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Abstract. After a computer chess program had defeated the human
World Champion in 1997, many researchers turned their attention to
the oriental game of Go. It turned out that the minimax approach, so
successful in chess, did not work in Go. Instead, after some ten years of
intensive research, a new method was developed: MCTS (Monte Carlo
Tree Search), with promising results. MCTS works by averaging the
results of random play-outs. At first glance it is quite surprising that
MCTS works so well. However, deeper analysis revealed the reasons.

The success of MCTS in Go caused researchers to apply the method
to other domains. In this article we report on experiments with MCTS
for finding improved orderings for multivariate Horner schemes, a basic
method for evaluating polynomials. We report on initial results, and con-
tinue with an investigation into two parameters that guide the MCTS
search. Horner’s rule turns out to be a fruitful testbed for MCTS, allow-
ing easy experimentation with its parameters. The results reported here
provide insight into how and why MCTS works. It will be interesting to
see if these insights can be transferred to other domains, for example,
back to Go.

Keywords: Artificial intelligence · High energy physics · Horners rule ·
Monte Carlo Tree Search · Go · Chess

1 Introduction

In 1965, the Soviet mathematician Aleksandr Kronrod called chess the Drosophila
Melanogaster of Artificial Intelligence [29]. At that time, chess was a convenient
domain that was well suited for experimentation. Moreover, dedicated research
programs all over the world created quick progress. In half a century the dream of
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Fig. 1. Example of a Go board.

beating the human world champion was realized. On May 11, 1997 Garry
Kasparov, the then highest rated human chess player ever, was defeated by the
computer program Deep Blue, in a highly publicized six game match in
New York.

So, according to some, the AI community lost their Drosophila in 1997, and
started looking for a new one. The natural candidate was an even harder game:
the oriental game of Go. Go is played on a 19 × 19 board, see Fig. 1. Its state
space is much larger than the chess state space. The number of legal positions
reachable from the starting position in Go (the empty board) is estimated to be
O(10171) [1], whereas for chess this number is “just” O(1046) [15]. If chess is a
game of tactics, then Go is a game of strategy. The standard minimax approach
that worked so well for chess (and for other games such as checkers, Awari, and
Othello) did not work well for Go, and so Go became the new Drosophila. For
decades, computer Go programs played at the level of weak amateur. After 1997,
the research effort for computer Go intensified. Initially, progress was slow, but in
2006, a breakthrough happened. The breakthrough and some of its consequences,
are the topic of this article.

The remainder of the contribution is structured as follows. First, the tech-
niques that worked so well in chess will be discussed briefly. Second, the new
search method that caused the breakthrough in playing strength in Go will be
described. Then, a successful MCTS application to Horner’s rule of multivariate
polynomials will be shown. It turns out that Horner’s rule yields a convenient
test domain for experimentation with MCTS. We complete the article by an
in-depth investigation of the search parameters of MCTS.

A note on terminology. The rule published by William Horner almost two
centuries ago is called Horner’s rule. It is a technique to reduce the work required
for the computation of a polynomial in a single variable at a particular value.
Finding better variable orderings of multivariate polynomials, in order to then
apply Horner’s rule repeatedly, is called finding better Horner schemes.
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2 The Chess Approach

The heart of a chess program consists of two parts: (1) a heuristic evaluation
function, and (2) the minimax search function. The purpose of the heuristic
evaluation function is to provide an estimate of how good a position looks, and
sometimes of its chances of winning the game [17]. In chess this includes items
such as the material balance (capturing a pawn is good, capturing a queen is
usually very good), mobility, and king safety. The purpose of the search function
is to look ahead: if I play this move, then my opponent would do this, and then
I would do that, and . . . , etc. By searching more deeply than the opponent the
computer can find moves that the heuristic evaluation function of the opponent
mis-evaluates, and thus the computer can find the better move.

Why does this approach fail in Go? Originally, the main reason given was
that the search tree is so large (which is true). In chess, the opening position
has 20 legal moves (the average number of moves is 38 [18,22]). In Go, this
number is 361 (and thereafter it decreases with one per move). However, soon it
turned out that an even larger problem was posed by the construction of a good
heuristic evaluation function. In chess, material balance, the most important
term in the evaluation function, can be calculated efficiently and happens to be
a good first heuristic. In Go, so far no good heuristics have been found. The
influence of stones and the life and death of groups are generally considered to
be important, but calculating these terms is time consuming, and the quality
of the resulting evaluation is a mediocre estimator for the chances of winning a
game.

Alternatives. Lacking a good evaluation function and facing the infeasibility of
a full-width look-ahead search, most early Go programs used as a first approach
the knowledge-based approach: (1) generate a limited number of likely candidate
moves, such as corner moves, attack/defend groups, connecting moves, and lad-
ders, and (2) search for the best move in this reduced state space [34]. The Go
heuristics used for choosing the candidate moves can be generalized in move pat-
terns, which can be learned from game databases [44,45]. A second approach was
to use neural networks, also with limited success [19]. This approach yielded pro-
grams that could play a full game that looked passable, but never reached more
than weak amateur level.

3 Monte Carlo

In 1993, the mathematician and physicist Bernd Brügmann was intrigued by the
use of simulated annealing for solving the traveling salesman problem. If such a
basic procedure as randomized local search (also known as Monte Carlo) could
find shortest tours, then perhaps it could find good moves in Go? He wrote a 9×9
Go program based on simulated annealing [7]. Crucially, the program did not
have a heuristic evaluation function. Instead it played a series of random moves
all the way until the end of the game was reached. Then the final position was
trivially scored as either a win or a loss. This procedure of randomized play-outs
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was repeated many times. The result was averaged and taken to be an estimate
of the “heuristic” value of each move. So instead of searching a tree, Brügmann’s
program searched paths, and instead of using the minimax function to compute
the scores, the program took the average of the final scores. The program had
no domain knowledge, except not to fill its own territory. Could this program be
expected to play anything but meaningless random moves?

Surprisingly, it did. Although it certainly did not play great or even good
moves, the moves looked better than random. Brügmann concluded that by just
following the rules of the game the average of many thousands of plays yielded
better-than-random moves.

At that time, the attempt to connect the sciences of physics and artificial
intelligence appeared to be a curiosity. Indeed, the hand-crafted knowledge-based
programs still performed significantly better. For the next ten years not much
happened with Monte Carlo Go.

Monte Carlo Tree Search. Then, in 2003, Bouzy and Helmstetter reported on
further experiments with Monte Carlo playouts, again stressing the advantage
of having a program that can play Go moves without the need for a heuristic
evaluation function [2,5]. They tried adding a small 2-level minimax tree on
top of the random playouts, but this did not improve the performance. In their
conclusion they refer to other works that explored statistical search as an alter-
native to minimax [24,38] and concluded: “Moreover, the results of our Monte
Carlo programs against knowledge-based programs on 9×9 boards and the ever-
increasing power of computers lead us to think that Monte Carlo approaches are
worth considering for computer Go in the future.”

They were correct.
Three years later a breakthrough took place by the repeated introduction

of MCTS and UCT. Coulom [16] described Monte Carlo evaluations for tree-
based search, specifying rules for node selection, expansion, playout, and backup.
Chaslot et al. coined the term Monte Carlo Tree Search or MCTS, in a contri-
bution that received the ICGA best publication award in 2008 [10,12]. In 2006
Kocsis and Szepesvari [25] laid the theoretical foundation for a selection rule that
balances exploration and exploitation and that is guaranteed to converge to the
minimax value. This selection rule is termed UCT, short for Upper Confidence
bounds for multi-armed bandits [4] applied to Trees (see Eq. (4)). Gelly et al. [21]
used UCT in a Go program called MoGo, short for Monte Carlo Go, which was
instantly successful. MoGo received the ICGA award in 2009. Chaslot et al. [11]
also described the application of MCTS in Go, reporting that it outperformed
minimax, and mentioned applications beyond Go.

Since 2006 the playing strength of programs improved rapidly to the level
of strong amateur/weak master (2-3 dan). The MCTS breakthrough was con-
firmed when, for the first time, a professional Go player was beaten in a single
game. In August 2008 at the 24th Annual Go Congress in Portland, Oregon,
MoGo-Titan, running on 800 cores of the Huygens supercomputer in Amster-
dam, beat 8P dan professional Kim MyungWan with a 9-stone handicap [14].
Further refinements have increased the playing strength. At the Human versus



Investigations with MCTS for Finding Better Multivariate Horner Schemes 7

Computer Go Competition that was held as part of the IEEE World Congress
on Computational Intelligence in June 2012 in Brisbane, Australia, the program
Zen defeated the 9P dan professional Go player Takemiya Masaki with a four-
stone handicap (≈5P dan) on the 19× 19 board.

The main phases of MCTS are shown in Fig. 2. They are explained briefly
below.

After the introduction om MCTS, there has been a large research inter-
est in MCTS. Browne et al. [8] provides an extensive survey, referencing 240
publications.

MCTS Basics. MCTS consists of four main steps: selection, expansion, simu-
lation (playout), and back-propagation (see Fig. 2). The main steps are repeated
as long as there is time left. For each step the activities are as follows.

(1) In the selection step the tree is traversed from the root node until we reach
a node, where a child is selected that is not part of the tree yet.

(2) Next, in the expansion step the child is added to the tree.
(3) Subsequently, during the simulation step moves are played in self-play until

the end of the game is reached. The result R of this—simulated—game is
+1 in case of a win for Black (the first player in Go), 0 in case of a draw,
and −1 in case of a win for White.

(4) In the back-propagation step, R is propagated backwards, through the previ-
ously traversed nodes. Finally, the move played by the program is the child
of the root with the best win/visit count, depending on UCT probability
calculations (to be discussed briefly below).

Crucially, the selection rule of MCTS allows balancing of (a) exploitation
of parts of the tree that are known to be good (i.e., high win rate) with
(b) exploration of parts of the tree that have not yet been explored (i.e., low
visit count).

Fig. 2. The basic Monte Carlo Tree Search scheme.
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Originally MCTS used moves in the playout phase that were strictly random.
However, soon better results were obtained by playing moves that use small (fast)
amounts of domain knowledge. Nowadays, many programs use pattern databases
for this purpose [21]. The high levels of performance that are currenlty achieved
with MCTS depend to a large extent on enhancements of the expansion strategy,
simulation phase, and the parallelization techniques. (So, after all, small amounts
of domain knowledge are needed, albeit not in the form of a heuristic evaluation
function. No expensive influence or life-and-death calculations are used, but fast
pattern lookups.)

Applications Beyond Go. The striking performance of MCTS in Go has led
researchers to apply the algorithm to other domains. Traditionally, best-first
algorithms rely on domain knowledge to try the “best” moves first. This domain
knowledge is often hard to codify correctly and is expensive to compute. Many
researchers have looked for best-first algorithms that could somehow do without
domain knowledge [35–37,42]. The ability of MCTS to magically home in on
clusters of “bright spots” in the state space without relying on domain knowledge
has resulted in a long list of other applications, for example, for proof-number
search [40]. In addition, MCTS has been proposed as a new framework for game-
AI for video games [13], for the game Settlers of Catan [43], for the game Einstein
würfelt nicht [32], for the Voronoi game [6], for Havannah [31], for Amazons [28],
and for various single player applications [39,41].

4 Horner’s Rule for Multivariate Polynomials

We will now turn our attention to one such application domain: that of find-
ing better variable orderings for applying Horner’s rule to evaluate multivariate
polynomials efficiently.

One area where finding solutions is important, and where good heuristics are
hard to find, is equation solving for high energy physics (HEP). In this field large
equations (often very large) are needed to be solved quickly. Standard packages
such as Maple and Mathematica are often too slow, and scientists frequently
use a specialized high-efficiency package called Form [27].

The research on MCTS in Form was started by attempting to improve the
speed of the evaluation of multivariate polynomials. Applying MCTS to this
challenge resulted in an unexpected improvement, first reported in [26]. Here
we will stress further investigations into parameters that influence the search
process.

Polynomial evaluation is a frequently occurring part of equation solving.
Minimizing its cost is important. Finding more efficient algorithms for poly-
nomial evaluation is a classic problem in computer science. For single variable
polynomials, the classic Horner’s rule provides a scheme for producing a compu-
tationally efficient form. It is conventionally named after William George Horner
(1819) [20], although references to the method go back to works by the mathe-
maticians Qin Jiushao (1247) and Liu Hui (3rd century A.D.). For multivariate
polynomials Horner’s rule is easily generalized but the order of the variables is
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unspecified. Traditionally greedy approaches such as using (one of) the most-
occurring variable(s) first are used. This straightforward approach has given
remarkably efficient results and finding better approaches has proven difficult [9].

For polynomials in one variable, Horner’s rule provides a computationally
efficient evaluation form:

a(x) =
n∑

i=0

aix
i = a0 + x(a1 + x(a2 + x(· · · + x · an))). (1)

The rule makes use of the repeated factorization of the terms of the n-th degree
polynomial in x. With this representation a dense polynomial of degree n can
be evaluated with n multiplications and n additions, giving an evaluation cost
of 2n, assuming equal cost for multiplication and addition.

For multivariate polynomials Horner’s rule must be generalized. To do so one
chooses a variable and applies Eq. (1), treating the other variables as constants.
Next, another variable is chosen and the same process is applied to the terms
within the parentheses. This is repeated until all variables are processed. As a
case in point, for the polynomial a = y − 6x + 8xz + 2x2yz − 6x2y2z + 8x2y2z2

and the order x < y < z this results in the following expression

a = y + x(−6 + 8z + x(y(2z + y(z(−6 + 8z))))). (2)

The original expression uses 5 additions and 18 multiplications, while the Horner
form uses 5 additions but only 8 multiplications. In general, applying Horner’s rule
keeps the number of additions constant, but reduces the number of multiplications.

After transforming a polynomial with Horner’s rule, the code can be further
improved by performing a common subexpression elimination (CSE). In Eq. (2),
the subexpression −6+8z appears twice. Eliminating the common subexpression
results in the code

T = −6 + 8z
a = y + x(T + x(y(2z + y(zT )))), (3)

which uses only 4 additions and 7 multiplications.
Horner’s rule reduces the number of multiplications, CSE also reduces the

number of additions.
Finding the optimal order of variables for applying Horner’s rule is an open

problem for all but the smallest polynomials. Different orders impact the cost
evaluating the resulting code. Straightforward variants of local search have been
proposed in the literature, such as most-occurring variable first, which results in
the highest decrease of the cost at that particular step.

MCTS is used to determine an order of the variables that gives efficient
Horner schemes in the following way. The root of the search tree represents the
situation where no variables are chosen yet. This root node has n children. Each
of these children represents a choice for variables in the trailing part of the order,
and so on. Therefore, n equals the depth of the node in the search tree. A node
at depth d has n − d children: the remaining unchosen variables.
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In the simulation step the incomplete order is completed with the remaining
variables added randomly. This complete order is then used for applying Horner’s
rule followed by CSE. The number of operators in this optimized expression is
counted. The selection step uses the UCT criterion with as score the number of
operators in the original expression divided by the number of operators in the
optimized one. This number increases with better orders.

In MCTS the search tree is built in an incremental and asymmetric way; see
Fig. 3 for the visualization of a snap shot of an example tree built during an
MCTS run. During the search the traversed part of the search tree is kept in
memory. For each node MCTS keeps track of the number of times it has been
visited and the estimated result of that node. At each step one node is added to
the search tree according to a criterion that tells where most likely better results
can be found. From that node an outcome is sampled and the results of the
node and its parents are updated. This process is illustrated in Fig. 2. We will
now again discuss the four steps of MCTS, as we use them for finding Horner
orderings.

Selection. During the selection step the node which most urgently needs expan-
sion is selected. Several criteria are proposed, but the easiest and most-used
criterion is the UCT criterion [25]:

UCTi = 〈xi〉 + 2Cp

√
2 log n

ni
. (4)

Here 〈xi〉 is the average score of child i, ni is the number of times child i has been
visited, and n is the number of times the node itself has been visited. Cp is a
problem-dependent constant that should be determined empirically. Starting at
the root of the search tree, the most-promising child according to this criterion is
selected and this selection process is repeated recursively until a node is reached
with unvisited children. The first term of Eq. (4) biases nodes with previous high
rewards (exploitation), while the second term selects nodes that have not been
visited much (exploration). Balancing exploitation versus exploration is essential
for the good performance of MCTS.

Expansion. The selection step finishes in a node with unvisited children. In the
expansion step one of these children is added to the tree.
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Fig. 3. Example of how an MCTS search expands the tree asymmettrically. Taken
from a search for a Horner scheme.
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Simulation. In the simulation step a single possible outcome is simulated start-
ing from the node that has just been added to the tree. The simulation can
consist of generating a fully random path starting from this node to a terminal
outcome. In most applications more advanced programs add some known heuris-
tics to the simulation, reducing the randomness. The latter typically works better
if specific knowledge of the problem is available. In our MCTS implementation a
fully random simulation is used. (We use domain-specific enhancements, such as
CSE, but these are not search heuristics that influence the way MCTS traverses
the search space.)

Backpropagation. In the backpropagation step the results of the simulation
are added to the tree, specifically to the path of nodes from the newly added
node to the root. Their average results and visit count are updated.

The MCTS cycle is repeated a fixed number of times or until the computa-
tional resources are exhausted. After that the best result found is returned.

Sensitivity to Cp and N . The performance of MCTS-Horner followed by CSE
has been tested by implementing it in Form [26,27]. MCTS-Horner was tested
on a variety of different multivariate polynomials, against the currently best algo-
rithms. For each test-polynomial MCTS found better variable orders, typically
with half the number of operators than the expressions generated by previous
algorithms. The results are reported in detail in [26].

The experiments showed that the effectiveness of MCTS depends heavily
on the choice for the exploitation/exploration constant Cp of Eq. (4) and on
the number of tree expansions (N). In the remainder of this section we will
investigate the sensitivity of the performance of MCTS-Horner to these two
parameters.

When Cp is small, MCTS favors parts of the tree that have been visited
before because the average score was good (“exploitation”). When Cp is large,
MCTS favors parts of the tree that have not been visited before (“exploration”).

Finding better variable orderings for Horner’s rule is an application domain
that allows relatively quick experimentation. To gain insight into the sensitivity
of the performance in relation to Cp and to the number of expansions a series of
scatter plots have been created.

The results of MCTS followed by CSE, with different numbers for tree expan-
sions N as a function of Cp are given in Fig. 4 for a large polynomial from high
energy physics, called HEP(σ). This polynomial has 5717 terms and 15 variables.
The formula is typical for formulas that are automatically produced in particle
reactions calculations; these formulas need to be processed further by a Monte
Carlo integration program.

The number of operations of the resulting expression is plotted on the y-
axis of each graph. The lower this value, the better the algorithm performs.
The lowest value found for this polynomial by MCTS+CSE is an expression with
slightly more than 4000 multiplication and addition operations. This minimum
is achieved in the case of N = 3000 tree expansions for a value of Cp with
0.7 � Cp � 1.2. Dots above this minimum represent a sub-optimal search result.
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Fig. 4. Four scatter plots for N = 300, 1000, 3000, 10000 points per MCTS run.
Each plot represents the average of 4000 randomized runs, for the HEP(σ) polynomial
(see text).

For small values of the numbers of tree expansions MCTS cannot find a good
answer. With N = 100 expansions the graph looks almost random (graph not
shown). Then, as we move to 300 tree expansions per data point (left upper panel
of Fig. 4), some clearer structure starts to emerge, with a minimum emerging at
Cp ≈ 0.6. With more tree expansions (see the other three panels of Fig. 4) the
picture becomes clearer, and the value for Cp for which the best answers are
found becomes higher, the picture appears to shift to the right. For really low
numbers of tree expansions (see again upper left panel of Fig. 4) there is no dis-
cernible advantage of setting the exploitation/exploration parameter at a certain
value. For slightly larger numbers of tree expansion, but still low (see upper right
panel) MCTS needs to exploit each good result that it obtains. As the number
of tree expansions grows larger (the two lower panels of Fig. 4) MCTS achieves
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better results when its selection policy is more explorative. It can afford to look
beyond the narrow tunnel of exploitation, to try a few explorations beyond the
path that is known to be good, and to try to get out of local optima. For the
graphs with tree expansions of 3000 and 10000 the range of good results for
Cp becomes wider, indicating that the choice between exploitation/exploration
becomes less critical.

For small values of Cp, such that MCTS behaves exploitatively, the method
gets trapped in one of the local minima as can be seen from scattered dots that
form “lines” in the left-hand sides of the four panels in Fig. 4. For large values
of Cp, such that MCTS behaves exploratively, many of the searches do not lead
to the global minimum found as can be seen from the cloud of points on the
right-hand side of the four panels. For intermediate values of Cp ≈ 1 MCTS
balances well between exploitation and exploration and finds almost always an
ordering for applying Horner’s rule that is very close to the best one known
to us.
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N=100
N=300
N=1000
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N=30000

Fig. 5. Results for MCTS Horner orders as function of the exploitation/exploration
constant Cp and of the number of tree expansions N . For N = 3000 (green line/solid
bullets) the optimum for Cp is Cp ≈ 1.

Results. The results of the test with HEP(σ) for different numbers of tree
expansions are shown in Fig. 5, reproduced from [26]. For small numbers of tree
expansions low values for the constant Cp should be chosen (less than 0.5).
The search is then mainly in exploitation mode. MCTS quickly searches deep
in the tree, most probably around a local minimum. This local minimum is
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explored quite well, but the global minimum is likely to be missed. With higher
numbers of tree expansions a value for Cp in the range [0.5, 2] seems suitable.
This range gives a good balance between exploring the whole search tree and
exploiting the promising nodes. Very high values of Cp appear to be a bad choice
in general, nodes that appeared to be good previously are not exploited anymore
so frequently.

Here we note that these values hold for HEP(σ), and that different polynomi-
als give different optimal values for Cp and N . Below we report on investigations
with other polynomials.

Varying the Number of Tree Expansions. Returning to Fig. 4, let us now
look closer at what happens when we vary the number of tree expansions N . In
Fig. 4 we see scatter plots for 4 different values of N : 300, 1000, 3000, and 10000
expansions.

On the right side (larger values of Cp) of each plot we see a rather diffuse
distribution. When Cp is large, exploration is dominant, which means that at
each time we try a random (new) branch, knowledge about the quality of pre-
viously visited branches is more or less ignored. On the left side there is quite
some structure. Here we give a large weight to exploitation: we prefer to go
to the previously visited branches with the best results. Branches that previ-
ously had a poor result will never be visited again. This means that there is a
large chance that we end up in a local minimum. The plots show indeed sev-
eral of those (the horizontal bands). When there is a decent balance between
exploration and exploitation it becomes likely that the program will find a good
minimum. The more points we use the better the chance that we hit a branch
that is good enough so that the weight of exploitation will be big enough to have
the program return there. Hence, we see that for more points the value of Cp

can become larger. We see also that on the right side of the plots using more
evaluations gives a better smallest value. This is to be expected on the basis of
statistics. In the limit, where we ask for more evaluations than there are leafs in
the tree, we would obtain the best value.

Clearly the optimum is that we tune the value of Cp in such a way that for
a minimum number of expansions we are still almost guaranteed to obtain the
best result. This depends however very much on the problem. In the case of the
formula of Fig. 4 this would be Cp = 0.7.

Repeating Runs of MCTS when Cp is Low. If we reconsider Fig. 4, i.e., we
take a layman’s look, we notice that at the left sides of the panels the distri-
butions are nearly identical, independent of the number of tree expansions N .
What does it mean? How can we influence the observed result? A new approach
reads as follows. If, instead of 3000 expansions in a single run, we take, say,
3 times 1000 expansions and take the best result of those, the left side of the
graphs is expected to become more favorable. The idea of repeated runs has been
implemented in Form and the result is illustrated in Fig. 6. N is the number of
tree expansions in a single MCTS run. R is the number of MCTS runs. The idea
is best formulated by taking N × R as constant. In the experiments, we noticed
a number of curious issues. We mention three of them explicitly. (1) When each



Investigations with MCTS for Finding Better Multivariate Horner Schemes 15

0.01 0.1 1 10
4000

5000

6000

N
um

be
r
of

op
er
at
io
ns

Cp
0.01 0.1 1 10

4000

5000

6000

N
um

be
r
of

op
er
at
io
ns

Cp

0.01 0.1 1 10
4000

5000

6000
N
um

be
r
of

op
er
at
io
ns

Cp
0.01 0.1 1 10

4000

5000

6000

N
um

be
r
of

op
er
at
io
ns

Cp

Fig. 6. Experiment for N × R constant. The polynomial HEP(σ) with 30 runs of 100
expansions, 18 runs of 167 expansions, 10 runs of 300 expansions, and 3 runs of 1000
expansions respectively. For comparison, the graph with a single run of N = 3000 can
be found in Fig. 4, left bottom.

run has too few points, we do not find a suitable local minimum. (2) When a
run has too few points the results revert to that of the almost random branches
for large values of Cp. (3) The multiple runs cause us to lose the sharp minimum
near Cp = 0.7, because we do not have anymore a correlated search of the tree.
However, if we have no idea what would be a good value for Cp (i.e., we do not
know where to start) it seems appropriate to select a value that is small and
make multiple runs provided that the number of expansions N is sufficiently
large for finding a reasonable local minimum in a branch of the tree.

Our next question then is: “What is a good value for the number of tree
expansions per run?” Below we investigate and answer this question with the
help of Fig. 7. We select a small value for Cp (0.01) and make runs for several
values of the total number of tree expansions (with N × R = 1000, 3000, 5000).
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Fig. 7. The effect of repeated MCTS searches for low values of Cp = 0.01. The product
of N × R (number of expansions times number of runs) is kept constant (1000 for the
open circles, 3000 for the black circlesand 5000 for the open squares). The data points
are averaged by running the simulations 50 times. The left graph is for the HEP(σ)
formula and the right graph is for the 7-4 resultant.

The calculations in the left graph are for the formula HEP(σ) and in the right
graph for another polynomial, which is the 7-4 resultant from [30]. The 7-4
resultant has 2562 terms and 13 variables. The minima for HEP(σ) coincide more
or less around 165 expansions per tree. We believe that the number of expansions
is correlated with the square of the number of variables. The reasoning is as
follows. To saturate the nodes around a single path roughly takes 1

2n(n + 1)
expansions. The remaining expansions are used to search around this path and
are apparently sufficient to find a local minimum. Returning to the right top
panel of Fig. 6, it was selected with 18 runs of 167 expansions per tree (with
the minimum of 165 expansions per tree in mind). For the formula involved this
seems to be the optimum if one does not know about the value Cp = 0.7 or if one
cannot run with a sufficient number of expansions to make use of its properties.

We have also made a few runs for the 7-5 and 7-6 resultants (also taken from
[30]) and find minima around 250 and 300 respectively.1 The results suggest that
if the number of variables is in the range of 13 to 15 an appropriate value for the
number of expansions is 200–250. This number will then be multiplied by the
number of runs of MCTS to obtain an indication for the total number of tree
expansions.

For reasons of comparison, we remark that similar studies of other physics
formulas with more variables (O(30)) show larger optimal values for the number
of expansions per run and less pronounced local minima. Yet, also here, many
1 The 7-5 resultant has 11380 terms and 14 variables, the 7-6 resultant has 43166

terms and 15 variables.
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smaller runs may produce better results than a single large run, provided that
the runs have more than a given minimum of tree expansions.

Future Work. This investigation into the sensitivity of (1) the number of tree
expansions N , (2) the exploration/exploitation parameter CP , and (3) the num-
ber of reruns of MCTS R has yielded interesting insights into the relationships
between these parameters and the effect on the efficiency of MCTS in finding
better variable orderings for multivariate polynomials to apply Horner’s rule.
We have used a limited number of polynomials for our experiments. In future
work we will address the effect of different polynomials. In addition, it will be
interesting to see if similar results can be obtained for other application domains,
in particular for the game of Go.

5 Discussion

From the beginning of AI in 1950, chess has been called the Drosophila of AI. It
was the testbed of choice. Many of the findings from decades of computer chess
research have found their way to other fields, such as protein sequencing, natural
language processing, machine learning, and high performance search [23]. After
Deep Blue had defeated Garry Kasparov, research attention shifted to Go.

For Go, no good heuristic evaluation function seems to exist. Therefore, a
different search paradigm was invented: MCTS. The two most prevailing charac-
teristics are: no more minimax, and no need for a heuristic evaluation function.
Instead, MCTS uses (1) the average of random playouts to guide the search,
and (2) by balancing between exploration and exploitation, it appears to be able
to detect by itself which areas of the search tree contain the green leaves, and
which branches are dead wood. Having a “self-guided” (best-first) search, with-
out the need for a domain-dependent heuristic, can be highly useful. For many
other application domains the construction of a heuristic evaluation function is
an obstacle, too. Therefore we expect that there are many other domains that
could benefit from the MCTS technology, and, indeed, many other applications
have already been found how to adapt MCTS to fit their characteristics (see, for
example, [6,13,28,31,32,40,41,43]). In this paper one such adaptation has been
discussed, viz. with Horner schemes. Finding better variable orders for applying
the classic Horner’s rule algorithm is an exciting first result [26], allowing easy
investigation of two search parameters. It will be interesting to find out whether
similar results can be found in MCTS as applied in Go programs, and other
application domains.

References

1. Allis, V.: Searching for Solutions in Games and Artificial Intelligence. (Ph.D. the-
sis), University of Limburg, Maastricht, The Netherlands (1994)
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