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Abstract. Solving Distributed Constraint Optimization Problems has
a large significance in today’s interconnected world. Complete as well as
approximate algorithms have been discussed in the relevant literature.
However, these are unfeasible if high-arity constraints are present (i.e.,
a fully connected constraint graph). This is the case in distributed com-
binatorial problems, for example in the provisioning of active power in
the domain of electrical energy generation. The aim of this paper is to
give a detailed formalization and evaluation of the COHDA heuristic for
solving these types of problems. The heuristic uses self-organizing mech-
anisms to optimize a common global objective in a fully decentralized
manner. We show that COHDA is a very efficient decentralized heuristic
that is able to tackle a distributed combinatorial problem, without being
dependent on centrally gathered knowledge.
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1 Introduction

In decentralized systems, where the search space of a given optimization problem
is distributed into disjoint subspaces, centralized optimization approaches often
cannot be applied. For example, the global collection of data might violate pri-
vacy considerations or bandwidth restrictions. The gathering of such data might
even be impossible, as it is the case if local search spaces are partially unknown
or cannot be enumerated (i.e. due to infiniteness). Another limitation is that dis-
tributed search spaces are often not independent. Such interdependencies require
to evaluate search spaces with relation to each other. Thus, a parallel search for
optimal solutions would require a large communication overhead.

For instance, this type of problem is present in the transition of today’s elec-
tricity grid to a decentralized smart grid. Here, we have to cope with an increas-
ing number of distributed energy resources (DER). Usually, the operation of
these DER is individually configured, according to the constraints given at the
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place of installation. For example, a combined heat and power plant (CHP) pri-
marily has to satisfy the (varying) thermal energy needs of a building. Electrical
energy is produced only as a side-product, so that e.g. the provisioning of active
power by this unit is difficult to request directly. Because of this rather dynamical
behavior of such DER, an adaptive, decentralized control scheme is crucial for a
reliable operation of the system (see [17,22] for more details regarding ongoing
work in this domain).

In the contribution at hand, we focus on day-ahead planning of the provi-
sioning of active power, which can be expressed as a distributed combinatorial
problem: Given a set of DER and a global target power profile, each unit has
to select its own mode of operation for the planning horizon in such a way, that
the resulting individual power profiles of all units jointly match the global target
profile as close as possible. For this purpose, the distributed heuristic COHDA
is developed which makes use of self-organization strategies. In hitherto existing
population-based heuristics, each individual represents a complete solution to
the given problem within a common search space. In our approach, however, an
individual incorporates a local, dependent search space, and thus defines a par-
tial solution that can only be evaluated with respect to all other individuals. The
task of each individual is to find a partial local solution that, if combined with
the local solutions of the other individuals, yields the optimal global solution.

The problem stated in this contribution is formulated as an instance of a dis-
tributed constraint optimization problem (DCOP). In [4], a thorough examination
of heuristic approaches from the DCOP domain as well as from the context of
game theory is presented, and [12] puts DCOPs into perspective of cooperative
problem solving in multi-agent systems. All mentioned approaches therein rely
on communication between individuals which are directly connected in the con-
straint graph of the problem to solve. However, the problem considered in the
present contribution induces a fully connected constraint graph, which renders
these approaches unfeasible due to communication complexity. The consequence
would be a broadcasting of messages, which has been realized in the COBB
approach [18]. Technically, broadcasting can be done in two ways: by sending
messages directly to all other existing individuals, or by using a central black
board where the relevant information is posted publicly. The former method
would lead to an explosion of the number of transferred messages. The latter
method, as used in [14], is able to avoid this (if a suitable adjustment schedule
is used, c.f. [4]), but introduces the problem of a centralized information repos-
itory with the drawbacks mentioned earlier. In contrast, the EPOS approach,
as introduced in [19,20], uses a tree overlay organization structure and thus is
based on a partial representation of the constraint graph. Following, EPOS does
fulfill the demand for an algorithm that can handle fully connected constraint
graphs in the context of distributed constraint optimization problems. The tree
overlay, however, imposes hierarchical relations on the agents. Hence, there are
still centralized components present in the architecture of this approach. Further-
more, the optimization process is carried out in an iterative bottom-up fashion,
which leads to a rather synchronous execution paradigm. We believe that a more
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convenient approach with regard to decentralized settings is possible. Therefore,
we introduced the COHDA heuristic in [6].

In order to compensate for the condensed presentation in [6], the aim of this
paper is to evaluate the COHDA heuristic in more detail. Hence, we will give a
detailed formalization of the heuristic and a thorough description of the approach
first. In addition, we extend COHDA to the multi-objective case. Subsequently,
we evaluate the heuristic with respect to different parameters: message delay,
network density, planning horizon, search space complexity and population size.
Note that the first two are user-defined parameters, while the last three are
problem-specific. From the results, the properties adaptivity, robustness, scala-
bility, and anytime behavior are derived.

The contribution at hand is a revised version of [8].

2 Method

Constraint optimization problems (COP) can be formulated with an integer
programming model, if we assume that each search space is discrete by nature,
and that the elements within are known and may be enumerated. Let c ∈ IRq

be the target that should be matched, where q is the number of dimensions (i.e.
in the context of power provisioning, q denotes the planning horizon). We now
assume that there are m disjoint search spaces (i.e. electrical generators). Now
let the ith search space contain ni elements. The jth element in such a search
space describes a partial solution to the problem, denoted with wij ∈ IRq (i.e.
a feasible power profile). The goal is to select an element wij from each search
space i, such that the sum of these selected values approaches c as close as
possible (c.f. [6]):

min
∥
∥
∥
∥
c −

m∑

i=1

ni∑

j=1

(wij · xij)
∥
∥
∥
∥
1

(1)

subject to
ni∑

j=1

xij = 1, i = 1 . . . m,

xij ∈ {0, 1}, i = 1 . . . m, j = 1 . . . ni,

Here, each search space has an associated selection variable xij , which defines
whether an element has been chosen (xij = 1) or not (xij = 0). This model is a
generalization of the well-known subset-sum problem, where solutions exceeding
the target are not allowed (whereas our model approximates c from any side).

2.1 Mapping to a Distributed System

So far, the above formulation is only suitable from a central perspective. In
the aimed setting however, each search space is represented by an autonomous
decision maker, which we call agents. The task of each agent ai is to select one
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of its elements wij with respect to the common global target c. More formally,
an agent ai has to find an assignment of its own selection variables xij , such
that the objective function in (1) is minimized globally.

Definition 1. A selection of an agent ai is a tuple γi = 〈i, j〉 where i is the
identifier of ai, and j identifies the selected element wij such that xij = 1 and
∑ni

j=1 xij = 1.

Agents are autonomous, so they may change their selection at any time. There-
fore, we need to define the state of an agent.

Definition 2. The state of an agent ai is given by σi = 〈γi, λi〉, where γi is
a selection containing an assignment of ai’s decision variables xij, and λi is a
unique number within the history of ai’s states. Each time an agent ai changes
its current selection γi to γ́i, the agent enters a new state σ́i = 〈γ́i, λ

′
i〉 where

λ′
i = λi +1. This imposes a strict total order on ai’s selections, hence λi reflects

the “age” of a selection.

In order to decide which of its local elements wij to select optimally, an agent
has to take the current selections (i.e. states) of the other agents in the system
into account.

Definition 3. A configuration Σ = {σi, σk, . . . } is a set of states. A state
belonging to an agent ai can appear in a configuration no more than once:

σi ∈ Σ ∧ σk ∈ Σ ⇒ i �= k

Note that this definition allows a configuration to be incomplete with regard to
the population of agents in the system. A configuration that contains states for
all existing agents is called global.

Definition 4. A global configuration regarding the whole system is denoted by
Σglobal = {σi | i = 1 . . . m}.
On the other hand, Definition 3 enables us to model a local view that an agent
ai has on the system. This is quite similar to the definition of context in [16].
We call such a local view a perceived configuration.

Definition 5. A perceived configuration of an agent ai is a configuration
Σi = {σk | ai is aware of ak}.
Following, if we assume that an agent ai is able to somehow perceive a configu-
ration Σi containing information about other agents that ai is aware of (we will
address this later), it may now select one of its own elements wij with respect
to the currently chosen elements of other agents in Σi and the optimization
goal c.
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2.2 Introducing Local Constraints

Furthermore, we introduce local constraints, which impose a penalty value pij

to each element wij within the search space of an agent ai.

Definition 6. The penalty function Πi : IRq �→ IR of an agent ai maps an
element wij to a penalty value pij.

These local constraints are known to the corresponding agent only, as described
in the introductory example (i.e. for a CHP unit, heating preferences defined
by residents). Thus, each agent has two objectives: minimizing the common
objective function as given in (1), and minimizing its local penalties that are
induced by contributing a certain element wij . This compound optimization
goal at agent level may be expressed with a utility function:

zi = αi · z1i + (1 − αi) · z2i (2)

Here, z1i represents the common global objective function and z2i incorporates
the local constraints. The parameter αi allows an agent ai to autonomously
adjust its preference for optimizing the global goal versus optimizing its local
constraints. Note that the domains of z1i and z2i must be carefully defined in this
model (i.e. normalized to [0.0, 1.0]), so that αi gains the desired effect.

From a global point of view, this yields the distributed-objective multiple-
choice combinatorial optimization problem (DO-MC-COP):

min
m∑

i=1

zi (3)

where zi = αi · z1i + (1 − αi) · z2i ,

z1i =

∥
∥
∥
∥
∥

c −
⎛

⎝

ni∑

j=1

(wij · xij) +
∑

w∈φ(Σi)

w

⎞

⎠

∥
∥
∥
∥
∥
1

,

z2i =
ni∑

j=1

Πi (wij) · xij ,

φ (Σ) = {wij | 〈〈i, j〉, λ〉 ∈ Σ} ,

subject to
ni∑

j=1

xij = 1, i = 1 . . . m ,

xij ∈ {0, 1}, i = 1 . . . m, j = 1 . . . ni ,

αi ∈ IR, 0 ≤ αi ≤ 1, i = 1 . . . m .

Summarizing, in this model there are m decision makers (agents) ai, that pursue
a common goal by each contributing one solution element wij from their asso-
ciated local search space, while at the same time minimizing the resulting local
penalty Πi (wij).
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Obviously, if an agent ai changes its state σi, this should have an effect on
the decision making of the other agents in the system. Thus, the definition of
how an arbitrary agent ak perceives a configuration Σk, and how this relates to
Σglobal, is crucial for solving the DO-MC-COP in a distributed way. The follow-
ing section addresses these questions and describes a self-organizing approach to
this distributed-objective problem.

2.3 COHDA

In nature, we find many examples of highly efficient systems, which perform
tasks in a completely decentralized manner: swarming behavior of schooling fish
or flocking birds [23], foraging of ants [9] and nest thermoregulation of bees
[10]. Even processes within single organisms show such astonishing behavior,
for instance the neurological development of the fruit fly [13] or the foraging
of Physarum polycephalum, a single-celled slime mold [26], which both exhibit
rules for adaptive network design. One of the core concepts in these examples is
self-organization. From the perspective of multi-agent systems, this term can be
defined as “the mechanism or the process enabling a system to change its organi-
zation without explicit external command during its execution time” [24]. From
the perspective of complex systems theory, this is related to emergence, which
can be defined as “properties of a system that are not present at the lower level
[...], but are a product of the interactions of elements” [5]. Such systems usually
exhibit a number of desirable properties like adaptivity, robustness, scalability,
and anytime behavior [2,21].

The COHDA heuristic, as originally proposed in [6], applies these concepts
to create a self-organizing heuristic for solving distributed combinatorial prob-
lems. The key concept in COHDA is a partial representation of the (usually fully
connected) constraint graph of the problem to solve, in order to reduce coordi-
nation complexity. Note that this graph induces the communication network of
the system. But unlike other approaches mentioned in the introduction, a spe-
cific graph topology is not required. Instead, the heuristic adapts to whatever
topology is given by real-world requirements (i.e. physical communication lines
in power grids), or is defined by the system operator. This is combined with an
information spreading strategy that, despite the partial constraint graph, allows
the heuristic to converge rapidly to a global solution.

As described above, the heuristic has to cope with an arbitrary communica-
tion topology. This can be expressed with a graph G = (V, E), where each agent
is represented by a vertex ai ∈ V. Edges e = (ai, ak) ∈ E depict communication
links. Thus, we can define the neighborhood of an agent:

Definition 7. Given a set of edges E, the neighborhood of an agent ai is defined
as Ni = {ak | (ai, ak) ∈ E}.
An agent may not communicate with any other agent outside of its neighborhood.
Just like flocking birds, the agents now observe their local environment and react
to changes within their perception range. For that purpose, each agent ai main-
tains a configuration Σi, which reflects the knowledge of ai about the system.
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This configuration is initially empty, but is updated during the iterative process
through information exchange with other agents (hence, Σi is called the
perceived configuration of ai, see Definition 5). Now, whenever an agent ai enters
a new state σ́i by changing the assignment of its decision variables xij , its neigh-
boring agents ak ∈ Ni perceive this event. These agents now each update their
current local view Σk on the system, and react to this event by re-evaluating
their search spaces and subsequently adapting their own decision variables.

However, usually Σk �= Σglobal, hence an agent has to deal with incomplete,
local knowledge. Thus, for improving the local search at agent level, the COHDA
heuristic uses an information spreading strategy besides this reactive adaptation.
Whenever a local change is published to the neighborhood, the publishing agent
ai not only includes information about its updated state σi, but publishes its
whole currently known perceived configuration Σi as well. A receiving agent
ak now updates its existing knowledge base Σk with this two-fold information
(Σi ∪ {σi}). In this update procedure, an element σy = 〈γy, λy〉 ∈ Σi of the
sending agent ai is added to Σk of the receiving agent ak if and only if any of
the following conditions hold:

1. Σk does not already contain a state from ay, such that ∀σz ∈ Σi : z �= y.
2. Σk already contains a state σz with z = y, but σz has a lower value λz, such

that ∃σz = 〈γz, λz〉 ∈ Σi : z = y ∧ λz < λy. This means, σz is outdated
(see Definition 2), and hence σy replaces σz in Σk.

Using this information spreading strategy, agents build a complete representa-
tion Σglobal of the whole system over time, and take this information into account
in their decision making as well. However, due to possibly rather long communi-
cation paths between any two agents, these global views on the system are likely
to be outdated as soon as they are built and represent beliefs about the systems
rather than facts. Nevertheless, they provide a valuable guide in the search for
optimal local decisions.

In order to ensure convergence and termination, a third information flow is
established on top of that. In addition to the perceived configuration Σi (which
reflects the currently known system configuration including the agent’s own cur-
rent state σi), each agent keeps track of the best known configuration Σ∗

i it has
seen during the whole process so far.

Definition 8. A configuration Σ∗
i = {σ∗

i , σ∗
k, . . . } is an arbitrary snapshot of

the system taken by an agent ai.

Definition 9. The best Σ∗
i over all agents in the population is denoted by Σ∗.

Whenever an agent updates its Σi by means of received information, it compares
this new configuration Σi to Σ∗

i . If Σi yields a better solution quality than Σ∗
i

according to DO-MC-COP (3), Σi is stored as new best known configuration Σ∗
i .

In addition to σi and Σi, an agent ai also exchanges its Σ∗
i with its neighbors,

everytime it changes. Thus, when an agent ak receives a Σ∗
i from a neighbor ai,

the agent replaces its currently stored Σ∗
k by Σ∗

i , if the latter yields a better
solution quality than the former.
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The whole process can be summarized in the following three steps:

1. (update) An agent ai receives information from one of its neighbors and
imports it into its own knowledge base. That is, its beliefs Σi about the
current configuration of the system is updated, as well as the best known
configuration Σ∗

i .
2. (choose) The agent now adapts its own decision variables xij according to the

newly received information, while taking its own local objectives into account
as well. If it is not able to improve the believed current system configuration
Σi, the state σ∗

i stored in the currently best known configuration Σ∗
i will be

taken. The latter causes ai to revert its current state σi to a previous state
σ∗

i , that once yielded a better believed global solution.
3. (publish) Finally, the agent publishes its belief about the current system

configuration Σi (including its own new state σ́i), as well as the best known
configuration Σ∗

i to its neighbors. Local objectives are not published to other
agents, thus maintaining privacy.

Accordingly, an agent ai has two behavioral options after receiving data from
a neighbor. First, ai will try to improve the currently believed system config-
uration Σi by choosing an appropriate wij , and subsequently adding its new
state σ́i to Σi. Yet, this only happens if the resulting Σi would yield a better
solution quality than Σ∗

i . In that case, Σi replaces Σ∗
i , so that they are identical

afterwards. If the agent cannot improve Σi over Σ∗
i , however, the agent reverts

its state to the one stored in Σ∗
i . This state, σ∗

i , is then added to Σi afterwards.
Thus, Σi always reflects the current view of ai on the system, while Σ∗

i always
represents the currently pursued goal of ai, since it is the best configuration the
agent knows. In either case, Σi and Σ∗

i both contain ai’s current state after
Step 2.

As can be seen from the above description, the COHDA heuristic is inher-
ently adaptive: the agents permanently adapt to changes in their environment;
for more details on this see [7]. Also, since an overall best configuration Σ∗ (Def-
inition 9) can be identified at any point in time, which is replaced only when
an even better configuration is found, the heuristic exhibits the anytime behav-
ior [2]. In order to reveal the properties scalability and robustness, we performed
a simulation-based evaluation. This evaluation will be discussed in the following
sections.

2.4 Implementation

We implemented the proposed heuristic COHDA in a multi-agent system (MAS).
In our simulation environment, agents communicate asynchronously, using a net-
work layer as communication backend. This backend may be a physical one, so
as to be able to distribute the MAS over arbitrary machines. In our evalua-
tion however, we used a simulated network layer, in order to have full control
over message travelling times, and to permit deterministic repetitions of simu-
lation runs. For this, we used predefined seeds for the random number gener-
ators. This allows us to simulate unsteady communication layers with varying
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message delays. Technically, our simulation is event-driven, i.e., agents react to
events (messages from other agents) in the continuous time domain, which is
induced by the above mentioned varying message delays. For the ease of eval-
uation, however, the simulation status is reported to the experimenter exactly
every integer-valued time step. Following, from the user perspective, a discrete-
time simulation is performed. Our implementation ensured that we were able to
monitor (and count) all exchanged messages.

In the conducted experiments, each agent represents a simulated combined
heat and power (CHP) device with an 800 l thermal buffer store. We used the
simulation model of an EcoPower CHP as described in [3]. For each of those
devices, the thermal demand for a four-family house during winter was simulated
according to [11]. The devices were operated in heat driven operation and thus
primarily had to compensate the simulated thermal demand. Additionally, after
shutting down, a device would have to stay off for at least two hours. However,
due to their thermal buffer store and the ability to modulate the electrical power
output within the range of [1.3 kW, 4.7 kW], the devices had still some degrees
of freedom left.

For each conducted experiment, and for each agent, the simulation model has
been instantiated with a random initial temperature level of the thermal buffer
store and a randomly generated thermal demand. Subsequently, a number of
feasible power profiles were generated from each of these simulation models.
The resulting sets of power profiles are then used as local search spaces by the
agents. The global goal c of the optimization problem was generated as a random
electrical power profile, which was scaled to be feasible for the given population of
CHP devices. However, we cannot guarantee that an optimal solution actually
lies within in the set of randomly enumerated search spaces. The task of the
agents now was to select one element out of their given sets of power profiles
each, so that the sum of all selected power profiles approximates the target profile
c as exactly as possible.
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Fig. 1. Optimization result of a single simulation run with 30 CHP (and local search
spaces comprising 2000 feasible power profiles each), for a planning horizon of four
hours in 15-min. intervals.
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Fig. 2. Detailed illustration of the COHDA heuristic during a simulation.

3 Results

As a first step, we examined the general behavior of the heuristic without penal-
ties. In Fig. 1, the results of a single simulation run (m = 30 devices with
n = 2000 possible power profiles each) are visualized. The planning horizon
was set to four hours in 15-min. intervals. The upper chart shows the target
profile (dashed line) and the resulting aggregated power output (solid line). The
individual power output profiles of the devices are depicted in the lower chart.
The latter is quite chaotic, which is due to the limited sets of available power
output profiles per device. Nevertheless, the heuristic was able to select 30 pro-
files (one for each device), whose sum approximates the target profile with a
remaining imbalance of less than 2.5 kW per time step in the planning horizon.

In Fig. 2, the process of the heuristic for this simulation run is shown in detail.
This data is visible to the simulation observer only, the individual agents still
act upon local knowledge. The solid line depicts the global fitness value of the
heuristic over time. This fitness represents the rating of the best configuration Σ∗

existing in the population (see Definition 9), at each point in time, respectively.
These values are determined according to (3), but have been normalized to the
interval [0.0, 1.0], with 0.0 being the optimum. The normalization was done by
taking an approximation for the worst combination of power profiles as upper
bound:

dworst = max

(

d

(

c,

m∑

i=1

wi,min

)

, d

(

c,

m∑

i=1

wi,max

))

(with wi,min and wi,max being elements of an agent ai with minimal and max-
imal absolute cumulative value, respectively), and assuming the existence of an
optimal solution (no remaining imbalance) as lower bound. In order to examine
convergence, the agent population was parametrized with the upper bound as
initial solution.
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In general, the fitness value decreases over time (lower is better, so this means
an improvement of the fitness) until it converges to a near-optimal solution.
However, it is not strictly decreasing, since there are non-decreasing intervals.
This is due to the information spreading strategy in COHDA, and can be
explained with the distribution ratio of Σ∗. The latter is visualized by the shaded
area (the higher, the more agents are aware of the current Σ∗). Recall that an
agent ai inherits a received Σ∗

k from a neighbor ak if Σ∗
k yields a better rating

than the currently stored Σ∗
i of the agent ai. Thus, a configuration with very

good rating prevails and spreads in the network, until a better rated configu-
ration is found somewhere. As an example, consider the situation at simulation
step 12. Some agent, say ai, has found a configuration Σ∗

i with a normalized fit-
ness rating of ≈0.18. This configuration is, at that time, the best configuration
found in the whole population, therefore Σ∗ = Σ∗

i . The agent publishes Σ∗
i to its

neighbors, who accept it as a new best configuration, and re-publish it again to
their respective neighbors. Hence, the distribution of Σ∗ (shaded area) rises in
the following time steps, but the fitness value (solid line) remains constant. In
simulation step 30, however, some agent ak finds an even better configuration
Σ∗

k . Thus the fitness value improves and, from this point in time, Σ∗ = Σ∗
k . At

the same time, the distribution of the (new) Σ∗ drops dramatically, since this
configuration is known to ak only and has yet to be spread in the network. The
heuristic terminates after 185 simulation steps, where a certain Σ∗ has been
distributed to all agents, and no better configuration can be found. The final
fitness value is 0.02, which amounts to a total remaining imbalance of 7.09 kW
(0.007% of the targeted 1004.13 kW in total over the planning horizon).

Figure 3 shows the aggregated behavior of the COHDA heuristic for 100 sim-
ulation runs. For each simulation run, the same CHP devices and thus the same
local search spaces were used, but the communication network was initialized
with different seeds for the random number generator. This yielded a different
communication graph in each run, as well as different generated message delays.

Fig. 3. Aggregated behavior of COHDA for 100 simulation runs with 30 CHP (and local
search spaces comprising 2000 feasible power profiles each), for a planning horizon of
four hours in 15-min. intervals.
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The solid line represents the mean fitness over time, while the shaded area around
this line depicts the standard deviation. Obviously, in this example the COHDA
heuristic is able to converge to near optimal solutions independently from the
underlying communication backend. On average over all 100 simulation runs,
each agent sent 1.5 ± 0.04 messages per simulation step. The boxplot visualizes
simulation lengths, with 169.69 ± 28.38 simulation steps being the mean.

3.1 Performance Criteria

Besides the inspection of the general behavior, simulation performance can be
measured in terms of (a) the resulting fitness after termination, (b) the simu-
lation length, or (c) the average number of exchanged messages per agent per
simulation step during the process. In our experiments, the influence of different
input parameters on each of these numbers (a–c) has been analyzed. From the
resulting interactions, properties like robustness and scalability may be derived.
If not stated otherwise, the experiments were conducted using a message delay
msgmax = 2 (see Sect. 3.2), a small world network topology with φ = 2.0 (see
Sect. 3.3), a target comprising q = 16 dimensions (see Sect. 2.3), a population
size of m = 30 agents, and no penalties (such that αi = 1.0 in (2)). Each exam-
ined scenario was simulated 100 times. Figure 4 shows a summary of our results.
We will discuss each part in the following sections.

3.2 Message Delay

An important property of the simulated communication backend is its abil-
ity for delayed messages. In order to evaluate the robustness of the heuristic
against a non-deterministic communication layer, we tested the approach with
different amounts of message delays. To accomplish that, we defined an interval
[1, msgmax], from which a random number is generated for each sent message.
The message is then delayed for the according number of simulation steps. We
evaluated msgmax ∈ {1, 2, 5, 7, 10}.

Figure 4(a) shows the influence of message delays on the simulation perfor-
mance, as defined in Sect. 3.1 (criteria a–c). Fortunately, message delays have
absolutely no influence on the final fitness produced by the heuristic (crite-
rion a, top chart). This means that COHDA is very stable against an unsteady
communication network. The time until termination (criterion b, middle chart)
consequentially rises linearly with increasing message delay. With regard to the
amount of exchanged messages (criterion c, bottom chart), a strongly decreasing
trend towards less than one sent message on average per agent per simulation
step with increasing delay is visible. When multiplied with the number of sim-
ulation steps, the number of messages per agent throughout a whole simulation
run can be determined (chart not shown here). We find a minimum of exchanged
messages per simulation run with msgmax = 2. Following, COHDA does not only
cope with, but even benefits from a slight variation at agent level introduced by
message delays (for details on inter-agent variation see [1]).
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(a) Influence of different message delays. (b) Influence of the network topology.

(c) Influence of the planning horizon. (d) Influence of the population size.

Fig. 4. Performance analysis of COHDA regarding different input parameters.

3.3 Network Density

The composition of an agents’ neighborhood is directly coupled to the underlying
communication graph G = (E ,V). Preliminary experiments showed a beneficial
impact of random graphs with a low diameter. Thus, we evaluated the following
topologies:

– Ring : The agents are inserted into a ring-shaped list. Each agent is then
connected to its predecessor and successor.

– Small World : This network comprises an ordered ring with |V| · φ additional
connections between randomly selected agents, cf. [25]. We examined φ ∈
{0.1, 0.5, 1.0, 2.0, 4.0}.

In Fig. 4(b), the results of these experiments are visualized. We ordered the
plotted data according to the approximated average neighborhood size, which
defines the overall density of the communication graph. Similar to the previ-
ous section, there is no influence of the network density on solution quality.
Expectedly, the message complexity increases with larger neighborhoods. Sim-
ilarly, simulation length decreases with more connections. As in the previous
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section, a trade-off between run-time in terms of simulation steps, and run-time
in terms of exchanged messages is visible. A comparison of the number of mes-
sages per agent throughout a whole simulation run against network topology
shows that, for the given scenario, a small world topology with φ = 0.5 yields
the least messages on average during a whole simulation (chart not shown here).

3.4 Planning Horizon

When the heuristic is applied to scheduling problems (as in the provisioning of
active power, which we focus at), the dimensionality q of the target c ∈ IRq is inter-
preted as planning horizon. For real-world applications, it is interesting to know
what planning horizon the heuristic is capable of. Figure 4(c) shows the result of
planning horizons with a length of {2, 4, 8, 12, 24} hours in 15-min. intervals
(thus q ∈ {8, 16, 32, 48, 96}). The final fitness in the upper chart deteriorates
almost linearly with larger planning horizons. Similarly, the number of simulation
steps rises, whereas the number of exchanged messages is not influenced. While we
expected the last, we did not expect the influence of the planning horizon on fitness
and simulation length, and examined it in more detail. After several experiments
with synthetic scenarios (i.e. carefully generated search space values according to
[15]), it turned out to be a side effect in our use of the CHP simulation models:
Randomly enumerating a rather small number of feasible power profiles does not
yield a sufficient coverage of the theoretically feasible action space of the devices.
Thus, in the following section, we examine the influence of the size of local search
spaces on simulation performance.

3.5 Search Space Complexity

We analyzed scenarios with {20, 200, 2000, 20000} pre-generated feasible power
profiles per device. This yielded fitness values of 0.12±0.06, 0.02±0.02, 0.003±
0.004 and 0.001 ± 0.002, respectively. Since the coverage of the theoretically
feasible action space of the simulated devices increases with larger enumerated
local search spaces (c.f. Sect. 3.4), simulation fitness improves significantly. The
number of simulation steps and the number of exchanged messages per agent
per simulation step were constant (132 ± 21 and 1.5 ± 0.04, respectively).

3.6 Population Size

Another interesting property regarding real-world applications is the influence
of population size on the heuristic. In Fig. 4(d), a linear increase in simulation
steps until termination can be seen. This is consequently due to the increased
coordination complexity in larger networks. Yet, since the increase is linear at
most, this shows that COHDA is quite robust against the number of participat-
ing individuals. Interestingly, the final fitness as well as the number of exchanged
messages per time step significantly improve with larger population sizes. The
former may be related to the increased diversity, which could already be observed
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Fig. 5. Aggregated performance of COHDA over 100 simulation runs with distributed
local objective functions (∀i : αi = 0.5).

to be beneficial in the analysis of the sizes of local search spaces in the previous
section. The latter can be attributed to an increased diameter of the communica-
tion graph with larger population sizes. Here, information spreads more slowly,
and it takes a longer time for the system to converge.

3.7 Bi-Objective Behavior

As described in Sect. 2.2, we introduced local objective functions at agent level
for the COHDA heuristic. As a proof of concept, we conducted an experiment
(100 simulation runs) with randomly generated penalty values pij ∈ [0, max(c)].
The preference adjustment parameter, as defined in (2), was set to αi = 0.5
for all agents, so that the local objectives were considered equally important
to the global objective. Figure 5 shows the aggregated results of 100 simulation
runs. The heuristic was able to minimize local penalties to a normalized value of
0.02 ± 0.01. At the same time, the global objective fitness could be optimized to
a normalized value of 0.15 ± 0.07, which amounts to a remaining imbalance of
33.12 kW±17.02 in total over the planning horizon (0.06%±0.03 of the targeted
544.26 kW).

4 Conclusions

In the contribution at hand, we presented COHDA, which is a self-organizing
heuristic for solving distributed combinatorial problems. It was shown that
COHDA is inherently adaptive, and exhibits anytime behavior. We applied the
heuristic to a problem from the smart grid domain, and performed a thorough
evaluation under varying conditions. For this, we implemented an asynchronous
multi-agent system with full control over the communication backend. Regarding
our example application, it could be shown that the heuristic exhibits conver-
gence and termination, and is robust against unsteady communication networks
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as well as different network topologies. The run-time of COHDA, in terms of sim-
ulation steps, rises linearly with increasing population sizes. Yet it is unaffected
by the size of local search spaces, so we conclude that the heuristic is sufficiently
scalable. However, there is a trade-off between the number of simulation steps
until termination, and the number of exchanged messages. This trade-off can be
adjusted through the density of the communication network (i.e., the average
size of the neighborhoods). The evaluation of a bi-objective scenario showed the
ability of the heuristic to optimize local penalties as well as a global objective in
parallel.

In the present form, COHDA needs a central operator that is able to detect
the termination of the process (and thus has a global view on the system).
But the actual optimization process is still performed in a truly decentralized
manner! A fully decentralized variant of COHDA, however, could be realized by
including a distributed termination detection algorithm.
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13. Kroeker, K.L.: Biology-inspired networking. Commun. ACM 54(6), 11 (2011)
14. Li, J., Poulton, G., James, G.: Coordination of distributed energy resource agents.

Appl. Artif. Intell. 24(5), 351–380 (2010)
15. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a

survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)
16. Modi, P., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed

constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)
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