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Abstract. Consensus strategies have been recently studied to help machine 
learning ensure better results. Likewise, optimisation in graph matching has 
been explored to accelerate and improve pattern recognition systems. In this 
paper, we present a fast and simple consensus method which, given two 
correspondences of sets generated by separate entities, enounces a final 
consensus correspondence. It is based on an optimisation method that 
minimises the cost of the correspondence while forcing it (to the most) to be a 
weighted mean. We tested our strategy comparing ourselves with the classical 
minimum cost matching system, using a palmprint database, with each 
palmprint is represented by an average of 1000 minutiae. 

Keywords: Consensus strategy, Hamming Distance, Weighted Mean, Assignment 
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1 Introduction 

When two subjects decide to solve the assignment problem, differences on the points’ 
mapping may occur. These differences appear due to several factors. Between them, 
we could cite the following. One of the subjects gives more importance to some of the 
point attributes and the other subject believes other ones are more important. For 
instance, if the sets of points represent regions of segmented images, one subject may 
think the area is more important than the colour, and the other one can think it is the 
opposite. If the assignment problem is solved by an artificial system, the fact of 
“believing” the area is more important than the colour is gauged by some weights. 
Another factor could be that the assignment problem is computed in a suboptimal 
algorithm, and different non-exact assignments can appear. In these scenarios, a 
system can intervene as a third party to decide the final assignment as a consensus of 
both assignments since some discrepancies will appear, especially as the number of 
involved points increase. 

This paper presents a method to find the consensus assignment between two sets 
given two different assignments between those sets. We model the consensus 
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assignment as the weighted mean assignment. This method is inspired in the one 
presented in [1] that obtains a clustering consensus given a set of clusterings. Other 
methods to perform this task are [2], where a final cluster is obtained based on a 
similarity graph and [3], where the least square algorithm is used. Our method, and 
also the one in [1], does not restrict the consensus assignment to be a strict mean but a 
weighted mean. This occurs because these methods aim to find an assignment (or 
clustering in [1]) that it is as closer as possible to both assignments (clusterings in [1]), 
but have to minimise the assignment cost (or the clustering cost in [1]). These methods 
are closely related to the unsupervised machine learning methods [4]. 

The drawback of this approach resides in the large number of possible solutions. 
One of the most well-known and practical options to reduce the complexity of a 
combinatorial calculation is combinatorial optimisation. The concept of optimisation 
is related to the selection of the “best” configuration or set of parameters to achieve a 
certain goal [5]. Functions involved in an optimisation problem can be either 
conformed by continuous values or discrete values, often called “Combinatorial 
Scenarios”. These second scenarios have been largely studied and applied for graph 
matching problems, particularly in the case of the Hungarian Algorithm [6]. This 
method converts a combinatorial problem into an assignment problem, which will 
eventually derive in an optimal configuration for a cost-based labelling. Many recent 
researches have used graph theory and optimisation to solve diverse problems. 
Examples can be found in [7], where a graph representation and an optimisation 
method helped to design a gas drainage system for a coal mine. On [8], a research 
group used graph representation of newspaper articles to optimize the arrangement of 
each article within the page. Energy reduction in machinery [9] and most recently, 
biomedical compounds represented as labelled graphs [10] have been classified by 
using optimisation methods. 

2 Basic Definitions 

Given a set of elements Gଵ ൌ ሼgଵଵ, gଶଵ, … , g୳ଵ ሽ, where the elements posses g୧ଵ ൌ(m୧ଵ , a୧ଵ ), being m୧ଵ א  Σ (where Σ is a unique number of the elements) and a୧ଵ א  Τ 
(where Τ is the domain of the attribute of the elements), a labelling function ݂ can be 
established between  Gଵ and another set of elements with similar characteristics Gଶ. 
This labelling function ݂ is understood as a bijective function that proposes a match ݂: Σ ՜  Σ from one element of Gଵ to one element of Gଶ, where Gଵ and Gଶ have similar 
cardinality ݑ. 

We define the cost of a labelling ܩ)ݐݏ݋ܥଵ, ,ଶܩ ݂) as the addition of individual 
element costs in a similar way as in the Graph Edit Distance [11], 

 
(݂)ݐݏ݋ܥ               ൌ  ∑ ܿ௨௜ୀଵ ൫ܽ௜ଵ , ௝ܽଶ൯      ܾ݁݅݊݃ ݆ ݐ݄ܽݐ ݄ܿݑݏ ݂(݉௜ଵ) ൌ ௝݉ଶ            (1) 
 

where c is defined as a distance function over the domain of attributes Τ and is 
application dependent [11]. 
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The distance between sets ݀ௌ(൉), which also delivers the minimum cost of all the 
labellings, is a function defined as 

 
                          ݀ௌ(ܩଵ, (ଶܩ ൌ ݉݅݊ሼܩ)ݐݏ݋ܥଵ, ,ଶܩ ݂)ሽ ߑ :݂ ׊ଵ ՜  ଶ                     (2)ߑ 
 
The labelling that obtains this distance is known as the optimal labelling ݂כ, and it 

is defined as 
 

כ݂                ൌ ,ଵܩ)ݐݏ݋ܥ௙: ఀభ՜ ఀమ ሼ׊݊݅݉݃ݎܽ ,ଶܩ ݂)ሽ                                (3) 
 

We convert this linear minimisation problem into an assignment problem [6], for 
which any labelling ݂ is related with a combination. With the calculation of a cost 
matrix ࡯ሾ݅, ݆ሿ ൌ ,a୧ଶ)ݐݏ݋ܥ a୨ଶ), we can convert equation 3 into 

 
כ݂                              ൌ  ௙: ఀభ՜ ఀమ ሼ۱௙ሽ                                         (4)׊݊݅݉݃ݎܽ

 
where ۱௙ is the cost of the combination݂ (or labelling in the set domain) applied to 
matrix ࡯. That is 

 
                                  ۱௙ ൌ ∑ ,ሾ݅࡯ ݇ሿ୳௜ୀଵ (௜ଵ݉)݂ ݁ݎ݄݁ݓ ൌ ݉௞ଶ                                (5) 

 
Assume f ୟ and f ୠ are two labelling functions between sets Gଵ ൌ ሼgଵଵ, gଶଵ, … , g୳ଵ ሽ 

and Gଶ ൌ ሼgଵଶ, gଶଶ, … , g୳ଶሽ. We then define the Hamming Distance dH(൉) between the 
labellings f ୟand f ୠ as 

 

                          ݀ு(݂௔ , ݂௕) ൌ  ∑ ቀ1 െ ߲൫݉௫ଶ , ݉௬ଶ൯ቁ௨௜ୀଵ                               (6) 

 
being ݔ and ݕ such that f ୟ(m୧ଵ) ൌ m୶ଶ and f ୠ(m୧ଵ) ൌ m୷ଶ. Function ∂ is the well-
known function known as the Kronecker Delta. 

 

                                                  ∂(a, b) ൌ  ቄ0  if a ് b1 if a ൌ b                                            (7) 

 
In its more general form, the mean of two elements eୟ and eୠ has been defined as 

an element eത such that d(eୟ, eത) ൌ d൫eୠ, eത൯ and d൫eୟ, eୠ൯ ൌ d(eୟ, eത) ൅  d൫eത, eୠ൯, being ݀ any distance measure defined on the domain of these elements. Moreover, the 
weighted mean is sometimes used to gauge the importance or the contribution of the 
involved elements. In this case, the most general definition is d(eୟ, eത) ൌ ,and d൫eୟ ߙ eୠ൯ ൌ ߙ ൅  d൫eത, eୠ൯ where ߙ is a constant that controls the contribution of the 
elements and holds 0≤ ߙ ≤d൫eୟ, eୠ൯. Finally, if we do not need to introduce the 
weighting factor ߙ in our model, we have that any element eത is a weighted mean of 
two elements eୟ and eୠ if it holds that d൫eୟ, eୠ൯ ൌ d(eୟ, eത) ൅  d൫eത, eୠ൯. Note that 
elements eୟ and eୠ hold this condition so, they are also weighted means of 
themselves. 
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The most appropriate form to model a consensus scenario given two different 
options is the one done by [4], which is defined through the weighted mean of these 
two options. The aim of [4] is to find the consensus clustering of a set of elements 
given two different clustering proposals applied to this set of elements. If we want to 
translate this model to our problem, we should find the weighted mean labelling fҧ 
given two different labelling f ୟ and f ୠ. As commented in the previous paragraph, if 
we want fҧ to be defined as a weighted mean labelling of f ୟ and f ୠ the following 
restriction has to hold, 

 
                          ݀ு(݂௔ , ݂௕) ൌ  ݀ு൫݂௔ , ݂ҧ൯ ൅   ݀ு൫݂ҧ , ݂௕൯                             (8) 

 
Several labellings ݂ҧ hold this condition, and amongst them are ݂௔ and ݂௕. To 

select one, an option would be a brute force method that obtains all possible 
combinations and selects the best one from the application point of view. Another 
option is a standard minimisation approach, to reduce the computational time. 

Standard minimisation approaches aim to find an optimal element ݁כ that globally 
minimises a specific function. Usually this function is composed of an empirical risk ׏(e) plus a regularization term Ω(e) weighted by a parameter λ [5]. The empirical 
risk is the function to be minimised per se and the regularisation term is a 
mathematical mechanism to impose some restrictions. Parameter λ weights how much 
these restrictions have to be imposed. 

 
כ݁                                       ൌ argmin׊௘ ሼ׏(݁) ൅  λ · Ω(݁)ሽ                                   (9) 

 
The aim of this paper is to present a method to find an approximation of the 

weighted mean labelling given two labellings. Therefore, we want to find ݂ҧכ such that 
the following equation holds, 

 
                          ݂ҧכ    ൌ argmin׊୤: ஊభ՜ ஊమ ሼ λC · (݂)׏ ൅   λH · Ω(݂)ሽ                    (10) 

 
On the next section, we explain functions ׏(݂) and Ω(݂). Although it is not strictly 

necessary, we present this general equation with parameters λC and  λH, instead of 
only one parameter λ as in equation 9, to simplify some explanations and examples. 

3 Method 

Our method defines the optimal labelling ݂ҧכ through equation 10 in which the Loss 
function and the Regularisation term are 

 
(݂)׏  ൌ ,ଵܩ)ݐݏ݋ܥ ,ଶܩ ݂) and Ω(݂) ൌ  ݀ு(݂௔, ݂) ൅  ݀ு(݂, ݂௕) െ ݀ு(݂௔, ݂௕)    (11) 
 
That is, we want to minimise the labelling cost (equation 1) of the obtained 

labelling but restricted to be a weighted mean (equation 8). The degree of restriction 
depends on weights  λC and  λH. Note that by definition of a distance,  ݀ு(݂௔, ݂) ൅ ݀ு(݂, ݂௕) െ ݀ு(݂௔, ݂௕) ൒ 0. 
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The aim of our method is to decide the labelling closer to both human’s labellings. 
Therefore it seems logical that our strategy only seeks for the partial labelling where 
both of the specialists disagree. The other partial labelling, which is the one that both 
specialist has decided the same point mapping, is directly assigned as the mappings of 
these specialists. For this reason we split labellings f ୟ and f ୠ in two disjoint partial 
labellings such that f ୟ ൌ f ᇱୟ ׫ f ᇱᇱୟ and f ୠ ൌ f ᇱୠ ׫ f ᇱᇱୠ, where fԢୟ and fԢୠ are the partial 
labellings where f ୟ(m୧ଵ) ൌ f ୠ(m୧ଵ), and fԢԢୟ and f ᇱᇱୠ are the other partial ones where f ୟ(m୧ଵ) ് f ୠ(m୧ଵ). This also means that the cost of both labellings is Cost(Gଵ, Gଶ, f ୟ) ൌ Cost൫Gଵ, Gଶ, f ᇱୟ൯ ൅ Cost(Gଵ, Gଶ, f ᇱԢୟ) and Cost൫Gଵ, Gଶ, f ୠ൯ ൌCost൫Gଵ, Gଶ, f ᇱୠ൯ ൅ Cost൫Gଵ, Gଶ, f ᇱԢୠ൯. We define Σ ൌ ΣԢ ׫ Σᇱᇱ. The set of nodes ΣԢ in Gଵ is composed of the nodes such that f ୟ(m୧ଵ) ൌ f ୠ(m୧ଵ) and the set of nodes ΣԢԢ in Gଵ 
is composed of the nodes such that f ୟ(m୧ଵ) ് f ୠ(m୧ଵ).  

Thus, we define the weighted mean labelling ݂ҧכ we want to obtain as a union of 
two partial labellings, ݂ҧכ ൌ ݂ҧԢכ ׫ ݂ҧᇱᇱכ

 where ݂ҧԢכ ൌ ݂ᇱ௔ (which is the same than ݂ҧԢכ ൌ ݂ᇱ௕) and fҧ ᇱᇱכ
 is the one defined in the following equation, fҧ ᇱᇱ஛C,஛Hכ  ൌ argmin׊୤ᇲᇲ: ஊᇲᇲభ՜ ஊᇲᇲమ  ሼ λC ൉ Cost(Gଵ, Gଶ, fԢԢ) ൅   λH · ቀ dH൫f ᇱᇱୟ, fԢԢ൯ ൅                                                         dH൫fԢԢ, fԢԢୠ൯ െ dH൫fԢԢୟ, fԢԢୠ൯ቁሽ                                   (12) 

 

To solve equation 12, we translate the linear minimisation problem to an 
assignment problem [5] as we have shown in equation 4, but instead of the cost 
matrix ࡯, our method minimises matrix H஛C,஛H  defined as follows, 

 
                     H஛C,஛H ൌ λC · CԢԢ ൅  λH · ሾ૚ െ Fᇱᇱୟ,ୠሿ                              (13) 

 
where CԢԢሾi, jሿ ൌ c(m୧ଵ, m୨ଶ) being m୧ଵ א Σᇱᇱଵand m୨ଶ א Σᇱᇱଶ. Besides, FԢԢୟ,ୠ ൌ Fᇱᇱୟ ൅Fᇱᇱୠ, where Fᇱᇱୟ and Fᇱᇱୠare the labelling matrices corresponding to ݂ᇱᇱ௔and ݂ᇱᇱ௕, 
respectively. Aditionally, ૚ is a matrix of all ones. Note that the number of rows and 
columns of matrices CԢԢ, Fᇱᇱୟ and Fᇱᇱୠ is lower or equal than C. As more similar node 
mappings of f ୟ and f ୠ are, the smaller the number nodes in Σᇱᇱଵ and Σᇱᇱଶ is, and so, 
the dimensions of CԢԢ, Fᇱᇱୟ and Fᇱᇱୠ. This fact affects directly on the computational 
cost. In a practical application, if both specialists are good enough, they discern in few 
node mappings and therefore the computational time of finding the agreement 
labelling is very low. Considering equation 13, we obtain the following expression, 

 

                    ݂ҧᇱᇱఒ಴,ఒಹכ ൌ argmin׊୤ᇲᇲ ቄ൫H஛C,஛H൯୤ᇲᇲቅ                               (14) 

 
Several algorithms can be used to minimise equation 14, for instance the 

Hungarian algorithm [5]. Finally, the cost of the obtained weighted mean becomes, 
 C୤ҧಓC,ಓHכ ൌ CԢԢ୤ҧᇲᇲಓC,ಓHכ ൅ ,ଵܩ൫ݐݏ݋ܥ ,ଶܩ ݂ᇱ௔൯                            (15) 

On section 3.1 we demonstrate equations 12 and 14 minimise at the same 
approximation of the weighted mean labelling ݂ҧᇱᇱఒ಴,ఒಹכ

 for all weights λC and λH and 
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pair of graphs Gଵ and Gଶ. Then on section 3.2 we demonstrate the cases in which the 
obtained labelling is an exact weighted mean labelling and not an approximated 
weighted mean labelling. 

3.1 Reasoning about Optimality 

If we want to use equation 14 to solve our problem instead of equation 12, we must 

now demonstrate that functional ቄ λC ൉ Cost(Gଵ, Gଶ, fԢԢ) ൅  λH · ቀ ݀ு൫݂ᇱᇱ௔, ݂ԢԢ൯ ൅ ݀ு(݂ԢԢ, ݂ԢԢ௕) െ ݀ு(݂ԢԢ௔, ݂ԢԢ௕)ቁቅ extracted from equation 12 minimises the same 

partial labelling than ቄൣλC · CԢԢ ൅  λH · ሾ૚ െ Fᇱᇱୟ,ୠሿ൧୤ᇲᇲቅ extracted from equation 14. 

Notice that, by definition, ܩ)ݐݏ݋ܥଵ, ,ଶܩ ݂ԢԢ) ൌ CԢԢ୤ᇲᇲ and for this reason, we have to 
demonstrate the following equation 

 ሾ૚ െ Fᇱᇱୟ,ୠሿ௙ᇲᇲ ൌ  dH൫f ᇱᇱୟ, fԢԢ൯ ൅  dH൫fԢԢ, fԢԢୠ൯ െ dH൫fԢԢୟ, fԢԢୠ൯; ݂׊ᇱᇱ: Σᇱᇱଵ ՜ Σᇱᇱଶ      (16) 
 
If equation 16 holds, then we can confirm that it is valid to use equation 14 to solve 

our problem. Suppose the cardinality of Σᇱᇱଵand Σᇱᇱଶ is n. Therefore, by definition of 
these sets, dH൫fԢԢୟ, fԢԢୠ൯ ൌ ݊. Given the involved labellings fԢԢ, fԢԢୟ and fԢԢୠ, we can 
define the three following natural numbers n୮, n୯ and n୲: 

 
1) n୮: number of nodes in Σᇱᇱଵthat hold f ᇱᇱ(m୧ଵ) ് f ᇱᇱୟ(m୧ଵ) and f ᇱᇱ(m୧ଵ) ് f ᇱᇱୠ(m୧ଵ). 
2) n୯: number of nodes in Σᇱᇱଵthat hold f ᇱᇱ(m୧ଵ) ൌ f ᇱᇱୟ(m୧ଵ) and f ᇱᇱ(m୧ଵ) ് f ᇱᇱୠ(m୧ଵ). 
3) n୲: number of nodes in Σᇱᇱଵthat hold f ᇱᇱ(m୧ଵ) ് f ᇱᇱୟ(m୧ଵ) and f ᇱᇱ(m୧ଵ) ൌ f ᇱᇱୠ(m୧ଵ). 

 
Again, by definition of these sets, there is not any m୧ଵ such that f ᇱᇱ(m୧ଵ) ൌ f ᇱᇱୟ(m୧ଵ) 

and f ᇱᇱ(m୧ଵ) ൌ f ᇱᇱୠ(m୧ଵ). Therefore, ݊ ൌ  n୮ ൅  n୯ ൅  n୲. By simplicity of notation, we 
order the nodes in Σᇱᇱଵ such that mଵଵ to m ୬౦ଵ  hold the first condition, m ୬౦ାଵଵ  to m ୬౦ା ୬౧ଵ  hold the second condition and m ୬౦ା ୬౧ାଵଵ  to m୬ଵ  hold the third condition. 

To demonstrate that equation 16 holds, we first demonstrate that ሾ૚ െ Fᇱᇱୟ,ୠሿ௙ᇲᇲ ൌ n୮ and we second demonstrate that  dH൫f ᇱᇱୟ, fԢԢ൯ ൅  dH൫fԢԢ, fԢԢୠ൯ െ dH൫f ᇱᇱୟ, f ᇱᇱୠ൯ ൌ  n୮. 
 

1) Demonstration of ሾ૚ െ Fᇱᇱୟ,ୠሿ௙ᇲᇲ ൌ  n୮: Suppose that f ᇱᇱ(m୧ଵ) ൌ m୩ଶ then ሾ૚ െ Fᇱᇱୟ,ୠሿ௙ᇲᇲ ൌ ∑ ൫૚ െ Fᇱᇱୟ,ୠ൯ሾ݅, ݇ሿ௡௜ୀଵ ൌ  ∑ 1 ୬౦௜ୀଵ ൅ ∑ 0௡௜ୀ ୬౦ାଵ ൌ  n୮. 

2) Demonstration of dH൫f ᇱᇱୟ, fԢԢ൯ ൅  dH൫fԢԢ, fԢԢୠ൯ െ dH൫f ᇱᇱୟ, f ᇱᇱୠ൯ ൌ  n୮:  dH൫f ᇱᇱୟ, fԢԢ൯ ൅  dH൫fԢԢ, fԢԢୠ൯ െ n ൌ ∑ ൬2 െ ∂ቀf ᇱᇱୟ(m୧ଵ), f ᇱᇱ(m୧ଵ)ቁ െ ୬౦௜ୀଵ∂ ቀf ᇱᇱ(m୧ଵ), f ᇱᇱୠ(m୧ଵ)ቁ൰ െ ݊ ൌ  ቀ∑ 0 ୬౦௜ୀଵ ൅ ∑ 1 ୬౦ା ୬౧௜ୀ ୬౦ାଵ ൅ ∑ 1୬௜ୀ ୬౦ା ୬౧ାଵ ቁ െ݊ ൌ  n୯ ൅  n୲ െ ݊ ൌ  n୮. ז 
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3.2 Exact Weighted Mean Labelling 

In some cases, it is interesting to know if we have obtained an exact weighted mean 
labelling or an approximated one. First of all, we have to realise that whether both ݂Ԣ 
and ݂ԢԢ are exact partial weighted mean labellings, then the union ݂ ൌ ݂Ԣ ׫ ݂ԢԢ is an 
exact weighted mean labelling, assuming that that f ᇱ ת f ᇱᇱ ൌ 0. It is clear that if 
equation 8 holds for both partial labellings then it holds for the complete one. 
Moreover, by definition of our partial labelling ݂Ԣ, it is always defined as weighted 
mean labelling. Therefore, we conclude that the obtained labelling fҧ  is an exactכ
weighted mean labelling if fҧ ᇱᇱכ is also an exact weighted mean labelling. These cases 
are the ones that that fҧ ᇱᇱכ holds equation 8. Due to we have demonstrated 
that ݀ு൫݂ᇱᇱ௔, ݂ԢԢ൯ ൅  ݀ு(݂ԢԢ, ݂ԢԢ௕) െ ݀ு൫݂ᇱᇱ௔, ݂ᇱᇱ௕൯ ൌ  n୮, then  n୮ has to be 0. By 
definition of  n୮, these labelling are the ones that ݂ҧᇱᇱכ(݉௜ଵ) ൌ ݂ᇱᇱ௔(݉௜ଵ) or ݂ҧᇱᇱכ(݉௜ଵ) ൌ݂ᇱᇱ௕(݉௜ଵ). Therefore, we conclude the following expression, 

 fҧ஛C,஛Hכ is a weighted mean labelling if: fҧ ᇱᇱ஛C,஛Hכ (m୧ଵ) ൌ f ᇱᇱୟ(m୧ଵ) or fҧ ᇱᇱ஛C,஛Hכ (m୧ଵ) ൌ f ᇱᇱୠ(m୧ଵ); ׊m୧ଵ א Σᇱᇱଵ           (17) 
 
The cost of testing if the labelling obtained is a weighted mean is linear on the 

number of discordances between labellings ݂௔  and ݂௕. 
Note that if λC ൌ 0 and λH ൐ 0 and we use the Hungarian method [6] to solve 

equation 14, then the method always obtains an exact weighted mean labelling. This 
is because equation 16 has been demonstrated, and also because the optimality of the 
Hungarian method has been demonstrated in equation 17. 

4 Experimentation 

We used images contained in the Tsinghua 500 PPI Palmprint Database [12]. It is a 
public high-resolution palmprint database composed of 500 palmprint images of a 
resolution of 2040 x2040 pixels. From each person, 8 palmprints are enrolled. We 
extracted the minutiae set of the 8 palmprints of the first 10 subjects of the database 
using the algorithm presented in [13], [14] and [15] and we obtained an average of 
1000 minutiae per palmprint. The attributes of minutiae are their position and angle, 
which means a୧ୱ ൌ ሼθ୧ୱ, (x, y)୧ୱሽ. Therefore, our core database is composed by 80 sets 
of minutiae classified in 10 subjects. Nevertheless, we wish to have a database of 
several registers and each register composed of four elements: 2 minutiae sets ܩଵ and ܩଶ extracted from the same palm and two different labellings ݂௔ and ݂௕ between 
these minutiae sets. To do so, we matched each of the 8 minutiae sets of the same 
subject obtaining 64 correspondences per subject. Therefore, we defined an initial 
database of 8x8x10=640 registers composed of 2 minutiae sets ܩଵ and ܩଶ extracted 
from the same subject and a correspondence fሙ between them. Correspondences were  
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computed through the Hungarian method [16] and a greedy method to select the 
matches from the resulting matrix. The distance between minutiae has been defined  
to be 

 
                c൫a୧ଵ , a୨ଶ൯ ൌ 0.5 ൉ ad൫θ୧ଵ, θ୨ଶ൯ ൅ 0.5 ൉ dd൫(x, y)୧ଵ, (x, y)୨ଶ൯             (18) 

 
being ad the angular distance and dd the Euclidean distance. 

Given each of the 640 registers, we need to generate labellings ݂௔ and ݂௕ from the 
initial labellings fሙ. Nevertheless, to perform our experiments, we need to control the 
distance between these labellings. Therefore, we introduce parameter α that decides 
the Hamming distance between them, ݀ு(݂௔ , ݂௕) ൌ 2α. ݂௔and ݂௕ are randomly 
generated such that ݀ு൫݂௔ , fሙ൯ ൌ α and ݀ு൫݂௕ , fሙ൯ ൌ α. As we will see later, 
parameter α is the horizontal axis of the figures presented in this section and for each α א ሼ10,11, … ,212ሽwe have a dataset of 640 registers, so, the values presented in 
these figures are the average of 640 times we computed fҧ஛C,஛Hכ . 

The aim of our method is to find the consensus labelling with the minimum cost 
and close to both labellings. For this reason, we have performed several tests using 
different configurations of λC and λH and parameter α. The aim of these tests is 
threefold. First, we want to know the cost of the obtained labellings fҧ஛C,஛Hכ , that is ݐݏ݋ܥ൫fҧ஛C,஛Hכ ൯. Second, we want to analyse if the obtained labellings appear to be “in 
the middle” of both labellings. In this case, we propose the following measure, 

 

                 Middle൫݂௔, ݂௕, fҧ஛C,஛Hכ ൯ ൌ ቚௗಹቀ௙ೌ ,୤ҧಓC,ಓHכ ቁିௗಹቀ௙್ ,୤ҧಓC,ಓHכ ቁቚௗಹ൫௙ೌ ,௙್ ൯                  (19) 
 

and third, we want to check if the obtained labellings are really weighted mean 
labellings. 

For this experimentation we chose three different configurations for  λH and λC. 
First, when  λH ൌ 0 and λC ൌ 1 the labellings are not being considered, thus basing 
the decision only on the minimum cost. Therefore, this configuration will reproduce a 
classical minimum-cost method (red in Figures 1 to 3). Second, when  λH ൌ 1 and λC ൌ 1 there is a contribution both of the cost and the labelling. Therefore, this 
approach would represent our method (green in Figures 1 to 3). Finally, when  λH ൌ 1 
and λC ൌ 0 only the labellings are being considered but no cost is used. Therefore this 
approach would be considered a pure consensus of the correspondences done by ݂௔and ݂௕(violet in Figures 1 to 3). 

Figure 1 shows the cost of fҧ஛C,஛Hכ as the number of mistakes increases. Notice that 
the y-axis represents the cost (equation 1, where the cost between nodes is equation 
18), being an application-dependent metric. However, it is clearly noticeable that the 
classical method (red) performs just as good as our method in terms of minimising the 
cost. It must be pointed out that a minimum cost not necessarily translates in a better 
result 
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Fig. 1. Comparison for the cost of fҧ஛C,஛Hכ  for the three configurations 

Figure 2 shows the Middle measure (equation 19) which measures how far in terms 
of Hamming Distance is the consensus labelling with respect of the median of ݂௔ and ݂௕. We can see once again that the classical method (red) performs slightly worse 
than our approach, however as mistakes increase, the distance “Middle” decreases and 
eventually stabilizes for every configuration. 

 

Fig. 2. Comparison for the position of fҧ஛C,஛Hכ  for the three configurations 

Figure 3 shows the percentage of experiments in whichfҧ஛C,஛Hכ  is really a weighted 
mean of ݂௔ and ݂௕. We can notice that the classical method (red) does not always 
give weighted means starting from 25 mistakes (which means that it stops delivering 
results that are consensus). As we deducted from equation 17, the labelling-only 
configuration (violet) will always result in weighted means, whereas the approach that 
equally considers both terms (green) will slightly decrease in successful weighted 
mean results as α increase. 
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Fig. 3. Comparison for the percent of fҧ஛C,஛Hכ  being a weighted mean for the three configurations 

5 Conclusions and Further Work 

We present a fast and efficient method to perform a consensus decision based on a 
regularization term consisting in two labellings developed by two separate entities, 
and a loss function consisting on a cost relation which is application dependant. We 
also demonstrate that an optimisation process can be applied to reduce the 
computational cost of calculating the multiple possibilities and that different 
configurations on the loss function and the regularisation term can be produced to 
obtain different results. As a further work, we would like to continue studying the 
effects of consensus techniques in with multiple inputs and multiple metrics [17]. 
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