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Abstract. A comparably new application for support vector machines
is their use for meta-modeling the feasible region in constrained opti-
mization problems. Applications have already been developed to opti-
mization problems from the smart grid domain. Still, the problem of
a standardized integration of such models into (evolutionary) optimiza-
tion algorithms was as yet unsolved. We present a new decoder approach
that constructs a mapping from the unit hyper cube to the feasible region
from the learned support vector model. Thus, constrained problems are
transferred into unconstrained ones by space mapping for easier search.
We present result from artificial test cases as well as simulation results
from smart grid use cases for real power planning scenarios.
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1 Introduction

A popular class of commonly used heuristics for solving hard optimization prob-
lems is known as evolutionary search methods. These methods usually work
with candidate solutions that encode each parameter within an allowed interval
between a lower and an upper limit and try to improve them within these bounds.
Thus, all solutions are defined in a d-dimensional hypercube. Nevertheless, due
to additional constraints, not all of these solutions are usually feasible. Effec-
tively solving real world optimization problems often suffers from the additional
presence of constraints that have to be obeyed when exploring alternative solu-
tions. Evolutionary algorithms have been widely noticed due to their potential
for solving complex (discontinuous or non differentiable) numerical functions.
However, a full success in the field of nonlinear programming problems is still
missing, because constraints have not been addressed for integration in a sys-
tematic way [1,2]. For constraint handling, the general constrained continuous
nonlinear programming (NLP) problem is often used as problem formulation:

Find x ∈ R
d that optimizes f(x) subject to a set of constraints:

equalities: gi(x) = 0; 1 ≤ i ≤ m (1)
inequalities: gj(x) ≤ 0; 1 ≤ j ≤ n.
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Real world problems often additionally face nonlinear constraints or such con-
straints that are not given as explicit formulation. One example for a not explic-
itly given constraint is a simulation model that devalues given solutions as not
feasible judged by simulation runs. We are going to focus on (but not restrict
ourselves to) the latter type.

In general, the set of constraints defines a region within a search space (the
hypercube defined by parameter bounds) that contains all feasible solutions.
Taking into account non-linear constraints, the NLP is generally intractable [1].
Evolutionary Algorithms approximately solve non linear optimization very effi-
ciently. Nevertheless, surprisingly low effort has been put in the integration of
constraint handling and evolutionary optimization (cf. [2]). Standard constraint-
handling techniques are for example the introduction of a penalty for infeasi-
ble solutions, the separation of objectives and constraints to transform a given
optimization problem into an unconstrained many-objective one, or decoder
approaches to give an algorithm hints on how to construct feasible solutions
by imposing a relationship between feasibility and decoder solution.

At the same time, support vector machines and related approaches have been
shown to have excellent performance when trained as classifiers for multiple
purposes, especially real world problems. In [3] a support vector model has been
developed for the feasible region of an optimization problem specific to the smart
grid domain. This model only allows for afterwards checking the feasibility of an
already given solution.

We integrate these two approaches to a new decoder approach for constraint
handling [4]. Such a decoder is a constraint-handling technique that maps the
constrained problem space to some other not-restricted space where the search
operates. The basic idea is to construct a mapping from the original, uncon-
strained domain of the problem (the hypercube) to the feasible space. The
mapping will be derived from the support vector model. After a brief review
of constraint handling techniques and black-box modelling with support vector
approaches, we introduce the underlying model and describe the construction of
our mapping approach in detail. We present results from several test scenarios
with artificial optimization problems and conclude with results from applying
our method to the load balancing problem in smart grid scenarios.

2 Related Work

Several techniques for handling constraints are known. Nevertheless, many are
concerned with special cases of NLP or require priori knowledge of the problem
structure for proper adaption [1]. We will briefly discuss some prominent repre-
sentatives of such techniques. A good overview can for instance be found in [5]
or, more recently, in [2].

Penalty. A widely and long since used approach for constraint handling is the
introduction of a penalty into the objective function that devalues all solutions
that violate some constraint. In this way, the problem is transformed into an
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unconstrained one. Most commonly used are exterior penalties that draw out-
side solutions towards the feasible region in contrast to interior ones that keep
solutions inside, but require to start with a feasible solution [5].

Separation of Objectives and Constraints. Constraints or aggregations of
constraints may be treated as separate objectives. This leads to a transformation
into a (unconstrained) many objective problem. Such approaches have some
computational disadvantages from determining Pareto optimality or may lack
the ability (in the case of a disjoint region) to escape a sub-region [5]. Moreover,
a functional description of constraints must be known here in advance, what is
not the case when using surrogate models that hide original relations and only
model the original behaviour.

Solution Repair. Some combinatorial optimization problem allow for an easy
repair of infeasible solutions. In this case, it has been shown that repairing infea-
sible solutions often outperforms other approaches [6]. This approach is closely
related to the decoder based approaches.

Decoder. In order to give hints for solution construction, so called decoders
impose a relationship between feasibility and decoder solutions. For example,
[7] proposed a homomorphous mapping between an n-dimensional hyper cube
and the feasible region in order to transform the problem into an topological
equivalent one that is easier to handle, although with a need for extra parameters
that have to be found empirically and with some extra computational efforts. In
contrast, we will see later how a similar approach can be automatically derived
from a given support vector description. Earlier approaches e.g. used Riemannien
mapping [8].

A relatively new constraint handling technique is the use of meta-models for
black-box optimization scenarios with no explicitly given constraint boundaries.
Such a model allows for efficiently checking feasibility and thus eases the search
for the constraint boundary between a feasible and an infeasible solution in case
a repair of a mutation is needed. Various classification or regression methods
might be harnessed for creating such models for the boundary [2].

An example from the smart grid for the latter case that has been realized
by an SVDD approach can be found in [9] and is also an example for scenarios
with (at least partly) unknown functional relationships of the constraints. When
lacking full knowledge on hidden variables or intrinsic relations that determine
the operability of a electric device, the feasible region can only be derived by
sampling a simulation model [3]. The model is learned by SVDD from a set
of operable (feasible) examples; in another example, [10] used a two-class SVM
for learning operation point and bias (regarding allowed voltage and current
bands) of a line in a power grid for easier classifying a grid state as feasible or
not. In both cases, at the time of searching for the optimum, the only available
information is the model, i.e. a set of support vectors and associated weights.
Every information about the original constraints is no longer available in such
scenarios.
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For our real world use case we will briefly review load balancing. Within
the framework of today’s (centralized) operation planning for power stations,
different heuristics are harnessed. Short-term scheduling of different generators
assigns (in its classical interpretation) discrete-time-varying production levels
to energy generators for a given planning horizon [11]. It is known to be an
NP-hard problem [12]. Determining an exact global optimum is not possible in
practice until ex post due to uncertainties and forecast errors. Additionally, it
is hard to exchange operational constraints in case of a changed setting (e.g. a
new composition of energy resources) of the generation system.

Coordinating a pool of distributed generators and consumers with the intent
to provide a certain aggregated load schedule for active power has some objective
similarities to controlling a virtual power plant. Within the smart grid domain
the volatile character of such a coalition has additionally to be taken into account.
On an abstract level, approaches for controlling groups of distributed devices can
be roughly divided into centralized and distributed scheduling algorithms.

Centralized approaches have long time dominated the discussion [13] and
are discussed in the context of static pools of energy unit with drawbacks and
restrictions regarding scalability and particularly flexibility. Recently, distrib-
uted approaches gained more and more importance. Different works proposed
hierarchical and decentralized architectures based on multi-agent systems and
market based computing [14]. Newer approaches try to establish self-organization
between actors within the grid [15,16].

In load balancing scenarios, a scheduling algorithm (centralized or distrib-
uted) must know for each participating energy resource which load schedules
are actually operable (satisfy all constraints) and which are not. Each energy
resource has to restrict its possible operations due to several constraints. These
can be distinguished into hard constraints (usually technically rooted, e.g. min-
imum and/or maximum power input or output) and soft constraints (often eco-
nomically or ecologically rooted, e.g. personal preferences like noise pollution in
the evening). When determining an optimal partition of the schedule for power
production distribution, an alternative schedule is sought from each unit’s search
space of individual operable schedules (individual feasible region) in order to
assemble a desired aggregate load schedule.

3 Mapping Algorithm

We now describe the integration of a SVDD based black-box for feasible regions
into an arbitrary evolutionary optimization algorithm with proper and effective
constraint handling and propose handling constraints in a different way: by learn-
ing a mapping that transforms the original parameter hypercube to resemble the
feasible region.

3.1 SVDD-Model for Feasible Regions

As a prerequisite for our mapping, we assume that the feasible region of an
optimization problem has been encoded by SVDD as e.g. described in [9]. We will
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briefly describe this approach before deriving our new utilization method. Given
a set of data samples xi ∈ X , the inherent structure of the region where the data
resides in is derived as follows: After mapping the data to a high dimensional
feature space, the smallest images enclosing sphere is determined. When mapping
back the sphere to data space, its pre-image forms a contour (not necessarily
connected) enclosing the data sample.

This task is achieved by determining a mapping Φ : X ⊂ R
d → H, x �→ Φ(x)

such that all data from a sample from a region X is mapped to a minimal
hypersphere in some high-dimensional space H. The minimal sphere with radius
RS and center a in H that encloses {Φ(xi)}N can be derived from minimizing
‖Φ(xi)−a‖2 ≤ R2+ξi with ‖·‖ as the Euclidean norm and slack variables ξi ≥ 0
for soft constraints.

After introducing Lagrangian multipliers and further relaxing to the Wolfe
dual form, the well known Mercer’s theorem (cf. e.g. [17]) may be used for cal-
culating dot products in H by means of a kernel in data space: Φ(xi) · Φ(xj) =
k(xi, xj). In order to gain a more smooth adaption, it is known to be advanta-
geous to use a Gaussian kernel: kG(xi, xj) = e− 1

2σ2 ‖xi−xj‖2
[18]. SVDD delivers

two main results: the center a =
∑

i βiΦ(xi) of the sphere in terms of an expan-
sion into H and a function R : Rd → R that allows to determine the distance of
the image of an arbitrary point from a ∈ H, calculated in R

d by:

R2(x) = 1 − 2
∑

i

βikG(xi, x) +
∑

i,j

βiβjkG(xi, xj). (2)

Because all support vectors are mapped right onto the surface of the sphere, the
radius RS can be determined by the distance of an arbitrary support vector to the
center a. Thus the feasible region is modeled as F = {x ∈ R

d|R(x) ≤ RS} ≈ X .
This model might be used as a black-box that abstracts from any explicitly

given form of constraints and allows for an easy and efficient decision on whether
a given solution is feasible or not. Moreover, as the radius function Eq. 2 maps
to R, it allows for a conclusion about how far away a solution is from feasi-
bility. Nevertheless, a systematic constraint-handling during optimization is not
induced in this way. In the following, we present a way of integrating such SVDD
surrogate models into optimization.

3.2 The Decoder

Let F denote the feasible region within the parameter domain of some given
optimization problem bounded by an associated set of constraints. It is known,
that pre-processing the data by scaling it to [0, 1]d leads to better adaption [19].
For this reason, we consider optimization problems with scaled domains and
denote with F[0,1] the likewise scaled region of feasible solutions. We construct
a mapping

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d; x �→ γ(x) (3)
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that maps the unit hypercube [0, 1]d onto the d-dimensional region of feasible
solutions. We achieve this mapping as a composition of three functions: γ =
Φ 1̃

� ◦ Γa ◦ Φ̂�. Instead of trying to find a direct mapping to F[0,1] we go through
kernel space. The commutative diagram (Eq. 4) sketches the idea. We start with
an arbitrary point x ∈ [0, 1]d from the unconstrained d-dimensional hypercube
and map it to an �-dimensional manifold that is spanned by the images of the �
support vectors. After drawing the mapped point to the sphere in order to pull
it into the image of the feasible region, we search the pre-image of the modified
image to get a point from F[0,1].

(4)

H(�)d

x

Ψ̂x

Ψ̃x

x∗

Rmax

RS

Fig. 1. Deriving the decoder from the support vector model.

Step 1: Mapping to the SV Induced Subspace H(�) with an Empirical
Kernel Map. We will now have a closer look onto the respective steps of this
procedure. Let

Φ� : Rd → R
�, (5)

x �→ k(., x)|{s1,...,s�}

= (k(s1, x), . . . , k(s�, x))
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be the empirical kernel map w.r.t. the set of support vectors {s1, . . . , s�}. Then

Φ̂� : R
d → H(�), (6)

x �→ K− 1
2 (k(s1, x), . . . , k(s�, x))

with Kij = k(si, sj): the kernel Gram Matrix, maps points x, y from input space
to R

�, such that k(x, y) = Φ̂�(x) · Φ̂�(y) (cf. [17]). With Φ̂� we are able to map
arbitrary points from [0, 1]d to some �-dimensional space H(�) that contains a
lower dimensional projection of the sphere. Again, points from F[0,1] are mapped
into or onto the projected sphere, outside points go outside the sphere (cf. Fig. 1).

Step 2: Re-adjustment in Kernel Space. In general, in kernel space H
the image of the region is represented as a hypersphere S with center a and
radius RS (Eq. 2). Points outside this hypersphere are not images of points from
X , i.e. in our case, points from F[0,1] are mapped (by Φ) into the sphere or
onto its surface (support vectors), points from outside F[0,1] are mapped outside
the sphere. Actually, using a Gaussian kernel, Φ maps each point into a n-
dimensional manifold (with sample size n) embedded into infinite dimensional
H. In principle, the same holds true for a lower dimensional embedding spanned
by � mapped support vectors and the �-dimensional projection of the hypersphere
therein. We want to pull points from outside the feasible region into that region.
As we do have rather a description of the image of the region, we draw images
of outside points into the image of the region, i.e. into the hypersphere; precisely
into its �-dimensional projection. For this purpose we use

Ψ̃x = Γa(Ψ̂x) = Ψ̂x + μ · (a − Ψ̂x) · Rx − RS
Rx

(7)

to transform the image Ψ̂x produced in step (1) into Ψ̃x ∈ Φ̂�(F[0,1]) by drawing
Ψ̂x into the sphere. Alternatively, the simpler version

Ψ̃x = a +
(Ψ̂x − a) · RS

Rx
(8)

may be used for drawing Ψ̂x just onto the sphere but then without having to
estimate parameter μ ∈ [1, Rx]. Parameter μ allows us to control how far a point
is drawn into the sphere (μ = 1 is equivalent to Eq. 8, μ = Rx draws each point
onto the center). If μ is set to RS

Rmax
(compare Fig. 1), a larger sphere containing

all images (including infeasible) is rescaled onto the smaller one. In this way,
each image is re-adjusted proportional to the original distance from the sphere
and drawn into the direction of the center.

Points from the interior are also moved under mapping γ in order to compen-
sate for additional points coming from the exterior. In this way, the whole unit
hypercube is literally squeezed to the form of the feasible region without a too
large increasing of the density at the boundary. Though, if the feasible region
is very small compared with the hypercube, density at the boundary increases
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(depending on the choice of μ). On the other hand, the likelihood of an optimum
being at the boundary increases likewise. So, this might be a desired effect.

After this procedure we have Ψ̃x which is the image of a point from F[0,1] in
terms of a modified weight vector w̃Γa .

Step 3: Finding an Approximate Pre-image. As a last step, we have to
find the pre-image of Ψ̃x in order to finally get the wanted mapping to F[0,1].
A major problem in determining the pre-image of a point from kernel space is
that not every point from the span of Φ is the image of a mapped data point
[17]. As we use a Gaussian kernel, none of our points from kernel space can be
related to an exact pre-image except for trivial expansions with only one term
[20]. For this reason, we will look for an approximate pre-image whose image
lies closest to the given image using an iterative procedure after [21]. In our case
(Gaussian kernel), we iterate x∗ to find the point closest to the pre-image and
define approximation Φ 1̃

� by equation

x∗
n+1 =

∑�
i=1(w̃

Γa
i e−‖si−x∗

n‖2/2σ2
si)

∑�
i=1(w̃

Γa
i e−‖si−x∗

n‖2/2σ2)
. (9)

As an initial guess for x∗
0 we take the original point x and iterate it towards

F[0,1]. As this procedure is sensitive to the choice of the starting point, it is
important to have some fixed starting point in order to ensure determinism of
the mapping. Empirically, x has showed up to be a useful guess.

Fig. 2. 2(a): Sample from a artificial double banana shaped region. 2(b): Re-sampling
the feasible region by mapping random points from [0, 1]2. 2(c): marked optima of the
Six-hump camel back objective function withing the used domain (depicted as heat
map in the background).

Finally, we have achieved our goal to map an arbitrary point from [0, 1]d

into the region of feasible solutions described merely by a given set of support
vectors and associated weights: x∗

n is the sought after image under mapping γ of
x that lies in F[0,1]. We may use this decoder approach to transform constrained
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optimization problems into unconstrained ones by automatically constructing
mapping γ from a SVDD model of the feasible region that has been learned
from a set of feasible example solutions.

4 Experiments

We present evaluation results of our decoder method with several theoretical
test cases as well as results from the smart grid power planning problem.

4.1 General Test Cases

We started with several artificially constrained optimization problems and test
functions. We consider optimization problems as described in Sect. 1 and use
the above described procedure as constraint handling technique, i.e. we trans-
form problem Eq. 1 into an unconstrained optimization problem by applying
mapping γ:

optimize f(γ(x)), s.t. x ∈ [0, 1]d. (10)

Of course, the restriction to the unit hypercube still entails a box constraint,
but as these are easily handled by almost all algorithm implementations, this is
not a serious obstacle. If x◦ ∈ [0, 1]d is the found position of the optimum in
the unconstrained space then x̃ = γ(x◦) ∈ F[0,1] is the solution to the original,
constrained problem.

(a) (b)

Fig. 3. 3(a): Randomly generated double ring data set as representation of a second toy
region. Again, the orange line denotes the learned boundary that encloses the feasible
space. 3(b): Mapping a mesh with grid size 0.02 into the learned region of a double
ring data set.

In the case of evolutionary algorithms, the method can be easily applied by
defining the neighborhood in [0, 1]d and search the whole unit hypercube, but
evaluate a solution x at the position γ(x). Note that mapping γ(x) generates
a feasible solution regardless of the choice of x. Therefore optimization might
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Table 1. PSO and ABC and their absolute fitnesses (lower is better) after n iterations
for the Shubert function as test function and double banana as constraint region.

Algorithm n Penalty Mapping

PSO 5 70.912 ± 89.714 −13.360 ± 0.256

10 24.734 ± 68.949 −13.435 ± 0.278

25 5.923 ± 47.904 −13.446 ± 0.28

50 0.013 ± 41.368 −13.477 ± 0.286

ABC 5 67.189 ± 89.783 −13.310 ± 0.17

10 22.128 ± 64.272 −13.367 ± 0.137

25 −2.897 ± 35.965 −13.496 ± 0.175

50 −10.236 ± 15.765 −13.596 ± 0.153

always start with an arbitrary (randomly chosen) x ∈ [0, 1]d without having to
find a feasible start solution first.

For some first tests, we generated random samples from toy regions and
used them as training sets. The retrieved support vectors and weights are taken
as a model for feasible region F[0,1]. Figure 2(a) shows an example with a 2-
dimensional double banana set. With these models, we constructed our mapping
γ. As a first test, a set of 1 million equally distributed points has been randomly
picked from [0, 1]2 and mapped. Figure 2(b) shows the result with mapped points.

Next, we applied standard particle swarm optimization (PSO) [22] and stan-
dard artificial bee colony (ABC) optimization [23] in order to find optima of
several standard test objective functions. For this purpose, both algorithms have
been equipped with mapping γ, while the topology of the neighbourhood that
both algorithms operate on is defined as the whole unit hypercube. Figure 2(c)
shows an example of found optima for the above sketched setting (both succeeded
equally good). In this case, the well known Six-hump camel back function [24]
has been used with the domain −1.9 ≤ x1 ≤ 1.9, −1.1 ≤ x2 ≤ 1.1 scaled to
[0, 1]2.

Fig. 4. A typical result for the speed of convergence in a higher dimensional test case;
dashed: penalty approach.
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Table 2. Results for different objective functions and algorithms. A double banana set
has been used for all objectives. ABC: 87.98 and PSO: 83.22 % were valid solutions for
the penalty case; mapping: 100 %.

Banana Rings

Objective Alg. Penalty Mapping Penalty Mapping

Shubert PSO 5 −1.63± 38.95 −13.3± 0.41 −13.61± 9.02 −14.07± 0.75

Shubert ABC 5 −11.59± 8.35 −13.6± 0.35 −14.14± 0.49 −14.25± 0.22

Shubert PSO 50 −13.99± 0.06 −13.87± 0.13 −14.43± 0.0 −14.43± 0.01

Shubert ABC 50 −13.93± 0.08 −13.89± 0.01 −14.43± 0.0 −14.42± 0.01

Branin PSO 5 135.39± 80.35 36.36± 0.91 43.61± 40.24 33.14± 0.17

Branin ABC 5 46.91± 33.78 36.15± 0.19 33.56± 1.73 33.12± 0.02

Zakharov PSO 5 1.54± 14.9 0.39± 0.08 0.18± 0.15 0.14± 0.01

Zakharov ABC 5 0.51± 3.9 0.38± 0.0 0.18± 0.08 0.14± 0.0

Bohachevsky 2 PSO 5 0.93± 11.21 0.26± 0.1 0.43± 0.22 0.32± 0.05

Bohachevsky 2 ABC 5 0.4± 2.76 0.24± 0.01 0.38± 0.11 0.28± 0.02

Bohachevsky 2 PSO 50 0.24± 0.0 0.24± 0.0 0.27± 0.0 0.27± 0.0

Bohachevsky 2 ABC 50 0.24± 0.01 0.24± 0.0 0.28± 0.01 0.27± 0.0

Himmelblau PSO 5 179.84± 30.05 137.6± 1.96 127.11± 19.04 121.84± 0.31

Himmelblau ABC 5 145.08± 14.38 136.03± 1.1 123.1± 1.69 121.74± 0.06

As a second test case, double ring data sets (Fig. 3(a)) have been generated.
The contour plot in the background shows as objective Shubert’s function [25].
For the depicted configuration, different almost equally good local optima are sit-
uated near different distant positions at the boundary of the feasible region. Nev-
ertheless, all algorithms equipped with mapping γ succeeded in finding optima
inside (or at the boundary of) the feasible region.

As a next step, we compared how fast a solution converges with a mapped
objective function. We compared the performance, i.e. the speed of convergence,
with exterior penalty approaches. Such a constraint handling approach entails
additional penalty values to solutions outside the feasible region. According to
[26], a penalty function that reflects the distances from the feasible region, is
supposed to lead to better performance. Therefore, we have chosen the distance
function of the SVDD (Eq. 2) as the penalty that attracts an outside solution to
the feasible region. As we do not have any information on the original constraints,
it is not in general possible to model penalties based on the number of or based on
any individual constraint. Both algorithms converged faster with mapping than
with penalty. The whole swarm operates completely inside the feasible region
from the beginning when using a mapped objective function while retaining
normal swarm behaviour in [0, 1]d.

Tables 1 and 2 show further results. Table 1 focusses on the population size
of swarm based approaches. Table 2 shows further results (the lower the better)
on various combinations of algorithms and further objective functions for the
case of the double banana dataset. Stated are respectively absolute achieved
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fitnesses, thus the ratio between mapping and penalty is to be compared. A major
drawback of the penalty approach is the fact that it not always converges to a
feasible solution. Whereas the mapping method always served feasible solutions,
the penalty approach failed in up to 17 % of the test runs.

Nevertheless, the inaccuracy inherent in the model from learning the
region still remains an inaccuracy for mapping. But, the same holds true for
all approaches that are based on such a surrogate model, including the penalty
approach. Although, we made the observation that γ performs better at sharp
edges than the decision boundary Eq. 2 (cf. Fig. 2(b)).

Figure 3(b) shows the result of mapping a regular mesh from [0, 1]2 onto the
double rings. The mapped mesh shows how points from different parts of the
feasible region become neighbours under the γ by bypassing the infeasible region
inside the rings. Figure 4 shows some results for test runs on an 8-dimensional
problem with a stretched ellipse as feasible region and Himmelblau [27] as objec-
tive function. We compared artificial bee algorithms with 5 individuals for the
mapping case and 200 individuals for the penalty case. Nevertheless, the mapping
approach performs better and some penalty runs still converged to a infeasible
solution, showing the superiority of the mapping approach.

(a) (b)

(c)

Fig. 5. Results from a smart grid load balancing scenario with a standard penalty
constraint-handling technique on the left (5(a)) and the mapping based approach on
the right (5(b)); 5(c) compares the speed of convergence.
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4.2 The Smart Grid Use Case

Finally, we applied our method to the following real world problem from the
smart grid domain: An individual schedule has to be determined for each member
of a pool of micro-co-generation (CHP) plants such that the aggregated electric
load schedule of all plants resembles a given (probably demanded by market)
target schedule in an optimal way. For the sake of simplicity, we will consider
optimality as a close as possible adaption of the aggregated (sum of individual
loads) schedule to the requested on. Optimality usually refers to additional local
(individual cost) as well as to global (e.g. environmental impact) objectives.
When determining an optimal partition of the schedule for load distribution,
exactly one alternative schedule is taken from each generators search space of
individual operable schedules in order to assemble the desired aggregate schedule.

Therefore, the optimization problem is: finding any combination of schedules
(one from each energy unit with Xi as the set of possible choices) that resembles
the target schedule lT as close as possible, i.e. minimize some distance between
aggregated and target schedule:

‖
∑

i

xi − lT ‖ → min, s.t. xi ∈ Xi. (11)

Of course, each generator has individual constraints such as time varying buffer
charging, power ranges, minimum ON/OFF times, etc. Thus, we simulated indi-
vidual plants. For our simulations, we used simulation models of modulating
CHP-plants (combined heat and power generator capable of varying the power
level) with the following specification: Min./max. electrical power: 1.3/4.7 kW,
min./max. thermal power: 4/12.5 kW; after shutting down, the device has to
stay off for at least 2 h.

The relationship between electrical (active) power and thermal power was
modeled after [28]. In order to gain enough degrees of freedom for varying active
power, each CHP is equipped with an 800 litre thermal buffer store. Thermal
energy consumption is modeled and simulated by a model of a detached house
with its several heat losses (heater is supposed to keep the indoor temperature on
a constant level) and randomized warm water drawing for gaining more diversity
among the devices.

For each simulated household, we implemented an agent capable of simulat-
ing the CHP (and surroundings and auxiliary devices) on a meso-scale level with
energy flows among different model parts but no technical details. All simula-
tions have so far been done with a time resolution of 15 min for different forecast
horizons. Although, our method is indifferent about any such time constraints.
We have run several test series with each CHP randomly initialized with differ-
ent buffer charging levels, temperatures and water drawing profiles.The feasible
spaces of individual CHP had been encoded with the SVDD approach. These
support vector models have then been used for the search for optimal schedules:
with a penalty approach on the one hand and with the proposed mapping on the
other. Figure 5 shows a typical result. We used a co-variance matrix adaption
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Fig. 6. Power planning result with 750 micro co-generation plants. The top chart shows
the target (dotted) as well as the achieved schedule. The load charts in the middle
show the individual schedules of two types of chp in the group, the bottom chart shows
resulting buffer temperatures. The grey bands denote allowed ranges of values.

evolution strategy (CMA-ES) approach [29] for finding combinations of sched-
ules that best resemble the dashed target schedule in the top chart (Fig. 5(a) and
(b)). Both seem to have equally good results, but, looking at individual loads
(in middle) and the temperatures (bottom) reveals that the penalty approach
gets easily stuck at an (at least partly) infeasible solution whereas the mapping
approach succeeds with feasible solutions. This effect amplifies with the number
of plants and therefore with the number of used penalties. Moreover, the map-
ping approach most times converges faster as Fig. 5(c) shows for this specific
example.

Considering the complexity, additional computational costs are entailed on
solution evaluation. Step 1 of the mapping growing quadratically with the num-
ber of support vectors � is decisive together with the number of iterations nec-
essary for finding the pre-image in step 3. Empirically, during our experiments,
we observed for instance a mean number of iterations of 6.75 ± 0.3 for the case
of the 2-dimensional double banana and 36.3 ± 26.4 for the case of a stretched
8-dimensional ellipse in order to reach convergence with 10−8 accuracy. Addition-
ally, this number reduces in the course of optimization as soon as the evolution
approaches feasible space. Otherwise, fewer function evaluations are necessary
with our decoder approach, because we never evaluate infeasible solutions and
we do not have to check feasibility during optimization. Both effects put into
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perspective the computational costs. Figure 6 shows an example from a sce-
nario with 750 co-generation plants, demonstrating the ability to handle larger
problems.

5 Conclusions

Many real world optimization problems face the effect of constraints that restrict
the search space to an arbitrary shaped possibly disjoint region that contains the
feasible solutions. Conventional constraint handling techniques often require the
set of constraints to be a priori known and are hardly applicable for black-box
models of feasible regions. Although penalties may be used with such models,
the task of correctly tuning the objective with these additional losses stays an
error prone job due to the unknown nature of the original constraints that are
no longer known at optimization time.

We proposed a new constraint handling technique for support vector modeled
search spaces and demonstrated its applicability and usefulness with the help of
theoretical test problems as well as for a real world optimization problem taken
from the smart grid domain. The major benefit of this approach is the universal
applicability for problem transformation, solution repair and standardized inte-
gration in arbitrary evolutionary algorithms by constructing a modified objective
function and treating the whole unconstrained domain as valid for search. So far,
we have restricted ourselves to problems scaled to [0, 1]d. Further tests will show
whether this limitation should be kept or whether arbitrary domains perform
equally good.
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References

1. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parame-
ter optimization problems. Evol. Comput. 4, 1–32 (1996)

2. Kramer, O.: A review of constraint-handling techniques for evolution strategies.
Appl. Comp. Intell. Soft Comput. 2010, 3:1–3:19 (2010)

3. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distrib-
uted energy resources’ feasible load spaces. In: IEEE PES Conference on Innova-
tive Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden
(2010)

4. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support
vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.)
ICAART 2013 - Proceedings of the 5th International Conference on Agents and
Artificial Intelligence. Barcelona, vol. 2, pp. 91–105. SciTePress, Spain (2013)

5. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Comput. Methods
Appl. Mech. Eng. 191, 1245–1287 (2002)



Constraint-Handling with Support Vector Decoders 243

6. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. J. Exp.
Theor. Artif. Intell. 2, 101–115 (1990)

7. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evol. Comput. 7, 19–44 (1999)

8. Kim, D.G.: Riemann mapping based constraint handling for evolutionary search.
In: SAC, pp. 379–385 (1998)

9. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for
virtual power plants. In: IEEE Symposium Series in Computational Intelligence
2011 (SSCI 2011), Paris, France (2011)

10. Blank, M., Gerwinn, S., Krause, O., Lehnhoff, S.: Support vector machines for
an efficient representation of voltage band constraints. In: Innovative Smart Grid
Technologies, IEEE PES (2011)

11. Pereira, J., Viana, A., Lucus, B., Matos, M.: A meta-heuristic approach to the unit
commitment problem under network constraints. Int. J. Energ. Sect. Manage. 2,
449–467 (2008)

12. Guan, X., Zhai, Q., Papalexopoulos, A.: Optimization based methods for unit
commitment: Lagrangian relaxation versus general mixed integer programming.
In: IEEE Power Engineering Society General Meeting, vol. 2, p. 1100 (2003)
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