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Abstract. Cross-validation is a popular technique for model selection
and evaluation. The purpose is to provide an estimate of generalization
error using mean error over test folds. Typical recommendation is to use
ten-fold stratified cross-validation in classification problems. In this pa-
per, we perform a set of experiments to explore the characteristics of
cross-validation, when dealing with model evaluation of Multilayer Per-
ceptron neural network. We test two variants of stratification, where the
nonstandard one takes into account classwise data density in addition to
pure class frequency. Based on computational experiments, many com-
mon beliefs are challenged and some interesting conclusions drawn.

Keywords: Cross-validation, Multilayer Perceptron, Model Selection.

1 Introduction

Cross-validation (CV) is a popular technique for model selection and evaluation,
whose roots go back, at least, to 1960’s [1]. The purpose of dividing data into
independent training and test sets is to enable estimation of the generalization
error of a trained model. This is especially important for the so-called universal
approximators, of which Multilayer Perceptron neural network (MLP) is an ex-
ample [2]. More precisely, with a real data set of input-output samples, a model
that can represent unknown functions very accurately is prone to overlearning.
Hence, its complexity should be determined using generalization as primary fo-
cus instead of training accuracy.

Kohavi [3] is probably the most well-known reference of CV in machine
learning. Using six classification benchmarks with over 500 instances from UCI
repository, two classification algorithms, C4.5 and naive Bayes, and amount of
misclassifications in percentages as error indicator, stratified 10-CV (i.e., with
ten folds) was concluded as the recommended approach. This approach has then
established itself as a kind of community practice. For example, in [4] it is stated
at page 153 (in relation to the amount of folds in CV): "Why 10? Extensive
tests on numerous different datasets, with different learning techniques, have
shown that 10 is about the right number of folds to get the best estimate of
error, and there is also some theoretical evidence that backs this up.” No refer-
ences are given. At page 2980 in [5], which deals with nonlinear regression, it is
stated that ”Many simulation and empirical studies have verified that a reliable
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estimate of [generalization] Err can be obtained with £ = 10 for N > 100 as
recommended by Davison and Hinkley (1997).” The precise argument by Davi-
son and Hinkley [6] at page 294, in the context of linear regression, is to take
k= min{Nl/z, 10} due to practical experience: ”taking k > 10 may be too com-
putationally intensive. .. while taking groups of size at least N > should perturb
the data sufficiently to give small variance of the estimate.” No computational
experiments are performed to support the claim.

Actually it has been observed in many articles that use of CV is not straight-
forward. In [7] it is shown, in the least-squares-estimation context, that for an
unstable procedure the predictive loss, i.e., difference between ”crystal ball”
and cross-validation based selection, is large. The difficulties of using (10-)CV
for the MLP model selection were already addressed in [8]: With fourteen UCI
benchmark data sets the experiments showed that CV is only slightly better
than random selection of MLP architecture and that the smallest size of the
hidden layer tested provided almost the same generalization performance than
the repeated folding. Based on experiments with the same UCI data sets as
Kohavi [3], for ID3 and Info-Fuzzy Network classifiers with 2-CV, [9] ended up
with ”CV uncertainty principle”: ”the more accurate is a model induced from
a small amount of real-world data, the less reliable are the values of simulta-
neously measured cross-validation estimates.” Finally, in [10] large and general
review of CV is given. Among the overall conclusions it is stated that i) usu-
ally CV overestimates generalization error compared to training error, ii) CV
method with minimal variance [of generalization error estimate] seems strongly
framework-dependent, and iii) the issue of ”optimal” amount of folds in CV is
not straightforward.

Hence, the purpose of this paper is to perform a set of experiments to explore
the characteristics of cross-validation, when dealing with model evaluation of
MLP. We test two variants of stratification, where the new approach takes into
account classwise data densities [11] in addition to pure class frequency. To sim-
plify the analysis, we restrict to ten folds. The contents are as follows: in Section
2 we summarize the model, the learning problem, and the actual algorithms.
Then, in Section 3, a sequence of computational experiments with observations
and subconclusions is presented. Finally, general conclusions are summarized in
Section 4.

2 Methods and Algorithms

2.1 MLP

Action of MLP in a layerwise form, with given input vector x € R™, can be
formalized as follows [12]: 0° = x, ol = F(W'6(=Y) for I =1,..., L. Here the
layer number has been placed as an upper index and by ~ we indicate the vector
enlargement to include bias. This places these nodes in a layer as first column
of the layer’s weight matrix which then has the factorization W' = [W} W] .
F(-) denotes the application of activation functions. We restrict to networks with
one hidden layer so that the two unknown weight matrices are W' e R™ *(no+1)
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Algorithm 1. Determination of neural network model using cross-validation

Input: Data {x;,y;}~ .
Output: Feedforward neural network.
1: Define B, nlmaz, nfolds, and nits
2: for ni < 2 to nlmazx do
for regs < 1 to |3| do
Create nfolds using cross-validation
for k < 1 to nfolds do
for i <~ 1 to nits do
Initialize (W', W?) from U([—1,1])
Minimize (1) with current n; and B(regs) over kth training set
Store network for smallest training set error
Compute test error over kth test set for the stored network
Store network for the smallest mean{test error}

_ =

and W2 € R"2*(m1+1) Using the given learning data {x;, yi}ﬁil , X; € R™ and
€ R™2 determination of weights is realized by minimizing the cost functional

T(W'W?) = NZuezn Z(wl Hwh,l) @

for e; = W2.7:'(W1>EZ-) —y; and 8 > 0. The linear second layer and the special
form of regularization omitting the bias-column W3 are due to Corollary 1 in
[12]: For every locally optimal MLP-network with the cost functional (1), sat-
isfying Vw2 J = 0, the average error ]1[ Zf\;l e; is zero. Hence, every locally
W2-optimal network provides un unbiased nonlinear estimator for the learning
data, independently on the regularization coefficient .

The actual determination of MLP is documented in Algorithm 1. The main
point is to realize systematic grid search over the complexity landscape, deter-
mined by n; (size of network) and S (size of weights; the larger § the closer
to zero). Hence, nlmax determines largest size of the hidden layer and prede-
fined values in vector B8 = {,} define possible regularization coefficients. Due
to preliminary testing, we use here 8. = 107", r = 2,...,6. Moreover, with the
fixed parameters we always create new folds to sample the CV approaches be-
low. The parameter nits determines the amount of local restarts with random
generation/initialization of weights from the uniform distribution. This is the
simplest globalization strategy when minimization of (1) will be done locally.

2.2 Two Folding Approaches for CV

We apply two stratification strategies for folding: the standard random creation
where class frequencies of the whole training data are approximated in folds
(SCV). As the second approach, DOB-SCV (Distribution Optimally Balanced
Standard CV) as proposed in [11] was implemented, see Algorithm 2. In this



294 T. Kéarkkéinen

Algorithm 2. Distribution Optimally Balanced Standard CV (DOB-SCV)

Input: Data (X,C) = {xi,ci}fvzl of inputs and class labels and amount of folds k.
Output: k non-disjoint folds Fi,l =1,...,k, such that X = U"_, Fj.
1: for each class j and input data X; = {x; |c; = j} do
2:  while |X;| > k do
3 Let x1 be random observation from X;
4: Let x2,...,x% be k — 1 closest neighbors of x1 from X;
5 Let F; = F;U{x;} and X; = X; \ {x;},l=1,...,k
6 Place the remaining observations from X; into different folds Fj,l =1,...,|X;]

approach, using the division of a random observation from class j and its k —
1 nearest class neighbors to different folds, classwise densities in addition to
frequencies are approximated in all the folds. We remind that in [11,13] the
extensive experimentation on various data sets and classifiers did not include
MLP as classifier, not to mention the particular optimization problem (1) that
we solve here.

3 Computational Experiments

All methods described in the previous section were implemented and tested on
MATLAB (R2013b running on 64-bit Windows 7). For SCV, cvpartition routine
is used. Minimization of (1) is based on MATLAB’s unconstrained minimization
routine fminunc, using layerwise sensitivity calculus from [12] for computing
gradients. Standard sigmoid s(z) = 1/(1 + exp(—x)) is used as the activation
function. All input variables are preprocessed into the range [0,1] of s(z) to
balance the overall scaling of unknowns [12]. Class encoding is realized in the
well-known manner by using standard basis in R™?: the [th unit vector is used
as target output for an input x; from class Cj.

As benchmark data we use ”Segmentation” from UCI repository, which is
multiclass (ng = 7 classes) and many-input (ng = 17 input variables when two
nearly constant ones are omitted) data set with small training set ”Sgm (Train)”
and large, separate validation set ”Sgm (Test)”. These sets are documented in
Table 1. In what follows, we use the term Training error, TrE, for the mean
error which is computed over the training sets, i.e. the subsets of ”Sgm(Train)”
without the test folds. Similarly, Test error TsE refers to mean error over test
folds. With Generalization error GeE, we refer to the error which is computed
using the validation set ”Sgm(Test)”.

Table 1. UCI classification data sets for CV experiments

Name N Class frequencies Comments

Sgm (Train) 210 [30 30 30 30 30 30 30] Features 3—4 removed
Sgm (Test) 2100 [300 300 300 300 300 300 300] Features 3—4 removed
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Table 2. 10-CV results for misclassification rate in percentages as error measure

10-SCV 10-SCV 3x10-SCV
7/1e-5/3.5/12.4(6.4) 12/1e-3/6.0/11.9(7.9) 11/1e-3/6.0/13.3(8.3)
10-DOB-SCV 10-DOB-SCV 3x10-DOB-SCV

7/1e-5/4.2/13.8(4.2) 9/1e-3/6.7/12.4(4.0) 6/1e-6/4.7/12.9(5.8)

3.1 Misclassification Rate in Percentages as Error Measure

In Table 2 first set of results using SCV and DOB-SCV with Algorithm 1 are
given. We use nits = 2 and nlmax = 12. In the results, nj and g* for the smallest
TsE, its standard deviation Std, and the corresponding TrE are given. The actual
result format is thus ni/B*/TrE/TsE(Std). For both folding approaches the
algorithm is first tested two times separately, and then three times repeated
folding for fixed ny and (8 is performed so that the errors are then computed
over 30 training and test set errors. As error measure the misclassification rate
in percentages is used.

From Table 2 one notices very high unstability of the results. Training and
Test errors are very different, best parameters between tests vary a lot, standard
deviations are large (round 30%-65% of means) and they do not decrease when
folding is reiterated. For DOB-SCV, Stds are typically smaller compared to
SCV, but there is no real difference in TsEs. Altogether one ends up with high
uncertainty with these results, especially when the relationship between Training
and Test errors, visualized using scatter plots in Fig. 1, is taken into account. The
quantized form of the discrete error measure does not allow accurate evaluation
of MLP models with different complexity, which is reflected as high variability
in parameter choices.

3.2 Testing Predictive Error Measures

Next we test whether the discrete approximation of classification error could
be one reason for difficulties with CV. Instead of misclassification rate in per-
centages, we test two error measures which are typical for estimating the actual
prediction error:

N na
1 2
MR = z; 2:1(/\/(){2) —yi)j (Mean-Root-Squared-Error),
i= j=
N naz

1 2
erm = 4 | z; z;(/\/ (x;) —yi)j (Root-Mean-Squared-Error).
i=1 j=
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Fig. 1. Training/Test error scatterings for 3xSCV with n1 = 7 and 8 = 107" (left) and
for 3xDOB-SCV with ny = 9 and 8 = 1072 (right)

Even if the definitions are very close to each other, the amount of observations
weights the rest of the error measure differently (1/N in eyr compared to 1/v/N
in egym) and we want to find out how this affects comparisons of Training, Test,
and Generalization errors which are computed with data sets of different sizes.

In Fig. 2 scatter plots of training and test set errors for SCV are given for all
locally optimal MLPs obtained with Algorithm 1 for ny = 5,...,8 and nits = 2.
It is visually clear that eyg reflects the positive correlation between the two
errors in a better way than ery. The visual appearance and the conclusion are
precisely the same for DOB-SCV.

Using epr as CV error measure in MLP model evaluation in Algorithm 1,
we obtain the following choices of parameters using the same grid search as
in Table 2: for SCV, ny = 5 and 8 = 107° and for DOB-SCV, n; = 7 and
B = 107°. We then fix these and reiterate the two folding approaches three
times with nits = 5. The individual results and their grand mean over different
foldings are documented in Table 3.

From Table 3 we conclude that Training error underestimates and Test error
overestimates Generalization error. For different foldings, SCV results are this
time more stable than those of DOB-SCV. However, there is one remarkable
difference in the characteristics of the results.
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Fig. 2. Training/test set error scatterings with SCV: emr (left) and erm (right)
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Table 3. Repeated CV with emr as error measure

3xSCV 3xDOB-SCV
Fold TrE TsE GeE TrE TeE GeE
1st 0.3065 0.3532 0.3443 0.1908 0.3421 0.3439
2nd 0.3063 0.3618 0.3480 0.1976 0.4478 0.3497
3rd 0.3080 0.3552 0.3497 0.1906 0.4852 0.3816
Grand 0.3069 0.3567 0.3473 0.1930 0.4250 0.3584

Namely, for one particular folding, one observation from the original training
data belongs to exactly one test set due to disjoint division. Hence, for one obser-
vation the maximum amount of false test classifications over the three foldings is
precisely three. Next, for 3xSCV with n; = 5 and 8 = 10~ and for 3xDOB-SCV
with ny = 7 and 8 = 107° we checked their classwise behavior in this respect,
i.e. report the amount of indices per class where this maximum of three false
test classifications per one observation is reached:

SCV:[10429310] =38 cases,
DOB-SCV: [104 733 0] = 18 cases.

Hence, for SCV the pure inside-class randomness can produce high variability be-
tween classwise test accuracies (because the test folds can be very different from
each other) whereas DOB-SCV compensates this dramatically better, through
and due to distributional balancing. Notice that in the mean accuracy estimates
without separating the classes, such behavior is completely hidden, as witnessed
in Tables 2 and 3. We also conclude that class 4 is the most difficult one, so
that to improve the classification performance more observations from that class
should be contained in the training data.

3.3 Predictive CV with Modified Data Sets

To this end, we remove 30 random observations of class 4 from the original
"Sgm(Test)” and add them to ”Sgm(Train)”. The previous stepwise experimen-
tation is repeated as follows: i) With three repetitions apply the grid search for
ny and S with nits = 2 using eyr as error measure (cf. Table 2), ii) Compute
mean errors with the chosen parameters with three repetitions of foldings (cf.
Table 3) and visually assess an error scattering plot, and iii) check the classwise
error rates from the test folds.

Result of Step i) is given in Table 4. We have obtained much higher stability in
the parameter choice for both folding approaches. Also standard deviations are
smaller compared to mean errors (around 20%-25% of means). Still, Training
errors deviate from Test errors.



298 T. Kéarkkéinen

Table 4. Best parameters and errors for 10-CV with modified data sets

10-SCV 10-SCV 3x10-SCV
6/1e-6/0.21/0.36(0.07) 6/1e-6/0.25/0.37(0.10) 6/1e-5/0.28/0.37(0.07)
10-DOB-SCV 10-DOB-SCV 3x10-DOB-SCV

7/1e-6/0.19/0.34(0.09) 6/1e-5/0.28/0.37(0.08) 6/1e-5/0.27/0.36(0.08)

As for Step ii), we fix the parameters according to Table 4 as nj = 6 and
B* =510~ for SCV and n} = 6 and 8* = 10~° for DOB-SCV. The result with
these choices for repeated foldings are given in Table 5.

We conclude from Table 5, especially compared to Table 3, that the increase
of the size of training set from 210 to 240, that yielded to increase of the size of
the hidden layer by one for SCV, then increased the differences between Training
and Test errors. The common trend of Generalization error underestimation by
Training error and overestimation by Test error remains. With the choices of
parameters, slightly smaller Generalization errors are this time obtained with
DOB-SCV compared to SCV. Now, for TrE’s and TsE’s the behavior of two
folding approaches is similar.

Scatter plots for training and validation set errors with the two approaches
are depicted in Figure 3. We see that both folding approaches yield to posi-
tive correlation between these errors, with DOB-SCV capturing such a desired
behavior slightly better.

To this end, for the three repetitions in Table 5 and taking into account only
those cases where an observation was always wrongly classified in a test set, we
obtained the following amount of misclassifications per class:

SCV: 103856 0] =23 cases,

DOB-SCV: [104 6 78 0] == 26 cases.

We conclude that the modifications of training and validation sets paid off,
especially for SCV, by means of improved classwise balance of the classification
accuracy and significantly smaller overall misclassification rate. For DOB-SCV,
the amount of complete misclassifications increased significantly, from 18 into
26, because the emphasis on class 4 had negative effect on accuracies in classes
5 and 6. The smaller amount obtained by SCV does not imply superiority over
DOB-SCV but just the fact that the result was obtained with more flexible
model, i.e. with slightly smaller 5*.

Table 5. Repeated CV with modified sets

3xSCV 3xDOB-SCV
Fold TrE TsE GeE TrE TeE GeE
1st 0.2724 0.3754 0.3570 0.2728 0.4008 0.3597
2nd 0.2688 0.4080 0.3723 0.2795 0.3804 0.3570
3rd 0.2712 0.3840 0.3658 0.2743 0.3728 0.3402
Grand 0.2708 0.3891 0.3650 0.2755 0.3847 0.3532
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Fig. 3. Scatter plots of training/validation set errors for 3xSCV (left) and 3xDOB-SCV
(right) with modified data sets

4 Conclusions

The performed set of experiments illustrate some difficulties related to model
assessment with cross-validation. The general statistical assumptions on fixed
input and input-output conditional distributions are not necessarily valid with
real data sets. The amount of folds and the actual folding strategy have an ef-
fect on the behavior of CV. The error measure used with different data sets
(training, test, validation) affects error computations and, hence, the form of
obtained relationships underlying model selection. Especially when a universal
prediction model, like MLP, is used in classification with typical output encod-
ing, a discrete and quantized error measure suppress the precious information
reflecting the quality of the model. In any case, estimation of the generalization
error through test folds is only an approximation, and with all the experiments
and techniques used here, we always ended up to overestimate the true general-
ization error using mean over ten test folds. Similarly, the standard deviation of
generalization error estimate can remain large and does not necessarily decrease
with repeated folding. We conclude, by comparing the Std estimates obtained
with different parameters (typically with simpler network - with smaller size of
hidden layer or larger regularization coefficient - we end up with smaller vari-
ance), that this estimate reflects more the variability of the model itself instead
of one model’s actual classification performance. Such an observation might be
valid for universal approximators in general. We also illustrated that the qual-
ity of data has an effect on cross-validation results, especially when using the
standard, stratified CV.

Through all the computational experiments performed we found that DOB-
SCV folding approach could be better suited for real data sets, because it po-
tentially provides better differentiation of a classifier’s true performance through
more homogenous test folds. This conclusion coincides with the results in [11]
that were obtained with other classifiers and for larger set of folding approaches.
Moreover, if classwise deviations in accuracy are revealed, one can, with sam-
ple data sets, augment the training data set accordingly or, in real applications,
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launch a new data collection campaign to improve the overall classification per-
formance. The findings here are obtained with only one benchmark data set with
k = 10 folds, so further experiments with larger sample of real data sets and
different amount of folds should be carried out in the future.
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