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Abstract. Object detection has long been considered a binary-
classification problem, but this formulation ignores the relationship be-
tween examples. Deformable part models, which achieve great success in
object detction, have the same problem. We use learning to rank methods
to train better deformable part models, and formulates the optimization
problem as a generalized convex concave problem. Experiments show
that, using same features and similar part configurations, performance
of detection by the ranking model outperforms original deformable part
models on both INRIA pedestrians and Pascal VOC benchmarks.

Keywords: Object Detection, Deformable Part Model, Learning to
Rank.

1 Introduction

Object detection is a task for localizing objects of specific categories, it has
been playing a critical role in high-level image understanding. Previous models
formulate object detection as a binary classification problem[9,17,13]. All can-
didate detections are judged a true object area or not. These detections can be
sampled either by sliding windows on a feature pyramid[9,13], or from a shrunk
space generated by objectness models[1,17].

Here comes the problem: Assuming that the feature of a detection candidate
is x, and with its label y. Classification models only focus on the relationship
between x and y, while ignoring relationships between different x. We argue that
these types of relationships are also important: for example, if a xa is better than
xb(that is, candidate a with feature xa have a higher overlap ratio with some
objects than candidate b with feature xb), an ideal model should give a a higher
score. Similarly, if two detections have close best overlap ratios, the model should
give them close scores. Classification models fails to model these situations. As
Figure 1 shows, we focus on ”Why is a detection better than another” rather
than ”Why is a detection true”.

This paper aims to overcome the shortcomings of previous object detection
mentioned above. Our contributions are:

– We provide a ranking perspective on object detection. To search objects from
candidate space, three types of information are available:item-wise, pair-wise
and list-wise. Classification models use only item-wise information, while our
model uses both pair-wise and list-wise information.
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Fig. 1. In the image on the left-hand side, detection a and b are both true detections,
but a is definitely a better detection than b; In the image on the right-hand side, c and
d are both false detections whose overlap ratios with ground truth objects are below
0.5, but still we can tell c is better than d

– We propose a new objective function based on learning to rank theory, and
apply it on deformable part models[13]. The objective function is a variant
of LambdaRank[6].

– We formulate the optimization problem as a generalized-CCCP problem,
and solve it in a similar way as CCCP[18].

We have a brief review on background works in section 2. The details of
ranking formulation for object detction are discussed in section 3.2. In section 3.3
we describe our objective function. Section 4 shows the procedure of optimizing
the objective function. Section 5 shows the results on well-known object detection
datasets. In section 6 we conclude our work and discuss possible improvements.

2 Related Work

Research on generic object detection is originating from person detection[9].
From then on sliding-window methods with HOG pyramids have been a main
stream on object detection. For every category of objects, sliding-window build
a set of templates to represent all its poses. During training, cropped objects and
backgrounds are extracted to train the template. During detecting, a matching
score is computed at every position in the feature space, then the position with
scores above a threshold is considered to be an object position[9].

Deformable part models(DPM)[13] have greatly pushed the research on object
detection. As a variation of sliding windows, DPMs establish a set of hierarchical
templates for every category of objects. Each template is organized into a root
and its parts. Not only the appearance(vision features) of roots and parts, but
also the parts’ relative positions(structural features) to the root are taken into
consider, so that DPMs can tolerate a certain degree of deformation.

Our work is mainly based on DPMs. We follow the definition of hierarchical
templates, but improve the training procedure. Unlike an equivalent conversion
from latent svm to latent struct svm[20], we use a totally new objective function
based on the theory of learning to rank, and adopt it suitable for object detction.
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We notice that there are several works on strong supervised models[4,2] that
need additional annotations for parts. Additional annotations may help but re-
duces the difficulty of detection task. Our model can be applied on such models
easily.

The work from Balschko[3] uses ranking svm[15] to model object detection,
it is similar to our work in the sense that we both want to capture the essence
why a detection is better than another. But there are significant differences:
they use ranking to handle unlabeled data rather than take object detection as
a ranking problem; they do not model the latent variables while we do, they use
a svm-style objective function while we use a cross entropy style one, which is
more flexible for adding list-wise information.

Learning to rank methods use cross entropy to measure distribution diverge
between empirical probability and model probability[5]. LambdaRank[6] mod-
ifies the form of objective function by interpolating information retrieval mea-
sures. We adopt LambdaRank for more efficient computing in object detection.

During optimization of the cross-entropy style objective function, we find it an
ensemble of Convex Concave Problems[18]. We also notice that finding a convex
lower bound for the concave part of every CCCP would make the whole problem
convex, so the two-stage optimization for original CCCP is suitable for our new
problem.

3 Model

3.1 Deformable Part Models: A Review

Before introducing our model, let us have a brief review on deformable part
models.

An object detection model defines a score function for detections. The function
gives a confidence on the detections. Let x be the position of detections, I be
the image on which detection is performed, a one-layer linear score function is
defined as:

f(x, I;ω, b) = ω ·HI(x) + b (1)

where HI is the feature pyramid, and Hi(x) is the features covered by x. b is a
bias.

DPMs introduce parts into original flat templates. Because locations of parts
are un-observed variables, they may take any position in the image. Let position
of parts be z, then the score function of DPM is simply a maximum of all possible
zs:

f(x, I;ω) = max
z

g(x, z, I;ω) (2)

The function g, which is a score function for joint x and z, is defined as:

g(x, z, I;ω) = ωa
0 ·HI(x) +

K∑

k=1

[ωa
k ·HI(zk)− ωd

k · d(x, zi, vi)] + ωb (3)
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Where d(x, zi, vi) is the deformation function for zi relative to x. vis are ideal
anchors for the ith part, they could be defined either heuristically[13] or by
pre-defined rules[19]. We use ω to represent all parameters: ωa for parameters
of appearance, ωd for parameters of deformation, and ωb for bias. Note that
g(x, z, I;ω) is linear function of ω

To train such functions, DPM then defines an svm-style loss function. Suppose
we have n samples (xi, Ii, yi), where yi ∈ +1,−1 representing whether xi on Ii
is a true detection or not.

L(ω) =
1

2
‖ω‖2 + C ·

n∑

i=1

max(0, 1− yif(xi, Ii;ω)) (4)

3.2 Ranking Perspective on Object Detection

Classical learning to rank systems focus on selecting relevant items from a set
of candidates. Object detection is similar to these models, if we interpret the
searching space of object detection as a set of candidates. Following the way of
Pascal VOC evaluation[11], the set of candidates are all positions of all images
in a dataset. The aim of object detection is then selecting candidates that have
more overlap ratios with ground truth objects.

In information retrieval systems, when modeling the relationship of some sam-
ples x and their corresponding labels y, there are three types of information:

– item-wise information, the direct relationship between x and y.
– pair-wise information, the relationship between a paired (xi, xj).
– list-wise information, the importance of x’s position in the ordered list.

The key difficulties for applying ranking models on object detection is its large
space of candidates. All rectangles in images are candidates to rank. Sliding win-
dow methods largely reduce the number of candidates by making the constraint
that all candidates should be in certain sizes[9], while in recent years there are
several useful technologies directly aiming to shrink the space of candidates[17,8].

We use a sliding window way to generate candidates, but it is very convenient
to apply our model on a shrunk space of candidates.

3.3 Ranking DPM

Different from original DPM, we do not generate detections with their labels, we
organize samples into a list of pairs. Instead of representing the list explicitly,
we use a set of pairs, J , to represent the list. Every pair (i, j) in the set J means
that detection xi has a higher overlap ratio than xj with some ground truth
objects. Then the ordered list defined by J is strict partially ordered[16], and
contains sufficient information of relationships between examples.

We define a simple empirical distribution on every pair (i, j) in J :

P̄ij ≡
{
1, (i, j) ∈ J
0, (j, i) ∈ J

(5)
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The empirical probability is a statistical measure of the pair-wise information
in training datasets. During the train stage of our model, the score function is
applied on each detction, and the score outputted would also generate a model
distribution. We define it in a form of sigmoid function:

Pij ≡ 1

1 + e−σ(fi−fj)
(6)

For simplicity, we use fi to denote f(xi, Ii;ω).
The two distributions should be as close as possible. We use cross entropy to

measure the divergence of them:

Cij = −P̄ij log(Pij)− (1− P̄ij)log(1− Pij) (7)

Combining Eq.(5) ,(6) and (7), we got:

Ci,j = log(1 + e−σ(fi−fj)) (8)

To some extent, Eq.(8) can be a loss function on a single pair. Before summing
up the Cijs, it is necessary to examine how important the pair is in the whole
strict ordered list. Note that Cij is an increasing function of fi − fj , and an
obvious fact is that for a pair of detections, they should be scored more discrim-
inatively when they have bigger differences on overlap ratios. So it is reasonable
to give the pairs weights according to the differences of overlap ratios.

This configuration is similar to [10], while we replace the changes of informa-
tion retrieval measures with the differences of overlap ratios. As we discussed
above, differences of overlap ratios plays a role similar to the changes of in-
formation retrieval measures, they both denote the importance of the binary
relationship within the whole list.

Then we have the following loss function:

L(ω) = α · ‖ω‖2 +
∑

(i,j)∈J

log(1 + e−σ(fi−fj))(ovi − ovj) (9)

α is a factor for regularization item. Note that xi is a better detection than xj ,
so the weight factor ovi − ovj is always positive.

4 Optimization

4.1 Generalized CCCP

The loss function for every pair is not convex, but it is semi-convex in the sense
that, the loss function is convex under specific constraints of fi.

We have the following lemma:

Lemma 1. if f(x) and g(x) are both convex, g(x) is non-decreasing, then g(f(x))
is convex.
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With this lemma, we can prove that:

Theorem 1. If fi is concave and fj is convex, Eq.(9) is convex.

Proof log(1 + eσx) is convex and non-decreasing, then the loss function is
convex if fj − fi is convex. On the other hand, if fi is concave, then −fi is
convex, and then we get a convex fj − fi.

Recall that f is maximum of some linear functions, and therefore is convex.
So, it is fi that make Eq.(9) non-convex. But if we find a concave lower bound
for fi, the loss function is convex. As suggested in [18], we can obtain the concave
function by fixing fi with its best latent variable(part locations):

hi = g(Ii, xi, z
∗
i ;ω)

z∗i = argmax
z

g(Ii, xi, z;ω)
(10)

Then the linear function hi is both convex and concave, and thus is a concave
lower bound for fi, and the loss function is convex if we replace fi with hi.

As we show above, fj − fi is a Convex-Concave Problem(CCCP)[18], and the
whole loss function is a so-called ”Generalized CCCP”.

4.2 Optimization Procedure

To solve Generalized CCCP, we follow a similar way to solve standard CCCP,
which uses an iteration of two stages:

– Latent Variable Finding. In this stage, for every i that there exists some
(i, j) ∈ J , we extract z∗i , and calculate hj based on z∗i .

– Optimization. In this stage, we try to optimizing the convex problem α ·
‖ω‖2 + ∑

(i,j)∈J

log(1 + e−σ(hi−fj))(ovi − ovj).

It is worth noting that, for pairs (i, j) in the set of pairs J , some positive
examples may be in the position of i in some pairs, while in the position of
j in others. When scoring these examples, we have to calculate h(x, I;ω) and
f(x, I;ω) simultaneously. For convenience of computing, we use h(x, I;ω) for
scoring all examples from positive images.

In the latent variable finding stage, we use three subroutines:
detect best denotes the procedure of finding z∗ for ground truth boxes in I.

Distance transform[12] is used in the max finding. All z∗s are extracted with
their overlap ratios with ground truth boxes.

detect hard denotes the procedure of detection on negative images, the posi-
tions with top scores are considered to be hard examples, and are selected. All
examples are labeled with overlap ratio 0.

generate pairs generates the set of pairs J using all examples, every pair with
different overlap ratios are put into the set.

During the optimization stage, we use L-BFGS[7] as the loss function is deriv-
able:

∇L(ω) = 2α · ω +
∑

(i,j)∈J

−σ

1 + eσ(hi−fj)
(ovi − ovj)[∇hi −∇fj ] (11)
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The training procedure is illustrated in Algorithm 1.

Data:
Positive Examples:P = {(IP1 , B1), . . . , (I

P
n , Bn)}

Negative Examples:N = {IN1 , . . . , INm}
Initial model parameters:ωold

Result: New model parameters:ωnew

1 ω0 := ωold;
2 for t:=1 to T do
3 for i:=1 to n do

4 F := detect best(IPi , ωt−1);
5 Add F to FP ;

6 end
7 for j:=1 to m do
8 F := detect hard(INj , ωt−1);
9 Add F to FN ;

10 end
11 J := generate pairs(FP , FN );
12 ωt := l bfgs(J);

13 end
14 ωnew := ωT

Algorithm 1. optimization

5 Experiments

We have evaluated our method on two well known datasets: INRIA pedestrians[9]
and PASCAL VOC 2007[11]. Performance is measured in term of Average Pre-
cision (AP) according to the PASCAL VOC protocol[11].

We first initialize models with [14], and then apply our training procedure. To
show whether the new objective function captures more information of training
sets, we use the same features(an adopted version of HOG) suggested by [13].

5.1 INRIA Person

INRIA pedestrians dataset contains 1832 training images and 741 testing images
[9]. Only persons are labeled with their bounding boxes. We evaluate our models
and original DPM in Pascal VOC measures.

Figure 2 Shows the comparison of performances on INRIA dataset, our model
promote the mAP measure from 0.8520 to 0.8571. Simultaneously, our model
gives a much smaller number(1020 ) of detections on test dataset compared to
original DPM(2952 ). These results clearly shows that our model provides a
more discriminative divide for object-related detections and backgrounds. The
reduction of detection number would be very useful in practice.

But it is also worth noting that, it is not the main difference that our model pro-
vides a better divide. Our model has a higher precision almost at any recall value.
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Fig. 2. Compared to original DPM, our model achieves better AP value while giving
fewer candidates

5.2 Pascal VOC

Pascal VOC dataset is a more challenging benchmark. It contains 20 categories
of objects, more complex backgrounds. Objects within each category have signif-
icant differences in appearances, scales and poses(for animals). And the numbers
of objects in each category vary largely[11].

We evaluate our model and original DPM on the dataset. For convenience
of comparison, we do not apply any post-processing technologies such as box
predicting and context predicting.

Table 1 shows the results of our model(Ranking) and original DPM on Pascal
VOC 2007. Our model outperforms original DPM on bicycle, chair,dog, motor-
bike, sheep, train and tvmonitor, while have a poorer performance on bus and
sofa. Results on other categories are close.

The results show that in most cases, our model captures more characteristics
of training data, and the characteristics are helpful or at least not harmful when
applied on testing data. But still in some cases, the characteristics do play a role
like noise.

Table 1. Evaluation results on Pascal VOC 2007, in Average Precision(%)

class plane bike bird boat bottle bus car cat chair cow

DPM 31.04 59.73 4.02 12.12 23.47 50.55 54.63 17.12 17.71 22.79
Ranking 31.04 59.93 4.02 12.12 23.77 50.51 54.63 17.12 17.95 22.80

table dog horse mbike person plant sheep sofa train tv AVG

DPM 22.14 4.59 58.29 47.88 41.76 8.54 18.76 35.86 45.37 40.84 30.86
Ranking 22.14 4.81 58.29 48.01 41.90 8.54 20.00 35.50 45.39 40.90 30.96
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6 Conclusion and Future Work

In this paper, we proposed a new modeling perspective on object detection:
learning to rank. Following this perspective, we defined an ranking model based
on information retrieval theory and DPM, and then formulated the optimization
problem to a generalized CCCP. We evaluated our model on INRIA and Pascal
VOC datasets, and performances on both benchmarks outperform original DPM
which is based on latent svm.

According to our observation, the usefulness of the model is not directly linked
with the shallow features of datasets, like the number of training examples or the
ratio of positive examples and negative examples. The investigation of reasons
are a main direction of our future work.

While ranking is useful for object detection, there are still differences of object
detection with classical ranking problems: a much larger space of candidates. So
it would be more useful to run the ranking model on a smaller space of candidates
generated by objectness methods.
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