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Abstract. This paper proposes the SMACH multi-agent simulation
framework that allows energy experts to run scenario-based experiments
to investigate the link between residential electricity consumption and
inhabitants behaviour. We first present the proposed meta-model and
the associated simulator. We illustrate their use by specialist on con-
crete examples featuring classical household activities. We also put an
emphasis on the systems adaptation mechanism that permits to outline
emergent habits and other behavioural patterns.
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1 Introduction

Energy efficiency and consumption reduction is a major challenge for our society
due to awareness raising to the greenhouse effect and growing tensions on the
energy market. European Union (EU) set the ambitious objective to divide by
four greenhouse gas emissions by 2050. Yet, a large part of the final energy con-
sumed in Europe, 26.6 %, is used within residential sector, according to the EEA
[2]. For this reason, several programmes in the residential sector have been pro-
posed such as building renovation, definition of low energy building (LEB) and
smart energy controller [4], consumer awareness to cost and carbon emissions
thanks to real-time feedback [13]. At a larger scale, smart grid have been pro-
posed [9] in order to optimise the production and the distribution of electricity
depending on consumption.

Nevertheless, individuals’ behaviour also strongly influences energy consump-
tion. In France, according to [12], despite a moderate increase of household elec-
tricity consumption (8 % from 1973 to 2003), a strong increase of the specific
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uses of electricity (i.e. electricity used except for heating) occurred (85 % for the
same period). In this context, the study of propositions to diminish specific uses
of electricity becomes a crucial issue.

One aspect of the problem is to study the consumption of electrical appliances
in real-life situations. That aspect is at the core of the REMODECE1 european
project, that provides knowledge on electricity waste due to inefficient appliances
and standby consumption. A complementary approach is to study household
activities. Several works have been proposed in this direction such as [1,7,8],
but they usually focus on electricity demand prediction, so as to optimise energy
control systems. Nevertheless, one might want to consider influencing people’s
consumption behaviour through incentives such as variable electricity pricing,
awareness campaigns, etc. For instance, [10] suggests that a critical peak price
program might reduce by 30 % the peak load.

Several models allows to take into account human activities and their result-
ing electricity demands. Many of them rely on statistical approaches such as
[18,20] that use hidden Markov chains to generate human activities related to
electricity demands. Despite their statistical validity, they focus on representing
an “average” familly and scenario and, thus, do not allow to investigate on the
activity dynamics related, for instance, to specific events. Actually, agent-based
models are best fitted for such analysis, as recently exhibited by the model pro-
posed in [7]. This model relies on the Brahms language [16] to allow explicit
representation and organisation of human activities. Nevertheless, the parame-
trization of this model appears to be very complex. They are hardly accessible
to field experts and do not allow simulation of complex and long situations.

In this paper, we present a meta-model and a simulator, called SMACH,
that allows experts to model, simulate and study the household activities and
their relation with electrical consumption depending on specific pricing policies
or appliance use. This system can be used to evaluate possible incentives to
diminish peak hours electricity demand.

In numerous modelling efforts, expertise collection is combined with defini-
tion of the technical architecture which often limits the scalability of the model.
In contrary, our approach, incremental and situated modelling [15], clearly sep-
arated the two processes: (1) we propose a meta-model generic enough to (2) let
field experts integrate their knowledge and evaluate their hypotheses by defin-
ing scenarios (for instance, in the present application: a household of two adults,
two kids, one infant, their activities their habits, house environment and specific
events). Once a new question emerges or an incoherence is pointed out by domain
experts, the cycle starts again by making amendment to the previous meta-
model. In practice, our meta-model and the dedicated simulator (SMACH) allow
experts to define fine-grain activities (ranging from few minutes to hours) and to
study their evolution over long period of time (one year). Using an advanced and
intuitive user interface, the simulator allows experts to understand the respective
influence of activities and energy consumption, and the co-influence of activities.

1 http://remodece.isr.uc.pt

http://remodece.isr.uc.pt
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In this paper, we focus on the presentation of the meta-model of human
activities within the household (presented in Sect. 2) and the dynamics of this
model which includes communication, beliefs, action selection and behaviour
adaptation (detailed in Sect. 3). Section 4, introduces the simulator GUI and
provides two distinctive examples of household emergent adaptation forced by
action competition and variable electricity pricing. Section 5 concludes the paper
and presents the ongoing work.

2 Meta-Model of Human Activity

Our meta-model of human activity follows two purposes that are tightly con-
nected. First, it aims at describing human behaviours in the context of household
electricity consumption. This description must remain easy to manipulate, even
for non-computer specialists. To this purpose, we followed an individual-centered
agent-based approach in which human activity is decomposed into tasks. Second,
it serves as agent description model for our multi-agent simulator (Sect. 3). This
simulator allows to study the evolution of human behaviour depending on the
characteristici.e.s of energy pricing and household appliances, that are defined
in the environment.

2.1 Environment

Let [ds, de] be the considered time period. Energy prices can be specified to
different time periods {[di; di+1], pricei} with d0 = ds and pricei ∈ R

+, the
kilowatt hour price (kWh) for the ith sub-period.

The house is composed of several rooms where electrical appliances are
spread. Let R be the set of rooms and E the set of appliances. For each room
r (r ∈ R), we note Er ⊂ E the set of electrical appliances in this room. In our
model, each appliance can only be in one room, fixed for the duration of the
simulation.

Appliances. Each appliance e ∈ E is characterised by its electrical consumption
θi. We note power : E → R

+ the function that returns the current electrical
consumption of an appliance. In our model, we consider two different kinds of
appliances:

State-based appliances are defined as a tuple {θo, θs, st} where θo and θs are
the electrical consumptions (in R

+) when e is running or in standby mode, and
st ∈ {off, standby, on} is the state of the appliance, modified by individuals in
the house during their activities. Heaters, TVs, fridges... can be represented by
state-based appliances.

Program-based appliances are defined as a tuple < Pe, st > where Pe is a
set of operating programs characterised by load curves. Each program p is a
couple (τp, φp) where τp is the program duration and φp : [0, τp] → R

+ gives
the appliance consumption at each time of the program. The status st of the
appliance is then defined by a couple st = (pc, tc) where pc is the currently
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selected program and tc is the time since the beginning of this program. Thus,
power(e) = φpc

(tc). Ovens can be represented by this kind of appliances. Note
that state-based appliances can be seen as specific cases of program based appli-
ances (with three programs and constant load curves).

All energy consumption profiles comes in our model from real data from the
REMODECE project.

2.2 Household Members and Their Behaviours

Individuals represent the household members. Each individual i ∈ I is charac-
terised by its responsibility level resi and the set of actions it can perform Ai

(see below).
The responsibility level allows us to distinguish between children, youngsters,

adults and elderlies in the simulation (see Sect. 3). Moreover, at each time of the
simulation, we note:

– room(i) ∈ R the room in which the individual is located;
– action(i) ∈ Ai the individual’s current activity;
– Bi the individual’s beliefs set (see Sect. 3.1);
– Ci the individual’s communications set (see Sect. 3.1);

Tasks. A task t ∈ T represents a generic activity in the house, from which individ-
ual actions are derived. A task is a tuple < τmin, τmax, bene, visi, coll, Et, Tpre >
where:

– τmin, τmax the minimum and the maximum task duration;
– bene ∈ {alone, collective} describes whether this task, once achieved, can be

used by other individuals or not (see preconditions below);
– visi ∈ {none, individual, room, house} describes the visibility (by other indi-

viduals) during and after the task realisation (see visibility of actions in the
following subsection);

– coll ∈ {none, allowed,mandatory} describes whether this task cannot, can or
must be performed alone or with other individuals.;

– Et = {< e, p >} | e ∈ E & p ∈ {e.Pe} the set of appliances used during this
task realisation and the associated programs (for program-based appliances);

– Tpre ⊂ T is the set of pre-conditional tasks of t. An individual can perform a
given task if and only it has the information that all pre-conditional tasks have
been achieved by himself (if bene = alone) or by others (if bene = collective).
The precondition relation maps into a graph of tasks;

Actions, Rythms and Events. An action a ∈ A represents the instanciation
of a task by an individual. We denote actor(a) the unique i ∈ I such that
a ∈ Ai.2

2 When different individuals can perform the same task, each one is associated with
a different instance.
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An action is defined by a tuple a = 〈t, w,Ra, st〉 where t ∈ T is the associated
task, w ∈ W is the action rhythm (see below), Ra ∈ R is the set of rooms in
which this action can be performed and st ∈ undone, done is the action status,
whose dynamics is described in Sect. 3.2. When an action has been achieved
(st = done), we note rooms(a) the set of rooms in which it has been done.

Rhythms. In order to express habits of humans, the concept of rhythm has been
introduced in the meta-model. A rhythm w (w ∈ W ) allows to define, for each
action, a frequency and preferred periods. The preferred period allows to specify
the month, day of the week and the time slots in which an agent may perform a
task. To each of these specifications is associated a force indicating if the system
should more or less take into account these periods. More formally, a rhythm is
a tuple 〈perw, freqw, varw, Ppw〉 where:

– per ∈ {day,week,month, year} is the period considered;
– freq ∈ N

+ is the frequency for this period;
For instance, per = day and freq = 2 means “twice a day”.

– var ∈ {weak,medium, strong} is the frequency variability;
– PP is a set of preferred sub-periods in the considered period. Each preferred

period ppi is a tuple with 〈[d1, d2], strength〉 where d1 and d2 define the sub-
period, strength ∈ {weak,medium, imperative} the strength of the preferred
period;

For instance, let us consider the task “eating”. We might want to define the
default rhythm for this task as being performed three times a day in most sit-
uations (per = day, freq = 3, var = weak) with preferred periods pp1 =<
[7 : 00, 9 : 00], imperative >, pp2 =< [12 : 00, 14 : 00], weak > and pp3 =<
[19 : 00, 22 : 00], strong >, which means that our individual will eventually eat
in the morning, possibly at lunch and very probably at dinner. Note that the
number of preferred periods does not need to be equal to freq (in which case
some executions of the task will remain completely free over the period).

Events. Events represents exceptional situations (such as holidays, sickness, etc.)
during which usual actions cannot be performed. An event q ∈ Q can be defined
as a couple ([dsq , deq ],Wq with Wq a set of couples (a,w). Concretely, an event
associates new rhythms w to some actions a for a given time period [dsq , deq ].
For instance, during holidays, the rhythm associated with actions “work” is null.

Collective Aspects. Our meta model was designed so as to integrate the
collective aspects in family organisation, such as helping the children, sharing
domestic tasks or spending time together during certain activities. The coll and
bene parameters in tasks play a key role in leading to a cooperation mechanism
among individuals, following the simulation model that is presented in the next
section. As an illustration, there is a synchronisation mechanism between agents
when coll = mandatory so that individuals wait for each other to begin the task.
Similarly, the fact that some tasks with collective benefits can be used by other
agents allows to really describe complex cooperation in the house.
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3 Simulation of Human Activities

Based on the meta-model presented in the previous section, human activity is
simulated in a multi-agent simulator called SMACH. In this simulator, agents
correspond to the human individuals in the model and their procedural loop is
presented in the next two subsections. The adaptation of this loop over time to
the scenario constraints is presented in Subsect. 3.3.

3.1 Multi-agent Model

To each individual i ∈ I corresponds an agent in SMACH. All agents run syn-
chronously in the platform and each step consists into selecting the best current
action based on the agent’s beliefs. In this subsection, we present the agent beliefs
and the communication model. Next subsection presents the agent’s dynamics.

Beliefs. A belief b of an individual is a tuple b = 〈d, a, s〉 such that d is the
creation date, a ∈ A an action and s ∈ {undone, running,done} is the believed
status of this action. < d, a, s >∈ Bi means that, at time d, individual i had an
information about action a being in status s (with s = running when ∃i ∈ I
such that action(i) = a). This belief is kept in i’s beliefs base as long as no
observation or deduction contradicts it.

The initial beliefs set Bi of an agent i is that all actions have the status:
undone. We also consider individuals know from the start which one can perform
which task. The dynamics of the beliefs set is presented in Sect. 3.2.

Communications. In addition to individual actions, people in the household
must communicate to exchange information or request the participation of others
in tasks. This is represented using a multi-agent communication approach such
as FIPA-ACL [3], based on speech-act theory by Searle [14].

A conversation c ∈ Ci is an ordered set of n messages, msg1, ...,msgn with
msgi =< d, to, from, perf ∈ Perf, c > where d is the date of the message, to
and from are the sender and the receiver of the message, perf is the message
performative and c its content.

In our model, the main considered performatives are: I do ..., Are you ready
to ... ?, What are you doing?, Did you ... ?, Can you ... ? and their following
replies No, Yes, Later. The content of the message, when required, is always a
single task t ∈ T .

The selection of messages, based on the agents beliefs, is presented in the
next subsection.

3.2 Agents’ Dynamics

This section first presents how beliefs are maintained in the agents base. Then,
we present how actions are selected, based on individual’s preferences, beliefs
and communications.
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Beliefs Update. Beliefs in the agent’s base Bi are added or removed at each
turn, based on the agent’s perception (either direct perception in the visibility
zone of an action, or via a message) and on automatic inferences on actions
status and individual’s possible rooms.

More formally, let d0 be the current time stamp and let us note +ib and −ib
the addition and removal of belief b in Bi.

We first define the visibility zone of an action a ∈ A, depending on its status
and task’s visibility, as follows (all cases are exclusive):

– if a.t.visi = none, then it is not visible: visi(a) = ∅;
– if a is active (i.e. ∃i ∈ I such that action(i) = a) and has visibility a.t.visi ∈

{individual, room}, then visi(a) = {room(i)}∀i|action(i)=a;
– if a is active and a.t.visi = home, then visi(a) = R
– if a is finished (i.e. a.st = done) and a is visible on individuals (a.t.visi =

individual), then visi(a) = room(actor(a));
– if a is finished and a.st.visi ∈ {room, home}, then visi(a) = rooms(a);

The agent belief base Bi is updated when observing actions from their visi-
bility zone:

∀a|room(i) ∈ visi(a), �〈d′, a, status(a)〉 ∈ Bi ⇒ +i〈d0, a, status(a)〉
Similarly, when receiving a message with performative I do or an answer to

a message Did you in a conversation, a new belief is added: +i〈d0, a, status(a)〉,
with a the action corresponding to the sender and the task (content) of the
message.

Moreover, a coherence mechanism removes all previous incompatible belief:

– An action can only have one status: +i〈d0, a, status(a)〉 ⇒ ∀d′ < d0,−i〈d′, a,
s′ �= status(a)〉;

– An agent can only do one action at a time: +i〈d0, a, status(a)〉 ⇒ ∀a′|actor(a)=
actor(a′),−i〈d′, a′, s′〉 and +i 〈d0, a′, done〉;

– A task “must” be over after its maximum duration: if ∃b ∈ Bi such that
b.d + b.a.t.τmax > d0, then −ib and +i〈d0, b.a, done〉;

– Two actions associated with one single “exclusive” task (a1.t = a2.t = t
and t.coll = none) cannot be active simultaneously: −i〈d′, a2, running〉 and
+i〈d0, a2, done〉.

Note that when a previous belief is updated, its status is moved to done (actions
that can no longer be performed are considered as achieved by default).

Action Dynamic. The status of an action st (from undone to done) is actu-
ally more complex than a simple done/undone boolean. It is controlled by four
internal variables:

– realnumber ∈ N
+ is the number of realisation already conducted within the

current day. The value of a.st ∈ {done, undone} used in beliefs is directly
derived from a.realnumber ≥ 1;

– realmax ∈ N
+ is the planned maximum number of realisation for the current

day (which directly depends on w);
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Table 1. Action availability conditions.

– τ ≤ a.t.τmax is the elapsed duration when a is running;
– pr ∈ [−1; 1] is the action priority.

The priority a.pr evolves in time (see below, Sect. 3.2) and the agent selects
the action with the highest priority amongst all possible actions. An action is
possible if and only if all the following criteria are met (see also Table 1):

– Every precondition tasks have been conducted;
– All needed appliances are available;

Note that a.st cannot be computed directly by the agent. On the contrary,
the agent will use its belief base to decide whether actions are done or undone
and whether they can be performed. In the algorithm in Table 1, a.st = x means
∃ < d, a, done >∈ Bi. However, when starting an action, the simulator will check
all the actual preconditions and an agent will not be able to perform an action
that it believed possible if Table 1 is not checked. In this case, all inconsistent
beliefs are removed from the agent base.

Interruption and Realisation. The running action of an individual (a =
action(i)), can be interrupted for two reasons: (1) another (possible) action, a′,
has a higher priority or (2) a became impossible. When this occurs, another
action will be selected and the status of a is modified depending on its duration
time:

– If a has been executed for a duration τ ≥ τmin, its number of realisation
a.realnumber is incremented and a.τ is reset to 0. The action status a.st
switches do done.

– If a.τ < τmin The action is put in a “standby mode“: a.τ is blocked at its
current value, its number of realisation is not increased. For instance, a child
is interrupted during homework, (s)he does not loose the benefit of having
started working.

Daily Reset. The action’s state evolves over time depending on the individual
behaviour and his/her environment. It is reset at midnight except for the sleep
action which is reset at noon. In practice, a.st is reset to undone, a.realnumber,
a.τ and a.pr are reset to 0, and the maximum number of realisation is re-
computed depending on the action rhythm if the new day contains a preferential
period, ppi, and if some realisation are to be done (w.real < w.realmax).
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Table 2. Raw priority external factors.

Action Priority. An action priority takes into account the individual’s internal
state: preference3, commitment to the current action (see Table 2 for details) and
the influence of the associated rhythm (a.w, see also Sect. 3.3). In addition to the
individual’s internal state, the priority of an action may be influenced by external
factors: energy price level (variability of the energy price is summarised as 3
levels), other individuals invitations (through messages) and events influence.
Table 2 describes the computation of this raw priority, called prraw:

prraw = pref + inf real + inf pp+ inf eng + inf ener + inf inci+ inf eve

All the coefficient values have been determined empirically, only their relative
order is significant. For instance, the individual preference is much less important
than its commitment/lassitude to his/her current action.

In order to allow the representation of sequential behaviour (e.g. leave for
work requires to be suit up which requires to have taken a shower), the action
priority must also consider the priority of the most urgent depending action, i.e.
the maximum of priorities of all actions for which a is in precondition:

prdep = maxa.t∈a′.Tpre
{a′.pr}

3 Minimal factor enabling complete differentiation between actions with similar
priorities.



SMACH: Agent-Based Simulation Investigation on Human Activities 203

Thus, the action priority a.pr is the maximum of these two values:

a.pr = max{a.prraw, prdep}

3.3 Behaviour Adaptation

Adaptation is essential in our model as we want to study the possible reactions of
a household to variable energy pricing, habits emergence and other single events
(e.g. holidays, sickness, etc.). Adaptation is conducted trough re-organisation of
the household, i.e. when tasks are made and who does which collective task.

We implemented two adaptation mechanisms during a simulation: (1) every-
day life obligations or strong habits are represented through rhythms with imper-
ative frequencies and/or preferred period (PP) and (2) habits may emerge thanks
to the controlled mobility of actions.

Everyday Life Strong Constraints. Some everyday life actions may require
to be conducted at specific time. Such constraint is controlled through the PP
influence (see Table 2): positive during a PP and negative outside of any PP,
in order to favour within PP and penalise outside PP realisation respectively.
Unfortunately, as in the everyday life, i.e. several actions may compete for a
realisation during an overlapping timeslot (e.g. have breakfast and take shower
both should be done between 7 to 8am). To lessen such competition between
imperative rhythms, each action at the end of the day reevaluates its bonus and
penalty values according to the following policy:

bonus must remain between 0 and 0.15;
penalty must remain between −0.15 and 0;
When the action could not be executed during its PP this day, bonus is

increased 0.02;
When the action was achieved during its PP for this day, the bonus is decreased

by 0.01. This ensures a slow re-organisation capacity.
When the action was executed outside a PP, bonus is increased by 0.01;
When the system could not reach the target realisation number for this action

(i.e., realnumber < realmax), penalty is decreased by 0.02, since we want to
give priority to action achievement over PP constraints.

In other words, actions that could be done during their PP during day n will
be less favoured on their PP in day n + 1 and vice-versa. Moreover, actions that
missed some executions will be encouraged. Although this policy cannot guar-
antee the satisfaction of all realisation constraints (which may not be possible
at all), it provides modeller more freedom regarding rhythms definition.

Everyday Life Habits. Outside the competitive timeslot, habits may emerge
as in everyday life. This is achieved in SMACH via the automatic creation of
non-imperative rhythms during simulation. In practice, if an action has been
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triggered at a given period, this period will be favoured the following days (using
a limited memory window)4. As a consequence, all actions with no specified PP
are allowed to find the most suitable periods for their realisations and to keep
them as long they are suitable.

The maximum values for bonus and penalty are lesser than those of impera-
tive PP, so this kind of actions can change its PP more easily. The next section
will give an example of such adaptation: in conjunction with the priority penalty
during periods with expensive energy, the household organisation is altered.

4 Implementation and Evaluation

The SMACH simulator has been implemented in Java and several example sce-
narios have been proposed to validate our approach.

We developed our own agent-based simulation platform for the SMACH
project because we required a GUI adapted to domain expert (e.g. use of a
programming language was out of the question) with an intuitive way to define
the model. Such experts also demanded a specific simulation analysis GUI to
correlate activities and electricity consumption. This GUI is detailed in the fol-
lowing subsection. We will also discuss two examples that illustrate the ability
of the model to express rhythm constraints and, at the same time, and the
actions reorganisation process. The first example focuses on action competition
whereas the second one demonstrates how is handled household adaptation in
the situation of a change in electricity pricing policy.

4.1 Simulation Analysis GUI

The SMACH simulation analysis GUI shown in Fig. 1 can be detailed as follows.
The overall electricity consumption is shown in panel (1). Each color represents
a different appliance’s consumption (the central gap correspond to holidays).
Panel (1’) presents some global variable (total electricity consumption, associ-
ated price and social indicators). Below, panel (2), details individuals activities
over the week selected in panel 1 (S45) whereas panels (3 and 3’) presents a zoom
for even more details (one rectangle representing one minute). Finally, panel
(4) allows to investigates actions actual rhythms (only some actions are selected).
Concretely, the horizontal axe represent the passing of days whereas the vertical
axe represen the time of the day. For instance, we can see that the work actions
(blocks centered horizontally) occurs only during week days.5

4 The implementation detail of this mechanism is not detailed in this paper but it is
very similar to the one presented in the previous subsection.

5 In addition, another simulation analysis GUI mode is also available in order to
compare several simulations: overall evolution and specific period of time can be
compared with side by side diagrams.
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4.2 Dealing with Competing Actions

Our first example considers a family of 3 with a conflict situation: they have to
make diner, have diner and have shower within the 7–9 pm time slot. This time
slot imposes a constraint due to the actions durations and the exclusiveness of
the have shower action (one at a time). The adaptation process will organise
progressively the actions to ease their execution.

In the simulation first week, individuals usually fails to have shower as shown
in Fig. 2(a). This diagram represents the individuals’ acitvities as colored bar
over time. In particular, the sleep action (strawberry pink) and the work action
(brown) can serve as reference points. These actions have regular schedule since
the beginning (no adaptation needed) as they have no strong competitors and
large preferred periods (around 8 hours). In the conflict timeslot, diner-related
actions are occuring whereas have shower is not (only the mother do it on
monday). The advantage of diner-related actions is due to two factors: (1) make
dinner is a collective benefit task (one individual can cook for 3) and (2) have
dinner is a coordinated one which imply strongly incentive invitations.

Fig. 1. SMACH GUI (analysis mode).

Fig. 2. Activity diagram: (a) first week and (b) working day pattern.
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The conflict is resolved through adaptation of the preferred periods (PP)
and results in the following working-day pattern showed in Fig. 2(b). After work,
the mother takes her shower while the father and Liz make diner. Once diner is
ready, the father or Liz invite the others to have diner. After diner, the father
takes a shower followed by Liz.

This example demonstrates how the adaptation process can organize the
actions in relation with PP constraints. Although, this organization is not fully
stable, due to the continuous adaptations of the PP, it can last several weeks.

4.3 Adaptation of Habits in Relation with a New Pricing

The second example is based on similar parameters but shows how PP modi-
fications work with agents sensitivity to the electricity price. In this example,
the simulation spans over 10 weeks from January to March. In order to evaluate
the capabilities of adaptation to variable electricity price we make the following
hypotheses. In January, the electricity price is fixed to a medium level. The fol-
lowing month, we introduce a variable price policy: high from 6 to 8 pm and low
for the rest of day (everyday). Finally, in March, the price is switched back to
the original policy (fixed price at medium level).

Several actions, i.e. watch TV, use computer, garden, take shower, play chess,
without specified PP are also added to the ones presented in the previous exam-
ple. Some of them consume electricity and are, thus, sensible to electricity price.
The variation of electricity pricing induce actions mobility as show on the long
term activity diagrams (Fig. 3). In Fig. 3(a), we focus on the watch TV action
(in black). Although, two actions have been added as time landmark: have break-
fast (in the bottom) that takes place between 6:30 and 8:15 and have diner (in
the top) between 19:30 and 20:30. In this simulation, individuals do watch TV
during 4 periods: (1) After breakfast, (2) during the afternoon on week-ends and
wednesday (3) before and (4) after diner.

Fig. 3. Long term activity diagram: (a) watch Tv and (b) homework (Color figure
online).
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In January, individuals mostly watch TV before the diner though a slow
change from after diner to after breakfast habit is appearing all along this month.
When February comes, with its special pricing, the before diner period is aban-
doned to the benefit of the after breakfast and after-diner periods due to the
energy price penalty. One may notice that a slim black line remains before diner
in February. Indeed only 2 agents have completely quit watching TV before
diner. The third one continues to do it but for a shorter duration. It means
that the other influences, mainly the strength of the before-diner PP, have bal-
anced the energy-price penalty. It is interesting to notice that the effect of the
penalty is progressive (it may completely stop or just shorten an action) and vary
from one agent to another. In March, when the special pricing is stopped, we can
observe a motion from after-breakfast and after-diner periods to the before-diner
period as there is no electricity price penalty. Nevertheless, the last two weeks
of simulation still bear this penalty influence (as adaptations are a progressive
process): the before-diner period happens later and lasts shorter. This evolution
demonstrates the capacity both to create and to modify habits thanks to the
adaptation of the PP.

Note that, the movement of the watch TV action implies that other action
have moved too. On the second long-term diagram (Fig. 3(b)), we track the
evolution of the do homework action (red). As the time slot occupied by the
watch TV action in January is free in February, the action do homework happens
more often during the before-diner period. We observe that the return of an
uniform pricing does not push back the do homework action: Energy special
pricing effects persists even after its end.

4.4 Adaptation to Unforeseen Event

Our third example is a similar simulation, lasting 10 weeks, considering a family
of three (John and Mary and their children Bill). In contrary to the previous
examples, we have here a change of schedule. Concretely, Mary starts as unem-
ployed but gets a job on the 5th week (full time from monday to friday).

Once Mary starts to work, she has more activities to conduct but the same
amount of time. As our agents have a tendency to stability, she tries to conduct
all her previous activities plus the work one. The result of such contradiction is
a drop of the completion rate (from 97 to 93 %): Mary starts some action but
does not have time to finish them. Such phenomenon may not be realistic we
do not study it. The one phenomenon to consider here is the evolution of the
household chore reputation before and after the employment of Mary. During
the first 4 weeks, Mary perform more than 70 % of them because she has more
spare time than John as shown on the Fig. 4(b). Later on, her workload rises
thus, a significant part of the housework migrates toward John: Mary having
less time to deal with them, those tasks are more likely to be made by John. As
we set her working hours longer than his, John then takes the bigger part of the
housework, around 60 %. Bill, on his side, can participate a bit to the collective
tasks making breakfast and lunch, the only housework tasks possible for him.
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Fig. 4. (a) Completion rate in % by week and (b) Housework tasks sharing in % (Mary
in blue, John in green and Bill in yellow) (Color figure online).

Even though a balanced housework sharing is not a general feature of a “real
world household”, we believe that the workload allocation ability of our model
to be useful as a general trend. Although, when necessary, several possibilities
to constrain the sharing are offered to the modeller.

4.5 Discussion on Evaluation

These three examples illustrate the ability of the model to express rhythm con-
straints and, at the same time, and the actions reorganisation process due to
various. In particular, any individuals can have too many activities to conduct
in a given time period. Some of these activities are strongly constrained, in terms
of frequency and time (e.g. work), of synchronisation with other individuals (e.g.
dinner together, homework help) whereas others are much less constrained (e.g.
various household chore) or even almost not constrained (leisure mostly). These
challenges are tackled thanks to the adaptive priority computation and the emer-
gence of habits. Once, the household organisation is in place, our model also pro-
vide dynamic organisation mechanisms that allows the household to cope with
unforeseen events (e.g. energy tariff change or new activities in our examples).

5 Conclusions and Current Work

In this paper, we presented the model and implementation of SMACH, a multi-
agent simulator of human activity. This simulator supports the investigation of
activity adaptation and energy consumption evolution in response to different
appliances or pricing policies. We could not present all the details of this simu-
lator that results from a 5-years collaboration between the French EDF energy
company and AI researchers, but we outlined its main features: accessibility
of the model to non-computer specialists and intelligent interface for activity
analysis and explanation. SMACH also comprises a machine learning algorithm



SMACH: Agent-Based Simulation Investigation on Human Activities 209

for automated management of temperature in the house [5] and an interactive
modelling system that helps refining the agent’s behaviour [15].

This model has been evaluated in several example scenarios. The three exam-
ples presented in this paper illustrated the ability of our model to represent both
the constraints and some of the “degrees of freedom” of everyday life. Further-
more, with the help of the two adaptation processes (actions competition and
habits emergence), agents are able to explore new organisation and to discover
pattern of actions in relation with time constraints and energy price for saving
purpose and other unforeseen events. In addition to this evaluation, our simu-
lator is provided with a participatory-simulation user interface (introduced in
[6]) that allow to give control of one or several agents to users. Students in our
lab “played their own role” in our test scenarios, which allowed us to validate
the believability of the model. In most situations, students could not distinguish
between artificial agents and human-controlled ones.

We are currently extending the SMACH model to study the activity of groups
of families in different environments, over long period of time (one year) and tak-
ing into account external temperature and building’s thermodynamical proper-
ties. This lead us to reconsider the action rhythm model and to use multi-level
agent systems for individuals, families and activities. Our long-term goal is to
allow energy companies to be able to investigate incentive to reduce or to have
a better prediction of consumption peaks using simulation of human activity.
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