d+9-VPG representation for the complement
of any 4-colorable d-degenerate graph. Here a graph is called d-degenerate if it
admits a vertex ordering such that every vertex has at most d neighbors with
smaller index.

Consider any 4-coloring of G with color classes V1, V2, V3, V4. Further let σ =
(v1, . . . , vn) be an order of the vertices of V witnessing the degeneracy of G,
i.e., for each vi there are at most 5 neighbors vj of vi with j < i. We call these
neighbors the back neighbors of vi. Consider any ordered pair of color classes,
say (V1, V2), and denote W = V1 ∪ V2, together with the vertex orders inherited
from the order of vertices in V , i.e., σ|V1 = σ1 = (v1, . . . , v|V1|) and σ|V2 = σ2 =
(w1, . . . , w|V2|). Further consider the axis-aligned rectangle R = [0, A] × [0, A],
where A = 2(|W |+ 2). For illustration we divide R into four quarters [0, A/2]×
[0, A/2], [0, A/2]× [A/2, A], [A/2, A]× [0, A/2] and [A/2, A]× [A/2, A]. We define
a monotone increasing path Q(v) for each v ∈W as follows. See Figure 4 for an
illustration.

– For v ∈ V1 let {σ2(i1), . . . , σ2(ik)}, i1 < · · · < ik, be the back neighbors of
v in V2 and i∗ = max{0} ∪ {σ−1

2 (w) | w ∈ V2, σ
−1(w) < σ−1(v)} be the

largest index with respect to σ2 of a vertex in V2 that comes before v in σ
or i∗ = 0 if there is no such vertex. Then we define the path Q(v) so that
it starts at (1, 0), uses the horizontal lines at y = 2ij − 1 for j = 1, . . . , k,
y = 2i∗ +1 and y = A−2σ1(v) in that order, uses the vertical lines at x = 1,
x = 2ij + 1 for j = 1, . . . , k and x = A − 2σ1(v) in that order, and finally
ends at (A,A− 2σ1(v)).

306 S. Felsner et al.

1 2 3 6

6

3

2

1

8 7 5 4

4

5

7

8

R

2

1

3

6

5

7
8

4

Fig. 4. The induced subgraph G[W] for two color classes W = V1∪V2 of a planar graph
G and a VPG representation of its complement Ḡ[W] in the rectangle [0, 2(|W |+2)]×
[0, 2(|W |+ 2)]

Note that Q(v) avoids the top-left quarter of R, has exactly one bend at
(A− 2σ1(v), A − 2σ1(v)) in the top-right quarter, and goes above the point
(2i, 2i) in the bottom-left quarter if and only if i = i1, . . . , ik and i ≤ i∗.

– For wi ∈ V2 the path P (wi) is defined analogous after rotating the rectangle
R by 180 degrees and swapping the roles of V1 and V2.

It is straightforward to check that {Q(v) | v ∈ W} is a VPG representation
of Ḡ[W] completely contained in R, where each Q(v) starts and ends at the
boundary of R and has at most 3 + 2k bends, where k is the number of back
neighbors of v in W .

Now we have defined for each pair of color classes Vi ∪ Vj a VPG-
representation of Ḡ[Vi ∪ Vj]. For every vertex v ∈ V we have defined three Q-
paths, one for each colors class that v is not in. In total the three Q-paths for the
same vertex v have at most 9+2k ≤ 19 bends, where k ≤ 5 is the back degree of
v. It remains to place the six representations of Ḡ[Vi ∪ Vj] non-overlapping and
to “connect” the three Q-paths for each vertex in such a way that connections
for vertices of different color do not intersect. This can easily be done with two
extra bends per paths, basically because K4 is planar (we refer to Figure 5 for
one way to do this). Finally, note that the first and last segment of every path
in the representation can be omitted, yielding the claimed bound. ��

Intersection Graphs of L-Shapes and Segments in the Plane 307

V2

V4

V1

V3

Fig. 5. Interconnecting the VPG representations of Ḡ[Vi ∪ Vj] by adding at most two
bends for each vertex. The set of paths corresponding to color class Vi is indicated by
a single path labeled Vi, i = 1, 2, 3, 4.

5 Proof of Theorem 5

Proof. Let G be any graph and H arise from G by subdividing each edge at
least once. Without loss of generality we may assume that every edge of G is
subdivided exactly once or twice. Indeed, if an edge e of G is subdivided three
times or more, then H can be seen as a full subdivision of the graph G′ that
arises from G by subdividing e once.

(i) Assuming that G is planar, we shall find an {L}-representation of H as
follows. Without loss of generality G is maximally planar. We consider a
bar visibility representation of G, i.e., vertices of G are disjoint horizontal
segments in the plane and edges are disjoint vertical segments in the plane
whose endpoints are contained in the two corresponding vertex segments and
which are disjoint from all other vertex segments. Such a representation for
a planar triangulation exists e.g. by [23]. See Figure 6 for an illustration.

1

2

3

4

5

6

4

6

3

1

5

2 4

6

3

1

5

2

Fig. 6. A planar graph G on the left, a bar visibility representation of G in the center,
and an {L}-representation of a full division of G on the right. Here, the edges {1, 2},
{1, 3} and {3, 6} are subdivided twice.

308 S. Felsner et al.

It is now easy to interpret every segment as an L, and replace an segment
corresponding to edge that is subdivided twice by two L-shapes. Let us
simply refer to Figure 6 again.

(ii) Now assume that G = (V,E) is any graph. We shall construct a B2-
VPG representation of the complement H̄ of H = (V ∪ W,E′) with
monotone increasing paths only. First, we represent the clique H̄ [V]. Let
V = {v1, . . . , vn} and define for i = 1, . . . , n the 2-bend path P (vi) for
vertex vi to start at (i, 0), have bends at (i, i) and (i + n, i), and end at
(i + n, n + 1). See Figure 7 for an illustration. For convenience, let us call
these paths v-paths.

1 i j n

P (wij) P (wj)

P (wi)

1 + n

i + n

j + n

2n

1 i j n

2n

P (vi)

P (vj)

P (vi)

P (vj)

1 + n

i + n

j + n

Fig. 7. Left: Inserting the path P (wij) for a single vertex wij subdividing the edge vivj
in G. Right: Inserting the paths P (wi) and P (wj) for two vertices wi, wj subdividing
the edge vivj in G.

Next, we define for every edge of G the 2-bend paths for the one or two
corresponding subdivision vertices in H̄ . We call these paths w-paths. So let
vivj be any edge of G with i < j. We distinguish two cases.

Case 1. The edge vivj is subdivided by only one vertex wij in H . We define
the w-path P (wij) to start at (j− 1

4 , i+
1
4), have bends at (j− 1

4 , j+ 1
4)

and (i + n − 1
4 , j + 1

4), and end at (i + n − 1
4 , n + 1), see the left of

Figure 7.
Case 2. The edge vivj is subdivided by two vertices wi, wj with viwi, vjwj ∈

E(H). We define the start, bends and end of the w-path P (wi) to be
(j − 1

4 , i + 1
4), (j − 1

4 , j −
1
4), (i + n − 1

4 , j −
1
4) and (i + n − 1

4 , n +
1), respectively. The start, bends and end of the w-path P (wj) are
(j − 1

2 , i−
1
4), (j − 1

2 , j + 1
4), (i+ n− 1

2 , j + 1
4) and (i+ n− 1

2 , n+ 1),
respectively. See the right of Figure 7.

It is easy to see that every w-path P (w) intersects every v-path, except for
the one or two v-paths corresponding to the neighbors of w in H . Moreover,
the two w-paths in Case 2 are disjoint. It remains to check that the w-paths
for distinct edges of G mutually intersect. To this end, note that every w-
path for edge vivj starts near (j, i), bends near (j, j) and (i+n, j) and ends

Intersection Graphs of L-Shapes and Segments in the Plane 309

near (i+n, n). Consider two w-paths P and P ′ that start at (j, i) and (j′, i′),
respectively, and bend near (j, j) and (j′, j′), respectively. If j = j′ then it
is easy to check that P and P ′ intersect near (j, j). Otherwise, let j′ > j.
Now if j > i′, then P and P ′ intersect near (j′, i), and if j ≤ i′, then P and
P ′ intersect near (i + n, j′).

Hence we have found a B2-VPG-representation of H̄ , as desired. Let
us remark, that in this representation some w-paths intersect non-trivially
along some horizontal or vertical lines, i.e., share more than a finite set of
points. However, this can be omitted by a slight and appropriate perturba-
tion of endpoints and bends of w-paths. ��

6 Conclusions and Open Problems

Motivated by Middendorf and Pfeiffer’s theorem (Theorem 1 in [24]) that ev-
ery {L, L}-representation can be stretched into a SEG-representation, we consid-
ered the question which subclasses of SEG-graphs are actually {L, L}-graphs, or
even {L}-graphs. We proved that this is indeed the case for several graph classes
related to planar graphs. We feel that the question whether PLANAR ⊂ {L, L},
as already conjectured [9], is of particular importance. After all, this, together
with Theorem 1, would give a new proof for the fact that PLANAR ⊂ SEG.

Open Problem 1. Each of the following is open.

(i) When can a B1-VPG-representation be stretched into a combinatorially
equivalent SEG-representation?

(ii) Is {L, L} = SEG∩B1-VPG?
(iii) Is every planar graph an {L}-graph, or B1-VPG-graph?
(iv) Does every planar graph admit an even subdivision whose complement is

an {L}-graph, or B1-VPG-graph?
(v) Recognizing Bk-VPG graphs is known to be NP-complete for each k ≥ 0 [7].

What is the complexity of recognizing {L}-graphs, or {L, L}-graphs?

References

1. Aerts, N., Felsner, S.: Straight line triangle representations. In: Wismath, S., Wolff,
A. (eds.) GD 2013. LNCS, vol. 8242, pp. 119–130. Springer, Heidelberg (2013)

2. Alon, N., Scheinerman, E.: Degrees of freedom versus dimension for containment
orders. Order 5, 11–16 (1988)

3. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.:
Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2),
129–150 (2012)

4. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection
graphs. Discrete & Computational Geometry 50(3), 771–783 (2013)

5. Chalopin, J., Gonçalves, D., Ochem, P.: Planar graphs have 1-string representa-
tions. Discrete & Computational Geometry 43(3), 626–647 (2010)

310 S. Felsner et al.

6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane: extended abstract. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, pp. 631–638 (2009)

7. Chaplick, S., Jeĺınek, V., Kratochv́ıl, J., Vyskočil, T.: Bend-bounded path intersec-
tion graphs: Sausages, noodles, and waffles on a grill. In: Golumbic, M.C., Stern,
M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 274–285.
Springer, Heidelberg (2012)

8. Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs. In:
Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165,
pp. 139–151. Springer, Heidelberg (2013)

9. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. Journal of Graph Algo-
rithms and Applications 17(4), 475–494 (2013)

10. de Fraysseix, H., Ossona de Mendez, P.O.: Representations by contact and inter-
section of segments. Algorithmica 47(4), 453–463 (2007)

11. de Fraysseix, H., de Mendez, P.O.: Stretching of Jordan arc contact systems. Dis-
crete Applied Mathematics 155(9), 1079–1095 (2007)

12. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

13. Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-
shapes and segments in the plane. arXiv preprint arXiv:1405.1476 (2014)

14. Francis, M.C., Kratochv́ıl, J., Vyskočil, T.: Segment representation of a subclass
of co-planar graphs. Discrete Mathematics 312(10), 1815–1818 (2012)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory
of NP-completeness. W.H. Freeman (1979)

16. Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54(3), 130–138 (2009)

17. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection
graphs. Discrete Mathematics 43(1), 37–46 (1983)

18. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastos.
Mat. 19(3-4), 413–441 (1987)

19. Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: The
bend-number. Discrete Appl. Math. 167, 144–162 (2014)

20. Kobourov, S.G., Ueckerdt, T., Verbeek, K.: Combinatorial and geometric proper-
ties of planar Laman graphs. In: SODA, pp. 1668–1678. SIAM (2013)

21. Kratochv́ıl, J., Kuběna, A.: On intersection representations of co-planar graphs.
Discrete Mathematics 178(1-3), 251–255 (1998)

22. Kratochv́ıl, J., Matousek, J.: Intersection graphs of segments. Journal of Combi-
natorial Theory, Series B 62(2), 289–315 (1994)

23. Luccio, F., Mazzone, S., Wong, C.K.: A note on visibility graphs. Discrete Mathe-
matics 64(2-3), 209–219 (1987)

24. Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-graphs.
Discrete Mathematics 108(1), 365–372 (1992)

25. Pawlik, A., Kozik, J., Krawczyk, T., Lasoń, M., Micek, P., Trotter, W.T., Walczak,
B.: Triangle-free intersection graphs of line segments with large chromatic number.
Journal of Combinatorial Theory, Series B (2013)

26. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of
graphs. PhD thesis, Princeton University (1984)

27. Warren, H.E.: Lower bounds for approximation by nonlinear manifolds. Trans.
Amer. Math. Soc. 133, 167–178 (1968)

Autoreducibility and Mitoticity

of Logspace-Complete Sets
for NP and Other Classes�

Christian Glaßer and Maximilian Witek

Julius-Maximilians-Universität Würzburg, Germany
{glasser,witek}@informatik.uni-wuerzburg.de

Abstract. We study the autoreducibility and mitoticity of complete
sets for NP and other complexity classes, where the main focus is on
logspace reducibilities. In particular, we obtain:

– For NP and all other classes of the PH: Each ≤log
m -complete set is

≤log
T -autoreducible.

– For P, Δp
k, NEXP: Each ≤log

m -complete set is a disjoint union of two

≤log
2-tt-complete sets.

– For PSPACE: Each ≤p
dtt-complete set is a disjoint union of two ≤p

dtt-
complete sets.

1 Introduction

Complete sets for NP and other complexity classes are one of the main objects
of research in theoretical computer science. However, basic questions regarding
complete sets are still open. For instance: Is it possible to split each complete set
of a certain class into two complete sets? If the answer is yes, then all complete
sets of this class are in some sense redundant. In this paper we study two types
of redundancy of sets.

– Autoreducibility of A: A(x) can be efficiently computed from A(y) for y = x.
– Mitoticity of A: A is a disjoint union of two sets that are equivalent to A.

There are several notions of autoreducibility depending on the computing re-
sources and the number of values A(y) that we can ask for. For each reducibility
≤, a set A is ≤-autoreducible, if there exists a ≤-reduction from A to A that
on input x does not query x. Similarly, there are several notions of mitoticity
depending on the notion of equivalence that is used. For each reducibility ≤, a
set A is weakly ≤-mitotic, if there exists a set S such that A, A ∩ S, and A ∩ S
are pairwise ≤-equivalent. If S has low complexity, then A is called ≤-mitotic.

Typical complete problems for NP, PSPACE, and other classes are not only
polynomial-time-complete, but even logspace-complete, which brings us to the
main question of this paper:

Does logspace-completeness imply logspace-autoreducibility or even logspace-
mitoticity?

� Proofs omitted in this version can be found in the technical report [14].

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 311–323, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

312 C. Glaßer and M. Witek

We study this question for general complexity classes and conclude results for
the classes P, NP, Δp

k, Σp
k, Πp

k, and NEXP.

Related Work. The notions of autoreducibility and mitoticity were originally
studied in computability theory. Trakhtenbrot [20] defined a set A to be autore-
ducible if there exists an oracle Turing machine M such that A = L(MA) and
M on input x never queries x. Ladner [16] defined a set A to be mitotic if it is
the disjoint union of two sets of the same degree. He showed that a computably
enumerable set is mitotic if and only if it is autoreducible.

Motivated by the hope to gain insight in the structure of sets in NP, Ambos-
Spies [1] introduced and studied the variants of autoreducibility and mitoticity
that are defined by polynomial-time many-one reducibility (≤p

m) and polynomial-
time Turing reducibility (≤p

T). Moreover, he introduced the distinction between
mitoticity (splitting by some S ∈ P) and weak mitoticity (splitting by an ar-
bitrary S). For the study of sets inside P one needs refined notions of autore-
ducibility and mitoticity, which we obtain by using logspace reducibilities [11].

It is easy to see that in general, mitoticity implies autoreducibility. Ambos-
Spies [1] showed that ≤p

T-autoreducibility does not imply ≤p
T-mitoticity. More-

over,≤p
m-autoreducibility and ≤p

m-mitoticity are equivalent [13]. The same paper
showed that ≤p

T-autoreducibility does not imply weak ≤p
T-mitoticity.

A matter of particular interest is the question of whether complete sets are
autoreducible or mitotic. Ladner [16] showed that there are Turing-complete sets
for RE that are not mitotic. Over the years, researchers showed the polynomial-
time mitoticity or at least the polynomial-time autoreduciblity of complete sets
of prominent complexity classes: Beigel and Feigenbaum [2] proved that ≤p

T-
complete sets for all levels of the polynomial hierarchy and PSPACE are ≤p

T-
autoreducible. The same result holds for ≤p

m reducibility [12,13]. Buhrman,
Hoene, and Torenvliet [6] showed that ≤p

m-complete sets for EXP are weakly
≤p

m-mitotic, which was later improved to ≤p
m-mitotic [7]. Buhrman et al. [5]

proved that all ≤p
T-complete sets for EXP are ≤p

T-autoreducible. Moreover, the
same paper contains interesting negative results like the existence of polynomial-
time bounded-truth-table complete sets in EXP that are not polynomial-time
bounded-truth-table autoreducible. Nguyen and Selman [19] showed negative
autoreducibility results for NEXP. These and other results for polynomial-time
reducibilities are summarized in Table 2. In a recent paper [11], the authors stud-
ied autoreducibility and mitoticity also for logspace reducibilities (cf. Table 1).

Our Contribution. We prove the following general results on the autoreducibil-
ity and mitoticity of complete sets. Let C ⊇ (DSPACE(log · log(c)) ∩ P) be a
complexity class that is closed under intersection, for some c > 0.

(a) A ≤log
m -complete for C and ≤log

m -autoreducible =⇒ A weakly ≤log
2-dtt-mitotic.

(b) A ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible =⇒ A weakly ≤log
2-tt-mitotic.

(c) A ≤log
T -hard for P and ≤p

tt-autoreducible =⇒ A ≤log
T -autoreducible.

The results (a) and (b) are particularly interesting for P, the levels Δp
k of the poly-

nomial hierarchy, and NEXP. Previously it was known that≤log
m -complete sets are

≤log
m -autoreducible (resp., ≤log

1-tt-autoreducible). From (a) and (b) it follows:

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 313

(d) All ≤log
m -complete sets for P and all other Δp

k levels are weakly ≤log
2-tt-mitotic.

(e) All ≤log
m -complete sets for NEXP are weakly ≤log

2-dtt-mitotic.

So each of these sets is a disjoint union of two ≤log
2-tt-complete sets (resp., ≤log

2-dtt-
complete sets). It remains an open question whether this can be improved to
≤log

m -mitoticity. This question is interesting, since in contrast to ≤p
m reducibility,

we do not know whether ≤log
m -autoreducibility and ≤log

m -mitoticity are equivalent
(they are inequivalent relative to some oracle [10]).

The result (c) is particularly interesting for NP, coNP and the other Σp
k and

Πp
k levels of the polynomial hierarchy, where only the polynomial-time autore-

ducibility and mitoticity of complete sets was known. Here we obtain logspace
Turing autoreducibility:

(f) All ≤log
dtt-complete or ≤log

1-tt-complete sets for NP, coNP, Σp
k, Πp

k are ≤log
T -

autoreducible.

Finally, with our technique we also obtain a new result for the polynomial-time
setting. Previously it was known that all ≤p

dtt-complete sets for PSPACE are
≤p

dtt-autoreducible. We obtain:

(g) All ≤p
dtt-complete sets for PSPACE are weakly ≤p

dtt-mitotic.

Again this means that each such set is a disjoint union of two ≤p
dtt-complete

sets.
Table 1 and Table 2 summarize known results for logspace and polynomial-

time complete sets and emphasize the new results we obtained in this paper.

2 Preliminaries

We use standard notation for intervals of natural numbers, i.e., [a, b] = {a, a +
1, . . . , b},[a, b) = {a, a + 1, . . . , b − 1}, (a, b] = {a + 1, a + 2, . . . , b}, and (a, b) =
{a + 1, a + 2, . . . , b − 1} for a, b ∈ N. We call a set trivial if it is either finite or
cofinite, and non-trivial otherwise. We only consider non-trivial sets. For a set A
let cA denote its characteristic function, i.e., cA(x) = 1 ⇐⇒ x ∈ A. We denote
the Boolean exclusive or by ⊕. For functions f and g, by (f ◦ g) we denote the
composition of the functions, i.e., (f ◦ g)(x) := f(g(x)). Let f (i) denote the i-th
iteration of the function f , i.e., f (0)(x) := x, and f (i)(x) := f(f (i−1)(x)) for i > 0.
For a function f and some x, we refer to the sequence f (0)(x), f (1)(x), f (2)(x), . . .
as f ’s trace on x. For k ≥ 1, we say that a set S is a k-ruling set (for f) if for
every x there exists some i ≤ k with cS(x) = cS(f (i)(x)). Let log denote the

logarithm to base 2. We will often use the iterated logarithm log(k) for some
k > 0. For the sake of simplicity, we define log(x) := 0 for all x < 1, hence log
and its iterations are total functions that are always greater than or equal to 0.
For every x, by |x| we denote the length of x’s binary representation, by abs(x)
we denote its absolute value, and by sgn(x) we denote the sign of x. We say that
a function f is polynomially length-bounded if there exists a polynomial p such
that |f(x)| ≤ p(|x|) holds for all x. When we use functions s and t as space and
time bounds, we assume that s and t are monotone functions.

314 C. Glaßer and M. Witek

Table 1. Redundancy of logspace complete sets, where l ≥ 1 and k ≥ 2. For the
cell in row ≤r and column C, the entry As means that every ≤r-complete set for C
is ≤s-autoreducible. Analogously, the entry Ws means that every ≤r-complete set for
C is weakly ≤s-mitotic, and the entry Ms means that every ≤r-complete set for C is
≤s-mitotic. For the cells marked with X1 and X2, negative results are known: There
is a ≤log

btt-complete set for PSPACE that is not ≤log
btt-autoreducible [11] and a ≤log

btt-

complete set for EXP that is not ≤p
btt-autoreducible (and hence not ≤log

btt-autoreducible)
[5]. Results implied by universal relations between reductions are omitted, and results
obtained in this paper are framed. For the definitions of the reductions, see section 2.

≤ P NP, coNP Δp
k Σp

k,Π
p
k PSPACE EXP NEXP

≤log
m Alog

1-tt, W
log
2-tt Alog

1-tt, W
log
2-tt Mlog

m Mlog
m Alog

m , Wlog
2-dtt

≤log
l-ctt Alog

l-tt Alog
l-tt Mlog

l-ctt Mlog
l-ctt Alog

l-ctt

≤log
l-dtt A

log
l-tt Alog

l-tt Mlog
l-dtt Mlog

l-dtt A
log
l-dtt

≤log
ctt Mlog

ctt Mlog
ctt Alog

ctt

≤log
dtt Alog

T Alog
T Mlog

dtt Mlog
dtt Alog

dtt

≤log
1-tt Alog

2-tt Alog
T Alog

T Mlog
m Mlog

m Alog
m , Wlog

2-dtt

≤log
2-tt Mlog

2-tt Mlog
2-tt Alog

2-tt

≤log
btt A

log[1]
log-T A

log[1]
log-T X1 X2

≤log
tt Alog

tt Alog
tt

Oracle Access. There are several possibilities to define oracle access of space-
bounded oracle Turing machines. We use the multi-tape oracle access model
proposed by Lynch [18], where a space-bounded oracle Turing machine consists
of a single read-write working tape subject to the space bounds and an arbitrary
but fixed number of write-only oracle tapes not subject to the space bounds.
In each step, the oracle Turing machine may ask the query that is written on
some particular oracle tape, after which the oracle Turing machine enters an
answer state accordingly, and erases the particular oracle tape again. Note that
for logspace oracle Turing machines, there implicitly exists a polynomial space
bound on the oracle tapes.

Ladner and Lynch [17] considered the above model with only one oracle tape.
They showed that for every such logspace oracle Turing maching there exists
an equivalent logspace oracle Turing machine that asks queries non-adaptively.
Lynch [18] argued that this does not hold for the general case, where adaptive
queries are more powerful than non-adaptive queries.

Reductions. For setsA andB we say thatA is polynomial-time Turing reducible to
B (A ≤p

T B), if there exists a polynomial-time oracle Turing machine that accepts
A with B as its oracle. If M on input x asks at most O(log |x|) queries, then A is
polynomial-time log-Turing reducible to B (A ≤p

log-T B). If M ’s queries are non-

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 315

Table 2. Redundancy of polynomial-time complete sets, where l ≥ 1, l′ = l(l2 + l+1),
and k ≥ 2. The entries of the table are read analogously to the entries in Table 1.
Recall that there is a ≤log

btt-complete (and hence also ≤p
btt-complete) set for EXP that

is not ≤p
btt-autoreducible [5], hence we have a negative result marked by X3.

≤ NP Δp
k Σp

k,Π
p
k PSPACE EXP NEXP

≤p
m Mp

m Mp
m Mp

m Mp
m Mp

m Mp
m

≤p
1-tt Mp

1-tt Mp
1-tt Mp

1-tt Mp
1-tt Mp

m Mp
m

≤p
2-tt Mp

2-tt Ap
2-tt

≤p
l-ctt Ap

l-tt Ap
l-tt Mp

l-ctt Ap
l-ctt

≤p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt Ap

l-dtt, W
p

l′-dtt Mp
l-dtt A

p
l-dtt

≤p
btt X3

≤p
ctt Ap

tt Mp
ctt Ap

ctt

≤p
dtt Ap

dtt Ap
dtt Ap

dtt Ap
dtt, W

p
dtt Mp

dtt Ap
dtt

≤p
tt ABPP

tt Ap
tt ABPP

tt

≤p
T Ap

T Ap
T Ap

T Ap
T Ap

T

adaptive (i.e., independent of the oracle), then A is polynomial-time truth-table
reducible to B (A ≤p

tt B). If M asks at most k nonadaptive queries, then A is
polynomial-time k-truth-table reducible to B (A ≤p

k-tt B). A is polynomial-time
bounded-truth-table reducible to B (A ≤p

btt B), if A ≤p
k-tt B for some k. A is

polynomial-time disjunctive-truth-table reducible to B (A ≤p
dtt B), if there exists

a polynomial-time-computable functionf such that for allx,f(x) = 〈y1, y2, . . . , yn〉
for some n ≥ 1 and cA(x) = max{cB(y1), cB(y2), · · · , cB(yn)}. If n is bounded by
some constant k, then A is polynomial-time k-disjunctive-truth-table reducible to
B (A ≤p

k-dtt B). A is polynomial-time bounded-disjunctive-truth-table reducible
to B (A ≤p

bdtt B), if A ≤p
k-dtt B for some k. The polynomial-time conjunctive-

truth-table reducibilities ≤p
ctt, ≤

p
k-ctt, and ≤p

bctt are defined analogously. A is
polynomial-time many-one reducible to B (A ≤p

m B), if there exists a polynomial-
time-computable function f such that cA(x) = cB(f(x)). We also use the following
logspace reducibilities, which are defined analogously in terms of logspace oracle
Turing machines and logspace-computable functions:

≤log
T ,≤log

log-T,≤
log
tt ,≤

log
k-tt,≤

log
btt,≤

log
dtt,≤

log
k-dtt,≤

log
bdtt,≤

log
ctt,≤

log
k-ctt,≤

log
bctt,≤

log
m

It is easy to see that the truth-table reductions can be performed by oracle
Turing machines that use only one oracle tape. So multiple oracle tapes are
only significant for logspace Turing reductions with adaptive queries. We define

A ≤log[k]
T B if A ≤log

T B via some logspace oracle Turing machine with k oracle

tapes. Furthermore, if A ≤log[k]
T B with an oracle machine that on input x asks at

316 C. Glaßer and M. Witek

most O(log(|x|)) queries, then we write A ≤log[k]
log-T B. By Ladner and Lynch [17]

it holds that A ≤log[1]
T B if and only if A ≤log

tt B.

Definition 1. 1. A set A is called ≤p
T-autoreducible if A ≤p

T A via some
polynomial-time oracle Turing machine that on input x never queries x.

2. A set A is called ≤p
dtt-autoreducible if A ≤p

dtt A via some f ∈ FP where
from f(x) = 〈y1, y2, . . . , yn〉 it follows that x /∈ {y1, y2, . . . , yn} for all x.

We define autoreducibility for the remaining reductions analogously, where the
reduction oracle machine or the reduction function has to be chosen accordingly.

Definition 2. A set A is called weakly ≤p
T-mitotic if A ≡p

T A∩S ≡p
T A∩S for

some set S. We refer to S as a separator. If in addition it holds that S ∈ P, we
call A ≤p

T-mitotic.

We define mitoticity and weak mitoticity for the remaining reductions analo-
gously, where for logspace mitoticity, the separator must be inside L. If the
reduction is not transitive, then the sets A, A ∩ S, and A ∩ S must be pairwise
equivalent.

In general, mitoticity implies autoreducibility, while the converse does not
always hold. We are hence interested in the general question whether autore-
ducibility implies mitoticity or at least weak mitoticity.

3 Ruling Sets for Autoreductions

For transforming many-one autoreducibility into mitoticity, we consider the trace
of words obtained by the repeated application of the autoreduction function of
some language to the input x. Clearly all words on the trace of x have the
same membership to the language. The challenge is to define a set S of low
complexity such that when we follow such a trace for r steps, then we visit at
least one word in S and at least one word in S. Cole and Vishkin [8] developed
the deterministic coin tossing, which is a technique for the construction of such S.
In their terminology, the set S is called an r-ruling set.

In a recent paper [10], the author shows that for every non-trivial set L with

autoreduction f ∈ FL there is an autoreduction g ∈ FSPACE(log · log(2)) with
a 1-ruling set S ∈ L. We generalize this proof and obtain the following lemma.

Lemma 3. Let f be polynomially length-bounded with f(x) = x for all x. For
all k ≥ 1 there is a set S, a constant c0, and a polynomial q such that:

1. For all x there is some i ≤ c0 · (log(k)(|x|) + 1) such that cS(x) = cS(f (i)(x)),
and for all j ≤ i it holds that |f (j)(x)| ≤ q(|x|).

2. f ∈ FSPACE(s) =⇒ S ∈ DSPACE(s) (s ≥ log)
3. f ∈ FTIME(t) =⇒ S ∈ DTIME(O(t ◦ q)) (t ≥ n)

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 317

Given the set S from Lemma 3, for every x we know that after O(log(k)(|x|))
steps of f there must be a change in the membership to S. We can hence define a
set S′ by an algorithm that on input x finds the smallest i such that cS(f (i)(x)) >
cS(f (i+1)(x)) and accepts if i is even. Since the algorithm for S′ has to decide

S and compute f at most O(log(k)(|x|)) times, its complexity slightly increases.
However, S′ is almost a 1-ruling set for f , and the inputs x with cS′(x) =
cS′(f(x)) can easily be avoided: if x ∈ S and f(x) /∈ S, jump to f(x). We hence
obtain the following lemma.

Lemma 4. Let f be polynomially length-bounded with f(x) = x for all x. For
all k ≥ 1 there is a set S, a function g, and a polynomial q such that:

1. For all x it holds that cS(g(x)) = cS(f(g(x))) and g(x) ∈ {x, f(x)}.
2. f ∈ FSPACE(s) =⇒ S ∈ DSPACE(s · log(k)) ∧ g ∈ FSPACE(s) (s ≥ log)
3. f ∈ FTIME(t) =⇒ S ∈ DTIME(O(t ◦ q)) ∧ g ∈ FTIME(O(t ◦ q)) (t ≥ n)

4 Weak Mitoticity

We show that autoreducibility of complete sets for general classes implies weak
mitoticity. This gives progress towards the general question of whether complete
sets are mitotic.

General Approach. Given a many-one autoreduction f for some set A complete
for some class C, we apply the results of the previous section to generate a 2-
ruling set S for f . Since the complexity of S is only slightly higher than the
complexity of f , we obtain A∩ S ∈ C and A ∩ S ∈ C. Considering some input x,
we then find two elements y, z on f ’s trace on x with the same membership to A
as x such that exactly one is contained in S. Hence, y, z form a 2-dtt-reduction
from A to A ∩ S and A ∩ S. So A is many-one complete for C, and A ∩ S and
A ∩ S are 2-dtt complete, which shows weak 2-dtt mitoticity of A.

This approach can be generalized to further reducibility notions, including
disjunctive truth-table reductions and reductions with exactly one query.

4.1 Many-One Complete Sets

We first consider logspace many-one autoreducible, complete sets for classes that
contain the intersection of P and some space class slightly higher than L. Since
the classes will be closed under intersection, the intersection of the complete set
with the separator and its complement remain in the same complexity class.

Theorem 5. Let C ⊇ (DSPACE(log · log(c))∩P) for some c ≥ 1 be closed under
intersection. If A is ≤log

m -complete for C and ≤log
m -autoreducible, then A is weakly

≤log
2-dtt-mitotic.

Proof. Let f ∈ FL be a ≤log
m -autoreduction for A. From Lemma 4 we obtain a

set S ∈ (DSPACE(log · log(c)) ∩ P) and a function g ∈ FL such that for all x

318 C. Glaßer and M. Witek

it holds that cS(g(x)) = cS(f(g(x))) and g(x) ∈ {x, f(x)}. We will show that

A ∩ S and A ∩ S are ≤log
2-dtt-complete for C.

Note that (DSPACE(log · log(c))∩P) is closed under complementation, hence
we have S ∈ C and S ∈ C. Since C is closed under intersection, we obtain
A ∩ S ∈ C and A ∩ S ∈ C. So it remains to show the ≤log

2-dtt-hardness of A ∩ S
and A ∩ S for C. Since A is ≤log

m -hard for C, it suffices to show A ≤log
2-dtt A ∩ S

and A ≤log
2-dtt A ∩ S.

Observe that cA(x) = cA(g(x)) = cA(f(g(x))) and {g(x), f(g(x))} ∩ S = ∅.
Let h(x) := {g(x), f(g(x))}. If x ∈ A, then h(x) ⊆ A, hence h(x) ∩ (S ∩ A) =
(h(x) ∩ A) ∩ S = h(x) ∩ S = ∅. If x /∈ A, then h(x) ∩ (A ∩ S) ⊆ h(x) ∩ A = ∅.
Hence, h shows that A ≤log

2-dtt A ∩ S. Analogously, h shows that A ≤log
2-dtt A ∩ S.

So, A is ≤log
m -complete, and A ∩ S and A ∩ S are ≤log

2-dtt-complete for C. ��

Note that every≤log
1-tt-complete set for NEXP is ≤log

m -complete, and every≤log
m -

complete set for NEXP is ≤log
m -autoreducible [11]. Since NEXP clearly satisfies

the requirements of Theorem 5, we obtain the following corollary.

Corollary 6. 1. Every ≤log
m -complete set for NEXP is weakly ≤log

2-dtt-mitotic.

2. Every ≤log
1-tt-complete set for NEXP is weakly ≤log

2-dtt-mitotic.

4.2 Truth-Table Complete Sets with One Query

We generalize our approach for many-one autoreductions to truth-table autore-
ductions that ask exactly one query. We can think of such a truth-table au-
toreduction for some set A as two functions f, f ′, where f ′ maps to the set of
all unary Boolean functions, such that for all x it holds that f(x) = x and
cA(x) = f ′(x)(cA(f(x))). For non-trivial A we can modify f ′ such that it never
maps to a constant function. We further modify the autoreduction such that on
each input it either has a long part in its trace that behaves like a many-one
autoreduction, or ends up after a few steps in a small cycle. We treat cycles di-
rectly and proceed on long many-one parts of the trace similar to the many-one
case.

Theorem 7. Let C ⊇ (DSPACE(log · log(c)) ∩ P) for some c ≥ 1 be closed

under intersection. If A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible, then A

is weakly ≤log
2-tt-mitotic.

Proof (Sketch). For non-trivial A, choose f, f ′ ∈ FL such that f ′ maps to the
set of unary Boolean functions {id, non}, and such that for all x it holds that
x = f(x) and cA(x) = f ′(x)(cA(f(x))). Define g such that for each x,

g(x) := f (k)(x) for k ≤ 3 minimal with x = f (k)(x) and cA(x) = cA(f (k)(x)),
if such a k exists, and

g(x) := f(x) otherwise.

Observe that g ∈ FL and g(x) = x. We can show [14] that for all x, if g(2)(x) =
g(4)(x), then cA(g(k)(x)) = cA(g(k+1)(x)) = cA(g(k+2)(x)) for some k ≤ 2.

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 319

From Lemma 4 we obtain a set S ∈ (DSPACE(log · log(c))∩P) and a function
h ∈ FL such that cS(h(x)) = cS(g(h(x))) and h(x) ∈ {x, g(x)} for all x. We
define S′ := {x ∈ S | x = g(2)(x)} ∪ {x | x = g(2)(x) and x < g(x)}. Then,

S′ ∈ (DSPACE(log · log(c)) ∩ P), hence A ∩ S′ ∈ C. We show that A ∩ S′ is

≤log
2-tt-complete for C by proving A ≤log

2-tt A ∩ S′ (completeness of A ∩ S′ works
analogously). On input x, if g(2)(x) = g(4)(x), then we obtain i ∈ {2, 3} with
cS′(g(i)(x)) = 1, hence cA(x) = b ⊕ cA∩S′(g(i)(x)), where b can be computed
by looking at f ′. If g(2)(x) = g(4)(x), then cA(g(k)(x)) = cA(g(k+1)(x)) =
cA(g(k+2)(x)) for some k ≤ 2. Determine k and let y = h(g(k)(x)) and z = g(y).
Then, cS′(y) = cS′(z). Compute b with b⊕ cA(x) = cA(y) = cA(z) by looking at
f ′. By case distinction one can see that cA(x) = b⊕max{cA∩S′(y), cA∩S′(z)}. ��

If some class is closed under complement, then all its ≤log
m -complete sets are

≤log
1-tt-autoreducible. Hence we obtain the following corollaries.

Corollary 8. Let C ⊇ (DSPACE(log · log(c))∩P) for some c ≥ 1 be closed under
intersection and complementation. If A is ≤log

m -complete for C, then A is weakly

≤log
2-tt-mitotic.

Corollary 9. Every ≤log
m -complete set for P and every ≤log

m -complete set for the

levels Δp
k of the PH is weakly ≤log

2-tt-mitotic.

4.3 Disjunctive Truth-Table Complete Sets for PSPACE

We further generalize our approach to disjunctive truth-table autoreductions
of complete sets for some higher complexity classes. Here, we consider the re-
duction graph of some disjunctive truth-table autoreduction f . If we grant the
separator enough resources, then for each input x, it can determine the small-
est equivalent y ∈ f(x) and hence treat f like a many-one reduction. While for
most higher classes, a diagonalization method leads to (strong) mitoticity results,
for PSPACE in the polynomial-time reducibility setting, only autoreducibility
results are known. Our approach as described above shows weak mitoticity.

Lemma 10. Let A ∈ PSPACE and let f ∈ FP be a ≤p
dtt-autoreduction for A

such that f never maps to the empty set. Then there exists a set S ∈ PSPACE
such that for all x there exist y ∈ f(x) and z ∈ f(y) with the following properties:

1. cA(x) = cA(y) = cA(z)
2. ∅ = ({x, y, z} ∩ S) = {x, y, z}

Proof. We consider the function g with

g(x) :=

{
yi if f(x) = 〈y1, . . . , yk〉 ∧ yi ∈ A ∧ yj /∈ A for all j < i , and

y1 if f(x) = 〈y1, . . . , yk〉 ∧ yj /∈ A for all j ≤ k,

for all x. Since A ∈ DSPACE(p) for some polynomial p, there exists a polynomial
q such that g ∈ FSPACE(q). Furthermore, since g maps to values of f , we have
g(x) = x for all x, and we can modify q such that |g(x)| ≤ q(|x|).

320 C. Glaßer and M. Witek

We apply Lemma 4 and obtain a set S ∈ DSPACE(q · log(c)) ⊆ PSPACE
(where c ≥ 1 is some constant) and a function h such that h(x) ∈ {x, g(x)} and
cS(h(x)) = cS(g(h(x))) for all x. Choose y := g(x) and z := g(y). Hence y ∈ f(x)
and z ∈ f(y), and cA(x) = cA(y) = cA(z). Furthermore, h(x) ∈ {x, y}, so we
either have cS(x) = cS(y), or cS(y) = cS(z). ��

Theorem 11. Let k ≥ 2 and k′ = (k2 + k + 1).

1. All ≤p
k-dtt-complete sets for PSPACE are weakly ≤p

(k · k′)-dtt-mitotic.

2. All ≤p
bdtt-complete sets for PSPACE are weakly ≤p

bdtt-mitotic.
3. All ≤p

dtt-complete sets for PSPACE are weakly ≤p
dtt-mitotic.

Proof. If L is ≤p
k-dtt-complete for PSPACE, then L is ≤p

k-dtt-autoreducible [12].
Let f be some ≤p

k-dtt-autoreduction for L. We assume that f never maps to the
empty set. From Lemma 10 we obtain S ∈ PSPACE with the specified properties.
We show that L∩S is ≤p

k · k′-dtt-complete for PSPACE, the completeness of L∩S
is shown analogously.

Clearly, L∩ S ∈ PSPACE, so it remains to show hardness. For arbitrary A ∈
PSPACE we already know that A ≤p

k-dtt L, hence it suffices to show L ≤p

k′-dtt
L∩S. On input x, return Qx := {x}∪f(x)∪

⋃
y∈f(x) f(y), which can be computed

in polynomial time. The number of the elements in the output is bounded by
(1 + k + k2) = k′. To show that Qx is a reduction as claimed above, choose y, z
as in the lemma. If x ∈ L, then {x, y, z} ⊆ L, and, since {x, y, z} ∩ S = ∅ and
{x, y, z} ⊆ Qx we obtain (L ∩ S) ∩ Qx ⊇ (L ∩ S) ∩ {x, y, z} = S ∩ {x, y, z} = ∅.
If x /∈ L, then (L ∩ S) ∩Qx ⊆ L ∩Qx = ∅. This shows the ≤p

k · k′-dtt-hardness.
We have shown item 1. The other items are shown analogously. ��

5 Logspace Autoreducibility for NP

In this section we consider logspace complete sets for NP. In this setting, nei-
ther can we apply diagonalization (here, NP is too weak to diagonalize against
logspace reductions), nor can we trace entire computation paths in the non-
deterministic computation tree (because logspace reductions have not enough
storage). However, we know that logspace complete sets for NP are redundant
in the polynomial-time setting, which gives us access to particular deterministic
polynomial-time computations and the transcripts of those computations.

Theorem 12. Let A be ≤log[k]
T -hard for P. If A is ≤p

tt-autoreducible, then A is

≤log[2k+1]
T -autoreducible.

Proof (Sketch). Choose autoreduction functions f, g ∈ FP such that for all x
there is some m with f(x) = 〈y1, . . . , ym〉, x /∈ {y1, . . . , ym} and cA(x) =
g(x, cA(y1), . . . , cA(ym)). Consider the transcripts (i.e., bit string representations
of the sequence of configurations on some input, starting with the input itself,
and ending on the function value computed) of polynomial-time Turing trans-
ducers that compute f and g, respectively. Given such transcripts, we can verify

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 321

the consistency of each bit in space log(n) by looking at constantly many previ-
ous bits of the transcript. The transcript bits are computable in polynomial time
and can hence be reduced to A in logspace with k oracle tapes. On input x we
compute and verify the transcript bits with oracle A ∪ {x}. If some verification
fails, A ∪ {x} is the wrong oracle, hence x /∈ A. Otherwise we obtain cA(x) by
looking at the last transcript bit.

The bits of y1, . . . , ym can be computed with k oracle tapes. Hence each yi
can be written on oracle tape (k+ 1), and we obtain y = (x, cA(y1), . . . , cA(ym))
with k + 1 oracle tapes. To obtain cA(x) = g(y), we have to look at bits of the
transcript for g on y, which can be done in logspace by a recomputation with k
additional oracle tapes. So we need k tapes for bitwise computing 〈y1, . . . , ym〉,
one tape for storing an yi, and k tapes for bitwise computing g(y). ��

Note that if A is ≤log
T -hard for P, then there exists a ≤log

m -complete set B for

P and some k such that B ≤log[k]
T A, hence A is ≤log[k]

T -hard for P.

Corollary 13. Let A be ≤log
T -hard for P. If A is ≤p

tt-autoreducible, then A is

≤log
T -autoreducible.

Theorem 14 ([12]). Let r be one of the reductions ≤p
m, ≤p

1-tt, ≤
p
dtt,≤

p
l-dtt for

l ≥ 2. Then every nontrivial set that is r-complete for one of the following
classes is r-autoreducible: PSPACE, Σp

k, Πp
k, Δp

k, 1NP, the levels of the Boolean
hierarchy over NP, the levels of the MODPH hierarchy.

Note that each of the classes mentioned in Theorem 14 contains P, so here
we can apply Corollary 13. While for PSPACE and the Δ-levels of the PH,
autoreducibility and mitoticity results are known, we obtain new autoreducibility
results for the Σ-levels and the Π-levels of the PH, including NP and coNP.

Corollary 15. Let r be one of the reductions ≤log
m , ≤log

1-tt, ≤
log
dtt,≤

log
l-dtt for l ≥ 2.

Then every nontrivial set that is r-complete set for one of the following classes is
≤log

T -autoreducible: NP, coNP, Σp
k, Πp

k, 1NP, the levels of the Boolean hierarchy
over NP, the levels of the MODPH hierarchy.

6 Summary and Conclusion

We obtained that for complete sets of most complexity classes of interest, ≤log
m -

autoreducibility implies weak ≤log
2-dtt-mitoticity, and ≤log

1-tt-autoreducibility im-

plies weak ≤log
2-tt-mitoticity. These results apply to classes such as P, the Δ-levels

of the PH, and NEXP, where the logspace mitoticity of complete sets is not
known. Our proof technique follows traces of autoreduction functions and labels
their elements with a separator set of low complexity in such a way that after
very few steps, there must be a change in the separator membership. With small
modifications, our technique also shows that ≤p

dtt-complete sets for PSPACE
are weakly ≤p

dtt-mitotic. It remains an open question whether this technique can
be improved to show (strong) mitoticity results or many-one mitoticity results.

322 C. Glaßer and M. Witek

The latter would be particularly interesting for NEXP, where ≤log
m -mitoticity

of complete sets is still open. Also, can we obtain analogous results for ≤p
ctt-

complete sets for PSPACE?
We further obtain that all≤log

m -complete sets for NP and all other classes of the

PH are≤log
T -autoreducible, and this can be extended to further reducibilities. Our

proof builds on known results on polynomial-time autoreducibility and mitoticity.
It seems to be difficult to obtain a short self-contained proof, because on the one
hand, the classes of the polynomial hierarchy are too weak to simulate arbitrary
logspace reductions, and hence diagonalization techniques do not apply here, yet
the classes are complex enough such that logspace reductions cannot verify their
computations (for instance, in logspace, we cannot simulate an accepting NP

computation path). Note that the ≤log
T -autoreduction uses multiple oracle tapes.

It remains open whether the number of oracle tapes can be reduced such that
we obtain ≤log

tt -autoreducibility.

References

1. Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.)
Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 1–23. Springer, Heidelberg
(1984)

2. Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Compu-
tational Complexity 2, 1–17 (1992)

3. Berman, L.: Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell
University, Ithaca, NY (1977)

4. Buhrman, H.: Resource Bounded Reductions. PhD thesis, University of Amsterdam
(1993)

5. Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Separating complex-
ity classes using autoreducibility. SIAM J. Comput. 29(5), 1497–1520 (2000)

6. Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and structure of
complete sets. SIAM J. Comput. 27(3), 637–653 (1998)

7. Buhrman, H., Torenvliet, L.: A Post’s program for complexity theory. Bulletin of
the EATCS 85, 41–51 (2005)

8. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Information and Control 70(1), 32–53 (1986)

9. Ganesan, K., Homer, S.: Complete problems and strong polynomial reducibilities.
SIAM J. Comput. 21(4), 733–742 (1992)

10. Glaßer, C.: Space-efficient informational redundancy. J. Comput. System Sci. 76(8),
792–811 (2010)

11. Glaßer, C., Nguyen, D.T., Reitwießner, C., Selman, A.L., Witek, M.: Autore-
ducibility of complete sets for log-space and polynomial-time reductions. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS,
vol. 7965, pp. 473–484. Springer, Heidelberg (2013)

12. Glaßer, C., Ogihara, M., Pavan, A., Selman, A.L., Zhang, L.: Autoreducibility,
mitoticity, and immunity. J. Comput. System Sci. 73(5), 735–754 (2007)

13. Glaßer, C., Pavan, A., Selman, A.L., Zhang, L.: Splitting NP-complete sets. SIAM
J. Comput. 37(5), 1517–1535 (2008)

14. Glaßer, C., Witek, M.: Autoreducibility and mitoticity of logspace-complete sets
for NP and other classes. Electronic Colloquium on Computational Complexity
(ECCC) 20, 188 (2013)

Logspace Autoreducibility and Mitoticity of Logspace-Complete Sets 323

15. Homer, S., Kurtz, S.A., Royer, J.S.: On 1-truth-table-hard languages. Theoretical
Computer Science 115(2), 383–389 (1993)

16. Ladner, R.E.: Mitotic recursively enumerable sets. Journal of Symbolic Logic 38(2),
199–211 (1973)

17. Ladner, R.E., Lynch, N.A.: Relativization of questions about log space computabil-
ity. Mathematical Systems Theory 10, 19–32 (1976)

18. Lynch, N.A.: Log space machines with multiple oracle tapes. Theoretical Computer
Science 6, 25–39 (1978)

19. Nguyen, D.T., Selman, A.L.: Non-autoreducible sets for NEXP. In: Proceedings of
the 31st Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz
International Proceedings in Informatics (LIPIcs), pp. 590–601. Springer (2014)

20. Trakhtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR 192(6), 1224–1227
(1970); Translation in Soviet Math. Dokl. 11(3), 814–817 (1970)

Editing to a Connected Graph of Given Degrees�

Petr A. Golovach1,2

1 Department of Informatics, University of Bergen, Norway
2 Steklov Institute of Mathematics at St.Petersburg,

Russian Academy of Sciences, Russia
petr.golovach@ii.uib.no

Abstract. The aim of edge editing or modification problems is to change
a given graph by adding and deleting of a small number of edges in
order to satisfy a certain property. We consider the Edge Editing to

a Connected Graph of Given Degrees problem that for a given
graph G, non-negative integers d, k and a function δ : V (G) → {1, . . . , d},
asks whether it is possible to obtain a connected graph G′ from G such
that the degree of v is δ(v) for any vertex v by at most k edge editing
operations. As the problem is NP-complete even if δ(v) = 2, we are
interested in the parameterized complexity and show that Edge Editing

to a Connected Graph of Given Degrees admits a polynomial
kernel when parameterized by d + k. For the special case δ(v) = d, i.e.,
when the aim is to obtain a connected d-regular graph, the problem is
shown to be fixed parameter tractable when parameterized by k only.

1 Introduction

The aim of graph editing or modification problems is to change a given graph
as little as possible by applying specified operations in order to satisfy a
certain property. Standard operations are vertex deletion, edge deletion, edge
addition and edge contraction, but other operations are considered as well. Var-
ious problems of this type are well-known and widely investigated. For example,
such problems as Clique, Independent Set, Feedback (Edge or Ver-

tex) Set, Cluster Editing and many others can be seen as graph edit-
ing problems. Probably the most extensively studied variants are the problems
for hereditary properties. In particular, Lewis and Yannakakis [7] proved that
for any non-trivial (in a certain sense) hereditary property, the corresponding
vertex-deletion problem is NP-hard. The edge-deletion problems were considered
by Yannakakis [13] and Alon, Shapira and Sudakov [1]. The case where edge
additions and deletions are allowed and the property is the inclusion in some
hereditary graph class was considered by Natanzon, Shamir and Sharan [10]
and Burzyn, Bonomo and Durán [2]. The results by Cai [3] and Khot and

� The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 267959 and and the Government of
the Russian Federation (grant 14.Z50.31.0030).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 324–335, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Editing to a Connected Graph of Given Degrees 325

Raman [6] give a characterization of the parameterized complexity. For non-
hereditary properties, a great deal less is known.

Moser and Thilikos in [9] and Mathieson and Szeider [8] initiated a study
of the parameterized complexity of graph editing problems where the aim is
to obtain a graph that satisfies degree constraints. Mathieson and Szeider [8]
considered different variants of the following problem:

Editing to a Graph of Given Degrees

Instance: A graph G, non-negative integers d, k and a function
δ : V (G) → {0, . . . , d}.

Parameter 1: d.
Parameter 2: k.

Question: Is it possible to obtain a graph G′ from G such that
dG′(v) = δ(v) for each v ∈ V (G′) by at most k operations
from the set S?

They classified the parameterized complexity of the problem for

S ⊆ {vertex deletion, edge deletion, edge addition}.

In particular, they proved that if all the three operations are allowed, then
Editing to a Graph of Given Degrees is Fixed Parameter Tractable (FPT)
when parameterized by d and k. Moreover, the FPT result holds for a more
general version of the problem where vertices and edges have costs and the
degree constraints are relaxed: for each v ∈ V (G′), dG′(v) should be in a given
set δ(v) ⊆ {1, . . . , d}. Mathieson and Szeider also showed that Editing to a

Graph of Given Degrees is polynomial time solvable even if d and k are a
part of the input when only edge deletions and edge additions are allowed.

We are interested in the following natural variant:

Edge Editing to a Connected Graph of Given Degrees

Instance: A graph G, non-negative integers d, k and a function
δ : V (G) → {0, . . . , d}.

Parameter 1: d.
Parameter 2: k.

Question: Is it possible to obtain a connected graph G′ from G such that
dG′(v) = δ(v) for each v ∈ V (G′) by at most k edge deletion
and edge addition operations?

We show that this problem is FPT when parameterized by d and k in Section 3
by demonstrating a polynomial kernel of size O(kd3(k+d)2). For the special case
δ(v) = d for v ∈ V (G), we call the problem Edge Editing to a Connected

Regular Graph. We prove that this problem is FPT even if it is parameterized
by k only in Section 4. Due to space restrictions, proofs are either omitted or
just sketched in this extended abstract. The full version of the paper is available
at [5].

326 P.A. Golovach

2 Basic Definitions and Preliminaries

Graphs. We consider only finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and the edge set is
denoted by E(G).

For a set of vertices U ⊆ V (G), G[U] denotes the subgraph of G induced
by U , and by G − U we denote the graph obtained from G by the removal of
all the vertices of U , i.e., the subgraph of G induced by V (G) \ U . For a non-
empty set U ,

(
U
2

)
is the set of unordered pairs of distinct elements of U . Also for

S ⊆
(
V (G)

2

)
, we say that G[S] is induced by S, if S is the set of edges of G[S]

and the vertex set of G[S] is the set of vertices of G incident to the pairs from S.
By G− S we denote the graph obtained from G by the removal of all the edges
of S ∩ E(G). Respectively, for S ⊆

(
V (G)

2

)
, G+ S is the graph obtained from G

by the addition the edges that are elements of S \ E(G). If S = {a}, then for
simplicity, we write G− a or G + a.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the
set of vertices which are adjacent to v, and for a set U ⊆ V (G), NG(U) =
(∪v∈UNG(v)) \ U . The closed neighborhood NG[v] = NG(v) ∪ {v}, and for a
positive integer r, N r

G[v] is the set of vertices at distance at most r from v. For
a set U ⊆ V (G) and a positive integer r, N r

G[U] = ∪v∈UN
r
G[u], and N r

G(U) =
N r

G[U]\N r−1
G [U] if r ≥ 2. The degree of a vertex v is denoted by dG(v) = |NG(v)|,

and Δ(G) is the maximum degree of G.
A trail in G is a sequence P = v0, e1, v1, e2, . . . , es, vs of vertices and edges of G

such that v0, . . . , vs ∈ V (G), e1, . . . , es ∈ E(G), the edges e1, . . . , es are pairwise
distinct, and for i ∈ {1, . . . , s}, ei = vi−1vi; v0, vs are the end-vertices of the trail.
A trail is closed if v0 = vs. For 0 ≤ i < j ≤ s, we say that P ′ = vi, ei+1, . . . , ej , vj
is a segment of P . A trail is a path if v0, . . . , vs are pairwise distinct except maybe
v0, vs. Sometimes we write P = v0, . . . , vs to denote a trail P = v0, e1, . . . , es, vs
omitting edges.

A set of vertices U is a cut set of G if G − U has more components than G.
A vertex v is a cut vertex if S = {v} is a cut set. An edge uv is a bridge of a
connected graph G if G− uv is disconnected. A graph is said to be unicyclic if
it has exactly one cycle.

A setM of pairwise non-adjacent edges is called a matching, and for a bipartite
graph G with the given bipartition X,Y of V (G), a matching M is perfect (with
respect to X) if each vertex of X is incident to an edge of M .

Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and the other is a parameter k. It is said that a problem
is fixed parameter tractable (or FPT), if it can be solved in time f(k) · nO(1) for
some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with the input x and the parameter k
to an instance (x′, k′) such that i) (x, k) is a YES-instance if and only if (x′, k′)
is a YES-instance of the problem, and ii) the size of x′ is bounded by f(k) for
a computable function f . The output (x′, k′) is called a kernel. The function

Editing to a Connected Graph of Given Degrees 327

f is said to be a size of a kernel. Respectively, a kernel is polynomial if f is
polynomial. We refer to the books of Flum and Grohe [4] and Niedermeier [11]
for detailed introductions to parameterized complexity.

Solutions of Edge Editing to a Connected Graph of Given Degrees.
Let (G, δ, d, k) be an instance of Edge Editing to a Connected Graph of

Given Degrees. Suppose that a connected graph G′ is obtained from G by at
most k edge deletions and edge additions such that dG′(v) = δ(v) for v ∈ V (G′).
Denote by D the set of deleted edges and by A the set of added edges. We
say that (D,A) is a solution of Edge Editing to a Connected Graph of

Given Degrees. We also say that the graph G′ = G −D + A is obtained by
editing with respect to (D,A).

We need the following structural observation about solutions of Edge Edit-

ing to a Connected Graph of Given Degrees. Let (D,A) be a solution for
(G, δ, d, k) and let G′ = G−D+A. We say that a trail P = v0, e1, v1, e2, . . . , es, vs
in G′ is (D,A)-alternating if e1, . . . , es ⊆ D∪A and for any i ∈ {2, . . . , s}, either
ei−1 ∈ D, ei ∈ A or ei−1 ∈ A, ei ∈ D. We say that a (D,A)-alternating trail
P = v0, e1, v1, e2, . . . , es, vs is closed, if v0 = vs and s is even. Notice that if
v0 = vs but s is odd, then such a trail is not closed. Let H(D,A) be the graph
with the edge set D∪A, and the vertex set of H consists of vertices of G incident
to the edges of D ∪ A. Let also Z = {v ∈ V (G)|dG(v) = δ(v)}.

Lemma 1. For any solution (D,A), the following holds.

i) Z ⊆ V (H(D,A)).
ii) For any v ∈ V (H(D,A)) \ Z, |{e ∈ D|e is incident to v}| =
|{e ∈ A|e is incident to v}|.

iii) For any z ∈ Z, dG(z) − δ(z) = |{e ∈ D|e is incident to z}| −
|{e ∈ A|e is incident to z}|.

iv) The graph H(D,A) can be covered by a family of edge-disjoint (D,A)-
alternating trails T (i.e., each edge of D ∪ A is in the unique trail of T)
and each non-closed trail in T has its end-vertices in Z. Also T can be
constructed in polynomial time.

Hardness of Edge Editing to a Connected Graph of Given Degrees. As
we are interested in FPT results, we conclude this section by the observations
about the classical complexity of the considered problems. Recall that Mathieson
and Szeider proved in [8] that Editing to a Graph of Given Degrees is
polynomial time solvable even if d and k are a part of the input when only edge
deletions and edge additions are allowed. But if the obtained graph should be
connected then the problem becomes NP-complete by an easy reduction from
the Hamiltonicity problem.

Proposition 1. For any fixed d ≥ 2, Edge Editing to a Connected Reg-

ular Graph is NP-complete.

328 P.A. Golovach

3 Polynomial Kernel for Edge Editing to a Connected
Graph of Given Degrees

In this section we prove the following theorem

Theorem 1. Edge Editing to a Connected Graph of Given Degrees

has a kernel of size O(kd3(k + d)2).

Proof. Due to space restrictions, we only sketch the construction of the kernel.
Let (G, δ, d, k) be an instance of Edge Editing to a Connected Graph of

Given Degrees. We assume without loss of generality that d ≥ 3 (otherwise, we
simply set d = 3). Let Z = {v ∈ V (G)|dG(v) = δ(v)} and s =

∑
v∈V (G) |dG(v)−

δ(v)|.
First, we apply the following rule.

Rule 1. If |Z| > 2k or s is odd or s > 2k or G has at least k + 2 components,
then stop and return a NO-answer.

It is straightforward to see that the rule is safe, because each edge deletion
(addition respectively) decreases (increases respectively) the degrees of two its
end-vertices by one. Also it is clear that if G has at least k+2 components, then
at least k + 1 edges should be added to obtain a connected graph.

From now without loss of generality we assume that |Z| ≤ 2k, s ≤ 2k and G
has at most k+ 1 components. Denote by G1, . . . , Gp the components of G−Z.
We show that if a component Gi has a matching M of size at least k/3 with
end-vertices of the edges at distance at least 3 from Z such that the deletion of
M does not destroy the connectivity of Gi, then Gi can be replaced by a small
gadget. Notice that we can always find such a matching if |E(Gi)| − |V (Gi)| is
sufficiently large, i.e., Gi has many cycles with edges outside N2

G[Z]. The proof
is based on Lemma 1 and uses the fact that for a solution (D,A), H(D,A) can
be covered by edge-disjoint (D,A)-alternating trails.

F�

Z

G[N2
G[Z] ∩ V (Gi)]

u�

v�

u1

v0v1

x1 xs

y1 ys

F1

Fig. 1. Modification of Gi by Rule 2

Rule 2. Consider the component Gi of G−Z. Let F1, . . . , F� be the components
of G[N2

G[Z] ∩ V (Gi)]. Notice that it can happen that N2
G[Z] ∩ V (Gi) = ∅, and

it is assumed that � = 0 in this case. If |V (Gi)| − |N2
G[Z] ∩ V (Gi)| > �+ 2k + 1,

then do the following.

Editing to a Connected Graph of Given Degrees 329

i) Construct spanning trees of F1, . . . , F� and then construct a spanning tree T
of Gi that contains the constructed spanning trees of F1, . . . , F� as subgraphs.

ii) Let R be the set of edges of E(Gi)\E(T) that are not incident to the vertices
of N2

G[Z]. Find a maximum matching M in G[R].

iii) If |M | ≥ k/3, then modify G and the function δ as follows (see Fig. 1):

• delete the vertices of V (Gi) \N2
G[Z];

• construct vertices v0, . . . , v�, x1, . . . , xs and y1, . . . , ys for s = 	k/3
;
• for j ∈ {1, . . . �}, choose a vertex uj in Fj adjacent to some vertex in
Gi − V (Fi);

• construct edges u1v1, . . . , u�v�, v0v1, . . . , v�−1v�, v0x1, v0y1, x1x2, . . . ,
xs−1xs, y1y2, . . . , ys−1ys and x1y1, . . . , xsys,

• set δ(v�) = δ(xs) = δ(ys) = 2, δ(v0) = . . . = δ(v�−1) = δ(x1) = . . . =
δ(xs−1) = δ(y1) = . . . = δ(ys−1) = 3, δ(v) = dG(v) (in the modified
graph G) for V (Gi)∩N2

G[Z], and δ has the same values as before for all
other vertices of G.

We apply Rule 2 for all i ∈ {1, . . . , p}. To simplify notations, assume that
(G, δ, d, k) is the obtained instance of Edge Editing to a Connected Graph

of Given Degrees and G1, . . . , Gp are the components of G − Z. The next
rule is applied to components of G that are trees without vertices adjacent to Z.
Let i ∈ {1, . . . , p}. We show that if such a component is sufficiently large, then
it can be replaced by a path of bounded length.

Rule 3. If Gi is a tree with at least kd/2 + 1 vertices and NG(Z) ∩ V (Gi) = ∅,
then replace Gi by a path P = u1, . . . , uk on k vertices and set δ(u1) = δ(uk) = 1
and δ(u2) = . . . = δ(uk−1) = 2.

The next rule is applied to components of G that are unicyclic graphs without
vertices adjacent to Z. Let i ∈ {1, . . . , p}. We prove that if such a component is
sufficiently large, then it can be replaced by a cycle of bounded length.

Rule 4. If Gi is a unicyclic graph with at least kd/2 vertices and NG(Z) ∩
V (Gi) = ∅, then replace Gi by a cycle C = u0, . . . , uk on k vertices, u0 = uk,
and set δ(u1) = . . . = δ(uk) = 2.

The Rules 3 and 4 are applied for all i ∈ {1, . . . , p}. We again assume that
(G, δ, d, k) is the obtained instance of Edge Editing to a Connected Graph

of Given Degrees and G1, . . . , Gp are the components of G− Z.

We construct the set of branch vertices B = B1 ∪ B2. Let Ĝ be the graph
obtained from G by the recursive deletion of vertices V (G) \ NG[Z] of degree
one or zero. A vertex v ∈ V (Ĝ) is included in B1 if dĜ(v) ≥ 3 or v ∈ NĜ[Z],
and v is included in B2 if v /∈ B1, dĜ(v) = 2 and there are x, y ∈ B1 (possibly
x = y) such that v is in a (x, y)-path of length at most 6.

We apply the following Rules 5 and 6 for each v ∈ B. To construct Rule 5, we
show that if a sufficiently large forest without vertices of Z is attached to v as is
shown in Fig. 2 (a), then this tree can be replaced by a path of bounded length
with one end-vertex in v. For Rule 6, we show that if a sufficiently large tree

330 P.A. Golovach

b)

v vv v

a)

Fig. 2. Modification of G by Rule 5 and Rule 6

without vertices of Z is attached to v by two vertices as it shown in Fig. 2 (b),
then this tree can be replaced by a cycle of bounded length that goes through v.

Rule 5. If v ∈ B is a cut vertex of G, then find all components of T1, . . . , T� of
G− v such that for i ∈ {1, . . . , �}, i) Ti is a tree, ii) V (Ti) ⊆ V (G) \ B, and iii)
Ti has the unique vertex vi adjacent to v. Let T = G[V (T1)∪ . . .∪ V (T�)∪ {v}].
If the tree T has at least kd/2 + d2 vertices, then replace T1, . . . , T� by a path
P = u0, u1, . . . , uk, join v and u0 by an edge, and set δ(u0) = δ(uk−1) = 2,
δ(uk) = 1, and δ(v) = dG(v)− � + 1.

Rule 6. If v ∈ B is a cut vertex of G and there is a component T of G− v such
that i) T is a tree, ii) V (T) ⊆ V (G) \B, iii) T has exactly two vertices adjacent
to v, and iv) |V (T)| ≥ (k/2+2)d+1, then replace T by a path P = u0, . . . , uk+1,
join v and u0, uk+1 by edges, and set δ(u0) = . . . = δ(uk+1) = 2.

uu v v

Fig. 3. Modification of G by Rule 7

The next rule is applied to pairs of distinct vertices u, v ∈ B. To construct it,
we show that if a sufficiently large tree without vertices of Z is attached to u
and v as is shown in Fig. 3, then this tree can be replaced by a path of bounded
length with its end-vertices in u and v.

Rule 7. If {u, v} ∈ B is a cut set of G and there is a component T of G−{u, v}
such that i) T is a tree, ii) V (T) ⊆ V (G)\B, iii) T has a unique vertex adjacent
to u and a unique vertex adjacent to v and has no vertices adjacent to both u and
v, and iv) |V (T)| ≥ (k/2 + 2)d + 1, then replace T by a path P = u0, . . . , uk+1,
join u with u0 and v with uk+1 by edges, and set δ(u0) = . . . = δ(uk+1) = 2.

It is straightforward to see that Rules 1–7 can be applied in polynomial time.
We show that we obtain an equivalent instance of Edge Editing to a Con-

nected Graph of Given Degrees. To show that we have a polynomial

Editing to a Connected Graph of Given Degrees 331

kernel, it can be proved that if (G′, δ′, d, k) is an instance of Edge Editing to

a Connected Graph of Given Degrees obtained from (G, δ, d, k) by the
application of Rules 1–7, then |V (G′)| = O(kd3(k + d)2). ��

4 FPT Algorithm for Edge Editing to a Connected
Regular Graph

In this section we construct an FPT-algorithm for Edge Editing to a Con-

nected Regular Graph with the parameter k (i.e., d is not considered to be
a parameter). Because of space restrictions, we only sketch the algorithm.

We need the result obtained by Mathieson and Szeider in [8]. Let G be a graph,

and let ρ :
(
V (G)

2

)
→ N be a cost function that for any two distinct vertices u, v

defines the cost ρ(uv) of the addition or deletion of the edge uv. For a set of

unordered pairs X ⊆
(
V (G)

2

)
, ρ(X) =

∑
uv∈X ρ(uv). Suppose that a graph G′

is obtained from G by some edge deletions and additions. Then the editing cost
is ρ((E(G) \ E(G′)) ∪ (E(G′) \ E(G))). Mathieson and Szeider considered the
following problem:

Edge Editing to a Graph of Given Degrees with Costs

Instance: A graph G, a non-negative integer k, a degree function

δ : V (G) → N and a cost function ρ :
(
V (G)

2

)
→ N.

Question: Is it possible to obtain a graph G′ from G such that
dG′(v) = δ(v) for each v ∈ V (G′) by edge deletions and
additions with editing cost at most k?

They proved that Edge Editing to a Graph of Given Degrees with

Costs can be solved in polynomial time.
We also need some results about graphic sequences for bipartite graphs. Let

α = (α1, . . . , αp) and β = (β1, . . . , βq) be non-increasing sequences of positive
integers. We say that the pair (α, β) is a bipartite graphic pair if there is a
bipartite graph G with the bipartition of the vertex set X = {x1, . . . , xp}, Y =
{y1, . . . , yq} such that dG(xi) = αi for i ∈ {1, . . . , p} and dG(yj) = βj for j ∈
{1, . . . , q}. It is said that G realizes (α, β).

Gale and Ryser [12] gave necessary and sufficient conditions for (α, β) to be
a bipartite graphic pair. It is more convenient to give them in the terms of
partitions of integers. Recall that a non-increasing sequence of positive integers
α = (α1, . . . , αp) is a partition of n if α1 + . . . + αp = n. A sequence α =
(α1, . . . , αp) dominates β = (β1, . . . , βq) if α1 + . . . + αi ≥ β1 + . . . + βi for all
i ≥ 1; to simplify notations, we assume that αi = 0 (βi = 0 respectively) if i > p
(i > q respectively). We write α β to denote that α dominates β. Clearly, if
αβ and β γ, then α γ. For a partition α = (α1, . . . , αp) of n, the partition
α∗ = (α∗

1, . . . , α
∗
α1

) of n, where α∗
j = |{h|1 ≤ h ≤ p, αh ≥ j}| for j ∈ {1, . . . , α1},

is called the conjugate partition for α. Notice that α∗∗ = α. Gale and Ryser
[12] proved that a pair of non-increasing sequences of positive integers (α, β) is
a bipartite graphic pair if and only if α and β are partitions of some positive
integer n and α∗ β.

332 P.A. Golovach

Now we sketch the proof of the following theorem.

Theorem 2. Edge Editing to a Connected Regular Graph can be
solved in time O∗(kO(k3)).

Proof. Let (G, d, k) be an instance of Edge Editing to a Connected Reg-

ular Graph. We assume that k ≥ 1, as otherwise the problem is trivial. If
d ≤ 3k + 1, then we solve the problem in time O∗(kO(k)) by Theorem 1. From
now it is assumed that d > 3k + 1. Let Z = {v ∈ V (G)|dG(v) = d}.

First, we check whether |Z| ≤ 2k and stop and return a NO-answer otherwise
using the observation that each edge deletion (addition respectively) decreases
(increases respectively) the degrees of two its end-vertices by one. From now we
assume that |Z| ≤ 2k. Denote by G1, . . . , Gp the components of G− Z.

We say that two components Gi, Gj have the same type, if for any z ∈ Z,
either |NG(z) ∩ V (Gi)| = |NG(z) ∩ V (Gj)| ≤ k or |NG(z) ∩ V (Gi)| > k and
|NG(z) ∩ V (Gj)| > k. Denote by Θ1, . . . , Θt the partition of {G1, . . . , Gp} into
classes according to this equivalence relation. Observe that the number of distinct
types is at most (k + 2)2k. Notice also that for any solution (D,A), the graph
H(D,A) contains vertices of at most 2k components G1, . . . , Gp.

The general idea of the algorithm is to guess the structure of a possible solution
(D,A) (if it exists). We guess the edges of D and A that join the vertices of Z.
Then we guess the number and the types of components of G− Z that contain
vertices of H(D,A). For them, we guess the number of edges that join these
components with each other and with each vertex of Z. Notice that the edges
of A between distinct components of G − Z should form a bipartite graph.
Hence, we guess some additional conditions that ensure that such a graph can
be constructed. Then for each guess, we check in polynomial time whether we
have a solution that corresponds to it. The main ingredient here is the fact that
we can modify the components of G− Z without destroying their connectivity.
We construct partial solutions for some components of G − Z and then “glue’’
them together.

Let Z = {z1, . . . , zr}. We define records L = (s,Θ,C,R,DZ , AZ), where

– 0 ≤ s ≤ min{2k, p} is an integer,
– Θ is an s-tuple (τ1, . . . , τs) of integers and 1 ≤ τ1 ≤ . . . ≤ τs ≤ t;
– C is a s × s table of bipartite graphic pairs (αj,h, βj,h) with the sum of

elements of αj,h denoted cj,h such that αj,h = βh,j, 0 ≤ cj,h ≤ k and cj,j = 0
for j, h ∈ {1, . . . , s}, notice that it can happen that cj,h = 0 and it is assumed
that (αj,h, βj,h) = (∅, ∅) in this case;

– R is r × s integer matrix with the elements rj,h such that −k ≤ rj,h ≤ k for
j ∈ {1, . . . , r} and h ∈ {1, . . . , s};

– DZ ⊆ E(G[Z]); and
– AZ ⊆

(
Z
2

)
\ E(G[Z]).

Editing to a Connected Graph of Given Degrees 333

Let (D,A) be a solution for (G, d, k). We say that (D,A) corresponds to L if

i) the graph H(D,A) contains vertices from exactly s components Gi1 , . . . , Gis

of G− Z;
ii) Gij ∈ Θτj for j ∈ {1, . . . , s};
iii) for j, h ∈ {1, . . . , s}, A has exactly cj,h edges between Gij and Gih if j = h;
iv) for any j ∈ {1, . . . , r} and h ∈ {1, . . . , s}, |{zjx ∈ A|x ∈ V (Gih)}| − |{zjx ∈

D|x ∈ V (Gih)}| = rj,h;
v) D ∩ E(G[Z]) = DZ ;

vi) A ∩
(
Z
2

)
= AZ .

It is straightforward to verify that the number of all possible records L is at
most kO(k3). We consider all such records, and for each L, we check whether
(G, d, k) has a solution that corresponds to L. If we find a solution for some L,
then we stop and return it. Otherwise, if we fail to find any solution, we return
a NO-answer. From now we assume that L is given.

For i ∈ {1, . . . , p}, a given r-tuple Q = (q1, . . . , qr) and �-tuple Q′ =
(q′1, . . . , q′�), where −k ≤ q1, . . . , qr ≤ k, � ≤ k and 1 ≤ w1, . . . , w� ≤ k, we con-
sider an auxiliary instance Π(i, Q,Q′) of Edge Editing to a Graph of Given

Degrees with Costs defined as follows. We consider the graph G[Z ∪V (Gi)],
delete the edges between the vertices of Z, and add a set of � isolated ver-
tices W = {w1, . . . , w�}. Each vertex wj , we say that it corresponds to q′j for
j ∈ {1, . . . , �}. Denote the obtained graph by Fi. We set δ(v) = d if v ∈ V (Gi),
δ(zj) = dFi(zj) + qj for j ∈ {1, . . . , r}, and δ(wj) = q′j for j ∈ {1, . . . , �}. We set
ρ(uv) = k + 1 if u, v ∈ Z ∪W , and ρ(uv) = 1 for all other pairs of vertices of(
V (Fi)

2

)
. Observe that it can happen that δ(zj) < 0 for some j ∈ {1, . . . , r}. In

this case we assume that Π(i, Q,Q′) is a NO-instance. In all other cases we solve
Π(i, Q,Q′) and find a solution of minimum editing cost c(i, Q,Q′) using the re-
sult of Mathieson and Szeider in [8]. If we have a NO-instance or c(i, Q,Q′) > k,
then we set c(i, Q,Q′) = +∞. We need the following property of the solutions.

Claim 1. If c(i, Q,Q′) ≤ k, then any solution for Π(i, Q,Q′) of cost at most
k has no edges between vertices of Z ∪ W and there is a solution (A,D) for
Π(i, Q,Q′) of cost c(i, Q,Q′) ≤ k such that if F ′ = Fi − D + A, then any
u, v ∈ V (Gi) are in the same component of F ′. Moreover, such a solution can
be found in polynomial time.

Now we are ready to describe the algorithm that for a record L =
(s,Θ,C,R,DZ , AZ), checks whether (G, d, k) has a solution that corresponds
to L.

First, we check whether the modification of G with respect to L would satisfy
the degree restrictions for Z, as otherwise we have no solution. Also the number
of edges between G1, . . . , Gp should be at most k.

Step 1. Let Ĝ be the graph obtained from G by the deletion of the edges of DZ

and the addition the edges of AZ . If for any j ∈ {1, . . . , r}, dĜ(zj)+
∑s

h=1 rj,h =
d, then stop and return a NO-answer.

334 P.A. Golovach

Step 2. If
∑

1≤j<h≤s cj,h > k, then stop and return a NO-answer.

From now we assume that the degree restrictions for Z are fulfilled and the
number of added edges between the components of G− Z should be at most k.

Step 3. Construct an auxiliary weighted bipartite graph F , where X =
{x1, . . . , xs} and Y = {y1, . . . , yp} is the bipartition of the vertex set. For
i ∈ {1, . . . , s} and j ∈ {1, . . . , p}, we construct an edge xiyj if Gj ∈ Θτi . To
define the weight w(xiyj), we consider Π(j,Qj , Q

′
j) where Qj = (r1,i, . . . , rr,i)

and Q′
j is the sequence obtained by the concatenation of non-empty sequences

α∗
j,1, . . . , α

∗
j,s. Denote by Wj,h the set of vertices of the graph in Π(j,Qj , Q

′
j)

corresponding to the elements of α∗
j,h. Notice that by Step 2, Q′

j has at most
k elements. We set w(xiyj) = c(j,Qj , Q

′
j). Observe that some edges can have

infinite weights.

Step 4. Find a perfect matching M with respect to X in F of minimum weight.
If F has no perfect matching of finite weight, then the algorithm stops and
returns a NO-answer. Assume that M = {x1yj1 , . . . xsyjs} is a perfect matching
of minimum weight μ < +∞. If μ−

∑
1≤j<h≤s cj,h + |DZ |+ |AZ | > k, then we

stop and return a NO-answer.

Now we assume that M has weight at most k.

Step 5. Consider the solutions (Di, Ai) of cost c(j,Qji , Q
′
ji) for Π(ji, Qji , Q

′
ji)

for i ∈ {1, . . . , s}.
Set D = DZ ∪ (∪s

i=1Di).
Construct a set A as follows. For i ∈ {1, . . . , s}, denote by A′

i the set of edges
of Ai with the both end-vertices in V (Gji) ∪ Z, and let Ai,h be the subset of
edges that join Gji with Wji,jh for h ∈ {1, . . . , s}, h = j. Initially we include in
A the set ∪s

i=1A
′
i. For each pair of indices i, h ∈ {1, . . . , s}, such that i < h and

cji,jh > 0, consider graphs induced by Ai,h and Ah,i respectively, and denote by
α′
i,h and α′

h,i respectively the degree sequences of these graphs for the vertices
in Gji and Gjh respectively. By the construction of the problems Π(j,Qj , Q

′
j),

(α′
i,h, α

∗
i,h) and (α′

h,i, α
∗
h,i) are bipartite graphic pairs. Recall that βi,h = αh,i

and (αi,h, βi,h) is a bipartite graphic pair. We show that (α′
i,h, α

′
h,i) is also a

bipartite graphic pair. Construct a bipartite graph that realizes (α′
i,h, α

′
h,i) and

denote its set of edges by A′
i,h. We use the vertices of Gji and Gjh incident with

the vertices of Ai,h and Ah,i as the sets of bipartition and construct our bipartite
graph in such a way that for each vertex, the number of edges of A′

i,h incident
to it is the same as the number of edges of Ai,h or Ah,i respectively incident to
this vertex. Then we include the edges of A′

i,h in A.

Step 6. For each i ∈ {1, . . . , s}, do the following. Consider the set of vertices
Wi = {w1, . . . , w�} of ∪s

h=1V (Gjh) \ V (Gji) incident to the edges of A that join
Gji with these vertices and let q′h be the number of edges of A that join Gji

with wh for h ∈ {1, . . . , �}. Consider Π(ji, Qi, Q
′
i) where Qi = (r1,ji , . . . , rr,ji)

and Q′
i = (q′1, . . . , q′�). Using Claim 1, find a solution (Di, Ai) for Π(ji, Qi, Q

′
i)

of minimum cost. Modify (D,A) by replacing the edges of D and A incident to

Editing to a Connected Graph of Given Degrees 335

the vertices of Gji by the edges of Di and Ai respectively identifying the set Wi

and the set of vertices W in Π(ji, Qi, Q
′
i).

Step 7. Let G′ = G−D + A. If G is connected, then return (D,A). Otherwise
return a NO-answer. ��

5 Conclusions

We proved that Editing to a Connected Graph of Given Degrees has
a polynomial kernel of size O(kd3(k + d)2). It is natural to ask whether the size
can be improved. Also, is the problem FPT when parameterized by k only? We
proved that it holds for the special case δ(v) = d, i.e., for Edge Editing to a

Connected Regular Graph. Another open question is whether Editing to

a Graph of Given Degrees (or Edge Editing to a Connected Regular

Graph) has a polynomial kernel with the size that depends on k only.

References

1. Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion prob-
lems. In: FOCS, pp. 419–428. IEEE Computer Society (2005)

2. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

4. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

5. Golovach, P.A.: Editing to a connected graph of given degrees. CoRR
abs/1308.1802 (2013)

6. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

7. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

8. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A param-
eterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

9. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

10. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

11. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

12. Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs,
vol. 14. Published by The Mathematical Association of America (1963)

13. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Lipton,
R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) STOC,
pp. 253–264. ACM (1978)

Circuit Complexity of Properties of Graphs

with Constant Planar Cutwidth

Kristoffer Arnsfelt Hansen1,�, Balagopal Komarath2,��, Jayalal Sarma2,
Sven Skyum1, and Navid Talebanfard1,�

1 Aarhus University, Denmark
2 IIT Madras, Chennai, India

Abstract. We study the complexity of several of the classical graph
decision problems in the setting of bounded cutwidth and how impos-
ing planarity affects the complexity. We show that for 2-coloring, for
bipartite perfect matching, and for several variants of disjoint paths, the
straightforward NC1 upper bound may be improved to AC0[2], ACC0, and
AC0 respectively for bounded planar cutwidth graphs. We obtain our up-
per bounds using the characterization of these circuit classes in tems of
finite monoids due to Barrington and Thérien. On the other hand we
show that 3-coloring and Hamilton cycle remain hard for NC1 under pro-
jection reductions, analogous to the NP-completeness for general planar
graphs. We also show that 2-coloring and (non-bipartite) perfect match-
ing are hard under projection reductions for certain subclasses of AC0[2].
In particular this shows that our bounds for 2-coloring are quite close.

1 Introduction

We consider several of the classical graph decision problems, namely those of
deciding existence of 2- and 3-colorings, perfect matchings, Hamiltonian cycles,
and disjoint paths. For these problems we are interested in their complexity in
the setting of bounded planar cutwidth. The cutwidth of a graph G = (V,E)
with n = |V | vertices is defined in terms of linear arrangements of the vertices.
A linear arrangement is simply a 1-1 map f : V → {1, . . . , n}, and its cutwidth
is the maximum over i of the number of edges between Vi = {v ∈ V | f(v) ≤ i}
and V \Vi. The cutwidth of G is the minimum cutwidth of a linear arrangement.
Similarly, if the graph G is planar we can define a notion of planar cutwidth.
Given a linear arrangement f we consider a planar embedding where vertex v is
placed at coordinate (f(v), 0). The planar cutwidth of this embedding is then the
maximum number of edge-crossings at a vertical line in the plane. We define the
planar cutwidth as the minimum planar cutwidth of such a linear arrangement

� Hansen and Talebanfard acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computa-
tion, within which this work was performed.

�� Supported by the TCS PhD Fellowship.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 336–347, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 337

and an embedding. We wish to stress that the planar cutwidth of a planar graph
is in general not the same as its cutwidth. In particular there are simple examples
of n-vertex graphs of constant cutwidth having planar cutwidth Ω(n).

All the problems we consider can be decided in NC1 for graphs of bounded
cutwidth, and they are in fact NC1-complete under projection reductions. Impos-
ing planarity, or more precisely considering graphs of bounded planar cutwidth,
we are able to place several of the problems in smaller classes such as AC0, AC0[2],
and ACC0, while for some problems they remain NC1-complete.

Before stating our results we review known complexity results about the graph
problems without restriction on cutwidth and the consequences of imposing pla-
narity, for comparison with our results in the bounded cutwidth setting. The
2-coloring problem is in L, as an easy consequence of Reingold’s algorithm for
undirected connectivity [15], whereas 3-coloring is NP-complete and remains so
for planar graphs by the existence of a cross-over gadget [10]. The complexity of
deciding if a graph has a perfect matching is still not known. It belongs to P, but
it is an open problem whether it belongs to NC. For planar graphs the problem is
known to be in NC as shown by Vazirani based on work of Kasteleyn [13,18]; for
planar bipartite graphs the problem was shown to be in UL by Datta et al. [6].
The Hamiltonian cycle problem is NP-complete and as shown by Garey et al. it
remains so for planar graphs [11], and Itai et al. showed it is NP-hard even for
grid graphs [12].

The disjoint paths problem has numerous variations. In the general setting
we are given pairs of vertices (s1, t1), . . . , (sk, tk) in a graph G, and are to decide
whether disjoint paths between si and ti for each i exists. Here disjoint may mean
either vertex-disjoint or edge-disjoint, but either variant is reducible to the other.
We shall consider only the case of constant k. When G is an undirected graph a
polynomial time algorithm was given by Robertson and Seymour [16], as a result
arising from their seminal work on graph minors. When G is a directed graph the
problem is NP-complete already for k = 2 as shown by Fortune et al. [9]. On the
other hand, when G is planar Schrijver [17] gave a polynomial time algorithm for
the vertex-disjoint paths problem. The reduction between the vertex-disjoint and
the edge-disjoint versions of the problem does not preserve planarity, and it is an
open problem whether the edge-disjoint paths problem in planar directed graphs
is NP-complete or solvable in polynomial time [5]. It can however be solved in
polynomial time for (not necessarily planar) directed acyclic graphs [9].

1.1 Results and Techniques

A convenient way to obtain an NC1 upper bound is through monadic second
order (MSO) logic. Elberfeld et al. [7] showed that MSO-definable problems can
be decided in NC1 when restricted to input structures of bounded treewidth, and
when a tree decomposition of bounded width is supplied in the so-called term
representation. We shall not formally define the tree-width of a graph, but we
will note that the treewidth of a graph is bounded from above by the cutwidth
of the graph [4]. Furthermore, given as input a linear arrangement of bounded

338 K.A. Hansen et al.

cutwidth k, a tree decomposition of tree width k can be constructed by an AC0

circuit. Thus we have the following meta-theorem as an easy consequence.

Theorem 1. Any graph property definable in monadic second order logic with
quantification over sets of vertices and edges can be decided by NC1 circuits
on graphs of bounded cutwidth if a linear arrangement of bounded cutwidth is
supplied as auxiliary input.

All the graph properties we consider can easily be expressed in monadic second
order logic, thereby establishing NC1 upper bounds. We can show that all these
problems are in fact also hard for NC1 under projection reductions. This is based
on Barrington’s characterization of NC1 in terms of bounded width permutation
branching programs [2].

We first discuss the general technique behind our upper bounds that improve
upon the generic NC1 bound. Namely our upper bounds are based on reducing
to word problems on appropriately defined finite monoids. By results of Bar-
rington and Thérien, we then directly get circuit upper bounds depending on
the group structure of the given monoid. For general graphs the improved com-
plexity bounds obtained when imposing planarity are obtained by very different
algorithms. In our setting of constant cutwidth, when imposing planarity we
instead obtain the improvements in a uniform way by obtaining an algebraic
understanding of the respective problems. The general idea is as follows. We
consider grid-layered planar graphs (defined later) of a fixed width w for which
we want to decide a certain graph property, and we may view these as a free
semigroup under concatenation. We then define an appropriate finite monoid
M. For each grid-layered planar graph G we associate a monoid element GM.
In the simplest setting we will be able to determine if the graph property under
consideration holds for the graph G directly from the monoid element GM. We
will also have defined the elements ofM and the monoid operation in such a way
that the map G $→ GM is a homomorphism. What then remains is to analyze
the groups inside M. For the disjoint paths problem we show that all groups are
trivial, and this gives AC0 circuits. For 2-coloring we characterize the groups as
being isomorphic to groups of the form Zl

2, and this gives AC0[2] circuits. For
perfect matching in bipartite graphs we are not able to fully analyze the groups
of the corresponding monoid. We are however able to rule out groups of order 2,
and thus by the celebrated Feit-Thompson theorem all remaining groups must
be solvable, and this gives ACC0 circuits.

When considering the graph properties for graphs of bounded planar cutwidth
we supply as additional input the corresponding embedding of bounded cutwidth
of the graph. But before dealing with this issue, we consider special classes
of such graphs where such an embedding is implicit. We consider a grid Λ =
{1, . . . , �} × {1, . . . , w} of width w and length l. A grid graph G = (V,E) of
width w and length � is a graph where V ⊆ Λ and all edges are of Euclidean
length 1. We think of the vertices with the same first coordinate to be in the
same layer. A grid graph with (planar) diagonals allows edges of Euclidean length
< 2, but no crossing edges. We relax these requirements further, defining the
class of constant width grid-layered planar graphs. A grid-layered planar graph

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 339

G = (V,E) of width w and length � is a graph embedded in the plane with no
edge-crossings, with V ⊆ Λ and if two vertices (a, b) and (c, d) are connected
by an edge, then |a − c| ≤ 1 and the edge is fully contained in the region
[a − 1, a] × [1, w] or the region [a, a + 1] × [1, w]. If we consider bipartite grid-
layered planar graphs we assume that the bipartition is defined by the parities
of the sums of coordinates of each vertex. All our lower bounds hold for grid
graphs or grid graphs with diagonals, and all our circuit upper bounds hold for
grid-layered planar graphs.

Just as 3-coloring and Hamiltonian cycle remain NP-complete for planar
graphs, 3-coloring remains hard for NC1 on constant width grid graphs with
diagonals and Hamiltonian cycle remains hard for NC1 on constant width grid
graphs. We show that 2-coloring on constant width grid-layered planar graphs
is in AC0[2]. This is complemented by an AND ◦ XOR ◦ AC0 lower bound for
grid graphs with diagonals. This lower bound is in some sense not far from
the AC0[2] upper bound. Namely by the approach of Razborov [14] we have that
quasipolynomial size randomized XOR◦AND is equal to quasipolynomial AC0[2].
Furthermore Allender and Hertrampf [1] show that in fact quasipolynomial size
AND ◦ OR ◦ XOR ◦ AND is equal to quasipolynomial size AC0[2].

We show that perfect matching is in ACC0 for bipartite grid-layered planar
graphs, and we have an AC0 lower bound. For non-bipartite grid-layered planar
graphs we have a AND ◦ OR ◦ XOR ◦ AND lower bound. For the disjoint paths
problem in constant width grid-layered planar graphs we give AC0 upper bounds
for the following 3 settings: (1) node-disjoint paths in directed graphs. (2) edge-
disjoint paths in upward planar graphs. (3) edge-disjoint paths in undirected
graphs. We leave open the case of edge-disjoint paths in directed graphs. For all
the settings we have an AC0 lower bound. All these results are summarized in
the following table.

Problem Upper bound Lower bound (projections)
2-coloring AC0[2] AND ◦ XOR ◦ AC0

3-coloring NC1 NC1

Bipartite perfect matching ACC0 AC0

Perfect matching NC1 AND ◦OR ◦ XOR ◦ AC0

Hamiltonian cycle NC1 NC1

Disjoint paths variants AC0 AC0

We now briefly discuss extending the upper bounds above from constant width
grid-layered planar graphs to the larger classes of graphs of bounded planar
cutwidth. Whereas the embedding was implicitly given for grid-layered planar
graphs, for graphs of bounded planar cutwidth we will supply a representation
of the embedding in addition to the linear arrangement of the vertices. A simple
way to represent both the linear arrangement and the planar embedding of a
graph G = (V,E) of bounded planar cutwidth is to provide instead a grid-layered
planar graph G′ = (V ′, E′) with V ⊆ V ′, where the vertices V are placed on
a horizontal line and the vertices V ′ \ V are dummy vertices describing the
embedding of the edges. When given this representation as input, our upper

340 K.A. Hansen et al.

bounds are easily adapted. Namely, for the disjoint paths problems an edge can
be replaced by a path, and we may simply promote the dummy vertices to regular
vertices. For 2-coloring and perfect matching an edge can be replaced by a path
of odd length, but this can be done by an AC0 circuit making locally use of
the coordinates of vertices. Namely, we can just ensure that the path alternates
between vertices of the implicit bipartition, except possibly at the end.

In this extended abstract we shall cover only the upper bounds for 2-coloring
and bipartite perfect matching as well as outline some ideas for the disjoint
paths problems. We refer to the full version of the paper for the remaining
upper bounds as well as the lower bounds.

2 Preliminaries

Boolean circuits. We give here standard definitions of the Boolean functions
and circuit classes we consider. As is usual, when considering a Boolean function
f : {0, 1}n → {0, 1}, unless otherwise specified we always have a family of such
functions in mind, one for each input length. AC0 is the class of polynomial size
constant depth circuits built from unbounded fanin AND and OR gates. AC0[m]
allows in addition the function MODm given by MODm(x1, . . . , xk) = 1 if and

only if
∑k

i=1 xi ≡ 0 (mod m). We shall also denote the function MOD2 by XOR.
The union of AC0[m] for all m is the class ACC0. NC1 is the class of polynomial
size circuits of depth O(log n) built from fanin 2 AND and OR gates.

A class of Boolean functions immediately defines a class of Boolean circuits as
families of single gate circuits. Given two classes of circuits C1 and C2 we denote
by C1 ◦ C2 the class of circuits consisting of circuits from C1 that is fed as inputs
the output of circuits from C2. For instance, AND ◦ XOR ◦ AC0 is the class of
polynomial size constant depth circuits that has an AND gate at the output,
followed by XOR gates that in turn take as inputs the output of AC0 circuits.

Semigroups, monoids and programs. A semigroup is a set S with an associative
binary operation. A monoidM is a semigroup with a two-sided identity. A subset
G of M is a group in M if it is a group with respect to the operation of M. We
also say that M contains G. A monoid is aperiodic if every group it contains is
trivial; it is solvable if every group it contains is solvable. A monoid which is not
solvable is called unsolvable.

Barrington and Thérien [3] showed that several circuit classes are exactly
captured by so-called programs over finite monoids of polynomial length. We
shall use only one direction of this characterization, and for this reason it is
convenient to reformulate as follows. LetM be a finite monoid. The word problem
overM is to compute the product x1 · · ·xm when given as input x1, . . . , xm ∈M.
Then the results of Barrington and Thérien have the following consequences:
When M is aperiodic the word problem is in AC0, when M is solvable and all
groups in M have orders dividing an m-power1 the word problem is in AC0[m],
when M is solvable the word problem is in ACC0, and we always have the word
problem is in NC1.

1 This consequence is not stated explicitly in [3], but follows from the given proof.

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 341

3 Upper Bounds

We first state a geometric lemma that we shall make use of in our results about
bipartite matching and disjoint paths. Consider a piecewise smooth infinite sim-
ple curve C such that C is contained entirely in the strip {(x, y) | 1 ≤ y ≤ w}.
We say that C is periodic with period p if the horizontally shifted curve C+(p, 0)
coincides with C.

Lemma 2. Let C be a curve that is periodic with period p and let C′ = C+(q, 0)
be a horizontal shift of the curve C. Then C and C′ intersect.

3.1 2-Coloring

We prove here our upper bound for 2-coloring.

Theorem 3. Testing whether a given grid-layered planar graph is 2-colorable
can be done in AC0[2].

We prove this result by reducing 2-coloring to the word problem over a finite
monoid M. We then show that all groups in M are solvable and of order a
power of 2. By the results of Barrington and Thérien this gives the AC0[2] upper
bound.

Reduction to a Monoid Word Problem. A grid-layered planar graph G gives
rise to a binary relation R(G) ⊆ 2{1,...,w} × 2{1,...,w}. Here {1, . . . , w} are the
numbering of the vertices in the layers of the graph. We have that (S, T) ∈ R(G)
if and only if there is a two-coloring of G such that the vertices in the first layer
colored 1 is the set S and the vertices in the last layer colored 1 is the set T . Let
M be the monoid of all such relations under normal composition of relations.
Let G ◦ H denote the concatenation of the graphs G and H . It is not hard to
see that R(G ◦H) = R(G)R(H) which shows the soundness of the reduction to
the word problem over M. The proof of the upper bound is now completed by
the following result.

Proposition 4. Every group G ⊆ M is isomorphic to Z�
2 for some �.

Proof. For a graph G, let us identify the nodes in the first layer with the set
{1, . . . , w} and the nodes in the last layer with the set {1′, . . . , w′}.

The observation that makes the proof possible is the following: Suppose G
and H are both 2-colorable graphs and R(G) = R(H). Then for any u, v ∈
{1, . . . , w} ∪ {1′, . . . , w′} we have that u and v are connected in G if and only
if u and v are connected in H . Furthermore if u and v are connected in G by
an odd (even) length path then u and v are connected in H by an odd (even)
length path.

Assume that G is 2-colorable. Then every connected component of G can be 2-
colored in exactly two different ways. This means thatR(G) can be reconstructed
from only the following information about G: Which nodes from {1, . . . , w} ∪
{1′, . . . , w′} are connected in addition to a single 2-coloring of those vertices.

342 K.A. Hansen et al.

Let G ⊆ M be a nontrivial group with identity E. For any element A in G fix
a grid-layered planar graph G(A) such that R(G(A)) = A. Note that each such
G(A) is 2-colorable. Otherwise A is the empty relation, and since that behaves
as a zero element in M, the group G would be the trivial group consisting just
of the empty relation (since each element of G must have an inverse).

Let (i ∼ j) ∈ G denote that i and j are connected via a path in G.

Claim 1. Let A,B ∈ G. Then (i ∼ j) ∈ G(A) if and only if (i ∼ j) ∈ G(B), and
(i′ ∼ j′) ∈ G(A) if and only if (i′ ∼ j′) ∈ G(B).

Proof. It is enough to prove the claim for the case when B is just the identity
element E. Assume (i ∼ j) ∈ G(A). Since EA = A and R(G(E) ◦ G(A)) =
EA = A, there cannot be a path between i and j in G(E)◦G(A) since otherwise
the colors of i and j will depend on each other and we know that this is not the
case since (i ∼ j) ∈ G(A). Therefore (i ∼ j) ∈ G(E) ◦G(A) which in particular
implies (i ∼ j) ∈ G(E). For the other direction assume that (i ∼ j) ∈ G(E). We
have AA−1 = E. Note that R(G(A) ◦G(A−1)) = AA−1 = E. This implies that
there is no path between i and j in G(A) ◦ G(A−1) since otherwise the colors
of i and j will depend on each other in G(E) which we know is not the case.
Therefore (i ∼ j) ∈ G(A) ◦G(A−1) and hence (i ∼ j) ∈ G(A). This shows that
(i ∼ j) ∈ G(E) if and only if (i ∼ j) ∈ G(A). To show that (i′ ∼ j′) ∈ G(A) if
and only if (i′ ∼ j′) ∈ G(E) we consider equations AE = A and A−1A = E and
use a similar argument as above. ��

Let A ∈ G and consider the graph G(A). For any set S of vertices of G(A)

let
←−
V (S) = S ∩ {1, . . . , w} and

−→
V (S) = S ∩ {1′, . . . , w′}. We define L(A) to

be the set of all connected components C in G(A) such that
←−
V (C) = ∅ and−→

V (C) = ∅. Similarly let R(A) denote the set of all connected components C

such that
←−
V (C) = ∅ and

−→
V (C) = ∅, and finally define M(A) as the set of

connected components C such that
←−
V (C) = ∅ and

−→
V (C) = ∅. We now let

VL(A) = {←−V (C) : C ∈ L(A)} and VR(A) = {−→V (C) : C ∈ R(A)}. Likewise we

define VM
L (A) = {←−V (C) : C ∈M(A)} and VM

R (A) = {−→V (C) : C ∈M(A)}.

Claim 2. The following properties hold.

(i) VL(A) = VL(E) and VR(A) = VR(E). Furthermore, for any pair of i and j
that are in the same component in L(A), the lengths of all paths between
i and j in G(A) have the same parity and that is the same as in G(E).
Similarly for every pair i′ and j′ that are in the same connected component
in R(A), the length of all paths between i′ and j′ are of the same parity
and that is the same as in G(E).

(ii) VM
L (A) = VM

L (E) and VM
R (A) = VM

R (E).

All these follow again from A−1A = AA−1 = E and EA = AE = A as in the
proof of Claim 1, and we omit further details.

For each component in M(A) we pick two representatives, one from each side.
We pick the left representatives i1 < . . . < im arbitrarily. But for the right

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 343

representatives if ik is connected to i′k then we pick i′k as the representative of
the k’th component, otherwise we pick an arbitrary node in the component. Let
the right representatives be j′1 < . . . < j′m. We map the left representative of
a component to its right representative. By the planar embedding of G(A), for
every k we have that ik is mapped to j′k. This means that we can rename the
components in M(A) by C1, . . . , Cm such that all vertices in Ci appear after all
vertices in Ci−1.

Furthermore we know by above claim that in a group, these components are
the same on the boundaries of the graph of each group element. For any A ∈ G
and any 1 ≤ k ≤ m let πA

k be the parity of the length of all paths between ik
and j′k in G(A). We show that there exists a sequence ε1, . . . , εm ∈ {0, 1}m such
that for any A,B ∈ G and all 1 ≤ k ≤ m, the parity of the paths between ik
and j′k in G(A) ◦G(B) is given by πA

k ⊕ πB
k ⊕ εk. To see this consider the graph

G(A) ◦G(B) and rename the ik and j′k on the side where G(A) and G(B) meet
as i(1) and i(2) (i(1) = ik and i(2) = j′k). If j′k = i′k we set εk = 0. This clearly
satisfies the desired property, since to get from ik on the left layer of G(A) to i′k
on the right layer of G(B) we can first go to i′k on the right layer of G(A) and
then to i′k on the right layer of G(B). Any such path clearly has parity πA

k +πB
k .

If j′k = i′k we note that the parity between i(1) and i(2) is exactly the same as in
G(E) ◦G(E) by Claim 2. We denote this by εj. Now to color G(A) ◦G(B) if we
use color 0 on ij then we are forced to use color πA

j on i(2), and hence πA
j ⊕ εj

on i(1) and finally we should use πA
j ⊕ εj ⊕ πB

j on i′j . This means that the parity

between ij and i′j is πA
j ⊕ πB

j ⊕ εj as claimed.

We define a group Z(ε1,...,εm)
2 as follows. The elements are just the same as Zm

2 ,
and the group operation is defined as Zm

2 but then adding the vector (ε1, . . . , εm)

to the result. It is clear that Z(ε1,...,εm)
2 and Zm

2 are isomorphic. The above argu-

ment shows that G is isomorphic to Z(ε1,...,εm)
2 and hence to Zm

2 . ��

3.2 Bipartite Matching

We prove here our upper bound for bipartite matching.

Theorem 5. Given a bipartite grid-layered planar graph G, we can decide
whether G has a perfect matching in ACC0.

Reduction to a Monoid Word Problem. For each grid-layered planar graph
G of odd length � that has no vertical edges in the rightmost layer, we de-
fine the corresponding monoid element GM as the triple (X,Y,R) where X ⊆
[w] is the set of vertices in the leftmost layer of G, Y ⊆ [w] is the set of
vertices in the rightmost layer of G and R ⊆ 2X × 2Y is a binary relation
such that for any X1 ⊆ X , X2 ⊆ Y we have (X1, X2) ∈ R if and only
if G has a matching that matches all vertices in G except X1 in the left-
most layer and X2 in the rightmost layer. The monoid product is defined as
(X1, X2, R)(X3, X4, S) = (X1, X4, R ◦ S) when X2 = X3 and ◦ is the usual
composition of binary relations. When X2 = X3, we define the product to be an

344 K.A. Hansen et al.

element 0 for which 0x = x0 = 0 for any x in the monoid. Now define the monoid
M = {GM : G is an odd length bipartite grid-layered planar graph}∪{0}∪{1},
where 1 is an added identity. It is easy to see that the monoid operation described
corresponds to concatenation of graphs (by merging the vertices in the rightmost
layer of first graph with the vertices in the leftmost layer of the second graph). So
a perfect matching exists in G if and only if GM = (X1, X2, R) and R contains
the element (X1, X2).

To show that M is solvable we will prove that it does not contain any group
of order two. We then use Proposition 6 and Theorem 7 below to conclude that
M is solvable.

Proposition 6. If G is a finite group of order 2k for some k ≥ 1, then there
exists a ∈ G such that a = e and a2 = e, where e is the identity of G.

Theorem 7 (Feit-Thompson [8]). Every group of odd order is solvable.

Proposition 8. The monoid M is solvable.

Proof. We begin by considering an arbitrary group G ⊂ M, such that G =
{0} and G = {1}. First, observe that for any two elements (X1, X2, R) and
(X3, X4, S) in the group X1 = X2 = X3 = X4 as 0 ∈ G. So we can identify
any element (X1, X2, R) of the group by simply using R. Suppose now that
G = {E,R} is of order 2, where E is the identity element in G. We will show
that E ⊆ R. This then means that R = ER ⊆ R2 = E, contradicting the
existence of G. Let k = 2w. Suppose (Y0, Yk+1) ∈ E. Since Ek+1 = E there
exists Y1, . . . , Yk such that (Yi, Yi+1) ∈ E for all i. Thus there must exist some
X1 = Yi such that (Y0, X1) ∈ E, (X1, X1) ∈ E, and (X1, Yk+1) ∈ E. We shall
show that (X1, X1) ∈ R, and since R = ERE this shows also (Y0, Yk+1) ∈ R.

Since (X1, X1) ∈ E and R2 = E there exists X2 such that (X1, X2) ∈ R and
(X2, X1) ∈ R. Consider a graph G defining R, and let M1 be a matching in G
corresponding to (X1, X2) ∈ R and let M2 be a matching in G corresponding to
(X2, X1) ∈ R. Consider now the graph S = M1 ∪M2. The graph Sn is obtained
by concatenating n copies of S. We note that for any odd (even) n, the graph
Sn is a union of two matchings. The matching M obtained by the concatenation
of matchings M1M2 . . . and the matching N obtained by the concatenation of
matchings M2M1

We label the vertices on the left side on the ith copy of S as 1(i), . . . , k(i). The
rightmost vertices in Sn are labelled 1(n+1), . . . , k(n+1). A path in Sn is called a
blocking path if it connects some vertex in the leftmost layer to some vertex in
the rightmost layer.

We will show below that for n > w the graph Sn does not have a blocking
path, but first we show that this will complete the proof. Suppose that Sn in
fact does not have a blocking path, and assume without loss of generality that
n is even. Consider the set VL of all vertices in Sn that are reachable from some
vertex in the left end and the set VR of all vertices in Sn that are reachable
from some vertex in the right end. Put any remaining vertices in the set VL.
Since there is no blocking path VL and VR are disjoint. Now we can obtain a

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 345

matching corresponding to (X1, X2) in Rn = E by using the matching M1 on
the vertices in VL and using the matching M2 on VR. Since (X2, X1) ∈ R this
means (X1, X1) ∈ R as should be shown.

We say that a path P crosses a boundary in Sn if it has two consecutive edges
e1 and e2 such that they belong to different copies of S in Sn. Note that e1
and e2 must belong to the same matching M1 or M2. If they do not, the vertex
common to those edges must be in X1 ∩X1 or X2 ∩X2.

Claim 3. For any n, the graph Sn cannot have a path from v(i) to v(i+1) for any
i and v.

Proof. To simplify the proof, for a graph corresponding to a given monoid ele-
ment we attach length 2 horizontal paths to the vertices in the left and right side
through two new layers. Notice that this does not change the monoid element
since the vertices in the graph corresponding to the monoid element which were
originally matched inside the graph remains matched inside the graph itself and
vice versa.

Suppose such a path P from v(i) to v(i+1) exists. Suppose also that P connects
to both these vertices from the same side, left or right. Consider the shifted
version P ′ of P in Sn+1 from v(i+1) to v(i+2). These path thus share an edge,
but they must diverge at some vertex. This means there exist a vertex of degree
at least 3 in Sn+1 which is impossible since Sn+1 is a union of two matchings.
Thus P must connect to the two vertices v(i) to v(i+1) from opposite sides. This
means that it crosses boundaries an even number of times. By bipartiteness the
path is of even length, and together this means that the first and last edge can
not be from the same matching. This implies that v ∈ X1 ∩X1 or v ∈ X2 ∩X2,
contradicting the existence of P . ��

The following last claim completes the proof that M is solvable.

Claim 4. Sn does not have a blocking path for n ≥ w.

Proof. Assume that Sn has a blocking path for n ≥ w. This blocking path must
pass each of the n + 1 boundaries (including left and right ends) at least once.
Therefore we can find integers i and j such that this blocking path has a segment
P connecting v(i) to v(j) for some 1 ≤ v ≤ w. By Claim 3, we have j > i + 1.
Now consider the graph Sn+1. This graph also has this path P from v(i) to v(j)
and also a path P ′ from v(i+1) to v(j+1) that is simply a “shifted” version of P .
By Claim 3, these paths are vertex disjoint. Because if they intersect then we
can construct a path from v(i) to v(i+1) in Sn+1. By using Lemma 2 we conclude
that the paths P and P ′ must intersect. This concludes the proof. ��

3.3 Disjoint Paths

We consider several different variants of the disjoint paths problem, but there
is significant overlap in the different approaches. In each case we define a monoid

346 K.A. Hansen et al.

M and show it is aperiodic. We can thus compute the word problem over M
by AC0 circuits and we can use these to solve the disjoint paths problem. We
describe the definition of the monoids, how to reduce the disjoint paths problem
to the word problem over to monoids, and outline some ideas of the proof that
the monoids are aperiodic. We are able to do this in the following 3 settings: (1)
node-disjoint paths in directed graphs. (2) edge-disjoint paths in upward planar
graphs. (3) edge-disjoint paths in undirected graphs.

The monoids. We describe here the monoid in general terms. Elements of M
consist of a (downward closed) family of sets of edges between the set of vertices
W = {1, . . . , w}∪{1′, . . . , w′}. Consider a grid-layered planar graph G. This may
be either undirected or directed. We construct a monoid-element GM from G
as follows, by letting every set of disjoint paths in G between vertices from W
give rise to a set of corresponding edges in GM. Depending on the setting these
paths may be vertex-disjoint or edge-disjoint, and if the graph is directed the
edges are directed accordingly. The operation of the monoid will be the natural
operation that makes the map G $→ GM a homomorphism. Note that if A ⊆ A′

and B ⊆ B′ then AB ⊆ A′B′.

Reduction to monoid product. Let G be a grid-layered planar directed graph with
pairs of terminals (s1, t1), . . . , (sk, tk). Consider the partition of G into at most
2k + 1 segments obtained by dividing at every layer containing a terminal. For
each segment we divide the graph into segments of length 1, translate these to
monoid elements and compute the product of these. This results in at most 2k+1
monoid elements describing all possible disjoint paths connecting endpoints of
every segment. Since k is fixed this is a fixed amount of information from which
it can then be directly decided whether disjoint paths exist between all pairs of
terminals.

Showing aperiodicity of the monoid. The approach we will use in all cases is as
follows. Let G be a group in M with identity E, and let A be any element of
G. We shall then prove that E ⊆ A. Note then that this means A−1 = EA−1 ⊆
AA−1 = E, and hence A = E. Showing this for all A implies that G is trivial.

Let G be a group in M with identity E. Let A be an element of G of order
p ≥ 2. A central step is that we have a number of paths in the graph G(A)p that
we can think of as being induced by infinite paths P1, . . . , Pc with period p in
an infinite concatenation of the graph G(A). We then consider paths P ′

1, . . . , P
′
c

obtained by shifting by the length of one graph G(A) to the right. By Lemma 2 Pi

will intersect P ′
i . The idea is then to construct new disjoint paths in R1, . . . , Rc in

G(A)2pc+1 for some c. These paths start out following along the paths P1, . . . , Pc

but end up following along P ′
1, . . . , P

′
c. These paths will then be present also in

G(A) since Apc+1 = A, and this will mean that E ⊆ A.

Circuit Complexity of Properties of Graphs with Constant Planar Cutwidth 347

4 Conclusion

We have obtained new upper and lower bounds for several classical graph decision
problems in the setting of bounded planar cutwidth graphs, providing insight
into the computational power of the circuit classes AC0, AC0[2], ACC0, and NC1.
Several open problems remain, most notably for perfect matching where we
conjecture that the upper bounds can be significantly improved: In the general
case from NC1 to AC0[2] and in the bipartite case from ACC0 to AC0.

References

1. Allender, E., Hertrampf, U.: Depth reduction for circuits of unbounded fan-in.
Information and Computation 112(2), 217–238 (1994)

2. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.
ACM 35(4), 941–952 (1988)

4. Bodlaender, H.L.: Some classes of planar graphs with bounded treewidth. Bulletin
of the EATCS 36, 116–126 (1988)

5. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: The planar directed k-vertex-
disjoint paths problem is fixed-parameter tractable. In: FOCS, pp. 197–206. IEEE
Computer Society (2013)

6. Datta, S., Gopalan, A., Kulkarni, R., Tewari, R.: Improved bounds for bipartite
matching on surfaces. In: STACS. LIPIcs, vol. 14, pp. 254–265. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

7. Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes
of constant and logarithmic depth. In: STACS. LIPIcs, vol. 14, pp. 66–77. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

8. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific J. Math. 13(3),
775–1029 (1963)

9. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism
problem. Theor. Comput. Sci. 10, 111–121 (1980)

10. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

12. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982)

13. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph
Theory and Theoretical Physics, pp. 43–110. Academic Press (1967)

14. Razborov, A.A.: Lower bounds for the size of circuits of bounded depth with basis
(∧, ⊕). Mathematical Notes of the Academy of Science of the USSR 41(4), 333–338
(1987)

15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
16. Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem. J.

Comb. Theory, Ser. B 63(1), 65–110 (1995)
17. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Com-

put. 23(4), 780–788 (1994)
18. Vazirani, V.V.: NC algorithms for computing the number of perfect matchings in

K3,3-free graphs and related problems. Inf. Comput. 80(2), 152–164 (1989)

On Characterizations of Randomized

Computation Using Plain
Kolmogorov Complexity

Shuichi Hirahara and Akitoshi Kawamura

The University of Tokyo, Japan

Abstract. Allender, Friedman, and Gasarch recently proved an up-
per bound of PSPACE for the class DTTRK of decidable languages
that are polynomial-time truth-table reducible to the set of prefix-free
Kolmogorov-random strings regardless of the universal machine used in
the definition of Kolmogorov complexity. It is conjectured that DTTRK

in fact lies closer to its lower bound BPP established earlier by Buhrman,
Fortnow, Koucký, and Loff. It is also conjectured that we have similar
bounds for the analogous class DTTRC defined by plain Kolmogorov ran-
domness. In this paper, we provide further evidence for these conjectures.
First, we show that the time-bounded analogue of DTTRC sits between
BPP and PSPACE ∩ P/poly. Next, we show that the class DTTRC,α

obtained from DTTRC by imposing a restriction on the reduction lies
between BPP and PSPACE. Finally, we show that the class P/R=log

C ob-
tained by further restricting the reduction to ask queries of logarithmic
length lies between BPP and Σp

2 ∩ P/poly.

1 Introduction

The word “randomness” is used in at least two different contexts in computation
theory: One is in the theory of Kolmogorov complexity, which measures random-
ness of a finite string in terms of incompressibility. The other randomness refers
to coin flips used for efficient computation, and gives rise to (among others) the
complexity class BPP. Despite the remote origins of these two notions of ran-
domness, some interesting links between them have been found in recent work
by Allender et al. [3,2]: they conjectured, and gave some evidence, that BPP is
characterized as the class of languages truth-table reducible to the set of Kol-
mogorov random strings, that is, those decidable in deterministic polynomial
time by asking the oracle non-adaptively whether a string is random. Our aim
is to strengthen this connection between Kolmogorov randomness and BPP.

Let CU (x) denote the Kolmogorov complexity of a string x ∈ {0, 1}∗, i.e., the
length of the shortest description of x when a fixed universal machine U is used as
a decoder (see Section 2.1). Depending on whether or not the machine is required
to be prefix-free, this complexity is called the prefix-free or plain complexity, and
for the former it is customary to write KU instead of CU . We consider the set
RCU (or RKU) of random strings, i.e., those that have no description shorter
than themselves: Rf = { x ∈ {0, 1}∗ | f(x) ≥ |x| }.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 348–359, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On Characterizations of Randomized Computation Using Plain 349

Buhrman, Fortnow, Koucký, and Loff [5] showed that every language in BPP
reduces to the set of random strings via polynomial-time truth-table reducibility
(denoted≤p

tt in the following theorem, see Definition 7), regardless of whether the
machine defining the random strings is plain universal or prefix-free universal:

Theorem 1 ([5]). For every language L ∈ BPP, we have L ≤p
tt RCU for any

universal machine U , and L ≤p
tt RKU for any prefix-free universal machine U .

Theorem 1 gives a lower bound of BPP about the class of languages that
reduce to RCU or RKU , but this bound is obviously not “tight,” as the sets RCU

and RKU are undecidable [7]. However, we obtain an interesting upper bound
if we take the intersection over all universal machines U . That is, let DTTRK

be the class of decidable languages L such that L ≤p
tt RKU for all universal

prefix-free machines U . Allender, Friedman, and Gasarch [3] recently showed:

Theorem 2 ([3]). DTTRK ⊆ PSPACE.

Combining Theorems 1 and 2, we have BPP ⊆ DTTRK ⊆ PSPACE. The
question then arises: to which does DTTRK sit closer, BPP or PSPACE? Allen-
der [1] has conjectured the following:

Conjecture 3 ([1]). BPP = DTTRK .

The conjecture is more plausible when we consider time-bounded prefix-free
Kolmogorov complexity. Allender, Buhrman, Friedman, and Loff [2] defined
the classes called TTRTK and TTRT′

K , which are time-bounded versions of
DTTRK , and showed the following (“/α” means advice strings of length α [4,
Definition 6.16]):

Theorem 4 ([2])

1. BPP ⊆ TTRTK ⊆ PSPACE/α ∩ P/poly for any nondecreasing unbounded
computable function α : N→ N.

2. BPP ⊆ TTRT′
K ⊆ PSPACE ∩ P/poly.

Less is known about the analogous classes DTTRC , TTRTC , TTRT′
C for plain

Kolmogorov complexity (see Definitions 16 and 10). We know that these classes
all contain BPP by Theorem 1 or by a similar argument. For the upper bound,
Allender et al. [3] conjecture that DTTRC ⊆ PSPACE (similarly to Theorem 2),
but in reality we do not even know whether DTTRC equals all decidable lan-
guages. The techniques used by Allender et al. [3,2] to prove Theorems 2 and 4
make use of the coding theorem and thus cannot be directly applied to CU (see
the discussion in [3, Section 5]).

In Section 3, we prove the same inclusions for TTRTC and TTRT′
C as Theo-

rem 4 states for prefix-free complexity.
In Section 4, we consider a weaker reduction ≤p

ttα (see Definition 13) in which
we cannot query a string of length less than α(n), where n is the input length.
We prove that for the corresponding classes TTRTC,α and DTTRC,α, the upper
bound can be improved to PSPACE (while the BPP lower bound remains true).

350 S. Hirahara and A. Kawamura

In Section 5, we restrict the reduction further, allowing only queries of exactly
logarithmic length. This defines the subclass P/R=log

C ⊆ TTRTC,log, which still

contains BPP. We prove that P/R=log
C ⊆ Σp

2 ∩ P/poly. The upper bound of Σp
2

comes from a 1-round game played between two players. Together with the BPP
lower bound, this gives an alternative explanation of the well-known inclusion
BPP ⊆ Σp

2.
In view of this upper bound of Σp

2 ∩ P/poly, we believe that the follow-
ing characterization of BPP is quite likely, and propose this as a step towards
Conjecture 3.

Conjecture 5. BPP = P/R=log
C .

Another Characterization of BPP

We mention in passing that there is a simple characterization of randomized
computation using Kolmogorov complexity (see the full version for a proof).

Proposition 6 (forklore). Let BPP′
U denote the class of languages L for which

there exist a polynomial-time Turing machine M and a polynomial p such that
for every n ∈ N, x ∈ {0, 1}n and r ∈ RCU+2

=p(n), we have M(x, r) = L(x).
Then BPP = BPP′

U for any universal Turing machine U .

The rest of this paper is also about bounding BPP using RCU , although we
will consider reductions to (not a single random string, but) the oracle that tells
us whether a given string is random or not. We hope that this connection to
Kolmogorov randomness helps us better understand BPP.

2 Preliminaries and Notations

We regard the set of strings {0, 1}∗ as equipped with the length-increasing lexi-
cographical order. For a set of strings A ⊆ {0, 1}∗ and a natural number n ∈ N,
A=n, A≤n, and A<n are defined as A ∩ {0, 1}n,

⋃
m≤nA

=m, and
⋃

m<nA
=m,

respectively. We abbreviate ({0, 1}∗)
≤n

as {0, 1}≤n. For a set A, A denotes the
complement of A.

For functions s, t : N → N, we write s ≤ t if s(n) ≤ t(n) for all n ∈ N. A
nondecreasing and time-constructible function t : N→ N is called a time bound.
For a nondecreasing and unbounded function t : N→ N, define t−1 as t−1(n) =
min{m ∈ N | t(m) > n }. Then (t−1)−1 ≤ t holds because (t−1)−1(n) = min{m |
t−1(m) > n} and t−1(t(n)) = min{m | t(m) > t(n)} > n.

We assume that the reader is familiar with basics of complexity theory [4].
In this paper, we mainly discuss truth-table (i.e., non-adaptive) reductions to

the set of random strings.

Definition 7. For languages A,B ⊆ {0, 1}∗, we write A ≤p
tt B if there exists a

polynomial time Turing machine M that, on input x, outputs an encoding of a
circuit λ and a list of queries q1, . . . , qm so that A(x) = λ

(
B(q1), . . . , B(qm)

)
.

On Characterizations of Randomized Computation Using Plain 351

2.1 Kolmogorov Complexity

We review some basic definitions and facts about Kolmogorov complexity. For
details, see Li and Vitányi [7].

The Kolmogorov complexity of a string x on a Turing machine U is defined as
the length CU (x) = min{ |d| | U(d) = x } ∈ N ∪ {∞} of the shortest description
d of x when using U as a decoder. We also consider the time-bounded version:
for a time bound t, we write Ct

U (x) for the length of the shortest input d that
causes U to outputs x in at most t(|x|) time steps (note that time is measured
in terms of the output length).

As mentioned at the beginning, it is sometimes required that the domain of
U is prefix-free, i.e., if U(d) is defined, then U(d′) is undefined for any proper
prefix d′ of d. In this case, it is customary to write KU instead of CU (and call
it prefix-free complexity).

We will be interested in the set Rf = { x ∈ {0, 1}∗ | f(x) ≥ |x| } of random
(or incompressible) strings where f = CU , Ct

U , etc.
Of course, Kolmogorov complexity, and hence the set of random strings, de-

pend on U . It is therefore important to use the “best” machine U in the following
sense:

Definition 8. A Turing machine U is said to be universal if for each Turing
machine M , there exists cM such that for any x ∈ {0, 1}∗, CU (x) ≤ CM (x)+cM .

It is known that there exists a Turing machine U which simulates every Turing
machine M (see [4]), and it is not hard to see that U is universal. Thus, we
usually fix one such machine U and discuss complexity with respect to it.

For prefix-free Kolmogorov complexity, the Turing machines U and M in
Definition 8 are required to be a prefix-free machine.

For time-bounded Kolmogorov complexity, some slowdown is needed when a
universal Turing machine U simulates each machine M . Therefore, we introduce
a parameter f : N→ N, which means that U must simulate M within f(s) steps
if M halts within s steps. This is the notion of f -efficient universality:

Definition 9 ([2]). For a time bound f : N→ N, a Turing machine U is said to
be f -efficient universal if U is universal, and there exists a constant cM for each
Turing machine M , such that for any time bounds t and t′, for all but finitely
many x, t(|x|) ≥ f(t′(|x|)) implies Ct

U (x) ≤ Ct′
M (x) + cM . We say that U is

time-efficient universal if it is p-efficient universal for some polynomial p.

Time-efficient universality means that the machine U is allowed to simulate each
machine with a polynomial slowdown.

3 Bounds for Time-Bounded Kolmogorov Complexity

Our goal for this section is to prove an analogue of Theorem 4 for plain Kol-
mogorov complexity. First, let us define the classes TTRTC and TTRT′

C by
using time-efficient universality and f -efficient universality, respectively.

352 S. Hirahara and A. Kawamura

Definition 10 ([2])

1. TTRTC contains all the languages L such that for all sufficiently large t and
for any time-efficient universal Turing machine U , L ≤p

tt RCt
U

. In short,

TTRTC = {L ⊆ {0, 1}∗ | ∃t0, ∀t ≥ t0, ∀U,L ≤p
tt RCt

U
}.

2. TTRT′
C contains all the languages L such that for each computable function

f , there exists t0 such that for all t ≥ t0 and any f -efficient universal Turing
machine U , L ≤p

tt RCt
U

.

It is easy to see that TTRT′
C ⊆ TTRTC by letting f(n) = 2n. We have the

following:

Theorem 11. 1. BPP ⊆ TTRTC ⊆ PSPACE/α∩P/poly for any nondecreas-
ing unbounded computable function α : N→ N.

2. BPP ⊆ TTRT′
C ⊆ PSPACE ∩ P/poly.

Proof (of Theorem 11.1). We have BPP ⊆ TTRT′
C ⊆ TTRTC ⊆ P/poly

because this was proved in [5,2] regardless of whether the Kolmogorov com-
plexity defining the classes is plain or prefix-free. All we have to show is that
TTRTC ⊆ PSPACE/α.

For simplicity, we show that TTRTC ⊆ PSPACE/2α for any function α that
satisfies the stated property. Assume, by way of contradiction, that L ∈ TTRTC\
PSPACE/2α. Then L ≤p

tt RC
t0
U

holds for some time bound t0 and some Turing

machine U . Since R
C

t0
U

is decidable, L is also decidable. Let tL denote a time

bound such that it is decidable whether x ∈ L or not in time tL(|x|).
Given any time bound t0, we will show that there exist a time-efficient uni-

versal Turing machine U and a time bound t∗ ≥ t0 such that L ≤p
tt RCt∗

U
. This

means that L ∈ TTRTC , which contradicts the assumption. In order to show it,
a time-efficient universal Turing machine U is constructed by combining two Tur-
ing machines, U0 and M . The following lemma states that if U0 is time-efficient
universal, then U is.

Lemma 12. Let U0 be a time-efficient universal Turing machine. Suppose that
for a time bound t, M is a Turing machine such that, for all but finitely many
x, M either halts in t(|x|)2 steps or does not halt. Then there exists a Turing

machine U such that for some t∗ = Θ(t2), Ct∗
U (x) = min{Ct

U0
(x)+2, Ct2

M (x)+1}
for all large |x|. Moreover, U is again a time-efficient universal Turing machine.

Proof. Define U as follows: On input 00d, U runs U0 on input d. Suppose that
U0 outputs x after s steps. Then U outputs x after it waits s2 steps. On input
1d, U outputs M(d). Otherwise U does not halt. Note that the steps to calculate
U0(d) can be counted by adding some tapes to U .

Let p(s) be the steps it takes for U to halt on input 00d, where s denotes the
number of steps to calculate U0(d). Note that p(s) includes the steps it takes to
run U0, to compute s2, and so on. We can assume that p(s) ≥ s2 and p(s) does
not depend on d, and that t∗(n) := p(t(n)) = Θ(t(n)2) is again a time bound.

On Characterizations of Randomized Computation Using Plain 353

Then U(00d) = x in at most t∗(|x|) steps if and only if U0(d) = x in at most
t(|x|) steps for any time bound t. One can verify that the lemma follows by this
property. ��

Fix a standard time-efficient universal Turing machine U0 for reference. A
Turing machine M will be defined later. Let U be the time-efficient universal
machine defined in Lemma 12 for some time bound t fixed later in Claim 2. In
order to derive a contradiction, M is defined so that it fools each Turing machine
that computes a truth-table reduction ≤p

tt. In the course of computation of M ,
M holds an approximation of RCt∗

U
denoted by R. More precisely, R is first set to

be {0, 1}∗, always R ⊇ RCt∗
U

holds, and max{k ∈ N | R<k = R<k
Ct∗

U

} increases as

calculation proceeds. Since R is finite, we can store it. Note that, by the property
of Lemma 12, RCt∗

U
= RCt

U0
+2 ∩RCt2

M+1
except finitely many strings.

Let us efficiently enumerate all polynomial-time Turing machines that com-
pute polynomial-time truth-table reductions, namely γ1, γ2, · · · . This can be
done by putting a clock of ne + e on γe and by regarding the output of γe(x)
as a circuit λe,x and queries q1, · · · , qk (see Definition 7). Since U0 is out of our
control, we will play a game against U0 in order to make the output of the circuit
λe,x differ from L(x). We can always do so for some x; otherwise L is equal to
a winning side, and thus L ∈ PSPACE, which contradicts the assumption. This
idea is originally due to Allender et al. [3]. Now let us precisely define the game
Ge,x for some γe and some x.

Description of the Game. The game Ge,x is played between two players,
the YES player and the NO player. Before the construction of the game, let
R := R ∩ RCt

U0
+2

<α(|x|) to fix randomness of the strings of length less than

α(|x|). Each player does not disturb R<α(|x|) anymore. During the game, R
is going to be altered by moves of the players. The current value of the game,
denoted by val(R), is defined as λe,x(R(q1), · · · , R(qk)). Note that val(R) is equal
to the value of γe(x) regarded as a truth-table reduction to R.

Let l := max{l, |q1|, · · · , |qk|}, where l denotes a variable of the algorithm of
M . The game has rounds from α(|x|) to l. In the rth round, where α(|x|) ≤ r ≤ l,
the YES player first decides Z1 ⊆ {0, 1}r such that |Z1| ≤ 2r−2. This means that
the YES player declares that each element of Z1 is not random. Next, the NO
player decides Z0 ⊆ {0, 1}r such that |Z0| ≤ 2r−2. Then let R := R\(Z0∪Z1) at
the end of the round. After all the rounds end, the YES player wins if val(R) = 1
and the NO player wins otherwise. Since the game is finite and deterministic,
exactly one of the players has a winning strategy. Let WINe,x ∈ {0, 1} denote
which player is going to win the game Ge,x.

The WINe,x side plays the game optimally according to a winning strategy
against U0. Suppose that the player of the WINe,x side chooses Z ⊆ {0, 1}r
in the rth round and |d| = r − 2, where d is the input of M . Let Z = {z1 <
z2 < · · · < zk}, where k ≤ 2r−2. If, for i ≤ k, the input d is the ith string in
{0, 1}r−2 in the lexicographical order, then M outputs zi and halts. This makes

354 S. Hirahara and A. Kawamura

zi not random since M(d) = zi and |d| < |zi| − 1. If not, M does not halt, and
continues computation.

On the other hand, U0 plays the role of the opponent of the WINe,x side.

The opponent always moves Z =
(
RCt

U0
+2

)=r

in the rth round. Note that

|Z| =
∣∣∣(RCt

U0
+2

)=r∣∣∣ ≤ 2r−2 holds (see [7, Definition 2.2.1 and Theorem 2.2.1]).

The overall algorithm of M is shown in Algorithm 1. Note that what M
outputs is determined by a move of the player who has a winning strategy.

Algorithm 1. Algorithm of M

Input: d ∈ {0, 1}∗
Output: z∗ ∈ {0, 1}∗ such that |z∗| = |d|+ 2

R := {0, 1}∗
l := −1
for e = 1 to ∞ do

Find the lexicographically first string x such that α(|x|) > l and WINe,x �= L(x).
l := max ({|qi|}i ∪ {l}), where {qi}i denotes the queries of γe(x)
for r = α(|x|) to l do

Let the WINe,x side play the game Ge,x for the rth round according to a winning

strategy, and let the opponent choose
(
RCt

U0
+2

)=r

. If the player of the WINe,x

side chooses Z = {z1 < · · · < zk} and the input d ∈ {0, 1}r−2 is the ith string
in {0, 1}r−2, then output zi and halt.
Update R according to the moves in this round.

end for
end for

Analysis. Let us move on to analysis of the algorithm. We first claim that there
always exists a “witness” x ∈ {0, 1}∗ such that WINe,x = L(x).

Claim 1. M can always find a string x such that α(|x|) > l and WINe,x = L(x).

Proof (of Claim 1). Suppose that M fails to find such a string x at some point,
which implies that WINe,x = L(x) for all x with |x| ≥ α−1(l). We present an
algorithm to decide the language WINe,∗ = {x ∈ {0, 1}∗ | WINe,x = 1} in

PSPACE/2α. On input x, let the advice give the truth-table of RCt
U0

+2
<α(|x|).

This can be encoded with 2α(|x|)−1 bits. We know the value α(|x|) by the length
of the advice. Thus, this advice enables us to construct the game Ge,x. Then the
winning side, WINe,x, can be computed by the standard minimax algorithm.
Note that there exist at most exponentially many moves since a move Z is
meaningful only if Z ⊆ {q1, · · · , qk}, where k is bounded by a polynomial in |x|.

Since WINe,x = L(x) for all sufficiently large x, we can conclude that L ∈
PSPACE/2α. This, however, contradicts the assumption. ��

Next, we fix a fast-growing time bound t so that M halts within t2 steps.

On Characterizations of Randomized Computation Using Plain 355

Claim 2. There exists a time bound t such that M halts within t(|z|)2 steps for
all large |z| if M outputs z.

Proof (of Claim 2). Suppose that M halts at the rth round of the game Ge,x.

Note that |d|+ 2 = |z| = r ≥ α(|x|). M has computed RCt
U0

+2
≤r so far. It takes

O
(∑

r′≤r t(r
′)2r

′
)

time steps. M has also calculated WINe,y and L(y) for each

y ≤ x. It takes 2|x|
O(1)

+ O(2|x|+1tL(|x|)) time steps since WINe,∗ ∈ EXP. M
needs to compute α(m) for each m ≤ |x|. Let tα(m) denote the number of steps
to compute α(m).

The length of x is bounded by α−1(r) since α(|x|) ≤ r. Then the number of
overall time steps is roughly less than

2α
−1(r)O(1)

tL(α−1(r)) +
∑

0≤r′≤r

t(r′)2r
′

+
∑

0≤m≤α−1(r)

tα(m). (1)

The second term is linear in t(r), and the other terms do not depend on t. Thus
t can be defined as a sufficiently fast growing function ≥ t0 so that (1) is less
than t(r)2 for all large r. ��

Claim 2 ensures that R converges to RCt∗
U

as time passes. Finally, we claim

that each Turing machine is indeed fooled.

Claim 3. L ≤p
tt RCt∗

U
.

Proof (of Claim 3). After the game Ge,x has been played out, since the WINe,x

side wins, val(R) = WINe,x = L(x) holds at this point. Let le denote the value
of l in the eth outer loop before the inner loop in Algorithm 1. Then, in the
later game Ge′,x′ for e′ > e, we have |qi| ≤ le ≤ le′ < α(|x′|), which implies
that the later computation does not disturb the value R(qi). Therefore, R≤l is
actually equal to RCt∗

U

≤l after Ge,x ends. It follows that γe does not compute a

truth-table reduction to RCt∗
U

since the answer of the truth-table reduction on

input x is equal to val(R), which is not equal to L(x). ��
Claim 3 contradicts the assumption that L ∈ TTRTC . ��
Let us review why the slight nonuniformity α is needed: To determine a time

bound to calculate M , |x| is bounded by the inequation α(|x|) ≤ r in Claim
2. The inequation is derived from fixing randomness of strings whose length
is less than α(|x|). If α is slow enough, then the initial segment RCt

U0
+2

<α(|x|)

is decidable in PSPACE. However, since the definition of TTRTC uses time-
efficient universality, M must run in at most polynomial time in t. This time
limit prevents α from growing slowly because |x| becomes huge as α becomes
slow.

In the case of TTRT′
C , since a f -efficient universal Turing machine U is al-

lowed to run longer than time-efficient one, the Turing machine M can also run
long enough to calculate the initial segment RCt

U0
+2

<α(|x|). Therefore, we can

eliminate the slight nonuniformity as stated in Theorem 11.2 (see the full version
for a proof).

356 S. Hirahara and A. Kawamura

4 A Restricted Reduction

Our crucial observation is that we do not use the initial segment RCU

<α(n) to
prove Theorem 1: Its proof relies on the hardness versus randomness frame-
work of Impagliazzo and Wigderson [6]. That is, the set of random strings of
length Θ(log n) is highly complex, and therefore hard enough to construct the
pseudorandom generator that can derandomize BPP completely. Nevertheless,
as discussed in Section 3, the initial segment RCU

<α(n) is the very obstacle to
proving Theorem 11.1 without the slight nonuniformity α.

For the purpose of characterizing BPP using Kolmogorov complexity, we
should not allow reductions to query any short string of length less than α(n).
This motivates the notion of α-restricted truth-table reductions:

Definition 13. For languages A,B ⊆ {0, 1}∗, we write A ≤p
ttα B if there exists

a polynomial time Turing machine M that, on input x, outputs an encoding of
a circuit λ and a list of queries q1, . . . , qm, where |qi| ≥ α(|x|), so that A(x) =
λ (B(q1), . . . , B(qm)).

Then let us restrict TTRTC to TTRTC,α by imposing the α-restriction:

Definition 14. TTRTC,α is the class of all languages L such that for all large
t and for any time-efficient universal Turing machine U , L ≤p

ttα RCt
U

.

At a glance, our requirement, which bounds the query lengths from below
by a unbounded function (that could be very slow-growing), may seem to be
an atypical, and perhaps rather weak, restriction. Nevertheless, this restriction
allows us to eliminate the slight nonuniformity in the upper bound:

Theorem 15. BPP ⊆ TTRTC,α ⊆ PSPACE ∩ P/poly for any nondecreasing
unbounded computable function α(n) = O(log n).

Proof. As discussed, we still have BPP ⊆ TTRTC,α even if the reduction is
restricted (see the full version for a proof). Thus we present only a proof of the
inclusion TTRTC,α ⊆ PSPACE. Note that the proof is almost the same with
that of Theorem 11.

We change a polynomial-time truth-table reduction into an α-restricted one.
Thus, enumerate all polynomial-time Turing machines γ1, γ2, · · · and regard
them as α-restricted polynomial-time truth-table reductions. That is, whenever
γe(x) queries a string of length less than α(|x|), we ignore the Turing machine γe
because it turns out to be not an α-restricted reduction. More precisely, when M
seeks a “witness” x in Algorithm 1, if γe has turned out to be not an α-restricted
reduction, then M goes to the next e.

Claim 4 (Revised Claim 1). M can find a string x such that α(|x|) > l and
WINe,x = L(x), or γe turns out to be not an α-restricted reduction.

Proof. We can assume that on input x, γe does not query a string of length less
than α(|x|) because otherwise γe turns out not an α-restricted reduction. Then,

in order to compute WINe,∗, the initial segment RCt∗
U

<α(|x|) is not needed. Thus
WINe,∗ ∈ PSPACE. ��

On Characterizations of Randomized Computation Using Plain 357

Claim 5 (Revised Claim 3). L ≤p
ttα RCt∗

U
.

Proof. All α-restricted reductions are enumerated. Thus, in the same way with
Claim 3, it follows that any Turing machine γe does not compute L ≤p

ttα RCt∗
U

.
��

��

In fact, we have another application of α-restriction to ordinary Kolmogorov
complexity. Let us define a limited class of DTTRC :

Definition 16. For a function α : N → N, DTTRC,α contains all the decid-
able languages L such that for any universal Turing machine, L ≤p

ttα RCU . Let
DTTRC denote DTTRC,0.

Although we failed to prove any upper bound for DTTRC , we show that
DTTRC,α sits within PSPACE for any slow-growing function α, whose proof we
defer to the full version.

Theorem 17. BPP ⊆ DTTRC,α ⊆ PSPACE for any nondecreasing unbounded
computable function α(n) = O(log n).

5 Using the Set of Short Random Strings as Advice

As discussed in Section 4, all we need to show the lower bound of BPP is the
hardness of RCt

U

=c log n, where the function log is regarded as log : N→ N. Thus,
even if we further restrict the α-restricted reduction into one that can query only
strings of length c logn, we still have the same lower bound. It appears natural
to present a class defined by the restricted reduction as advice:

Definition 18. A language L is in P/R=log
C if for some constant c ∈ N, for all

large time bounds t and each time-efficient universal Turing machine U , there
exists a polynomial-time Turing machine M such that for any n ∈ N, for all
x ∈ {0, 1}n, M(x, �RCt

U

=c logn
) = L(x), where �A=m
 ∈ {0, 1}2m denotes a
standard encoding of A=m ⊆ {0, 1}m.

The notation P/R=log
C gives some intuition, but does not express all. In partic-

ular, random strings in Definition 18 are defined by time-bounded Kolmogorov
complexity.

The class P/R=log
C can be regarded as a limited class of TTRTC,log. Therefore,

by Theorem 15, we have P/R=log
C ⊆ PSPACE ∩ P/poly. In fact, we can get a

better uniform upper bound:

Theorem 19. BPP ⊆ P/R=log
C ⊆ Σp

2 ∩ P/poly.

Proof. It is obvious that P/R=log
C ⊆ P/poly since the length of advice is at

most polynomial in n. To prove BPP ⊆ P/R=log
C , one can show that, in order

to construct a pseudorandom generator, the constant c in Definition 18 can be

358 S. Hirahara and A. Kawamura

chosen so that it depends on neither a time-efficient universal machine U nor
sufficiently large time bounds t (see the full version for a proof).

The proof of the inclusion P/R=log
C ⊆ Σp

2 is based on that of Theorem 15.

Assume, by way of contradiction, that L ∈ P/R=log
C \ Σp

2. Then there exists
a constant c given in Definition 18. Define α as α(n) = c logn. The advice of
random strings can be regarded as an α-restricted truth-table reduction to the
set of random strings. Therefore, we can prove the upper bound in the same way
with Theorem 15.

There is one change in the rule of the games. Recall that R denotes the current
knowledge ofRCt∗

U
. The current value of the game Ge,x is equal to γe(x, �R=α(n)
),

where n = |x|. In the proof of Theorem 15, for r ∈ {α(|x|), · · · , l}, there is the
rth round, where r corresponds to the length of queries. Now that there are only
queries of length α(|x|), there is only the α(|x|)th round. Thus the player who has
a winning strategy, WINe,x, can be computed in Σp

2 as shown in the proof of the
next claim.

Claim 6 (Revised Claim 4). M can find a string x such that α(|x|) > l and
WINe,x = L(x).

Proof. First, the YES player decides a subset Z1 ⊆ {0, 1}α(n), where |Z1| ≤
2α(n)−2. Next, the NO player decides a subset Z0 ⊆ {0, 1}α(n), where |Z0| ≤
2α(n)−2. Then the winning player corresponds to γe

(
x, �R=α(n) \ (Z1 ∪ Z0)

)
=:

v(Z1, Z0). Therefore, WINe,x = 1 if and only if ∃Z1, ∀Z0, v(Z1, Z0) = 1, which
is decidable in Σp

2. If the claim is false, then L(x) = WINe,x, and it is decidable
in Σp

2, which contradicts the assumption. ��

Claim 7 (Revised Claim 5). For any polynomial-time Turing machine γe, there

exists a string x such that γe(x, �RCt∗
U

=α(n)
) = L(x).

Proof. By Claim 6, M can find a string x such that WINe,x = L(x). Since the
WINe,x side plays the games according to a winning strategy, after the game,

γe(x, �RCt∗
U

=α(n)
) = WINe,x = L(x). ��

The claim above contradicts. ��

At the end, we should point out that there is similar work related to the class
P/R=log

C . Buhrman et al. [5] also tried to show that using random strings as
a source of randomness is the only way to make use of it. They modeled the
initial segment of random strings as advice with (unrealistic) hardness. While
their argument is incomplete in that it relies on the unrealistic hardness, it may
provide some improvement on our result. Let us illustrate their work in terms of
our notation. They used the unrealistic hardness in order to show the following
hypothesis that “good advice” has polynomial density:

Hypothesis 1. If a language L ∈ P/R=log
C , then there exists a Turing machine M

such that for all large n ∈ N and for some m = nO(1),

Pr
r∈{0,1}m

[∀x ∈ {0, 1}n,M(x, r) = L(x)] ≥ 1

nO(1)
.

On Characterizations of Randomized Computation Using Plain 359

Under this hypothesis, by using their result [5, Theorem 15], we can show that

the equality between P/R=log
C and a certain class is exactly equal to the equality

between BPP and it (see the full version for a proof), and hence Conjecture 5 is
more plausible under Hypothesis 1.

Proposition 20. If Hypothesis 1 is true, then for any class C ∈ {NP,P#P,

PSPACE,EXP}, C = P/R=log
C if and only if C = BPP.

Acknowledgement. The authors thank Eric Allender for introducing the sec-
ond author to the relevant line of research. They are also grateful for the advice
and suggestions provided by Hiroshi Imai and the members of his group at the
University of Tokyo, where part of this research was conducted as the first au-
thor’s bachelor thesis. This work was supported in part by KAKENHI.

References

1. Allender, E.: Curiouser and curiouser: The link between incompressibility and com-
plexity. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318,
pp. 11–16. Springer, Heidelberg (2012)

2. Allender, E., Buhrman, H., Friedman, L., Loff, B.: Reductions to the set of random
strings: The resource-bounded case. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 88–99. Springer, Heidelberg (2012)

3. Allender, E., Friedman, L., Gasarch, W.: Limits on the computational power of
random strings. Information and Computation 222, 80–92 (2013)

4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press (2009)

5. Buhrman, H., Fortnow, L., Koucký, M., Loff, B.: Derandomizing from random
strings. In: Proceedings of the 25th Annual Conference on Computational Com-
plexity, CCC 2010, pp. 58–63 (2010)

6. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Deran-
domizing the xor lemma. In: Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, STOC 1997, pp. 220–229 (1997)

7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer Publishing Company (2008)

New Results for Non-Preemptive Speed Scaling

Chien-Chung Huang1 and Sebastian Ott2

1 Chalmers University, Göteborg, Sweden
villars@gmail.com

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
ott@mpi-inf.mpg.de

Abstract. We consider the speed scaling problem introduced in the
seminal paper of Yao et al. [23]. In this problem, a number of jobs, each
with its own processing volume, release time, and deadline, needs to be
executed on a speed-scalable processor. The power consumption of this
processor is P (s) = sα, where s is the processing speed, and α > 1
is a constant. The total energy consumption is power integrated over
time, and the objective is to process all jobs while minimizing the energy
consumption.

The preemptive version of the problem, along with its many variants,
has been extensively studied over the years. However, little is known about
the non-preemptive version of the problem, except that it is strongly NP-
hard and allows a (large) constant factor approximation [5,7,15]. Up until
now, the (general) complexity of this problem is unknown. In the present
paper, we study an important special case of the problem, where the job
intervals form a laminar family, and present a quasipolynomial-time ap-
proximation scheme for it, thereby showing that (at least) this special case
is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).

The second contribution of this work is a polynomial-time algorithm
for the special case of equal-volume jobs. In addition, we show that two
other special cases of this problem allow fully polynomial-time approxi-
mation schemes.

1 Introduction

Speed scaling is a widely applied technique for energy saving in modern micro-
processors. Its general idea is to strategically adjust the processing speed, with
the dual goals of finishing the tasks at hand in a timely manner while minimiz-
ing the energy consumption. The following theoretical model was introduced by
Yao et al. in their seminal paper of 1995 [23]. We are given a set of jobs, each
with its own volume vj (number of CPU cycles needed for completion of this
job), release time rj (when the job becomes available), and deadline dj (when
the job needs to be finished), and a processor with power function P (s) = sα,
where s is the processing speed, and α > 1 is a constant (typically between two
and three for modern microprocessors [12,22]). The energy consumption is power
integrated over time, and the objective is to process all given jobs within their
time windows [rj , dj), while minimizing the total energy consumption.

Most work in the literature focuses on the preemptive version of the problem,
where the execution of a job may be interrupted and resumed at a later point of

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 360–371, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

New Results for Non-Preemptive Speed Scaling 361

time. For this setting, Yao et al. [23] gave a polynomial-time exact algorithm to
compute the optimal schedule. The non-preemptive model, where a job must be
processed uninterruptedly until its completion, has so far received surprisingly
little attention, even though it is often preferred in practice and widely used
in current real-life applications. For example, most current real-time operating
systems for automotive applications use non-preemptive scheduling as defined
by the OSEK/VDX standard [21]. The advantage of this strategy lies in the
significant lower overhead (preemption requires to memorize and restore the
state of the system and the job) [5], and the avoidance of synchronization efforts
for shared resources [21]. From a theoretical point of view, the non-preemptive
model is of interest, since it is a natural variation of Yao et al.’s original model.
So far, little is known about the complexity of the non-preemptive speed scaling
problem. On the negative side, no lower bound is known, except that the problem
is strongly NP-hard [5]. On the positive side, Antoniadis and Huang [5] showed
that the problem has a constant factor approximation algorithm, although the
obtained factor 25α−4 is rather large. Recently, Bampis et al. [7] and Cohen-
Addad et al. [15] have significantly improved on the constant.

1.1 Our Results and Techniques

In this paper, we work towards better understanding the complexity of the non-
preemptive speed scaling problem, by considering several special cases and pre-
senting (near-)optimal algorithms. In the following, we give a summary of our
results.

Laminar Instances: An instance is said to be laminar if for any two differ-
ent jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆ [rj1 , dj1), or
[rj1 , dj1) ∩ [rj2 , dj2) = ∅. The problem remains strongly NP-hard for this
case [5]. We present the first (1 + ε)-approximation for this problem, with
a quasipolynomial running time (i.e. a running time bounded by 2poly(logn)

for any fixed ε > 0); a so-called quasipolynomial-time approximation scheme
(QPTAS). Our result implies that laminar instances are not APX-hard, un-
less NP ⊆ DTIME(2poly(logn)). We remark that laminar instances form an
important subclass of instances that not only arise commonly in practice (e.g.
when jobs are created by recursive function calls [18]), but are also of theo-
retical interest, as they highlight the difficulty of the non-preemptive speed
scaling problem: Taking instances with an “opposite” structure, namely
agreeable instances (here for any two jobs j1 and j2 with rj1 < rj2 , it holds
that dj1 < dj2), the problem becomes polynomial-time solvable [5]. On the
other hand, further restricting the instances from laminar to purely-laminar
(see next case) results in a problem that is only weakly NP-hard and admits
an FPTAS.

Purely-Laminar Instances: An instance is said to be purely-laminar if for
any two different jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆
[rj1 , dj1). We present a fully polynomial-time approximation scheme (FP-
TAS) for this class of instances. This is the best possible result (unless P =
NP), as the problem is still (weakly) NP-hard [5].

362 C.-C. Huang and S. Ott

Equal-Volume Jobs: If all jobs have the same volume v1 = v2 = . . . = vn = v,
we present a polynomial-time algorithm for computing an (exact) optimal
schedule. We thereby improve upon a recent result of Bampis et al. [6], who
proposed a 2α-approximation algorithm, and answer their question for the
complexity status of this problem.

Bounded Number of Time Windows: If the total number of different time
windows is bounded by a constant, we present an FPTAS for the prob-
lem. This result is again optimal (unless P = NP), as the problem remains
(weakly) NP-hard even if there are only two different time windows [5].

The basis of all our results is a discretization of the problem, in which we allow
the processing of any job to start and end only at a carefully chosen set of
grid points on the time axis. We then use dynamic programming to solve the
discretized problem. For laminar instances, however, even computing the optimal
discretized solution is hard. The main technical contribution of our QPTAS is a
relaxation that decreases the exponential size of the DP-tableau without adding
too much energy cost. For this, we use a kind of overly compressed representation
of job sets in the bookkeeping. Roughly speaking, we “lose” a number of jobs in
each step of the recursion, but we ensure that these jobs can later be scheduled
with only a small increment of energy cost.

1.2 Related Work

The study of dynamic speed scaling problems for reduced energy consumption
was initiated by Yao, Demers, and Shenker in 1995. In their seminal paper [23],
they presented a polynomial-time algorithm for finding an optimal schedule when
preemption of jobs is allowed. Furthermore, they also studied the online version
of the problem (again with preemption of jobs allowed), where jobs become
known only at their release times, and developed two constant-competitive al-
gorithms called Average Rate and Optimal Available.

Over the years, a rich spectrum of variations and generalizations of the original
model have been investigated, mostly with a focus on the preemptive version.
Irani et al. [17], for instance, considered a setting where the processor additionally
has a sleep state available. Another extension of the original model is to restrict
the set of possible speeds that we may choose from, for example by allowing only
a number of discrete speed levels [14,19], or bounding the maximum possible
speed [8,13,16]. Variations with respect to the objective function have also been
studied, for instance by Albers and Fujiwara [2] and Bansal et al. [10], who tried
to minimize a combination of energy consumption and total flow time of the jobs.
Finally, the problem has also been studied for arbitrary power functions [9], as
well as for multiprocessor settings [1,3,11].

In contrast to this diversity of results, the non-preemptive version of the speed
scaling problem has been addressed rarely in the literature. Only in 2012, An-
toniadis and Huang [5] proved that the problem is strongly NP-hard, and gave
a 25α−4-approximation algorithm for the general case. Recently, the approxima-
tion ratio has been improved to 2α−1(1+ ε)B̃α, where B̃α is the α-th generalized

New Results for Non-Preemptive Speed Scaling 363

Bell number, by Bampis et al. [7], and to (12(1 + ε))α−1 by Cohen-Addad et
al. [15]. For the special case where all jobs have the same volume, Bampis et
al. [6] proposed a 2α-approximation algorithm. Independently of our result for
this setting, Angel et al. [4] also gave a polynomial-time exact algorithm for such
instances, with the same complexity of O

(
n21

)
.

Very recently, multi-processor non-preemptive speed scaling also started to
draw the attention of researchers. See [6,15] for details.

1.3 Organization of the Paper

Our paper is organized as follows. In section 2 we give a formal definition of
the problem and establish a couple of preliminaries. In section 3 we present a
QPTAS for laminar instances, and in section 4 we present a polynomial-time
algorithm for instances with equal-volume jobs. Our FPTASs for purely-laminar
instances and instances with a bounded number of different time windows can
be found in the full version of this paper. Due to space constraints, most proofs
are also deferred to the full version.

2 Preliminaries and Notations

The input is given by a set J of n jobs, each having its own release time rj , dead-
line dj , and volume vj > 0. The power function of the speed-scalable processor
is P (s) = sα, with α > 1, and the energy consumption is power integrated over
time. A schedule specifies for any point of time (i) which job to process, and (ii)
which speed to use. A schedule is called feasible if every job is executed entirely
within its time window [rj , dj), which we will also call the allowed interval of
job j. Preemption is not allowed, meaning that once a job is started, it must be
executed entirely until its completion. Our goal is to find a feasible schedule of
minimum total energy consumption.

We use E(S) to denote the total energy consumed by a given schedule S,
and E(S, j) to denote the energy used for the processing of job j in schedule
S. Furthermore, we use OPT to denote the energy consumption of an optimal
schedule. A crucial observation is that, due to the convexity of the power function
P (s) = sα, it is never beneficial to vary the speed during the execution of a
job. This follows from Jensen’s Inequality. We can therefore assume that in an
optimal schedule, every job is processed using a uniform speed.

In the following, we restate a proposition from [5], which allows us to speed
up certain jobs without paying too much additional energy cost.

Proposition 1. Let S and S′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S′, j) = (s′/s)α−1 ·E(S, j).

As mentioned earlier, all our results rely on a discretization of the time axis, in
which we focus only on a carefully chosen set of time points. We call these points
grid points and define grid point schedules as follows.

364 C.-C. Huang and S. Ott

Definition 1 (Grid Point Schedule). A schedule is called grid point schedule
if the processing of every job starts and ends at a grid point.

We use two different sets of grid points, Papprox and Pexact. The first set, Papprox,
is more universal, as it guarantees the existence of a near-optimal grid point
schedule for any kind of instances. On the contrary, the set Pexact is specialized
for the case of equal-volume jobs, and on such instances guarantees the existence
of a grid point schedule with energy consumption exactly OPT. We now give
a detailed description of both sets. For this, let us call a time point t an event
if t = rj or t = dj for some job j, and let t1 < t2 < . . . < tp be the set of
ordered events. We call the interval between two consecutive events ti and ti+1

a zone. Furthermore, let γ := 1 + �1/ε�, where ε > 0 is the error parameter of
our approximation schemes.

Definition 2 (Grid Point Set Papprox). The set Papprox is obtained in the
following way. First, create a grid point at every event. Secondly, for every zone
(ti, ti+1), create n2γ − 1 equally spaced grid points that partition the zone into
n2γ many subintervals of equal length Li = ti+1−ti

n2γ . Now Papprox is simply the
union of all created grid points.

Note that the total number of grid points in Papprox is at most O
(
n3(1 + 1

ε)
)
, as

there are O
(
n) zones, for each of which we create O

(
n2γ

)
grid points.

Lemma 1. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

Definition 3 (Grid Point Set Pexact). For every pair of events ti ≤ tj, and
for every k ∈ {1, . . . , n}, create k − 1 equally spaced grid points that partition
the interval [ti, tj] into k subintervals of equal length. Furthermore, create a grid
point at every event. The union of all these grid points defines the set Pexact.

Clearly, the total number of grid points in Pexact is O
(
n4

)
.

Lemma 2. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

3 Laminar Instances

In this section, we present a QPTAS for laminar problem instances. We start
with a small example to motivate our approach, in which we reuse some ideas
of Muratore et al. [20] for a different scheduling problem. Consider Figure 1,
where we have drawn a number of (laminar) time intervals, purposely arranged
in a tree structure. Imagine that for each of those intervals Ik, we are given a
set of jobs Jk whose allowed interval is equal to Ik. Furthermore, let us make
the simplifying assumption that no job can “cross” the boundary of any interval
Ik during its execution. Then, in any feasible schedule, the set of jobs J1 at the
root of the tree decomposes into two subsets; the set of jobs processed in the left
child I2, and the set of jobs processed in the right child I3. Having a recursive

New Results for Non-Preemptive Speed Scaling 365

Fig. 1. Time intervals of a laminar instance, arranged in a tree structure

procedure in mind, we can think of the jobs in the root as being split up and
handed down to the respective children. Each child then has a set of “inherited”
jobs, plus its own original jobs to process, and both are available throughout its
whole interval. Now, the children also split up their jobs, and hand them down
to the next level of the tree. This process continues until we finally reach the
leaves of the tree, where we can simply execute the given jobs at a uniform speed
over the whole interval.

Aiming for a reduced running time, we reverse the described process and in-
stead compute the schedules in a bottom-up manner via dynamic programming,
enumerating all possible sets of jobs that a particular node could “inherit” from
its ancestors. This dynamic programming approach is the core part of our QP-
TAS, though it bears two major technical difficulties. The first one is that a job
from a father node could also be scheduled “between” its children, starting in
the interval of child one, stretching over its boundary, and entering the inter-
val of child two. We overcome this issue by taking care of such jobs separately,
and additionally listing the truncated child-intervals in the dynamic program-
ming tableau. The second (and main) difficulty is the huge number of possible
job sets that a child node could receive from its parent. Reducing this number
requires a controlled “omitting” of small jobs during the recursion, and a con-
densed representation of job sets in the DP tableau. At any point of time, we
ensure that “omitted” jobs only cause a small increment of energy cost when
being added to the final schedule. We now elaborate the details, beginning with
a rounding of the job volumes. Let I be the original problem instance.

Definition 4 (Rounded Instance). The rounded instance I ′ is obtained by
rounding down every job volume vj to the next smaller number of the form
vmin(1 + ε)i, where i ∈ N≥0 and vmin is the smallest volume of any job in the
original instance. The numbers vmin(1 + ε)i are called size classes, and a job
belongs to size class Ci if its rounded volume is vmin(1 + ε)i.

Lemma 3. Every feasible schedule S′ for I ′ can be transformed into a feasible
schedule S for I with E(S) ≤ (1 + ε)αE(S′).

366 C.-C. Huang and S. Ott

From now on, we restrict our attention to the rounded instance I ′. Remember
that our approach uses the inherent tree structure of the time windows. We
proceed by formally defining a tree T that reflects this structure.

Definition 5 (Tree T). For every interval [ti, ti+1) between two consecutive
events ti and ti+1, we introduce a vertex v. Additionally, we introduce a vertex
for every time window [rj , dj), j ∈ J that is not represented by a vertex yet.
If several jobs share the same allowed interval, we add only one single vertex
for this interval. The interval corresponding to a vertex v is denoted by Iv. We
also associate a (possibly empty) set of jobs Jv with each vertex v, namely the
set of jobs j whose allowed interval [rj , dj) is equal to Iv. Finally, we specify a
distinguished root node r as follows. If there exists a vertex v with Iv = [r∗, d∗),
where r∗ is the earliest release time and d∗ the latest deadline of any job in J , we
set r := v. Otherwise, we introduce a new vertex r with Ir := [r∗, d∗) and Jr := ∅.
The edges of the tree are defined in the following way. A node u is the son of a
node v if and only if Iu ⊂ Iv and there is no other node w with Iu ⊂ Iw ⊂ Iv. As
a last step, we convert T into a binary tree by repeating the following procedure
as long as there exists a vertex v with more than two children: Let v1 and v2
be two “neighboring” sons of v, such that Iv1 ∪ Iv2 forms a contiguous interval.
Now create a new vertex u with Iu := Iv1 ∪ Iv2 and Ju := ∅, and make u a new
child of v, and the new parent of v1 and v2. This procedure eventually results in
a binary tree T with O(n) vertices.

The main idea of our dynamic program is to stepwise compute schedules for
subtrees of T , that is for the jobs associated with the vertices in the subtree
(including its root), plus a given set of “inherited” jobs from its ancestors. Enu-
merating all possible sets of “inherited” jobs, however, would burst the limits
of our DP tableau. Instead, we use a condensed representation of those sets via
so-called job vectors, focusing only on a logarithmic number of size classes and
ignoring jobs that are too small to be covered by any of these. To this end, let δ
be the smallest integer such that n/ε ≤ (1 + ε)δ, and note that δ is O(log n) for
any fixed ε > 0.

Definition 6 (Job Vector). A job vector
−→
λ is a vector of δ + 1 integers

λ0, . . . , λδ. The first component λ0 specifies a size class, namely the largest out
of δ size classes from which we want to represent jobs (therefore λ0 ≥ δ−1). The
remaining δ components take values between 0 and n each, and define a number
of jobs for each of the size classes Cλ0 , Cλ0−1, . . . , Cλ0−δ+1 in this order. For
example, if δ = 2, the job vector (4, 2, 7) defines a set containing 2 jobs with
volume vmin(1 + ε)4 and 7 jobs with volume vmin(1 + ε)3.

We refer to the set of jobs defined by a job vector
−→
λ as J(

−→
λ).

Remark: We do not associate a strict mapping from the jobs defined by a job

vector
−→
λ to the real jobs (given as input) they represent. The jobs J(

−→
λ) should

rather be seen as dummies that are used to reserve space and can be replaced
by any real job of the same volume.

New Results for Non-Preemptive Speed Scaling 367

Definition 7 (Heritable Job Vector). A job vector
−→
λ = (λ0, . . . , λδ) is her-

itable to a vertex v of T if:

1. At least λi jobs in
⋃

u ancestor of v

Ju belong to size class Cλ0−i+1, for 1 ≤ i ≤ δ.

2. λ1 > 0 or λ0 = δ − 1.

The conditions on a heritable job vector ensure that for a fixed vertex v, λ0 can
take only O(n) different values, as it must specify a size class that really occurs
in the rounded instance, or be equal to δ− 1. Therefore, in total, we can have at
most O(nδ+1) different job vectors that are heritable to a fixed vertex of the tree.
In order to control the error caused by the laxity of our job set representation,
we introduce the concept of δ-omitted schedules.

Definition 8 (δ-omitted Schedule). Let J be a given set of jobs. A δ-omitted
schedule for J is a feasible schedule for a subset R ⊆ J , s.t. for every job
j ∈ J \ R, there exists a job big(j) ∈ R with volume at least vj(1 + ε)δ that is
scheduled entirely inside the allowed interval of j. The jobs in J \ R are called
omitted jobs, the ones in R non-omitted jobs.

Lemma 4. Every δ-omitted schedule S′ for a set of jobs J can be transformed
into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 + ε)αE(S′).

The preceding lemma essentially ensures that representing the δ largest size
classes of an “inherited” job set suffices if we allow a small increment of energy
cost. The smaller jobs can then be added safely (i.e. without increasing the energy
cost by too much) to the final schedule. We now turn to the central definition
of the dynamic program. All schedules in this definition are with respect to the
rounded instance I ′, and all grid points relate to the set Papprox.

Definition 9. For any vertex v in the tree T , any job vector
−→
λ that is heritable

to v, and any pair of grid points g1 ≤ g2 with [g1, g2) ⊆ Iv, let G(v,
−→
λ , g1, g2) de-

note a minimum cost grid point schedule for the jobs in the subtree of v (including

v itself) plus the jobs J(
−→
λ) (these are allowed to be scheduled anywhere inside

[g1, g2)) that uses only the interval [g1, g2). Furthermore, let S(v,
−→
λ , g1, g2) be a

δ-omitted schedule for the same set of jobs in the same interval [g1, g2), satisfying

E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Dynamic Program. Our dynamic program computes the schedules

S(v,
−→
λ , g1, g2). For ease of exposition, we focus only on computing the energy

consumption values E(v,
−→
λ , g1, g2) := E

(
S(v,

−→
λ , g1, g2)

)
, and omit the straight-

forward bookkeeping of the corresponding schedules. The base cases are the
leaves of T . For a particular leaf node �, we set

E(�,
−→
λ , g1, g2) :=

{
0 if J� ∪ J(

−→
λ) = ∅

V α

(g2−g1)α−1 otherwise,

368 C.-C. Huang and S. Ott

where V is the total volume of all jobs in J�∪J(
−→
λ). This corresponds to execut-

ing J� ∪ J(
−→
λ) at uniform speed using the whole interval [g1, g2). The resulting

schedule is feasible, as no release times or deadlines occur in the interior of I�.
Furthermore, it is also optimal by the convexity of the power function. Thus

E(�,
−→
λ , g1, g2) ≤ E

(
G(�,

−→
λ , g1, g2)

)
.

When all leaves have been handled, we move on to the next level, the parents
of the leaves. For this and also the following levels up to the root r, we compute

the values E(v,
−→
λ , g1, g2) recursively, using the procedure Compute in Figure 2.

An intuitive description of the procedure is given below.

Compute (v,
−→
λ , g1, g2):

Let v1 and v2 be the children of v, such that Iv1 is the earlier of the intervals
Iv1 , Iv2 . Furthermore, let g be the grid point at which Iv1 ends and Iv2 starts.

Initialize MIN := ∞.

For all gridpoints g̃1, g̃2, s.t. g1 ≤ g̃1 < g < g̃2 ≤ g2, and all jobs j ∈ Jv ∪ J(
−→
λ),

do:

E :=
vj

α

(g̃2−g̃1)α−1 ; J̃ :=
(
Jv ∪ J(

−→
λ)

)
\ {j}; −→γ := Vector (J̃).

MIN := min
{
MIN,

min{E + E(v1,
−→γ1, g1, g̃1) + E(v2,

−→γ2, g̃2, g2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ)}
}
.

J̃ := Jv ∪ J(
−→
λ); −→γ := Vector (J̃).

a1 := min{g1, g}; a2 := min{g2, g}; b1 := max{g1, g}; b2 := max{g2, g}.

E(v,
−→
λ , g1, g2) := min

{
MIN,

min{E(v1,
−→γ1, a1, a2) + E(v2,

−→γ2, b1, b2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ)}
}
.

Vector (J̃):

Let C
 be the largest size class of any job in J̃ .

i := max{�, δ − 1}.
For k := i− δ + 1, . . . , i do: xk := |{p ∈ J̃ : p belongs to size class Ck}|.
Return (i, xi, xi−1, . . . , xi−δ+1).

Fig. 2. Procedure for computing the remaining entries of the DP

Our first step is to iterate through all possible options for a potential “cross-
ing” job j, whose execution interval [g̃1, g̃2) stretches from child v1 into the
interval of child v2. For every possible choice, we combine the optimal energy
cost E for this job (obtained by using a uniform execution speed) with the best
possible way to split up the remaining jobs between the truncated intervals of
v1 and v2. Here we consider only the δ largest size classes of the remaining jobs
J̃ , and omit the smaller jobs. This omitting happens during the construction of
a vector representation for J̃ using the procedure Vector. Finally, we also try
the option that no “crossing” job exists and all jobs are split up between v1 and

New Results for Non-Preemptive Speed Scaling 369

v2. In this case we need to take special care of the subproblem boundaries, as
g1 > g or g2 < g are also valid arguments for Compute.

Lemma 5. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic pro-

gram are δ-omitted schedules for the jobs in the subtree of v plus the jobs J(
−→
λ).

Furthermore, they satisfy E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Combining Lemmas 1, 3, 4, and 5 we can now state our main theorem. A detailed
proof is provided in the full version of the paper.

Theorem 1. The non-preemptive speed scaling problem admits a QPTAS if the
instance is laminar.

4 Equal-Volume Jobs

In this section, we consider the case that all jobs have the same volume v1 =
v2 = . . . = vn = v. We present a dynamic program that computes an (exact)
optimal schedule for this setting in polynomial time. All grid points used for this
purpose relate to the set Pexact.

As a first step, let us order the jobs such that r1 ≤ r2 ≤ . . . ≤ rn. Furthermore,
let us define an ordering on schedules as follows.

Definition 10 (Completion Time Vector). Let C1, . . . , Cn be the completion

times of the jobs j1, . . . , jn in a given schedule S. The vector
−→
S := (C1, . . . , Cn)

is called the completion time vector of S.

Definition 11 (Lexicographic Ordering). A schedule S is said to be lexi-
cographically smaller than a schedule S′ if the first component in which their

completion time vectors differ is smaller in
−→
S than in

−→
S′.

We now elaborate the details of the DP, focusing on energy consumption values
only.

Definition 12. Let i ∈ {1, . . . , n} be a job index, and let g1, g2, and g3 be grid
points satisfying g1 ≤ g2 ≤ g3. We define E(i, g1, g2, g3) to be the minimum
energy consumption of a grid point schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 <
dk ≤ g3} that uses only the interval [g1, g2).

Dynamic Program. Our goal is to compute the values E(i, g1, g2, g3). To this
end, we let

E(i, g1, g2, g3) :=

{
0 if {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3} = ∅
∞ if ∃k ≥ i : g1 < dk ≤ g3 ∧ [rk, dk) ∩ [g1, g2) = ∅.

Note that if g1 = g2, one of the above cases must apply. We now recursively
compute the remaining values, starting with the case that g1 and g2 are consec-
utive grid points, and stepwise moving towards cases with more and more grid
points in between g1 and g2. The recursion works as follows. Let E(i, g1, g2, g3)

370 C.-C. Huang and S. Ott

be the value we want to compute, and let jq be the smallest index job in
{jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}. Furthermore, let G denote a lexicographically
smallest optimal grid point schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3},
using only the interval [g1, g2). Our first step is to “guess” the grid points bq and
eq that mark the beginning and end of jq’s execution interval in G, by minimizing
over all possible options. We then use the crucial observation that in G, all jobs
J− := {jk ∈ J : k ≥ q + 1 ∧ g1 < dk ≤ eq} are processed completely before jq,
and all jobs J+ := {jk ∈ J : k ≥ q+1 ∧ eq < dk ≤ g3} are processed completely
after jq. For J− this is obviously the case because of the deadline constraint. For
J+ this holds as all these jobs have release time at least rq by the ordering of the
jobs, and deadline greater than eq by definition of J+. Therefore any job in J+

that is processed before jq could be swapped with jq, resulting in a lexicographic
smaller schedule; a contradiction. Hence, we can use the following recursion to
compute E(i, g1, g2, g3).

E(i, g1, g2, g3) := min
{ vq

α

(eq − bq)α−1
+ E(q + 1, g1, bq, eq) + E(q + 1, eq, g2, g3) :

(g1 ≤ bq < eq ≤ g2) ∧ (bq ≥ rq) ∧ (eq ≤ dq)
}
.

Once we have computed all values, we output the schedule S corresponding to
E(1, r∗, d∗, d∗), where r∗ is the earliest release time and d∗ the latest deadline of
any job in J . Lemma 2 implies that E(S) = OPT. The running time complexity
of this algorithm is O

(
n21

)
: There are O

(
n4

)
grid points in Pexact, and thus

O
(
n13

)
entries to compute. To calculate one entry, we need to minimize over

O
(
n8

)
different options.

Theorem 2. The non-preemptive speed scaling problem admits a polynomial
time algorithm if all jobs have the same volume.

5 Conclusion

In this paper, we made a step towards narrowing down the complexity of the non-
preemptive speed scaling problem. The most interesting open question is whether
a (Q)PTAS is also possible for general instances. Some of our techniques, such as
the grid point discretization or δ-omitted schedules, can also be applied to this
setting. The problematic part is that our QPTAS relies on the tree structure of
the time windows, which is only given in laminar instances. It is unclear whether
and how this approach can be refined to deal with the general case.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)

2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633.
Springer, Heidelberg (2006)

3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA,
pp. 289–298. ACM (2007)

New Results for Non-Preemptive Speed Scaling 371

4. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling
setting, arXiv:1309.1732

5. Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. In: Fomin, F.V., Kaski,
P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg (2012)

6. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Nemparis, I.: From preemp-
tive to non-preemptive speed-scaling scheduling. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 134–146. Springer, Heidelberg (2013)

7. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient
scheduling and routing via randomized rounding. In: FSTTCS. LIPIcs, vol. 24,
pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

8. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for speed bounded
processors. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

9. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: SODA, pp. 693–701. SIAM (2009)

10. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: SODA,
pp. 805–813. SIAM (2007)

11. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: ISPA, pp. 153–161. IEEE (2008)

12. Brooks, D., Bose, P., Schuster, S., Jacobson, H.M., Kudva, P., Buyuktosunoglu,
A., Wellman, J.D., Zyuban, V.V., Gupta, M., Cook, P.W.: Power-aware microar-
chitecture: Design and modeling challenges for next-generation microprocessors.
IEEE Micro 20(6), 26–44 (2000)

13. Chan, H.L., Chan, J.W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Op-
timizing throughput and energy in online deadline scheduling. ACM Transactions
on Algorithms 6(1) (2009)

14. Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-saving scheduling for weakly dynamic
voltage scaling devices. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 338–349. Springer, Heidelberg (2005)

15. Cohen-Addad, V., Li, Z., Mathieu, C., Mills, I.: Energy-efficient algorithms for
non-preemptive speed-scaling, arXiv:1402.4111v2

16. Han, X., Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Deadline scheduling and
power management for speed bounded processors. Theor. Comput. Sci. 411(40-42),
3587–3600 (2010)

17. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: SODA,
pp. 37–46. ACM/SIAM (2003)

18. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks.
In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Hei-
delberg (2005)

19. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete volt-
age schedules. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 652–663. Springer, Heidelberg (2005)

20. Muratore, G., Schwarz, U.M., Woeginger, G.J.: Parallel machine scheduling with
nested job assignment restrictions. Oper. Res. Lett. 38(1), 47–50 (2010)

21. Negrean, M., Ernst, R.: Response-time analysis for non-preemptive scheduling in
multi-core systems with shared resources. In: SIES, pp. 191–200. IEEE (2012)

22. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor
sharing systems: Optimality and robustness. Perform. Eval. 69(12), 601–622 (2012)

23. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: FOCS, pp. 374–382. IEEE Computer Society (1995)

Lower Bounds for Splittings

by Linear Combinations�

Dmitry Itsykson and Dmitry Sokolov

Steklov Institute of Mathematics at St.Petersburg
27, Fontanka, St.Petersburg, Russia, 191023

dmitrits@pdmi.ras.ru, sokolov.dmt@gmail.com

Abstract. A typical DPLL algorithm for the Boolean satisfiability
problem splits the input problem into two by assigning the two pos-
sible values to a variable; then it simplifies the two resulting formulas. In
this paper we consider an extension of the DPLL paradigm. Our algo-
rithms can split by an arbitrary linear combination of variables modulo
two. These algorithms quickly solve formulas that explicitly encode lin-
ear systems modulo two, which were used for proving exponential lower
bounds for conventional DPLL algorithms.

We prove exponential lower bounds on the running time of DPLL
with splitting by linear combinations on 2-fold Tseitin formulas and on
formulas that encode the pigeonhole principle.

Raz and Tzameret introduced a system R(lin) which operates with
disjunctions of linear equalities with integer coefficients. We consider an
extension of the resolution proof system that operates with disjunctions
of linear equalities over F2; we call this system Res-Lin. Res-Lin can be
p-simulated in R(lin) but currently we do not know any superpolynomial
lower bounds in R(lin). Tree-like proofs in Res-Lin are equivalent to the
behavior of our algorithms on unsatisfiable instances. We prove that Res-
Lin is implication complete and also prove that Res-Lin is polynomially
equivalent to its semantic version.

1 Introduction

Splitting is the one of the most frequent methods for exact algorithms for NP-
hard problems. It considers several cases and recursively executes on each of that
cases. For the CNF satisfiability problem the classical splitting algorithms are so
called DPLL algorithms (by authors Davis, Putnam, Logemann and Loveland)
[6], [5] in which splitting cases are values of a variable. A very natural extension
of such algorithms is a splitting by a value of some formula. In this paper we
consider an extension of DPLL that allows splitting by linear combinations of
variables over F2. There is a polynomial time algorithm that check whether a
system of linear equations has a solution and whether a system of linear equations

� The research is partially supported by the RFBR grant 14-01-00545, by the
President’s grant MK-2813.2014.1 and by the Government of the Russia (grant
14.Z50.31.0030).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 372–383, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Lower Bounds for Splittings by Linear Combinations 373

contradicts a clause. Thus the running time of an algorithm that solves CNF-SAT
using splitting by linear combinations (in the contrast to splitting by arbitrary
functions) is at most the size of its splitting tree up to a polynomial factor.

Formulas that encode unsatisfiable systems of linear equations are hard for
resolution and hence for DPLL [15], [3]. Systems of linear equations are also
hard satisfiable examples for myopic and drunken DPLL algorithms [1], [9]. Hard
examples for myopic algorithms with a cut heuristic are also based on linear sys-
tems [8]. We show that a splitting by linear combinations helps to solve explicitly
encoded linear systems over F2 in polynomial time.

For every CNF formula φ we denote by φ⊕ a CNF formula obtained from φ
by substituting x1⊕x2 for each variable x. Urquhart shows that for unsatisfiable
φ the running time of any DPLL algorithm on φ⊕ is at least 2d(φ), where d(φ)
is the minimal depth of the recursion tree of DPLL algorithms running on the
input φ [16]. Urquhart also gives an example of Pebbling contradictions Peb(Gn)
such that d(Peb(Gn)) = Ω(n/ logn) and there is a DPLL algorithm that solves
Peb(Gn) in O(n) steps. Thus Peb⊕(Gn) is one more example that is hard for
DPLL algorithms but easy for DPLL with splitting by linear combinations.

The recent algorithm by Seto and Tamaki [14] solves satisfiability of formulas
over full binary basis using a splitting by linear combination of variables. The
similar idea was used by Demenkov and Kulikov in the simplified lower bound
3n− o(n) for circuit complexity over full binary basis [7]. The common idea of
[14] and [7] is that a restricting a circuit with a linear equation may significantly
reduce the size of the circuit.

Our results. We prove an exponential lower bound on the size of a splitting tree
by linear combinations for 2-fold Tseitin formulas that can be obtained from
ordinary Tseitin formulas by substituting every variable by the conjunction of
two new variables. The plan of the proof is following: let for every unsatisfiable
formula φ a search problem Searchφ be the problem of finding falsified clause
given a variable assignment. We prove that it is possible to transform a split-
ting tree T into a randomized communication protocol for the problem Searchφ
of depth O(log |T | log log |T |) if some variables are known by Alice and other
variables are known by Bob. And finally, we note that a lower bound on the
randomized communication complexity of the problem SearchTS2

G,c
for a 2-fold

Tseitin formula TS2
G,c follows from [10] and [2].

We also give an elementary proof of the lower bound 2
n−1
2 on the size of linear

splitting trees of formulas PHPm
n that encode the pigeonhole principle.

It is well known that the behavior of DPLL algorithms on unsatisfiable for-
mulas corresponds to tree-like resolution proofs. We consider the extension of
the resolution proof system that operates with disjunctions of linear equalities.
A system Res-Lin contains the weakening rule and the resolution rule. We also
consider a system Sem-Lin that is a semantic version of Res-Lin; Sem-Lin con-
tains semantic implication rule with two premises instead of the resolution rule.
We prove that this two systems are polynomially equivalent and they are impli-
cation complete. We also show that tree-like versions of Res-Lin and Sem-Lin are
equivalent to linear splitting trees; the latter implies that our lower bounds hold

374 D. Itsykson and D. Sokolov

for tree-like Res-Lin and Sem-Lin. Raz and Tzameret studied a system R(lin)
which operates with disjunctions of linear equalities with integer coefficients [12].
It is possible to p-simulate Res-Lin in R(lin) but the existence of the simulation
in the other direction is an open problem.

Futher research. The main open problem is to prove a superpolynomial lower
bound in the DAG-like Res-Lin. One of the ways to prove a lower bound is to
simulate the Res-Lin system with another system for which a superpolynomial
lower bound is known. It is impossible to simulate Res-Lin with Res(k) (that
extends Resolution and operate with k-DNF instead of clauses) and in PCR
(Polynomial Calculus + Resolution) over field with char = 2 because there
are known exponential lower bounds in Res(k) and PCR for formulas based on
systems of linear equations [13]. It is interesting whether it is possible to simulate
Res-Lin with Polynomial Calculus (or PCR) over F2 or with the system R0(lin)
which is a subsystem of R(lin) with known exponential lower bounds based on
the interpolation. Another open problem is to prove lower bounds for splitting
by linear combinations on satisfiable formulas, for example, for algorithms that
arbitrary choose a linear combination for splitting and randomly choose a value
to investigate first.

2 Preliminaries

We will use the following notation: [n] = {1, 2, . . . , n}. Let X = {x1, . . . , xn}
be a set of variables that take values from F2. A linear form is a polynomial∑n

i=1 αixi over F2.
Consider a binary tree T with edges labeled with linear equalities. For every

vertex v of T we denote by ΦT
v a system of all equalities that are written along

the path from the root of T to v. A linear splitting tree for a CNF formula φ is
a binary tree T with the following properties. Every internal node is labeled by
a linear form that depends on variables from φ. For every internal node that is
labeled by a linear form f one of the edges going to its children is labeled by
f = 0 and the other edge is labeled by f = 1. For every leaf v of the tree exactly
one of the following conditions hold: 1) The system ΦT

v does not have solutions.
We call such leaf degenerate. 2) The system ΦT

v is satisfiable but contradicts a
clause C of formula φ. We say that such leaf refutes C. 3) The system ΦT

v has
exactly one solution in the variables of φ and this solution satisfies the formula
φ. We call such leaf satisfying.

A linear splitting tree may also be viewed as a recursion tree of an algorithm
that searches for satisfying assignments of a CNF formula using the following
recursive procedure. It gets on the input a CNF formula φ and a system of linear
equations Φ, the goal of the algorithm is to find a satisfying assignment of φ∧Φ.
Initially Φ = True and on every step it somehow chooses a linear form f and
a value α ∈ F2 and makes two recursive calls: on the input (φ, Φ ∧ (f = α))
and on the input (φ, Φ ∧ (f = 1 + α)). The algorithm backtracks in one of
the three cases: 1) The system Φ does not have solutions (it can be verified in

Lower Bounds for Splittings by Linear Combinations 375

polynomial time); 2) The system Φ contradicts to a clause C of the formula φ
(A system Ψ contradicts a clause (�1 ∨ �2 ∨ · · · ∨ �k) iff for all i ∈ [k] the system
Ψ ∧ (�i = 1) is unsatisfiable. Hence this condition may be verified in polynomial
time); 3) The system Φ has the unique solution that satisfies φ (it can also be
verified in polynomial time). Note that if it is enough to find just one satisfying
assignment, then the algorithm may stop in the first satisfying leaf. But in the
case of unsatisfiable formulas it must traverse the whole splitting tree.

Proposition 1. For every linear splitting tree T for a formula φ it is possible to
construct a splitting tree that has no degenerate leaves. The number of vertices
in the new tree is at most the number of vertices in T .

Proposition 2. Let formula φ in CNF encode an unsatisfiable system of linear
equations

∧m
i=1(fi = βi) over F2. The i-th equation fi = βi is represented by

a CNF formula φi and φ =
∧m

i=1 φi. It is possible that encodings of different
formulas φi have the same clause; we assume that such clause is repeated in
φ.Then there exists a splitting tree for φ of size O(|φ|).

Proof. We will describe a binary tree T that has a path from the root to a
leaf labeled by equalities f1 = β1, f2 = β2, . . . , fm = βm; the leaf is degenerate
since the system is unsatisfiable. For all i ∈ [m] the i-th vertex on the path
has the edge to the child ui labeled by fi = βi + 1. Now we describe a subtree
Tui with the root ui; it is just a splitting tree over all variables of formula
φi. Let x1, x2, . . . , xk be variables that appear in f with nonzero coefficients.
We sequentially make splittings on x1, x2, . . . xk starting in ui. We know that
ΦT
ui

contradicts φi, therefore every leaf of Tui either refutes clause of φi or is
degenerate (the system contradicts fi = 1 + βi). Tui has 2k leaves but it is well
known that every CNF representation of x1 + x2 + · · · + xk = βi has at least
2k−1 clauses. Therefore the size of T is at most O(|φ|).

3 Lower Bound for 2-Fold Tseitin Formulas

In this section we prove a lower bound on the size of a linear splitting tree.
The proof consists of two parts. At first we transform a splitting tree to a com-
munication protocol and then we prove a lower bound on the communication
complexity.

Communication protocol from linear splitting tree. Let φ be an unsatisfiable CNF
formula. For every assignment of its variables there exists a clause of φ that is
falsified by the assignment. By Searchφ we denote a search problem where the
instances are variables assignments of and the solutions are clauses of φ that are
falsified by the assignment.

Let’s consider some function or search a problem f with inputs {0, 1}n; the
set [n] is split into two disjoint sets X and Y . Alice knows bits of input corre-
sponding to X and Bob knows bits of inputs corresponding to Y . A randomized
communication protocol with public random bits and error ε is a binary tree such

376 D. Itsykson and D. Sokolov

that every internal node v is labeled with a function of one of the two types:
av : {0, 1}X × {0, 1}R → {0, 1} or bv : {0, 1}Y × {0, 1}R → {0, 1}, where R is an
integer that denotes the number of random bits used by a protocol. For every
internal node one of the edges to children is labeled with 0 and the other with
1, and leaves are labeled with strings (answers of a protocol). Assume that Alice
knows x ∈ {0, 1}X and Bob knows y ∈ {0, 1}Y ; both of them know a random
string r ∈ {0, 1}R. Alice and Bob communicate according to the protocol in the
following way: initially they put a token in the root of the tree. Every time if
the node with the token is labeled by a function of type av, then Alice computes
the value of av(x, r) and sends the result to Bob; and if the node is labeled by a
function of type bv, then Bob computes the value of bv(x, r) and sends the result
to Alice. After this, both players move the token to the child that corresponds
to the sent bit. The communication stops whenever the token moves to a leaf.
The label in the leaf is the result of the communication with a given string of
random bits r. It is required that with probability at least 1 − ε over random
choice of the string r ← {0, 1}R the result of the protocol is a correct answer
to the problem f . The complexity of a communication protocol is a depth of
the tree or, equivalently, the number of bits that Alice and Bob must send in
the worst case. By a randomized communication complexity with error ε of the
problem f we call a number Rpub

ε (f) that equals the minimal complexity of a
protocol that solves f . See [11] for more details.

Let EQ : {0, 1}2n → {0, 1}, and for all x, y ∈ {0, 1}n, EQ(x, y) = 1 iff x = y.
When we study the communication complexity of EQ we assume that Alice
knows x and Bob knows y.

Lemma 1 ([11]). Rpub
δ (EQ) ≤ �log 1

δ �+ 1.

Theorem 1. Let φ be an unsatisfiable CNF formula and T be a linear splitting
tree for φ. Then for every distribution of variables of φ between Alice and Bob,
Rpub

1/3(Searchφ) = O(log |T | log log |T |).

Proof. We construct a communication protocol from the tree T without degen-
erate leaves. Alice and Bob together know an assignment π of variables of φ
(Alice knows some bits of π and Bob knows the other bits of π). The assign-
ment π determines a path �π in T that corresponds to edges with labels that are
satisfied by π. This path contains a leaf that refutes some clause Cπ of φ. The
protocol that we are describing with high probability returns the clause Cπ.

The protocol has O(log |T |) randomized rounds. In the analisys of the next
round we will assume that all previous rounds do not contain errors. Thus
the total error may be estimated as a sum of errors of the individual rounds.
Both Alice and Bob at the beginning of the i-th round know a tree Ti that is
a connected subgraph of T ; T1 = T . Since Ti is a connected subgraph of T , we
may assume that the root of Ti is its highest vertex in T . Under the assumption
that all previous rounds were correct we will ensure that Ti contains the part
of the path �π that goes from the root of Ti to the leaf that refutes Cπ . We also

Lower Bounds for Splittings by Linear Combinations 377

maintain inequality |Ti+1| ≤ 2
3 |Ti|. Thus if Ti has only one vertex it would be

the leaf of T that refutes Cπ, therefore Alice and Bob will know Cπ.
Let |Ti| > 1, then there exists such a vertex v of Ti that the size of the subtree

of Ti with the root v (we denote it by T
(v)
i) is at least 1

3 |Ti| and at most 2
3 |Ti|. The

tree Ti+1 equals T
(v)
i if v belongs to the path �π and equals Ti \ T (v)

i otherwise.
Alice and Bob, using a fixed algorithm, find the vertex v; now they have to verify
whether v belongs to �π. The vertex v belongs to the path �π iff π satisfies all
equalities that are written along the path from the root of Ti to v. Assume that
we have to verify t equalities. When we verify the j-th equality, Alice have to
compute the sum of her variables and Bob computes the sum of his variable. And
we should verify that the sum of the results of Alice and Bob equals the right
hand side of the equality αj . Let the sum of Alice variables of the j-th equality
plus αi equals zj and the sum of variables of Bob of the j-th equality equals
yj . All equalities are satisfied by π iff EQ(z1z2 . . . zt, y1y2 . . . yt) = 1. In order to
compute EQ we use a protocol for EQ from the Lemma 1 with δ = 1

3�log3/2 |T |� .

Since the number of rounds is at most �log3/2 |T |�, the total error of the protocol

is at most 1
3 . The total depth of the protocol is at most the number of rounds

�log3/2 |T |� times the depth of the EQ protocol O(log log |T |). ��

Lower bound on communication complexity. A Tseitin formula TSG,c can be
constructed from an arbitrary graph G(V,E) and a function c : V → F2; vari-
ables of TSG,c correspond to edges of G. The formula TSG,c is a conjunction of
the following conditions encoded in CNF for every vertex v: the parity of the
number of edges incident to v that have value 1 is the same as the parity of c(v).
It is well known that TSG,c is unsatisfiable if and only if

∑
v∈V c(v) = 1.

A k-fold Tseitin formula TSk
(G,c) [2] can be obtained from Tseitin formula

TSG,c if we substitute every variable xi by a conjunction of k new variables
(zi1 ∧ zi2 ∧ · · · ∧ zik) and translate the resulting formula into CNF. Note that if
the maximal degree of G is bounded by a constant, then for every constant k
the formula TSk

(G,c) has CNF representation of size polynomial in |V |.

Theorem 2. In time polynomial in n one may construct a graph G(V,E)
on n vertices with maximal degree bounded by a constant and a function
c : V → F2 such that TS2

(G,c) is unsatisfiable and Rpub
1/3(SearchTS2

(G,c)
) =

Ω
(

n1/3

(log(n) log log(n))2

)
.

Corollary 1. In the condition of the Theorem 2 the size of any linear splitting

tree of TS2
(G,c) is at least Ω

(
2n

1/3/ log3(n)
)

.

Proof (Proof of Corollary 1). Follows from Theorem 2 and Theorem 1. ��

We define a function DISJn,2 : {0, 1}n × {0, 1}n → {0, 1} that for all x, y ∈
{0, 1}n DISJn,2(x, y) = 1 iff xi ∧ yi = 0 for all i ∈ [n].

378 D. Itsykson and D. Sokolov

Theorem 3. ([2], Section 5) Let m = n1/3

log(n) , then in time polynomial in n one

may construct a graph G(V,E) on n vertices with maximal degree bounded by
a constant and a function c : V → F2 such that TS2

(G,c) is unsatisfiable and

Rpub
ε (DISJm,2) = O

(
Rpub

ε (SearchTS2
(G,c)

) log(n)(log log(n))2
)

.

Lemma 2. ([10]) Rpub
1/3 (DISJn,2) = Ω(n).

Proof (Proof of Theorem 2). Let m = n1/3

log(n) . By Lemma 2, Rpub
ε (DISJm,2) =

Ω(m), then by theorem 3 it is possible to construct G and c such that

Rpub
1/3

(
SearchTS2

(G,c)

)
= Ω

(
n1/3

(log(n) log log(n))2

)
. ��

4 Lower Bound for Pigeonhole Principle

In this section we prove a lower bound on the size of linear splitting trees for
formulas PHPm

n that encode the pigeonhole principle. Formula PHPm
n has vari-

ables pi,j , where i ∈ [m], j ∈ [n]; pi,j states that i-th pigeon is in the j-th hole.
A formula has the two types of clauses: 1) Long clauses that encode that ev-
ery pigeon is in some hole: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [m]; 2) Short clauses
that encode that every hole contains at most one pigeon: ¬pi,k ∨ ¬pj,k for all
i = j ∈ [m] and all k ∈ [n]. If m > n then PHPm

n is unsatisfiable.
We call an assignment of values of variables pi,j acceptable if it satisfies all

short clauses. In other words in every acceptable assignment there are no holes
with two or more pigeons.

Lemma 3. Let a linear system Ap = b from variables p = (pi,j)i∈[m],j∈[n] have

at most n−1
2 equations and let it have an acceptable solution. Then for every

i ∈ [m] this system has an acceptable solution that satisfies the long clause
pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

Proof. Note that if we change 1 to 0 in an acceptable assignment, then it re-
mains acceptable. Let the system have k equations; we know that k ≤ n−1

2 .
We consider an acceptable solution π of the system Ap = b with the minimum
number of ones. We prove that the number of ones in π is at most k. Let the
number of ones is greater than k. Consider k+1 variables that take value 1 in π:
pj1 , pj2 , . . . , pjk+1

. Since the matrix A has k rows, the columns that correspond to
variables pj1 , pj2 , . . . , pjk+1

are linearly depended. Therefore there exists a non-
trivial solution π′ of the homogeneous system Ap = 0 such that every variable
with value one in π′ is from the set {pj1 , pj2 , . . . , pjk+1

}. The assignment π′ + π
is also a solution of Ap = b and is acceptable because π′ + π can be obtained
from π by changing ones to zeroes. Since π′ is nontrivial, the number of ones in
π′ + π is less than the number of ones in π and this contradicts the minimality
of π.

The fact that π has at most k ones implies that π has at least n−k empty holes.
From the statement of the lemma we know that n− k ≥ k + 1; we choose k + 1

Lower Bounds for Splittings by Linear Combinations 379

empty holes with numbers �1, �2, . . . , �k+1. We fix i ∈ [m]; the columns of A that
correspond to variables pi,�1 , . . . , pi,�k+1

are linearly depended, therefore there
exists a nontrivial solution τ of the system Ap = 0 such that every variable with
value 1 in τ is from the set {pi,�1 , . . . , pi,�k+1

}. The assignment π+τ is a solution
of Ap = b; π+τ is acceptable since holes with numbers �1, �2, . . . , �k+1 are empty
in π, and τ puts at most one pigeon to them (if τ puts a pigeon in a hole, then
this is the i-th pigeon). The assignment π + τ satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n
because τ is nontrivial. ��

Theorem 4. For all m > n every linear splitting tree for PHPm
n has size at

least 2
n−1
2 .

Proof. We say that the equality f = α is acceptably implied from a linear system
Φ if every acceptable solution of Φ satisfies f = α.

We consider a linear splitting tree T for PHPm
n . Remove from T all the

vertices v for which ΦT
v has no acceptable solutions. The resulting graph is a

tree since if we remove a vertex, then we should remove its subtree, and the root
of T is not removed. We denote this tree by T ′. Note that it is impossible that
a leaf of T ′ is not a leaf in T . Indeed, assume that v is labeled in T by a linear
form f , then every acceptable assignment that satisfies ΦT

v also satisfies one of
the systems ΦT

v ∧ (f = 1) or ΦT
v ∧ (f = 0), so one of the children is not removed.

Hence in every leaf � of T ′ the system ΦT
� refutes a clause of PHPm

n . Since there
exists an acceptable assignment that satisfies ΦT

� , then ΦT
� can’t refute short

clause, therefore it refutes a long clause.
Consider a vertex v of T ′ with the only child u, let the edge (u, v) be labeled

by f = α. We know that the system ΦT
v ∧ (f = 1 + α) has no acceptable

solutions. Hence the equality f = α is acceptably implied from ΦT
v ; and the sets

of acceptable solutions of ΦT ′
u and ΦT ′

v are equal.
Let T ′ contain a vertex v with the only child u; we merge u and v in one

vertex and remove the edge (u, v) with its label. We repeat this operation while
the current tree has vertices with the only child. We denote the resulting tree
by T ′′. Let V ′ be the set of vertices of T ′, and V ′′ be the set of vertices of T ′′.
We define a surjective mapping μ : V ′ → V ′′ that maps a vertex from T ′ to a
vertex of T ′′ into which it was merged. We know that for all u ∈ T ′ the sets of
acceptable solutions of ΦT ′

u and ΦT ′′
μ(u) are equal.

For every leaf �′′ of T ′′ there exists a leaf �′ of T ′ such that μ(�′) = �′′, the
system ΦT ′

�′ refutes some long clause pi,1∨· · ·∨pi,n, therefore the system ΦT ′′
�′′ has

no acceptable solutions that satisfy pi,1 ∨ · · · ∨ pi,n. By construction all internal
nodes of T ′′ have two children. Lemma 3 implies that the depth of all leaves in
T ′′ is at least n−1

2 , hence the size of T ′′ is at least 2(n−1)/2. ��

5 Proof Systems Res-Lin and Sem-Lin

A linear clause is a disjunction of linear equalities
∨k

i=1(fi = αi), where fi is
a linear form and αi ∈ F2. Equivalently we may rewrite a linear clause as a

380 D. Itsykson and D. Sokolov

negation of a system of linear equalities ¬
∧n

i=1(fi = 1 + αi). A trivial linear
clause is a linear clause that is identically true. A clause ¬

∧n
i=1(fi = αi) is

trivial iff the system
∧n

i=1(fi = αi) has no solutions.
A linear CNF formula is a conjunction of linear clauses. We say that proposi-

tional formula φ is semantically implied form the set of formulas ψ1, ψ2, . . . , ψk

if every assignment that satisfies ψi for all i ∈ [k] also satisfies φ.

Definition 1. We define a proof system Res-Lin that can be used to prove that a
linear CNF formula is unsatisfiable. This system has two rules: 1)The weakening
rule allows to derive from a linear clause C any linear clause D such that C
semantically implies D. 2)The resolution rule allows to derive from linear clauses
(f = 0) ∨D and (f = 1) ∨D′ the linear clause D ∨D′.

A derivation of a linear clause C from a linear CNF φ in the Res-Lin system
is a sequence of linear clauses that ends with C and every clause is either a
clause of φ or it may be obtained from previous clauses by a derivation rule. The
proof of the unsatisfiability of a linear CNF is a derivation of the empty clause
(contradiction). The Sem-Lin system differs from Res-Lin by the second rule. It
is replaced by a semantic rule that allows to derive from linear clauses C1, C2

any linear clause C0 such that C1 and C2 semantically imply C0.

In order to verify that systems Sem-Lin and Res-Lin are proof systems in the
sence of [4] we have to ensure that it is possible to verify a correctness of a proof
in polynomial time. It is enough to verify a correctness of applications of rules.
The correctness of the resolution rule is easy to verify, and for the verification
of the other rules we use the following proposition.

Proposition 3. It is possible to verify in polynomial time: 1) whether a lin-
ear clause C0 = ¬

∧
i∈I(fi = αi) is a result of the weakening rule of C1 :=

¬
∧

i∈J (gi = βi); 2) whether a linear clause C0 := ¬
∧

i∈J(gi = βi) is semanti-
cally implied from C1 := ¬

∧
i∈J (gi = βi) and C2 = ¬

∧
i∈K(hi = γi).

Remark 1. We note that the weakening may be simulated by polynomial
applications of the following pure syntactic rules: 1) Simplification rule that
allows to derive D from D ∨ (0 = 1); 2) Syntactic weakening rule that al-
lows to derive D ∨ (f = α) from D; 3) Addition rule that allows to derive
D ∨ (f1 = α1) ∨ (f1 + f2 = α1 + α2 + 1) from D ∨ (f1 = α1) ∨ (f2 = α2).

We show that systems Sem-Lin and Res-Lin are polynomially equivalent. It
means that any proof in one system may be translated to the proof in other
system in polynomial time. Every proof in Res-Lin is also a proof in Sem-Lin;
the next proposition is about the opposite translation.

Proposition 4. Let nontrivial linear clause C0 := ¬{fi = αi}i∈I be a semantic
implication of C1 := ¬{gi = βi}i∈J and C2 := ¬{hi = γi}i∈L. Then C0 can
be obtained from C1 and C2 by applications of at most one resolution rule and
several weakening rules.

Lower Bounds for Splittings by Linear Combinations 381

Before we start a proof we consider an example that shows how the linear
clause (x+ y = 0) can be derived from (x = 0) and (y = 0) in Res-Lin: 1) Apply
weakening rule to (x = 0) and get (x + y = 0) ∨ (y = 1); 2) Apply resolution
rule to (x + y = 0) ∨ (y = 1) and (y = 0) and get (x + y = 0).

We will use the following well known lemma:

Lemma 4. If for a matrix A ∈ Fm×n
2 and a vector b ∈ Fm

2 the linear system
Ax = b has no solutions, then there exists a vector y ∈ Fm

2 such that yTA = 0
and yT b = 1. In other words if a linear system over F2 is unsatisfiable then it is
possible to sum several equations and get a contradiction 0 = 1.

Proof (Proof of Proposition 4). Both C1 and C2 can’t be trivial since in this
case C0 must be trivial. If Ci for i ∈ {1, 2} is trivial, then C0 is a weakening of
C2−i. So we assume that C1 and C2 are not trivial.

For all j ∈ J and l ∈ L the system
∧

i∈I(fi = αi)∧(gj = 1+βj)∧(hl = 1+γl) is
unsatisfiable. Since the system

∧
i∈I(fi = αi) is satisfiable, one of the following

holds: 1)
∧

i∈I(fi = αi) becomes unsatisfiable if we add just one equality (for
example gj = 1 + βj). Then by Lemma 4 the negation of this equality can
be obtained as a linear combination of equalities from

∧
i∈I(fi = αi). 2) The

system
∧

i∈I(fi = αi) becomes unsatisfiable only if we add both equalities (gj =
1 + βj) ∧ (hl = 1 + γl). By Lemma 4 the equality gj + hl = βj + γl + 1 may be
obtained as a linear combination of equalities from the system

∧
i∈I(fi = αi).

Note that if equalities gj = 1 + βj and hl = 1 + γl contradict each other (i.e.
gj = hl and βj = 1 + γl), then the equality gj + hl = βj + γl + 1 is just 0 = 0.

We split J into two disjoint sets J ′ and J ′′, where j ∈ J ′′ iff the system∧
i∈I(fi = αi) ∧ (gj = βj + 1) is unsatisfiable. Similarly we define a splitting

L = L′ ∪ L′′. Note that if J = J ′′, then ¬
∧

i∈I(fi = αi) is a weakening of
¬
∧

j∈J (gj = βj), similarly if L = L′′, then ¬
∧

i∈I(fi = αi) is a weakening of
¬
∧

i∈L(hi = γi). Thus in what follows we assume that J ′ = ∅ and L′ = ∅.
We get that C0 is a weakening of D := ¬(

∧
i∈J′′(gi = βi) ∧

∧
i∈L′′(hi =

γi)∧
∧

i∈J′,j∈L′(gi+hj = βi+γj +1). It remains to show that D can be obtained
from C1 and C2 by application of one resolution rule and several weakening rules.

Let j0 ∈ J ′ and l0 ∈ L′.
1) Apply the weakening rule to C1 and get D1 :=

¬
(
(gj0 = βj0) ∧

∧
i∈J′(gi + hl0 = βi + γl0 + 1) ∧

∧
i∈J′′(gi = βi)

)
;

2) Apply the weakening rule to C2 and get D2 :=
¬
(
(gj0 = βj0 + 1) ∧

∧
i∈L′(hi + gj0 = βj0 + γl0 + 1) ∧

∧
i∈L′′(hi = γi})

)
;

3) Apply the resolution rule to D1 and D2, and get

D3 := ¬
(∧

i∈J′
(gi + hl0 = βi + γl0 + 1) ∧

∧
i∈L′

(hi + gj0 = βj0 + γl0 + 1)∧

∧
i∈J′′

(gi = βi) ∧
∧

i∈L′′
(hi = γi)

)
4) Apply the weakening rule to D3 and get D.

��

382 D. Itsykson and D. Sokolov

Tree-like Res-Lin and linear splitting trees. A proof in Res-Lin (or Sem-Lin) is
tree-like if all clauses can be put in the nodes of a rooted tree in such a way that
1) the empty clause is in the root; 2) the clauses of an initial formula are in the
leaves; 3) a clause in every internal node is a result of a rule of its children.

Linear splitting trees are naturally generalized to linear CNFs.

Lemma 5. 1) Every linear splitting tree for an unsatisfiable linear CNF may
be translated into a tree-like Res-Lin proof and the size of the resulting proof is
at most twice the size of the splitting tree. 2) Every tree-like Res-Lin proof of an
unsatisfiable formula φ may be translated to a linear splitting tree for φ without
increasing the size of the tree.

Corollary 2. 1) For all m > n every tree-like proof in Res-Lin and Sem-Lin of
PHPm

n has size 2Ω(n). 2) In the conditions of Theorem 2 the size of any tree-like

resolution proof in Res-Lin and Sem-Lin of TS2
(G,c) is at least Ω(2n

1
3 / log3(n)).

Proof. Follows from Lemma 5, Proposition 4, Theorem 4 and Theorem 2. ��
Now we prove that Res-Lin is implication complete.

Lemma 6. 1) If a linear clause D is a weakening of a linear clause C, then for
every linear clause E the clause D ∨ E is a weakening of C ∨ E. 2) If a linear
clause D is a semantic implication of (or a result of the resolution rule applied
for) C and F , then for every linear clause E the clause D ∨ E is a semantic
implication (or a result of the resolution rule applied for) C ∨ E and F ∨ E.

Theorem 5. If a linear clause C0 is a semantic implication of C1, C2, . . . , Ck,
then C0 may be derived from C1, C2, . . . , Ck in Res-Lin.

Proof. The plan of the proof is following: we construct a list of linear clauses
D such that the conjunction of clauses from D is unsatisfiable. Since Res-Lin is
complete (Res-Lin is complete because every linear CNF has a splitting tree with
splitting over all variables), then there exists a derivation of the empty clause
from D. By Lemma 6 from the list D′ := {D ∨ C0 | D ∈ D} it is possible to
derive C0. After this we show that every clause in D′ is a weakening of some
clause among C1, C2, . . . , Ck.

We construct the list D step by step; initially D consists of clauses
C1, C2, . . . , Ck. Note that if an assignment π refutes C0, then by the statement
of the theorem it also refutes one of the clauses C1, C2, . . . , Ck, hence it refutes
their conjunction. Let C1 :=

∨n
i=1(fi = αi) and C0 :=

∨m
i=1(gi = βi) While

there exists such an assignment π that satisfies C0 and satisfies all clauses from
D, we add to the list D a new clause Cπ . Since π satisfies C0, then there exists i
such that π satisfies gi = βi. Let’s denote I := {i | π satisfiesfi = αi} and let the
clause Cπ equal

∨
i∈I(fi + gi = αi + βi + 1) ∨

∨
i/∈I(fi = αi). By construction π

refutes Cπ . Finally, for every assignment of variables there exists such a clause
in the list D that is not satisfied by the assignment. Hence the conjunction of
clauses from D is unsatisfiable. We have to show that for all D ∈ D the clause
D ∨ C0 is a weakening of some clause among C1, C2, . . . , Ck. If D equals one
clause from C1, C2, . . . , Ck, we are done. Let D = Cπ, then D ∨C0 is a weaken-
ing of C1 ∨ C0 and therefore is a weakening of C1. ��

Lower Bounds for Splittings by Linear Combinations 383

Acknowledgements. The authors are grateful to Jan Kraj́ıček, Edward A.
Hirsch and Alexander Knop for fruitful discussions, to Alexander Shen for the
suggestion to simplify the presentation of the first lower bound and to anonymous
reviewers for multiple helpful comments.

References

1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason.
35(1-3), 51–72 (2005)

2. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász-schrijver systems
and beyond follow from multiparty communication complexity. SIAM Journal on
Computing 37(3), 845–869 (2007)

3. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple.
Journal of ACM 48(2), 149–169 (2001)

4. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

7. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n − o(n) lower bound
on the circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.)
MFCS 2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

8. Itsykson, D., Sokolov, D.: The complexity of inversion of explicit goldreich’s func-
tion by DPLL algorithms. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011.
LNCS, vol. 6651, pp. 134–147. Springer, Heidelberg (2011)

9. Itsykson, D.: Lower bound on average-case complexity of inversion of goldre-
ich’s function by drunken backtracking algorithms. Theory Comput. Syst. 54(2),
261–276 (2014)

10. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

11. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

12. Raz, R., Tzameret, I.: Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic 155(3), 194–224 (2008)

13. Razborov, A.A.: Pseudorandom generators hard for k-dnf resolution and polyno-
mial calculus resolution. Technical report (2003)

14. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for for-
mulas over the full binary basis. Computational Complexity 22(2), 245–274 (2013)

15. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski
Nauchnykh Seminarov LOMI 8, 234–259 (1968); English translation of this volume:
Consultants Bureau, N.Y., pp. 115–125 (1970)

16. Urquhart, A.: The depth of resolution proofs. Studia Logica 99(1-3), 249–364 (2011)

On the Complexity of List Ranking

in the Parallel External Memory Model

Riko Jacob1, Tobias Lieber1, and Nodari Sitchinava2

1 Institute for Theoretical Computer Science, ETH Zürich, Switzerland
{rjacob,lieberto}@inf.ethz.ch

2 Department of Information and Computer Sciences, University of Hawaii, USA
nodari@hawaii.edu

Abstract. We study the problem of list ranking in the parallel external
memory (PEM) model. We observe an interesting dual nature for the
hardness of the problem due to limited information exchange among the
processors about the structure of the list, on the one hand, and its close
relationship to the problem of permuting data, which is known to be
hard for the external memory models, on the other hand.

By carefully defining the power of the computational model, we prove
a permuting lower bound in the PEM model. Furthermore, we present a
stronger Ω(log2 N) lower bound for a special variant of the problem and
for a specific range of the model parameters, which takes us a step closer
toward proving a non-trivial lower bound for the list ranking problem
in the bulk-synchronous parallel (BSP) and MapReduce models. Finally,
we also present an algorithm that is tight for a larger range of parameters
of the model than in prior work.

1 Introduction

Analysis of massive graphs representing social networks using distributed
programming models, such as MapReduce and Hadoop, has renewed interests
in distributed graph algorithms. In the classical RAM model, depth-first search
traversal of the graph is the building block for many graph analysis solutions.
However, no efficient depth-first search traversal is known in the parallel/
distributed setting. Instead, list ranking serves as such a building block for par-
allel solutions to many problems on graphs.

The list ranking problem is defined as follows: given a linked list compute
for each node the length of the path to the end of the list. In the classic RAM
model, the list can be ranked in linear time by traversing the list. However, in the
PRAM model (the parallel analog of the RAM model) it took almost a decade
from the first solution by Wyllie [1] till it was solved optimally [2].

The problem is even more intriguing in the models that study block-wise
access to memory. For example, in the external memory (EM) model of Aggarwal
and Vitter [3] list ranking is closely related to the problem of permuting data
in an array. The EM model studies the input/output (I/O) complexity – the
number of transfers an algorithm has to perform between a disk that contains

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 384–395, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

On the Complexity of List Ranking in the Parallel External Memory Model 385

Slow external memory

B

Internal Memory
M

CPU

(a) The EM Model

Shared memory

B B B

Cache
M

PE 1

Cache
M

PE 2

Cache
M

PE P
...

(b) The PEM Model

Fig. 1. The sequential and parallel external memory models

the input and a fast internal memory of size M . Each transfer is performed in
blocks of B contiguous elements. In this model, permuting and, consequently,
list ranking require I/O complexity which is closely related to sorting [4], rather
than the linear complexity required in the RAM model.

In the distributed models, such as bulk-synchronous parallel (BSP) [5] or
MapReduce [6] models, the hardness of the list ranking problem is more poorly
understood. These models consist of P processors, each with a private mem-
ory of size M . With no other data storage, typically M = Θ(N/P). The data
is exchanged among the processors during the communication rounds and the
number of such rounds defines the complexity metric of these models.

One established modeling of today’s commercial data centers running MapRe-
duce is to assume P = Θ(N ε) and M = Θ(N1−ε) for a constant 0 < ε < 1. Since
network bandwidth is usually the limiting factor of these models, O(logM P) =
O(1) communication rounds is the ultimate goal of computation on such mod-
els [7]. Indeed, if each processor is allowed to send up to M = N/P items to
any subset of processors, permuting of the input can be implemented in a single
round, while sorting takes O(logM P) = O(1) rounds [8,9]. On the other hand,
the best known solution for list ranking is via the simulation results of Karloff et
al. [7] by simulating the O(logN) time PRAM algorithm [2], yielding O(logP)
rounds, which is strictly worse than both sorting and permuting. Up to now, no
non-trivial lower bounds (i.e. stronger than Ω (logM P) = Ω (1)) are known in
the BSP and MapReduce models.

In this paper we study lower bounds for the list ranking problem in the par-
allel external memory (PEM) model. The PEM model was introduced by Arge
et al. [10] as a parallel extension of the EM model to capture the hierarchi-
cal memory organization of modern multicore processors. The model consists
of P processing units, each containing a private cache of size M , and a shared
(external) memory of conceptually unlimited size (see Figure 1b). The data is
concurrently transferred between the processors’ caches and shared memory in
blocks of size B. The model measures the parallel I/O complexity – the number
of parallel block transfers. From the discussion above, it appears that the hard-
ness of list ranking stems from two factors: (1) limited speed of discovery of the

386 R. Jacob, T. Lieber, and N. Sitchinava

structure of the linked list due to limited information flow among the processors,
and (2) close relationship of list ranking to the problem of permuting data. While
only one of these challenges is captured by the distributed models or the sequen-
tial EM model, both of them are exhibited in the PEM model: the first one is
captured by the distributed nature of the private caches of the model, and the
second one has been shown by Greiner [11] who proves that permuting data in
the PEM model takes asymptotically permP (N,M,B) = min

{
N
P ,

N
PB logd

N
B

}
parallel I/Os, where d = max

{
2,min

{
M
B , N

PB

}}
and log(x) = max{1, log(x)}.

Part of the challenge of proving lower bounds (in any model) is restricting
the model enough to be able to prove non-trivial bounds, while identifying the
features of the model that emphasize the hardness of a particular problem.

An example of such restriction in the external memory models (both sequen-
tial and parallel) is the so-called indivisibility assumption [3]. The assumption
states that each item is processed as a whole, and no information can be ob-
tained from a part of the input, for example, by combining several items into
one. To our knowledge, without the indivisibility assumption, it is not clear how
to prove lower bounds in the PEM model exceeding the information-theoretic
lower bounds of Ω (logP) parallel I/Os [12,10].

1.1 Our Contributions

In this paper, we address the precise formulation of the power of the PEM model
for the list ranking problem. In Section 2 we present the atomic PEM model
which formalizes the indivisibility assumption in the PEM model. It can be
viewed as the parallel analog of the model for proving permuting lower bounds
in the sequential EM model [3]. We extend this basic model by allowing an
algorithm to perform operations on the atoms that create new atoms. While
we always keep the indivisibility of the atoms, the precise operations and the
information the algorithm has about the content of the atom varies.

In the sequential EM model, Chiang et al. [4] sketch a lower bound for list
ranking via a reduction to the proximate neighbors problem. However, since there
is no equivalent to Brent’s scheduling principle [13] in the PEM model [11], the
lower bound does not generalize to the PEM model.

Therefore, in Section 3 we derive a lower bound of Ω(permP (N,M,B)) par-
allel I/Os for the proximate neighbor problem, and two problems which are
related to the list ranking problem. Our lower bounds hold for both determinis-
tic and randomized algorithms. In the process we provide an alternative proof for
the proximate neighbor lower bound in the sequential external memory model,
matching the result of Chiang et al. [4]. Those lower bounds essentially exploit
the fact that the same problem can be represented as input in many different
layouts.

The discussion in Section 1 about the dual nature of hardness of the list
ranking problem might hint at the fact that the result above is only part of the
picture and a stronger lower bound might be achievable. Part of the challenge in
proving a stronger lower bound lies in the difficulty of combining the indivisibility
assumption with the restrictions on how the structure of the linked list is shared

On the Complexity of List Ranking in the Parallel External Memory Model 387

among the processors without giving the model too much power, thus, making
the solutions trivial. We address this challenge by defining the interval PEM
model and defining the guided interval fusion (GIF) problem (Section 4). We
prove that GIF requires Ω(log2N) parallel I/Os in the interval PEM. Our lower
bound for GIF in the PEM model implies a Ω(logN) lower bound for the number
of rounds for GIF in the distributed models when P = Θ(M) = Θ(

√
N).

GIF captures the way how all currently known algorithms use information
to solve list ranking in all parallel/distributed models. Therefore, if this lower
bound could be broken for the list ranking problem, it will require completely
new algorithmic techniques. Thus, our result brings us a step closer to proving
the unconditional Ω(logP) lower bound in the BSP and MapReduce models.

Finally, in Section 5 we improve the PEM list ranking algorithm of Arge et
al. [14] to work efficiently for a larger range of parameters in the PEM model.

2 Modeling

We extend the description of the PEM model given in Section 1 to define the
PEM model more precisely. Initially, the data resides in the shared memory. To
process any element, it must be present in the corresponding processor’s cache.
The shared memory is partitioned into blocks of B contiguous elements and
the transfer of data between the shared memory and caches is performed by
transferring these blocks as units. Each transfer, an input-output operation, or
simply I/O, can transfer one block of B items between the main memory and
each processors’ cache. Thus, up to P blocks can be transferred in each parallel
I/O operation. The complexity measure of a PEM algorithm is the number of
parallel I/Os that the algorithm performs.

Similar to the PRAM model, there are several policies in the PEM model,
for handling simultaneous accesses by multiple processors to a block in shared
memory. In this paper we consider the CREW PEM model, using a block wise
concurrent read, exclusive write policy.

In order to prove lower bounds we make the definition of the model more
precise by stating what an algorithm is able to do in each step. In particular, we
assume that each element of the input is an indivisible unit of data, an atom,
which consumes one memory cell in the cache or shared memory. Such atoms
come into existence either as input atoms, or by an operation, as defined later,
on two atoms. A program or an algorithm has limited knowledge about the
content of an atom. In this paper an atom does not provide any information.
Furthermore, the atomic PEM is limited to the following operations: an I/O
operation reads or writes one block of up to B atoms in the shared memory, and
atoms can be copied or deleted. Formal definitions of similar PEM machines can
be found in [10,11].

For providing lower bounds for different problems, the concept of the
atomic PEM is extended in later sections.

In the following, we distinguish between algorithms and programs in the fol-
lowing way: In an algorithm the control flow might depend on the input, i.e.,

388 R. Jacob, T. Lieber, and N. Sitchinava

there are conditional statements (and therefore loops). In contrast, a program
has no conditional statements and is a sequence of valid instructions for a PEM
model, independent of the input (atoms). For a given instance of a computa-
tional task, a program can be seen as an instantiation of an algorithm to which
all results of conditional statements and index computations are presented be-
forehand. Note, that in the problems considered in Section 3 the copying and
the deletion operation of the atomic PEM do not help at all, since a program
can be stripped down to operations which operate on atoms which influence the
final result.

3 Counting Lower Bounds to the List Ranking Problem

In this section we prove the lower bound for the list ranking problem by showing
the lower bound to the proximate neighbors problem [4] and reducing it to the
problems of semigroup evaluation, edge contraction and, finally, list ranking.

3.1 Proximate Neighbors Problem in PEM

Definition 1 ([4]). A block permutation describes the content of the shared
memory of a PEM configuration as a set of at most B atoms for each block.

Definition 2. An instance of the proximate neighbors problem of size N con-
sists of atoms xi for i ∈ [N]. All atoms are labeled by a labeling function
λ: [N] $→ [N2] with |λ−1(i)| = 2. An output block permutation solves the prob-

lem if for every i ∈ [N2] the two neighboring atoms λ−1(i) are stored in the same
block. The blocks in such an output may contain less than B atoms.

Lemma 3. Let A be a computational problem of size N for which an algorithm

has to be capable of generating at least
(

N
eB

)cN
block permutations, for a con-

stant c > 0. Then in the CREW atomic PEM model with P ≤ N
B processors, at

least half of the input instances of A require Ω (permP (N,M,B)) parallel I/Os.

Proof. Straightforward generalization of the proof to Theorem 2.7 in [11]. ��

Theorem 4. At least half of the instances of the proximate neighbors problem
of size N require Ω (permP (N,M,B)) parallel I/Os in the CREW atomic PEM
model with P < N/B processors.

Proof. Any algorithm solving an instance of the proximate neighbors problem

must be capable of generating at least (N/2)!

(B/2)
N
2

block permutations (see the

full version of this paper [15] for a complete proof). The theorem follows from

Lemma 3 and the observation that (N/2)!

(B/2)
N
2
≥

(
N
eB

)N
2 . ��

Note, that the bound holds even if a program has full access to the labeling
function λ and thus is fully optimized for an input. The origin of the complexity
of the problem rather is permuting the atoms to the output block permutation
that solves the problem.

On the Complexity of List Ranking in the Parallel External Memory Model 389

3.2 Semigroup Evaluation in the PEM Model

Consider the problem of evaluating a very simple type of expressions, namely
that of a semigroup, in the PEM model.

Definition 5 (Semigroup Evaluation). Let S be a semigroup with its asso-
ciative binary operation · : S × S → S. The semigroup evaluation problem is
defined as evaluating the expression

∏N
i=1 ai, with ai = xπ(i), for the array of

input atoms xi ∈ S for 1 ≤ i ≤ N and where π is a permutation over [N].

To be able to solve the semigroup evaluation problem, algorithms must be able
to apply the semigroup operation to atoms. Thus, we extend the atomic PEM
model to the semigroup PEM model by the following additional operation: if
two atoms x and y are in the cache of a processor, a new atom z = x·y can be
created.

We say that a program is correct in the semigroup PEM if it computes the
correct result for any input and any semigroup.

Theorem 6. At least one instance of the semigroup evaluation problem of size N
requires Ω (permP (N,M,B)) parallel I/Os in the CREW semigroup PEM model
with P ≤ N

B processors.

Proof (Sketch). Let IPλ be an instance of the proximate neighbors problem over
the input atoms X = {xi|i ∈ [N]} with its labeling function λ. We consider
an instance ISπ of the semigroup evaluation problem over the semigroup on the
set X2 with the semigroup operation (a, b)·(c, d) = (a, d), where a, b, c, d ∈ X .
Furthermore, the instance ISπ is defined over the input atoms ai = (xi, xi), with
1 ≤ i ≤ N . The permutation π of ISπ is one of the permutations such that for all
i ∈

[
N
2

]
, {π(2i− 1), π(2i)} = λ−1(i) holds.

Then, the key idea is to write for each application of the semigroup operation
(a, b)·(c, d) in a program solving ISπ , the pair {b, c} as a result for IPλ to the
output. This would yield an efficient program for IPλ , and therefore yields the
lower bound by Theorem 4. The full argument can be found in [15]. ��

3.3 Atomic Edge Contraction in the PEM Model

Definition 7. The input of the atomic edge contraction problem of size N con-
sists of atoms xi, 1 ≤ i ≤ N , which represent directed edges ei on a (N+1)-vertex
path between vertices s and t. Initially, the edges are located in arbitrary loca-
tions of the shared memory. The instance is solved if an atom representing the
edge (s, t) is created and written to shared memory.

To prove the lower bound for the atomic edge contraction problem, we extend
the atomic PEM with an additional operation: two atoms representing a pair of
edges (a, b) and (b, c) can be removed and replaced by a new atom representing
a new edge (a, c). We call the resulting model edge-contracting PEM.

Theorem 8. There is at least one instance of the atomic edge contraction prob-
lem of size N which requires Ω (permP (N,M,B)) parallel I/Os in the CREW
edge-contracting PEM model with P ≤ N

B processors.

390 R. Jacob, T. Lieber, and N. Sitchinava

Proof (Sketch). An instance ISπ of the semigroup evaluation problem can be
reduced to an instance IE of the atomic edge contraction problem, by defining
the atom xπ(i) of IE , initially stored at location π(i), as eπ(i) = (π(i), π(i + 1)),
where π is the permutation of ISπ . The full argument can be found in [15]. ��

3.4 Randomization and Relation to the List Ranking Problem

Observe that the expected number of parallel I/Os of a randomized algorithm for
an instance is a convex combination of the number of parallel I/Os of programs.
Combining this observation with the Ω (logP) lower bound of [12,10] mentioned
in Section 1 we obtain:

Theorem 9. For the proximate neighbors, semigroup evaluation, and the atomic
edge contraction problems, there exists at least one instance that requires at least
Ω (permP (N,M,B) + logP) expected parallel I/Os by any randomized algorithm
in the corresponding PEM model with P ≤ N

B processors.

Although our semigroup PEM and edge-contracting PEM models might seem
too restrictive at a first glance. To the best of our knowledge all current parallel
solutions to list ranking utilize pointer hopping, which can be reduced to atomic
edge contraction and thus the lower bound applies.

4 The Guided Interval Fusion Problem (GIF)

In this section we prove for the GIF problem, which is very similar to the atomic
edge contraction problem, a lower bound of Ω

(
log2N

)
in the PEM model with

parameters P = M and B = M/2 for inputs of size N = PM = 2x for
some x ∈ N. In contrast to the atomic edge contraction problem, in the GIF
problem an algorithm is not granted unlimited access to the permutation π.

The chosen parameters of the PEM model complement the upper bounds of
Section 5 at one specific point in the parameter range. Note that with careful
modifications the Ω

(
log2N

)
bound can even be proven for N = M

3
2+ε.

Definition 10. The interval PEM is an extension of the atomic PEM: Two
atoms x and y representing closed intervals Ix and Iy, located in one cache, can
be fused if Ix ∩ Iy = ∅. Fusing creates a new atom z representing the interval
Iz = Ix ∪ Iy. We say z is derived from x if z is the result of zero or more fusing
operations starting from atom x.

Definition 11. The guided interval fusion problem (GIF) is a game between an
algorithm and an adversary, played on an interval PEM. The algorithm obtains a
GIF instance G in the first N cells of the shared memory, containing N uniquely
named atoms xi, 1 ≤ i ≤ N . Each initial atom xi represents the (invisible to the
algorithm) closed interval Ixi = [k − 1, k] for k = π(i) with 1 ≤ k ≤ N .

The permutation π is gradually revealed by the adversary in form of bound-
aries p = (i, j) meaning that the (initial) atoms xi and xj represent neighboring

On the Complexity of List Ranking in the Parallel External Memory Model 391

intervals (π(j) = π(i) + 1). We say that the boundary point p for xi and xj is
revealed. The adversary must guarantee that at any time, for all existing atoms,
at least one boundary is revealed. The game ends as soon as an atom represent-
ing [0, N] exists.

Note the following: The algorithm may try to fuse two atoms, even though
by the revealed boundaries this is not guaranteed to succeed. If this attempt
is successful because their intervals share a point, a new atom is created and
the algorithm solved a boundary. We call this phenomenon a chance encounter.
Since the interval PEM extends the atomic PEM, copying of atoms is allowed.

For the lower bound, we assume that the algorithm is omniscient. More pre-
cisely, we assume there exists a central processing unit, with unlimited compu-
tational power, that has all presently available information on the location of
atoms and what is known about boundaries. This unit can then decide on how
atoms are moved and fused.

Thus, as soon as all boundary information is known to the algorithm, the in-
stance is solvable with O (logN) parallel I/Os: The central unit can virtually list
rank the atoms, group the atoms by rank into P groups, and then by permuting
move to every processor O (M) atoms which then can be fused with O (1) I/Os
to the solving atom.

Hence, the careful revealing of the boundary information is crucial. To define
the revealing process for GIF instances, the atoms and boundaries of a GIF in-
stance G of size N are related to a perfect binary tree T G . The tree T G has N
leaves, N−1 internal nodes and every leaf is at distance h = logN from the root.
More precisely, each leaf i ∈ [N] corresponds to the atom representing the inter-
val [i− 1, i]. And each internal vertex vp corresponds to the boundary p = (i, j)
where i corresponds to the rightmost leaf of its left subtree, and j to the leftmost
leaf of the right subtree. The levels of T G are numbered bottom up: the leaves
have level 1 and the root vertex level logN (corresponding to the revealing order
of boundaries).

The protocol for boundary announcement, shows for a random GIF instance G,
that a deterministic algorithm takes Ω

(
log2N

)
parallel I/Os.

Definition 12. The tree T G is the guide of G if boundaries are revealed in the
following way. Let x be an atom of G representing the interval I = [a, b]. If
neither of the boundaries a and b are revealed, the boundary whose node in T G
has smaller level, is revealed. If both have the same level, a is revealed.

Note that for the analysis it is irrelevant how to break ties (in situations when
the two invisible boundaries have the same level). By the assumption that the
algorithm is omniscient, when p is revealed, immediately all intervals having p as
boundary know that they share this boundary. Thus, the guide ensures that at
any time each atom knows at least one initial atom with which it can be fused.

A node v ∈ T G is called solved, if there is an atom of G representing an interval
that contains the intervals of the leaves of the subtree of v. The boundary p is
only revealed by the guide if at least one child of vp is solved.

392 R. Jacob, T. Lieber, and N. Sitchinava

An easy (omniscient) algorithm solving a GIF instance can be implemented:
in each of O(logN) rounds, permute the atoms such that for every atom there
is at least one atom, known to be fuseable, which resides in the same cache.
Fuse all pairs of neighboring atoms, reducing the number of atoms by a factor
of at least 2, revealing new boundaries. Repeat permuting and fusing until the
instance is solved. Because the permuting step can be achieved with O (logN)
parallel I/Os, this algorithm finishes in O

(
log2N

)
parallel I/Os. Note that solv-

ing a boundary resembles bridging out one element of an independent set in the
classical list ranking scheme. Thus, most list ranking algorithms use information
as presented to an algorithm solving a GIF instance G guided by T G . Hence, this
natural way of solving a GIF instance can be understood as solving in every of
the logN rounds a proximate neighbors instance, making the Ω

(
log2N

)
lower

bound reasonable.
In the following we prove the lower bound for GIF by choosing k and showing

that s = k − 1 = O (logN) = O (logM) progress stages are necessary to solve
all nodes W of level k of T G (thus, |W | = 2h+1−k). For each stage we show in
Lemma 15 that it takes Ω (logN) parallel I/Os to compute.

To measure the progress of a stage, configurations of interval PEM machines
are used. The configuration Ct after the interval PEM machine performed t I/Os
followed by fusing operations consists of sets of atoms. For each cache and each
block of the shared memory, there is one set of atoms.

For e ∈ W , let Te be the subtree of e in T G , and Be be all boundaries in Te.
The progress measure towards solving e is the highest level of a solved boundary
in Be. More precisely, Te is unsolved on level i, if all boundaries of level i of Be

are unsolved. Initially every Te is unsolved on level 2. The solved level increases
by one at a time if only revealed boundaries are solved, but chance encounters
may increase it faster.

The execution of a deterministic algorithm A defines the following s progress

stages: Let s = 2 logM
16 and X = |W |

s . In each stage 1 < i ≤ s, at least X elements
increase their level to i. Over time, the number of elements that are unsolved on
level i decreases, and we define ti to be the last time where in Cti the number
of elements of W that are unsolved on level i + 1 is at least |W | − iX . Further,
let Wi be the elements (at least X of them) that in stage i get solved on level i
or higher (in the time-frame from ti−1 to ti +1). We choose k−1 = h

16 such that

X = 2h+1−k

s ≥ 2
15h
16 /s = M

15
8 /s > M

7
4 because s = 2 logM

16 < M
1
8 for M ∈ N.

In the beginning of stage i, for each v ∈ Wi the level of v is at most i − 1,
and hence all level i nodes are not announced to the algorithm. Let Pi be the
set of boundaries for which progress is traced: For every e ∈ Wi, there is a
node vpe of level i with boundary pe that is solved first (brake ties arbitrarily).
Then Pi consists of those boundaries. We define ae and be to be the two level 1
atoms (original intervals) defining the boundary pe. Then all intervals having
boundary pe are derived of ae or be. Solving the boundary pe means fusing
any interval derived of ae with any interval derived of be. Furthermore a traced
boundary is considered solved if in its interval (the one corresponding to an
element of W) a chance encounter solves a boundary of level greater than i.

On the Complexity of List Ranking in the Parallel External Memory Model 393

To trace the progress of the algorithm towards fusing the atoms of one stage,
we define the graph Gi

t = (V,Ei
t) from the configuration Cti+t. There is one

vertex for each cache and each block of the shared memory (independent of t).
There is an edge (self-loops allowed) {u, v} ∈ Ei

t if for some e ∈ Wi some atom
derived of ae is at u and some atom derived of be is at v or vice versa. The
multiplicity of an edge counts the number of such e. The multiplicity of the
graph is the maximal multiplicity of an edge.

Note that solving a node ve requires that it counts as a self-loop somewhere.
Hence the sum of the multiplicities of self-loops are an upper bound on the
number of solved nodes, and for the stage to end, i.e., at time ti+1 + 1, the sum
of the multiplicities of loops must be at least X . After each parallel I/O chance
encounters may happen. Thus, the number of chance encounters is given by P
times the multiplicity of self-loops at the beginning of the stage.

We say that two nodes of T G are indistinguishable if they are on the same
level and exchanging them could still be consistent with the information given
so far. Let le (derived of ae) and re (derived of be) be the two children of ve ∈ Pi.
By definition, at time ti both le and re are unsolved and hence ve is not revealed.

Boundaries corresponding to nodes of level higher than k may be announced
or solved (not only due to chance encounters). To account for that, we assume
that all such boundaries between the intervals corresponding to W are solved.
Hence the algorithm is aware of the leftmost and rightmost solved interval be-
longing to these boundaries, and this may extend to other intervals by revealed
boundaries. Only the nodes of level i that correspond to this leftmost or right-
most interval might be identifiable to the algorithm, all other nodes of level i
are indistinguishable. Because i < k, for all traced pairs ae, be at least one of
the elements belongs to this big set of indistinguishable nodes. We mark identi-
fiable nodes. Hence, at stage i the algorithm has to solve a random matching of
the traced pairs where all marked nodes are matched with unmarked ones (and
unmarked ones might be matched with marked or unmarked ones).

The next lemma derives a high-probability upper bound on the multiplicity
of a graph. All remaining proofs of this section are deferred to [15]. The proof
of the following lemma uses the Hoeffding inequality.

Lemma 13. Consider a deterministic GIF algorithm operating on a uniformly
chosen permutation π defining T G for the GIF instance G. Let p(i,M) be the

probability that Gi
0 has multiplicity at most M

5
8 (where P,N, tj , and k depend on

parameter M). Then there is a M ′ such that for all M ≥M ′ and for each i ≤ k
it holds p(i,M) ≥ 1− 1

M2 .

Fundamental insights on identifying two pairs of a K4 show that the progress
achieved with one I/O can not be too large.

Lemma 14. If the graph Gi
t has multiplicity at most m, then Gi

t+1 has multi-
plicity at most 4m.

By the two previous lemmas we obtain the following result.

394 R. Jacob, T. Lieber, and N. Sitchinava

Lemma 15. Let A be an algorithm solving an GIF instance G guided by T G of
height h traced at level k − 1 = h/16. Each progress stage j < s = k − 1 of A,
assuming tj < log2M , takes time tj − tj−1=Ω (logM).

There are O (logN) stages, each taking at least Ω (logN) I/Os, yielding with
a union bound over all Gi

0 for all progress stages i < s:

Lemma 16. Consider a deterministic GIF algorithm operating on a uniformly
chosen permutation π defining T G for the GIF instance G. Then there is a M ′

such that for all M ≥M ′, solving G in the interval PEM takes with high proba-
bility (p > 1− 1/M) at least Ω

(
log2N

)
parallel I/Os.

By Yao’s principle [16] this can be transferred to randomized algorithms:

Theorem 17. The expected number of parallel I/Os to solve a GIF instance of
size N = PM on an interval PEM with M = P is Ω

(
log2N

)
.

A simple reduction yields:

Theorem 18. Solving the GIF problem in the BSP or in the MapReduce model
with N = PM and P = Θ(M) = Θ(

√
N) takes Ω (logN) communication

rounds.

GIF is an attempt to formulate how the known algorithms for list ranking
distribute information by attaching it to atoms of the PEM model. Most known
algorithms for list ranking use fusing of edges on an independent set of edge-
pairs (bridging out edges). This means that every edge is used (if at all) either as
first or second edge in the fusing. This choice of the algorithm is taken without
complete information, and hence we take it as reasonable to replace it by an
adversarial choice, leading to the definition of the guide of a GIF instance.

Additionally, the PEM lower bound shows that there is no efficient possibility
to perform different stages (matchings) in parallel, showing that (unlike in the
efficient PRAM sorting algorithms) no pipelining seems possible. At this stage,
our lower bound is hence more a bound on a class of algorithms, and it remains
a challenge to formulate precisely what this class is. Additionally, it would be
nice to show lower bounds in a less restrictive setting.

5 Upper Bounds

Improvements in the analysis [11] of the PEM merge sort algorithm [10] yield:

Lemma 19 ([11]). The I/O complexity of sorting N records with the PEM
merge sort algorithm using P ≤ N

B processors is sortP (N,M,B)=O
(

N
PB logd

N
B

)
for d = max{2,min{ N

PB ,
M
B }}.

We use it to extend the parameter range for the randomized list ranking
algorithm [14] from P ≤ N

B2 , and M = BO(1) to:

On the Complexity of List Ranking in the Parallel External Memory Model 395

Theorem 20. The expected number of parallel I/Os, needed to solve the list
ranking problem of size N in the CREW PEM model with P ≤ N

B is

O
(

sortP (N,M,B) + (logP) log
B

logP

)
which is for B < logP just sortP (N,M,B).

In order to make the standard recursive scheme work, two algorithms are used.
By Lemma 19, the randomized algorithm of [14], which is based on [13], can be
used whenever N ≥ P min{logP,B}. This yields the (logP) log B

log P term, if

B > logP . Otherwise (N ≤ P min{logP,B}) a simulation of a work-optimal
PRAM algorithm [2] is used. A careful implementation and analysis [15] yield
Theorem 20.

References

1. Wyllie, J.: The Complexity of Parallel Computation. PhD thesis, Cornell University
(1979)

2. Anderson, R.J., Miller, G.L.: Deterministic parallel list ranking. In: Reif, J.H. (ed.)
AWOC 1988. LNCS, vol. 319, pp. 81–90. Springer, Heidelberg (1988)

3. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

4. Chiang, Y.J., Goodrich, M., Grove, E., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External-memory graph algorithms. In: Proceedings of SODA 1995, pp. 139–149
(1995)

5. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
Charikar, M. (ed.) SODA, pp. 938–948. SIAM (2010)

8. Goodrich, M.: Communication-efficient parallel sorting. SIAM J. Comput. 29(2),
416–432 (1999)

9. Goodrich, M., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in the
mapreduce framework. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O.
(eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011)

10. Arge, L., Goodrich, M., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: SPAA 2008, pp. 197–206 (2008)

11. Greiner, G.: Sparse Matrix Computations and their I/O Complexity. Dissertation,
Technische Universität München, München (2012)

12. Karp, R.M., Ramachandran, V.: Handbook of theoretical computer science,
pp. 869–941 (1990)

13. Vishkin, U.: Randomized speed-ups in parallel computation. In: STOC,
pp. 230–239 (1984)

14. Arge, L., Goodrich, M., Sitchinava, N.: Parallel external memory graph algorithms.
In: IPDPS, pp. 1–11. IEEE (2010)

15. Jacob, R., Lieber, T., Sitchinava, N.: On the complexity of list ranking in the
parallel external memory model. CoRR abs/1406.3279 (2014)

16. Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: FOCS, pp. 222–227. IEEE Computer Society (1977)

Knocking Out Pk-free Graphs

Matthew Johnson, Daniël Paulusma�, and Anthony Stewart

School of Engineering and Computing Sciences, Durham University,
South Road, Durham, DH1 3LE, UK

{matthew.johnson2,daniel.paulusma,a.g.stewart}@durham.ac.uk

Abstract. A parallel knock-out scheme for a graph proceeds in rounds
in each of which each surviving vertex eliminates one of its surviving
neighbours. A graph is KO-reducible if there exists such a scheme that
eliminates every vertex in the graph. The Parallel Knock-Out prob-
lem is to decide whether a graph G is KO-reducible. This problem is
known to be NP-complete and has been studied for several graph classes
since MFCS 2004. We show that the problem is NP-complete even for
split graphs, a subclass of P5-free graphs. In contrast, our main result is
that it is linear-time solvable for P4-free graphs (cographs).

1 Introduction

We consider parallel knock-out schemes for finite undirected graphs with no self-
loops and no multiple edges. These schemes, which were introduced by Lampert
and Slater [14], proceed in rounds. In the first round each vertex in the graph
selects exactly one of its neighbours, and then all the selected vertices are elim-
inated simultaneously. In subsequent rounds this procedure is repeated in the
subgraph induced by those vertices not yet eliminated. The scheme continues
until there are no vertices left, or until an isolated vertex is obtained (since an
isolated vertex will never be eliminated). A graph is called KO-reducible if there
exists a parallel knock-out scheme that eliminates the whole graph. The parallel
knock-out number of a graph G, denoted by pko(G), is the minimum number of
rounds in a parallel knock-out scheme that eliminates every vertex of G. If G is
not KO-reducible, then pko(G) = ∞.

Examples. Every graph G with a hamiltonian cycle has pko(G) = 1, as each
vertex can select its successor on a hamiltonian cycle C of G after fixing some
orientation of C. Also every graph G with a perfect matching has pko(G) = 1, as
each vertex can select its matching neighbour in the perfect matching. In fact it
is not difficult to see [2] that a graph G has pko(G) = 1 if and only if G contains
a [1,2]-factor, that is, a spanning subgraph in which every component is either
a cycle or an edge.

We study the computational complexity of the Parallel Knock-Out prob-
lem, which is the problem of deciding whether a given graph is KO-reducible.

� Supported by EPSRC grant EP/K025090/1.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 396–407, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Knocking Out Pk-free Graphs 397

The main motivation for doing so stems from the close relation to cycles and
matchings as illustrated by the above examples. We also consider the variant
in which the number of rounds permitted is fixed. This problem is known as
the k-Parallel Knock-Out problem, which has as input a graph G and ask
whether pko(G) ≤ k for some fixed integer k (i.e. that is not part of the input).

Known Results. The 1-Parallel Knock-Out problem is polynomial-time
solvable, because it is equivalent [2] to testing whether a graph has a [1, 2]-factor,
which is well-known to be polynomial-time solvable (see e.g. [3] for a proof).
However, both the problems Parallel Knock-Out and k-Parallel Knock-

Out with k ≥ 2 are NP-complete even for bipartite graphs [3]. On the other
hand, it is known that Parallel Knock-Out and k-Parallel Knock-Out

(for all k ≥ 1) can be solved in O(n3.5 log2 n) time on trees [2]. These results were
later extended to graph classes of bounded treewidth [3]. It remains open whether
a further generalization is possible to graph classes of bounded clique-width.
Broersma et al. in [4] gave an O(n5.376) time algorithm for solving Parallel

Knock-Out on n-vertex claw-free graphs. Afterward this was improved to an
O(n2) time algorithm for almost claw-free graphs (which generalize the class
of claw-free graphs) [13]. The latter paper also gives a full characterization of
connected almost claw-free graphs that are KO-reducible. In particular it shows
that every KO-reducible almost claw-free graph has parallel knock-out number at
most 2. In general, KO-reducible graphs (even KO-reducible trees [2]) may have
an arbitrarily large parallel knock-out number. Broersma et al. [4] showed that a

KO-reducible n-vertex graph G has pko(G) ≤ min{− 1
2+(2n− 7

4)
1
2 , 12+(2α− 7

4)
1
2 }

(where α denotes the size of a largest independent set in G). This bound is
asymptotically tight for complete bipartite graphs [2]. Broersma et al. [4] also
showed that every KO-reducible graph with no induced (p+ 1)-vertex star K1,p

has parallel knock-out number at most p− 1.

Our Results. We address the open problem of whether Parallel Knock-Out

is polynomial-time solvable on graph classes whose clique-width is bounded by
a constant. This seems a very challenging problem, and in this paper we focus
on graphs of clique-width at most 2. It is known that a graph has clique-width
at most 2 if and only if it is a cograph [7]. Cographs are also known as P4-free
graphs (a graph is called Pk-free if it has no induced k-vertex path).

In Section 3 we give a linear-time algorithm for solving the Parallel Knock-

Out problem on cographs. The first step of the algorithm is to compute the
cotree of a cograph. It then traverses the cotree twice. The first time to compute
to what extent “large” subgraphs can be reduced by themselves and how many
free “firings” from outside are available. The second time to check whether the
number of free external firings is sufficient to knock them out. In this way it will
be verified whether the whole graph is KO-reducible. In Section 4 we prove that
both the Parallel Knock-Out problem and the k-Parallel Knock-Out

problem (k ≥ 2) are NP-complete even for split graphs. Because split graphs are
P5-free, our results imply a dichotomy result for the computational complexity
of the Parallel Knock-Out problem restricted to Pk-free graphs, as shown
in Section 5, where we also give some (other) open problems.

398 M. Johnson, D. Paulusma, and A. Stewart

2 Preliminaries

We denote a graph by G = (V (G), E(G)) and write |G| = |V (G)| to denote
the order of G. An edge joining vertices u and v is denoted by uv. If not stated
otherwise a graph is assumed to be finite, undirected and simple.

Let G = (V,E) be a graph. The neighbourhood of u ∈ V , that is, the set of
vertices adjacent to u is denoted by NG(u) = {v |uv ∈ E}. For a subset S ⊆ V ,
we let G[S] denote the induced subgraph of G, which has vertex set S and edge
set {uv ∈ E | u, v ∈ S}. A set I ⊆ V is called an independent set of G if no
two vertices in I are adjacent to each other. A subset C ⊆ V is called a clique
of G if any two vertices in C are adjacent to each other. A subset D ⊆ V is a
dominating set of a graph G = (V,E) if every vertex of G is in D or adjacent to
a vertex in D.

The union of two graphs G and H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H). If V (G) ∩ V (H) = ∅, then we say that the union
of G and H is disjoint and write G+H . We denote the disjoint union of r copies
of G by rG.

For n ≥ 1, the graph Pn denotes the path on n vertices, that is, V (Pn) =
{u1, . . . , un} and E(Pn) = {uiui+1 | 1 ≤ i ≤ n − 1}. For n ≥ 3, the graph Cn

denotes the cycle on n vertices, that is, V (Cn) = {u1, . . . , un} and E(Cn) =
{uiui+1 | 1 ≤ i ≤ n − 1} ∪ {unu1}. The graph Kn denotes the complete graph
on n vertices, that is, the n-vertex graph whose vertex set is a clique. A graph
is complete bipartite if its vertex set can be partitioned into two classes such
that two vertices u and v are adjacent if and only if u and v belong to different
classes. The graph Kp,q is the complete bipartite graph with partition classes of
sizes p and q, respectively.

Let G be a graph and let {H1, . . . , Hp} be a set of graphs. We say that G
is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free. A P4-free
graph is also called a cograph. A graph G is a split graph if its vertex set can
be partitioned into a clique and an independent set. Split graphs coincide with
(2K2, C4, C5)-free graphs [9].

We also need some formal terminology for parallel knock-out schemes. For a
graph G = (V,E), a KO-selection is a function f : V → V with f(v) ∈ N(v)
for all v ∈ V . If f(v) = u, we say that vertex v fires at vertex u, or that u is
knocked out by a firing of v. If u ∈ U for some U ⊆ V then the firing is said to
be internal with respect to U if v ∈ U ; otherwise it is said to be external (with
respect to U).

For a KO-selection f , we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V \ f(V); if G′ is the KO-
successor of G we write G � G′. Note that every graph without isolated vertices
has at least one KO-successor. A sequence

G � G1 � G2 � · · · � Gs,

is called a parallel knock-out scheme or KO-scheme. A KO-scheme in which Gs

is the null graph (∅, ∅) is called a KO-reduction scheme; in that case G is also

Knocking Out Pk-free Graphs 399

called KO-reducible. A single step in a KO-scheme is called a (firing) round .
Recall that the parallel knock-out number of G, pko(G), is the smallest number
of rounds of any KO-reduction scheme, and that if G is not KO-reducible then
pko(G) = ∞.

We will use the following result of Broersma et al. [2].

Lemma 1 ([2]). Let p and q be two integers with 0 < p ≤ q. Then Kp,q is
KO-reducible if and only if pko(Kp,q) ≤ p if and only if q ≤ 1

2p (p + 1).

3 Cographs

In this section we show that Parallel Knock-Out can be solved in linear
time for cographs. For doing so we need to introduce some extra notation and
terminology.

Let G1 and G2 be two disjoint graphs. The join operation ⊗ adds an edge
between every vertex of G1 and every vertex of G2. The union operation ⊕
creates the disjoint union of G1 and G2 (note that we may also write G1 + G2

instead of G1 ⊕G2).
It is well known (see, for example, [1]) that a graph G is a cograph if and only

if G can be generated from K1 by a sequence of operations, where each operation
is either a join or a union. Such a sequence corresponds to a decomposition tree,
which has the following properties:

1. its root r corresponds to the graph Gr = G;
2. every leaf x of it corresponds to exactly one vertex of G, and vice versa,

implying that x corresponds to a unique single-vertex graph Gx;
3. every internal node x has at least two children, is either labeled ⊕ or ⊗, and

corresponds to an induced subgraph Gx of G defined as follows:
• if x is a ⊕-node, then Gx is the disjoint union of all graphs Gy where y

is a child of x;
• if x is a ⊗-node, then Gx is the join of all graphs Gy where y is a child

of x.

A cograph G may have more than one such tree but has exactly one unique
tree [5], called a cotree, if the following additional property is required:

4. Labels of internal nodes on the (unique) path from any leaf to r alternate
between ⊕ and ⊗.

We denote the cotree of a cograph G by TG and use the following result of
Corneil, Perl and Stewart [6] as a lemma.

Lemma 2 ([6]). Let G be a graph with n vertices and m edges. Deciding if G
is a cograph and constructing TG (if it exists) can be done in time O(n + m).

We now present our algorithm, which we call Cograph-PKO, for solving Parallel

Knock-Out on cographs.

400 M. Johnson, D. Paulusma, and A. Stewart

Sketch. We start by giving some intuition. Let G be a cograph. We may assume
without loss of generality that G is connected, as otherwise we could consider
each connected component of G separately. We first construct the cotree TG.
Because G is connected, the root r of TG is a ⊗-node. Recall that Gr = G by
definition. Consider a partition (X,Y) of the set of children of r such that

p =
∑
x∈X

|Gx| ≤
∑
y∈Y

|Gy| = q.

Note that G has a spanning complete bipartite graph with partition classes⋃
x∈X V (Gx) and

⋃
y∈Y V (Gy). Hence, if q ≤ 1

2p(p + 1) then G is KO-reducible
by Lemma 1. However, such a partition (X,Y) need not exist, but G might still
be KO-reducible. In order to find out, we must analyze the cotree of G at lower
levels.

The main idea behind our algorithm is as follows. As mentioned above, the
graph Gx corresponding to a join node x has at least one spanning complete bi-
partite subgraph. We will show that it is sufficient to consider only bipartitions,
in which one bipartition class corresponds to a single child z of x. We chose z in
such a way that if the corresponding complete bipartite subgraph is unbalanced
(with respect to the ratio prescribed in Lemma 1) then the vertices of Gz corre-
spond to a “large” bipartition class. We will then try to reduce Gz as much as
possible by internal firings only. If Gz cannot be reduced to the empty graph,
then external firings are needed. In particular, some of these external firings will
be internal firings for supergraphs of Gz . Hence, we first traverse TG from top to
bottom, starting with the root r, to determine the number of external firings for
each graph Gz . Afterward we can then use a bottom-up approach, starting with
the leaves of TG, to determine the number of vertices a graph Gz can be reduced
to by internal firings only. If this number is zero for r then G is KO-reducible;
otherwise it is not.

Full Description. Let G be a connected cograph, and let x ∈ V (TG). We say
that |Gx| is the size of x. We fix a largest child of x, that is, a child of x with
largest size over all children of x. We denote this child by z(x) (if there is more
than one largest child we pick an arbitrary largest one). Let C(x) consist of all
other children of x in TG (so excluding z). We write F (x) =

∑
y∈C(x)Gy.

In our algorithm we recursively define two functions f and l that assign a
positive integer to the nodes of V (TG). We write f(x) = ⊥ or l(x) = ⊥ if we
have not yet assigned an integer f(x) or l(x) to node x; for some nodes x our
algorithm might never do this (as we shall see, l will define an integer to a node x
if and only if f has previously done so). The meaning of these two functions will
be made more clear later. In particular, we will show that f(x) (if defined) is
the the number of vertices in V (G) \ Vx adjacent to each vertex of Vx. This
function will help us in determining how many additional internal firing rounds
we have when we expand Gx to a larger subgraph of G by moving up the tree.
The integer l(x) (if defined) is, as we will prove, equal to the smallest number
of vertices in Gx that cannot be knocked out internally (that is, within Gx)
by any KO-scheme of G. We will show that l(r) is defined, that is, l(r) = ⊥.

Knocking Out Pk-free Graphs 401

Hence, there exists a KO-scheme that knocks out all vertices of V (Gr) = V (G)
if and only if l(r) = 0.

Cograph-PKO

input : a connected cograph G
output : yes if G is KO-reducible; no otherwise

Step 1. Compute the size |Gx| for all x ∈ V (TG).

Step 2. Recursively define a function f . Initially set f(x) := ⊥ for all x ∈ V (TG).
Set f(r) := 0. Now let x be a vertex in TG with f(x) = ⊥.

2a. If x is a ⊕-node: f(y) := f(x) for all y ∈ C(x) ∪ {z(x)}.

2b. If x is a ⊗-node: f(z(x)) := f(x) + |F (x)|.

Step 3. Let B = {� | � is a leaf of TG with f(�) = ⊥}.

Step 4. Recursively define a function l. Initially set l(x) := ⊥ for all x ∈ V (TG).
Set l(�) := 1 for all � ∈ B. Now let x be a vertex in T that is either a ⊕-node
with l(y) = ⊥ for all y ∈ C(x) ∪ {z(x)} or a ⊗-node with l(z(x)) = ⊥.

4a. If x is a ⊕-node: l(x) := l(z(x)) +
∑

y∈C(x) l(y).

4b. If x is a ⊗-node: l(x) := max{0, l(z(x))−f(x)·|F (x)|− 1
2 |F (x)|(|F (x)|+1)}.

Step 5. If l(r) = 0 then return yes; otherwise return no.

Note that for some x ∈ V (TG), it may happen indeed that f(x) = ⊥ or l(x) = ⊥
holds (for example, if x is a leaf node not in B then l(x) = ⊥).

We need some new terminology and a number of lemmas. Let x be a node
in TG. From now on we write Vx = V (Gx). We say that a vertex v ∈ V (G) is
complete to a set U ⊆ V (G) with v /∈ U if v is adjacent to all vertices of U .

Lemma 3. Let x ∈ V (TG) with f(x) = ⊥. The following two statements hold:

(i) any vertex in V (G) \ Vx adjacent to a vertex of Vx is complete to Vx;
(ii) the number of vertices in V (G) \ Vx complete to Vx is equal to f(x).

Proof. Let x ∈ V (TG) with f(x) = ⊥. Statement (i) follows from the definition
of TG. We prove (ii) as follows. Let dist(x, r) denote the distance between x
and r in TG. We use induction on dist(x, r). The claim is true for dist(x, r) = 0
because in that case x = r and V (G) \ Vx = ∅.

Let dist(x, r) ≥ 1. Then x has a parent in TG. Denote this parent by x′. By
the induction hypothesis, f(x′) is equal to the number of vertices not in Gv′ that
are complete to Vx′ . Because Vx is contained in Vx′ , these vertices are complete
to Vx as well. Suppose that x is a ⊕-node. Then x′ is a ⊗-node. This means that

402 M. Johnson, D. Paulusma, and A. Stewart

all vertices in F (x′) are complete to Vx. Hence, the total number of vertices in
V (G) \ Vx that are complete to Vx is equal to f(x′) + |F (x′)| = f(x). Suppose
that x is a ⊗-node. Then x′ is a ⊕-node. This means that no vertex in F (x′) is
adjacent to a vertex in Vx. Hence, the total number of vertices in V (G)\Vx that
are complete to Vx is equal to F (x′) = f(x). ��

The following lemma follows directly from the construction of our algorithm.

Lemma 4. Let x ∈ V (TG). Then l(x) = ⊥ if and only if V (Gx) ∩B = ∅.

Let x be a node in TG. An x-pseudo-KO-selection of G is a function Vx → V (G)
with f(v) ∈ N(v) for all v ∈ V . We copy some terminology. If f(v) = u,
we say that v fires at u, or that u is knocked-out by a firing of v. Note that
every KO-selection of Gx is an x-pseudo-KO-selection of G (but the reverse
implication is not necessarily true). For an x-pseudo-KO-selection, we define the
x-pseudo-KO-successor of G as the subgraph of G induced by V (G) \ f(V). We
write G �x G′ to denote that G′ is an x-pseudo-KO-successor of G. We call a
sequence G �x G1 �x · · · �x Gs an x-pseudo-KO-scheme (where each
single step is called a round) if in addition there is no vertex of Vx that fires at
a vertex of Vx in some round and at a vertex V (G) \ Vx in some later round.
We say that G is x-pseudo-reducible to Gs. Define pseudo(x) as the number of
vertices in a smallest graph to which G is x-pseudo-reducible and say that a
corresponding x-pseudo-KO-scheme is optimal.

Lemma 5. The cograph G is KO-reducible if and only if pseudo(r) = 0.

Proof. Recall that Vr = V (G). Then the statement of the lemma holds because
every KO-reduction scheme of G (if there exists one) is an r-pseudo-KO-scheme
with pseudo(r) = 0, and vice versa. ��

The following lemma is crucial for the correctness of our algorithm.

Lemma 6. Let x ∈ V (TG) be a ⊗-node with l(x) = ⊥. Then l(x) = pseudo(x).

Proof. Let x ∈ V (TG) be a ⊗-node with l(x) = ⊥. By Lemma 4, V (Gx)∩B = ∅.
We write z = z(x). Let |Vz | = q and |F (x)| = p. This enables us to write:

l(x) = max{0, l(z)− f(x) · |F (x)| − 1
2 |F (x)|(|F (x)| + 1)}

= max{0, l(z)− f(x) · p− 1
2p(p + 1)}.

Note that q ≥ 1 and p ≥ 1 by the definition of a ⊗-node. Let d denote the
number of ⊗-nodes on the longest path from x to a leaf in the subtree of TG

rooted at x. We prove the lemma by induction on d.
Let d = 0. Then every child of x is a leaf or otherwise all children of that child

are leaves.
First suppose z is a leaf. Because V (Gx) ∩B = ∅, we find that z ∈ B. Hence,

l(z) = 1. Then, as p ≥ 1, we find that l(z) − f(x) · p − 1
2p(p + 1) ≤ 0. Hence,

l(x) = 0. Note that q = 1. Because z is a largest child of x, all children of x are

Knocking Out Pk-free Graphs 403

leaves. Hence, Gx is a complete graph on p + 1 vertices. This means that Gx is
KO-reducible. We conclude that pseudo(x) = 0 = l(x).

Now suppose z is not a leaf. Then z has at least two children (which are all
leaves). Hence, q ≥ 2. Because V (Gx) ∩B = ∅, every child of z is in B, that is,
Vz = B is an independent set, in particular, q = |B|. Because l(�) = 1 for every
� ∈ B, this means that l(z) = |B| = q. We distinguish three cases.

Case 1. q < p.
Then l(z)− f(x) · p− 1

2p(p+ 1) = q − f(x) · p− 1
2p(p+ 1) ≤ 0. Hence, l(x) = 0.

Let y1, . . . , yr, z be the children of x for some r ≥ 0. In fact, because 2 ≤ q < p
and z is the largest child of x, we find that r ≥ 2. Assume that |Vy1 | ≥ · · · ≥ |Vyr |.
By definition, q = |Vz | ≥ |Vy1 |. Because q < p, we can pick a set D of q−|Vy1| ≥ 0
vertices of V (F (x))\Vy1 . We define T1 = Vy1∪D and Ti = Vyi \D for i = 2, . . . , r.
Note that |T1| = q. Let {|T1|, . . . , |Tr|} = {j1, . . . , js} for some s ≤ r, where
j1 ≥ · · · ≥ js. Because |T1| = q, we find that j1 = q. We partition V (Gx) into s
subsets. For the first subset we pick js vertices from Vz and also js vertices from
each non-empty Ti. The graph induced by the union of all these vertices has a
hamilton cycle, as q < p, so besides T1 at least one other set Ti is nonempty. We
remove all chosen vertices. Then, for the second subset of our partition, we pick
js−1 − js vertices from Vz and also js−1 − js vertices from each Ti that is not
yet empty. The graph induced by the union of all chosen vertices has a hamilton
cycle if there are two non-empty sets Ti and a perfect matching otherwise. We
repeat this procedure until all sets Ti are empty. In this way we have found a
[1, 2]-factor of Gx. Consequently, pko(Gx) = 0. Hence, pseudo(x) = 0 = l(x).

Case 2. q ≥ p and l(x) = 0.
As l(z) = q, the assumption that l(x) = 0 implies that q − f(x) · p ≤ 1

2p(p + 1).
By Lemma 3, all vertices in V (G)\Vx that are adjacent to Vx are complete to Vx
and moreover, the number of such vertices is equal to f(x). This enables us to
define the following x-pseudo-KO-scheme. Let all vertices of F (x) fire at different
vertices in Vz for the first f(x) rounds. Let all vertices in Vz fire at the same
vertex of V (G) \ Vx for the first f(x) rounds. Note that q decreases in this way.
However, we may not need to perform all these rounds: after each round we check
whether p ≤ q ≤ 1

2p(p + 1). Because q − f(x) · p ≤ 1
2p(p + 1), it will eventually

happen that q ≤ 1
2p(p + 1). If it turns out that q < p, we slightly adjust the

previous round by letting a sufficient number of vertices of F (x) fire at the same
vertex in Vz instead of at different vertices, in order to get p ≤ q ≤ 1

2p(p + 1).
We then apply Lemma 1 to knock out the remaining vertices of Vx in at most p
additional rounds. Hence pseudo(x) = 0 = l(x).

Case 3. q ≥ p and l(x) > 0.
As l(z) = q, the assumption that l(x) > 0 implies that q > f(x) · p + 1

2p(p + 1).
Recall that, by Lemma 3, all vertices in V (G) \ Vx that are adjacent to Vx are
complete to Vx, and moreover, the number of such vertices is equal to f(x). This
enables us to define the following x-pseudo-KO-scheme. Let all vertices of F (x)
fire at different vertices in Vz for the first f(x) rounds. Let all vertices in Vz
fire at the same vertex of V (G) \ Vx for the first f(x) rounds. Afterward we can

404 M. Johnson, D. Paulusma, and A. Stewart

reduce the number of vertices of Vx by at most 1
2p(p + 1) by letting all vertices

of F (x) fire at different vertices in Vz , whereas all vertices in Vz fire at the same
vertex of F (x) until F (x) = ∅. Because F (x) = ∅ in the end, and in each round
we have reduced the maximum number of vertices of the independent set Vz, we
find that pseudo(x) = q− f(x) ·p− 1

2p(p+ 1) = l(z)− f(x) ·p− 1
2p(p+ 1) = l(x).

Let d ≥ 1. Then z is not a leaf as otherwise all children of x are leaves, which
contradicts d ≥ 1. Consequently, z is a ⊕-node. We distinguish two cases.

Case 1. q < p.
Observe that l(z) ≤ q. Then l(z)−f(x)·p− 1

2p(p+1) ≤ q−f(x)·p− 1
2p(p+1) ≤ 0.

Hence, l(x) = 0. We repeat the same arguments as for the corresponding case
for d = 0 to obtain that pseudo(x) = 0 = l(x). So Case 1 is proven.

Before we consider Case 2, we first analyze the subtree of TG rooted at x. Let
s1, . . . , sp be the children of z with l(si) > 0 for i = 1, . . . , p (if such children
exist) and let t1, . . . , tq be the children of z with l(ti) = 0 for i = 1, . . . , q (if
such children exist). Note that all children of z are either leaves or ⊗-nodes.
Let z′ be a child of z. If z′ is a leaf, then pseudo(z′) = 1 = l(z′). If z′ is a
⊗-node, we may apply the induction hypothesis to find that pseudo(z′) = l(z′).
In other words, pseudo(si) = l(si) for i = 1, . . . , p and pseudo(ti) = l(ti) for
i = 1, . . . , q. Then, because Gz = Gs1 + · · ·+Gsp +Gt1 + · · ·+Gtq , we find that
an optimal z-pseudo-KO-scheme mimics the optimal si-pseudo-KO-schemes and
optimal tj-pseudo-KO-schemes (we may assume without loss of generality that
all external firings outside Gz in a round are always at a single vertex). Hence,
pseudo(z) = l(s1) + · · ·+ l(sp) + l(t1) + · · ·+ l(tq) = l(z).

Case 2. q ≥ p.
We define the following x-pseudo-KO-selection scheme. The firing rounds for
the vertices in Gz are according to an optimal z-pseudo-KO-scheme under the
following conditions. For the first f(x) rounds any external firings outside Gz

are at a single vertex, which is not in Gx. Note that this is possible by Lemma 3.
Afterward any external firing outside Gz must be in F (x) and also for such
firings we require that they are at a single vertex in every round. The vertices in
F (x) fire in each round at different vertices of Gx that are in Gs1 + · · ·+Gsp and
that are not being fired at by vertices in Gx. They stop firing in a graph Gsi as
soon as they have knocked out l(si) of its vertices. Note that we are guaranteed
a budget of exactly f(x) · p+ 1

2p(p+ 1) firings from vertices outside Gz into Gz .
First suppose that l(z) − f(x) · p ≤ 1

2p(p + 1), so l(x) = 0. Then we can
knock out all l(z) vertices of Gz that cannot be knocked out by internal firings
inside Gz. As we still need to knock out the vertices of F (x), we check after
each round whether q has decreased such that p ≤ q ≤ 1

2p(p+ 1) holds. Because
q− f(x) · p ≤ 1

2p(p+ 1), it will eventually happen that q ≤ 1
2p(p+ 1). If it turns

out that q < p, we slightly adjust the previous round as we did in Case 2 for
d = 0, in order to get p ≤ q ≤ 1

2p(p + 1). We then apply Lemma 1 to knock out
the remaining vertices of Vx in at most p additional rounds. We conclude that
pseudo(x) = 0 = l(x).

Knocking Out Pk-free Graphs 405

Now suppose that l(z) − f(x) · p > 1
2p(p + 1), so l(x) > 0. Then, by the

definition of our x-pseudo-KO-reduction scheme, all vertices in F (x) have fired
at different vertices in every round for f(x) · p+ 1

2p(p+ 1) rounds. Moreover, all
vertices in F (x) are knocked out afterward. Because pseudo(z) = l(z) and we
mimicked an optimal z-pseudo-KO-scheme as regards the firings of the vertices
of Gz in each round, we cannot improve. We conclude that pseudo(x) = l(z)−
f(x) · p− 1

2p(p + 1) = l(x). This completes the proof of Lemma 6. ��

Theorem 1. The Parallel Knock-Out problem can be solved in O(n + m)
time on cographs with n vertices and m edges.

Proof. Let G be a cograph with n vertices and m edges. If G is disconnected we
consider each connected component of G separately. Hence, assume that G is
connected. We construct TG. Run Cograph-PKO with input G. By Lemma 4, we
find that l(r) = ⊥. Hence, we may apply Lemma 6 to find that l(r) = pseudo(r).
By Lemma 5, we find that G is KO-reducible if and only if pseudo(r) = 0. As
Cograph-PKO outputs a yes-answer if and only if l(r) = 0, we find it is correct. It
remains to show that it runs in linear time. We can perform Step 1 in a bottom-
up approach starting from the leaves of TG. So, Steps 1-3 each visit each node
at most once. This means that every node of x is visited at most three times in
total. Because every co-tree has at most n+n−1 = 2n−1 vertices, we find that
the running time of Cograph-PKO is O(n). Because constructing TG costs time
O(n + m) by Lemma 2, the total running time is O(n + m). ��

4 Split Graphs

We show the following result, the proof of which is (partially) based on the
NP-hardness proof of 2-Parallel Knock-Out for bipartite graphs from [3].

Theorem 2. The Parallel Knock-Out problem and, for any k ≥ 2, the
k-Parallel Knock-Out problem are NP-complete for split graphs.

Proof. First consider the Parallel Knock-Out problem. We reduce from the
Dominating Set problem, which is well known to be NP-complete (see [10]).
This problem takes as input a graph G = (V,E) and a positive integer p. We
may assume without loss of generality that p ≤ |V |. The question is whether G
has a dominating set of cardinality at most p.

From an instance (G, p) of Dominating Set we construct a split graph G′

as follows. Let V (G) = {v1, . . . , vn}. We let V (G′) consist of three mutually
disjoint sets: the set V = {v1, . . . , vn}, a set V ′ = {v′1, . . . , v′n} and a set W =
{w1, . . . , wr} where r = 1

2 (n−p)(n−p+1). We define E(G′) as follows. First we
add the edges viv

′
i for i = 1, . . . , n. For all i = j, we add the edges viv

′
j and vjv

′
i

if and only if vivj is an edge in E(G). We also add an edge between every vi
and every wj . Finally, we add an edge between any two vertices in V . Observe
that G′ is indeed a split graph in which V is a clique of size n and V ′ ∪W is an
independent set of size n + r. We claim that G has a dominating set of size at
most p if and only if G′ is KO-reducible.

406 M. Johnson, D. Paulusma, and A. Stewart

First suppose G has a dominating set D of size at most p. Because p ≤ |V |,
we may assume without loss of generality that D = {v1, . . . , vp}. We construct a
KO-reduction scheme of G′ as follows. In the first round let every vertex vi ∈ V
fire at v′i ∈ V ′. For i = 1, . . . , p, let v′i fire at vi. For i = p+ 1, . . . , n let v′i fire at
an arbitrary vertex in D, which is possible because D is a dominating set of G.
Finally, let every vertex in W fire at an arbitrary vertex in D as well; this is
possible by the construction of G′. The resulting (split) graph G′′ consists of a
clique V \D of size n − p and the independent set W of size 1

2 (n − p)(n − p).
Because there is an edge between every vertex in V and every vertex in W , we
find that G′′ is KO-reducible by Lemma 1.

Now suppose G′ is KO-reducible. Consider a KO-reduction scheme of G′. Let
D be the subset of vertices that are knocked out in the first round. Because
each vertex must fire at a neighbour, D is a dominating set of G. We claim that
|D| ≤ p. For contradiction, suppose that |D| ≥ p + 1. Let V1 = V \ D be the
subset of V consisting of vertices not knocked out in the first round. Because
|D| ≥ p + 1, we obtain |V1| = |V | − |D| ≤ n − p − 1. Let V ∗ and W ∗ be the
subsets of V ′ and W , respectively, that consist of vertices not knocked out in
the first round. Vertices in V ′ ∪W can only be knocked out by vertices of V .
Moreover, the total number of vertices that V can knock out in the first round
is at most |V | = n. This means that V ∗ ∪W ∗ is an independent set of size

|V ∗ ∪W ∗| = |V ∗|+ |W ∗| ≥ |V ′|+ |W | − n = 1
2 (n− p)(n− p + 1).

However, as in every round the size of V1 is reduced by at least 1, the maximum
number of vertices in V ∗ ∪W ∗ that V1 can knock out is at most (n− p − 1) +
(n − p − 2) + · · · + 1 < 1

2 (n − p)(n − p + 1). Hence, the scheme is not a KO-
reduction scheme of G′. This is a contradiction, and we have completed the proof
for Parallel Knock-Out.

Now let k ≥ 2 and consider the k-Parallel Knock-Out problem. We use
the same reduction and the same arguments as for Parallel Knock-Out after
changing the size of W into r := (n− p) + (n− p− 1) + · · ·+ (n− p− k+ 2). ��

5 Conclusions

We have shown in Theorem 1 that Parallel Knock-Out is linear-time solv-
able for P4-free graphs (whether it is possible to compute pko(G) in polynomial
time for cographs is still open). We have also shown in Theorem 2 that Parallel
Knock-Out and, for any k ≥ 2, k-Parallel Knock-Out are NP-complete
for split graphs. Because split graphs are (2K2, C4, C5)-free [9], they are P5-free.
Hence, Theorems 1 and 2 have the following consequence.

Corollary 1. The Parallel Knock-Out problem restricted to Pr-free graphs
is linear-time solvable if r ≤ 4 and NP-complete if r ≥ 5.

We recall that our long standing goal is to determine the complexity of Par-
allel Knock-Out on graph classes of bounded clique-width and that cographs
are exactly those graphs that have clique-width at most 2 [7]. Can we solve Par-

allel Knock-Out in polynomial time for graphs of clique-width at most 3?

Knocking Out Pk-free Graphs 407

For this we could start by considering the class of distance-hereditary graphs,
which have clique-width at most 3 [11]. We also do not know whether there is
a constant c such that Parallel Knock-Out is NP-complete for graphs of
clique-width at most c. However, it is known that the related NP-complete prob-
lem Hamilton Cycle, which tests whether a graph has a hamiltonian cycle, is
polynomial-time solvable on any graph class whose clique-width is bounded by
a constant (this follows from combining results of [12,15], also see [8]).

A different direction from above for extending our results would be to classify
the complexity of Parallel Knock-Out restricted to H-free graphs. The com-
plexity status is open even for small graphs H ∈ {4P1, 2P1 +2P2, P1 +P3,K1,4}.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

2. Broersma, H.J., Fomin, F.V., Královič, R., Woeginger, G.J.: Eliminating graphs by
means of parallel knock-out schemes. Discrete Applied Mathematics 155, 92–102
(2007); See also Broersma, H., Fomin, F.V., Woeginger, G.J.: Parallel knock-out
schemes in networks. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 204–214. Springer, Heidelberg (2004)

3. Broersma, H.J., Johnson, M., Paulusma, D., Stewart, I.A.: The computational
complexity of the parallel knock-out problem. Theoretical Computer Science 393,
182–195 (2008)

4. Broersma, H.J., Johnson, M., Paulusma, D.: Upper bounds and algorithms for
parallel knock-out numbers. Theoretical Computer Science 410, 1319–1327 (2008)

5. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Discrete Applied Mathematics 3, 163–174 (1981)

6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM Journal on Computing 14, 926–934 (1985)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101, 77–144 (2000)

8. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded Graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

9. Földes, S., Hammer, P.L.: Split graphs, 8th South–Eastern Conf. on Combinatorics.
Graph Theory and Computing, Congressus Numerantium 19, 311–315 (1977)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

11. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science 11, 423–443 (2000)

12. Johansson, O.: Clique-decomposition, NLC-decomposition, and modular decompo-
sition – relationships and results for random graphs. Congressus Numerantium 132,
39–60 (1998)

13. Johnson, M., Paulusma, D., Wood, C.: Path factors and parallel knock-out schemes
of almost claw-free graphs. Discrete Mathematics 310, 1413–1423 (2010)

14. Lampert, D.E., Slater, P.J.: Parallel knockouts in the complete graph. American
Mathematical Monthly 105, 556–558 (1998)

15. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Applied Mathe-
matics 54, 251–266 (1994)

Relating the Time Complexity of Optimization Problems
in Light of the Exponential-Time Hypothesis

Peter Jonsson, Victor Lagerkvist, Johannes Schmidt, and Hannes Uppman

Department of Computer and Information Science, Linköping University, Sweden
{peter.jonsson,victor.lagerkvist,johannes.schmidt,hannes.uppman}@liu.se

Abstract. Obtaining lower bounds for NP-hard problems has for a long time
been an active area of research. Recent algebraic techniques introduced by Jon-
sson et al. (SODA 2013) show that the time complexity of the parameterized
SAT(·) problem correlates to the lattice of strong partial clones. With this or-
dering they isolated a relation R such that SAT(R) can be solved at least as fast as
any other NP-hard SAT(·) problem. In this paper we extend this method and show
that such languages also exist for the max ones problem (MAX-ONES(Γ)) and the
Boolean valued constraint satisfaction problem over finite-valued constraint lan-
guages (VCSP(Δ)). With the help of these languages we relate MAX-ONES and
VCSP to the exponential time hypothesis in several different ways.

1 Introduction

A superficial analysis of the NP-complete problems may lead one to think that they are
a highly uniform class of problems: in fact, under polynomial-time reductions, the NP-
complete problems may be viewed as a single problem. However, there are many indi-
cations (both from practical and theoretical viewpoints) that the NP-complete problems
are a diverse set of problems with highly varying properties, and this becomes visible
as soon as one starts using more refined methods. This has inspired a strong line of
research on the “inner structure” of the set of NP-complete problem. Examples include
the intensive search for faster algorithms for NP-complete problems [20] and the highly
influential work on the exponential time hypothesis (ETH) and its variants [14]. Such
research might not directly resolve whether P is equal to NP or not, but rather attempts
to explain the seemingly large difference in complexity between NP-hard problems
and what makes one problem harder than another. Unfortunately there is still a lack of
general methods for studying and comparing the complexity of NP-complete problems
with more restricted notions of reducibility. Jonsson et al. [9] presented a framework
based on clone theory, applicable to problems that can be viewed as “assigning values
to variables”, such as constraint satisfaction problems, the vertex cover problem, and
integer programming problems. To analyze and relate the complexity of these problems
in greater detail we utilize polynomial-time reductions which increase the number of
variables by a constant factor (linear variable reductions or LV-reductions) and reduc-
tions which increases the amount of variables by a constant (constant variable reduc-
tions or CV-reductions). Note the following: (1) if a problem A is solvable in O(cn)
time (where n denotes the number of variables) for all c > 1 and if problem B is LV-
reducible to A then B is also solvable in O(cn) time for all c > 1 and (2) if A is solvable

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 408–419, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Relating the Time Complexity of Optimization Problems 409

in time O(cn) and if B is CV-reducible to A then B is also solvable in time O(cn). Thus
LV-reductions preserve subexponential complexity while CV-reductions preserve exact
complexity. Jonsson et al. [9] exclusively studied the Boolean satisfiability SAT(·) prob-
lem and identified an NP-hard SAT({R}) problem CV-reducible to all other NP-hard
SAT(·) problems. Hence SAT({R}) is, in a sense, the easiest NP-complete SAT(·)
problem since if SAT(Γ) can be solved in O(cn) time, then this holds for SAT({R}),
too. With the aid of this result, they analyzed the consequences of subexponentially
solvable SAT(·) problems by utilizing the interplay between CV- and LV-reductions.
As a by-product, Santhanam and Srinivasan’s [16] negative result on sparsification of
infinite constraint languages was shown not to hold for finite languages.

We believe that the existence and construction of such easiest languages forms an
important puzzle piece in the quest of relating the complexity of NP-hard problems
with each other, since it effectively gives a lower bound on the time complexity of
a given problem with respect to constraint language restrictions. As a logical contin-
uation on the work on SAT(·) we pursue the study of CV- and LV-reducibility in
the context of Boolean optimization problems. In particular we investigate the com-
plexity of MAX-ONES(·) and VCSP(·) and introduce and extend several non-trivial
methods for this purpose. The results confirms that methods based on universal alge-
bra are indeed useful when studying broader classes of NP-complete problems. The
MAX-ONES(·) problem [11] is a variant of SAT(·) where the goal is to find a satisfying
assignment which maximizes the number of variables assigned the value 1. This prob-
lem is closely related to the 0/1 LINEAR PROGRAMMING problem. The VCSP(·) prob-
lem is a function minimization problem that generalizes the MAX-CSP and MIN-CSP
problems [11]. We treat both the unweighted and weighted versions of these problems
and use the prefix U to denote the unweighted problem and W to denote the weighted
version. These problems are well-studied with respect to separating tractable cases from
NP-hard cases [11] but much less is known when considering the weaker schemes of
LV-reductions and CV-reductions. We begin (in Section 3.1) by identifying the easiest
language for W-MAX-ONES(·). The proofs make heavy use of the algebraic method
for constraint satisfaction problems [7,8] and the weak base method [18]. The algebraic
method was introduced for studying the computational complexity of constraint satsi-
faction problems up to polynomial-time reductions while the weak base method was
shown by Jonsson et al. [9] to be useful for studying CV-reductions. To prove the main
result we however need even more powerful reduction techniques based on weighted
primitive positive implementations [19]. For VCSP(·) the situation differs even more
since the algebraic techniques developed for CSP(·) are not applicable — instead we
use multimorphisms [3] when considering the complexity of VCSP(·). We prove (in
Section 3.2) that the binary function f = which returns 0 if its two arguments are dif-
ferent and 1 otherwise, results in the easiest NP-hard VCSP(·) problem. This problem
is very familiar since it is the MAX CUT problem slightly disguised. The complexity
landscape surrounding these problems is outlined in Section 3.3.

With the aid of the languages identified in Section 3, we continue (in Section 4) by
relating MAX-ONES and VCSP with LV-reductions and connect them with the ETH.
Our results imply that (1) if the ETH is true then no NP-complete U-MAX-ONES(Γ),
W-MAX-ONES(Γ), or VCSP(Δ) is solvable in subexponential time and (2) that if the
ETH is false then U-MAX-ONES(Γ) and U-VCSPd(Δ) are solvable in subexponential

410 P. Jonsson et al.

time for every choice of Γ and Δ and d ≥ 0. Here U-VCSPd(Δ) is the U-VCSP(Δ)
problem restricted to instances where the sum to minimize contains at most dn terms.
Thus, to disprove the ETH, our result implies that it is sufficient to find a single lan-
guage Γ or a set of cost functions Δ such that U-MAX-ONES(Γ), W-MAX-ONES(Γ)
or VCSP(Δ) is NP-hard and solvable in subexponential time.

2 Preliminaries

Let Γ denote a finite set of finitary relations over B = {0,1}. We call Γ a constraint
language. Given R ⊆ Bk we let ar(R) = k denote its arity, and similarly for functions.
When Γ = {R} we typically omit the set notation and treat R as a constraint language.

2.1 Problem Definitions

The constraint satisfaction problem over Γ (CSP(Γ)) is defined as follows.

INSTANCE: A set V of variables and a set C of constraint applications R(v1, . . . ,vk)
where R ∈ Γ , k = ar(R), and v1, . . . ,vk ∈V .
QUESTION: Is there a function f : V → B such that (f (v1), . . . , f (vk)) ∈ R for each
R(v1, . . . ,vk) in C?

For the Boolean domain this problem is typically denoted as SAT(Γ). By SAT(Γ)-
B we mean the SAT(Γ) problem restricted to instances where each variable can occur
in at most B constraints. This restricted problem is occasionally useful since each in-
stance contains at most Bn constraints. The weigthed maximum ones problem over Γ
(W-MAX-ONES(Γ)) is an optimization version of SAT(Γ) where we for an instance
on variables {x1, . . . ,xn} and weights wi ∈ Q≥0 want to find a solution h for which
∑n

i=1 wi h(xi) is maximal. The unweigthed maximum ones problem (U-MAX-ONES(Γ))
is the W-MAX-ONES(Γ) problem where all weights have the value 1. A finite-valued
cost function on B is a function f : Bk →Q≥0. The valued constraint satisfaction prob-
lem over a finite set of finite-valued cost functions Δ (VCSP(Δ)) is defined as follows.

INSTANCE: A set V = {x1, . . . ,xn} of variables and the objective function fI(x1, . . . ,xn)
= ∑q

i=1 wi fi(xi) where, for every 1≤ i≤ q, fi ∈ Δ ,xi ∈V ar(fi), and wi ∈Q≥0 is a weight.

GOAL: Find a function h : V → B such that fI(h(x1), . . . ,h(xn)) is minimal.

When the set of cost functions is singleton VCSP({ f}) is written as VCSP(f). We
let U-VCSP be the VCSP problem without weights and U-VCSPd (for d ≥ 0) denote
the U-VCSP problem restricted to instances containing at most d |Var(I)| constraints.
Many optimization problems can be viewed as VCSP(Δ) problems for suitable Δ :
well-known examples are the MAX-CSP(Γ) and MIN-CSP(Γ) problems where the
number of satisfied constraints in a CSP instance are maximized or minimized. For
each Γ , there obviously exists sets of cost functions Δmin,Δmax such that MIN-CSP(Γ)
is polynomial-time equivalent to VCSP(Δmin) and MAX-CSP(Γ) is polynomial-time
equivalent to VCSP(Δmax). We have defined U-VCSP, VCSP, U-MAX-ONES and
W-MAX-ONES as optimization problems, but to obtain a more uniform treatment we
often view them as decision problems, i.e. given k we ask if there is a solution with
objective value k or better.

Relating the Time Complexity of Optimization Problems 411

2.2 Size-Preserving Reductions and Subexponential Time

If A is a computational problem we let I(A) be the set of problem instances and ‖I‖ be
the size of any I ∈ I(A), i.e. the number of bits required to represent I. Many problems
can in a natural way be viewed as problems of assigning values from a fixed finite set
to a collection of variables. This is certainly the case for SAT(·), MAX-ONES(·) and
VCSP(·) but it is also the case for various graph problems such as MAX-CUT and
MAX INDEPENDENT SET. We call problems of this kind variable problems and let
Var(I) denote the set of variables of an instance I.

Definition 1. Let A1 and A2 be variable problems in NP. The function f from I(A1) to
I(A2) is a many-one linear variable reduction (LV-reduction) with parameter C ≥ 0 if:
(1) I is a yes-instance of A1 if and only if f (I) is a yes-instance of A2, (2) |Var(f (I))|=
C · |Var(I)|+ O(1), and (3) f (I) can be computed in time O(poly(‖I‖)).

LV-reductions can be seen as a restricted form of SERF-reductions [6]. The term CV-
reduction is used to denote LV-reductions with parameter 1, and we write A1 ≤CV A2 to
denote that the problem A1 has an CV-reduction to A2. If A1 and A2 are two NP-hard
problems we say that A1 is at least as easy as (or not harder than) A2 if A1 is solvable in
O(c|Var(I)|) time whenever A1 is solvable in O(c|Var(I)|) time. By definition if A1≤CV A2

then A1 is not harder than A2 but the converse is not true in general. A problem solvable
in time O(2c |Var(I)|) for all c > 0 is a subexponential problem, and SE denotes the
class of all variable problems solvable in subexponential time. It is straightforward to
prove that LV-reductions preserve subexponential complexity in the sense that if A is
LV-reducible to B then A ∈ SE if B ∈ SE. Naturally, SE can be defined using other
complexity parameters than |Var(I)| [6].

2.3 Clone Theory

An operation f : Bk → B is a polymorphism of a relation R if for every t1, . . . , tk ∈ R it
holds that f (t1, . . . , tk) ∈ R, where f is applied element-wise. In this case R is closed, or
invariant, under f . For a set of functions F we define Inv(F) (often abbreviated as IF)
to be the set of all relations invariant under all functions in F. Dually Pol(Γ) for a set
of relations Γ is defined to be the set of polymorphisms of Γ . Sets of the form Pol(Γ)
are known as clones and sets of the form Inv(F) are known as co-clones. The reader
unfamiliar with these concepts is referred to the textbook by Lau [13]. The relationship
between these structures is made explicit in the following Galois connection [13].

Theorem 2. Let Γ , Γ ′ be sets of relations. Then Inv(Pol(Γ′))⊆ Inv(Pol(Γ)) if and only
if Pol(Γ)⊆ Pol(Γ′).

Co-clones can equivalently be described as sets containing all relations R definable
through primitive positive (p.p.) implementations over a constraint language Γ , i.e. def-
initions of the form R(x1, . . . ,xn) ≡ ∃y1, . . . ,ym .R1(x1)∧ . . .∧Rk(xk), where each Ri ∈
Γ ∪{eq} and each xi is a tuple over x1, . . . ,xn, y1, . . . ,ym and where eq = {(0,0),(1,1)}.
As a shorthand we let 〈Γ 〉= Inv(Pol(Γ)) for a constraint language Γ , and as can be ver-
ified this is the smallest set of relations closed under p.p. definitions over Γ . In this case
Γ is said to be a base of 〈Γ 〉. It is known that if Γ ′ is finite and Pol(Γ) ⊆ Pol(Γ′) then

412 P. Jonsson et al.

CSP(Γ ′) is polynomial-time reducible to CSP(Γ) [7]. With this fact and Post’s classifi-
cation of all Boolean clones [15] Schaefer’s dichotomy theorem [17] for SAT(·) follows
almost immediately. The reader is referred to Böhler et al. [2] for a visualization of the
Boolean clone lattice and a complete list of bases. The complexity of MAX-ONES(Γ)
is also preserved under finite expansions with relations p.p. definable in Γ , and hence
follow the standard Galois connection [11]. Note however that Pol(Γ′) ⊆ Pol(Γ) does
not imply that CSP(Γ ′)≤CV CSP(Γ) or that CSP(Γ ′) LV-reduces to CSP(Γ) since the
number of constraints is not necessarily linearly bounded by the number of variables.

To study these restricted classes of reductions we are therefore in need of Galois
connections with increased granularity. In Jonsson et al. [9] the SAT(·) problem is
studied with the Galois connection between closure under p.p. definitions without ex-
istential quantification and strong partial clones. Here we concentrate on the relational
description and instead refer the reader to Schnoor [18] for definitions of partial poly-
morphisms and the aforementioned Galois connection. If R is an n-ary Boolean relation
and Γ a constraint language then R has a quantifier-free primitive positive (q.p.p.) im-
plementation in Γ if R(x1, . . . ,xn) ≡ R1(x1)∧ . . .∧Rk(xk), where each Ri ∈ Γ ∪{eq}
and each xi is a tuple over x1, . . . ,xn. We use 〈Γ 〉� to denote the smallest set of relations
closed under q.p.p. definability over Γ . If IC = 〈IC〉� then IC is a weak partial co-clone.
In Jonsson et al. [9] it is proven that if Γ ′ ⊆ 〈Γ 〉� and if Γ and Γ ′ are both finite con-
straint languages then CSP(Γ ′)≤CV CSP(Γ). It is not hard to extend this result to the
MAX-ONES(·) problem since it follows the standard Galois connection, and therefore
we use this fact without explicit proof. A weak base Rw of a co-clone IC is then a base
of IC with the property that for any finite base Γ of IC it holds that Rw ∈ 〈Γ 〉� [18]. In
particular this means that SAT(Rw) and MAX-ONES(Rw) CV-reduce to SAT(Γ) and
MAX-ONES(Γ) for any base Γ of IC, and Rw can therefore be seen as the easiest lan-
guage in the co-clone. See Table 1 for a list of weak bases for the co-clones where
MAX-ONES(·) is NP-hard. A full list of weak bases for all Boolean co-clones can be
found in Lagerkvist [12]. In addition these weak bases can be implemented without the
equality relation [12].

Table 1. Weak bases for all Boolean co-clones where MAX-ONES(·) is NP-hard

Co-clone Weak base Co-clone Weak base
ISn

1 ,n≥ 2 NANDn(x1, . . . ,xn)∧F(c0) IL2 EVEN3
3 =(x1, . . . ,x6)∧F(c0)∧T(c1)

ISn
12,n ≥ 2 NANDn(x1, . . . ,xn)∧F(c0)∧T(c1) IL3 EVEN4

4 =(x1, . . . ,x8)
ISn

11,n ≥ 2 NANDn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧F(c0) IE0 (x1 ↔ x2x3)∧ (x2∨ x3 → x4)∧F(c0)
ISn

10,n ≥ 2 NANDn(x1, . . . ,xn)∧ (x→ x1 · · ·xn)∧F(c0)∧T(c1) IE2 (x1 ↔ x2x3)∧F(c0)∧T(c1)
ID2 OR2

2 =(x1,x2 ,x3,x4)∧F(c0)∧T(c1) II0 (x1 ∨x2)∧ (x1x2 ↔ x3)∧F(c0)

IN2 EVEN4
4 =(x1, . . . ,x8)∧ x1x4 ↔ x2x3 II2 R1/3

3 = (x1, . . . ,x6)∧F(c0)∧T(c1)

IL0 EVEN3(x1,x2,x3)∧F(c0)

2.4 Operations and Relations

An operation f is called arithmetical if f (y,x,x) = f (y,x,y) = f (x,x,y) = y for every
x,y ∈ B. The max function is defined as max(x,y) = 0 if x = y = 0 and 1 otherwise. We
often express a Boolean relation R as a logical formula whose satisfying assignment cor-
responds to the tuples of R. F and T are the two constant relations {(0)} and {(1)}while

Relating the Time Complexity of Optimization Problems 413

neq denotes inequality, i.e. the relation {(0,1),(1,0)}. The relation EVENn is defined as
{(x1, . . . ,xn) ∈ Bn |∑n

i=1 xi is even}. The relation ODDn is defined dually. The relations
ORn and NANDn are the relations corresponding to the clauses (x1∨ . . .∨xn) and (x1∨
. . .∨xn). For any n-ary relation and R we let Rm=, 1≤m≤ n, denote the (n+m)-ary re-
lation defined as Rm=(x1, . . . ,xn+m)≡ R(x1, . . . ,xn)∧neq(x1,xn+1)∧ . . .∧neq(xn,xn+m).
We let R1/3 = {(0,0,1),(0,1,0),(1,0,0)}. Variables are typically named x1, . . . ,xn or x
except when they occur in positions where they are forced to take a particular value, in
which case they are named c0 and c1 respectively to explicate that they are in essence
constants. As convention c0 and c1 always occur in the last positions in the arguments
to a predicate. We now see that RII2(x1, . . . ,x6,c0,c1)≡ R1/3

3 = (x1, . . . ,x6)∧F(c0)∧T(c1)

and RIN2(x1, . . . ,x8) ≡ EVEN4
4 =(x1, . . . ,x8)∧ (x1x4 ↔ x2x3) from Table 1 are the two

relations (where the tuples in the relations are listed as rows)

RII2 =
{

0 0 1 1 1 0 0 1
0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 1

}
and RIN2 =

⎧⎨⎩
0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1

⎫⎬⎭ .

3 The Easiest NP-Hard MAX-ONES and VCSP Problems

We will now study the complexity of W-MAX-ONES and VCSP with respect to CV-
reductions. We remind the reader that constraint languages Γ and sets of cost functions
Δ are always finite. We prove that for both these problems there is a single language
which is CV-reducible to every other NP-hard language. Out of the infinite number
of candidate languages generating different co-clones, the language {RII2} defines the
easiest W-MAX-ONES(·) problem, which is the same language as for SAT(·) [9]. This
might be contrary to intuition since one could be led to believe that the co-clones in
the lower parts of the co-clone lattice, generated by very simple languages where the
corresponding SAT(·) problem is in P, would result in even easier problems.

3.1 The MAX-ONES Problem

Here we use a slight reformulation of Khanna et al. ’s [11] complexity classification of
the MAX-ONES problem expressed in terms of polymorphisms.

Theorem 3 ([11]). Let Γ be a finite Boolean constraint language. MAX-ONES(Γ) is
in P if and only if Γ is 1-closed, max-closed, or closed under an arithmetical operation.

The theorem holds for both the weighted and the unweighted version of the problem
and showcases the strength of the algebraic method since it not only eliminates all
constraint languages resulting in polynomial-time solvable problems, but also tells us
exactly which cases remain, and which properties they satisfy.

Theorem 4. U-MAX-ONES(R) ≤CV U-MAX-ONES(Γ) for some R ∈ {RIS21
, RII2

, RIN2
,

RIL0
, RIL2

, RIL3
, RID2

} whenever U-MAX-ONES(Γ) is NP-hard.

414 P. Jonsson et al.

Proof. By Theorem 3 in combination with the bases of Boolean clones in Böhler et
al. [2] it follows that U-MAX-ONES(Γ) is NP-hard if and only if 〈Γ 〉 ⊇ IS21 or if
〈Γ 〉 ∈ {IL0, IL3, IL2, IN2}. In principle we then for every co-clone have to decide which
language is CV-reducible to every other base of the co-clone, but since a weak base
always have this property, we can eliminate a lot of tedious work and directly consult
the precomputed relations in Table 1. From this we first see that 〈RIS21

〉� ⊂ 〈RISn1
〉�,

〈RIS212
〉� ⊂ 〈RISn12

〉�, 〈RIS211
〉� ⊂ 〈RISn11

〉� and 〈RIS210
〉� ⊂ 〈RISn10

〉� for every n≥ 3. Hence
in the four infinite chains ISn1, ISn12, ISn

11, ISn10 we only have to consider the bottom-
most co-clones IS21, IS212, IS211, IS210. Observe that if R and R′ satisfies R(x1, . . . ,xk)⇒
∃y0,y1.R′(x1, . . . ,xk,y0,y1)∧F(y0)∧T (y1) and R′(x1, . . . ,xk,y0,y1)⇒ R(x1, . . . ,xk)∧
F(y0), and R′(x1, . . . ,xk,y0,y1)∈ 〈Γ 〉�, then U-MAX-ONES(R)≤CV U-MAX-ONES(Γ),
since we can use y0 and y1 as global variables and because an optimal solution to
the instance we construct will always map y1 to 1 if the original instance is satis-
fiable. For RIS21

(x1,x2,c0) we can q.p.p. define predicates R′
IS21

(x1,x2,c0,y0,y1) with

RIS212
,RIS211

,RIS210
,RIE2

,RIE0
satisfying these properties as follows:

– R′
IS21

(x1,x2,c0,y0,y1)≡ RIS212
(x1,x2,c0,y1)∧RIS212

(x1,x2,y0,y1),

– R′
IS21

(x1,x2,c0,y0,y1)≡ RIS211
(x1,x2,c0,c0)∧RIS211

(x1,x2,y0,y0),

– R′
IS21

(x1,x2,c0,y0,y1)≡ RIS210
(x1,x2,c0,c0,y1)∧RIS210

(x1,x2,c0,y0,y1),

– R′
IS21

(x1,x2,c0,y0,y1)≡ RIE2
(c0,x1,x2,c0,y1)∧RIE2

(c0,x1,x2,y0,y1),

– R′
IS21

(x1,x2,c0,y0,y1)≡ RIE0
(c0,x1,x2,y1,c0)∧RIE0

(y0,x1,x2,y1,y0),

and similarly a relation R′II2 using RII0 as follows R′II2(x1,x2,x3,x4,x5,x6,c0,c1,y0,y1)≡
RII0(x1,x2,x3,c0)∧RII0(c0,c1,y1,y0)∧RII0(x1,x4,y1,y0)∧RII0(x2,x5,y1,y0)∧RII0(x3,x6,
y1,y0). We then see that the only remaining cases for Γ when 〈Γ 〉 ⊃ IS2

1 is when
〈Γ 〉= II2 or when 〈Γ 〉= ID2. This concludes the proof. ��

Using q.p.p. implementations to further decrease the set of relations in Theorem 4
appears difficult and we therefore make use of more powerful implementations. Let
Optsol(I) be the set of all optimal solutions of a W-MAX-ONES(Γ) instance I. A re-
lation R has a weighted p.p. definition (w.p.p. definition) [19] in Γ if there exists an
instance I of W-MAX-ONES(Γ) on variables V such that R = {(φ(v1), . . . ,φ(vm)) | φ ∈
Optsol(I)} for some v1, . . . ,vm ∈ V . The set of all relations w.p.p. definable in Γ is de-
noted 〈Γ 〉w and we furthermore have that if Γ ′ ⊆ 〈Γ 〉w is finite then W-MAX-ONES(Γ ′)
is polynomial-time reducible to W-MAX-ONES(Γ) [19]. If there is a W-MAX-ONES(Γ)
instance I on V such that R = {(φ(v1), . . . ,φ(vm)) | φ ∈ Optsol(I)} for v1, . . . ,vm ∈ V
satisfying {v1, . . . ,vm} = V , then we say that R is q.w.p.p. definable in Γ . We use
〈Γ 〉�,w for set of all relations q.w.p.p. definable in Γ . It is not hard to check that if
Γ ′ ⊆ 〈Γ 〉�,w, then every instance is mapped to an instance of equally many variables —
hence W-MAX-ONES(Γ ′) is CV-reducible to W-MAX-ONES(Γ) whenever Γ ′ is finite.

Theorem 5. Let Γ be a constraint language such that W-MAX-ONES(Γ) is NP-hard.
Then it holds that W-MAX-ONES(RII2)≤CV W-MAX-ONES(Γ).

Relating the Time Complexity of Optimization Problems 415

Proof. We utilize q.w.p.p. definitions and note that the following holds.

RII2 =arg maxx∈B8:(x7,x1,x2,x6,x8,x4,x5,x3)∈RIN2
x8,

RII2 =arg maxx∈B8:(x5,x4,x2,x1,x7,x8),(x6,x4,x3,x1,x7,x8),(x6,x5,x3,x4,x7,x8)∈RID2
(x1 + x2 + x3),

RII2 =arg maxx∈B8:(x4,x5,x6,x1,x2,x3,x7,x8)∈RIL2
(x4 + x5 + x6),

RIL2 =arg maxx∈B8:(x7,x1,x2,x3,x8,x4,x5,x6)∈RIL3
x8,

RIL2 =arg maxx∈B8:(x4,x5,x6,x7),(x8,x1,x4,x7),(x8,x2,x5,x7),(x8,x3,x6,x7)∈RIL0
x8,

RII2 =arg maxx∈B8:(x1,x2,x7),(x1,x3,x7),(x2,x3,x7),(x1,x4,x7),(x2,x5,x7),(x3,x6,x7)∈R
IS21

(x1+. . .+x8).

Hence, RII2 ∈ 〈R〉�,w for every R ∈ {RIS21
,RIN2

,RIL0
,RIL2

,RIL3
,RID2

} which by Theo-
rem 4 completes the proof. ��

3.2 The VCSP Problem

Since VCSP does not adhere to the standard Galois connection in Theorem 2, the weak
base method is not applicable and alternative methods are required. For this purpose we
use multimorphisms from Cohen et al. [3]. Let Δ be a set of cost functions on B, let p
be a unary operation on B, and let f ,g be binary operations on B. We say that Δ admits
the binary multimorphism (f ,g) if it holds that ν(f (x,y)) + ν(g(x,y)) ≤ ν(x) + ν(y)
for every ν ∈ Δ and x,y ∈ Bar(ν). Similarly Δ admits the unary multimorphism (p) if it
holds that ν(p(x)) ≤ ν(x) for every ν ∈ Δ and x ∈ Bar(ν). Recall that the function f =
equals {(0,0) $→ 1,(0,1) $→ 0,(1,0) $→ 0,(1,1) $→ 1} and that the minimisation problem
VCSP(f =) and the maximisation problem MAX CUT are trivially CV-reducible to each
other. We will make use of (a variant of) the concept of expressibility [3]. We say that
a cost function g is �-expressible in Δ if g(x1, . . . ,xn) = ∑i wi fi(si) + w for some tuples
si over {x1, . . . ,xn}, weights wi ∈ Q≥0, w ∈ Q and fi ∈ Δ . It is not hard to see that if
every function in a finite set Δ ′ is �-expressible in Δ , then VCSP(Δ ′)≤CV VCSP(Δ).
Note that if the constants 0 and 1 are expressible in Δ then we may allow tuples si over
{x1, . . . ,xn,0,1}, and still obtain a CV-reduction.

Theorem 6. Let Δ be a set of finite-valued cost functions onB. If the problem VCSP(Δ)
is NP-hard, then VCSP(f =)≤CV VCSP(Δ).

Proof. Since VCSP(Δ) is NP-hard (and since we assume P = NP) we know that Δ does
not admit the unary (0)-multimorphism or the unary (1)-multimorphism [3]. There-
fore there are g,h ∈ Δ and u ∈ Bar(g), v ∈ Bar(h) such that g(0) > g(u) and h(1) >
h(v). Let w ∈ arg minx∈Bb(g(x1, . . . ,xa) + h(xa+1, . . . ,xb)) and then define o(x,y) =
g(z1, . . . ,za) + h(za+1, . . . ,zb) where zi = x if wi = 0 and zi = y otherwise. Clearly
(0,1) ∈ arg minx∈B2 o(x), o(0,1) < o(0,0), and o(0,1) < o(1,1). We will show that
we always can force two fresh variables v0 and v1 to 0 and 1, respectively. If o(0,0) =
o(1,1), then assume without loss of generality that o(0,0) < o(1,1). In this case we
force v0 to 0 with the (sufficiently weighted) term o(v0,v0). Set g′(x) = g(z1, . . . ,zar(g))
where zi = x if ui = 1 and zi = v0 otherwise. Note that g′(1)< g′(0) which means that we
can force v1 to 1. Otherwise o(0,0) = o(1,1). If o(0,1) = o(1,0), then f = = α1o + α2,
otherwise assume without loss of generality that o(0,1)< o(1,0). In this case v0,v1 can
be forced to 0,1 with the help of the (sufficiently weighted) term o(v0,v1).

416 P. Jonsson et al.

By [3], since VCSP(Δ) is NP-hard by assumption, we know that Δ does not ad-
mit the (min,max)-multimorphism. Hence, there exists a k-ary function f ∈ Δ and
s, t∈Bk such that f (min(s, t))+ f (max(s, t))> f (s)+ f (t). Let f1(x) = α1o(v0,x)+α2

for some α1 ∈ Q≥0 and α2 ∈ Q such that f1(1) = 0 and f1(0) = 1. Let also g(x,y) =
f (z1, . . . ,zk) where zi = v1 if min(si, ti) = 1, zi = v0 if max(si, ti) = 0, zi = x if si > ti and
zi = y otherwise. Note that g(0,0) = f (min(s, t)), g(1,1) = f (max(s, t)), g(1,0) = f (s)
and g(0,1) = f (t). Set h(x,y) = g(x,y) + g(y,x). Now h(0,1) = h(1,0) < 1

2(h(0,0) +
h(1,1)). If h(0,0) = h(1,1), then f = = α1h+α2 for some α1 ∈Q≥0 and α2 ∈Q. Hence,
we can without loss of generality assume that h(1,1)− h(0,0) = 2. Note now that
h′(x,y) = f1(x) + f1(y) + h(x,y) satisfies h′(0,0) = h′(1,1) = 1

2(h(0,0) + h(1,1) + 2)

and h′(0,1) = h′(1,0) = 1
2 (2+h(0,1)+h(1,0)). Hence, h′(0,0) = h′(1,1)> h′(0,1) =

h′(1,0). So f = = α1h′+ α2 for some α1 ∈Q≥0 and α2 ∈Q. ��

3.3 The Broader Picture

Theorems 5 and 6 does not describe the relative complexity between the SAT(·), MAX-
ONES(·) and VCSP(·) problems. However we readily see (1) that SAT(RII2) ≤CV

W-MAX-ONES(RII2), and (2) that W-MAX-ONES(RII2) ≤CV W-MAX INDEPENDENT

SET since W-MAX INDEPENDENT SET can be expressed by W-MAX-ONES(NAND2).
The problem W-MAX-ONES(NAND2) is in turn expressible by MAX-CSP({NAND2,
T,F}). To show that W-MAX INDEPENDENT SET ≤CV VCSP(f =) it is in fact, since
MAX-CSP(neq) and VCSP(f =) is the same problem, sufficient to show that MAX-
CSP({NAND2,T,F}) ≤CV MAX-CSP(neq). We do this as follows. Let v0 and v1 be
two global variables. We force v0 and v1 to be mapped to different values by assign-
ing a sufficiently high weight to the constraint neq(v0,v1). It then follows that T(x) =
neq(x,v0), F(x) = neq(x,v1) and NAND2(x,y) = 1

2 (neq(x,y)+F(x)+F(y)) and we are
done. It follows from this proof that MAX-CSP({NAND2,T,F}) and VCSP(f =) are
mutually CV-interreducible. Since MAX-CSP({NAND2,T,F}) can also be formulated
as a VCSP it follows that VCSP(·) does not have a unique easiest set of cost functions.
The complexity results are summarized in Figure 1. Some trivial inclusions are omitted
in the figure: for example it holds that SAT(Γ)≤CV W-MAX-ONES(Γ) for all Γ .

4 Subexponential Time and the Exponential-Time Hypothesis

The exponential-time hypothesis states that 3-SAT /∈ SE [5]. We remind the reader that
the ETH can be based on different size parameters (such as the number of variables or
the number of clauses) and that these different definitions often coincide [6]. In this sec-
tion we investigate the consequences of the ETH for the U-MAX-ONES and U-VCSP
problems. A direct consequence of Section 3 is that if there exists any finite constraint
language Γ or set of cost functions Δ such that W-MAX-ONES(Γ) or VCSP(Δ) is
NP-hard and in SE, then SAT(RII2) is in SE which implies that the ETH is false [9].
The other direction is interesting too since it highlights the likelihood of subexponential
time algorithms for the problems, relative to the ETH.

Lemma 7. If U-MAX-ONES(Γ) is in SE for some finite constraint languages Γ such
that U-MAX-ONES(Γ) is NP-hard, then the ETH is false.

Relating the Time Complexity of Optimization Problems 417

SAT(RII2)

SAT(Γ) W-MAX-ONES(RII2)

W-MAX-ONES(Γ) W-MAX INDEPENDENT SET

VCSP(f =)

VCSP(Δ)

W-MAX CUT

1

2

3

1. Holds for every Γ such that
SAT(Γ) is NP-hard.

2. Holds for every Γ such
that W-MAX-ONES(Γ) is
NP-hard.

3. Holds for every finite-valued
Δ such that VCSP(Δ) is NP-
hard.

Fig. 1. The complexity landscape of some Boolean optimization and satisfiability problems. A
directed arrow from one node A to B means that A≤CV B.

Proof. From Jonsson et al. [9] it follows that 3-SAT ∈ SE if and only if SAT(RII2)-2∈
SE. Combining this with Theorem 4 we only have to prove that SAT(RII2)-2 LV-reduces
to U-MAX-ONES(R) for R ∈ {RIS21

,RIN2
,RIL0

,RIL2
,RIL3

,RID2
}. We provide an illustra-

tive reduction from SAT(RII2)-2 to U-MAX-ONES(RIS21
); the remaining reductions are

presented in Lemmas 11–15 in the extended preprint of this paper [10]. Since RIS21
is the NAND relation with one additional constant column, the U-MAX-ONES(RIS21

)

problem is basically the maximum independent set problem or, equivalently, the maxi-
mum clique problem in the complement graph. Given an instance I of CSP(RII2)-2 we
create for every constraint 3 vertices, one corresponding to each feasible assignment of
values to the variables occurring in the constraint. We add edges between all pairs of
vertices that are not inconsistent and that do not correspond to the same constraint. The
instance I is satisfied if and only if there is a clique of size m where m is the number of
constraints in I. Since m≤ 2n this implies that the number of vertices is ≤ 2n. ��

The proofs of the following two lemmas are omitted due to space constraints and can
be found in the extended electronic preprint of this paper [10].

Lemma 8. If the ETH is false, then U-MAX-ONES(Γ) ∈ SE for every finite Boolean
constraint language Γ .

Lemma 9. If U-MAX-ONES(Γ) ∈ SE for every finite Boolean constraint language Γ
then U-VCSPd(Δ) ∈ SE for every finite set of Boolean cost functions Δ and d ≥ 0.

Theorem 10. The following statements are equivalent.

1. The exponential-time hypothesis is false.
2. U-MAX-ONES(Γ) ∈ SE for every finite Γ .
3. U-MAX-ONES(Γ) ∈ SE for some finite Γ such that U-MAX-ONES(Γ) is NP-hard.
4. U-VCSP(Δ)d ∈ SE for every finite set of finite-valued cost functions Δ and d ≥ 0.

Proof. The implication 1 ⇒ 2 follows from Lemma 8, 2 ⇒ 3 is trivial, and 3 ⇒ 1
follows by Lemma 7. The implication 2 ⇒ 4 follows from Lemma 9. We finish the

418 P. Jonsson et al.

proof by showing 4⇒ 1. Let I = (V,C) be an instance of SAT(RII2)-2. Note that I con-
tains at most 2 |V | constraints. Let f be the function defined by f (x) = 0 if x ∈ RII2

and f (x) = 1 otherwise. Create an instance of U-VCSP2(f) by, for every constraint
Ci = RII2(x1, . . . ,x8)∈C, adding to the cost function the term f (x1, . . . ,x8). This instance
has a solution with objective value 0 if and only if I is satisfiable. Hence, SAT(RII2)-
2 ∈ SE which contradicts the ETH [9]. ��

5 Future Research

Other problems. The weak base method naturally lends itself to other problems param-
eterized by constraint languages. In general, one has to consider all co-clones where the
problem is NP-hard, take the weak bases for these co-clones and find out which of
these are CV-reducible to the other cases. The last step is typically the most challenging
— this was demonstrated by the U-MAX-ONES problems where we had to introduce
q.w.p.p. implementations. An example of an interesting problem where this strategy
works is the non-trivial SAT problem (SAT∗(Γ)), i.e. the problem of deciding whether
a given instance has a solution in which not all variables are mapped to the same value.
This problem is NP-hard in exactly six cases [4] and by following the aforementioned
procedure one can prove that the relation RII2 results in the easiest NP-hard SAT∗(Γ)
problem. Since SAT∗(RII2) is in fact the same problem as SAT(RII2) this shows that re-
stricting solutions to non-trivial solutions does not make the satisfiability problem easier.
This result can also be extended to the co-NP-hard implication problem [4] and we be-
lieve that similar methods can also be applied to give new insights into the complexity
of e.g. enumeration, which also follows the same complexity classification [4].

Weighted versus Unweighted Problems. Theorem 10 only applies to unweighted prob-
lems and lifting these results to the weighted case does not appear straightforward. We
believe that some of these obstacles could be overcome with generalized sparsification
techniques and provide an example proving that if any NP-hard W-MAX-ONES(Γ)
problem is in SE, then MAX-CUT can be approximated within a multiplicative error of
(1± ε) (for any ε > 0) in subexponential time. Assume that W-MAX-ONES(Γ) ∈ SE
is NP-hard, and arbitrarily choose ε > 0. Let MAX-CUTc be the MAX-CUT problem re-
stricted to graphs G = (V,E) where |E| ≤ c · |V |. We first prove that MAX-CUTc is in SE
for arbitrary c≥ 0. By Theorem 5, we infer that W-MAX-ONES(RII2)∈ SE. Given an in-
stance (V,E) of MAX-CUTc, one can introduce one fresh variable xv for each v ∈V and
one fresh variable xe for each edge e∈ E . For each edge e = (v,w), we then constrain the
variables xv,xw and xe as R(xv,xw,xe) where R = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}∈
〈RII2〉. It can then be verified that, for an optimal solution h, that the maximum value of
∑e∈E weh(xe) (where we is the weight associated with the edge e) equals the weight of
a maximum cut in (V,E). This is an LV-reduction since |E| = c · |V |. Now consider an
instance (V,E) of the unrestricted MAX-CUT problem. By Batson et al. [1], we can (in
polynomial time) compute a cut sparsifier (V ′,E ′) with only Dε ·n/ε2 edges (where Dε
is a constant depending only on ε), which approximately preserves the value of the max-
imum cut of (V,E) to within a multiplicative error of (1±ε). By using the LV-reduction
above from MAX-CUTDε/ε2 to W-MAX-ONES(Γ), it follows that we can approximate
the maximum cut of (V,E) within (1± ε) in subexponential time.

Relating the Time Complexity of Optimization Problems 419

References

1. Batson, J., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. SIAM Journal on
Computing 41(6), 1704–1721 (2012)

2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I:
Post’s lattice with applications to complexity theory. ACM SIGACT-Newsletter 34(4), 38–52
(2003)

3. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)

4. Creignou, N., Hébrard, J.J.: On generating all solutions of generalized satisfiability problems.
Informatique Théorique et Applications 31(6), 499–511 (1997)

5. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System
Sciences 62(2), 367–375 (2001)

6. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
Journal of Computer and System Sciences 63(4), 512–530 (2001)

7. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical Computer
Science 200, 185–204 (1998)

8. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the
ACM 44(4), 527–548 (1997)

9. Jonsson, P., Lagerkvist, V., Nordh, G., Zanuttini, B.: Complexity of SAT problems, clone
theory and the exponential time hypothesis. In: Khanna, S. (ed.) SODA 2013, pp. 1264–1277.
SIAM (2013)

10. Jonsson, P., Lagerkvist, V., Schmidt, J., Uppman, H.: Relating the time complexity of opti-
mization problems in light of the exponential-time hypothesis. CoRR, abs/1406.3247 (2014)

11. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.: The approximability of constraint sat-
isfaction problems. SIAM Journal on Computing 30(6), 1863–1920 (2000)

12. Lagerkvist, V.: Weak bases of Boolean co-clones. Information Processing Letters 114(9),
462–468 (2014)

13. Lau, D.: Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone
Theory. Springer Monographs in Mathematics. Springer-Verlag New York, Inc., Secaucus
(2006)

14. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypoth-
esis. Bulletin of the EATCS 105, 41–72 (2011)

15. Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies 5, 1–122 (1941)

16. Santhanam, R., Srinivasan, S.: On the limits of sparsification. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 774–785. Springer,
Heidelberg (2012)

17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium
on Theory of Computing, pp. 216–226. ACM Press (1978)

18. Schnoor, I.: The weak base method for constraint satisfaction. PhD thesis, Gottfried Wilhelm
Leibniz Universität, Hannover, Germany (2008)

19. Thapper, J.: Aspects of a Constraint Optimisation Problem. PhD thesis, Linköping University,
The Institute of Technology (2010)

20. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt,
G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570,
pp. 185–207. Springer, Heidelberg (2003)

Affine Consistency and the Complexity
of Semilinear Constraints�

Peter Jonsson1 and Johan Thapper2

1 Department of Computer and Information Science, Linköping University, Sweden
peter.jonsson@liu.se

2 LIGM, Université Paris-Est Marne-la-Vallée, France
thapper@u-pem.fr

Abstract. A semilinear relation is a finite union of finite intersections
of open and closed half-spaces over, for instance, the reals, the rationals
or the integers. Semilinear relations have been studied in connection with
algebraic geometry, automata theory, and spatiotemporal reasoning, just
to mention a few examples. We concentrate on relations over the reals and
rational numbers. Under this assumption, the computational complexity
of the constraint satisfaction problem (CSP) is known for all finite sets Γ
of semilinear relations containing the relations R+ = {(x, y, z) | x+ y =
z}, ≤, and {1}. These problems correspond to extensions of LP feasibility.
We generalise this result as follows. We introduce an algorithm, based
on computing affine hulls, which solves a new class of semilinear CSPs
in polynomial time. This allows us to fully determine the complexity
of CSP(Γ) for semilinear Γ containing R+ and satisfying two auxiliary
conditions. Our result covers all semilinear Γ such that {R+, {1}} ⊆ Γ .
We continue by studying the more general case when Γ contains R+ but
violates either of the two auxiliary conditions. We show that each such
problem is equivalent to a problem in which the relations are finite unions
of homogeneous linear sets and we present evidence that determining the
complexity of these problems may be highly non-trivial.

1 Introduction

Let X = Q or X = R. We say that a relation R ⊆ Xk is semilinear if it can be
represented as a finite union of finite intersections of open and closed half-spaces.
Alternatively, R is semilinear if it is first-order definable in {R+,≤, {1}} where
R+ = {(x, y, z) ∈ X3 | x + y = z}. Semilinear relations appear in many dif-
ferent contexts within mathematics and computer science: they are, for instance,
frequently encountered in algebraic geometry, automata theory, spatiotemporal
reasoning, and computer algebra. Semilinear relations have also attained a fair
amount of attention in connection with constraint satisfaction problems (CSPs).
Here, we are given a set of variables that take their values from a (finite or infinite)
domain and a set of constraints (e.g. relations) that constrain the values different
� Partially supported by the Swedish Research Council (VR) under grant 621-2012-

3239.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 420–431, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Affine Consistency and the Complexity of Semilinear Constraints 421

variables can take, and the question is whether the variables can be assigned values
such that all constraints are satisfied or not. CSPs are often parameterized by a
finite set Γ of allowed relations, known as a constraint language. All constraints in
the input of CSP(Γ) must be members of Γ . This way of parameterizing constraint
satisfaction problems has proved to be very fruitful for CSPs over both finite and
infinite domains. Since Γ is finite, the computational complexity of such a prob-
lem does not depend on the actual representation of constraints. The complexity
of finite-domain CSPs has been studied for a long time and a powerful algebraic
toolkit has gradually formed [6]. Much of this work has been devoted to the Feder-
Vardi conjecture [7], i.e., that every finite-domain CSP is either polynomial-time
solvable or NP-complete. Infinite-domain CSPs, on the other hand, constitute a
much more diverse set of problems: every computational problem is polynomial-
time equivalent to an infinite-domain CSP [1]. Obtaining a full understanding of
their computational complexity is thus extremely difficult and we have to contain
ourselves to studying restricted cases. The main motivation behind this paper is
the following result by Bodirsky et al. [2].

Theorem 1. If Γ is a finite set of semilinear relations over R or Q that contains
R+, ≤, and {1}, then CSP(Γ) is either polynomial-time solvable or NP-complete.

Characterizing the polynomial-time solvable cases is fairly simple: we say that
a relation R ⊆ Rk is essentially convex if for all p, q ∈ R there are only finitely
many points on the line segment between p and q that are not in R. If Γ con-
tains essentially convex relations only, then CSP(Γ) is in P by exploiting linear
programming, and the problem is NP-complete otherwise. One may suspect that
there are semilinear constraint languages Γ such that CSP(Γ) ∈ P but Γ is not
essentially convex. This is indeed true and we identify two such cases.

In the first case, we encounter polynomial-time solvable classes that, infor-
mally speaking, contain relations with large “cavities”. It is not surprising that
the algorithm for essentially convex relations (and the ideas behind it) cannot
be applied in the presence of this kind of highly non-convex relations. Thus, we
introduce (in Section 3.1) a new algorithm based on computing affine hulls.

In the second case, we have polynomial-time solvable classes where the rela-
tions look essentially convex when viewed from the origin. That is, any points
p and q that witnesses that the relations are not essentially convex lie on a line
that does not pass through the origin. We show (in Section 3.2) that we can
remove the holes witnessed by p and q and find an equivalent language that is
essentially convex, and thereby solve the problem.

Combining these algorithmic results with certain hardness results (that are
collected in Section 4) yields a dichotomy: if a semilinear constraint language Γ
contains R+ and satisfies two additional properties (P0) and (P∞), then CSP(Γ)
is either polynomial-time solvable or NP-hard. Actually, CSP(Γ) is always in NP
for a semilinear constraint language Γ , cf. Theorem 5.2 in Bodirsky et al. [2].

This result immediately generalizes Theorem 1 since it implies that semilinear
constraint languages that contain R+ and {1} (but not necessarily ≤) exhibit a
dichotomy. These results and their proofs together with formal definitions of the
properties (P0) and (P∞) can be found in Section 5.

422 P. Jonsson and J. Thapper

A natural goal at this point would be to determine the complexity when
one or more of the side conditions are not met. In Section 6, we prove that if
{R+} ⊆ Γ does not satisfy (P0) and/or (P∞), then CSP(Γ) is equivalent to a
problem CSP(Γ ′) where Γ ′ contains homogeneous semilinear relations only. By
a homogeneous semilinear relation, we mean that it can be defined in terms of
homogeneous inequalities. How hard it is to determine the complexity of CSP(Γ ′)
is difficult to say and, consequently, we discuss this issue in some detail.

2 Preliminaries

2.1 Constraint Satisfaction Problems

Let Γ = {R1, . . . , Rn} be a finite set of finitary relations over some domain D
(which will usually be infinite). We refer to Γ as a constraint language. A first-
order formula is called primitive positive if it is of the form ∃x1, . . . , xn.ψ1 ∧
· · · ∧ ψm, where ψi are formulas of the form x = y or R(xi1 , . . . , xik) with R
the relation symbol for a k-ary relation from Γ . We call such a formula a pp-
formula. The conjuncts in a pp-formula Φ are also called the constraints of Φ. The
constraint satisfaction problem for Γ (CSP(Γ) for short) is the computational
problem to decide whether a given primitive positive sentence Φ is true in Γ .

Definition 1. The problem CSP(Γ) is tractable (or polynomial-time solvable)
if for every finite Γ ′ ⊆ Γ , CSP(Γ ′) is solvable in polynomial time. We say that
CSP(Γ) is NP-hard if CSP(Γ ′) is NP-hard for some finite Γ ′ ⊆ Γ .

A relation R(x1, . . . , xk) is pp-definable from Γ if there exists a quantifier-free
formula ϕ over Γ such that R(x1, . . . , xk) ≡ ∃y1, . . . , yn.ϕ(x1, . . . , xk, y1, . . . , yn).
The set of all relations that are pp-definable over Γ is denoted by 〈Γ 〉. The fol-
lowing simple but important result explains the importance of primitive positive
definability for the constraint satisfaction problem. We will use it extensively in
the sequel without making explicit references to it.

Lemma 1. Let Γ be a constraint language and Γ ′ = Γ ∪ {R} where R ∈ 〈Γ 〉.
Then CSP(Γ) is polynomial-time equivalent to CSP(Γ ′).

2.2 Semilinear Relations

The domain, X , of every relation in this paper will either be the set of reals, R,
or the set of rationals, Q. In all cases, the set of coefficients, Y , will be the set of
rationals, but in order to avoid confusion, we will still make this explicit in our
notation. Let LEX [Y] denote the set of linear equalities over X with coefficients
in Y and LIX [Y] denote the set of (strict and non-strict) linear inequalities over
X with coefficients in Y . Sets defined by finite conjunctions of inequalities from
LIX [Y] are called linear sets. The set of semilinear sets, SLX [Y], is defined to
be the set of finite unions of linear sets. We will refer to SLQ[Q] and SLR[Q] as
semilinear relations over R and Q, respectively.

The following lemma is a direct consequence of our definitions: this particular
property is often referred to as o-minimality in the literature.

Affine Consistency and the Complexity of Semilinear Constraints 423

Lemma 2. Let R ∈ SLX [Y] be a unary semilinear relation. Then, R can be
written as a finite union of open, half-open, and closed intervals with endpoints
in Y ∪ {−∞,∞} together with a finite set of points in Y .

Due to the alternative definition of a semilinear relation as a relation that is
first-order definable in {R+,≤, {1}}, the setSLX [Y] is closed under pp-definitions.
Consequently, Lemma 2 is applicable to all relations discussed in this paper.

Given a relation R of arity k, let R|X = R ∩ Xk and Γ |X = {R|X | R ∈ Γ}.
We demonstrate that CSP(Γ) and CSP(Γ |Q) are equivalent as constraint satis-
faction problems whenever Γ ⊆ SLR[Q]. Thus, we can exclusively concentrate
on relations from SLQ[Q] in the sequel. Let Γ ⊆ SLR[Q] and let I be an instance
of CSP(Γ). Construct an instance I ′ of CSP(Γ |Q) by replacing each occurrence
of R in I by R|Q. If I ′ has a solution, then I has a solution since R|Q ⊆ R for
each R ∈ Γ . If I has a solution, then it has a rational solution by Lemma 3.7 in
Bodirsky et al. [2] so I ′ has a solution, too.

Lemma 3 (Lemma 4.3 in Bodirsky et al. [3]). Let r1, . . . , rk, r ∈ Q. The
relation {(x1, . . . , xk) ∈ Qk | r1x1 + . . .+ rkxk = r} is pp-definable in {R+, {1}}
and it is pp-definable in {R+} if r = 0.

It follows that LEQ[Q] ⊆ 〈{R+, {1}}〉 and LIQ[Q] ⊆ 〈{R+,≤, {1}}〉.

2.3 Unary Semilinear Relations

Given a relation R ⊆ Qk and two distinct points a, b ∈ Qk, we define

LR,a,b(y) ≡ ∃x1, . . . , xk.R(x1, . . . , xk) ∧
∧k

i=1 xi = yai + (1− y)bi.

The relation LR,a,b is a parameterisation of the intersection between the relation
R and a line through the points a and b. Note that LR,a,b is a member of
〈LEQ[Q] ∪ {R}〉 and that LR,a,b is pp-definable in {R+, {1}, R} by Lemma 3.

A k-ary relation R is bounded if there exists an a ∈ Q such that R ⊆ [−a, a]k.
If k = 1, then we say that R is unbounded in one direction if there exists a ∈ Q
such that exactly one of the following hold: for all b ≤ a, there exists a c ≤ b
such that c ∈ R; or for all b ≥ a, there exists a c ≥ b such that c ∈ R.

A unary relation is called a bnu (for bounded, non-constant, and unary) if it
is bounded and contains more than one point.

Lemma 4. Let U be a unary relation in SLQ[Q] that is unbounded in one di-
rection. Then, 〈{R+, {1}, U}〉 contains a bnu.

For a unary semilinear relation T ⊆ Q, and a rational δ > 0, let T + I(δ)
denote the set of unary semilinear relations U such that T ⊆ U and for all
x ∈ U , there exists a y ∈ T with |x− y| < δ.

Lemma 5. Let U = ∅ be a bounded unary semilinear relation such that U ∩
(−∞, ε) = ∅ for some ε > 0. Then, 〈R+, U〉 contains a relation Uδ ∈ {1}+I(δ),
for every δ > 0.

Lemma 6. Let U be a bounded unary semilinear relation such that U∩(−ε, ε) =
∅ for some ε > 0 and U ∩ −U = ∅. Then, 〈R+, U〉 contains a relation Uδ ∈
{−1, 1}+ I(δ), for every δ > 0.

424 P. Jonsson and J. Thapper

2.4 Essential Convexity

Let R be a k-ary relation over Qk. The relation R is convex if for all p, q ∈ R, R
contains all points on the line segment between p and q. We say that R excludes
an interval if there are p, q ∈ R and real numbers 0 < δ1 < δ2 < 1 such that
p+ (q− p)y ∈ R whenever δ1 ≤ y ≤ δ2. Note that we can assume that δ1, δ2 are
rational numbers, since we can choose any two distinct rational numbers γ1 < γ2
between δ1 and δ2 instead of δ1 and δ2. We say that R is essentially convex if
for all p, q ∈ R there are only finitely many points on the line segment between
p and q that are not in R. If R is not essentially convex, and if p and q are such
that there are infinitely many points on the line segment between p and q that
are not in R, then p and q witness that R is not essentially convex. A semilinear
relation is essentially convex if and only if it does not exclude an interval.

Theorem 2 (Theorem 5.1 and 5.4 in Bodirsky et al. [2]). If Γ is an
essentially convex semilinear constraint language, then CSP(Γ) is tractable.

3 Tractability

In this section, we present our two main sources of tractability. In Section 3.1,
we introduce a new algorithm for semilinear constraint languages Γ containing
{R+, {1}} and such that 〈Γ 〉 does not contain a bnu. In Section 3.2, we show
that the algorithm in Theorem 2 has a wider applicability.

3.1 Affine Consistency

For a subset X ⊆ Qn, let aff(X) denote the affine hull of X in Qn: aff(X) =

{
∑k

i=1 cixi | k ≥ 1, ci ∈ Q, xi ∈ X,
∑k

i=1 ci = 1}. An affine subspace is a subset
X ⊆ Qn for which aff(X) = X . The points p1, . . . , pk ∈ Qn are said to be
affinely independent if a1p1 + · · · + akpk = 0 with a1 + · · · + ak = 0 implies
a1 = · · · = ak = 0. The dimension, dim(X), of a set X ⊆ Qn is defined to be
one less than the maximum number of affinely independent points in X .

We define a notion of consistency for sets of semilinear constraints which we
call affine consistency. Let V be a finite set of variables. A set of constraints
Ri(xi1 , . . . , xik) with {xi1 , . . . , xik} ⊆ V is affinely consistent with respect to an
affine subspace A ⊆ QV if aff(R̂i ∩A) = A for all i, where R̂i := {(x1, . . . , xn) ∈
QV | (xi1 , . . . , xik) ∈ Ri}.

Algorithm 1 establishes affine consistency for a set of constraints and answers
“yes” if the resulting affine subspace is non-empty and “no” otherwise. In the
rest of this section, we show that this algorithm correctly solves CSP(Γ) when
{R+, {1}} ⊆ Γ is a semilinear constraint language such that 〈Γ 〉 does not contain
a bnu. Furthermore, we show how for such constraint languages, the algorithm
can be implemented to run in polynomial time.

Lemma 7. Let P = P1 ∪ · · · ∪ Pk, Q = Q1 ∪ · · · ∪ Ql ∈ SLQ[Q] be two n-ary
relations such that neither 〈LEQ[Q]∪ {P}〉 nor 〈LEQ[Q] ∪ {Q}〉 contains a bnu.
If aff(P) = aff(Q) =: A, then aff(Pi ∩Qj) = A for some i and j.

Affine Consistency and the Complexity of Semilinear Constraints 425

Algorithm 1. Affine consistency
Input: A set of constraints {Ri(xi1 , . . . , xik)} over variables V
Output: “yes” if the resulting affine subspace is non-empty, “no" otherwise

1 U := QV

2 repeat
3 foreach constraint Ri(xi1 , . . . , xik) do
4 U := aff(R̂i ∩ U)
5 end
6 until U does not change
7 if U �= ∅ then return “yes" else return “no"

Proof. The proof is by induction on the dimension d = dim(A). For d = 0, both
P and Q consist of a single point p. Clearly, Pi = {p} for some i and Qj = {p}
for some j. Now assume that d > 0 and that the lemma holds for all P ′, Q′

with aff(P ′) = aff(Q′) = A′ and dim(A′) < d. Let p0, p1, . . . , pd be d+ 1 affinely
independent points in P and let q0, q1, . . . , qd be d+1 affinely independent points
in Q. For 1 ≤ i ≤ d, consider the lines Lp

i through p0 and pi, and the lines Lq
i

through q0 and qi. Let H = {y ∈ Qn | α · y = 0} (α ∈ Qn) be a hyperplane in
Qn through the origin that is not parallel to any of the lines Lp

i or Lq
i . Then,

H intersects each of the 2d lines. Let H(c) = {y ∈ Qn | α · y = c} and let
B(c) = {y ∈ Qn | α · y ∈ [−c, c]}.

Express the line Lp
i as {y ∈ Qn | y = a · x + b, x ∈ Q}, for some a, b ∈ Qn.

Define a unary relation T by the formula ϕ(x) ≡ ∃y ∈ Qn.P (y)∧y = a·x+b. Note
that T ∈ 〈LEQ[Q] ∪ {P}〉. Since T contains p0 and pi, it follows that T is not a
constant and hence unbounded. By Lemma 4, T is unbounded in both directions.
By Lemma 2, B(cpi)∩Lp

i ⊆ T ⊆ P , for some positive constant cpi . An analogous
argument shows that that B(cqj) ∩ Lq

j ⊆ Q, for some positive constant cqj . Let
c′ be a positive constant such that p0, q0 ∈ B(c) and let c = max{c′} ∪ {cpi , c

q
j |

1 ≤ i, j ≤ d}. This ensures that for any x > c, H(x) ∩ P intersects the lines Lp
i

in d affinely independent points, and that H(x) ∩Q intersects the lines Lq
j in d

affinely independent points.
We now have aff(H(x) ∩ P) = aff(H(x) ∩ Q) = A′(x) with dim(A′(x)) =

dim(A) − 1, for every x > c. By induction on H(x) ∩ P = (H(x) ∩ P1) ∪
· · · ∪ (H(x) ∩ Pk) and H(x) ∩ Q = (H(x) ∩ Q1) ∪ · · · ∪ (H(x) ∩ Ql), it follows
that aff(H(x) ∩ Pi(x) ∩ Qj(x)) = A′(x) for some i(x) and j(x). This holds for
all x > c, hence there exist distinct x1, x2 > c with i(x1) = i(x2) = i′ and
j(x1) = j(x2) = j′. Since A′(x1), A′(x2) ⊆ aff(Pi′ ∩ Qj′), A′(x1) ∩ A′(x2) = ∅,
and dim(A′(x2)) = d − 1 ≥ 0, it follows that aff(Pi′ ∩ Qj′) strictly contains
A′(x1), so we have A′ ⊂ aff(Pi′ ∩ Qj′) ⊆ A, and dim(A′(x1)) = dim(A) − 1.
Therefore we have the equality aff(Pi′ ∩Qj′) = A. The lemma follows. ��

For a semilinear relation R, we let size(R) denote the representation size of
R, i.e., the number of bits needed to describe the arities and coefficients of each
inequality in some fixed definition of R.

Lemma 8. Let R ∈ SLQ[Q] be a relation such that 〈LEQ[Q] ∪ {R}〉 does not
contain a bnu and let U ⊆ Qn be an affine subspace. Algorithm 2 computes a set

426 P. Jonsson and J. Thapper

Algorithm 2. Calculate aff(R ∩ U)

Input: A semilinear relation R = R1 ∪ · · · ∪Rk and an affine subspace U .
Output: A set of inequalities defining aff(R ∩ U).

1 Find i that maximises di := dim(aff(Ri ∩ U)).
2 if aff(Ri ∩ U) = ∅ then return ⊥
3 Let I be the set of inequalities for Ri and J be the set of inequalities for U .
4 S := I ∪ J
5 foreach ineq ∈ I ∪ J do
6 if dim(aff(S \ {ineq})) = di then
7 S := S \ {ineq}
8 end
9 end

10 return S

of linear inequalities S defining aff(R∩U) in time polynomial in size(R)+size(U)
and with size(S) ≤ size(R) + size(U).

Proof. Let R = R1 ∪ · · · ∪Rk be the representation of R as the union of (convex)
linear setsRi. By Lemma 7, there exists an i such that aff(R∩U) = aff(Ri∩U) and
since aff(Rj ∩U) ⊆ aff(R∩U) for all j, the algorithm will find such an i on line 1
by simply comparing the dimensions of these sets. If aff(R∩U) = aff(Ri∩U) = ∅,
then the algorithm returns ⊥, signalling that the affine hull is empty.

Otherwise, the affine hull of a non-empty polyhedron can always be obtained
as a subset of its defining inequalities (see for example [11, Section 8.2]). Here,
some of the inequalities may be strict, but it is not hard to see that removing
them does not change the affine hull. If ineq ∈ I ∪ J is an inequality that
cannot be removed without increasing the dimension of the affine hull, then it is
clear that ineq still cannot be removed after the loop. Hence, after the loop, no
inequality in S can be removed without increasing the dimension of the affine
hull. It follows that S itself defines an affine subspace, US , and US = aff(US) =
aff(Ri ∩ U) = aff(R ∩ U).

Using the ellipsoid method, we can determine the dimension of the affine hull
of a polyhedron defined by a system of linear inequalities in time polynomial in
the representation size of the inequalities [11, Corollary 14.1f]. To handle strict
inequalities on line 1, we can perturb these by a small amount, while keeping
the representation sizes polynomial, to obtain a system of non-strict inequalities
with the same affine hull. The algorithm does at most |I ∪ J | + k affine hull
calculations. The total time is thus polynomial in size(R) + size(U). Finally, the
set S is a subset of I ∪ J , so size(US) ≤ size(R) + size(U). ��

Theorem 3. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q]. If there is no bnu in 〈Γ 〉, then
Algorithm 1 solves CSP(Γ) in polynomial time.

Proof. Assume that each relation R ∈ Γ is given as R = R1∪· · · ∪Rk, where Ri

is a (convex) linear set for each i. First, we show that the algorithm terminates
with U equal to the affine hull of the solution space of the constraints.

Affine Consistency and the Complexity of Semilinear Constraints 427

Assume that the input consists of the constraints Ri(xi1 , . . . , xik) over vari-
ables V , i = 1, . . . ,m. Let Z =

⋂m
i=1 R̂i denote the solution space of the instance.

It is clear that Z is contained in U throughout the execution of the algorithm.
Therefore, aff(Z) = aff(Z ∩ U) so it suffices to show that aff(Z ∩ U) = U .
We will show that aff(

⋂j
i=1 R̂i ∩ U) = U for all j = 1, . . . ,m. When the al-

gorithm terminates, we have aff(R̂i ∩ U) = U for every i = 1, . . . ,m. In par-
ticular, the claim holds for j = 1. Now assume that the claim holds for j − 1.
Then, P =

⋂j−1
i=1 R̂i ∩ U and Q = R̂j ∩ U satisfy the requirements of Lemma 7

with aff(P) = aff(Q) = U . Therefore, we can use this lemma to conclude that
aff(

⋂j
i=1 R̂i ∩ U) = aff(P ∩Q) = U .

Finally, we show that the algorithm can be implemented to run in polynomial
time. The call to Algorithm 2 in the inner loop is carried out at most mn
times, where n = |V |. The size of R̂ is at most size(R) + logn, so the size of
U never exceeds O(mn(size(R) + logn)), where R is a relation with maximal
representation size. Therefore, each call to Algorithm 2 takes polynomial time
and consequently, the entire algorithm runs in polynomial time. ��

3.2 Essential Convexity

The dimension of a set is defined with respect to its affine hull, as in Section 3.1.
We give a result on the structure of certain not necessarily essentially convex
relations. It is based on the intuition that even if we do not have the constant
relation {1} to help us identify excluded intervals, we are still able to see excluded
full-dimensional holes. We follow this up by showing that we can remove certain
lower-dimensional holes and thus recover an equivalent essentially convex CSP.

Lemma 9. Let U ∈ {1} + I(c) for some 0 < c < 1 and assume that R ∈
SLQ[Q] is a semilinear relation such that every unary relation in 〈{R+, U,R}〉
is essentially convex. Then, R can be defined by a formula ϕ0 ∧¬ϕ1 ∧ · · · ∧ ¬ϕk,
where ϕ0, . . . , ϕk are conjunctions over LIQ[Q], and ϕ1, . . . , ϕk define convex
sets of dimensions strictly lower than the set defined by ϕ0.

Theorem 4. Let U ∈ {1}+I(c) for some 0 < c < 1 and assume that {R+, U} ⊆
Γ ⊆ SLQ[Q] is a constraint language such that every unary relation in 〈Γ 〉 is
essentially convex. Then, CSP(Γ) is equivalent to CSP(Γ ′) for an essentially
convex constraint language Γ ′ ⊆ SLQ[Q].

Proof. If Γ is essentially convex, then there is nothing to prove. Assume therefore
that Γ is not essentially convex. By Lemma 9, each R ∈ Γ can be defined by
a formula ϕ0 ∧ ¬ϕ1 ∧ · · · ∧ ¬ϕk, where ϕ0, ϕ1, . . . , ϕk are conjunction over
LIQ[Q], and ϕ1, . . . , ϕk define sets whose affine hulls are of dimensions strictly
lower than that of the set defined by ϕ0. Assume additionally that the formulas
are numbered so that the affine hulls of the sets defined by ϕ1, . . . ϕm do not
contain (0, . . . , 0) and that the affine hulls of the sets defined by ϕm+1, . . . , ϕk

do contain (0, . . . , 0). Define R′ by ϕ ∧ ¬ϕ′
1 ∧ · · · ∧ ¬ϕ′

m ∧ ¬ϕm+1 ∧ · · · ∧ ¬ϕk,
where ϕ′

i defines the affine hull of the set defined by ϕi. Then, the constraint
language Γ ′ = {R′ | R ∈ Γ} is essentially convex since witnesses of an excluded

428 P. Jonsson and J. Thapper

interval only occur inside an affine subspace not containing (0, . . . , 0); otherwise
we could use such a witness to pp-define a unary relation excluding an interval.

Let I be an arbitrary instance of CSP(Γ) over the variables V and construct
an instance I ′ of CSP(Γ ′) by replacing each occurrence of a relation R in I by
R′. Clearly, if I ′ is satisfiable, then so is I. Conversely, let s ∈ QV be a solution
to I and assume that I ′ is not satisfiable. Let L be the line in QV through
(0, . . . , 0) and s and let U be the unary relation LI,s,(0,...,0) ∈ 〈Γ 〉. All tuples in
U correspond to solutions of I that are not solutions to I ′.

Fix a constraint R(x1, . . . , xl) in I and consider the points in U that satisfy
this constraint but not R′(x1, . . . , xl). These are the points p ∈ QV on L for
which (p(x1), . . . , p(xl)) satisfies (ϕ′

1 ∨ · · · ∨ ϕ′
m) ∧ ¬(ϕ1 ∨ · · · ∨ ϕm). For each

1 ≤ i ≤ m, ϕ′
i satisfies at most one point on L since otherwise the affine hull of

the relation defined by ϕi would contain (0, . . . , 0). Hence, each constraint in I
can account for at most a finite number of points in U , so U is finite.

There are two cases to consider: (1) U contains more than one point and
therefore excludes an interval; or (2) U is the constant {1}. Since Γ is assumed
not to be essentially convex, the relation U can then be used to pp-define a unary
relation that is not essentially convex. In either case, there is a contradiction to
the assumption that every unary relation in 〈Γ 〉 is essentially convex. It follows
that I ′ must be satisfiable. ��

4 NP-Hardness

We now prove the necessary hardness result. It is based on the following simple
reduction from the NP-hard problem Not-All-Equal 3SAT [10]. We then show
that having a bnu T that excludes an interval and that is bounded away from
0 is a sufficient condition for CSP({R+, T }) to be NP-hard. This is a unified
hardness condition for all CSPs classified in this paper.

Lemma 10. Let T ∈ {−1, 1}+ I(12). Then, CSP({R+, T }) is NP-hard.

For a rational c, and a unary relation U , let c ·U = {c ·x | x ∈ U} ∈ 〈{R+, U}〉.

Lemma 11. Let T = ∅ be a bounded unary relation such that T ∩ (−ε, ε) = ∅,
for some ε > 0. Then, either 〈R+, T 〉 contains a unary relation Uδ ∈ {1}+ I(δ)
for every δ > 0; or 〈R+, T 〉 contains a unary relation Uδ ∈ {−1, 1}+ I(δ), for
every δ > 0.

Proof. If T ∩ −T = ∅, then the result follows from Lemma 6. Otherwise, by
Lemma 2, there exists a constant c+ > 0 such that the set T+ = {x ∈ T | |x| ≥
c+} is non-empty and contains points that are either all positive or all negative.
Similarly, there exists a constant c− > 0 such that T− = {x ∈ T | |x| ≤ c−} is
non-empty and contains points that are either all positive or all negative. Let
a ∈ T+ and b ∈ T−. Assume that both sets contain positive points only or that
both sets contain negative points only. Then, the result follows using Lemma 5
with the relation U = a−1 ·T∩b−1 ·T (or −U if the points of U are negative). The
case when the one set contains positive points and the other contains negative
points is handled similarly using the relation U ′ = a−1 · T ∩ b−1 · (−T). ��

Affine Consistency and the Complexity of Semilinear Constraints 429

Lemma 12. Let T be a bnu such that T ∩(−ε, ε) = ∅, for some ε > 0, and U be
a unary relation that excludes an interval. Then, CSP({R+, T, U}) is NP-hard.

Proof. We show that 〈R+, T, U〉 contains a unary relation {−1, 1}+ I(12). The
result then follows from Lemma 10. If already 〈R+, T 〉 contains such a relation,
then we are done. Otherwise, by Lemma 11, 〈R+, T 〉 contains a unary relation
Uδ ∈ {1}+ I(δ), for every δ > 0. Since U excludes an interval, there are points
p, q ∈ U and 0 < δ1 < δ2 < 1 such that p + (q − p)y ∈ U whenever δ1 ≤ y ≤ δ2.
Furthermore, p and q can be chosen so that δ1 < 1/2 < δ2, and by scaling U , we
may assume that |q−p| = 2. Let m = (p+q)/2. Note that T∩(m−ε′,m+ε′) = ∅,
for some ε′ > 0. Similarly, possibly by first scaling T , let p′, q′ ∈ T be distinct
points with |q′ − p′| = 2 and let m′ = (p′ + q′)/2.

Now, define the unary relation T0(x) ≡ ∃y∃z.Uδ(y)∧z = x−y ·m∧U(z), and
the unary relation T∞(x) ≡ ∃y′∃z′.Uδ(y′)∧z′ = x−y′·m′∧T (z′). The relations T0

and T∞ are roughly translations of U and T , where the constant relation {1} has
been approximated by the relation Uδ. Since 1 ∈ Uδ, we have {−1, 1} ⊆ T0, T∞.
Hence, if δ is chosen small enough, then the relation T0 ∩ T∞ ∈ 〈R+, T, U〉 will
satisfy the conditions of Lemma 6. This finishes the proof. ��

5 Expansions of {R+}
We now study the class of semilinear constraint languages containing R+ and
having the properties (P0) and (P∞). These properties are defined as follows.

– (P0) There is a unary relation U in 〈Γ 〉 that contains a positive point and
satisfies U ∩ (0, ε) = ∅ for some ε > 0.

– (P∞) There is a unary relation U in 〈Γ 〉 that contains a positive point and
satisfies U ∩ (M,∞) = ∅ for some M <∞.

A relation is 0-valid if it contains the tuple (0, . . . , 0) and a constraint language
is 0-valid if every relation in it is 0-valid. We now state our main result and get
a complete classification for semilinear constraint languages containing R+ and
{1} as an immediate corollary.

Theorem 5. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a finite constraint language that
satisfies (P0) and (P∞).

– If Γ is 0-valid, then CSP(Γ) is trivially tractable;
– otherwise, if Γ does not contain a bnu, then CSP(Γ) is tractable by estab-

lishing affine consistency;
– otherwise, if all unary relations in 〈Γ 〉 are essentially convex, then CSP(Γ)

is tractable via a reduction to an essentially convex constraint language;
– otherwise, CSP(Γ) is NP-hard.

Proof. Let U be the set of all bounded, non-empty unary relations U in 〈Γ 〉
such that U ∩ (−ε, ε) = ∅ for some ε > 0. Assume that Γ is not 0-valid and
let R be a relation in Γ such that (0, . . . , 0) ∈ R and a ∈ R. Then, the relation

430 P. Jonsson and J. Thapper

LR,a,(0,...,0) ∈ 〈{R+, R}〉 is unary, does not contain 0 but does contain 1. Let
U0 ∈ 〈Γ 〉 be a unary relation witnessing (P0) and let U∞ ∈ 〈Γ 〉 be a unary
relation witnessing (P∞). Scale U0 and U∞ so that some positive point from
each coincides with 1 and let T = LR,a,(0,...,0)∩U0∩U∞. If T does not contain a
negative point, then T ∈ U . Otherwise, T contains a negative point b. It follows
that T ∩ b · T ∈ U . Hence, the set U is non-empty.

Assume that 〈Γ 〉 does not contain a bnu. Then, neither does U and hence U
contains only constants. It follows by Theorem 3 that establishing affine consis-
tency solves CSP(Γ).

Otherwise, U contains a bnu. If all unary relations of 〈Γ 〉 are essentially convex,
then by Lemma 11 and Theorem 4, CSP(Γ) is equivalent to CSP(Γ ′) for an
essentially convex constraint language Γ ′. Tractability follows from Theorem 2.

Finally, if U contains a bnu and 〈Γ 〉 contains a unary relation that excludes
an interval, then NP-hardness follows from Lemma 12. ��

Theorem 6. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a finite constraint language. If
〈Γ 〉 contains a bnu and 〈Γ 〉 contains a relation that is not essentially convex,
then CSP(Γ) is NP-hard. Otherwise, CSP(Γ) is tractable.

6 Discussion and Future Work

We have determined the complexity of CSP(Γ) for all finite semilinear Γ con-
taining R+ and satisfying (P0) and (P∞). Clearly, one would like to obtain a
full classification for semilinear constraint languages without side conditions but
this appears to be an extremely hard task. One may instead study cases when
(P0) and (P∞) hold (and {R+} ⊆ Γ) or when only {R+} ⊆ Γ is required (and
(P0) or (P∞) do not hold). We will discuss these two possibilities below.

For simplicity, let SL1 denote the set of semilinear constraint languages such
that {{1}} ⊆ Γ and {R+} ⊆ Γ . The languages in SL1 satisfy both (P0) and
(P∞). A straightforward modification of the construction in Sec. 6.3 of [9] gives
the following: for every finite constraint language Γ ′ over a finite domain, there
exists a Γ ∈ SL1 such that CSP(Γ ′) and CSP(Γ) are polynomial-time equivalent
problems. Hence, a complete classification would give us a complete classifica-
tion of finite-domain CSPs, and such a classification is a major open question
within the CSP community [7,8]. We also observe that for every finite temporal
constraint language (i.e., languages that are first-order definable in (Q;<)), there
exists a Γ ∈ SL1 such that CSP(Γ ′) and CSP(Γ) are polynomial-time equivalent
problems. This follows from the fact that every temporal constraint language Γ ′

admits a polynomial-time reduction from CSP(Γ ′ ∪ {{1}}) to CSP(Γ ′): simply
equate all variables appearing in {1}-constraints and note that any solution can
be translated into a solution such that this variable is assigned the value 1.
The complexity of temporal constraint languages is fully determined [4] and the
polynomial-time solvable cases fall into nine different categories. The proof is
complex and it is based on the universal-algebraic approach for studying CSPs.

Let us now consider the set SL+ of all semilinear constraint languages con-
taining R+ and not satisfying (P0) or (P∞). If either (P0) or (P∞) is violated,

Affine Consistency and the Complexity of Semilinear Constraints 431

then we can show that the languages in SL+ are of a particular restricted type.
Let HSLQ[Q] denote the set of homogeneous semilinear relations, i.e., relations
R ⊆ Qn that are finite unions of homogeneous linear sets.

Theorem 7. Arbitrarily choose Γ ∈ SL+. CSP(Γ) is equivalent to CSP(Γ ′) for
a finite constraint language {R+} ⊆ Γ ′ ⊆ HSLQ[Q].

It seems like a difficult task to classify the complexity of subsets of HSLQ[Q]
since this would imply the previously mentioned classification of temporal con-
straint problems and also the constraint problems studied by Bodirsky et al. [3].
It is also closely connected with CSPs over domains of size 3 as demonstrated
by the following proposition.

Proposition 1. Let A be a finite constraint language over the domain {−1, 0, 1}.
There is a Γ ⊆ HSLQ[Q] such that CSP(A) and CSP(Γ) are polynomial-time
equivalent.

The complexity of CSPs on three-element domains is fully determined [5] and
the lengthy proof is based on machinery from universal algebra. One has to note,
though, that we may not need to completely classify the complexity of HSLQ[Q]
in order to classify the complexity of SL+: we have the additional condition that
R+ is a member of the languages under consideration. It is plausible that this
would simplify the task.

References
1. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity.

In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 184–196. Springer,
Heidelberg (2008)

2. Bodirsky, M., Jonsson, P., von Oertzen, T.: Essential convexity and complexity of
semi-algebraic constraints. Logical Methods in Computer Science 8(4) (2012)

3. Bodirsky, M., Jonsson, P., von Oertzen, T.: Horn versus full first-order: Complexity
dichotomies in algebraic constraint satisfaction. J. Log. Comput. 22(3), 643–660
(2012)

4. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction prob-
lems. J. ACM 57(2) (2010)

5. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. ACM 53(1), 66–120 (2006)

6. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the computational complexity
of constraints using finte algebras. SIAM J. Comput. 34(3), 720–742 (2005)

7. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In:
Proceedings of the 25th ACM Symposium on Theory of Computing (STOC 1993),
pp. 612–622 (1993)

8. Hell, P., Nešetřil, J.: Colouring, constraint satisfaction, and complexity. Computer
Science Review 2(3), 143–163 (2008)

9. Jonsson, P., Lööw, T.: Computational complexity of linear constraints over the
integers. Artif. Intell. 195, 44–62 (2013)

10. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

11. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)

Small Complexity Classes

for Computable Analysis

Akitoshi Kawamura and Hiroyuki Ota

University of Tokyo, Japan

Abstract. Type-two Theory of Effectivity (TTE) provides a general
framework for Computable Analysis. To refine it to polynomial-time
computability while keeping as much generality as possible, Kawamura
and Cook recently proposed a modification to TTE using machines that
have random access to an oracle and run in time depending on the “size”
of the oracle. They defined type-two analogues of P, NP, PSPACE and ap-
plied them to real functions and operators. We further refine their model
and study computation below P: type-two analogues of the classes L,
NC, and P-completeness under log-space reductions. The basic idea is
to use second-order polynomials as resource bounds, as Kawamura and
Cook did, but we need to make some nontrivial (yet natural, as we will
argue) choices when formulating small classes in order to make them
well-behaved. Most notably: we use a modification of the constant stack
model of Aehlig, Cook and Nguyen for query tapes in order to allow suf-
ficient oracle accesses without interfering with space bounds; representa-
tions need to be chosen carefully, as computational equivalence between
them is now finer; uniformity of circuits must be defined with varying
sizes of oracles taken into account. As prototypical applications, we re-
cast several facts (some in a stronger form than was known) about the
complexity of numerical problems into our framework.

1 Introduction

Computable Analysis [4, 11, 16] studies problems involving real numbers, real
functions and other objects in analysis from the viewpoint of computability
on digital machines. Elements of uncountable sets (such as real numbers) are
represented through approximations (such as sequences of rational numbers)
and processed by Turing machines. Such approximation can be presented to the
machine as infinite strings on the tape or as oracles (i.e., functions taking strings
to strings), and this choice does not make much difference as long as we only
discuss computability. But when we want to pay attention to bounds on time and
space, Kawamura and Cook [10] recently pointed out that it is more convenient
to use oracles with random access, and moreover, to allow the running time
to depend on the “size” of the oracle. Employing type-two complexity theory
and using second-order polynomials to bound time and space, they formulated

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 432–444, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Small Complexity Classes for Computable Analysis 433

analogues of complexity classes P, NP, PSPACE and applied them to some typical
operators in analysis1. The basic definitions will be reviewed in Section 2.

One benefit of this was a greater variety of objects for which we can define
complexity. For example, with the second-order formulation we obtain a canon-
ical representation of the space C[0, 1] of continuous real functions, so that we
can discuss the complexity of an operator F : C[0, 1] → C[0, 1]. This extends the
previously accepted notion of complexity of f ∈ C[0, 1] (which could also be
formulated in the infinite string model) in a natural way, so that many known
non-uniform results of the form

if f is in the complexity class X , then F (f) is in the class Y , and
there is f in X such that F (f) is hard for the complexity class Z,

can now be transformed into a stronger, uniform statement of the form

F is in the complexity class Y, and
F is hard for Z under the X reduction,

where X ,Y,Z are type-two classes analogous to X,Y, Z. See [2, 7, 14, 15, 18]
for further discussion (including some criticism), applications and extensions of
this approach, as well as connection to other approaches.

We continue their research and proceed down into P. In Section 3, we formu-
late and study analogues of L (logarithmic space), NC (poly-logarithmic depth
circuits; “efficiently parallelizable”), and P-completeness (“inherently sequen-
tial”). While the fundamental idea, i.e., that of using second-order polynomials
as resource bounds, is common to [10], there are several choices that we need to
make carefully in implementing it, due to the subtleties pertaining to the inter-
action of small complexity classes with oracles, as we will explain. In particular,
we use a modified version of the constant stack machine [1], since it is consistent
with relativized circuit complexity classes and still makes some elemental oper-
ation log-space computable. Formulation of uniform circuit family also requires
careful consideration to accommodate function oracles.

In Section 4, we apply this framework to a few problems in analysis. We
present several examples of real functions and operators that are already es-
sentially known (but non-trivially) to be, in our terminology, in L and NC. We
then take up Hoover’s theorem about fixed points of contractions [8] and Ko’s
theorem about inverting a function [11], which both state hardness for P in a
sense, and reformulate them into our framework as stronger uniform statements
(the original versions come as corollaries). Our proofs are not technically hard
or involve new algorithmic ideas (they are either relatively easy using known
versions or obtained by minor modifications); rather, the benefit of having the
results stated in the TTE framework is that it clarifies (through the choices of

1 These type-two analogues are denoted in boldface letters, such as P, NP, PSPACE.
Also, in view of the importance of being precise about the representation in this
context, they attach prefix “(γ, δ)-” when talking about the classes of functions on
spaces represented by the encodings γ and δ. We will stick to this convention, also
for our smaller classes.

434 A. Kawamura and H. Ota

representations) which information exactly is needed for the computation and
how the amount of required computational resource depends on it.

Notation. Let N and R denote the sets of nonnegative integers and real num-
bers, respectively. When we talk about polynomials as bounds on time or space,
we always assume that they are increasing functions.

We consider computational problems as multi-valued functions (or multi-
functions). A multi-function F from X to Y (written F :⊆X ⇒ Y) is formally
a subset of X × Y . The set of x ∈ X such that there is y ∈ Y with (x, y) ∈ F
is called the domain of definition or the promise of F and denoted domF . For
x ∈ domF , we write F [x] for the (nonempty) set of all such y. If F [x] is a single-
ton, we write F (x) for its unique element. If this is the case for all x ∈ domF ,
we say that F is single-valued, or is a partial function. When domF = X , we
say that F is total. A single-valued total multi-function is called a function.

The intuitive meaning is that F specifies a problem where, given any x ∈
domF , one is required to output some element of F [x]. Thus, the specification
becomes stricter as domF gets bigger or as F [x] gets smaller. We choose to re-
gard problems as multi-functions, despite the fact that usually each computing
device (a Turing machine or a circuit) yields a single-valued (partial or total)
function on strings. This is because, when describing a problem (rather than a
specific implementation), it is often convenient and natural to avoid specifying
values unnecessarily strictly. In particular, when one object has several different
representations, it is natural to ask for any one of them (see Definition 2.3.2
below), and this underspecification is sometimes essential for making the com-
putation feasible, especially in our context involving non-discrete objects [4].

2 TTE with Second-Order Polynomials

We review the Type-two Theory of Effectivity (TTE), a powerful framework for
computable analysis [16] (extended by [10] for complexity considerations). We
use string functions to encode various objects, and use oracle Turing machines
(henceforth just machines) to work on them. Section 2.1 defines polynomial-time
computability on these string functions, and Section 2.2 explains how to apply
it to real functions (and other objects) through representations.

2.1 Type-Two Machines

As mentioned above, we will use (a class of) string functions to encode objects.
A (total) function ϕ : Σ∗ → Σ∗ is length-monotone if |ϕ(u)| ≤ |ϕ(v)| whenever
|u| ≤ |v|. We denote the set of length-monotone functions by Σ∗∗. We restrict
attention to Σ∗∗ (rather than using all functions from Σ∗ to Σ∗) to keep the
notion of their size (to be defined shortly) simple. We write Mϕ(u) for the output
string when a machine M is given ϕ ∈ Σ∗∗ as oracle and u ∈ Σ∗ as input. We
say that M computes a multi-function A :⊆Σ∗∗ ⇒ Σ∗∗ if for any ϕ ∈ domA,
there is ψ ∈ A[ϕ] such that Mϕ(u) = ψ(u) for all u ∈ Σ∗ (Figure 1).

Small Complexity Classes for Computable Analysis 435

Machine

u ψ(u)

q ϕ(q)

Oracle

(for some ψ ∈ A[ϕ])

Fig. 1. A machine computing a multi-
function A :⊆Σ∗∗ ⇒ Σ∗∗

Σ∗∗ ��

γ
��

Σ∗∗

δ��
X

A
�� Y

Fig. 2. Computing a multi-function A
under representations γ and δ

The size of ϕ ∈ Σ∗∗, denoted |ϕ|, is a (non-decreasing) function from N to
N defined by |ϕ|(|u|) = |ϕ(u)|. This is well-defined since a length-monotone
function maps strings of the same length to strings of the same length. To define
the class FP of multi-functions from Σ∗∗ to Σ∗∗ computable in polynomial time,
we bound the running time by second-order polynomials P (|ϕ|)(|x|) in the sizes
of the oracle ϕ and string x given to the machine. A second-order polynomial
P (L)(n) is an expression built from the number n using +, ×, and application
of the function L : N→ N; for example, 5L(L(n)3 + n2) + 2n + 4.

Definition 2.1. We write FP for the class of multi-functions from Σ∗∗ to Σ∗∗

computed by a machine that runs in second-order polynomial time.

We use bold letters (such as FP) for classes of multi-functions from Σ∗∗ to
Σ∗∗, as opposed to the usual complexity classes, such as FP, which we regard as
consisting of multi-functions from Σ∗ to Σ∗. The following is immediate.

Lemma 2.2. Functions in FP map elements of FP ∩Σ∗∗ into FP.

For ϕ, ψ ∈ Σ∗∗, we define 〈ϕ, ψ〉 ∈ Σ∗∗ by 〈ϕ, ψ〉(0u) = ϕ(u)10|ψ(u)| and
〈ϕ, ψ〉(1u) = ψ(u)10|ϕ(u)| (we pad 0s to make 〈ϕ, ψ〉 length-monotone). We write
〈ϕ, ψ, θ〉 for 〈ϕ, 〈ψ, θ〉〉, and so on. We also write 〈ϕ, u〉, etc., for ϕ ∈ Σ∗∗ and a
string u ∈ Σ∗, by identifying u with the constant function in Σ∗∗ with value u.

2.2 Representations

A representation of a set X is a partial function γ from Σ∗∗ to X such that for
every x ∈ X there is ϕ with γ(ϕ) = x. We call ϕ a γ-name of x if x = γ(ϕ).

Definition 2.3. 1. Let C be a class of functions (or multi-functions) from Σ∗

to Σ∗, and let γ be a representation of a set X. We write γ-C for the set of
x ∈ X that have a γ-name in C.

2. Let C be a class of multi-functions from Σ∗∗ to Σ∗∗, and γ and δ be rep-
resentations of sets X and Y , respectively. A multi-function A :⊆X ⇒ Y
is in (γ, δ)-C if the multi-function δ−1 ◦ A ◦ γ :⊆Σ∗∗ ⇒ Σ∗∗ defined by
dom(δ−1 ◦ A ◦ γ) = {ϕ ∈ dom γ | γ(ϕ) ∈ domA } and (δ−1 ◦ A ◦ γ)[ϕ] =
{ψ ∈ dom δ | δ(ψ) ∈ A[γ(ϕ)] } (Figure 2) is in C.

436 A. Kawamura and H. Ota

For real numbers and real functions, we use representations ρR and δ�, defined
as follows [10]. We first introduce an encoding of dyadic numbers. For each n ∈ N,
let Dn denote the set of strings of the form

sx/100 . . .0︸ ︷︷ ︸
n

, (1)

where s is the sign and x ∈ {0, 1}∗. We write D for the union
⋃

n Dn. We regard
u ∈ D as a fraction of binary integers, and write u also for the number it encodes.

We define the representation ρR of R by saying that ϕ ∈ Σ∗∗ is a ρR-name
of x ∈ R if ϕ(0i) ∈ D and |ϕ(0i) − x| ≤ 2−i for all i ∈ N. We write ρR|[0,1]
for the representation of the interval [0, 1] obtained by restricting ρR. The class
(ρR|[0,1], ρR)-FP equals the polynomial-time computable functions by Ko [11].

We call μ : N → N a modulus of continuity of f ∈ C[0, 1] if for all n ∈ N and
x, y ∈ [0, 1] with |x − y| ≤ 2−μ(n), we have |f(x) − f(y)| ≤ 2−n. It is not hard
to verify the following.

Lemma 2.4. A real function f : [0, 1] → R is in (ρR|[0,1], ρR)-FP if and only if it
has a polynomial modulus of continuity and there is a function ϕ ∈ FP such that

|ϕ(d, 0n)− f(d)| ≤ 2−n (2)

for all d ∈ D ∩ [0, 1] and n ∈ N.

The following representation δ� of C[0, 1] is inspired by this. For a non-
decreasing function μ : N → N, we write μ ∈ Σ∗∗ for the function that maps
each string u to 0μ(|u|). A δ�-name of f ∈ C[0, 1] is a pair 〈μ, ϕ〉 (see the end
of Section 2.1 for the pairing function) of ϕ ∈ Σ∗∗ and μ : N → N such that
μ is a modulus of continuity of f and ϕ satisfies (2). Lemma 2.4 implies that
(ρR|[0,1], ρR)-FP equals δ�-FP.

3 Small Type-Two Classes

In this section, we introduce type-two complexity classes corresponding to log-
space L and circuit complexity NC based on the framework we reviewed in the
previous section. We also define P-completeness under log-space reductions.

3.1 Logarithmic Space

As reviewed in the previous section, we use oracle Turing machines in the def-
inition of type-two classes such as FP. The machine has an input tape, output
tape, work tape, query tape and answer tape. When the machine enters the
query state, and the string on the query tape at that time is u, then in the
next transition, the machine will be in the after-query state, and the string on
the answer tape will be ϕ(u), where ϕ is the oracle (although this exact mech-
anism for oracle access did not matter very much for FP and larger classes).
For the definition of the logarithmic-space class FL, we will basically continue

Small Complexity Classes for Computable Analysis 437

using this model, with space bound log(P (|ϕ|)(|u|)) for the computation on or-
acle ϕ and string input u. To make this sub-linear space restriction meaningful,
the standard convention (already for the type-one class FL) is that the input
and output tapes are not counted towards the space limit, and that (to avoid
exploiting these tapes as memory) the input tape is read-only and the output
tape is write-only. For our purpose of type-two computation, we need to have
similar consideration for query and answer tapes, and this raises some issues we
should be careful about. (See also the discussion in the slightly different context
of relativized classes [1, 5, 12, 17].)

Note that even in this logarithmic-space setting, we want the machine to be
able to ask queries of polynomial length. For example, when computing a real
function f under the ρR representation, it is reasonable to give the machine
access to the input real number with polynomially many digits of precision (in
the number of digits we want of the output)—with logarithically many digits,
we would only compute constant functions.

Thus, the right formulation of logarithmic-space computation with oracle ac-
cess requires careful resource control, by which the mechanism for oracle access
is exempted from the space limit, while “other parts” of computation are limited
to logarithmic space. For some special cases, this is achieved by simply adopting
the convention that the query and answer tapes are not counted towards the
space. In fact, Ko’s logarithmic-space computable real functions on [0, 1] [11,
Chapter 4] is defined roughly in this way (see the discussion in [11, pp. 121–
122]), using a representation similar to our ρR. We also obtain the equivalent
definition by the infinite string model, because it does not count the input and
output tapes, and it forbids reading from the output tape.

The reason this definition successfully led to a reasonable class of real functions
seems to be because, when we were dealing only with ρR-names, the queries were
always of the simple form 0m. But in general, the queries are polynomially long
binary string, which the machine cannot even store by itself on the work tape.
This subtlety calls for the following modifications on the model:

Our model is an oracle Turing machine with a stack of query tapes
(write-only) and an answer tape (read-only). The machine can write a
symbol on the top query tape, or push a new query tape on the top of
the stack (and start writing on it). When the machine issues a query,
the stack is popped automatically; that is, if the string on the query tape
at the top of the stack was u, the oracle ϕ writes the string ϕ(u) on
the answer tape, and at the same time the top query tape is removed
from the stack. We put the restriction that the height of the stack of a
machine is bounded by some constant for all inputs and oracles. We also
assume that the answer tape is erased after each push operation.

This model resolves two issues arising from the aforementioned tension be-
tween allowing the machine to issue long queries while disallowing it to write
them down.

The first issue is that the machine may need to make nested queries (queries
depending on answers to previous queries), and it may need to do so by writing

438 A. Kawamura and H. Ota

a query halfway and then issuing other queries in order to complete the remain-
ing part of the query. Observe that the stack model above makes such queries
possible. The ability to ask nested queries (with constant depth of nesting) is
needed naturally for our applications in real-number computation (see e.g. the
comments on Theorem 4.4 below), and is also essential if we want the class to
contain FAC0 (see Theorem 3.4 below). The idea of using a stack of query tapes
in order to obtain a reasonable relativization of logspace computation is due to
Wilson [17] and Aehlig, Cook and Nguyen [1] (but note that these are about
predicate oracles).

The second issue (which arises because we are dealing with function oracles)
is that we do not want the machine to cheat by using the query and answer tapes
as extra memory. This is why we required that the answer tape is erased after
each push operation. This makes our model equivalent to accessing the oracle
ϕ by questions of the form (u, 0i) asking for the ith bit of ϕ(u) (or an explicit
error message when i exceeds the length of ϕ(u)). The erasure of the answer
tape also ensures that the nested depth of queries is restricted to a constant.
Without this restriction, a log-space constant-stack machine with a function
oracle ϕ with |ϕ|(n) = n could compute the result of iterating the function ϕ
polynomially many times. On the other hand, there is a function ϕ ∈ Σ∗∗ such
that |ϕ|(n) = n and iteration of ϕ is not in NC relative to ϕ [1], and hence the
inclusion L ⊆ NC would not relativize.

Definition 3.1. A machine (with the oracle access convention described above)
runs in (second-order) logarithmic space if there is a second-order polynomial P
such that, given oracle ϕ ∈ Σ∗∗ and string u ∈ Σ∗, it visits at most log(P (|ϕ|)(|u|))
cells in the work tape. We write FL for the set of multi-functions2 from Σ∗∗ to Σ∗∗

computed by such a machine.

Lemma 3.2. Functions in FL map elements of FL ∩Σ∗∗ into FL.

3.2 Circuits of Bounded Depth

In this section, we discuss the type-two analogue of ACd and NC by considering
circuits with oracle gates. Since the oracle in our setting has variable (second-
order) sizes, and the resource (circuit size and depth) depends (second-order)
polynomially on their size, the circuit family will be indexed not only by the
size of the input string but also by the size of the oracle. We will also see that
the circuit classes are in the right containment with the Turing machine-based
classes L and P from the previous sections.

Let n,m ∈ N and let L : N → N be a non-decreasing function. A circuit with
size-L oracle gates is a circuit C (with several inputs and several outputs) built
from the standard logical gates NOT, OR, AND (the latter two with unbounded
fan-in) and oracle gates, where each oracle gate with k inputs has L(k) outputs.

2 We can of course define a class L, analogous to P in [10], of multi-functions in FL
whose values are functions in Σ∗∗ that are {0, 1}-valued, but we will not use such
classes in this paper.

Small Complexity Classes for Computable Analysis 439

The size of C is the number of gates. The depth of C is the length of the longest
path in C. For an input x ∈ {0, 1}∗, an oracle ϕ ∈ Σ∗∗, and a |x|-input m-output
circuit C with size-|ϕ| oracle gates, we write Cϕ(x) for the m-bit output of C.

As mentioned above, we consider oracle circuit families C = (CL,n)L,n, in-
dexed by n ∈ N and non-decreasing functions L : N → N, such that each CL,n

is an n-input circuit with size-L oracle gates. Such a family C is said to com-
pute a multi-function3 A :⊆Σ∗∗ ⇒ Σ∗∗ if for all ϕ ∈ domA, there is ψ ∈ A[ϕ]
satisfying ψ(x) = Cϕ

|ϕ|,|x|(x) for all x ∈ Σ∗.

This family (CL,n)L,n is said to have polynomial size if there is a second-order
polynomial P such that the size of CL,n is bounded by P (L)(n). Likewise, it has
k-logarithmic depth if there is a second-order polynomial P such that each CL,n

has depth bounded by (log(P (L)(n)))k.
The definition of uniformity also takes into account the oracle size: we say that

the family (CL,n)L,n is L-uniform if there is a function A ∈ FL such that for all
n ∈ N and non-decreasing L : N → N, the string A(L)(0n) is (a description of)
the circuit CL,n (recall from the end of Section 2.2 that L is the function taking
strings u to 0L(|u|)). Hereafter, we assume log-space uniformity on all (type-one
and type-two) circuit classes, so we write just “uniform” or omit “L-uniform”.

Definition 3.3. For each k ∈ N, we write FACk for the class of multi-functions
from Σ∗∗ to Σ∗∗ computed by a (uniform) circuit family (CL,n)L,n of polynomial

size and k-logarithmic depth4. We write FNC =
⋃

k∈N FACk.

Similarly to the type-one FP, we can show that a multi-function from Σ∗∗ to
Σ∗∗ is in FP if and only if it is computed by a polynomial-size uniform circuit
family (for one direction, we modify the standard argument for the type-one
class, observing that we may assume any machine for FP to be “oblivious,” i.e.,
its head motions depend only on the sizes of the input string and the oracle).

The relativization using the stack model by Aehlig, Cook and Nguyen pre-
serves the inclusion of non-relativized classes AC0 ⊆ L ⊆ AC1 ⊆ NC. Since we
define the type-two log-space class by extending the stack model, the analogous
inclusions can be shown for our type-two classes by a similar argument. The
(straightforward) proof is omitted in the present version.

Theorem 3.4. FAC0 ⊆ FL ⊆ FAC1 ⊆ FNC ⊆ FP.

Lemma 3.5. 1. Functions in FACi map elements of FACj ∩Σ∗∗ into FACi+j.

2. Functions in FNC map elements of FNC ∩Σ∗∗ into FNC.

3 As mentioned at the end of Section 1, the family C actually specifies a (single-valued)
function, and thus the computed multi-functions are exactly those that underspecify
this function. Nevertheless, we find it convenient to allow multi-functions in this
definition, when we use it in combination with e.g. Definition 2.3.2.

4 We are thus defining the analogue of NC as the union of ACi rather than of NCi.
This is just for simplicity of presentation.

440 A. Kawamura and H. Ota

B

A

s

t r

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤L
mF B

B

A

r

s

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤L
W B

B

A

s

t r

(for some ψ ∈ A[ϕ])

y ϕ(y)

x ψ(x)

A ≤L
B B

Fig. 3. Reductions between multi-functions on Σ∗∗

3.3 Reductions and Completeness

The formulation of reduction and hardness is mostly analogous to what was
done for larger classes [10], simply using weaker (logspace) reduction this time.
The following logspace reductions ≤L

mF, ≤L
W, ≤L

B (Figure 3) are analogues of
the polynomial-time reductions ≤2

mF, ≤2
W in Kawamura and Cook [10] and the

“many-one reduction” in Beame et al. [3].

Definition 3.6. Let A, B :⊆Σ∗∗ ⇒ Σ∗∗ be multi-functions. We write

– A ≤L
mF B (A is many-one log-space reducible to B) if there are functions

r, s, t ∈ FL such that for all ϕ ∈ domA, we have s(ϕ) ∈ domB and for each
θ ∈ B[s(ϕ)], the function that maps x ∈ Σ∗ to r(ϕ)(x, θ(t(ϕ)(x))) is in A[ϕ].

– A ≤L
W B (A is Weihrauch log-space reducible to B) if there are functions

r, s ∈ FL such that for all ϕ ∈ domA, we have s(ϕ) ∈ domB and for each
θ ∈ B[s(ϕ)], we have r(〈ϕ, θ〉) ∈ A[ϕ].

– A ≤L
B B if there are functions r, s, t ∈ FL such that for all ϕ ∈ domA, the

function σ that maps y ∈ Σ∗ to s(ϕ)(x, y) belongs to domB and for each
θ ∈ B[σ], the function that maps x ∈ Σ∗ to r(ϕ)(x, θ(t(ϕ)(x))) is in A[ϕ].

For a class C of multi-functions from Σ∗∗ to Σ∗∗ and a reduction ≤, we say
that B :⊆Σ∗∗ ⇒ Σ∗∗ is C-≤-hard if A ≤ B for all A ∈ C, and B is C-≤-complete
if B is C-≤-hard and in C.

Note that A ≤L
mF B implies A ≤L

W B and A ≤L
B B. The reduction ≤L

B

is stronger than ≤L
mF in that s can read the input string x when answering

queries from B. In many applications to analysis, the (thus easier) proof of
≤L

B-hardness already seems to capture the essential complexity of the operator
(e.g. Theorem 4.8 in our case), but we need the stronger hardness (with ≤L

mF

or ≤L
W) if we want to derive the non-uniform versions just from the statement.

Small Complexity Classes for Computable Analysis 441

See [10] for more discussion on these reductions, most of which applies to our
logarithmic-space setting. In particular, we have the analogue of [10, Lemma 3.6]
for completeness with respect to ≤L

mF, and thus, e.g., a FP-≤L
mF-hard function

maps some input in FL to a FP-≤L
mF-hard output, where ≤L

mF is the usual many-
one log-space reduction between type-one multi-functions. We omit the details
here due to limited space.

3.4 Representations

Carrying over the above argument to represented spaces is analogous to what
has been done [10, Section 3.4] for larger classes, and is omitted in the present
version due to lack of space.

4 Applications

In Section 4.1, we show some examples of real functions and operators that are
in FL and FNC (under suitable representations). In Section 4.2, we show the
P-completeness of the inverse operation and the fix-point operation. Due to lack
of space, many of the results will be stated without proofs. They will be included
in the full version of this paper.

4.1 Within FL and FNC

We start with real numbers and real functions, using the representation ρR (see
Section 2.2). It can be shown that Ko’s class of log-space real functions in C[0, 1]
[11] equals our (ρR|[0,1], ρR)-FL, despite our choice of constant-stack log-space
machine (Ko uses the obvious log-space oracle Turing machine with no stack).

For representations γ0, γ1 of spaces X0, X1, respectively, we define the repre-
sentation [γ0, γ1] of the Cartesian product X0×X1 by setting [γ0, γ1](〈ϕ0, ϕ1〉) =
(γ0(ϕ0), γ1(ϕ1)) for each ϕ0, ϕ1 ∈ Σ∗∗ (see the end of Section 2.1 for 〈·, ·〉).

Example 4.1. Binary addition and binary multiplication are in ([ρR, ρR], ρR)-FL.

Ko also defines the class of NC real functions in C[0, 1] as δ�-FNC in our
terminology [11], which easily equals (ρR|[0,1], ρR)-FNC. The NC-real functions
from R to R defined by Hoover [8] are exactly those in (ρR, ρR)-FNC.

An important update to our knowledge after the publication of Ko’s book [11]
was the discovery by Chiu, Davida and Litow [6] of a logarithmic space algorithm
for division and iterated multiplication. This is especially important in our con-
text of computable analysis, because it enables us to evaluate a fast-converging
Taylor series, by which many real numbers and functions are defined.

Example 4.2. The circle ratio π is in ρR-FL.

Example 4.3. The sine function sin: R→ R is in (ρR, ρR)-FL.

442 A. Kawamura and H. Ota

Now we consider computation under the representation δ� (see Section 2.2)
of real functions. The following states that δ� is the weakest representation that
makes function evaluation logspace computable, and gives evidence that δ� is
the natural choice (relative to ρR) as a basic representation of C[0, 1]. It can be
proved similarly to the analogous claim for FP [9].

Theorem 4.4. Define Apply : C[0, 1] × [0, 1] → R by Apply(f)(x) = f(x). For
a representation δ of C[0, 1], we have Apply ∈ ([δ, ρR|[0,1]], ρR)-FL if and only
if δ is logspace translable to δ�, i.e., there is a function F ∈ FL such that
F (ϕ) ∈ dom δ� and δ(ϕ) = δ�(F (ϕ)) for all ϕ ∈ dom δ.

Using ρR, δ� and suitable representations for other spaces, we can formulate
in our terminology some known results about log-space and NC computability
of functions and operators involving real numbers (which have been often for-
mulated for, say, rational inputs). For example, Neff’s result [13] that “the roots
of a complex polynomial can be found in NC” can be seen as a claim that the
root-finding operator is in FNC under certain natural representations. Details
will be included in a full version of this paper.

4.2 P-complete Operations

Here we state uniform versions of Hoover’s and Ko’s P-hardness results about
operators on real functions.

Inverting a Function. Fix a, b ∈ R with a < b. Let M be the set of one-to-one
functions f ∈ C[0, 1] whose range is [a, b]. We define the function Inv : M →
C[a, b] by saying that Inv(f) = f−1 is the inverse function of f .

Ko proved the following non-uniform theorem about the complexity of in-
version. Recall that Ko’s polynomial-time and log-space computability of a real
function is equivalent to our (ρR|[0,1], ρR)-FP and (ρR|[0,1], ρR)-FL.

Theorem 4.5 ([11, Corollary 4.7 and Theorem 4.18]).

1. Assume that f ∈M is polynomial-time computable. If f−1 has a polynomial
modulus of continuity, then f−1 is polynomial-time computable.

2. There is a log-space computable f ∈ M such that f−1 has a polynomial
modulus of continuity but is not log-space computable unless P = L.

We define a representation δ�INV of M as follows: δ�INV(〈ϕ, μ〉) = f if and
only if ϕ is a δ�-name of f and μ is a modulus of continuity of f−1. We add a
modulus of continuity of f−1 to δ� since without this information, there is no
upper bound on the complexity of the inverse operation, as the following fact [11,
Theorem 4.4] shows: for any recursive x ∈ [0, 1], there exists a strictly increasing
function f ∈ C[0, 1] such that f is polynomial-time computable and x = f−1(0).
The following is a uniform version of Theorem 4.5, and it implies Theorem 4.5.

Theorem 4.6. Inv is (δ�INV, δ�)-FP-≤L
mF-complete.

We omit the proof that this follows from Theorem 4.8 below.

Small Complexity Classes for Computable Analysis 443

Fixed Points of Contractions. A function g : K → R on a set K ⊆ R is called
q-Lipschitz, for q > 0, if |g(x)− g(y)| ≤ q · |x− y| for all x, y ∈ K. A contraction
on K is a function g : K → R which is q-Lipschitz for some q < 1 and whose
values are in K. The Banach fixpoint theorem states that every contraction has
a unique fixed point. Hoover’s theorem about the complexity of finding this fixed
point can be written in our terminology as follows:

Theorem 4.7 ([8, Theorem 4.5]). There is a function f : R→ R in (ρR, ρR)-
FNC whose restriction f |[2k,2k+1] is a contraction for each k ∈ N and which has
the following property: NC = P if and only if there is a function (from strings to
strings) in FNC mapping a pair of a number k ∈ N (written in binary) and the
string 0n to a 2−n-approximation of the fixed point of f |[2k,2k+1].

For our formulation in TTE, let C be the set of contractions on [0, 1]. We
define its representation δ�CM by saying that a δ�CM-name of g ∈ C is a pair
〈ϕ, q〉 of a δ�-name ϕ ∈ Σ∗∗ of g and a dyadic number q ∈ D such that g is
q-Lipschitz. Let Fix : C → R be the function taking each contraction on [0, 1] to
its fixed point.

Theorem 4.8. The operator Fix is (δ�CM, ρR)-FP-≤L
B-complete. It remains so

even if dom Fix is restricted to contractions that are 1/2-Lipschitz.

Due to lack of space, we omit the proof that this implies Theorem 4.7.

Acknowledgements. Some of the work presented here was done as part of
the master thesis of the second author at the University of Tokyo. He thanks
his advisor Hiroshi Imai for his generous support and guidance. This work was
supported in part by KAKENHI 24106002 and 26700001.

References

[1] Aehlig, K., Cook, S., Nguyen, P.: Relativizing small complexity classes and their
theories. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp.
374–388. Springer, Heidelberg (2007)

[2] Ambos-Spies, K., Brandt, U., Ziegler, M.: Real benefit of promises and advice. In:
Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 1–11.
Springer, Heidelberg (2013)

[3] Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative com-
plexity of NP search problems. Journal of Computer and System Sciences 57(1),
3–19 (1998)

[4] Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
New Computational Paradigms. Springer (2008)

[5] Buss, J.F.: Relativized alternation and space-bounded computation. Journal of
Computer and System Sciences 36(3), 351–378 (1988)

[6] Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC1. RAIRO-
Theoretical Informatics and Applications 35(03), 259–275 (2001)

[7] Férée, H., Hoyrup, M.: Higher-order complexity in analysis. In: Proc. CCA 2013,
pp. 22–35 (2013)

444 A. Kawamura and H. Ota

[8] Hoover, H.J.: Real functions, contraction mappings, and P-completeness. Infor-
mation and Computation 93(2), 333–349 (1991)

[9] Kawamura, A.: On function spaces and polynomial-time computability. Dagstuhl
Seminar 11411: Computing with Infinite Data (2011)

[10] Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans-
actions on Computation Theory 4(2), Article 5 (2012)

[11] Ko, K.I.: Complexity theory of real functions. Birkhauser Boston Inc. (1991)
[12] Ladner, R.E., Lynch, N.A.: Relativization of questions about log space computabil-

ity. Theory of Computing Systems 10(1), 19–32 (1976)
[13] Neff, C.A.: Specified precision polynomial root isolation is in NC. Journal of Com-

puter and System Sciences 48(3), 429–463 (1994)
[14] Rettinger, R.: Computational complexity in analysis (extended abstract). In: CCA

2013, pp. 100–109 (2013)
[15] Rösnick, C.: Closed sets and operators thereon: representations, computability

and complexity. In: Proc. CCA 2013, pp. 110–121 (2013)
[16] Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)
[17] Wilson, C.B.: A measure of relativized space which is faithful with respect to

depth. Journal of Computer and System Sciences 36(3), 303–312 (1988)
[18] Ziegler, M.: Real computation with least discrete advice: A complexity theory of

nonuniform computability with applications to effective linear algebra. Annals of
Pure and Applied Logic 163(8), 1108–1139 (2012)

Two Results about Quantum Messages�,��

Hartmut Klauck1 and Supartha Podder2

1 Centre for Quantum Technologies and Nanyang Technological University, Singapore
hklauck@gmail.com

2 Centre for Quantum Technologies and National University of Singapore, Singapore
supartha@gmail.com

Abstract. We prove two results about the relationship between quan-
tum and classical messages. Our first contribution is to show how to
replace a quantum message in a one-way communication protocol by a
deterministic message, establishing that for all partial Boolean functions
f : {0, 1}n × {0, 1}m → {0, 1} we have DA→B(f) ≤ O(QA→B,∗(f) · m).
This bound was previously known for total functions, while for partial
functions this improves on results by Aaronson [1,2], in which either a
log-factor on the right hand is present, or the left hand side is RA→B(f),
and in which also no entanglement is allowed.

In our second contribution we investigate the power of quantum proofs
over classical proofs. We give the first example of a scenario in which
quantum proofs lead to exponential savings in computing a Boolean
function, for quantum verifiers. The previously only known separation
between the power of quantum and classical proofs is in a setting where
the input is also quantum [3].

We exhibit a partial Boolean function f , such that there is a one-
way quantum communication protocol receiving a quantum proof (i.e.,
a protocol of type QMA) that has cost O(log n) for f , whereas every
one-way quantum protocol for f receiving a classical proof (protocol of
type QCMA) requires communication Ω(

√
n/ log n).

1 Introduction

The power of using quantum messages over classical messages is a central topic
in information and communication theory. It is always good to understand such
questions well in the simplest settings where they arise. An example is the set-
ting of one-way communication complexity, which is rich enough to lead to many
interesting results, yet accessible enough for us to show results about deep ques-
tions like the relationship between different computational modes, e.g. quantum
versus classical or nondeterministic versus deterministic.

� This work is funded by the Singapore Ministry of Education (partly through the
Academic Research Fund Tier 3 MOE2012-T3-1-009) and by the Singapore National
Research Foundation.

�� Supported by a CQT Graduate Scholarship.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 445–456, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

446 H. Klauck and S. Podder

1.1 One-Way Communication Complexity

Perhaps the simplest question one can ask about the power of quantum messages
is the relationship between quantum and classical one-way protocols. Alice sends
a message to Bob in order to compute the value of a function f : {0, 1}n ×
{0, 1}m → {0, 1}. Essentially, Alice communicates a quantum state and Bob
performs a measurement, both depending on their respective inputs. Though
deceptively simple, this scenario is not at all fully understood. Let us just mention
the following open problem: what is the largest complexity gap between quantum
and classical protocols of this kind for computing a total Boolean function? The
largest gap known is a factor of 2, as shown by Winter [23], but for all we
know there could be examples where the gap is exponential, as it indeed is for
certain partial functions (i.e., functions that are only defined on a subset of
{0, 1}n × {0, 1}m) [7].

An interesting bound on such speedups can be found by investigating the ef-
fect of replacing quantum by classical messages. Let us sketch the proof of such a
result. Suppose a total Boolean function f has a quantum one-way protocol with
communication c, namely Alice sends c qubits to Bob, who can decide f with
error 1/3 by measuring Alice’s message. We allow Alice and Bob to share an arbi-
trary input-independent entangled state. Extending Nayak’s random access code
bound [18] Klauck [13] showed that QA→B,∗(f) ≥ Ω(V C(f)), where QA→B,∗(f)
denotes the entanglement-assisted quantum one-way complexity of f , and V C(f)
the Vapnik-Chervonenkis dimension of the communication matrix of f . Together
with Sauer’s Lemma [21] this implies that DA→B(f) ≤ O(QA→B,∗(f)·m), where
m is the length of Bob’s input. See also [12] for a related result.

A result such as the above is much more interesting in the case of partial
functions. The reason is that for total functions a slightly weaker statement
follows from a weak version of the random access code bound, which can be (and
indeed has been [5]) established by the following argument: boost the quantum
protocol for f until the error is below 2−2m, where m is Bob’s input length.
Measure the message sent by Alice with all the measurements corresponding to
Bob’s inputs (this can be done with small total error) in order to determine
Alice’s row of the communication matrix and hence her input. This is a hard
task by standard information theory facts (Holevo’s bound). When considering
partial functions the proof breaks down: Bob does not know for which of his
inputs y the value f(x, y) is defined. If Bob measures the message for x with the
observable for y and f(x, y) is undefined any acceptance probability is possible
and the message state can be destroyed.

Aaronson [1] circumvented this problem in the following way: Bob now tries
to learn Alice’s message. He starts with a guess (the totally mixed state) and
keeps a classical description of his guess. Alice also always knows what Bob’s
guess is. Bob can simulate quantum measurements by brute-force calculation:
for any measurement operator Bob can simply calculate the result from his clas-
sical description. Alice can do the same. Since Bob has some 2m measurements
he is possibly interested in, Alice can just tell him on which of these he will
be wrong. Bob can then adjust his quantum state accordingly, and Aaronson’s

Two Results about Quantum Messages 447

main argument is that he does not have to do this too often before he reaches
an approximation of the message state. Note that Bob might never learn the
message state if it so happens that all measurements are approximately correct
on his guess. But if he makes a certain number of adjustments he will learn the
message state and no further adjustments are needed.

Let us state Aaronson’s result from [1].

Fact 1. DA→B(f) ≤ O(QA→B(f) · log(QA→B(f)) · m) for all partial Boolean
f : {0, 1}n × {0, 1}m → {0, 1}.

Aaronson later proved the following result, that removes the log-factor at the
expense of having randomized complexity on the left hand side.

Fact 2. RA→B(f) ≤ O(QA→B(f) · m) for all partial Boolean f : {0, 1}n ×
{0, 1}m → {0, 1}.

Our first result is the following improvement.

Result 1. DA→B(f) ≤ O(QA→B,∗(f) ·m) for all partial Boolean f : {0, 1}n ×
{0, 1}m → {0, 1}.

Hence we remove the log-factor, and we allow the quantum communication
complexity on the right hand side to feature prior entanglement between Alice
and Bob. Arguably, looking into the entanglement-assisted case (which is inter-
esting for our second main result) led us to consider a more systematic progress
measure than in Aaronson’s proof, which in turn allowed us to analyze a differ-
ent update rule for Bob that also works for protocols with error 1/3, instead of
extremely small error as used in [1], which is the cause of the lost log-factor.

We note that this result can be used to slightly improve on the “quantum-
classical” simultaneous message passing lower bound for the Equality function
by Gavinsky et al. [9], establishing a tight Ω(

√
n) lower bound on the complexity

of Equality in a model where quantum Alice and classical Bob (who do not share
a public coin or entanglement) each send messages to the referee. The tight lower
bound has also recently been established via a completely different and simpler
method [8] (as well as generalized to a nondeterministic setting). Our result (as
well as the one in [8]) allows a generalization to a slightly stronger model: Alice
and the referee may share entanglement.

1.2 The Power of Quantum Proofs

We now turn to the second result of our paper, which is philosophically the
more interesting. Interactive proof systems are a fundamental concept in com-
puter science. Quantum proofs have a number of disadvantages: reading them
may destroy them, errors may occur during verification, verification needs some
sort of quantum machine, and it may be much harder to provide them than
classical proofs. The main hope is that quantum proofs can in some situations
be verified using fewer resources than classical proofs. Until now such a hope
has not been verified formally. In the fully interactive setting Jain et al. have

448 H. Klauck and S. Podder

shown that the set of languages recognizable in polynomial time with the help of
a quantum prover is equal to the set where the prover and verifier are classical
(i.e., IP=QIP [11]).

The question remains open in the noninteractive setting. A question first asked
by Aharonov and Naveh [4] and meriting much attention, is whether proofs that
are quantum states can ever be easier to verify than classical proofs (by quantum
machines) in the absence of interaction, i.e., whether the class QMA is larger than
its analogue with classical proofs but quantum verifiers, known as QCMA. An
indication that quantum proofs may be powerful was given by Watrous [22], who
described an efficient QMA black-box algorithm for deciding nonmembership in
a subgroup. However, Aaronson and Kuperberg [3] later showed how to solve
the same problem efficiently using a classical witness, giving a QCMA black-box
algorithm for the problem. They also introduced a quantum problem, for which
they show that QMA black-box algorithms are more efficient than QCMA black-
box algorithms. Using a quantum problem to show hardness for algorithms using
classical proofs seems unfair though, and a similar separation has remained open
for Boolean problems.

In our second main result we compare the two modes of noninteractive proofs
and quantum verification for a Boolean function in the setting of one-way com-
munication complexity. More precisely we exhibit a partial Boolean function f ,
such that the following holds. f can be computed in a protocol where a prover
who knows x, y can provide a quantum proof to Alice, and Alice sends quantum
message to Bob, such that the total message length (proof plus message Alice to
Bob) is O(log n). In the setting where a prover Merlin (still knowing all inputs)
sends a classical proof to Alice, who sends a quantum message to Bob, the total
communication is Ω(

√
n/ logn).

Result 2. There is a partial Boolean function f such that QMAA→B(f) =
O(log n), while QCMAA→B,∗(f) = Ω(

√
n/ logn).

We note that this is the first known exponential gap between computing
Boolean functions in a QCMA and a QMA mode in any model of computation.
Also, the lower bound is not too far from being tight, since there is an obvious
upper bound of O(

√
n logn) for the problem.

So where does the power of quantum proofs come from in our result? Raz and
Shpilka [20] show that QMA one-way protocols are as powerful as QMA two-
way protocols. Their proof uses a quantum witness that is a superposition over
the messages of different rounds. We show that for a certain problem with an
efficient QMA protocol there is no efficient one-way QCMA protocol. So in this
case the weakness of classical proofs is due to the inability of Merlin to supply
a randomized message about (only) Bob’s input to Alice in a verifiable way. If
the message is sent in superposition Bob can later test that the superposition
is close to the correct one, while this is not possible for classical messages (for
which Merlin can always cheat by choosing the best deterministic message).

Two Results about Quantum Messages 449

2 Preliminaries

2.1 Quantum

For basic quantum background we refer to [19].

2.2 Communication Complexity Models

We assume familiarity with communication complexity, referring to [17] for more
details about classical communication complexity and [24] for quantum commu-
nication complexity.

For a partial Boolean function f : {0, 1}n × {0, 1}m × {0, 1,⊥}, where ⊥
stands for “undefined” the communication matrix Af has rows labeled by x ∈
{0, 1}n and columns labeled by y ∈ {0, 1}m, and entries f(x, y). A protocol
for f is correct, if it gives the correct output for all x, y with f(x, y) = ⊥
(with certainty for deterministic protocols, and with probability 2/3 for quantum
protocols). A protocol is one-way, if Alice sends a message to Bob, who computes
the function value, or vice versa. We denote by DA→B(f) the deterministic one-
way communication complexity of a function f , when Alice sends the message
to Bob.

Two rows x, x′ of Af are distinct, if there is a column y, such that f(x, y) = 1
and f(x′, y) = 0 or vice versa, i.e., the function values differ on some defined
input. Note that being not distinct is not an equivalence relation: x, x′ can be
not distinct, as well as x, x′′, while x, x′ are distinct. Nevertheless a one-way
protocol for f needs to group inputs x into messages such that no two distinct
x, x′ share the same message.1

Similar to the above, we denote by QA→B(f) the quantum one-way commu-
nication complexity of f with error 1/3. This notion is of course asymptotically
robust when it comes to changing the error to any other constant. QA→B,∗(f)
denotes the complexity if Alice and Bob share entanglement.

We now define some more esoteric modes of communication that extend the
standard nondeterministic mode to the quantum case. We restrict our attention
to one-way protocols.

Definition 1. In a one-way MA-protocol there are 3 players Merlin, Alice, Bob.
Merlin sends a classical message to Alice, who sends a classical message to Bob,
who gives the output. Alice and Bob share a public coin, which is not seen by
Merlin. For a Boolean function f : {0, 1}n×{0, 1}m → {0, 1} the protocol is cor-
rect, if for all 1-inputs there is a message from Merlin, such that with probability
2/3 Bob will accept, whereas for all 0-inputs, and all messages from Merlin, Bob

1 It is instructive to consider the function f(x, i; y, j) = xi⊕j under the promise that
x = y. This function has only n distinct rows and columns, and DA→B(f) =
DB→A(f) ≤ O(log n). Nevertheless Af has many more actual rows and columns.
Trying to reduce the number of actual columns to a set of distinct columns increases
the number of distinct rows. Hence one has to be careful when considering partial
functions.

450 H. Klauck and S. Podder

will reject with probability 2/3. The communication cost of the protocol on an
input is the sum of the lengths of the two messages from Merlin and Alice. The
communication complexity is defined as usual and denoted by MAA→B(f).

A one-way QCMA-protocol is defined similarly, but whereas Merlin’s message
is still classical, Alice can send a quantum message to Bob, and Alice and Bob
may share entanglement. The complexity with shared entanglement is denoted
QCMAA→B,∗(f).

In a one-way QMA-protocol also Merlin’s message may be quantum. The com-
plexity is denoted by QMAA→B(f) in the case where no entanglement is allowed.

2.3 Quantum Information Measures

In this paper we need only a few well established notions of information and
distinguishability. A density matrix is a positive semidefinite matrix of trace 1.
Density matrices will also be referred to as quantum states in this paper.

Definition 2. The von Neumann entropy of a quantum state ρ is defined as
S(ρ) = −Trρ log ρ.

The relative von Neumann entropy of quantum states ρ, σ is defined by
S(ρ||σ) = Trρ log ρ− Trρ log σ if supp ρ ⊆ supp σ, otherwise S(ρ||σ) = ∞.

The relative min-entropy of ρ, σ is defined as
S∞(ρ||σ) = inf{c : σ − ρ/2c is positive semidefinite}.

It is easy to see that S(ρ||σ) ≤ S∞(ρ||σ), see [6] for a proof. An important
measure of how far apart quantum states are is the trace distance.

Definition 3. The trace norm of a Hermitian operator ρ is defined as ||ρ||t =

Tr
√
ρρ†.

The trace distance between ρ and σ is ||ρ− σ||t.

We list two well known facts. First, Uhlmann monotonicity.

Fact 3. If ρ̃, σ̃ result from measuring ρ, σ then S(ρ̃||σ̃) ≤ S(ρ||σ).

Secondly, the quantum Pinsker inequality [10], see also [15].

Fact 4. ||ρ− σ||t ≤
√

2 ln 2 S(ρ||σ).

We note that any two states that are close in trace distance are hard to
distinguish by any measurement, namely the classical total variation distance
between the measurement results is at most the trace distance of the measured
states.

3 Making Quantum Messages Deterministic

Theorem 5. For every partial Boolean function f : {0, 1}n × {0, 1}m → {0, 1}
we have DA→B(f) ≤ O(QA→B,∗(f) ·m).

Two Results about Quantum Messages 451

We note that in the case of total functions the theorem follows from a result
in [13] combined with Sauer’s lemma [21], and that two weaker versions of the
theorem have been proved by Aaronson: in [1] he shows the result with an
additional log-factor on the right hand side, and without allowing entanglement,
in [2] with RA→B(f) on the left hand side (and no additional log-factor), but
again without entanglement.

Our proof follows Aaronson’s main approach in [1], in which Bob maintains a
classical description of a quantum state as his guess for the message he should
have received, and Alice informs him about inputs on which this state will per-
form badly, so that he can adjust his guess. His goal is to either get all measure-
ment results approximately right, or to learn the message state. We will refer to
these states as the current guess state, and the target state.

We deviate from Aaronson’s proof in two ways. First, we work with a different
progress measure that is more transparent than Aaronson’s, namely the relative
entropy between the target state and the current guess. This already allows us
to work in the entanglement-assisted case.

Secondly, we modify the rule by which Bob updates his guess. In Aaronson’s
proof Bob projects his guess state onto the subspace on which the target state
has a large projection (because the message is accepted by the corresponding
measurement with high probability). This has the drawback that one cannot
use the actual message state of the protocol as the target state, because that
state usually has considerable projection onto the orthogonal complement of the
subspace, making the relative entropy infinitely large! Hence Aaronson uses a
boosted and projected message state as the target state. This state is close to the
actual message state thanks to the boosting, and projection of the guess state
now properly decreases the relative entropy, since the target state is fully inside
the subspaces. The boosting step costs exactly the log-factor we aim to remove.

So in the situation where Bob wants to update his guess state σ, knowing that
the target state ρ will be accepted with probability 1 − ε when measuring the
observable consisting of subspace Vy and its complement, we let Bob replace σ
with the mixture of 1− ε times the projection onto Vy and ε times the projection
onto V ⊥

y . The main part of the proof is then to show that this decreases the
relative entropy S(ρ||σ) given that Tr(Vyσ) < 1 − 10

√
ε, i.e., in case σ was not

good enough already. Eventually either all measurements can be done by Bob
giving the correct result, or the current guess state σ satisfies S(ρ||σ) ≤ 5

√
ε, in

which case ρ and σ are also close in the trace distance meaning that any future
measurement will give almost the same results on both states.

Proof. Fix any entanglement-assisted one-way protocol with quantum commu-
nication q = QA→B,∗(f). Using standard boosting we may assume that the
error of the protocol is at most ε = 10−6 for any input x, y. This increases the
communication by a small constant factor at most.

Using teleportation we can replace the quantum communication by 2q classi-
cal bits of communication at the expense of adding q EPR-pairs to the shared
entangled state. Let |φ〉 denote the entangled state shared by the new proto-
col. We can assume this is a pure state, because if this is not the case we may

452 H. Klauck and S. Podder

consider any purification, and Alice and Bob can ignore the purification part.
Note that we do not restrict the number of qubits used in |φ〉.

In the protocol, for a given input x Alice has to perform a unitary transforma-
tion on her part of |φ〉 (we assume that any extra space used is also included in
|φ〉 and that measurements are replaced by unitaries) and then sends a classical
message. Bob first applies the unitary from the teleportation protocol (which
only depends on the classical message). Let’s denote the state shared by Al-
ice and Bob at this point by |φx〉. Following this Bob performs a measurement
(depending on his input y) on his part of |φx〉. This measurement determines
the output of the protocol on x, y. We may assume by standard techniques that
Bob’s measurements are projection measurements, and that the subspaces used
in the projection measurements have dimension d/2, where d is the dimension
of the underlying Hilbert space.

Recall that |φ〉 and |φx〉 are bipartite states shared by Alice and Bob. Let
ρ = TrA|φx〉〈φx| and σ1 = TrA|φ〉〈φ|, i.e., the states when Alice’s part is traced
out. Bob wants to learn ρ in order to be able to determine the results of all of his
measurements (for inputs y) on ρ. We show how to do this with O(m · q) bits of
deterministic communication from Alice: Bob either gets to know an approximate
classical description of ρ, or he will know the result of the measurements for all
inputs y (such that f(x, y) is defined). Note that the state σ1 is known to Bob
in the sense that he knows its classical description.

Since Alice’s local operations do not change Bob’s part of |φ〉〈φ|, the difference
between ρ and σ1 is introduced via the correction operations in the teleportation
protocol that Bob applies after he receives Alice’s message. But with probability
2−2q Bob does not have to do anything, i.e., when Alice’s message is the all 0-s
string. This implies that

σ1 =
1

22q
ρ + θ,

for some positive semidefinite θ with trace 1− 1/22q. Hence we get that

S(ρ||σ1) ≤ S∞(ρ||σ1) ≤ 2q.

In other words, Bob’s target ρ and initial guess σ1 have small relative entropy.
We can now describe the protocol. Bob starts with the classical description

of σ1. This state is also known by Alice, since it does not depend on the input.
Throughout the protocol Bob will hold states σi, which will be updated when
needed, using information provided by Alice. Bob also has a set of measurement
operators Py, I−Py for all his inputs y. Bob and Alice each loop over his inputs y,
and compute py = Tr(Pyσi). This is the acceptance probability, if σi is measured
with the measurement for his input y. Alice also computes p′y = Tr(Pyρ) which
is the acceptance probability of the quantum protocol. If py and p′y are too far
apart, Alice will notify Bob of the correct acceptance probability on y (with
precision ε2), which takes m + O(1) bits of communication.

Alice does not send a message if f(x, y) is undefined, because the acceptance
probability on such inputs is irrelevant. Suppose p′y = 1− εy, where εy ≤ ε is the
error on x, y (and f(x, y) = 1), but py = 1 − a for some 1 > a ≥ 10

√
ε. If this

Two Results about Quantum Messages 453

is not the case the measurement for y applied to σi already yields the correct
result and no information from Alice is needed. So if py, p

′
y are far apart Alice

will send y (using m bits) and εy as a floating point number with precision ε2

(using O(1) bits).
Bob then adjusts σi to obtain a state σi+1. Suppose he knows the correct εy

(the difference between εy and its approximation sent by Alice will be irrelevant).
This means that Tr(Pyσi) = 1− a but Tr(Pyρ) = 1− εy. Py is the projector onto
a subspace Vy. We have assumed that each Vy has dimension d/2 if d is the
dimension of the underlying Hilbert space. Let Bi denote an orthonormal basis,
in which the first d/2 elements span Vy , and the remaining d/2 span V ⊥

y , and in
which the upper left and lower right quadrants of σi are diagonal. Hence

σi =

(
A B
B∗ D

)
,

where A,D are diagonal and Tr(A) = 1− a and Tr(D) = a. We define

σi+1 =

(1−εy
1−a A 0

0
εy
a D

)
.

σi+1 is diagonal in our basis Bi. Clearly σi+1 would perform exactly as desired
on measurement Py, I −Py. But Bob already knows the function value on y and
can carry on with the next y.

Before we continue we have to argue that the case a = 1 can never happen.
Since Tr(Pyρ) = 1− εy > 0 the state ρ has a nonzero projection onto Vy. If a = 1
then σi sits entirely in V ⊥

y , and hence S(ρ||σi) = ∞. But since we start with a
finite S(ρ||σ1) and only decrease that value the situation a = 1 is impossible.

Coming back to the protocol, it is obvious that Bob will learn the correct value
of f(x, y) for all y such that f(x, y) is defined. Hence the protocol is deterministic
and correct. The remaining question is how many times Alice has to send a
message to Bob. We will show that this happens at most O(QA→B,∗(f)/

√
ε)

times, which establishes our theorem.
The main claim that remains to be shown is the following. For the proof we

refer to the full version of this paper [16].

Claim. S(ρ||σi) ≥ S(ρ||σi+1) + a/2 if a ≥ 10
√
ε.

This establishes the upper bound on the number of messages, because the
relative entropy, which starts at 2q is decreased by a/2 ≥ 5

√
ε for each message.

After at most 2q/(5
√
ε) iterations the protocol has either ended (in which case

Bob might never learn ρ, but will still know all measurement results), or we have
S(ρ||σT) ≤ 5

√
ε.

To see this assume we are still in the situation of the claim. The claim states
that the relative entropy can be reduced by a/2 as long as a ≥ 10

√
ε. So the

process stops (assuming we don’t run out of suitable y′s) no earlier than when
S(ρ||σi) < a/2 ≤ 5

√
ε.

454 H. Klauck and S. Podder

But then by the quantum Pinsker inequality we have that at the final time
T : ||ρ − σT ||t ≤

√
10 ln 2

√
ε < 0.1 in the end, and hence for all measurements

their results are close. Hence no more than O(q/
√
ε) = O(q) messages have to

be sent.

4 Quantum versus Classical Proofs

Let us first define the problem for which we prove our separation result.

Definition 4. The function MajIx(x, I), where I = {i1, . . . , i√n}, each ij ∈
{1, . . . , n}, and x ∈ {0, 1}n is defined as follows:

1. if |{j : xij = 1}| =
√
n then MajIx(x, I) = 1,

2. if |{j : xij = 1}| ≤ 0.9
√
n then MajIx(x, I) = 0,

3. otherwise MajIx(x, I) is undefined.

The function has been studied in [14], where it is shown that one-way MA
protocols for the problem need communication Ω(

√
n). Our main technical result

here is to extend this to one-way QCMA protocols.
It is obvious on the other hand, that there is a cheap protocol when Bob can

send a message to Alice.

Lemma 1. RB→A(MajIx) = O(log n).

Raz and Shpilka [20] show that any problem with QMA(f) = c (i.e., QMA
protocol where Alice and Bob can interact over many rounds) has a QMA proto-
col of cost poly(c) in which Merlin sends a message to Alice, who sends a message
to Bob. By inspection of their proof the polynomial overhead can be removed in
the case of constant rounds of interaction between Alice and Bob.

Lemma 2. If QMA(f) = c and this cost can be achieved by a protocol with
O(1) rounds, then QMAA→B(f) = O(c).

We give more details in the full version [16]. The lemma immediately implies
the following.

Theorem 6. QMAA→B(MajIx) = O(log n).

We also give a self-contained proof of this fact in the full version [16]. Our
protocol has completeness 1, hence even the one-sided error version of QMAA→B

is separated from QCMAA→B by the following lower bound.

Theorem 7. QCMAA→B,∗(MajIx) ≥ Ω(
√
n/ logn).

Hence we can conclude the following.

Corollary 1. There is a partial Boolean function f such that QMAA→B(f) =
O(log n), while QCMAA→B,∗(f) = Ω(

√
n/ logn).

Two Results about Quantum Messages 455

Proof of Theorem 7. Fix any QCMA protocol P for MajIx. Furthermore define a
distribution on inputs as follows. Fix any error correcting code C ⊆ {0, 1}n with
distance n/4 (i.e., every two codewords have Hamming distance at least n/4).
Such codes of size 2Ω(n) exist by the Gilbert-Varshamov bound. We do not care
about the complexity of decoding and encoding for our code. Furthermore we
require the code to be balanced, i.e., that any codeword has exactly n/2 ones.
This can also be achieved within the stated size bound. For our distribution
on inputs first choose x ∈ C uniformly, and then uniformly choose I among
all subsets of {1, . . . , n} of size

√
n. Note that the probability of 1-inputs under

the distribution μ just defined is between 2−
√
n and 2−

√
n−1 due to the balance

condition on the code.
If the cost (i.e., communication from Merlin plus communication from Alice)

of P is c, then there are at most 2c different classical proofs sent by Merlin.
We identify such proofs p with the set of 1-inputs that are accepted by the
protocol with probability at least 2/3 when using the proof p. Hence there must
be a proof P containing 1-inputs of measure at least 2−

√
n−c−1, because for

every 1-input there is a proof with which it is accepted with probability 2/3
or more. Furthermore, given P , no 0-input is accepted with probability larger
than 1/3. Note that inputs outside of the promise, or 1-inputs outside of P
can be accepted with any probability between 0 and 1. Denote by fP the partial
function {0, 1}n×{0, 1}m → {0, 1,⊥}, in which all inputs in P are accepted, and
all 0-inputs of f are rejected, and the remaining inputs have undefined function
value (⊥). m = Θ(

√
n logn) is the length of Bob’s input.

Obviously fP can be computed by a one-way quantum protocol (without
prover) using communication c (and possibly using shared entanglement between
Alice and Bob). Now due to Theorem 5 this implies that DA→B(fP) ≤ O(c ·m).
We prove in the full version [16] that on the other hand DA→B(fP) ≥ Ω(n), and
hence c ≥ Ω(n/m) = Ω(

√
n/ logn), which is our theorem.

Acknowledgements. The authors thank Dmitry Gavinsky for discussions and
the anonymous referees for helpful suggestions.

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory
of Computing 1, 1–28 (2005); Earlier version in Complexity 2004 (2004), quant-
ph/0402095

2. Aaronson, S.: The learnability of quantum states. Proceedings of the Royal Society
of London A463(2088) (2007), quant-ph/0608142

3. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory
of Computing 3(1), 129–157 (2007)

4. Aharonov, D., Naveh, T.: Quantum NP - a survey (2002), quant-ph/0210077
5. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and

a lower bound for 1-way quantum automata. In: Proceedings of 31st ACM STOC,
pp. 697–704 (1999)

456 H. Klauck and S. Podder

6. Datta, N.: Min- and max- relative entropies and a new entanglement monotone.
IEEE Transactions on Information Theory 55, 2816–2826 (2009)

7. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation
for one-way quantum communication complexity, with applications to cryptogra-
phy. SIAM J. Comput. 38(5), 1695–1708 (2008)

8. Gavinsky, D., Klauck, H.: Equality, Revisited. Manuscript (2014)
9. Gavinsky, D., Regev, O., de Wolf, R.: Simultaneous Communication Protocols

with Quantum and Classical Messages. Chicago Journal of Theoretical Computer
Science 7 (2008)

10. Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition and relative entropy
in von Neumann algebras. Pacific J. Math. 96, 99–109 (1981)

11. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. J. ACM 58(6) (2011)
12. Jain, R., Zhang, S.: New bounds on classical and quantum one-way communication

complexity. Theoretical Computer Science 410(26), 2463–2477 (2009)
13. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way

protocols. In: Proceedings of 32nd ACM STOC, pp. 644–651 (2000)
14. Klauck, H.: On Arthur Merlin Games in Communication Complexity. In: IEEE

Conference on Computational Complexity, pp. 189–199 (2011)
15. Klauck, H., Nayak, A., Ta-Shma, A., Zuckerman, D.: Interaction in Quantum Com-

munication. IEEE Transactions on Information Theory 53(6), 1970–1982 (2007)
16. Klauck, H., Podder, S.: Two Results about Quantum Messages (Full Version).

arXiv:1402.4312 (2014)
17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University

Press (1997)
18. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.

In: Proceedings of 40th IEEE FOCS, pp. 369–376 (1999), quant-ph/9904093
19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

Cambridge University Press (2000)
20. Raz, R., Shpilka, A.: On the power of quantum proofs. In: Proceedings of Compu-

tational Complexity, pp. 260–274 (2004)
21. Sauer, N.: On the density of families of sets. J. Combin. Theory Ser. A 13, 145–147

(1972)
22. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proceed-

ings of 41st IEEE FOCS, pp. 537–546 (2000), quant-ph/0011023
23. Winter, A.: Quantum and classical message identification via quantum channels.

In: Festschrift A.S. Holevo 60, pp. 171–188 (2004)
24. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Sci-

ence 287(1), 337–353 (2002)

Parameterized Approximations

via d-Skew-Symmetric Multicut

Sudeshna Kolay1, Pranabendu Misra1, M. S. Ramanujan2,
and Saket Saurabh1,2

1 The Institute of Mathematical Sciences, Chennai, India
{skolay,pranabendu,saket}@imsc.res.in

2 University of Bergen, Bergen, Norway
Ramanujan.Sridharan@ii.uib.no

Abstract. In this paper we design polynomial time approximation
algorithms for several parameterized problems such as Odd Cycle

Transversal, Almost 2-SAT, Above Guarantee Vertex Cover

and Deletion q-Horn Backdoor Set Detection. Our algorithm pro-
ceeds by first reducing the given instance to an instance of the d-Skew-

Symmetric Multicut problem, and then computing an approximate
solution to this instance. Our algorithm runs in polynomial time and
returns a solution whose size is bounded quadratically in the parameter,
which in this case is the solution size, thus making it useful as a first
step in the design of kernelization algorithms. Our algorithm relies on
the properties of a combinatorial object called (L, k)-set, which builds
on the notion of (L, k)-components, defined by a subset of the authors
to design a linear time FPT algorithm for Odd Cycle Transversal.
The main motivation behind the introduction of this object in their work
was to replicate in skew-symmetric graphs, the properties of important
separators introduced by Marx [2006] which has played a very signifi-
cant role in several recent parameterized tractability results. Combined
with the algorithm of Reed, Smith and Vetta, our algorithm also gives
an alternate linear time algorithm for Odd Cycle Transversal. Fur-
thermore, our algorithm significantly improves upon the running time of
the earlier parameterized approximation algorithm for Deletion q-Horn
Backdoor Set Detection which had an exponential dependence on
the parameter; albeit at a small cost in the approximation ratio.

1 Introduction

Let ρ : N → R≥1 be a computable function1. We say that a parameterized
problem Π admits a ρ(k)-parameterized approximation if there exists an algo-
rithm A that, given an input (x, k) to Π , either outputs a solution y such that
|y| ≥ k/ρ(k) (if Π is a maximization problem) or |y| ≤ kρ(k) (if Π is a mini-
mization problem) or returns that “(x, k) /∈ Π ’. The algorithm A is allowed to

1 Where N and R≥1 denote the set of natural numbers and the set of real numbers at
least 1, respectively.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 457–468, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

458 S. Kolay et al.

take f(k)|x|O(1) time. However, in this paper, we will be interested in obtain-
ing parameterized approximation algorithms where the function f is actually
polynomial.

There are several problems parameterized by the solution size, for which the
best known approximation algorithm is in fact also a parameterized approxi-
mation algorithm. For example, the polynomial time approximation algorithm
for Directed Feedback Vertex Set [4] as well as the constant factor ap-
proximation algorithms. Furthermore, there are problems whose parameterized
complexity is unknown or it is known to be W[1]-hard, but admit a parame-
terized approximation. We cite the examples of Directed Disjoint Cycle

Packing, which is both hard to approximate and W[1]-hard but admits a pa-
rameterized approximation [9], and Cliquewidth, whose parameterized com-
plexity is unknown but has a (2k+1 − 1)-parameterized approximation [10]. It
is also important to point out some recent approximations for crossing num-
ber, and euler-genus of an input graph and for the Edge Planarization and
Vertex Planarization problems [2,3].

Recently, polynomial time parameterized approximation algorithms have also
been used for the purpose of kernelization. For instance, the polynomial ker-
nelization algorithm for Odd Cycle Transversal (OCT) by Kratsch and
Wahlstrom [12] requires an approximate solution for the problem whose size is
bounded polynomially in the size of the parameter. In order to obtain such a
solution, they combined an existing 2O(k)nO(1) fixed parameter tractable (FPT)
algorithm [15] with the O(

√
logn) approximation algorithm of Agarwal et al. [1].

In general, this approach requires a pair of an FPT algorithm and an approx-
imation algorithm such that, the complexity of the FPT algorithm “matches”
the approximation factor. For instance, if for a parameterized problem Π , the
best known FPT algorithm runs in time f(k)nO(1) where f(.) is a tower of � 2’s,
then the approximation factor required would by log . . . logn, where the depth
is �. It is possible that such a pair of algorithms may not even exist for the prob-
lem Π . This motivates the question of designing polynomial time parameterized
approximation algorithms. Furthermore, many of the existing approximation al-
gorithms (e.g. for OCT) require the use of fairly sophisticated techniques and
tools. However it might be possible to exploit the combinatorial structure of the
parameterized problem to design a much simpler algorithm.

With these motivations in mind, we design an approximation algorithm for
the d-Skew-Symmetric Multicut problem which runs in polynomial time
such that any solution returned by the algorithm has size bounded quadratically
in the parameter. This algorithm, combined with known parameter preserving
reductions from OCT, Almost 2-SAT, Above Guarantee Vertex Cover

and Deletion q-Horn Backdoor Set Detection ([14]) gives parameter-
ized approximation algorithms for all these problems. In particular, since OCT

and Almost 2-SAT are special cases of 1-Skew-Symmetric Multicut, we
get a factor - 2(k + 1) approximation and since Deletion q-Horn Backdoor

Set Detection is known to be a special case of 3-Skew-Symmetric Multi-

cut, we get a factor - 6(k + 1) approximation. Gaspers et al. [6] showed that

Parameterized Approximations via d-Skew-Symmetric Multicut 459

a special case of d-Skew-Symmetric Multicut, Deletion q-Horn Back-

door Set Detection, has a factor-(k + 1)approximation algorithm running
in time O(6kn2). Observe that our corollary for Deletion q-Horn Backdoor

Set Detection improves on the exponential dependence on the parameter in
the running time of the algorithm of Gaspers et al. [6] significantly with only a
constant factor increase in the approximation factor. Furthermore, the algorithm
for OCT we get from our theorem can be patched with the algorithm of Reed,
Smith and Vetta to give an alternate linear time FPT algorithm for OCT albeit
with a worse dependence on the parameter compared with those in [14,11].

A skew-symmetric graph (D = (V,A), σ) is a directed graph D with an invo-
lution σ on the set of vertices and arcs, that is for all x ∈ V ∪ A, σ(σ(x)) = x.
Flows on skew-symmetric graphs have been used to generalize maximum flow
and maximum matching problems on graphs, initially by Tutte [16], and later
by Goldberg and Karzanov [7]. The d-Skew-Symmetric Multicut problem
was introduced recently in [14] where it was shown to generalize several well
studied classical problems including OCT, Almost 2-SAT, Deletion q-Horn
Backdoor Set Detection for fixed values of d. The same work included a
linear time FPT algorithm for this problem. The d-Skew-Symmetric Multi-

cut problem is a variant of the Multicut problem on skew-symmetric graphs,
defined as follows.

d-Skew-Symmetric Multicut Parameter: k
Input: A skew-symmetric graph D = ((V,A), σ), a family T of d-sets of
vertices, integer k.
Question: Is there a set S ⊆ A such that S = σ(S), |S| ≤ 2k, and for
any d-set {v1, . . . , vd} in T , there is a vertex vi such that vi and σ(vi) lie in
distinct strongly connected components of D \ S?

The set S in the above definition is called a skew-symmetric multicut for the
given instance. Our main result in this paper is the following.

Theorem 1. There is an algorithm that, given an instance (D = (V,A, σ), T , k)
of d-Skew-Symmetric Multicut, runs in time O(k5(� + m + n)) and either
returns a skew-symmetric multicut of size at most 2d(k2 + k) or correctly con-
cludes that no such set of size at most 2k exists. Here m = |A|, n = |V |, and �,
the length of the family T , is defined as d · |T |.

Overview of the Algorithm. At a high level, we follow the approach of Gaspers
et al. [6]. However, here we need to introduce a combinatorial object that is
specifically tailored to skew-symmetric graphs, called an (L, k)-set which has
two structural properties that point us to an approximate solution.

– Every (L, k)-set has a small “boundary” and intersects every solution for the
given instance.

– Removing the “boundary” of any (L, k)-set reduces the size of an optimal
solution for the residual instance.

460 S. Kolay et al.

The notion of (L, k)-sets builds upon that of (L, k)-components defined in
[14]. However, the notion of (L, k)-components is not strong enough to guarantee
either of the above properties. We will show that given these two properties, if
we can always find such an (L, k)-set (if it exists) in polynomial time, then
we can get an algorithm which either concludes that there is no solution of the
required size or returns an approximate solution whose size is bounded by O(k2).
Therefore, once we prove both the structural properties, we give an algorithm
to compute one such (L, k)-set at every step. However, the running time of the
algorithm to compute this set must have only a polynomial dependence on the
input as well as the parameter. For this, we build upon a lemma from [14] which
can only check for the existence of a special kind of (L, k)-sets and generalize this
algorithm to check for the existence of an (L, k)-set and compute it if it exists.

2 Preliminaries

In this section we give some basic definitions and set up the notations for the
paper.

Digraphs. Let D = (V,A) be a directed graph. For an arc (u, v) ∈ A, we refer
to u as the tail of this arc and we refer to v as the head of this arc. For a set
of vertices V ′, we let A[V ′] denote the set of arcs with both end points in the
set V ′. For a set of vertices V ′, we let δ+(V ′) denote the set of arcs which have
their tail in V ′ and their head in V \ V ′. Similarly, we let δ−(V ′) denote the set
of arcs which have their head in V ′ and their tail in V \ V ′. Given two disjoint
vertex sets X and Y , we define an X-Y path as a directed path from a vertex
x ∈ X to a vertex y ∈ Y whose internal vertices are disjoint from X ∪ Y .

Skew-Symmetric Graphs. This notation is from [8]. A skew-symmetric graph
is a digraph D = (V,A) and an involution σ : V ∪ A→ V ∪ A such that:

1. for each x ∈ V ∪ A, σ(x) = x
2. for each v ∈ V , σ(v) ∈ V
3. for each a = (v, w) ∈ A, σ(a) = (σ(w), σ(v))

We call σ(x) symmetric to x and also refer to x and σ(x) as conjugates. For
ease of description, we let x′ denote the conjugate of an element x and we let S′

denote the set of conjugates of the elements in the set S. We say that a set S is
regular if S ∩ S′ = ∅ and irregular otherwise. A set S is called self-conjugate if
S = S′.

3 Skew-Symmetric Graphs, Separators and Components

We require the following observations and definitions from [14] regarding skew-
symmetric graphs.

Observation 1. Let D = ((V,A), σ) be a skew-symmetric graph and let u, v ∈
V . There is a path from v to u in D if and only if there is a path from u′ to v′.

Parameterized Approximations via d-Skew-Symmetric Multicut 461

Definition 1. Let D = (V,A) be a directed graph and let X,Y be disjoint subsets
of V . A set S ⊆ A is an X-Y separator if there is no directed path from X to
Y in the graph D \ S. We say that S is a minimal X-Y separator if no proper
subset of S is an X-Y separator.

Definition 2. Let D = ((V,A), σ) be a skew-symmetric graph and let L be a
regular set of vertices. Let X ⊆ A be a self-conjugate set of arcs of D. We call
X an L-L′ self-conjugate separator if X is a (not necessarily minimal) L-
L′ separator. We call X a minimal L-L′ self-conjugate separator if there is no
self-conjugate strict subset of X which is also an L-L′ separator.

Definition 3. Let D = ((V,A), σ) be a skew-symmetric graph and let L be a
regular set of vertices. Let X be an L-L′ self-conjugate separator. We denote by
R(L,X) the set of vertices of D that can be reached from L via directed paths in
D \X, and we denote by R̄(L,X) the set of vertices of D which have a directed
path to L in D \X.

Observation 2. Let D = ((V,A), σ) be a skew-symmetric graph and let L be a
regular set of vertices. Let X be an L-L′ self-conjugate separator. Then, the sets
R(L,X) and R̄(L′, X) are also regular and σ(R(L,X)) = R̄(L′, X).

Proof. Since deleting a self-conjugate set of arcs from a skew-symmetric graph
results in a skew-symmetric graph, we know that there is a path from u to v
in D \ X if and only if there is a path from v′ to u′ in D \ X . Therefore, if
R(L,X) is irregular, then there is a path from L to y and y′ for some vertex y,
which is disjoint from X , which implies a path from L to L′ in D \X , which is
a contradiction. Therefore, R(L,X) and R̄(L′, X) are regular and since D \X
is a skew-symmetric graph, they are conjugates. ��

3.1 The Notion of (L, k)-Sets

The following definition defines an object called (L, k)-set, whose properties and
the computation of which will form the main part of our paper.

Definition 4. Let D = ((V,A), σ) be a skew-symmetric graph and k ∈ N. Let
L ⊆ V be a regular set of vertices. A set of vertices Z ⊆ V is called an (L, k)-set
if it satisfies the following properties.

1. L ⊆ Z
2. Z is regular
3. Z is reachable from L in D[Z]
4. The size of a minimum Z-Z ′ separator is at most 2k.
5. Z is inclusion-wise maximal among the sets satisfying the above properties.

The above definition generalizes the notion of (L, k)-components because it
follows from the definition of (L, k) components (see Definition 4, [14]) that a set
Z ⊆ V is an (L, k)-component if it is an (L, k)-set and the size of a minimum Z-
Z ′ separator is equal to the size of a minimum L-L′ separator. A reader familiar

462 S. Kolay et al.

with the notion of important separators [13] can interpret an (L, k)-component
as a “skew-symmetric” analogue of a smallest important separator between L
and L′.

Observation 3. Given a skew-symmetric graph D = ((V,A), σ) and a regular
set L of vertices, L satisfies properties 1-3 of Definition 4.

The following lemma shows that the neighborhood of an (L, k)-component is
also a minimum L-L′ separator.

Lemma 1. Given a skew-symmetric graph D = ((V,A), σ) and a regular set
L of vertices, let Z be a (L, k) component. Then δ+(Z) is a minimum Z-Z ′

separator.

Proof. From the definition of (L, k) components we know that a minimum Z-Z ′

separator is also a minimum L-L′ separator. Let X be such a minimum separator.
Also, δ+(Z) is a Z-Z ′ separator.

If there is a conjugate pair (u, v), (v′, u′) ∈ δ+(Z) then u, v′ ∈ Z and u′, v ∈ Z ′

and any Z-Z ′ separator must contain both arcs of the conjugate pair. Now
suppose that (u, v) ∈ δ+(Z) \ X but (v′, u′) /∈ δ+(Z). By definition of skew
symmetric graphs, (v′, u′) ∈ δ−(Z ′). Therefore, X must hit all v-v′ paths in D.
In other words, X is a Z∪{v}-Z ′∪{v′} separator. It is easy to verify that Z∪{v}
satisfies properties 1-4 of Definition 4. Since X is a Z ∪ {v}-Z ′ ∪ {v′} separator,
this contradicts the fact that Z was a (L, k) component. Hence, (v′, u′) must be
X . But this implies that |δ+(Z)| ≤ |X |. As X is a minimum Z-Z ′ separator,
δ+(Z) is in fact a minimum Z-Z ′ separator. ��

4 Structural Properties and Computation of (L, k)-Sets

In this section, we first give a formal proof of the utility of (L, k)-sets. Following
this, we give an algorithm for the computation of an (L, k)-set.

Lemma 2. Let (D = (V,A), σ, T , k) be a Yes instance of d-Skew-Symmetric

Multicut and let L be a regular set of vertices such that there is an L-L′ path in
D. If there is a solution S for the given instance which is an L-L′ self-conjugate
separator in D, then the following hold.

1. If Z is an (L, k)-set, then S ∩ (A[Z] ∪ δ+(Z)) = ∅ and the instance (D \
(δ+(Z) ∪ δ−(Z ′)), σ, T , k − 1) is a Yes instance.

2. If X is an irregular L-L′ separator, then S ∩ (A[Z] ∪ X) = ∅ where Z =
R(L,X ∪X ′) and the instance (D \ (X ∪X ′), σ, T , k− 1) is a Yes instance.

Proof. For the first statement, suppose that there are no arcs of the solution S
in the set A[Z] ∪ δ+(Z) and let K = R(L, S). Clearly, K ⊇ Z ∪ N+(Z), and
satisfies the first 4 properties of an (L, k)-set, which implies that K contradicts
the maximality of Z. Therefore, we conclude that S∩(A[Z]∪δ+(Z)) is non-empty
and denote this set by F .

Parameterized Approximations via d-Skew-Symmetric Multicut 463

Suppose that S∩A[Z] is empty. Then, F ∩δ+(Z) is non-empty and therefore,
the set Ŝ = S \ (F ∪F ′) has size at most 2k− 2 and is clearly a skew-symmetric
multicut for the instance (D \ (δ+(Z) ∪ δ−(Z ′)), σ, T , k − 1).

Now, suppose that S ∩A[Z] is non-empty. Then, the set Ŝ = S \ (F ∪F ′) has
size at most 2k − 2. Furthermore, if Ŝ were not a skew-symmetric multicut for
the instance (D̂ = D \ (δ+(Z) ∪ δ−(Z ′)), σ, T , k − 1), then there is a violating
set T ∈ T such that for every t ∈ T , t and t′ are in the same strongly connected
component of D̂ \ Ŝ. Fix any such t ∈ T . Since S is a solution for the given
instance, it must be the case that there is a closed walk in the graph D̂ \ Ŝ
containing t and t′ which also intersects the set F ∪ F ′ . Let (a, b) ∈ F which
appears in this closed walk. Observe that (a, b) ∈ F implies that (a, b) ∈ A[Z],
which in turn implies that a is in the set R(L, δ+(Z)∪ δ−(Z ′)). Since a lies on a
closed walk containing t and t′, we conclude that there is a path from L to t and
t′ in the graph D \ (δ+(Z)∪ δ−(Z ′)). But, by Observation 1, we get a path from
t′ to L′ in the same graph, which is a contradiction since we now have a path
from L to L′ in D which is also disjoint from the set δ+(Z). This completes the
proof of the first statement.

The proof of the second statement is similar. Suppose that S ∩A[Z] = ∅. By
Lemma 4, |δ+(Z)| = |X |. Consider those arcs in δ+(Z) such that the conjugate is
not in δ+(Z), but the pair in contained in X . Let this set of arcs be Y . It is easy
to verify that |δ+(Z)\A| = |X\(Y ∪Y ′)|. If the set Y is nonempty then |δ+(Z)| <
|X |, which is not possible. So, if an arc and its conjugate is contained in X then
the pair is also contained in δ+(Z). Since X is irregular, there is an arc (u, v) ∈
X such that (u, v), (v′, u′) ∈ X , which implies that (u, v), (v′, u′) ∈ δ+(Z). In
fact, by definition of a skew symmetric graph, (u, v), (v′, u′) ∈ δ+(Z) ∩ δ−(Z ′).
Therefore, we have that u is in Z and v is in Z ′. Since S ∩A[Z] = ∅ and S is an
L-L′ separator, it must be the case that (u, v), (v′, u′) ∈ S, that is X ∩ S = ∅.
Observe that in this case, the set Ŝ = S \ (X ∪X ′) has size at most k − 2 and
is a skew symmetric multicut for the instance Î = I \ (X ∪X ′).

Observe that if S ∩ A[Z] = F = ∅, then the set Ŝ = S \ (F ∪ F ′) has size at
most k − 2. Furthermore, we claim that Ŝ is a skew symmetric multicut for the
instance (D̂ = D \ (X ∪X ′), σ, T , k − 1). If this were not the case, then there is
a violating set T ∈ T such that for every t ∈ T , t and t′ are in the same strongly
connected component of D̂ \ Ŝ. Fix a t ∈ T . Since S is a solution for the given
instance, it must be the case that there is a closed walk containing t and t′ which
also intersects the set F ⊆ A[Z]. That is, there is an arc (a, b) ∈ F such that it
is contained in a closed walk along with t and t′. Since a ∈ Z = R(L,X ∪X ′),
we have that there are paths from L to t and t′ in the graph D̂, implying a path
from L to L′ in D disjoint from X , a contradiction. This completes the proof of
the lemma. ��

4.1 Computation of (L, k)-Sets

In this subection, we give an algorithm (Lemma 3) that in linear time either
computes an (L, k)-set or finds an irregular L-L′ separator.

464 S. Kolay et al.

Proposition 1. ([14]) Let D = ((V,A), σ) be a skew-symmetric graph and k ∈
N. Let L ⊆ V be a regular set of vertices such that there is an L-L′ path in D.
There is an algorithm which runs in time O(k3(m + n)) and

– correctly concludes that no (L, k)-component exists or
– returns an (L, k)-component or
– returns an irregular minimum L-L′ separator (that is, the separator is irreg-

ular)

where m = |A| and n = |V |.

The following is the main lemma of this section.

Lemma 3. Let D = ((V,A), σ) be a skew-symmetric graph and k ∈ N. Let
L ⊆ V be a regular set of vertices such that there is an L-L′ path in D. There is
an algorithm which runs in time O(k4(m + n)) and

– correctly concludes that no (L, k)-set exists or
– returns an (L, k)-set or
– returns an irregular L-L′ separator of size at most 2k

where m = |A| and n = |V |.

Proof. Description of the Algorithm. We begin by running the algorithm of
Lemma 1 to find an (L, k)-component. If the algorithm concluded that there is no
(L, k)-component, then from Onservation 3 we know that the size of a minimum
L-L′ separator exceeds 2k. So we can also conclude that there is no (L, k)-set
in D. Similarly, if this algorithm returned an irregular minimum L-L′ separator
(which must be of size at most 2k since an (L, k)-component does exist), then we
are done. Therefore, assume that the algorithm returned an (L, k)-component
Z. We then check if there is an a ∈ N+(Z) such that the size of a minimum
Z∪{a}-Z ′∪{a′} separator is at most 2k. If there is such an a, then we recursively
compute and return either a (Z ∪{a}, k)-set H or an irregular Z ∪{a}-Z ′∪{a′}
separator X of size at most 2k (one of which must exist). If there is no such a,
then we return Z.

Proof of Correctness. Suppose that there is no a ∈ N+(Z) such that the size
of a minimum Z ∪{a}-Z ′ ∪{a′} separator is at most 2k. This implies that there
is no (L, k)-set which strictly contains Z, since for any K ⊃ Z, a K-K ′ separator
is also a Z-Z ′ separator. Therefore, the algorithm is correct in concluding that
Z itself is an (L, k)-set. Now, suppose that for some a ∈ N+(Z) the size of a
minimum Z ∪{a}-Z ′∪{a′} separator is at most 2k. Suppose that we recursively
obtained an irregular Z ∪{a}-Z ′∪{a′} separator of size at most 2k. Then this is
also clearly an irregular L-L′ separator of size at most 2k. Finally, suppose that
we recursively obtained a (Z ∪ {a}, k)-set K. We claim that K is also an (L, k)-
set. If this were not the case, then there is a set H ⊃ K which is an (L, k)-set.
However, this implies that H is also a (Z ∪ {a}, k)-set, which contradicts the
maximality of K as (Z ∪ {a}, k)-set. This completes the proof of correctness.

Parameterized Approximations via d-Skew-Symmetric Multicut 465

Running Time Analysis. Observe that the time taken at each step of the
recursion is bounded by the time required to apply Lemma 1, which is O(k3(m+
n)) and the time to check for each a ∈ N+(Z) if there is a minimum Z ∪ {a}-
Z ′ ∪{a′} separator of size at most 2k. The latter requires |N+(Z)| applications,
of 2k + 1 steps of the Ford-Fulkerson Algorithm [5], each of which takes time
O(k(m + n)). Therefore checking for the presence of an a ∈ N+(Z) such that
there is a minimum Z∪{a}-Z ′∪{a′} separator of size at most 2k can be done in
time O(k2(m + n)), since |N+(Z)| ≤ 2k (follows from Lemma 1). Now, it only
remains for us to bound the recursion depth. Observe that due to the maximality
of Z as an (L, k)-component, for any a ∈ N+(Z), the size of a minimum Z∪{a}-
Z ′∪{a′} separator is strictly greater than the size of a minimum L-L′ separator.
Therefore, the depth of the recursion is bounded by 2k and hence the running
time of the algorithm is O(k4(m + n)). This completes the proof of the lemma.

��

The following property of the algorithm of the above lemma will be required to
prove the correctness of our approximation algorithm.

Lemma 4. Suppose that the algorithm of Lemma 3 returned an irregular L-L′

separator X of size at most 2k and let Z = R(L,X ∪ X ′). Then, δ+(Z) is a
minimum Z-Z ′ separator and |δ+(Z)| = |X |.

Proof. Since X ∪X ′ is a self-conjugate L-L′ separator, from Observation 2, Z is
regular and Z ′ = R̄(L′, X). From definition of Z, we know that δ+(Z) ⊆ X∪X ′.
Suppose there is a conjugate pair of arcs (u, v), (v′, u′) ∈ δ+(Z). Then u, v′ ∈ Z
and v, u′ ∈ Z ′. From the definition of Z, there is a path P1 from L to u and a
P2 from L to v′. From Observation 1, there is a path P ′

1 from u′ to L′ and P ′
2

from v to L′. To hit the paths P1uvP
′
2 and P2v

′u′P ′
1 both (u, v) and (v′, u′) have

to belong to X . Therefore, for any arc a, where a ∈ X, a′ /∈ X , we can have at
most one of a or a′ in δ+(Z). This shows that |δ+(Z)| ≤ |X |.

From the algorithm there are two ways in which we can get an irregular L-L′

separator as an output:

– The algorithm of Lemma 1 returns X in the very first step of execution. Then
X is a minimum irregular L-L′ separator. Moreover, we know that an Z-Z ′

separator is also an L-L′ separator. In particular, δ+(Z) is an L-L′ separator.
From the above argument that |δ+(Z)| ≤ |X |, which is a Z-Z ′ separator,
and the optimality of X as an L-L′ separator, we know that δ+(Z) is a
minimum Z-Z ′ separator and that |δ+(Z)| = |X |, otherwise we contradict
the optimality of X as a L-L′ separator.

– The algorithm of Lemma 1 returns a (L, k)-component Y0 in the first step of
execution and ∃a0 ∈ N+(Y0) such that a minimum (Y0 ∪ {a0})-(Y ′

0 ∪ {a′0})
separator is of size at most 2k. Recursively, Lemma 3 returns an irregular
(Y0 ∪ {a0})-(Y ′

0 ∪ {a′0}) separator X after � steps of recursion. In each step
i of recursion, there is a vertex ai−1 ∈ N+(Yi−1) such that a minimum
(Yi−1 ∪ {ai−1})-(Y ′

i−1 ∪ {a′i−1}) separator is of size at most 2k. Also, for
every i < �, Yi is a (Yi−1 ∪ {ai−1}, k) component. Finally, in the �th step of

466 S. Kolay et al.

recursion an irregular minimum (Y�−1 ∪ {a�−1})-(Y ′
�−1 ∪ {a′�−1}) separator

X is returned. (Y�−1 ∪ {a�−1}) ⊆ Z; so a Z-Z ′ separator is also a (Y�−1 ∪
{a�−1})-(Y ′

�−1 ∪ {a′�−1}) separator. Again, by optimality of (Y�−1 ∪ {a�−1})-
(Y ′

�−1 ∪ {a′�−1}) separator X and from |δ+(Z)| ≤ |X |, we obtain that δ+(Z)
is a minimum Z-Z ′ separator and that |δ+(Z)| = |X |.

This completes the proof of the lemma. ��

5 Approximation Algorithm for d-Skew-Symmetric

Multicut

In this section we design our approximation algorithm for d-Skew-Symmetric

Multicut.
From this point on, we assume that an instance of d-Skew-Symmetric Mul-

ticut is of the form (D = (V,A), σ, T, k, L) where L is a regular set of vertices
and the question is to check if there is a solution for the given instance which
is an L-L′ self-conjugate separator. To solve the problem on the given input
instance, we simply solve it on the instance (D = (V,A), σ, T , k, ∅).

We are now ready to prove Theorem 1 by giving an approximation algorithm
for d-Skew-Symmetric Multicut.

Proof (of Theorem 1). Description of Algorithm. The input to our algo-
rithm for d-Skew-Symmetric Multicut is an instance (D = (V,A), σ, T =
{J1, . . . , Jr}, k, L) where Ji = {vi1 , . . . , vid} and the algorithm either returns
a skew-symmetric multicut of size at most 2d(k2 + k) which is an L-L′ self-
conjugate separator in D or concludes correctly that no skew-symmetric
multicut of size at most k exists. In order to solve the problem on the given
instance of d-Skew-Symmetric Multicut, the algorithm is invoked on the in-
put (D = (V,A), σ, T , k, ∅). At any step, if the current instance is already solved
(which can be tested by simply computing the strongly connected components
of D), then the algorithm returns the empty set. Otherwise, the algorithm se-
lects a violating set T and for each t ∈ T , it computes the set Ct and Ct′

returned by the invocations of the algorithm of Lemma 3 on input (D, σ, k, {t})
and (D, σ, k, {t′}) respectively. If for every t ∈ T , the algorithm outputs that no
({t}, k) set or ({t′}, k) set is present, then we stop and say No. Finally, the algo-
rithm returns the set C = ∪t∈T (Ct ∪Ct′) along with the output of the recursion
of the same algorithm on the instance Î = (D \ C, σ, T, k − 1).

Correctness. Observe that in each recursive step, if the budget is r, we add a
set of size at most 4dr. Since the initial budget is k and it drops by 1 in each
recursion the set returned finally is bounded by 2d(k2+k). That the set returned
is in fact a skew symmetric multicut follows from Lemma 2 and the fact that
for any set T ∈ T , for any t ∈ T , any skew-symmetric multicut for the given
instance is either a {t}-{t′} separator or a {t′}-{t} separator.

Suppose for some violating set T , for every t ∈ T the algorithm of Lemma 3
takes (D, σ, k, {t}) and (D, σ, k, {t′}) as inputs, and outputs that there is neither

Parameterized Approximations via d-Skew-Symmetric Multicut 467

a ({t}, k)-set nor a ({t′}, k)-set in the current graph. From Observation 3 it
follows that the minimum {t}-{t′} cut exceeds 2k. We know that for any solution
to d-Skew-Symmetric Multicut, there is a t ∈ T such that the solution
contains either a {t}-{t′} separator or a {t′}-{t} separator. Therefore, we can
safely conclude that there is no solution of size k to this instance of d-Skew-

Symmetric Multicut.

Running Time. Since the time taken at each recursive step is bounded by the
time required to compute a violating set and apply the algorithm of Lemma 3 at
most 2d times and there are at most k recursions, the algorithm in total takes
time O(dk5(m + n + �)). ��

Corollaries. Next we give a few corollaries of Theorem 1. It is known that there
are polynomial time parameter preserving reductions from a number of problems
to d-Skew-Symmetric Multicut (see for example [14]). In particular, the Al-

most 2-SAT problem has such a reduction to the 1-Skew-Symmetric Multi-

cut problem and Deletion q-Horn Backdoor Set Detection problem has
such a reduction to the 3-Skew-Symmetric Multicut problem.

Lemma 5 ([14]). Let (F, k) be an instance of Almost 2-SAT and D(F) be
the implication graph built on F . There is a polynomial time reduction from
Almost 2-SAT to 1-Skew-Symmetric Multicut such that (F, k) is a Yes

instance of Almost 2-SAT if and only if (D(F), T = {{x1}, . . . , {xn}}, k) is a
Yes instance of 1-Skew-Symmetric Multicut.

Lemma 6 ([14]). Let (F, k) be an instance of Deletion q-Horn Backdoor

Set Detection. There is a parameter-preserving reduction from Deletion

q-Horn Backdoor Set Detection to 3-Skew-Symmetric Multicut such
that (F, k) is a Yes instance of Deletion q-Horn Backdoor Set Detection

if and only if the reduced instance is a Yes instance of 3-Skew-Symmetric

Multicut. If the length of the F was � then the reduction runs in O(k�) time
and returns a skew-symmetric graph with O(k�) arcs.

Therefore, we immediately get the following corollaries.

Corollary 1. There is an algorithm that, given an instance (F, k) of Almost 2-
SAT, runs in time O(k5(m+n)) and either returns an Almost 2-SAT solution
of size at most 2(k2 + k) or correctly concludes that no such set of size at most
k exists. Here, m is the number of clauses and n is the number of variables in
the formula F .

Corollary 2. There is an algorithm that, given an instance (F, k) of Deletion

q-Horn Backdoor Set Detection, runs in time O(k6(n + �)) and either
returns a Deletion q-Horn Backdoor Set Detection solution of size at
most 6(k2 + k) or correctly concludes that no such set of size at most k exists.
Here, m is the number of clauses, n is the number of variables in the formula F
and � is the length of the formula F .

468 S. Kolay et al.

Results for OCT, Edge Bipartization, Above Guarantee Vertex

Cover and other problems mentioned in the introduction follow from the known
polynomial time reductions to Almost 2-SAT. We define all the problems con-
sidered in this paper and reducibility among them in the full version.

References

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(
√
log n) approx-

imation algorithms for min uncut, min 2cnf deletion, and directed cut problems.
In: STOC, pp. 573–581 (2005)

2. Chekuri, C., Sidiropoulos, A.: Approximation algorithms for euler genus and re-
lated problems. In: FOCS, pp. 167–176 (2013)

3. Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge
planarization. In: Randall, D. (ed.) SODA, pp. 1050–1069. SIAM (2011)

4. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

5. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J.
Math. 8, 399–404 (1956)

6. Gaspers, S., Ordyniak, S., Ramanujan, M.S., Saurabh, S., Szeider, S.: Backdoors
to q-horn. In: STACS, pp. 67–79 (2013)

7. Goldberg, A.V., Karzanov, A.V.: Path problems in skew-symmetric graphs. Com-
binatorica 16(3), 353–382 (1996)

8. Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings.
Math. Program. 100(3), 537–568 (2004)

9. Grohe, M., Grüber, M.: Parameterized approximability of the disjoint cycle prob-
lem. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 363–374. Springer, Heidelberg (2007)

10. Hlinený, P., Oum, S.I.: Finding branch-decompositions and rank-decompositions.
SIAM J. Comput. 38(3), 1012–1032 (2008)

11. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time fpt algorithms via network flow. In:
SODA, pp. 1749–1761 (2014)

12. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools
for kernelization. In: FOCS, pp. 450–459 (2012)

13. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

14. Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-
symmetric multicuts. In: SODA, pp. 1739–1748 (2014)

15. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

16. Tutte, W.T.: Antisymmetrical digraphs. Canadian J. Math. 19, 1101–1117 (1967)

On the Clique Editing Problem�

Ivan Kováč1, Ivana Selečéniová1,2, and Monika Steinová2

1 Department of Computer Science, Comenius University, Bratislava, Slovakia
{ikovac,seleceniova}@dcs.fmph.uniba.sk

2 Department of Computer Science, ETH Zürich, Switzerland
{ivana.seleceniova,monika.steinova}@inf.ethz.ch

Abstract. We study the hardness and approximability of the problem
CliqueEditing, where the goal is to edit a given graph G into a graph
consisting of a clique and a set of isolated vertices while using a minimum
number of editing operations. The problem is interesting from both prac-
tical and theoretical points of view, and it belongs to the well-studied
family of graph modification problems. We prove that the problem is NP-
complete and construct a 3.524-approximation algorithm. Furthermore,
we prove an existence of a PTAS for the still NP-complete version of the
problem restricted to bipartite graphs, and the existence of a polynomial-
time algorithm for the problem restricted to planar graphs.

1 Introduction

In graph modification problems one has to modify an input graph into a target
graph, using as little changes as possible. The target graph is usually a graph
with some prescribed property, such as a graph consisting of a set of disjoint
cliques, a 2-connected graph, or, as in our case, a graph consisting of exactly one
clique and a set of isolated vertices. Allowed operations are usually combinations
of vertex deletions, edge deletions, edge insertions, and edge contractions. In our
case only edge insertions and deletions are allowed. The cost of a solution is
measured by the number of altered edges.

Graph modification problems have applications in several areas, such as molec-
ular biology (see e.g. [9]), numerical algebra [12], circuit design [6], and machine
learning [2]. These problems have been extensively studied in the past 30 years.
Most of the practically motivated classes of target graphs have hereditary prop-
erties, that is, they are closed under removal of vertices. This is also the case
in our problem. The study of CliqueEditing was originally motivated as a
clustering problem in a noisy data set [4].

Graph modification problems are an important and well-studied part of graph
theory. Already in 1979, Garey and Johnson mentioned 18 versions of these prob-
lems (both edge and vertex modification) in their collection of NP-hard prob-
lems [8]. More recent results on the hardness of these problems can be found

� This work was partially supported by grants VEGA 1/0979/12, VEGA 1/0671/11
and by the SNF grant 200021-146372.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 469–480, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

470 I. Kováč, I. Selečéniová, and M. Steinová

in [1], [3], or [11]. The problem addressed in this paper, CliqueEditing, was
introduced in [4]. In their paper, the authors conjectured the NP-completeness of
the decision version of CliqueEditing and provided a proof that the problem
is in the class of subexponential fixed-parameter tractable problems (SUBEPT,
see [7]). The NP-completeness has already been stated as an open question at
IWOCA 2013 by Peter Damaschke. In this paper, we prove the proposed con-
jecture, and investigate the approximability of the problem.

This paper is organized as follows. Section 2 contains basic notations of graph
theory used in the paper, a formal definition of CliqueEditing, and an elemen-
tary lemma which is of substantial importance for the rest of the paper. In Sec-
tion 3, we investigate the hardness of the problem and prove NP-completeness
even for the decision version of the problem restricted to bipartite graphs. In
Section 4, we present a polynomial-time algorithm for the problem restricted to
planar graphs. The approximability results, namely a PTAS on bipartite graphs
and a 3.524-approximation in the general case, are addressed in Section 5.

2 Preliminaries

Throughout this paper, we consider only simple undirected graphs. We use the
standard notation of graph theory: a clique is a complete subgraph of a graph,
and a bi-clique is a complete bipartite subgraph of a graph. A complete graph
on n vertices is denoted by Kn, a complete bipartite graph with i vertices in one
shore and j vertices in the other shore is denoted by Ki,j. The set of all vertices
of a graph G is denoted by V (G), the set of all edges of G is denoted by E(G).
The subgraph of G induced by a vertex set S is denoted by G[S], and the set
of edges of G[S] is denoted by E(G[S]). A non-edge of a graph G is any pair of
vertices {u, v} ∈ E(G). The complement G of a graph G is a graph on the same
set of vertices whose edge set consists of all non-edges of G. Furthermore, a set
of edges in G incident with a vertex v is denoted by Ev(G).

We now formally define the CliqueEditing problem and its decision version,
DecCliqueEditing.

Definition 1 (CliqueEditing). The input of CliqueEditing is a graph G.
The output is a partition of V (G) into two sets C and I. For the sake of brevity,
we shall call C a solution. The I-part of the solution can be easily determined
from C, since I = V (G) − C. The goal is to minimize the number of edges one
needs to add or remove from G in order to create a clique on C and to isolate
every vertex from I. Formally, let us define the cost costG(C) of a solution C by

costG(C) = |E(G[C])|+ |{{u, v} ∈ E(G) | u ∈ I ∨ v ∈ I}| .

We abbreviate costG(C) by cost(C) whenever G is clear from the context.

Definition 2 (DecCliqueEditing).The input for the decision version of Cli-

queEditing, denoted by DecCliqueEditing, is a pair (G, k), where G is
a graph and k ∈ N. The goal is to determine whether a solution C with
costG(C) ≤ k exists.

On the Clique Editing Problem 471

We start with a simple but essential lemma, which states that every vertex v
in an optimal solution COPT has at least (|COPT|−1)/2 neighbours in G[COPT].

Lemma 1. Let COPT be an optimal solution on the input graph G. For every
vertex v ∈ COPT it holds that |Ev(G[COPT])| ≥ |Ev(G[COPT])|. In other words,
|Ev(G[COPT])| ≥ (|COPT| − 1)/2.

Proof. Since COPT is an optimal solution, any other solution has the cost at least
as large as COPT, which implies cost(COPT \ {v})− cost(COPT) ≥ 0. If we look
at the definition of the cost function, the difference between the first summands
of cost(COPT \ {v}) and cost(COPT) is exactly −|Ev(G[COPT])|. The difference
between the second summands is exactly |Ev(G[COPT])|. Putting it all together
concludes the proof. ��

3 CliqueEditing on Bipartite Graphs and
NP-completeness

In this section we investigate some properties of CliqueEditing on bipar-
tite graphs and prove the NP-hardness of this subproblem. Note that Dec-

CliqueEditing is in NP, even on general graphs – it is sufficient to non-
deterministically guess a solution, and verify that its cost is at most the constant
given as a part of an input. Therefore, the NP-completeness of the restricted
problem implies the NP-completeness of the unrestricted problem as well.

We attack the question of NP-hardness in the following manner. Informally
speaking, we start by proving that any optimal solution is a bi-clique. Subse-
quently, we prove the existence of an optimal solution that is balanced, i.e., has
the same number of vertices in both shores. Finally, the NP-hardness is proven
by a polynomial-time reduction from the problem of finding a balanced bi-clique
in a bipartite graph, which is known to be NP-hard [10].

Lemma 2. Let G be a bipartite graph with shores P and Q. Let COPT be an
optimal solution containing p vertices from the shore P and q vertices from the
shore Q. Without loss of generality, let p ≤ q. Then p ≥ q − 1.

Proof. Let v ∈ COPT be a vertex from Q. In the induced subgraph G[COPT],
the vertex v can be connected only to vertices from P (at most p vertices),
which implies |Ev(G[COPT])| ≤ p. Furthermore, it cannot be connected to ver-
tices from Q, which contains at least q − 1 vertices (not counting v), that is,
|Ev(G[COPT])| ≥ q − 1. Using Lemma 1, we obtain

p ≥ |Ev(G[COPT])| ≥ |Ev(G[COPT])| ≥ q − 1 ,

which proves our claim. ��

Corollary 1. Let G be a bipartite graph. An optimal solution for G contains
either p vertices from each of the two shores, or p vertices from one and p + 1
vertices from the other one, for some p ∈ N.

472 I. Kováč, I. Selečéniová, and M. Steinová

Lemma 3. Let G be a bipartite graph. For every optimal solution COPT, the
graph G[COPT] is either Kp,p or Kp,p+1, for some p ∈ N.

Proof. Assume the contrary, that is, G[COPT] is not a complete bipartite graph.

Let us denote the vertices of COPT from the shores P and Q by CP
OPT and CQ

OPT,

respectively. Furthermore, let |CP
OPT| = p and |CQ

OPT| = q, where p ≤ q. Due to
Lemma 2, it either holds p = q or p + 1 = q.

Since G[COPT] is not Kp,q (i.e., neither Kp,p nor Kp,p+1), there must exist

a non-edge {u, v}, such that u ∈ CP
OPT and v ∈ CQ

OPT. Because of the missing
edge, we can deduce that |Ev(G[COPT])| is smaller than or equal to p − 1 and
|Ev(G[COPT])| is greater than or equal to q − 1 + 1. By Lemma 1, we get

p− 1 ≥ |Ev(G[COPT])| ≥ |Ev(G[COPT])| ≥ q ≥ p ,

which is a contradiction. ��

Theorem 1. For every bipartite graph G, there exists an optimal solution COPT

such that G[COPT] is Kp,p, where p ∈ N.

Proof. Lemma 3 implies that the subgraph induced by an optimal solution is
Kp,p or Kp,p+1. In the first case the claim is trivial. In the second case, one
can remove any vertex v from the larger shore (of G[COPT]), obtaining a solu-
tion with equal cost, because the change in the cost of the solution is equal to
|Ev(G[COPT])|−|Ev(G[COPT])|, where |Ev(G[COPT])| = |Ev(G[COPT])| = p. ��

Lemma 4. Let G be a bipartite graph. The cost of the solution of type Kp,p is
|E(G)| − p.

Proof. By inspecting the summands of the cost in the definition, we get∣∣E (
G[C]

)∣∣ = 2 · p(p− 1)

2
= p2 − p ,

|{{u, v} ∈ E(G) | u ∈ IOPT ∨ v ∈ IOPT}| = |E(G)| − |E(G[C])| = |E(G)| − p2 .

Adding both parts together, we obtain the cost

cost(COPT) = |E(G)| − p2 + p2 − p = |E(G)| − p ,

which completes the proof. ��

In order to prove the NP-hardness of DecCliqueEditing, we describe a re-
duction from the NP-complete problem Balanced Complete Bipartite Sub-

graph (BCBS for short), which we now define formally.

Definition 3 (BCBS). The input of the BCBS is a bipartite graph G and
k ∈ N. The goal is to determine whether there is a complete bipartite subgraph
Kk,k of the graph G.

Theorem 2 (Johnson [10]). BCBS is NP-complete.

On the Clique Editing Problem 473

Theorem 3. There exists a polynomial-time reduction from BCBS to DecCli-

queEditing on bipartite graphs.

Proof. For an instance I1 = (G, k1) of BCBS we create an instance of Clique-

Editing I2 = (G, |E(G)|−k1). Clearly, this reduction can be done in polynomial
time, as we only change the number k1 to the number |E(G)|−k1. Let us divide
the proof of the fact that this is indeed a valid reduction into two parts.

If the answer for I1 is yes, then G contains a subgraph Kk1,k1 , which, based
on Lemma 4, has cost |E(G)| − k1. Thus an optimal solution for I2 is less than
or equal to |E(G)| − k1, hence the answer for I2 is yes.

If the answer for I2 is yes, then there exists a solution with cost at most
|E(G)|−k1. From Theorem 1, there is an optimal solution Kk2,k2 . From Lemma 4,
its cost is |E(G)| − k2. Hence, |E(G)| − k1 ≥ |E(G)| − k2, which means k2 ≥ k1.
Therefore, there exists a subgraph Kk2,k2 of G, such that k2 ≥ k1, which trivially
implies the existence of Kk1,k1 . The answer for I1 is yes. ��

Corollary 2. The problem DecCliqueEditing is an NP-complete problem on
both bipartite graphs and general graphs..

Proof. As we have already mentioned, DecCliqueEditing is in NP. The corol-
lary then follows from the existence of reduction from BCBS as described in
Theorem 3 and from the NP-completeness of BCBS due to Theorem 2. ��

4 CliqueEditing on Planar Graphs

As proved above, CliqueEditing is in its general case an NP-hard problem. In
this section we investigate this problem on planar graphs, and show that it is
polynomially tractable in this case. The proof of the correctness of the algorithm
is based on the well-known fact that the average degree of a planar graph is less
than six.1

Theorem 4. Let COPT be an optimal solution for CliqueEditing on a planar
graph G. Then |COPT| ≤ 11.

Proof. The graph G[COPT] is planar, because G is planar. Hence, the average
degree of G[COPT] is less than 6 and there must exist a vertex v ∈ COPT with
degree less than 6 (in G[COPT]). From this, |Ev(G[COPT])| = degG[COPT](v) ≤ 5
follows and from Lemma 1 we have |Ev(G[COPT])| ≥ (|COPT| − 1)/2. Putting
these two inequalities together, we obtain |COPT| ≤ 11. ��

Theorem 5. There exists a polynomial-time algorithm for CliqueEditing on
planar graphs.

Proof. It suffices to check every set C ⊆ V (G) with size at most eleven. The

total number of such sets is
∑11

i=1

(
n
i

)
∈ O(n11), where n = |V (G)|. ��

1 This follows from Euler’s formula for planar graphs, |V | − |E| + |F | = 2. Based on
the fact that every face is incident with at least 3 edges, and every edge is in at most
2 faces, we get the inequality |E| ≤ 3|V | − 6. Since the sum of degrees is equal to
2|E|, the average degree is 6− 12/|V | < 6. For more details, see [5].

474 I. Kováč, I. Selečéniová, and M. Steinová

5 Approximation Algorithms

If not stated otherwise, we assume that G contains at least one edge, since in
any graph without edges it is easy to find an optimal solution (containing only
one vertex).

5.1 PTAS on Bipartite Graphs

Consider a trivial approximation algorithm, which always chooses a solution C′,
such that |C′| = 1. We will show that this algorithm is a (1 +O(1/

√
|E(G)|))-

approximation. It is clear that cost(C′) = |E(G)|, because every edge has to be
removed in order to isolate all vertices in V (G) \ C′. From Lemma 4 we know
that an optimal solution COPT has cost |E(G)| − �, where G[COPT] = K�,�.
Since the number of edges in K�,� is �2, the number � is bounded from above

by
√
|E(G)|. By a simple calculation we get that the approximation ratio of the

solution C′ is

|E(G)|
|E(G)| − �

= 1 +
�

|E(G)| − �
≤ 1 +

√
|E(G)|

|E(G)| −
√
|E(G)|

= 1 +
1√

|E(G)| − 1
·

We use this algorithm in our effort to construct a polynomial-time approx-
imation scheme for CliqueEditing on bipartite graphs. Suppose we want to
obtain an approximation ratio of 1 + ε, for some ε > 0. If

1 + ε ≥ 1 +
1√

|E(G)| − 1
,

we can use the algorithm described above. For graphs where ε < 1/(
√
|E(G)|−1),

we have |E(G)| < (1 + 1/ε)2. Hence, these graphs have a constant number of
edges (for a fixed ε), and a constant number of non-isolated vertices. We can solve
these cases using a brute-force approach, that is, trying every feasible solution
that contains only non-isolated vertices.

Theorem 6. CliqueEditing on bipartite graphs admits a PTAS.

5.2 Constant Approximation Algorithm on General Graphs

In this part we analyze an algorithm GreedyRemoval, which starts with a so-
lution V (G) and iteratively removes from the solution a vertex with minimum
degree, if it is beneficial. A formal definition of the algorithm is stated below.
Note that δ(G) denotes the minimum degree of the graph G.

Algorithm 1. GreedyRemoval

1: C ← V (G)
2: while δ(G[C]) < (|C| − 1)/2 do
3: C ← C \ {v}, where v is a vertex with minimum degree in G[C].
4: end while
5: return C

On the Clique Editing Problem 475

From the algorithm description it is obvious that, if the minimum degree of
an n-vertex graph G is at least (n−1)/2, the solution produced by this algorithm
is C = V (G). First, we show some upper bounds on the cost of solutions produced
by this algorithm. Next, we prove an approximation ratio of 2 if the minimum
degree of a graph G is at least (n− 1)/2.

Lemma 5. Let G be a graph with n vertices and CALG be a solution produced
by the algorithm GreedyRemoval. Then cost(CALG) ≤ |E(G)|.

Proof. In the case that the minimum degree is at least (n − 1)/2, the claim is
obvious – the cost of the algorithm is the number of non-edges, and there are at
most n(n− 1)/4 non-edges, due to the fact that every vertex has degree at least
(n−1)/2. Therefore, for every vertex, there are at most (n−1)/2 edges missing.
For the same reason, the number of edges in the graph G is at least n(n− 1)/4
and hence cost(V (G)) ≤ |E(G)|.

In the case that the minimum degree is less than (n− 1)/2, we use induction
on the number of vertices. As the base case, consider a graph with only one
vertex. Both E(G) and the cost of the solution of the algorithm are equal to
zero, therefore the base case holds. For the inductive step, assume the claim
holds for every graph with at most i vertices. If the graph G has i + 1 vertices,
and its minimum degree is less than (n− 1)/2, the algorithm removes a vertex v
with minimum degree from the solution. If we denote the cost of the solution of
the algorithm on the graph G \ {v} by ci, and the one on the graph G by ci+1,
we have

ci+1 = ci + deg(v) ≤ |E(G \ {v})|+ deg(v) = |E(G)| ,
which concludes the proof. ��

Lemma 6. Let G be a graph with n vertices and CALG be a solution produced
by the algorithm GreedyRemoval. Then cost(CALG) ≤ |E(G)|.

Proof. The proof is analogous to the proof of Lemma 5. In the case that the
minimum degree is at least (n− 1)/2, the cost of the solution of the algorithm is
exactly |E(G)|. In the other case, we can again use induction and the fact that
E(G \ {v}) + deg(v) ≤ |E(G)|, as deg(v) is less than (n− 1)/2. ��

Lemma 7. Let G be a graph with n vertices and with minimum degree at least
(n − 1)/2. Then the solution CALG = V (G) produced by GreedyRemoval is
a 2-approximation.

Proof. Let (COPT, IOPT) be an optimal solution. The proof is divided into two
cases. First assume that |COPT| ≤ n/2, which implies |IOPT| ≥ n/2. Further-
more, the cost of the optimal solution is bounded from below by the number of
edges that have to be removed, which is at least (|IOPT| · (n − 1)/2)/2. (This
number corresponds to the minimum number of edges incident with vertices from
IOPT, when the minimum degree is at least (n−1)/2.) All in all, the cost of the op-
timal solution is at least n(n−1)/8. Based on Lemmas 5 and 6, we can bound the
cost of the solution produced by the algorithm by min(E(G), E(G)) ≤ n(n−1)/4,
hence the approximation ratio is at most 2.

476 I. Kováč, I. Selečéniová, and M. Steinová

It remains to resolve the case of |COPT| > n/2. In this case |IOPT| < n/2. Let
us denote the number of edges that have to be inserted into G in order to make
G[COPT] a clique by m and the number of edges existing in G[IOPT] by �. The
number � can be bounded from above by

� ≤ |IOPT|(|IOPT| − 1)

2
· (1)

Let us estimate the cost of the optimal solution. Clearly, m edges need to be
added into the graph. Furthermore, the edges incident with vertices from IOPT

have to be removed. Since the minimum degree of G is at least (n − 1)/2, the
number of these edges is bounded from below by (|IOPT|(n− 1)/2)− �. (In the
first part of the expression, the edges within IOPT are counted twice.) Thus,
the cost of the optimal solution is bounded from below by

cost(COPT) ≥ m +
|IOPT|(n− 1)

2
− � . (2)

The algorithm GreedyRemoval produces the solution CALG = V (G). In
order to make the whole graph a clique, the following edges have to be inserted: m
edges that make G[COPT] a clique and all edges incident with IOPT, which do not
yet exist in G. Let us count the non-edges in G, (edges in G) which are incident
with IOPT. The sum of all degrees of IOPT in G is at most |IOPT|(n − 1)/2, as
the maximal degree in G is at most (n− 1)/2. Every edge incident with IOPT is
counted in this sum, however, if an edge has both endpoints in IOPT, the edge is
counted twice. Therefore, we have to subtract the number of non-edges within
G[IOPT], which is |IOPT|(|IOPT| − 1)/2− �. Hence, the cost of CALG satisfies

cost(CALG) ≤ m +
|IOPT|(n− 1)

2
− |IOPT|(|IOPT| − 1)

2
+ �

= m +
|IOPT|(n− |IOPT|)

2
+ � . (3)

Applying the bound of � from (1) into (2), and using the bound (3), we can
easily compute the approximation ratio, leading to

cost(CALG)

cost(COPT)
≤

m + |IOPT|(n−|IOPT|)
2 + �

m + |IOPT|(n−|IOPT|)
2

= 1 +
�

m + |IOPT|(n−|IOPT|)
2

≤ 1 +
|IOPT|(|IOPT|−1)

2
|IOPT|(n−|IOPT|)

2

=
n− 1

|COPT|
≤ 2 · n− 1

n
≤ 2 ,

which concludes the proof. ��

Before we proceed to the proof of the main theorem of this section, we need
another auxiliary result, which claims the non-existence of any instance with
particular properties.

On the Clique Editing Problem 477

Lemma 8. Let c be a constant such that c3− 3c2− c− 1 > 0.2 Let G be a graph
with n vertices such that the following properties hold:

1. the minimum degree of G is less than (n− 1)/2,
2. there exists a vertex v of minimum degree (in G) such that v belongs to every

optimal solution,
3. the cost of an optimal solution is less than |E(G)|/c, and
4. the number of vertices n is greater than 1 + 2(c2 − c)/(c3 − 3c2 − c− 1).

Then |COPT| > 1 + deg(v)(c + 1)/c, where COPT is an optimal solution.

Proof. By contradiction, assume that |COPT| ≤ 1 + deg(v)(c + 1)/c. Using the
first property, we can bound the size of the optimal solution from above by
|COPT| < 1 + (n − 1)(c + 1)/(2c). Hence, the number of vertices that are not
contained in the optimal solution |IOPT| = |V (G)| − |COPT| is bounded by

|IOPT| = n− |COPT| > n− (c + 1)(n− 1)

2c
− 1 =

(c− 1)(n− 1)

2c
·

Let us denote the number of edges incident with IOPT by �IOPT . Clearly, since
v is a vertex of minimum degree, �IOPT ≥ |IOPT| deg(v)/2. Furthermore, the
cost of the optimal solution is bounded from below by �IOPT , because every edge
incident with a vertex from IOPT has to be removed in order to isolate all vertices
from IOPT.

Let us count the number of all edges in the graph. There are edges incident
with v and edges incident with IOPT – the number of these edges is at most
�IOPT + deg(v). Moreover, there are at most (|COPT| − 1)(|COPT| − 2)/2 edges
not incident with any vertex from IOPT ∪ {v}. Therefore,

|E(G)| ≤ �IOPT + deg(v) +
(|COPT − 1|)(|COPT| − 2)

2
·

Applying the previous results, we get

�IOPT ≤ cost(COPT) ≤ |E(G)|
c

≤
�IOPT + deg(v) + (|COPT|−1)(|COPT|−2)

2

c
·

The first inequality holds due to the second paragraph of the proof, the second
one is due to the third property from the statement of this lemma, and the last
one holds due to the above bound of the number of edges in the graph. Using
simple arithmetics, we obtain

�IOPT ≤
deg(v)

c− 1
+
|COPT|2 − 3|COPT|+ 2

2(c− 1)
·

Using the assumption that |COPT| ≤ 1 + deg(v)(c + 1)/c and the fact that
�IOPT ≥ |IOPT| deg(v)/2, we get

|IOPT| deg(v)

2
≤

2 deg(v) − c+1
c deg(v)

2(c− 1)
+

(c + 1)2 deg(v)2

2c2(c− 1)
,

2 That is, c is greater than approximately 3.383.

478 I. Kováč, I. Selečéniová, and M. Steinová

which can be further simplified to

|IOPT| ≤
1

c
+

(c + 1)2 deg(v)

c2(c− 1)
·

Since the degree of the vertex v is smaller than (n− 1)/2, and we have a lower
bound on the number of vertices in IOPT, it holds that

(c− 1)(n− 1)

2c
≤ 1

c
+

(c + 1)2(n− 1)

2c2(c− 1)
·

We continue by simplifying the inequality, and we finally obtain

(n− 1)(c3 − 3c2 − c− 1) ≤ 2c(c− 1) ,

which contradicts the last property, i.e., n > 1+(2c2−2c)/(c3−3c2− c−1). ��

Theorem 7. GreedyRemoval is a 3.524-approximation.

Proof. Let c := 3.524. We do an induction on the number of vertices of the
graph G.

Base Case: Checking all possible inputs with a brute force program we have
found out that the claim holds for all graphs on at most 9 vertices.

Inductive hypothesis: Assume that GreedyRemoval is a c-approximation for
all graphs on i vertices, where i ≥ 9.

Inductive step: Let G be a graph on i + 1 vertices. We have to prove that
GreedyRemoval is a c-approximation on G. If the minimum degree of G is at
least i/2, the claim follows from Lemma 7. Otherwise, we consider two cases.

Case 1: The minimum degree is less than i/2 and, for all v ∈ V (G) which have
the minimum degree, there exists an optimal solution COPT such that v ∈ COPT.

Let v be a vertex with minimum degree removed by the algorithm in the first
step, let C¬v

OPT be an optimal solution which does not contain v. Furthermore,
let CALG(G′) be a solution produced by the algorithm on a graph G′. By the
definition of the algorithm,

costG(CALG(G)) = costG\{v}(CALG(G\{v})) + deg(v) .

Since v is not contained in C¬v
OPT, the edges incident with v are counted in the

cost of C¬v
OPT and

costG(C¬v
OPT) = costG\{v}(C¬v

OPT \ {v}) + deg(v) .

Using the inductive hypothesis in the form

costG\{v}(CALG(G\{v})) ≤ c · costG\{v}(C¬v
OPT \ {v}) ,

we can compute the approximation ratio as

costG(CALG(G))

costG(C¬v
OPT)

≤
c · costG\{v}(C¬v

OPT \ {v}) + deg(v)

costG\{v}(C¬v
OPT \ {v}) + deg(v)

≤ c .

On the Clique Editing Problem 479

Case 2: The minimum degree is less than i/2 and there is a vertex v ∈ V (G)
with minimum degree that is contained in any optimal solution COPT.

Fix any optimal solution (COPT, IOPT). If cost(COPT) ≥ |E(G)|/c, the ap-
proximation ratio is at most c due to Lemma 5. Hence, for the rest of the proof, we
can assume cost(COPT) < |E(G)|/c. As the graph G has at least ten vertices, all
the requirements from Lemma 8 are met, and thus |COPT| > 1+deg(v)(c+1)/c.
Analogously to the first case, we can bound the cost of the algorithm from above
as costG(CALG(G)) ≤ costG\{v}(CALG(G\{v})) + deg(v).

To estimate the cost of the optimal solution with respect to the cost of
an optimal solution COPT(G\{v}) on the graph G \ {v}, let us take a look at
costG\{v}(COPT \ {v}). Recall that |Ev(G[COPT])| is the number of edges within
COPT incident with v. Clearly |Ev(G[COPT])| ≤ deg(v). Furthermore, there are
|COPT| − 1 − |Ev(G[COPT])| edges that have to be inserted into G in order to
connect v to the other vertices in COPT, and deg(v)− |Ev(G[COPT])| edges that
have to be removed in order to isolate v from vertices not contained in COPT.
From the above, it follows that

costG(COPT) = costG\{v}(COPT \ {v}) + |COPT| − 1− 2|Ev(G[COPT])|+ deg(v)

≥ costG\{v}(COPT \ {v}) + |COPT| − 1− deg(v) .

Using the optimality of COPT(G\{v}) on G \ {v} we have

costG\{v}(COPT \ {v}) ≥ costG\{v}(COPT(G\{v})) ,

and by the previously proven fact that |COPT| > 1 + deg(v)(c + 1)/c, we obtain

costG(COPT) > costG\{v}(COPT(G\{v})) +
deg(v)

c
·

Hence, from the inductive hypothesis, for the approximation ratio it holds that

cost(CALG(G))

cost(COPT)
≤

costG\{v}(CALG(G\{v})) + deg(v)

costG\{v}(COPT(G\{v})) + deg(v)
c

≤ c ,

which concludes the proof. ��

6 Conclusion

In the presented paper, we proved the NP-completeness of the decision version
of the problem CliqueEditing on both bipartite and general graphs. We also
stated that the problem is solvable in polynomial time on planar graphs and
admits a PTAS on bipartite graphs. Moreover, we constructed a constant ap-
proximation algorithm for the general case, and proved that the approximation
ratio is at most 3.524. This particular constant emerged solely from our abil-
ity to verify the base case in the proof of Theorem 7 for 9 vertices. Using a
manual verification for the base case, one can prove that the algorithm is a
3.708-approximation, considering graphs on at most 4 vertices.

480 I. Kováč, I. Selečéniová, and M. Steinová

We conjecture that this algorithm is a 3.383-approximation. This is supported
by Lemma 8 – using an analogous proof as in Theorem 7 with an extended base
case (in the case of an approximation ratio close to 3.385, it would be 612
vertices) we expect that one could prove an approximation ratio close to 3.383.

Acknowledgement. The authors would like to express their thanks to Hans-
Joachim Böckenhauer and Dennis Komm for valuable discussions and help.

References

1. Alon, N., Stav, U.: Hardness of edge-modification problems. Theor. Comput.
Sci. 410(47-49), 4920–4927 (2009)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1-3),
89–113 (2004)

3. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)

4. Damaschke, P., Mogren, O.: Editing the simplest graphs. In: Pal, S.P., Sadakane,
K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 249–260. Springer, Heidelberg
(2014)

5. Diestel, R.: Graph Theory, 4th edn. Graduate texts in mathematics, vol. 173.
Springer (2012)

6. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Transactions on Circuits and Systems 35(3), 354–362 (1988)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory, 1st edn. Texts in Theo-
retical Computer Science. An EATCS Series1 edition. Springer (March 2006)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of dna. J. Comput. Biol. 2(1), 139–152 (1995)

10. Johnson, D.S.: The NP-Completeness Column: An Ongoing Guide. J. Algo-
rithms 8(3), 438–448 (1987)

11. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

12. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In: Graph Theory and Computing, pp. 183–
217. Academic Press, New York (1973)

On the Complexity of Symbolic Verification

and Decision Problems in Bit-Vector Logic�

Gergely Kovásznai1, Helmut Veith1, Andreas Fröhlich2, and Armin Biere2

1 Formal Methods in Systems Engineering Group,
Vienna University of Technology, Wien, Austria
2 Institute for Formal Models and Verification,

Johannes Kepler University, Linz, Austria

Abstract. We study the complexity of decision problems encoded in
bit-vector logic. This class of problems includes word-level model check-
ing, i.e., the reachability problem for transition systems encoded by bit-
vector formulas. Our main result is a generic theorem which determines
the complexity of a bit-vector encoded problem from the complexity
of the problem in explicit encoding. In particular, NL-completeness of
graph reachability directly implies PSpace-completeness and ExpSpace-
completeness for word-level model checking with unary and binary arity
encoding, respectively. In general, problems complete for a complexity
class C are shown to be complete for an exponentially harder complexity
class than C when represented by bit-vector formulas with unary en-
coded scalars, and further complete for a double exponentially harder
complexity class than C with binary encoded scalars. We also show that
multi-logarithmic succinct encodings of the scalars result in complete-
ness for multi-exponentially harder complexity classes. Technically, our
results are based on concepts from descriptive complexity theory and
related techniques for OBDDs and Boolean encodings.

1 Introduction

Symbolic encodings of decision problems by Boolean formalisms are well-known
to increase the problem complexity [1,2,3,4,5,6,7,8,9,10,11,12]. In particular, the
literature has studied graph problems and other relational problems whose adja-
cency relation is given by a Boolean formula, circuit or BDD. As Tab. 1 shows,
the complexity of these problems typically rises by an exponential, e.g., from NL

to PSpace, from NP to NExpTime, etc. In this paper, we show that symbolic
encodings by quantifier-free bit-vector logic (QF BV) will in general also lead
to a complexity increase which ranges from exponential to multi-exponential.
Interestingly, the increase depends on a single factor, namely how the bit-width
of bit-vectors is encoded. For unary encoding, bit-vector logic shows the same
complexity behavior as Boolean logic, and for binary encoding, the complexity

� Supported by the NFN grant S11403-N23 (RiSE) of the Austrian Science Fund
(FWF) and by the grant ICT10-050 (PROSEED) of the Vienna Science and Tech-
nology Fund (WWTF).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 481–492, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

482 G. Kovásznai et al.

increase is double exponential. We can generalize the latter encoding, and call

it “ν-logarithmic”: encode the bit-width 22...2
c

as c in binary form, where the
degree of exponentiation is ν − 2. We achieve a ν-exponential increase in this
case. Importantly, hardness already holds for bit-vector logics with the simple
operators ∧,∨,∼,=, and the increment operator +1. Membership holds for all
bit-vector operators which allow log-space computable bit-blasting. Note that
∧,∨,∼,=,+1 defines a very weak logic: ∧,∨,∼,= are contained in all reasonable
logics, and the increment operator +1 can be defined from other operators eas-
ily [13]. Therefore, our results determine the complexity of decision problems for
a large class of bit-vector logics.

Table 1. Examples of complexity increase by symbolic encoding. New results are
indicated in boldface. All membership results hold for logics whose operators allow
log-space computable bit-blasting. Hardness requires the operators ∧,∨,∼,=,+1. The
column with ν holds for all ν > 1.

Encoding → explicit Boolean unary binary ν-logarithmic
circ./formula, QF BV QF BV QF BV

↓ Problem BDD

Word-Level MC,
Reachability NL PSpace ������ �������� (ν−1)	��������

Circuit Value,
Alternating P ExpTime ���
��� 2	���
��� ν	���
���
Reachability

Clique, 3-SAT, NP NExpTime ���
��� 2	���
��� ν	���
���
SAT, Knapsack

k-QBF ΣP
k NE

ΣP
k �

ΣP
k 2	�ΣP

k ν	�ΣP
k

Bit-Vector Logic. The theory of fixed-width bit-vector logics (i.e., logics where
each bit-vector has a given fixed bit-width) is investigated in several scientific
works [14,15,16,17,18], and even concrete formats for specifying such bit-vector
problems exist, e.g., the SMT-LIB format [19] or the BTOR format [20]. In this
paper, we restrict ourselves to quantifier-free bit-vector (QF BV [19]) logics.

As discussed below, bit-vector logics have attracted significant interest in
computer-aided verification and SMT solvers. From a theory perspective, bit-
vector logics are very succinct logics to express Boolean functions. In contrast
to Boolean logic, BDDs, and QBF, they are based on variables for bit-vectors
rather than variables for individual bits. Thus, for instance x[32] = y[32] expresses
that two bit-vectors x and y of bit-width 32 are equal. Bit-vector operators are
therefore defined for arbitrary bit-width n, for instance bitwise and/or/xor, shift
operators, etc. This has important consequences: (1) a bit-vector logic is given
by a list of operators, (2) there is an infinite number of bit-vector logics, and
(3) there is no finite functionally complete set of operators from which all other
operators can be defined. Moreover, it is evident that the encoding of scalars
such as the number 32 in the above simple example is related to the complexity
of bit-vector logic.

On the Complexity of Decision Problems in Bit-Vector Logic 483

In previous work by some of the authors [21,13], we investigated the com-
plexity of satisfiability checking of bit-vector formulas. For instance, we showed
in [21] that satisfiability checking of QF BV is NP-complete resp. NExpTime-
complete if unary resp. binary encoding of scalars is used and any standard
operator of the SMT-LIB [19] is allowed. (All these operators allow log-space
computable bit-blasting.) In the binary case, we further analyzed what hap-
pened if we restricted the operator set; e.g., if only bitwise operators, equality,
and left shift by one are allowed, then the complexity turns out to be PSpace-
complete [13]. In fact, it is easy to see that also the logic of the operators
∧,∨,∼,=,+1 has a satisfiability problem in PSpace.

Word-Level Model Checking and Decision Problems. In hardware and software
verification, bit-vector logics are a natural framework for word-level system
descriptions; e.g., registers in digital circuits and variables in software can be
represented by bit-vectors, and word-level operators, such as bitwise ones and
arithmetic ones, can be applied to them. The main practical motivation for our
work is word-level model checking, a bit-vector encoded problem that is of im-
portance in practice. With word-level model checking, we refer to the problem
of reachability in a transition system where a state is given by a valuation of one
or more bit-vectors, and the transition relation over the states is expressed as a
bit-vector formula. Such a representation provides a natural encoding for design
information captured at a higher level than that of individual wires and primitive
gates. In the past, there has been lots of research on bit-level model checking [22]
as well as bit-vector formula decision procedures [23,24]. Comparatively few work
has yet been published on word-level model checking. However, with increasing
performance of state-of-the-art model checkers [25] and SMT solvers [26,27], also
the interest in word-level model checking is growing [28,20,29]. While there are
some practical approaches to attack word-level model checking [28,20,29], we
are not aware of any work that is dealing with the complexity of the underlying
decision problem. Row 1 of Tab. 1 shows that we determine the complexity of
word-level model checking for a large class of operators and scalar encodings.

Beyond word-level model checking, we also address the complexity of other
decision problems. Rows 2-4 of Tab. 1 give examples of the complexity results
for well-known decision problems in bit-vector encoding.

Technical Contribution. Instead of individual complexity results, the paper
presents a generic technique to lift known complexity results for explicit en-
codings to the case of bit-vector encodings. Similar techniques were previously
developed for symbolic encodings by circuits [7,8,9], Boolean formulas [10], and
OBDDs [30]. Lifting membership for a complexity class is the easier part, for
which we give a general result in Thm. 1. Lifting hardness requires more effort.
Similarly as in [10,30], our method assumes that the problems in explicit encod-
ing are hard under quantifier-free reductions, a notion of reduction introduced in
descriptive complexity theory [31]. Note that the problems in Tab. 1 fulfill this
requirement. The key theorem is Thm. 2, from which a general hardness result
is implied in Corr. 2.

484 G. Kovásznai et al.

Discussion. The results of this paper show that the complexity of bit-vector
encoded problems depends crucially on the formalism to represent the bit-width
of the bit-vectors. At first sight, these results may seem unexpected, e.g., a small
part of the formalism clearly dominates the complexity. From an algorithmic per-
spective, however, this is not surprising: executing a for-loop from 0 to INT MAX

on architectures with bit-width 16, 216 or 22
16

will result in drastically different
runtimes!

It may also be surprising that QF BV fragments with PSpace satisfiability
and fragments with NExpTime satisfiability have the same complexity, e.g., for
word-level model checking. This is however a common phenomenon: Boolean
logic has an NP satisfiability problem, while satisfiability of BDDs is constant
time. Nevertheless, the model checking problem for both of them is PSpace-
complete [10,30].

Using unary and binary encodings for scalars draws a connection to previous
work [21]. Intuitively, results for the unary case measure complexity in terms
of bit-widths, and those for the binary case measure complexity in the classical
sense, i.e., in terms of formula size. The ν-logarithmic encoding also manifests
itself in practice, such as the one in the SMB-LIB to declare arrays by writing
(Array idx elem), where idx is the sort for array indexes, and elem is the sort
for array elements. If idx is a bit-vector sort (_ BitVec n), where n is encoded
w.l.o.g. in binary form, the size of the array is double exponential in the length
of the binary encoding of n.

We finally note that hardness for the unary case can also be concluded from an
analysis of the proofs in [10] using the definitions of symbolic encodings in [30].
The current paper gives a direct proof for the unary case which is independent
of the predecessor papers.

2 Preliminaries

Let N be the set of natural numbers {0, 1, 2, . . .}, while N+ denotes N\{0}.
B = {0, 1} is the Boolean domain. Given i ∈ N, let us define the repeated
exponentiation function expi : N $→ N as follows: exp0 (n) = n and expi+1 (n) =

2expi(n). Given a logical formula φ (in either bit-vector, first-order, or Boolean
logic), if x1, . . . , xk are all the free variables that occur in φ, we indicate this by
writing φ(x1, . . . , xk).

Complexity Classes. We assume that the reader is familiar with standard com-
plexity classes such as NL, P, ExpTime, etc., as listed in Tab 1. For simplicity,
we will refer to these complexity classes as “standard complexity classes”. For a
standard complexity class, it is natural to define the exponentially harder
complexity class: Exp1 (L) = Exp1 (NL) = PSpace, Exp2 (NL) =
Exp1 (PSpace) = ExpSpace, etc. Similarly, Exp1 (P) = ExpTime, Exp2 (P)=
Exp1 (ExpTime) = 2-ExpTime, etc., and analogously for other standard com-
plexity classes. For a formal definition of this concept (which is beyond the scope
and goal of this paper) one can use the concept of leaf languages [9,2].

On the Complexity of Decision Problems in Bit-Vector Logic 485

Computational Problems in Descriptive Complexity Theory. A relational sig-
nature is a tuple τ = (P a1

1 , . . . , P ak

k) of relation symbols of arity a1, . . . , ak,

respectively. A finite structure over τ is a tuple A = (U, P̂ a1

1 , . . . , P̂ ak

k) where

U is a nonempty finite set (called the universe of A) and each P̂ ai

i ⊆ Uai is a
relation over U . The class of all finite structures over τ is denoted by Struct (τ).
A computational problem over τ is a class A ⊆ Struct (τ), such that A is closed
under isomorphism. In this paper, we assume convex problems, as introduced
in [30], and similarly in [32]. A problem is convex if adding isolated elements
to the universe of a structure does not change membership in the problem. In
Sec. 4 we will show that the model checking problem is naturally presented in
this framework. For background on descriptive complexity see [33].

3 Bit-Vector Logic

A bit-vector, or word, is a sequence of bits (i.e. 0 or 1). In this paper, we consider
bit-vectors of a fixed size n ∈ N+, where n is called the bit-width of the bit-
vector. We assume the usual syntax and semantics for quantifier-free bit-vector
logic (QF BV), cf. the SMT-LIB format [19] and the literature [14,15,16,17,18].
Basically, a bit-vector formula contains bit-vector variables and bit-vector con-
stants, each of which is of a certain bit-width specified next to the variable resp.
constant, and uses certain bit-vector operators whose semantics is a priori de-
fined. For example, x[16] = y[16] ∧

(
u[32] + v[32] = (x[16] ◦ y[16]) 3 1[32]

)
is a

bit-vector formula with variables x and y of bit-width 16, u and v of bit-width
32, and operators for addition, shifting, concatenation, and comparison.

Note that, in bit-vector formulas, there exist such components which them-
selves do not represent bit-vectors, but rather carry additional numerical infor-
mation to the bit-vectors. We call them scalars. Bit-width is a scalar, and there
might be also other types of scalars in a formula1. This paper demonstrates
the effect of encoding the scalars in different ways. For instance, scalars could
be encoded as unary numbers or w.l.o.g. binary numbers, or we could choose
even more succinct encodings, such as the binary encoding of the logarithm of
the scalar. Formally, we represent those encodings by an integer ν ∈ N+, i.e.,
ν denotes how n ∈ N is obtained from a scalar s: (1) if ν = 1, then s is a
unary number encoding of n; (2) if ν > 1, then s is a binary number encoding
of a number d ∈ N such that n = expν−2 (d). Let encodeν (n) denote the scalar
that ν-encodes the number n, and let decodeν (s) denote the number that is
ν-encoded by the appropriate scalar s.

Now we give a formal definition of bit-vector formulas with the operators we
use throughout in the rest of the paper. Let us suppose that an encoding ν is
fixed. A bit-vector term t of bit-width n is denoted by t[s] where s = encodeν (n),
and defined inductively as follows:

1 For example, the common operators extraction and zero/sign extensions use scalar
arguments as well, cf. [19,14,15,16,17,18].

486 G. Kovásznai et al.

term condition bit-width

constant: c[s] c ∈ N, 0 ≤ c < 2n n

variable: x[s] x is an identifier n

bitwise negation: ∼ t[s] t[s] is a term n

bitwise and/or/xor, addition:
(t1

[s] • t2[s]) t1
[s], t2

[s] are terms n• ∈ {&, |,⊕,+}
equality, unsigned less than:

(t1
[s] • t2[s]) t1

[s], t2
[s] are terms 1• ∈ {=, <u}

Note that the value c of a bit-vector constant is not a scalar, therefore it is always
encoded as a binary number, regardless of ν. By a bit-vector formula we mean
a term of bit-width 1, since this case can be considered as the Boolean case. For
better readability, we write ¬,∧,∨ instead of ∼,&, | for bit-width 1, respectively.
Given a bit-vector operator set Ω, let BVΩ

ν denote the fragment of QF BV that
applies the encoding ν to scalars and only uses operators from Ω. Bit-blasting, or
flattening [34], interprets bit-vector variables as strings of Boolean variables and
translates bit-vector operations into Boolean formulas. By denoting the Boolean
logic as BO, we give a formal definition.

Definition 1 (Bit-blasting). Given an operator set Ω, a bit-blasting function
bblastΩν : BVΩ

ν $→ BO is defined as follows:

bblastΩν
(
ψ(x1

[s1], . . . , xk
[sk])

)
= φ(y11 , . . . , y

n1
1 , . . . , y1k, . . . , y

nk

k , z1, . . . , zl)

where ni = decodeν (si), such that ∀d1 ∈ Bn1 , . . . , dk ∈ Bnk

ψ(d1, . . . , dk) = true iff

∃!e1, . . . , el ∈ B . φ(d11, . . . , d
n1
1 , . . . , d1k, . . . , d

nk

k , e1, . . . , el) = true

where dji denotes the jth bit of di.

Note that the additional Boolean values e1, . . . , el are uniquely existentially
quantified. Therefore, in fact, each Boolean variable zi can rather be consid-
ered as a bit-vector function fi(x1

[s1], . . . , xk
[sk]) : Bn1 × · · · × Bnk $→ B. Thus,

ψ and φ encode the same
(∑k

i=1 ni

)
-ary relation over B.

We say that bblastΩν is log-space computable in bit-width if it is log-space

computable in
∑k

i=1 ni. Let Π denote the set of all the bit-vector operators such

that bblastΠν is log-space computable in bit-width, for all ν ∈ N+. Note that all
the common bit-vector operators [19] fall into Π .

4 Motivating Example: Word-Level Model Checking

We now demonstrate that our generic main results can be applied to the im-
portant example of reachability analysis in model checking, as to establish the
complexity of reachability in word-level model checking.

On the Complexity of Decision Problems in Bit-Vector Logic 487

The model checking problem has a natural representation with a relational
signature τ = (I1, T 2, P 1). In model checking terminology, I represents the set
of initial states, T the transition relation, and P the condition to check, i.e.,
the set of states whose reachability we want to verify. Thus, a structure A =
(U, Î1, T̂ 2, P̂ 1) is essentially a Kripke structure. Reachability analysis in A means

to check if there exists a reachable P̂ -state in the defined transition system, i.e.,
if ∃s0, s1, . . . , sk ∈ U such that (1) s0 ∈ Î, (2) ∀i ∈ [1, k] . (si−1, si) ∈ T̂ ,

and (3) sk ∈ P̂ . We call MC = {A ∈ Struct (τ) | ∃ a reachable P̂ -state in A}
the (explicit) model checking problem. Since MC is a simple variant of graph
reachability, we know from [31] that MC is NL-complete under quantifier-free
reductions.

The word-level encoding of MC means to encode the states by tuples of
bit-vectors, and to define the relations Î , T̂ , P̂ by bit-vector formulas. The cor-
responding decision problem is called bvΩν (MC), where ν specifies the scalar
encoding and Ω is a set of bit-vector operators that are allowed in the formulas.
We will formally define this problem in Sec. 5.

Our results require the following assumptions on Ω: (1) Ω contains only such
operators for which bit-blasting is log-space computable in bit-width and (2) Ω
contains all the simple operators ∧,∨,∼,=,+1. In particular, Ω may contain all
common bit-vector operators [19] that are used in practice.

Then we obtain the following results as a direct consequence of Thm. 1, Cor. 2,
and the NL-completeness of MC:

Corollary 1. Let Ω ⊆ Π. The decision problem bvΩν (MC) is

1. PSpace-complete, if ν = 1 and Ω ⊇ {∧,∨,¬},
2. (ν − 1)-ExpSpace-complete, if ν > 1 and Ω ⊇ {∧,∨,∼,=,+1},

under log-space reductions.

In practice, the term word-level model checking usually refers to the problem
bvΩ2 (MC), i.e., all scalars in the formulas are encoded as w.l.o.g. binary numbers.
Thus, our results show that word-level model checking is ExpSpace-complete.

5 Bit-Vector Representation of Problems

Our intention is to represent instances of computational problems as bit-vector
formulas. More precisely, given a relational signature τ = (P a1

1 , . . . , P ak

k), we

define what the bit-vector definition of a corresponding relation P̂i

ai

looks like
and what structure these definitions generate.

In order to simplify the presentation, we introduce the concept of term vectors.
A term vector is a sequence t1

[s1], . . . , tl
[sl] of bit-vector terms. We write term

vectors in boldface, i.e., t = t1
[s1], . . . , tl

[sl], and say that t has the bit-width
signature s1, . . . , sl. We distinguish the special case when terms are variables, by
denoting variable vectors as x,y, z.

Word-level model checking can again serve as motivation here, since it rep-
resents the states of a transition system by the same set of bit-vector variables

488 G. Kovásznai et al.

x1
[s1], . . . , xl

[sl]. I.e., a state is in fact can be represented as the valuation of
terms t1

[s1], . . . , tl
[sl] assigned to those variables. Therefore, it is important that

each state must have the same bit-width signature s1, . . . , sl.

Definition 2. Let x1, . . . ,xa be variable vectors each of which has the bit-width
signature s1, . . . , sl. Let ν be a scalar encoding, and let ni = decodeν (si) de-
note the actual bit-widths. A bit-vector formula ψ(x1, . . . ,xa) defines the a-ary
relation

genaν(ψ) = {(d1, . . . , da) ∈ (Bn1 × · · · × Bnl)a | ψ(d1, . . . , da) = true} .

Let τ = (P a1
1 , . . . , P ak

k) be a relational signature. The tuple of definitions

Ψ =
(
P1(x1

1, . . . ,x
1
a1

) := ψ1(x1
1, . . . ,x

1
a1

),

. . . ,

Pk(xk
1 , . . . ,x

k
ak

) := ψk(xk
1 , . . . ,x

k
ak

)
)

where each ψi is a bit-vector formula and each xi
j is a variable vector that has

the bit-width signature s1, . . . , sl, defines the τ-structure

genτν(Ψ) =
(
Bn1 × · · · × Bnl , gena1

ν (ψ1), . . . , genak
ν (ψk)

)
.

The bit-vector representation of a computational problem consists of all the bit-
vector representations of all the structures in the problem. Besides the definitions
Ψ of relations, it is also necessary to include the scalar encoding ν to use, as
follows.

Definition 3. Let A ⊆ Struct (τ) be a problem, ν a scalar encoding, and Ω a
set of bit-vector operators. Then we define

bvΩν (A) =
{

(Ψ, ν)
∣∣ genτν(Ψ) ∈ A, and Ψ contains only BVΩ

ν formulas
}
.

In order to show how membership for a standard complexity class C can be
automatically lifted when bit-vector representation is used, we give a necessary,
although not very strong, criterion on the operator set. This criterion is based
on bit-blasting, and requires to use operators from Π , i.e., those which allow
log-space computable bit-blasting in bit-width.

Theorem 1. Given a problem A, a standard complexity class C, and an oper-
ator set Ω ⊆ Π, if A ∈ C, then bvΩν (A) ∈ Expν (C).

6 Lifting Hardness

The main contribution of this paper is to show how hardness for a standard com-
plexity class C can also be automatically lifted. Our most important theorem,
Thm. 2 gives a rather general hardness result, from which we derive Cor. 2 to
show hardness of bvΩν for Expν (C), where Ω ⊇ {∧,∨,∼,=,+1}.

On the Complexity of Decision Problems in Bit-Vector Logic 489

Our proofs employ the framework of descriptive complexity theory [31]. In
particular, we use the standard assumption that all structures are equipped with
a binary successor relation. Thus, the universe of a structure can be naturally
seen as an initial segment of the natural numbers. Our complexity results for bit-
vector encoded problems assume that the problems in explicit encoding are hard
under quantifier-free reductions, i.e., quantifier-free interpretations with equality
and the successor relation. Examples of such problems including those in Tab. 1
can be found in [35,36,37,38,39]. For natural problems, it is usually not difficult
to rephrase an existing reduction as a quantifier-free reduction. Let A 	qf B
resp. A 	L B denote that the problem A has a quantifier-free resp. log-space
reduction to the problem B. Note that quantifier-free reductions are weaker
than log-space reductions, i.e., A 	qf B implies A 	L B. For exact background
material and definitions, see [31].

The key steps for Thm. 2 are two lemmas. Lemma 1 (“Conversion Lemma”)
shows that a quantifier-free reduction between A and B can be lifted to a log-
space reduction between bvν(A) and bvν(B). Lemma 2 shows that A is log-
space reducible to bvν(longν(A)) where longν(·) is an operator which decreases
the complexity ν-exponentially. From these two lemmas, Thm. 2 follows easily.
The methodology of this paper is closest to [30], which contains a more thor-
ough discussion of related work, descriptive complexity, and complexity theoretic
background.

Lemma 1 (Conversion Lemma). Let Ω ⊇ {∧,∨,∼,=,+1}. Given two prob-
lems A ⊆ Struct (σ) and B ⊆ Struct (τ), if A 	qf B, then bvΩν (A) 	L bvΩν (B),
for any ν.

The role of the following definition is to obtain from a problem A another prob-
lem longν(A) of ν-exponentially lower complexity. In order to construct this
latter problem, we are going to “blow up” the size of a structure in a poten-
tially ν-exponential way. To this end, we view a structure A as a bit string, and
interpret the bit string as a binary number char(A). The bit string is obtained
from the characteristic sequences of the relations in A, i.e., for each tuple in
lexicographic order, a single bit indicates whether the tuple is in the relation.
Due to the presence of the successor relation, this notion is well defined.

Definition 4. Given a structure A = (U, P̂1, . . . , P̂k), let char(P̂i) denote the

characteristic sequence of the tuples in P̂i in lexicographical order. Let char(A)
denote the binary number obtained by concatenating a leading 1 with the con-
catenation of char(P̂1), . . . , char(P̂k).

We define longν(A) =
{

(V, R̂1)
∣∣ |V | = expν−1 (char(A)) and

∣∣R̂∣∣ = |V |
}

.
For a problem A, let longν(A) =

⋃
A∈A longν(A). For a complexity class C, let

longν(C) =
⋃

A∈C longν(A).

The next lemma shows that encoding the problem longν(A) as bit-vector formu-
las applying ν-encoding to scalars gives a ν-exponentially more succinct repre-
sentation, to which, consequently, the original problem A can be reduced.

490 G. Kovásznai et al.

Lemma 2. Given a problem A, A 	L bvΩν (longν(A)) if one of the following
conditions holds:

1. ν = 1 and Ω ⊇ {<u}
2. ν > 1 and Ω ⊇ {=}
Theorem 2 (Upgrading Theorem). Let C1 and C2 be complexity classes
such that longν(C1) ⊆ C2. If a problem A is C2-hard under quantifier-free reduc-
tions, then bvΩν (A) is C1-hard under log-space reductions if one of the following
conditions holds:

1. ν = 1 and Ω ⊇ {∧,∨,∼,=,+1, <u}
2. ν > 1 and Ω ⊇ {∧,∨,∼,=,+1}

Proof. For any B ∈ C1, by assumption longν(B) ∈ C2, and hence longν(B) 	qf

A. By Lemma 1, it follows that bvΩν (longν(B)) 	L bvΩν (A), regardless of the
additional operator <u in the unary case. Furthermore, by Lemma 2, it holds
that B 	L bvΩν (longν(B)). To put them together, B 	L bvΩν (longν(B)) 	L

bvΩν (A) and, therefore, bvΩν (A) is C1-hard.

As we discussed before, the case of ν = 1 shows the same complexity behavior
as Boolean logic. Of course, this is no wonder, since all the operators in Ω =
{∧,∨,∼,=,+1, <u}, or more precisely, BVΩ

1 allows log-space computable bit-
blasting in bit-width, and also in formula size, since bit-widths are now encoded

in unary form. Thus, BVΩ
1 is log-space reducible to BV{∧,∨,¬}

1 , since {∧,∨,¬}
is a functionally complete set of Boolean operators. As a consequence, one can

strengthen the first statement of Thm. 2 further as follows: bvΩ
′

1 (A) is C1-hard
for any Ω′ ⊇ {∧,∨,¬}. Note that this is consistent with corresponding results
in [10,30]. As a direct consequence, we can give the following corollary.

Corollary 2. Given a standard complexity class C and a problem A, if A is
C-hard under quantifier-free reductions, then bvΩν (A) is Expν (C)-hard under
log-space reductions if one of the following conditions holds:

1. ν = 1 and Ω ⊇ {∧,∨,¬}
2. ν > 1 and Ω ⊇ {∧,∨,∼,=,+1}

7 Conclusion

This paper gives a generic method for asserting the complexity of bit-vector
logic encoded problems. As corollary we obtain a new complexity result for
word-level model checking, an important practical problem. Since all complexity
classes with complete problems have problems complete under quantifier-free
reductions [11], we obtain a comprehensive picture of the worst case complexity
of problems in bit-vector encoding. Note that our results do not apply to sat-
isfiability of bit-vector logic, because “existence of a solution” is not hard for
a complexity class, and thus the assumption of the Conversion Lemma is not
satisfied. Nevertheless, we expect that the complexity of satisfiability for multi-
logarithmic encodings shows a similar behavior as the problems studied here.
We leave an analysis of this question to future work.

On the Complexity of Decision Problems in Bit-Vector Logic 491

References

1. Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems on
succinct instances. Computer Science, 351–377 (1992)

2. Borchert, B., Lozano, A.: Succinct circuit representations and leaf language classes
are basically the same concept. Inf. Process. Lett. 59(4), 211–215 (1996)

3. Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 285–296. Springer, Heidelberg (2014)

4. Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: Complexity of prob-
lems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer
Science 5(5) (1999)

5. Galperin, H., Wigderson, A.: Succinct representations of graphs. Information and
Control 56(3), 183–198 (1983)

6. Gottlob, G., Leone, N., Veith, H.: Succinctness as a source of complexity in logical
formalisms. Annals of Pure and Applied Logic 97(1), 231–260 (1999)

7. Lozano, A., Balcázar, J.L.: The complexity of graph problems for succinctly repre-
sented graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–286. Springer,
Heidelberg (1990)

8. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.
Information and Control 71(3), 181–185 (1986)

9. Veith, H.: Succinct representation, leaf languages, and projection reductions. In:
IEEE Conference on Computational Complexity, pp. 118–126 (1996)

10. Veith, H.: Languages represented by boolean formulas. Inf. Process. Lett. 63(5),
251–256 (1997)

11. Veith, H.: Succinct representation, leaf languages, and projection reductions. In-
formation and Computation 142(2), 207–236 (1998)

12. Wagner, K.W.: The complexity of combinatorial problems with succinct input rep-
resentation. Acta Informatica 23(3), 325–356 (1986)

13. Fröhlich, A., Kovásznai, G., Biere, A.: More on the complexity of quantifier-free
fixed-size bit-vector logics with binary encoding. In: Bulatov, A.A., Shur, A.M.
(eds.) CSR 2013. LNCS, vol. 7913, pp. 378–390. Springer, Heidelberg (2013)

14. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arith-
metic. In: Proc. DAC 1998, pp. 522–527 (1998)

15. Bjørner, N.S., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg
(1998)

16. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-
vectors. In: ICCAD, pp. 13–20. IEEE (2009)

17. Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for a theory of
fixed-sized bitvectors with composition and extraction. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)

18. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. PhD thesis, University of Trento (2010)

19. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proc.
SMT 2010 (2010)

20. Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level
problems for model checking. In: Proc. 1st International Workshop on Bit-Precise
Reasoning, pp. 33–38. ACM, New York (2008)

492 G. Kovásznai et al.

21. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: Proc. SMT 2012, pp. 44–55 (2012)

22. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

23. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

24. Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The bit-level analysis tool. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 303–306.
Springer, Heidelberg (2007)

25. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012)

26. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009)

27. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

28. Bjesse, P.: A practical approach to word level model checking of industrial netlists.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 446–458. Springer,
Heidelberg (2008)

29. Bjorner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability
modulo theories. In: Proc. SMT 2012, pp. 3–11 (2013)

30. Veith, H.: How to encode a logical structure by an OBDD. In: Proc. 13th Annual
IEEE Conference on Computational Complexity, pp. 122–131. IEEE (1998)

31. Immerman, N.: Languages that capture complexity classes. SIAM Journal on Com-
puting 16(4), 760–778 (1987)

32. Schwentick, T.: Padding and the expressive power of existential second-order logics.
In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 461–477. Springer, Heidelberg
(1998)

33. Immerman, N.: Descriptive complexity. Springer (1999)
34. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.

Texts in Theoretical Computer Science. Springer (2008)
35. Stewart, I.A.: Complete problems involving boolean labelled structures and pro-

jection transactions. Journal of Logic and Computation 1(6), 861–882 (1991)
36. Stewart, I.A.: On completeness for NP via projection translations. In: Martini, S.,

Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS,
vol. 702, pp. 353–366. Springer, Heidelberg (1993)

37. Stewart, I.A.: Using the Hamiltonian path operator to capture NP. Journal of
Computer and System Sciences 45(1), 127–151 (1992)

38. Stewart, I.A.: On completeness for NP via projection translations. Mathematical
Systems Theory 27(2), 125–157 (1994)

39. Stewart, I.A.: Complete problems for monotone NP. Theoretical Computer Sci-
ence 145(1), 147–157 (1995)

Computational Complexity of Covering

Three-Vertex Multigraphs

Jan Kratochv́ıl1,�, Jan Arne Telle2,��, and Marek Tesař1,� � �

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

{honza,tesar}@kam.mff.cuni.cz
2 Department of Informatics, University of Bergen,

Bergen, Norway
telle@ii.uib.no

Abstract. A covering projection from a graph G to a graph H is a map-
ping of the vertices of G to the vertices of H such that, for every vertex
v of G, the neighborhood of v is mapped bijectively to the neighborhood
of its image. Moreover, if G and H are multigraphs, then this local bijec-
tion has to preserve multiplicities of the neighbors as well. The notion of
covering projection stems from topology, but has found applications in
areas such as the theory of local computation and construction of highly
symmetric graphs. It provides a restrictive variant of the constraint sat-
isfaction problem with additional symmetry constraints on the behavior
of the homomorphisms of the structures involved.

We investigate the computational complexity of the problem of de-
ciding the existence of a covering projection from an input graph G
to a fixed target graph H . Among other partial results this problem has
been shown to be NP-hard for simple regular graphsH of valency greater
than 2, and a full characterization of computational complexity has been
shown for target multigraphs with 2 vertices. We extend the previously
known results to the ternary case, i.e., we give a full characterization of
the computational complexity in the case of multigraphs with 3 vertices.
We show that even in this case a P/NP-completeness dichotomy holds.

Keywords: Computational Complexity, Graph Homomorphism,
Covering Projection.

1 Introduction

The concept of covering spaces or covering projections stems from topology, but
has attracted a lot of attention in algebra, combinatorics, and also the theory
of computation. For instance, it is used in algebraic graph theory as a very
useful tool for the construction of highly symmetric graphs. The applications in

� Supported by Czech research grant P202/12/G061 - CE-ITI.
�� Supported by the Norwegian Research Council, project PARALGO.

� � � Supported by Charles University by the grant SVV-2014-260103.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 493–504, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

494 J. Kratochv́ıl, J.A. Telle, and M. Tesař

computability include the theory of local computations (cf. [2] and [7]). A lot
of interest has been paid to graphs that allow finite planar covers. This class of
graphs is closed in the minor order and hence recognizable in polynomial time,
yet despite a lot of effort no concrete recognition algorithm is known, since the
obstruction set has not been determined yet. The class has been conjectured to
be equal to the class of projective planar graphs by Negami [19] (for the most
recent results cf. [11,12]).

In [1], Abello et al. raised another complexity question, asking about the
computational complexity of deciding the existence of a covering projection from
an input graph G to a fixed graph H (hoping for a characterization giving a
P/NP-completeness dichotomy depending on H). A similar question when both
G and H are part of the input was shown NP-complete by Bodlaender already
in 1989 [4]. The dichotomy asked for by Abello et al. seems to be hard to obtain
and only very partial results are known. The most general NP-completeness
result states that for every simple regular graph H of valency at least 3, the
problem is NP-complete [17]. No plausible conjecture on the borderline between
polynomially solvable and NP-complete instances has been published so far, yet
it is believed that a P/NP-completeness dichotomy will hold, as in the case of
the constraint satisfaction problem (CSP).

The relation to CSP is worth mentioning in more detail. As shown in [9],
for every fixed graph H , the H-Cover problem can be reduced to CSP, but
mostly to NP-complete cases of CSP, so this reduction does not help. In a sense
a covering projection is itself a variant of CSP, but with further constraints of
local symmetry. Thus the dichotomy conjecture for H-Cover does not follow
from the well-known Feder-Vardi dichotomy conjecture for CSP (cf. [8]).

In [16] it is shown that in order to fully understand the H-Cover problem
for simple graphs, one has to understand its generalization for colored mixed
multigraphs. For this reason we are dealing with multigraphs (undirected) in
this paper. Kratochvil et al. [16] completely characterized the computational
complexity of the H-Cover problem for colored mixed multigraphs on two
vertices. The aim of this paper is to extend this characterization to 3-vertex
multigraphs (in the undirected and monochromatic case). The characterization
is described in the next section. It is more involved than the case of 2-vertex
multigraphs, but this should not be surprising as ternary structures tend to be
substantially more difficult than their binary counterparts. An analogue in CSP
is the dichotomy of binary CSP proved by Schaefer in the 70’s [20] followed by
the characterization of CSP into ternary structures by Bulatov almost 30 years
later [5].

2 Preliminaries and Statement of Our Results

For the sake of brevity we reserve the term “graph” for a multigraph. We denote
the set of vertices of a graph G by V (G) and the set of edges by E(G). For two
vertices u, v of G we denote the number of distinct edges between u and v by
mG(u, v) and we say that uv is an mG(u, v)-edge. The degree of vertex v of G

Computational Complexity of Covering Three-Vertex Multigraphs 495

is denoted by degG(v) (recall that in multigraphs, the degree of a vertex v is
defined as the number of edges going to other vertices plus twice the number
of loops at v, i.e. degG(v) = 2mG(v, v) +

∑
u=v mG(u, v)). By NG(v) we denote

the multiset of neighbors of vertex v in G where the multiplicity of v in NG(v)
is 2mG(v, v) and for every u = v the multiplicity is mG(u, v). We omit G in the
subscript if G is clear from the context.

Suppose A and B are two multisets. Let A′, resp. B′ be the set of different
elements from A, resp. B. We say that a mapping g : A′ → B′ is a bijection from
A to B if for every b′ ∈ B′ the sum of multiplicities of all elements from g−1(b′)
in A equals the multiplicity of b′ in B (note that g is not necessarily a bijection
between sets A′ and B′). If C′ is a set then by A ∩ C′ we mean a multiset that
contains only elements from A′ ∩ C′ with the multiplicities corresponding to A.
We denote the sum of multiplicities of all elements in A by |A|.

Let G and H be graphs. A homomorphism f : V (G) → V (H) is an edge
preserving mapping from V (G) to V (H). A homomorphism f is a covering pro-
jection if NG(v) is mapped to NH(f(v)) bijectively for every v ∈ V (G) (here we
consider the multiset bijection). Note that by the definition a covering projection
is not necessarily surjective. The notion of a covering projection is also known
as a locally bijective homomorphism or simply a cover. In this paper we denote
a covering projection f from G to H by f : G→ H .

Strictly speaking, a covering projection (as the notion follows from topology)
should be defined by a pair of mappings – one on the vertices and one on the
edges of the graphs involved. But it was shown in [16] (using König’s theorem and
2-factorization of 2k-regular graphs) that every cover (defined as above) can be
extended to a topological covering projection f : V (G) ∪ E(G) → V (H) ∪ E(H).

In this paper we consider the following decision problem.

Problem: H-Cover

Parameter: Fixed graph H .
Input: Graph G.
Task: Does there exist a covering projection f : G→ H?

Note that the problem H-Cover belongs to NP as we can guess a mapping
f : V (G) → V (H) and verify if f is a covering projection in polynomial time.
This means that in our NP-completeness results we only prove the NP-hardness
part.

An equitable partition of a graph G is a partition of its vertex set into blocks
B1, . . . , Bd such that for every i, j = 1, . . . , d and every vertex v in Bi it holds
that |NG(v) ∩Bj | = ri,j (recall that NG(v) is generally a multiset). We call the
matrix M = (ri,j) corresponding to the coarsest equitable partition B1, . . . , Bd

of G (ordered in some canonical way; see Corneil and Gotlieb [6]) the degree
refinement matrix of G, denoted by drm(G), and we say that G is a d-block
graph. Note that 1-block graphs are exactly regular graphs (despite the fact
that vertices can contain a different number of loops).

It is also known that if G covers H via a covering f , then drm(G) = drm(H).
In particular, f preserves the coarsest equitable partition of G, i.e., if B′

1, . . . , B
′
d,

resp. B1, . . . , Bd are the blocks in the partition of G, resp. H then f(B′
i) = Bi for

496 J. Kratochv́ıl, J.A. Telle, and M. Tesař

every i = 1, . . . , d. Since the matrix drm(G) can be computed in time polynomial
in the size of G, in this paper, we assume that drm(G) = drm(H).

For every quadruplet of non-negative integers k, l, x, y we define a graph
S(k, l, x, y) on the vertex set {a, b, c} with the following edge multiplicities (see
Figure 1):

• m(a, c) = m(b, c) = k • m(c, c) = l
• m(a, a) = m(b, b) = x • m(a, b) = y

In this paper we focus on graphs H having exactly three vertices. For such
graphs we give the full computational complexity characterization of H-Cover.
More precisely, we show the following P/NP-completeness dichotomy.

Observation 1. Let H be a 3-block graph on three vertices. Then H-Cover is
polynomially solvable.

Theorem 1. Let H be a 2-block graph on three vertices. If H is isomorphic to
S(k′, l, x, 0), S(k′, l, 0, y) or S(2, l, 0, 0), where k′ ∈ {0, 1} and l, x, y ≥ 0, then
H-Cover is polynomially solvable. Otherwise H-Cover is NP-complete.

Theorem 2. Let H be a t-regular graph on three vertices. If H is disconnected
or t ≤ 2, then H-Cover is polynomially solvable. Otherwise, H-Cover is
NP-complete.

Note that whenever H-Cover is polynomially solvable then we are able to
find a corresponding covering projection in polynomial time, as well. That follows
directly from the proofs of Observation 1, Theorem 1, and Theorem 2.

Observation 1 follows from the fact that if drm(G) = drm(H) then the only
mapping f : V (G) → V (H) that preserves the blocks is a covering projection.

In Section 3 we state the necessary lemmata for the proof of Theorem 1.
Section 4 is devoted to the proof of Theorem 2. All polynomial cases are covered
by Lemma 5. We then introduce a new decision problem - H-Cover*. We
prove that this problem is NP-complete for all connected t-regular graphs H
with t ≥ 4. The proof is based on mathematical induction where we are able to
use a stronger induction hypothesis than with simple H-Cover. NP-hardness of
H-Cover then follows from the fact that H-Cover* is reducible to H-Cover

in polynomial time. Note that due to space limitation only the full version of
the paper will contain all necessary lemmata and proofs.

Let us give a few more technical definitions and notations. Throughout the
rest of the paper we reserve the letter H for a graph on 3 vertices a, b, and c.

Let m,n, z be integers such that m ≥ n > 0 and z ≥ 0. We define a graph
H(m,n, z) to be the graph on the vertex set {a, b, c} such that (see Figure 1):

• m(a, a) = m • m(b, b) = n
• m(a, b) = z • m(b, c) = z + 2m
• m(a, c) = z + 2n • m(c, c) = 0

Let G,F and H be graphs. From the definition of a covering projection it is
easy to show that if f : G→ F and g : F → H are two covering projections then
the composition g ◦ f : G → H is also a covering projection. Since every graph
isomorphism is a covering projection, every time we investigate the complexity

Computational Complexity of Covering Three-Vertex Multigraphs 497

Fig. 1. The graphs S(k, l, x, y) and H(m,n, z)

of H-Cover where H is isomorphic to S(k, l, x, y) or H(m,n, z), we can and we
will assume that H = S(k, l, x, y) or H = H(m,n, z).

By a boundary δG(F) of an induced subgraph F of a graph G we mean the
subset of vertices of F that are adjacent to at least one vertex outside F .

Let A,B be sets and let f : A → B be a mapping. Then we define f(A) =⋃
a∈A{f(a)}. If f(A) contains only one element, say x, then we simply write

f(A) = x instead of f(A) = {x}.

3 Complexity for 2-Block Graphs on Three Vertices

In this section we provide the proof of Theorem 1. We will assume that H is a
2-block graph with the blocks {a, b} and {c}. From the definition of an equitable
partition we have degH(a) = degH(b) = degH(c). The next proposition shows
the connection between graphs S(k, l, x, y) and 2-block graphs.

Proposition 1. Every 2-block graph H on three vertices is isomorphic to some
S(k, l, x, y), where 2x+ y = 2l + k.

Proof. Since we cannot distinguish vertices a and b in the block {a, b} we have
m(a, a) = m(b, b) = x and m(a, c) = m(b, c) = k. This means that H is iso-
morphic to S(k, l, x, y), where l = m(c, c) and y = m(a, b). The inequality
2x+ y = 2l + k then follows directly from the fact that degH(a) = degH(c). ��

Before we proceed to the proof of Theorem 1 we split all 2-block graphs
into three subsets and show the complexity separately for each subset. Figure 2
shows how we split these graphs, and shows also the computational complexity
of H-Cover for the graphs H in the corresponding subset.

Lemma 1. Let H be a 2-block graph on three vertices. If H is isomorphic to
S(k′, l, x, 0), S(k′, l, 0, y) or S(2, l, 0, 0) for some k′ ∈ {0, 1} and l, x, y ≥ 0 then
H-Cover is polynomially solvable.

Proof. Let G be the input to H-Cover and let AB, resp. C be the block of G
that corresponds to the block {a, b}, resp. {c} of H .

First suppose that H is isomorphic to S(k′, l, x, 0) or S(k′, l, 0, y). We will
construct a conjunctive normal form boolean formula ϕG with clauses of size 2,
such that ϕG is satisfiable if and only if G covers H .

498 J. Kratochv́ıl, J.A. Telle, and M. Tesař

Fig. 2. The partition of 2-block graphs. Leaf vertices denote the computational com-
plexity of H-Cover for the corresponding graph H .

Let the variables of ϕG be {xu|u ∈ AB} and for each u, v ∈ AB we add to
ϕG the following clauses:

– (xu ∨ xv) and (¬xu ∨ ¬xv), if u = v and u, v share a neighbor in C
– (xu ∨ ¬xv) and (¬xu ∨ xv), if uv ∈ E(G) and H = S(k′, l, x, 0)
– (xu ∨ xv) and (¬xu ∨ ¬xv), if uv ∈ E(G) and H = S(k′, l, 0, y)

Suppose that ϕG is satisfiable and fix one satisfying evaluation of variables.
Define a mapping f : V (G) → V (H) by:

– f(u) = a, if u ∈ AB and xu is positive
– f(u) = b, if u ∈ AB and xu is negative
– f(u) = c, if u ∈ C

It is a routine check to show that f is a covering projection from G to H .
On the other hand, if f : G → H is a covering projection then we can define
an evaluation of ϕG such that xu is positive if and only if f(u) = a. Such an
evaluation satisfies the formula ϕG since there is exactly one positive literal in
every clause. The fact that the size of ϕG is polynomial in the size of G and
2-SAT is polynomially solvable implies that H-Cover is polynomially solvable.

In the rest of the proof we suppose that H = S(2, l, 0, 0). In this case the
graph G covers H if and only if we can color the vertices of AB by two colors,
say black and white, in such a way that for each u ∈ C exactly two out of four
vertices from NG(u) ∩ AB are black.

We construct an auxiliary 4-regular graph G′. Let V (G′) = C and let edges of
G′ correspond to the vertices of AB, and connect its two neighbors in C. Note
that G′ can generally contain loops and multi-edges.

Then the coloring of vertices of AB in G corresponds to the coloring of edges
of G′ such that the black edges induce a 2-factor of G′. The problem of deciding
the existence of a 2-factor in a 4-regular graph can be solved in polynomial time.
In fact, such a 2-factor always exists and can be find in polynomial time. ��

In Lemma 2 we deduce NP-hardness of H-Cover from the following problem.

Problem: m-in-2m-SATq

Input: A formula ϕ in CNF where every clause contains exactly 2m variables
without negation and every variable occurs in ϕ exactly q times.

Computational Complexity of Covering Three-Vertex Multigraphs 499

Task: Does there exist an evaluation of the variables of ϕ such that every clause
contains exactly m positively valued variables?

Kratochv́ıl [14, Corollary 1] shows that this problem is NP-complete for every
q ≥ 3 and m ≥ 2. If formula ϕ is a positive instance of m-in-2m-SATq we simply
say that ϕ is m-in-2m satisfiable.

For the purposes of our NP-hardness deductions in Lemma 2 we will build a
specific gadget according to the following needs:

Definition 1 (Variable gadget). Let H = S(k, l, x, y) and let F be a graph
with 2q specified vertices S = {s1, . . . , sq} and S′ = {s′1, . . . , s′q} of degree one.
Let V , resp. V ′ be the set of neighbors of vertices in S, resp. S′ in F . Suppose
that whenever F is an induced subgraph of G with δG(F) ⊆ S∪S′ and f : G→ H
is a covering projection then f(S ∪ S′) = c and one of the following occurs:

i) f(V) = a and f(V ′) = b iii) f(V ∪ V ′) = a
ii) f(V) = b and f(V ′) = a iv) f(V ∪ V ′) = b

Furthermore, suppose that any mapping f : S ∪S′∪V ∪V ′ → V (H) such that
f(S ∪ S′) = c and satisfying i) or ii) can be extended to V (F) in such a way
that for each u ∈ V (F) \ (S ∪ S′) the restriction of f to NF (u) is a bijection to
NH(f(u)).

We denote such F by VGH(q) and we call it a variable gadget of size q.

The next lemma shows how we use variable gadgets while Lemma 3 proves
that VGH(q) exists for some graphs S(k, l, x, 0), S(2, l, x, 0), and S(k, l, 0, y).
Note that in Definition 1 and Lemma 2 we do not use the fact that H is a
2-block graph. Hence, we can use this lemma also in Section 4.

Lemma 2. Let k ≥ 2 and let H = S(k, l, x, y). If for some q ≥ 3 there exists a
variable gadget VGH(q) then H-Cover is NP-complete.

Proof. We deduce NP-hardness ofH-Cover from k-in-2k-SATq. Let ϕ be an in-
stance of k-in-2k-SATq. Let x1, x2, . . . , xn, resp. C1, C2, . . . , Cm be the variables,
resp. clauses of ϕ. For every clause Ci denote the variables in Ci by l1i , . . . , l

2k
i

(recall that all variables have only positive appearances in ϕ). We construct a
graph Gϕ such that Gϕ covers H if and only if ϕ is k-in-2k satisfiable.

We start the construction of Gϕ by taking vertices c1, . . . , cm, c
′
1, . . . , c

′
m (cor-

responding to the clauses of ϕ) and we add l loops to each of them. For every
variable xi we take a copy VGi(q) of variable gadget VGH(q). Denote the copy of
S, S′, V , resp. V ′ in VGi(q) simply by Si, S′i, V i, reps. V ′i. For every occurrence
of xi in Cj we identify one vertex from Si, resp. S′i with cj, resp. c′j . We do

it in such a way that every vertex from Si ∪ S′i is identified exactly once, see
Figure 3.

We claim that Gϕ covers H if and only if ϕ is k-in-2k satisfiable.
Suppose that there exists a covering projection f : Gϕ → H . We define an

evaluation of the variables of ϕ such that xi is true if and only if f(V i) = a.
From the properties of a variable gadget we know that f(cj) = c for every

j = 1, . . . ,m. Then |NGϕ(cj) ∩ f−1(a)| = |NGϕ(cj) ∩ f−1(b)| = k. This means
that in every clause of ϕ there is exactly k positive as well as negative variables.

500 J. Kratochv́ıl, J.A. Telle, and M. Tesař

VG (q)1 VG (q)2 VG (q)3 VG (q)nV1 V2 V3 Vn

V 1 V 2 V 3 V n' ' ' '

c1 c2 c3 cm

c'1 c'2 c'3 c'm

Fig. 3. The construction of the graph Gϕ for k = 2 and q = 3. In this example ϕ
contains a clause C2 = (x1 ∧ x2 ∧ x3 ∧ xn) and a variable x3 appears in clauses C1, C2

and Cm.

For the opposite implication we fix one satisfying evaluation of ϕ. We define
a mapping f : V (Gϕ) → V (H) in the following way:

– f(cj) = f(c′j) = c, for all j = 1, . . . ,m
– f(V i) = a and f(V ′i) = b, if xi is a positive variable
– f(V i) = b and f(V ′i) = a, if xi is a negative variable

Then for each i = 1, . . . , n : f(Si) = c and f(V i) = f(V ′i). By the definition
of a variable gadget we know that f can be extended to every VGi(q) in such a
way that for each u ∈ V (VGi(q)) \ (Si ∪ S′i): the restriction of f to NGϕ(u) is
a bijection to NH(f(u)). It is a routine check to show that such a mapping f is
a covering projection from Gϕ to H . ��

Lemma 3. If a 2-block graph H is one of the following:

a) S(k, l, x, 0), where k ≥ 3, l ≥ 0 and x ≥ 0
b) S(2, l, x, 0), where l ≥ 0 and x ≥ 1
c) S(k, l, 0, y), where k ≥ 2, l ≥ 0 and y ≥ 1

then there exists a variable gadget VGH(q) for some q ≥ 3.

Proof. Depending on which of a), b) and c) holds for the graph H , we define
VGH(q) and the corresponding sets S and S′ as depicted in Figure 4. Note that
in the case a), b), resp. c) we have that q is equal to k, 4, resp. 2k.

k
k ky y

l

l

k-1 k

k ky yk-1 k

2x 2x
l

x

kx 2x 2x
l

S S' S SS' S'

b
a a

a a

a a

a

a

ab

bb

b

b

b b

bc

c

c

c

a) b) c)

Fig. 4. Examples of the variable gadgets for the cases a), b) and c)

Computational Complexity of Covering Three-Vertex Multigraphs 501

The fact that the depicted graphs are really variable gadgets follows from a
case analysis. Figure 4 also shows how one particular mapping f : S∪S′∪V ∪V ′ →
H (where V , resp. V ′ are the neighbors of S, resp. S′) can be extended to all
vertices of VGH(q). Other conditions from the definition of VGH(q) follow from
the fact that H has two blocks. ��

Lemma 4. Let H = S(k, l, x, y) be a 2-block graph where k, l ≥ 0 and x, y ≥ 1.
Then H-Cover is NP-complete.

Proof. Kratochv́ıl et al. [16, Theorem 11] proved that if H ′ is a graph on two ver-
tices L and R such that x = mH′(L,L) = mH′ (R,R) ≥ 1 and y = mH′(L,R) ≥
1, then H ′

-Cover is NP-complete.
We deduce NP-hardness of H-Cover from H ′

-Cover. Let G′ be an instance
of H ′

-Cover. We construct a graph G such that G covers H if and only if G′

covers H ′.
We start the construction of G by taking two copies G1 and G2 of G′. Denote

the copy of vertex v ∈ V (G′) in G1, resp. G2 by v1, resp. v2. For every v ∈ V (G′)
we add to G a new vertex uv with l loops and k-edges v1uv and v2uv.

Suppose that f : G → H is a covering projection. Then f(uv) = c for every
v ∈ V (G′) and f restricted to G1 is a covering projection to H ′. This means
that G′ covers H ′.

For the opposite implication suppose that f ′ : G′ → H ′ is a covering projec-
tion. We define a mapping f : V (G) → V (H) in the following way:

– f(uv) = c
– f(v1) = f ′(v)
– f(v2) = a if f(v1) = b, and f(v2) = b otherwise

for every v ∈ V (G′). It is a routine check to show that f is a covering projection
from G to H . ��

Next we proceed to the proof of Theorem 1.

Proof (of Theorem 1). The polynomial cases are settled by Lemma 1. The cases
where x, y ≥ 1 follow from Lemma 4. All other cases follow from Lemmata 2
and 3 (see Figure 2). ��

4 Complexity for 1-Block Graphs on Three Vertices

In this section we focus on 1-block graphs H , i.e. regular graphs. We provide
several definitions and lemmata that help us prove Theorem 2. The next lemma
settles the polynomial cases.

Lemma 5. Let H be a t-regular graph on three vertices. If H is disconnected
or t ≤ 2, then H-Cover is polynomially solvable.

Proof. Let G be a t-regular graph. Let us first suppose that H is disconnected.
Without loss of generality suppose that mH(a, c) = mH(b, c) = 0. We define a

502 J. Kratochv́ıl, J.A. Telle, and M. Tesař

mapping f : V (G) → V (H) by f(u) = c for every u ∈ V (G). Then mapping f is
a covering projection from G to H by the definition.

If H is connected and t ≤ 2, then t = 2 and H is a triangle. A 2-regular
graph G covers the triangle if and only if G consists of disjoint cycles of lengths
divisible by 3. This condition can be easily verified in linear time. ��

For the NP-hardness part of Theorem 2 we use a reduction from a problem
we call H-Cover*. To define H-Cover* we need the following definitions.

Definition 2. Let G be a graph on 3n vertices and let A = {A1, A2, . . . , An}
be a partition of its vertices into n sets of size 3. Then we say that A, resp. pair
(G,A) is a 3-partition, resp. graph 3-partition. Moreover, if f : V (G) → {a, b, c}
is a mapping such that f(Ai) = {a, b, c} for every Ai ∈ A then we say that f
respects the 3-partition A.

Definition 3. We say that a graph 3-partition (G,A) covers* graph H if there
exists a covering projection f∗ : G→ H that respects the 3-partition A. We denote
such a mapping by ”→∗“ and call it a covering projection* or simply a cover*.

Definition 4. Let (G,A) be a graph 3-partition and let H be a graph. If the
existence of a covering projection f : G→ H implies the existence of a covering
projection* f∗ : (G,A) →∗ H, then we say that (G,A) is nice for H.

Note it follows from these definitions that if G does not cover H then any
graph 3-partition (G,A) is nice for H .

Problem: H-Cover*

Parameter: Fixed graph H .
Input: Nice graph 3-partition (G,A) for H .
Task: Does there exist a covering projection* f : (G,A) →∗ H?

Similarly as H-Cover also the H-Cover* problem belongs to the class NP.
This means that to show NP-completeness of H-Cover* we only need to prove
NP-hardness.

Observation 2. Let H be a graph. Then H-Cover* is polynomially reducible
to H-Cover.

Proof. Suppose that (G,A) is an instance of H-Cover*. Since (G,A) is nice for
H we know that (G,A) covers* H if and only if G covers H , which concludes the
proof. ��

This observation allows us to prove NP-hardness of H-Cover* instead
of H-Cover. We do this by mathematical induction. The key advantage
of H-Cover* is that we can use a stronger induction hypothesis.

Theorem 3. Let H be a connected t-regular graph on three vertices and t ≥ 4.
Then H-Cover* is NP-complete.

In the rest of the paper we prove Theorem 3. We assume that H is a connected
t-regular graph and t ≥ 4.

Computational Complexity of Covering Three-Vertex Multigraphs 503

The following lemma deduces NP-hardness of H-Cover* for a very special
graph H , and will serve as an illustration of such deductions. NP-hardness of
H-Cover* is deduced from a 3-edge coloring problem. Holyer [13] proved that
this problem is NP-complete even for simple cubic graphs. Denote the 3-edge
coloring problem for cubic graphs by 3-ECol.

Lemma 6. Let H = S(1, 1, 1, 1). Then H-Cover* is NP-complete.

Proof. We reduce the NP-hard problem 3-ECol to H-Cover*. For every sim-
ple cubic graph F we construct a graph 3-partition (GF ,A) such that (GF ,A)
covers* H if and only if F is 3-edge colorable.

For every vertex u ∈ V (F) we insert to GF vertices u1, u2, u3 and we add
1-edges u1u2, u2u3 and u3u1. For every edge uv ∈ E(F) we choose vertices ui
and vj and we add 2-edge uivj to GF . We choose indices the i and j in such
a way that the final graph GF is 4-regular. We define the 3-partition A as⋃

u∈V (F){{u1, u2, u3}}.
We prove that (GF ,A) is nice for H . Let f : GF → H be a covering projection.

Clearly all 2-edges of GF must be mapped by f to loops of H . This implies that
for every u ∈ V (F) is f(u1, u2, u3) = {a, b, c} and so f respects A.

Suppose that f∗ : (GF ,A) →∗ H is a covering projection*. We know that
every 2-edge uivj corresponds to an edge uv of F and f∗(ui) = f∗(vj). We
define a coloring col : E(F) → V (H) by c(uv) = f∗(ui). The fact that f respects
the 3-partition A implies that col is a proper 3-edge coloring of F .

In the rest of the proof suppose that col : E(F) → V (H) is a proper 3-edge
coloring of F . We show that there exists a covering projection* f∗ : (GF ,A) →∗

H . For every 2-edge uivj of GF we define f∗(ui) = f∗(vj) = col(uv). Since col
is a proper 3-edge coloring of F we have {f∗(u1), f∗(u2), f∗(u3)} = {a, b, c} for
every u ∈ V (F). This means that f∗ respects the 3-partition A. It is a routine
check to show that f∗ is a covering and consequently a covering projection*. ��

As already mentioned, due to space limitation we have in this extended ab-
stract removed the remainder of the lemmata needed for the proof of Theorem 3.
These can be found in the full version of the paper. We proceed to the proof of
Theorem 2 that handles the complexity of H-Cover for all 1-block graphs H
on three vertices.

Proof (of Theorem 2). Lemma 5 covers all polynomial cases while Theorem 3
with Observation 2 covers the NP-complete cases. ��

5 Conclusion

We have settled the computational complexity of H-cover for all multigraphs
on three vertices. Not surprisingly, the characterization is substantially more in-
volved than the characterization of the 2-vertex case. These results constitute an
important step towards the goal of a full dichotomy for complexity of H-cover

of simple graphs, a goal that requires a full dichotomy also for colored mixed
multigraphs, as shown in [16], and in particular a dichotomy for the multigraphs
handled in this paper.

504 J. Kratochv́ıl, J.A. Telle, and M. Tesař

References

1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of
covering finite complexes. Australian Journal of Combinatorics 4, 103–112 (1991)

2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

3. Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs.
Journal of Combinatorial Theory, Series B 30(2), 184–187 (1981)

4. Bodlaender, H.L.: The Classification of Coverings of Processor Networks. Journal
of Parallel and Distributed Computing 6, 166–182 (1989)

5. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on
a 3-element set. J. ACM 53(1), 66–120 (2006)

6. Corneil, D.G., Gotlieb, C.C.: An Efficient Algorithm for Graph Isomorphism. J.
ACM 17(1), 51–64 (1970)

7. Courcelle, B., Métivier, Y.: Coverings and Minors: Application to Local Computa-
tions in Graphs. European Journal of Combinatorics 15(2), 127–138 (1994)

8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Jour-
nal of Computing 1, 57–104 (1998)

9. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms-structure,
complexity, and applications. Computer Science Review 2, 97–111 (2008)

10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
11. Hliněný, P.: K4,4 − e Has No Finite Planar Cover. Journal of Graph Theory 21(1),

51–60 (1998)
12. Hliněný, P., Thomas, R.: On possible counterexamples to Negami’s planar cover

conjecture. Journal of Graph Theory 46(3), 183–206 (2004)
13. Holyer, I.: The NP-Completeness of Edge-Coloring. SIAM J. Comput. 10(4), 718–

720 (1981)
14. Kratochv́ıl, J.: Complexity of Hypergraph Coloring and Seidel’s Switching. In: Bod-

laender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 297–308. Springer, Heidelberg
(2003)

15. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering Regular Graphs. Journal of
Combinatorial Theory, Series B 71(1), 1–16 (1997)

16. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of colored graph covers I.
Colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335,
pp. 242–257. Springer, Heidelberg (1997)

17. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering prob-
lems. Nordic Journal of Computing 5, 173–195 (1998)

18. Litovsky, I., Métivier, Y., Zielonka, W.: The power and the limitations of local
computations on graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp.
333–345. Springer, Heidelberg (1993)

19. Negami, S.: Graphs which have no planar covering. Bulletin of the Institute of
Mathematics, Academia Sinica 4, 377–384 (1988)

20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–
226 (1978)

Finding Maximum Common Biconnected Subgraphs
in Series-Parallel Graphs�

Nils Kriege and Petra Mutzel

Dept. of Computer Science, Technische Universität Dortmund, Germany
{nils.kriege,petra.mutzel}@tu-dortmund.de

Abstract. The complexity of the maximum common subgraph problem in partial
k-trees is still largely unknown. We consider the restricted case, where the input
graphs are k-connected partial k-trees and the common subgraph is required to
be k-connected. For biconnected outerplanar graphs this problem is solved and
the general problem was reported to be tractable by means of tree decomposition
techniques. We discuss key obstacles of tree decompositions arising for common
subgraph problems that were ignored by previous algorithms and do not occur in
outerplanar graphs. We introduce the concept of potential separators, i.e., sepa-
rators of a subgraph to be searched that not necessarily are separators of the input
graph. We characterize these separators and propose a polynomial time solution
for series-parallel graphs based on SP-trees.

Keywords: Tree decomposition, maximum common subgraph, series-parallel
graph.

1 Introduction

The complexity of the subgraph isomorphism problem in partial k-trees is exception-
ally well studied [9,7,5,8], while this does not apply to the same extent to the related
maximum common subgraph problem (MCS). Subgraph isomorphism is known to be
tractable in partial k-trees that are k-connected or have bounded degree [9,6]. How-
ever, it is NP-complete in partial k-trees if the smaller graph is not k-connected or has
more than k vertices of unbounded degree [7]. Subgraph isomorphism even remains
NP-complete in connected outerplanar graphs [12]. Recently, polynomial time solu-
tions were presented for connected MCS in outerplanar graphs under the additional
restriction that blocks, i.e., maximal biconnected subgraphs, and bridges of the input
graphs must be preserved (BBP-MCS) [11,3]. Based on this result it was shown that the
problem can still be solved in polynomial time even when this restriction is dropped,
but graphs have bounded degree [3]. The problem is also tractable for almost trees
of bounded degree [1] and when one of the input graphs is a bounded-degree partial
k-tree and the other is a connected graph with a polynomial number of possible span-
ning trees [13]. These results show that subgraph isomorphism and MCS both can be
solved for certain restricted graph classes in polynomial time. However, only recently

� Research supported by the German Research Foundation (DFG), priority programme
“Algorithms for Big Data” (SPP 1736).

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 505–516, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

506 N. Kriege and P. Mutzel

it was proven that MCS is NP-complete in vertex-labeled partial 11-trees of bounded
degree [2] — a class of graphs which allows for polynomial time subgraph isomor-
phism algorithms [9,6]. Essentially the complexity of MCS is unknown for graphs of
bounded-degree that are not outerplanar and have tree width less than 11.

Furthermore, the problem with the requirement that the connectivity and tree width
of the input graphs and the common subgraph coincide, is open.

Definition 1 (k-MCS). Given two k-connected partial k-trees G and H , determine the
maximum number of vertices in a common k-connected induced subgraph of G and H .

Note that 1-MCS is equivalent to the maximum common subtree problem that is well
known to be solvable in polynomial time [10]. A slightly different variant of MCS,
where the common subgraph has a maximum number of edges and is not required to be
induced, is referred to as maximum common edge subgraph (MCES). For outerplanar
graphs, a subclass of the series-parallel graphs or partial 2-trees, 2-MCES was solved
as a subproblem of BBP-MCES [11,3]. For arbitrary k the positive result for subgraph
isomorphism in k-connected partial k-trees was reported to be transferred to MCS by
means of normalized tree decompositions [4,8].1 However, we show that approaches
directly based on (normalized) tree decompositions fail and identify a key obstacle in-
herent to common subgraph problems that does not occur for subgraph isomorphism.
We analyze these difficulties in the context of tree decompositions and present a solution
for 2-MCS based on the SP-tree data structure. Notably these obstacles do not arise for
trees and outerplanar graphs. Our solution can easily be extended to solve BBP-MCS
in series-parallel graphs and may form the basis for solving k-MCS with k > 2.

2 Preliminaries

Given two undirected graphs G and H , a bijection φ : V (G) → V (H) is a (graph)
isomorphism if ∀u, v ∈ V (G) : (u, v) ∈ E(G) ⇔ (φ(u), φ(v)) ∈ E(H). We write
G 4 H if there is an isomorphism between G and H . A subgraph isomorphism from
G to H is an isomorphism between G and H [W], W ⊆ V (H), where H [W] is the
subgraph induced by W in H . A common subgraph isomorphism between two graphs
G and H is an isomorphism φ between G[U], U ⊆ V (G), and H [W], W ⊆ V (H).
Then C 4 G[V] 4 H [W] is said to be a common subgraph. The isomorphism φ
induces the subgraph isomorphisms φG : V (C) → V (G) and φH : V (C) → V (H)
from the common subgraph to the two input graphs G and H , respectively. A common
subgraph C is maximum if there is no common subgraph C′ with |V (C′)| > |V (C)|.
Separators and Tree Decompositions. A set S ⊆ V (G) is called |S|-separator or
separator of a connected graph G if G \ S := G[V (G) \ S] consists of at least two
connected components. A separator S is called (a, b)-separator if G \ S contains two
disjoint connected components C and D, such that a ∈ V (C) and b ∈ V (D). A sep-
arator S is called minimal if there are vertices a, b ∈ V (G), such that S is an (a, b)-
separator, but there is no (a, b)-separator S′ with S′ ⊂ S. A separator S is said to cross
another separator T if G \ T contains components C,D such that S ∩ V (C) = ∅ and

1 In both references the result is attributed to an unpublished manuscript by F.J. Brandenburg
that was kindly provided to the authors of this article.

Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs 507

a

b c

d e

f g

h

(a) Graph G

a, d, h a, c, e

a, b, d

a, d, e

d, e, f d, e, g

a, d a, e

d, e

(b) NTD(G)

S

S

S

S S

P

P

a

b

d

a

d

a

d

h

a

c

d
e

d
e

d
ef d

e
g

(c) T (G)

Fig. 1. A biconnected partial 2-tree G (a), a normalized tree decomposition of G (b) and a SP-tree
of G (c) with the associated skeleton graphs (dashed lines represent virtual edges)

S ∩ V (D) = ∅. Let S, T be minimal separators, then S crosses T iff T crosses S; two
non-crossing separators are said to be parallel. For example, in Fig. 1(a) the separator
{a, e} crosses {c, d} and vice versa. A graph is called k-connected if it does not contain
a j-separator with j < k, and it has connectivity κ(G) = k if it is k-connected, but not
(k + 1)-connected.

A tree decomposition of a graph G is a pair (T,X), where T is a tree and X =
(Xi)i∈V (T) a family of vertex subsets Xi ⊆ V (G) called bags satisfying:

T1 V (G) =
⋃

i∈V (T)Xi,
T2 for every edge (u, v) ∈ E(G) there is a node i ∈ V (T) with u, v ∈ Xi,
T3 for every i, j, k ∈ V (T), if j lies on the unique path with endpoints i and k then

Xi ∩Xk ⊆ Xj .

The width of a tree decomposition (T,X) is defined as max{|Xi| − 1 : i ∈ V (T)} and
the tree width tw(G) of a graphG is the least width of any tree decomposition ofG. The
graphs with tree width≤ k are also known as partial k-trees. Partial 2-trees correspond
to series-parallel graphs and include the class of outerplanar graphs, i.e., graphs that
can be drawn in the plane without edge crossings such that all vertices touch the outer
face. It is well known that for any two adjacent nodes i, j ∈ V (T) the intersection
of the bags Xi ∩ Xj is a separator of G. Therefore, κ(G) ≤ tw(G) and the equation
κ(G) = tw(G) = k is satisfied for k-connected partial k-trees only.

To solve the subgraph isomorphism problem in k-connected partial k-trees a nor-
malized tree decomposition was proposed in [6] making k-separators explicit by intro-
ducing separator nodes which are distinguished from clique nodes. Here, we call a tree
decomposition (T,X) normalized if V (T) can be divided into the two disjoint sets S
and C of separator and clique nodes, respectively, such that

N1 S and C is a bipartition of T and all leaves of T are clique nodes,
N2 all separator and clique nodes have bags of size k and k + 1, respectively,

508 N. Kriege and P. Mutzel

N3 for each path (i, j, k) in T : Xj = Xi ∪Xk if j ∈ C and Xj = Xi ∩Xk if j ∈ S.

The bags associated with separator nodes form a set of pairwise parallel separators. Fig-
ure 1(b) shows an example of a normalized tree decomposition, denoted by NTD(G).
Note that in general a (normalized) tree decomposition is not unique for a given graph.
Therefore, a so-called tree decomposition graph was used in [6] that is a directed
acyclic graph incorporating all possible normalized tree decompositions. Normalized
tree decompositions and tree decomposition graphs can be computed in time O(n2)
and O(nk+2), respectively [6].

SP-tree Data Structure. For biconnected partial 2-trees, SP-trees are a well-known
data structure, which reflects their series parallel composition, cf. Fig. 1(c). We use a
notation and definition common for SPQR-trees, a generalization of SP-trees. Let G be
a biconnected partial 2-tree with at least three vertices. The SP-tree T = T (G) is the
smallest tree such that

S1 each node μ of T is associated with a skeleton graph Sμ = (Vμ, Eμ). Each edge
e = (u, v) of Eμ is either a real edge, i.e., e ∈ E(G), or a virtual edge where
{u, v} forms a 2-separator of G.

S2 T has two different node types with the following skeleton structures:
S: The skeleton Sμ is a simple cycle, i.e., μ represents a series composition.
P: The skeleton Sμ consists of two nodes and multiple parallel edges between

them, i.e., μ represents a parallel composition.
S3 For two adjacent nodes μ and ν the skeleton Sμ contains a virtual edge eν that

represents Sν and vice versa. The node ν is called pertinent to eν .
S4 The original graph G can be obtained by merging the skeletons of adjacent nodes,

where the virtual edges eμ and eν are not part of the resulting graph and their
common endpoints are merged for all (μ, ν) ∈ E(T).

The S-nodes VS(T) and the P-nodes VP (T) form a bipartition of T . Let r = (u, v)
be an arbitrary edge in G. The SP-tree rooted at r is obtained by rooting T at the node
τ with r ∈ E(Sτ). Let μ be a child of ν with respect to the parent-child relationship
induced by the root τ . The virtual edge eν in Sμ is called reference edge of μ, denoted
by ref(μ). The edge r is considered the reference edge of τ . For a node μ of the SP-tree
T (G), there is a direct correspondence between the virtual edges of the skeleton graph
Sμ, the connected components of T \ μ and the connected components of G \ V (Sμ).

A normalized tree decomposition can be obtained from the SP-tree by successively
separating S-nodes that have skeletons with more than three vertices. For an arbitrary
separator a new P-node is created whose skeleton has exactly two virtual edges associ-
ated with the two parts of the original skeleton graph, one of which becomes the skele-
ton of a newly created S-node. When there is no S-node left with a skeleton with more
than three vertices, the tree corresponds to a normalized tree decomposition, whereas
P-nodes map to separator nodes and S-nodes to clique nodes. Conversely, the SP-tree
can be obtained from a normalized tree decomposition of a partial 2-tree by merging
each separator node s with its neighbors if it is (i) adjacent to exactly two clique nodes
and (ii) associated with a bag Xs of vertices that are not adjacent in G.

Note that for all P-nodes ν of T (G) the set V (Sν) is a bag of some node of every
normalized tree decomposition of G. SP-trees are unique in contrast to normalized tree
decompositions.

Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs 509

1 2 3

4

5

6 7

8

9 10

(a) Subtree T 4
5

1 2 3

4

5

6

7 8

(b) Subtree S3
4

6

7

1

2

54

(c) Matching problem

Fig. 2. Two rooted subtrees (a) and (b) and the associated matching problem (c). Gray vertices
and edges are not part of the rooted subtrees, edges without label in (c) have weight 1.

3 Tree Decompositions and Common Subgraph Problems

A key property of tree decompositions is their close relation to separators, which al-
lows to systematically divide graphs into subgraphs along the tree structure. Based on
solutions for these parts, typically a solution for the input graphs is computed.

We briefly review the Edmonds/Matula2 algorithm [10] for 1-MCS, which is based
on bipartite matching. A tree T is decomposed into rooted subtrees. For an edge (u, v) ∈
E(T) we denote by T u

v the subtree rooted at v, where the child u and its descendants
are deleted, see Fig. 2. For every pair of rooted subtrees of the two input graphs G
and H the MCS under the restriction that the roots are mapped to each other is com-
puted and stored in a table D by dynamic programming. Let Gi

s and Hj
t be two rooted

subtrees and Ms = {s1, . . . , sn} and Mt = {t1, . . . , tm} the children of s in Gi
s and

t in Hj
t , respectively. Then D(Gi

s, H
j
t) = 1 + MWBMATCHING(Ms,Mt, w), where

MWBMATCHING is the size of a maximum weight bipartite matching in the complete
bipartite graph with vertex set Ms ∪Mt and edge weights w. The edge weights corre-
spond to the results for pairs of smaller rooted subtrees and are determined according
to w(sk, tl) = D(Gs

sk , H
t
tl), k ∈ {1, . . . , n}, l ∈ {1, . . . ,m}. The matching defines

the mapping of the children of the two roots, cf. Fig. 2(c). Filling the table ordered
by increasing size of subtrees eventually allows to determine the result by combining
all pairs of corresponding rooted subtrees, i.e., Gi

s and Gs
i with Hj

t and Ht
j . A key

observation for correctness of the approach is the following.

Observation 1. Let C be a common subtree of G and H with isomorphism φ. If v is a
1-separator of C, then φG(v) and φH(v) are 1-separators of G and H , respectively.

This fact allows to determine a solution based on results for pairs of subtrees of the
input graphs determined by the separating vertices. Figure 3 illustrates that this obser-
vation does not hold in series-parallel graphs: The maximum common subgraph in the
given example consists of the parts of the graphs depicted in black. Note that in ev-
ery normalized tree decomposition of G (H) there is a separator node with bag {u, v}
({s′, t′}). This directly follows from the fact that separator nodes are closely related to
P-nodes of the SP-tree that are unique3, cf. Sect. 2. For a maximum common subgraph

2 Note that a similar approach for subtree isomorphism was proposed by Matula and the varia-
tion for MCS in trees is attributed to Edmonds [10], but was not published.

3 This also follows from [5], Theorem 3.3.

510 N. Kriege and P. Mutzel

t

u

v

s

x

(a) Graph G

t′

u′

v′

s′

x′

(b) Graph H

Fig. 3. Example where straight-forward algorithms based on tree decomposition fail

C with isomorphism φ we must have φ(y) = y′ for y ∈ {u, v, s, t}. Let a = φ−1
G (u),

b = φ−1
G (v), then {a, b} is a separator of C, but {φH(a) = u′, φH(b) = v′} is not

a separator of H . When computing common subgraphs based on normalized tree de-
compositions, typically all vertices of a bag in NTD(G) are matched to the vertices
of a bag in NTD(H). One obstacle here is that normalized tree decompositions are
not unique. This can be overcome by means of tree decomposition graphs. However, in
the example, there are no bags with corresponding vertices in any normalized tree de-
composition. Therefore, it is difficult to apply normalized tree decompositions to solve
common subgraph problems. In contrast to the subgraph isomorphism problem, where
normalized tree decompositions have been successfully applied, a key obstacle here is
that the subgraph to be searched may be a subgraph of both input graphs and parts of the
input graph that are not contained in the common subgraph constrain the possible nor-
malized tree decompositions. This is the reason why the approaches mentioned in [4,8]
do not work.

To overcome this issue, in Sect. 4 we introduce the concept of a potential separator,
i.e., a separator of a subgraph to be searched that not necessarily is a separator of the
input graph. For a given potential separator P we characterize the maximal subgraph
that is separated by P and propose a decomposition of series-parallel graphs into split
graphs based on all possible potential separators analogously to the approach by Ed-
monds/Matula for trees. In Sect. 4.1 we provide an algorithm based on SP-trees that
solves 2-MCS by implicitly matching the split graphs of the two input graphs.

4 A Polynomial-Time Algorithm for 2-MCS

We say P = {u, v} is a potential separator of a biconnected partial 2-tree G if there is
a biconnected induced subgraph G′ ⊆ G with separator P .

Observation 2. Let C be a biconnected common subgraph of the biconnected partial
2-trees G and H with isomorphism φ. If {u, v} is a 2-separator of C, then {φG(u),
φG(v)} and {φH(u), φH(v)} are potential separators of G and H , respectively.

In the following we characterize the maximal biconnected induced subgraph G∗
P that is

separated by a potential separator P . Since a potential separator not necessarily sepa-
rates G, there may be parts of G keeping G \P connected, which can consequently not
be contained in G∗

P . We show that these parts are associated with specific separators of
G that we refer to as critical. We call a 2-separator S of a biconnected partial 2-tree G

Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs 511

compulsive if every normalized tree decomposition NTD(G) contains a separator bag
i with Xi = S. Note that S may be a compulsive separator of G, but not necessarily is
for an induced biconnected subgraph G′ ⊆ G. In this case we call S critical.

Lemma 1. Let G be a biconnected partial 2-tree and S = {u, v} ⊂ V (G). The fol-
lowing statements are equivalent:

(i) The set S is a critical separator of G,
(ii) S is compulsive for G and (u, v) /∈ E(G),

(iii) there is a P-node ν in the SP-tree T (G) with V (Sν) = S and (u, v) /∈ E(G),
(iv) the graph G \ S has at least three connected components and (u, v) /∈ E(G).

The graph in Fig. 1(a), for example, contains the compulsive separators S1 = {a, d}
and S2 = {d, e} that are both critical. Extending the symmetric relation of crossing
separators, we say a 2-separator S crosses a set of two vertices T = {u, v} iff S is
an (u, v)-separator. Lemma 2 provides the key for our characterization of the maximal
biconnected subgraph of G that is separated by a potential separator P (see Corollar 1).

Lemma 2. LetG be a biconnected partial 2-tree and S a critical separator that crosses
a potential separator P = {u, v}. Let Cu and Cv denote the components of G \ S
containing the vertex u and v, respectively. Every biconnected induced subgraph G′ ⊆
G separated by P is a subgraph of the biconnected graphGS

P = G[V (Cu)∪V (Cv)∪S].

Corollar 1. Let P be a potential separator of G and S = {S1, . . . , Sl} the set of
critical separators that cross P . The graph G∗

P := G[
⋂

S∈S V (GS
P)] is the maximal

biconnected subgraph of G with separator P .

In other words: The graphG∗
P is the subgraph in which for all critical separators Si that

cross P the vertices in connected components of G \ Si neither containing u nor v are
removed. This fact allows us to decompose biconnected partial 2-trees at the potential
separators and can be used algorithmically to compute partial solutions for well-defined
subgraphs. For a potential separator P = {u, v} and a distinguished edge r ∈ E(G∗

P),
r = (u, v), we say P splits G into the two subgraphs Gr

uv and Gr
uv , referred to as

split graphs. Let C1, . . . , Cl be the connected components of G∗
P \ P and w.l.o.g. let

C1 contain at least one endpoint of the distinguished edge r. Then Gr
uv denotes the

subgraph G[V (C1) ∪ {u, v}] and Gr
uv := G[

⋃l
i=2 V (Ci) ∪ {u, v}], where u and v are

referred to as base vertex. In case of a potential separator P that is not a separator of G,
i.e., G∗

P = G, the operation is referred to as shear split. Figure 4 illustrates the different
split operations. When the vertices u, v are not a potential separator, but adjacent, Gr

uv

is defined as the edge e = (u, v), if e = r, and the graph (V,E \ e) otherwise. Note
that we may assume split graphs to be biconnected which can be achieved by inserting
a virtual edge between the two base vertices as illustrated by dashed lines in Fig. 4. The
split graphs shown in Fig. 4(b) are determined by the potential separatorP = {b, g} that
is not a separator of G. Note that the critical separators S1 = {a, d} and S2 = {d, e}
both crossP and hence the vertices h and f are not contained in G∗

P and the split graphs
associated with P .

512 N. Kriege and P. Mutzel

a

b c

c

d

d e

f g

hr

Gr
dc

Gr
dc

(a) Split at {d, c}

a

b

b

c

d

e

g

g

r
Gr

bg

Gr
bg

(b) Shear split at {b, g}

a

b c

d

d

e

e

f g

hr

Gr
de

Gr
de

(c) Split at {d, e}

Fig. 4. Splitting the graph shown in Fig. 1(a)

4.1 Solving 2-MCS with SP-trees

We present a polynomial-time algorithm for 2-MCS that is based on the SP-tree data
structure and considers the split graphs of the input graphs defined by potential separa-
tors. Since a vertex v of a graph may occur in multiple skeleton graphs of the SP-tree T ,
we denote by μ(v) the representative of v in the skeleton Sμ. Let Υ (v) = {μ ∈ V (T) |
u ∈ V (Sμ), μ(v) = u} be the set of allocation nodes of a vertex v, i.e., the nodes of T
whose skeleton contains a representative of v. We define the shear path P (u, v) as the
shortest path in the SP-tree between an S-node μ1 ∈ Υ (u) and an S-node μl ∈ Υ (v).
Lemma 3 characterizes the potential separators of a biconnected partial 2-tree by means
of the SP-tree.

Lemma 3. Let P (u, v) = (μ1, ν1, . . . , νl−1, μl) be a shear path, then T = {u, v} is
(i) a potential separator of G iff there is no P-node νi, i ∈ {1, . . . , l − 1}, with Sνi

containing a real edge,
(ii) a separator of G iff l = 1.

In case (i), T is crossed by the critical separators V (Sνi), i ∈ {1, . . . , l− 1}.

The maximal biconnected subgraph G∗
P of G that is separated by a potential separator

P = {u, v} of G can be obtained based on the shear path by keeping the components
determined by μi and μi+1 at each critical separator V (Sνi). Note that a representative
contained in a skeleton graph is associated with a unique node of the SP-tree. We extend
the definition of split path and split graphs to representatives from skeleton graphs of S-
nodes. Given two representativesP = {u, v}, the end vertices of the shear path P (u, v)
are the unique allocation nodes of u and v. We can still use Lemma 3 to determine if P is
a potential separator and define the graphG∗

P and the split graphs accordingly based on
the critical separators. Further split graphs emerge for representatives u, v in a skeleton
Sμ, where μ is an S-node with ref(μ) = (u, v), e.g., in Fig. 5(b) the split graph Gr

d7e4
would consist of Sμ. Note that all split graphs defined by potential separators can as
well be obtained using certain representatives. Figure 5 illustrates a shear split defined
by representatives as well as the corresponding split graphs and provides an example

Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs 513

a

b

b

c

d

e

e

g

r
Gr

be4

Gr
be4

(a) Subgraphs

S

S

Sμ

Sμ1 Sμ2

P

P

a1

b

d1

r
a2

d2

a3

d3

h

a4

c

d4

e1
x

d5
e2

d6
e3f

x1

d7

e4
g

x2

(b) SP-tree and skeleton graphs

Fig. 5. The graph Gr
be4

shown with filled black vertices and edges in (b) represents the vertices
already considered and Gr

be4
, non-filled in (b), the unmapped vertices of the graph G, cf. Fig. 1(a).

Parts no longer considered for solutions are shown in gray. In the example we have cS(x) =
{μ1, μ2}, pS(d7) = pS(d6) = d4 and μ(a) = μ(ai) = a4, i ∈ {1, . . . , 4}.

for the additional notation: For a virtual edge e in the skeleton of an S-node we denote
the children of the P-node pertinent to e by cS(e). For a vertex v in a skeleton Sμ we
refer to the representative of v in the next S-node on the path to the root by pS(v).

Algorithm 1 computes the SP-tree for both input graphsG, H and implicitly extends
a partial mapping φ between split graphs step-by-step. In each state the graphsGr

uv and
Hr′

u′v′ are already processed and the mapping is extended to the unexplored subgraphs
Gr

uv and Hr
u′v′ , where φ(u) = u′ and φ(v) = v′. The main procedure starts with pairs

of S-nodes, maps two edges of their skeleton graphs and roots the SP-trees accordingly.
Ongoing with this mapping the procedure MCS-S essentially follows the cyclic

skeleton graphs of the two S-nodes simultaneously and successively extends the map-
ping by the next unmapped vertices. Let μ be an S-node with reference edge (t, s) and
a skeleton graph Sμ consisting of a cycle (ck, c1, . . . , ck), where ck = t and c1 = s.
The function NEXT(v, Sμ) returns the edge (v = ci, cj), where j = i+ 1 mod k, i.e.,
the next edge in the cyclic order given by the skeleton graph. The direction in which the
cycle is traversed is determined by the ordering of the parameters of MCS-S. Different
cases apply based on the type of edges that are mapped. The basic case is that the edges
can be matched (line 7). Then the size of the maximum common subgraph depends on
(i) MATCHEDGE, i.e., the maximum common subgraph of the split graphs associated
with the edges and (ii) the result of the recursive call MCS-S with the new base ver-
tices. Furthermore, the size of the mapping is increased by one for the vertex w, which
is mapped to w′. When the next vertex corresponds to the first base vertex, i.e., the split
graph consists of a single edge, the recursion ends (line 5). However, if this does not
hold for both split graphs, the mapping can not be completed as indicated by the return
value −∞ (line 6). Assume the edge under consideration is virtual and the vertices are

514 N. Kriege and P. Mutzel

Algorithm 1. 2-MCS
Input : Biconnected partial 2-trees G and H .
Output : Size of a maximum common biconnected subgraph.

1 T ← T (G); U ← T (H) 	 Compute SP-tree decomposition
2 mcs ← 0
3 forall the (μ, μ′) ∈ VS(T)× VS(U) do 	 Pairs of series components
4 r ← arbitrary edge (u, v) in Sμ with (u, v) ∈ E(G)
5 root T at r
6 forall the edges r′ = (u′, v′) in Sμ′ with r′ ∈ E(H) do
7 root U at r′

8 p ← MCS-S(u, v, u′, v′)
9 q ← MCS-S(u, v, v′, u′) 	 Alternative mapping of root edges

10 mcs ← max{mcs, p, q}
11 return mcs+ 2

not adjacent in G, then a critical separator is reached (line 8). In this case the algorithm
recursively proceeds with a representative of the second base vertex from a skeleton of
a different S-node that is a child of the P-node pertinent to the edge. All possible pairs
of such S-nodes are considered and the best solution is selected (line 13). Note that it
is eventually required to go back to the previous S-node to finally complete a mapping.
This step is realized when the reference edge is reached in line 3 and 4, respectively.

The function MATCHEDGE is called whenever the mapping is extended. Note that
the parameters are edges from skeleton graphs and may be real or virtual. Assume a
given edge is virtual in the skeleton than an edge between these vertices may or may
not exist in G. We do not obtain a valid mapping between induced subgraphs if such an
edge exists in only one of the graphs (line 1). However, we can still map a virtual edge
to a real edge if the virtual edge is pertinent to a P-node with a skeleton containing a real
edge (line 2). In this case the subgraph represented by the descendants of the P-node is
not part of the common subgraph. Finally, assume both edges are virtual, then MWB-
MATCHING is performed between the children of the pertinent P-nodes (line 6), where
the edge weights w are determined by MCS-S on pairs of the associated split graphs
(line 5). Note that if the result of the matching is 0 and the P-nodes do not contain real
edges, the mapping is not valid since the subgraph would not be biconnected (line 7).
Otherwise the result corresponds to the size of the matching (line 8). Note that the base
vertices already mapped are counted in the main procedure (Algorithm 1, line 11), but
not in the procedures MCS-S and MCS-P handling pairs of split graphs.

Analysis. We argue that Algorithm 1 solves 2-MCS in polynomial time. A biconnected
subgraph G′ can be obtained from a biconnected partial 2-tree only by deleting compo-
nents of G\S for compulsive separators S. A separator may remain compulsive for the
subgraph, either because the two vertices are adjacent in G or becauseG′\S has at least
three components. These cases are handled for the two input graphs by the procedure
MATCHEDGE. If the separator does not remain compulsive, there are separators of G′

that do not separate G, but are potential separators of G. Algorithm 1 considers all pos-
sible potential separators of both input graphs by building all possible valid shear paths

Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs 515

Procedure MCS-S(u, v, u′, v′)
Input : Base vertices u, v of G, v ∈ V (Sμ) and u′, v′ of H , v′ ∈ V (Sμ′).

Output : Size of a 2-MCS of Gr
uv and Hr′

u′v′ such that u → u′, v′ → v′.
1 e = (v, w) ← NEXT(v, Sμ) 	 next edge in Sμ

2 e′ = (v′, w′) ← NEXT(v′, Sμ′) 	 next edge in Sμ′

3 if e = ref(μ) then return MCS-S(u,pS(v), u′, v′) 	 Merge S-nodes
4 if e′ = ref(μ′) then return MCS-S(u, v, u′,pS(v′)) 	 Merge S-nodes
5 if w = u and w′ = u′ then return MATCHEDGE(e, e′) 	 Completed skeleton
6 if w = u xor w′ = u′ then return −∞ 	 Incompletable mapping
7 mcs ← MATCHEDGE(e, e′) + MCS-S(u,w, u′, w′) + 1
8 if e /∈ E(G) or e′ /∈ E(H) then 	 Consider critical separators
9 if e ∈ E(G) then M ← {μ} else M ← cS(e)

10 if e′ ∈ E(H) then M ′ ← {μ′} else M ′ ← cS(e′)
11 forall the (η, η′) ∈ M ×M ′ do
12 p ← MCS-S(u, η(v), u′, η′(v′)) 	 Perform shear split
13 mcs ← max{mcs, p}
14 return mcs

Procedure MATCHEDGE(e, e′)
Input : Edges e = (u, v) ∈ E(Sμ) and e′ = (u′, v′) ∈ E(Sμ′).

Output : Size of a 2-MCS of Gr
uv and Hr′

u′v′ such that u → u′, v′ → v′.
1 if e ∈ E(G) xor e′ ∈ E(H) then return −∞ 	 Subgraph not induced
2 if e is real in Sμ or e′ is real in Sμ′ then return 0 	 Valid mapping
3 M ← cS(e); M ′ ← cS(e′)
4 forall the e = (η, η′) ∈ M ×M ′ do 	 Pairs of S-node children
5 w(e) ← MCS-S(η(u), η(v), η′(u′), η′(v′))
6 p ← MWBMATCHING(M,M ′, w) 	 Compute maximum matching
7 if p = 0 and e /∈ E(G), e′ /∈ E(H) then return −∞ 	 Not biconnected
8 else return p

in MCS-S, cf. Lemma 3. Furthermore, it considers the associated split graphs, which
is sufficient according to Corollar 1. To analyze the running time we first consider the
number of possible split graphs.

Lemma 4. Let G be a biconnected partial 2-tree and n = |V (G)|. The number of split
graphs of G is O(n2).

Theorem 1. 2-MCS can be solved in O(n6), where n = max{|V (G)|, |V (H)|}.

Proof (Sketch). Each call of the recursive methods MCS-S and MATCHEDGE computes
2-MCS for two split graphs defined by the parameter list. We can easily transform the
methods into dynamic programming algorithms filling a table indexed by split graphs.
Thus, as soon as a cell of the table has been computed every successive call for the
same pair of split graphs can be answered in O(1). Since the number of split graphs is
bounded by O(n2), a table of size O(n4) is sufficient. It is not hard to argue that the

516 N. Kriege and P. Mutzel

total running time spend in MCS-S is O(n6). Moreover, we can show that the number
of non-trivial matching problems to be solved is at most O(n2). This leads to the total
running time of O(n5) for MATCHEDGE. ��

Application to Outerplanar Graphs. 2-MCES was solved in the context of BBP-
MCES in outerplanar graphs, but not carefully analyzed. For BBP-MCES the rough
bounds ofO(n10) [3] andO(n7) [11] were given. A biconnected partial 2-treeG is out-
erplanar iff all P-nodes of T (G) have degree two. According to this fact and Lemma 1
there cannot be any critical separators. Therefore parts of Algorithm 1 become trivial in
outerplanar graphs and we obtain the following result.

Theorem 2. 2-MCS in outerplanar graphs can be solved in O(n3).

Proof. Since there are no critical separators, lines 9-13 of MCS-S are never reached.
The sets M andM ′ in line 3 of MATCHEDGE always consist of single S-nodes, because
all P-nodes have degree two. Therefore both functions are computed inO(1) except the
running time required for recursive calls. Algorithm 1 causes O(n2) calls of MCS-S,
each again involvesO(n) recursive calls leading to a total running time of O(n3). ��

References

1. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph of almost
trees of bounded degree. IEICE Trans. Fundamentals E76-A(9) (1993)

2. Akutsu, T., Tamura, T.: On the complexity of the maximum common subgraph problem for
partial k-trees of bounded degree. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012.
LNCS, vol. 7676, pp. 146–155. Springer, Heidelberg (2012)

3. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maximum common
connected edge subgraph of outerplanar graphs of bounded degree. Algorithms 6(1), 119–135
(2013)

4. Bachl, S., Brandenburg, F.J., Gmach, D.: Computing and drawing isomorphic subgraphs. J.
Graph Algorithms Appl. 8(2), 215–238 (2004)

5. Dessmark, A., Lingas, A., Proskurowski, A.: Faster algorithms for subgraph isomorphism of
k-connected partial k-trees. Algorithmica 27, 337–347 (2000)

6. Gupta, A., Nishimura, N.: Sequential and parallel algorithms for embedding problems on
classes of partial k-trees. In: Schmidt, E.M., Skyum, S. (eds.) SWAT 1994. LNCS, vol. 824,
pp. 172–182. Springer, Heidelberg (1994)

7. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of partial
k-trees. Theoretical Computer Science 164(1-2), 287–298 (1996)

8. Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation, and
graphs of (locally) bounded treewidth. J. Comput. System Sci. 73(5), 755 (2007)

9. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial
k-trees. Discrete Mathematics 108(1-3), 343–364 (1992)

10. Matula, D.W.: Subtree isomorphism in O(n5/2). In: Algorithmic Aspects of Combinatorics.
Ann. Discrete Math., vol. 2, p. 91 (1978)

11. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerplanar graphs.
In: Mining and Learning with Graphs, MLG 2007, Firence, Italy, August 1-3 (2007)

12. Sysło, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theoretical Com-
puter Science 17(1), 91–97 (1982)

13. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common subgraph of
a partial k-tree and a graph with a polynomially bounded number of spanning trees. Inf.
Process. Lett. 92(2), 57–63 (2004)

On Coloring Resilient Graphs

Jeremy Kun and Lev Reyzin

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, Chicago, IL 60607, USA

{jkun2,lreyzin}@math.uic.edu

Abstract. We introduce a new notion of resilience for constraint satis-
faction problems, with the goal of more precisely determining the bound-
ary between NP-hardness and the existence of efficient algorithms for
resilient instances. In particular, we study r-resiliently k-colorable graphs,
which are those k-colorable graphs that remain k-colorable even after the
addition of any r new edges. We prove lower bounds on the NP-hardness
of coloring resiliently colorable graphs, and provide an algorithm that
colors sufficiently resilient graphs. We also analyze the corresponding
notion of resilience for k-SAT. This notion of resilience suggests an array
of open questions for graph coloring and other combinatorial problems.

1 Introduction and Related Work

An important goal in studying NP-complete combinatorial problems is to find
precise boundaries between tractability and NP-hardness. This is often done by
adding constraints to the instances being considered until a polynomial time
algorithm is found. For instance, while SAT is NP-hard, the restricted 2-SAT
and XOR-SAT versions are decidable in polynomial time.

In this paper we present a new angle for studying the boundary between NP-
hardness and tractability. We informally define the resilience of a constraint-based
combinatorial problem and we focus on the case of resilient graph colorability.
Roughly speaking, a positive instance is resilient if it remains a positive instance
up to the addition of a constraint. For example, an instance G of Hamiltonian
circuit would be “r-resilient” if G has a Hamiltonian circuit, and G minus any r
edges still has a Hamiltonian circuit. In the case of coloring, we say a graph G is
r-resiliently k-colorable if G is k-colorable and will remain so even if any r edges
are added. One would imagine that finding a k-coloring in a very resilient graph
would be easy, as that instance is very “far” from being not colorable. And in
general, one can pose the question: how resilient can instances be and have the
search problem still remain hard?1

Most NP-hard problems have natural definitions of resiliency. For instance,
resilient positive instances for optimization problems over graphs can be defined
as those that remain positive instances even up to the addition or removal of

1 We focus on the search versions of the problems because the decision version on re-
silient instances induces the trivial “yes” answer.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 517–528, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

518 J. Kun and L. Reyzin

any edge. For satisfiability, we say a resilient instance is one where variables can
be “fixed” and the formula remains satisfiable. In problems like set-cover, we
could allow for the removal of a given number of sets. Indeed, this can be seen
as a general notion of resilience for adding constraints in constraint satisfaction
problems (CSPs), which have an extensive literature [24].2

Therefore we focus on a specific combinatorial problem, graph coloring. Re-
silience is defined up to the addition of edges, and we first show that this is an
interesting notion: many famous, well studied graphs exhibit strong resilience
properties. Then, perhaps surprisingly, we prove that 3-coloring a 1-resiliently
3-colorable graph is NP-hard – that is, it is hard to color a graph even when it is
guaranteed to remain 3-colorable under the addition of any edge. Briefly, our re-
duction works by mapping positive instances of 3-SAT to 1-resiliently 3-colorable
graphs and negative instances to graphs of chromatic number at least 4. An al-
gorithm which can color 1-resiliently 3-colorable graphs can hence distinguish
between the two. On the other hand, we observe that 3-resiliently 3-colorable
graphs have polynomial-time coloring algorithms (leaving the case of 3-coloring
2-resiliently 3-colorable graphs tantalizingly open). We also show that efficient
algorithms exist for k-coloring

(
k
2

)
-resiliently k-colorable graphs for all k, and

discuss the implications of our lower bounds.
This paper is organized as follows. In the next two subsections we review the

literature on other notions of resilience and on graph coloring. In Section 2 we
characterize the resilience of boolean satisfiability, which is used in our main
theorem on 1-resilient 3-coloring. In Section 3 we formally define the resilient
graph coloring problem and present preliminary upper and lower bounds. In
Section 4 we prove our main theorem, and in Section 5 we discuss open problems.

1.1 Related Work on Resilience

There are related concepts of resilience in the literature. Perhaps the closest in
spirit is Bilu and Linial’s notion of stability [5]. Their notion is restricted to
problems over metric spaces; they argue that practical instances often exhibit
some degree of stability, which can make the problem easier. Their results on
clustering stable instances have seen considerable interest and have been sub-
stantially extended and improved [3,5,27]. Moreover, one can study TSP and
other optimization problems over metrics under the Bilu-Linial assumption [26].
A related notion of stability by Ackerman and Ben-David [1] for clustering yields
efficient algorithms when the data lies in Euclidian space.

Our notion of resilience, on the other hand, is most natural in the case when
the optimization problem has natural constraints, which can be fixed or modified.
Our primary goal is also different – we seek to more finely delineate the boundary
between tractability and hardness in a systematic way across problems.

Property testing can also be viewed as involving resilience. Roughly speaking
property testing algorithms distinguish between combinatorial structures that

2 However, a resilience definition for general CSPs is not immediate because the ability
to add any constraint (e.g., the negation of an existing constraint) is too strong.

On Coloring Resilient Graphs 519

satisfy a property or are very far from satisfying it. These algorithms are typically
given access to a small sample depending on a parameter ε alone. For graph
property testing, as with resilience, the concept of being ε-far from having a
property involves the addition or removal of an arbitrary set of at most ε

(
n
2

)
edges from G. Our notion of resilience is different in that we consider adding or
removing a constant number of constraints. More importantly, property testing
is more concerned with query complexity than with computational hardness.

1.2 Previous Work on Coloring

As our main results are on graph colorability, we review the relevant past work.
A graph G is k-colorable if there is an assignment of k distinct colors to the
vertices of G so that no edge is monochromatic. Determining whether G is
k-colorable is a classic an NP-hard problem [19]. Many attempts to simplify
the problem, such as assuming planarity or bounded degree, still result in NP-
hardness [8]. A large body of work surrounds positive and negative results for
explicit families of graphs. The list of families that are polynomial-time colorable
includes triangle-free planar graphs, perfect graphs and almost-perfect graphs,
bounded tree- and clique-width graphs, quadtrees, and various families of graphs
defined by the lack of an induced subgraph [7,10,15,22,23].

With little progress on coloring general graphs, research has naturally turned
to approximation. In approximating the chromatic number of a general graph,
the first results were of Garey and Johnson, giving a performance guarantee of
O(n/ logn) colors [18] and proving that it is NP-hard to approximate chromatic
number to within a constant factor less than two [11]. Further work improved this
bound by logarithmic factors [4,13]. In terms of lower bounds, Zuckerman [29]
derandomized the PCP-based results of H̊astad [14] to prove the best known
approximability lower-bound to date, O(n1−ε).

There has been much recent interest in coloring graphs which are already
known to be colorable while minimizing the number of colors used. For a 3-
colorable graph, Wigderson gave an algorithm using at most O(n1/2) colors [28],
which Blum improved to Õ(n3/8) [6]. A line of research improved this bound
still further to o(n1/5) [17]. Despite the difficulties in improving the constant in
the exponent, and as suggested by Arora [2], there is no evidence that coloring
a 3-colorable graph with as few as O(log n) colors is hard.

On the other hand there are asymptotic and concrete lower bounds. Khot [21]
proved that for sufficiently large k it is NP-hard to color a k-colorable graph

with fewer than kO(log k) colors; this was improved by Huang to 2
3√
k [16]. It is

also known that for every constant h there exists a sufficiently large k such that
coloring a k-colorable graph with hk colors is NP-hard [9]. In the non-asymptotic
case, Khanna, Linial, and Safra [20] used the PCP theorem to prove it is NP-hard
to 4-color a 3-colorable graph, and more generally to color a k colorable graph
with at most k + 2 	k/3
 − 1 colors. Guruswami and Khanna give an explicit
reduction for k = 3 [12]. Assuming a variant of Khot’s 2-to-1 conjecture, Dinur
et al. prove that distinguishing between chromatic number K and K ′ is hard for

520 J. Kun and L. Reyzin

constants 3 ≤ K < K ′ [9]. This is the best conditional lower bound we give in
Section 3.3, but it does not to our knowledge imply Theorem 2.

Without large strides in approximate graph coloring, we need a new avenue
to approach the NP-hardness boundary. In this paper we consider the coloring
problem for a general family of graphs which we call resiliently colorable, in the
sense that adding edges does not violate the given colorability assumption.

2 Resilient SAT

We begin by describing a resilient version of k-satisfiability, which is used in
proving our main result for resilient coloring in Section 4.

Problem 1 (resilient k-SAT). A boolean formula ϕ is r-resilient if it is satis-
fiable and remains satisfiable if any set of r variables are fixed. We call r-resilient
k-SAT the problem of finding a satisfying assignment for an r-resiliently satis-
fiable k-CNF formula. Likewise, r-resilient CNF-SAT is for r-resilient formulas
in general CNF form.

The following lemma allows us to take problems that involve low (even zero)
resilience and blow them up to have large resilience and large clause size.

Lemma 1 (blowing up). For all r ≥ 0, s ≥ 1, and k ≥ 3, r-resilient k-SAT
reduces to [(r + 1)s− 1]-resilient (sk)-SAT in polynomial time.

Proof. Let ϕ be an r-resilient k-SAT formula. For each i, let ϕi denote a copy
of ϕ with a fresh set of variables. Construct ψ =

∨s
i=1 ϕ

i. The formula ψ is
clearly equivalent to ϕ, and by distributing the terms we can transform ψ into
(sk)-CNF form in time O(ns). We claim that ψ is [(r+1)s−1]-resilient. If fewer
than (r + 1)s variables are fixed, then by the pigeonhole principle one of the s
sets of variables has at most r fixed variables. Suppose this is the set for ϕ1. As
ϕ is r-resilient, ϕ1 is satisfiable and hence so is ψ. �

As a consequence of the blowing up lemma for r = 0, s = 2, k = 3, 1-resilient
6-SAT is NP-hard (we reduce from this in our main coloring lower bound).
Moreover, a slight modification of the proof shows that r-resilient CNF-SAT is
NP-hard for all r ≥ 0. The next lemma allows us to reduce in the other direction,
shrinking down the resilience and clause sizes.

Lemma 2 (shrinking down). Let r ≥ 1, k ≥ 2, and q = min(r, 	k/2
). Then
r-resilient k-SAT reduces to q-resilient (�k2 �+ 1)-SAT in polynomial time.

Proof. For ease of notation, we prove the case where k is even. For a clause
C =

∨k
i=1 xi, denote by C[: k/2] the sub-clause consisting of the first half of the

literals of C, specifically
∨k/2

i=1 xi. Similarly denote by C[k/2 :] the second half

of C. Now given a k-SAT formula ϕ =
∧k

j=1 Cj , we construct a (k2 + 1)-SAT
formula ψ by the following. For each j introduce a new variable zj , and define

On Coloring Resilient Graphs 521

ψ =
k∧

j=1

(Cj [: k/2] ∨ zj) ∧ (Cj [k/2 :] ∨ zj)

The formulas ϕ and ψ are logically equivalent, and we claim ψ is q-resilient.
Indeed, if some of the original set of variables are fixed there is no problem,
and each zi which is fixed corresponds to a choice of whether the literal which
will satisfy Cj comes from the first or the second half. Even stronger, we can
arbitrarily pick another literal in the correct half and fix its variable so as to
satisfy the clause. The r-resilience of ϕ guarantees the ability to do this for up to
r of the zi. But with the observation that there are no l-resilient l-SAT formulas,
we cannot get k/2 + 1 resilience when r > k/2, giving the definition of q. �

Combining the blowing up and shrinking down lemmas, we get a tidy char-
acterization: r-resilient k-SAT is either NP-hard or vacuously trivial.

Theorem 1. For all k ≥ 3, 0 ≤ r < k, r-resilient k-SAT is NP-hard.

Proof. We note that increasing k or decreasing r (while leaving the other pa-
rameter fixed) cannot make r-resilient k-SAT easier, so it suffices to reduce from
3-SAT to (k − 1)-resilient k-SAT for all k ≥ 3. For any r we can blow up from
3-SAT to r-resilient 3(r+ 1)-SAT by setting s = r+ 1 in the blowing up lemma.
We want to iteratively apply the shrinking down lemma until the clause size is s.
If we write s0 = 3s and si = �si/2�+ 1, we would need that for some m, sm = s
and that for each 1 ≤ j < m, the inequality 	sj/2
 ≥ r = s− 1 holds.

Unfortunately this is not always true. For example, if s = 10 then s1 = 16 and
16/2 < 9, so we cannot continue. However, we can avoid this for sufficiently large
r by artificially increasing k after blowing up. Indeed, we just need to find some
x ≥ 0 for which a1 =

⌈
3s+x

2

⌉
+ 1 = 2(s− 1). And we can pick x = s− 6 = r− 5,

which works for all r ≥ 5. For r = 2, 3, 4, we can check by hand that one can
find an x that works.3 For r = 2 we can start from 2-resilient 9-SAT; for r = 3
we can start from 16-SAT; and for r = 4 we can start from 24-SAT. �

3 Resilient Graph Coloring and Preliminary Bounds

In contrast to satisfiability, resilient graph coloring has a more interesting hard-
ness boundary, and it is not uncommon for graphs to have relatively high re-
silience. In this section we present some preliminary bounds.

3.1 Problem Definition and Remarks

Problem 2 (resilient coloring). A graph G is called r-resiliently k-colorable
if G remains k-colorable under the addition of any set of r new edges.

3 The difference is that for r ≥ 5 we can get what we need with only two iterations,
but for smaller r we require three steps.

522 J. Kun and L. Reyzin

We argue that this notion is not trivial by showing the resilience properties
of some classic graphs. These were determined by exhaustive computer search.
The Petersen graph is 2-resiliently 3-colorable. The Dürer graph is 1-resiliently
3-colorable (but not 2-resilient) and 4-resiliently 4-colorable (but not 5-resilient).
The Grötzsch graph is 4-resiliently 4-colorable (but not 5-resilient). The Chvátal
graph is 3-resiliently 4-colorable (but not 4-resilient).

There are a few interesting constructions to build intuition about resilient
graphs. First, it is clear that every k-colorable graph is 1-resiliently (k + 1)-
colorable (just add one new color for the additional edge), but for all k > 2
there exist k-colorable graphs which are not 2-resiliently (k + 1)-colorable. Sim-
ply remove two disjoint edges from the complete graph on k + 2 vertices. A
slight generalization of this argument provides examples of graphs which are
	(k + 1)/2
-colorable but not 	(k + 1)/2
-resiliently k-colorable for k ≥ 3. On
the other hand, every 	(k + 1)/2
-colorable graph is ((k + 1)/2
− 1)-resiliently
k-colorable, since r-resiliently k-colorable graphs are (r+m)-resiliently (k+m)-
colorable for all m ≥ 0 (add one new color for each added edge).

One expects high resilience in a k-colorable graph to reduce the number of
colors required to color it. While this may be true for super-linear resilience, there
are easy examples of (k−1)-resiliently k-colorable graphs which are k-chromatic.
For instance, add an isolated vertex to the complete graph on k vertices.

3.2 Observations

We are primarily interested in the complexity of coloring resilient graphs, and
so we pose the question: for which values of k, r does the task of k-coloring an
r-resiliently k-colorable graph admit an efficient algorithm? The following obser-
vations aid us in the classification of such pairs, which is displayed in Figure 1.

Observation 1. An r-resiliently k-colorable graph is r′-resiliently k-colorable
for any r′ ≤ r. Hence, if k-coloring is in P for r-resiliently k-colorable graphs,
then it is for s-resiliently k-colorable graphs for all s ≥ r. Conversely, if k-
coloring is NP-hard for r-resiliently k-colorable graphs, then it is for s-resiliently
k-colorable graphs for all s ≤ r.

Hence, in Figure 1 if a cell is in P, so are all of the cells to its right; and if a
cell is NP-hard, so are all of the cells to its left.

Observation 2. If k-coloring is in P for r-resiliently k-colorable graphs, then
k′-coloring r-resiliently k′-colorable graphs is in P for all k′ ≤ k. Similarly, if
k-coloring is in NP-hard for r-resiliently k-colorable graphs, then k′-coloring is
NP-hard for r-resiliently k′-colorable graphs for all k′ ≥ k.

Proof. If G is r-resiliently k-colorable, then we construct G′ by adding a new
vertex v with complete incidence to G. Then G′ is r-resiliently (k+ 1)-colorable,
and an algorithm to color G′ can be used to color G. �

Observation 2 yields the rule that if a cell is in P, so are all of the cells above
it; if a cell is NP-hard, so are the cells below it. More generally, we have the
following observation which allows us to apply known bounds.

On Coloring Resilient Graphs 523

Observation 3. If it is NP-hard to f(k)-color a k-colorable graph, then it is
NP-hard to f(k)-color an (f(k)− k)-resiliently f(k)-colorable graph.

This observation is used in Propositions 2 and 3, and follows from the fact
that an r-resiliently k-colorable graph is (r+m)-resiliently (k+m)-colorable for
all m ≥ 0 (here r = 0,m = f(k)− k).

Fig. 1. The classification of the complexity of k-coloring r-resiliently k-colorable
graphs. Left: the explicit classification for small k, r. Right: a zoomed-out view of
the same table, with the NP-hard (black) region added by Proposition 4.

3.3 Upper and Lower Bounds

In this section we provide a simple upper bound on the complexity of coloring
resilient graphs, we apply known results to show that 4-coloring a 1-resiliently
4-colorable graph is NP-hard, and we give the conditional hardness of k-coloring
(k − 3)-resiliently k-colorable graphs for all k ≥ 3. This last result follows from
the work of Dinur et al., and depends a variant of Khot’s 2-to-1 conjecture [9];
a problem is called 2-to-1-hard if it is NP-hard assuming this conjecture holds.
Finally, applying the result of Huang [16], we give an asymptotic lower bound.

All our results on coloring are displayed in Figure 1. To explain Figure 1 more
explicitly, Proposition 1 gives an upper bound for r =

(
k
2

)
, and Proposition 2

gives hardness of the cell (4, 1) and its consequences. Proposition 3 provides the
conditional lower bound, and Theorem 2 gives the hardness of the cell (3, 1).
Proposition 4 provides an NP-hardness result.

Proposition 1. There is an efficient algorithm for k-coloring
(
k
2

)
-resiliently k-

colorable graphs.

Proof. If G is
(
k
2

)
-resiliently k-colorable, then no vertex may have degree ≥ k.

For if v is such a vertex, one may add complete incidence to any choice of k
vertices in the neighborhood of v to get Kk+1. Finally, graphs with bounded
degree k − 1 are greedily k-colorable. �

Proposition 2. 4-coloring a 1-resiliently 4-colorable graph is NP-hard.

524 J. Kun and L. Reyzin

Proof. It is known that 4-coloring a 3-colorable graph is NP-hard, so we may
apply Observation 3. Every 3-colorable graph G is 1-resiliently 4-colorable, since
if we are given a proper 3-coloring of G we may use the fourth color to properly
color any new edge that is added. So an algorithm A which efficiently 4-colors
1-resiliently 4-colorable graphs can be used to 4-color a 3-colorable graph. �

Proposition 3. For all k ≥ 3, it is 2-to-1-hard to k-color a (k − 3)-resiliently
k-colorable graph.

Proof. As with Proposition 2, we apply Observation 3 to the conditional fact
that it is NP-hard to k-color a 3-colorable graph for k > 3. Such graphs are
(k − 3)-resiliently k-colorable. �

Proposition 4. For sufficiently large k it is NP-hard to 2
3√
k-color an r-resiliently

2
3√
k-colorable graph for r < 2

3√
k − k.

Proposition 4 comes from applying Observation 3 to the lower bound of
Huang [16]. The only unexplained cell of Figure 1 is (3,1), which we prove is
NP-hard as our main theorem in the next section.

4 NP-Hardness of 1-Resilient 3-Colorability

Theorem 2. It is NP-hard to 3-color a 1-resiliently 3-colorable graph.

Proof. We reduce 1-resilient 3-coloring from 1-resilient 6-SAT. This reduction
comes in the form of a graph which is 3-colorable if and only if the 6-SAT
instance is satisfiable, and 1-resiliently 3-colorable when the 6-SAT instance is
1-resiliently satisfiable. We use the colors white, black, and gray.

We first describe the gadgets involved and prove their consistency (that the
6-SAT instance is satisfiable if and only if the graph is 3-colorable), and then
prove the construction is 1-resilient. Given a 6-CNF formula ϕ = C1 ∧ · · · ∧Cm

we construct a graph G as follows. Start with a base vertex b which we may
assume w.l.o.g. is always colored gray. For each literal we construct a literal
gadget consisting of two vertices both adjacent to b, as in Figure 2. As such,
the vertices in a literal gadget may only assume the colors white and black. A
variable is interpreted as true iff both vertices in the literal gadget have the same
color. We will abbreviate this by saying a literal is colored true or colored false.

Fig. 2. The gadget for a literal. The two single-degree vertices represent
a single literal, and are interpreted as true if they have the same color.
The base vertex is always colored gray. Note this gadget comes from
Kun et al. [25].

We connect two literal gadgets for x, x by a negation gadget in such a way that
the gadget for x is colored true if and only if the gadget for x is colored false.
The negation gadget is given in Figure 3. In the diagram, the vertices labeled 1

On Coloring Resilient Graphs 525

and 3 correspond to x, and those labeled 10 and 12 correspond to x. We start
by showing that no proper coloring can exist if both literal gadgets are colored
true. If all four of these vertices are colored white or all four are black, then
vertices 6 and 7 must also have this color, and so the coloring is not proper. If
one pair is colored both white and the other both black, then vertices 13 and
14 must be gray, and the coloring is again not proper. Next, we show that no
proper coloring can exist if both literal gadgets are colored false. First, if vertices
1 and 10 are white and vertices 3 and 12 are black, then vertices 2 and 11 must
be gray and the coloring is not proper. If instead vertices 1 and 12 are white and
vertices 3 and 10 black, then again vertices 13 and 14 must be gray. This covers
all possibilities up to symmetry. Moreover, whenever one literal is colored true
and the other false, one can extend it to a proper 3-coloring of the whole gadget.

Fig. 3. Left: the gadget for a clause. Right: the negation gadget ensuring two literals
assume opposite truth values.

Now suppose we have a clause involving literals, w.l.o.g., x1, . . . , x6. We con-
struct the clause gadget shown in Figure 3, and claim that this gadget is 3-
colorable iff at least one literal is colored true. Indeed, if the literals are all
colored false, then the vertices 13 through 18 in the diagram must be colored
gray, and then the vertices 25, 26, 27 must be gray. This causes the central tri-
angle to use only white and black, and so it cannot be a proper coloring. On the
other hand, if some literal is colored true, we claim we can extend to a proper
coloring of the whole gadget. Suppose w.l.o.g. that the literal in question is x1,
and that vertices 1 and 2 both are black. Then Figure 4 shows how this extends
to a proper coloring of the entire gadget regardless of the truth assignments of
the other literals (we can always color their branches as if the literals were false).

It remains to show that G is 1-resiliently 3-colorable when ϕ is 1-resiliently
satisfiable. This is because a new edge can, at worst, fix the truth assignment

Fig. 4. A valid coloring of the
clause gadget when one variable (in
this case x3) is true

526 J. Kun and L. Reyzin

(perhaps indirectly) of at most one literal. Since the original formula ϕ is 1-
resiliently satisfiable, G maintains 3-colorability. Additionally, the gadgets and
the representation of truth were chosen so as to provide flexibility w.r.t. the
chosen colors for each vertex, so many edges will have no effect on G’s colorability.

First, one can verify that the gadgets themselves are 1-resiliently 3-colorable.4

We break down the analysis into eight cases based on the endpoints of the
added edge: within a single clause/negation/literal gadget, between two distinct
clause/negation/literal gadgets, between clause and negation gadgets, and be-
tween negation and literal gadgets. We denote the added edge by e = (v, w) and
call it good if G is still 3-colorable after adding e.

Literal Gadgets. First, we argue that e is good if it lies within or across literal
gadgets. Indeed, there is only one way to add an edge within a literal gadget, and
this has the effect of setting the literal to false. If e lies across two gadgets then
it has no effect: if c is a proper coloring of G without e, then after adding e either
c is still a proper coloring or we can switch to a different representation of the
truth value of v or w to make e properly colored (i.e. swap “white white” with
“black black,” or “white black” with “black white” and recolor appropriately).

Negation Gadgets. Next we argue that e is good if it involves a negation gadget.
Let N be a negation gadget for the variable x. Indeed, by 1-resilience an edge
within N is good; e only has a local effect within negation gadgets, and it may
result in fixing the truth value of x. Now suppose e has only one vertex v in N .
Figure 5 shows two ways to color N , which together with reflections along the
horizontal axis of symmetry have the property that we may choose from at least
two colors for any vertex we wish. That is, if we are willing to fix the truth value
of x, then we may choose between one of two colors for v so that e is properly
colored regardless of which color is adjacent to it.

Fig. 5. Two distinct ways to color a negation gadget without changing the truth values
of the literals. Only the rightmost center vertex cannot be given a different color by a
suitable switch between the two representations or a reflection of the graph across the
horizontal axis of symmetry. If the new edge involves this vertex, we must fix the truth
value appropriately.

Clause Gadgets. Suppose e lies within a clause gadget or between two clause
gadgets. As with the negation gadget, it suffices to fix the truth value of one
variable suitably so that one may choose either of two colors for one end of the
new edge. Figure 6 provides a detailed illustration of one case. Here, we focus on
two branches of two separate clause gadgets, and add the new edge e = (v, w).

4 These graphs are small enough to admit verification by computer search.

On Coloring Resilient Graphs 527

The added edge has the following effect: if x is false, then neither y nor z may
be used to satisfy C2 (as w cannot be gray). This is no stronger than requiring
that either x be true or y and z both be false, i.e., we add the clause x ∨ (y ∧ z)
to ϕ. This clause can be satisfied by fixing a single variable (x to true), and ϕ is
1-resilient, so we can still satisfy ϕ and 3-color G. The other cases are analogous.

This proves that G is 1-resilient when ϕ is, and finishes the proof. �

Fig. 6. An example of an
edge added between two
clauses C1, C2

5 Discussion and Open Problems

The notion of resilience introduced in this paper leaves many questions unan-
swered, both specific problems about graph coloring and more general explo-
ration of resilience in other combinatorial problems and CSPs.

Regarding graph coloring, our paper established the fact that 1-resilience
doesn’t affect the difficulty of graph coloring. However, the question of 2-resilience
is open, as is establishing linear lower bounds without dependence on the 2-to-1
conjecture. There is also room for improvement in finding efficient algorithms for
highly-resilient instances, closing the gap between NP-hardness and tractability.

On the general side, our framework applies to many NP-complete problems,
including Hamiltonian circuit, set cover, 3D-matching, integer LP, and many
others. Each presents its own boundary between NP-hardness and tractability,
and there are undoubtedly interesting relationships across problems.

Acknowledgments. We thank Shai Ben-David for helpful discussions.

References

1. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. Journal of Ma-
chine Learning Research - Proceedings Track 5, 1–8 (2009)

2. Arora, S., Ge, R.: New tools for graph coloring. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp.
1–12. Springer, Heidelberg (2011)

3. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation
stability. Inf. Process. Lett. 112(1-2), 49–54 (2012)

4. Berger, B., Rompel, J.: A better performance guarantee for approximate graph
coloring. Algorithmica 5(3), 459–466 (1990)

5. Bilu, Y., Linial, N.: Are stable instances easy? Combinatorics, Probability & Com-
puting 21(5), 643–660 (2012)

6. Blum, A.: New approximation algorithms for graph coloring. J. ACM 41(3), 470–
516 (1994)

528 J. Kun and L. Reyzin

7. Cai, L.: Parameterized complexity of vertex colouring. Discrete Applied Mathe-
matics 127(3), 415–429 (2003)

8. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are np-complete. Discrete Mathematics 30(3), 289–293 (1980)

9. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring.
SIAM J. Comput. 39(3), 843–873 (2009)

10. Eppstein, D., Bern, M.W., Hutchings, B.L.: Algorithms for coloring quadtrees.
Algorithmica 32(1), 87–94 (2002)

11. Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring. J.
ACM 23(1), 43–49 (1976)

12. Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-colorable graph.
SIAM J. Discrete Math. 18(1), 30–40 (2004)

13. Halldórsson, M.M.: A still better performance guarantee for approximate graph
coloring. Inf. Process. Lett. 45(1), 19–23 (1993)

14. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

15. Hoàng, C.T., Maffray, F., Mechebbek, M.: A characterization of b-perfect graphs.
Journal of Graph Theory 71(1), 95–122 (2012)

16. Huang, S.: Improved hardness of approximating chromatic number. CoRR,
abs/1301.5216 (2013)

17. Kawarabayashi, K.I., Thorup, M.: Coloring 3-colorable graphs with o(n1/5) colors.
In: STACS, vol. 25, pp. 458–469 (2014)

18. Johnson, D.S.: Worst case behavior of graph coloring algorithms. In: Proc. 5th
Southeastern Conf. on Comb., Graph Theory and Comput., pp. 513–527 (1974)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

20. Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic
number. Combinatorica 20(3), 393–415 (2000)

21. Khot, S.: Improved inaproximability results for maxclique, chromatic number and
approximate graph coloring. In: FOCS, pp. 600–609 (2001)

22. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics 126(2-3), 197–221 (2003)

23. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs
without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001.
LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

24. Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Maga-
zine 13(1), 32 (1992)

25. Kun, J., Powers, B., Reyzin, L.: Anti-coordination games and stable graph color-
ings. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 122–133. Springer,
Heidelberg (2013)

26. Mihalák, M., Schöngens, M., Šrámek, R., Widmayer, P.: On the complexity of the
metric TSP under stability considerations. In: Černá, I., Gyimóthy, T., Hromkovič,
J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS,
vol. 6543, pp. 382–393. Springer, Heidelberg (2011)

27. Reyzin, L.: Data stability in clustering: A closer look. In: Bshouty, N.H., Stoltz,
G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 184–198.
Springer, Heidelberg (2012)

28. Wigderson, A.: Improving the performance guarantee for approximate graph col-
oring. J. ACM 30(4), 729–735 (1983)

29. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

Document Retrieval with One Wildcard�

Moshe Lewenstein1,��, J. Ian Munro2, Yakov Nekrich2,
and Sharma V. Thankachan2

1 Bar-Ilan University, Israel
moshe@macs.biu.ac.il

2 University of Waterloo, Canada
{imunro,ynekrich,thanks}@uwaterloo.ca

Abstract. In this paper we extend several well-known document listing
problems to the case when documents contain a substring that approxi-
mately matches the query pattern. We study the scenario when the query
string can contain a wildcard symbol that matches any alphabet sym-
bol; all documents that match a query pattern with one wildcard must
be enumerated. We describe a linear space data structure that reports all
documents containing a substring P in O(|P | + σ

√
log log log n+ docc)

time, where σ is the alphabet size and docc is the number of listed doc-
uments. We also describe a succinct solution for this problem.

Furthermore our approach enables us to obtain an O(nσ)-space data
structure that enumerates all documents containing both a pattern P1

and a pattern P2 in the special case when P1 and P2 differ in one symbol.

1 Introduction

The ever-growing abundance of data in databases presents unique challenges to
the search community that need to be addressed with both speed and space
considerations taken into account. For many years the search community was
focused on offline problems. In classical pattern matching one is given a pattern
P and text T and is required to find all occurrences of P in T . Numerous
solutions for pattern matching have addressed many different variations of this
problem, e.g. [7,19]. In text indexing one is given a text T to preprocess for
subsequent pattern queries P for which one is required to find all occurrences of
P in T . The practical need for text indexing was already recognized long ago. The
explosion in data that stemmed from the onset of the Internet and applications
in computational biology set the quest for more succinct data structures and
posed new challenges in this important research area. Several broad research
directions are related to extensions of the standard indexing problem.

� This research was funded in part by NSERC of Canada and the Canada Research
Chairs program.

�� The author is grateful for the support of the Binational Science Foundation (BSF)
grant # 2010437 and for the support of the German Israel Foundation (GIF) grant
1147/2011.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 529–540, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

530 M. Lewenstein et al.

First, we can keep a collection of strings (or documents) in the data structure
and ask queries about documents that contain a query string. For instance, we
may wish to find all documents that contain P at least once. This problem,
called document listing problem, is more difficult than the standard indexing
because we are interested in reporting each document only once even if it con-
tains multiple occurrences of P . More complicated queries, that are relevant
for document retrieval applications, were also studied [16,33,29]. We may be
interested in documents that contain P at least k times for a query parame-
ter k, or the k documents in which P occurs most frequently, etc. We refer to
e.g. [28,13] for an overview of problems and results in this area. Second, we are
frequently interested in substrings of T that approximately match the query
string P . Approximate string matching is important for computational biology
applications. There are several definitions of approximate matching. In wildcard
pattern matching, considered in this paper, the query string P contains a symbol
φ that matches any alphabet symbol. Indexing for patterns with wildcards and
approximate indexing was considered in e.g., [2,6,9,21,35,23,18,12,20,30,17].

In this paper we consider generalizations of the document listing problem for
the case when the query pattern P contains one wildcard symbol φ that matches
any alphabet symbol, and present a linear space indexing solution.

Previous and Related Results. The suffix tree provides a linear space so-
lution for the original indexing problem. Using suffix trees, we can report all
occ occurrences of a substring P in optimal O(|P | + occ) time. Henceforth |S|
denotes the length of string S. Indexing for patterns with wildcards appears to
be significantly more difficult than the standard indexing. Even in the simplest
scenario when P contains only one wildcard, we either need more space or have
to spend more time to answer a query.

The naive solution is to store all possible combinations of suffixes resulting
from replacing an arbitrary symbol by a wildcard. The space usage of this naive
solution is O(n2). Cole et al. [9] described an elegant data structure that signifi-
cantly reduced the space usage of this naive approach1. Their data structure uses
O(n log n) space and answers queries in O(|P | + occ) time. Another solution of
one-wildcard indexing is based on reducing this problem to range reporting. This
approach, introduced in [2] and used in [5], needs O(n logε n) space to achieve
optimal query time.

Cole et al. [9] described another data structure that uses O(n log n) space and
answers queries in O(|P | + σ log logn + occ) time. Here and further σ denotes
the alphabet size. Bille et al. [6] showed how to reduce the space usage to O(n)
and obtained the first linear space data structure. Very recently, Lewenstein et
al. [23] described a linear space data structure that supports queries in O(|P |+
σ
√

log log logn + occ) time. This is the fastest currently known data structure
that uses linear space.

1 In [9] the situation when the query string contains k > 1 wildcard symbols was also
considered. We refer to e.g. [22] and references therein for an overview of previous
results on general indexing with wildcards.

Document Retrieval with One Wildcard 531

Matias et al. [26] and later Muthukrishnan [27] addressed the document list-
ing problem. The solution of Muthukrishnan [27] uses O(n) space and reports
all docc documents containing P in optimal time O(|P | + docc). In previous
works on document listing it was assumed that the pattern P contains alphabet
symbols only.

Our Results. We consider the document listing problem in the case when
the pattern P contains one wildcard symbol. Our solution uses linear space
and reports all docc documents that contain a substring matching P1φP2 in
O(|P1| + |P2| + σ

√
log log logn + docc) time, where P1 and P2 are arbitrary

strings containing alphabet symbols only. Thus we match the complexity of the
best currently known linear space data structure for reporting all occurrences
of P1φP2. We also describe a compact data structure that uses |CSA| + O(n)
bits of space, where |CSA| denotes the space (in bits) needed to store a compact
suffix array.

The main algorithmic challenge of document listing in the one-wildcard sce-
nario is the requirement that each document must be reported O(1) times. Our
solution is based on a novel notion of unique prefixes, defined in Section 3.
We believe this idea to be of independent interest and that it can find further
applications.

As an additional bonus, we describe an efficient solution for a special case
of the two-pattern document listing problem [8,14,10,15]. In the two-pattern
document listing a query consists of two patterns P1 and P2; we want to report all
documents that contain both P1 and P2. This problem is known to be very hard;
the best known solution need Õ(n2) space to achieve Õ(|P1|+ |P2|+docc) query
time.2 We consider the special case of this problem when P1 and P2 mismatch
only at one position. For this special case, we describe an O(nσ) space data
structure that lists all docc relevant documents in optimal O(|P1|+ |P2|+docc)
time. This result also relies on the notion of unique prefixes.

2 Document Listing without Wildcards

In this section, we briefly describe the indexing solution for the document listing
problem proposed by Muthukrishnan [27]. Notice that the query string P does
not contain any wildcard character in this case. The data structure consists of
three main components: a generalized suffix tree GST, an array E[1..n] and a
range minimum query data structure over E [11].

The generalized suffix tree GST of our document collection D = {d1, d2, .., dD}
is essentially a suffix tree [36] of the text T[1..n] = d1d2 . . . dD obtained by
concatenating all documents in D. We assume that the last character of each
document is $ /∈ Σ, a special symbol that does not appear anywhere else in any
document in D. Each substring T[i..n], with i ∈ [1, n], is called a suffix of T.
The GST of D is a lexicographic arrangement of all these n suffixes in a compact

2 The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡ O(f(n)
logO(1) n).

532 M. Lewenstein et al.

trie structure, where the ith leftmost leaf represents the ith lexicographically
smallest suffix. Let str(u,w) be the string obtained by concatenation of all edge
labels on the path from u to w in GST and str(w) = str(ur, w), where ur is the
root node of GST. Also we use �i for i ∈ [1, n] to denote the ith leftmost leaf
in GST, and doc(�) represents the document that contains the suffix str(�) 3.
The locus node of a pattern P , denoted by locus(P), is the highest node u such
that str(u) is prefixed by P . Suffix array SA[1..n] is a component of GST, where
SA[i] = n + 1 − |str(�i)| [25]. Suffix range of a pattern P is the maximal range
[sp, ep], such that for all i ∈ [sp, ep], str(�i) is prefixed by P . Therefore, �sp and
�ep represents the first and last leaves in the subtree of the locus node of P . Both
the locus node and the suffix range of P can be computed in O(|P |) time.

The array E[1..n] is defined as E[i] = max{j < i|doc(�i) = doc(�j)}; if there
is no j < i satisfying doc(�j) = doc(�i), then E[i] = −∞. The set {doc(�i)|i ∈
[sp, ep] and E[i] < sp} represents the set of documents containingP as a substring
and its cardinality is denoted by docc. The problem of enumerating elements of
this set can be reduced to three-sided range reporting in two dimensions, and by
maintaining a range minimum query data structure over E, optimal O(1 + docc)
query time can be achieved. Since we initially needO(|P |) time for pattern search,
the total query time isO(|P |+docc); the data structure usesO(n) words of space.
See [4,32,16] for other space efficient solutions.

3 Document Listing with One Wildcard

In this section we show how all those documents in D, containing a query string
P1φP2 can be reported efficiently. Our approach is based on defining the unique
prefixes. The notion of the unique prefix will also be an important component
of our other data structures. The main result is summarized in the following
theorem.

Theorem 1. Let D be collection of D strings (documents) of n characters in
total, which are drawn from an alphabet set Σ of size σ. By maintaining D as
an O(n)-word data structure, all those docc documents in D containing a query
string P = P1φP2 can be reported in O(|P |+σ

√
log log logn+docc) time. Here φ

represents a wildcard character, P1, P2 are strings without wildcards, and P1φP2

is the concatenation of P1, φ and P2.

The heavy-path decomposition represents an arbitrary tree as a union of heavy
paths in such way that any leaf-to-root path intersects with O(log n) heavy paths.
We refer to [34] for the definition of heavy paths. We will say that a child ui
of a node u is heavy if both ui and u are on the same heavy path and light
otherwise. A heavy (respectively, light) descendant of u is a descendant of a
heavy (respectively, light) child of u. We keep the suffixes of all documents in
the generalized suffix tree GST.

We now describe the notion of unique prefix. Let u be an arbitrary node in
GST with u1, u2, u3, . . . , ux as its children (in the left to right order, where x ≤ σ)
3 To be precise, doc(�i) = dj , where j = 1+ (the number of $’s in T[1..(SA[i] − 1)]).

Document Retrieval with One Wildcard 533

ba

a

b

c
e

anx anay

ab efc

km

�13 �24

�36 �42 �55 �69 �91

root

u

u1 u2 u3 u4

heavy
child

Fig. 1. Values of ψ(l, u) for selected leaves in GST. All shown leaves are suffixes of the
same document. We have ψ(l36, u) = 6, because bacan is not a unique prefix (baaan
appeared in the subtree u1), but bacana is a unique prefix of str(l36). In the same
manner, ψ(l42, u) = 10, ψ(l55, u) = 8, ψ(l69,u) = 11, ψ(l91, u) = 13. Now, when we
search for a pattern P = baφana, our algorithm will report doc(�36) because |P | ≥
ψ(�36, u). We observe that |P | ≥ ψ(·, u) only for �36, but not for the other leaves in the
same document.

and uh be its heavy child. Also let αi ∈ Σ be the leading character on the edge
connecting u and ui. Let � be a leaf node in the subtree of ui for some i = h
(i.e., � is a light descendant of u), then we say that a string Pi is a unique prefix
of str(�) with respect to u iff

1. Pi = str(u)αiP
′ is a prefix of str(�).

2. if wi is the locus of Pi, then � is the leftmost occurrence of doc(�) in the
subtree of wi.

3. the document d = doc(�) does not contain a substring Pj = str(u)αjP
′ for

any j < i and j = h.

Let ψ(�, u) be the length of the shortest unique prefix of str(�) with respect
to u. See Fig. 1 for an example illustrating the definitions of unique prefixes and
ψ(·, ·). For any node u and all its light leaf descendants �, we keep the values
of ψ(�, u) in an array Au. That is, Au[k] = ψ(�, u) if � is the kth leftmost light
leaf descendant of u. Each leaf � has at most O(log n) ancestors with � as one of
its light descendants. Hence all A{·}’s have O(n log n) entries. We also keep the
linear space data structure for standard document listing (refer to Section 2),
which can report all unique documents whose suffixes appear below a given node
in optimal time.

We will also need the following result.

534 M. Lewenstein et al.

Lemma 1 ([23,24]). Given a node u of the GST and a string P2, we can
find the loci of all str(u)αiP2 for all alphabet symbols αi in O(|str(u)| + |P2|+
σ
√

log log logn) time using a linear space data structure.

Proof : The data structure described in [23,24] can report all occurrences of
P1φP2 for any strings P1, P2 in O(|P1|+ |P2|+

√
log log logn+ occ) time where

occ is the number of times P1φP2 occurs in the text. Their method works in
two stages: first the locus nodes of P1αiP2 for all alphabet symbols αi are
found. During the second stage, occurrences are reported. The first stage takes
O(
√

log log logn + |P1| + |P2|) time; we refer to Sections 6 and 7 in [24]. If we
apply this result with P2 = str(u), we obtain the result of our Lemma. �

All unique documents that contain P1φP2 can be reported as follows. Let u
denote the locus of P1. If P1 is a proper prefix of str(u) (i.e., the search for P1

ends in the middle of an edge), then there is only one alphabet symbol α such
that P1α appears in some documents. Therefore, after matching P1 in GST, we
can skip the next character on that edge and continue matching P2. Thus we can
find the locus node w of P1αP2 in O(|P |) time and report all unique documents
corresponding to the suffixes in the subtree of w optimally using the standard
document listing algorithm.

The case when str(u) = P1 is more complicated. The search for P1 ends in
a node u. Hence many different strings that match P1φP2 may appear in docu-
ments. The difficulty arises because the same document d can contain different
substrings (e.g., P1αtP2 and P1αsP2) matching P1φP2, but we want to report d
only once. Information about unique prefixes stored in arrays Au enables us to
solve this problem. We visit all children ui of u. Recall that αi is the first symbol
on the edge with label str(u, ui). We can find the loci wi of str(u)αiP2 for all
αi’s in O(σ

√
log log logn+ |str(u)|+ |P2|) time using an O(n)-word structure, as

shown in Lemma 1. If wi exists, let [spi, epi] be the range of leaves in the subtree
rooted at wi. We visit all wi that are light descendants of u. For every such wi we
report all indices j such that j ∈ [spi, epi] and Au[mapu(j)] ≤ |P |. Here mapu(j)
represents the location in Au, where ψ(�j , u) is stored and can be computed in
constant time 4. In other words, we report all j’s corresponding to all elements
within Au[mapu(spi)..mapu(epi)] which are not larger than |P |. All j can be
enumerated in O(1) time per index using a data structure for range minimum
queries (RMQ) [11]. For every found j we report the document doc(�j) where
�j is the j-th leaf in the subtree of wi. Finally we also visit wh that is a heavy
descendant of u and report all documents whose suffixes appear in the subtree
of wh using the standard document listing algorithm, described in Section 2.

Correctness of our procedure follows from the definition of unique prefixes.
Suppose that a document d contains substring P1αiP2 for one or more symbols
αi. Let αk be the smallest such symbol. If �z is the leftmost occurrence of d
in the subtree of wk, then the shortest unique prefix of str(�z) is not longer
4 Let [Lu, Ru] represent the range of leaves in the subtree of u and [L′

u, R
′
u] be the range

of leaves in the subtree of uh, the heavy child of u. Then, if j ∈ [Lu, L
′
u − 1], then

mapu(j) = j−(Lu−1). On the other hand, if j ∈ [R′
u+1, Ru], then mapu(j) = j−R′

u.

Document Retrieval with One Wildcard 535

than |P |. Hence, the index of �z will be listed when a node uk is visited and
the subarray Au[mapu(spk)..mapu(epk)] is examined. When nodes ui, i > k,
are visited, the document d will not be reported again: Suppose that a suffix
of document d is stored in a leaf �′ in the subtree of ui. Then P1αiP2 is not a
unique prefix of �′ because condition (3) is not satisfied. Hence, each document
is reported at most once when light descendants ui of u are visited. The same
document can be reported at most two times: Each document d is reported at
most once when light descendants ui of u are explored and at most once when a
heavy descendant is explored. We can get rid of duplicates by keeping the list of
documents L found in all ui and a binary array D. All entries of D are initially
set to 0. Each document in L is reported only if the corresponding entry in D
is 0; when a document dz is reported, we set D[z] = 1. When the list of unique
documents is generated and the query is answered, we traverse L and set all
corresponding entries in D to 0.

The space usage of our data structure is O(n log n) words because all arrays
Au have O(n log n) entries and the range minima structure for an array Au uses
linear space in the number of its entries. We can reduce the space to linear
by discarding arrays Au and keeping only compact RMQ structures that need
only a linear number of bits. Our modified procedure does not require the array
Au and works as follows: when we visit a light descendant ui of u, we answer
an RMQ query on Au[mapu(spi)..mapu(epi)] and find the index j0 such that
Au[mapu(j0)] ≤ Au[mapu(j′)] for all j′ ∈ [spi, epi]. If the j0-th leaf in the subtree
ui is a suffix of document d that was not reported before, then we recursively
search in Au[mapu(spi)..mapu(j0 − 1)] and Au[mapu(j0 + 1)..mapu(epi)]. If the
document d was already reported, then we stop. Using the array D described
above, we can find out whether a document d was already reported in O(1)
time. Correctness of our modified procedure follows from the definition of Au.
Suppose that Au[mapu(j)] is minimal on some Au[mapu(a)..mapu(b)] and the
document doc(�j) was already reported. Then Au[mapu(j)] ≥ |P | and hence
Au[mapu(i)] ≥ |P | for all i ∈ [a, b]. Hence, all documents corresponding to
suffixes in Au[mapu(a)..mapu(b)] are already reported.

4 A Succinct Space Data Structure

In this section, we show how to obtain a space efficient version of our data
structure in Theorem 3. The main result of this section is summarized in the
following theorem.

Theorem 2. There exists an |CSA|+ O(n) bit structure for reporting all those
docc documents in D containing a query string P = P1φP2 in O(search(|P |) +
(σ + docc)tSA logn) time. Here CSA represents the compressed suffix array of
the text obtained by concatenating all documents in D, |CSA| denotes the space
usage (in bits) of CSA, search(|P |) is the time for finding the suffix range of P
in CSA and tSA is the time needed to compute SA[·] and SA−1[·].

By choosing one of the recent versions of compressed suffix array [3], where
search(|P |) = O(|P |) and tSA = O(log n), the following can be obtained.

536 M. Lewenstein et al.

Corollary 1. There exists an nHk + o(nHk) + O(n) bit structure for reporting
all those docc documents in D containing a query string P = P1φP2 in O(|P |+
(σ + docc) log2 n) time. Here Hk ≤ log σ represents the kth order empirical
entropy of D for k ≤ ε logσ n for any 0 ≤ ε < 1.

As the first step, we replace the GST by its compressed version that uses
|CSA| + O(n) bits. The total space over all RMQ’s in our earlier structure is
O(n log n) bits. In order to compress this, we replace each RMQ structure by
sampled RMQ structures as follows: We partition each Au into contiguous blocks
of size (log n). Then we obtain another arrayA′

u, where the i-th entry in A′
u is the

minimum element in the i-th block of Au. We now maintain RMQ structures over
A′

u’s and the total space can be bounded by O(n) bits. We may also maintain
a bit vector B[1..n] with constant time rank/select support [31], where B[i] = 1
iff the i-th character in T is $. Using this, we can compute j = doc(�i) in O(tSA)
time, where j is one plus number of 1’s in B[1..(SA[i]− 1)].

Next we describe how to handle a query with P1φP2 as the input string.
The case where P1 = str(u) for any node u in GST can be handled using a
standard document listing algorithm. We shall use an o(n)-bit (in addition to
CSA) solution with query time O(search(|P |) + docc× tSA logε n) for handling
this case [16]. We now describe the complicated case, i.e., P1 = str(u) using the
same notations defined in Section 3. Our first task is to find the suffix ranges
[spi, epi] corresponding to the patterns P1αiP2 for all possible αi ∈ Σ. As we
cannot afford to keep the O(n)-word structure serving this purpose efficiently,
we use the following alternative solution: first find the suffix range of P1 in
search(|P1|) time and then find the suffix range of P2 in search(|P2|) time.
We may also find the suffix ranges corresponding to all characters in another
O(σ × search(1)) time: in fact, we can precompute and store these σ ranges
explicitly. We now make use of the following result from [17].

Lemma 2 ([17]). Let [sp′, ep′] and [sp′′, ep′′] be the suffix ranges of strings S′

and S′′ in CSA. If [sp′, ep′] and [sp′′, ep′′] are known, then the suffix range [sp, ep]
of the concatenated string S′S′′ can be computed in O(tSA log n) time.

Proof : Clearly, sp′ ≤ sp ≤ ep ≤ ep′. Moreover for any suffix str(�i) with
i ∈ [sp, ep], the suffix obtained by deleting its first |S′| characters must be
within the range [sp′′, ep′′]. Also, the lexicographical ordering of two suffixes
within the suffix range [sp, ep] will not alter even if we are comparing them after
deleting their first |S′| characters. This essentially means, sp (resp., ep) is the
minimum (resp., maximum) k satisfying the following conditions: k ∈ [sp′, ep′]
and SA−1[SA[k] + |S′|] ∈ [sp′′, ep′′]. Thus we can obtain [sp, ep] in O(tSA logn)
time via a binary search for k in [sp′, ep′]. �

Using the above lemma, we can compute the suffix range [spi, epi] of P1αiP2

in O(tSA logn) time, provided the suffix ranges of |P1| and |P2| are already cal-
culated. Thus we need O(|P |+σtSA logn) time for the initial phase of computing
the locus nodes. The next step is to report the elements within Au[mapu(spi)..
mapu(epi)] based on RMQ’s. Notice that we do not have an RMQ structure over

Document Retrieval with One Wildcard 537

Au, instead an RMQ structure over the minimum element of each block of Au.
Therefore, we slightly modify the remaining part of the search algorithm as fol-
lows: after each RMQ, we extract all documents within the corresponding block
and we stop recursing iff all documents within an extracted block are already
reported. Notice that when each new document in the output set is reported, we
may report another O(log n) documents, which we might have already reported.
Also, computing str(�) require O(tSA) time. Therefore, by putting all pieces to-
gether, the query time can be bounded by O(search(|P |)+(σ+docc)tSA logn).

5 Multiple Patterns in a Document

We consider the problem of reporting all documents that contain both a string
P and a string P ′, such that P and P ′ differ in only position. The main result
is summarized below.

Theorem 3. There exists an O(nσ)-word data structure that reports all docc
documents containing both P = P1αP2 and P1α

′P2 in O(|P1|+ |P2|+ 1 + docc)
time, where α and α′ are characters in Σ.

Our method is similar to the approach of Section 3. Let � be a light leaf
descendant of a node u such that str(�) is prefixed by str(u)αi. For an alphabet
symbol αj = αi, a string Pi = str(u)αiP

′
i is an αj-unique prefix of str(�) with

respect to u iff the following conditions are satisfied:

1. Pi is a prefix of str(�)
2. if wi is the locus of Pi, then � is the leftmost occurrence of doc(�) in the

subtree of wi

3. the document d = doc(�) does not contain a substring Pj = str(u)αjP
′
i .

We denote by ψα(�, u) the length of the shortest α-unique prefix of str(�)
with respect to u. For every node u in the generalized suffix tree GST and for
every alphabet symbol α, we keep an array Au,α that contains values ψα(�, u)
for all light leaf descendants � of u. The total number of entries in all arrays is
O(nσ logn) where σ is the size of the alphabet.

Suppose that P = P1αP2 and P ′ = P1α
′P2. If there is at least one document

that contains both P and P ′, then GST contains a node u such that str(u) = P1.
We descend to the node u in O(|P |) time. If w and w′ are the loci of P and P ′,
then at least one of them is a light descendant of u. Suppose that w is a light
descendant of u and let [lw, rw] be the range of leaves in the subtree of w. We
report all indices i such that lw ≤ i ≤ rw and Au,α′ [mapu,α′(i)] ≥ |P |. The
definition of mapu,α(·) with respect to Au,α is the same as the definition of
mapu(·) with respect to Au in Section 3. For every found index i, we report the
corresponding document. If �i is a leaf below the node w and ψα′(�i, u) ≥ |P |,
then the document doc(�i) also contains the string P1αP2. Each document is
reported exactly once because only the leftmost occurrence of a document in the
subtree of w is reported.

538 M. Lewenstein et al.

We can reduce the space usage to O(nσ) by storing only compact data struc-
tures for answering range maxima queries on Au,α and discarding the arrays
Au,α. We also need reporting data structures Rd for all documents d. Rd con-
tains indices of all leaves in GST in which suffixes of the document d are stored.
Using the result of [1], we can keep Rd in linear space and answer existential
range reporting queries in O(1) time. Thus we can determine whether a suffix
from a document d appears in the subtree of a node u in O(1) time for any u
and any d.

The modified procedure for listing documents is almost the same as in Sec-
tion 3. We find the index j where Au,α′ [lw..rw] reaches its maximum. If the
document dj corresponding to Au,α′ [mapu,α′(j)] occurs in the subtree of w′, we
split the range [lw, rw] and recursively explore Au,α′ [lw..j−1] and Au,α′ [j+1..rw].
If dj does not appear in the subtree of w′, we stop the recursion.

6 Conclusions

In this paper we showed that a collection of documents can be stored in a
linear space data structure so that all documents containing a query pattern
P1φP2 can be enumerated. This is the first non-trivial result for the case when
the query pattern contains a wildcard symbol φ. The query time of our data
structure matches the query time of the fastest currently known linear space
data structure for listing all occurrences of P1φP2. We also described efficient
compact solutions for this problem.

The research area of document retrieval contains many important questions
related to approximate pattern matching. The first question is existence of a
linear space data structure that reports all documents containing a pattern P ,
where P contains g > 1 wildcards. There are linear space data structures that
report all occurrences of such P [6,23]. But in the document listing problem
each document has to be reported only once; this requirement makes the latter
problem significantly more difficult. Unfortunately our definition of uniqueness
is not efficient in the case of g > 1 wildcards. A straightforward application of
our technique would significantly increase the space usage because a superlinear
number of patterns has to be taken into account: in addition to document suffixes
we would also have to consider the “approximate suffixes” obtained by changing
g − 1 arbitrary symbols in every suffix. This would blow up the space usage of
our data structure. Extending our method to patterns with many wildcards in
a space-efficient way presents an algorithmic challenge.

Document listing for other variants of approximatematching appears to be even
more challenging. It would be interesting to design a data structure that lists all
documents containing a pattern P̃ , such that the Hamming distance between P̃
and the query pattern P does not exceed a threshold value g. Even for g = 1 no ef-
ficient solution for this problem is known. Other proximity measures, e.g., the edit
distance between P and P̃ can also be considered. Designing efficient data struc-
tures for these queries or proving that no such data structure exists is an inter-
esting and important open problem. Yet another open problem concerns counting

Document Retrieval with One Wildcard 539

documents; it would be interesting to design a O(n)-space index that counts the
number of documents containing P1φP2 in O(|P |+ σpolylog(n)) time.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: Proc. 33rd Annual ACM Symposium on Theory of Computing (STOC),
pp. 476–482 (2001)

2. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh,
M.: Text indexing and dictionary matching with one error. J. Algorithms 37(2),
309–325 (2000)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

4. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discrete Algorithms 18, 3–13 (2013)

5. Bille, P., Gørtz, I.L.: Substring range reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (2011)

6. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with
wildcards. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
283–294. Springer, Heidelberg (2012)

7. Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Communications of
the ACM 20(10), 762–772 (1977)

8. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theoretical
Computer Science 411(40-42), 3795–3800 (2010)

9. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. 36th Annual ACM Symposium on Theory of
Computing (STOC 2004), pp. 91–100 (2004)

10. Fischer, J., Gagie, T., Kopelowitz, T., Lewenstein, M., Mäkinen, V., Salmela,
L., Välimäki, N.: Forbidden patterns. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 327–337. Springer, Heidelberg (2012)

11. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

12. Hon, W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Compressed
dictionary matching with one error. In: Proc. 2011 Data Compression Conference
(DCC 2011), pp. 113–122 (2011)

13. Hon, W.-K., Patil, M., Shah, R., Thankachan, S.V., Vitter, J.S.: Indexes for docu-
ment retrieval with relevance. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola,
A. (eds.) Ianfest-66. LNCS, vol. 8066, pp. 351–362. Springer, Heidelberg (2013)

14. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: String retrieval for multi-
pattern queries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 55–66. Springer, Heidelberg (2010)

15. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Document listing for queries
with excluded pattern. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS,
vol. 7354, pp. 185–195. Springer, Heidelberg (2012)

16. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: FOCS, pp. 713–722. IEEE Computer Society (2009)

17. Huynh, T.N.D., Hon, W.-K., Lam, T.-W., Sung, W.-K.: Approximate string match-
ing using compressed suffix arrays. Theoretical Comp. Science 352(1), 240–249
(2006)

540 M. Lewenstein et al.

18. Iliopoulos, C.S., Rahman, M.S.: Indexing factors with gaps. Algorithmica 55(1),
60–70 (2009)

19. Knuth, D.E., Morris, J.H., Pratt, V.B.: Fast Pattern Matching in Strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

20. Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string
matching with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,
pp. 846–857. Springer, Heidelberg (2007)

21. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135–143. Springer, Heidelberg (2011)

22. Lewenstein, M.: Orthogonal range searching for text indexing. In: Brodnik, A.,
López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS, vol. 8066, pp. 267–
302. Springer, Heidelberg (2013)

23. Lewenstein, M., Nekrich, Y., Vitter, J.S.: Space-efficient string indexing for wild-
card pattern matching. In: Proc. 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), pp. 506–517 (2014)

24. Lewenstein, M., Nekrich, Y., Vitter, J.S.: Space-efficient string indexing for wild-
card pattern matching. CoRR, abs/1401.0625 (2014)

25. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

26. Matias, Y., Muthukrishnan, S., Şahinalp, S.C., Ziv, J.: Augmenting suffix trees,
with applications. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.)
ESA 1998. LNCS, vol. 1461, pp. 67–78. Springer, Heidelberg (1998)

27. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp.
657–666 (2002)

28. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. CoRR, abs/1304.6023 (2013)

29. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Rabani, Y. (ed.) SODA, pp. 1066–1077. SIAM (2012)

30. Rahman, M.S., Iliopoulos, C.S.: Pattern matching algorithms with don’t cares. In:
Proc. 33rd Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2007), pp. 116–126 (2007)

31. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

32. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms 5(1), 12–22 (2007)

33. Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: Top-k document retrieval in
external memory. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 803–814. Springer, Heidelberg (2013)

34. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

35. Tam, A., Wu, E., Lam, T.-W., Yiu, S.-M.: Succinct text indexing with wildcards.
In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
39–50. Springer, Heidelberg (2009)

36. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11.
IEEE Computer Society (1973)

An Hn/2 Upper Bound on the Price of Stability
of Undirected Network Design Games

Akaki Mamageishvili, Matúš Mihalák, and Simone Montemezzani

Department of Computer Science, ETH Zurich, Switzerland

Abstract. In the network design game with n players, every player
chooses a path in an edge-weighted graph to connect her pair of ter-
minals, sharing costs of the edges on her path with all other players
fairly. We study the price of stability of the game, i.e., the ratio of the
social costs of a best Nash equilibrium (with respect to the social cost)
and of an optimal play. It has been shown that the price of stability of
any network design game is at most Hn, the n-th harmonic number. This
bound is tight for directed graphs. For undirected graphs, the situation
is dramatically different, and tight bounds are not known. It has only re-
cently been shown that the price of stability is at most Hn

(
1 − 1

Θ(n4)

)
,

while the worst-case known example has price of stability around 2.25.
In this paper we improve the upper bound considerably by showing that
the price of stability is at most Hn/2 + ε for any ε starting from some
suitable n ≥ n(ε).

1 Introduction

Network design game was introduced by Anshelevich et al. [1] together with
the notion of price of stability (PoS), as a formal model to study and quantify
the strategic behavior of non-cooperative agents in designing communication
networks. Network design game with n players is given by an edge-weighted
graph G (where n does not stand for the number of vertices), and by a collection
of n terminal (source-target) pairs {si, ti}, i = 1, . . . , n. In this game, every
player i connects its terminals si and ti by an si-ti path Pi, and pays for each
edge e on the path a fair share of its cost (i.e., all players using the edge pay the
same amount totalling to the cost of the edge). A Nash equilibrium of the game
is an outcome (P1, . . . , Pn) in which no player i can pay less by changing Pi to
a different path P ′

i .
Nash equilibria of the network design game can be quite different from an

optimal outcome that could be created by a central authority. To quantify the
difference in quality of equilibria and optima, one compares the total cost of a
Nash equilibrium to the cost of an optimum (with respect to the total cost).
Taking the worst-case approach, one arrives at the price of anarchy, which is the
ratio of the maximum cost of any Nash equilibrium to the cost of an optimum.
Price of anarchy of network design games can be as high as n (but not higher) [1].
Taking the slightly less pessimistic approach leads to the notion of the price of

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 541–552, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

542 A. Mamageishvili, M. Mihalák, and S. Montemezzani

stability, which is the ratio of the smallest cost of any Nash equilibrium to the
cost of an optimum. The motivation behind this is that often a central authority
exists, but cannot force the players into actions they do not like. Instead, a
central authority can suggest to the players actions that correspond to a best
Nash equilibria. Then, no player wants to deviate from the action suggested to
her, and the overall cost of the outcome can be lowered (when compared to the
worst case Nash equilibria).

Network design games belong to the broader class of congestion games for
which a function (called a potential function) Φ(P1, . . . , Pn) exists, with the
property that Φ(P1 . . . , Pi, . . . , Pn) − Φ(P1, . . . , P ′

i , . . . , Pn) exactly reflects the
changes of the cost of any player i switching from Pi to P ′

i . This property implies
that a collection of paths (P1, . . . , Pn) minimizing Φ necessarily needs to be a
Nash equilibrium. Up to an additive constant, every congestion game has a
unique potential function of a concrete form, which can be used to show that
the price of stability of any network design game is at most Hn :=

∑n
i=1

1
i ,

the n-th harmonic number, and this is tight for directed graphs (i.e., there is a
network design game for which the price of stability is arbitrarily close to Hn) [1].

Obtaining tight bounds on the price of stability for undirected graphs turned
out to be much more difficult. The worst case known example is an involved
construction of a game by Bilò et al. [4] achieving in the limit the price of stability
of around 2.25. While the general upper bound of Hn applies also for undirected
graphs, it has not been known for a long time whether it can be any lower, until
the recent work of Disser et al. [7] who showed that the price of stability of any
network design game with n players is at most Hn ·

(
1 − 1

Θ(n4)

)
. Improved upper

bounds have been obtained for special cases. For the case where all terminals ti

are the same, Li showed [10] that the price of stability is at most O
(

log n
log log n

)

(note that Hn is approximately ln n). If, additionally, every vertex of the graph
is a source of a player, a series of papers by Fiat et al. [9], Lee and Ligett [12], and
Bilò et al. [5] showed that the price of stability is in this case at most O(log log n),
O(log log log n), and O(1), respectively. Fanelli et al. [8] restrict the graphs to be
rings, and prove that the price of stability is at most 3/2. Further special cases
concern the number of players. Interestingly, tight bounds on price of stability
are known only for n = 2 (we do not consider the case n = 1 as a game) [1,6],
while for already 3 players there are no tight bounds; for the most recent results
for the case n = 3, see [7] and [3].

All obtained upper bounds on the price of stability use the potential function
in one way or another. Our paper is not an exception in that aspect. Bounding
the price of stability translates effectively into bounding the cost of a best Nash
equilibrium. A common approach is to bound this cost by the cost of the poten-
tial function minimizer (P Φ

1 , . . . , P Φ
n) := arg min(P1,...,Pn) Φ(P1, . . . , Pn), which

is (as we argued above) also a Nash equilibrium. Using just the inequality
Φ(P Φ

1 , . . . , P Φ
n) ≤ Φ(P O

1 , . . . , P O
n), where (P O

1 , . . . , P O
n) is an optimal outcome

(minimizing the total cost of having all pairs of terminals connected), one obtains
the original upper bound Hn on the price of stability [1]. In [7,6] authors consider
other inequalities obtained from the property that potential optimizer is also a

An Hn/2 Upper Bound on PoS of Undirected Network Design Games 543

Nash equilibrium to obtain improved upper bounds. In this paper, we consider n
different specifically chosen strategy profiles (P i

1, . . . , P i
n), i = 1, . . . , n, in which

players use only edges of the optimum (P O
1 , . . . , P O

n) and of the Nash equilib-
rium (P Φ

1 , . . . , P Φ
n). This idea is a generalization of the approach used by Bilò and

Bove [3] to prove an upper bound of 286/175 ≈ 1.634 for Shapley network design
games with 3 players. Clearly, the potential of each of the considered strategy
profile is at least the potential of (P Φ

1 , . . . , P Φ
n). Summing all these n inequalities

and combining it with the original inequality Φ(P Φ
1 , . . . , P Φ

n) ≤ Φ(P O
1 , . . . , P O

n)
gives an asymptotic upper bound of Hn/2 + ε on the price of stability. Our result
thus shows that the price of stability is strictly lower than Hn by an additive
constant (namely, by log 2).

Albeit the idea is simple, the analysis is not. It involves carefully chosen
strategy profiles for various possible topologies of the optimum solution. These
considerations can be of independent interest in further attempts to improve the
bounds on the price of stability of network design games.

2 Preliminaries

Shapley network design game is a strategic game of n players played on an edge-
weighted graph G = (V, E) with non-negative edge costs ce, e ∈ E. Each player
i, i = 1, . . . , n, has a source node si and a target node ti. All si-ti paths form the
set Pi of the strategies of player i. A vector P = (P1, . . . , Pn) ∈ P1 × · · · × Pn is
called a strategy profile. Let E(P) :=

⋃n
i=1 Pi be the set of all edges used in P .

The cost of player i in a strategy profile P is costi(P) =
∑

e∈Pi
ce/ke(P), where

ke(P) = |{j|e ∈ Pj}| is the number of players using edge e in P . A strategy
profile N = (N1, . . . , Nn) is a Nash equilibrium if no player i can unilaterally
switch from her strategy Ni to a different strategy N ′

i ∈ Pi and decrease her
cost, i.e., costi(N) ≤ costi(N1, . . . , N ′

i , . . . , Nn) for every N ′
i ∈ Pi.

Shapley network design games are exact potential games. That is, there is
a so called potential function Φ : P1 × · · · × Pn → R such that, for every
strategy profile P , every player i, and every alternative strategy P ′

i , costi(P) −
costi(P1, . . . , P ′

i , . . . , Pn) = Φ(P)−Φ(P1, . . . , P ′
i , . . . , Pn). Up to an additive con-

stant, the potential function is unique [13], and is defined as

Φ(P) =
∑

e∈E(P)

ke(P)∑
i=1

ce/i =
∑

e∈E(P)

Hke(P) ce .

To simplify the notation (e.g., to avoid writing H�n/2�), we extend Hk also for
non-integer values of k by setting H(k) :=

∫ 1
0

1−xk

1−x dx, which is an increasing
function, and which agrees with the (original) k-th harmonic number whenever
k is an integer.

The social cost of a strategy profile P is defined as the sum of the player costs:
cost(P) =

∑n
i=1 costi(P) =

∑n
i=1

∑
e∈Pi

ce/ke(P) =
∑

e∈E(P) ke(P) ce/ke(P) =∑
e∈E(P) ce. A strategy profile O(G) that minimizes the social cost of a game

544 A. Mamageishvili, M. Mihalák, and S. Montemezzani

G is called a social optimum. Observe that a social optimum O(G) so that
E(O(G)) induces a forest always exists (if there is a cycle, we could remove
one of its edges without increasing the social cost). Let N (G) be the set of
Nash equilibria of a game G. The price of stability of a game G is the ratio
PoS(G) = minN∈N (G) cost(N)/cost(O(G)).

Let M(G) be the set of Nash equilibria that are also global minimizers of
the potential function Φ of the game. The potential-optimal price of anarchy of
a game G, introduced by Kawase and Makino [11], is defined as POPoA(G) =
maxN∈M(G) cost(N)/cost(O(G)). Properties of potential optimizers were earlier
observed and exploited by Asadpour and Saberi in [2] for other games.

Since M(G) ⊂ N (G), it follows that PoS(G) ≤ POPoA(G). Let G(n) be
the set of all Shapley network design games with n players. The price of stabil-
ity of Shapley network design games is defined as PoS(n) = supG∈G(n) PoS(G).
The quantity POPoA(n) is defined analogously, and we get that PoS(n) ≤
POPoA(n).

3 The ≈ Hn/2 Upper Bound

The main result of the paper is the new upper bound on the price of stability,
as stated in the following theorem.

Theorem 1. PoS(n) ≤ Hn/2 + ε, for any ε > 0 given that n ≥ n(ε) for some
suitable n(ε).

We consider a Nash equilibrium N that minimizes the potential function Φ. For
each player i we construct a strategy profile Si as follows. Every player j �= i,
whenever possible (the terminals of players i and j lie in the same connected
component of the optimum O), uses edges of E(O(G)) to reach si, from there
it uses the Nash equilibrium strategy (a path) of player i to reach ti, and from
there it again uses edges of E(O(G)) to reach the player j’s other terminal
node. From the definition of N , we then obtain the inequality Φ(N) ≤ Φ(Si).
We then combine these n inequalities in a particular way with the inequality
Φ(N) ≤ Φ(O(G)), and obtain the claimed upper bound on the cost of N .

The proof of Theorem 1 is structured in the following way. We first prove
the theorem for the special case where an optimum O(G) contains an edge that
is used by every player. We then extend the proof of this special case, first to
the case where E(O(G)) is a tree, but with no edge used by every player, and,
second, to the case where E(O(G)) is a general forest (i.e., not one connected
component).

We will use the following notation. For a strategy profile P = (P1, . . . , Pn) and
a set U ⊂ {1, . . . , n}, we denote by PU the set of edges e ∈ E for which {j|e ∈
Pj} = U and by P l the set of edges e ∈ E for which |{j|e ∈ Pj}| = l. That is, PU

is the set of edges used in P by exactly the players U , and P l =
⋃

U⊂{1,...,n}
|U|=l

PU

is the set of edges used by exactly l many players. Then the edges used by player
i in P are

⋃
U⊂{1,...,n}

i∈U
PU . We stress that for every player i ∈ U , the edges of PU

An Hn/2 Upper Bound on PoS of Undirected Network Design Games 545

On

si

tj

sj ti

ui,j vi,jO− O+

Fig. 1. The non dashed lines are the edges of E(O), the dashed line is the Nash strategy
Ni. The path Si

j from sj to tj is given by the thicker dashed and non dashed lines.

are part of the strategy Pi; this implies that, whenever E(P) induces a forest,
the source si and the target ti are in two different connected components of
E(P) \ PU . For any set of edges F ⊂ E, let |F | :=

∑
e∈F ce. We then have, for

instance, that the cost of player i in P is given by costi(P) =
∑

U⊂{1,...,n}
i∈U

|PU |
|U| .

From now on, G is an arbitrary Shapley network design game with n players,
N = (N1, . . . , Nn) is a Nash equilibrium minimizing the potential function and
O = (O1, . . . , On) is an arbitrary social optimum so that E(O) has no cycles.

3.1 Case On Is Not Empty

In this section we assume that On is not empty. In this case, E(O) is actually
a tree. Then, E(O) \ On is formed by two disconnected trees, which we call O−

and O+, such that each player has the source node in one tree and the target
node in the other tree (see also Fig. 1). Without loss of generality, assume that
all source nodes si are in O−. Given two players i and j, let ui,j be the first1 edge
of Oi ∩Oj and vi,j be the last edge of Oi ∩Oj . Notice that every edge between si

and ui,j is used in O by player i but not by player j. That is, each edge e between
si and ui,j satisfies e ∈ Oi and e /∈ Oj , or equivalently, e ∈ ⋃

U⊂{1,...,n}
i∈U,j /∈U

OU . An
analogous statement holds for each edge e between ti and vi,j .

For every player i, we define a strategy profile Si, where player j = 1, . . . , n
uses the following sj-tj path Si

j (see Fig. 1 for an example.):

1. From sj to ui,j , it uses edges of O−.
2. From ui,j to si, it uses edges of O−.
3. From si to ti, it uses edges of Ni.
4. From ti to vi,j , it uses edges of O+.
5. From vi,j to tj , it uses edges of O+.

If Si
j contains cycles, we skip them to obtain a simple path from sj to tj .

This can be the case if Ni is not disjoint from E(O), so that an edge appears
both in step 3 and in one of the steps 1, 2, 4 or 5. Observe that the path Si

j uses
exactly the edges of OU for i ∈ U, j /∈ U (in steps 2 and 4), the edges of OU for
i /∈ U, j ∈ U (in steps 1 and 5) and the edges of NU for i ∈ U (in step 3). We
now can prove the following lemma.
1 The edges are ordered naturally along the path from si to ti.

546 A. Mamageishvili, M. Mihalák, and S. Montemezzani

Lemma 1. For every i ∈ {1, . . . , n},

Φ(N) ≤ Φ(Si) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU |+
∑

U⊂{1,...,n}
i∈U

Hn−|U||OU |+
∑

U⊂{1,...,n}
i /∈U

H|U||OU |.

(1)

Proof. The first inequality of (1) holds because, by assumption, N is a global
minimum of the potential function Φ.

To prove the second inequality, recall that for any strategy profile P we can
write Φ(P) =

∑
e∈P Hke(P)ce =

∑
U⊂{1,...,n} H|U||PU |. In our case, every edge

e ∈ Si belongs either to NU , U ⊂ {1, . . . , n}, i ∈ U , or to OU , and we therefore
sum only over these terms. We now show that, in our sum, the cost ce of every
edge e in Si is accounted for with at least coefficient Hke(Si).

For the first sum in the right hand side of (1), obviously at most n players
can use an edge of NU , i ∈ U , i.e., ke(Si) ≤ n. To explain the second and third
sums, notice that if an edge e ∈ OU that is present in Si also belongs to Ni, its
cost is already accounted for in the first sum. So, we just have to look at edges
that are only present in steps 1, 2, 4 and 5 of the definition of Si

j.
To explain the second sum, let i ∈ U . Then, as we already noted, in the

definition of Si
j , player j uses edges of OU with i ∈ U only if j /∈ U (in steps 2

and 4). Since there are exactly n − |U | players that satisfy j /∈ U , this explains
the second sum.

Finally, to explain the third sum, let i /∈ U . Similarly to the previous argu-
ment, in the definition of Si

j , player j uses edges of OU with i /∈ U only if j ∈ U
(in steps 1 and 5). Since there are exactly |U | players that satisfy j ∈ U , this
explains the third sum. ��

We now show how to combine Lemma 1 with the inequality Φ(N) ≤ Φ(O) to
prove Theorem 1, whenever On �= ∅.

Lemma 2. Suppose that Inequality (1) holds for every i. Then, for x = n−Hn

Hn−1 ,

PoS(G) ≤ n + x

n + x − Hn
H n+x

2
≤ Hn/2 + ε

holds for any ε > 0, given that n ≥ n(ε) for some suitable n(ε).

Proof. We sum (1) for i = 1, . . . , n to obtain

nΦ(N) ≤
n∑

i=1

⎛
⎜⎝

∑
U⊂{1,...,n}

i∈U

Hn|NU | +
∑

U⊂{1,...,n}
i∈U

Hn−|U||OU | +
∑

U⊂{1,...,n}
i /∈U

H|U||OU |

⎞
⎟⎠ =

=
∑

U⊂{1,...,n}
|U |Hn|NU | +

∑
U⊂{1,...,n}

|U |Hn−|U||OU | +
∑

U⊂{1,...,n}
(n − |U |)H|U||OU | =

=
n∑

l=1

lHn|N l| +
n∑

l=1

(lHn−l + (n − l)Hl)|Ol| .

An Hn/2 Upper Bound on PoS of Undirected Network Design Games 547

Since Φ(N) =
∑n

l=1 Hl|N l|, by putting all terms relating to N on the left hand
side we obtain

n∑
l=1

(nHl − lHn)|N l| ≤
n∑

l=1
(lHn−l + (n − l)Hl)|Ol| . (2)

On the other hand, we have Φ(N) ≤ Φ(O), which we can write as
n∑

l=1
Hl|N l| ≤

n∑
l=1

Hl|Ol| . (3)

If we multiply (3) by x = n−Hn

Hn−1 and sum it with (2) we get
n∑

l=1
((n + x)Hl − lHn)|N l| ≤

n∑
l=1

(lHn−l + ((n + x) − l)Hl)|Ol| . (4)

Let α(l) = (n + x)Hl − lHn and β(l) = lHn−l + ((n + x) − l)Hl. We will show
that minl∈{1,...,n} α(l) = n + x − Hn and that maxl∈{1,...,n} β(l) ≤ (n + x)H n+x

2
.

This will allow us to bound the left and right hand side of (4), giving us the
desired bound on the price of stability.

To prove minl∈{1,...,n} α(l) = n + x − Hn, we observe that α(l) first increases
and then decreases and that α(1) = α(n). By the choice of x the values at the
two extremes coincide, the minimum is α(1) = n + x − Hn by inserting 1 in the
formula of α(l).

To prove maxl∈{1,...,n} β(l) ≤ (n + x)H n+x
2

, we first show that θ(l) = lHn−l +
(n − l)Hl has maximum nHn/2. Since θ is symmetric around n/2, we just have
to show that the difference θ(l + 1) − θ(l) is always positive for l + 1 ≤ n/2. This
proves that θ reaches at l = n/2 the maximum value of n

2 Hn/2+ n
2 Hn/2 = nHn/2.

We have that
θ(l + 1) − θ(l) = (l + 1)Hn−(l+1) + (n − (l + 1))Hl+1 − (lHn−l + (n − l)Hl) =

= lHn−l + Hn−l − l + 1
n − (l + 1)

+ (n − l)Hl − Hl + n − (l + 1)
l + 1

− lHn−l − (n − l)Hl =

= n − (l + 1)
l + 1

− l + 1
n − (l + 1)

+ Hn−l − Hl.

The term n−(l+1)
l+1 − l+1

n−(l+1) is positive if n− (l +1) ≥ l +1, that is if l +1 ≤ n/2.
Since H is an increasing function, Hn−l − Hl is positive if l ≤ n/2, in particular
if l +1 ≤ n/2. This proves our claim that θ(l) = lHn−l +(n− l)Hl has maximum
nHn/2.

Since H is an increasing function, we then have the bound

β(l) = lHn−l + ((n + x) − l)Hl ≤ lH(n+x)−l + ((n + x) − l)Hl ≤ (n + x)H n+x
2

.

We can now finally prove Lemma 2. We know that

(n+x−Hn) cost(N) = (n+x−Hn)
n∑

l=1
|N l| ≤

n∑
l=1

((n+x)Hl − lHn)|N l| , (5)

548 A. Mamageishvili, M. Mihalák, and S. Montemezzani

n∑
l=1

(lHn−l +((n+x)−l)Hl)|Ol| ≤ (n+x)H n+x
2

n∑
l=1

|Ol| = (n+x)H n+x
2

cost(O) ,

(6)
which together with (4) proves that PoS(G) ≤ cost(N)

cost(O) ≤ n+x
n+x−Hn

H n+x
2

.
Now observe that for any ε there is an n(ε) so that n+x

n+x−Hn
H n+x

2
≤ Hn/2 + ε

whenever n ≥ n(ε), because x = n−Hn

Hn−1 ∈ o(n) and (Hn)2 ∈ o(n). ��

3.2 Case On Is Empty

In the previous section we proved Theorem 1 if On �= ∅ by constructing for every
pair of players i and j a particular path Si

j that uses edges of E(O) to go from
sj to si and from tj to ti.

If E(O) is not connected, then there is a pair of players i, j for which si and sj

are in different connected components of E(O), and we cannot define the path
Si

j . Even if E(O) is connected, but On = ∅, there might be a pair of players
i and j for which the path Si

j exists, but this path is not optimal. See Fig. 6
for an example: the path Si

j (before cycles are removed to make Si
j a simple

path) traverses some edges of E(O) twice, including the edge denoted by e in
the figure. The same holds even if we exchange the labeling of si and ti. Thus,
we may need to define a new path T i

j for some players i and j.
To define the new path T i

j , let us introduce some notation. Given two players
i, j and two nodes xi ∈ {si, ti}, xj ∈ {sj , tj} in the same connected component
of E(O), let O(xi, xj) be the unique path in E(O) between xi and xj . If si and
sj are in the same connected component of E(O), let (T i

j)′ (respectively (T i
j)′′)

be the following sj-tj path:

1′. From sj to si (respectively ti), it uses edges of O(si, sj) (respectively O(ti, sj)).
2′. From si (respectively ti) to ti (respectively si), it uses edges of Ni.
3′. From ti (respectively si) to tj , it uses edges of O(ti, tj) (respectively O(si, tj)).

If (T i
j)′ or (T i

j)′′ contain cycles, we skip them to obtain a simple path from sj

to tj . See Fig. 2 for an example of (T i
j)′ and Fig. 4 for an example of (T i

j)′′.
Notice that in the previous section, we had Si

j = (T i
j)′ (where steps 1 and

2 are now step 1′; steps 4 and 5 are now step 3′) and O(si, sj) ∩ O(ti, tj) = ∅,
since O(si, sj) ⊂ O− and O(ti, tj) ⊂ O+. This ensured that there was no edge
that is traversed both in step 1′ and 3′, which would make Lemma 1 not hold.
In general, O(si, sj) ∩ O(ti, tj) = ∅ does not have to hold; for example in Fig.
6 we have e ∈ O(si, sj) ∩ O(ti, tj). We call the path (T i

j)′ (respectively (T i
j)′′)

O-cycle free if O(si, sj) ∩ O(ti, tj) = ∅ (respectively if O(si, tj) ∩ O(ti, sj) = ∅).
For instance, in Fig. 6 both (T i

j)′ and (T i
j)′′ are not O-cycle free.

We are now ready to define the path T i
j for two players i and j. If si and sj

are in the same connected component of E(O), we set T i
j = (T i

j)′ (respectively
T i

j = (T i
j)′′) if (T i

j)′ (respectively (T i
j)′′) is O-cycle free. Otherwise, we set T i

j =
Oj . Similar to the previous section, let T i = (T i

1, . . . , T i
n). That is, in T i a player

An Hn/2 Upper Bound on PoS of Undirected Network Design Games 549

j uses the optimal path Oj if the paths (T i
j)′ and (T i

j)′′ are not defined (meaning
that si and sj are in different connected components of E(O)), or if they are
not O-cycle free (meaning that they use some edges of E(O) twice). Otherwise,
player j uses the O-cycle free path.

The following lemma shows that the paths T i satisfy the requirements of
Lemma 2 if E(O) is connected but On = ∅. A subsequent lemma will then show
that the requirements of Lemma 2 are satisfied even if E(O) is not connected.

Lemma 3. If E(O) is connected, then for every i ∈ {1, . . . , n}

Φ(N) ≤ Φ(T i) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU |+
∑

U⊂{1,...,n}
i∈U

Hoi(U)|OU |+
∑

U⊂{1,...,n}
i /∈U

H|U||OU | ,

(7)
with oi(U) ≤ n − |U |.

Proof. Since the initial part of the proof is exactly the same as the proof of
Lemma 1, we only prove that the cost ce of every edge e in T i is accounted for
with at least coefficient Hke(T i) in the right hand side of (7). In particular, we
just look at edges that are only present in steps 1′ and 3′ of the definition of T i

j ,
since an edge e ∈ OU that also belongs to Ni has its cost already accounted for
in the first sum.

To explain the second and third sum, let U ⊂ {1, . . . , n} and e ∈ OU . We will
look at all the possibilities of where the nodes si, sj, ti and tj can be in the tree
E(O) and see whether e can be traversed in the path T i

j . Denote by e− and e+

the two distinct connected components of E(O) \ {e}. Then, by the definition
of OU , each player k ∈ U has sk ∈ e− and tk ∈ e+, or viceversa. Always by the
definition of OU , each player k /∈ U has either sk, tk ∈ e− or sk, tk ∈ e+.

To explain the third sum of (7), let i /∈ U . For illustration purposes, assume
without loss of generality that si, ti ∈ e−. Then, the only possibilities are that

– j ∈ U . Then e can be traversed, since T i
j has to go from e− to e+ to connect

sj and tj . See Fig. 2 for an illustration in the case T i
j �= Oj and Fig. 3 for

the case T i
j = Oj .

– j /∈ U, sj , tj ∈ e−. Then e cannot be traversed, since all terminal nodes are
in e− and there is no need to traverse e. See Fig. 4 for an illustration in the
case T i

j �= Oj and Fig. 5 for the case T i
j = Oj .

– j /∈ U, sj, tj ∈ e+. Then e cannot be traversed, since both (T i
j)′ and (T i

j)′′

traverse e twice, so we must have T i
j = Oj . See Fig. 6 for an illustration.

As we can see, e can be traversed only if j ∈ U , that is, at most |U | times. This
explains the third sum of (7).

Finally, to explain the second sum of (7), let i ∈ U . The only possibilities are
that

– j ∈ U . Then e cannot be traversed, since at least one of (T i
j)′ or (T i

j)′′ is a
O-cycle free path that does not traverse e. See Fig. 7 for an illustration.

550 A. Mamageishvili, M. Mihalák, and S. Montemezzani

e

si

sj

ti

tj

e+e−

Fig. 2. i /∈ U, j ∈ U and T i
j �= Oj . Then e

can be traversed in the path T i
j .

e

si sj

ti

tj

e+e−

Fig. 3. i /∈ U, j ∈ U and T i
j = Oj . Then e

can be traversed in the path T i
j .

e

sisj

ti

tj

e+e−

Fig. 4. i /∈ U, j /∈ U , sj , tj ∈ e− and
T i

j �= Oj . Then e cannot be traversed in
the path T i

j .

e

si sj

ti

tj

e+e−

Fig. 5. i /∈ U, j /∈ U , sj , tj ∈ e− and
T i

j = Oj . Then e cannot be traversed in
the path T i

j .

e

si

ti

tj

sj

e+e−

Fig. 6. i /∈ U, j /∈ U , sj , tj ∈ e+ and T i
j =

Oj . Then e cannot be traversed in the
path T i

j .

e

si

tj

sj ti

e+e−

Fig. 7. i ∈ U, j ∈ U and T i
j �= Oj . Then e

cannot be traversed in the path T i
j .

e

si

tj

sj ti

e+e−

Fig. 8. i ∈ U, j /∈ U , and T i
j �= Oj . Then

e can be traversed in the path T i
j .

e

si

tj

sj ti

e+e−

Fig. 9. i ∈ U, j /∈ U , and T i
j = Oj . Then

e cannot be traversed in the path T i
j .

An Hn/2 Upper Bound on PoS of Undirected Network Design Games 551

– j /∈ U and T i
j �= Oj . Then e can be traversed, since sj and tj are in the same

connected component of E(O) \ {e}, but si and ti are in different ones. See
Fig. 8 for an illustration.

– j /∈ U and T i
j = Oj . Then e cannot be traversed, since sj and tj are in the

same connected component of E(O) \ {e} and we just take the direct path
between them, which does not traverse e. See Fig. 9 for an illustration.

Let oi(U) be the number of j /∈ U with T i
j �= Oj . Then, as we can see, e is

traversed at most oi(U) ≤ n − |U | times. This explain the second sum of (7) and
finishes the proof of Lemma 3. ��

Theorem 1 follows directly if E(O) is connected but On is empty by Lemma 3
and Lemma 2. The following lemma handles the last case we have left to analyze,
which is when E(O) is not a connected tree. This, together with Lemma 2,
finishes the proof of Theorem 1.

Lemma 4. Let E(O) = C1�· · ·�Cq, with each Cm being a connected component
of E(O). Let Rm be the set of players j with sj , tj ∈ Cm. Then for a player i ∈ Rk

Φ(N)≤ Φ(T i) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU |+
∑

U⊂Rk
i∈U

Hoi(U)|OU |+
∑

U⊂Rm for some m
i/∈U

H|U||OU | ,

(8)
with oi(U) ≤ |Tk| − |U | ≤ n − |U |.
Proof. Since the initial part of the proof is exactly the same as the proof of
Lemma 1 and Lemma 3, we only prove that the cost ce of every edge e in T i

is accounted for with at least coefficient Hke(T i) in the right hand side of (8).
In particular, we just look at edges that are only present in steps 1′ and 3′ of
the definition of T i

j , since an edge e ∈ OU that also belongs to Ni has its cost
already accounted for in the first sum.

To explain the second and third sum, let U ⊂ {1, . . . , n} and e ∈ OU . Notice
that if U �⊂ Rm for every m, then OU is the empty set and e does not contribute
anything to Φ(T i). We begin by looking at the second sum.

Notice that since i ∈ Rk, the only possibility to have i ∈ U is that U ⊂ Rk.
By the definition of T i the players j ∈ Rm, m �= k use the path Oj , which does
not traverse e. With the exact same reasoning of Lemma 3, by looking at all
the possibilities of where si, ti, sj and tj can be in Ck, we can see that e can be
traversed by player j ∈ Rk only if j /∈ U and T i �= Oj . If we then define the
number of players j ∈ Tk with this property to be oi(U) ≤ |Tk| − |U | ≤ n − |U |,
the second sum in the right hand side of (8) is explained.

Finally, for the third sum, we fix i /∈ U and look at the cases U ⊂ Rk and
U ⊂ Rm, m �= k separately.

Suppose first that U ⊂ Rk. By the definition of T i the players j ∈ Rm, m �= k
use the path Oj , which does not traverse e. With the exact same reasoning of
Lemma 3, by looking at all the possibilities of where si, ti, sj and tj can be in
Ck, we can see that e can be traversed by player j ∈ Rk only if j ∈ U . That is,
by at most |U | players. This explains the third sum for the case U ⊂ Rk.

552 A. Mamageishvili, M. Mihalák, and S. Montemezzani

We now look at the case U ⊂ Rm, m �= k. By the definition of T i, players
j ∈ Rl, l �= m do not traverse e, since they only use edges of Cl (if l �= k) or
edges of Ck and of Ni (if l = k). Players j ∈ Rm use the path Oj , and by the
definition of OU exactly |U | players traverse e. This explains the third sum for
the case U ⊂ Rm, m �= k, which finishes the proof. ��

Acknowledgements. We are grateful to Rati Gelashvili for valuable discussions
and remarks. This work has been partially supported by the Swiss National
Science Foundation (SNF) under the grant number 200021_143323/1.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
FOCS, pp. 295–304 (2004)

2. Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in congestion
games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 545–552. Springer,
Heidelberg (2009)

3. Bilò, V., Bove, R.: Bounds on the price of stability of undirected network design
games with three players. Journal of Interconnection Networks 12(1-2), 1–17 (2011)

4. Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on the
price of stability of undirected network design games. Theory Comput. Syst. 52(4),
668–686 (2013)

5. Bilò, V., Flammini, M., Moscardelli, L.: The price of stability for undirected broad-
cast network design with fair cost allocation is constant. In: FOCS, pp. 638–647
(2013)

6. Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., van Stee, R.: On the price of
stability for undirected network design. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 86–97. Springer, Heidelberg (2010)

7. Disser, Y., Feldmann, A.E., Klimm, M., Mihalák, M.: Improving the Hk-bound on
the price of stability in undirected shapley network design games. In: Spirakis, P.G.,
Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 158–169. Springer, Heidelberg
(2013)

8. Fanelli, A., Leniowski, D., Monaco, G., Sankowski, P.: The ring design game with
fair cost allocation. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp.
546–552. Springer, Heidelberg (2012)

9. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for
designing undirected networks with fair cost allocations. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 608–618.
Springer, Heidelberg (2006)

10. Li, J.: An upper bound on the price of stability for undirected shapley network
design games. Information Processing Letters 109, 876–878 (2009)

11. Kawase, Y., Makino, K.: Nash equilibria with minimum potential in undirected
broadcast games. Theor. Comput. Sci. 482, 33–47 (2013)

12. Lee, E., Ligett, K.: Improved bounds on the price of stability in network cost
sharing games. In: EC, pp. 607–620 (2013)

13. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behav-
ior 14(1), 124–143 (1996)

Traveling Salesman Problems

in Temporal Graphs�

Othon Michail1 and Paul G. Spirakis1,2

1 Computer Technology Institute & Press “Diophantus” (CTI), Patras, Greece
2 Department of Computer Science, University of Liverpool, UK

michailo@cti.gr, P.Spirakis@liverpool.ac.uk

Abstract. In this work, we introduce the notion of time to some well-
known combinatorial optimization problems. In particular, we study
problems defined on temporal graphs. A temporal graph D = (V,A)
may be viewed as a time-sequence G1, G2 . . . , Gl of static graphs over
the same (static) set of nodes V . Each Gt = D(t) = (V,A(t)) is called
the instance of D at time t and l is called the lifetime of D. Our main
focus is on analogues of traveling salesman problems in temporal graphs.
A sequence of time-labeled edges (e.g. a tour) is called temporal if its
labels are strictly increasing. We begin by considering the problem of
exploring the nodes of a temporal graph as soon as possible. In contrast
to the positive results known for the static case, we prove that, it cannot
be approximated within cn, for some constant c > 0, in general temporal
graphs and within (2 − ε), for every constant ε > 0, in the special case
in which D(t) is connected for all 1 ≤ t ≤ l, both unless P = NP. We
then study the temporal analogue of TSP(1,2), abbreviated TTSP(1,2),
where, for all 1 ≤ t ≤ l, D(t) is a complete weighted graph with edge-
costs from {1, 2} and the cost of an edge may vary from instance to in-
stance. The goal is to find a minimum cost temporal TSP tour. We give
several polynomial-time approximation algorithms for TTSP(1,2). Our
best approximation is (1.7+ ε) for the generic TTSP(1,2) and (13/8+ ε)
for its interesting special case in which the lifetime of the temporal graph
is restricted to n. In the way, we also introduce temporal versions of other
fundamental combinatorial optimization problems, for which we obtain
polynomial-time approximation algorithms and hardness results.

1 Introduction

A temporal graph is, informally speaking, a graph that changes with time. A
great variety of both modern and traditional networks such as information and
communication networks, social networks, transportation networks, and several
physical systems can be naturally modeled as temporal graphs.

� Supported in part by the (i) project FOCUS, “ARISTEIA” Action, OP EdLL, EU
and Greek National Resources, (ii) FET EU IP project MULTIPLEX under con-
tract no 317532, and (iii) School of EEE/CS of the Univ. of Liverpool. Full version:
http://ru1.cti.gr/aigaion/?page=publication&kind=single&ID=1051

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 553–564, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://ru1.cti.gr/aigaion/?page=publication&kind=single&ID=1051

554 O. Michail and P.G. Spirakis

In this work, we restrict attention to discrete time. This is totally plausible
when the dynamicity of the system is inherently discrete, which is for exam-
ple the case in synchronous mobile distributed systems that operate in discrete
rounds, but can also satisfactory approximate a wide range of continuous-time
systems. Moreover, this choice gives to the resulting models and problems a
purely combinatorial flavor. We also restrict attention to systems in which only
the relationships between the participating entities may change and not the en-
tities themselves. Therefore, in this paper, a temporal graph D = (V,A) may
always be viewed as a sequence G1, G2 . . . , Gl of static graphs over the same
(static) set of nodes V . Each Gt = D(t) = (V,A(t)) is called the instance of D
at time t and l is called the lifetime of D.

Though static graphs have been extensively studied, for their temporal gener-
alization we are still far from having a concrete set of structural and algorithmic
principles. Additionally, it is not yet clear how is the complexity of combinatorial
optimization problems affected by introducing to them a notion of time. In an
early but serious attempt to answer this question, Orlin [Orl81] observed that
many dynamic languages derived from NP-complete languages can be shown to
be PSPACE-complete. Among the other few things that we do know, is that
the max-flow min-cut theorem holds with unit capacities for time-respecting
paths [Ber96]. Additionally, Kempe et al. [KKK00] proved that, in temporal
graphs, the classical formulation of Menger’s theorem is violated and the compu-
tation of the number of node-disjoint s-t paths becomes NP-complete. In a very
recent work [MMCS13], among other things, the authors achieved a reformula-
tion of Menger’s theorem which is valid for all temporal graphs and introduced
several interesting cost minimization parameters for optimal temporal network
design. Dutta et al. [DPR+13], working on a distributed online dynamic network
model, presented offline centralized algorithms for the k-gossip problem.

We make here one more step towards the direction of revealing the algorithmic
principles of temporal graphs. In particular, we introduce the study of traveling
salesman problems in temporal graphs, which, to the best of our knowledge,
have not been considered before in the literature. Our main focus is on the
Temporal Traveling Salesman Problem with Costs One and Two

abbreviated TTSP(1,2) throughout the paper. In this problem, we are given a
temporal graph D = (V,A) every instance of which is a complete graph, i.e.
D(t) = (V,A(t)) is complete for all 1 ≤ t ≤ l. Moreover, the edges of every D(t)
are weighted according to a cost function c : A→ {1, 2}. Observe that A is a set
of time-edges (e, t), where e is an edge and t is the time at which e appears. So,
the cost function c is allowed to assign different cost values to different instances
of the same edge, therefore, in this model, costs are dynamic in nature. We are
asked to find a Temporal TSP tour (abbreviated TTSP tour) of minimum total
cost. A TSP tour (u1, t1, u2, t2, . . . , tn−1, un, tn, u1) is temporal if ti < ti+1 for
all 1 ≤ i ≤ n− 1. The cost of such a TSP tour is

∑
1≤i≤n c((ui, ui+1), ti), where

un+1 = u1. We should remark that, in general, the lifetime of D is not restricted
and therefore it can be much greater than n. Whenever we restrict attention to
limited lifetime, this will be explicitly stated. We should also emphasize that,

Traveling Salesman Problems in Temporal Graphs 555

throughout this work, the entire temporal graph is provided to the centralized
algorithms in advance. It is useful to observe that TTSP(1,2) seems to be natu-
rally closer to the Asymmetric TSP(1,2) and this seems to hold independent
of whether the temporal graph has directed or undirected instances. In most
places we assume directed edge-sets, however keep in mind that the undirected
case is not expected to be any simpler. Finally, note that ATSP(1,2) is a special
case of TTSP(1,2) which implies that TTSP(1,2) is also APX-hard [PY93] and
cannot be approximated within any factor less than 207/206 [KS13].

1.1 Our Approach-Contribution

We now summarize our approach to approximate TTSP(1,2). Note that all the
approximation algorithms that we present in this work are polynomial-time al-
gorithms on a binary encoding of the temporal graph, i.e. on |〈D〉|. In the static
case, one easily obtains a (3/2)-factor approximation for ATSP(1,2) by comput-
ing a perfect matching maximizing the number of ones and then patching the
edges together arbitrarily. This works well, because such a minimum cost perfect
matching can be computed in polynomial time in the static case. This was one
of the first algorithms known for ATSP(1,2). Other approaches have improved
the factor to the best currently known 5/4 [Blä04]. Unfortunately, as we shall
see, even the apparently simple task of computing a matching maximizing the
number of ones is not that easy in temporal graphs. In particular, we prove that
computing a matching maximizing the number of ones and additionally satisfy-
ing the temporal condition that all its edges appear at distinct times is NP-hard.
The reason that we insist on distinct times is that we can form a temporal TSP
tour by patching the edges of a matching only if the edges of the matching can
be strictly ordered in time. In fact, an additional requirement is that the edges of
the matching should have time differences of at least two, so that we can always
fit a patching-edge between two time-consecutive edges of the matching. We call
the corresponding problem Max-TEM(≥ 2).

We naturally then search for good approximations for Max-TEM(≥ 2). We
follow two main approaches. One is to reduce the problem to Maximum In-

dependent Set (MIS) in (k + 1)-claw free graphs and the other is to reduce
it to k′-Set Packing for some k and k′ to be determined. The first approach
gives a (7/4 + ε)-approximation (= 1.75 + ε) for the generic TTSP(1,2) and a
(12/7+ε)-approximation (≈ 1.71+ε) for the special case of TTSP(1,2) in which
the lifetime is restricted to n. The latter is obtained by approximating a tem-
poral path packing instead of a matching. The second approach improves these
to 1.7 + ε for the general case and to 13/8 + ε = 1.625 + ε when the lifetime is
n. In all cases, ε > 0 is a small constant (not necessarily the same in all cases)
adopted from the factors of the approximation algorithms for independent set
and set packing. We leave as an interesting open problem whether a (3/2)-factor
for TTSP(1,2) or its special case with lifetime restricted to n is within reach.

Apart from TTSP(1,2) we also consider the Temporal (Node) Explo-

ration (abbreviated TEXP) problem, in which we are given a temporal graph
(unweighted and non-complete) and the goal is to visit all nodes of the temporal

556 O. Michail and P.G. Spirakis

graph, by possibly revisiting nodes, minimizing the arrival time (in the static
case, appears as Graphic TSP in the literature). Though, in the static case,
the decision version of the problem, asking whether a given graph is explorable,
can be solved in linear time, we show that in the temporal case it becomes NP-
complete. Additionally, in the static case, there is a (3/2 − ε)-approximation
for undirected graphs [GSS11] and a O(log n/ log logn) for directed [AGM+10].
In contrast to these, we prove that there exists some constant c > 0 such that
TEXP cannot be approximated within cn unless P = NP. Additionally, we
prove that even the special case in which every instance of the temporal graph
is connected, cannot be approximated within (2 − ε), for every constant ε > 0,
unless P = NP. On the positive side, we show that TEXP can be approximated
within the dynamic diameter (definition in Section 2) of the temporal graph.

Finally, in the way to approaching the above two main problems, we also ob-
tain several interesting side-results, such as a [3/(5+ε)]-approximation for Max-
TEM(≥ 2), a [1/(7/2+ε)]-approximation for Temporal Path Packing (TPP)
when the lifetime is restricted to n, and in the full paper a (1/5)-approximation
for Max-TTSP and an inapproximability result stating that for any polynomial
time computable function α(n), Temporal Cycle Cover cannot be approx-
imated within α(n), unless P = NP. To the best of our knowledge, all the
aforementioned temporal problems are first studied in this work.

In Section 2, we formally define the model of temporal graphs under consid-
eration and provide all further necessary definitions. Section 2.1 presents formal
definitions of all temporal problems that we consider in this work. In Section 3,
we consider the Temporal Exploration problem. Then, in Section 4 we in-
troduce and study the TTSP(1,2) problem in weighted temporal graphs.

2 Preliminaries

Definition 1. A temporal graph (or dynamic graph) D is an ordered pair of
disjoint sets (V,A) such that A ⊆

(
V
2

)
× IN (V 2\{(u, u) : u ∈ V } in case of a

digraph). The set V is the set of nodes and the set A is the set of time-edges.

A temporal (di)graph D = (V,A) can be also viewed as a static (underlying)
graph GD = (V,E), where E = {e : (e, t) ∈ A for some t ∈ IN} contains all
edges that appear at least once, together with a labeling λD : E → 2IN defined
as λD(e) = {t : (e, t) ∈ A} (we omit the subscript D when no confusion can
arise). We denote by λ(E) the multiset of all labels assigned by λ to GD and
by λmin = min{l ∈ λ(E)} (λmax = max{l ∈ λ(E)}) the minimum (maximum)
label of D. We define the lifetime (or age) of a temporal graph D as α(D) =
λmax − λmin + 1. Note that in case λmin = 1 we have α(D) = λmax.

For every time t ∈ IN, we define the t-th instance of a temporal graph
D = (V,A) as the static graph D(t) = (V,A(t)), where A(t) = {e : (e, t) ∈ A}
is the (possibly empty) set of all edges that appear in D at time t. A tem-
poral graph D = (V,A) may be also viewed as a sequence of static graphs
(G1, G2, . . . , Gα(D)), where Gi = D(λmin + i − 1) for all 1 ≤ i ≤ α(D). An-
other, often convenient, representation of a temporal graph is the following.

Traveling Salesman Problems in Temporal Graphs 557

The static expansion of a temporal graph D = (V,A) is a DAG H = (S,E) de-
fined as follows. If V = {u1, u2, . . . , un} then S = {uij : λmin−1 ≤ i ≤ λmax, 1 ≤
j ≤ n} and E = {(u(i−1)j, uij′) : if (uj , u

′
j) ∈ A(i) for some λmin ≤ i ≤ λmax}.

A temporal (or time-respecting) walk W of a temporal graph D = (V,A) is an
alternating sequence of nodes and times (u1, t1, u2, t2, . . . , uk−1, tk−1, uk) where
(uiui+1, ti) ∈ A, for all 1 ≤ i ≤ k − 1, and ti < ti+1, for all 1 ≤ i ≤ k − 2.
We call tk−1 − t1 + 1 the duration (or temporal length) of the walk W , t1 its
departure time and tk−1 its arrival time. A journey (or temporal/time-respecting
path) J is a temporal walk with pairwise distinct nodes. A (u, v)-journey J is
called foremost from time t ∈ IN if it departs after time t and its arrival time is
minimized. The temporal distance from a node u at time t (also called time-node
(u, t)) to a node v is defined as the duration of a foremost (u, v)-journey from
time t. We say that a temporal graph D = (V,A) has dynamic diameter d, if
d is the minimum integer for which it holds that the temporal distance from
every time-node (u, t) ∈ V ×{0, 1, . . . , α(D)− d} to every node v ∈ V is at most
d. A temporal matching of a temporal graph D = (V,A) is a set of time-edges
M = {(e1, t1), (e2, t2), . . . , (ek, tk)}, such that (ei, ti) ∈ A, for all 1 ≤ i ≤ k,
ti = tj , for all 1 ≤ i < j ≤ k, and {e1, e2, . . . , ek} is a matching of GD.

Similarly to weighted graphs we may define weighted temporal graphs by in-
troducing a (temporal) cost function c : A→ C, where C denotes the range of the
costs, e.g. C = IN. A temporal graph D = (V,A) is called complete (continuously
connected) if D(t) is complete (connected, resp.) for all 1 ≤ t ≤ α(D). In these
cases, we may also say that D has complete/connected instances.

Throughout the text, unless otherwise stated, we denote by n the number of
nodes of (temporal) (di)graphs. When no confusion may arise, we use the term
edge for both undirected edges and arcs. Finally, a δ-factor (polynomial-time)
approximation algorithm for a problem Π satisfies δ ≥ 1 if Π is a minimization
problem and δ ≤ 1 if Π is a maximization problem.

2.1 Problem Definitions

Temporal Exploration - TEXP. Given a temporal graph D = (V,A) and a
source node s ∈ V , find a temporal walk that begins from s and visits all nodes
minimizing the arrival time.

TTSP(1,2). Given a complete temporal graph D = (V,A) and a cost function
c : A→ {1, 2} find a temporal TSP tour of minimum total cost.

Max-TEM(≥k). Given a temporal graph D = (V,A) find a maximum cardinality
temporal matching M = {(e1, t1), (e2, t2), . . . , (eh, th)} satisfying that there is a
permutation ti1 , ti2 , . . . , tih of the tjs s.t. ti(l+1)

≥ til + k for all 1 ≤ l ≤ h− 1.

Temporal Path Packing - TPP. We are given a temporal graph and we want
to find time and node disjoint time-respecting paths maximizing the number of
edges used. By time disjoint we require that they correspond to distinct intervals
that differ by ≥ 2 in time.

558 O. Michail and P.G. Spirakis

3 Exploration of Temporal Graphs

In this section, we study the Temporal Exploration (TEXP) problem in
(unweighted) temporal graphs. In contrast to several positive results known for
the static case, we show that in temporal graphs the problem is quite hard. In
particular, we show that the decision version of the problem is NP-complete and
we give two hardness of approximation results for the optimization version, one
for the generic case and another for the special case in which the temporal graph
is continuously connected. On the positive side, we approximate the optimum of
the generic instances within the dynamic diameter of the temporal graph.

3.1 Deciding Explorability is Hard in Temporal Graphs

Note that a walk in the (Temporal) Exploration is allowed to revisit nodes
several times. Let us first focus on static graphs. Consider the decision version
DEXP of Exploration in which the goal is to decide whether a given graph is
explorable. DEXP and finding an arbitrary solution can be solved in linear time
for both undirected and directed static graphs. On the other hand, we prove
that its temporal version, abbreviated DTEXP, is NP-complete.

3.2 Hardness of Approximate Temporal Exploration

Theorem 1. There exists some constant c > 0 such that TEXP cannot be ap-
proximated within cn unless P = NP.

The reason that we managed to obtain such a strong inapproximability result
was that we were free to totally break at some point the connectivity of the
temporal graph. This freedom is lost in continuously connected temporal graphs.

Theorem 2. For every constant ε > 0, there is no (2 − ε)-approximation for
TEXP in continuously (strongly) connected temporal graphs unless P = NP.

Proof. The reduction is from Hamiltonian Path (abbreviated Hampath). We
prove that a (2 − ε)-factor approximation for TEXP in continuously connected
temporal graphs could be used to decide Hampath. Let (G, s) be an instance
of Hampath. We construct an instance of TEXP consisting of a continuously
strongly connected temporal graph D = (V,A) and a source node s′. D consists
of three static graphs T1, T2, and T3 as illustrated in Figure 1. The first graph T1

(Figure 1(a)) consists of G1 = G and a set V2 of additional nodes, i.e. V = V1∪V2.
Denote by n, n1, and n2 the cardinalities of V , V1, and V2, respectively. For the
time being it suffices to assume that n2 > n1. We set s′ = s. We connect
every node of V1 to the leftmost node of V2, then continue with a directed
path spanning V2 (i.e. a hamiltonian path on V2), and finally we connect the
rightmost node of V2 to each node of V1. T1 persists until time n1 − 1, that is
D(t) = T1 for all 1 ≤ t ≤ n1−1. Then, at time n1, D changes to the second graph
T2 (Figure 1(b)) which is the same as T1 without the internal edges of set V1

Traveling Salesman Problems in Temporal Graphs 559

G1 = G

s

V2

steps [1, n1 − 1]

(a)

V1

V2

steps [n1, n2 − 1]

(b)

V1

V2

steps [n2, 2n2 + n1]

s

(c)

Fig. 1. The temporal graph constructed by the reduction. (a) T1 (b) T2 (c) T3

(those are the edges of G that were present in T1). T2 persists until time n2− 1,
that is D(t) = T2 for all n1 ≤ t ≤ n2 − 1. Finally, at time n2, D changes to the
third graph T3 (Figure 1(c)) in which each of V1 and V2 has its nodes connected
by a line of 2-cycles and the left endpoints of the two sets are also connected
by a 2-cycle. T3 is preserved up to the lifetime of D, that is D(t) = T3 for all
n2 ≤ t ≤ α(D). To ensure explorability of D, it suffices to set α(D) = 2n2 + n1.
Note that D is a continuously strongly connected temporal graph because T1,
T2, and T3 are strongly connected graphs.

(⇒) If G is hamiltonian, then the hamiltonian path of G1, followed by an edge
leading from V1 to V2, and finally followed by the hamiltonian path on V2 gives
a hamiltonian journey of D and thus V can be explored optimally in n1 +n2− 1
steps.

(⇐) If G is not hamiltonian, then we prove that in this case the optimum ex-
ploration needs at least 2n2+1 steps. Observe that by time n1−1 the exploration
cannot have visited all nodes of V1 because G1 is not hamiltonian from s (Figure
1(a)). This remains true until time n2 − 1, because in the interval [n1, n2 − 1]
the only edges that lead to nodes in V1 cannot have been reached before time n2

(Figure 1(b)). So, by time n2 − 1 there is an unvisited node in V1. Moreover, by
the same time the rightmost node of V2 is also unvisited because the temporal
distance from (s, 0) to it is n2. Then, even if at time n2 the exploration hits one
of them, the other is at distance ≥ n2 + 1 because the leftmost node of V1 in
Figure 1(c) is s. So, in total, at least 2n2 + 1 steps are needed to explore V .

It remains to prove that the above reduction can be adjusted to introduce
the claimed gap. As ε is a constant, we can restrict attention to instances of

560 O. Michail and P.G. Spirakis

Hampath of order at least 2/ε and provide a gap introducing reduction from
those instances (which obviously still remain hard to decide), that is n1 ≥ 2/ε⇒
ε ≥ 2/n1 ⇒ 2−ε ≤ 2−(2/n1). Moreover, in the above reduction set n2 = n2

1+n1

(observe that we can set n2 equal to any polynomial-time computable function
of n1). So, by what has been proved so far, we have that:

– If G is hamiltonian, then OPT = n1 + n2 − 1 = n2
1 + 2n1 − 1.

– If G is not hamiltonian, then OPT ≥ 2n2 + 1 = 2(n2
1 +n1) + 1 > 2(n2

1 +n1).

Consider the hamiltonian case. As 2− ε ≤ 2− (2/n1) we have

(2− ε)(n2
1 + 2n1 − 1) ≤ (2− 2

n1
)(n2

1 + 2n1 − 1)= 2n2
1 + 4n1 − 2− 2n1 − 4 +

2

n1

= 2(n2
1 + n1) + (

2

n1
− 6) ≤ 2(n2

1 + n1).

Thus, whenever G is hamiltonian, the (2−ε)-approximation algorithm returns
a solution of cost ≤ (2 − ε)OPT = (2 − ε)(n2

1 + 2n1 − 1) ≤ 2(n2
1 + n1). On the

other hand, whenever G is not hamiltonian, OPT > 2(n2
1 + n1) and thus also

the solution returned by the algorithm must have cost > 2(n2
1 + n1). Thus a

(2−ε)-approximation algorithm would decide instances of Hampath of order at
least 2/ε in polynomial time, by comparing the solution to the polynomial-time
computable 2(n2

1 + n1) threshold. This cannot be the case unless P = NP. ��

On the positive side:

Theorem 3. We provide a d-approximation algorithm for TEXP restricted to
temporal graphs with dynamic diameter ≤ d and lifetime ≥ (n− 1)d.

4 Temporal Traveling Salesman with Costs One and Two

In this section, we deal with TTSP(1,2) which is a generalization of the well
known ATSP(1,2) to weighted temporal graphs. Recall that in TTSP(1,2) we
are given a complete temporal graph D = (V,A), with its time-edges weighted
according to a cost function c : A → {1, 2}, and we are asked to find a tempo-
ral TSP tour of minimum total cost. Our approach is to compute a temporal
matching using many 1s and then extend it to a TTSP tour. Unfortunately:

Theorem 4. Max-TEM(≥k) is NP-hard for every independent of the lifetime
polynomial-time computable k ≥ 1.

4.1 Approximating TTSP(1,2) via Maximum Independent Sets

Clearly, by taking an arbitrary temporal TSP tour, one obtains a trivial 2-factor
approximation for TTSP(1,2). In the worst case, its cost is 2n (paying always
2s) while the cost of the optimum TSP tour is at least n (paying always 1s). Can
we do better? Recall that, in ATSP(1,2) it is known that we can do much better

Traveling Salesman Problems in Temporal Graphs 561

as there is a (5/4)-factor approximation [Blä04]. In this section, we provide our
first approximation algorithms for both the generic TTSP(1,2) and its special
case with lifetime restricted to n. To do this, we first show that, though by
Theorem 4 Max-TEM(≥ 2) is NP-hard, it can still be approximated within some
constant via a reduction to Maximum Independent Set (MIS) in 5-claw free
graphs. Recall that a graph is k-claw free if there is no k-independent set in
the neighborhood of any node. We then translate this to an approximation for
TTSP(1,2). For the restricted lifetime case we follow in Section 4.1.1 a similar
approach by approximating a temporal path packing this time.

We begin by showing that a constant factor approximation algorithm for Max-
TEM(≥ 2) translates to a constant approximation algorithm for TTSP(1,2) with
factor strictly smaller than 2. This then naturally motivates us to search for
constant approximations for temporal matchings.

Lemma 1. An (1/c)-factor approximation for Max-TEM(≥2) implies a (2 −
1
2c)-factor approximation for TTSP(1,2).

We now present a constant factor approximation for Max-TEM(≥ 1).

Theorem 5. There is a (3/5)-approximation algorithm for Max-TEM(≥1).

Proof. We are given a temporal graph D = (V,A) and our goal is to return
a temporal matching M of maximum cardinality. To simplify the description
let us consider the static expansion H = (S,E) of D. Now given an edge e =
(u(i−1)j , uij′) of the static expansion we may think of it as having the following
positions for conflicts with other edges, i.e. edges that cannot be taken together
with e in a temporal matching: (1) Edges of the same row as e, i.e. all edges
of the form (u(i−1)l, uil′), (2) edges of the same column as u(i−1)j , i.e. all edges
that have one endpoint of the form ukj , and (3) edges of the same column as
uij′ , i.e. all edges that have one endpoint of the form ukj′ . Consider now the
graph G = (E,K) where (e1, e2) ∈ K iff e1 and e2 satisfy some of the above
three constraints. Observe that the set of nodes E of G is the set of edges of the
static expansion H . It is straightforward to observe that temporal matchings of
D are now equivalent to independent sets of G. Observe now that G is 4-claw
free which means that there is no 4-independent set in the neighborhood of any
node. To see this take any e ∈ E and any set {e1, e2, e3, e4} of four neighbors of
e in G. As there are only three constraints at least two of the neighbors, say ei
and ej, must be connected to e by the same constraint. Finally, observe that if
ei and ej both satisfy the same constraint with e (e.g. belong to the same row
as e) then they must satisfy the same constraint with each other (e.g. if ei and
ej belong to the same row as e then ei belongs to the same row as ej) implying
that ei and ej are also connected by an edge in G. From [Hal95] we have a factor
of 3/5 for MIS in 4-claw free graphs. ��

The following lemma makes a slight modification to the proof of Theorem 5
to obtain a constant approximation for Max-TEM(≥ 2).

Lemma 2. There is a 1
2+ε -approximation algorithm for Max-TEM(≥2).

Theorem 6. There is a (7/4 + ε)-approximation algorithm for TTSP(1, 2).

562 O. Michail and P.G. Spirakis

4.1.1 Lifetime Restricted to n
We now restrict our attention to temporal graphs with lifetime α(D) restricted to
n. In this case, we show that an extension of the above ideas provides us with an
improved 12/7 ≈ 1.71-factor approximation for TTSP(1, 2). A difference now is
that instead of approximating a temporal matching we approximate a temporal
path packing.

Lemma 3. An (1/c)-factor approximation for TPP implies a (2 − 1
c)-factor

approximation for TTSP(1, 2).

Lemma 4. There is a 1
(7/2)+ε -factor approximation for TPP when α(D) = n.

Proof. We directly express a TPP as an independent set of time-edges in the
static expansion H = (S,E). Given an edge e = (uij , u(i+1)j′) ∈ E we add the
following constraints. (1) All edges with tail uik (i.e. for all 1 ≤ k ≤ n), (2) all
edges (u(i−1)k, uil) such that l = j or k = j′, (3) all edges (u(i+1)k, u(i+2)l) such
that k = j′ or l = j, (4) all edges (with tails) in [1, i − 2] ∪ [i + 2, n] that have
an endpoint in the same column as the tail of e, and (5) all edges (with tails) in
[1, i−2]∪[i+2, n] that have an endpoint in the same column as the head of e. Note
now that the resulting graph of constraints is (7 + 1)-claw free. From [Hal95],
in (h + 1)-claw free graphs, for all h ≥ 4, MIS can be approximated within
1/(h/2 + ε). As in our case h = 7 we have a [1/(7/2 + ε)]-factor approximation
for MIS and thus for TPP. ��

Theorem 7. There is a (12/7 + ε)-factor approximation algorithm for
TTSP(1, 2) when α(D) = n.

4.2 Improved Approximations for TTSP(1,2) via Set Packing

We now present a different reduction idea, from Max-TEM(≥ 2) to k-Set Pack-

ing this time, that gives improved approximations for TTSP(1,2).

Lemma 5. There is a 3
5+ε -approximation algorithm for Max-TEM(≥2).

Proof. We express the temporal matching problem as a 4-Set Packing. Then,
from [Cyg13], we have that k-Set Packing can be approximated within 3/(k+
1 + ε) yielding 3/(5 + ε) for k = 4. In k-Set Packing we are given a family
F ⊆ 2U of sets of size at most k, where U is some universe of elements, and
we are asked to find a maximum size subfamily of F of pairwise disjoint sets.
Given D = (V,A), we set U = V ∪{1, 2, . . . , α(D)}. Let H = (S,E) be the static
expansion of D. Construct now F as follows. For every (uij , u(i+1)j′) ∈ E set
F ← F ∪ {{uj, uj′ , i − 1, i}}. Clearly, {uj, uj′ , (i − 1), i} ∈ 2U because uj , uj′ ,
i− 1, and i are pairwise distinct elements, thus indeed F ⊆ 2U . Note that every
set contains 4 elements, thus we have created an instance of 4-Set Packing.
The claim follows by observing that there is a temporal matching of size h in D
iff there is a packing of F of size h. ��

Theorem 8. There is a (1.7 + ε)-approximation algorithm for TTSP(1, 2).

Traveling Salesman Problems in Temporal Graphs 563

4.2.1 Lifetime Restricted to n
Now assume again that the lifetime α(D) of the temporal graph is restricted
to n. In this case, we devise via a reduction to 3-Set Packing an improved
13/8 = 1.625-factor approximation for TTSP(1, 2).

Theorem 9. There is a (13/8 + ε)-factor approximation algorithm for
TTSP(1, 2) when α(D) = n.

Proof. Every TTSP tour, including the optimum tour, must necessarily use pre-
cisely the time-labels 1, 2, . . . , n because otherwise it cannot cover all nodes in n
steps. So, the optimum TTSP tour can be partitioned into two temporal match-
ings, MO and ME , both with time differences ≥ 2 between consecutive labels.
MO is the odd matching using labels 1, 3, 5, . . . and ME is the even matching
using labels 2, 4, 6, So, if we denote by OPTTTSP the cost of the optimum
TTSP tour and by o(D′) the number of edges of cost one of a single-label sub-
graph D′ of the temporal graph D, we have o(MO) + o(ME) = 2n−OPTTTSP .

We now approximate the maximum odd and maximum even matchings of
the temporal graph D (counting the number of edges of cost one). Assume,
for example, that we want to approximate the maximum matching that uses
only odd labels (the even labels case is symmetric). We express it as a 3-Set
Packing as follows. Recall that in 3-Set Packing we are given a family F ⊆ 2U

of sets of size at most 3, where U is some universe of elements, and we are
asked to find a maximum size subfamily of F of pairwise disjoint sets. We set
U = V ∪ LO, where LO = {1, 3, 5, . . .} ⊂ {1, 2, . . . , n} is the set of all odd
labels. Now consider the subgraph H = (S,E) of the static expansion of D
consisting only of the edges of cost one that appear at odd times and construct
F as follows. For every (uij , u(i+1)j′) ∈ E set F ← F ∪ {{uj, uj′ , i}}. Clearly,
{uj, uj′ , i} ∈ 2U because uj, uj′ , and i are pairwise distinct elements, thus indeed
the constructed F ⊆ 2U . Note that every set contains 3 elements, thus we have
created an instance of 3-Set Packing. It is not hard to show that there is an
odd temporal matching of size h iff there is a packing of size h. The reason is
that two sets {u, v, t} and {u′, v′, t′} do not conflict and can be picked together
in the packing iff the corresponding edges can be picked at the same time in
an odd temporal matching. Now, from [Cyg13], we have that k-Set Packing

can be approximated within 3/(k + 1 + ε) yielding 3/(4 + ε′) for k = 3. We
omit ε′ in the sequel and add it in the end. So, if we denote by OPTO and
ALGO (OPTE and ALGE) the size of the optimum odd (even) matching and
of the odd (even) matching produced by the above algorithm, respectively, we
have ALGO ≥ 3

4OPTO and ALGE ≥ 3
4OPTE . Now from the two computed

matchings we keep the one with maximum cardinality. Denote its cardinality by
ALGM . Clearly, 2ALGM ≥ ALGO + ALGE , so we have

ALGM ≥ 1

2
(ALGO + ALGE) ≥ 1

2
· 3

4
(OPTO + OPTE) =

3

8
(OPTO + OPTE)

≥ 3

8
[o(MO) + o(ME)] =

3

8
(2n−OPTTTSP) =

6

8
n− 3

8
OPTTTSP

564 O. Michail and P.G. Spirakis

Now, we complete the produced matching arbitrarily with the missing edges to
obtain a TTSP tour. This is feasible because the matching has time differences
≥ 2 between its edges. Denote by ALGTTSP the cost of the produced TTSP
tour. As in the worst case, every added edge has cost 2, we have

ALGTTSP ≤ 2n−ALGM ≤ 2n− 6

8
n +

3

8
OPTTTSP =

10

8
n +

3

8
OPTTTSP

≤ 10

8
OPTTTSP +

3

8
OPTTTSP =

13

8
OPTTTSP . ��

References

[AGM+10] Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling
salesman problem. In: Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 379–389 (2010)

[Ber96] Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks 28(3), 125–134 (1996)

[Blä04] Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with
weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron,
D. (eds.) APPROX and RANDOM 2004. LNCS, vol. 3122, pp. 61–71.
Springer, Heidelberg (2004)

[Cyg13] Cygan, M.: Improved approximation for 3-dimensional matching via
bounded pathwidth local search. In: Proceedings of the IEEE 54th An-
nual Symposium on Foundations of Computer Science, FOCS (2013)

[DPR+13] Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the
complexity of information spreading in dynamic networks. In: Proc. of the
24th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 717–
736 (2013)

[GSS11] Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to
the traveling salesman problem. In: Proceedings of the IEEE 52nd Annual
Symposium on Foundations of Computer Science (FOCS), pp. 550–559.
IEEE Computer Society Press, Washington, DC (2011)

[Hal95] Halldórsson, M.M.: Approximating discrete collections via local improve-
ments. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 160–169 (1995)

[KKK00] Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems
for temporal networks. In: Proceedings of the 32nd Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 504–513 (2000)

[KS13] Karpinski, M., Schmied, R.: On improved inapproximability results for the
shortest superstring and related problems. In: Proc. 19th CATS, pp. 27–36
(2013)

[MMCS13] Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal
network optimization subject to connectivity constraints. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II.
LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013)

[Orl81] Orlin, J.B.: The complexity of dynamic languages and dynamic optimiza-
tion problems. In: Proceedings of the 13th Annual ACM Symposium on
Theory of Computing (STOC), pp. 218–227. ACM (1981)

[PY93] Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with
distances one and two. Mathematics of Operations Research 18(1), 1–11
(1993)

Inferring Strings from Lyndon Factorization

Yuto Nakashima1, Takashi Okabe1, Tomohiro I2, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Japan
{yuto.nakashima,takashi.okabe,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 Department of Computer Science, TU Dortmund, Germany
tomohiro.i@cs.tu-dortmund.de

Abstract. The Lyndon factorization of a string w is a unique factor-
ization �p11 , . . . , �pmm of w s.t. �1, . . . , �m is a sequence of Lyndon words
that is monotonically decreasing in lexicographic order. In this paper,
we consider the reverse-engineering problem on Lyndon factorization:
Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of posi-
tive integers, find a string w whose Lyndon factorization corresponds
to the input sequence S, i.e., the Lyndon factorization of w is in a form
of �p11 , . . . , �pmm with |�i| = si for all 1 ≤ i ≤ m. Firstly, we show that
there exists a simple O(n)-time algorithm if the size of the alphabet is
unbounded, where n is the length of the output string. Secondly, we
present an O(n)-time algorithm to compute a string over an alphabet
of the smallest size. Thirdly, we show how to compute only the size of
the smallest alphabet in O(m) time. Fourthly, we give an O(m)-time
algorithm to compute an O(m)-size representation of a string over an
alphabet of the smallest size. Finally, we propose an efficient algorithm
to enumerate all strings whose Lyndon factorizations correspond to S.

1 Introduction

A string � is said to be a Lyndon word, if � is lexicographically smallest among its
circular permutations of characters of �. Lyndon words have various and impor-
tant applications in, e.g., musicology [4], bioinformatics [8], string matching [6],
and free Lie algebras [23]. The Lyndon factorization of a string w, denoted LFw,
is a factorization �p1

1 , . . . , �pm
m of w such that �i is a Lyndon word and pi is a pos-

itive integer for each 1 ≤ i ≤ m, �i is lexicographically larger than �i+1 for each
1 ≤ i < m, and w = �p1

1 · · · �pm
m . It is known that for any string w, this fac-

torization is unique [5]. Lyndon factorizations are used in a bijective variant of
Burrows-Wheeler transform [22,16] and a digital geometry algorithm [3]. Several
efficient algorithms to compute Lyndon factorization exist: Duval [9] proposed
an elegant on-line algorithm to compute LFw of a given string w of length n
in O(n) time. Efficient parallel algorithms to compute the Lyndon factorization
are also known [1,7]. Recently, algorithms to compute Lyndon factorization from
compressed strings were proposed [20,21].

In this paper, we consider the reverse-engineering problem on Lyndon factor-
ization: Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of positive

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 565–576, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

566 Y. Nakashima et al.

integers, find a string w whose Lyndon factorization corresponds to the input
sequence S (formal definitions of the problems will be given in Section 3). Firstly,
we show that there exists a simple O(n)-time algorithm if the size of the alphabet
is unbounded, where n is the length of the output string. Secondly, we present
an O(n)-time algorithm to compute a string over an alphabet of the smallest
size. Thirdly, we show how to compute only the size of the smallest alphabet
in O(m) time, where m ≤ n is the size of the input sequence S. Fourthly, we
give an O(m)-time algorithm to compute an O(m)-size representation of a string
over an alphabet of the smallest size. Finally, we propose an efficient algorithm
to enumerate all strings whose Lyndon factorizations correspond to S.

The problems we consider in this paper belong to a well-studied class of
reverse-engineering problems. There exist efficient reverse-engineering algorithms
for, e.g., border arrays [14,11] suffix arrays [13,2], KMP failure tables [12,15],
palindromic structures [18], suffix trees on binary alphabets [19], and directed
acyclic word graphs [2], while hardness results are known for previous factor
tables [17] and runs on a finite alphabet of size at least 4 [24]. Counting and
enumerating versions of some of the above-mentioned problems have also been
studied in the literature [25,26].

2 Preliminaries

Let Σ be an ordered finite alphabet, and let σ = |Σ|. An element of Σ∗ is called
a string. The length of a string w is denoted by |w|. The empty string ε is a
string of length 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗−{ε}.
For a string w = xyz, x, y and z are called a prefix, substring, and suffix of w,
respectively. A prefix x of w is called a proper prefix of w if x = w. The i-th
character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. For a string w and
two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins
at position i and ends at position j. For convenience, let w[i..j] = ε when i > j.
For any string w let w0 = ε, and for any integer k ≥ 1 let wk = wwk−1 , i.e., wk

is a k-time repetition of w.
An integer p ≥ 1 is said to be a period of a string w if w[i] = w[i + p] for all

1 ≤ i ≤ |w| − p. If p is a period of a string w with p < |w|, then |w| − p is said
to be a border of w. If w has no borders, then w is said to be border-free.

If character c is lexicographically smaller than another character c′, then we
write c ≺ c′. For any 1 ≤ i ≤ σ, let ci denote the i-th “largest” element of Σ.
Namely, ci+1 ≺ ci for any 1 ≤ i < σ. For any non-empty strings x, y ∈ Σ+,
let lcp(x, y) be the length of the longest common prefix of x and y, namely,
lcp(x, y) = max({j | x[i] = y[i] for all 1 ≤ i ≤ j} ∪ {0}). For any non-empty
strings x, y ∈ Σ+, we write x ≺ y iff either lcp(x, y) + 1 ≤ min{|x|, |y|} and
x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1], or x is a proper prefix of y.

For any non-empty string x and integer 2 ≤ i ≤ |x|, let csi(x) denote the i-th
cyclic shift of x, namely, csi(x) = x[i..|x|]x[1..i− 1], and let cs1(x) = x. A string
x is said to be a Lyndon word, if x ≺ csi(x) for all 2 ≤ i ≤ |x|. Notice that any
Lyndon word is border-free. The following lemma is also useful.

Inferring Strings from Lyndon Factorization 567

Lemma 1 (Proposition 1.3 [9]). For any Lyndon words u and v, uv is a
Lyndon word iff u ≺ v.

Definition 1. The Lyndon factorization of a non-empty string w ∈ Σ+, de-
noted LFw, is the factorization �p1

1 , . . . , �pm
m of w, such that each �i ∈ Σ+ is

a Lyndon word, pi ≥ 1, and �i & �i+1 for all 1 ≤ i < m. Each �pi

i is called
a Lyndon factor, and can be represented by two positive integers (|�i|, pi). �i is
called a decomposed Lyndon factor.

The Lyndon factorization is unique for each string w. Also, the Lyndon fac-
torization of any string w of length n can be computed in O(n) time [9].

3 Inferring a String with Given Lyndon Factorization

3.1 Computing String on Alphabet of Arbitrary Size

The simplest variant of our reverse-engineering problem is the following:

Problem 1. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
positive integers, compute a string w ∈ Σ+ such that LFw = �p1

1 , . . . , �pm
m and

|�i| = si.

The length n of w is clearly n =
∑m

i=1 sipi. In Problem 1, there is no restriction
on the size of the alphabet from which the output string w is drawn. A solution
always exists, and the problem can be solved in O(n)-time by, basically just
assigning decreasingly smaller characters to the first character of each factor.

Proposition 1. Problem 1 can be solved in O(n) time, where n is the length of
an output string.

3.2 Computing String on Alphabet of Smallest Size

Now, we consider a more interesting variant of our reverse-engineering problem,
where a string on an alphabet of the smallest size is to be computed. For any
1 ≤ j ≤ σ, let Σj = {c1, . . . , cj} denote the set of the j largest characters of Σ.

Problem 2. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
positive integers, compute a string w ∈ Σ+

k such that LFw = �p1

1 , . . . , �pm
m ,

|�i| = si, and k is the smallest possible.

In what follows, we present an O(n)-time algorithm to solve Problem 2. This
algorithm computes factors from left to right, and is based on the lemma below.

Lemma 2. Let S = ((s1, p1), . . . , (sm, pm)) be a sequence of ordered pairs of
positive integers. If for some string w ∈ Σ+, LFw = �p1

1 , . . . , �pm
m , where �1 is

the lexicographically largest Lyndon word of length s1 and for all 2 ≤ i ≤ m, �i is
the lexicographically largest Lyndon word of length si which is lexicographically
smaller than �i−1, then, w ∈ Σ+

k where Σk = {c1, . . . , ck} ⊆ Σ and k is the
smallest possible.

568 Y. Nakashima et al.

Proof. Let L1 & · · · & Lα be the decreasing sequence of Lyndon words on
Σ of length at most max{si | 1 ≤ i ≤ m}. Then the sequence �1, . . . , �m is
a subsequence of L1, . . . , Lα, i.e., there exist 1 ≤ i1 < · · · < im ≤ α s.t. �1 =
Li1 , . . . , �m = Lim . If Li ∈ Σ+

k −Σ
+
k−1 for some i, then it must be that Li[1] = ck

or else Li cannot be a Lyndon word. Thus, for any Lyndon words Li ∈ Σ+
k−1 and

Lj ∈ Σ+
k −Σ

+
k−1, Li & Lj , and thus i < j holds. As the condition on w indicates

that i1 = min{i | |Li| = s1} and ij = min{i | Lij−1 & Li, |Li| = sj} for any
1 < j ≤ m, im is the smallest possible, and thus k is the smallest possible. ��

The string w of Lemma 2 is the lexicographically largest string whose Lyndon
factorization corresponds to input S. We compute w as defined in Lemma 2.

Duval [10] proposed a linear time algorithm which, given a Lyndon word,
computes the next Lyndon word (i.e., the lexicographical successor) of the same
length. Although our algorithm to be shown in this section is somewhat similar
to his algorithm, ours is more general in that it can compute the previous Lyndon
word (i.e., the lexicographical predecessor) of a given length, in linear time.

If s1 = 1, then �1 = c1. If s1 ≥ 2, then �1 = c2c
s1−1
1 . Assume that we have

already computed �1, . . . , �i−1 for 1 < i ≤ m, and we are computing �i. In so
doing, we will need the two following lemmas.

Lemma 3. Let x be any Lyndon word such that |x| ≥ 2 and x[i..|x|] = cqc
|x|−i
1

for some 1 < i ≤ |x| and some 1 < q ≤ σ. Then, for any 1 ≤ p < q, y =

x[1..i− 1]cpc
|x|−i
1 is a Lyndon word.

Proof. Firstly, we show that y[1..i] is a Lyndon word. Assume on the contrary
that y[1..i] is not a Lyndon word. Then, there exists 2 ≤ j ≤ i satisfying y[1..i] &
y[j..i]. Since x[1..i − 1] = y[1..i − 1] and x[i] = cq ≺ cp = y[i], y[1..i] & x[1..i]
and y[j..i] & x[j..i]. Since 2 ≤ j, |y[j..i]| = i − j + 1 ≤ i − 1. Since y[1..i − 1] =
x[1..i − 1], we get x[1..i] & y[j..i], which implies that x[1..i] & x[j..i]. However,
this contradicts that x is a Lyndon word. Hence y[1..i] is a Lyndon word.

Now we show y is a Lyndon word by induction on k, where i ≤ k ≤ |y|. The
case where k = i has already been shown. Assume y[1..k] is a Lyndon word for
i ≤ k < |y|. As 2 ≤ i ≤ k, y[1..k] ≺ y[k+ 1] = c1. Since y[k+ 1] = c1 is a Lyndon
word, by Lemma 1, y[1..k + 1] is a Lyndon word. This completes the proof. ��

Lemma 4. For any Lyndon word x with |x| ≥ 2 and any 1 ≤ i ≤ |x|, y =

x[1..i]c
|x|−i
1 is a Lyndon word.

Proof. Let k = |x| − i. We prove the lemma by induction on k. If k = 0, i.e.
i = |x|, then y = x and hence the lemma trivially holds. Assume the lemma

holds for some 0 ≤ k < |x| − 1, i.e., x[1..|x| − k]ck1 = x[1..i]c
|x|−i
1 is a Lyndon

word. Then, by Lemma 3, x[1..|x| − (k + 1)]ck+1
1 = x[1..i − 1]c

|x|−i+1
1 is also a

Lyndon word. Hence the lemma holds. ��

Computing �i from �i−1 When si = si−1. Here, we describe how to com-
pute �i from �i−1 when si = si−1, namely, |�i| = |�i−1|. The following is a key
lemma:

Inferring Strings from Lyndon Factorization 569

Algorithm 1. Compute next smaller Lyndon word of same length.

Input: String x.
Output: The lexicographically largest Lyndon word y of length |x| which is

lexicographically smaller than x.
1 compute Cx;
2 k ← 1, h ← 2, i ← 0;
3 if x[1] �= cσ then i ← 1;
4 while h ≤ |x| do
5 if x[k] �= cσ then
6 if x[k] ≺ cr+1 then i ← h ; // cr = x[h]
7 else if x[k] = cr+1 then
8 len ← min{Cx[k + 1], h− k − 1};
9 if len < |x| − h then i ← h;

// Operation of Duval’s algorithm.

10 if x[k] ≺ x[h] then k ← 1, h ← h+ 1;
11 else if x[k] = x[h] then k ← k + 1, h ← h+ 1;
12 else break;

13 output y = x[1..i− 1]cj+1c
|x|−i
1 ; // cj = x[i]

Lemma 5. For any non-empty string x, let y be the lexicographically largest
Lyndon word of length |x| that is lexicographically smaller than x. Then y =

x[1..i − 1]cj+1c
|x|−i
1 where x[i] = cj and i is the largest position s.t. x[1..i −

1]cj+1c
|x|−i
1 is a Lyndon word.

Proof. Assume on the contrary that there is a Lyndon word z of length |x| s.t.
y ≺ z ≺ x. As x[1..i − 1] = y[1..i − 1] and cj = x[i] & y[i] = cj+1, there is
a position i′ > i s.t. z[1..i′ − 1] = x[1..i′ − 1] and z[i′] ≺ x[i′]. By Lemma 4,

z[1..i′]c|z|−i′
1 = x[1..i′ − 1]z[i′]c|x|−i′

1 is a Lyndon word. By Lemma 3 x[1..i′ −
1]cj′+1c

|x|−i′
1 is a Lyndon word, where x[i′] = cj′ & cj′+1 5 z[i′]. This contradicts

that i is the largest position in x s.t. x[1..i− 1]cj+1c
|x|−i
1 is a Lyndon word. ��

Algorithm 1 shows a pseudo-code of our linear-time algorithm to find the
lexicographically largest Lyndon word y of length |x| that is lexicographically
smaller than x. To efficiently compute i of Lemma 5, we use, as a sub-routine,
Duval’s algorithm [9] which computes the Lyndon factorization of a string.

Lemma 6. For any non-empty string x, Algorithm 1 computes the lexicograph-
ically largest Lyndon word y of length |x| which is lexicographically smaller than
x in O(|x|) time.

Proof. Let Cx be an array of length |x| such that, for any 1 ≤ i ≤ |x|, Cx[i] =
max{q | x[i..i+ q− 1] = cq1}. Namely, Cx[i] represents the number of consecutive
c1’s starting at position i in x. Algorithm 1 firstly computes Cx.

For 1 ≤ h ≤ |x|, let xh = x[1..h − 1]cr+1c
|x|−h
1 , where cr = x[h]. Namely,

xh is the concatenation of the prefix of x of length h − 1, the lexicographically

570 Y. Nakashima et al.

next character cr+1 to the character cr = x[h], and the repetition of c1 of length
|x|−h. The algorithm checks whether xh is a Lyndon word for all 1 ≤ h ≤ |x| in
increasing order of h, based on Duval’s algorithm [9]. For each h, our algorithm
maintains a variable k to be the largest integer satisfying xh[1..k − 1] = xh[h−
k + 1..h − 1]. To check if xh is a Lyndon word, we compare xh[k] = x[k] and
xh[h] = cr+1 (lines 6 and 7). There are the three following cases:

– If x[k] ≺ cr+1, then we know that x[1..h− 1]cr+1 is a Lyndon word, due to

Duval’s algorithm [9]. It follows from Lemma 1 that x[1..h− 1]cr+1c
|x|−h
1 is

a Lyndon word. The value of i is replaced by h (line 6).

– If x[k] & cr+1, then we know that x[1..h−1]cr+1c
|x|−h
1 is not a Lyndon word,

due to Duval’s algorithm [9].
– If x[k] = cr+1, then x[1..k] = x[j−k+1..j−1]cr+1. In this case, we compare

the substrings immediately following x[1..k] and x[h− k + 1..h− 1]cr+1, re-

spectively. Since xh[h+1..|x|] = c
|x|−h
1 , if we know the number of consecutive

c1’s from position k+ 1 in x, then we can efficiently check whether or not xh
is a Lyndon word. Let len be the number of consecutive c1’s from position
k+1 in xh which can be calculated by min{Cx[k+1], h−k−1}. We compare
len with the number of consecutive c1’s from position h + 1 in xh, which is
clearly |x| − h. If len < |x| − h, then xh is a Lyndon word. Otherwise, xh is
not a Lyndon word since it has a border.

In lines 10-12 we update the values of k and h using Duval’s algorithm [9].
After the while loop, the variable i stores the largest integer s.t. x[1..i −

1]cj+1c
|x|−i
1 is a Lyndon word, which is the output of the algorithm (line 13).

It is easy to see that Cx can be computed in O(|x|) time. The while loop
repeats at most |x| times, and each operation in the while loop takes constant
time. Therefore the overall time complexity is O(|x|). ��

Computing �i from �i−1 When si �= si−1. Here we show how to compute
�i from �i−1 when their lengths si and si−1 are different. Firstly, we consider the
case where si < si−1, namely |�i| < |�i−1|:

Lemma 7. For any non-empty string x and positive integer k < |x|, let y be the
lexicographically largest Lyndon word of length k that is lexicographically smaller
than x. If x[1..k] is a Lyndon word, then y = x[1..k]. Otherwise, y = x[1..i −
1]cj+1c

k−i
1 , where x[i] = cj and i is the largest position s.t. x[1..i− 1]cj+1c

k−i
1 is

a Lyndon word.

Proof. Let x′ = x[1..k]. No string of length k which is lexicographically smaller
than x and larger than x′ exists. Thus, if x′ is a Lyndon word, y = x′. Other-
wise, y is the lexicographically largest string of length k that is lexicographically
smaller than x′. Since |x′| = |y| = k, the statement follows from Lemma 5. ��

Secondly, we consider the case where si > si−1, namely |�i| > |�i−1|. The
following lemma can be shown in a similar way to Lemma 5.

Inferring Strings from Lyndon Factorization 571

Lemma 8. For any non-empty string x and positive integer k > |x|, let y be the
lexicographically largest Lyndon word of length k that is lexicographically smaller
than x. Then y = x[1..i−1]cj+1c

k−i
1 , where x[i] = cj and i is the largest position

s.t. x[1..i− 1]cj+1c
k−i
1 is a Lyndon word and 1 ≤ i ≤ |x|.

Due to the two above lemmas, �i can be computed from �i−1 in a similar way
to the case where |�i| = |�i−1|, using a slightly modified version of Algorithm 1,
as described in the following theorem.

Theorem 1. Problem 2 can be solved in O(n) time, where n is the length of an
output string.

Proof. Assume we have already computed �1, . . . , �i−1 and are computing �i.

– If |�i−1| > |�i|, then let x be the prefix of �i−1 of length si, namely, x =
�i−1[1..si]. By Lemma 7, if x is a Lyndon word, then �i = x. We can check
whether x is a Lyndon word or not in O(|x|) time, by using Duval’s algo-
rithm [9]. Otherwise, �i can be computed from x by Algorithm 1. This takes
O(|�i|) = O(si) time by Lemma 6.

– If |�i−1| = |�i|, then �i can be computed from �i−1 in O(si) time, by Lemma 6.

– If |�i−1| < |�i|, then let x = �i−1c
|�i|−|�i−1|
1 . We take x as input to Algorithm 1,

with a slight modification to the algorithm. Since �i−1 ≺ x ≺ �i must hold,
we are only interested in positions from 1 to |�i−1| in x. Hence, as soon as
the value of h in Algorithm 1 exceeds �i−1, we exit from the while loop, and
the resulting string is �i−1. The above modification clearly does not affect
the time complexity of the algorithm, and hence it takes O(si) time.

Thus we can compute the output string in O(
∑m

i=1 sipi) = O(n) time. ��

We can remark that for computing �1, . . . , �m we do not use p1, . . . , pm, and
hence, the following corollaries are immediate from Theorem 1.

Corollary 1. We can compute the Lyndon factorization �p1

1 , . . . , �pm
m of a string

which is a solution to Problem 2 in O(
∑m

i=1 si) time.

Corollary 2. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
integers and an integer k′ ≥ 1, we can determine in O(

∑m
i=1 si) time if there

exists a string w over an alphabet of size at most k′ s.t. LFw = �p1

1 , . . . , �pm
m and

|�i| = si.

3.3 Computing the Smallest Alphabet Size

In this subsection we consider the following problem.

Problem 3. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
positive integers, compute the smallest integer k for which there exists a string
w ∈ Σ+

k such that LFw = �p1

1 , . . . , �pm
m and |�i| = si.

572 Y. Nakashima et al.

Clearly, this problem can be solved in O(n) time by Theorem 1. However,
since only the smallest alphabet size is of interest, a string does not have to
be computed in this problem. To this end, we present an optimal O(m)-time
algorithm to solve Problem 3, where m ≤ n is the size of the input sequence S.
The basic strategy is the same as the previous algorithm, i.e., we simulate the
algorithm of computing �i from �i−1, for all 1 < i ≤ m. The difficulty is that, in
order to achieve an O(m)-time algorithm, we cannot afford to store �i’s explicitly.
Hence, we simulate the previous algorithm on a compact representation of �i’s.

We introduce the largest character block encoding (LCBE) X of a non-empty
string x. Consider factorizing x into blocks according to the following rules; the
b-th block Xb is the longest prefix of x[pos(Xb)..|x|] s.t. Xb = cjc

q
1 for some

j ≥ 1 and q ≥ 0, where pos(Xb) = 1 if b = 1, and pos(Xb) = pos(Xb−1) +
|Xb−1| otherwise. Let ‖X‖ denote the number of blocks of X , i.e., x = X =
X1X2 . . .X‖X‖. For any 1 < b ≤ ‖X‖, Xb[1] = c1. Notice that X can be encoded
in O(‖X‖) space by storing Xb[1] and pos(Xb) for each block.

Let X and X ′ be the LCBE of �i−1 and �i, respectively. It holds that ‖X ′‖ ≤
‖X‖+ 1 and ‖X‖ ≤ m. To compute X ′ from X efficiently, each block Xb stores
the information about the position k s.t. X [k] and X [pos(Xb)] are supposed to
be compared in Algorithm 1. Since X is a Lyndon word, X [k] ! X [pos(Xb)] ≺ c1
and there exists a block starting at k. Also, X [1..k−1] is the longest prefix which
is a suffix of X [1..pos(Xb)−1]. Thus we let Xb have the value pbi(Xb) = max{b′ |
1 ≤ b′ < b,X [1..pos(Xb′) − 1] = X [pos(Xb) − pos(Xb′) + 1..pos(Xb) − 1]}, that
is, b′ = pbi(Xb) is the block index s.t. k = pos(Xb′). We can let pbi(X1) remain
undefined since we will never use it. An example of LCBE follows.

Example 1. Let Σ = {c, b, a} and �i−1 = acaccacbacaccbcc. Then the LCBE
of �i−1 is X = ac, acc, ac, b, ac, acc, bcc and pbi(X2) = 1, pbi(X3) = 1, pbi(X4)
= 2, pbi(X5) = 1, pbi(X6) = 2, pbi(X7) = 3.

Lemma 9 shows how to efficiently compute X ′ from X using pbi . Since X and
X ′ share at least the first ‖X ′‖ − 2 blocks, we do not build X ′ from scratch.

Lemma 9. Given LCBE X of �i−1 with pbi, we can compute LCBE X ′ of �i
in O(max{1, ‖X‖ − ‖X ′‖}) time.

Proof. Since it is trivial when X = c1, we consider the case where X = c1 and
X [1] ≺ c1. We simulate the task described in Theorem 1. First, we adjust the

length of X to si, i.e., add c
si−si−1

1 if si−1 < si, or truncate X to represent
X [1..si] if si−1 > si. A major difference from the algorithm of Theorem 1 is that
we process the blocks from right to left, checking whether each block contains

the position h s.t. X [1..h− 1]cj+1c
|X|−h
1 is a Lyndon word, where cj = X [h]. We

show each block Xb can be investigated in O(1) time by using LCBE and pbi .
For any 1 < h ≤ |X |, let p(h) be the position k s.t. X [1..k − 1] is the longest

prefix of X which is a suffix of X [1..h−1]. In Algorithm 1, X [h] is compared with
X [p(h)]. As described in Lemma 6, for any 1 < h ≤ |X | with X [p(h)] ≺ X [h] =

cj , X [1..h − 1]cj+1c
|X|−h
1 is a Lyndon word iff X [p(h)] ≺ cj+1 or |X | − h > d,

where d is the maximum repeat of c1’s as a prefix of X [p(h) + 1..h− 1].

Inferring Strings from Lyndon Factorization 573

Consider the case where b = 1. Let b′ = pbi(Xb). Since we know p(pos(Xb)) =
pos(Xb′), position g = pos(Xb) + lcp(Xb, Xb′) is the leftmost position inside Xb

s.t. X [p(g)] ≺ X [g] if |Xb| > lcp(Xb, Xb′). By the definition of LCBE and
that X is a prefix of a Lyndon word, lcp(Xb, Xb′) = 0 if Xb[1] = Xb′ [1], and
lcp(Xb, Xb′) = |Xb′ | otherwise. For any h with g < h ≤ pos(Xb) + |Xb| − 1,
X [p(h)] ≺ X [h] = c1 holds since X [1] ≺ c1 and p(h) = 1. Since we can compute d

from the information of LCBE in O(1) time, we can check if X [1..g−1]cj+1c
|X|−g
1

is a Lyndon word or not in O(1) time. Since p(g′′) = 1 and X [g′′] = c1 for any
g′′ with g < g′′ ≤ pos(Xb) + |Xb| − 1, if X [1] ≺ c2 or |X | − g′′ > d′, then

X [1..g′′− 1]cj+1c
|X|−g′′
1 is a Lyndon word, where d′ is the maximum integer s.t.

cd
′

1 is a prefix of X [2..g′′ − 1]. Hence by a simple arithmetic operation we can
compute in O(1) time the largest position g′ with g < g′ ≤ pos(Xb) + |Xb| − 1

s.t. X [1..g′ − 1]c2c
|X|−g′
1 is a Lyndon word. A minor remark is that we add a

constraint for g′ not to exceed si−1 when si−1 < si and b = ‖X‖.
The case where b = 1 can be managed in a similar way to the case where

g < g′′ ≤ pos(Xb) + |Xb| − 1 described above, and hence it takes O(1) time.
We check each block from right to left until we find the largest position h s.t.

X [1..h−1]cj+1c
|X|−h
1 is a Lyndon word, where cj = X [h]. Since each block can be

checked in O(1) time, the whole computational time is O(max{1, ‖X‖−‖X ′‖}).
Since pbi for the blocks in X ′ other than the last block remain unchanged

from pbi for X , it suffices to calculate pbi for the last block of X ′. Let b =
‖X ′‖. Assume b > 1 since no updates are needed when b = 1. Then pbi(X ′

b) =
pbi(X ′

b−1)+1 if b−1 ≥ 2 and X ′
pbi(X′

b−1)
= X ′

b−1, and pbi(X ′
b) = 1 otherwise. ��

Theorem 2. Problem 3 can be solved in O(m) time and O(m) space.

Proof. We begin with LCBE of �1 and transform it to LCBE of �2, �3, . . . , �m in
increasing order, using Lemma 9. Finally we get LCBE of �m and we can obtain
the alphabet size by looking into the first character of �m.

Let B1, B2, . . . , Bm denote the number of blocks in LCBE s of �1, �2, . . . , �m,
respectively. Clearly B1 = 1. By Lemma 9, the total time complexity to get
LCBE of �m is O(

∑m
i=2 max{1, Bi−1 −Bi}) = O(m + B1 −Bm) = O(m). ��

We also remark that an O(m)-size compact representation of the lexicograph-
ically largest solution for Problem 2 can be computed in O(m) time through the
algorithm described above. To do so, we store all LCBE ’s of �1, �2, . . . , �m as a
tree where the common prefix blocks are shared. Using this representation we
can obtain the desired string in O(n) time.

4 Enumerate Strings with Given Lyndon Factorization

In this section we consider the problem of enumerating all strings whose Lyndon
factorizations correspond to a given sequence of integer pairs:

Problem 4. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
positive integers and Σk = {c1, . . . , ck}, compute all strings w ∈ Σ+

k such that
LFw = �p1

1 , . . . , �pm
m and |�i| = si.

574 Y. Nakashima et al.

Let K be the set of output strings for Problem 4. We consider a tree T defined
as follows. Let root be the root of T .

– root is wroot, which is the lexicographically largest string in K, computed
by the algorithm of Section 3.2;

– Each child v of any node u is a pair (wv, j) of a string and integer j, such
that wv is the string obtained by replacing the j-th factor (�j)

pj of the
Lyndon factorization of wu with (�′j)

pj , where �′j is a Lyndon word of length
sj satisfying �j & �′j & �j+1 (�m+1 denotes ε for convenience);

– For any non-root node u = (wu, i) and any child v = (wv, j) of u, i > j.

The next lemma shows that T represents all and only the strings in K.

Lemma 10. Let S = ((s1, p1), . . . , (sm, pm)) be a sequence of ordered pairs of
positive integers. Then T contains all and only strings w ∈ Σ+

k s.t. LFw =
�p1

1 , . . . , �pm
m with |�i| = si for all 1 ≤ i ≤ m.

Proof. If w is the lexicographically largest string in K, then it is represented
by root, i.e., w = wroot. Otherwise, let LFw = �p1

1 , . . . , �pm
m and LFwroot

=
rp1

1 , . . . , rpm
m . Let J = {j | rj & �j} and g = |J |. For any 1 ≤ i ≤ g, let ji

denote the i-th smallest element of J . The node u that corresponds to w can
be located from root, as follows. By the definition of T , (�jg , jg) is a child of
root. Assume we have arrived at a non-root node vji = (�ji , ji) with 1 < i ≤ g.
Let LFwv = xp1

1 , . . . , xpm
m . Then, for any k < ji, xk = rk. Thus we have that

rji−1 = xji−1 & �ji−1 & �ji−1+1 = xji−1+1. This implies that vji−1 = (�ji−1 , ji−1)
is a child of vji . Note that for any k′ > ji−1, xk′ = �k′ . Hence, vj1 = u, the
desired node which corresponds to w.

By the definition of T , any string corresponding to a node of T is in K. ��

A näıve representation of T requires O(|K|n) space. To reduce the output size
of Problem 4, we introduce the following compact representation of T :

– root is LFwroot
= rp1

1 , . . . , rpm
m , where wroot is the lexicographically largest

string in K, computed by the algorithm of Section 3.2;
– Each child v of any node u is a pair (�′j , j) of a Lyndon word �′j of length
sj and integer j, such that LFwv is obtained by replacing the j-th factor
(�j)

pj of the Lyndon factorization LFwu of wu with (�′j)
pj , where �′j satisfies

�j & �′j & �j+1 (�m+1 denotes ε for convenience);
– For any non-root node u = (�′i, i) and any child v = (�′′j , j) of u, i > j.

Let smax = max{si | 1 ≤ i ≤ m} and n′ =
∑m

i=1 si. Then, this compact
representation of T requires only O(|K|smax +n′) space. In the sequel, we mean
by T the compact representation of T .

We show how to construct T in linear time. Let LFwroot
= rp1

1 , . . . , rpm
m . Let H

be the set of integers h (1 ≤ h ≤ m) s.t. there exists a Lyndon word r′h satisfying
rh & r′h & rh+1, where rm+1 is the empty string ε for convenience.

Lemma 11. Given a sequence S = ((s1, p1), . . . , (sm, pm)) of ordered pairs of
integers, H can be computed in O(n′) time, where n′ = Σm

i=1si.

Inferring Strings from Lyndon Factorization 575

Proof. We compute LFwroot
= rp1

1 , . . . , rpm
m in O(n′) time by Corollary 1. For

each 1 ≤ h ≤ m, we apply Algorithm 1 to rh and compute the lexicographically
largest Lyndon word r′h of length |rh| = sh that is lexicographically smaller than
rh. If h < m, then we lexicographically compare r′h with rh+1, and h ∈ H only
if r′h & rh+1. This takes O(sh) time for each h. If h = m, then m ∈ H only if
r′m contains at most k = |Σk| distinct characters. This can be easily checked in
O(sm) time. Hence, it takes a total of O(n′) time for all 1 ≤ h ≤ m. ��

Theorem 3. An O(|K|smax + n′)-size representation of the solution to Prob-
lem 4 can be computed in O(|K|smax + n′) time with O(n′) extra working space,
where |K| is the number of strings which corresponds to a given S, smax =
max{si | 1 ≤ i ≤ m} and n′ =

∑m
i=1 si.

Proof. We first check if there is a string over a given alphabet Σk whose Lyndon
factorization corresponds to the input sequence S, in O(n′) time by Corollary 2.
If there exist such strings, then K = ∅ and thus the theorem holds.

Assume K = ∅. The root node root of T is the Lyndon factorization LFwroot
=

rp1

1 , . . . , rpm
m , which can be computed in O(n′) by Corollary 1. Then, we compute

the children of root as follows. For all h ∈ H , we compute all the Lyndon words
r′h of length |rh| = sh that satisfy rh & r′h & rh+1, over alphabet Σk. Each of
these Lyndon words can be computed in O(sh) = O(smax) time by Lemma 6.

Given a non-root node u = (�j , j), we compute the children of u as follows.
If j = 1, then u is a leaf and has no children. Otherwise, we first compute all
the Lyndon words �′j−1 of length |rj−1| = sj−1 that satisfy rj−1 & �′j−1 & �j ,
over alphabet Σk. Then, for all h ∈ H ∩{1, .., j− 2}, we compute all the Lyndon
words �′h of length |rh| = sh that satisfy rh & �′h & rh+1, over alphabet Σk. Each
of these Lyndon words can be computed in O(smax) time as well.

We can compute H in O(n′) time by Lemma 11. Since each node can be
computed in O(smax) time as above, the total running time for constructing T
is O(|K|smax + n′). We need extra O(n′) working space to store H .

We show the correctness of the algorithm. Clearly, all the children of root are
computed by the above algorithm. Consider any non-root node u = (�j , j) of T .
Let wu be the string that corresponds to node u. Since rj & �j , if j ≥ 2, then
there may exist some Lyndon words �′j−1 of length |rj−1| with rj−1 & �′j−1 & �j .
All such Lyndon words over Σk are computed by the above algorithm. Consider
the other children of u. Since the first j − 1 factors of LFwu are rp1

1 , . . . , r
pj−1

j−1 ,
all the Lyndon words �′h of length |rh| satisfying rh & �′h & rh+1 with h ∈
H ∩ {1, ..., j − 2} correspond to the children of u. All these Lyndon words over
Σk are also computed by the above algorithm. This completes the proof. ��

References

1. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applica-
tions. Mathematical Systems Theory 28(2), 89–108 (1995)

2. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003)

576 Y. Nakashima et al.

3. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel =
digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)

4. Chemillier, M.: Periodic musical sequences and Lyndon words. Soft Comput. 8(9),
611–616 (2004)

5. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. IV. the quotient
groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)

6. Crochemore,M.,Perrin,D.:Two-way stringmatching. J.ACM38(3), 651–675 (1991)
7. Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factor-

izing words. Theor. Comput. Sci. 127(1), 53–67 (1994)
8. Delgrange, O., Rivals, E.: STAR: an algorithm to search for tandem approximate

repeats. Bioinformatics 20(16), 2812–2820 (2004)
9. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–

381 (1983)
10. Duval, J.P.: Génération d’une section des classes de conjugaison et arbre des mots

de Lyndon de longueur bornée. Theor. Comput. Sci. 60, 255–283 (1988)
11. Duval, J.P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. Journal

of Automata, Languages and Combinatorics 10(1), 51–60 (2005)
12. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border

arrays and validation of string matching automata. RAIRO - Theoretical Informat-
ics and Applications 43(2), 281–297 (2009)

13. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
Theoretical Informatics and Applications 36, 249–259 (2002)

14. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying
a border array in linear time. J. Comb. Math. and Comb. Comp. 42, 223–236 (2002)

15. Gawrychowski, P., Jeż, A., Jeż, �L.: Validating the Knuth-Morris-Pratt failure func-
tion, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)

16. Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR abs/1201.3077
(2012)

17. He, J., Liang, H., Yang, G.: Reversing longest previous factor tables is hard. In:
Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 488–499.
Springer, Heidelberg (2011)

18. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palin-
dromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 135–
146. Springer, Heidelberg (2010)

19. I, T., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix trees and
links on a binary alphabet. In: Proc. PSC 2011, pp. 121–130 (2011)

20. I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficient Lyndon factor-
ization of grammar compressed text. In: Fischer, J., Sanders, P. (eds.) CPM 2013.
LNCS, vol. 7922, pp. 153–164. Springer, Heidelberg (2013)

21. I, T., Nakashima,Y., Inenaga, S., Bannai, H., Takeda,M.: Faster lyndon factorization
algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein, M., Po-
rat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Heidelberg (2013)

22. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc.
PSC 2009, pp. 65–79 (2009)

23. Lyndon, R.C.: On Burnside’s problem. Transactions of the American Mathematical
Society 77, 202–215 (1954)

24. Matsubara, W., Ishino, A., Shinohara, A.: Inferring strings from runs. In: Proc.
PSC 2010, pp. 150–160 (2010)

25. Moore, D., Smyth, W.F., Miller, D.: Counting distinct strings. Algorithmica 23(1),
1–13 (1999)

26. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Com-
puter Science 395(2-3), 220–234 (2008)

Betweenness Centrality – Incremental

and Faster�

Meghana Nasre1, Matteo Pontecorvi2, and Vijaya Ramachandran2

1 Indian Institute of Technology Madras, India
meghana@cse.iitm.ac.in

2 University of Texas at Austin, USA
{cavia,vlr}@cs.utexas.edu

Abstract. We present an incremental algorithm that updates the be-
tweenness centrality (BC) score of all vertices in a graph G when a new
edge is added to G, or the weight of an existing edge is reduced. Our
incremental algorithm runs in O(ν∗ · n) time, where ν∗ is bounded by
m∗, the number of edges that lie on a shortest path in G. We achieve
the same bound for the more general incremental vertex update problem.
Even for a single edge update, our incremental algorithm is the first algo-
rithm that is provably faster on sparse graphs than recomputing with the
well-known static Brandes algorithm. It is also likely to be much faster
than Brandes on dense graphs since m∗ is often close to linear in n.

Our incremental algorithm is very simple, and we give an efficient
cache-oblivious implementation that incurs O(n · sort(ν∗)) cache misses,
where sort is a well-known measure for caching efficiency.

1 Introduction

Betweenness centrality (BC) of vertices is a widely-used measure in the analysis
of large complex networks. As a classical measure, BC is widely used in sociology
[6,22], biology [9], physics [17] and network analysis [32,34]. BC is also useful
for critical applications such as identifying lethality in biological networks [31],
identifying key actors in terrorist networks [20] and finding attack vulnerability
of complex networks [14]. In recent years, BC also had a wide impact in the
analysis of social networks [11,33], wireless [25] and mobile networks [4], P2P
networks [18] and more.

In this paper we present incremental BC algorithms that are provably faster
on sparse graphs than current algorithms for the problem. By an incremental
update on edge (u, v) we mean the addition of a new edge (u, v) with finite weight
if (u, v) is not present in the graph, or a decrease in the weight of an existing
edge (u, v); in an incremental vertex update, incremental updates can occur on
any subset of edges incident to v, and this includes adding new edges.

We now define BC, and describe the widely-used Brandes algorithm [3] for
this problem. We then describe our contributions and related work.

� This work was supported in part by NSF grants CCF-0830737 and CCF-1320675.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 577–588, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

578 M. Nasre, M. Pontecorvi, and V. Ramachandran

Betweenness Centrality (BC) and the Brandes Algorithm. Let G =
(V,E) be a (directed or undirected) graph with positive edge weights w(e),
e ∈ E. The distance d(s, t) from s to t is the weight of a shortest path from s
to t. Let σst be the number of shortest paths from s to t in G (with σss = 1)
and let σst(v) be the number of shortest paths from s to t that pass through v.
Thus, σst(v) = σsv · σvt if d(s, t) = d(s, v) + d(v, t), and σst(v) = 0 otherwise.

The pair dependency of s, t on an intermediate vertex v is δst(v) = σst(v)
σst

[3].
For v ∈ V , the betweenness centrality BC(v) is defined by Freeman [6] as:

BC(v) =
∑

s=v,t=v

σst(v)

σst
=

∑
s=v,t=v

δst(v) (1)

Let Ps(v) denote the predecessors of v on shortest paths from s. Brandes [3]
defined the dependency of a vertex s on a vertex v as δs•(v) =

∑
t∈V \{v,s} δst(v),

and observed that

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

· (1 + δs•(w)) and BC(v) =
∑
s=v

δs•(v) (2)

Alg. 1 gives Brandes’ algorithm to compute BC(v) for all v ∈ V . This algo-
rithm runs in O(mn + n2 logn) time, where |V | = n and |E| = m.

Algorithm 1. Betweenness-centrality(G = (V,E)) (from Brandes [3])

1: for every v ∈ V do BC(v) ← 0.
2: for every s ∈ V do
3: Run Dijkstra’s SSSP from s and compute σst and Ps(t),∀ t ∈ V \ {s}.
4: Store the explored nodes in a stack S in non-increasing distance from s.
5: Accumulate dependency of s on all t ∈ S using Eqn. 2.

1.1 Our Contributions

Let E∗ be the set of edges in G that lie on shortest paths, let m∗ = |E∗|, and
let ν∗ be the maximum number of edges that lie on shortest paths through any
single vertex. Here is our main result:

Theorem 1. After an incremental update on an edge or a vertex in a directed
or undirected graph with positive edge weights, the betweenness centrality of all
vertices can be recomputed in:

1. O(ν∗ · n) time using O(ν∗ · n) space;
2. O(m∗ · n) time using O(n2) space.

Since ν∗ ≤ m∗ and m∗ ≤ m, the worst case time for both results is bounded
by O(mn + n2), which is a logn factor improvement over Brandes’ algorithm
on sparse graphs. Our results also have benefits for dense graphs (when m =
ω(n logn)) similar to the Hidden Paths algorithm of Karger et al. [15] for the
all pairs shortest paths (APSP) problem (see also McGeogh [26]), although our
techniques are different. This is through the use of ν∗ or m∗ in place of m, and
we comment more on this below. Our algorithms are simple, and only use stack,

Betweenness Centrality – Incremental and Faster 579

queue and linked list data structures. We also give an efficient cache-oblivious
implementation which avoids the high caching cost of Dijkstra’s algorithm that
is present in Alg. 1 (its bound is given in Section 5).

Both ν∗ and m∗ are typically much smaller than m in dense graphs. For
instance, it is known [7,13,15,23] that m∗ = O(n logn) with high probability in
a complete graph where edge weights are chosen from a large class of probability
distributions, including the uniform distribution on integers in [1, n2] or reals in
[0, 1]. For such graphs, both results in Theorem 1 imply an O(n2 log2 n) algorithm
for an incremental update. For the random real weights, the first result would in
fact give O(n2) time and space since shortest paths are unique with probability
1 in this setting, hence ν∗ = O(n).

We observe that Alg. 1 (Brandes) can be made to run faster: In a directed
graph, by using the Pettie [29] or the Hidden Paths algorithm in place of Di-
jkstra in Step 3 of Alg. 1, we can compute BC scores in O(mn + n2 log logn)
or O(m∗n + n2 logn) time, respectively. In an undirected graph, we can obtain
O(mn · logα(m,n)) time, where α is an inverse-Ackermann function, using [30].
Our incremental bounds are better than any of these bounds for sparse graphs.

There are several results on dynamic BC algorithms and heuristics [10,12,19,21],
but our time bounds are better than any of these on sparse graphs. In fact, ours is
the first incremental BC algorithm that gives a provable improvement over Bran-
des’ algorithm for sparse graphs, which are the type of graphs that typically occur
in practice. While the space used by our algorithms is higher than Brandes’, which
uses only linear space, our second result matches the best space bound obtained
by any of these other dynamic BC algorithms and heuristics.

We consider only incremental updates in this paper. Computing decremental
and fully dynamic updates efficiently appears to be more challenging (as is the
case for APSP [5]). In recent work [28], we have developed decremental and fully
dynamic BC algorithms that build on techniques in [5], and run in amortized
time O(ν∗2 · polylog(n)).

Organization. In Section 2 we discuss related work on dynamic BC. Since the
algorithm for a single edge update is simpler than that for a vertex update, we
first present our edge update result in Section 3. We describe the O(n · ν∗) al-
gorithm, and then the simple changes needed to obtain the second O(n2) space
result. We present the vertex update result in Section 4. In Section 5 we sketch
our efficient cache-oblivious BC algorithm, and mention some preliminary ex-
perimental results.

Step 5 of Alg. 1: For completeness, Alg. 2 below gives the algorithm for Step 5
in Brandes’ algorithm (Alg. 1). We will use Alg. 2 unchanged for our first result
of Theorem 1, and modified (to eliminate the use of predecessor lists Ps(t)) for
the second result of Theorem 1.

2 Related Work

Approximation and parallel algorithms for BC have been considered in [2,8], [24]
respectively. More recently, the problem of dynamic betweenness centrality has

580 M. Nasre, M. Pontecorvi, and V. Ramachandran

Algorithm 2. Accumulate-dependency(s, S) (from [3])

Input: For every t ∈ V : σst, Ps(t).
A stack S containing v ∈ V in a suitable order (non-increasing d(s, v) in [3]).

1: for every v ∈ V do δs•(v) ← 0.
2: while S �= ∅ do
3: w ← pop(S).
4: for v ∈ Ps(w) do δs•(v) ← δs•(v) + σsv

σsw
· (1 + δs•(w)).

5: if w �= s then BC(w) ← BC(w) + δs•(w).

received attention, and these results for incremental and in some cases, decre-
mental, BC are listed in the table below. All of these results except [16] deal with
unweighted graphs as opposed to our results, which are for the weighted case.
Further, while all give encouraging experimental results or match the Brandes
worst-case time complexity, none prove any worst-case improvement. As men-
tioned in the Introduction, BC is also widely used in weighted networks (see
[4,18,31,32]); however, only the heuristic in Kas et al. [16], which has no worst-
case bounds, addresses this version.

Paper Year Space Time Weights Update Type

Brandes static [3] 2001 O(m + n) O(mn) NO Static Alg.
Lee et al. [21] 2012 O(n2 + m) Heuristic NO Single Edge

Green et al. [12] 2012 O(n2 + mn) O(mn) NO Single Edge
Kourtellis+ [19] 2014 O(n2) O(mn) NO Single Edge
Singh et al. [10] 2013 – Heuristic NO Vertex update

Brandes static [3] 2001 O(m + n) O(mn + n2 logn) YES Static Alg.
Kas et al. [16] 2013 O(n2 + mn) Heuristic YES Single Edge
This paper 2014 O(ν∗ · n) O(ν∗ · n) YES Vertex Update
This paper 2014 O(n2) O(m∗ · n) YES Vertex Update

Our first algorithm, which takes time O(ν∗ · n) in a weighted graph even for
a vertex update, improves on all previous results when ν∗ = o(m). By slightly
relaxing the time complexity to O(m∗·n), we are also able to match the best space
complexity in any of the previous results, while matching their time complexities
and improving on all of them when m∗ = o(m).

3 Incremental Edge Update

In this section we present our algorithm to recompute BC scores of all vertices
in a directed graph G = (V,E) after an incremental edge update (i.e., adding an
edge or decreasing the weight of an existing edge). Let G′ = (V,E′) denote the
graph obtained after an edge update to G = (V,E). A path πst from s to t in
G has weight w(πst) =

∑
e∈πst

w(e). Let d(s, t), σst, δs•(t) and DAG(s) denote
the distance from s to t in G, the number of shortest paths from s to t in G,
the dependency of s on t and the SSSP DAG rooted at s in G respectively; let
d′(s, t), σ′

st, δ
′
s•(t) and DAG′(s) denote these parameters in G′.

Betweenness Centrality – Incremental and Faster 581

Lemma 1. If weight of edge (u, v) in G is decreased to obtain G′, then for any
x ∈ V , the set of shortest paths from x to u and from v to x is the same in G
and G′, and d′(x, u) = d(x, u), d′(v, x) = d(v, x) ; σ′

xu = σxu, σ′
vx = σvx.

Proof. Since edge weights are positive, the edge (u, v) cannot lie on a shortest
path to u or from v. The lemma follows. ��

By Lemma 1, DAG(v) = DAG′(v) after the decrease of weight on edge (u, v). The
next lemma shows that after the weight of (u, v) is decreased we can efficiently
obtain the updated values d′(s, t) and σ′

st for any s, t ∈ V .

Lemma 2. Let the weight of edge (u, v) be decreased to w′(u, v), and for any
given pair of vertices s, t, let D(s, t) = d(s, u) + w′(u, v) + d(v, t). Then,

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst.

The shortest paths from s to t in G′ are the same as in G.
2. If d(s, t) = D(s, t), then d′(s, t) = d(s, t) and σ′

st = σst + (σsu · σvt).
The shortest paths from s to t in G′ are a superset of the shortest paths G.

3. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′
st = σsu · σvt.

The shortest paths from s to t in G′ are new (shorter distance).

Proof. Case 1 holds because the shortest path distance from s to t remains
unchanged and no new shortest path is created in this case. In case 2, the shortest
path distance from s to t remains unchanged, but there are σsu ·σvt new shortest
paths from s to t created via edge (u, v). In case 3, the shortest path distance
from s to t decreases and all new shortest paths pass through (u, v). ��

By Lemma 2, the updated values d′(s, t) and σ′
st can be computed in constant

time for each pair s, t. Once we have the updated d′(·) and σ′
(·) values, we need

the updated predecessors P ′
s(t) for every s, t pair for Alg. 2. The SSSP DAG(s)

rooted at a source s is the union of all the Ps(t), ∀ t ∈ V . Thus, obtaining
DAG′(s) after the edge update is equivalent to computing the P ′

s(t), ∀ t ∈ V .
The next section gives a simple algorithm to maintain the SSSP DAGs rooted
at every source s ∈ V , after an incremental edge update.

3.1 Updating an SSSP DAG

For each pair s, t we define flag(s, t) to indicate the specific case of Lemma 2
that is applicable.

flag(s, t) =

⎧⎪⎨⎪⎩
UN-changed if d′(s, t) = d(s, t) and σ′

st = σst (Lemma 2-1)

NUM-changed if d′(s, t) = d(s, t) and σ′
st > σst (Lemma 2-2)

WT-changed if d′(s, t) < d(s, t) (Lemma 2-3)

By Lemma 2, flag(s, t) can be computed in constant time for each pair s, t.
Given an input s and the updated edge (u, v), Alg. 3 (Update-DAG) constructs
a set of edges H using these flag values, together with DAG(s) and DAG(v).
We will show that H contains exactly the edges in DAG′(s). The algorithm

582 M. Nasre, M. Pontecorvi, and V. Ramachandran

considers edges in DAG(s) (Steps 3–5) and edges in DAG(v) (Steps 6–8), and
for each edge (a, b) in either DAG, it decides whether to include it in H based
on the value of flag(s, b). For the updated edge (u, v) there is a separate check
(Steps 9–10). The algorithm clearly takes time linear in the size of DAG(s) and
DAG(v), i.e., O(ν∗) time.

Algorithm 3. Update-DAG(s,w′(u, v))

Input: DAG(s), DAG(v), and flag(s, t),∀t ∈ V .
Output: An edge set H after decrease of weight on edge (u, v), and P ′

s(t),∀t ∈ V −{s}.
1: H ← ∅.
2: for each v ∈ V do P ′

s(v) = ∅.
3: for each edge (a, b) ∈ DAG(s) and (a, b) �= (u, v) do
4: if flag(s, b) = UN-changed or flag(s, b) = NUM-changed then
5: H ← H ∪ {(a, b)} and P ′

s(b) ← P ′
s(b) ∪ {a}.

6: for each edge (a, b) ∈ DAG(v) do
7: if flag(s, b) = NUM-changed or flag(s, b) = WT-changed then
8: H ← H ∪ {(a, b)} and P ′

s(b) ← P ′
s(b) ∪ {a}.

9: if flag(s, v) = NUM-changed or flag(s, v) = WT-changed then
10: H ← H ∪ {(u, v)} and P ′

s(v) ← P ′
s(v) ∪ {u}.

Lemma 3. Let H be the set of edges output by Alg. 3. An edge (a, b) ∈ H if
and only if (a, b) ∈ DAG′(s).

Proof. Since the update is an incremental update on edge (u, v), we note that
for any b, a shortest path π′

sb from s to b in G′ can be of two types:
(i) π′

sb is a shortest path in G. Therefore every edge on such a path is present in
DAG(s) and each such edge is added to H in Steps 3–5 of Alg. 3.
(ii) π′

sb is not a shortest path in G. However, since π′
sb is a shortest path in G′,

therefore π′
sb is of the form s � u → v � b. Since shortest paths from s to u

in G and G′ are unchanged (by Lemma 1), the edges in the sub-path s � u are
present in DAG(s) and are added to H in Steps 3–5 of Alg. 3. Finally, shortest
paths from v to any b in G and G′ remain unchanged. Thus, the edges in the
sub-path v � b are present in DAG(v) and are added to H in Steps 6–8 of Alg. 3.

For the other direction, if the edge (a, b) is added to H by Step 5, this implies
that the edge (a, b) ∈ DAG(s). Thus, there exists a shortest path πsb = s �
a → b in G. We execute Step 5 when flag(s, b) = UN-changed or flag(s, b) =
NUM-changed. Thus every shortest path from s to b in G is also shortest path in
G′. Therefore, (a, b) ∈ DAG′(s). If the edge (a, b) is added to H by Step 8, then
the edge (a, b) ∈ DAG(v). Thus, there exists a shortest path πvb = v � a→ b in
G. Since decreasing the weight of the edge (u, v) does not change shortest paths
from v to any other vertex, πvb is in G′. We execute Step 8 when flag(s, b) =
NUM-changed or flag(s, b) = WT-changed. Therefore, there exists at least one
shortest path from s to b in G′ that uses the updated edge (u, v). Hence the path
π′
sb = π′

su ·(u, v) ·πvb is shortest in G′, and this establishes that (a, b) ∈ DAG′(s).
Finally, edge (u, v) is added to H by Step 10 only if flag(s, v) is NUM-changed
or WT-changed, and in either case, there is at least a new shortest path from s
to v through (u, v). Hence (u, v) ∈ DAG′(s). ��

Betweenness Centrality – Incremental and Faster 583

3.2 Updating Betweenness Centrality Scores

The algorithm for updating the BC scores after an edge update (Alg. 4) is similar
to Alg. 1, but with the following changes: an extended Step 1 also computes, for
every s, t pair, the updated d′(s, t) and σ′

st, as well as flag(s, t). Using Lemma 2,
we spend constant time for each s, t pair, hence O(n2) time for all pairs. In
Step 3, instead of Dijkstra’s algorithm, we run Alg. 3 to obtain the updated
predecessor lists P ′

s(t), for all s, t. This step requires time O(ν∗) for a source
s, and O(ν∗ · n) over all sources. The last difference is in Step 4: we place in
the stack S the vertices in reverse topological order in DAG′(s), instead of non-
increasing distance from s. This requires time linear in the size of the updated
DAG. Thus the time complexity of Edge-Update is O(ν∗ · n).

Algorithm 4. Edge-Update(G = (V,E),w′(u, v))

Input: updated edge with w′(u, v), d(s, t) and σst, ∀ s, t ∈ V ; DAG(s),∀ s ∈ V .
Output: BC′(v), ∀ v ∈ V ; d′(s, t) and σ′

st ∀ s, t ∈ V ; DAG′(s),∀ s ∈ V .
1: for every v ∈ V do BC′(v) ← 0.

for every s, t ∈ V do compute d′(s, t), σ′
st, flag(s, t). // use Lemma 2

2: for every s ∈ V do
3: Update-DAG(s, (u, v)). // use Alg. 3
4: Stack S ← vertices in V in a reverse topological order in DAG′(s).
5: Accumulate-dependency(s,S). // use Alg. 2

Undirected Graphs. For an undirected G, we construct the corresponding di-
rected graph GD in which every undirected edge is replaced with 2 directed edges.
An incremental update on an undirected edge (u, v) is equivalent to two edge
updates on (u, v) and (v, u) in GD. Thus, Theorem 1 holds for undirected graphs.

Space Efficient Implementation. In order to obtain O(n2) space complexity,
we do not store the SSSP DAGs rooted at every source. Instead, we only store
the edge set E∗. After an incremental update on edge (u, v) we first construct
the updated set E′∗ in O(m∗ · n) time as follows. For each edge (a, b) ∈ E∗, if
d′(s, b) = d(s, a) + w(a, b) for some source s ∈ V , then (a, b) ∈ E′∗. Using the
updated E′∗ we can construct DAG′(s) in O(m∗) time, by using the fact that
an edge (a, b) ∈ E′∗ belongs to DAG′(s) iff d(s, b) = d(s, a) + w(a, b). Since the
construction of each updated DAG takes O(m∗) time and there are n DAGs
to be constructed, the O(m∗ · n) time complexity follows. The space used is
O(m∗ + n2) to store E∗ and d(s, t), σst, for all s, t ∈ V .

4 Incremental Vertex Update

We now consider an incremental update to a vertex v in G = (V,E), which allows
an incremental edge update on any subset of edges incoming to and outgoing
from v. In this algorithm, we use the graph G and the graph GR = (V,ER),
which is obtained by reversing every edge in G, i.e., (a, b) ∈ ER iff (b, a) ∈ E.
Thus, for every s ∈ V , we also maintain DAGR(s), the SSSP DAG rooted at s
in GR. We will obtain the same time bound as in Section 3.

584 M. Nasre, M. Pontecorvi, and V. Ramachandran

4.1 Overview

Let Ei(v) and Eo(v) denote the set of updated edges incoming to v and outgoing
from v respectively. Our algorithm is a natural extension, with some new fea-
tures, of the algorithm for a single edge update, and works as follows. We process
Ei(v) in G in Step 1 to form G′, G′

R, DAG′(s) and DAG′
R(s); we then process

Eo(v) in G′
R in a complementary Step 2 to obtain the updated G′′, DAG′′(s)

and DAG′′
R(s). Step 1, which processes Ei(v), consists of two phases.

Step 1, Phase 1: Constructing the DAG′(s) for updates in Ei(v).
Since Ei(v) contains updated edges incoming to v, DAG(v) = DAG′(v) (as in the
single edge update case). In order to handle updates to several edges incoming to
v, we strengthen Lemma 2 by introducing σ̂, which keeps track of new shortest
paths from s to v that go through any of the updated edges in Ei(v). This allows
us to efficiently recompute the number of shortest paths from a source to any
node in G′, and thus update all the DAG′(s) using an algorithm similar to Alg. 3.
Parts (A), (B), (C) in Section 4.2 describe Phase 1 in detail.

Step 1, Phase 2: Constructing the DAG′
R(s) for updates in Ei(v).

We present an efficient algorithm to construct the DAG′
R(s) for all s in G′. We

construct these reverse graphs because the edges in Eo(v) are in fact incoming
edges to v in G′

R. Hence our method to maintain DAGs when incoming edges
are updated can be applied to G′

R with Eo to obtain DAG′′
R(s), for every s, in

Phase 1 of Step 2 (and then we can obtain the DAG′′(s) in Phase 2 of Step 2).
Let (t, a) be the first edge on a shortest path from t to v in G′. Then (t, a) is

an outgoing edge from t in DAG′(t), and its reverse (a, t) is on a shortest path
from v to t in G′

R. Further an edge (a, t) is on a new shortest path from v to t in
G′

R if and only if its reverse is on a new shortest path from t to v in G′. These
edges on new shortest paths are the ones we need to keep track of in order to
update the reverse DAGs, and to facilitate this we define a collection of sets Rt,
t ∈ V . The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that
lie on a shortest path from t to v in G′ (see also Eqn. 5 in the next section).
Thus, if a new shortest path πsb is present in DAG′

R(s) (πsb must pass through
v), its last edge (a, b) is present in Rb. Using the sets Rt, ∀ t ∈ V , it is possible
to quickly build the DAG′

R(t) after Phase 1 as shown in part (D) in section 4.2.

Step 2: After applying Phase 1 and 2 on the initial DAGs using Ei to obtain
the DAG′

R(s) and G′
R, Step 2 re-applies Phase 1 and Phase 2 on these updated

graphs using Eo in order to complete all of the updates to vertex v. We can then
apply Alg. 2 to the DAG′′(s) to obtain the BC scores for the updated graph G′′.

4.2 Vertex Update Algorithm

We now give details of each phase of our algorithm starting with the graph G.

Step 1, Phase 1
(A) Compute d′(s, v) and σ′

sv for any s. We show how to compute in G′

the distance and number of shortest paths to v from any s. Let (uj , v) ∈ Ei(v)

Betweenness Centrality – Incremental and Faster 585

and let Dj(s, v) = d(s, uj) + w′(uj, v). Since the updates on edges in Ei(v) are
incremental, it follows that:

d′(s, v) = min{d(s, v), min
j:(uj ,v)∈Ei(v)

{Dj(s, v)}} (3)

Further, if d′(s, v) = d(s, v), we define:

σ̂′
sv = |{π′

sv : π′
sv is a shortest path in G′ and π′

sv uses e ∈ Ei(v)}| (4)

We also need to compute σ′
sv, the number of shortest paths from s to v in G′.

It is straightforward to compute d′(s, v), σ′
sv, and σ̂′

sv in O(|Ei(v)|) time. Alg. 5
gives the details of this step.

Algorithm 5. Dist-to-v (s, Ei(v))

Input: Ei(v) with updated weights w′.
d(s, t) and σst, ∀ s, t ∈ V .

Output: d′(s, v), σ′
sv, σ̂

′
sv.

1: σ̂′
sv ← 0, σ′

sv ← σsv, D
′ ← d(s, v).

2: for each edge (ui, v) ∈ Ei(v) do
3: if D′ = d(s, ui) +w′(ui, v) then
4: σ′

sv ← σ′
sv + σsui .

5: σ̂′
sv ← σ̂′

sv + σsui .
6: else if D′ > d(s, ui)+w′(ui, v) then
7: D′ ← d(s, ui) +w′(ui, v).
8: σ′

sv ← σsui .
9: d′(s, v) ← D′.

Algorithm 6. Upd-Rev-DAG(s, Ei(v))

Input: DAGR(s); Rt, flag(s, t),∀t ∈ V .
Output: An edge set X after update on

edges in Ei(v).
1: X ← ∅.
2: for each edge (a, b) ∈ DAGR(s) do
3: if flag(b, s) = UN-changed or

flag(b, s) = NUM-changed then
4: X ← X ∪ (a, b) .
5: for each b ∈ V \ {s} do
6: if flag(b, s) = NUM-changed or

flag(b, s) = WT-changed then
7: X ← X ∪Rb .

(B) Compute d′(s, t) and σ′(s, t) for all s, t. After computing d′(s, v), σ′
sv and

σ̂′
sv, we show that the values d′(s, t) and σ′(s, t) can be computed efficiently. We

state Lemma 4 which captures this computation. The proof of this lemma is
similar to Lemma 2 in the edge update case.

Lemma 4. Let Ei(v) be the set of updated edges incoming to v. Let G′ be the
graph obtained by applying the updates in Ei(v) to G. For any s ∈ V and t ∈
V \ {v}, let D(s, t) = d′(s, v) +d(v, t), Σst = σst + σ̂′

sv ·σvt, Σ′
st = σst +σ′

sv ·σvt.

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst.

2. If d(s, t) = D(s, t) and d(s, v) = d′(s, v), then d′(s, t) = d(s, t) and σ′
st = Σst.

3. If d(s, t) = D(s, t) and d(s, v) > d′(s, v), then d′(s, t) = d(s, t) and σ′
st = Σ′

st.
4. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′

st = σ′
sv · σvt.

The value flag(s, t) for every s, t can be computed using the updated distances
and number of shortest paths (flag(s, t) is UN-changed for 1, NUM-changed for
both 2 and 3, and WT-changed for 4, in Lemma 4).
(C) Compute DAG′(s) for every s. Given d′(s, t) and σ′(s, t) updated for all
s, t ∈ V , the algorithm to compute DAG′(s) for any s ∈ V is similar to Alg. 3
in the edge update case. The only modification we need is in Steps 9–10 where
instead of a single edge (u, v), we consider every edge (u1, v) ∈ Ei(v).

586 M. Nasre, M. Pontecorvi, and V. Ramachandran

Step 1, Phase 2

(D) Compute DAG′
R(s) for every s. We update DAGR(s), for every s, for

which we use Alg. 6. Recall the sets Rt, ∀ t ∈ V defined as:

Rt = {(a, t) | (t, a) ∈ DAG′(t) and w′(t, a) + d′(a, v) = d′(t, v)} (5)

The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that lie on
a shortest path from t to v in G′. Consider an edge e = (a, b) in the updated
DAG′

R(s). If e is in DAGR(s), it is added to DAG′
R(s) by Steps 2–4. If e lies on a

new shortest path present only in G′
R, its reverse must also lie on a shortest path

that goes through v in G′, and it will be added to DAG′
R(s) by the Rb during

Steps 5–7 (Rb could also contain edges on old shortest paths through v already
processed in Steps 2–4, but even in that case each edge is added to DAG′

R(s) at
most twice by Alg. 6). Note that we do not need to process edges (uj , v) in Ei

separately (as with edge (u, v) in Alg. 2), because these edges will be present in
the relevant Ruj . The correctness of Alg. 6 follows from Lemma 5, whose proof
is similar to Lemma 3, and is omitted.

Lemma 5. In Alg. 6, an edge (a, b) is placed in X if and only if (a, b) ∈
DAG′

R(s) after the incremental update of the set Ei(v).

Step 2: To process the updates in Eo(v), we re-apply Phase 1 and 2 over G′
R.

Since we are processing incoming edges in G′
R, our earlier steps apply unchanged,

and we obtain modified values for d′′(·), σ′′
(·), and DAG′′

R(s) for every s. Then,

using Alg. 6 we obtain the DAG′′(s) for every s. Finally, to compute the updated
BC values, we apply Alg. 2.

Performance: Computing d′(s, v), σ′
sv and σ̂′

sv requires time O(|Ei(v)|) = O(n)
for each s, and hence O(n2) time for all sources. Applying Lemma 4 to all pairs of
vertices takes time O(n2). The complexity of modified Alg. 3 applied to all DAGs
is againO(ν∗·n). Creating setRt requires at mostO(E∗ ∩ {outgoing edges of t}),
so the overall complexity for all the sets is O(m∗). Finally, we bound the com-
plexity of Algorithm 6: the algorithm adds (a, b) in a reverse DAG edge set X at
most twice. Since

∑
s∈V |E(DAG′(s))| =

∑
s∈V |E(DAG′

R(s))|, at most O(ν∗ · n)
edges can be inserted into all the sets X when Algorithm 6 is executed over all
sources. Finally, applying the updates in Eo(v) requires a symmetric procedure
starting from the reverse DAGs, the final complexity bound of O(ν∗ · n) follows.

5 Efficient Cache Oblivious Algorithm

We give a cache-oblivious implementation with O(n·sort(ν∗)) cache misses. Here,
for a size M cache that can hold B blocks, sort(r) = r

B · logM r when M ≥ B2;
sort is a measure of good caching performance (even though sort(r) performs
r log r operations, the base of M in the log makes sort(r) preferable to, say,
r cache misses). In contrast, the Brandes algorithm calls Dijkstra’s algorithm,
which is affected by unstructured accesses to adjacency lists that lead to large
caching costs (see, e.g., [27]).

We consider the basic edge update algorithm. The main change is in the
cache-oblivious (CO) implementation of Alg. 2, which is the last step of Alg. 4.

Betweenness Centrality – Incremental and Faster 587

Instead of the stack S, we use an optimal CO max-priority queue Z [1], that
is initially empty. Each element in Z has an ordered pair (d′(s, v), v) as its key
value, and also has auxiliary data as described below. Consider the execution of
Step 4 in Alg. 2 for vertices v ∈ Ps(w). Instead of computing the contribution
of w to δs•(v) for each v ∈ Ps(w) when w is processed, we insert an element
into Z with key value (d′(s, v), v) and auxiliary data (w, σsw , δs•(w)). With this
scheme, entries will be extracted from Z in nonincreasing values of d′(s, v), and
all entries for a given v will be extracted consecutively. We compute δs•(v)
as these extractions for v occur from Z, and also update BC(v). Initially, for
each sink t in DAG(s), we insert an element with key value (d′(s, t), t) and NIL
auxiliary data. Using [1], Alg. 2 (which is Step 6 in Alg. 4) takes sort(ν∗) cache
misses for source s, and hence O(n · sort(ν∗)) over all sources. The earlier steps
in Alg. 4 can be performed in O(n · sort(ν∗)) cache misses by suitably storing
and rearranging data for cache-efficiency.

Preliminary experimental results for our basic edge update algorithm (in Sec-
tion 3) on random graphs generated using the Erdős-Rényi model give 2 to 15
times speed-up over Brandes’ algorithm for graphs with 256 to 2048 nodes, with
the larger speed-ups on dense graphs.

Acknowledgment. We thank Varun Gangal and Aritra Ghosh at IIT Madras
for implementing the algorithms.

References

1. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An op-
timal cache-oblivious priority queue and its application to graph algorithms. SIAM
J. Comput. 36(6), 1672–1695 (2007)

2. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness
centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
124–137. Springer, Heidelberg (2007)

3. Brandes, U.: A faster algorithm for betweenness centrality. J. of Mathematical
Sociology 25(2), 163–177 (2001)

4. Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone call networks.
Social Network Analysis and Mining 3(1), 15–33 (2013)

5. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968–992 (2004)

6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociome-
try 40(1), 35–41 (1977)

7. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-
lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)

8. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: Proc. ALENEX, pp. 90–100 (2008)

9. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. the National Academy of Sciences 99(12), 7821–7826 (2002)

10. Goel, K., Singh, R.R., Iyengar, S., Sukrit: A faster algorithm to update betweenness
centrality after node alteration. In: Bonato, A., Mitzenmacher, M., Pra�lat, P. (eds.)
WAW 2013. LNCS, vol. 8305, pp. 170–184. Springer, Heidelberg (2013)

11. Goh, K.-I., Oh, E., Kahng, B., Kim, D.: Betweenness centrality correlation in social
networks. Phys. Rev. E 67, 017101 (2003)

588 M. Nasre, M. Pontecorvi, and V. Ramachandran

12. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness
centrality. In: Proc. PASSAT, pp. 11–20 (2012)

13. Hassin, R., Zemel, E.: On shortest paths in graphs with random weights. Mathe-
matics of Operations Research 10(4), 557–564 (1985)

14. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex
networks. Phys. Rev. E 65, 056109 (2002)

15. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: Time bounds for
all-pairs shortest paths. SIAM J. Comput. 22(6), 1199–1217 (1993)

16. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updat-
ing betweenness centrality in dynamically growing networks. In: Proc. ASONAM,
pp. 33–40. ACM (2013)

17. Kitsak, M., Havlin, S., Paul, G., Riccaboni, M., Pammolli, F., Stanley, H.E.: Be-
tweenness centrality of fractal and nonfractal scale-free model networks and tests
on real networks. Phys. Rev. E 75, 056115 (2007)

18. Kourtellis, N., Iamnitchi, A.: Leveraging peer centrality in the design of socially-
informed peer-to-peer systems. CoRR, abs/1210.6052 (2012)

19. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality
in evolving graphs. CoRR, abs/1401.6981 (2014)

20. Krebs, V.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)
21. Lee, M.-J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.-W.: Qube: a quick algorithm

for updating betweenness centrality. In: Proc. WWW, pp. 351–360 (2012)
22. Leydesdorff, L.: Betweenness centrality as an indicator of the interdisciplinarity of

scientific journals. J. Am. Soc. Inf. Sci. Technol. 58(9), 1303–1319 (2007)
23. Luby, M., Ragde, P.: A bidirectional shortest-path algorithm with good average-

case behavior. Algorithmica 4(1-4), 551–567 (1989)
24. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarŕıa-Miranda, D.G.: A faster

parallel algorithm and efficient multithreaded implementations for evaluating be-
tweenness centrality on massive datasets. In: Proc. IPDPS, pp. 1–8 (2009)

25. Maglaras, L., Katsaros, D.: New measures for characterizing the significance of
nodes in wireless ad hoc networks via localized path-based neighborhood analysis.
Social Network Analysis and Mining 2(2), 97–106 (2012)

26. McGeoch, C.C.: All-pairs shortest paths and the essential subgraph. Algorith-
mica 13(5), 426–441 (1995)

27. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–
735. Springer, Heidelberg (2002)

28. Nasre, M., Pontecorvi, M., Ramachandran, V.: Decremental and fully dynamic all
pairs all shortest paths and betweenness centrality. Manuscript (2014)

29. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science 312(1), 47–74 (2004)

30. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undi-
rected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

31. Pinney, J.W., McConkey, G.A., Westhead, D.R.: Decomposition of biological net-
works using betweenness centrality. In: Proc. RECOMB. Poster session (2005)

32. Puzis, R., Altshuler, Y., Elovici, Y., Bekhor, S., Shiftan, Y., Pentland, A.S.: Aug-
mented betweenness centrality for environmentally aware traffic monitoring in
transportation networks. J. of Intell. Transpor. Syst. 17(1), 91–105 (2013)

33. Ramı́rez: The social networks of academic performance in a student context of
poverty in Mexico. Social Networks 26(2), 175–188 (2004)

34. Singh, B.K., Gupte, N.: Congestion and decongestion in a communication network.
Phys. Rev. E 71, 055103 (2005)

Deterministic Parameterized Algorithms

for the Graph Motif Problem

Ron Y. Pinter, Hadas Shachnai, and Meirav Zehavi

Department of Computer Science, Technion, Haifa 32000, Israel
{pinter,hadas,meizeh}@cs.technion.ac.il

Abstract. We study the classic Graph Motif problem: given a graph
G = (V,E) with a set of colors for each node, and a multiset M of colors,
we seek a subtree T ⊆ G, and a coloring of the nodes in T , such that T
carries exactly (also with respect to multiplicity) the colors in M . Graph

Motif plays a central role in the study of pattern matching problems,
primarily motivated from the analysis of complex biological networks.

Previous algorithms for Graph Motif and its variants either rely on
techniques for developing randomized algorithms that, if derandomized,
render them inefficient, or the algebraic narrow sieves technique for which
there is no known derandomization. In this paper, we present fast deter-
ministic parameterized algorithms for Graph Motif and its variants.
Specifically, we give such an algorithm for the more general Graph Mo-

tif with Deletions problem, followed by faster algorithms for Graph

Motif and other well-studied special cases. Our algorithms make non-
trivial use of representative families, and a novel tool that we call guiding
trees, together enabling the efficient construction of the output tree.

1 Introduction

With the advent of network biology and complex network analysis in general, the
study of pattern matching problems in graphs has become of major importance
[12,16]. Indeed, the term “graph motif” plays a central role in this context, with
different node colors used to model different functionalities of the network (see,
e.g., [17,7]). Due to the generic nature of the Graph Motif (GM) problem
(also known as the Topology-Free Network Query problem), the so called
motif analysis approach has become useful also in the study of social networks
(see, e.g., [23] and the references therein).

The GM problem is a natural variant of classic pattern matching problems,
where the topology of the pattern M is unknown or of lesser importance. Given
a graph G = (V,E) with a set of colors for each node, and a multiset M of
colors, we seek a subtree T ⊆ G, and a coloring of the nodes in T , such that T
carries exactly (also with respect to multiplicity) the colors in M . We call T an
occurrence of M in G. To allow more flexibility in the definition of an occurrence,
and since biological network data often contains noise, a generalized version of
GM allows deleting colors from M .

Parameterized algorithms solve NP-hard problems by confining the combina-
torial explosion to a parameter k. More precisely, a problem is fixed-parameter

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 589–600, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

590 R.Y. Pinter, H. Shachnai, and M. Zehavi

C = { , } M = { , , , }

G
a b c d

k = 3

Solutions

a b d b c d

A

B

Fig. 1. An input for GMD (A), and two possible solutions (B)

tractable (FPT) with respect to a parameter k if it can be solved in time O∗(f(k))
for some function f , where O∗ hides factors polynomial in the input size. Since
GM is NP-complete [17], there is a growing body of literature studying its param-
eterized complexity (see the excellent survey in [26]). In this paper, we present
fast deterministic parameterized algorithms for GM and its variants.

1.1 Problem Statement

The most general variant considered in this paper is Graph Motif with Dele-

tions (GMD): the input is a set of colors C, a multiset M of colors from C,
and an undirected graph G = (V,E). The nodes in V are associated with colors
via a (set-)coloring Col : V → 2C . We are also given a parameter k ≤ |M |.

We need to decide if there exists a subtree T = (VT , ET) of G on k nodes, and
a coloring col : VT → C that assigns a color from Col(v) to each node v ∈ VT ,
such that

∀c ∈ C : |{v ∈ VT : col(v) = c}| ≤ occ(c), (1)

where occ(c) is the number of occurrences of a color c in M (see Fig. 1).1

Special Cases: Restricted GMD (RGMD) is the special case of GMD where
for any node v ∈ V , |Col(v)| = 1. Also, GM and RGM are the special cases
of GMD and RGMD, respectively, where deletions are not allowed (i.e., the
inequality in (1) is replaced by equality, and k = |M |).

1.2 Known Results and Our Contribution

GMD has received considerable attention since it was introduced by Lacroix et
al. [17]. The paper [17] also shows that RGM is NP-hard when M is a set and G
is a tree. Even seemingly simpler cases of RGM are known to be NP-hard (see
[11,2,8]). Moreover, a natural optimization version of RGMD, minimizing the

number of deletions from M , is hard to approximate within factor |V | 13−ε [24].

1 Some papers define GMD as a problem where one seeks a connected subgraph S of
G, which is equivalent to our definition (simply consider some spanning tree T of S).

Deterministic Parameterized Algorithms for the Graph Motif Problem 591

On the positive side, using techniques for developing randomized parameter-
ized algorithms, many such algorithms have been obtained for GMD and its
variants [3,4,6,7,9,10,14,15,21,22]. Some of these algorithms can be derandom-
ized, resulting, however, in inefficient algorithms. In particular, Fellows et al.
[10] gave a deterministic algorithm for RGM that runs in time O∗(87k), based
on a derandomization of the color coding technique [1]. Currently, the best ran-
domized algorithm for GMD runs in time O∗(2k), due to Björklund et al. [6].
This algorithm is based on the narrow sieves technique [5], for which there is no
known derandomization. Thus, previous studies left open the existence of a fast
deterministic parameterized algorithm for GMD.

In this paper, we present fast deterministic parameterized algorithms for
GMD and its variants. In particular, we develop an O∗(6.86k) time algorithm
for GMD, an O∗(5.22k) time algorithm for GM, and an O∗(5.18k) time algo-
rithm for RGMD.

Due to space constraints, some of the proofs are omitted. The detailed results
appear in [20].

1.3 Techniques

Our algorithms make non-trivial use of representative families, and a novel tool
that we call guiding trees, together enabling the efficient construction of the out-
put tree. Informally, a guiding tree is a constant-size rooted tree which provides
some structural information about the solution tree. To efficiently compute a
family S of partial solutions, we first construct a polynomial number of suitable
guiding trees. We then use these trees to generate S, by combining previously
computed families of partial solutions. Thus, we avoid iterating over all O∗(2k)
possible topologies for the solution tree.

The efficiency of our algorithms is further improved via replacement of each
family of partial solutions, S, by a subfamily Ŝ ⊆ S, which represents S. Each
representative family Ŝ contains enough sets from S, thus, we preserve the cor-
rectness of the algorithm while improving its running time.

Building on the powerful technique of Fomin et al. [13], for efficient con-
struction of representative families, we tailor the definitions of these sets to the
problem at hand. This also leads to replacing uniform matroid (often used for
fast computation of representative families) by partition matroid, which captures
more closely the restricted variants of GM.

2 Preliminaries

Given a graph H , let VH and EH denote its node-set and edge-set, respectively.

Matroids: In deriving our results, we use two types of matroids.2 Given a
constant k, the first is defined by a pair M = (E, I), where E is an n-element
set, and I = {S ⊆ E : |S| ≤ k}. Such a pair is called a uniform matroid, denoted
by Un,k.

2 For a broader overview of matroids, see, e.g., [19].

592 R.Y. Pinter, H. Shachnai, and M. Zehavi

Given some constants � and k1, k2, . . . , k�, the second is defined by a pair
(E, I), where E is an n-element set partitioned into disjoint sets E1, E2, . . . , E�,
and I = {S ⊆ E : |S ∩ E1| ≤ k1, |S ∩ E2| ≤ k2, . . . , |S ∩ E�| ≤ k�}. Such a pair
is called a partition matroid. Note that, when � = 1, the definitions for the two
types of matroids coincide.

Representative Families: Given a family S of sets that are partial solutions,
we would like to replace S by a smaller subfamily Ŝ ⊆ S. If there is a partial
solution in S that can be extended to a solution, it is clearly necessary that there
would also be a partial solution in Ŝ that can be extended to a solution. The
following definition captures such a family Ŝ.

Definition 1. Given a matroid M = (E, I), and a family S of subsets of size

p of E, we say that a subfamily Ŝ ⊆ S q-represents S if for every pair of sets
X ∈ S, and Y ⊆ E \X such that |Y | ≤ q and X ∪ Y ∈ I, there is a set X̂ ∈ Ŝ
disjoint from Y such that X̂ ∪ Y ∈ I.

The next two results enable the efficient construction of small representative
families.

Theorem 1 ([13,25]). Given a parameter c ≥ 1, a uniform matroid Un,k =

(E, I), and a family S of subsets of size p of E, a family Ŝ ⊆ S of size at

most
(ck)k

pp(ck − p)k−p
2o(k) logn that (k − p)-represents S can be found in time

O(|S|(ck/(ck − p))k−p2o(k) logn).

Theorem 2 ([13,18]). Given constants �, k1, k2, . . . , k� and k ≤
�∑

i=1

ki, a cor-

responding partition matroid M = (E, I), and a family S of subsets of size p

of E, a family Ŝ ⊆ S of size at most
(
k
p

)
nO(1) that (k − p)-represents S can be

found in time O(|S|
(
k
p

)w̃−1
nO(1)), where w̃ < 2.3727 is the matrix multiplication

exponent [27].

Let UniRep(c, Un,k,S) and ParRep(k,M,S) be the algorithms implied by The-
orems 1 and 2, respectively.

Guiding Trees: Recall that G = (V,E) is the input graph, and let 2 ≤ d ≤ k/2
be a constant (to be determined).3 Given a rooted tree T and a node v ∈ VT that
is not the root of T , let fT (v) be the father of v in T . Given nodes v, u ∈ V , we
say that a tree T rooted at v is a (v, u)-tree if u ∈ VT . Furthermore, a (v, u)-tree
R is a (v, u)-guide if 3 ≤ |VR| ≤ 2d and VR ⊆ V (ER may not be contained in
E). Let Gv,u be the set of (v, u)-guides. Finally, let Tv,u,� be the set of (v, u)-trees
on � nodes, that, when unrooted, are subtrees of G.

We now define which subtrees of G listen to the instructions of a given guide
(see Fig. 2).

3 The choice of d concerns the analysis of the running times of our algorithms.

Deterministic Parameterized Algorithms for the Graph Motif Problem 593

 v v v

u

uu

r r r

s

s s

t t

t

a

b c

e f

g

h

i

j

l

a

b c

e f

g

h

i

j

l

q

x

y z

G T R

Fig. 2. A (v, u)-tree T , and a (v, u)-guide R, where d = 3, k = 12, and T listens to R

Definition 2. Given v, u ∈ V and � ≤ k, we say that T ∈ Tv,u,� listens to
R ∈ Gv,u if the following two conditions are fulfilled.

1. ∀v′, u′ ∈ VR : v′ is an ancestor of u′ in R iff v′ is an ancestor of u′ in T .
2. For each tree X in the forest obtained by removing VR from T , let NX =
{v′ ∈ VR : {v′, u′} ∈ ET for some u′ ∈ VX}.
Then, |NX | ≤ 2, and [NX = {v} → (|VX ∪NX | ≤ k/d)].

The next lemma, which asserts that none of the subtrees of G relevant to
solving GMD is completely undisciplined, is implicit in [13].

Lemma 3. For any rooted tree T ∈ Tv,u,�, where v, u ∈ V and 3 ≤ � ≤ k, there
exists R ∈ Gv,u to whom T listens.

Feasible Colorings: Given U ⊆ V , we say that a coloring col : U → C is
feasible if [∀v ∈ U : col(v) ∈ Col(v)] and [∀c ∈ C : |{v ∈ U : col(v) = c}| ≤
occ(c)]. Denote by ima(col) the image of col.

3 An Algorithm for GMD

In this section we solve GMD in time O∗(6.86k). Since in GMD each node is
assigned a set of colors whose size can be greater than 1, we may assume w.l.o.g
that M is a set equal to C (a formal proof is given, e.g., in [22]).

The main idea of the algorithm is to iterate over all pairs of nodes v, u ∈ V ,
and all values 1 ≤ � ≤ k. When we reach such v, u and �, we have already
computed, for all v′, u′ ∈ V and 1 ≤ �′ < �, representative families for families of
corresponding “partial solutions”. Each such partial solution is a union of a set
A containing exactly �′ nodes, and a set B containing exactly �′ colors. The sets
A and B correspond to a pair of a rooted tree T ∈ Tv′,u′,�′ satisfying A = VT ,
and a feasible coloring col : A→ B.

To compute a family of partial solutions corresponding to v, u and �, we iterate
over all (v, u)-guides in Gv,u. We follow the instructions of the current guide R by
using another, internal dynamic programming-based computation. At each stage
of this computation, we have a family of partial solutions listening to a certain

594 R.Y. Pinter, H. Shachnai, and M. Zehavi

subtree of R. We unite these partial solutions with other small partial solutions,
according to the instructions of R, thus efficiently constructing a family of partial
solutions listening to a greater subtree of R. For this family, we compute a smaller
representative family, so that the following stage can be executed efficiently. After
iterating over all relevant guides, we find a family representing the union of the
families returned by the internal dynamic programming-based computations.
This family includes enough, but not too many, partial solutions corresponding
to v, u and �, which ensures the correctness of the algorithm.

3.1 The Algorithm

We now describe GMD-Alg, our algorithm for GMD (see the pseudocode below).
GMD-Alg first generates a matrix M, where each entry [v, u, cv, cu, �] holds a
family that represents Solv,u,cv,cu,�, the family of every set (X ∪ Y) satisfying
|X | = |Y | = �, for which there exist T ∈ Tv,u,� such that X = VT , and a feasible
col : X → Y satisfying col(v) = cv and col(u) = cu.

Algorithm 1. GMD-Alg(C,G = (V,E), Col, k)

1. let M be a matrix that has an entry [v, u, cv, cu, �] for all v, u∈V, cv∈Col(v),
cu ∈ Col(u), and 1 ≤ � ≤ k, initialized to ∅.

2. M[v,v,c,c,1]⇐{{v,c}} for all v∈V and c∈Col(v).
3. M[v,v,c,c,2]⇐{{v,u,c,c′} : {v,u}∈E, c′∈Col(u)\{c}} for all v∈V and c∈Col(v).
4. M[v,u,c,c′ ,2]⇐{{v,u,c,c′}} for all {v, u}∈E, c ∈ Col(v) and c′∈ Col(u)\{c}.
5. for all v, u∈V , cv∈Col(v), cu∈Col(u), and � = 3, . . . , k do
6. let N be a matrix that has an entry [R, colR] for all R ∈ Gv,u, and feasible

colR : VR → C satisfying colR(v) = cv and colR(u) = cu, initialized to ∅.
7. for all [R, colR] ∈ N do
8. let w1, . . . , w|VR| be a preorder on VR, where w1=v.
9. let L be a matrix that has an entry [i, �′] for all 1 ≤ i ≤ |VR| and 1 ≤ �′

≤ �, initialized to ∅.
10. L[1, �′] ⇐ M[v, v, cv, cv, �

′] for all 1 ≤ �′ < �.
11. for i = 2, . . . , |VR|, and �′ = 2, . . . , � do
12. let A include all sets (U ∪W) for which there exists 2 ≤ �′′≤ min{�′,

�− 1, k/d} satisfying (1) or (2):
(1) U ∩W = {fR(wi), colR(fR(wi))},

U ∈M[fR(wi),wi,colR(fR(wi)),colR(wi),�
′′] and W∈L[i−1, �′−�′′+1].

(2) U ∩W = {wi, colR(wi)},
U ∈ M[wi, wi, colR(wi), colR(wi), �

′′] and W ∈ L[i, �′−�′′+1].
13. L[i, �′] ⇐ UniRep(1.447, U(|V |+|C|),2k,A).
14. end for
15. N[R, colR] ⇐ L[|VR|, �].
16. end for
17. M[v, u, cv, cu, �] ⇐ UniRep(1.447, U(|V |+|C|),2k,

⋃
[R,colR]∈N N[R, colR]).

18. end for
19. accept iff (

⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, k]) �= ∅.

Deterministic Parameterized Algorithms for the Graph Motif Problem 595

Then, in Steps 2–4, GMD-Alg computes all “basic” entries of M, i.e., entries of
the form [v, u, cv, cu, �], where � ≤ 2. Next, in Step 5, GMD-Alg iterates over all
values v, u, cv, cu and � that define an entry of M that is not basic, in an order
that guarantees that when we reach an entry [$] of M, we have already computed
entries of M that are relevant to [$]. Now, consider a specific iteration of Step 5,
and note that the goal of this iteration is to compute M[v, u, cv, cu, �].

GMD-Alg, in Step 6, generates a matrix N. Each entry [R, colR] holds a family
that represents a subfamily of Solv,u,cv,cu,�. A set (X∪Y) ∈ Solv,u,cv,cu,� belongs
to this subfamily if its corresponding (v, u)-tree T ∈ Tv,u,� and feasible coloring
col also satisfy the requirements that T listens to R, and col colors the nodes
in VR exactly as colR colors them. Now, consider a specific iteration of Step 7,
and note that the goal of this iteration is to compute N[R, colR]. To this end,
GMD-Alg executes an internal dynamic programming-based computation, which
takes place in Steps 9–14.

First, in Step 9, GMD-Alg generates a matrix L. Almost every entry [i, �′]
holds a family that represents Soli,�′ ,

4 the family including every set (X ∪ Y)
satisfying |X | = |Y | = �′, for which there exist a (v, wi)-tree T ∈ Tv,wi,�′ and a
feasible coloring col : X → Y , satisfying the following conditions. The subtree
T listens to the subtree of R induced by {w1, . . . , wi}, X = VT , and col colors
the nodes in {w1, . . . , wi} exactly as colR colors them. Note that the subgraph
of R induced by {w1, . . . , wi} is a tree because of the preorder defined in Step
8. Then, in Step 10, GMD-Alg computes all “basic” entries of L, i.e., entries of
the form [1, �′]. Next, in Step 11, GMD-Alg iterates over all values i and �′ that
define an entry of L that is not basic, in an order that guarantees that when we
reach an entry [$] of L, we have already computed entries of L that are relevant
to [$]. Now, consider a specific iteration of Step 11, and note that the goal of
this iteration is to compute L[i, �′].

GMD-Alg, in Step 12, computes a family A that represents Soli,�′ . The compu-
tation involves uniting sets U , found in previous stages of the external dynamic
programming-based computation (i.e., U belongs to an entry of M), with sets
W , found in previous stages of the internal dynamic programming-based compu-
tation (i.e., W belongs to an entry of L). It is easy to verify that the restrictions
posed on the choices of U and W gaurantee that their union indeed belongs
to Soli,�′ , noting the following observations. The restriction �′′ ≤ k/d concerns
Condition 2 in Definition 2, whose relevance follows from the requirement of
existence of a (v, wi)-tree T as defined above. The first line in each of the op-
tions (1) and (2) ensures that we do not use any node or color more than once.
The other line of option (1) ensure that U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),�′′

and W ∈ Soli−1,�′−�′′+1, and the other line of option (2) ensures that U ∈
Solwi,wi,colR(wi),colR(wi),�′′ and W ∈ Soli,�′−�′′+1.

After computing A, GMD-Alg computes L[i, �′] (in Step 13) by finding a
smaller family that represents A. Upon completing the computation of L, since
VR = {w1, . . . , w|VR|}, GMD-Alg can compute N[R, colR] (in Step 15) by a simple
assignment. Then, the union of the families stored in N is a family that represents

4 More precisely, here we refer to all entries [i, �′] such that (�′ = � → i = |VR|).

596 R.Y. Pinter, H. Shachnai, and M. Zehavi

Solv,u,cv,cu,�, a claim supported by Lemma 3. Therefore, in Step 19,GMD-Alg can
compute M[v, u, cv, cu, �] by simply finding a family that represents this union.

Finally, GMD-Alg accepts iff
⋃

v∈V,cv∈Col(v) M[v, v, cv, cv, k] = ∅. Indeed, note

that the input is a yes-instance iff
⋃

v∈V,cv∈Col(v) Solv,v,cv,cv,k = ∅.

3.2 Correctness

Recall that Solv,u,cv,cu,� is the family of every set (X∪Y) satisfying |X | = |Y | =
�, for which there exist T ∈ Tv,u,� such that X = VT , and a feasible col : X → Y
satisfying col(v) = cv and col(u) = cu.

The correctness of the algorithm follows directly from the next lemma.

Lemma 4. Every entry M[v, u, cv, cu, �] (2k − 2�)-represents Solv,u,cv,cu,�.

Proof (Lemma 4). By Steps 1–4, the lemma holds for any entry [v, u, cv, cu, �]
in M such that � ≤ 2. Now, consider some v, u ∈ V , cv ∈ Col(v), cu ∈ Col(u)
and 3 ≤ � ≤ k, and assume that the lemma holds for all v′, u′ ∈ V , c′v ∈ Col(v′),
c′u ∈ Col(u′) and 1 ≤ �′ < �.

For an entry N[R, colR], let Sol(R, colR)v,u,cv ,cu,� include every set (X ∪Y) ∈
Solv,u,cv,cu,� whose corresponding (v, u)-tree T ∈ Tv,u,� and feasible coloring col
also satisfy the requirements that T listens to R, and col colors the nodes in VR
exactly as colR colors them.

Towards proving the main inductive claim, we need the following claim.

Claim 1. Every entry N[R, colR] (2k − 2�)-represents Sol(R, colR)v,u,cv ,cu,�.

We first show that Claim 1 implies the correctness of the main inductive
claim. Since representation is a transitive relation, it is enough to prove that
B =

⋃
[R,colR]∈N N[R, colR] (2k − 2�)-represents Solv,u,cv,cu,�. By Claim 1, B ⊆⋃

[R,colR]∈N Sol(R, colR)v,u,cv ,cu,� ⊆ Solv,u,cv,cu,�.

Consider some sets A ∈ Solv,u,cv,cu,�, and B ⊆ (V ∪ C) \ A such that |B| ≤
2k− 2�. Since A ∈ Solv,u,cv,cu,�, we have that A is of the form (XA ∪YA), where
|XA| = |YA| = �, for which there exist T ∈ Tv,u,� such that XA = VT , and a
feasible col : XA → YA satisfying col(v) = cv and col(u) = cu. By Lemma 3,
there exists R ∈ Gv,u such that T listens to R. Let colR be defined as col when
restricted to the domain VR. We get that A ∈ Sol(R, colR)v,u,cv ,cu,�. By Claim

1, there is Â ∈ N[R, colR] ⊆ B such that Â∩B = ∅. Thus, B (2k−2�)-represents
Solv,u,cv,cu,�. ��

We now turn to prove Claim 1.

Proof (Claim 1). Consider an iteration of Step 7, corresponding to an entry N[R,
colR]. For an entry L[i, �′], let R(i) be the subtree of R induced by {w1, . . . , wi}.
Moreover, let Soli,�′ be the family including every set (X ∪ Y) satisfying |X | =
|Y | = �′, for which there exist a (v, wi)-tree T ∈ Tv,wi,�′ and a feasible coloring
col : X → Y , satisfying the following conditions. The subtree T listens to R(i),
X = VT , and col colors the nodes in {w1, . . . , wi} exactly as colR colors them.

Towards proving Claim 1, we need the following claim.

Deterministic Parameterized Algorithms for the Graph Motif Problem 597

Claim 2. Every entry L[i,�′], where (�′=�→ i= |VR|), (2k−2�′)-represents Soli,�′ .

Since N[R, colR] = L[|VR|, �] and Sol(R, colR)v,u,cv,cu,� = Sol|VR|,�, Claim 2
implies the correctness of Claim 1. ��

Finally, we turn to prove Claim 2, concluding the correctness of the algorithm.

Proof (Claim 2). By Steps 9 and 10, and the induction hypothesis concerning
the matrix M, the claim holds for (i = 1 and all 1 ≤ �′ < �) and (all 1 ≤ i ≤ |VR|
and �′ = 1). Now, consider some 2 ≤ i ≤ |VR| and 2 ≤ �′ ≤ �, and assume that
the claim holds for all 1 ≤ i′ ≤ i and 1 ≤ �′′ < �′. Since representation is a
transitive relation, it is enough to prove that A (2k − 2�′)-represents Soli,�′ .

By definition, a set A belongs to Soli,�′ iff there are sets U and W whose
union is A, for which there exists 2 ≤ �′′ ≤ min{�′, �−1, k/d} satisfying (1) or (2):

1. U ∩W = {fR(wi), colR(fR(wi))},
U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),�′′ and W ∈ Soli−1,�′−�′′+1.

2. U ∩W = {wi, colR(wi)},
U ∈ Solwi,wi,colR(wi),colR(wi),�′′ and W ∈ Soli,�′−�′′+1.

Thus, by Step 12 and the inductive hypotheses for the matrices M and L,
A ⊆ Soli,�′ . Now, consider some A ∈ Soli,�′ , and B ⊆ (V ∪ C) \ A such that
|B| ≤ 2k − 2�′. Since A ∈ Soli,�′ , there are U , W , and �′′ as mentioned above.

First, suppose that U , W , and �′′ correspond to the first option. Note that
|(W \ {fR(wi), colR(fR(wi))}) ∪ B| = |W | − 2 + |B| ≤ 2(�′ − �′′ + 1) − 2 +
(2k − 2�′) = 2k − 2�′′. Therefore, by the inductive hypothesis concerning M,

there is a set Û ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), �
′′] such that Û ∩ ((W \

{fR(wi), colR(fR(wi))})∪B) = ∅. Moreover, |(Û \{fR(wi), colR(fR(wi))})∪B| =

|Û | − 2 + |B| ≤ (2�′′) − 2 + (2k − 2�′) = 2k − 2(�′ − �′′ + 1). Therefore, by the

inductive hypothesis concerning L, there is a set Ŵ ∈ L[i − 1, �′ − �′′ + 1] such

that Ŵ ∩ ((Û \ {fR(wi), colR(fR(wi))}) ∪B) = ∅.
Now, suppose that U , W , and �′′ correspond to the second option. Note that

|(W \ {wi, colR(wi)}) ∪ B| = |W | − 2 + |B| ≤ 2(�′ − �′′ + 1) − 2 + (2k − 2�′) =
2k − 2�′′. Therefore, by the inductive hypothesis concerning M, there is a set
Û ∈ M[wi, wi, colR(wi), colR(wi), �

′′] such that Û∩((W \{wi, colR(wi)})∪B) = ∅.
Moreover, |(Û \ {wi, colR(wi)}) ∪B| = |Û | − 2 + |B| ≤ (2�′′)− 2 + (2k − 2�′) =
2k − 2(�′ − �′′ + 1). Therefore, by the inductive hypothesis concerning L, there

is a set Ŵ ∈ L[i, �′ − �′′ + 1] such that Ŵ ∩ ((Û \ {wi, colR(wi)}) ∪B) = ∅. ��

3.3 Running Time

Let 0 < ε < 1 be some constant, c = 1.447, and q = 2k. Choose a constant d ≥ 2

satisfying, for any integer n,

(
cn

n/d

)
= O(2εn) and 1/d ≤ ε.

For any 0 ≤ r∗ ≤ q and call UniRep(c, U|V |+|C|,q,S) executed by GMD-Alg,
where S is a family of subsets of size r∗ of V ∪ C, there exists 0 ≤ r′ ≤
min{r∗, q/d} such that

598 R.Y. Pinter, H. Shachnai, and M. Zehavi

|S| ≤ 2o(q)|V |O(d)(
(cq)q

(r∗ − r′)r∗−r′(cq − (r∗ − r′))q−(r∗−r′))(
(cq)q

r′r
′
(cq − r′)q−r′

).

We get that GMD-Alg runs in time

O(2o(q)|V |O(d) q
max
r=0

min{q−r,q/d}
max
r′=0

{
(

(cq)q

rr(cq−r)q−r)(
(cq)q

r′r
′
(cq−r′)q−r′

)(
cq

cq−(r+r′)
)q−(r+r

′)
}

)

=O(2o(q)|V |O(1) q
max
r=0

min{q−r,q/d}
max
r′=0

{
(

(cq)q

rr(cq−r)q−r
)

(
cq

r′

)
(

cq

cq−(r+q/d)
)q−r

}
)

=O(2o(q)|V |O(1) q
max
r=0

{
(

(cq)q

rr(cq−r)q−r)

(
cq

q/d

)
(

cq

cq−r−(1/d)q
)q−r

}
)

=O(2εq+o(q)|V |O(1) q
max
r=0

{
(

(cq)q

rr(cq−r)q−r)(
cq

cq−r−εq)q−r
}

).

By choosing a small enough ε > 0, the maximum is obtained at r = αq, where
α ∼= 0.55277. Thus, GMD-Alg runs in time O(6.85414k|V |O(1)).

4 An Algorithm for GM

In this section we develop algorithm GM-Alg, proving the following result.

Theorem 5. GM-Alg solves GM in time O∗(5.21914k).

Algorithm GM-Alg computes families of “partial solutions” that contain only
nodes, and handles colors by adding a parameter to the matrices holding these
families. More precisely, given a pair of nodes v, u ∈ V , and a subset of colors
D ⊆ C, we compute families of partial solutions of the following form. A partial
solution is a subset U ⊆ V of |D| nodes, for which there exist a (v, u)-tree
T ∈ Tv,u,|D| satisfying U = VT , and a feasible coloring col : U → D. Having a
family of such partial solutions, we compute a family that represents it, calling
algorithm UniRep. Such computations of representative families are embedded
in a dynamic programming-based framework, whose progress is governed by
guiding trees. Note that, since we iterate over every subset D ⊆ C, the running
time of GM-Alg crucially relies on the fact that deletions are not allowed in GM.

5 An Algorithm for RGMD

In this section we develop algorithm RGMD-Alg, proving the following result.

Theorem 6. RGMD-Alg solves RGMD in time O∗(5.1791k).

To efficiently compute representative families, we define a partition matroid
P = P (C,M,G,Col) = (E, I) as follows. Denote C = {c1, . . . , c|C|}. Now, let
E = V be partitioned into sets E1, . . . , E|C|, where Ei = {v ∈ V : ci ∈ Col(v)},

Deterministic Parameterized Algorithms for the Graph Motif Problem 599

for all 1 ≤ i ≤ |C|. The sets E1, . . . , E|C| are disjoint because |Col(v)| = 1, for all
v ∈ V . Now, let ki = occ(ci) for all 1 ≤ i ≤ |C| (recall that occ(c) is the number
of occurences of a color c in M). Accordingly, define I = I(C,M,G,Col) =
{S ⊆ E : |S ∩ E1| ≤ k1, . . . , |S ∩ E|C|| ≤ k|C|}.

Intuitively, this definition ensures that U ∈ I iff U can be colored without
using any color “too many” times, i.e., there exists a feasible coloring col : U→C.

Algorithm RGMD-Alg computes families of “partial solutions” that contain
only nodes, and handles colors by computing representative families with respect
to the partition matroid P . More precisely, when we now consider a pair of nodes
v, u ∈ V , and a value 1 ≤ � ≤ k, we compute families of partial solutions of the
following form. A partial solution is a set of nodes U ∈ I, for which there exists a
(v, u)-tree T ∈ Tv,u,� satisfying U = VT . Having a family of such partial solutions,
we compute a family that represents it with respect to the matroid P , calling
algorithm ParRep. Such computations of representative families are embedded
in a dynamic programming-based framework, whose progress is governed by
guiding trees.

References

1. Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

2. Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G.,
Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman,
V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg
(2010)

3. Betzler, N., Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Pa-
rameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)

4. Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized al-
gorithms and hardness results for some graph motif problems. In: Ferragina, P.,
Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg
(2008)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. CoRR abs/1007.1161 (2010)

6. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS,
pp. 20–31 (2013)

7. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)

8. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs
in graphs. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp.
388–401. Springer, Heidelberg (2011)

9. Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored
graphs. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp.
221–235. Springer, Heidelberg (2009)

10. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines
for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351.
Springer, Heidelberg (2007)

600 R.Y. Pinter, H. Shachnai, and M. Zehavi

11. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

12. Fionda, V., Palopoli, L.: Biological network querying techniques: Analysis and
comparison. J. Comput. Biol. 18(4), 595–625 (2011)

13. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact agorithms. In: SODA (see also:
CoRR abs/1304.4626), pp. 142–151 (2014)

14. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. In:
Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 405–416. Springer,
Heidelberg (2010)

15. Koutis, I.: Constrained multilinear detection for faster functional motif discovery.
Inf. Process. Lett. 112(22), 889–892 (2012)

16. Koyutürk, M.: Algorithmic and analytical methods in network biology. Wiley In-
terdiscip. Rev. Syst. Biol. Med. 2(3), 277–292 (2010)

17. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: Application to
metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)

18. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of
linear matroids. CoRR abs/1404.4506 (2014)

19. Oxley, J.G.: Matroid theory. Oxford University Press (2006)
20. Pinter, R.Y., Shachnai, S., Zehavi, M.: Deterministic parameterized algorithms for

the graph motif problem,
http://www.cs.technion.ac.il/~hadas/PUB/Graph_Motif_full.pdf

21. Pinter, R.Y., Zehavi, M.: Partial information network queries. In: Lecroq, T.,
Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 362–375. Springer, Hei-
delberg (2013)

22. Pinter, R.Y., Zehavi, M.: Algorithms for topology-free and alignment network
queries. J. Discrete Algorithms (to appear, 2014)

23. Pinter-Wollman, N., Hobson, E.A., Smith, J.E., Edelman, A.J., Shizuka, D., de
Silva, S., Waters, J.S., Prager, S.D., Sasaki, T., Wittemyer, G., Fewell, J., Mc-
Donald, D.B.: The dynamics of animal social networks: analytical, conceptual, and
theoretical advances. Behavioral Ecology 25(2), 242–255 (2014)

24. Rizzi, R., Sikora, F.: Some results on more flexible versions of graph motif. In:
Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS,
vol. 7353, pp. 278–289. Springer, Heidelberg (2012)

25. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform
matroids with applications. CoRR abs/1402.3547 (2014)

26. Sikora, F.: An (almost complete) state of the art around the graph motif problem.
Université Paris-Est Technical reports (2012)

27. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC, pp. 887–898 (2012)

http://www.cs.technion.ac.il/~hadas/PUB/Graph_Motif_full.pdf

The Two Queries Assumption

and Arthur-Merlin Classes

Vyas Ram Selvam

International Institute of Information Technology, Hyderabad, India
vyasram.s@research.iiit.ac.in

Abstract. We explore the implications of the two queries assumption,
PSAT [1] = P

SAT [2]

|| , with respect to the polynomial hierarchy (PH) and
Arthur-Merlin classes. We prove the following results under the assump-
tion PSAT [1] = P

SAT [2]
|| :

1. AM = MA
2. There exists no relativizable proof for PH ⊆ AM
3. Every problem in PH can be solved by a non-uniform variant of an

Arthur-Merlin(AM) protocol where Arthur(the verifier) has access
to one bit of advice.

4. PH = P
SAT [1],MA[1]
||

Under the two queries assumption, Chakaravarthy and Roy showed that
PH collapses to NOP

2 [5]. Since NP ⊆ MA ⊆ NOP
2 unconditionally,

our result on relativizability improves upon the result by Buhrman and
Fortnow that we cannot show that PH ⊆ NP using relativizable proof
techniques [3]. However, we show a containment of PH in a non-uniform
variant of AM where Arthur has one bit of advice. This also improves
upon the result by Kadin that PH ⊂ NP/poly [11]. Our fourth result

shows that simulating MA in a PSAT [1] machine is as hard as collapsing
PH to PSAT [1].

Keywords: Computational complexity, two queries assumption, SAT
oracle, Arthur-Merlin classes.

1 Introduction

The assumption that a single query to a SAT oracle is as powerful as two
queries leads to some interesting implications such as the collapse of the poly-
nomial hierarchy (PH). The question has a long history in the field of struc-
tural complexity theory with several efforts [11,13,6,1] for a deeper collapse
of PH . For the functional class analogous to P , FP , Krentel showed that,
FPSAT [1] = FPSAT‖[2] =⇒ P = NP [12]. Such a nice collapse of PH ,

even to the class NP , is not known under the assumption PSAT [1] = P
SAT [2]
|| .

Throughout this paper, we shall refer to the assumption, PSAT [1] = P
SAT [2]
|| , as

two queries assumption. Buhrman and Fortnow [3] showed a relativized world

in which PSAT [1] = P
SAT [2]
|| and NP = coNP . However, Chang and Purini

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 601–612, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

602 V.R. Selvam

[7] proved that NP = coNP under NP machine hypothesis and two queries as-
sumption. For higher levels of PH , Hemaspaandra et al. [10] showed a downward

collapse of PH to ΣP
k if PΣP

k [1] = P
ΣP

k [2]

|| , for k ≥ 2.

Using the hard/easy argument, Kadin showed that coNP ⊂ NP/poly under
the two queries assumption [11]. This implies a collapse of PH to ΣP

3 using

Yap’s theorem [14]. Wagner improved the collapse to PΣP
2 [13]. Later, Chang

and Kadin [6] brought down the collapse to PΣP
2 [1],NP [1]. Buhrman and Fortnow

extended the hard/easy argument of Kadin to arrive at the following results
under the two queries assumption [3]:

1. PSAT [1] = PSAT .
2. Locally (at every input length n), either NP = coNP or NP has polynomial

sized circuits.

Fortnow, Pavan and Sengupta [9] showed that PH ⊆ SP
2 under the two queries

assumption by making use of the second part of the above result. Chakaravarthy
and Roy [5] improved this collapse to their newly defined class NOP

2 ∩ Y OP
2 .

Later, Chang and Purini [8] showed a collapse of PH to ZPP
SAT [1]
1/2−1/exp . The last

two results are incomparable since the relationship between the two classes is
not known independent of the two queries assumption.

1.1 Our Results

We first show that AM = MA under the two quereis assumption. Since NP ⊆
MA ⊆ NOP

2 , the next natural target for a PH collapse under two queries
assumption is the class MA. In this paper, we show that no relativizable proof
technique can achieve such a collapse. Applying our first result, we can extend
this non-relativizability result to the class AM . However, we prove that PH
is contained in a non-uniform variant of AM where Arthur has access to one
bit of advice. We also show that PH ⊆ P

SAT [1],MA[1]
|| . It can be observed that

any assumption which derandomizes MA gives a flat collapse to PSAT [1]. The
intractability assumptions for derandomizing MA are closer to those for BPP
rather than AM or ZPPNP . The following is a summary of results we obtain
under the two queries assumption.

2 Preliminaries

Definition 1: PSAT [f(n)] is the class of all languages decidable by a polynomial
time Turing machine asking at most f(n) queries to the SAT oracle where n is

the input length. P
SAT [f(n)]
|| is similar to PSAT [f(n)] except that all the queries

are asked in parallel. Here, P is the base class and SAT is the oracle. Similar
definitions hold for other base classes and other oracles as well.

Definition 2: ZPP
SAT [f(n)]
p(n) is the class of all languages decidable by a zero-

error probabilistic polynomial-time machine which can ask at most f(n) SAT

The Two Queires Assumption and Arthur-Merlin Classes 603

queries and succeed with probability p(n) where n is the input length. The terms
poly and exp are used in place of p(n) to represent polynomial and exponential
functions on the input length respectively.

Definition 3: We define AM/Arthur−Advice=1 as a non-uniform variant of the
class MA where Arthur is provided with an advice of length 1. Using operator
algebra, we can define this class as AM/Arthur−Advice=1 = BP.(∃.(P/1)). This is
not the same as the class AM/1 =
(BP.(∃.(P)))/1 .

Definition 4: For any complexity class B, pr(B) is defined as the promise
version of the class and prA(B) is defined as the promise version of the decision
class B where the promise is restricted to be in the decision class A.

3 Main Results

3.1 AM = MA

Theorem 5: If PSAT [1] = P
SAT [2]
|| , then AM = MA.

Proof. Let the language L ∈ AM . Then, L can be characterized as

x ∈ L =⇒ Prr[φx,r ∈ SAT] ≥ 2/3
x ∈ L =⇒ Prr[φx,r ∈ SAT] ≥ 2/3

Using the fact that AM ⊆ ΠP
2 and ΣP

2 = ΠP
2 [9] under the two queries assump-

tion, we can also characterize L as x ∈ L ⇐⇒ ∃u ψx,u ∈ SAT .
In the above characterizations, φ and ψ are some polynomial time computable

functions and the lengths of r and u are bounded by some polynomials on the
input length. Without loss of generality, we assume that the formulae φx,r and
ψx,u have the same length p1(|x|) for some polynomial p1. Under the two queries

assumption, Buhrman and Fortnow [3, Definition 5.4] showed that SAT
=n

can
be partitioned into what are called Easy − IV and Hard − IV formulae. The
exact definitions for these are complicated but the crux of our proof relies on
the fact that Easy − IV ∈ NP and the fact that the presence of a Hard − IV
formula at a particular length implies the presence of a polynomial sized circuit
for SAT at this length [3, Theorem 5.3(1)]. Let R be a polynomial time verifier
such that F ∈ Easy-IV ⇐⇒ ∃v R(F, v) = 1 where |v| = p2(|F |) for some
polynomial p2.

Case 1: There exists a Hard − IV formula at length p1(|x|). This means
that there is a polynomial sized circuit, C′, for SAT at this length. Using this
and the self-reducibility property of SAT , we can construct another polyno-
mial sized circuit C which outputs a satisfying assignment for satisfiable in-
puts. Let V be a polynomial time verifier such that V (F, u) is equal to 1 if and

604 V.R. Selvam

only if the variable assignment u satisfies the boolean formula F . In this case,
x ∈ L =⇒ ∃C Prr[V (φx,r, C(φx,r)) = 1] ≥ 2/3

Case 2: All the SAT formulae of length p1(|x|) for an input string x are
Easy − IV . In this case, x ∈ L =⇒ ∃u ψx,u ∈ SAT =⇒ ∃u, v R(ψx,u, v) = 1
Regardless of which of the two cases holds,
x ∈ L =⇒ ∀C Prr[V (φx,r, C(φx,r)) = 1] < 1/3
x ∈ L =⇒ ∀u ψx,u ∈ SAT =⇒ ∀u, v R(ψx,u, v) = 0
Finally, by combining these cases as follows, we can prove that L ∈MA:

x ∈ L =⇒ ∃C, u, v Prr[V (φx,r, C(φx,r)) = 1 ∨R(ψx,u, v) = 1] ≥ 2/3
x ∈ L =⇒ ∀C, u, v Prr[V (φx,r, C(φx,r)) = 1 ∨R(ψx,u, v) = 1] < 1/3

�

3.2 Relativizability of PH Collapse to AM

Definition 6: The towers of two set ω consists of natural numbers w0 = 1 and
wi = 2wi−1 , ∀i > 0.

Definition 7: A oracle A is said to be gappy if both these conditions are
satisfied i) ∀n ≥ 1, |A=n| ≤ 1 and ii) x ∈ A =⇒ |x| is a tower of 2. 1

Theorem 8: There exists an oracle B such that NPB ⊆ coMAB and

PSAT [1]B = PSPACEB .

Proof. The oracle B is defined as B = A⊕TQBF , where A is a gappy oracle, the
construction of which constitutes the main part of the proof and TQBF is the
language of true quantified boolean formulae. Buhrman and Fortnow [3] showed

that if A is gappy and B = A ⊕ TQBF , then PSAT [1]B = PSPACEB. This

trivially implies that PSAT [1]B = P
SAT [2]
||

B
. We now construct a gappy oracle

A such that NPB ⊆ coMAB . Towards that direction, let us define the unary
language LA as follows:

LA = { 1n | ∃x, |x| = n and x ∈ A }

It is easy to see that an NPA machine can decide the language LA. Initially,
oracle A is empty. We construct the oracle A in such a way that LA ∈ coMAB.
In our construction here, we set 2/3 as the required probability threshold for the
coMA protocols.

Let MB
1 ,M

B
2 , · · · be an enumeration of coMA protocols with oracle access

to B. This includes coMAB protocols which are invalid (protocols which accept
some input x with probability between 1/3 and 2/3). For the protocol MB

i , let
qi(n) be the running time of the verifier, ri(n) be the number of random bits

1 The conventional definition of gappy only has the condition that strings are absent
at non-tower lengths. In our definition, we include the additional condition that it
contains at most one string at tower lengths.

The Two Queires Assumption and Arthur-Merlin Classes 605

used and pi(n) be the length of the proof supplied by the prover, where n is the
input length. We first define an integer series ti, ∀i ≥ 0 as follows. Let t0 = 1
and ∀i > 0, let ti be the smallest integer satisfying the following constraints:

1. ti ∈ ω is a tower of 2.
2. ∀j ∈ N, j < i =⇒ ti > qj(tj)
3. 2ti > 6.qi(ti)

The construction of the oracle A happens in stages. In the ith stage of the con-
struction we diagonalize against MB

i on input 1ti . The first condition ensures
that the oracle is gappy. The second condition ensures that the protocols al-
ready diagonalized stay diagonalized. The third condition ensures that the next
protocol (ith protocol) to be diagonalized can be diagonalized at that length.

By definition, MB
i accepts an input of length n iff for all proofs of length

pi(n), the verifier accepts with >= 2/3 probability. And, Mi rejects an input of
length n iff there exists a proof of length pi(n) such that the verifier rejects with
>= 2/3 probability.

We first check whether the protocol M is valid. If not, we have already di-
agonalized against it. If MB

i does not reject 1ti , we include no string of length
ti into A. This means 1ti ∈ LA and yet MB

i does not reject. If MB
i rejects 1ti ,

we would like to include a string x into A at length ti, such that MB
i does not

accept 1ti even after the inclusion of x to A. This again means that 1ti ∈ LA

and yet MB
i does not accept. by including 1ti in LA. We now prove that there

exists such a string x at length ti satisfying the required properties.
Since 1ti is rejected by MB

i , there exists a proof of length pi(ti) such that
2/3rd of the random paths of the verifier reject. Under this proof path, there are
2ri(ti) random paths and in each random path, the number of queries asked by
the verifier to the oracle A is bounded by qi(ti) which is the running time of the
verifier. Hence, a total of qi(ti)2

ri(ti) queries to A could have been asked under
this proof path. There are 2ti strings at length ti which could be queried to the
oracle A. By a simple counting argument, we get that there exists a string of
length ti that is queried to oracle A by at most m = qi(ti)2

ri(ti)/2ti different
random paths under this proof path. Since 2ti > 6qi(ti) by definition, we get that
m < 2ri(ti)/6. In other words, there exists a string x of length 1ti , the inclusion
of which into A reduces the reject probability along the proof path to at most
1/2. This is due to the fact that at most 1/6 fraction of random paths could turn
into accepting paths from previously rejecting paths due to the inclusion of the
string x into A. So, MB

i does not accept 1ti .
Finally, since we are adding at most one string only at lengths which are

towers of 2, the language A remains gappy and by construction, no coMAB

protocol decides LA. �

Since we have shown a relativizable proof that AM = MA (Theorem 5) under
the two queries assumption, a relativizable collapse to AM isn’t possible either.

606 V.R. Selvam

3.3 PH ⊂ AM/Arthur−Advice=1

Definition 9: The languages SAT∧SAT ∈ P
SAT [2]
|| and SAT⊕SAT ∈ PSAT [1]

are defined as follows:

SAT∧SAT = { 〈x1, x2〉 | x1 ∈ SAT and x2 ∈ SAT }
SAT ⊕ SAT = { 〈+, x〉 | x ∈ SAT } ∪ { 〈−, x〉 | x ∈ SAT }

Since P
SAT [2]
|| = PSAT [1], there exists a polynomial time reduction h such that

〈x1, x2〉 ∈ SAT∧SAT ⇐⇒ h(〈x1, x2〉) ∈ SAT ⊕ SAT .

Definition 10: x ∈ SAT is said to be Easy if there exists a string u, |u| = |x|,
such that h(〈x, u〉) = 〈+, y〉 and y ∈ SAT .

Definition 11: x is Hard if and only if x ∈ SAT and x is not Easy.

SAT formulae which are Easy have a short proof of unsatisfiability whereas it
need not be the case for Hard formulae.

Lemma 12: If y is Hard, then for all x of length |y|, x ∈ SAT ⇐⇒ h(〈y, x〉) =
〈−, z〉 with z ∈ SAT [3, Lemma 5.6]

We now mention a technique to classify a set of formuale into satisfiable and un-
satisfiable formulae when it is promised that at least one hard formula exists in
the given set by using a non-deterministic polynomial time machine. This tech-
nique is used by Buhrman and Fortnow in [3, Lemma 5.10]. A similar technique
is used by Buhrman, Chang and Fortnow in [2, Theorem 2].

Lemma 13: Given a set W of boolean formulae which are of length n where
|W | is of polynomial size in n and a promise that there exists a Hard formula in
W , then the set W can be partitioned into three sets WSAT ,Weasy and Whard

such that

1. f ∈WSAT =⇒ f ∈ SAT
2. f ∈Weasy =⇒ f is easy
3. f is hard =⇒ f ∈Whard

4. f ∈Weasy ∪Whard ⇐⇒ f ∈ SAT
5. An NP machine can guess a partition and verify if it satisfies the above four

properties.

Proof. An NP machine initially guesses the partition. Along each non-
deterministic path it verifies whether the guessed partition satisfies the stated
conditions. The NP machine can easily verify the properties of the formulae in
WSAT and Weasy as they have polynomial time verifiable proofs.

Now, consider the set Whard. It consists of at least one Hard formula, say
y. If there exists a formula x such that x ∈ Whard ∩ SAT , we would have that

The Two Queires Assumption and Arthur-Merlin Classes 607

h(〈y, x〉) = 〈−, z〉 and z ∈ SAT (by Lemma 12). Since we do not know which
of the formulae in Whard is the promised Hard formula; we check for all pairs
(x, y) such that x, y ∈ Whard whether h(〈y, x〉) = 〈+, z〉 or (h(〈y, x〉) = 〈−, z〉
and z ∈ SAT). If it is true for all pairs, it is verified that no satisfiable formula
is in Whard and we have already seen that no satisfiable formula can be present
in Weasy . �

We note that the above non-deterministic polynomial time algorithm classifies
satisfiable and unsatisfiable formulae. We will make use of this later.

Definition 14: HardBits = { 〈1n, 0〉 | there exists a Hard formula of length
n } ∪ { 〈1n, i〉 | ith bit of the lexically smallest Hard string of length n is 1 }.
Here, the strings are represented in such a way that, for a given n, |〈1n, 0〉| =
|〈1n, i〉| for all i <= n.

Theorem 15: If PSAT [1] = P
SAT [2]
|| , then coNP ⊂ AM/Arthur−Advice=1.

Proof. Let M be a ZPP
SAT [1]
1/2−1/exp machine deciding HardBits. This is possible

since HardBits is in PH and PH ⊆ ZPP
SAT [1]
1/2−1/exp under the two queries as-

sumption [8]. We say that a random path in the computation of M on an input
is simple, if that path leads to a definite answer (accept or reject) and the query
at the end of the path is either in SAT or is a SAT formula which is Easy.
Consider the execution of machine M on inputs 〈1n, i〉, for 0 ≤ i ≤ n. We would
like to find if there exists a Hard string of length n and if so construct the
lexically smallest string by observing the computations of machine M on those
input. The following are the two possible cases and the one bit of advice directs
us to the appropriate case:

Case 1: There exists no Hard formula at length n or there exists a simple
random path in each of the computations M(〈1n, i〉), for 0 ≤ i ≤ n, in which
case we can construct a polynomial time verifiable proof for the lexically smallest
Hard formula.

Case 2: There exists a hard string at length n and there exists a computation
M(〈1n, i〉) which does not contain any simple random path. Since the success
probability of machine M is 1/2 − 1/exp, a uniform random sampling of that
computation yields a Hard formula with almost 1/2 probability. A polynomial
number of random samples contain a Hard formula with 1− 1/exp probability.
In this case, we construct a query sample set W by collecting polynomial number
of boolean queries from each computation M(〈1n, i〉), for 0 ≤ i ≤ n, by uniform
random sampling. The set W contains a Hard formula with exponentially high
probability. Without loss of generality, we assume that all the strings in W are of
the same length. Then by using the Lemma 13, we can partition the set W into
polynomial time verifiable sets WSAT , Weasy and Whard. Using these sets again
as answers to the queries, we can constitute a proof for the lexically smallest
Hard formula.

608 V.R. Selvam

We note that it is necessary to sample as many paths for each computation of
M(〈1n, i〉), (where 0 ≤ i ≤ n) so that we have at least one rejecting path or
one accepting path for each of these computations with high probability. Since
the success probability of these computations is greater than 1/3, we observe
that the number of paths that must be sampled to achieve this is bounded by
some polynomial. In fact, we can show that sampling (n + 1)2 paths uniformly
at random for each computation is enough. If we sample (n+ 1)2 random paths
for each computation, the probability that there does not exist a Hard string
in the queries sampled is less than (2/3)(n+1)2. The probability that one of the
computations does not have an accepting or rejecting path from the sampled
random paths is less than 1− (1 − (2/3)(n+1)2)n+1. So, the total probability of

success is (1− (2/3)(n+1)2)n+1 − (2/3)(n+1)2 , which tends to 1.

Now, given an input string x, we have to construct a AM/Arthur−Advice=1 pro-

tocol to decide if x ∈ SAT . The one bit of advice directs the AM protocol to
one of the two cases as discussed above. The AM protocol handles the two cases
as follows:

Case 1: If all the SAT formulae at length n are Easy, then Merlin directly
provides a proof of unsatisfiability of x. If there exists a Hard formula at length
n, then Merlin supplies the lexically smallest Hard formula, let it be y, and
a verifiable proof for it. Then, Merlin shows that either h(〈y, x〉) = 〈+, z〉 or
(h(〈y, x〉) = 〈−, z〉 and z ∈ SAT) to prove that x ∈ SAT (by Lemma 12).

Case 2: In this case, Arthur constructs the query sample set W as discussed
before. With exponentially high probability it contains a Hard formula. The
query sample set is given to Merlin. Then Merlin constructs the lexically smallest
Hard formula, let it be y, and provides a proof for it through the verifiable
partition WSAT , Weasy and Whard of the queries sent by Arthur. This y is a Hard
formula with high probability. Then, Merlin shows that either h(〈y, x〉) = 〈+, z〉
or (h(〈y, x〉) = 〈−, z〉 and z ∈ SAT) to prove that x ∈ SAT (by Lemma 12).

If the input formula x is in SAT , then it will be accepted with probability 1 or
1− 1/exp, depending on whether we fall in Case 1 or 2 respectively. Whereas if
x ∈ SAT , then it will be accepted with probability 0 or at most 1/exp, depending
on whether we fall in Case 1 or 2 respectively. �

3.4 Towards a Flat Collapse to PSAT[1]

While a relativizable collapse to MA is not possible, we do not know of any such
result for the longstanding question of whether PH collapses to PSAT [1] under
the two queries assumption. The following result due to Chang and Purini [8]
gives a possible approach towards achieving such a flat PH collapse: PSAT [1] =

P
SAT [2]
|| =⇒ PSAT [1] = PSAT ⊆ ZPP

SAT [1]
1−1/exp = ZPP

SAT [1]
1/2+1/poly ⊆

ZPP
SAT [1]
1/2−1/exp = PH . We can attempt to show that ZPP

SAT [1]
1/2−1/exp ⊆ PSAT

by eliminating the randomness using SAT queries. In this section, we show that

The Two Queires Assumption and Arthur-Merlin Classes 609

ZPP
SAT [1]
1/2−1/exp is contained in P

SAT [1],MA[1]
|| under the two queries assumption.

This gives us a PH collapse to PSAT [1] under the derandomization assumptions
for MA. We first start with an unconditional result.

Theorem 16: ZPP
SAT [1]
1/poly ⊆ P

SAT [1],AM [1]
||

Proof. Since ZPP
SAT [1]
1/poly = ZPP

SAT [1]
1/4−1/exp [8, Theorem 6], we just have to prove

our theorem for ZPP
SAT [1]
1/5 . Let M be a ZPP

SAT [1]
1/5 machine deciding a language

L. For a string x ∈ L, We say that a rejecting random path in the computation
M(x) is simple if the SAT query asked in that path is satisfiable. Let us define
the language LsimpleR as follows:

LsimpleR = { x ∈ L | x has a simple reject path in M(x) }

We can easily observe that LsimpleR ∈ NP . Let us define a new language Lext

by extending the language L as Lext = L ∪ LsimpleR. Since LsimpleR ⊆ L, we
have that L = LsimpleR ∩ Lext. We now show that Lext ∈ AM by providing a
protocol which proves the theorem statement.

On an input x, Arthur uniformly randomly samples 100 computation paths
of the machine M(x) through simulation and collects the SAT query in each of
the paths in a set R. For a query f ∈ R, let rf denotes the random path from
which it is collected. Define the formula set R′ as follows:

R′ = { f ∈ R | f ∈ SAT =⇒ M(x) outputs rejects along rf }

Arthur asks Merlin to provide proof for either x ∈ LsimpleR or ∀f ∈ R′, f ∈
SAT . Arthur accepts if Merlin provides such a proof; otherwise Arthur rejects
the input string. If x ∈ LsimpleR, then Merlin can provide an simple reject path
as a proof along with a satisfying assignment for the query along the path. If
x ∈ L, then every formula in R′ is indeed present in SAT . So a satisfying as-
signment for all the formulae can be presented. If x ∈ Lext, then no simple
reject path proof exists. Further this forces the machine M to reject x through
the random paths corresponding to the formulae in R′. So with high probability

(> 1− 4
5

100
) there exists an f ∈ R′ which is in SAT . Merlin will not be able to

provide a satisfying assignment for such a boolean formula.

We can ask the two queries in parallel and decide accordingly and so L ∈
P

SAT [1],AM [1]
|| . �

Theorem 17: PSAT [1] = P
SAT [2]
|| =⇒ PH = P

SAT [1],MA[1]
||

Proof. We know that under two queries assumptions PH collapses to

ZPP
SAT [1]
1/2−1/exp [8]. Then from Theorem 16, we get that PH ⊆ P

SAT [1],AM [1]
|| .

Since AM = MA under two queries assumption from Theorem 5, finally we

have that PH ⊆ P
SAT [1],MA[1]
|| . The other direction is trivial. �

610 V.R. Selvam

Results Based on Promise Oracles. A promise oracle is an oracle based on
the promise version of a decision problem. The oracle is expected to provide the
correct answers to queries that fulfill the promise and can give arbitrary answers
to queries that do not fulfill the promise. We now show a couple of results based
on promise oracles starting with an unconditional result.

Theorem 18: ZPP
SAT [1]
1/poly ⊆ P

SAT [2],prcoNP (AM∩coAM)[1]
||

Proof. The proof of this is similar to the proof of Theorem 16 and uses the

technique used by Cai and Chakaravarthy [4] to show that ZPP
SAT [1]
1/2+1/poly ⊆ SP

2 .

Since ZPP
SAT [1]
1/poly = ZPP

SAT [1]
1/4−1/exp [8, Theorem 6], we just have to prove our

theorem for ZPP
SAT [1]
1/5 . Let M be a ZPP

SAT [1]
1/5 machine deciding a language

L. For a given input x, We say that a rejecting or accepting random path in the
computation M(x) is simple if the SAT query asked in that path is satisfiable.
Let us define the languages LsimpleR and LsimpleA as follows:

LsimpleR = { x ∈ L | x has a simple reject path in M(x) }

LsimpleA = { x ∈ L | x has a simple accept path in M(x) }

We can easily observe that LsimpleR ∈ NP and LsimpleA ∈ NP . We want to

decide L using a P
SAT [2],prcoNP (AM∩coAM)
|| machine. We make use of the first

two queries to check whether x ∈ LsimpleA or x ∈ LsimpleR and accept or reject
accordingly. Under the promise that both these queries are false, we can reduce
the problem to one in AM ∩coAM . So, LsimpleR ∪ LsimpleA which is in coNP is
the promise. We now define the AM protocol that decides L under the promise.
Arthur uniformly samples 100 computation paths of the machine M(x) and
collects the SAT query in each of the paths in a set R. For a query f ∈ R, let
rf denotes the random path from which it is collected. Define the formula set
R′ as follows:

R′ = { f ∈ R | f ∈ SAT =⇒ M(x) outputs rejects along rf }

Arthur asks Merlin to prove that ∀f ∈ R′, f ∈ SAT . Arthur accepts if Merlin
provides such a proof; otherwise Arthur rejects the input string. If x ∈ L, then
every formula in R′ is indeed present in SAT . So a satisfying assignment for all

the formulae can be presented. If x ∈ L, then with high probability (> 1− 4
5

100
)

there exists an f ∈ R′ which is in SAT . This is because all the rejecting paths
are not simple and M succeeds with 1/5 probability. Merlin will not be able to
provide a satisfying assignment for such a boolean formula.

We can have a similar AM protocol for L under the same promise. So, the lan-
guage L is reduced to a problem in prcoNP (AM∩coAM). We can ask these three

queries in parallel and decide accordingly and so L ∈ P
SAT [2],prcoNP (AM∩coAM)
|| .

�

The Two Queires Assumption and Arthur-Merlin Classes 611

Theorem 19: PSAT [1] = P
SAT [2]
|| =⇒ PH = P

SAT [2],prcoNP (MA∩coMA)[1]
||

Proof. We know that under two queries assumptions PH collapses to

ZPP
SAT [1]
1/2−1/exp [8]. Then from Theorem 18 and Theorem 5, we get that PH ⊆

P
SAT [2],prcoNP (MA∩coMA)[1]
|| .

Also, P
SAT [2],prcoNP (MA∩coMA)[1]
|| ⊆ PH unconditionally because the promise

oracle can be replaced with a coMA decision oracle (by combining the promise

with the query) and P
SAT [2],coMA[1]
|| ⊆ PH . �

Taking into account the results in this section related to the two queries
assumption, we observe that it is possible to collapse PH to PSAT [1] if and only
if MA is contained in PSAT [1] under the two queries assumption. One can view
this observation as a reduction to the hard-core of the problem.

4 Conclusions and Open Problems

Whether PH collapses to PSAT [1] under the two queries assumption is a long
standing open problem. Our results point out that such a flat collapse can be
achieved by showing that either MA ⊆ PSAT [1] or by simulating prcoNP (MA ∩
coMA) in PSAT [1] under the two queries assumption. Even showing that either
BPP or MA∩ coMA is contained in PSAT [1] under the two queries assumption
might be a step in that direction.

Buhrman, Chang and Fortnow [2] showed that if coNP ⊂ NP /k then PH ⊆
PSAT , where k is any constant. Our result which claims that coNP ⊂
AM/Arthur−Advice=1 under two queries assumption make some progress in show-
ing that coNP ⊂ NP /k. This leaves an interesting open question if AM ⊆ NP /k

under the two queries assumption. Another open question is whether PH ⊂
AM/1 under the two queries assumption.

A related open question asked by Buhrman and Fortnow [3] is whether SAT
can be described as the union/intersection of an NP set and a BPP/1 set under
the two queries assumption. The question remains open but we have made some
progress by showing that SAT ∈ AM/Arthur−Advice=1.

Acknowledgments. I thank Suresh Purini for providing valuable suggestions
and proof-reading the paper. I thank the anonymous reviewers for providing
valuable feedback and suggestions.

References

1. Beigel, R., Chang, R., Ogiwara, M.: A relationship between difference hierarchies
and relativized polynomial hierarchies. Mathematical Systems Theory 26(3), 293–
310 (1993)

612 V.R. Selvam

2. Buhrman, H., Chang, R., Fortnow, L.: One Bit of Advice. In: Alt, H., Habib, M.
(eds.) STACS 2003. LNCS, vol. 2607, pp. 547–558. Springer, Heidelberg (2003)

3. Buhrman, H., Fortnow, L.: Two Queries. J. Comput. Syst. Sci. 59(2), 182–194
(1999)

4. Cai, J., Chakaravarthy, V.: A note on zero error algorithms having oracle access
to one NP query. In: Proceedings of the 11th Annual International Conference on
Computing and Combinatorics, pp. 339–348 (2005)

5. Chakaravarthy, V.T., Roy, S.: Oblivious Symmetric Alternation. In: Durand, B.,
Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 230–241. Springer, Heidel-
berg (2006)

6. Chang, R., Kadin, J.: The Boolean Hierarchy and the Polynomial Hierarchy: A
closer connection. SIAM J. Comput. 25(2), 340–354 (1996)

7. Chang, R., Purini, S.: Bounded Queries and the NP Machine Hypothesis. In: Pro-
ceedings of the Twenty-Second Annual IEEE Conference on Computational Com-
plexity, CCC 2007, pp. 52–59. IEEE Computer Society, Washington, DC (2007)

8. Chang, R., Purini, S.: Amplifying ZPPˆSAT[1] and the Two Queries Problem. In:
Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Com-
plexity, CCC 2008, pp. 41–52. IEEE Computer Society Press, Washington, DC
(2008)

9. Fortnow, L., Pavan, A., Sengupta, S.: Proving SAT does not have small circuits
with an application to the two queries problem. J. Comput. Syst. Sci. 74(3), 358–
363 (2008)

10. Hemaspaandra, E., Hemaspaandra, L.A., Hempel, H.: A Downward Collapse within
the Polynomial Hierarchy. SIAM Journal on Computing 28(2), 383–393 (1999)

11. Kadin, J.: The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy
Collapses. SIAM J. Comput. 17(6), 1263–1282 (1988)

12. Krentel, M.W.: The Complexity of Optimization Problems. J. Comput. Syst.
Sci. 36(3), 490–509 (1988)

13. Wagner, K.W.: Bounded query computations. In: Proceedings of the Third Annual
Structure in Complexity Theory Conference, pp. 260–277 (June 1988)

14. Yap, C.-K.: Some Consequences of Non-Uniform Conditions on Uniform Classes.
Theor. Comput. Sci. 26, 287–300 (1983)

Flexible Bandwidth Assignment

with Application to Optical Networks

(Extended Abstract)

Hadas Shachnai, Ariella Voloshin, and Shmuel Zaks

Department of Computer Science, Technion, Haifa 32000, Israel
{hadas,variella,zaks}@cs.technion.ac.il

Abstract. We introduce two scheduling problems, the flexible bandwidth
allocation problem (FBAP) and the flexible storage allocation problem
(FSAP). In both problems, we have an available resource, and a set of
requests, each consists of a minimum and a maximum resource require-
ment, for the duration of its execution, as well as a profit accrued per
allocated unit of the resource. In FBAP the goal is to assign the avail-
able resource to a feasible subset of requests, such that the total profit
is maximized, while in FSAP we also require that each satisfied request
is given a contiguous portion of the resource. Our problems generalize
the classic bandwidth allocation problem (BAP) and storage allocation
problem (SAP) and are therefore NP-Hard.

Our main results are a 3-approximation algorithm for FBAP and a
(3 + ε)-approximation algorithm for FSAP, for any fixed ε > 0. These
algorithms make non-standard use of the local ratio technique. Further-
more, we present a (2 + ε)-approximation algorithm for SAP, for any
fixed ε > 0, thus improving the best known ratio of 2e−1

e−1
+ ε. Our study

is motivated also by critical resource allocation problems arising in all-
optical networks.

Keywords: Approximation algorithms, local ratio, resource allocation,
all-optical networks.

1 Introduction

1.1 Background

Scheduling activities with resource demands arise in a wide range of applications.
In these problems we have a set of activities competing for a reusable resource.
Each activity utilizes a certain amount of the resource for the duration of its
execution and frees it upon completion. The problem is to find a feasible sched-
ule for a subset of the activities which satisfies certain constraints, including
the requirement that the total amount of resource allocated simultaneously for
executing activities never exceeds the amount of available resource. Two classic
problems that fit in this scenario are the Bandwidth Allocation Problem (BAP)
and the Storage Allocation Problem (SAP). In BAP the goal is to assign the
available resource to a feasible subset of activities, such that the total profit is

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 613–624, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

614 H. Shachnai, A. Voloshin, and S. Zaks

maximized, while in SAP it is also required that any satisfied activity is given
the same contiguous portion of the resource for its entire duration (for refer-
ences and further discussion see Section 1.3). We introduce two variants of these
problems where each activity has a minimum and a maximum possible request
size, as well as a profit per unit of the resource allocated to it. We refer to these
variants as the Flexible Bandwidth Allocation Problem (FBAP) and the Flexible
Storage Allocation Problem (FSAP).

1.2 Problem Statement

In this work we study FBAP and FSAP on path network. In graph-theoretical
terms, the input for FBAP and FSAP consists of a path P = (V,E) and a set I
of n intervals on P . Each interval I ∈ I requires the utilization of a given, limited,
resource. The amount of resource available, denoted by W > 0, is fixed over P .
Each interval I ∈ I is defined by the following parameters. (i) A left endpoint,
l(I) ≥ 0, and a right endpoint, r(I) > l(I). Thus, I is associated with the half-
open interval [l(I), r(I)) on P . (ii) The amount of resource range required by
each interval I, where a(I), b(I) are integers satisfying 0 ≤ a(I) ≤ b(I) ≤ W .
Thus I can take any integer value in the possible range for I, given by [a(I), b(I)]
or 0. (iii) The profit w(I) gained for each unit of the resource allocated to I.1

A solution has to satisfy the following conditions. (i) Each assigned interval
I ∈ I is allocated an amount of the resource in its possible range or is not
allocated at all. (ii) The specific resources allocated to an interval are fixed
along the interval. (iii) The total amount of the resource allocated at any time
does not exceed the available amount W . In FBAP we seek a feasible allocation
which maximizes the total profit accrued by the intervals. In FSAP we add
the requirement that the allocation to each interval is a contiguous block of the
resource for the entire duration. We give an example for FSAP and FSAP in
the full version of this paper [17]. A primary application of FBAP and FSAP

is spectrum assignment for connection in all-optical networks.

Approximation Algorithms. We develop approximation algorithms and analyze
their worst case performance. For ρ ≥ 1, a ρ-approximation algorithm for opti-
mization problem Π yields in polynomial time a solution whose value is within
a factor ρ of the optimum, for any input for Π .

1.3 Related Works

Bandwidth Allocation Problem (BAP). We are given a network having some

available bandwidth, and a set of connection requests. Each request consists
of a path in the network, a bandwidth requirement, and a weight. The goal is
to feasibly assign bandwidth to a maximum weight subset of requests. BAP is
strongly NP-Hard even for uniform profit on a path network [9]. [3] presents a
3-approximation algorithm for the problem. The best known result is a deter-
ministic (2 + ε)-approximation algorithm of [7].

1 We note that our results hold when a(I), b(I) and w(I) are non-negative rational
numbers.

Flexible Bandwidth Assignment with Application to Optical Networks 615

Storage Allocation Problem (SAP). The SAP is a special case of BAP in

which we require that each activity is allocated a single contiguous block of
resource for all of its edges. This problem is NP-hard. SAP was first studied
in [3, 15]. In [3] an approximation algorithm is presented, that yields a ratio of
7. The authors of [8] study the special case in which all rectangle heights are
multiple of 1/K, for some integer K ≥ 1. They present an O(n(nK)K) time
dynamic programming algorithm to solve this special case of SAP, and also give
an approximation algorithm with ratio e

e−1 + ε, for any ε > 0, assuming that
the maximum height of any rectangle is O(1/K). In [5] a randomized (2 + ε)-
approximation algorithm for SAP is presented, together with a deterministic
(2e−1

e−1 + ε)-approximation algorithm for the problem, for any fixed ε > 0.

Flex Non-Contiguous (FNC) and Flex Contiguous (FC). The problems FNC

and FC are restricted variants of the FBAP and FSAP, respectively, in which
all intervals have to be assigned an amount of resource in their required range,
i.e., for each interval I ∈ I the amount of the assigned resource is at least a(I).
We note that the special case of FNC and FC in which a(I) = 0, for all I ∈ I,
is also a special case of the FBAP and FSAP, respectively. Papers [14, 18, 19]
consider these problems. In [19] the authors show that FNC is polynomially
solvable. For a contrast, in [18] it is observed that FC cannot be approximated
within any bounded ratio, unless P = NP . The authors of [18] show that FC
is NP-Complete for the subclass of instances where a(I) = 0 for all I ∈ I,
and present a (2 + ε)-approximation algorithm for such instances, for any fixed
ε > 0. For this special subclasses of inputs, the authors of [14] present a (5/4+ε)-
approximation algorithm for instances where the input graph is a proper interval
graph, for any fixed ε > 0. Finally, the authors of [14] show that when for all
I ∈ I, a(I) = 0, b(I) = Max for some 1 ≤ Max ≤W , and w(I) = 1, the problem
is NP-Hard. For this subclass, they obtain a (2k

2k−1)-approximation algorithm,

where k = � W
Max�, and show that this subclass admits a PTAS.

1.4 Our Results

We study the scheduling problems FBAP and FSAP. We note that both prob-
lems are NP-Hard, and show that in fact, FSAP is NP-Hard in the strong sense
for any instance I where a(I) = b(I) for all I ∈ I. In Section 3, we give a
3-approximation algorithm for FBAP (based on the local ratio technique). We
then show (in Section 4) that this algorithm can be extended to yield a (3 + ε)-
approximation for FSAP, for any fixed ε > 0. Finally, in Section 5 we consider
SAP, the special case of FSAP where a(I) = b(I) for all I ∈ I. We present a
(2 + ε)-approximation algorithm, for any fixed ε > 0, thus improving the best
known ratio of 2e−1

e−1 + ε, due to [5]. In Section 6 we present applications for
the problems, particularly, the primary application in spectrum assignment in
all-optical networks. We conclude with summary and future work in Section 7.

Techniques. In developing our approximation algorithm for FBAP, we make

non-standard use of the local ratio technique. In particular, we formulate a lemma

616 H. Shachnai, A. Voloshin, and S. Zaks

which shows that the classic Local Ratio Theorem holds also for instances associ-
ated with profit per unit vectors, where the solution vector specifies the amount
of resource allocated to the input elements. To the best of our knowledge this
interpretation of the local ratio technique is given here for the first time. Some
of the proofs are omitted in this Extended Abstract. They can be found in the
full version of this paper [17].

2 Preliminaries

Throughout the paper we use graph-theoretical coloring terminology. Specifi-
cally, the requests I are represented as a set of n intervals on a path P = (V,E).
For an interval I we denote l(I) and r(I) as its left-endpoint and right-endpoint,
respectively.

The amount of available resource, W , can be viewed as the amount of available
distinct colors. Each interval I ∈ I is also defined by a minimum a(I) and a
maximum b(I) color requirements, 0 ≤ a(I) ≤ b(I) ≤ W , and a positive profit
per allocated color (or, profit per unit) w(I), where a(I), b(I) and w(I) are
non-negative integers.

The set of available colors is Λ = {1, . . . ,W}. A contiguous range of colors
is any set Λj

i = {t : 1 ≤ i ≤ t ≤ j ≤W}, and is termed an interval of colors.
A (multi)coloring is a function σ : I $→ 2Λ that assigns to each interval I ∈
I a subset of the set Λ of colors. A coloring σ is feasible if for every I ∈ I
a(I) ≤ |σ(I)| ≤ b(I) or |σ(I)| = 0, and for any two intervals I, I ′ ∈ I such that
I ∩ I ′ = ∅ we have σ(I) ∩ σ(I ′) = ∅. A contiguous color assignment is a coloring
σ that assigns a contiguous range of colors. For any disjoint subsets I ′, I ′′ ⊆ I,
a coloring function σ for I ′ can be expanded to a coloring function σ for I ′ ∪I ′′
such that σ(I) = σ(I) for each I ∈ I ′ and σ(I) = ∅ for each I ∈ I ′. The total

profit of a feasible coloring σ of I ′ ⊆ I is profitσ(I ′) def
=

∑
I∈I′ |σ(I)|·w(I). When

there is no ambiguity regarding the set of intervals we simply write profitσ.

The Problems. We first introduce the following coloring problem:

FBAP(I,W)
Input: A tuple (I,W), where W is a positive integer, and I is a set of intervals
together with the integers a(I), b(I), and w(I) for each I ∈ I, such that 0 ≤
a(I) ≤ b(I) ≤W and 0 < w(I).
Output: A feasible color assignment σ for I.
Objective: Maximize profitσ(I).

A solution S for the FBAP consists of the intervals that were assigned at
least one color, i.e., a set of pairs, where the first entry of each pair is an interval
I ∈ I and the second entry is the interval coloring size |σ(I)|.

The second problem is the contiguous color assignment variant, FSAP, in
which the goal is to achieve a feasible contiguous coloring function σ for I that
maximizes profitσ(I). A solution S for FSAP consists of the intervals that were
assigned at least one color; i.e., a set of triples, where the first entry of each triple

Flexible Bandwidth Assignment with Application to Optical Networks 617

is an interval I ∈ I, the second entry is the interval coloring size |σ(I)|, and the
third entry is its lower color index. Given a solution S to the FSAP (or FBAP),
we denote by IS the intervals of S and by σS their coloring function. Note that
for the FBAP it is impossible to return a solution of the exact coloring function
σ in polynomial time. For example, suppose we are given a path and a set of
intervals I = {I} where a(I) = 0 and b(I) = W . Presenting a coloring solution
σ such that |σ(I)| > Ω(logW) is not polynomial in the input size. Therefore,
following the description of the algorithm for FBAP, we explain how to achieve
the exact coloring function.

We note that BAP and SAP are special cases of FBAP and FSAP, respec-
tively (where a(I) = b(I) for every I ∈ I). BAP and SAP are NP-Hard since
they include the Knapsack problem as a special case, where all intervals share
the same edge; thus we have that FSAP and FBAP are NP-Hard.

In addition, following the hardness result of [14], FSAP is NP-Hard for the
subclass in which for all I ∈ I, a(I) = 0, b(I) = Max for some 1 ≤ Max ≤ W ,
and w(I) = 1. For another subclass, where a(I) = b(I) for all I ∈ I, we show
(see the full version of this paper [17]) that the problem remains NP-Hard, even
where all intervals have the same unit profit, as follows

Lemma 1. FSAP is NP-Hard in the strong sense, even for uniform profit
instances, where a(I) = b(I) for all I ∈ I.

Narrow and Wide Intervals. In deriving our approximation results, for a given
set of interval requests, we form two new interval sets. We solve separately the
problem for each set, and then the solution of larger profit is expanded into
a solution for the original instance. Formally, given a set of intervals I and a
parameter δ ∈ (0, 1), we form sets of intervals Iwide and Inarrow as follows. For
any I ∈ I for which b(I) > δW , we define an interval Iwide with the same left
and right endpoint as I, a(Iwide) = max{a(I), δW + 1}, b(Iwide) = b(I), and
w(Iwide) = w(I). This set of intervals is termed Iwide. For any I ∈ I for which
a(I) ≤ δW , we define an interval Inarrow with the same left and right endpoint
as I, a(Inarrow) = a(I), b(Inarrow) = min{b(I), δW}, and w(Inarrow) = w(I).
We call this set of intervals Inarrow.

Given a feasible coloring function σnarrow (or σwide) of the instance (Inarrow,
W) (or (Iwide,W)) we expand it to a feasible coloring function σexpand

narrow (or

σexpand
wide) for (I,W) such that for each I ∈ I if a(I) ≤ δW (or b(I) ≥ δW) then

σexpand
narrow(I) = σnarrow(I) (or σexpand

wide (I) = σwide(I)), otherwise, σexpand
narrow(I) = ∅.

By the above definition of Inarrow and Iwide, we do not necessarily have that
Inarrow ⊆ I (or Iwide ⊆ I), as for some intervals the lower or upper bound
for the range of possible colors were changed. Therefore, we need the following
lemma in order to claim an approximation ratio for the returned result (for proof
see the full version of this paper [17]).

Lemma 2. Let (I,W) be an instance of FBAP (or FSAP). For any δ ∈
(0, 1), let σnarrow and σwide be a (ρnarrow)-approximate solution for the instance
(Inarrow,W) and a (ρwide)-approximate solution for the instance (Iwide,W),

618 H. Shachnai, A. Voloshin, and S. Zaks

respectively, for ρnarrow, ρwide ≥ 1. Then, the solution of larger profit can be
expanded to a (ρnarrow + ρwide)-approximate solution for the instance (I,W).

The Local Ratio Technique. The local ratio technique (see [2–4,6]) is based on

the Local Ratio Theorem. Let w ∈ Rn be a profit per unit vector, and let F be a
set of feasibility constraints on vectors x ∈ Rn. A vector x ∈ Rn, which specifies
the amount of resource units allocated to the input elements, is a feasible solution
to a given problem instance (F,w) if it satisfies all of the constraints in F . Its
value is the inner product w · x. We now state the Local Ratio Theorem (of [3])
using profit per unit vectors. The proof of the lemma is immediate.

Lemma 3. Let F be a set of constraints and let w, w1, and w2 be profit per
unit vectors such that w = w1 + w2. Then, if x is an r-approximate solution
with respect to (F,w1) and with respect to (F,w2), then it is an r-approximate
solution with respect to (F,w).

3 A 3-Approximation Algorithm for FBAP

In this section we present a polynomial-time 3-approximation algorithm for the
problem FBAP. Given an instance (I,W) of FBAP, the algorithm starts by
forming two sets of intervals: Iwide and Inarrow, using δ = 1/2 as defined in
Section 2. For the wide intervals, Iwide, the algorithm reduces the problem to
the Maximum Weight Independent Set (MWIS) in interval graphs, which has a
optimal polynomial-time algorithm [12]. Since each interval requires at least more
than half of the resource, no pair of intersecting intervals can be colored together,
therefore by reducing it to an interval with a width of its maximal resource
requirement we get an optimal solution. For the narrow intervals, Inarrow, we
present a 2-approximation algorithm. The algorithm returns expansion to I of
the color assignment of larger profit. By Lemma 2, we obtain a 3-approximation
for FBAP(I,W).

FBAP on Narrow Paths. In the following we show algorithm NarrowFBAP

and prove that it yields a 2-approximation for the narrow intervals. The input
for the algorithm is a tuple (I,w), where I is a set of intervals and w ∈ Rn

is the profit per unit vector of I. Algorithm NarrowFBAP uses the local
ratio technique, it is recursive and works as follows. The algorithm starts by
removing all intervals of non-positive profit per unit value as they don’t change
the optimum value. If no intervals remain, then it returns ∅. Otherwise, it chooses
an interval Ĩ with the minimum right endpoint. It constructs a new profit per unit
vector w1, which assign profit only to intervals which intersect Ĩ and solves the
problem recursively on w2 = w −w1. Then, if the solution that was computed
recursively has at least a(Ĩ) colors available for Ĩ, it adds Ĩ to the solution with
the maximal amount of colors such that the feasibility is maintained. For a profit
per unit vector w, the total profit of a feasible coloring σ of a subset I ′ ⊆ I
is denoted by profitσ(I ′,w). Given a solution S, the load of an edge e in S is

defined as load(S, e)
def
=

∑
I∈Ie∩IS

|σS(I)|.

Flexible Bandwidth Assignment with Application to Optical Networks 619

We note that Algorithm NarrowFBAP returns the number of colors as-
signed to each interval. The algorithm can be easily modified to return the
coloring of the intervals, by changing Line 7 to add to the solution the list of
assigned allocated colors, instead of the coloring size.

Algorithm 1. NarrowFBAP(I,w)

1: I ← I \ {I ∈ I : w(I) ≤ 0}
2: If I = ∅ return ∅
3: Select an interval Ĩ ∈ I with a minimum right endpoint
4: Define for each I ∈ I

w1(I) = w(Ĩ) ·

⎧⎪⎨
⎪⎩

1 I = Ĩ ,
b(Ĩ)

W−a(Ĩ)
I �= Ĩ , I ∩ Ĩ �= ∅,

0 otherwise.

and w2 = w −w1

5: S′ ← NarrowFBAP(I,w2)
6: Let ẽ be the rightmost edge of Ĩ
7: If a(Ĩ) ≤ W − load(S′, ẽ), then S ← S′ ∪ {(Ĩ,min{b(Ĩ),W − load(S′, ẽ)}}
8: Else S ← S′

9: Return S

Theorem 1. Algorithm NarrowFBAP(I,w) computes in polynomial time a
2-approximate solution for any FBAP instance in which b(I) ≤ W/2 for all
I ∈ I.

Proof. Clearly, the first step, in which intervals of non-positive profit are deleted,
does not change the optimum value. Thus, it is sufficient to show that S is a 2-
approximation with respect to the remaining intervals. The proof is by induction
on the number of recursive calls. At the basis of the recursion, the solution
returned is optimal and is a 2-approximation, since I = ∅. For the inductive
step, we show that the returned solution S is a 2-approximation with respect to
w1 and w2, and thus, by the Lemma 2, it is 2-approximation with respect to
w. Assuming that S′ is a 2-approximation with respect to w2, we have to show
that S is a 2-approximation with respect to w2. Since w2(Ĩ) = 0 and S′ ⊆ S ,
it follows that S is a 2-approximation with respect to w2.

We now show that S is a 2-approximation with respect to w1. In order to
prove this, we need the following claims.

Claim 1. For the solution S, profitσS (IS ,w1) ≥ w1(Ĩ) · b(Ĩ).

Proof. The claim holds since, either Ĩ ∈ IS and a(Ĩ) ≤
∣∣∣σS(Ĩ)

∣∣∣ ≤ b(Ĩ), or

S′ ∪ {(Ĩ , a(Ĩ))} is infeasible. For the case that Ĩ ∈ IS , if
∣∣∣σS(Ĩ)

∣∣∣ = b(Ĩ), then

profitσS (IS ,w1) ≥ w1(Ĩ) · b(Ĩ); else, Ĩ ∈ IS and thus the profit accrued by the

intervals intersecting Ĩ is w1(Ĩ) · b(Ĩ)

W−a(Ĩ)
· (W −

∣∣∣σI(Ĩ)
∣∣∣). In addition,

∣∣∣σS(Ĩ)
∣∣∣ <

b(Ĩ), and since b(Ĩ) ≤W/2, we have that a(Ĩ) + b(Ĩ) ≤W , and thus

620 H. Shachnai, A. Voloshin, and S. Zaks

profitσS (IS ,w1) = w1(Ĩ) ·
∣∣∣σS(Ĩ)

∣∣∣ + w1(Ĩ) · b(Ĩ)

W−a(Ĩ)
· (W −

∣∣∣σS(Ĩ)
∣∣∣)

= w1(Ĩ) ·
∣∣∣σS(Ĩ)

∣∣∣ · (1 − b(Ĩ)

W−a(Ĩ)
) + w1(Ĩ) · b(Ĩ) · W

W−a(Ĩ)

≥ w1(Ĩ) · b(Ĩ).

Consider now the case where Ĩ ∈ IS . Since S′ ∪ {(Ĩ , a(Ĩ))} is infeasible, it

follows that profitσS (IS ,w1) ≥ w1(Ĩ) · b(Ĩ)

W−a(Ĩ)
· (W − a(Ĩ) + 1) ≥ w1(Ĩ) · b(Ĩ).

Therefore we conclude that profitσS (IS ,w1) ≥ w1(Ĩ) · b(Ĩ). ��

Claim 2. For any optimal solution S∗, profitσS∗ (IS∗ ,w1) ≤ 2 · w1(Ĩ) · b(Ĩ).

Proof. The claim holds since if
∣∣∣σS∗(Ĩ)

∣∣∣ ≥ a(Ĩ), then

profitσS∗ (I,w1) ≤ w1(Ĩ) ·
∣∣∣σS∗(Ĩ)

∣∣∣ + w1(Ĩ) · b(Ĩ)

W−a(Ĩ)
· (W −

∣∣∣σS∗(Ĩ)
∣∣∣)

≤ w1(Ĩ) · b(Ĩ) + w1(Ĩ) · b(Ĩ) · (W−|σS∗ (Ĩ)|
W−a(Ĩ)

)

≤ 2 · w1(Ĩ) · b(Ĩ).

Else,
∣∣∣σS∗(Ĩ)

∣∣∣ = 0, and thus we have that profitσS∗ (I,w1) ≤ w1(Ĩ) · b(Ĩ)

W−a(Ĩ)
·

W , and since a(Ĩ) ≤ W
2 we get that profitσS∗ (IS∗ ,w1) ≤ 2 · w1(Ĩ) · b(Ĩ). ��

Combining Claim 1 and Claim 2, we have that S is 2-approximate solution
with respect to w1. By the Lemma 3, S is also a 2-approximate solution with
respect to w. The running time is polynomial, since the number of recursive call
is at most the number of input intervals, and each call requires linear time. ��

Combining the exact algorithm for MWID in interval graphs of [12], Theorem
1, and Lemma 2, we conclude

Theorem 2. There exists a polynomial-time 3-approximation algorithm for the
problem FBAP.

4 A (3 + ε)-Approximation Algorithm for FSAP

We now show that our result for FBAP can be extended to yield (almost) the
same bound for FSAP. Given an instance I of FSAP, we form two sets of
intervals: Inarrow and Iwide, as defined in Section 2, using a parameter δ > 0 (to
be determined). For the wide intervals, Iwide, we present a (1+ε)-approximation
algorithm for any fixed ε > 0. For the narrow intervals, Inarrow, we give a
(2 + ε)-approximation algorithm for any fixed ε > 0. The algorithm selects color
assignment of larger profit among the assignments found for Inarrow and Iwide.
This assignment is then expanded into a solution for the original instance, I.
By Lemma 2, we obtain a (3 + ε)-approximate solution for FSAP, for any fixed
ε > 0. We note that any future improvements in the approximation ratio of
FBAP would improve also the approximation ratio of our algorithm for FSAP.

FSAP on Wide Intervals. In the full version of this paper [17] we show a (1+ε)-
approximation algorithm for the wide instance of FSAP. Specifically, we prove

Flexible Bandwidth Assignment with Application to Optical Networks 621

Lemma 4. Given an instance I of FSAP, for any fixed ε > 0, there exists
δ > 0, such that there is a polynomial-time (1 + ε)-approximation algorithm for
the wide intervals in I.

FSAP on Narrow Intervals. We now show how to obtain a (2+ ε)-approximate
solution for the Inarrow intervals. Recall, than in BAP, we are given a path
having one unit of available resource, and a set I of intervals on the path.
Each interval I ∈ I consists of an arrival time and departure time, a resource
requirement s(I) ∈ [0, 1], and a profit p(I) ∈ Z. The goal is to assign the resource
to a maximum weight subset of requests. A solution S for BAP consists of the

assigned intervals. The profit S is given by profit(S)
def
=

∑
I∈S p(I). SAP is a

special case of BAP in which we require that each interval is allocated a single
contiguous block of resource for its entire duration.

We use as subroutines Algorithm NarrowFBAP (of Section 3) and a sub-
routine of an algorithm for SAP due to [5], which transforms in polynomial-time
a BAP solution into a SAP solution, as formulated in the following lemma.

Lemma 5. ([5]) There exists a constant δ0 ∈ (0, 1], such that if S is a solution
for BAP on intervals I for which s(I) ≤ δ for all I ∈ I, where δ ∈ (0, δ0), then
S can be transformed in polynomial time into a solution for SAP with profit at
least (1− 4δ)profit(S).

Combining Theorem 1 and Lemma 5, we have (for proof see the full version of
this paper [17])

Lemma 6. Given an instance I of FSAP, for any fixed ε > 0, there exists
δ > 0, such that there is a polynomial-time (2 + ε)-approximation algorithm for
the narrow intervals in I.

Combining Lemmas 4, 6, and 2, we obtain

Theorem 3. There exists a polynomial-time (3 + ε)-approximation algorithm
for FSAP, for any fixed ε > 0.

5 A (2 + ε)-Approximation Algorithm for SAP

In this section we consider SAP, the special case of FSAP where a(I) = b(I)
for all I ∈ I. We present a polynomial-time (2 + ε)-approximation algorithm for
any fixed ε > 0.

In deriving the algorithm we use a technique similar to the one used for solv-
ing the general instance of FSAP. Given an instance I of SAP, we partition
the intervals into two sets: narrow and wide, using a parameter δ > 0 (to be
determined). Specifically, narrow intervals are those for which |s(I)| ≤ δW and
wide intervals are those for which |s(I)| > δW . For the wide intervals, the al-
gorithm runs an optimal polynomial-time dynamic programming algorithm of
[5] for SAP on wide intervals. For the narrow intervals we show how to obtain
a (1 + ε)-approximate solution. The algorithm returns the color assignment of
greater profit. By Lemma 2, this yield a (2+ε)-approximation algorithm for SAP.

622 H. Shachnai, A. Voloshin, and S. Zaks

SAP on Narrow Intervals. In the following we show how to obtain a (1 + ε)-
approximate solution for the narrow intervals. We rely on two subroutines of
known algorithms for BAP and SAP. For BAP, the paper [7] presents a (2 +
ε)-approximation algorithm, for any ε > 0. The authors obtain this result by
dividing the input intervals into wide and narrow intervals, for some δ ∈ (0, 1).
They use dynamic programming to compute an optimal solution for the wide
intervals, and LP-based algorithm to obtain a (1+0(1)

√
δ)-approximate solution

for the narrow intervals, as states in the next result.

Lemma 7. ([7]) There exist constants δ1 ∈ (0, 1) and C > 0, such that for
any δ ∈ (0, δ1) there exists a (1 +C

√
δ)-approximation algorithm for the narrow

intervals of BAP.

The second subroutine that we use is an algorithm for SAP of [5], which
transforms in polynomial-time a BAP solution into a SAP solution (Lemma 5).
Combining Lemma 7 and Lemma 5, we have (for proof see the full version of
this paper [17])

Lemma 8. For any fixed ε > 0, there exists δ > 0, such that there is a polynomial-
time (1 + ε)-approximation algorithm for the narrow intervals of SAP.

Summarizing the above discussion, we have (for proof see the full version of this
paper [17])

Theorem 4. For any fixed ε > 0, there is a polynomial-time (2+ε)-approximation
algorithm for SAP.

6 Applications of FSAP and FBAP

The problems FSAP and FBAP have important applications in real-time
scheduling. Consider, for example, a reusable resource of fixed size and activities
that have a minimum and a maximum range for contiguous or non-contiguous
resource requirement. The resource may be memory, computing units, servers in
a Cloud, or network bandwidth. The allocated amount of resource for the ac-
tivities actually determine it performance, quality-of-service, or processing time.
In the following we present the application of FBAP and FSAP in optimizing
spectrum assignment in all-optical networks.

Spectrum Assignment in All-Optical Networks. In modern optical networks
several high-speed signals are sent through a single optical fiber. A signal trans-
mitted optically from some source node to some destination node over a wave-
length is termed lightpath (for comprehensive surveys on optical networks, see,
e.g., [1,16]). Traditionally, the spectrum of light that can be transmitted through
the fiber has been divided into frequency intervals of fixed width, with a gap of
unused frequencies between them. In this context, the term wavelength refers
to each of these predefined frequency intervals. An emerging architecture, which
moves away from the rigid model towards a flexible model, was suggested in
[10,13]. In this model, the usable frequency intervals are of variable width (even

Flexible Bandwidth Assignment with Application to Optical Networks 623

within the same link). Every lightpath has to be assigned a frequency interval
(sub-spectrum), which remains fixed through all of the links it traverses. As in the
traditional model, two different lightpaths using the same link must be assigned
disjoint sub-spectra. This technology is termed flex-grid (or, flex-spectrum), as
opposed to the fixed-grid (or, fixed-spectrum) traditional technology. The net-
work implications of this new architecture are described in detail in [11]. The
following spectrum assignment problems arising in the fixed-grid and flex-grid
technology correspond to FBAP and FSAP, respectively. We are given a set of
flexible connection requests, each with a lower and upper bound on the width
of its spectrum request, as well as an associated positive profit per allocated
spectrum unit. In the fixed-grid (or flex-grid) technology the goal is to find a
non-contiguous (or contiguous) spectrum assignment for a subset of requests
that maximizes the total profit.

7 Summary and Future Work

In this paper we studied the FBAP and FSAP problems. We observed that
both problems are NP-Hard even for highly restricted inputs. We also presented
a 3-approximation and a (3 + ε)-approximation algorithms for general input of
FBAP and FSAP, respectively.

We point to a few of the many problems that remain open. (a) We showed that
FSAP is NP-Hard for the subclass of instances where a(I) = b(I) for all I ∈ I. For
these cases it would be interesting to obtain a better approximation ratio than the
one derived for the general instance. (b) Our results for intervals on a line call for
the study FBAP and FSAP in other graph, especially those that are relevant in
optical networks. (c) The flex-grid technology enables to combine non-contiguous
and contiguous spectrum assignment; thus, a request can be assigned either a con-
tiguous or non-contiguous set of colors. In this setting, a non-contiguous color as-
signment for any request requires accumulatively more spectrum than contiguous
color assignment of the same request (due to the gap of unused frequencies be-
tween wavelengths). This setting opens up an unexplored terrain for future study.
(d) Finally, as stated above, FSAP and FBAP are the flexible variants of the
classic SAP and BAP, respectively. There is much importance in exploring the
implications of these new problems and our results in the context of resource al-
location, emerging computing, and network technologies.

Acknowledgment. We thank Dror Rawitz for valuable discussions. We also
thank the anonymous referees for valuable comments.

References

1. Ali Norouzi, A.Z., Ustundag, B.B.: An integrated survey in optical networks: Con-
cepts, components and problems. IJCSNS International Journal of Computer Sci-
ence and Network Security 11(1), 10–26 (2011)

624 H. Shachnai, A. Voloshin, and S. Zaks

2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12(3), 289–
297 (1999)

3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J.S., Schieber, B.: A unified ap-
proach to approximating resource allocation and scheduling. Journal of the ACM,
735–744 (2000)

4. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating
covering problems. Algorithmica 27(2), 131–144 (2000)

5. Bar-Yehuda, R., Beder, M., Cohen, Y., Rawitz, D.: Resource allocation in bounded
degree trees. Algorithmica 54(1), 89–106 (2009)

6. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

7. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Transaction on Algorithms 3(3) (2007)

8. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans-
actions 34(5), 501–507 (2002)

9. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching is hard - even in the
fault model. Algorithmica 63(4), 781–794 (2012)

10. Gerstel, O.: Flexible use of spectrum and photonic grooming. In: Photonics in
Switching, OSA (Optical Society of America)Technical Digest (2010)

11. Gerstel, O.: Realistic approaches to scaling the ip network using optics. In: Optical
Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the
National Fiber Optic Engineers Conference, pp. 1–3 (2011)

12. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press,
New York (1980)

13. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.:
Spectrum-efficient and scalable elastic optical path network: architecture, benefits,
and enabling technologies. IEEE Communications Magazine 47(11), 66–73 (2009)

14. Katz, D., Schieber, B., Shachnai, H.: The flexible storage allocation problem (sub-
mitted, 2014)

15. Leonardi, S., Marchetti-Spaccamela, A., Vitaletti, A.: Approximation algorithms
for bandwidth and storage allocation problems under real time constraints. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 409–420.
Springer, Heidelberg (2000)

16. Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspec-
tive, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2009)

17. Shachnai, H., Voloshin, A., Zaks, S.: Flexible bandwidth assignment with applica-
tion to optical networks, http://www.cs.technion.ac.il/~hadas/PUB/flex.pdf

18. Shachnai, H., Voloshin, A., Zaks, S.: Optimizing bandwidth allocation in flex-grid
optical networks with application to scheduling. In: 28th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), Phoenix, USA (May 2014)

19. Shalom, M., Wong, P.W.H., Zaks, S.: Profit maximization in flex-grid all-optical
networks. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS,
vol. 8179, pp. 249–260. Springer, Heidelberg (2013)

http://www.cs.technion.ac.il/~hadas/PUB/flex.pdf

Approximation Algorithms for Bounded Color

Matchings via Convex Decompositions�

Georgios Stamoulis1,2

1 LAMSADE, CNRS UMR 7243, Universitè Paris-Dauphine, France
2 Universitá della Svizzera Italiana (USI),

Lugano, Switzerland
stamoulis.georgios@dauphine.fr

Abstract. We study the following generalization of the maximum
matching problem in general graphs: Given a simple non-directed graph
G = (V,E) and a partition of the edges into k classes (i.e. E = E1 ∪
· · · ∪ Ek), we would like to compute a matching M on G of maximum
cardinality or profit, such that |M ∩ Ej | ≤ wj for every class Ej . Such
problems were first studied in the context of network design in [17].
We study the problem from a linear programming point of view: We
provide a polynomial time 1

2
-approximation algorithm for the weighted

case, matching the integrality gap of the natural LP formulation of the
problem. For this, we use and adapt the technique of approximate convex
decompositions [19] together with a different analysis and a polyhedral
characterization of the natural linear program to derive our result. This
improves over the existing 1

2
, but with additive violation of the color

bounds, approximation algorithm [14].

1 Introduction

In modern optical fiber network systems, we encode the information as an elec-
tromagnetic signal and we transfer it through the optical fiber as a beam of light
in a specified frequency. Typically, at most one beam of light is allowed to travel
through the fiber at any given time. In WDM1 optical networks we allow multi-
plexing of a number of different light beams to travel simultaneously through the
optical fiber as follows: We partition the electromagnetic spectrum into a number
of k non-overlapping intervals. For each interval fi we have an upper bound on
how many different beams of light that have frequencies within this interval can
travel at the same time through the optical carrier. This constraint is imposed
since, otherwise, we would have quantum phenomena as interference of the light
beams of a given interval. Naturally, if we allow a large number of beams of light
with frequencies within a small interval to travel through the optical fiber, we
can expect with very high probability two or more beams to be interfered. Our
goal in an optical network is to establish communication between an as large as

� Part of this work was done while the author was a PhD student at IDSIA.
1 WDM stands for Wavelength-Division Multiplexing

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 625–636, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

626 G. Stamoulis

possible number of pairs that want to communicate in their own frequency, such
that in a given interval of frequencies fi we allow no more than wi connections
to be established. This naturally reduces to the following problem:

Bounded Color Matching: We are given a (simple, non-directed) graph G =
(V,E). The edge set is partitioned into k sets E1 ∪E2 ∪ · · · ∪Ek i.e. every edge
e has color cj if e ∈ Ej and a profit pe ∈ Q+. We are asked to find a maximum
(weighted) matching M such that in M there are no more that wj edges of color
cj , where wj ∈ Z+ i.e. a matching M such that |M ∩ Ej | ≤ wj , ∀j ∈ [k].

In the following, we denote as C the collection of all the color classes. In other
words, C = {cj}j∈[k]. Moreover, for a given edge e ∈ E(G), we denote by c−1(e)
its color i.e. c−1(e) = cj ⇔ e ∈ cj .

Bounded Color Matching is a budgeted version of the classical matching prob-
lem: For a given instance G, let F be the set of all feasible solutions. Associated
with every feasible solution M ∈ F we are given a set of � linear cost functions
{αi}i∈[�] and a linear profit function π such that π, αi : F :→ Q+ and for every
cost function αi a budget βi ∈ Q+. The goal is to find M ∈ F : αi(F) ≤ βi, ∀i ∈
[�] that also maximizes π(M). Budgeted versions of the maximum matching
problem have been recently studied intensively. When G is bipartite there is a
PTAS for the case where � = 1 [2] and the case where � = O(1) [11]. For general
graphs there is a PTAS for the 2-budgeted maximum matching problem [12] and
a bicriteria PTAS for � = O(1) [7] (where the returned solution might violate the
budgets by a factor of (1 + ε)). This approach works also for unbounded number
of budgets albeit a logarithmic overflow of the budgets.

Bounded Color Matching (BCM) not only is NP-hard even in bipartite graphs
where wj = 1, ∀cj ∈ C [10] but also APX-hardness can be deduced even in
2-regular bipartite graphs from [15]. In [13] the BCM was considered from a
bi-criteria point of view: given a parameter λ ∈ [0, 1] there is an (2

3+λ) approx-
imation algorithm for BCM which might violate the budgets wj by a factor of
at most (2

1+λ).
To the best of our knowledge, the first case where matching problems with car-

dinality (disjoint) budgets were considered, was in [17] where the authors defined
and studied the blue-red Matching problem: compute a maximum (cardinality)
matching that has at most w blue and at most w red edges, in a blue-red colored
(multi)-graph. A 3

4 polynomial time combinatorial approximation algorithm and
an RNC2 algorithm (that computes the maximum matching that respects both
budget bounds with high probability) were presented. This was motivated by
network design problems, in particular they showed how blue-red Matching can
be used in approximately solving the Directed Maximum Routing and Wave-
length Assignment problem (DirMRWA) [16] in rings which is a fundamental
network topology, see [17] (also [4] for alternative and slightly better approxi-
mation algorithms and [1] for combinatorial algorithms). Here, approximately
solving means that an (asymptotic) α-approximation algorithm for blue-red re-
sults in an (asymptotic) α+1

α+2 -approximation algorithm for DirMRWA in rings.
We note that the exact complexity of the blue-red matching problem is not

known: it is only known that blue-red matching is at least as hard as the Exact

Approximation Algorithms for Bounded Color Matchings 627

Matching problem [18] whose complexity is open for more than 30 years. A poly-
nomial time algorithm for the blue-red matching problem will imply that Exact
Matching is polynomial time solvable. On the other hand, blue-red matching
is probably not NP-hard since it admits an RNC2 algorithm. We note that
this algorithm can be extended to a constant number of color classes with arbi-
trary bounds wj . Using the results of [20] one can deduce an “almost” optimal
algorithm for blue-red matching, i.e. an algorithm that returns a matching of
maximum cardinality that violates the two color bounds by at most one edge.
This is the best possible, unless of course blue-red matching (and, consequently,
exact matching) is in P.

If we formulate BCM as a linear program, the polyhedron Mc containing all
feasible matchings M for the BCM is

Mc =
{
y ∈ {0, 1}|E| : y ∈ M

∧ ∑
e∈Ej

ye ≤ wj , ∀j ∈ [k]
}

(1)

whereM is the usual matching polyhedron:M = {x ∈ {0, 1}|E| :
∑

e∈δ(v) xe ≤
1, ∀v ∈ V }. We would like to find y ∈ {0, 1}|E| such that y = maxx∈Mc{pTx =∑

e∈E pexe}, p ∈ Q|E|
≥0 . As usual, we relax the integrality constraints y ∈

{0, 1}|E| to y ∈ [0, 1]|E| and we solve the corresponding linear relaxation effi-
ciently to obtain a fractional |E|-dimensinal vector y. It is not hard to show (see
later section) that the integrality gap of Mc is essentially 2 and this is true even
if we add the blossom inequalities i.e. if instead of M as defined here, we use
the well known Edmond’s LP [8].

Our Contribution: In this work we study the BCM problem with unbounded
number of budgets: we provide a deterministic 1

2 approximation algorithm based
on the concept of approximate convex decompositions from [19] together with a
different analysis and an extra step based on polyhedral properties of extreme
point solutions of Mc. This might be helpful also in the context of k-uniform b-
matching problem. This result improves over the 1

2 but with an additive violation
of the color bounds wj from [13] and matches the integrality gap of 2 of the
natural linear formulation of the problem (captured by 1) which implies that
a 1

2 approximation algorithm is the best we can hope using this natural linear
relaxation.

We note that the BCM problem can be easily seen as a special case of the
3-hypergraph β-matching problem [19] or 3-set packing. Using the existing LP-
based results for these problems which guarantee a

k−1+ 1
k

for the k-hypergraph

β-matching, we can only guarantee a 3
7 -approximation algorithm [19]. We show

that by taking advantage of the special structure of the problem we can do better
than this. For 3-set packing there there exists a 1

2 − ε approximation algorithm
for the weighted case [3] and a recent 3

4 for the non-weighted case [9]. But these
tell us nothing about the strengths (and limitations) of linear programming
techniques for the problem, which is our main motivation. See also [6] for a
similar study on the effect of linear programming techniques on k-dimensional
matching problems.

628 G. Stamoulis

2 A 1
2
Approximation Based on Approximate Convex

Decompositions

In this section we will provide a polynomial time 1
2 -approximation algorithm

for BCM based on the technique of approximate convex decompositions from
[19]. Given x∗, an optimal solution of the LP for the BCM, the main idea of
the algorithm is to construct a collection of feasible (for the BCM problem)
matchings μ1, μ2, . . . , μρ for some ρ, such that an approximate version of pTx
can be written as a convex combination of these matchings μi. Recall the famous
Carathéodory’s theorem:

Theorem 1 (Carathéodory[5]). Let P = {x | Ax ≤ b} where x ∈ Rn, A ∈
Rm×n and b ∈ Rm be a polyhedron in Rn. Assume a point z ∈ P and assume that
this point satisfies r of the m inequalities with equality. Then z can be written
as a convex combination of at most n− r + 1 vertices of the polyhedron P .

As an immediate corollary, we have that any point z belonging in (the convex
hull of) a bounded convex polyhedron P ⊆ Rn can be written as a convex
combination of at most n + 1 vertices of P .

Let x∗ be an optimal (fractional) solution of the relaxation of Mc. Ideally we
would like to use Carathéodory’s theorem to write x∗ as a convex combination
of feasible integral extreme point solutions (vertices) of Mc. But unfortunately
this is not always the case, meaning that x∗ might not belong in the convex
hull of all feasible integral vertices of Mc. Instead of that, we will settle for
an approximate convex combination of x∗ by vertices of Mc. An approximate
convex combination of x∗ is a convex combination of ρ extreme points μi of Mc

satisfying the following:

αpTx∗ =
∑
i∈[ρ]

λiμi, α ∈ (0, 1],
∑
i∈[ρ]

λi = 1, μi ∈Mc (2)

The fact that we insist for convex combination directly implies that λi ≥
0, ∀i. An important feature of the above convex combination is that it gives
us immediately an α approximation algorithm. Indeed, since all points μi, for
i ∈ [ρ], are feasible and they constitute a convex combination of pTx∗ then, by
a standard averaging argument, at least one of the μis will have profit at least
α · pTx∗, and so we have the following:

Lemma 1. Given an optimal fractional solution x∗ of the relaxation of Mc and
assume that x∗ can be written as in (2) then we can retrieve a feasible integral
solution for Mc with total profit at least α times pTx∗.

We will inductively construct an α approximate convex combination of x̄∗

where x̄∗ is x∗ without a specific edge (i.e. after removing an edge e in supp(x∗)
where we define for any vector y ∈ Rn supp(y) = {j ∈ [n] : yj = 0}). Then, if we
can add e in a α fraction of the points μ̄i constituting the α approximate convex

Approximation Algorithms for Bounded Color Matchings 629

combination of x̄∗, we will have a convex combination with the desired properties.
In other words, we require that

∑
j∈κ λj ≥ αx∗e , where κ = {μi : μi∪ e ∈Mc} is

the set of all the solutions (that constitute the approximate version of x̄∗) that
can facilitate e preserving feasibility.

The inductive process of obtaining (constructing) μis is roughly the following:
at the “bottom” of the induction process we start with the trivial empty solution
(μ1 = ∅). At each next step we try to pack any of the edges ej into exactly an α
fraction of the current set of the matchings. This is the step where we may create
new solutions in order to maintain the invariant “pack any edge into exactly α
fraction”. Usually this process in its basic form greedily packs ej and, moreover,
is oblivious to any ordering of the edges. In our case however, this cannot lead
to any meaningful approximation guarantee. We will show how we can carefully
select an edge at the current step i such that edge ei to be packed can fit into
an 1

2 fraction of the current set of solutions {μj}. In other words, we will define
an ordering of the edge set (e1, . . . , em) (m = |E(G)|) such that at step i ∈ [m],
assuming that we have an α-approximate convex decomposition for (e1, . . . ei−1)
(characterized by a set of feasible matchings {μj}), then the current edge ei can
be successfully inserted into at least an α fraction of the μjs. We will show that
in our case we can in fact select α = 1

2 , thus giving us the desired approximation
guarantee.

Now we will define the ordering on the edges {ei}i∈[m]. Assume that we are
in some inductive step where the remaining edges are Ri = {e1, e2, . . . , ei} for
some i, i.e. we have removed m− i edges to iteratively obtain an α-approximate
decomposition for the remaining solution. How do we choose which edge to
select from Ri? Intuitively, the larger the fractional value of xe is, the larger the
fraction of matchings μi that can be added is. This is because high fractional
value of xe implies low fractional values of the other “blocking” components.
And low value of these components means “few” matchings μj that are actually
blocking e. So, a good starting strategy is to select at each step edges with high
fractional value. Unfortunately, we cannot always guarantee that such edges are
present in x∗. But there is hope: let x′ be x∗ restricted to the set of edges Ri.
Now, it is not hard to see (we omit the easy proof) that x′ is an extreme point
solution for the reduced instance where we set wj := wj −

∑
e∈Ej\Ri

x∗e, ∀Cj

and βv :=
∑

e∈δv\Ri
x∗e , ∀v ∈ V . Such extreme point solutions have very nice

properties. To see that, we use the following slight generalization of a result due
to [13] where we consider a version where for each vertex v ∈ V we have a bound
βv ≤ 1 and where wj are no longer integers such that, when we say “tight”
vertex (with respect to x∗) we mean a vertex v such that

∑
e∈δ(v) xe = βv. The

same for tight color classes. Initially, all wj are integers and βv = 1, ∀v. Define
the residual graph with respect to a solution vector x to be the graph where we
include an edge e only if xe > 0.

Lemma 2. Take any basic feasible solution x of Mc (where we no longer require
the degree bounds on vertices and the bounds on color classes be integer anymore)
such that 0 < xe < 1, ∀e (i.e. remove all integer variables reducing the bounds
appropriately if necessary). Then one the following must be true:

630 G. Stamoulis

1. either there is a tight color class cj ∈ Q such that |Ej | ≤ �wj� + 1 in the
residual graph,

2. or there is a tight vertex v ∈ F such that the degree of v in the residual graph
≤ �βv�+ 1.

The proof follows similar lines as in [13] and we omit it from the current
version. In our lemma, F,Q are the linearly independent set of rows of the LP
(Mc) that characterize the basic solution x. This lemma will give us what we
need in order to successfully select the right edge from Ri and prove that we
can successfully pack it into 1

2 of the matchings for the inductively obtained
approximate convex decomposition for the rest of the edges i.e. for Ri−1:

1. Given x∗ select e according to Lemma 2:
(a) if ∃v ∈ F : |supp(x∗∩δ(v))| ≤ 2 then select as e the edge ∈ δ(v) : xe ≥ βv

2 .
(b) else ∃cj ∈ Q : |supp(x∗)∩Ej | ≤ �wj�+ 1. Select in this iteration an edge

e ∈ cj with x∗e ≥
wj

�wj�+1 .

2. Zero out the coordinate of x∗ corresponding to e and let x′ the resulting
vector.

3. Iteratively obtain an approximate convex decomposition for x′.
4. Add e to the convex decomposition of x′ obtained in the previous step.

Using Lemma 2 we will show now how, in each iteration of our algorithm, we
can successfully pack an edge e = {u, v} ∈ supp(x∗) into a large number (i.e.
half) of the solutions that constitute the approximate convex decomposition
of the residual solution vector x′. In order to insert e into a large number of
the solutions μi that constitute the approximate convex decomposition of the
residual solution vector x′, we need to see in what fraction of the μi’s the edge
e cannot be added. These are all μi’s such that

(1): ∃e′ ∈ μi: u ∨ v ∈ e′, or
(2): |μi ∩Ej | = wj , where j ∈ [k] is the color of edge e.

The first condition says that e cannot be added to those matchings μi (which
constitute that approximate convex decomposition of x′) that have edges incident
to either of the endpoints of e. The second condition says that, additionally, e
cannot be added to all μis that are “full” of color cj . All these matchings are
blocking the insertion of e, meaning that for such a μi, μi ∪ e is not feasible
anymore for either of the previous two reasons. In order to guarantee that e can
be added to exactly α fraction of the matchings we may need to double a current
solution μi and break its multiplier λi appropriately (see appendix).

We will distinguish between two cases (one for each case of the algorithm,
i.e. step 1.(a) or 1.(b)) and we will prove the result inductively. The base case
of the induction inside the algorithm is the trivial case of the empty graph.
Focus, w.l.o.g., at the first execution of the algorithm and assume that we have
an α-approximate convex decomposition of x′ (x∗ without edge e) i.e. αpTx′ =∑

i λiμi where μi’s ∈Mc and 1Tμ = 1. Moreover, by Carathéodory’s Theorem,

Approximation Algorithms for Bounded Color Matchings 631

this collection of matchings is sparse (at most |supp(x′)|+ 1 matchings μi). Let
u, v the endpoints of e selected in the first step of the algorithm and assume
that c−1(e) = j ∈ [k]. Firstly, we will handle the case where the edge e has been
selected according to the rule 1.(b) of the algorithm, which is slightly easier.

According to the algorithm (using Lemma 2), we know that there must exist
a tight color class cj ∈ C with the property that

|supp(x∗) ∩Ej | ≤ �wj�+ 1 ⇒ ∃e ∈ supp(x∗) ∩ cj : x∗e ≥
wj

�wj�+ 1

Lemma 3. If we select to pack an edge e of color cj according to rule 1.(b) of
the algorithm, then the fraction of the solutions μi that e can be added is at least
1
2 i.e.

∑
j∈κe

λj ≥ 1
2 .

Proof. We will show that at least 1
2 fraction of the solutions μi can facilitate

such an e. Assume that we can identify a color class cj ∈ Q in the reduced
instance induced by the current set of edges such that for these reduced color
bounds we have that |supp(x∗)∩Ej | ≤ �wj�+ 1. Let e = {u, v} be an edge from
supp(x∗) ∩ Ej . Let ξ ∈ supp(x∗) be the index of e. Observe that in the reduced
solution x′ (defined as x∗ without e), there are exactly �wj� edges of color cj
(summing up to wj − x∗e) and, moreover, this number �wj� is at most the initial
(integer) color bound for Ej .

All the solutions μi that constitute the α-approximate decomposition for the
residual solution x′ that block the insertion of e (i.e. the solutions μi such that
μi∪{e} is not feasible anymore) are these μis that have edges adjacent to either
of u, v and those that have �wj� edges of color j and so we have that in an
α-approximate decomposition, the fraction of μi’s that block e is

α(1 − xe) + α(1 − xe) + α(
wj − xe
�wj�

) = A

and so if we would like to pack edge e to an α fraction of the μi’s that
constitute the α approximate decomposition of x′, then we must require that
1−A ≥ αx∗e . From this we conclude that the fraction of the solutions that e can
be added is

1−
(
α(1 − xe) + α(1 − xe) + α(

wj − xe
�wj�

)
)

from which we get that α ≤ 1

2+
wj

�wj�−xe(1+
1

�wj�)
= 1

σ . We will deliver an upper

bound on σ. Using the bound on the variable xe, we have that

σ ≤ 2 +
(wj

�wj�
− wj

�wj�+ 1
(1 +

1

�wj�
)
)

= 2 +
(wj

�wj�
− wj

�wj�+ 1
− wj

�wj�
· 1

�wj�+ 1

)
= 2 +

((�wj�+ 1)wj − wj�wj� − wj

�wj�(�wj�+ 1)

)
= 2

632 G. Stamoulis

and so 1/σ ≥ 1/2 so we can select α = 1
2 to satisfy the bound on α delivered

above i.e. α ≤ 1
σ .

Now we move on to prove the second case: if we select an edge e (with end-
points u, v ∈ V and color j ∈ [k]) according to rule 1.(a) of the algorithm, then
this edge can be packed again into an α fraction of the solutions (matchings)
that constitute an α-approximate decomposition of the subgraph induced by the
current residual solution x′ without the edge e. For this, we need to define the
set of the solutions μi that block the insertion of e slightly more carefully.

Let Be be the set of all solutions μi that constitute an α-approximate decom-
position of x′ (current solution without edge e) that block the insertion of e. In
Be, as before, we add all μi that have edges adjacent to either of the endpoints
u, v of e. We need to describe which solutions μi are blocking solutions for e with
respect to its color class cj . The natural way is to consider the solutions that are
“full” of color cj i.e. have wj edges of color cj (condition (2)). Unfortunately, if
we follow this rule, the result would be a slightly worse approximation guarantee
than our goal i.e. we can guarantee that e can be packed into a 2

5 fraction of the
μi’s resulting in a 2

5 approximation guarantee.
Instead, we will define blocking solutions of edge e, with respect to color cj ,

all the solutions μi such that |μi ∩Ej | = �
∑

e′∈Ej
x∗e′� (in the subgraph induced

by the current solution vector x∗).

Lemma 4. Let x ∈ [0, 1]E be any fractional feasible solution of the natural LP
for the BCM problem and let θj = �

∑
e∈Ej

xe� ≤ wj, for every color class
cj ∈ C. Assume that we have an α-approximate decomposition I for x, i.e. a
collection of feasible matchings {μi}i∈I together with their multipliers such that
α · x =

∑
i λiμi. For a color class cj define W (j) = {μi : |μi ∩ Ej | = θj}. Then

we have that

Λ(Wj) =
∑

μi∈W (j)

λi ≤ α
(

1 + F
(∑

e′∈Ej

xe′
))

where F(y) = y − �y� for y > 0 is the fractional part of y. Moreover, let
e = {u, v} be an edge with c(e) = cj , j ∈ [k] such that xe > 0. Let G[x′] :=
G[x] \ {e} and assume that we have an α approximate convex decomposition for
G[x′] for some α ∈ (0, 1). Define the set of blocking solutions (with respect to
the approximate decomposition of x′) for e due to color cj as:

Be(j) =

{
μi : |μi ∩Ej | = �

∑
e′∈Ej

xe′�
}

Then we have that ∑
i:μi∈Be(j)

λi ≤ α(1 − xe)

Proof. We will prove the first claim with induction on x. The second claim will
follow easily from the first one. For the base case assume that x = 0E. Then the

Approximation Algorithms for Bounded Color Matchings 633

condition is automatically satisfied (take any empty matching with multiplier
equal to 1). In this case Wj = ∅, for all color classes cj.

Assume that the claim is true for all but the first edge of color cj to be
removed (first with respect to the inductive process of obtaining approximate
decompositions), i.e., assume that it is true for the subgraph G[x′] := G[x]\ {e}.
Let ef be that edge. Define Xēf =

∑
e∈Ej\{ef} xe in the current subgraph. We

will distinguish between two cases:

First case: �Xēf � = �Xēf + xef �: In this case we have that∑
j∈W (j)

λj ≤
∑
μγ∈Γ

λμγ + αxēf ≤ α
(

1 + F
(
Xēf

))
+ αxēf =

= α
(

1 +
∑

e∈Ej\{ef}
xe − �

∑
e′∈Ej\{ef}

xe′�+ xef

)
= α

(
1 +

∑
e∈Ej

xe − �Xēf �
)

= α
(

1 +
∑
e∈Ej

xe − �Xēf + xef �
)

= α
(

1 +
∑
e∈Ej

xe − �
∑
e∈Ej

xe�
)

= α
(

1 + F
(∑

e′∈Ej

xe′
))

where Γ = {μγ : |μi∩Ej | = �Xēf �} for the feasible matchings μγ that consti-
tute the approximate decomposition of the current subgraph G[x′] (without
the edge ef). The first inequality is true because we have inserted an α frac-
tion of ef into the current approximate decomposition. The second inequality
follows by the inductive hypothesis.

Second case: �Xēf � = �Xēf + xef �: Observe that in this case we have that
�Xēf � = �Xēf +xef �− 1. Assume that we have an α-approximate decompo-
sition for the subgraph induced by all the edges except ef . Now, the set of
matchings that block the insertion of edge ef to the current approximate de-
composition contains all the matchings μi such that |μi ∩Ej | = �

∑
e∈Ej

xe�
(for the current set of edges of color cj). But observe that since �Xēf � =
�Xēf + xef � = �

∑
e∈Ej

xe�, no matching μi from the current approximate

decomposition has this property (that |μi ∩ Ej | = �
∑

e∈Ej
xe�). If either of

axef or Λ(Wj) (for the subgraph induced by all edges but ef) is less than
α(1 +F(

∑
e′∈Ej

xe′)), then we are done. Otherwise we might need to dupli-
cate some solutions μi that constitute the approximate convex decomposition
of x′ to make sure that Λ(Wj) = α(1 + F(

∑
e′∈Ej

xe′)).

We need to prove the second claim i.e.,
∑

i:μi∈Be(j)
λi ≤ α(1−xe). In the first

case (�Xēf � = �Xēf +xef �), observe that Be(j) does not change after the removal
of ef , i.e., in the subgraph induced by the remaining edges, the matchings μi

with the property |μi ∩ Ej | = �
∑

e′∈Ej
xe′� are the same in both cases. So we

have that

634 G. Stamoulis∑
i:μi∈Be(j)

λi = Λ(Wj) =
∑

μi∈W (j)

λi ≤ α
(

1 + F
(∑

e′∈Ej\{xef
}
xe′

))
= α

(
1 +

∑
e∈Ej\{ef}

xe′ − �
∑

e∈Ej\{ef}
xe′�

)
= α

(
1 +

∑
e∈Ej

xe′ − xef − �Xef + xef �
)

= α
(

1− xef +
∑
e∈Ej

xe′ − �Xef + xef �︸ ︷︷ ︸
≤0

)

≤ α(1− xef)

where the quantities Λ(Wj) and
∑

μi∈W (j) λi are defined in the subgraph

without ef and with respect to the α-approximate decomposition defined by x′.
As for the second case, we already claimed that in an α-approximate decom-

position I for G[x′] = G[x] \ {ef}, no solution μi ∈ I can block the insertion of
ef because in G[x′] we have that �X̄ef � = �Xēf + xef � − 1 and by construction
in I we do not have any μi such that |μi∩Ej | = �X̄ef �+1 to block the insertion
of ef . Now, as we already argued, if Λ(Wj) (in G[x′] which to avoid confusion
we denote as Λx′(Wj)is less than α(1 + F(

∑
e′∈Ej

xe′)) then Bef (j) = ∅ in this

case and we are done. But in the case that Λ(Wj) (in G[x′])is strictly more than
α(1 + F(

∑
e′∈Ej

xe′)), then we should set Bef (j) ⊆ Λx′(Wj) such that

∑
i∈Bef

(j)

= Λx′(Wj)− α(1 + F(
∑

e′∈Ej

xe′))

≤ α
(

1 + X̄ef − �X̄ef �
)
− α

(
1 + X̄ef + xef − �X̄ef + xef �

)
= α

(
− xef −�X̄ef �+ �X̄ef + xef �︸ ︷︷ ︸

=1

)
= α

(
1− xef

)
Now, with the help of the previous claim, we will show that when we apply

rule 1.(a) of our algorithm, we can add the selected edge e into an α = 1
2 of the

matchings μi that constitute an α approximate convex decomposition I of the
residual solution. Remember that the rule 1.(a) says that

∃v ∈ F : |supp(x∗ ∩ δ(v))| ≤ 2 ⇒ ∃e ∈ δ(v) : xe ≥
βv
2

As before, we want to calculate the fraction of the matchings μi that e = {u, v}
of color cj ∈ C can be inserted preserving feasibility (i.e., μi is still a matching)
and the above rule (that in the resulting matching μi after the addition of e
we have that |μi ∩ Ej | ≤ θj). For this, we will calculate the fraction of μi that

Approximation Algorithms for Bounded Color Matchings 635

block the insertion of e: these are all the matchings μi that have edges adjacent
to either u or v, and all the matchings μj that have θj edges of color cj. In the
residual solution vector x′ (x without e) we have that (1)

∑
e′∈δ(u) x

′
e′ ≤ 1− xe,

(2) the single edge e2 adjacent to v has xe2 = βv − xe ≤ βv/2 (remember that
we have selected v such that the degree of v is equal to 2), and since we have
an α-approximate convex decomposition of x′, this means that the fraction of
solutions that block the insertion of e (using also the previous claim) is at most

α(1 − xe) + α(βv − xe) + α(1 − xe) = B

In clear analogy with the previous case (Lemma 3), since we want to insert e
into an α fraction of the matchings in I, we want that 1−B ≥ αxe from which
we conclude that the fraction of the matchings μi of I that e can be inserted is
at least

1− α
(

1− xe + βv − xe + 1− xe

)
≥ αxe ⇒ α ≤ 1

1 + βv − xe + 1− xe

and using the fact that xe ≥ βv

2 ⇒ βv − 2xe ≤ 0 we conclude that α ≤ 1
2

such that we can select α = 1
2 in this case as well. And so, in clear analogy with

Lemma 3 we have proved the following:

Lemma 5. If we select to insert an edge e of color cj according to rule 1.(a) of
the algorithm, then the fraction of the solutions μi of an α-approximate convex
decomposition of the residual solution x′ that e can be added is at least 1

2 .

Theorem 2. We can, in polynomial time, construct an 1
2 -approximate convex

decomposition of x∗, resulting in a polynomial time 1
2 -approximation algorithm

for BCM in general graphs.

Acknowledgements. The author would like to thank Monaldo Mastrolilli for
his support during the development of this work, Christos Nomikos and Panagi-
otis Cheilaris for discussions various issues in preliminary versions of this work.

References

1. Bampas, E., Pagourtzis, A., Potika, K.: An experimental study of maximum profit
wavelength assignment in wdm rings. Networks 57(3), 285–293 (2011)

2. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and bud-
geted matroid intersection via the gasoline puzzle. In: Lodi, A., Panconesi, A.,
Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 273–287. Springer, Heidelberg
(2008)

3. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 214–219.
Springer, Heidelberg (2000)

4. Caragiannis, I.: Wavelength management in wdm rings to maximize the number of
connections. SIAM J. Discrete Math. 23(2), 959–978 (2009)

636 G. Stamoulis

5. Carathéodory, C.: Über den variabilitätsbereich der fourierschen konstanten
von positiven harmonischen funktionen. Rendiconti del Circolo Matematico di
Palermo 32, 193–217 (1911)

6. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for
hypergraph matching. Math. Program. 135(1-2), 123–148 (2012)

7. Chekuri, C., Vondrák, J., Zenklusen, R.: Multi-budgeted matchings and matroid
intersection via dependent rounding. In: SODA, pp. 1080–1097 (2011)

8. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. of Res.
the Nat. Bureau of Standards 69B, 125–130 (1965)

9. Fürer, M., Yu, H.: Approximate the k-set packing problem by local improvements.
In: ISCO-3rd International Symbosium on Combinatorial Optimization, Lisboa,
Portugal, March 5-7, Lisboa, Portugal, March 5-7 (2014)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

11. Grandoni, F., Ravi, R., Singh, M.: Iterative rounding for multi-objective optimiza-
tion problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
95–106. Springer, Heidelberg (2009)

12. Grandoni, F., Zenklusen, R.: Approximation schemes for multi-budgeted indepen-
dence systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 536–548. Springer, Heidelberg (2010)

13. Mastrolilli, M., Stamoulis, G.: Constrained matching problems in bipartite graphs.
In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS,
vol. 7422, pp. 344–355. Springer, Heidelberg (2012)

14. Mastrolilli, M., Stamoulis, G.: Bi-criteria approximation algorithms for restricted
matchings. Theoretical Computer Science 540-541, 115–132 (2014)

15. Monnot, J.: The labeled perfect matching in bipartite graphs. Inf. Process.
Lett. 96(3), 81–88 (2005)

16. Nomikos, C., Pagourtzis, A., Zachos, S.: Minimizing request blocking in all-optical
rings. In: IEEE INFOCOM (2003)

17. Nomikos, C., Pagourtzis, A., Zachos, S.: Randomized and approximation algo-
rithms for blue-red matching. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS,
vol. 4708, pp. 715–725. Springer, Heidelberg (2007)

18. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree
problems. J. ACM 29(2), 285–309 (1982)

19. Parekh, O.: Iterative packing for demand and hypergraph matching. In: Günlük,
O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 349–361. Springer,
Heidelberg (2011)

20. Yuster, R.: Almost exact matchings. Algorithmica 63(1-2), 39–50 (2012)

Author Index

Abasi, Hasan II-1
Abu Zaid, F. I-50
Adsul, Bharat I-474
Allender, Eric II-13, II-25
Ambainis, Andris II-33
Asano, Tetsuo II-45

Balaji, Nikhil II-13
Bannai, Hideo II-565
Béal, Marie-Pierre I-63
Belmonte, Rémy II-57
Bersani, Marcello M. I-75
Bevern, René van II-69
Beyersdorff, Olaf II-81
Bezáková, Ivona II-94
Biere, Armin II-481
Bilò, Vittorio II-106
Blockelet, Michel I-63
Blumensath, Achim I-87
Bollig, Beate II-118
Bourhis, Pierre I-99
Boyar, Joan II-130
Bredereck, Robert II-69
Bruse, Florian I-111
Bshouty, Nader H. II-1
Bundala, Daniel I-123

Cai, Leizhen II-141
Carpi, Arturo I-135
Carton, Olivier I-87
Cassaigne, Julien I-147, I-159
Chakraborty, Supratik I-474
Chatterjee, Krishnendu I-1
Chaturvedi, Namit I-171
Chen, Jiehua II-69, II-153
Chen, Ruiwen II-165
Chen, Yijia I-183
Chew, Leroy II-81
Chillara, Suryajith II-177
Choffrut, Christian I-196
Colcombet, Thomas I-87, I-208
Courtois, Jean-Baptiste I-220
Cui, Cewei I-232
Cygan, Marek II-189

Dang, Zhe I-232
Das, Bireswar II-25
Datta, Samir II-13
Daviaud, Laure I-208
Decker, Thomas II-226
de Graaf, Maurits II-201
Delfosse, Nicolas II-239
De Pril, Julie II-213
Dı́az, Josep II-251
Dima, Cătălin I-63
Domı́nguez, Jesús I-244

Eickmeyer, Kord I-256
Elberfeld, Michael I-256
Erlebach, Thomas II-263

Fafianie, Stefan II-275
Faliszewski, Piotr II-153
Fanelli, Angelo II-106
Feghali, Carl II-287
Felsner, Stefan II-299
Fernández, Maribel I-244
Fici, Gabriele I-135, I-159
Fijalkow, Nathanaël I-267, I-279
Find, Magnus Gausdal II-130
Fischer, Thomas R. I-232
Flammini, Michele II-106
Flesch, János II-213
Frid, Anna E. I-147
Froese, Vincent II-69
Fröhlich, Andreas II-481

Gabizon, Ariel II-1
Geffert, Viliam I-291
Gelderie, Marcus I-171
Gimbert, Hugo I-267
Glaßer, Christian II-311
Gogacz, Tomasz I-303
Golovach, Petr A. II-324
Grädel, E. I-50
Grohe, M. I-50
Guillon, Bruno I-196

Hansen, Kristoffer Arnsfelt II-336
Haramaty, Elad II-1

638 Author Index

Harwath, Frederik I-256
Hirahara, Shuichi II-348
Hoffmann, Michael II-263
Holub, Štěpán I-135, I-315
Honsell, Furio I-327
Horn, Florian I-267
Huang, Chien-Chung II-360
Huschenbett, Martin I-340

I, Tomohiro II-565
Ibarra, Oscar H. I-232
Inenaga, Shunsuke II-565
Itsykson, Dmitry II-372
Ivanyos, Gábor II-226

Jacob, Riko II-384
Janota, Mikoláš II-81
Jirásková, Galina I-315
Johnson, Matthew II-287, II-396
Jolivet, Timo I-352
Jonsson, Peter II-408, II-420

Kabanets, Valentine II-165
Kamiński, Marcin II-57
Kammer, Frank II-263
Kari, Jarkko I-352
Kawamura, Akitoshi II-348, II-432
Kieroński, Emanuel I-365
Kirkpatrick, David II-45
Klauck, Hartmut II-445
Knauer, Kolja II-299
Kolay, Sudeshna II-457
Komarath, Balagopal II-336
Kováč, Ivan II-469
Kovásznai, Gergely II-481
Kratochv́ıl, Jan II-493
Kratsch, Stefan II-275
Kriege, Nils II-505
Kuipers, Jeroen II-213
Kulkarni, Raghav II-226
Kun, Jeremy II-517
Kuske, Dietrich I-340
Kuusisto, Antti I-365

Lagerkvist, Victor II-408
Lang, Martin I-390
Langley, Zachary II-94
La Torre, Salvatore I-377
Lewenstein, Moshe II-529

Li, Zhentao II-239
Lieber, Tobias II-384
Liquori, Luigi I-327
Löding, Christof I-390

Mamageishvili, Akaki II-541
Manea, Florin I-402
Manthey, Bodo II-201
Manuel, Amaldev I-390
Marusic, Ines I-414
Marx, Dániel II-189
Masopust, Tomáš I-315
Mazowiecki, Filip I-426
Mennicke, Roy I-438
Mertzios, George B. II-251, II-299
Michail, Othon II-553
Michalewski, Henryk I-303
Mihalák, Matúš II-541
Mio, Matteo I-303
Misra, Pranabendu II-457
Monaco, Gianpiero II-106
Montanari, Angelo I-451
Montemezzani, Simone II-541
Morak, Michael I-99
Moscardelli, Luca II-106
Mukhopadhyay, Partha II-177
Müller, Mike I-402
Müller, Moritz I-183
Munro, J. Ian II-529
Murawski, Andrzej S. I-464
Murlak, Filip I-426
Mutzel, Petra II-505

Nakagawa, Kotaro II-45
Nakashima, Yuto II-565
Napoli, Margherita I-377
Nasre, Meghana II-577
Nekrich, Yakov II-529
Nicaud, Cyril I-5
Niedermeier, Rolf II-69, II-153
Nowotka, Dirk I-402

Okabe, Takashi II-565
Okhotin, Alexander I-291
Opršal, Jakub I-135
Ota, Hiroyuki II-432
Ott, Sebastian II-360
Ouaknine, Joël I-123
Oualhadj, Youssouf I-267

Author Index 639

Pakusa, W. I-50
Paperman, Charles I-279
Parlato, Gennaro I-377
Paulusma, Daniël II-57, II-287, II-396
Pieris, Andreas I-99
Pilipczuk, Marcin II-189
Pilipczuk, Micha�l II-189
Pinter, Ron Y. II-589
Podder, Supartha II-445
Pontecorvi, Matteo II-577
Prūsis, Krǐsjānis II-33
Puppis, Gabriele I-451
Puzynina, Svetlana I-147

Qiao, Youming II-226

Ramachandran, Vijaya II-577
Ramanujan, M.S. II-457
Ramsay, Steven J. I-464
Reyzin, Lev II-517
Rossi, Matteo I-75

Sala, Pietro I-451
Sankaran, Abhisekh I-474
San Pietro, Pierluigi I-75
Santha, Miklos II-226
Sarma, Jayalal II-336
Saurabh, Nitin II-165
Saurabh, Saket II-457
Scagnetto, Ivan I-327
Schewe, Sven I-486, I-499
Schmidt, Johannes II-408
Schmitz, Sylvain I-220
Schoenmakers, Gijs II-213
Sciortino, Marinella I-135, I-159
Seki, Shinnosuke I-402
Selečéniová, Ivana II-469
Selvam, Vyas Ram II-601
Shachnai, Hadas II-589, II-613
Sherstov, Alexander A. I-24
Sitchinava, Nodari II-384
Skrzypczak, Micha�l I-303
Skyum, Sven II-336

Smith, Tim I-511, I-523
Sohler, Christian I-44
Sokolov, Dmitry II-372
Spirakis, Paul G. II-553
Stamoulis, Georgios II-625
Steinová, Monika II-469
Stewart, Anthony II-396

Takeda, Masayuki II-565
Talebanfard, Navid II-336
Talmon, Nimrod II-153
Telle, Jan Arne II-493
Tesař, Marek II-493
Thankachan, Sharma V. II-529
Thapper, Johan II-420
Thomassé, Stéphan II-239
Tzevelekos, Nikos I-464

Ueckerdt, Torsten II-299
Uppman, Hannes II-408

van ’t Hof, Pim II-57
Varghese, Thomas I-486, I-499
Veith, Helmut II-481
Voloshin, Ariella II-613
Vrieze, Koos II-213

Watanabe, Osamu II-45
Witek, Maximilian II-311
Witkowski, Adam I-426
Woeginger, Gerhard J. II-69
Worrell, James I-414
Wrona, Micha�l I-535

Ye, Junjie II-141

Zaks, Shmuel II-613
Zamboni, Luca Q. I-147, I-159
Zehavi, Meirav II-589
Zetzsche, Georg I-340
Zeume, Thomas I-547
Zuleger, Florian I-208

	Preface
	Conference Organization
	Table of Contents – Part II
	Algorithms, Complexity and Games
	On r-Simple k-Path
	1 Introduction
	1.1 Our Results
	1.2 r-Monomial Detection
	1.3 Comparision to the Method of Koutis and Williams

	2 Overview of the Proof of Theorem 2
	3 Definitions and Preliminary Results
	4 Gap
	5 Fromr-Simple k-Path to Multivariate Polynomial
	6 Low Degree Tester
	7 Testingif PG Contains an r-Monomial
	References

	Low-Depth Uniform Threshold Circuitsand the Bit-Complexity of StraightLine Programs
	1 Introduction
	2 Preliminaries
	3 Uniform Circuits for Division
	3.1 Consequences for the Counting Hierarchy

	4 Integer Matrix Powering
	5 Open Questions and Discussion
	References

	Zero Knowledge and Circuit Minimization
	1 Introduction
	2 Preliminaries and Technical Lemmas
	3 Graph Isomorphism and Circuit Size
	4 Zero Knowledge
	5 Conclusions and Open Problems
	References

	A Tight Lower Bound on Certificate Complexityin Terms of Block Sensitivity and Sensitivity
	1 Introduction
	2 Preliminaries
	3 Background
	4 Separation between C1(f) and bs0(f)
	5 Functions with s0(f) Equal to Number of 1-certificates
	5.1 General Case: Functions with Overlaps
	5.2 Functions with No Overlaps

	6 Conclusions
	References

	O(√n)-Space and Polynomial-Time Algorithmfor Planar Directed Graph Reachability
	1 Introduction and Motivation
	2 Background
	3 Planar Graph Reachability Algorithm
	3.1 Preliminaries
	3.2 The Algorithm

	4 Cycle-Separators
	5 Conclusion
	References

	Forbidden Induced Subgraphs and the Priceof Connectivity for Feedback Vertex Set
	1 Introduction
	2 Proof of Theorem 1
	3 Which Graphs H Cover Which Pairs (i, j)?
	4 Applications of Our Results
	5 Conclusion
	References

	Network-Based Dissolution
	1 Introduction
	2 Formal Setting
	3 Complexity for Partially Known Dissolutions
	4 Complexity Dichotomy with Respect to District Sizes
	4.1 Structural Properties
	4.2 Complexity Dichotomy for Dissolution
	4.3 Complexity of Biased Dissolution

	5 Complexity on Special Graph Classes
	6 Conclusion
	References

	On Unification of QBF Resolution-Based Calculi
	1 Introduction
	2 Preliminaries
	2.1 Resolution-Based Calculi for QBF

	3 Instantiation-Based Calculi IR-calc and IRM-calc
	4 Soundness and Extraction of Winning Strategies
	5 Completeness and Simulations of Known QBF Systems
	6 Conclusion
	References

	Minimum Planar Multi-sink Cutswith Connectivity Priors
	1 Introduction
	2 Preliminaries
	3 GraphH: Cutting along a Shortest Path Tree
	4 Source-Sinks Separating Paths
	5 Minimum (s, T)-Separating Cycle
	References

	The Price of Envy-Freenessin Machine Scheduling
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Identical Machines
	3.2 Related Machines
	3.3 Unrelated Machines
	3.4 Complexity

	4 Extensions
	4.1 Restricted Scheduling
	4.2 Sum of Completion Times

	References

	On the Complexity of Some Ordering Problems
	1 Introduction
	2 Preliminaries
	3 On the Variable Ordering Problem for Complete OBDDs
	4 On the Optimal Vertex Encoding Problem
	References

	The Relationship between MultiplicativeComplexity and Nonlinearity
	1 Definitions and Preliminaries
	1.1 Linear Codes

	2 Introduction
	2.1 Related Results

	3 Lower Bounds on Multiplicative Complexity
	4 Nonlinearity and Multiplicative Complexity
	5 Open Problems
	References

	Dual Connectedness of Edge-Bicolored Graphsand Beyond
	1 Introduction
	2 Dually Connected Induced Subgraphs
	3 Dual Connectedness by Vertex Deletion
	4 Dual Separators
	5 Concluding Remarks
	References

	Combinatorial Voter Control in Elections
	1 Introduction
	2 Preliminaries
	3 Complexity for Unrestricted Elections
	4 Single-Peaked and Single-Crossing Elections
	5 Conclusion
	References

	An Improved Deterministic #SAT Algorithmfor Small De Morgan Formulas
	1 Introduction
	1.1 Our Main Results and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Formula Simplification Procedures
	3.1 Basic Simplification
	3.2 Simplification under All One-Variable Restrictions

	4 Constructive and Concentrated Shrinkage
	4.1 Average Savings under One-Variable Restrictions
	4.2 Concentrated Shrinkage

	5 #SAT Algorithm for n2.63-size de Morgan Formulas
	6 Open Questions
	References

	On the Limits of Depth Reduction at Depth 3Over Small Finite Fields
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 The Polynomial Families

	3 The Derivative Space of ΣΠΣ Circuits Over SmallFields
	4 Derivative Spaces of the Polynomial Families
	5 A Covering Argument
	References

	Hitting Forbidden Subgraphs in Graphsof Bounded Treewidth
	1 Introduction
	2 Preliminaries
	3 General Algorithm for H-Subgraph Hitting
	4 Discussion on Special Cases of H-Subgraph Hitting
	5 Overview of the Proof for Colorful Variant
	5.1 Proof Sketch of Theorem 1
	5.2 Proof Sketch of Theorem 2

	6 Conclusions and Open Problems
	References

	Probabilistic Analysis of Power Assignments
	1 Introduction
	1.1 Problem Statement and Previous Results
	1.2 Our Contribution

	2 Definitions and Notation
	3 Properties of the Power Assignment Functional
	3.1 Degrees and Cones
	3.2 Deterministic Properties
	3.3 Probabilistic Properties

	4 Convergence
	4.1 Standard Convergence
	4.2 Concentration with Warnke’s Inequality
	4.3 Complete Convergence for p ≥ d

	5 Average-Case Ratio of the MST Heuristic
	5.1 The General Case
	5.2 An Improved Bound for the One-Dimensional Case

	6 Conclusions and Open Problems
	References

	Existence of Secure Equilibriumin Multi-player Games with Perfect Information
	1 Introduction
	2 The Model
	3 The Main Results
	4 The Proof of Theorem 1
	5 The Proof of Theorem 2
	6 Concluding Remarks
	References

	An Efficient Quantum Algorithm for FindingHidden Parabolic Subgroups in the GeneralLinear Group
	1 Introduction
	2 Preliminary
	2.1 Notations and Facts
	2.2 The Quantum Fourier Transform of Linear Spaces
	2.3 A Common Procedure for HSP Algorithms

	3 Maximal Parabolic Subgroups
	4 A Tool: Finding Complements in Small Stabilizers
	5 The Main Algorithm
	5.1 The Structure of the Algorithm
	5.2 Guessing a Part of the Flag
	5.3 Checking and Recursion

	References

	A Note on the Minimum Distanceof Quantum LDPC Codes
	1 Introduction
	2 Minimum Distance of Quantum Codes
	3 A Family of Quantum Codes Based on Cayley Graphs
	4 Borders and Pseudo-borders of Cayley Graphs
	5 Borders and Pseudo-borders of the Hypercube
	6 Bound on the Size of Local Pseudo-borders of the Hypercube
	6.1 Lower Bounds for 2-Subsets and 4-Subsets
	6.2 Lower Bounds for t-Pseudo-borders
	6.3 Lower Bounds for Odd Sets

	References

	Minimum Bisection Is NP-hardon Unit Disk Graphs
	1 Introduction
	2 Preliminaries and Notation
	3 Construction of the Unit Disk Graph Gn
	3.1 The Half-lines Containing the Disk Centers
	3.2 Three Useful Gadgets
	3.3 The Unit Disk Representation Rn of Gn

	4 Minimum Bisection on Unit Disk Graphs
	5 Concluding Remarks
	References

	Query-Competitive Algorithms for Cheapest SetProblems under Uncertainty
	1 Introduction
	2 Preliminaries
	3 Cheapest Set
	4 Minimum Multicut in Trees
	5 Minimum Matroid Base
	6 Competitive Lower Bounds
	7 Conclusion
	References

	Streaming Kernelization
	1 Introduction
	2 Preliminaries
	3 Single Pass Kernelization Algorithms
	4 Space Lower Bounds for Single Pass Kernels
	5 2-Pass Kernel for Edge Dominating Set
	6 Space Lower Bounds for Multi-pass Streaming Kernels
	7 Conclusion
	References

	A Reconfigurations Analogueof Brooks’ Theorem
	1 Introduction
	2 Proofs of Theorems
	3 Conclusions
	References

	Intersection Graphs of L-Shapesand Segments in the Plane
	1 Introduction and Motivation
	2 Proof of Theorem 2
	3 Proof of Theorem 3
	4 Proof of Theorem 4
	5 Proof of Theorem 5
	6 Conclusions and Open Problems
	References

	Autoreducibility and Mitoticityof Logspace-Complete Setsfor NP and Other Classes
	1 Introduction
	2 Preliminaries
	3 Ruling Sets for Autoreductions
	4 Weak Mitoticity
	4.1 Many-One Complete Sets
	4.2 Truth-Table Complete Sets with One Query
	4.3 Disjunctive Truth-Table Complete Sets for PSPACE

	5 Logspace Autoreducibility for NP
	6 Summary and Conclusion
	References

	Editing to a Connected Graph of Given Degrees
	1 Introduction
	2 Basic Definitions and Preliminaries
	3 Polynomial Kernel for Edge Editing to a Connected Graph of Given Degrees
	4 FPT Algorithm for Edge Editing to a Connected Regular Graph
	5 Conclusions
	References

	Circuit Complexity of Properties of Graphswith Constant Planar Cutwidth
	1 Introduction
	1.1 Results and Techniques

	2 Preliminaries
	3 Upper Bounds
	3.1 2-Coloring
	3.2 Bipartite Matching
	3.3 Disjoint Paths

	4 Conclusion
	References

	On Characterizations of RandomizedComputation Using PlainKolmogorov Complexity
	1 Introduction
	2 Preliminaries and Notations
	2.1 Kolmogorov Complexity

	3 Bounds for Time-Bounded Kolmogorov Complexity
	4 A Restricted Reduction
	5 Using the Set of Short Random Strings as Advice
	References

	New Results for Non-Preemptive Speed Scaling
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries and Notations
	3 Laminar Instances
	4 Equal-Volume Jobs
	5 Conclusion
	References

	Lower Bounds for Splittingsby Linear Combinations
	1 Introduction
	2 Preliminaries
	3 Lower Bound for 2-Fold Tseitin Formulas
	4 Lower Bound for Pigeonhole Principle
	5 Proof Systems Res-Lin and Sem-Lin
	References

	On the Complexity of List Rankingin the Parallel External Memory Model
	1 Introduction
	1.1 Our Contributions

	2 Modeling
	3 Counting Lower Bounds to the List Ranking Problem
	3.1 Proximate Neighbors Problem in PEM
	3.2 Semigroup Evaluation in the PEM Model
	3.3 Atomic Edge Contraction in the PEM Model
	3.4 Randomization and Relation to the List Ranking Problem

	4 The Guided Interval Fusion Problem (GIF)
	5 Upper Bounds
	References

	Knocking Out Pk-free Graphs
	1 Introduction
	2 Preliminaries
	3 Cographs
	4 Split Graphs
	5 Conclusions
	References

	Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Size-Preserving Reductions and Subexponential Time
	2.3 Clone Theory
	2.4 Operations and Relations

	3 The Easiest NP-Hard MAX-ONES and VCSP Problems
	3.1 The MAX-ONES Problem
	3.2 The VCSP Problem
	3.3 The Broader Picture

	4 Subexponential Time and the Exponential-Time Hypothesis
	5 Future Research
	References

	Affine Consistency and the Complexity of Semilinear Constraints
	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Semilinear Relations
	2.3 Unary Semilinear Relations
	2.4 Essential Convexity

	3 Tractability
	3.1 Affine Consistency
	3.2 Essential Convexity

	4 NP-Hardness
	5 Expansionsof {R+}
	6 Discussion and Future Work
	References

	Small Complexity Classesfor Computable Analysis
	1 Introduction
	2 TTE with Second-Order Polynomials
	2.1 Type-Two Machines
	2.2 Representations

	3 Small Type-Two Classes
	3.1 Logarithmic Space
	3.2 Circuits of Bounded Depth
	3.3 Reductions and Completeness
	3.4 Representations

	4 Applications
	4.1 Within FL and FNC
	4.2 P-complete Operations

	References

	Two Results about Quantum Messages
	1 Introduction
	1.1 One-Way Communication Complexity
	1.2 The Power of Quantum Proofs

	2 Preliminaries
	2.1 Quantum
	2.2 Communication Complexity Models
	2.3 Quantum Information Measures

	3 Making Quantum Messages Deterministic
	4 Quantum versus Classical Proofs
	References

	Parameterized Approximationsvia d-Skew-Symmetric Multicut
	1 Introduction
	2 Preliminaries
	3 Skew-Symmetric Graphs, Separators and Components
	3.1 The Notion of (L, k)-Sets

	4 Structural Properties and Computation of ((L, k)-Sets
	4.1 Computation of (L, k)-Sets

	5 Approximation Algorithm for d-Skew-SymmetricMulticut
	References

	On the Clique Editing Problem
	1 Introduction
	2 Preliminaries
	3 CliqueEditing on Bipartite Graphs andNP-completeness
	4 CliqueEditing on Planar Graphs
	5 Approximation Algorithms
	5.1 PTAS on Bipartite Graphs
	5.2 Constant Approximation Algorithm on General Graphs

	6 Conclusion
	References

	On the Complexity of Symbolic Verificationand Decision Problems in Bit-Vector Logic
	1 Introduction
	2 Preliminaries
	3 Bit-Vector Logic
	4 Motivating Example: Word-Level Model Checking
	5 Bit-Vector Representation of Problems
	6 Lifting Hardness
	7 Conclusion
	References

	Computational Complexity of CoveringThree-Vertex Multigraphs
	1 Introduction
	2 Preliminaries and Statement of Our Results
	3 Complexity for 2-Block Graphs on Three Vertices
	4 Complexity for 1-Block Graphs on Three Vertices
	5 Conclusion
	References

	Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs
	1 Introduction
	2 Preliminaries
	3 Tree Decompositions and Common Subgraph Problems
	4 A Polynomial-Time Algorithm for 2-MCS
	4.1 Solving 2-MCS with SP-trees

	References

	On Coloring Resilient Graphs
	1 Introduction and Related Work
	1.1 Related Work on Resilience
	1.2 Previous Work on Coloring

	2 Resilient SAT
	3 Resilient Graph Coloring and Preliminary Bounds
	3.1 Problem Definition and Remarks
	3.2 Observations
	3.3 Upper and Lower Bounds

	4 NP-Hardness of 1-Resilient 3-Colorability
	5 Discussion and Open Problems
	References

	Document Retrieval with One Wildcard
	1 Introduction
	2 Document Listing without Wildcards
	3 Document Listing with One Wildcard
	4 A Succinct Space Data Structure
	5 Multiple Patterns in a Document
	6 Conclusions
	References

	An Hn/2 Upper Bound on the Price of Stabilityof Undirected Network Design Games
	1 Introduction
	2 Preliminaries
	3 The≈ Hn/2 Upper Bound
	3.1 Case On Is Not Empty
	3.2 Case On Is Empty

	References

	Traveling Salesman Problemsin Temporal Graphs
	1 Introduction
	1.1 Our Approach-Contribution

	2 Preliminaries
	2.1 Problem Definitions

	3 Exploration of Temporal Graphs
	3.1 Deciding Explorability is Hard in Temporal Graphs
	3.2 Hardness of Approximate Temporal Exploration

	4 Temporal Traveling Salesman with Costs One and Two
	4.1 Approximating TTSP(1,2) via Maximum Independent Sets
	4.2 Improved Approximations for TTSP(1,2) via Set Packing

	References

	Inferring Strings from Lyndon Factorization
	1 Introduction
	2 Preliminaries
	3 Inferring a String with Given Lyndon Factorization
	3.1 Computing String on Alphabet of Arbitrary Size
	3.2 Computing String on Alphabet of Smallest Size
	3.3 Computing the Smallest Alphabet Size

	4 Enumerate Strings with Given Lyndon Factorization
	References

	Betweenness Centrality – Incrementaland Faster
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Incremental Edge Update
	3.1 Updating an SSSP DAG
	3.2 Updating Betweenness Centrality Scores

	4 Incremental Vertex Update
	4.1 Overview
	4.2 Vertex Update Algorithm

	5 Efficient Cache Oblivious Algorithm
	References

	Deterministic Parameterized Algorithmsfor the Graph Motif Problem
	1 Introduction
	1.1 Problem Statement
	1.2 Known Results and Our Contribution
	1.3 Techniques

	2 Preliminaries
	3 An Algorithm for GMD
	3.1 The Algorithm
	3.2 Correctness
	3.3 Running Time

	4 An Algorithm for GM
	5 An Algorithm for RGMD
	References

	The Two Queries Assumptionand Arthur-Merlin Classes
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Main Results
	3.1 AM = MA
	3.2 Relativizability of PH Collapse to AM
	3.3 PH ⊂ AM/Arthur−Advice=1
	3.4 Towards a Flat Collapse to PSAT[1]

	4 Conclusions and Open Problems
	References

	Flexible Bandwidth Assignmentwith Application to Optical Networks
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Related Works
	1.4 Our Results

	2 Preliminaries
	3 A 3-Approximation Algorithm for FBAP
	4 A(3+�)-Approximation Algorithm for FSAP
	5 A(2+�)-Approximation Algorithm for SAP
	6 Applications of FSAP and FBAP
	7 Summary and Future Work
	References

	Approximation Algorithms for Bounded ColorMatchings via Convex Decompositions
	1 Introduction
	2 A 12 Approximation Based on Approximate ConvexDecompositions
	References

	Author Index

