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Abstract. Urban green spaces play a crucial role in the creation of
healthy environments in densely populated areas. Agent-based systems
are commonly used to model processes such as green-space allocation. In
some cases, this systems delegate their spatial assignation to optimisation
techniques to find optimal solutions. However, the computational time
complexity and the uncertainty linked with long-term plans limit their
use. In this paper we explore an approach that makes use of a statistical
model which emulates the agent-based system’s behaviour based on a
limited number of prior simulations to inform a Genetic Algorithm.

The approach is tested on a urban growth simulation, in which the
overall goal is to find policies that maximise the inhabitants’ satisfaction.
We find that the model-driven approximation is effective at leading the
evolutionary algorithm towards optimal policies.

Keywords: Agent-based model · Genetic algorithm · Statistical model ·
Optimisation · Uncertainty · Green space planning

1 Introduction

The main purpose of urban planning is to improve the community’s quality of
life by creating a better social, economical and physical environment. One of the
most urgent research issues within this broad field is the study of mechanisms
that can mitigate the ecological degradation that is linked with modern urban
expansion. One possible strategy is reserving a collection of selected areas to
transform them into recreational parks.

However, this process is not as simple as choosing arbitrarily a random num-
ber of stands, the time planning and geographic distribution of these spaces
needs careful consideration to ensure the quality and quantity of environmental
services provided to the surrounding community [2].

This paper is a revised and extended version of a previous publication [1] reported
in the Proceedings of the 5th International Conference on Agents and Artificial
Intelligence. The key additions cover: Sects. 3 and 4 improvement of the complexity
of non-urban cells prices and its inclusion as a new source of uncertainty. In Sect. 5,
a new heuristic is studied to enrich the comparison phase. Finally in Sect. 6 more
experimental results and comparative evaluations are performed.
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There is much active research in designing long-term feasible public open
space plans, whereby researchers interested in urban planning and sustainability
have investigated a range of agent-based systems and similar mechanisms to
explore the consequences of different strategies [3–5].

One of the most common interests in such work is the study of the dynam-
ics involved in urban growth, which is linked with the relative distribution
of urbanised, industrial and green spaces along with their impact on quality-
of-life issues, and how these factors depend on the broad strategies in place for
land-use [6].

However, the computational time complexity of simulations and the many
and varied sources of uncertainty can limit the use of these systems. The aim
of this paper is to address this situation by wrapping optimisation over the
agent-based simulation process, but use a statistical model of the agent-based
simulation in place of the real knowledge. This requires a limited number of prior
simulations of the agent-based urban growth system in order to allows the use
of an evolutionary algorithm to optimise urban growth policies.

Note that similar simulation-based approximations for optimisation are also
used in other fields, such as user simulations for spoken dialogue systems [7],
emulators for managing uncertainty in complex models, such as climate models
(MUCM) or to reduce the computational time required to run the optimisation
procedure in combinatorial problems [8].

The approach is tested on a typical urban growth simulation, in which the
overall goal is to find policies that maximise the ’satisfaction’ of the residents
by the protection of a optimal subset of green spaces. The computational results
are compared and evaluated with those gathered from several simple heuristics.

The remainder of the paper is organised as follows. Section 2 focusses on
various introductory and preliminary details, covering the urban planning prob-
lem, the role of agent based simulation, and evolutionary algorithms. Section 3
then provides a detailed account of the models, assumptions and processes we
employ in our experiments. Section 4 is devoted to the sources of uncertainty that
are handled by our new statistical genetic algorithm approach. Computational
experiments are specified in Sect. 5, and the results are presented and discussed
in Sect. 6. Section 7 then draws some conclusions and we discuss further research.

2 Problem Definition

Open green urban areas play an important role in maintaining a healthy urban
environment. Among all their favourable effects, their crucial impact in the econ-
omy, quality of life and in the local climate of the cities [9,10] can be highlighted.
However their distribution and location should be carefully studied by develop-
ing an adequate, long-term planning strategy. The fact that makes this task
particularly difficult is the fact that the urban expansion is a complex process
where their effects can appear at many time-scales.
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2.1 Urban Open Space Planning

There is a lack of agreement on how to implement and implant a given plan-
ning process and which measures should be selected. On this regard, the most
remarkable points to discuss are:

– Goal settings: how to select adequate planning criteria.
– Deciding the most suitable size for the open space according to the current

and expected necessities of the population.
– Accessibility & location.
– The design of the potential activities according to different age, cultures and

ethnic groups.

The present work follows a demand approach where the planning process is
based on attributes of the specific target population. These attributes are:

– Size of the urban population.
– Subjective personal preferences.
– Residential distribution.

2.2 Problem Formulation and Techniques

The problem domain of the present paper can be included within the field of sto-
chastic control theory. The developed model represents a paradigm of allocation
of resources within a sequential decision-making simulator.

Generally speaking, a sequential planning problem can be defined as follows:
an environment which can be described as a state-space set S and an action
set A where S and A are both finite. Each state s ∈ S is dependent on the
previous state of the system and the action a ∈ A taken. The transition function
δ controls how actions modify the state of its environment.

st+1 = δ(st, a) (1)

We define a policy Π such that the mechanism in charge of selecting the next
action is based on the current perception of the environment. This perception
can be total or partial:

Π : S → A

Π(st) = at (2)

In turn, the action a influences as well its environment provoking the change
of the current state. The process starts in the state s0 and by means of the
sequential application of the policy Π, further actions are chosen.

2.3 Cellular Automata and Agent-Based Modelling

The present study is based on the results collected from a basic urban growth
model where topological layout of the city is represented by a Cellular Automata
(CA). CA was proposed in the late 1940 s by John von Neumann and Stanislaw
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Ulam for discrete space-time representation of problems which obey their local
physics [11]. It is based on the assumption that by means of local interactions, the
model is capable of representing complex phenomena. The dynamics of the CA
are generated by a set of transition functions which define how cells can evolve
from one state to another.

The inhabitants who populate the city are modelled with the use of an Agent-
Based Model (ABM) approach. ABM has been used to understand the intercon-
nections, interdependences and feedbacks created among a set of heterogeneous
individual entities in order to fulfil their goals.

ABM along with CA taking the role of representing land-use change dynamics
have been applied broadly in the field of urban development. Mentionable is
their use to simulate allocation decisions [12,13] or in residential selection within
a non-stationary housing market [14,15]. Reference [16] applies these tools to
analyse how prices affect urban agent behaviour. Finally, [17] studied the role of
transportation in the evolution of an urban region.

2.4 Genetic Algorithm

Genetic Algorithm (GA) [18] can be defined as an heuristic that mimics the
behaviour of natural selection postulated by the English naturalist Charles
Darwin in the 19th Century [19]. This search strategy is based on the assump-
tion that nature evolves by the course of new generations preserving the species
more suited to their environment. The tools defined by a GA to improve the
population over time are the use of mechanisms like reproduction, mutation,
crossover and selection.

Here we use GA to optimise an allocation of resources problem, concretely
the placement of green spaces over a urban area such that some objectives are
met. GA has been successfully used to solve complex spatial problems [20,21].
However, its performance in uncertain environments has been questioned [22,23]
due to the fact that a simple GA has insufficient data to deal directly with
uncertainty. This weakness is the main reason why a GA, under this kind of
scenarios, should be defined carefully and provided with the support of external
tools in order to overcome these difficulties.

There exist different attempts and techniques that can be applied to GA to
provide it with this extra functionality. In [24] a Genetic-Algorithm-Aided Sto-
chastic Optimisation Model is applied to cope with the uncertainty related to the
study of air quality in urban areas. In contrast to probabilistic approaches [25]
resorts to anti-optimisation techniques (local search) to overcome the uncer-
tainty generated by the ageing factor presented in many engineering problems.
Following the same approach [26] successfully applies a variant constrained multi-
objective GA in a simulated topology and shape optimisation problem under
uncertainty.
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3 Model Description

The selected ABM-CA framework is used to represent a basic urban growth
model with a monocentric spatial structure based on the traditional Alonso’s
urban economic model [27]. The strategy of this model to explain the modern
urbanisation process is based on the maximisation of a utility function. Urban
pattern formation is the consequence of individual urban residence preferences
which achieve an economic competitive equilibrium between housing and com-
muting costs.

The physical layout of the city is configured by a 2-dimensional lattice of
50× 50 cells. Each cell corresponds to a physical portion of the city and it can
be populated by more than one agent (a family unit). The evolution of the city is
ruled by an internal schedule with a determined time-horizon of finite duration.
The dynamics of agents and cells allow the model to evolve between a set of
predefined one-directional states at each time step.

The types of the cell presented in the grid can be broadly divided into two
main groups: urbanised and non-urbanised cells.

3.1 Urban Cells

Urban cells represent cells that have been transformed from native ecosystems
into either impermeable surfaces or green areas formed normally by non-native
species [28].

In the model, when cells receive the permission to be urbanised, which figu-
ratively means that dwellings are constructed, they can allocate population that
is represented by agents. Agents decide their residence location by searching a
trade-off between their personal preferences and their economical restrictions.
This search involves the interaction among different parameters of the model
and assumes global knowledge of the current offer. The decision is represented
by the maximisation of the following utility function:

max U =(w, z, x, p : w > 0, z > 0, x ≥ 0, p > 0)
such that: w − z − kx + p = 0 (3)

where x represents the distance from the household to the Central Business
District (CBD) that is located in the centre of the lattice, w is the wage received
monthly. This quantity is defined by a uniform random process and does not
change throughout the life time of the agent, z is the price of the residential good
and k is the constant marginal community cost. Finally, p represents the agent’s
preference for houses located close to green areas which implies his acceptance to
pay more for this kind of houses. This parameter is an extension of the economic
competitive equilibrium described by [27]. Following this utility function agents
populate the urban cells of the grid.

Prices of the Urban Cells. They represent the amount of money that agents
have to pay regularly as a rental cost. Its value varies with the time and is
dependant on the following factors:
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– The Demand. The demand is defined according to the number of agents
living in a given cell.

• The demand for certain preferred locations increases their price.
• The drop in population of a cell decreases its price.
• If one cell does not receive any new neighbour during a determined period

of time, its value is reduced.
– Proximity to Green Areas. This factor affects positively the final price of

the dwellings in 10 %.

3.2 Non-urban Cells

Non-urban cells are cells that have not undergone a urbanisation transformation.

Biological Value. At the beginning of the simulation the model assigns a
stochastic value called BioCellValue to the set of non-urbanised cells. This para-
meter represents the ecological value of this parcel of land and is generated by
a uniformly random process U(0, 1). Apart from its initial value, the cells are
influenced by its neighbourhood:

BioNeighbourValue(c)=0;

for each cell n in neighbourhood(c){
if(BioCellValue(n)>= 0.7)

BioNeighbourValue(c) += 0.01;

if(BioCellValue(n)<= 0.3)

BioNeighbourValue(c) -= 0.01;

}
BioValue(c) = BioCellValue(c) + BioNeighbourValue(c);

The final BioValue is used to identify different land-types of the model. If
it is bigger than 0.7 this cell is classified as a forest cell, otherwise it is con-
sidered agricultural. The belonging to each category is dynamic over the time.
Furthermore the model experiences a continuous bio-degradation which provokes
changes from forest to agricultural state due to the urban expansion.

Governments can adopt a wide range of interventionist mechanisms to restrict
the ownership over the land and control its use, acting as a response to social
requirements over gardens and parks to provide a set of services based on the
proximity to potential users. Among these measures the local authority can
assume the proper ownership of the land like in the case of Stockholm city [29]
and assign them partially or totally the function of urban green spaces.

Based on that premise the model delegates the responsibility of selecting
the best non-urbanised stands to a new special agent called Municipality. This
agent does not interact with the rest of agents, but his main goal consists of
managing the purchase and protection of green areas within the city by means
of a monetary income received periodically called budget.
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Purchase of Land. As it was stated previously, the location of green areas is
a crucial factor in its future use because the kind of services that a park can
provide is linked with the concept of proximity. Reference [30] states that the
distance to a green area influences the frequency of use and the activities that
can be undertaken. According to this criterion, green areas can be classified into
the following groups:

– Access within a short walk (less than 300 m).
– Access within a long walk (from 300 to 600 m).
– Access with help of any means of transport (larger than 600 m).

The same study concludes that people do not generally use a green area if it
is located beyond a threshold of 300–400 m. In the model the location selection
is performed sequentially in each time-step and is limited by the budget and the
configuration of the lattice in this precise moment. Once the purchase is con-
cluded, the state of the cell is changed to protected and the future construction
of urban facilities within it is forbidden.

This selection process can be formulated as follows: if C is defined as the
finite set of cells included into the lattice, A the subset of rural cells that can
be considered as a candidate cell to be purchased, P the subset of cells that are
protected and U the urbanised cells such as {A,P,U} ⊂ C and A ∩ P ∩ U = ∅,
then the selection of a candidate cell in time t can be defined as:

∀ cell c ∈ C

if price(c)t < budgett ∧ ct /∈ {P,U}
=⇒ ct ∈ A

(4)

Once the candidate set is defined, the purchasing and protection phase can
be formalised as:

∀ cell a ∈ A

max
satisfaction

δ(a)t

=⇒ at ∈ P∧at /∈ A ∧ update(budgett)

(5)

The function δ represents the metric that measures the level of satisfaction
of the population in terms of the distance to green areas. See formula 9. Every
subset of selected cells has associated a level of satisfaction of the population
allocated within the boundaries of the city. The model should select the config-
uration of green areas which achieves the highest possible level of satisfaction
according to the restrictions of the system during the considered period of time.

Prices of Non-urban Cells. It is calculated based on a simplified version
of the formula 9 developed in [31]. The price is defined in terms of the current
urbanised prices and the distance of the cell to the boundary of the city as:

∀ cell c ∈ A

price(c) =priceBase(c) ∗ (1 − e−α[Z−Z∗(t)])+

urbanPrice ∗ (e−α[Z−Z∗(t)])

(6)
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Where priceBase corresponds to Table 1 based on prices of rural land in
UK [32]. α = 0.2 is the rate of change in price as the distance from CBC
increases. Z is the current position of the cell and Z∗ the boundary of the
city. Z − Z∗ represents the distance from the cell to the limit of the city where
Z > Z∗. Finally urbanPrice is the current price of the most recent developed
cell multiplied by its population density.

Table 1. Prices per cell.

Type of cell Area× price Final price

1 cell forest 51.8 ha × £6,600 = £854,700

1 cell agriculture 51.8 ha × £3,000 = £388,500

The plot of the averaged values of the prices during the simulation is depicted
in Fig. 1. It is noticeable the critical growth in prices that occurs at the end of
the simulation. This is due to the fact that the number of available cells is scarce
and their demand increment drastically its value.
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Fig. 1. Evolution of the prices of the non-urban cells throughout the simulation.

4 Sources of Uncertainty

In the present model uncertainty can emerge from a wide variety of sources.
Apart from the fact that the implementation of long-term plans always implies
to be able to cope with unpredicted future scenarios, the complexity resultant
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from the multiple interactions occurred between the elements represented in the
model makes their management even more challenging.

Some factors which actively contribute to the increment of the level of uncer-
tainty are mentioned in the list below:

4.1 Urban Property Prices and Green Areas

In the developed model, the selection of green spaces exerts a direct influence on
the prices of the surrounding urban cells. [33,34] analyse this tendency reporting
a significant increment in the prices of residences located close to urban parks.
This aspect is included in the model as the agents’ desire to live close to these
areas and is represented by the agent’s acceptance to pay more for these specific
locations. The inclusion of this personal desire provokes a significant growth in
the demand of these areas and subsequently in the price and affects the urban
spatial spread of the city.

4.2 Ecological Degradation Process and Non-urban Property Prices

From the point of view of the non-urbanised cells, one of the two main parameters
which involves a high level of uncertainty is the relationship created between the
non-urban price dynamics and the cells’ ecological value. Due to the fact that
this ecological value also influences its neighbourhood, a significant change in
a specific area of the lattice spreads in all directions. The bioValues are steady
until the distance to the city measured in Manhattan distance is less or equal to
3, otherwise it is applied the following update:

∀ non-urban cell a ∈ A

bioV alue(a) =

⎧
⎪⎪⎨

⎪⎪⎩

−0.1 if δ(a, city) = 1
−0.05 if δ(a, city) = 2
−0.01 if δ(a, city) = 3
0 otherwise

(7)

Where δ is the distance from the cell to the boundaries of the city. The
application of this formula produces an ecological degradation process with the
growth of the city. This dynamic influences the priceBase of the non-urbanised
cells that are closely located to the city and hence, the purchasing process of
protected areas that it is restricted to our current budget.

4.3 Urbanisation Process

The underlying process of urbanisation is in nature partially random and mainly
determined by two factors:

– The rules of transition of the cells: based on preselected probabilities.
– The demand level: controls the transformation of peri-urban into new urban

cells.
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Fig. 2. Environmental values and the effect of the urbanisation process. The range
of colours from green to black depicts the ecological values of the cell. Notice that
in the centre where the city is located, the black eco-values represent the biological
degradation or the metropolitan area (Color figure online).

The knowledge of the urbanisation process is crucial because the set of can-
didate cells to be protected are restricted to the non-urbanised ones and hence
we need to be aware of the complete state of the cells in each time step in order
to select and protect non-urban cells.

4.4 Flows of Population

Another significant characteristic of the model is that the city is a non-closed-
system. This means that there is an external income flow of new population
coming from migration as well as new offspring resulted from the current settled
population. The dynamics of these flows are not fixed and predictable and they
play a relevant role in the final population distribution within the city. However
the density of each future neighbourhood cannot be totally predicted in advance
even if there exists a general preference to live close to the city centre in line
with the Alonso’s model.

Consequently we are not able to know the percentage of population directly
affected by a determined location of a new green area and hence, the final sat-
isfaction achieved by a determined configuration of green spaces.

5 Case Study: Allocation of Green Areas

There are three parallel optimisation tasks which form the current case study.
The more complex and main objective of the present paper is the GA flow, in
contrast to the other two approaches, the random and the best non-optimised
strategies that have been developed as a comparison tool.
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5.1 Set-Up Phase

The point of departure of the following workflow consists of the definition of the
initial model configuration. The model uses as a point of departure two common
parameters which share with all the components of the optimisation framework.
These parameters are:

– The Budget. A stochastic budget assigned to the municipality in each
sequence of time is decided in advance and it is shared as well by the entire
GA population.

– The Ecological Scenario. The initial ecological configuration of the lattice
is defined by the initial random generation of ecological values. See Fig. 2.

5.2 Configuration of the GA

Chromosome Encoding. The GA evolves through time a population of indi-
viduals of size 20 which are chosen randomly from the set of candidate solutions.
An individual is encoded as a sequential selections of cells grouped in a prede-
fined number of time steps (Fig. 3). Each of these selections represents a gene
and can contain {0, n} protected cells chosen by the Municipality in one time-
step. The superior limit n is bounded by the maximum budget available for this
time step. Linked with each subset of cells, the remain budget is stored that can
be calculated as:

remainBudgett = budgett −
n∑

i=0

price(ct) + remainBudgett−1 (8)

Scheme Selection. There exist many selection schemes for GA, among them
the present model uses tournament selection (TS) [35]. TS is a robust and simple
to code selection mechanism for GA based on the idea of holding a tournament
between a group of competitors randomly selected among the population.

Mutation Process. Mutation is a tool used to maintain the diversity among
the population of individuals. The mutation process alters one or more values
of the genes inherited from the parent. In the present case a mutation con-
sists of changing the set of cells selected to be protected in a slot of time of
the simulation. Additionally this implies the update of the associated budget.
A successful mutation should meet some constraints:

– A cell cannot be selected twice or more for the same individual.
– The remain budget should be always positive. Debts are not permitted.
– Cells cannot have the state of urbanised when protecting them.

The budget can arise potential problems during the mutation process. Due
to the fact that non-urbanised cells prices evolve with the time along with the
aggregate nature of the budget, a single modification in the selected cells of a
gene can influence substantially the amount of money that needs to be used in
future purchases. The mutation process should not modify the rest of genes.
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Fig. 3. Three-layers chromosome encoding.

Fitness Function. To measure the contribution of a determined green area to
a solution, different kind of metrics can be used according to which aspects want
to be emphasized. In the current model the quality of a solution or satisfaction
represents the accumulative satisfaction achieved by each person settled on the
city with respect to the topological distribution of green areas. Following this
approach the fitness function can be defined as follows:

If A is the set of agents of the city, P is the subset of protected cells and C
is the set of cells defined in the grid such as P ⊂ C, then for a given time t:

∀ agent a ∈ A ∧ ∀ protected cell c ∈ P

s(a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3 if δ(a, green) = min
distance

(a, c) = 1

2 if δ(a, green) = min
distance

(a, c) = 2

1 if δ(a, green) = min
distance

(a, c) = 3

0 otherwise

Θ =
n∑

i=0

s(ai)

(9)

δ is defined as the function that calculates the distance from the location of
a given agent a to the closest green area in the grid using Manhattan distance.
Besides we define s as the function which retrieves the individual satisfaction
achieved by a given agent a. Finally, Θ represents the total satisfaction achieved
by the population of size n in the lattice in time step t.

This fitness function is, in turn, linked directly with the spatial spread of
the city and the population density of each stand. However, to be able to use
a fitness function in the GA, it is necessary to know the location of the entire
population in each time step.

5.3 GA Workflow

Collected Data. In this phase the knowledge that the GA cannot infer a priori
is gathered from a urban growth version of the simulation. The collected data
includes the following elements:
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– The Topological Development of the City. Due to the fact that only
non-urbanised cells can be candidate to be protected it should be gathered
when each cell is more likely to be urbanised.

– The Population Evolution (Number and Location). The simulation
collects statistical data about the amount of agents living in the city and
their precise location in the grid in every time step. This density distribution
is necessary to calculate the fitness function that is used to measure the quality
of an individual solution.

– The Non-urban Prices Dynamics. Due to the fact that budget should be
always positive and prices can change with the time, it is necessary to know
which prices correspond with which non-urban cells throughout the simula-
tion. In this case the mean of the prices in multiple simulations is annotated.

GA Optimisation. Once the data is gathered, the optimisation can be carried
out. In this phase the GA population is generated and evolved using TS for 5000
iterations, assuring their convergence. For each new generation, the possible can-
didate cells should satisfy the constraints described in the mutation procedure to
cope with the restrictions derived from the management of an uncertain future.

Test Component. Once the optimisation phase has been concluded and the
final individual solution with the highest fitness is selected as the final solution,
the test phase is carried out. The test component uses the output data from
the GA phase to check the viability of the protected cells analysing how the
statistical model compromises the model validity.

These simulations run in a modified version of the model where the green
spaces are selected deterministically meanwhile the rest of factors and interac-
tions maintain its complex and unpredictable behaviour. The main purpose of
this test step consists of:

– Measuring the real satisfaction of the population.
– Detecting inconsistencies and incompatibilities of the cells selected by the GA.

The inconsistencies are linked directly with the quality of the statistical data.
With the appropriate data the GA can infer more accurately the situation
of the lattice and better overcome the constraints, reducing the number of
inconsistencies.

5.4 Other Heuristics

Random. Random approach is a heuristic that allows 10 attempts to randomly
select a cell to be purchased in each time-step. The cell selected should have the
state of non-urban and the current available budget should cover the price of
the cell. The first cell that meets these conditions is protected.

Best Non-planning Option. This strategy is a heuristic which tries to give
the best service in the current moment without performing any further plan. The
approach buys the terrains located in any of the areas that are adjoining the new
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urban development. Concretely, the algorithm retrieves information about the
last cell urbanised in the lattice and searches in the subset of cells which form
its neighbourhood, the ones that are not urbanised yet. If its price is lower than
the current budget, the cell is protected.

6 Computational Results

The results presented in the paper were calculated as averaged over 20 repeated
optimisations, all of them in compliance with the assumptions and restrictions
commented in previous sections.

Table 2. Satisfaction grouped in 50 time-steps over the three approaches analysed.

Random Best GA

50 97.94 14.77 208.01

100 411.84 160.99 918.39

150 1407.58 729.74 3055.70

200 4651.23 2867.48 9716.36

250 15342.94 10623.94 29537.54

300 47089.13 35887.04 79909.52

350 89843.31 70444.26 130117.76

400 112007.76 91359.08 146638.63

450 119140.86 103118.51 148372.77

500 118023.17 109580.54 143162.94

550 113881.15 113274.05 135731.20

600 108935.25 114972.24 127935.58

Table 2 summarises the results achieved by the three analysed heuristics. The
results measure the average of the satisfaction achieved by the population during
the 600 ticks of the simulation grouped in 50 steps. The first column shows the
random satisfaction, the second represents the best non-optimise heuristic and
the third column includes the results for the GA-optimised satisfaction. Graph-
ically, the same data is depicted in Fig. 4. From these results we can state that
GA outperforms the random and the best non-optimised heuristic throughout
the simulation.

6.1 Comments About the Random Approach

Due to its stochastic selecting mechanism, the random solution spreads more
homogeneously and scattered their protected cells. It does not take advantage of
the reduced prices at the beginning of the simulation but, in turns, when prices
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are too high to be able to purchase any new land (see peak in non-urban prices in
Fig. 1), the random approach achieves to give service to the outskirts of the city
in contrast to the other two approaches that are more sensitive to the significant
increment in prices occurred at the end of the simulation. One limitation of the
stochastic random approach is that the efficiency achieved depends strongly on
the extension of the land analysed.

6.2 Comments About the Best Non-optimise Heuristic

This heuristic achieves acceptable results when the non-urban prices are low and
the growth speed of the city is slow. However as the approach always tries to
buy the most expensive non-urban cells that are the ones located closer to the
boundaries of the city, when the city grows and the demand for land increases
its price, the available budget is not enough to afford new purchases and the
heuristic neglects to give proper services to the outskirs of the city. Due to that
this heuristic shows the worst results at the end of the simulation. The total
amount of cells protected are smaller and concentrated most of them around the
city centre.
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Fig. 4. Representation of the satisfaction achieved by the three heuristics developed.

6.3 Comments About the GA Approach

The GA overcomes both heuristics during the entire simulation. However, the
results are closer to the best non-optimised heuristic at the beginning of the
simulation and to the random approach at the end. The decline in the satisfaction
at the end of the simulation is due to the fact that the algorithm is not able to buy
new stands with the current budget and from the 400 time-steps the optimisation
is poor. This negative effect could be avoided if the amount of budget assigned
in the experiments would have been enough to buy homogeneously new green
areas during the entire duration of the simulation.
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6.4 Model Validity

The test component checks the validity of a given GA solution using an inde-
pendent simulation. Moreover it gathers some data to provide information about
the quality of the GA solution: the amount of urban inconsistencies and the sat-
isfaction achieved by the solution. A urban inconsistency can be defined by the
attempt to protect a cell that is already urbanised.

When an inconsistency occurs, the candidate cell to be protected is rejected
and no reward is added to the final satisfaction. Its budget, in turns, is stored for
future purchases. As a conclusion, for every inconsistency found in the GA solu-
tion, the algorithm reduces its final quality. The behaviour of the inconsistencies
Fig. 5 shows that it is not necessary to gather a huge amount of data in order
to achieve consistent results. It is noticeable that the model does not achieve
a non-inconsistency state even if the number of simulations where the data is
gathered increases. This is a consequence that the future cannot be completely
predicted.
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Fig. 5. Urban inconsistencies found in the test of the GA solutions.

7 Conclusions and Future Work

This paper reports results from a proof-of-concept study, which show that sta-
tistical model emulator can be used for policy optimisation. In particular, we
show how we can capture and represent uncertainty in ABM using data from
simulated runs and find optimal urban planning policies with the use of GA.

The strategy is tested in a monocentric urban model where the main objective
of the experiment is to distribute a set of green protected areas throughout the
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lattice with the goal of achieving the maximum satisfaction from the inhabitants
of the city. An individual is considered to be ’satisfied’ if a green area is placed
close enough to the location of his residence.

The main observation that we draw is that the appropriate prior use of
non-optimised simulations was effective in guiding the GA to achieve success-
ful outcomes. The specific approach we took is potentially applicable to a wide
range of applications which concern sequential decision making and require time-
consuming simulations to evaluate decisions. The results on our case study sug-
gest there is considerable promise in our approach. The ability to successfully
address a wider range of optimisation problems of this kind could lead to a new
generation of tools for use in urban planning. However, in the meantime, various
aspects of the approach need further investigation. Among them are three main
directions:

Evaluation of Statistical Simulation-Based Approaches for ABM Opti-
misation. Related research fields, such as optimisation of natural conversational
strategies in human-machine dialogue, make use of similar simulation techniques
to approximate real-world behaviour. In the case of spoken dialogue systems, user
simulations are build from small data set of real user interactions [7]. In future
work, we want to explore how evaluation techniques for user simulations can be
applied to estimate the quality and policy impacts of our ABM simulations.

Improving GA to Include Uncertainty for Sequential Decision Mak-
ing Problems. In the previous experiments we have used a variant of genetic
algorithms which does not explicitly encode uncertainty endured by the model
environment. In future work, we plan to investigate advanced evolutionary algo-
rithms, such as X Classifier Systems [36] for sequential decision tasks, which
explore similarities between evolutionary approaches and Reinforcement
Learning.

Improve the Complexity of the Urban Model. In particular, we plan to
increment the complexity of our current metric including factors like size of the
urban park and quality. We will also develop a new ecological metric based on
preserving the ecosystems and conduct experiments to compare the trade-off
between our current metric and the new one.
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