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Preface

The present book includes extended and revised versions of a set of selected papers
from the Fifth International Conference on Agents and Artificial Intelligence (ICAART
2013), held in Barcelona, Spain, from February 15 to 18, 2013, which was organized
by the Institute for Systems and Technologies of Information, Control and Commu-
nication (INSTICC) and held in cooperation with the Association for the Advancement
of Artificial Intelligence (AAAI).

The purpose of the International Conference on Agents and Artificial Intelligence
(ICAART) is to bring together researchers, engineers, and practitioners interested in the
theory and applications in these areas. The conference was organized in two simulta-
neous tracks: artificial intelligence and agents, covering both applications and current
research work within the area of agents, multi-agent systems and software platforms,
distributed problem solving and distributed Al in general, including Web applications,
on one hand, and within the area of non-distributed Al, including the more traditional
areas such as knowledge representation, planning, learning, scheduling, perception and
also not so traditional areas such as reactive Al systems, evolutionary computing and
other aspects of computational intelligence and many other areas related to intelligent
systems, on the other hand.

ICAART 2013 received 269 paper submissions from 50 countries, in all continents.
To evaluate each submission, a double-blind paper review was performed by the Program
Committee, whose members are highly qualified researchers in ICAART topic areas.
Based on the classifications provided, only 97 papers were selected for oral presentation
(37 full papers and 60 short papers) and 59 papers were selected for poster presentation.
The full paper acceptance ratio was about 14 %, and the total oral acceptance ratio
(including full papers and short papers) 36 %. These strict acceptance ratios show the
intention to preserve a high quality forum which we expect to develop further next year.

We would like to highlight that ICAART 2013 included also three plenary keynote
lectures, given by internationally distinguished researchers, namely—Elias M. Awad
(University of Virginia, USA), Jaap van den Herik (Tilburg University, The Nether-
lands), and Wiebe van der Hoek (University of Liverpool, UK).

We would like to express our appreciation to all of them and in particular to those
who took the time to contribute with a paper to this book.

We must thank the authors, whose research and development efforts are recorded
here. We also thank the keynote speakers for their invaluable contribution and for
taking the time to synthesize and prepare their talks. Finally, special thanks to all the
members of the INSTICC team, whose collaboration was fundamental for the success
of this conference.

December 2013 Joaquim Filipe
Ana Fred
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Abstract. After a computer chess program had defeated the human
World Champion in 1997, many researchers turned their attention to
the oriental game of Go. It turned out that the minimax approach, so
successful in chess, did not work in Go. Instead, after some ten years of
intensive research, a new method was developed: MCTS (Monte Carlo
Tree Search), with promising results. MCTS works by averaging the
results of random play-outs. At first glance it is quite surprising that
MCTS works so well. However, deeper analysis revealed the reasons.

The success of MCTS in Go caused researchers to apply the method
to other domains. In this article we report on experiments with MCTS
for finding improved orderings for multivariate Horner schemes, a basic
method for evaluating polynomials. We report on initial results, and con-
tinue with an investigation into two parameters that guide the MCTS
search. Horner’s rule turns out to be a fruitful testbed for MCTS, allow-
ing easy experimentation with its parameters. The results reported here
provide insight into how and why MCTS works. It will be interesting to
see if these insights can be transferred to other domains, for example,
back to Go.

Keywords: Artificial intelligence - High energy physics + Horners rule -
Monte Carlo Tree Search + Go - Chess

1 Introduction

In 1965, the Soviet mathematician Aleksandr Kronrod called chess the Drosophila
Melanogaster of Artificial Intelligence [29]. At that time, chess was a convenient
domain that was well suited for experimentation. Moreover, dedicated research
programs all over the world created quick progress. In half a century the dream of
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national Conference on Agents and Artifical Intelligence ICAART 2013 in Barcelona
under the title “Connecting Sciences.” These parts are reprinted with permission by
the publisher.
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Fig. 1. Example of a Go board.

beating the human world champion was realized. On May 11, 1997 Garry
Kasparov, the then highest rated human chess player ever, was defeated by the
computer program DEEP BLUE, in a highly publicized six game match in
New York.

So, according to some, the Al community lost their Drosophila in 1997, and
started looking for a new one. The natural candidate was an even harder game:
the oriental game of Go. Go is played on a 19 x 19 board, see Fig. 1. Its state
space is much larger than the chess state space. The number of legal positions
reachable from the starting position in Go (the empty board) is estimated to be
O(10'7) [1], whereas for chess this number is “just” O(106) [15]. If chess is a
game of tactics, then Go is a game of strategy. The standard minimax approach
that worked so well for chess (and for other games such as checkers, Awari, and
Othello) did not work well for Go, and so Go became the new Drosophila. For
decades, computer Go programs played at the level of weak amateur. After 1997,
the research effort for computer Go intensified. Initially, progress was slow, but in
2006, a breakthrough happened. The breakthrough and some of its consequences,
are the topic of this article.

The remainder of the contribution is structured as follows. First, the tech-
niques that worked so well in chess will be discussed briefly. Second, the new
search method that caused the breakthrough in playing strength in Go will be
described. Then, a successful MCTS application to Horner’s rule of multivariate
polynomials will be shown. It turns out that Horner’s rule yields a convenient
test domain for experimentation with MCTS. We complete the article by an
in-depth investigation of the search parameters of MCTS.

A note on terminology. The rule published by William Horner almost two
centuries ago is called Horner’s rule. It is a technique to reduce the work required
for the computation of a polynomial in a single variable at a particular value.
Finding better variable orderings of multivariate polynomials, in order to then
apply Horner’s rule repeatedly, is called finding better Horner schemes.
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2 The Chess Approach

The heart of a chess program consists of two parts: (1) a heuristic evaluation
function, and (2) the minimax search function. The purpose of the heuristic
evaluation function is to provide an estimate of how good a position looks, and
sometimes of its chances of winning the game [17]. In chess this includes items
such as the material balance (capturing a pawn is good, capturing a queen is
usually very good), mobility, and king safety. The purpose of the search function
is to look ahead: if I play this move, then my opponent would do this, and then
I would do that, and ..., etc. By searching more deeply than the opponent the
computer can find moves that the heuristic evaluation function of the opponent
mis-evaluates, and thus the computer can find the better move.

Why does this approach fail in Go? Originally, the main reason given was
that the search tree is so large (which is true). In chess, the opening position
has 20 legal moves (the average number of moves is 38 [18,22]). In Go, this
number is 361 (and thereafter it decreases with one per move). However, soon it
turned out that an even larger problem was posed by the construction of a good
heuristic evaluation function. In chess, material balance, the most important
term in the evaluation function, can be calculated efficiently and happens to be
a good first heuristic. In Go, so far no good heuristics have been found. The
influence of stones and the life and death of groups are generally considered to
be important, but calculating these terms is time consuming, and the quality
of the resulting evaluation is a mediocre estimator for the chances of winning a
game.

Alternatives. Lacking a good evaluation function and facing the infeasibility of
a full-width look-ahead search, most early Go programs used as a first approach
the knowledge-based approach: (1) generate a limited number of likely candidate
moves, such as corner moves, attack/defend groups, connecting moves, and lad-
ders, and (2) search for the best move in this reduced state space [34]. The Go
heuristics used for choosing the candidate moves can be generalized in move pat-
terns, which can be learned from game databases [44,45]. A second approach was
to use neural networks, also with limited success [19]. This approach yielded pro-
grams that could play a full game that looked passable, but never reached more
than weak amateur level.

3 Monte Carlo

In 1993, the mathematician and physicist Bernd Briigmann was intrigued by the
use of simulated annealing for solving the traveling salesman problem. If such a
basic procedure as randomized local search (also known as Monte Carlo) could
find shortest tours, then perhaps it could find good moves in Go? He wrote a 9x9
Go program based on simulated annealing [7]. Crucially, the program did not
have a heuristic evaluation function. Instead it played a series of random moves
all the way until the end of the game was reached. Then the final position was
trivially scored as either a win or a loss. This procedure of randomized play-outs
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was repeated many times. The result was averaged and taken to be an estimate
of the “heuristic” value of each move. So instead of searching a tree, Briigmann’s
program searched paths, and instead of using the minimax function to compute
the scores, the program took the average of the final scores. The program had
no domain knowledge, except not to fill its own territory. Could this program be
expected to play anything but meaningless random moves?

Surprisingly, it did. Although it certainly did not play great or even good
moves, the moves looked better than random. Briigmann concluded that by just
following the rules of the game the average of many thousands of plays yielded
better-than-random moves.

At that time, the attempt to connect the sciences of physics and artificial
intelligence appeared to be a curiosity. Indeed, the hand-crafted knowledge-based
programs still performed significantly better. For the next ten years not much
happened with Monte Carlo Go.

Monte Carlo Tree Search. Then, in 2003, Bouzy and Helmstetter reported on
further experiments with Monte Carlo playouts, again stressing the advantage
of having a program that can play Go moves without the need for a heuristic
evaluation function [2,5]. They tried adding a small 2-level minimax tree on
top of the random playouts, but this did not improve the performance. In their
conclusion they refer to other works that explored statistical search as an alter-
native to minimax [24,38] and concluded: “Moreover, the results of our Monte
Carlo programs against knowledge-based programs on 9 x 9 boards and the ever-
increasing power of computers lead us to think that Monte Carlo approaches are
worth considering for computer Go in the future.”

They were correct.

Three years later a breakthrough took place by the repeated introduction
of MCTS and UCT. Coulom [16] described Monte Carlo evaluations for tree-
based search, specifying rules for node selection, expansion, playout, and backup.
Chaslot et al. coined the term Monte Carlo Tree Search or MCTS, in a contri-
bution that received the ICGA best publication award in 2008 [10,12]. In 2006
Kocsis and Szepesvari [25] laid the theoretical foundation for a selection rule that
balances exploration and exploitation and that is guaranteed to converge to the
minimax value. This selection rule is termed UCT, short for Upper Confidence
bounds for multi-armed bandits [4] applied to Trees (see Eq. (4)). Gelly et al. [21]
used UCT in a Go program called MoGo, short for Monte Carlo Go, which was
instantly successful. MoGo received the ICGA award in 2009. Chaslot et al. [11]
also described the application of MCTS in Go, reporting that it outperformed
minimax, and mentioned applications beyond Go.

Since 2006 the playing strength of programs improved rapidly to the level
of strong amateur/weak master (2-3 dan). The MCTS breakthrough was con-
firmed when, for the first time, a professional Go player was beaten in a single
game. In August 2008 at the 24th Annual Go Congress in Portland, Oregon,
MoGO-TITAN, running on 800 cores of the Huygens supercomputer in Amster-
dam, beat 8P dan professional Kim MyungWan with a 9-stone handicap [14].
Further refinements have increased the playing strength. At the Human versus
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Computer Go Competition that was held as part of the IEEE World Congress
on Computational Intelligence in June 2012 in Brisbane, Australia, the program
ZEN defeated the 9P dan professional Go player Takemiya Masaki with a four-
stone handicap (~5P dan) on the 19 x 19 board.

The main phases of MCTS are shown in Fig.2. They are explained briefly
below.

After the introduction om MCTS, there has been a large research inter-
est in MCTS. Browne et al. [8] provides an extensive survey, referencing 240
publications.

MCTS Basics. MCTS consists of four main steps: selection, expansion, simu-
lation (playout), and back-propagation (see Fig.2). The main steps are repeated
as long as there is time left. For each step the activities are as follows.

(1) In the selection step the tree is traversed from the root node until we reach
a node, where a child is selected that is not part of the tree yet.

(2) Next, in the expansion step the child is added to the tree.

(3) Subsequently, during the simulation step moves are played in self-play until
the end of the game is reached. The result R of this—simulated—game is
+1 in case of a win for Black (the first player in Go), 0 in case of a draw,
and —1 in case of a win for White.

(4) In the back-propagation step, R is propagated backwards, through the previ-
ously traversed nodes. Finally, the move played by the program is the child
of the root with the best win/visit count, depending on UCT probability
calculations (to be discussed briefly below).

Crucially, the selection rule of MCTS allows balancing of (a) exploitation
of parts of the tree that are known to be good (i.e., high win rate) with
(b) exploration of parts of the tree that have not yet been explored (i.e., low
visit count).

L Iterated N times J
Selection

Expansion Playout Backpropagation

A selection One new node A simulation The result is

strategy is used is created strategy is propagated
to traverse the used to finish back in the
tree the game tree

Fig. 2. The basic Monte Carlo Tree Search scheme.
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Originally MCTS used moves in the playout phase that were strictly random.
However, soon better results were obtained by playing moves that use small (fast)
amounts of domain knowledge. Nowadays, many programs use pattern databases
for this purpose [21]. The high levels of performance that are currenlty achieved
with MCTS depend to a large extent on enhancements of the expansion strategy,
simulation phase, and the parallelization techniques. (So, after all, small amounts
of domain knowledge are needed, albeit not in the form of a heuristic evaluation
function. No expensive influence or life-and-death calculations are used, but fast
pattern lookups.)

Applications Beyond Go. The striking performance of MCTS in Go has led
researchers to apply the algorithm to other domains. Traditionally, best-first
algorithms rely on domain knowledge to try the “best” moves first. This domain
knowledge is often hard to codify correctly and is expensive to compute. Many
researchers have looked for best-first algorithms that could somehow do without
domain knowledge [35-37,42]. The ability of MCTS to magically home in on
clusters of “bright spots” in the state space without relying on domain knowledge
has resulted in a long list of other applications, for example, for proof-number
search [40]. In addition, MCTS has been proposed as a new framework for game-
AT for video games [13], for the game Settlers of Catan [43], for the game Einstein
wiirfelt nicht [32], for the Voronoi game [6], for Havannah [31], for Amazons [28§],
and for various single player applications [39,41].

4 Horner’s Rule for Multivariate Polynomials

We will now turn our attention to one such application domain: that of find-
ing better variable orderings for applying Horner’s rule to evaluate multivariate
polynomials efficiently.

One area where finding solutions is important, and where good heuristics are
hard to find, is equation solving for high energy physics (HEP). In this field large
equations (often very large) are needed to be solved quickly. Standard packages
such as MAPLE and MATHEMATICA are often too slow, and scientists frequently
use a specialized high-efficiency package called FORM [27].

The research on MCTS in FORM was started by attempting to improve the
speed of the evaluation of multivariate polynomials. Applying MCTS to this
challenge resulted in an unexpected improvement, first reported in [26]. Here
we will stress further investigations into parameters that influence the search
process.

Polynomial evaluation is a frequently occurring part of equation solving.
Minimizing its cost is important. Finding more efficient algorithms for poly-
nomial evaluation is a classic problem in computer science. For single variable
polynomials, the classic Horner’s rule provides a scheme for producing a compu-
tationally efficient form. It is conventionally named after William George Horner
(1819) [20], although references to the method go back to works by the mathe-
maticians Qin Jiushao (1247) and Liu Hui (3rd century A.D.). For multivariate
polynomials Horner’s rule is easily generalized but the order of the variables is



Investigations with MCTS for Finding Better Multivariate Horner Schemes 9

unspecified. Traditionally greedy approaches such as using (one of) the most-
occurring variable(s) first are used. This straightforward approach has given
remarkably efficient results and finding better approaches has proven difficult [9].

For polynomials in one variable, Horner’s rule provides a computationally
efficient evaluation form:

a(z) = Zaimi =ag+x(ag +z(ag +z(-- -+ x - ay))). (1)
i=0

The rule makes use of the repeated factorization of the terms of the n-th degree
polynomial in xz. With this representation a dense polynomial of degree n can
be evaluated with n multiplications and n additions, giving an evaluation cost
of 2n, assuming equal cost for multiplication and addition.

For multivariate polynomials Horner’s rule must be generalized. To do so one
chooses a variable and applies Eq. (1), treating the other variables as constants.
Next, another variable is chosen and the same process is applied to the terms
within the parentheses. This is repeated until all variables are processed. As a
case in point, for the polynomial a = y — 6x + 8xz + 222yz — 622y%2 + 8x2y?22
and the order = < y < z this results in the following expression

a=y+x(—6+8z+x(y(2z +y(2(—6 + 82))))). (2)

The original expression uses 5 additions and 18 multiplications, while the Horner
form uses 5 additions but only 8 multiplications. In general, applying Horner’s rule
keeps the number of additions constant, but reduces the number of multiplications.

After transforming a polynomial with Horner’s rule, the code can be further
improved by performing a common subexpression elimination (CSE). In Eq. (2),
the subexpression —6+8z appears twice. Eliminating the common subexpression
results in the code

T=—6+82 (3)
a=y+x(T+z(y(2z +y(z1)))),

which uses only 4 additions and 7 multiplications.

Horner’s rule reduces the number of multiplications, CSE also reduces the
number of additions.

Finding the optimal order of variables for applying Horner’s rule is an open
problem for all but the smallest polynomials. Different orders impact the cost
evaluating the resulting code. Straightforward variants of local search have been
proposed in the literature, such as most-occurring variable first, which results in
the highest decrease of the cost at that particular step.

MCTS is used to determine an order of the variables that gives efficient
Horner schemes in the following way. The root of the search tree represents the
situation where no variables are chosen yet. This root node has n children. Each
of these children represents a choice for variables in the trailing part of the order,
and so on. Therefore, n equals the depth of the node in the search tree. A node
at depth d has n — d children: the remaining unchosen variables.
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In the simulation step the incomplete order is completed with the remaining
variables added randomly. This complete order is then used for applying Horner’s
rule followed by CSE. The number of operators in this optimized expression is
counted. The selection step uses the UCT criterion with as score the number of
operators in the original expression divided by the number of operators in the
optimized one. This number increases with better orders.

In MCTS the search tree is built in an incremental and asymmetric way; see
Fig. 3 for the visualization of a snap shot of an example tree built during an
MCTS run. During the search the traversed part of the search tree is kept in
memory. For each node MCTS keeps track of the number of times it has been
visited and the estimated result of that node. At each step one node is added to
the search tree according to a criterion that tells where most likely better results
can be found. From that node an outcome is sampled and the results of the
node and its parents are updated. This process is illustrated in Fig.2. We will
now again discuss the four steps of MCTS, as we use them for finding Horner
orderings.

Selection. During the selection step the node which most urgently needs expan-
sion is selected. Several criteria are proposed, but the easiest and most-used
criterion is the UCT criterion [25]:

21
UCT; = (w;) + 20, | 8" (4)

n;

Here (x;) is the average score of child 7, n; is the number of times child ¢ has been
visited, and n is the number of times the node itself has been visited. C, is a
problem-dependent constant that should be determined empirically. Starting at
the root of the search tree, the most-promising child according to this criterion is
selected and this selection process is repeated recursively until a node is reached
with unvisited children. The first term of Eq. (4) biases nodes with previous high
rewards (exploitation), while the second term selects nodes that have not been
visited much (exploration). Balancing exploitation versus exploration is essential
for the good performance of MCTS.

Expansion. The selection step finishes in a node with unvisited children. In the
expansion step one of these children is added to the tree.

wkrrj’: T
MA A — \

I AT A B AT == |
AR A YL / Ny
TEUA AR LA TR s i

Fig. 3. Example of how an MCTS search expands the tree asymmettrically. Taken
from a search for a Horner scheme.
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Simulation. In the simulation step a single possible outcome is simulated start-
ing from the node that has just been added to the tree. The simulation can
consist of generating a fully random path starting from this node to a terminal
outcome. In most applications more advanced programs add some known heuris-
tics to the simulation, reducing the randomness. The latter typically works better
if specific knowledge of the problem is available. In our MCTS implementation a
fully random simulation is used. (We use domain-specific enhancements, such as
CSE, but these are not search heuristics that influence the way MCTS traverses
the search space.)

Backpropagation. In the backpropagation step the results of the simulation
are added to the tree, specifically to the path of nodes from the newly added
node to the root. Their average results and visit count are updated.

The MCTS cycle is repeated a fixed number of times or until the computa-
tional resources are exhausted. After that the best result found is returned.

Sensitivity to C}, and N. The performance of MCTS-Horner followed by CSE
has been tested by implementing it in FORM [26,27]. MCTS-Horner was tested
on a variety of different multivariate polynomials, against the currently best algo-
rithms. For each test-polynomial MCTS found better variable orders, typically
with half the number of operators than the expressions generated by previous
algorithms. The results are reported in detail in [26].

The experiments showed that the effectiveness of MCTS depends heavily
on the choice for the exploitation/exploration constant C), of Eq.(4) and on
the number of tree expansions (V). In the remainder of this section we will
investigate the sensitivity of the performance of MCTS-Horner to these two
parameters.

When C,, is small, MCTS favors parts of the tree that have been visited
before because the average score was good (“exploitation”). When C), is large,
MCTS favors parts of the tree that have not been visited before (“exploration”).

Finding better variable orderings for Horner’s rule is an application domain
that allows relatively quick experimentation. To gain insight into the sensitivity
of the performance in relation to C, and to the number of expansions a series of
scatter plots have been created.

The results of MCTS followed by CSE, with different numbers for tree expan-
sions IV as a function of ), are given in Fig. 4 for a large polynomial from high
energy physics, called HEP (o). This polynomial has 5717 terms and 15 variables.
The formula is typical for formulas that are automatically produced in particle
reactions calculations; these formulas need to be processed further by a Monte
Carlo integration program.

The number of operations of the resulting expression is plotted on the y-
axis of each graph. The lower this value, the better the algorithm performs.
The lowest value found for this polynomial by MCTS+CSE is an expression with
slightly more than 4000 multiplication and addition operations. This minimum
is achieved in the case of N = 3000 tree expansions for a value of C, with
0.7 < Cp < 1.2. Dots above this minimum represent a sub-optimal search result.
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Fig. 4. Four scatter plots for N = 300, 1000, 3000, 10000 points per MCTS run.
Each plot represents the average of 4000 randomized runs, for the HEP(o) polynomial
(see text).

For small values of the numbers of tree expansions MCTS cannot find a good
answer. With N = 100 expansions the graph looks almost random (graph not
shown). Then, as we move to 300 tree expansions per data point (left upper panel
of Fig. 4), some clearer structure starts to emerge, with a minimum emerging at
C)p ~ 0.6. With more tree expansions (see the other three panels of Fig.4) the
picture becomes clearer, and the value for (), for which the best answers are
found becomes higher, the picture appears to shift to the right. For really low
numbers of tree expansions (see again upper left panel of Fig. 4) there is no dis-
cernible advantage of setting the exploitation/exploration parameter at a certain
value. For slightly larger numbers of tree expansion, but still low (see upper right
panel) MCTS needs to exploit each good result that it obtains. As the number
of tree expansions grows larger (the two lower panels of Fig.4) MCTS achieves
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better results when its selection policy is more explorative. It can afford to look
beyond the narrow tunnel of exploitation, to try a few explorations beyond the
path that is known to be good, and to try to get out of local optima. For the
graphs with tree expansions of 3000 and 10000 the range of good results for
C, becomes wider, indicating that the choice between exploitation/exploration
becomes less critical.

For small values of Cp, such that MCTS behaves exploitatively, the method
gets trapped in one of the local minima as can be seen from scattered dots that
form “lines” in the left-hand sides of the four panels in Fig. 4. For large values
of Cp, such that MCTS behaves exploratively, many of the searches do not lead
to the global minimum found as can be seen from the cloud of points on the
right-hand side of the four panels. For intermediate values of C},, ~ 1 MCTS
balances well between exploitation and exploration and finds almost always an
ordering for applying Horner’s rule that is very close to the best one known
to us.

6000 — — —
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Fig.5. Results for MCTS Horner orders as function of the exploitation/exploration
constant Cp and of the number of tree expansions N. For N = 3000 (green line/solid
bullets) the optimum for C,, is C) &~ 1.

Results. The results of the test with HEP(¢) for different numbers of tree
expansions are shown in Fig. 5, reproduced from [26]. For small numbers of tree
expansions low values for the constant C), should be chosen (less than 0.5).
The search is then mainly in exploitation mode. MCTS quickly searches deep
in the tree, most probably around a local minimum. This local minimum is
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explored quite well, but the global minimum is likely to be missed. With higher
numbers of tree expansions a value for C), in the range [0.5,2] seems suitable.
This range gives a good balance between exploring the whole search tree and
exploiting the promising nodes. Very high values of C}, appear to be a bad choice
in general, nodes that appeared to be good previously are not exploited anymore
so frequently.

Here we note that these values hold for HEP (o), and that different polynomi-
als give different optimal values for C, and N. Below we report on investigations
with other polynomials.

Varying the Number of Tree Expansions. Returning to Fig. 4, let us now
look closer at what happens when we vary the number of tree expansions N. In
Fig. 4 we see scatter plots for 4 different values of N: 300, 1000, 3000, and 10000
expansions.

On the right side (larger values of C}) of each plot we see a rather diffuse
distribution. When C,, is large, exploration is dominant, which means that at
each time we try a random (new) branch, knowledge about the quality of pre-
viously visited branches is more or less ignored. On the left side there is quite
some structure. Here we give a large weight to exploitation: we prefer to go
to the previously visited branches with the best results. Branches that previ-
ously had a poor result will never be visited again. This means that there is a
large chance that we end up in a local minimum. The plots show indeed sev-
eral of those (the horizontal bands). When there is a decent balance between
exploration and exploitation it becomes likely that the program will find a good
minimum. The more points we use the better the chance that we hit a branch
that is good enough so that the weight of exploitation will be big enough to have
the program return there. Hence, we see that for more points the value of C,
can become larger. We see also that on the right side of the plots using more
evaluations gives a better smallest value. This is to be expected on the basis of
statistics. In the limit, where we ask for more evaluations than there are leafs in
the tree, we would obtain the best value.

Clearly the optimum is that we tune the value of C), in such a way that for
a minimum number of expansions we are still almost guaranteed to obtain the
best result. This depends however very much on the problem. In the case of the
formula of Fig. 4 this would be C}, = 0.7.

Repeating Runs of MCTS when C,, is Low. If we reconsider Fig. 4, i.e., we
take a layman’s look, we notice that at the left sides of the panels the distri-
butions are nearly identical, independent of the number of tree expansions N.
What does it mean? How can we influence the observed result? A new approach
reads as follows. If, instead of 3000 expansions in a single run, we take, say,
3 times 1000 expansions and take the best result of those, the left side of the
graphs is expected to become more favorable. The idea of repeated runs has been
implemented in FORM and the result is illustrated in Fig. 6. IV is the number of
tree expansions in a single MCTS run. R is the number of MCTS runs. The idea
is best formulated by taking N x R as constant. In the experiments, we noticed
a number of curious issues. We mention three of them explicitly. (1) When each
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Fig. 6. Experiment for N x R constant. The polynomial HEP(c) with 30 runs of 100
expansions, 18 runs of 167 expansions, 10 runs of 300 expansions, and 3 runs of 1000
expansions respectively. For comparison, the graph with a single run of N = 3000 can
be found in Fig. 4, left bottom.

run has too few points, we do not find a suitable local minimum. (2) When a
run has too few points the results revert to that of the almost random branches
for large values of Cp. (3) The multiple runs cause us to lose the sharp minimum
near Cp = 0.7, because we do not have anymore a correlated search of the tree.
However, if we have no idea what would be a good value for C,, (i.e., we do not
know where to start) it seems appropriate to select a value that is small and
make multiple runs provided that the number of expansions N is sufficiently
large for finding a reasonable local minimum in a branch of the tree.

Our next question then is: “What is a good value for the number of tree
expansions per run?”’ Below we investigate and answer this question with the
help of Fig.7. We select a small value for C}, (0.01) and make runs for several
values of the total number of tree expansions (with N x R = 1000, 3000, 5000).
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Fig. 7. The effect of repeated MCTS searches for low values of C}, = 0.01. The product
of N x R (number of expansions times number of runs) is kept constant (1000 for the
open circles, 3000 for the black circlesand 5000 for the open squares). The data points
are averaged by running the simulations 50 times. The left graph is for the HEP(o)
formula and the right graph is for the 7-4 resultant.

The calculations in the left graph are for the formula HEP(¢) and in the right
graph for another polynomial, which is the 7-4 resultant from [30]. The 7-4
resultant has 2562 terms and 13 variables. The minima for HEP (o) coincide more
or less around 165 expansions per tree. We believe that the number of expansions
is correlated with the square of the number of variables. The reasoning is as
follows. To saturate the nodes around a single path roughly takes in(n + 1)
expansions. The remaining expansions are used to search around this path and
are apparently sufficient to find a local minimum. Returning to the right top
panel of Fig.6, it was selected with 18 runs of 167 expansions per tree (with
the minimum of 165 expansions per tree in mind). For the formula involved this
seems to be the optimum if one does not know about the value C}, = 0.7 or if one
cannot run with a sufficient number of expansions to make use of its properties.

We have also made a few runs for the 7-5 and 7-6 resultants (also taken from
[30]) and find minima around 250 and 300 respectively.! The results suggest that
if the number of variables is in the range of 13 to 15 an appropriate value for the
number of expansions is 200-250. This number will then be multiplied by the
number of runs of MCTS to obtain an indication for the total number of tree
expansions.

For reasons of comparison, we remark that similar studies of other physics
formulas with more variables (O(30)) show larger optimal values for the number
of expansions per run and less pronounced local minima. Yet, also here, many

! The 7-5 resultant has 11380 terms and 14 variables, the 7-6 resultant has 43166
terms and 15 variables.
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smaller runs may produce better results than a single large run, provided that
the runs have more than a given minimum of tree expansions.

Future Work. This investigation into the sensitivity of (1) the number of tree
expansions N, (2) the exploration/exploitation parameter Cp, and (3) the num-
ber of reruns of MCTS R has yielded interesting insights into the relationships
between these parameters and the effect on the efficiency of MCTS in finding
better variable orderings for multivariate polynomials to apply Horner’s rule.
We have used a limited number of polynomials for our experiments. In future
work we will address the effect of different polynomials. In addition, it will be
interesting to see if similar results can be obtained for other application domains,
in particular for the game of Go.

5 Discussion

From the beginning of AT in 1950, chess has been called the Drosophila of Al It
was the testbed of choice. Many of the findings from decades of computer chess
research have found their way to other fields, such as protein sequencing, natural
language processing, machine learning, and high performance search [23]. After
DeEp BLUE had defeated Garry Kasparov, research attention shifted to Go.

For Go, no good heuristic evaluation function seems to exist. Therefore, a
different search paradigm was invented: MCTS. The two most prevailing charac-
teristics are: no more minimax, and no need for a heuristic evaluation function.
Instead, MCTS uses (1) the average of random playouts to guide the search,
and (2) by balancing between exploration and exploitation, it appears to be able
to detect by itself which areas of the search tree contain the green leaves, and
which branches are dead wood. Having a “self-guided” (best-first) search, with-
out the need for a domain-dependent heuristic, can be highly useful. For many
other application domains the construction of a heuristic evaluation function is
an obstacle, too. Therefore we expect that there are many other domains that
could benefit from the MCTS technology, and, indeed, many other applications
have already been found how to adapt MCTS to fit their characteristics (see, for
example, [6,13,28,31,32,40,41,43]). In this paper one such adaptation has been
discussed, viz. with Horner schemes. Finding better variable orders for applying
the classic Horner’s rule algorithm is an exciting first result [26], allowing easy
investigation of two search parameters. It will be interesting to find out whether
similar results can be found in MCTS as applied in Go programs, and other
application domains.
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Abstract. Solving Distributed Constraint Optimization Problems has
a large significance in today’s interconnected world. Complete as well as
approximate algorithms have been discussed in the relevant literature.
However, these are unfeasible if high-arity constraints are present (i.e.,
a fully connected constraint graph). This is the case in distributed com-
binatorial problems, for example in the provisioning of active power in
the domain of electrical energy generation. The aim of this paper is to
give a detailed formalization and evaluation of the COHDA heuristic for
solving these types of problems. The heuristic uses self-organizing mech-
anisms to optimize a common global objective in a fully decentralized
manner. We show that COHDA is a very efficient decentralized heuristic
that is able to tackle a distributed combinatorial problem, without being
dependent on centrally gathered knowledge.

Keywords: Self-organization - Cooperation + Smart grid

1 Introduction

In decentralized systems, where the search space of a given optimization problem
is distributed into disjoint subspaces, centralized optimization approaches often
cannot be applied. For example, the global collection of data might violate pri-
vacy considerations or bandwidth restrictions. The gathering of such data might
even be impossible, as it is the case if local search spaces are partially unknown
or cannot be enumerated (i.e. due to infiniteness). Another limitation is that dis-
tributed search spaces are often not independent. Such interdependencies require
to evaluate search spaces with relation to each other. Thus, a parallel search for
optimal solutions would require a large communication overhead.

For instance, this type of problem is present in the transition of today’s elec-
tricity grid to a decentralized smart grid. Here, we have to cope with an increas-
ing number of distributed energy resources (DER). Usually, the operation of
these DER is individually configured, according to the constraints given at the
© Springer-Verlag Berlin Heidelberg 2014
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place of installation. For example, a combined heat and power plant (CHP) pri-
marily has to satisfy the (varying) thermal energy needs of a building. Electrical
energy is produced only as a side-product, so that e.g. the provisioning of active
power by this unit is difficult to request directly. Because of this rather dynamical
behavior of such DER, an adaptive, decentralized control scheme is crucial for a
reliable operation of the system (see [17,22] for more details regarding ongoing
work in this domain).

In the contribution at hand, we focus on day-ahead planning of the provi-
sioning of active power, which can be expressed as a distributed combinatorial
problem: Given a set of DER and a global target power profile, each unit has
to select its own mode of operation for the planning horizon in such a way, that
the resulting individual power profiles of all units jointly match the global target
profile as close as possible. For this purpose, the distributed heuristic COHDA
is developed which makes use of self-organization strategies. In hitherto existing
population-based heuristics, each individual represents a complete solution to
the given problem within a common search space. In our approach, however, an
individual incorporates a local, dependent search space, and thus defines a par-
tial solution that can only be evaluated with respect to all other individuals. The
task of each individual is to find a partial local solution that, if combined with
the local solutions of the other individuals, yields the optimal global solution.

The problem stated in this contribution is formulated as an instance of a dis-
tributed constraint optimization problem (DCOP). In [4], a thorough examination
of heuristic approaches from the DCOP domain as well as from the context of
game theory is presented, and [12] puts DCOPs into perspective of cooperative
problem solving in multi-agent systems. All mentioned approaches therein rely
on communication between individuals which are directly connected in the con-
straint graph of the problem to solve. However, the problem considered in the
present contribution induces a fully connected constraint graph, which renders
these approaches unfeasible due to communication complexity. The consequence
would be a broadcasting of messages, which has been realized in the COBB
approach [18]. Technically, broadcasting can be done in two ways: by sending
messages directly to all other existing individuals, or by using a central black
board where the relevant information is posted publicly. The former method
would lead to an explosion of the number of transferred messages. The latter
method, as used in [14], is able to avoid this (if a suitable adjustment schedule
is used, c.f. [4]), but introduces the problem of a centralized information repos-
itory with the drawbacks mentioned earlier. In contrast, the EPOS approach,
as introduced in [19,20], uses a tree overlay organization structure and thus is
based on a partial representation of the constraint graph. Following, EPOS does
fulfill the demand for an algorithm that can handle fully connected constraint
graphs in the context of distributed constraint optimization problems. The tree
overlay, however, imposes hierarchical relations on the agents. Hence, there are
still centralized components present in the architecture of this approach. Further-
more, the optimization process is carried out in an iterative bottom-up fashion,
which leads to a rather synchronous execution paradigm. We believe that a more
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convenient approach with regard to decentralized settings is possible. Therefore,
we introduced the COHDA heuristic in [6].

In order to compensate for the condensed presentation in [6], the aim of this
paper is to evaluate the COHDA heuristic in more detail. Hence, we will give a
detailed formalization of the heuristic and a thorough description of the approach
first. In addition, we extend COHDA to the multi-objective case. Subsequently,
we evaluate the heuristic with respect to different parameters: message delay,
network density, planning horizon, search space complexity and population size.
Note that the first two are user-defined parameters, while the last three are
problem-specific. From the results, the properties adaptivity, robustness, scala-
bility, and anytime behavior are derived.

The contribution at hand is a revised version of [8].

2 Method

Constraint optimization problems (COP) can be formulated with an integer
programming model, if we assume that each search space is discrete by nature,
and that the elements within are known and may be enumerated. Let ¢ € IR?
be the target that should be matched, where ¢ is the number of dimensions (i.e.
in the context of power provisioning, ¢ denotes the planning horizon). We now
assume that there are m disjoint search spaces (i.e. electrical generators). Now
let the i¢th search space contain n; elements. The jth element in such a search
space describes a partial solution to the problem, denoted with w;; € IR? (i.e.
a feasible power profile). The goal is to select an element w;; from each search
space i, such that the sum of these selected values approaches c as close as
possible (c.f. [6]):

min |lc — ZZL(wW - T45) (1)

i=1 j=1

‘ 1

n;
subject to inj =1,:=1...m,

j=1

xz;; €4{0,1}, i=1...m, j=1...n,,

Here, each search space has an associated selection variable x;;, which defines
whether an element has been chosen (z;; = 1) or not (x;; = 0). This model is a
generalization of the well-known subset-sum problem, where solutions exceeding
the target are not allowed (whereas our model approximates ¢ from any side).

2.1 Mapping to a Distributed System

So far, the above formulation is only suitable from a central perspective. In
the aimed setting however, each search space is represented by an autonomous
decision maker, which we call agents. The task of each agent a; is to select one
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of its elements w;; with respect to the common global target c. More formally,
an agent a; has to find an assignment of its own selection variables x;;, such
that the objective function in (1) is minimized globally.

Definition 1. A selection of an agent a; is a tuple v; = (i,j) where i is the
identifier of a;, and j identifies the selected element w;; such that x;; = 1 and

Z;llzl Ti5 = 1.

Agents are autonomous, so they may change their selection at any time. There-
fore, we need to define the state of an agent.

Definition 2. The state of an agent a; is given by o; = (v, \;), where ; is
a selection containing an assignment of a;’s decision variables x;;, and \; is a
unique number within the history of a;’s states. Each time an agent a; changes
its current selection v; to v;, the agent enters a new state &; = (V;, \;) where
AL = N\ + 1. This imposes a strict total order on a;’s selections, hence \; reflects
the “age” of a selection.

In order to decide which of its local elements w;; to select optimally, an agent
has to take the current selections (i.e. states) of the other agents in the system
into account.

Definition 3. A configuration X = {o0;,0k,...} is a set of states. A state
belonging to an agent a; can appear in a configuration no more than once:

o, €EX NopeX = i#k

Note that this definition allows a configuration to be incomplete with regard to
the population of agents in the system. A configuration that contains states for
all existing agents is called global.

Definition 4. A global configuration regarding the whole system is denoted by
Yglobal = {oi|i=1...m}.

On the other hand, Definition 3 enables us to model a local view that an agent
a; has on the system. This is quite similar to the definition of contert in [16].
We call such a local view a perceived configuration.

Definition 5. A perceived configuration of an agent a; is a configuration
Y ={ok | a; is aware of ai}.

Following, if we assume that an agent a; is able to somehow perceive a configu-
ration X; containing information about other agents that a; is aware of (we will
address this later), it may now select one of its own elements w;; with respect
to the currently chosen elements of other agents in Y; and the optimization
goal c.
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2.2 Introducing Local Constraints

Furthermore, we introduce local constraints, which impose a penalty value p;;
to each element w;; within the search space of an agent a;.

Definition 6. The penalty function II; : R? — R of an agent a; maps an
element w;; to a penalty value p;;.

These local constraints are known to the corresponding agent only, as described
in the introductory example (i.e. for a CHP unit, heating preferences defined
by residents). Thus, each agent has two objectives: minimizing the common
objective function as given in (1), and minimizing its local penalties that are
induced by contributing a certain element w;;. This compound optimization
goal at agent level may be expressed with a utility function:

zi=a; 2zt +(1—ap) - 27 (2)

Here, z} represents the common global objective function and 2? incorporates
the local constraints. The parameter «; allows an agent a; to autonomously
adjust its preference for optimizing the global goal versus optimizing its local
constraints. Note that the domains of z! and 22 must be carefully defined in this
model (i.e. normalized to [0.0, 1.0]), so that «; gains the desired effect.

From a global point of view, this yields the distributed-objective multiple-
choice combinatorial optimization problem (DO-MC-COP):

min Z Zi (3)
i=1

where z; = o - 2} + (1 — ) - 22,

c= | 2 (wiyreg)+ Y w
Jj=1 weEP(X;)

n;
2=y I (wy) @iy
j=1

¢ (&) = {wis [ {{i7),0) € 2},

Uz
subject to Zmij =1:=1...m,
j=1

131']'6{0,1}, t=1...m,j5=1...n;,

a; €eR, 0<;<1,i=1...m.

Summarizing, in this model there are m decision makers (agents) a;, that pursue
a common goal by each contributing one solution element w;; from their asso-
ciated local search space, while at the same time minimizing the resulting local
penalty IT; (w;;).
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Obviously, if an agent a; changes its state o;, this should have an effect on
the decision making of the other agents in the system. Thus, the definition of
how an arbitrary agent a; perceives a configuration X%, and how this relates to
Ygloval, is crucial for solving the DO-MC-COP in a distributed way. The follow-
ing section addresses these questions and describes a self-organizing approach to
this distributed-objective problem.

2.3 COHDA

In nature, we find many examples of highly efficient systems, which perform
tasks in a completely decentralized manner: swarming behavior of schooling fish
or flocking birds [23], foraging of ants [9] and nest thermoregulation of bees
[10]. Even processes within single organisms show such astonishing behavior,
for instance the neurological development of the fruit fly [13] or the foraging
of Physarum polycephalum, a single-celled slime mold [26], which both exhibit
rules for adaptive network design. One of the core concepts in these examples is
self-organization. From the perspective of multi-agent systems, this term can be
defined as “the mechanism or the process enabling a system to change its organi-
zation without explicit external command during its execution time” [24]. From
the perspective of complex systems theory, this is related to emergence, which
can be defined as “properties of a system that are not present at the lower level
[...], but are a product of the interactions of elements” [5]. Such systems usually
exhibit a number of desirable properties like adaptivity, robustness, scalability,
and anytime behavior [2,21].

The COHDA heuristic, as originally proposed in [6], applies these concepts
to create a self-organizing heuristic for solving distributed combinatorial prob-
lems. The key concept in COHDA is a partial representation of the (usually fully
connected) constraint graph of the problem to solve, in order to reduce coordi-
nation complexity. Note that this graph induces the communication network of
the system. But unlike other approaches mentioned in the introduction, a spe-
cific graph topology is not required. Instead, the heuristic adapts to whatever
topology is given by real-world requirements (i.e. physical communication lines
in power grids), or is defined by the system operator. This is combined with an
information spreading strategy that, despite the partial constraint graph, allows
the heuristic to converge rapidly to a global solution.

As described above, the heuristic has to cope with an arbitrary communica-
tion topology. This can be expressed with a graph G = (V, ), where each agent
is represented by a vertex a; € V. Edges e = (a;,a) € € depict communication
links. Thus, we can define the neighborhood of an agent:

Definition 7. Given a set of edges £, the neighborhood of an agent a; is defined
as N = {ax | (a;,ax) € E}.

An agent may not communicate with any other agent outside of its neighborhood.
Just like flocking birds, the agents now observe their local environment and react
to changes within their perception range. For that purpose, each agent a; main-
tains a configuration X;, which reflects the knowledge of a; about the system.
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This configuration is initially empty, but is updated during the iterative process
through information exchange with other agents (hence, X; is called the
perceived configuration of a;, see Definition 5). Now, whenever an agent a; enters
a new state ¢; by changing the assignment of its decision variables z;;, its neigh-
boring agents a, € N; perceive this event. These agents now each update their
current local view X on the system, and react to this event by re-evaluating
their search spaces and subsequently adapting their own decision variables.

However, usually X # Ygiopat, hence an agent has to deal with incomplete,
local knowledge. Thus, for improving the local search at agent level, the COHDA
heuristic uses an information spreading strategy besides this reactive adaptation.
Whenever a local change is published to the neighborhood, the publishing agent
a; not only includes information about its updated state o;, but publishes its
whole currently known perceived configuration X; as well. A receiving agent
ar now updates its existing knowledge base X with this two-fold information
(X; U{o;}). In this update procedure, an element o, = (7,,\y) € X; of the
sending agent a; is added to X} of the receiving agent ay if and only if any of
the following conditions hold:

1. X} does not already contain a state from a,, such that Vo, € X : z # y.

2. Y already contains a state o, with z = y, but o, has a lower value \,, such
that 3o, = (y:,A,) € X : 2=y A A, < A,. This means, o, is outdated
(see Definition 2), and hence o, replaces o, in Xj.

Using this information spreading strategy, agents build a complete representa-
tion Xgiopar of the whole system over time, and take this information into account
in their decision making as well. However, due to possibly rather long communi-
cation paths between any two agents, these global views on the system are likely
to be outdated as soon as they are built and represent beliefs about the systems
rather than facts. Nevertheless, they provide a valuable guide in the search for
optimal local decisions.

In order to ensure convergence and termination, a third information flow is
established on top of that. In addition to the perceived configuration X; (which
reflects the currently known system configuration including the agent’s own cur-
rent state o;), each agent keeps track of the best known configuration X} it has
seen during the whole process so far.

Definition 8. A configuration XF = {o},0%,...} is an arbitrary snapshot of
the system taken by an agent a;.

Definition 9. The best X over all agents in the population is denoted by X*.

Whenever an agent updates its X; by means of received information, it compares
this new configuration X; to X}. If X; yields a better solution quality than X7
according to DO-MC-COP (3), X; is stored as new best known configuration X7
In addition to o; and X, an agent a; also exchanges its X with its neighbors,
everytime it changes. Thus, when an agent aj, receives a X from a neighbor a;,
the agent replaces its currently stored X} by X7, if the latter yields a better
solution quality than the former.
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The whole process can be summarized in the following three steps:

1. (update) An agent a; receives information from one of its neighbors and
imports it into its own knowledge base. That is, its beliefs X; about the
current configuration of the system is updated, as well as the best known
configuration X}.

2. (choose) The agent now adapts its own decision variables x;; according to the
newly received information, while taking its own local objectives into account
as well. If it is not able to improve the believed current system configuration
X, the state o stored in the currently best known configuration X} will be
taken. The latter causes a; to revert its current state o; to a previous state
oy, that once yielded a better believed global solution.

3. (publish) Finally, the agent publishes its belief about the current system
configuration X; (including its own new state d;), as well as the best known
configuration X to its neighbors. Local objectives are not published to other
agents, thus maintaining privacy.

Accordingly, an agent a; has two behavioral options after receiving data from
a neighbor. First, a; will try to improve the currently believed system config-
uration X; by choosing an appropriate w;;, and subsequently adding its new
state d; to X;. Yet, this only happens if the resulting X; would yield a better
solution quality than X7. In that case, X; replaces XL, so that they are identical
afterwards. If the agent cannot improve X; over X}, however, the agent reverts
its state to the one stored in X7. This state, o, is then added to X; afterwards.
Thus, Y; always reflects the current view of a; on the system, while X7 always
represents the currently pursued goal of a;, since it is the best configuration the
agent knows. In either case, X; and X} both contain a;’s current state after
Step 2.

As can be seen from the above description, the COHDA heuristic is inher-
ently adaptive: the agents permanently adapt to changes in their environment;
for more details on this see [7]. Also, since an overall best configuration X* (Def-
inition 9) can be identified at any point in time, which is replaced only when
an even better configuration is found, the heuristic exhibits the anytime behav-
ior [2]. In order to reveal the properties scalability and robustness, we performed
a simulation-based evaluation. This evaluation will be discussed in the following
sections.

2.4 Implementation

We implemented the proposed heuristic COHDA in a multi-agent system (MAS).
In our simulation environment, agents communicate asynchronously, using a net-
work layer as communication backend. This backend may be a physical one, so
as to be able to distribute the MAS over arbitrary machines. In our evalua-
tion however, we used a simulated network layer, in order to have full control
over message travelling times, and to permit deterministic repetitions of simu-
lation runs. For this, we used predefined seeds for the random number gener-
ators. This allows us to simulate unsteady communication layers with varying
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message delays. Technically, our simulation is event-driven, i.e., agents react to
events (messages from other agents) in the continuous time domain, which is
induced by the above mentioned varying message delays. For the ease of eval-
uation, however, the simulation status is reported to the experimenter exactly
every integer-valued time step. Following, from the user perspective, a discrete-
time simulation is performed. Our implementation ensured that we were able to
monitor (and count) all exchanged messages.

In the conducted experiments, each agent represents a simulated combined
heat and power (CHP) device with an 800! thermal buffer store. We used the
simulation model of an EcoPower CHP as described in [3]. For each of those
devices, the thermal demand for a four-family house during winter was simulated
according to [11]. The devices were operated in heat driven operation and thus
primarily had to compensate the simulated thermal demand. Additionally, after
shutting down, a device would have to stay off for at least two hours. However,
due to their thermal buffer store and the ability to modulate the electrical power
output within the range of [1.3kW, 4.7kW], the devices had still some degrees
of freedom left.

For each conducted experiment, and for each agent, the simulation model has
been instantiated with a random initial temperature level of the thermal buffer
store and a randomly generated thermal demand. Subsequently, a number of
feasible power profiles were generated from each of these simulation models.
The resulting sets of power profiles are then used as local search spaces by the
agents. The global goal ¢ of the optimization problem was generated as a random
electrical power profile, which was scaled to be feasible for the given population of
CHP devices. However, we cannot guarantee that an optimal solution actually
lies within in the set of randomly enumerated search spaces. The task of the
agents now was to select one element out of their given sets of power profiles
each, so that the sum of all selected power profiles approximates the target profile
c as exactly as possible.

85 - - target| !

75 — result

aggregated power [kW]

individual power [kW]

planning horizon [h]

Fig. 1. Optimization result of a single simulation run with 30 CHP (and local search
spaces comprising 2000 feasible power profiles each), for a planning horizon of four
hours in 15-min. intervals.



32 C. Hinrichs et al.

1.0

00 B2 distribution of &

= 0.8 . . | 1 § ]

50 100 150
simulation steps

Fig. 2. Detailed illustration of the COHDA heuristic during a simulation.

3 Results

As a first step, we examined the general behavior of the heuristic without penal-
ties. In Fig.1, the results of a single simulation run (m = 30 devices with
n = 2000 possible power profiles each) are visualized. The planning horizon
was set to four hours in 15-min. intervals. The upper chart shows the target
profile (dashed line) and the resulting aggregated power output (solid line). The
individual power output profiles of the devices are depicted in the lower chart.
The latter is quite chaotic, which is due to the limited sets of available power
output profiles per device. Nevertheless, the heuristic was able to select 30 pro-
files (one for each device), whose sum approximates the target profile with a
remaining imbalance of less than 2.5 kW per time step in the planning horizon.

In Fig. 2, the process of the heuristic for this simulation run is shown in detail.
This data is visible to the simulation observer only, the individual agents still
act upon local knowledge. The solid line depicts the global fitness value of the
heuristic over time. This fitness represents the rating of the best configuration X*
existing in the population (see Definition 9), at each point in time, respectively.
These values are determined according to (3), but have been normalized to the
interval [0.0, 1.0], with 0.0 being the optimum. The normalization was done by
taking an approximation for the worst combination of power profiles as upper

bound:
dworst = max (d (C) Z wi7min> y d (Ca Z wi,maw))
=1 =1

(with w; min and w; me, being elements of an agent a; with minimal and max-
imal absolute cumulative value, respectively), and assuming the existence of an
optimal solution (no remaining imbalance) as lower bound. In order to examine
convergence, the agent population was parametrized with the upper bound as
initial solution.
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In general, the fitness value decreases over time (lower is better, so this means
an improvement of the fitness) until it converges to a near-optimal solution.
However, it is not strictly decreasing, since there are non-decreasing intervals.
This is due to the information spreading strategy in COHDA, and can be
explained with the distribution ratio of X*. The latter is visualized by the shaded
area (the higher, the more agents are aware of the current X*). Recall that an
agent a; inherits a received X} from a neighbor a;, if X7 yields a better rating
than the currently stored X of the agent a;. Thus, a configuration with very
good rating prevails and spreads in the network, until a better rated configu-
ration is found somewhere. As an example, consider the situation at simulation
step 12. Some agent, say a;, has found a configuration X} with a normalized fit-
ness rating of ~0.18. This configuration is, at that time, the best configuration
found in the whole population, therefore X* = X*. The agent publishes X} to its
neighbors, who accept it as a new best configuration, and re-publish it again to
their respective neighbors. Hence, the distribution of X* (shaded area) rises in
the following time steps, but the fitness value (solid line) remains constant. In
simulation step 30, however, some agent aj finds an even better configuration
X}. Thus the fitness value improves and, from this point in time, X* = X}, At
the same time, the distribution of the (new) X* drops dramatically, since this
configuration is known to a, only and has yet to be spread in the network. The
heuristic terminates after 185 simulation steps, where a certain X* has been
distributed to all agents, and no better configuration can be found. The final
fitness value is 0.02, which amounts to a total remaining imbalance of 7.09 kW
(0.007 % of the targeted 1004.13kW in total over the planning horizon).

Figure 3 shows the aggregated behavior of the COHDA heuristic for 100 sim-
ulation runs. For each simulation run, the same CHP devices and thus the same
local search spaces were used, but the communication network was initialized
with different seeds for the random number generator. This yielded a different
communication graph in each run, as well as different generated message delays.

100 150 200 250
simulation steps

Fig. 3. Aggregated behavior of COHDA for 100 simulation runs with 30 CHP (and local
search spaces comprising 2000 feasible power profiles each), for a planning horizon of
four hours in 15-min. intervals.
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The solid line represents the mean fitness over time, while the shaded area around
this line depicts the standard deviation. Obviously, in this example the COHDA
heuristic is able to converge to near optimal solutions independently from the
underlying communication backend. On average over all 100 simulation runs,
each agent sent 1.5 4+ 0.04 messages per simulation step. The boxplot visualizes
simulation lengths, with 169.69 + 28.38 simulation steps being the mean.

3.1 Performance Criteria

Besides the inspection of the general behavior, simulation performance can be
measured in terms of (a) the resulting fitness after termination, (b) the simu-
lation length, or (c¢) the average number of exchanged messages per agent per
simulation step during the process. In our experiments, the influence of different
input parameters on each of these numbers (a—c) has been analyzed. From the
resulting interactions, properties like robustness and scalability may be derived.
If not stated otherwise, the experiments were conducted using a message delay
MSGmaz = 2 (see Sect.3.2), a small world network topology with ¢ = 2.0 (see
Sect. 3.3), a target comprising ¢ = 16 dimensions (see Sect.2.3), a population
size of m = 30 agents, and no penalties (such that a; = 1.0 in (2)). Each exam-
ined scenario was simulated 100 times. Figure 4 shows a summary of our results.
We will discuss each part in the following sections.

3.2 Message Delay

An important property of the simulated communication backend is its abil-
ity for delayed messages. In order to evaluate the robustness of the heuristic
against a non-deterministic communication layer, we tested the approach with
different amounts of message delays. To accomplish that, we defined an interval
[1, MmSGmaz], from which a random number is generated for each sent message.
The message is then delayed for the according number of simulation steps. We
evaluated msgmas € {1,2,5,7,10}.

Figure4(a) shows the influence of message delays on the simulation perfor-
mance, as defined in Sect. 3.1 (criteria a—c). Fortunately, message delays have
absolutely no influence on the final fitness produced by the heuristic (crite-
rion a, top chart). This means that COHDA is very stable against an unsteady
communication network. The time until termination (criterion b, middle chart)
consequentially rises linearly with increasing message delay. With regard to the
amount of exchanged messages (criterion ¢, bottom chart), a strongly decreasing
trend towards less than one sent message on average per agent per simulation
step with increasing delay is visible. When multiplied with the number of sim-
ulation steps, the number of messages per agent throughout a whole simulation
run can be determined (chart not shown here). We find a minimum of exchanged
messages per simulation run with msg,,q. = 2. Following, COHDA does not only
cope with, but even benefits from a slight variation at agent level introduced by
message delays (for details on inter-agent variation see [1]).
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Fig. 4. Performance analysis of COHDA regarding different input parameters.

3.3 Network Density

The composition of an agents’ neighborhood is directly coupled to the underlying
communication graph G = (£,V). Preliminary experiments showed a beneficial
impact of random graphs with a low diameter. Thus, we evaluated the following
topologies:

— Ring: The agents are inserted into a ring-shaped list. Each agent is then
connected to its predecessor and successor.

— Small World: This network comprises an ordered ring with |V| - ¢ additional
connections between randomly selected agents, cf. [25]. We examined ¢ €
{0.1, 0.5, 1.0, 2.0, 4.0}.

In Fig.4(b), the results of these experiments are visualized. We ordered the
plotted data according to the approximated average neighborhood size, which
defines the overall density of the communication graph. Similar to the previ-
ous section, there is no influence of the network density on solution quality.
Expectedly, the message complexity increases with larger neighborhoods. Sim-
ilarly, simulation length decreases with more connections. As in the previous
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section, a trade-off between run-time in terms of simulation steps, and run-time
in terms of exchanged messages is visible. A comparison of the number of mes-
sages per agent throughout a whole simulation run against network topology
shows that, for the given scenario, a small world topology with ¢ = 0.5 yields
the least messages on average during a whole simulation (chart not shown here).

3.4 Planning Horizon

When the heuristic is applied to scheduling problems (as in the provisioning of
active power, which we focus at), the dimensionality ¢ of the target ¢ € IR?is inter-
preted as planning horizon. For real-world applications, it is interesting to know
what planning horizon the heuristic is capable of. Figure 4(c) shows the result of
planning horizons with a length of {2, 4, 8, 12, 24} hours in 15-min. intervals
(thus ¢ € {8, 16, 32, 48, 96}). The final fitness in the upper chart deteriorates
almost linearly with larger planning horizons. Similarly, the number of simulation
steps rises, whereas the number of exchanged messages is not influenced. While we
expected the last, we did not expect the influence of the planning horizon on fitness
and simulation length, and examined it in more detail. After several experiments
with synthetic scenarios (i.e. carefully generated search space values according to
[15]), it turned out to be a side effect in our use of the CHP simulation models:
Randomly enumerating a rather small number of feasible power profiles does not
yield a sufficient coverage of the theoretically feasible action space of the devices.
Thus, in the following section, we examine the influence of the size of local search
spaces on simulation performance.

3.5 Search Space Complexity

We analyzed scenarios with {20, 200, 2000, 20000} pre-generated feasible power
profiles per device. This yielded fitness values of 0.12+0.06, 0.02+ 0.02, 0.003 +
0.004 and 0.001 £ 0.002, respectively. Since the coverage of the theoretically
feasible action space of the simulated devices increases with larger enumerated
local search spaces (c.f. Sect. 3.4), simulation fitness improves significantly. The
number of simulation steps and the number of exchanged messages per agent
per simulation step were constant (132 & 21 and 1.5 £ 0.04, respectively).

3.6 Population Size

Another interesting property regarding real-world applications is the influence
of population size on the heuristic. In Fig.4(d), a linear increase in simulation
steps until termination can be seen. This is consequently due to the increased
coordination complexity in larger networks. Yet, since the increase is linear at
most, this shows that COHDA is quite robust against the number of participat-
ing individuals. Interestingly, the final fitness as well as the number of exchanged
messages per time step significantly improve with larger population sizes. The
former may be related to the increased diversity, which could already be observed
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Fig. 5. Aggregated performance of COHDA over 100 simulation runs with distributed
local objective functions (Vi : «a; = 0.5).

to be beneficial in the analysis of the sizes of local search spaces in the previous
section. The latter can be attributed to an increased diameter of the communica-
tion graph with larger population sizes. Here, information spreads more slowly,
and it takes a longer time for the system to converge.

3.7 Bi-Objective Behavior

As described in Sect. 2.2, we introduced local objective functions at agent level
for the COHDA heuristic. As a proof of concept, we conducted an experiment
(100 simulation runs) with randomly generated penalty values p;; € [0, max(c)].
The preference adjustment parameter, as defined in (2), was set to a; = 0.5
for all agents, so that the local objectives were considered equally important
to the global objective. Figure 5 shows the aggregated results of 100 simulation
runs. The heuristic was able to minimize local penalties to a normalized value of
0.02+0.01. At the same time, the global objective fitness could be optimized to
a normalized value of 0.15 £ 0.07, which amounts to a remaining imbalance of
33.12kW +£17.02 in total over the planning horizon (0.06 % +0.03 of the targeted
54426 kW).

4 Conclusions

In the contribution at hand, we presented COHDA, which is a self-organizing
heuristic for solving distributed combinatorial problems. It was shown that
COHDA is inherently adaptive, and exhibits anytime behavior. We applied the
heuristic to a problem from the smart grid domain, and performed a thorough
evaluation under varying conditions. For this, we implemented an asynchronous
multi-agent system with full control over the communication backend. Regarding
our example application, it could be shown that the heuristic exhibits conver-
gence and termination, and is robust against unsteady communication networks
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as well as different network topologies. The run-time of COHDA, in terms of sim-
ulation steps, rises linearly with increasing population sizes. Yet it is unaffected
by the size of local search spaces, so we conclude that the heuristic is sufficiently
scalable. However, there is a trade-off between the number of simulation steps
until termination, and the number of exchanged messages. This trade-off can be
adjusted through the density of the communication network (i.e., the average
size of the neighborhoods). The evaluation of a bi-objective scenario showed the
ability of the heuristic to optimize local penalties as well as a global objective in
parallel.

In the present form, COHDA needs a central operator that is able to detect
the termination of the process (and thus has a global view on the system).
But the actual optimization process is still performed in a truly decentralized
manner! A fully decentralized variant of COHDA, however, could be realized by
including a distributed termination detection algorithm.
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Abstract. Traversing challenging structures like boulders, rubble, stairs
and steps, mobile robots need a special level of mobility. Robots with
reconfigurable chassis are able to alter their configuration to overcome
such structures.

This paper presents a two-stage motion planning scheme for reconfig-
urable robots in rough terrain. First, we consider the robot’s operating
limits rather than the complete states to quickly find an initial path in
a low dimensional space. Second, we identify path segments which lead
through rough areas of the environment and refine those segments using
the entire robot state including the actuator configurations. We present
a roadmap and a RRT* method to perform the path refinement.

Our algorithm does not rely on any detailed structure/terrain catego-
rization or on any predefined motion sequences. Hence, our planner can
be applied to urban structures, like stairs, as well as rough unstructured
environments.

Keywords: Mobile robot - Motion planning - Obstacle - Rough terrain -
Reconfigurable chassis + Sampling-based - RRT*

1 Introduction

Many structures which are regularly encountered in robotic tasks are perceived
as obstacles for fixed-chassis robots. Steps and stairs are usually untraversable
obstacles in urban environments; debris, rubble, rocks or steep inclinations in
unstructured outdoor environments are often impossible to traverse with nor-
mal fixed-chassis systems. Therefore, these structures and objects have to be
circumvented if possible.

Using articulated actuators robots with reconfigurable chassis can change
their configuration to improve traction and stability or to lift themselves over
edges. This provides those systems with an increased mobility compared to fixed-
chassis robots and enables them to overcome a wide variety of environments.
Fixed-chassis robots are most often unable to traverse the same kind of envi-
ronments because their ability to negotiate obstacles is limited due to their
construction. The challenges they can overcome are restricted by the diameter
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Fig. 1. The Telerob Telemax is 65 cm long, 40 cm wide and weighs about 70 kg. It has 4
tracks which can be rotated. Extended, the robot’s length is about 120 cm. The robot
is skid-steered and drives up to 1.2m/s. Configurations are: (left) folded (actuators
at —90°), (middle) extended (actuators at 80°) and (right) maximal ground contact
(actuators at 21°).

i Roughness Quantification

Image processing filters on the map

? Initial Path Search

Graph search in motion graph :

[ Rough Segment Identification ]
I
[ |

{ 7 Y v
. [ Flat Segment Planning ] ! [ Rough Segment Planning ]

2D path planning ‘ :

Segment Plans Merging

Fig. 2. Method overview: Using filters from image processing we perform a roughness
quantification of the map. The initial path is found within a regular grid performing a
graph search. Afterwards the rough segments are identified. For flat segments we apply
a 2D planning scheme; rough segments are refined by a second planning step using an
A*-search or a RRT*-search. Finally the segment plans are merged to provide the final
path.

i Refinement of the initial path '

of their wheels or their track heights and to some extend to their centers of
mass. The mobility of actuated systems is dominated by the number, length and
agility of their actuators.

Controlling a mobile robot in rough terrain and steering it through difficult
situations is a challenging task even for a trained operator. The operator must
consider many different aspects to guarantee the safety of the system in such
environments. Among those aspects are the robot’s stability as tipping over
becomes increasingly more likely, the inertia and momentum must be kept in
mind when operating a system close to its limits, and finally, the system may
react differently to the same commands because the contacts with the ground
can change often in rough terrain.

In this paper, we present a hierarchical approach to motion planning for
reconfigurable robots like the Packbot or the Telemax (Fig. 1). First, we generate
an approximate solution and refine it in a subsequent phase. The refinement
concentrates on path segments in rough areas and accounts for the actuators and
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the robot’s stability and traction. See Fig. 2 for an overview. Since the algorithm
does not need a previous terrain/structure classification and does not use any
predefined motion sequences, it can be applied to rough outdoor environments
as well as structures in urban surroundings. We consider our method to be
the global planning component within a robotic system. The controller which
executes the plan and takes care of localization and obstacle avoidance is beyond
the scope of this work.

The remainder of this paper is organized as follows: Sect.2 names related
work in this area of research. Section 3 gives a short overview of our method and
names key differences to related works. In Sect.4 we introduce the roughness
quantification. Section5 describes the hierarchical planning scheme including
the roadmap planner (A*) and the sampling-based planner (RRT*) (Sect.5.3).
In Sect.6 we discuss the parameters and appropriate values. Experiments are
provided in Sect. 7, and we conclude in Sect. 8.

2 Related Work

This section focuses on common approaches to rough terrain path planning and
on previous work using methods similar to ours, i.e. hierarchical methods, meth-
ods applying roadmap and sampling-based algorithms to rough terrain motion
planning for tracked robots.

Many algorithms for traversing rough terrain or climbing structures, like
stairs, involve a preceding classification step (e.g. using line detection to identify
stairs). This information is used to steer the system during climbing, fixing
its heading to the gradient of the staircase [1,2]. In [3] a two dimensional A*-
search on behavior maps is used to find paths in rough environments for a
tracked robot, similar to our model. The path represents a sequence of predefined
skills encoded in the behavior maps. Fuzzy rules and Markov random fields are
used to classify the environment and facilitate skill selection. A comprehensive
approach to traverse rough outdoor terrain as well as stairs is presented in [4].
The framework includes a mapping component, a terrain classification and a
two-phase planning algorithm. A high-level planner samples a transition graph
across different terrain types and provides an initial path. In the second phase
specialized terrain sub-planners refine the path and return gait primitives for
a RHex robot (e.g. stair-climbing gait primitives). The approaches above are
limited to the set of terrain types or structures which are imposed by their
classification scheme or to the set of motion sequences. On the contrary, our
algorithm does not rely on such a terrain/structure classification or on a set
of motion sequences. Hence, it can be applied to a broader range of different
environments.

We utilize a two-phase planning method which produces an initial approxi-
mate solution followed by a refinement of the initial result. As in [4], other works
also use a similar approach. Kalakrishnan and colleagues introduced a controller
for fast quadruped locomotion over rough terrain [5]. The controller decomposes
the controlling task into several sub-tasks; first, they generate a terrain reward
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map using a learned foothold ranking function and then produce an approxi-
mate path. In subsequent steps this first solution is improved to ensure kine-
matic reachability and a smooth and collision-free trajectory. Like our method,
this is a multi-phase algorithm which requires a map and implements a terrain
analysis. However, our terrain analysis relies on a roughness quantification simi-
lar to [6] instead of a ranking function of the actuator contacts. On the contrary,
the authors of [5] propose a reactive controller to traverse rough terrain rather
than a planning algorithm. Also the terrain interaction of tracked robots is quite
distinct compared to the interaction of their legged robot.

Further, path refinement can also be achieved by path optimizing methods.
CHOMP [7] is an optimization method for continuous trajectories using covari-
ant gradient descent. It can optimize a path over a variety of criteria. Since it
is applicable to unfeasible paths, it can be used as a standalone motion planner.
STOMP [§] is a stochastic path optimizer using a path integral approach which
does not require any gradient information like CHOMP. Therefore, it can over-
come local minima and more general costs are applicable. The major drawback
of both methods is the limitation to trajectories of a predefined fixed length. This
makes them inapplicable for the path refinement within a certain proximity of
the initial path.

In this work we present a roadmap algorithm for rough terrain path planning.
Roadmap methods are commonly applied to this problem in the literature. An
Anytime A*-search is used to find paths in a multi-resolution 4D state lattice for
indoor environments [9]. The resolution of the lattice is adjusted with respect
to terrain or task characteristics (e.g. narrow passages and goal proximity). The
online navigation utilizes a precomputation step which determines paths for con-
strained areas. In [10] the Fast Marching Method (FMM), a breadth-first search
algorithm, is used on a 3D lattice to plan stable paths for actively reconfigurable
robots. The system’s stability guides the search on a triangular mesh of the envi-
ronment. The actuators of the Packbot robot used in this research are actively
controlled like the actuators of our Telemax platform.

The authors of [11] present an approach to motion planning on rough terrain
for a wheeled robot with passive suspension using an A*-search on a discretized
configuration space with heuristics to limit the search space. The algorithm
considers the robot’s stability, mechanical limits, collisions with the ground, and
uncertainties on the terrain model and the robot position. While in [11] they also
use a graph-search and measure the robot’s stability, their algorithm does not
have to account for actuators due to the robot’s passive suspension. In contrast,
we must include the actively controlled actuators during planning.

Magid et al. developed a rough terrain planning algorithm for a tracked robot
with four actively controlled crawlers [12]. They use a graph-search to find motion
sequences in a discretizied state space, which also allows for motions of controlled
balance-losing (e.g. insignificant falls from small edges). However, rather than
autonomous navigation their application is to reduce the burden on operators of
search and rescue missions by proposing paths through rough terrain. Unlike us,
they categorize the states to distinguish between different transition types and
consider controlled balance-losing states. However, they also plan on a discrete
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state space and use a robot with actively controlled crawlers, similar to our
model.

Sampling-based methods have also been used to find paths through rough
environments. Reference [13] presents a RRT-based algorithm which finds routes
of low mechanical work following valleys and saddle points in continuous cost
spaces. Their method also includes a mechanism based on stochastic optimiza-
tion to filter irrelevant configurations and to control the exploration behavior.
In [14] a RRT variant is employed for kinematic path planning for a LittleDog
robot. The authors bias the search in the task space and use motion primitives to
speed up planning. Reference [15] uses different terrain parameters to guide the
RRT expansions and iteratively increases its roughness tolerance if no solution
is found.

3 Overview and Discriminators

We start with a short overview of our algorithm. We employ a hierarchical algo-
rithm for motion planning of actively reconfigurable robots in rough environ-
ments. Although we developed our algorithm for a tracked robot model, with
minor changes it is usable for other articulated robot models with similar loco-
motion (e.g. wheeled platforms). Given a map we compute the roughness and
slopes of the environment (Sect.4). In the preliminary planning phase we build
a motion graph according to the robot’s operating limits and perform a graph-
search to find an initial path (Sect.5.1). During the detailed motion planning
step we refine the initial path in rough areas only. To this end, we first iden-
tify the path segments leading through rough terrain. In flat areas we do not
perform a detailed planning and apply default configurations instead. On one
side, the roadmap planner constructs a state graph considering the actuators
for a tube-like area around each rough path segment. Using a graph-search we
find sequences of robot states including the actuators. On the other side, the
sampling-based planner uses a focused sampling procedure and searches in a
continuous state space for an optimal solution (Sect.5.3). Consult Fig.2 for a
scheme of our algorithm.

Our algorithm applies to tracked reconfigurable robots like ours (see Fig. 1),
but not to systems with legged locomotion since the robot-terrain interactions
are very distinct. However, parts may be used across different locomotion models,
e.g. the roughness quantification and some of the metrics. Further, looking at
a complete robot system, we consider our method to be the global planning
component which provides a plan. It must be followed by a feedback controller
which takes care of the plan execution using sensor data for localization and
obstacle avoidance in potentially dynamic environments. Such a controller is
beyond the scope of this paper.

In the following we state how our approach differs from other approaches.
First, we distinguish between flat and rough regions, but do not rely on a pre-
vious detailed structure/terrain classification or on motion sequences a priori
designed to overcome specific challenges. Therefore, we are not limited to a pre-
viously defined set of terrain classes, a set of structures reliably identifiable with
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the robot’s sensors or a set of motion sequences. However, we approximate the
terrain through a least-squares plane (similar to [16]), which works reasonably
well on generally continuous surfaces, but not on discontinuous environments.
Nevertheless, our algorithm can be applied to traverse rough outdoor environ-
ments as well as to overcome challenging structures in urban surroundings.

Second, rather than taking the entire preliminary path to guide the second
detailed motion planning, we solely consider path segments which lead through
rough areas. Since a detailed motion planning is not necessary for path segments
on flat regions, planning can be significantly simplified. Thus, we are able to
reduce planning time.

Further, we use simpler robot and terrain models compared to planetary rover
path planning approaches. They often utilize detailed dynamic and mechanic
models to capture the robot-terrain interaction in depth [17]. Such models are
not always obtained easily and, thus, not necessarily available for a specific robot
model.

4 Map and Terrain Roughness

Whether a given structure is traversable or not cannot be determined easily. In
2D navigation this is usually addressed with a simple threshold on the height
differences; everything above this threshold is untraversable. For rough terrain
and challenging structures this question becomes very hard to answer. While
for 2D navigation a 2D laser range finder is sufficient to gather the necessary
information about the surroundings, even a 3D sensor is often not enough to
navigate through rough environments due to the still limited sensor coverage.

There are several reasons why it seems it is often extremely difficult to reliably
decide on the traversability of challenging structures or rough terrain based on
local sensor information solely. First, the dimensions of rough areas or challenging
structures usually exceed the sensor range; second, some sections of the environ-
ment are often occluded; third, the limiting narrow view of sensors mounted on
a mobile robot makes it difficult to get a sufficient overview; finally, while tra-
versing rough terrain, the robot’s state often orients the sensors such that they
are unable to cover the environment. For example, consider a flight of stairs; the
very narrow view makes it hard to recognize the stairs especially all the way to
the top. While on the stairs and close to the top the sensors cover very little of
the ground.

Additionally, the robotic system is exposed to unnecessary risk if it starts to
traverse an area which turns out to be ultimately untraversable. A map allows to
decide whether an area is likely to be traversable and to assess the risk of a path
and whether driving through a hazardous area is worth the risk or circumventing
the region is more reasonable.

On the other side, the validity of the planning is closely related to the level of
detail of the map. Large detailed maps are rarely available. This may be solved
by a coarse map with detailed patches for rough regions or variable resolution
maps Araujo2002. For our research, we use a map of the environment to avoid
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Fig. 3. Two maps (left), the roughness (middle) and the slopes (right). The risk value
associated with a region is based on the height differences in this area. The gradients
represent the direction and magnitude of the environmental slopes. The colors indicate
the degree of roughness/inclination, ranging from green for flat regions/low inclinations
over yellow to red, very rough areas/high inclinations (Color figure online).

the complex perceptual task of 3D navigation in rough terrain. This simplifies
the perceptual component and allows us to focus on the motion planning aspect
of this problem [5].

4.1 Roughness

In our approach we use a heightmap to represent the environment because it is
simple to use and sufficient for our application. In order to assess the difficulty of
a position within the map, we use techniques from image processing to compute
the roughness of the terrain. First, we apply a maximum filter with a window
Wy 4 of size x X y to the direct height differences of neighboring cells. A distortion
of the range of values can be prevented by a threshold h,,,4, which conveniently
can be set to the robot’s maximal traversable height. The threshold is also used
to scale the values to [0, 1]. Subsequently, we apply a two dimensional Gaussian
blur to smooth the transitions. The maximum filter prevents isolated peaks to
be smoothed by the Gaussian filter. Figure 3 shows an example of the roughness
quantification.

4.2 Gradients

As the roughness considers the local height differences between neighboring cells,
it cannot account for the inclination of a greater area. An area cannot be tra-
versed if a cliff is too high or if the inclination is too steep. Therefore, the
inclination serves as a second criterion to determine the overall roughness of an
area. To compute the gradients at a position within the map, we use the Sobel
operator with a large base of the same size as the previous filters, i.e. © x y. The
values are also normalized to [0, 1] using the maximal traversable slope of the
given robot model.

Using an appropriate kernel size allows us to virtually inflate hazardous areas.
This is commonly done in 2D navigation to keep the robot away from obstacles.
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Fig. 4. Left: The motion graph encodes the traversability of the terrain. Flatter areas
are white and rougher areas are grey. Right: The initial path split into segments. Path
segments through flat regions are yellow; segments through rough regions are purple
(Color figure online).

In contrast, very rough areas are avoided by the robot, but if required, will
not prohibit traversal. Another benefit is the simple and highly parallelizable
computation.
The overall roughness quantification consists of the roughness r inferred from
the height difference and the slope s.
r+s

R="2" (1)

The value of the roughness quantification is used in both the initial path search
and the detailed motion planning to adjust the planning according to the diffi-
culty of the environment.

5 Motion Planning Algorithm

Driving with actively reconfigurable robots on rough terrain introduces a large
planning space. Additionally, aspects of the robot state, like the stability, are
not naturally satisfied and must be tested. The robot’s actuators must be incor-
porated into the planning process, and the quality of the path must be judged
not only by its length but also by the robot’s stability and traction as well as
the time required for translation, rotation and for actuator movements. First,
we employ a initial path search to quickly find an environment-driven path to
the goal. Subsequently, the path is used to focus the search of the detailed plan-
ning. This phase determines the final path consisting of the robot configurations
including the actuators.

5.1 Initial Path Search

The initial path search utilizes the previously discussed roughness quantification
to force the robot to avoid hazardous areas and to prefer less risky routes. In
flat regions the consideration of the complete state is not necessary, whereas
it is essential in rough regions to increase the robot’s safety and ensure suc-
cessful traversal. At the beginning we do not know through which parts of the
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Fig. 5. Influence of the safety weight on the initial path search. The image shows three
paths with different safety weights wi. The black path is obtained with w; = 0.0, the
blue path with w; = 0.75 and the white path with w; = 1.0. The map is colored
according to the risk values (Color figure online).

environment the path will lead and if considering the complete state is really
necessary. Therefore, we use the utmost operating limits of the mobile system
setting the actuators aside. The maximal traversable height and slope of the
robot constitute the operating limits. This way we obtain the least restrictive
limit.

We build a motion graph (Fig.4) which represents the ability of the mobile
robot to traverse the environment. The motion graph is based on the operating
limits of the robot as discussed before. The transition costs are given by the time
t required to traverse a graph edge e. Hereby, we reduce the permissible velocity
according to the terrain roughness:

d
t= 2
max (Vmin, (1 — w1 * R) * Umax) @

where d is the length of edge e and R the maximal value of the roughness
quantification of the vertices of e. vy, and vyax are the minimal velocity the
robot should drive in very rough areas and the robot’s maximal velocity, respec-
tively. A safety weight w, allows the adjustment of the importance of safety. Low
safety weights diminish the influence of the risk, hence lead to possibly shorter
but riskier paths. On the contrary, high values increasingly force the robot to
take low risk paths. With those edge weights we find a path performing a usual
Dijkstra-search. We start the search at the goal point to facilitate fast replanning
in case of deviation from the plan (see Fig.4).

The safety weight of the initial path search determines the major direction
of the path as subsequent route corrections are limited to the focus on the
rough path segments. We performed several planning queries with different safety
weights keeping start and goal location the same (Fig.5). We show three paths
determined with different weights w,. Disregarding safety completely (w; =
0.0) leads to a straight path within the motion graph. Increasing the value to
0.75 changes the beginning of the path to avoid riskier areas and climb the hill
directly with the inclination. This reduces the time spend in those regions and
increases the safety by reducing the system’s roll angle. The weight w; = 1.0
forces the path to follow the dig in the middle of the hill and to circumvent the
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high risk areas. Which weight to choose best for a given planning query cannot
be answered generally for all environments; it depends on the environment, its
roughness and its composition of rough areas.

5.2 Identification of Rough Path Segments

The planning problem can be considerably simplified in flat areas. Then it basi-
cally becomes a 2D navigation problem as the actuators are not required to aid
the systems’ stability. Therefore, the planning time can be reduced by avoiding
unnecessary planning in a high-dimensional space for easily accessible parts of
the environment. On the other hand, rough areas require a detailed planning
of the robot’s configurations including the actuators and the validation of the
robot’s safety to ensure successful traversal.

While constructing the motion graph, we distinguish between areas of mod-
erate roughness and steepness, and regions of higher roughness and challenging
steepness. See the left image of Fig.4 for an example. We use this distinction
in the second planning phase to split up the initial path into easy and hard
segments and to determine whether a detailed planning of the robot motions
is necessary. This allows us to handle larger planning queries as we focus on a
subset of the state space. Also, this significantly reduces the planning time.

The size of the state graph in the second planning phase depends on the
chosen discretization, the path focus and the length of the rough segments.
If we plan without focusing the second search on the initial path, the graph
size depends on the roughness and the distance to the goal. Depending on these
factors, our roadmap method (Sect. 5.3) will run out of memory before returning
a valid path. The path bias towards the rough segments of the initial path,
used by the sampling-based method (Sect. 5.3), allows us to find better solutions
within fewer iterations.

5.3 Detailed Motion Planning

Rough terrain is more challenging and exposes the mobile robot to a greater risk
than flat environments. Therefore, we have to refine the initial path in rough
areas using the complete robot states. The state of a reconfigurable robot may
look like

(mﬂyaza97wa¢aala"'aan)7

where the first part describes the 6D pose of the robot. a; are the control values
of n actuators. Reducing the state to the controllable part leads to

(xay707a17~--aan)-

The controllable parts still result in a large intractable search space. There-
fore, we use the initial path to focus the search of the second planning phase.
First, we split the path into segments leading through flat areas with low incli-
nations and segments through rough regions with higher slopes (see the right
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image of Fig.4). For flat segments the stability of the robot system can be safely
assumed as done in 2D navigation. Further, any robot configuration may be
applied with little or no risk. This way, we avoid unnecessary planning in a high
dimensional space for easily accessible parts of the environment and reduce plan-
ning time. However, rough regions require an additional planning of the robot’s
actuators to ensure safety and task completion.

The detailed motion planning accounts for the environmental risk, the sys-
tem’s stability and its traction, and for the time consumed by translation, rota-
tion and actuator movements. Since the robot’s speed is very low when traversing
hazardous areas, we put forces and dynamic stability aside. To quantify the sta-
bility and the traction we approximate the robot’s footprint by the best fitting
plane [16]. This limits the current approach to mainly continuous environments
(e.g. hills, stairs, ramps).

Cost Function. The hierarchical approach allows us to use two different cost
functions for the two planning phases. The cost function of the detailed planning
step is more comprehensive compared to the cost function of the initial path
search. It considers the robot’s safety ceatety and an execution time cyime.

C = W2 * Csafety + (1 - w2) . 6 * Ctime (3)

The normalization factor £ brings the safety cost and the time cost to the same
range of values. The safety weight wy allows to control the trade-off between
safety and time. More safety is gained by adjusting the actuators to the environ-
ment; however, this requires more time to move the actuators. This cost function
is only applied in rough regions and may not be applicable in flat areas. In flat
areas actuator movements are generally unnecessary and solely introduce costs,
and thus should not be favored.

System Safety. The safety of the system is measured by several factors. The
roughness quantification, the robot’s stability and an estimate of the traction
contribute to the safety value. The safety cost cgafety for moving from state x;
to state x; is given by

Rij + 5(Si + Tij)
2 )

Csafety (Z?.j) = (4)
where R;; = max{R;, R;} is the maximal value of the roughness quantifica-
tion, S;; = max{S;,S;} the maximal stability cost and T;; = max{T;,T;} the
maximal traction cost of the involved states.

Stability. The Normalized Energy Stability Margin (NESM) [19] is used to assess
the stability of the robotic system. In contrast to the commonly used projection
of the center of mass onto the supporting polygon, the NESM considers the
actual position of the center of mass and directly provides a notion of quality. The
NESM basically indicates the amount of energy required to tip the robot over
the “weakest” edge of the supporting polygon. To provide an accurate estimate
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of the center of mass and to account for the varying weight distributions of
different configurations, we compute the distributed center of mass.

We touch the basics of the Normalized Energy Stability Margin just very
briefly; a more detailed discussion is given in [19]. Let V' be the vector from the
border to the center of mass. @ depicts the angle between V and the vertical
plane, and % the inclination of the rotation axis, i.e. the edge of the supporting
polygon. Then the energy stability level for an edge of the supporting polygon
is given by

h=|VI|(1 = cos(O)) - cos(v)). (5)

The NESM is defined as the minimum over the energy levels h; of all edges,
s = min;(h;). The stability cost of a robot state x is then given through

SZI—§S~S(.T), (6)

where & = % is a normalization term to scale the cost to [0, 1]. & is given by
the most stable configuration on flat ground.

Traction Estimate. A sufficient traction is necessary to traverse rough terrain
and challenging structures. However, we do not want to rely on any terrain
properties because such information is usually unavailable and hard to estimate
with sufficient accuracy. Therefore, we use the actuators’ ground contact as an
indicator of the traction since the friction between to objects generally increases
with the size of the contact area between them. The traction cost T of a state x
is given by the average over the actuators’ angles to the surface.

n

T=6 Y ) ™)

k=1

where 1 (ay) provides the angle to the surface for actuator ay. §& = %/2 normal-

izes the cost to [0, 1]. The smaller the angle, the greater the estimated traction
and the safer the state x in terms of traction.

Ezecution Time. The time cost includes the time required for translation .,
rotation ¢, and for actuator movements ¢,. We use a triangle inequality to favor
simultaneous execution.
_ B .
Ctime = 727 gie (8)
Translation. To measure the time required for translation, we use the same func-
tion as for the initial path search.

max (vminv (1 — w2 Ri,j) : Umam)

ty = ty(i,7) =

: (9)
where d;; is the distance between z; and x;, and vy, and vs,q, are the minimal

and maximal forward velocity, respectively.

Rotation. The physically possible rotational velocity is influenced by the robot’s
ground contact. If the actuators are all flat on the ground, the friction will
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be quite high and the engines must overpower these forces before the robot
starts to rotate. We approximated a function w(-) which provides the maximal
rotational velocity given the actuator configuration. Using this information the
time required for turning from state x; to state x; is given by

10:; — 0,1
3(w(ai) +w(ay))’

ty = tw(iaj) = (10)

where 6; and §; are the orientations of the two states and a; and a; are the
actuator configurations.

Actuators. The cost to move the actuators from one configuration to another is
defined through the time required to do so.

ta = ta(i, j) = max ('“““ — aj”“') : (11)
k Vg

where a; 1 and a; are the values of the kR actuator of the two states. vy, is the
velocity of the k™ actuator.

The safety weight of the second planning phase mainly influences the choice
of actuator configurations; higher values will result in safer states at each path
position. To achieve a common basis for the comparison, we selected an initial
path, held it constant for all second phase planning queries and shrunk the focus
of the second planning phase to solely include the initial path (Fig.6 top-left).
Hence, we prevented impacts of different initial paths and of later route correc-
tions during the second planning phase. This also fixes the number of translations
and rotations leaving only the actuator configurations to be determined.

The top-right image of Fig. 6 shows the number of actuator changes within a
plan for different safety weights. In this setting the actuators are the only means
to increase the safety of the system. With increasing safety weights the number
of actuator changes also increases. Decreasing values in between are explained
by longer sequences of the same configurations.

The safety cost of the paths is depicted in the bottom-left image of Fig.6.
Raising the safety weight leads to more actuator adjustments in order to reach
better suited robot states in every position. Ultimately, this increases the total
safety (reduced costs) of the final path.

Similar, the bottom-right image of Fig.6 displays the execution time of the
paths using different safety weights. The higher number of state corrections
through actuator adjustments results in a higher execution time comprising the
time required for the adjustments. The execution time almost triples from about
20s at w = 0.0 to roughly 55s at w = 1.0. The execution time still grows
even though the actuator changes decrease in between. This is caused by lower
rotational velocities of more stable configurations with higher traction. The rota-
tional velocity of reconfigurable robots depends on its actuator configuration. For
example, consider the Telemax robot. If the flippers are completely stretched,
the robot will be 120 cm long with maximal ground contact. In this configuration
rotation takes considerably longer than with all flippers folded.
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Fig. 6. Influence of the safety weight on the detailed motion planning: The path used
for evaluation is shown in the top-left corner. We fixed the initial path and reduced the
further path corrections to exactly the initial path, leaving only the actuator config-
urations mutable. The curves show the safety costs and the execution time (seconds)
of the final state space paths for different weights. As only the actuator configurations
are mutable, we displayed the number of configuration changes in the top-right image.
The decrease in actuator changes in between is due to sequences of the same actuator
configuration. The increasing execution time for those values of ws are caused by higher
rotation times in stable and high traction configurations.

Fig. 7. A tube around a rough path segment (blue). The tube is used to focus the
search of the second planning step (Color figure online).

Ultimately, the planning of the actuator positions is essential to increase
the safety of the robotic system during rough terrain traversal. This leads to a
significant increase of the path’s execution time due to the time needed for the
actuator adjustments and the increased duration of rotational maneuvers.

Roadmap Planner. The roadmap planner uses an A*-search on a graph of the
discretized state space Xs. We focus the state space on tube-like areas around
rough path segments (Fig.7) and perform the refinement within these bound-
aries. This concentrates the search on the promising region and makes it feasible.
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Fig. 8. The images show exemplary planning queries using no path bias (left), a path
bias of 0 = 2.0m (middle) and a path bias of o = 0.65m (right). The final path costs
were determined after 10 000 iterations and averaged over 10 runs for each setup. Using
no path bias the average cost was 29.69 (stdev: 4.43). With a path bias of ¢ = 2.0m the
average cost was 17.02 (stdev: 0.36) and with o = 0.65m the average cost was 15.78
(stdev: 0.28). Planning required 7.87s, 26.64s and 65.95 s, respectively. The increasing
time requirements are due to a greater number of rewiring options. Because we visualize
only two dimensions of a 7D state vector, the displayed planning trees do not exhibit
the RRT* characteristic structure in every detail. The path bias increases the sampling
density in the area around the initial path and enables the algorithm to find a better
solution within fewer iterations.

The state graph G4(V;, Es) models a discrete configuration space X includ-
ing the actuators. The edge weights are defined by the cost function which is
described above. To find a path with respect to the entire robot state includ-
ing the actuators, we perform an A*-search. The heuristic is the time required
for the straight-line to the goal with maximal velocity. The A*-search allows
us to construct the state graph G5 on demand during the search. The refined
path considers the difficulty of the environment, the stability and traction of the
system as well as the time required to execute the plan. If several rough path
segments exist, the path planning can be parallelized.

RRT*-Planner. The RRT*-planner is an alternative approach to refine the
initial path in rough areas of the environment. It uses a modified version of the
asymptotically optimal RRT* algorithm [20]. This planner is able to search a
continuous state space, hence, can consider more different configurations than
the roadmap planner. We describe a position sampling based on the initial path,
a sampling heuristic for the actuator values of robots with several independent
actuators and the state rejection mechanism.

Path Bias. The initial path search provides an approximate solution. We use
this solution to initialize the RRT*-search and to focus the expansion of the
algorithm. We sample a position from a normal distribution centered at the
initial path. We first determine a position p on the initial path uniformly at
random and then sample from a two dimensional normal distribution around p.
The standard deviation of the normal distribution determines the level of focus.
In our setup we use o = 0.65m, i.e. the robot length. Focusing the RRT*-search
on the area of the initial path is based on a similar approach in [21]. It reduces
the number of iterations required to achieve better solutions compared to a non-
biased search. See Fig. 8 for an analysis.
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Fig. 9. The left image shows the map with the planning query and an exemplary
solution. The plots show the actuator values of a sample solution using no heuris-
tic (middle) and using the two-fold actuator sampling (right). We used the following
category probabilities: all actuators equal (p = 0.20), front as well as rear actuators
equal (p = 0.65), left as well as right actuators equal (p = 0.10), and all actuators
different (p = 0.05). We performed 10 queries for each setting. The average cost for
the two-fold sampling was 8.13 with a standard deviation of 0.13. The average cost for
the non-guided sampling was 9.06 with a standard deviation of 0.17. Planning took
about 22.35s on average for 5000 iterations. The two-fold actuator sampling generates
smoother motions and decreases path costs.

Actuator Sampling. When operators control robots with several actuators which
can be adjusted independently (for instance the Telemax robot, Fig.1), they
often prefer less complex configurations. For many situations it is not required
to treat the actuators differently. Sometimes the front and rear actuators are
adjusted differently. In only few situations different controls for the left and right
actuators are needed. Configurations which position all actuators in a different
way are very rare. To introduce this information into the planning process and
to prefer less erratic actuator movements, we bias the sampling through a two-
step procedure. We determined a set of categories of actuator configurations and
sample a category according to its utility.

The categories for the Telemax robot are: all actuators equal, front as well
as rear actuators equal, left as well as right actuators equal, and all actuators
different. Each category requires a different number of actuator values: one for
the first, two for the second and third, and four values for the last category.
We sample the corresponding number of actuator values and construct the final
configuration. The two-fold sampling smooths actuator motions and decreases
path costs (Fig.9).

State Rejection. If a new state involves more costs than the current best path, it
cannot be part of the final solution. Thus, we reject these states which are guar-
anteed not to contribute to the optimal solution [21]. This prevents the planning
tree from becoming cluttered with obstructive states. It increases efficiency as
those states are not considered in neighborhood queries and rewiring steps.

6 Parameter Settings

The purpose of this section is to name the parameters of our method and to
give guidelines for appropriate values. First of all, many of the quantities used
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in our method are determined by the robot model or the general setup, e.g. the
maximal traversable height/slope or the maximal velocity.

The kernel size of the filters employed in the roughness quantification should
be the diagonal of the robot dimensions. So a cell’s roughness value and slope
is based on the area of the robot’s footprint centered at the cell. As the robot
dimensions change with the actuator configurations, we used the average of the
smallest and largest configuration, i.e. for the Telemax a squared window of size
100 cm.

We consistently set the resolution of the maps to 5 cm. The resolution of the
motion graph should be set such that the diagonal edges are shorter than the
robot length. Using half the robot size (Telemax: 30 cm), we do not need any
validity tests between robot positions (i.e. vertices) as the tests at the robot
positions cover the transition edges between them. To distinguish between flat
areas and rough areas we specify the maximal height and maximal slope which
can be traversed using a 2D navigation scheme without utilizing the actuators.
We set the value to 9cm and 15° considering the capabilities of the Telemax
with default actuator configuration.

The minimal velocity v,,;, used in the cost terms for the translation time
specifies the velocity the robot should drive in the very rough areas. We set
the value to 0.12m/s, i.e. 10% of the robot’s maximal velocity of 1.2m/s. The
normalization factors s and & are determined through the most stable config-
uration on flat ground and %/2, the maximal angle to the surface, respectively.
& normalizes the time cost with respect to the safety cost and is set to 0.5.

The two safety weights w, for the initial path search and ws for the detailed
motion planning allow to adjust the importance of the safety for the planning
queries. The former will influence the major direction of the path as it determines
the initial path. The latter influences the robot configurations and the actuators.
Appropriate values depend on the application and the robot model. However,
we used values of wy = 0.75 and wo = 0.5 in our experiments.

6.1 Roadmap Planner

The size of the tube around rough segments determines the state space expansion
for the detailed motion planning. We required all positions to be less than 75 cm
away from the path. Hence, we include all positions (vertices) which need at
most two edges to reach the path provided a graph resolution of 30 cm (half the
Telemax length). We found including two positions to either side of the path
in the tube as a reasonable trade-off between the state space expansion and
planning time.

6.2 RRT*-Planner

We use the adaptive ball formulation [20] with the RRT*. The ball determines
the neighborhood of some node; hence, the radius depicts the size of this neigh-
borhood. A large radius means many, potentially too many, neighbors will be
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Fig. 10. First row: Two pictures of a hill of rubble and the map of size 36.4 x 30.45m
captured with a laser range finder. Second row: The plans produced by the roadmap
planner and by the sampling-based planner. Third row: The actuator joint values of the
path produced by the roadmap planner and the sampling-based planner. Values below
zero indicate folded configurations and values greater zero correspond to expanded
configurations. The safety weights are w1 = 1.0 and w2 = 0.5 and the sampling-based
planner ran for 10000 iterations.

included and tested for optimal solutions and the runtime increases. If too few
neighbors are considered, the optimal solution may not be found. In our setup,
we started with an radius of = 0.65 m (the length of the Telemax) and decreased
over time.

The path focus helps to find better solutions in less time. However, if the
focus is too loose, the space to be searched becomes too large and the benefit
decreases. If it is too strict, the space may be to small for a reasonable refinement
of the initial path. We set o = 0.65m (the length of the Telemax) for the normal
distribution for all experiments.

The actuator sampling uses a special configuration distribution when used for
robots with several independent actuators. The probabilities are based on obser-
vations of operators, which prefer certain groups of configurations. We found the
following values to work well for the Telemax robot: p = 0.20 for all actuators
equal, p = 0.65 for both front and both rear actuators equal, p = 0.10 for the
left and the right actuators equal and p = 0.05 for all actuators different.
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Fig. 11. First row: Two pictures of a testing hill and the map of size 43.95 x 32.95m
captured with a laser range finder. Second row: The plan provided by the roadmap plan-
ner and the sampling-based planner. Third row: The actuator joint values of the path
by the roadmap planner and the sampling-based planner. Values below zero indicate
folded configurations and values greater zero correspond to expanded configurations.
The safety weights were set to w1 = 0.5 and w2 = 0.75. The sampling-based planner
ran for 10000 iterations.

The appropriate number of iterations depends on the size of the rough path
segment. If the segment is short and the number of iterations is high, the neighbor
queries will return large numbers of configurations, hence the planning time
increases. On the other hand, if the number of iterations is too low for a lengthy
segment, only a few rewiring options are tested and better solution may be
missed. However, for most queries 10 000 iterations work reasonably well.

7 Experimental Results

We performed tests with the Telemax robot in maps recorded with a laser range
finder. The environments are shown in Figs. 10 and 11. Their sizes are 36.4 x
30.45m and 43.95 x 32.95m, respectively. These are quite large environments
compared to related works, which usually focus on smaller patches of purely
rough terrain.
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We used the following values for the roadmap planner: The resolution of the
maps was 0.05m and 0.3m (half the robot length) for the motion graphs. We
considered eight orientations in each position (45° steps). The actuator values
were bound to [—45°,45°] in steps of 15°. Further, both front, respectively both
rear actuators were required to be the same. We chose a folded configuration
with all actuator values equal to —45° as default configuration. The default
configuration was applied in flat areas. The maximal ground contact is reached
with all actuators at 21° (see Fig. 1 right).

To setup the RRT*-planner we used the same map resolution, the same range
of actuator values and the same safety weight. The additional parameters for the
RRT* algorithm were set to r = 0.65m as initial radius size of the adaptive ball
formulation.

As the roadmap planner is a deterministic planner, we performed a single
query. To measure the performance of the sampling-based RRT*-planner, we
performed 10 times the same query and measured the average. The simulation
was performed on a 3.33 GHz Intel Xeon CPU and 12 GB memory. If a path
contained several rough segments, we parallelize the planning queries for the
rough segments. We compared the actuator values, the planning time and the
cost of the final path.

We tested the algorithms on two different maps. In the first scenario, the
robot had to cross a hill of rubble through the low risk areas, avoiding high
elevations (Fig.10). In the second scenario, the robot climbed a steep ramp,
crossed the top of a hill and descended over a ramp on the other side (Fig.11).

The roadmap planner provided a solution in less time than the RRT*-planner.
Both planners found a stable and valid path. The cost of the plan produced by the
RRT*-planner is slightly higher. The roadmap planner needed 45.85s to return
a path of cost 18.06. In comparison, the RRT*-planner required about 65.32s on
average to provide a plan with an average cost of 19.03 and a standard deviation
of 0.26. For the second scenario, the roadmap planner took about 41.23 s to find
a solution of cost 45.61. The RRT*-planner required about 76.88s to generate a
plan. The average cost is 48.47 with a standard deviation of 0.3.

The differences in path quality between the roadmap planner and the RRT*-
planner are tolerable considering the following advantages of the sampling-based
approach. To be tractable the roadmap algorithm must plan on a considerable
smaller and discretized state space. The RRT*-planner, in contrast, considers a
continuous state space, which does not limit a solution to grid positions. This
is beneficial especially if the environment involves inclinations and structures
that are not aligned with the grid. The continuous state space allows more
configurations to be used. Thus, the approach has the potential to overcome
more challenging obstacles. Finally, the sampling-based approach scales better
to larger configuration spaces.

8 Conclusions and Future Work

In this paper we presented a motion planning algorithm for robots with actively
reconfigurable chassis to find safe paths through rough terrain. We introduced
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a hierarchical planner which quickly determines an initial path considering only
the robot’s operating limits rather than the complete states. The initial path
is used to focus the search in the high dimensional state space of the second
detailed motion planning phase. We plan the robot’s motions in detail only in
rough areas where it is really necessary. We described a roadmap method and
a RRT* approach to refine the initial path during the second planning phase.
Our algorithm does not rely on predefined motion sequences or on a terrain
classification. Hence, it can be applied to urban structures, like stairs, as well as
to rough unstructured environments.

Future work will focus on overcoming more challenging obstacles, like boxes
or high steps. This will require a more accurate modeling of the robots footprint
and the contact points with the environment. Also, we will investigate meth-
ods which reuse previous planning results to answer replanning queries to the
same goal if the robot deviates from the previous plan. The current controller is
solely based on differential GPS; we are planning to improve the path execution
through a more sophisticated controller.
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Abstract. In this article we address coverage and comprehensiveness
issues raised by the integration of a large class of psychological phe-
nomena into rational dialogical agents. These two issues are handled
through the definition of a generic framework based on the notion of
personality engine, which makes it possible to reify in separate modules
in one hand the application-dependent parts and on the other hand the
resources involved in the representation of the psychological phenomena.
We introduce an enriched taxonomy of personality traits, based on the
well-used FFM/NEO PI-R taxonomy and we show how it can be applied
on an example of agents, taken from the literature. Then we introduce
the necessary concepts for modeling a personality engine. A case study,
using a simplified world of dialogical agents, shows how those agents can
be provided with a personality engine affecting the way they communi-
cate with each other, and demonstrates how it can be used to implement
the example. Finally, we compare our approach to other attempts at
implementing personality features in rational agents.

Keywords: Cognitive agent modeling - Personality traits - Dialogical
agents

1 Introduction

Designing virtual humans or agents to be used as long-term companions require
them to display a believable behavior which remains consistent over time. In
psychology, the concept of personality trait [6,15] is defined as an habitual pat-
tern of behavior or emotion, and therefore provides an appropriate theoretical
foundation to build upon to reach the aforementioned goal. Once personality
traits have been identified (or designed, in the case of an artificial agent), it is
possible to anticipate (or define) their influence, in order to know extent how
one will usually react in a particular situation: not only from an emotional per-
spective, with works from [28] often used to implement psychological phenomena
into artificial agents, but also from a rational point of view [8], as studied for
artificial agents by Rousseau and Hayes-Roth [32,33].

(© Springer-Verlag Berlin Heidelberg 2014
J. Filipe and A. Fred (Eds.): ICAART 2013, CCIS 449, pp. 62-79, 2014.
DOI: 10.1007/978-3-662-44440-5_4



A Framework Covering the Influence of FFM/NEO PI-R Traits 63

However, most research works on the computational implementation of psy-
chological phenomena (¢f. discussion in Sect. 4) usually fail to take into account
two key notions: coverage, as they often focus only on a small subset of psychologi-
cal phenomena (e.g. considering few traits), and comprehensiveness, because they
resort to procedural implementations (e.g. hard-coded rules) therefore excluding
experts (i.e. psychologists) from the agent’s behavior design process. The work
presented in this paper aims at addressing those two restrictions.

Coverage Issues. A key question regarding the principle of influence lies in
the actual extent of the psychological influence over the reasoning. Typically,
artificial agents focus on distinct subsets of domain-dependent psychological
notions (e.g. a poker player [13]). However, the growing interest in conversa-
tional agents [5] opens new perspectives where psychological notions become
first class citizens (e.g. a different approach to poker player [23]), thus leading
to a need not only for larger psychological domains, but also for a more generic
way to handle them.

Research works in psychology offer several personality traits taxonomies, but
because such taxonomies try to cover a large set of aspects of the personality of
a person, they are in turn too general from a computational viewpoint: Catell’s
16 personality factors [6], only 5 large classes in a single level for the Five Factor
Model (FFM) [16], and 30 bipolar classes in the two-level Revised NEO Per-
sonality Inventory (FFM/NEO PI-R), which extends FFM. It is therefore difficult
to define a precise interpretation of their classes in terms of operators over the
rational process of agents, even for FFM/NEO PI-R, the most fine-grained of the
commonly used taxonomies. For example, this led us [34] to propose an extended
version of FFM/NEO PI-R with a third level of so-called behavioral schemes that
increases the precision in terms of classes (69 bipolar schemes) and lexical seman-
tics (each scheme being defined by a set of actual behaviors).

Comprehensiveness Issues. Assuming that a well-grounded and precise
taxonomy of personality is available, a second question follows: what kind of
influence operators over the agent’s process can be elicited from and associated
with the taxonomy classes? Some works have proposed models describing how
influences operators can be associated with taxonomy classes (¢f. examples in
Sect. 4), proving the feasibility of such an approach on case studies, but they are
usually based on small subsets of arbitrarily chosen psychological behaviors (an
agent is ‘lazy’ etc. [35]). Therefore there is a need for a more comprehensive app-
roach to the systematic implementation of complete personality traits domains
(e.g. covering FFM) onto the rational process of artificial agents!, with two main
requirements:

— Computational implementation: no complete, orthogonal, and approved set of
operators that would apply to main agent frameworks (from different fields
such as artificial intelligence, multi-agents systems or intelligent virtual agents)
currently exists. A modular and flexible approach is needed, to allow subsets
of operators to be implemented in distinct frameworks.

! Complete coverage has been attempted for emotions, as in OCC [28].
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— Psychological relevance: we need a model of relationships between classes and
operators approved by psychologists. It would require a declarative approach,
where distinct models of relationships could be shared by psychologists for
experimentation and discussion, thus excluding procedural encoding.

Managing Influences with Personality Engines. We propose an approach
in which resources are both application-dependent and designer-dependent
representations, and where the personality engines combine those resources to
implement actual scenarios. This concept of personality engine allows to easily
implement and test various psychological hypotheses through resource combi-
nation, but also to apply them to a wide variety of application domains for
experimentation and evaluation purposes.

This article is organized as follows: in Sect.2, we introduce the enriched
taxonomy of personality we have chosen to use in this study, show how it can
be used on an example from the literature and introduce the concepts nec-
essary to define a personality engine. Section 3 presents a case study using a
simplified world of dialogical agents, shows how those agents can be provided
with a personality engine affecting the way they communicate with each other,
and demonstrates how it can be used to implement the example from Sect. 2.
Section 4 compares our approach to other attempts at implementing personality
features in agents.

2 The Personality Engine

2.1 An Enriched Personality Domain

The Traditional FFM/NEO PI-R Taxonomy. Several theoretical approach to
study human personality have been developed over years: Freudian psychoanaly-
sis, types and traits, Maslow and Rogers’ humanistic psychology, Bandura’s social-
cognitive theory, etc. Among them, personality traits have been widely used as a
ground for studies in affective computing [31] and cognitive agents [18]. We will
therefore rely on them and focus on the FFM/NEO PI-R taxonomy [17], which is
the most prominent one in the context of computational studies (cf. [21]). The
FFM/NEO PI-R taxonomy is made of five classes of psychological behaviors,
also called O.C.E.A.N. traits. namely Openness, Conscientiousness, Extraversion,
Agreeableness, Neuroticism. Each FFM trait is divided into six sub-classes (called
facets) resulting in 30 bipolar? positions [7], listed in Table 1. The semantics of
each facet is intuitively defined by a unique gloss?, e.g. facet Fantasy is defined by
“receptivity to the inner world of imagination” and Aesthetics by “appreciation of
art and beauty”.

2 Bach facet has a positive (resp. negative) pole noted + (resp. —) associated with the
concept (resp. the antonym of the concept). Facets are referred to using the name of
their 4 pole.

3 A gloss is a short natural language phrase defining intuitively a lexical semantics
sense, as found in dictionaries or in WordNet synsets [12].
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Table 1. Two-level FFM/NEO PI-R taxonomy.

FFM Traits FFM/NEO PI-R facets (each symbol includes a + and a —
(antonym) pole)

Openness Fantasy, Aesthetics, Feelings, Actions, Ideas, Values

Conscientious-ness | Competence, Orderliness, Dutifulness, Achievement-striving, Self-discipline,

Deliberation

Extraversion Warmth, Gregariousness, Assertiveness, Activity, Excitement-seeking,

Positive-emotions

Agreeableness Trust, Straightforwardness, Altruism, Compliance, Modesty, Tender-mindedness
Neuroticism Anxiety, Angry-Hostility, Depression, Self-consciousness, Impulsiveness,
Vulnerability

The Enriched FFM/NEO PI-R/BS Taxonomy. The FFM/NEO PI-R grounded on
state of the art research in psychology, which allows us to safely consider that it
covers a large part of the domain of a person’s personality traits. However, when
one is interested in the computational expression of psychological phenomena
such as personality traits, the facet definitions (based on a unique gloss per facet
as in the aforementioned examples) are too general from two complementary
points of view:

(1) They can cover a large set of psychological behaviors so that scripting the
psychology of a character can be imprecise. A third level, breaking down
facets into smaller subsets would facilitate an association with more specific
behaviors.

(2) Definitions are so general that defining a precise functional relation between
facets and influence operators can be difficult, which also encourages to go
towards breaking down facets into more specific psychological behaviors.

These considerations led us to rely on an enriched three-level taxonomy of
FFM/NEO PI-R, called FFM/NEO PI-R/BS [2] and available on the Web*, in which
each facet of FFM/NEO PI-R, is decomposed in so-called behavioral schemes (or
schemes in short). It extends FFM/NEO PI-R by associating glosses to the senses
of a large set of 1055 personality adjectives, using the WordNet database [12],
completed and aligned with 300 Goldberg’s questionnaire so-called ¢-items®, and
for each FFM/NEO PI-R position, glosses and items have been clustered into sets’
of congruent operational behaviors: the schemes. Quantitatively, FFM/NEO PI-
R/BS taxonomy features: Nracet = 30, Ngloss = 766, Nycheme = 69, NV giosses/facet =

26 and Nschemes/facet =23.

Example: Defining a Personality Profile into the FFM/NEO PI-R/BS Tax-
onomy. We propose to consider an example taken from CyberCafe in Rousseau

* http://perso.limsi.fr/jps/research /rnb /toolkit /taxo-glosses/taxo.htm
5 http://ipip.ori.org/newNEOKey.htm
5 Like facets, schemes are bipolar and are often referred to by their +pole.
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and Hayes-Roth (1996), in which several characters who endorse the same inter-
actional role of a waiter (w;) have distinct psychological profiles P(w;), entailing
distinct psychological behaviors B(w;) such as:

realistic, insecure, introverted, passive, secretive

(w1)

B(w1) Such a waiter does and says as little as he can
(w2)
(w2)

P(w2) imaginative, dominant, extroverted, active, open

B(w2) This waiter takes initiative, comes to the customer without being asked for, talks
much

w34 etc.

Considering the psychological profile P(w;) of waiter wq, it can easily be
transposed onto the FFM/NEO PI-R/BS taxonomy in terms of scheme activations
(formal definition is given in Sect.2.2):

P (w1)={

realistic = O-fantasy-PRACTICAL;

insecure => C-competence-INSECURE;

introverted = E* (-COLD, -NONGOSSIPMONGER, -SOLITARY, -UNCOMMUNICATIVE, -
UNCHARISMATIC,
-DISCRET, -SUBMISSIVE, -PLEADING, -LANGUID, -APATHETIC, -ASCETIC, -BLASE) ;

passive = E-activity-APATHETIC;

secretive = A-trust-SECRETIVE

where elements of P(w;) are transposed in order, separated by ¢ in P’(wy).
We can notice that this profile mainly activates negative poles and that a
FFM/NEO PI-R/BS scheme can easily be found to correspond to each P trait
(which means that P traits are more schemes than actual FFM traits or FFM/NEO
PI-R facets). The only exception is introverted, which is associated to the whole
FFM trait -Extraversion, thus entailing 12 schemes, which adds precision. The same
remarks apply to P(wsy) but for the activation of positive poles; it is actually
likely that P(w) and P(wy) were hand-built.

P’(w1) offers a more systematic positioning in FFM/NEO PI-R and a more pre-
cise behavioral definition because the definition B(wj) is replaced with the
glosses associated with the activated schemes in FFM/NEO PI-R/BS. For example,
-PRACTICAL is defined by the WordNet glosses (IV;) and Goldberg’s g-items (Q;)
associated to it:
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N618 | guided by practical experience and observation rather than theory
N626 |aware or expressing awareness of things as they really are

N788 | freed from illusion

N1232 | concerned with the world or worldly matters

N795 |sensible and practical

Q6 Spend time reflecting on things

Q7 Seldom daydream

Q8 Do not have a good imagination

Q9 Seldom get lost in thought

and so on for -INSECURE, - COLD etc.

In summary, FFM/NEO PI-R/BS offers a personality description: not only it covers
the eight classes proposed in Cybercafe [32], but it also enables a more precise
and practical behavioral description, which justifies our decision to use it in the
following sections.

2.2 Architecture of a Personality Engine

Personality Engine Structure. We define a personality engine PE as a 5-tuple
such as PE = (0, W, T, {2y, M) where:

— 0 is a personality ontology that enables precise descriptions of personalities.
We will use in this paper the set X' of bipolar schemes from FFM/NEO PI-
R/BS (described in Sect.2.1), thus |X| = 69. The subset of positive (resp.
negative) positions is denoted + (resp. —X'), and their union is £%' such as
+Y =+ U-X and |£X]| = 138;

— W is an agent world model that includes: their internal structure W; their
external communication protocols W.; their rational decision making process
W,.. For example, a BDI-based model [30] or a more specific one, such as the
one defined in Sect. 3.1;

— T is an application topic enabling the instantiation of W in a particular case;

— {2 is a set of influence operators over W, UW, = W,.¢;

— M is an activation matriz, establishing a relation over +3 x (2.

0, W and T are considered as given resources, whereas {2; and M must be elicited
from the resources, as explained in Sects.Influence Operators Elicitation and
Activation Matrix Elicitation.

Influence Operators Elicitation. Given an agent model W, influence opera-
tors are meta rules w € (% controlling or altering the non structural parts of W,
1.e. Wpc.

Example. Let us consider some plan in W, containing the expression e =
PAR[a1, az,a3], which is a set of three actions to be executed in no particu-
lar order (like operator PAR of CSP). One can define the rule w; = PAR — SEQ
which, applied to e, can intuitively stand for an indication to an agent to execute
its actions routinely (and correctly). On the contrary, a rule we = SEQ — PAR
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could stand for a disorderly agent (and sometimes lead to incorrect executions
of the plan).

This simple example shows that whenever, formally, any rule over W, is an
influence operator, only those that could be interpreted in terms of psychologi-
cal behaviors are actually relevant. Consequently, one has to consider operator
elicitation as an operation from W,. x 0 —— {2y rather than W,. —— (2.

The definition of an algorithm that takes a couple of resources W and 0 and
automatically produces the” set {2y is still an open question. For the time being,
we have to restrict to hand-built operators sets, which are de facto designer(s)-
dependent. The notion of personality engine makes it possible to handle the
management of this diversity (e.g. distinct propositions PE;, based over the same
W and/or 0, can be tested and systematically compared). An example of operator
elicitation is detailed in Sect. 3.2.

Operators Intensity and Direction. Operators like PAR and SEQ, are acti-
vated straightforwardly: they are applied or not. However, various operators
can be activated in more complex manners through argument passing. We will
consider two frequent cases:

— An intensity is given, cf. activation levels in Table 3;
— Operators also working in reverse or antonym mode can be given a direction
(e.g. operator w_sqfe in Sect. 2.3).

Activation Matrix Elicitation. Once given the set schemes o € +% and
a set of influence operators w € (%, the designer(s) of a particular processing
engine must elicit how +o; are linked to w;, that is which schemes activate which
operators. This relation, which is again designer-dependent, is established by a
multi-valued matrix M of so-called activation levels A; ; such that M = £ x (2.
Elements \; ; of M have the following values and conventions:

2 activate operator with strong force

1 activate operator with moderate force

0 the operator is deactivated

-1 activate antonym operator (if it exists) with moderate force
-2 activate antonym operator (if it exists) with strong force

2.3 Instantiating Personality Engines

Once given a particular personality engine PEj, one has a symbolic structure
that can be instantiated into actual situations varying from two main points of
view: application topics and personality profiles.

Using ‘the’ raises issues of existence (no possible influences found) and unicity
(several distinct sets found thus prompting an order relation).
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Application Topics. Let Ty be a particular topic providing a set of avail-
able actions «; € A(Tp). The topic also provides influence operators of PEg
with application-dependent information about «;. For example, let wygqre be
an operator that sorts a set of actions from the safest to the least safe: wigafe =
Sort({ai}, <danger). To be operational, operator wis.fe requires topic Ty to
provide a measure function pggnger : A(To) — [0,1]. Operator wigqre has an
antonym, w_sq e, that sorts actions in reverse order.

Personality Profiles. Intuitively, personality profiles are often defined as sets
of adjectives/adverbs describing the behavior of a person. For instance, in the
Cybercafe example (c¢f. Sect.2.1), personality profile P(wy) was first defined
with a set of common words: {realistic, insecure, introverted, passive, secretive}.
The research about personality trait taxonomies enables more precise definitions
that use a mapping in terms of sets of well-grounded concepts, like P’(w1). Using
FFM/NEO PI-R/BS prompts the following definition:

Given an individual z, its personality profile P(z) can be defined as a set of
[¥| functions p(c;) : X — {+, =<, —} where:

=< means that with regard to scheme o;, person z’s behavior is not significantly
deviant from an average behavior;

+ means z’s behavior is deviant from average according to +pole;

— means x’s behavior is deviant from average according to -pole.

Notation. When one considers the 69 schemes of Y, people tend to exhibit an
average behavior for most of them. Consequently P(z) is often a scarce vector
with most elements valued with =<, so P(x) is preferably given as a set of non
= schemes. For example, Paul’s personality will be denoted in short: P(Paul)
= {-HARDWORKER, -ATTENTIVE, HARMLESS, EMPATHIC, -SHOWY}, ignoring the 64 other
schemes for which his behavior doesn’t stand out.

3 Case Study

In this section we present a case study showing how personality engines can be
defined, then instantiated in actual situations. To support the eliciting process
of influence operators, one must chose an application model, to focus on agents’
communication, well-used KQML [14], ACL-FIPA [27] or BDI models with logics
(KGP [22], 2APL [9], Golog-based etc.).

3.1 TALKINGS: A Typical World of Dialogical Agents

We consider here a simplified model, called (a simple world of agents interact-
ing through message passing), that allows a comprehensive presentation of our
approach. For this example, we have chosen to focus on conversational agents, a
fast growing application domain. Consequently, we will consider traits and oper-
ators associated with social and dialogical aspects of the agents, which cover
about 55% of the FFM/NEO PI-R/BS schemes [34]. The process described here is
complementary to non-dialogical aspects of the agents studied in [3]).
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Table 2. Intuitive semantics of the levels of activation of the message operators.

Tevels Operators Activation levels A
1|2 | CODE| Label Definition -2 -1 0 1 2 Range
A Ask L - - k if | ask if not
i probability for the agent none as fhjaske even b no [0,2]
< needed | needed
B3l to tend to use Ask or -
=|P Propose - - none propose | propose even if not
se Propose .
2|5 if needed |needed
§ D Doﬁiﬂance probability for the agent infcrior. supporter | none cqqal superior
£ F Feeling . aggressive | cold none polite warm
—— to use the force or its - — - -
M Motivation antonym show false | hide mo- | none motive if | motive even if not
4 motive tive needed | needed [-2,2]
1 Incentive menace none promise
E|G Guess capacity of the agent to perceive | perceive do not [ none perceive | perceive even if not
= other agents in terms of their | false perceive if explicit | explicit
g rational processes, their mental
states, etc.
C Conflict attitude of the agent about risk- | like  con- | accept none dislike avoid any conflict
ing to provoke conflicts flicts conflicts conflicts
S Sincerity sincerity of the agent about all | tell ~ false | actively | none frank very/too frank
parts of a sent message facts hide facts
< | A+ typical reaction to an Ask
5 . yes but
= | A- . or Propose depending on yes but
) Reaction . always no . none can be always yes
| P+ the global evaluation by b with protest| "
[ conditionall [-2,2]
8 P- of the Forces expressed
S|=[B Bond baaction to results of G (e.g. per- | bond to re- | do not | none bond if |bond even if not
3|5 L. . .
=3 ceiving a is sad, b will: +) feel | verse bond needed | needed
g sad; 0) not care; -) feel happy)
N Negotiate |reaction in the management of | increase sustain none settle always yield
conflicts existing and explicit

Note: level 2 (resp.-2) includes level 1 (resp.-1), i.e. it can exhibit behaviors of level 1 (resp.-1)

Agent Model. Let TALKINGS be an actual world composed of physical or
abstract entities, which is accessed through a representation of its entities into a
symbolic model M. An entity e; € M is defined in L)y, its associated language of
description, as a set of rule-based definitions of the general form D; = leftpart —
rightpart such that Ve, € Lps; e; = {D;}.

Agents. a; € A represent dialogical entities of M that can perform practical
reasoning. An agent a; € A is defined as a 5-tuple (id, K, S, ®,¥) where:

— id is a string providing a unique identifier for the agent;

— Knowledge base K = k; € L, is a set of propositions over M;

— Social base S is the set of roles endorsed by the agent (over TALKINGS, or
relatively to another agent of TALKINGS);

— Feature base @ is the set of physical attributes of the agent (to simplify, @
will not be considered further);

— Psychological base ¥ = ¥p U W), is a set of static traits ¥ and dynamic
moods ¥, (dynamic moods are out of scope here since we focus on personality
associated with static traits).

Message Structure. Collectives ¢; € C of TALKINGS agents can support the
operation: SEND[t, a, {b; }, m] that enables the transfer of a message m at turn ¢
between the sender agent a and one or more receiver agents {b; }. In the following,
we restrict this definition to interactions between the couple of agents a < b
(in the following, a denotes the so-called speaker and b its interlocutor) hence
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considering operations of the form SEND[t, a, b, m]. A message m into such SEND
operations contains four expressions, explicitly stated by speaker agent a towards
interlocutor agent b:

m = (Reaction, Proaction, Forces, Content)

Reaction is the attitude that a adopts, and expresses explicitly, in reaction to
its own evaluation of the previous message from b at turn ¢t — 1. Reactions are
organized on a -/+ scale, ranging from total disagreement (noted No) to total
agreement (noted Yes). The first message of the first turn of a session has an
empty reaction (noted —).

Proaction is the main attitude stated by a towards b. Two main proactive
attitudes are considered, according to the direction of the intention of a:

A Content
— Ask, represented as ¢ «———

Content;

b, where agent a sends a query to b about

P Content
— Propose, represented as a ————

b about Content.

b, where agent a sends a proposition to

Forces are optional modalities of proaction operators (A|P), explicitly expressed
by a, in order to contribute to the expected success of the message. A message
from a is considered successful when in reply from b, the reaction of b is positive
and the proaction of b is relevant to a. We consider four distinct forces ; each
one is organized as a bipolar —/+ scale:

— Dominance ranges from force -submissive to +dominant, which can modalize
operators A|P, e.g. A -submissive can be viewed as begging and A +dominant
as requesting.

— Feelings ranges from force -aggressive to +affective, when used with operators
AlP.

— Motivation ranges from force -hide to +open. An agent using open force
explains clearly and frankly the rational motive(s) of the sending. Conversely,
the agent can try to hide its rational motives or even to express untrue motives.

— Incentive ranges from force -menace to +promising. An agent a using +promise
force attempts at facilitating the success of its message by providing rational
positive reasons for b to react positively to it, or by addressing direct rewards.
Conversely, a can try to obtain agreement from b through -menace (e.g. by
stating rational negative outcomes for b if it disagrees) or by addressing direct
threats.

Content is the body of the message, that is the object of the proaction. Five
main classes of objects are considered:

— Knowledge is a fact k; € Ly;

— Action is an operation upon the world. For example, A a(x) means a asks b
to execute a(x), while P a(z) means a intends to execute a(x);

— Resource is an entity in the world that can be possessed and transferred;
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— Norm describes rights or duties of agents in a given collective ¢;;
— Emotion describes a personal mental state (e.g. mood) or an interpersonal
affective relationship.

With these definitions, the structure of a message m can be represented as:
—|Yes|No x A|P x [D][F|[M][I] x k|a|r|n|e

where | separates alternatives, [] embraces optional forces, k, a,r, n, e are the five
types of content and X is the Cartesian product, thus defining the message domain.
A turn t is a couple (SEND[¢t, a, b, m], SEND[t, b, a, m’]) where m’ is the reply to m.
A simple interactional session is a sequence of turns; more complex sessions can
include sub-sessions (called threads) e.g. in case of conditional reactions.

Table 3. Excerpt from Activation matrix Mraaves. When X\;; = 0 then \;; =
GenericAgent;.

Proaction Reaction
Operatorcode | A P | D F M I G C S ||A+ A- P+ P- B N
Valuerange | 02 02 |2-2 2-2 2-2 2-2 |22 22 22 2-2 22

Genericagent | 1 1 | 1 1 1 1 1 1 1 1 -1 1 -1 1 1 Waiters
T Facet Scheme w1 wa
O fantasy -PRACTICAL *
O fantasy +IDEALISTIC 2 2 2 2 -2 2 2 0 *
O fantasy +CREATIVE 2 2 -2 *
C competence -INSECURE | 2 0 | -2 2 0 2 1 1 2 *
E warmth +FRIENDLY -2 2 2 2 2 *
E warmth -COLD -1 -1o-1 -1 -1 *
E assertiv. +DOMINEER. | 2 2 -1 0 -1 -1 -1 -2 -2 -1 *
E activity +ACTIVE 2 -1 2 2 -1 *
E activity -APATHETIC | 0 0| -2 0 0 O 1 1 -1 2 *
A trust -SECRETIVE 0 -1 0 -1 -2 0 *

-pracTicAL is the antonym pole of scheme +peaLisTic Fesp. +FRIENDLY-COLD, +ACTIVE-APATHETIC.

3.2 Building a Personality Engine in TALKINGS

Eliciting Influence Operators. Considering the previous agent’s model (i.e.
W = TALKINGS), it is possible to associate with the model a set of influence
operators 27, xines that define meta control over the rational decision making
process of the agents W,. and over the message passing process W.. We will focus
here on the operation of building and sending messages, i.e. on W.. Browsing
the model, described in Sect.3.1, we can define 15 operators organized in a
2x2 ontology, mirroring the model structure: at the first level of the ontology,
influence operators on message passing can be divided into two main classes,
proaction and reaction, and at the second level, we can distinguish for each class
implicit and explicit operators. We therefore distinguish:
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— FExplicit proaction operators, which are expressed into messages.

— Implicit proaction operators, which are not explicitly expressed in messages
but can influence the way messages are built and are related to the social
capacities of the agent.

— FEaxplicit reaction operators, which are expressed into messages, in terms of
Yes/No reactions.

— Implicit reaction operators, which mirrors implicit proaction.

Table 2 gives a list of exhibited message operators together with an abridg-
ment of their semantics associated with their activation levels A, ranging on
scales with discrete positions defined in Sect. 2.2.

While we have used a simplified communicating agent model, together with
the description of the FFM/NEO PI-R/BS schemes, it was possible to exhibit 12
operators, defined and organized as in Table 2. In comparison, the eight “types of
behaviors” similar to our operators (Perceiving, Reasoning, Learning, Deciding,
Acting, Interacting, Revealing, Feeling) given in Cybercafe [33] remain rather
general, although some can be directly mapped onto TALKINGS operators such as
Perceiving and Guess, Learning and Ask, Revealing and Motivation. Feeling would not
be handled here since we consider interactions only and not internal emotions.

Establishing an Activation Matrix. Given the set % and the set 27, xines
of elicited operators in the case study TALKINGS, it is possible to define an acti-
vation matrix Mrapkines, Which establishes the relationships between the schemes
and the operators. Table 3 shows an excerpt of a proposition for M kines (from
the 138 schemes of +¥, we display only the 10 schemes used in the example of
Sect. 3.2). Not to overload Table 3, activation values ), ; that are associated with
an average behavior are factorized in headline “Generic agent” and represented
as empty cells.

Example of Personality Scripting. As an example of instantiation of the
personality engine defined for TALKINGS, we consider P’(w1) from the Cyber-
cafe example (cf. Sect.2.1). For simplification purposes, the 12 schemes associ-
ated with adjective ‘introverted’ are coerced into a single one Ewarmth-coLD (first
arbitrarily chosen) thus prompting a new profile:

P (w1) = {
Ofantasy-PRACTICAL,
Ccompetence-INSECURE;
Ewarmth-COLD;
Eactivity-APATHETIC;
Atrust-SECRETIVE
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Respectively for waiter wo we have:

P(ws) ={
Ofantasy+CREATIVE;,
Eassertiveness+DOMINEERING;
Ewarmth+FRIENDLY *;

1 First scheme chosen with same rule in P”(wy).
Eactivity+ACTIVE;
Efantasy+IDEALISTIC!!

1.

Values of activation levels associated with P”(wy) and P”(wa) in M kines are
given in Table 3. For example, crossing Tables 2 and 3, it is possible to identify
the influences of one of the schemes of P”(wy) e.g. Atrust-SECRETIVE (last line of
Table 3):

A/0

don't ask explicitly (while average behavior would be 1: ask if needed by the
rational process)

P/0 | don't propose explicitly (idem)

F/0 | no sensibility to inner feelings activated (idem)

M/-1 | hide one's own motives

1/0 usage of positive or negative incentives over others deactivated

A-/-2 | react explicitly always by a rejection when asked with a force considered negative

A+/-1 | react explicitly positively but with protest, when asked with a force considered
positive

B/0 | no bond positive or negative is activated (while the average behavior would be 1:

bond if needed by the rational process e.g. in social condolences)

Operators A, P, F, |, B are controlled via deactivation (A = 0). Actually average behavior often uses (A = 1)

One can make the following remarks:

R1: Over the set of 12 operators in Table 3, scheme +PRACTICAL is not distinct
from Generic agent. This is consistent with the fact that Bratman’s agents
implement an implicit personality close to scheme +PRACTICAL and be viewed
as a particular case.

R2: All lines of Table 3 are distinct, entailing that all schemes are distinct con-
cepts with distinct sets of influences.

R3: It happens that profiles of the Cybercafe waiters, P”(wy) and P” (ws) acti-
vate exclusive schemes (*). Their definition is not always consistent, mean-
ing that some schemes are activated by contradictory levels e.g. 1 and -2.
In theory, when a personality is scripted, nothing prevents from defining
conflicting activations of the same operator: our approach makes it easier
to automatically check for such cases and to handle them manually or auto-
matically, according to an order relation possibly provided by psychologists.
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3.3 Discussion

Relevance and Completeness of the Operators. The process of operator
elicitation ensures that all operators defined in trait Conscientiousness are rele-
vant. For example, in the case study above, because they are synthesized from
scheme glosses, they are activated in a non trivial manner at least once® (i.e.
Vo € Mraikinas, 37 such that A; ; # generic-agent (7)).

Conversely, the elicitation process does not ensure that all possible operators
are found; from a psychological point of view this is not yet attainable. Actually
this issue is in support of our approach that is based on the state of the art of
the coverage of the domain of the psychology of a person, that is to say trait tax-
onomies, in particular FFM/NEO PI-R. Moreover, the refined version FFM/NEO
PI-R/Bs, grounded on large ascertained lexical resources (e.g. WordNet), cov-
ers according to the state of current literature, the effective behaviors that are
associated with personality traits, hence restricting the risk of silence.

Validation of Activation Matrix Values. Weights \; ; € Myixives are set
by annotators. This results in (1) inter annotator quantitative differences that
can be partly controlled with statistic tools acting over the annotating group;
(2) qualitative controversies between computer science experts and psycholo-
gists. The proposed approach has the virtue of putting into light the essential
issue of those qualitative controversies, usually embedded in the programming
process of the procedural approaches, listed in Sect. 4. In our case, the use of a
declarative method, through a matrix of activation levels instead of procedural
rules, increases the comprehensiveness and the tracking of the traits/behaviors
association. Moreover, the declarative approach clarifies the discussions with
psychologists, who in fine must validate the decisions.

Evaluation of the Model. In this paper we propose an approach for handling
the phenomena, stated in the literature, of personality traits influence over plans
and actions. Our purpose is not the direct evaluation of a particular model
(composed of: a specific rational model, a specific set of influence operators and
a specific set of activation levels) through an experimentation. Here we pursue
a double objective:

1. present a proof of concept of the principle of influence: ‘points of influence’
actually exist in the rational decision making process;

2. propose a method that is (a) generic i.e. not designed for a small set of
specific traits but covering a large domain of the personality of a person; and
(b) declarative i.e. using explicit levels instead of embedded rules.

For example, a consequence is that Tables 2 and 3 must be viewed as instances of
our approach. As such, they need to be evaluated through proper experiments,
but which are beyond the scope of this paper.

8 Except for first line of Table 3 (O fantasy -practical), which is similar to a line generic-
agent as this trait can be viewed as Bratman’s notion of practical reason (1987).
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4 Related Works

Since works of Rousseau and Hayes-Roth (1996), extensive research has been
undertaken, especially recently, involving both psychological phenomena and
artificial agents in at least four communities: rational agents, multi-agents sys-
tems, conversational agents and affective computing.

Gratch and Marsella (2004) have implemented a psychological model, mainly
dedicated to emotions, based on traditional SOAR architecture, but most authors
have proposed improvements of BDI architectures exhibiting both rational rea-
soning modules and psychological reasoning modules [24]. For example, the eBDI
model [20] implements emotions in a BDI framework, in which they give a good
introduction about the necessity to implement emotions into rational agents.
Indeed, BDI architectures offer an open and flexible engine (the deliberation
cycle), for example using tools like 2APL [9], which is why we rely on it for the
support of the framework that underlies this study.

However our approach is distinct from most studies using BDI engines,
mainly because in those studies the psychology of the agent is based on dynamic
mental states (like moods and affects, as in Sect. 3.1), which influence the bodily
(facial and gestural) expression of emotions, but they have no or little impact
upon the decision making process of the agent, especially for controlling conver-
sational strategies. Instead, in our approach the static features of the personality
of an agent are expressed through its influences upon operational behaviors.

Using the BDI platform JACK [19], CoJACK [11] provides an additional lay-
ers which intends to simulate physiological human constraints like the duration
taken for cognition, working memory limitations (e.g. “loosing a belief” if the
activation is low or “forgetting the next step” of a procedure), fuzzy retrieval of
beliefs, limited attention or the use of moderators to alter cognition. A similar
approach is taken for conversational agents in PMFserv [36].

However, in these studies, authors focus on the influence of physical or cog-
nitive capacities over the deliberation cycle but not on actual psychological phe-
nomena like moods or traits.

Closer to our work, Malatesta et al. (2007) use traits to create different
expressions of emotions, especially by influencing the appraisal part of the OCC
theory [28]. They focus on how agents evaluate the results of their actions and of
external events, whereas we focus on the way they perform a task. In the same
way, Rizzo et al. (1997) have shown that goals and plans can be used to represent
a character’s personality in an efficient way, by attributing specific behaviors
to the pursuit of each goal. Personality traits are used to choose between the
multiple goals of a BDI agent (i.e. traits influence Desires). Once chosen, goals
are planned and executed directly.

However, in our case, traits operate on already planned goals (i.e. traits
influence Intentions). This remark also applies to [26], based on the architecture
of conversational agent GRETA [29], which involves models of personality for the
expression of emotions (face, gesture, etc.) and to the FATIMA architecture [10]
stemming from [29], which implements personality traits.
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Finally, all these studies share the same approach to psychology, each of
them focusing on particular capacities or particular traits. They do not attempt
to cover a whole domain, hence they are not concerned with managing and
comprehensiveness issues.

5 Conclusions

The principle that personality traits influence the mental state and the ratio-
nal decision process of people has been widely applied to implement psycho-
logical phenomena into artificial agents. However we are far from the situation
where a generic model can be approved because significant parts are still author-
dependent (e.g. OCC [28] for emotions) or designer-dependent (as in Sect. 4).

We have shown in this article an approach based on personality engines which
provides three main advantages: Firstly, it reduces and reifies author/designer-
dependent parts in only three main kinds of resources: trait ontologies, sets of
influence operators and activation matrices. Secondly, it defines a process for
designing the resources and for implementing, in a declarative way (activation
matrix), personality influences in dialogical agents. Thirdly, it offers an archi-
tecture where these resources can be flexibly combined (¢f. Sect. 3.2) and easily
observed (c¢f. Sect.3.2). Moreover, although our approach could be extended to
other psychological taxonomies, it relies on the well-grounded FFM/NEO PI-R,
enriched with behavioral schemes that make it easier to design the resources.

We intend to extend this work in two main directions: first, by eliciting opera-
tors over outstanding BDI (e.g. 2APL) agent frameworks in order to demonstrate
its independence with regard to the model of rational agents that is chosen, and
second, by experimenting the whole architecture through actual scenarios, super-
vised by psychologists. For example, the perception of the implemented agent’s
personality by human users could be evaluated after an interactive session with
questionnaires such as the Agent Persona Instrument [1].
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Abstract. An approach to normative systems in the context of multi-
agent systems (MAS) modeled as transition systems, in which actions
are associated with transitions between different system states, is pre-
sented. The approach is based on relating the permission or prohibition
of actions to the permission or prohibition of different types of state tran-
sitions with respect to some condition d on a number of agents z1, ..., z,
in a state. It introduces the notion of a norm-regulated transition sys-
tem situation, which is intended to represent a single step in the run of
a (norm-regulated) transition system. The normative framework uses an
algebraic representation of conditional norms and is based on a system-
atic exploration of the possible types of state transitions with respect to
d(z1,...,2,). A general-level Java/Prolog framework for norm-regulated
transition system situations has been developed, and this implementa-
tion together with a simple example system is presented and discussed.

Keywords: Transition system - Multi-agent system - Norm-regulated -
Norm-governed - Normative system

1 Introduction

Many dynamic systems, including multi-agent systems (MAS), may be modeled
as transition systems, in which the actions of an agent are associated with tran-
sitions between different states of the system. There is a number of different
approaches to normative systems in this context. The permission or prohibition
of a specific action in a transition system is naturally connected to permissible
or prohibited transitions between states of the system, and norms (sometimes
referred to as ‘social laws’) may then be formulated as restrictions on states and
state transitions.

This paper will introduce the notion of a norm-requlated transition system
situation, which is intended to represent a single step in the run of a (norm-
regulated) transition system. The permission or prohibition of actions in this
framework is related to the permission or prohibition of different types of state
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transitions with respect to some condition d on a number of agents x1, ..., x, in
a state. The framework uses an algebraic representation of conditional norms,
based on the representation used in the norm-regulated DALMAS architecture
(see Previous Work, Sect. 1.2). The novel feature presented here is primarily an
extension to the DALMAS’s normative framework, based on a systematic explo-
ration of the possible types of state transitions with respect to d(x1,...,2,).
A norm-regulated transition system situation is easily instrumentalized into a
general-level Prolog module that can be used to implement a wide range of
specific norm-regulated dynamic systems.

Important norm-related issues such as enforcement of norms, norm change
and consistency of normative systems are beyond the scope of this paper; how-
ever, the approach presented here is general in nature, and may be combined
with many different approaches to, e.g., norm enforcement. The term ‘agent’
will be frequently used for some sort of ‘acting entity’ within a dynamic system,
but no special assumptions are made about for example autonomy, reasoning
capability, architecture, and so on.

1.1 Transition System Situations

A labelled transition system (LTS) is usually defined (see for example [4, p. 174])
as an ordered 3-tuple (S, F, R) where S is a non-empty set of states; F is a set
of transition labels, often called events; and R C S x E x S is a non-empty
set of labelled transitions. If (s,e,s’) is a transition, s is the initial state and
s’ is the resulting state of €. An event € is executable in a state s if there is a
transition (s,¢,s’) € R, and non-deterministic if there are transitions (s,¢,s’) €
R and (s,e,58*) € R with s’ # s*. A path (or run) of length m (m > 0) of a
labelled transition system is a sequence Sp€gsi - Sm—_1Em—1Sm such that, for
1€ {1, ..,m}, (si_l,ai_l,si) € R.

In the following, we restrict our attention to transition systems in which all
events are deterministic. This means that, for each state s, the labels associated
with the outgoing transitions from s are distinct. Furthermore, we assume that
a v-ary condition d is true or false on v agents zi,...,x, € {2 in s, where {2
is a set of agents associated with s; this will be written d(x1,...,2,;s). In the
special case when the sequence of agents is empty, i.e. v = 0, d represents a
proposition which is true or false in s. Let us now focus on an arbitrary state in
a deterministic LTS, with the added requirement that each event € represents an
action a performed by a single agent x. This is written € = x:a, referring to both
to the moving agent x and an action a. The term transition system situation will
be used for an ordered 5-tuple S = (x, s, 4, 2, S) characterized by a set of states
S, a state s, an agent-set {2 = {x1,...,x,}, the acting (‘moving’) agent z, and
an action-set A = {ay, ..., a;n }. In this setting, a may be regarded as a function
such that a(z,s) = s means that sT is the resulting state when x performs act
a in state s.! In the following, the abbreviation s* will be used for a(z, s) when
there is no need for an explicit reference to the action a and the acting agent x.

! Note that no special assumptions are made regarding whether or not so is an element
of S, i.e. whether or not the action a may lead back to so.
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Fig. 1. A state diagram for a transition system situation with three events.

As indicated by Fig. 1, a transition system situation is intended to represent,
for example, a ‘snapshot’ of a labelled transition system in which each transi-
tion is deterministic and represents the action of a single agent. In this case,
s represents an arbitrarily chosen state in the LTS, and S is the set of states
reachable from s by all transitions z:a, a € A. At the same time, a transition
system situation is designed to be general enough to also represent a step in
a run of other kinds of dynamic systems, including systems modeled by finite
automata (see for example [11]) or Petri nets, and deterministic DALMASes.

1.2 Related Work

This section will give a brief overview of different approaches to the design of
normative systems and the formulation of norms. A common feature of many
approaches is the idea to partition states and (possibly) transitions into two cat-
egories, for example ‘permitted’ and ‘non-permitted’. This may be accomplished
with the use of if-then-else rules or constraints on the states and/or the transi-
tions between states. The Ballroom system in [5] and the anticipatory system
for plot development guidance in [11] both serve as examples of this approach.
Some approaches are purely algebraic or based on modal logics, for example tem-
poral or deontic logic. The DALMAS architecture (see Previous Work below) for
norm-regulated MAS is based on an algebraic approach to the representation of
normative systems. Dynamic deontic logic [20] and Dynamic logic of permission
[19] are two well-known examples of the modal logic approach. Other examples
are the combination of temporalised agency and temporalised normative posi-
tions [6], in the setting of Defeasible Logic, and Input/Output Logic by Makinson
and van der Torre (see for example [18]). Vazquez-Salceda et al. use a language
consisting of deontic concepts which can be conditional and can include temporal
operators. They characterize norms by whether they refer to states (i.e., norms
concerning that an agent sees to it that some condition holds) or actions (i.e.,
norms concerning an agent performing a specific action), whether they are con-
ditional, whether they include a deadline, or whether they are norms concerning
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other norms. Reference [26] nC+, an extension of the action language C+, is
employed within the context of ‘coloured agent-stranded transition systems’ [4]
to formulate two kinds of norms: state permission laws and action permission
laws. A state permission law states that certain (types of) states are permis-
sible or prohibited, while an action permission law states that specific (types
of) transitions are permissible or prohibited in certain states. By picking out
the component (‘strand’) corresponding to an individual agent’s contribution to
an event, different categories of non-compliant behaviour (‘sub-standard’ resp.
‘unavoidably non-compliant’ behaviour) can be distinguished. Cliffe et al. use
Answer Set Programming (ASP) for representing institutional norms, as part
of the representation and analysis of specifications of agent-based institutions
[1,2]. In Deontic Petri nets, and variants thereof such as Organizational Petri
nets, varying degrees of ‘ideal’ or ‘sub-ideal’ (more or less ‘allowed’ or ‘preferred’)
behaviour is modeled by preference orderings on executions of Petri nets; see for
example [3,23].

Previous Work: The DALMAS Architecture. DALMAS [22] is an abstract
architecture for a class of (norm-regulated) multi-agent systems. A deterministic
DALMAS is a simple multi-agent system in which the actions of an agent are
connected to transitions between system states. In a deterministic DALMAS the
agents take turns to act; only one agent at a time may perform an action.
Therefore, each individual step in a run of the system may be represented by a
transition system situation.

A DALMAS is formally described by an ordered 9-tuple, where the arguments
are various sets, operators and functions which give the specific DALMAS its
unique features. Of particular interest is the deontic structure-operator, which
for each situation of the system determines an agent’s deontic structure (i.e.,
the set of permissible acts) on the feasible acts in the current situation, and the
preference structure-operator, which for each situation determines the preference
structure on the permissible acts. In a norm-regulated simple deterministic DAL-
MAS, the deontic structure consists of all acts that are not explicitly prohibited
by a normative system; thereby employing what is often referred to as ‘negative
permission’. The preference structure consists of the most preferable (accord-
ing to the agent’s utility function) of the acts in the deontic structure. In other
words, a DALMAS agent’s behaviour is regulated by the combination of a norma-
tive system and a utility function. The normative system consists of conditional
norms using the Kanger-Lindahl theory of normative positions, expressed in an
algebraic notation for norms. See for example [12,14,21] for an introduction.
A general-level Java/Prolog implementation of the DALMAS architecture has
been developed, to facilitate the implementation of specific systems. The Colour
&Form system, the Waste-collector system and the Forest Cleaner system
are three specific systems that have been implemented using this framework.
The reader is referred to [7,8,10,22] for a description of these systems and their
implementations.
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2 Normative Systems and Types of State Transitions

In this section, which is a slight reformulation of Sect.2 in [9], we consider
the transition from a state s to a following state s*, and focus on the condi-
tion d(z1, ..., x,). To facilitate reading, X, will be used as an abbreviation for
the argument sequence 1, ..., z,,. With regard to d(X,), there are four possible
alternatives for the transition from s to s, since in s as well as in s*, d(X,) or
(d7)(X,) could hold?:

I. d(X,;s) and d(X,;s™T)
II. =d(X,;s) and d(X,;s™)
II. d(X,;s) and —d(X,;sT)
IV. =d(X,;s) and —d(X,;s™)

Each alternative represents a basic type of transition with regard to the state of
affairs d(X,); we say that {I, II, III, IV} is the set of basic transition types with
regard to d(X,). In the vein of [24], I could be written 0:d(X,) A 1:d(X,), II
could be written 0:—~d(X,) A 1:d(X,), and similarly for IIT and IV.

Let the situation (x, s) be characterized by the moving agent x and the state
s in a transition system situation S. We now wish to be able to determine the
transition type for the transition represented by action a performed by agent
Zy41 in {(x, s). (The point of the separation between z, 11 and the moving agent
x is to allow for systems in which normative conditions may apply to other agents
than the ‘moving’ agent, e.g. agents wishing to perform some sort of ‘reaction’ or
‘punishment’ act. In most simple systems, however, x, 1 will be identified with
x.) Therefore, we define a ‘basic transition type operator’ By, j € {L, I, IIL, IV},
such that the v + l-ary ‘transition type condition’ B]‘?d(X,,, Zyy1; @, s) indicates
whether or not, in the situation (z,s), the event x,,1:a (representing a being
performed by x,.1) has basic transition type j with regard to d(X,): For all
v-ary conditions d and for all agents X,,z, 11, all acts a and all situations (z, s),

Bid(X,, xyy1;2,8) iff [d(Xy;s) Ad(Xy;a(zus1,s)]
Bid(X,, zpi1;2,8) iff [2d(X,;8) Ad(Xy; a(xpg1,8))]
Bihd( Xy, zpq1; 2, 8) iff [d(Xy;8) A—d(Xy; a(xyg1,8))]
B d( Xy, xpy1;x, s) iff [2d(Xy;8) A ~d(Xy;a(zusa, s))]

=W N

We note in passing the following symmetries:

- Bfd(X,, xpq1; 2, 8) iff BR(d7)( Xy, 2p41; 2, 9)
- B&d(X,,xp41; 2, 8) iff BE(d™)( Xy, Tut1; 2, 8).

2 We can form negations (d™) of conditions in the following way: (d7)(X,) iff ~d(X,).
In the following, the latter notation will be used to facilitate the presentation. Note
that conjunctions (c A d) and disjunctions (¢ V d) may be formed in a similar way;
hence, it is possible to construct Boolean algebras of conditions.
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2.1 Prohibition of State Transition Types

{I,IL, 111, IV} is the set of atoms of the boolean algebra generated by d(X,; s) and
d(X,;sT). This algebra has 16 elements, as shown in Table 1, where ‘X’ denotes
that a basic transition type is one of the disjuncts of the element, while ‘-’
denotes that it is not. Le., each subset of {I, II, IIT, IV} represents a combination
(by disjunction) of basic transition types with regard to d(X, ). For each element
(i.e., for each row in the table) we obtain conditions on state transitions. E.g.,
row 5 represents the condition —d(X,;s) A d(X,;s"), and row 8 represents the
condition

(md(Xy;s) ANd(Xy;sT)) V (d(Xy;8) A=d(Xy;sT)) V (md(Xy;s) A—d(Xy;sT))

which may be simplified to =d(X,;s) V =d(X,; sT).

Table 1. Possible combinations of basic transition types.

(D) | (1) | (11) | (IV)
1 |- |- |- - -
2 |- |- - X | =d(Xy;8) Ad(Xy;sT)
30 - X - d(Xuis) A—-d(Xu;sT)
4 |- |- |X X |=d(Xu;sh)
5 - (X |- |- -d(Xuis) Ad(X;sT)
6 |- |X |- X | =d(Xy;s)
7T - X X |- =(d(Xy;8) « d(X,;8T))
8 |- | X | X | X |=d(Xy;s)V-d(X,;a(z,s))
9 |X |- - - d(X,;8) Nd(Xy;8T)
10 X |- - X d(Xy;8) < d(X,;sT)
11X - X |- dX.:s)
12|X - |X |X  |d(Xu;s)Vod(Xy;sT)
13X X |- - d(X,;sh)
14X X |- X | —d(Xu;s)Vd(X.;sT)
15X X |X |- d(Xuv;s) Vd(Xy;sT)
16X | X | X X T

The idea now is to formulate (conditional) norms whose normative conse-
quents prohibit one or more basic transition types. A specific act a is taken to
be prohibited for x,11 if, in a certain state s, the normative system contains a
norm which prohibits the type of transition represented by x,41:a. For each tran-
sition type condition, i.e. for each row in Table 1, we may now stipulate that if
the transition type condition holds of the transition (s,z,t1:a,a(z,41,s)) then
it is not permissible for x, 11 to perform a in the situation (x, s). E.g., for row 5
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Table 2. Meaningful combinations of prohibited state transition types.

M an | am | av) | Cid(X,, zos; 3, 5)

- - X - d(Xv;8) N d(Xv; a(xyy1,8))
- - - X | =d(Xu;s) A —d(Xy;a(Tuta, s))
- X |- - —d(Xv;s) Nd(Xv; a(zy41,s))
X |- |- - d(Xv;s) Nd(Xy;a(zvs1, s))
X X —dXsa(wi,s)
CX X - Ad(Xes) — d(Xuial(en, )
X |- |- X |d(Xu;s) <« d(Xu;a(zuta, s))
X |[X |- - d(Xv;a(zyia,s))

we may stipulate that if =d(X,;s) and d(X,;a(z,41,s)), then act a is not per-
missible for z,4; in (z, s), by defining a normative operator Py such that for all
v-ary conditions d, all agents X, z,+1 € {2, all actions a € A, and all situations
(2,8,
Pnd(X,, xy11;2, 8) iff
[if B{d(X,,2y41;2,$),then a is prohibited for z,1].

Similarly, for row 8 we may define Py 11r,1v such that for all v-ary conditions d,
all agents X, z,11 € £2, all actions a € A, and all situations (z, s},

Prnivd( Xy, 24152, 5) iff
[if Bd(X,,zy11;52,8) or Byd(X,, 24152, 8) or Bi,d(X,, z,41;2,5),
then a is prohibited for z,1].

A closer look at Table 1 reveals, however, that not all disjunctions of basic tran-
sition types can be meaningfully linked with a prohibition. As discussed in [9],
norms based on the prohibition of elements containing IV III or II VIV are not
meaningful. Table 2 contains the rows (slightly reordered) that represent mean-
ingful normative conditions. It is convenient to define a ‘transition type operator’
s, 5 €12,2/,4,4,5,6,6',7}, for each of the rows in Table2 (except the first,
which expresses no restrictions at all)?:

For all v-ary conditions d and for all agents X,,z,4+1, all acts a and all
situations (x, s),

CYd(Xv,zy11;,8) iff Bijpd(Xv, zp41;,8) M [d(Xy;s) A —d(Xv; a(xps1, )]
Cod( Xy, xpy1;2,8) it BRA( Xy, xpy152,8) M [-d(Xp;s) A d(Xv; alzy41, 9))]
Cld(Xv,zv11; 2, 8) iff Biid(Xy,zp41;2, ) iff [~d(Xv;s) Ad(Xv;a(zyy1,8))]
Cyd(Xv,zp41;2,s) iff Bfd(Xv,zpy1;,s) i [d(Xv;s) Ad(Xv; al@p1,s))]
C8d(Xv,zp11;,8) it [Bid(Xv,zy41;2,8) or Biyd(Xu, zy41;,8)] iff
—d(Xo; 0l 1, 5))

A

3 The numbering is based on the numbering used in [8].
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6. C§d(Xv,xpy1;2,8) M [Bid(Xy, zpt1;2,s) or Bid(Xv, zp41; 2, 8)] iff
[Fd(Xv;s) A d(Xu; al@y41, )]V [d(Xw; s) A —d(Xus a(zyi1,9))]

7. Ced( Xy, xy41; 2, 8) iff [Bfd(Xy,xpy1;52,8) or Biyd(Xy, xv11; 2, 9)] iff
[d(Xv; ) Ad(Xvsa(zyg1, )]V [d(Xuss) A —d(Xus a(zyi1,9))]

8. Cd(Xy,zy41;2,8) iff [Bfd(Xv,zpy1;m,8) or Biid( Xy, zy11;,s)] iff
d(Xv;a(xy41,s))

The ‘transition type condition’ C'J‘-ld(X,,, Zy41; T, s) indicates whether or not, in
situation (x,s), the event x,11:a has any of the corresponding basic transition
types with regard to d(X,). The following symmetries hold (cf. the observation
in [22, p. 148]):

- C’2 A Xy, zpi1;x,s) it C{d™ )Xy, Tpi1;2,8)

$d( Xy, xpi1; 2, s) iff CL(d7)( Xy, zpy1;2,8)

Cd( Xy, xyy1; 2, 8) iff C2(d7™)( Xy, xvy1;2,9)
- 06 (X, xp41; 2, 8) iff C&(d™)( Xy, xpg1;2,8)
- C¢d(X,,xpq1; 2, 8) iff C§(d)( Xy, zpy132, )
Next, we define a normative ‘transition type prohibition operator’ P; such that
it imposes no restriction on the actions performed by z,41, and, for each C“
a transition type prohibition operator P;, j € {2,2/,4,4',5,6,6’, 7}, such that
for all v-ary conditions d, all agents Xu,sc,,+1 € 0, all actions a € A, and all
situations (z, s),

Pjd(X,,xy 1152, 8) iff [if CFd(X,, 2,415, 5), then a is prohibited for x,].

Note for example that Psd(X,,z,41;2,s) iff Privd(X,,z,41;2,8). From the
symmetry principles above it follows that

- Pd(X,,xpy1;8) iff Pr(d™)( Xy, 2pg152,8)
— Pod(X,, xpq1;8) iff Py(d7)( Xy, xpg1; 2, 8)
- Pg/d(XV,J,‘V+1;S) iff P4/(dﬁ)(XV,$V+1 Z, S)
- P5d(Xy,.Z‘V+1;S) iff P7( )(Xy LTy41;:T, S)
- Ped(Xy, zy41;8) iff Po(d) (X, wi132,8)
- Pod(X,,xp41;8) iff Por(d7)( Xy, zp41;2,5)

Now suppose that P;d(X,,z,+1;,s) holds (is ‘in effect’) in situation (z, s),
and that the corresponding transition type condition Cj‘?d(Xl,,xVH;x,s) also
holds for some action a and some agent x,1. Then a is prohibited for z,;: For
all actions a € A and all agents x,11 € 2,

Prohibited, s(z,41,a) if there exists a condition d,
a sequence of agents 1, ...,x,, and a j € {2,2,4,4',5,6,6', 7}, such that
Pid(z1, ..y 20, Tpi152,8) & Cld(21, 00y Ty Tyg1; T, 8).



88 M. Hjelmblom

2.2 Norm-regulated Transition System Situations

A norm-regulated transition system situation is represented by an ordered pair
(S,N) where S = (x,s,A,2,5) is a transition system situation and N is a
normative system. We assume that (1) an event ¢ is of the form z,4;1:a (i.e.,
represents an action a performed by an agent x,41; see Sect.1.1) and (2) that
norms apply to an individual agent x, 1 in a state s. A norm in N is represented
by an ordered pair (G,C), where the condition G on a situation (x,s) is the
ground of the norm and the (normative) condition C on (x, s) is its consequence.
(See, e.g., [22]) For example, (g, Pjc) represents the sentence

V1, X2, oy Ty, Tuy1 € 20 g(x1, 22, ..., Tp, Tyt1; T, S) —
ch(ﬁﬁhl'g,...,$Q,$V+1;SU,S)

where Q) is the set of agents, z,1 is the agent to which the norm applies, x is
the ‘moving’ agent in the situation (x,s), and v = max(p,q). If the condition
specified by the ground of a norm is true in some situation, then the (normative)
consequence of the norm is in effect in that situation. To ensure that the agent
2,41 to which the norm applies is the same as the moving agent x, we apply the
‘move operator’ M;. This operator transforms a condition d on p agents in a state
s to a condition M;d on p + 1 agents in the situation (z,s), while at the same
time identifying x, 1 with x. (See [7,22] for an explanation of the operator M;.)
If the normative system contains a norm whose ground holds in the situation
(z, s) and whose consequence prohibits the type of transition represented by the
event z,.1:a, then action a is prohibited for x, 1 in (z, s):

Prohibited, s(x,+1,a) according to N
if there exists a condition d and a condition ¢ and a j € {2,2',4,4',5,6,6,7}
such that (M;d, Pjc) is a norm in N, and there exist z1, ..., z, such that
M;d(z1, .oy Tp, Tyy15 7, 8) & Cfe(x1, .0, Tg, Tyy1; @, 8), where v = max(p, q).

Since each situation for a DALMAS can be viewed as a transition system sit-
uation, it is straightforward to develop the DALMAS architecture (see Sect.1.2)
into an architecture for norm-regulated transition system situations. This means
extending the set of seven type-operators T; with corresponding E{* operators
into a set of nine type-operators P; with corresponding C}* operators, which calls
for the definition of a structure similar to an np-cis*. The details are left for
future work. The existing general-level Java/Prolog DALMAS implementation is
easily adapted into a general-level implementation of norm-regulated transition
system situations. In this framework, a norm is represented by a Prolog term n/3
of the form n(Id/N,0pG*G,0pC*C), where Id is an identifier of a norm-system
and N is an identifier of an individual norm. OpG*G is a compound term repre-
senting an operator 0pG applied to (the functor of) a state condition predicate G,
forming the norm’s ground. Similarly, OpC*C represents the norm’s consequence.

4 Normative-position condition-implication structure; see, e.g., [14,22].
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2.3 Applications

The existing implementation of the Colour&Form DALMAS (see Sect. 1.2) has
been adapted to serve as a demonstration of the use of norm-regulated transition
system situations. The Waste-collector DALMAS and the Forest Cleaner
DALMAS implementations may be adapted in a similar manner. However, the
use of norm-regulated transition system situations is not limited to the DALMAS
context. Many kinds of dynamic systems (including different types of transition
systems and multi-agent systems) in which state transitions are connected to
the actions of a single ‘moving’ agent, could be modelled and implemented by
(iterated) use of a norm-regulated transition system situation. One example is
the Rooms system, an implementation of (a variant of) the Rooms example
by Craven and Sergot in [4, p. 178ff]. The example consists of a world in which
agents of two categories (‘male’ and ‘female’) move around in a world of rooms
that can contain any number of agents. Some rooms are connected by doorways
(each connecting two rooms) through which the agents can pass®, but only one
agent at a time. The behaviour of the agents is regulated by a normative system
stating that a female agent may not be alone in a room with a male agent.
The restriction that only one agent at a time may move through a doorway is
represented by the restriction that an event ¢ represents an action performed by a
single agent x. To add some dynamics to the system, the behaviour of the agents
is further governed by a simple utility function such that left - stay >~ right
and right >, stay >, left, where > is the relation ‘better than’ and f and
m stands for ‘female’ and ‘male’, respectively. Figure 2 shows both a text-based
and a graphical view of the initial state of the system, and the set of permissible
acts for the acting agent fi;. The normative system contains the single norm
(Mpopposite_sex, Pralone), which states that an agent may not act so that a
pair of agents (x;, ;) such that z; and z; have opposite sex, end up alone in
the same room. This includes moving to a room containing a single agent of the
opposite sex as well as leaving two other agents of opposite sex alone in the same
room. We see that of the two feasible acts stay and left in the current situation,
only stay is permissible according to the normative system, since if f; moves left
she ends up alone with ms.

The source code for the Colour and Form system and the Rooms system,
as well as for the general-level Java/Prolog implementation of norm-regulated
transition system situations is available for download® and is publicly and freely
disseminated. The example systems are quite simple, but nicely illustrate some
features of iterated use of norm-regulated transition system situations, e.g. the
ability to investigate the interplay between a normative system that determines
the scope of permissible actions for agents and utility functions that represent the
preferences of the agents. They demonstrate that the general-level Java/Prolog

5 More precisely, the agents may choose between three acts: left, stay or right, but
left and right are only feasible if there is a doorway in the corresponding direction.
Note that the specific example in [4, p. 178ff] has one female and two male agents
and two rooms, while the Rooms system has three rooms.

5 http://drp.name/norms/nrtssit
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Fig. 2. Screenshot: Initial situation of a Rooms system execution.

implementation can be used as a tool for the implementation of such systems.
The framework includes a Prolog logic server as a backend and (if desired) a
Java user interface as frontend, functioning as a lookup-service that answers
questions such as ‘is act a permissible for x in state s, according to normative
system A/ or ‘which acts are permissible for z in state s, according to N”. At the
system level, it could be used to maintain a normative system for some society,
in combination with some norm enforcement strategy. At the agent level, it could
be used as a common normative framework that is shared by individual agents
that take norms into account in their reasoning cycle, or as part of an agent’s
internal architecture, either to represent a model of society’s normative system
or to represent an agent’s ‘internal’ normative system (‘ethics’). Naturally, the
use of both Java and Prolog as implementation languages has both advantages
and disadvantages. The primary advantage is that this approach combines the
strengths of two different programming paradigms and languages. On the other
hand, it demands skills in both object-oriented and logic programming of the
developer wishing to use the framework to develop a specific system.

Remark 1. Regarding computational complexity, it can be noted that the frame-
work works well for the simple systems discussed here, but certainly has room
for various performance optimizations. Still, even with such optimizations made,
scaleability will remain a challenge for this framework as well as for most other
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frameworks for norm-regulated multi-agent systems (see, e.g., [24, p. 52]), since
the time to test each norm is in the worst case roughly proportional to n”, where
n is the size of the agent set {2, v = max(p,q) and p and ¢ is the arity of the
ground (resp. consequence) of the norm.” One way to, at least partially, address
these issues is to explore the possibility to express a normative system in an
economic way by its set of ‘minimal norms’ (see for example [17,22]).

3 Conclusions and Future Work

This paper has introduced the notion of a transition system situation, which is
intended to represent a single step in the run of many kinds of transition systems.
In a norm-regulated transition system situation, the permission or prohibition
of actions is related to the permission or prohibition of different types of state
transitions with respect to some condition d on a number of agents x1,...,x,
in a state. The framework uses a representation of conditional norms based
on the algebraic approach® to normative systems used in [22] and a systematic
exploration of the possible types of state transitions with respect to d(z1, ..., x,).

By adaption of the existing implementation of the DALMAS architecture, a
general-level Java/Prolog framework for norm-regulated transition system situa-
tions (together with some simple example systems) has been developed. The set
of eight transition type conditions C}* is an extension of the set of six E{* condi-
tions in [22]. These conditions were intended as an interpretation in the DALMAS
context of Lindahl’s set of one-agent types of normative positions. The (poten-
tial) connection between the combination of P; and C¢ and the Kanger-Lindahl
theory of normative positions is interesting. It has been partly investigated in
[8], but deserves to be further explored.

Lindahl and Odelstad argue that a normative system should express “... gen-
eral rules where no individual names occur. If the task is to represent a norma-
tive system this feature of generality has to be taken into account.” [17, p. 5] An
advantage of their algebraic approach to normative systems, besides for example
efficient automation and mechanization (see, e.g., [25, p. 197] with references), is
in fact the expressive power it yields. The algebraic normative framework pre-
sented in this paper allows the construction of norms based on conditions on an
arbitrary number of agents, in contrast to for example Dynamic deontic logic
[20] and Dynamic logic of permission [19] which both have their roots in Propo-
sitional Dynamic Logic (PDL). Unlike in the agent-stranded coloured transition
systems [4,24], the framework presented in this paper does not explicitly dis-
tinguish between state permission laws and action permission laws. It allows,
however, a state permission law to be represented implicitly as a special case,
by a norm which prohibits all transitions that lead to an undesired state. Our

" As noted in [21, p.31], the computational complexity of any specific implementa-
tion may be more formally analysed through algorithmic analysis, e.g. average-case
analysis.

8 This approach was originally developed in a series of papers; see for example
[13,15-17].
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framework treats all norms as action permission laws, in the sense that actions
are prohibited in different states as a consequence of certain transition types
being prohibited by the normative system. It allows the creation of norms that
forbid specific named actions in certain situations, by choosing a normative con-
sequence that forbids the agent to act so that it ends up in a state where the last
action performed was the prohibited action. This requires some sort of history
of actions to be part of the state of the system.

The idea to base norms on permissible and prohibited types of state transi-
tions has, to the author’s knowledge, not been systematically explored before. It
appears that the language for action permission laws used by Craven and Sergot
also allows the formulation of norms that prohibit certain types of transitions,
but an example of this feature is not given in [4]. In Dynamic deontic logic it
is only the state resulting from a transition that determines if the transition is
classified as ‘permitted/non-permitted’, while in Dynamic logic of permission,
it is executions of actions that are classified as ‘permitted/non-permitted’. van
der Meyden’s treatment of permission uses the process semantics for actions,
in which the denotation of an action expressions is a set of sequences of states.
This allows for the description of the states of affairs during the execution of an
action; the permission of an action is not dependent only on the state resulting
from the execution of the action, but also on the intermediate states.

The systematic treatment of the different types of transitions ensures that
the set of transition type operators C§ and the corresponding prohibition opera-
tors P; exhaust the space of meaningful transition type prohibitions. Therefore,
norm-regulated transition system situations could be used in a given problem
domain to systematically search for the ‘best’ normative system for (a class of)
dynamic systems, according to some criteria for evaluation of the system’s per-
formance. For example, as suggested in [8], a genetic algorithm or some other
mechanism from machine learning could be employed to seek the optimal nor-
mative system for a particular task. This requires some mechanism for norm
change. In the current architecture, norms may be changed ‘from the outside’,
but not ‘from the inside’ as a consequence of an action by an agent in a state s,
since the normative system N is not itself considered a part of s. An interesting
line of future work is to explore the possibility to let the normative system be
a part of the state, thereby letting agents choose actions that modify the nor-
mative system. Norm change is another area in which the notion of ‘minimal
norms’ may be of special significance, as suggested in [17, Sect. 2.1.2 and 4.3].

The requirement that each event ¢ in a norm-regulated transition system situ-
ation represents an action performed by a single agent deserves further attention.
It corresponds roughly to the restriction in the Rooms example (Sect.2.3) that
only one agent at a time can move through a doorway. This raises a number of
questions regarding the relationship between norm-regulated transition system
situations and transition systems in which a single transition may correspond
to the simultaneous action of several agents, possibly including ‘actions’ by the
environment itself. These issues deserve a deeper discussion, which is left for
future papers.

Another interesting issue is consistency. An inconsistent normative system
may lead to a situation in which the deontic structure is empty, i.e. all actions
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are prohibited. How the system should behave in such a situation is heavily
dependent on the nature of the specific application at hand; this is not specified
by the general-level framework.
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Abstract. Tentacle robots — robots with many degrees of freedom with
one fixed end — offer advantages over traditional robots in many scenar-
ios due to their enhanced flexibility and reachability. Planning practical
paths for these devices is challenging due to their high number of degrees
of freedom (DOFs). Sampling-based path planners are a common app-
roach to the high DOF planning problem associated with tentacle robots
but the solutions found using such planners are often not practical in that
they do not take into account soft application-specific constraints. This
paper describes a general sample adjustment method for tentacle robots
which adjusts the nodes and edges generated by the sampling-based plan-
ners within their local neighborhood to satisfy soft constraints associated
with the problem. Experiments with real and simulated tentacle robots
demonstrate that our approach is an effective enhancement to the basic
probabilistic planner to find practical paths.

Keywords: Probabilistic motion planning - Soft constraints - Tentacle
robots

1 Introduction

Tentacle robots, also known as snake or serpentine robots, are manipulator
robots with many degrees of freedom (DOFs) (see Fig.1). Such devices have
received considerable attention from the robotics community due to their applica-
bility in a wide range of different domains (see [28,30] for recent surveys). Ten-
tacle robots are often an attractive alternative to traditional robotic systems for
difficult terrains and challenging grasping scenarios, including search and rescue
missions in complex urban environments, planetary surface exploration, min-
imally invasive surgery, and inspection of piping and nuclear systems [4,6,8].
Unlike traditional manipulator robots which tend to have small numbers of

This is an extended version of “Planning Practical Paths for Tentacle Robots” which
appeared in the 5th International Conference on Agents and Artificial Intelligence
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(©) (d)

Fig. 1. Tentacle robots. (a) and (b) are images of a planar tentacle robot created
from ten Dynamixel AX-12 servos. (c) and (d) are real and simulated images of OC
Robotics 3D tentacle robot. The pictures (c) and (d) are © OC Robotics and are used
with permission.

DOFs, tentacle robots utilize redundant DOF's in order to enhance their ability
to deal with complex environments and tasks.

Since it can be difficult to plan a path for robots with many DOFs, early
methods for high DOF robots aimed at finding any solution to the planning
problem within a reasonable time. With the development of sampling-based
algorithms and their application in practice, the focus has shifted to considering
the quality of the path obtained as well [1,7,9,15,19,27,29,31]. A shortcom-
ing of basic sampling-based planning approaches is that they can obtain highly
‘non-optimal’ solutions since they rely upon randomization to explore the search
space. Although basic sampling-based planning algorithms may find a valid solu-
tion, that solution may not be practical in that it does not meet soft constraints
that exist within the problem domain. Furthermore, it has been proven that the
standard Probabilistic Roadmap Method (PRM) and Rapidly-exploring Ran-
dom Tree (RRT) are not asymptotically optimal, i.e. the cost of the solution
returned by the algorithm is not guaranteed to converge to the optimal cost as
the number of samples increases [15]. Optimality cannot be generated by simply
sampling more densely.

The need to properly represent and use soft constraints is particularly impor-
tant for redundant DOF robots such as tentacle devices. For these devices the
high number of DOFs provide the opportunity to deal with complex environ-
ments and to produce solutions that are not only correct (e.g., they grasp the
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object through free space, for grasping tasks) but also optimize other require-
ments of the problem space. The high number of DOF’s coupled with the random
nature of the planning algorithm often leads to motion paths that involve the
robot “flailing about” as it gets from the start to the goal state. One way of
reducing these unwanted motions and taking soft constraints is to use an appro-
priate controller that takes the path identified by the path planner as input
and only integrates the soft constraints while executing the path [3,20]. There
are many issues with this approach. Perhaps most critically the paths produced
may be infeasible for a real robot. For example, following the path produced may
require that the robot move extremely slowly in order to minimize the influence
of dynamics and other physical constraints. These controllers are also system
specific, and it can be very hard to develop a good ‘general’ controllers or to
know which controller to use for a given task.

Rather than incorporating soft constraints as a secondary “refining” process a
more general approach is to augment sampling-based path planning with mech-
anisms that generate paths that are both correct and also optimize the soft
constraints. Such augmentation can take place at different points in the path
planning process, including as a path refining task. This paper concentrates on
optimizations performed during the sampling phase of the algorithm. Perturb-
ing each randomly generated sample within its local neighborhood to enhance
compliance with the soft constraints often leads to more practical paths for the
robot. The framework described here is intended to be robot independent, but
the approach is described and tuned here towards tentacle robots such as those
shown in Fig. 1.

This paper is structured as follows: Sect.2 reviews existing sampling-based
planning algorithms that address the path quality problem and the current meth-
ods used to plan paths for tentacle robots. Section 3 formulates the practicality of
paths in terms of soft constraints and describes constraints particularly critical
for tentacle robots. In Sects. 4 and 5, path planning strategies are developed to
find paths of user-preferred qualities based on this formalism. Section 6 compares
paths obtained with a practicality-aware planning approach and a basic PRM
to different test environments using both real and simulated tentacle robots.
Finally Sect.7 summarizes the work and provides possible directions for future
research.

2 Related Work

2.1 Sampling-Based Path Planning

Instead of computing an exact representation of the planning space, sampling-
based planners generate a number of discrete sample points in configuration
space and test motions between these points and the start and goal states. Such
planners usually represent motions as a graph as in the PRM [16,17], or as a
tree as in the RRT [23]. These methods are probabilistically complete. It is not
guaranteed that these planners will find a path even though one exists, but if
they do find a path the path will take the device from the initial configuration
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to the goal. Randomized path planning algorithms that address the problem of
path quality can be divided into three broad categories based on where these
issues are integrated within the algorithm: pre-processing, post-processing, and
customized learning.

Pre-processing Approaches. Pre-processing approaches consider the specific pref-
erences of desired paths in the pre-processing phase, i.e. during the roadmap con-
struction phase before a query is made. Because of its probabilistic nature, the
PRM roadmap often contains nodes and edges that lack practical usage or are
redundant. Aiming at finding shorter paths with higher clearance, Nieuwenhuisen
and Overmars [26] proposed to add nodes and edges to create “useful” cycles,
which provide short paths and alternative paths in different homotopy classes.
Based on this work, another PRM variant by Geraerts [9] attempts to retract
nodes and edges to the medial axis to generate high clearance paths.

Post-processing Approaches. Given a path found by the sampling-based path
planner, post-processing approaches modify the path in accordance with the
required practicality preference by adding new nodes, smoothing the path, elim-
inating unnecessary loops or detours, etc. Path pruning and shortcut heuris-
tics are common post-processing techniques for creating shorter and smoother
paths [9,14]. Retraction algorithms add clearance to a given path [10]. Post-
processing algorithms may take multiple paths as input rather than just a single
one. For example, the path merging algorithm described in [27] computes a path
with improved quality by hybridizing high-quality sub-paths. The algorithm con-
siders the generalized formulation of path quality measures rather than specific
requirements. Path refining approaches, mentioned earlier, fall into the post-
processing category.

Customized Learning. Although post-processing algorithms have shown some
success in improving the path quality and can be used by all the path planners,
the final path depends on the original paths, i.e. they cannot find alternative
routes that deviate considerably from the original ones. To avoid this problem,
customized learning algorithms integrate the requirement for path quality in
the learning phase. For example, Kim et al. [19] use an augmented version of
Dijkstra’s algorithm to extract a path from a roadmap on criteria other than
path length.

The approach of initially finding an approximate solution is utilized by the
Fuzzy PRM [25], Lazy PRM [2], IRC (Tterative Relaxation of Constraints) [1]
and C-PRM (Customizable PRM) [29] algorithms where the roadmap nodes
and edges are not validated, or are only partially validated, during roadmap
construction. During the learning phase, the path is searched by strengthening
the constraints (obstacle collision, path length or other specified preferences)
iteratively. These methods are designed to decrease the roadmap construction
costs, while only increasing the query costs slightly.
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2.2 Path Planning for Tentacle Robots

There has been relatively little work devoted explicitly to tentacle robot path
planning. One approach is based on the definition of tunnels in the workspace [5].
Methods from differential geometry are then used to guarantee that the tenta-
cle is confined to the tunnels, and therefore avoids any obstacles. Later work
proposed to use the results of the Generalized Voronoi Graph (GVG) approach
to construct the tunnels themselves [6]. Motion planning is then achieved via a
nose-following approach which allows the end-effector to move along the GVG
followed by the rest of body.

Sampling-based planning algorithms such as PRMs and RRTs are popular
because of their success in a wide range of applications and in high-dimensional
configuration spaces. This makes them an appealing choice for tentacle robot
path planning, but they suffer from the problem of generating less than optimal
paths for the robot. A physics-based sampling strategy for finding realistic paths
for a highly articulated chain robot is presented in [8]. This method exploits the
coherence between joint angles via an “adaptive forward dynamics” framework in
order to determine which joints have the greatest impact on the overall motion.
Then, only the most important joints are considered. The samples are then biased
by using constraint forces designed to avoid collisions while moving toward the
goal (similar to a potential field approach).

3 Problem Statement

Formally, given a robot A, a static workspace W containing a set of obstacles,
an initial configuration 0;,;; and a goal configuration 04,41, the objective of path
planning is to determine a feasible path P between 6;,;; and 0404 [21]. In its
most basic form, a feasible solution to the basic path planning problem only
considers geometric constraints that arise from collision with obstacles and is
often inadequate to describe realistic path planning problems.

Soft constraints can be added to the basic path planning problem in a number
of different ways. Following the PDDL3.0 approach [12], the syntax for soft
constraints can be broken down into two components: (i) the identification of
the soft constraints; and (ii) the description of how the satisfaction of these
constraints affects the quality of the path. Similar to the descriptions of hard
constraints, soft constraints can be described using predicates of the planning
problem. Each binary soft constraint is associated with a violation penalty weight
such that paths, or portions of paths can be compared. Let S be the set of
soft constraints. The following typical soft constraints for tentacle robots are
described in terms of inequalities between the value computed from the robot’s
configuration and a corresponding threshold A:

Safe Clearance from Obstacles (SCO). A soft constraint for keeping a safe clear-
ance from the obstacles [32] is given by

|
(Z D) < Asco (1)

i=1 "
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where D; is the minimum distance between the i-th link of the manipulator and
obstacles, and Agco is a pre-defined upper bound (similar to Ay 4 and Appg
below);

Joint Limit Avoidance (JLA). A soft constraint for joint limit avoidance [32] is

given by
N
Z 0;i Maz — i, Min
3 3 < A 2

<¢=1 (0i. Maz — 0:)(6; — 9i,Mm)> =LA @)

where 8; prqr and 0; ar4y, are the maximum and minimum permissible joint angles
and 6; is the current joint angle for the i-the joint.

Precision of End-Effector (PEE). 1t is often required to ensure the precision with
which a tentacle robot approaches a point or follows a path defined by the pose
of the end-effector (EEF) [13]. Let & € R™ represent the output position vector
of the EEF and 6§ € R™ the vector of joint angles of the robot. An infinitesimal
error in the EEF position can be mapped from the joint errors through:

Ax = JAc (3)

where the m x n matrix J, called the Jacobian, is a geometrically dependent
structure relating the joint errors to the output errors [18,24]. The Euclidean
norm of the EEF error is therefore bounded above by

[Ad] < @

where 0,4, is the Jacobian’s maximum singular values. A soft constraint for the
generalized EEF precision can be defined by bounding ¢,,4::

Omax § )\PE'E' (5)

Note that we do not attempt to distinguish degrees of satisfaction of a soft
constraint — we are only concerned with whether or not the constraint is satisfied.
However, a soft constraint may be counted multiple times depending on the
number of the violation occurrences exhibited while executing the path. Let P
denote the set of all feasible paths. Here we define a cost function that describes
the overall practicality of a path and then define the path planning with soft
constraints using the cost function.

Cost Function. Consider a feasible configuration 6 € Cyyee, Where Cyree is the
free configuration space, i.e. 6 meets all the hard constraints such as not colliding
with the surrounding obstacles and staying within the joint limits. Given a soft
constraint s, the cost function of the configuration costs : Cgree — [0,1], i€. a
costs(0) € [0,1] can be computed for each 6 € Cype.. This cost function can be
continuous or discrete. In its simplest version, the cost function costs is binary,
i.e. 0 when the soft constraint is satisfied by 8, and 1 when violated. Given a set
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of soft constraints S with associated violation penalty weights, Vs € S, w(s) > 0,
the cost of a feasible configuration is the summation of the penalty weights of
all the costs of soft constraints that are violated by 6, defined as

cost : Crree — Rxq, cost(f) = Zw(s) - cost(6) (6)
sES

A path P of length [ is represented by a unit-speed parametric function 7 :
[0,]] — Cfree with 7(t) = 6, 6, € P. Then the parametric cost function is
defined as:

v 1 [0,1] = Rxqv(t) = cost o 7(t) = cost(6;) (7)

Given a feasible path P, its cost is the integral of the cost of all the configurations
along the path, defined as

!
cost : P — Rxg, cost(P) :/ v(t)dt (8)
0

A discrete approximation of the integral leads to

n—1
1 k
cost : P — Rxg, cost(P) ~ - E v((n — 1)1) (9)
k=0

This provides a cost function that penalizes paths with sections that violate the
soft constraints provided.

Path Planning with Soft Constraints. Given a path planning problem (A, W,
Oinits 0g0a1), & set of soft constraints S with corresponding penalty weights and
a cost function cost, generate a feasible path P such that cost(P) is minimized.
The algorithm here generates a roadmap within the environment. The roadmap
must be connected to 0, and 0404 and a path must exist within the roadmap
for a path to be found.

4 Sampling with Soft Constraints

Following [16], the PRM roadmap with soft constraints generation algorithm
is outlined in Algorithm 1. During node generation, instead of choosing com-
pletely random configurations as in the basic PRM, a sampling method with
soft constraints (i.e. SamplingSC and SamplingHCSC) is used (line 4) and the
new configuration that satisfies some or all the soft constraints is added to the
set of vertices V. Connections are then attempted between vertices within a
distance r using a simple straight-line local planner.

It is observed that for a collision-free node to be useful for path planning
it must be part of a connected free region. Within any region we can expect
some locations to be more practical than others. Ensuring that more practical
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Algorithm 1. Roadmap Generation with Soft Constraints.

1: V20

2 E— 10

3:fori=1,...,ndo

4:  Orand < sampling with soft constraints

5 X « Near(G = (V,E),0rand,r)

6: V—VU{lrqna}

7:  for all z € X, in order of increasing ||z — 0,rqnal|| do
8: if 0,4nq and z are not in the same connected component of G = (V, E) then
9: if (v,z) F'H then
10: E — FEU{(v,z), (z,v)}
11: end if
12: end if
13:  end for
14: end for

15: return G = (V, E)

nodes are chosen during the roadmap seeding process while still sampling the
space sufficiently densely to construct paths is likely to improve overall path
practicality, at least as measured by node-based soft constraints. Given a feasible
node we can search within a local region of this node to enhance the practicality
of this node. In order to take advantage of this, the planner adjusts a node within
its free space to states with fewer soft constraint violations before adding them
to the roadmap. We present two node adjustment strategies SamplingSC and
SamplingHCSC as outlined in Algorithms 2 and 3 to accomplish this task.

Algorithm 2. SamplingSC (random sampling with soft constraints).

1: repeat

2 0rana < a randomly chosen configuration in C

3: until 0,40 FH

4: Onew — Orand

5: for i «—1,....k do

6: d<— N(0,r")

7 0; «— a random configuration at distance d from 60,4nq
8: if 6; F 'H and cost(6;) < cost(Onew) then

9: Onew — 0;

10: end if
11: end for

12: return 0, ew

In SamplingSC, for each randomly generated feasible node 0,,¢,,, k attempts
are made to adjust 0, to reduce the soft constraint cost associated with the
node. New samples are generated in 6,,.,,’s neighborhood according to the normal
distribution N'(0,7*), where the scale r* is chosen based on the assumed local
complexity of the configuration space. Each of these new samples is first tested for
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Algorithm 3. SamplingHCSC (random sampling with hill-climbing soft constraint
satisfaction).

1: repeat

2 0rana < a randomly chosen configuration in C

3: until 0,4nq FH

4: onew — grand

5: u « a random direction

6: for i —1,....k do

7 0; < move Oy in the direction of u by step size dsiep
8: if 6; F 'H and cost(6;) < cost(Onew) then

9: Onew — 0;

10: else

11: return Gpew
12:  end if

13: end for

14: return G,ew

compliance with the hard constraints. If the test passes then the soft constraints
are applied. The valid node with minimum soft constraint cost from this sample
is then added in the roadmap.

Choosing k and r* are application-specific issues. Note that during the node
adjustment step k nodes are not added to the roadmap. Rather, each node is
augmented up to k times while retaining fixed the total number of nodes. On
the one hand, k should not be too small, because we want to give our planner
a good chance to make an improvement. On the other hand, making k too
large increases the running time unnecessarily. In essence we assume that within
some radius (defined by r*) of a node, there exists a more practical common
homotopic path. In this work we assume a single r* but clearly it would be
possible to set r* = f(f) for complex non-homogeneous environments or to set
r* = g(n) according to the density of the sampling.

SamplingHCSC'is a greedy strategy that can be considered as an alternative
to SamplingSC. Instead of attempting to reduce the cost of a sample once, the
SamplingHCSC iterates the maximum of k steps toward a random direction u
until a hard constraint is violated or the soft constraint cost stops decreasing.
The random direction u incorporates all of the degrees of freedom of the robot.

Once the roadmap R is constructed, finding a path between 6;;¢ and 40a
involves connecting these points to R. If 0;,;; and 0404; do not belong to the same
connected component, then more nodes need to be generated for R to connect the
components to which 6;,,;; and 04,4, belong. If this cannot be accomplished after
a maximal number of trials then failure is reported. Otherwise, the algorithm
proceeds to the next phase: extracting an optimal path from R. Given the nature
of the cost function of paths, it is possible to use Dijkstra’s algorithm [19] to
find the minimum cost path in R from 6,4 to 8404
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5 Postprocessing with Soft Constraints

Path pruning “shortcut heuristics” are smoothing techniques for creating shorter
and smoother paths. The shortcut method tries to iteratively improve the path
obtained using PRM by replacing one part of the path with a shorter local path.
In each iteration two nodes in the path are considered as the endpoints of a
potential shortcut. Let a and b denote the two nodes. If the local path LP(a,b)
is collision-free then the local path LP(a,b) replaces the path between a and
b that stays within the graph/tree structure. Due to their simplicity, shortcut
algorithms have been widely used to improve the quality of paths computed by
randomized planners [11].

Algorithm 4. Shortcut with Soft Constraints (discrete path P = 6o, 01, ...0m—1).
1: loop

2:  a,b < two random indices in [0, m) and (a < b)

3 7)1 <_007-~-0a—1

4 Pa — Oq,...0,

5: 7)3 «— 9b+1, ~~~9m71

6: if LP(64,6s) F H and cost(LP(0aq,0,)) < cost(Pz) then

7

8

9:

P «—PrULP(0q,0,) UPs
end if
end loop

The goal of the traditional shortcutting methods is to find a shorter path
that is in the same homotopy class of an existing path. However, this can bring
the robot close to an obstacle or violate other soft constraints. We augment the
shortcut algorithm with soft constraints (shown in Algorithm 4) which compares
the soft constraint cost of the new local path and the original part of the path
before replacement. We expect that this method will be slower than the original
heuristic as the cost comparison takes extra computational time. However, we
expect that the resultant path will be more practical.

6 Experimental Validation

This section describes experiments of the algorithm using two tentacle robot mod-
els. The first tentacle robot is a planar robot built from ten Robotis Dynamixel
AX-12 servos (Fig. 1(a-b)). The robot is approximately 67 cm long when it lies
straight. One end of the robot is fixed and rollers have been installed to reduce
friction between the robot and the table top. The planar robot has 10 DOFs. The
other robot is a simulated tentacle robot moving in 3-dimensional space. This
simulation is based on a commercially available tentacle robot developed by OC
Robotics Inc. developed for operation in complex environments such as nuclear
power plants (Fig. 1(c-d)). This 3D robot has a mobile base that can translate in
one dimension and 7 joints, each of which consists of two DOF's — roll and pitch, so
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Vo n l B
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(a) Basic path planning

V= | 3= | & Sl

(b) Path planning with SCO

AEEIEIL

(c) Path planning with JLA
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(d) Path planning with PEE

(e) Basic path planning

(f) Path planning with SCO

Fig. 2. (a-d) Path planning for a planar tentacle robot in a workspace with two rectan-
gular obstacles. (e-f) Path planning for a 3D tentacle robot in a confined workspace.
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the robot has 15 DOFs in total. The algorithms were implemented within Lavalle’s
Motion Strategy Library [22], and were run on a Mac running OS X with 3.06 GHz
Intel Core 2 Duo processor and 2 GB memory. Only one soft constraint (SCO,
JLA, and PEE as discussed in Sect. 3) is considered in each experiment.

Comparisons between the basic path planning and path planning with soft
constraints minimizing a cost function are illustrated in Fig.2. Figure 2(a-d)
shows a simulation of the planar tentacle robot operating in a workspace com-
prising two obstacles. The path planners attempt to compute possible paths that
take the robot from the lower space to the upper one while avoiding obstacles.
Figure 2(a) shows a path computed by the traditional PRM followed by the tra-
ditional shortcut method. The path is correct and is relatively short. Figure 2(b)
shows a path computed by our path planner minimizing SCO, which encourages
the robot to maintain a minimum distance away from the obstacles. Figure 2(c)
shows a path minimizing JLA, which tries to minimize the deviation between
each joint. Therefore the robot becomes straight when passing the gap between
the two obstacles. Figure2(e-f) shows a simulation of the 3D tentacle robot
reaching into a confined box. The path planners attempt to compute paths that
take the robot from a hole of the box to the lower front of the box while avoiding
walls of the box and two obstacles. Figure2(e) shows a path computed by the
basic path planner; (f) shows a path computed by our path planner minimizing
SCO, which encourages the robot to move away from the obstacles.

In practice the precision of the pose of the end effector of a tentacle robot is
a critical issue for the robot to accomplish tasks. Here we use PEE as the soft
constraint in path planning to find paths that the end effector of the robot can
follow more precisely. As discussed in Sect.3 we can increase the precision of
the end-effector by reducing the maximum singular value ,,,,, of the Jacobian
matrix associated with the pose of the end effector. It has been observed that
Omaz 18 maximized when the robot is straight, and it decreases when the robot
bends. A result path is shown in Fig. 2(c). The difference is more obvious in the
case shown in Fig. 3 where there is no obstacle in the scene. Most path planners
will compute a path shown in Fig. 3(a) that directly takes the path from the start
to the goal while the robot stays straight all the way. However, maximizing the
PEE leads to the solution shown in Fig.3(b). Figure 3(c-d) provides snapshots
from the execution of these experiments running on a real planar tentacle robot.

Our planning algorithms with soft constraints can be viewed as an opti-
mization of the basic PRM methods. The performance of such algorithms can
vary depending on the degree of optimization applied, such as the number of
adjustments attempts in the sampling phase (i.e. the number k) and the number
of shortcut attempts of the shortcut procedure. Figure4 shows results of our
three algorithms (SamplingSC, SamplingSCHillClimbming, and Shortcut with
Soft Constraints) on the simulated planar tentacle robot in a workspace con-
sisting of two obstacles. Figure4(a), (c) and (e) show that the average cost of
the path as measured in terms of violations from soft constraints is reduced
when the degree of optimization increases, i.e. more node adjustment or short-
cut attempts are made. The optimization methods reduce the path cost quickly
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(a) Basic path planning

(b) Path planning with PEE

(c) Basic path planning

(d) Path planning with PEE

Fig. 3. Path planning in the absence of obstacles in simulations (a-b) and on a real
robot (c-d).

at first, while further optimization efforts have a reduced rate of return. Clearly
the shortcut method outperforms the two sampling methods in reducing path
cost. This is because the shortcut method takes a given path as an input so its
task is more focused than sampling methods which try to optimize the nodes
of the entire roadmap. Therefore, the sampling methods aim at generating a
“better” roadmap, which can be beneficial for multiple queries of paths.
Figure4(b), (d) and (f) show the running time of the three optimization
methods. Clearly the time increases with the degree of optimization because of
the computation required by the optimization, and the amount of additional time
depends on the computation of the soft constraints. In this example, computing
SCO is expensive as it requires the distance to be computed between each robot
link and the obstacles, and computing JLA and PEE are relatively less expensive
as they do not require examining geometry of the workspace. PEE involves
matrix computation, so it is more expensive to compute than JLA. If a robotic
system is implemented in a sequential fashion such that optimizations must be
completed before beginning execution of the path, it is unclear when to stop the
optimization to achieve an ideal balance between computation and path quality.
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Fig. 4. Cost of the paths found by and running time of (a-b) SamplingSC; (c-d) Sam-
plingSCHillClimbming; and (e-f) Shortcut with Soft Constraints. Results are averaged
for 20 independent runs for each case. Standard deviations are shown (SCO - safe clear-
ance from obstacles, JLA - joint limit avoidance, PEE - precision of the end effector).

7 Summary and Future Work

Path planning is an important but difficult problem in robot planning with
high numbers of DOF's. Sampling-based path planning algorithms are successful
in solving high-dimensional problems. However, their ability to find paths that
meet certain soft constraints is still limited. This paper describes an approach
to the problem of planning practical paths for tentacle robots in terms of soft
constraints and develops sample adjustment strategies for sampling-based path
planners to take into account these soft constraints.
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We have shown the effectiveness of our approach using both a simulated and
real tentacle robot. Three soft constraints are used separately in the test model.
Although the resultant path is not optimal due to the randomness of the planner,
it shows consistent improvement over the path computed by the basic PRM as
the degree of optimization increases.

Currently we only considered single soft constraint and single optimization
methods with fixed level of optimization. It is possible to run multiple opti-
mizations to address multiple soft constraint problems. Ideally, resources will
be redistributed amongst these optimization methods in a way that an optimal
(or good enough) solution can be found efficiently and effectively. Ongoing work
includes the development of an auction-based system to coordinate multiple
optimization methods.
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Abstract. Monitoring of computer networks, complex technical systems
like aeroplanes is common practice. In this article the use of a monitoring
agent in an arbitrary product is discussed. The product itself could be any
product with sufficient hardware capabilities. The focus is on the product
enhancement by adding an embedded agent. This so-called product agent
can represent the product in the internet of things and it can also be
a member of a multiagent system. In this way exchange of parts and
subsystems is possible. The possibilities and advantages of this concept
are discussed as well as a more elaborate example of the implementation
in an experimental discovery robot.

Keywords: Agents - Monitoring agent + Product life cycle

1 Introduction

Agent technology for agile manufacturing was the starting point of this research.
In this research the concept of a product agent was introduced. Every product
to be made starts as a software entity or agent that is programmed to meet
its goal: the production of a single product. To be able to reach its goal this
agent knows what should be done to create the product. This entity is called
a product agent and it guides the product along the production cells to be
used for manufacturing and it will collect all kinds of important manufacturing
data during the production process. When the product is finished, this agent
has all the manufacturing details and this agent is still available for further
use containing valuable information about the product. The next step in this
approach is to investigate and study the roles of this product agent in the other
phases of the life cycle of the product.

In this paper we study the implementation of a product agent that has not
been used to create the product itself, but this agent is created for a specific phase
in the life cycle of the product. First the use and roles of agents in all phases of
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Fig. 1. Life cycle of a product.

the life cycle are discussed as well as how agents could be implemented for these
different phases. Next we focus on the use phase. The case study for our product
agent in the use phase is based on a discovery robot. This robot is also introduced
and globally described. After this description of the product, the embedding of
the product agent is discussed and some results of the implementation of the
product agent in this complex system are shown.

2 Role of Agents in the Lifecycle of a Product

In Fig.1 the life cycle of an arbitrary product is shown. After the design, the
product is manufactured in the production phase, next the product is distributed.
A very important phase is the use of the product and finally the product should
be recycled. In all these phases, the product agent can play a role that will be
globally described in the next sections

2.1 Design and Production

In our view the design of a product will be greatly influenced by the individual
end-user requirements. This means that cost-effective small scale manufacturing
will become more and more important. In [1,2] a manufacturing system based
on a grid of cheap and versatile production units called equiplets is described.
This grid is capable of agile multiparallel production. In this model every single
product is guided through the production environment by the already introduced
product agent. This agent is responsible for the manufacturing of the product
as well as for collecting relevant production information of this product. This
is normally a function of the so-called Manufacturing Execution System (MES)
[3]. The result is that every product has its own production journal in contrast
to batch production using a MES that generates one journal for a whole batch
of products. In Fig. 2 the agent based manufacturing is depicted. In this figure
the product agent is hopping from equiplet to equiplet to guide the product
along the production machines or equiplets and monitor success or failure of the
production steps [4]. To make a smooth transition from design to production
possible, the product agent is designed as a co-design for the product. Because
of the fact that the same equiplets that are used in the production phase are
also used in the product design phase, a short time-to-market can be realised.
Though this is all based on our own special production environment, we expect
this approach to be useful in other production environments as well.

The concept of using agents for production is not new. Among others a mul-
tiagent-based production system is also developed by Jennings and Bussmann
[5]. This system focuses on reliability and minimizing downtime in a production
line. This approach is used in the production of cylinder-heads in car manufactur-
ing. The roles of the agents in this production system differ from our approach.
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Fig. 2. Product agent and equiplet agents during production.

2.2 Distribution

Product agents can negotiate with logistic systems to reach their final destina-
tion. Logistic applications based on multi agents systems already exist [6]. Infor-
mation of product handling and external conditions, like temperature, shocks
etcetera can be measured by cheap wireless sensors and collected by the guid-
ance agent during the transport or after arrival at the destination. The handling
and external conditions during transport can be important during product use,
especially for product quality, maintenance and repair.

2.3 Use

The role of the product agent during the use of the product could focus on
several topics. The first question one should ask is: who will benefit from these
agents, i.e. who are the stakeholders. In a win situation both the end-user as
well as the manufacturer could benefit from the information. If a product is a
potential hazard (in case of misuse) for the environment, the environment could
also be a winner if the agent is capable of minimizing the effects of misuse or
even prevent it.

Collecting Information. A product agent can log information about the use of
the product as well as the use of the subsystems of the product. Testing the health
of the product and its subsystems can also be done by the agent. These actions
should be transparent for the end-user. If a product needs resources like fuel or
electric power, the agent can advise about this. An agent can suggest a product
to wait for operation until the cost of electric power is low i.e. during the night.

Maintenance and Repair. Based on the logging information about the prod-
uct use and the use of the subsystems, an agent can suggest maintenance and
repair or replacement of parts. Repairing a product is easier if information about
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its construction is available. Also the use of a product or the information about
transport circumstances during distribution can give a clue for repair. An agent
can also identify a broken or malfunctioning part or subsystem. This could be
achieved by continuous monitoring, monitoring at certain intervals or a power-on
self test (POST).

An important aspect of complex modern products is the issue of updates or
callbacks in case of a lately discovered manufacturing problem or flaw. In the
worst situation, a product should be revised at a service center or the manufac-
turing site. Information about updates or callbacks can be send to the product
agent that can alert the end-user in case it discovers that it fits the callback or
update criteria. This is a better solution for a callback than globally advertising
the problem and alert all users of a certain product when only a subgroup is
involved.

Miscellaneous. Use of product agents could result in transparency of the status
of a product after maintenance by a third party. The agent can report to the
end-user what happened during repair so there is a possibility to check claimed
repairs. Of course the agent should be isolated from the system during repair to
prevent tampering with it. Recovery, tracking and tracing in case of theft or loss
are also possible by using this technique. When the end-user wants to replace
a certain device by a new one, the product agent can give advice about the
properties the replacing device should have, based on what the product agent
has learned during the use phase.

2.4 Recycling

Complex products will have a lot of working subsystems at the moment the end-
user decides it has come to the end of its life cycle. This is normally the case when
a certain part or subsystem is broken. The other remaining parts or subsystems
of the product are still functional, because in a lot of complex products the
mean times between failure (MTBF) of the subsystems are quite different. The
product agent is aware of these subsystems or components and depending on
the economical value and the remaining expected lifetime these components
can be reused. This could be an important aspect of ‘green manufacturing’. An
important issue here is that designers should also take in account the phase
of destruction or recycling. Disassembly and reuse of subsystems should be a
feature of a product for this approach to be successful.

The product agent can reveal where rare or expensive material is situated
in the product so this material can be recovered and recycled. This way the
product agent can contribute to the concept of zero waste. Zero waste is just what
it sounds like - producing, consuming, and recycling products without throwing
anything away [7].
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3 Product Types

This approach of having an agent for a product could be used on different kind
of products, but one should investigate if the final product has intelligence and
hardware to communicate with the agent. Some products have this by nature
(computers, cell-phones); for other products (cars, machinery, domestic appli-
ances) it should be a small investment. An important aspect will be the pos-
sibility to connect to certain subsystems for monitoring important events. If
temperature is an important item for the product agent, connection to a tem-
perature sensor or at least a place where this temperature data is available is
a must. If this connection is not available, a temperature measurement system
should be added to the agent.

prOdUCt oo

(UBeliefs ) S ;
b) product agent product agent

Fig. 3. Mobile agent versus moving data.

3.1 Where Do These Agents Reside?

A product agent should stay alive or at least the information the agent has
collected and the knowledge the agent has learned should be available under all
circumstances. To accomplish this, two solutions are available. The agent can
be a mobile agent moving from platform x to platform y as depicted in Fig. 3a.
The other solution requires moving data (beliefs of the agent) from one agent
to a newly created agent as shown in Fig. 3b. In our case both agents should be
product agents.

The second solution is much easier to implement because of the fact that
only transport of data is required, while in the case of moving agents, the whole
executable should be adapted to the new situation. Another advantage of the
second approach is that a product agent can be added in any phase of the life
cycle. This is also what has been done for this specific research. A product agent
was added to a system in the use phase. The biggest challenge for implementing
the approach of a product agent or guidance agent will be in the use phase.
This is where the product is under control of the end-user and not as during the
production under control of the manufacturer. In the latter case an agent-based
infrastructure can be implemented for the production system or production line.
The same is true for transport and even disassembly of the product. In case
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of the use phase, the agents should reside in a system that is connected to the
product, but should be available at the moment the product itself is broken.
This is comparable to the case of the so-called black box in aeroplanes. There
are several possibilities, depending on the type of product:

— The agent runs on its own separate hardware that is closely tied to the prod-
uct;

— The agent runs on the hardware of the product but stores information on a
special place on the product itself. This information can be recovered after
breakdown;

— The agent runs on the hardware of the product but stores information on a
remote system;

— The agent runs on a remote system that has a continuous connection;

— The agent runs remote on a system using a ‘connect when necessary’ approach.

The last two options require a stub or entry point for the remote agent to make
contact with the product system. The connection with the environment could be
established by wired or wireless sensors or sensor networks as well as computer
subsystems in the product. Interaction with humans in the environment could
be established by a messaging system or human computer interface (HCI).

4 Discovery Robot

This section gives details of the a discovery robot that was built by our research
group. To investigate the implementation of the product agent during the use
phase, the product agent was embedded in this complex technical system. To
understand the details of the product agent implementation, it is important to
have a global understanding of the construction and working of the discovery
robot. In this section we present a short overview of the robot capabilities, the
architecture, the software and an example of a result produced by the robot
system.

4.1 Robot Capabilities

The robot that will be used as a platform for the product agent is capable of
mapping a room with objects by using a laser scanner. The robot can move by
itself using the map that has been created by the laser-scan. It is possible to
direct the robot to a certain point in its map. The robot is also capable to avoid
newly introduced obstacles and other moving objects. This robot is used as a
system that will be enhanced by a product agent.

4.2 Architecture

Figure 4 shows a picture of the hardware of the robot. Two motors are connected
to two wheels. Two swivelling wheels are added to keep the platform in balance.
Attached to the platform is the laser scanner, printed circuit boards, a WiF'i
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transceiver, a camera and a set of ultrasonic sensors placed in a circle at the
edges of the platform. These ultrasonic sensors are not yet used at this stage.
A block diagram of the robot is depicted in Fig. 5. An important aspect is shown
in this figure. An external computer is part of the system. This computer is used
to do the heavy calculation to generate the map information, to display the map
in real-time and to plan the path the robot has to follow. A wireless Ethernet
connection (WiF1i) connects the robot with this external system.

4.3 Software

The software for this robot is based on ROS. ROS is an acronym for Robot Oper-
ating System [8]. ROS is not really an operating system but it is middle-ware
specially designed for robot control and it runs on Linux. In ROS a process is
called a node. These nodes can communicate by a publish and subscribe mech-
anism. In ROS this communication mechanism is called a topic. Figure 6 shows
the relation between two nodes and one topic.

A node that produces data can publish this in one or more topics. Other
nodes interested in these data can subscribe to one or more topics. TCP/IP is
used to actually carry out the communication. This platform has been chosen
for the following reasons:

Fig. 4. Discovery robot.
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Fig. 5. Block diagram of the robot.
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Fig. 6. Two nodes connected by a topic.

— open source, so easy to adapt, compliant with a lot of open source tools;

— wide support by an active community;

— huge amount of modules already available;

— nodes that are parts of ROS can live on several different platforms, assumed
that a TCP/IP connection is available.

The mapping is done using SLAM. SLAM stands for Simultaneous Localisation
And Mapping [9]. This module was already available in ROS and fitted well to
the on board laser scanner.

4.4 Results

The results of a mapping in progress are displayed in Fig.7. Here the robot
mapped the corridors in a rather big building with three wings. The corridors
are plotted as a light grey shape. The length of the longest corridor in this map
is about 50 m. In this stage, the robot is not yet autonomous, but is controlled
by a human operator that uses the external system and the on-board camera to
guide the robot during the mapping. When the map is completed, the robot is
capable to navigate autonomously to a given point in the map, even if new or
moving obstacles are introduced in the mapped environment.

Fig. 7. 2D mapping of a building.

5 Embedded Product Agent

This section describes the product agent and also shows some results of its
functioning.
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5.1 Functional Requirements
The product agent that is added to the robot has the following requirements:

— monitoring status of the system or subsystems;

— monitoring health of the system or subsystems. The difference between health
and status will be explained in the next subsection;

— react only in case of emergency;

— the robot should operate without the agent;

— making useful data available to the outside world, like construction details,
materials used and its localisation in the robot.

5.2 Implementation

The first step in implementing this robot is to make an overview of information
available in the system. Different types of information are considered:

1. status: is data available and of interest to the product agent and/or the end-
user;

2. health: has to do with the condition of components that have mechanical
parts or deteriorate during use;

3. alarm: an internal condition that could result in a troublesome situation or
disaster;

4. additional information: this is the information that was conceived in earlier
phases of the life-cycle.

Because the ROS environment is already available, it seems a natural choice
to use this environment to implement the agent. The agent consists of ROS-
nodes, ROS topics and some other subsystems. In Fig. 8 the internal modules
of the agent are shown. All parts surrounded by an ellipse are ROS nodes. The
rectangles represent topics. For human interfacing a small web server is included.
This server is capable to serve static pages, containing technical data about the
robot as well as dynamic pages containing data collected during use. Figure8
shows the internal parts of the product agent and Fig. 9 shows the product agent

~

System_logger

health Web_server

R_motor_monitor
status

L_motor_monitor

o

alarm Alarm_Handler

\ Product Agent J

Fig. 8. Architecture of the product agent.
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WiFi — Web_client
Motors Data_storage
Battery Agent .

Linux OS OS Shutdown

Fig. 9. The product agent and its environment.

in its the environment. The product agent interacts with its environment. The
agent gets its information from the robot and its operating system. The agent
will log this information and can also display information on a web browser (web
client) by using the aforementioned webserver. A shutdown can be performed in
case of a certain alarm condition.

5.3 Monitoring Status

The monitoring function is an important aspect of the product agent. In our
prototype a selection of possibilities was made. A node will monitor the use of
the motors and this will be available to subscribers of the health topic. The status
topic is comparable to the health topic, but here information is made available
that is not a result of the wear and tear of for example mechanical parts or of the
de-charging of the battery, but is a result of measurements of interesting data like
the strength of the WiFi signal. There is one topic that can trigger a node that
will issue a system shut-down. This topic is called the alarm topic. Apart from
these nodes, the agent can also retrieve its information directly from the Linux
environment. Commands are available to get the CPU-load and memory usage.
The pseudo filesystem /proc offers also a wealth of technical information that
can be useful for the product agent. Examples of what can be retrieved from the
product agent are plots displayed in the following two figures. Figure 10 shows
a picture of the strength of the WiFi signal. The robot first moved away from
the wifi access point and then returned towards the wifi access point again. The
plotted data show a global decreasing and again an increasing trend but there
are also strong fluctuations. These fluctuations are normal and due to all kinds
of reflections and interference that occur in an indoor environment. In Fig. 11
the load of the processor is plotted. This curve is quite smooth and shows that
the available processor power is adequate to operate the robot platform.

5.4 Monitoring Health

In the robot there are two candidates for monitoring the health. The motors
and the battery. The battery should be monitored because of the fact that, like
almost all rechargeable batteries, it can be re-charged and de-charged a finite
amount of times and information of its remaining charge is valuable information
to the end-user that operates the robot. In Fig. 12 the status of the battery is
plotted during 90 min of operation of the robot. A steady decrease is shown as
might be expected.
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5.5 Alarm Conditions

In this section an alarm condition will be described. The fact that the type of
battery that is used in the robot should never be completely discharged gives
rise to such an alarm condition. When the charge capacity drops below 10% a
system shut-down action should be triggered. By shutting down the system, the
discharge of the battery will stop, thus preventing the loss of a rather expensive
component. To implement this feature an Analog to Digital Converter (ADC)
should be available to check the status of the battery.

5.6 Extra Functionality

The extra functionality that is offered by our implementation is embedded docu-
mentation and a mapping of materials and components that are of interest dur-
ing the recycle phase. The information is offered using the same web-interface
as was used in the monitor section previously discussed. The documentation is
comparable to printed documentation that could be bundled with any device.
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Fig. 12. Charge status of the battery.

Fig. 13. Discovery robot subsystems.

This includes a user manual, a technical manual and a maintenance manual
including a trouble shooting section.

In Fig. 13 a webpage is displayed showing the subsystems of the robot. This
allows the user to select a subsystem to get more detailed information about
that specific subsystem. Important information for the recycle phase is also
offered using the web interface. Two different approaches are implemented. Using
the web interface from Fig. 13, one could point at any part of the robot and
receive information about the ‘ingredients’. An example is given in Fig. 14. This
is the result of selecting the wheels of the web page shown in Fig.13. As a
response the information about the material available in these parts is displayed.
The materials as well as other relevant information is shown in Fig. 14.

Another approach is presented in Fig.15. A list of interesting materials is
presented and by clicking on an item, the subsystems containing this material
are highlighted as shown in Fig. 15, where the subsystems containing gold are
shown. These examples only show the interface designed for human users. The
information is also available in a machine readable form using XML.
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Fig. 14. Motor and wheel subsystem.

ADRIE :: Materials

This is a list of materials that the robot uses. Click on a material to see in which components it is used.

rubber Material used: gold
. aluminium
. iolg
. olyiner
e copper
. platinum
o rhodium
lithium

indium

Fig. 15. Where is the gold hidden?

6 Related Work

The work on ROS played a very important role in this research. By using ROS
we had a stable and well developed platform for our robot. The use of proven
modules prevented reinventing solutions to already solved problems. The work
on discovery robots is huge, [10,11] show some developments focussing on mul-
tiagent and swarm solutions. Agents for distribution, logistic applications and
product manufacturing already exist [12]. In most situations agents represent
human operators or negotiators. Jennings and Bussmann introduce the concept
of a product agent, in their terms workpiece agents, during the production. These
agents do not however perform individual product logging. The use of a product
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is also studied by observing and/or interviewing end-users [13,14]. Some soft-
ware applications do connect with their originating company to report the use
by end-users.

Several proposals and implementations of including monitoring and docu-
mentation within the product itself are made and implemented. Burgess [15,16]
describes Cfengine that uses agent technology in monitoring computer systems
and ICT network infrastructure. In Cfengine, agents will monitor the status and
health of software parts of a complex network infrastructure. These agents are
developed and introduced in the use phase of this infrastructure and focus on
the condition of the software subsystems. In our approach this monitoring func-
tion for hardware and software is the role of the product agent but that role has
been played already by an agent during the manufacturing phase where valu-
able information that can be useful to the end-user has been collected. Actually
this product agent in the use phase is not necessarily the same software entity
that played the role of product agent during production, but the belief base of
the product agent is kept intact and handed over to a new incarnation of the
product agent.

In [17] an integrated diagnostic architecture for autonomous underwater vehi-
cles is described. In this work the focus is on an intelligent system for system
diagnostics. The architecture uses a variety of domain dependent diagnostic
tools (rulebase, model-based methods) and domain independent tools (corre-
lator, topology analyzer, watcher) to first detect and then diagnose the location
of faults. This work could be used and combined with the model present in the
current paper, because the artificial intelligence based techniques can applied
in the product agent. Our work expands the idea of diagnosis and related data
to the whole lifecycle of a product. By using this same agent again in the final
phase of the life-cycle, component reuse and smart disassembly is a very impor-
tant aspect when it comes to recycling of rare or expensive building material.
The status of the quality of used sub-parts is available from and presented by
the product agent.

In [18] the concept of the ‘Internet of Things’ is explained by the first user of
the term ‘Internet of Things’. The main idea of this concept is that the content
of Internet is not only built and used by humans and therefore largely depending
on humans, but the content will also be built by things connected to the Internet
that are programmed to do so. The work presented in the current paper shows
a possible technique to implement this concept of the ‘Internet of Things’.

7 Discussion

In this paper the focus was on implementing a product agent in a complex
product. This product was a discovery robot but could have been any other
technical system. For every system the requirements for a product agent should
be specified. However some global specifications are applicable for every system.
The choices for monitoring subsystems made in this research were limited only
to a few due to the fact that a proof of concept was the goal of this research.
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The actions the agent can perform are in this case displaying and storing system
status and system health status as well as system design and technical data.
The agent is not influencing the robot itself however one alarm condition is
implemented resulting in a system shut-down. It is not a difficult task to expand
the capabilities of the agent. The robot itself will be further developed. For the
product agent a wide variety of future enhancements is possible, especially when
product agents of a certain type of product are united in a multiagent system:

— A model that builds a failure overview of subsystems. This way an accurate
insight in the reliability of subsystems and components can be obtained. This
model only works if a huge amount of product agent are participating.

— On behalf of the end-user, a product agent can report component failure and
suggest or order replacement parts.

— An interesting model to implement the previous feature could be a market-
place in cyberspace where product agents can negotiate with other product
agents about exchanging parts.

In all these enhancements special attention should be paid to security and the
protection of privacy of the end-users of product agent enhanced systems. An
important aspect is the fact that the agent should store its information at a safe
place in case the robot hardware will fail. In our case this is the remote system
where the agent has the possibility to store important data.

8 Conclusions

Product agents can play an important role in every part of the life cycle of a
product. An important property of these agents is that they should have no direct
impact on the product or system they are living in. However useful information
should be collected and in case of disaster, these agents should keep a log of the
events leading to the disaster.

Product agents can be a virtual digital equivalent of a product and this
concept will be an enabling technology in implementing the internet of things.

The concept presented here is a natural evolution of the concept of using
agents during production. However in case of products made by production tech-
nology not based on agent technology, a product agent can be added afterwards,
as described in our case study. The information that could have been collected
during design and production is added afterwards and will play a role in the
recycle phase or maintenance during use phase.

The ROS platform proved to a very good platform to implement the product
agent. This is because of the fact that the data-communication infrastructure
between nodes is already implemented in a way that helps a lot in both the
design and the implementation of the product agent.
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Abstract. We introduce QAPI (quantified ATL with probabilism and
incomplete information), which extends epistemic and probabilistic ATL
with quantification of strategies and a flexible mechanism to reason about
strategies in the object language. This allows QAPI to express complex
strategic properties such as equilibria and to treat the behavior of the
“counter-coalition” in a very flexible way. We provide bisimulation rela-
tions, model checking results, and study the issues arising from the inter-
play between quantifiers and both epistemic and temporal operators.

Keywords: ATL - Multi-agent systems - Epistemic logic

1 Introduction

ATL (Alternating-time temporal logic) [2] is a logic to reason about strategic
properties of games. Its strategy operator ((A)) ¢ expresses “there is a strat-
egy for coalition A to achieve ¢.” We introduce QAPI (quantified ATL with
probabilism and incomplete information), a powerful epistemic and probabilistic
extension of ATL with quantification of and explicit reasoning about strategies.
QAPT’s key features are:

— Strategy variables allow explicit reasoning about strategies in the object
language,

— A generalized strategy operator flexibly binds the behavior of some coalitions
to strategies, while the remaining players exhibit standard ATL “worst-case”
behavior,

— Quantification of strategy variables expresses dependence between strategies.

Existential quantification of strategies already appears as part of the ({.))-
operator of ATL, however QAPI makes this explicit and allows separating the
quantification of a strategy and the reasoning about it in the formulas. To this
end, the logic can reason directly about the effect of a coalition following a
strategy and express statements as “if coalition A follows strategy s, then ¢
is true.”

QAPIT generalizes e.g., ATL*, strategy logic [5], ATLES [16], (M)IATL [1],
ATEL-R* and ATOL [11]. QAPI can reason about equilibria and express that
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a coalition knows a strategy to be successful. This requirement is often useful,
and is e.g., hard-coded into the strategy definition in [13]. In addition, QAPI
features probabilistic reasoning.

We illustrate QAPT’s advantages with an important example. When evaluat-
ing ((A)) ¢ in ATL, the behavior of players not in A (we denote this “counter-
coalition” with A) is universally quantified: A must succeed for every possible
behavior of A. Hence A has a strategy for ¢ only if such a strategy works even
in the worst-case setting where

— A’s only goal is to stop A from reaching the goal,
— the players in A know A’s goal,
— A’s actions may depend on unknown information.

These issues are particularly relevant when players have incomplete infor-
mation about the game. Variants of ATL for this case were suggested in e.g.,
[9-11,13,14]. These logics restrict agents to strategies that can be implemented
with the available information, but still require them to be successful for every
possible behavior of the counter-coalition. Hence the above limitations still
apply—for example, “A can achieve ¢ against every strategy of A that uses
only information available to A” cannot be expressed.

QAPT’s direct reasoning about strategies provides a flexible way to specify
the behavior of all players, and in particular addresses the above-mentioned
shortcomings with a fine-grained specification of the behavior of the “counter-
coalition” A. For example, the following behaviors of A can be specified:

— A continues a strategy for their own goal—i.e., A is unaware of (or not inter-
ested in) what A does,

— A follows a strategy tailor-made to counteract the goal ¢, but that can
be implemented with information available to A—here A reacts to A with
“realistic” capabilities, i.e., strategies based on information actually available
to Z,

— A plays an arbitrary sequence of actions, which does not have to correspond
to an implementable strategy—this is the pessimistic view of the logics men-
tioned above: A must be successful against every possible behavior of the
players in A.

As we will demonstrate, detailed reasoning about the counter-coalition is
only one advantage of QAPI. Our results are as follows:

1. We prove that QAPI has a natural notion of bisimulation which is more
widely applicable than the one in [14], even though QAPI is considerably
more expressive. In particular, our new definition can establish strategic and
epistemic equivalence between finite and infinite structures.

2. We discuss the effects of combining quantification, epistemic, and temporal
operators in detail. The combination of these operators can lead to unnatural
situations, which motivate the restriction of QAPI to prefix quantification.
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3. We prove complexity and decidability results for model checking QAPI. In
the memoryless case, QAPI’s added expressiveness compared to ATL* comes
without significant cost: The complexity ranges from PSPACE to SEXPTIME
for games that are deterministic or probabilistic. Hence the deterministic
case matches the known PSPACE-completeness for ATL* with memoryless
strategies [13]. As expected, the problem is undecidable in the perfect-recall
case.

Related Work. We only mention the most closely related work (in addition to
the papers mentioned above) from the very rich literature. QAPI is an extension
of the ATL*-semantics introduced in [14], and utilizes the notion of a strategy
choice introduced there. In this paper, we extend the semantics and the results
of [14] by the use of strategy variables, quantification, and explicit strategy
assignment, which leads to a much richer language. QAPI’s approach of allowing
first-order like quantification of strategies is very similar to the treatment of
strategies in strategy logic [5]. However, the combination of epistemic aspects and
quantification reveals some surprising subtleties, which we discuss in Sect. 4, and
to the best of our knowledge, there are no results on bisimulations for strategy
logic.

Relaxations of ATL’s universal quantification over the counter-coalition’s
behavior were studied in [1,16] for the complete-information case. In [15], QAPI
is used to specify strategic and epistemic properties of cryptographic protocols,
the bisimulation and model checking results from the present paper are used to
obtain a protocol verification algorithm.

2 Syntax and Semantics of QAPI

2.1 Concurrent Game Structures

We use the definition of concurrent game structures from [14], which is based on
the ones from [2,7,11]):

Definition 1. A concurrent game structure (CGS) is a tuple C = (X, Q,P, 7, A,
d,eq), where

— X and P are finite sets of players and propositional variables, Q is a (finite
or infinite) set of states,

— 7: P — 29 is a propositional assignment,

- A is a move function such that A(q,a) is the set of moves available at state
q € Q to player a € X. For AC X and q € Q, an (A, g)-move is a function ¢
such that c(a) € A(g,a) for all a € A.

— ¢ is a probabilistic transition function which for each state q and (X, q)-move
¢, returns a discretel probability distribution 5(q,c) on Q (the state obtained
when in q, all players perform their move as specified by c),

L A probability distribution Pr on Q is discrete, if there is a countable set Q' C Q

such that > __,/ Pr(q) = 1.
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— eq is a function eq: {1,...,n} x X — P(Q x Q), where n € N and for each
1€ {l,....,n} and a € X, eq(i,a) is an equivalence relation on Q. We also
call each i € {1,...,n} a degree of information.

Moves are merely “names for actions” and only have meaning in combination
with the transition function §. A subset A C Y is a coalition of C. We omit “of
C” when C is clear from the context, omit set brackets for singletons, etc. The
coalition X\ A is denoted with A. We write Pr (6(q,c) = ¢') for (6(q,c)) (¢), i-e.,
consider (g, ¢) as a random variable on Q. The function eq expresses incomplete
information: It specifies pairs of states that a player cannot distinguish. By
specifying several relations eq(1,a),...,eq(n,a) for each player, we can specify
how much information a player may use to reach a certain goal. This is useful
e.g., in security definitions [6,15].

C is deterministic if all distributions d(g, ¢) assign 1 to one state and 0 to all
others, C has complete information if eq(i,a) is always the equality relation.

2.2 QAPI Syntax: Strategies, Strategy Choices, and Formulas

The core operator of QAPI is the strategy operator: ((A:Si, B: Sg})?ago
expresses “if coalition A follows S; and B follows S,, where both coalitions
base their decisions only on information available to them in information degree
i, the run of the game satisfies ¢ with probability > «, no matter what play-
ers from AU B do.” Here, S; and Sy are variables for strategy choices which
generalize strategies (see below). While similar to the ATL-operator ((.)), the
strategy operator is much more powerful: It allows to flexibly bind a strategy
to a coalition. This allows, for example, to model that a coalition commits to a
strategy (in ATL*, a strategy is revoked when the ({.))-operator is nested) and
much more (see examples below).

Definition 2. Let C be a CGS with n degrees of information. Then strategy
formulas for C are the ones generated by the following grammar:

Ps :pl(Ps/\<P8|ﬁ(pS| <<A1 1St Am:sm»i‘a@pl’(&,iws
©p =05 | 0p A pp | 0 | Xy | Pop | X1, [ Uy

where p is a propositional variable, A, Ay, ..., A, are coalitions, 1 < i < n,
0<a<1, and 4 is one of <,<,>,>, and ¥ is a path formula, and S; is an
A;-strategy choice variable for each i, and k € {D, E,C'}.

Formulas of the form ¢, (pp) are called state formulas (path formulas). The
values D, E, and C' indicate different standard notions of knowledge, namely dis-
tributed knowledge, shared knowledge (“everybody knows”), and common knowl-
edge. We use standard abbreviations like o V1) = = (= A1), O = trueUgp, and
Op = =0—¢p. A ({.))-formula is one whose outmost operator is the strategy oper-
ator. In a CGS with only one degree of information, we omit the ¢ subscript of
the strategy operator; in a deterministic CGS we omit the probability bound <« «
(and understand it to be read as > 1). Quantified strategy formulas are strategy
formulas in which the appearing strategy choice variables are quantified:
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Definition 3. Let C be a CGS, let p be a strategy formula for C such that every
strategy choice variable appearing in ¢ is one of S1, ..., S,,. Then

VSﬁSgVSg, . HSnﬁp
is a quantified strategy formula for C.

Requiring a strict V3...-alternation is without loss of generality and can be
obtained via dummy variables. On the other hand, allowing quantification only
in the prefix is a deliberate restriction of QAPI, the reasons for which we discuss
in detail in Sect. 4.

o—a(__ .

a:1
a/o_“ oK
m ok

Fig. 1. Strategy choices.

Definition 4. For a player a, an a-strategy in a CGSC = (X,Q,P, 7, A,d,eq)
is a function s, with sq(q) € A(q,a) for each q € Q. For an information degree i,
Sq is d-uniform if g1 ~eq,(a) G2 implies s4(q1) = s4(g2). For A C X, an A-strategy
is a family (sq)aca, where each s, is an a-strategy.

Our strategies are memoryless: A move only depends on the current state, not
on the history of the game. With incomplete information, the question how
players can identify suitable strategies is relevant. Consider the CGS in Fig. 1.
The players are a and b, the game starts in ¢gg. The first move by b controls
whether the next state is ¢) or ¢i. For x € {0,1}, ¢¥ is always followed by ¢3.
In g%, the move 0 leads to a state satisfying ok iff z = 0; move 1 is successful iff
x = 1. Player a cannot distinguish ¢J and ¢3. We ask whether he has a strategy
leading to ok that is successful started in both ¢ and ¢f. If a can only use
strategies, he must play the same move in ¢J and in ¢4, and thus fails in one of
them. However, if a can decide on a strategy and remember this decision, a can
choose in ¢? (g) a strategy playing 0 (1) in every state, and be successful.
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Strategy choices [14] formalize how a player chooses a strategy, and distin-
guish between states where a strategy is identified and where it is ezecuted: In
state ¢§ or ¢i, player a uses his information to choose the strategy that he follows
from then on. When using only strategies, the knowledge has to be present at the
time of performing a move. Hence strategy choices give players additional capa-
bilities over the pure memoryless setting, by allowing to remember decisions. In
contrast to the perfect recall case, where players remember the entire run of a
game, there is no significant computational price, whereas perfect recall makes
the model checking problem undecidable (cp. Sect. 6).

Definition 5. A strategy choice for a coalition A in a CGSC = (X,Q,P, 7, A,
d,eq) is a function S such that for each a € A, q¢ € Q, each ({.));-formula ¢,
S(a,q,¢) is an i-uniform a-strategy in C, and if q1 ~eq,(a) G2, then S(a, q1, ) =
S(a7 q2, 30)

Note that one input to a strategy choice is the goal a coalition is supposed to
achieve, which is naturally specified with a formula. The formula also specifies the
coalition working together to achieve the goal. For a coalition A and a strategy
choice S for A, the strategy chosen for A by S in a state ¢ to reach the goal ¢ is
the A-strategy (sa),c4 With s, = S(a, g, ) for each a. We denote this strategy
with S(A4, ¢, ). Strategy choices model the decision of a single player to use a
certain strategy. For coalitions, they model strategies agreed upon before the
game for possible goals. This allows their members to predict the each other’s
behavior without in-game communication, which is helpful in e.g., coordination
games.

The strategy operator binds the behavior of the players in the appearing coali-
tions to the strategies specified by the assigned strategy choices. The remaining
players (the “counter-coalition”) are treated as “free agents” in QAPI: Every
possible behavior of these players is taken into account. Such a behavior may
not even follow any strategy, for example they may perform different moves
when encountering the same state twice during the game. This is formalized as
a response (see. [14]) to a coalition A, which is a function r such that r(t,q) is a
(A, g)-move for each t € N and each q € Q. This models an arbitrary reaction to
the outcomes of an A-strategy: In the i-th step of a game, A performs the move
r(i,q), if the current state is ¢q. Essentially, a response is an arbitrary sequence of
actions where we additionally ensure that only actions applicable in the relevant
states are chosen.

When a coalition A follows the strategy s4, and the behavior of A is defined
by the response r, the moves of all players are fixed; the game is a Markov
process. A path in a CGS C is a sequence A = A[0]A[1]... of states of C.

Definition 6. Let C be a CGS, let sq be an A-strategy, let r be a response to
A. For a set M of paths over C, and a state ¢ € Q, Pr(q— M |sa + 1) is the
probability that in the Markov process resulting from C, sa, and r with initial
state q, the resulting path is in M.

A key feature of QAPI is the flexible binding of strategies to coalitions, which
is done using the strategy operator. As a technical tool to resolve possible
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ambiguities, we introduce a “join” operation on strategy choices: If the coali-
tions Ay, ..., A, follow strategy choices Sy, ..., S,, the resulting “joint strat-
egy choice” for AyU---UA, isS;0---08S,,. This is a “union” of the S; with a
tie-breaking rule for players appearing in several of the coalitions: These always
follow the “left-most” applicable strategy choice. We define the (associative)
operator o as follows:

Si(a,q,¢), ifac Ay,
S S y Yy =
1052(a,q,¢) {SQ(U:,CLSO); ifae Ay \ A

This definition ensures that if a coalition A; U---U A4,, is instructed to follow
the strategy choice Sq o ---0S,, then even if A; N A; # (), for each agent the
strategy choice to follow is well-defined.

2.3 QAPI Semantics: Evaluating Formulas

We define QAPI’s semantics in two stages: We first handle strategy formulas,
where instantiations for the appearing strategy choice variables are given. This
naturally leads to the semantics definition for quantified formulas. Our semantics
is natural: Propositional variables and operators are handled as usual, tempo-
ral operators behave as in LTL, and ((A; : S1,..., A, : Sn>>i2a 1) expresses that
when coalitions A;, ..., A, follow the strategies chosen for the goal ¥ by the
strategy choices S1, ..., S, with information degree i available, the formula
is satisfied with probability > «. K expresses group knowledge.

Definition 7. Let C = (X, Q,P, 7, A,d,eq) be a CGS, let = (S1,...,Sy) be a
sequence of strategy choices instantiating® the strategy choice variables S, ...,

Sn- Let ¢ be a state formula, let 11, Yo be path formulas, let A be a path over
Q, lett € N. We define

- .
-C,S,qEpiffqen(p) forpeP,
— conjunction and negation are handled as usual,

~ (M), S B iffC S A E e,

(A, S EXun iff (0t +1),S o, -
- (M), S | Pyn iff there is some t' <t and (\t'), S =11,
(M), S EXTy ifft>1 and (\t—1), S E 4,
~ (M), S b= ¢nUshs iff there is some i > t such that (\4), S k= ¥ and
()\,]) S E iy forallt <j<i,

q
ol

{D,E,C}, then C,g),q = ICffm-gp iff C,?,q’ E o for all ¢ € Q with
q~"% .4 (see below),

2 Le., if S; is an A-strategy choice variable for some coalition A, then S; is a strategy
choice for A.
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=P
C, 4= (( S Siry ey Ain Si WX 0y iff for every response r to the coali-
tion A;, U - U AZ o, we have
(q H{ S = wl} |Siyo--- 05, (A, U UAi,,q,¢1) +7") <o

The relations Ng’i, Nﬁ’i, and Ni,i referenced in Definition 7 represent different
possibilities to model group knowledge. For a coalition A and an information
degree 7, they are defined as follows:

- Ng,i: Nuecaeq(i, a) expresses distributed knowledge: Kﬁ)igo is true if ¢ can be
deduced from the combined knowledge of every member of A (with respect to
information degree ),

- Nf?;l: Uacaeq(i, a) models shared knowledge (“everybody knows”): ICA P s
true if every agent in A on his own has enough information to deduce that %)
holds (with respect to information degree i),
wi ; is the reflexive, transitive closure of NE, ;- This models common knowledge:
ng’Z«p expresses that (in A, with information degree i), everybody knows that
@ is true, and everybody knows that everybody knows that ¢ is true, ..., etc.

These concepts have proven useful to express the knowledge of a group. See [§]
for detailed discussion. The semantics for the quantified case are defined in the
natural way:

Definition 8. Let C be a CGS, let v = VS13S2VS3...3S,p be a quantified
strategy formula for C, let q be a state of C. Then 1) is satisfied in C at g, written
C,q E ¥, if for each i 