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Abstract. Dry eye syndrome is a prevalent disease which affects a wide
range of the population and can be diagnosed through an automatic
technique for tear film lipid layer classification. In this setting, class bina-
rization techniques and feature selection are powerful methods to reduce
the size of the output and input spaces, respectively. These approaches
are expected to reduce the complexity of the multi-class problem of tear
film classification. In previous researches, several machine learning algo-
rithms have been tried and only evaluated in terms of accuracy. Up to
now, the evaluation of artificial neural networks (ANNs) has not been
done in depth. This paper presents a methodology to evaluate the clas-
sification performance of ANNs using several measures. For this pur-
pose, the multiple-criteria decision-making method called TOPSIS has
been used. The results obtained demonstrate that class binarization
and feature selection improves the performance of ANNs on tear film
classification.

Keywords: Tear film lipid layer · Class binarization techniques ·
Feature selection · Filters · Multiple-criteria decision-making · Multi-
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1 Introduction

The tear film is a complex layer of liquid covering the anterior surface of the eye.
It was classically defined by Wolff [1] as a three-layered structure which consists
of an anterior lipid layer, an intermediate aqueous layer and a deep mucin layer.
The tear film is a essential component of the eye which plays some important
functions [2], such as visual and cleaning functions. Also, it plays an essential
role in the maintenance of ocular integrity by removing foreign bodies from the
front surface of the eye.

The lipid layer is the outermost and thinnest layer of the tear film and it is
mainly secreted by the meibomian glands [3]. It is a crucial component of the
tear film because it provides a smooth optical surface for the cornea and retards
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evaporation of the eye during the inter-blink period [4]. Other functions of the
lipid layer are establishing the tear film or sealing the lid margins during sleep.

Quantitative or qualitative changes in the normal lipid layer have a negative
effect on the evaporation of tears from the ocular surface and on the quality
of vision [5]. In fact, these changes are associated with the evaporative dry eye
(EDE), since it refers to disorders of the tear film caused by poor tear quality,
reduced tear production or excessive evaporation [6]. The international commit-
tee of Dry Eye Workshop (DEWS) defined the EDE as follows [7]:

Dry Eye is a multifactorial disease of the tears and the ocular surface
that results in symptoms of discomfort, visual disturbance, and tear film
instability with potential damage to the ocular surface. It is accompanied
by increases osmolarity of the tear film inflammation of the ocular surface

This disease affects a wide sector of the population, specially among con-
tact lens users, and worsens with age. The proportion of people with EDE has
increased due to the current work conditions [7], such as computer use.

EDE diagnosis is very difficult to accomplish, basically because of its multi-
factorial nature. There are several clinical tests which measures the tear quality
and the quantity of tears. One of these test is called lipid layer pattern assess-
ment and consists on evaluating tear film quality and lipid layer thickness by
non-invasively imaging the superficial lipid layer by interferometry. This test is
based on a standard classification defined by Guillon [8], who established various
categories of lipid layer patterns: open meshwork, closed meshwork, wave and
color fringe. Note that EDE is associated with the lipid layer thickness since a
thinner lipid layer speeds up water evaporation, which means a reduction in tear
film stability. Many eye care professionals have abandoned this test because it
is very difficult to interpret the lipid layer patterns, specially the thinner ones
which lack color and/or morphological features. Nevertheless, there is no doubt
that this technique is a valuable test which provides relevant information by
using noninvasive techniques. For this reason, the tear film lipid layer automatic
classification could become a key step to diagnose EDE.

Some techniques have been designed to objectively calculate the lipid layer
thickness by analyzing the interference color with an interference camera [9] or
by using a sophisticated optic system [10]. However, first attempts to automatize
the lipid layer pattern assessment test can be found in [11–13] which demonstrate
how the interference phenomena can be characterized as a color texture pattern.
Therefore, the automatic test can save time for experts and eliminate the subjec-
tivity of the process. Further investigation was carried out in [14] where a set of
color texture analysis techniques was applied to tear film lipid layer classification
and the previous results were improved. Regarding machine learning techniques,
the behavior of five different algorithms was studied over this set of color texture
analysis methods in [15]. A statistical comparison of them was performed using
only the accuracy of the classifiers.

To the best knowledge of the authors, there are no attempts in the
literature to study this multi-class problem using class binarization techniques.
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Class binarization techniques may improve performance on multi-class problems
of learners which could directly handle multi-class classification [16,17]. Further-
more, all previous researches analyses the color texture characterization based
on the accuracy of the classifiers, no other performance measures were studied.
In relation to machine learning techniques, there is no deep study about the
performance of artificial neural networks (ANNs). Finally, the number of fea-
tures which define the color texture pattern used to characterize the interference
phenomena is large enough to consider the use of feature selection techniques.

In this sense, there are a lot of unexplored areas of study in tear film lipid layer
automatic classification. Thus, a research methodology is proposed in this work
to analyze the performance of class binarization techniques and feature selection
methods applied to tear film classification using ANNs. For this purpose, the
obtained results will be analyzed in terms of a wide set of performance measures
and a multiple criteria decision making method will be used in order to validate
the different approaches.

This paper is organized as follows: Sect. 2 describes the steps of the research
methodology, Sect. 3 explains the experimental study performed, Sect. 4 shows
the results and discussion, and Sect. 5 includes the conclusions and future lines
of research.

2 Research Methodology

The methodology proposed in this search aims to evaluate tear film lipid layer
classification in terms of several criteria when using class binarization techniques
and feature selection methods.

2.1 Class Binarization Techniques

Methods can be roughly divided between two different approaches—the “single
machine” approaches, which construct a multi-class classifier by solving a sin-
gle optimization problem, and the “error correcting” approaches, which use the
ideas from error correcting coding theory to combine a set of binary classifiers
[17]. There exist several techniques for turning multi-class problems into a set
of binary problems [18–21]. A class binarization is a mapping of a multi-class
learning problem to several two-class learning problems in a way that allows a
sensible decoding of the prediction [20].

– The “one-vs-all” strategy consists in constructing one classifier per class,
which is trained to distinguish the samples of one class from the samples
of all remaining classes. These two-class problems are constructed by using
the examples of class i as the positive examples and the examples of the rest
of the classes as the negative examples.

– The “one-vs-one” strategy consists in training one classifier for each pair of
classes. Thus, for a problem with c classes, c(c−1)

2 subproblems are constructed
to distinguish the samples of one class from the samples of another class. The
binary classifier for a problem is trained with examples of its corresponding
classes i, j, whereas examples of the rest of classes are ignored for this problem.
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Decoding Methods. If the classifiers are soft, as is the case of ANNs, they
compute the “likelihood” of classes for a given input, that is they obtain a con-
fidence p for the positive class and a confidence of 1 − p for the negative class.
The decoding method in the one-vs-all technique, if we assume the one-part as
the positive class and the all -part as the negative class, is simply done accord-
ing to the maximum probability p among classes. However, this method is not
appropriate for one-vs-one binarization techniques. Therefore, several decoding
methods for one-vs-one binarization techniques are described as follows,

– Hamming Decoding. Dietterich and Bakiri [18] suggested the use of a matrix
M ∈ {−1, 1}N×F , where N is the number of classes and F is the number
of binary classifiers. The i-th row of the matrix induces a partition of the
classes into two “metaclasses”, where a sample xi is placed in the positive
metaclass for the j-th classifier if and only if Myij = 1 [17], where yi stands
for the desired class of sample xi. If a new sample appears for classification,
the Hamming distance between the sign of the output of every binary classifier
f1(x), . . . , fF (x) and each row of the matrix M is then compared as follows,
choosing the minimizer,

f(x) = arg min
r=1...N

F∑

i=1

(
1 − sign(Mrifi(x))

2

)

where sign(z) = +1 if z > 0, sign(z) = −1 if z < 0, and sign(z) = 0
if z = 0. In [22], Allwein, Schapire and Singer extended the earlier work of
Dietterich and Bakiri. They chose the matrix M ∈ {−1, 0, 1}N×F , rather than
only allowing -1 and 1 as entries in the matrix. If Myij = 0, then example xi

is not used when the j-th classifier is trained.
– Loss-based Decoding. The major disadvantage of Hamming decoding is that

it ignores the significance of the predictions, which can be interpreted as a
measure of confidence. If the classifiers are soft, in [22] the authors suggest
using the loss function L instead of the Hamming distance. They proposed
that the prediction for a sample x should be the class n that minimizes the
total loss under the assumptions that the label for sample x in the f -th binary
classifier is Mnf :

f(x) = arg min
r=1...N

F∑

i=1

L(Mrifi(x))

The loss function depends on the learning algorithm. In this research, the most
appropriate loss function is the logistic regression L(z) = log(1 + e−2z) [22].

– Accumulative Probability with Threshold. If the classifiers obtain a confidence
p for the positive class and a confidence of 1 − p for the negative class, the
accumulative probability for every class is computed as the sum of their cor-
responding probabilities p. The prediction for a sample should be the class
that maximizes the accumulative sum. The accumulative probability with
threshold takes into consideration binary classifiers that will be ignored if the
difference between p and 1−p is under a threshold ε. It is assumed that ignored
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classifiers will correspond with class samples not used for their training pro-
cedure. In other words, only significant positive or negative probabilities will
be considered.

2.2 Feature Selection

Feature selection is a dimensionality reduction technique aimed at detecting
relevant features and discarding irrelevant ones, with the goal of obtaining a
subset of features that describes properly the given problem with minimum
degradation of performance [23]. Thus, feature selection is helpful in reducing
the computational effort, allocated memory and training time.

There exists three different models for feature selection: filter, wrapper and
embedded methods. Wrappers use a prediction method to score subsets of fea-
tures. Filters rely on the general characteristics of the training data to select
features with independence of the classifier. Halfway these two models, embed-
ded methods perform feature selection as part of the training process of the
classifier. It is well-known that wrappers and embedded methods have the risk
of overfitting when having more features than samples [24], as it is the case
in this research. Therefore, filters were chosen because they prevent the risk of
overfitting and also allow for reducing the dimensionality of the data without
compromising time and memory requirements of learning algorithms.

The three filters used in this work will be described as follows. They were
selected based on previous researches [25,26].

– Correlation-based Feature selection (CFS) is a simple filter algorithm that
ranks feature subsets according to a correlation based heuristic evaluation
function [27]. The bias of the evaluation function is toward subsets that con-
tain features that are highly correlated with the class and uncorrelated with
each other. Irrelevant features should be ignored because they will have low
correlation with the class. Redundant features should be screened out as they
will be highly correlated with one or more of the remaining features. The
acceptance of a feature will depend on the extent to which it predicts classes
in areas of the instance space not already predicted by other features. CFS’s
feature subset evaluation function is defined as,

Ms =
krcf√

k + k(k − 1)rff

where MS is the heuristic “merit” of a feature subset S containing k features,
rcf is the mean feature-class correlation (f ∈ S) and rff is the average feature-
feature intercorrelation. The numerator of this equation can be thought of as
providing an indication of how predictive of the class a set of features is; and
the denominator of how much redundancy there is among the features.

– Consistency-based filter [28] evaluates the worth of a subset of features by
the level of consistency in the class values when the training instances are
projected onto the subset of attributes. The algorithm generates a random



184 R. Méndez et al.

subset S from the number of features in every round. If the number of features
of S is less than the current best, the data with the features prescribed in S is
checked against the inconsistency criterion. If its inconsistency rate is below a
pre-specified one, S becomes the new current best. The inconsistency criterion,
which is the key to the success of this algorithm, specifies to what extent the
dimensionally reduced data can be accepted. If the inconsistency rate of the
data described by the selected features is smaller than a pre-specified rate, it
means the dimensionally reduced data is acceptable.

– INTERACT [29] is a subset filter based on symmetrical uncertainty (SU)
[30], which is defined as the ratio between the information gain (IG) and the
entropy (H) of two features, x and y:

SU(x, y) =
2IG(x|y)

H(x) + H(y)

where the information gain is defined as:

IG(x|y) = H(y) + H(x) − H(x, y)

being H(x) the entropy and H(x, y) the joint entropy. Besides SU, INTERACT
also includes the consistency contribution (c-contribution). C-contribution of
a feature is an indicator about how significantly the elimination of that fea-
ture will affect consistency. The algorithm consists of two major parts. In the
first part, the features are ranked in descending order based on their SU values.
In the second part, features are evaluated one by one starting from the end of
the ranked feature list. If c-contribution of a feature is less than an established
threshold, the feature is removed, otherwise it is selected. The authors stated in
[29] that INTERACT can thus handle feature interaction, and efficiently selects
relevant features.

2.3 Multiple-criteria Decision-making

Classification algorithms are normally evaluated in terms of multiple criteria
such as accuracy, precision or training time. Thus, algorithm selection can be
modeled as a multiple-criteria decision-making (MCDM) problem. MCDM meth-
ods evaluate classifiers from different aspects and produce rankings of classifiers
[31]. Among many MCDM methods that have been developed up to now, tech-
nique for order of preference by similarity to ideal solution (TOPSIS) [32] is a
well-known method that will be used in this research.

TOPSIS. TOPSIS is a MCDM method proposed by Hwang and Yoon in 1981
[32]. It finds the best algorithms by minimizing the distance to the ideal solution
whilst maximizing the distance to the anti-ideal one. The extension of TOPSIS
proposed by Opricovic and Tzeng [33] and Olson [34] is used in this research,
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1. Compute the decision matrix consisting of m alternatives and n criteria. For
alternative Ai, i = 1, . . . , m, the performance measure of the j-th criterion
Cj , j = 1, . . . , n, is represented by xij .

2. Compute the normalized decision matrix. The normalized value rij is calcu-
lated as,

rij =
xij√∑m
i=1 x2

ij

3. Develop a set of weights w, where wj is the weight of the j-th criterion and∑n
j=1 wj = 1, and compute the weighted normalized decision matrix. The

weighted normalized value vij is computed as,

vij = xijwj

4. Find the ideal alternative solution S+ and the anti-ideal alternative solution
S−, which are computed as,

S+ = {v+
1 , . . . , v+n }

=
{(

max
i

vij |i ∈ I ′
)

,
(
min
i

vij |i ∈ I ′′
)}

and

S− = {v−
1 , . . . , v−

n }
=

{(
min
i

vij |i ∈ I ′
)

,
(
max

i
vij |i ∈ I ′′

)}

respectively, where I ′ is associated with benefit criteria and I ′′ is associated
with cost criteria.

5. Compute the distance of each alternative from the ideal solution and from
the anti-ideal solution, using the Euclidean distance,

D+
i =

√√√√
n∑

j=1

(vij − v+
j )2

and

D−
i =

√√√√
n∑

j=1

(vij − v−
j )2

respectively.
6. Compute the ratio R+

i equal to the relative closeness to the ideal solution,

R+
i =

D−
i

D+
i + D−

i

7. Rank alternatives by maximizing the ratio R+
i .
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3 Experimental Study

The aim of this research is to evaluate the influence of binarization and feature
selection in tear film lipid layer classification. The multilayer perceptron (MLP)
was selected as base learning algorithm.

3.1 Data Source

The methodology proposed in this research has been tested on the VOPTICAL-
I1 dataset [35]. This set includes 105 images categorized by optometrists from the
Faculty of Optics and Optometry of the University of Santiago de Compostela
(Spain). All these images were acquired from healthy subjects aged from 19 to
33 years. The dataset includes 29 open meshwork, 29 closed meshwork, 25 wave
and 22 color fringe images. Table 1 shows one representative image for each
Guillon category obtained from this dataset.

Table 1. Lipid layer interference patterns.

Open meshwork Closed meshwork Wave Color fringe

In [14], it was demonstrated that the interference phenomena can be charac-
terized as a color texture pattern and the automatic classification into Guillon
categories is feasible. The results presented by Remeseiro et al. [14] show how
co-occurrence features [36], as a texture extraction method, and the Lab color
space [37] provide the highest discriminative power from a wide range of methods
analyzed. From a single image, a quantitative vector composed of 588 features
is obtained to categorize it. Notice that the time to extract some of the textural
features is too long which could prevent the practical clinical use of the automatic
classification. Therein lies the importance of using feature selection in order to
reduce the input space and, for this reason, the time to process the input images
will be considered as a performance measure to evaluate the classification.

3.2 Performance Measures

Most performance measures in machine learning are defined to be used in two-
class problems. Since a multi-class problem is studied in this research, all these
measures will be calculated for each class individually. As tear film lipid layer
classification is a 4-class problem, the total number of measures would be four
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times the number of binary measures. In order to reduce the total amount of
measures, each multi-class measure will be obtained as the minimum of its four
binary measures according to [38]. Thus, the performance of the learning algo-
rithms are computed as a lower bound, or pessimistic, estimation.

The binary performance measures considered are:

– Accuracy: the proportion of true results, both true positives and negatives,

Accuracy =
TN + TP

TP + FP + FN + TN

– True Positive Rate (TPR): the proportion of positives which are correctly
classified (also called sensitivity or recall),

TPR =
TP

TP + FN

– True Negative Rate (TNR): the proportion of negatives which are correctly
classified (also called specificity),

TNR =
TN

TN + FP

– Precision: the proportion of the true positives against all the positive results,

Precision =
TP

TP + FP

– F-measure: the harmonic mean of precision and recall (also known as TPR),

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall

– Area Under the Curve (AUC): the area under the receiver operating charac-
teristic (ROC) curve, which is created by plotting the TPR versus the false
positive rate (FPR = FP

TP+TN ).

Finally, the image processing and the training times are also considered,

– Image Processing Time (IPT): the time elapsed for processing the input image
and obtaining its quantitative vector. Note that this time is different for each
class binarization technique, since the features selected are also different.

– Training Time (TT): the time elapsed for training a learning model. Note that
this comprises training a set a classifiers when class binarization techniques
are used.

Notice also that the testing time, that is the time elapsed for outputting
a new classification, is negligible thus it will not be considered as a selection
criterion.
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3.3 Experimental Procedure

A leave-one-out cross-validation was used, which consists in using a single sample
from the dataset as the test set and the remaining samples are retained as the
training set. This process is repeated such that each sample is used once as the
test set. The experimental research was carried out as follows,

1. Apply the three feature selection methods (CFS, consistency-based and
INTERACT) to the VOPTICAL-I1 dataset, to provide the subset of features
that properly describes the given problem. Note that the binarization tech-
niques modify the output of the dataset thus the feature selection methods
have to be applied on each “dataset”, that is,
– In the one-vs-all technique, four subsets of features are obtained corre-

sponding with 1-vs-all, 2-vs-all, 3-vs-all and 4-vs-all datasets.
– In the one-vs-one technique, six subsets of features are obtained corre-

sponding with 1-vs-2, 1-vs-3, 1-vs-4, 2-vs-3, 2-vs-4 and 3-vs-4 datasets.
2. Train a MLP for each combination of binarization technique, feature selection

method, and number of hidden units. In [39], it was demonstrated that a MLP
that contains a single hidden layer with sufficient number of hidden units is
able to approximate any function. Thus, only the number of hidden units
will vary in this research ranging from 2 to 64. In particular, 2, 4, 8, 16, 32,
and 64 hidden units were tested. Empirical results showed risk of overfitting
for a larger number of hidden units. Finally, the mean square error was used
as error function and the hyperbolic tangent sigmoid was used as transfer
function in the processing units.

3. Compute the performance measures, that is, accuracy, TPR, TNR, precision,
F-measure, AUC, image processing time and training time.

4. Apply TOPSIS in order to evaluate the different binarization techniques, fea-
ture selection methods and number of hidden units proposed in this research.
The values of the weights (see Sect. 2.3) are assigned equally, except for the
training time that is reduced to 0.01. Notice that the training step is executed
off-line, making its value not as relevant as the other performance measures.
Note also that the image processing and training times are cost criteria while
the other measures are benefit criteria.

Experimentation was performed on an Intel c© Core
TM

i5-650 CPU @ 4M
Cache, 3.20 GHz with RAM 6 GB DDR3. Matlab was the software used to train
the MLP networks.

4 Results

Table 2 shows the number of features selected by the three feature selection
filters (CFS, consistency-based, and INTERACT) in single machine, one-vs-all,
and one-vs-one approaches. The median percentage of features selected (out of
588 features) is in parenthesis.
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Table 2. Number of features selected by the three filters in single machine, one-vs-all,
and one-vs-one approaches (median percentage in parentheses).

Technique Feature selection

CFS Cons INT

Single 27 6 21

Median(%) (4.59 %) (1.02 %) (3.57 %)

One-vs-all 1-vs-all 17 2 14

2-vs-all 27 6 17

3-vs-all 11 3 14

4-vs-all 33 4 14

Median(%) (3.74 %) (0.59 %) (2.38 %)

One-vs-one 1-vs-2 20 2 12

1-vs-3 53 1 53

1-vs-4 23 1 23

2-vs-3 27 3 14

2-vs-4 24 3 14

3-vs-4 27 4 13

Median(%) (4.34 %) (0.43 %) (2.38 %)

Broadly speaking, consistency-based filter performed the most aggressive
selection retaining only the 1.02 %, 0.59 %, and 0.43 % of the features in single
machine, one-vs-all, and one-vs-one approaches, respectively. CFS retained from
four to ten times more features (4.59 %, 3.74 %, and 4.34 %) than the former.
Halfway, INTERACT selected in average 3.57 %, 2.38 %, and 2.38 % of the fea-
tures, respectively. As expected, in average the percentage of features selected in
the single machine approach is larger than the percentage in binarization. Notice
that binarization may reduce the complexity of the problem.

The set of techniques, methods and topologies used in this research lead to
120 alternatives in total. Thus, for purposes of simplicity only the most signif-
icant results are shown. Table 3 shows the top 20 results ranked by TOPSIS
in terms of the binarization method, feature selection filter, number of hidden
units (H ), ratio R+ (see TOPSIS, Sect. 2.3), accuracy, TPR, TNR, precision,
F-measure, AUC, image processing time (in seconds) and training time (in sec-
onds). Note that single stands for the single machine, multi-class, approach.

In general, the techniques and methods proposed in this research outperform
the single machine approach (see Table 3). In the top 20, 14 out of 20 classifiers
use binarization, and every classifier applies feature selection. Moreover, bina-
rization leads to smaller topologies in the MLP. In the top 20, the average number
of hidden units is 25.86 in binarization against 37.33 in the single machine app-
roach. These are logical results because binarization techniques reduce the size
of the output space. Notice that the low number of samples in the dataset, which
is composed of 105 images, does not favor the use of the one-vs-one technique
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Table 3. Top 20 measure results obtained by TOPSIS.

# Method Filter H R+ Acc. TPR TNR Prec. F AUC TT(s) IPT(s)

1 Single CFS 64 0.9957 0.95 0.91 0.96 0.90 0.91 0.94 4.36 116.18

2 Single CFS 32 0.9920 0.95 0.88 0.96 0.89 0.90 0.93 4.36 95.65

3 1-vs-1b CFS 64 0.9894 0.95 0.90 0.97 0.91 0.90 0.93 9.75 223.71

4 Single INT 64 0.9884 0.94 0.88 0.95 0.88 0.90 0.93 1.65 130.61

5 1-vs-1b INT 64 0.9861 0.94 0.87 0.96 0.89 0.88 0.92 4.41 223.07

6 1-vs-1a CFS 16 0.9854 0.95 0.89 0.96 0.88 0.90 0.93 9.75 187.08

7 Single INT 16 0.9852 0.93 0.88 0.96 0.88 0.88 0.92 1.65 106.77

8 1-vs-1a CFS 64 0.9841 0.95 0.89 0.96 0.87 0.89 0.94 9.75 221.06

9 1-vs-1b CFS 8 0.9833 0.94 0.89 0.96 0.90 0.89 0.92 9.75 185.72

10 1-vs-1a CFS 8 0.9830 0.94 0.88 0.96 0.88 0.90 0.93 9.75 183.44

11 1-vs-1b INT 32 0.9817 0.94 0.86 0.96 0.88 0.88 0.91 4.41 198.80

12 1-vs-1b CFS 2 0.9816 0.94 0.88 0.96 0.89 0.89 0.92 9.75 205.10

13 1-vs-1b CFS 32 0.9792 0.94 0.87 0.96 0.89 0.88 0.92 9.75 203.15

14 1-vs-1a CFS 32 0.9792 0.94 0.88 0.96 0.87 0.89 0.92 9.75 198.09

15 Single INT 32 0.9763 0.93 0.87 0.95 0.87 0.87 0.91 1.65 112.00

16 Single CFS 16 0.9758 0.94 0.86 0.95 0.87 0.87 0.91 4.36 89.49

17 1-vs-1b INT 16 0.9746 0.93 0.85 0.96 0.87 0.87 0.91 4.41 196.30

18 1-vs-1a CFS 4 0.9734 0.94 0.87 0.95 0.86 0.89 0.92 9.75 189.14

19 1-vs-1b CFS 16 0.9719 0.93 0.86 0.96 0.88 0.88 0.91 9.75 188.79

20 1-vs-1b CFS 4 0.9716 0.93 0.87 0.96 0.88 0.87 0.91 9.75 191.37

Decoding methods in 1-vs-1 binarization: aHamming decoding, bLoss-based
decoding.

since the training datasets are reduced to the samples of two classes. Thus, it is
expected that in larger datasets one-vs-one approaches improve their results.

5 Conclusions and Future Research

Three binarization techniques and three feature selection methods have been
used in this research for tear film lipid layer classification. The evaluation of the
techniques and methods was based on several criteria: accuracy, TPR, TNR,
precision, F-measure, AUC, image processing time and training time. TOPSIS
method was used as a tool for selecting classification algorithm when algorithm
selection involves more than one criterion. In general terms, binarization and fea-
ture selection outperform the single machine, multi-class, approach. To the best
knowledge of the authors, the use of binarization techniques, features selection
filters, and MCDM methods was not attempt so far in the literature for improv-
ing classification performance in the assessment of the tear film lipid layer. These
results demonstrate the soundness of the methods presented in this research.
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For future work, the authors plan to extend this research to different learn-
ing algorithms (e.g. naive Bayes classifier or decision trees) and different MCDM
methods. Since different MCDM methods will evaluate different learning clas-
sifiers from different criteria, they may produce divergent rankings. Thus, the
authors plan to implement an approach to resolve disagreeing rankings.
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