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Abstract. We present a new algorithm to compute the Graph Edit Distance in a 
sub-optimal way. We demonstrate that the distance value is exactly the same 
than the one obtained by the algorithm called Bipartite but with a reduced run 
time. The only restriction we impose is that the edit costs have to be defined 
such that the Graph Edit Distance can be really defined as a distance function, 
that is, the cost of insertion plus deletion of nodes (or arcs) have to be lower or 
equal than the cost of substitution of nodes (or arcs). Empirical validation 
shows that higher is the order of the graphs, higher is the obtained Speed up. 
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1 Introduction 

Attributed Graphs have been of crucial importance in pattern recognition throughout 
more than 3 decades [1], [2], [3], [4], [5], [6], [7], [8], [9] and [10]. If elements in 
pattern recognition are modelled through attributed graphs, error-tolerant graph-
matching algorithms are needed that aim to compute a matching between nodes of 
two attributed graphs that minimizes some kind of objective function. Unfortunately, 
the time and space complexity to compute the minimum of these objective functions 
is very high. For this reason, some graph prototyping methods have appeared with the 
aim of reducing the run time while querying a graph in a large database [11], [12], 
[13]. 

Since its presentation, Bipartite algorithm [14] has been considered one of the best 
graph-matching algorithms due to it obtains a sub-optimal distance value almost near 
to the optimal one but with a considerable decrease on the run time. Other algorithms 
are [15] or [16]. There is an interesting survey in [2].  

This paper presents a new algorithm that obtains exactly the same distance value of 
the Bipartite algorithm but with a reduced run time. The only restriction we impose is 
that the edit costs have to be defined such that the Graph Edit Distance can be really 
defined as a distance function, that is, the cost of insertion plus deletion of nodes (or 
arcs) have to be lower or equal than the cost of substitution of nodes (or arcs). 
Experimental validation shows a Speed up of 5 on well-known databases. In fact, 
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higher is the order of graphs, higher is also the Speed up of our algorithm. This 
property is interesting since in the next years, we will see a need on representing the 
objects (social nets, scenes, proteins…) on larger structures. 

The outline of the paper is as follows, in the next section, we define the attributed 
graphs and the graph-edit distance. On section 3, we explain how to compute the 
graph edit distance using the Bipartite algorithm. Finally, on section 4, we present our 
new method and we schematically show our algorithm. On section 5, we show the 
experimental validation and we finish the article with some conclusions. 

2 Graphs and Graph Edit Distance 

In this section, we first define the Attributed Graphs, Cliques and Graph matching and 
then we explain the Graph Edit Distance. 

 
Attributed Graph and Cliques 
Let Δ୴and Δୣdenote the domains of possible values for attributed vertices and arcs, 
respectively. An attributed graph (over Δ୴ and Δୣ) is defined by a tuple G ൌሺΣ஝, Σୣ, γ୴, γୣሻ, where Σ୴ ൌ ሼvୟ | a ൌ  1, … , nሽ is the set of vertices (or nodes), Σୣ ൌ ሼeୟୠ|a, b א 1, … , nሽ is the set of arcs (or edges), γ୴: Σ୴ ՜ Δ୴ assigns attribute 
values to vertices and γୣ: Σୣ ՜ Δୣ assigns attribute values to arcs. The order of graph G is n. 

We define a clique Kୟ on an attributed graph G as a local structure composed of a 
node and its outgoing edges Kୟ ൌ ሺvୟ, ሼeୟୠ|b א 1, … , nሽ, γ୴, γୣሻ. 

 
Error Correcting Graph Isomorphism  
Let G୮ ൌ ሺΣ୴୮, Σ୮ୣ, γ୴୮, γ୮ୣሻ and G୯ ൌ ሺΣ୴୯, Σ୯ୣ, γ୴୯, γ୯ୣሻ be two attributed graphs of initial 
order n and m. To allow maximum flexibility in the matching process, graphs are 
extended with null nodes [17] to be of order n ൅ m. We will refer to null nodes of G୮ 
and G୯ by Σ෠୴୮ ك Σ୴୮ and Σ෠୴୯ ك Σ୴୯ respectively. We assume null nodes have indices ܽ א ሾ݊ ൅ 1, … , ݊ ൅ ݉ሽ and ݅ א ሾ݉ ൅ 1, … , ݊ ൅ ݉ሽ for graphs G୮ and G୯, 
respectively. Let T be a set of all possible bijections between two vertex sets Σ୴୮ and Σ୴୯. We define the non-existent or null edges by Σ෠୮ୣ ك Σ୮ୣ and Σ෠୯ୣ ك Σ୯ୣ. 

Bijection f ୮,୯: Σ୴୮ ՜ Σ୴୯, assigns one vertex of G୮ to only one vertex of G୯. The 
bijection between arcs, denoted by f ୮ୣ,୯, is defined accordingly to the bijection of their 
terminal nodes.  

 

Graph Edit Distance between Two Graphs 

One of the most widely used methods to evaluate an error-correcting graph 
isomorphism is the Graph Edit Distance [18, 19, 20]. The dissimilarity is defined as 
the minimum amount of required distortion to transform one graph into the other. To 
this end, a number of distortion or edit operations, consisting of insertion, deletion 
and substitution of both nodes and edges are defined. Then, for every pair of graphs 
,௣ܩሺ݄ݐܽܲݐ݅݀݁ there is a sequence of edit operations, or an edit path ,(௤ܩ ௣ andܩ) ௤ሻܩ ൌ ሺߝଵ, … ,  that (௜ denotes an edit operationߝ where each) ௞ሻߝ
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transform one graph into the other. In general, several edit paths may exist between 
two given graphs. This set of edit paths is denoted by ߴ. To quantitatively evaluate 
which edit path is the best, edit cost functions are introduced. The basic idea is to 
assign a penalty cost to each edit operation according to the amount of distortion that 
it introduces in the transformation.  

Each ݄݁݀݅ݐܽܲݐሺܩ௣, ௤ሻܩ א can be related to a univocal graph isomorphism ݂௣,௤ ߴ א ܶ between the involved graphs. In this way, each edit operation assigns a node 
of the first graph to a node of the second graph. Deletion and insertion operations are 
transformed to assignations of a non-null node of the first or second graph to a null 
node of the second or first graph. Substitutions simply indicate node-to-node 
assignations. Using this transformation, given two graphs, ܩ௣ and ܩ௤, and a bijection 
between their nodes, ݂௣,௤, the graph edit cost is given by (Definition 7 of [21]): 

,௣ܩሺݐݏ݋ܥݐ݅݀ܧ  ,௤ܩ ݂௣,௤ሻ ൌ ෍ ,௔௣ݒ௩௦൫ܥ ஊೡ೜ିஊ෡ೡ೜אೡ೛ିஊ෡ೡ೛௩೔೜ఀא௜௤൯௩೛ೌݒ
൅ ෍ ,௔௣ݒ௩ௗ൫ܥ ஊ෡ೡ೜אೡ೛ିஊ෡ೡ೛௩೔೜ఀא௜௤൯௩೛ೌݒ

൅ 

෍ ,௔௣ݒ௩௜൫ܥ ஊೡ೜ିஊ෡ೡ೜אஊ෡ೡ೛௩೔೜א௜௤൯௩೛ೌݒ
൅ ෍ ௘௦൫݁௔௕௣ܥ , ݁௜௝௤ ൯௘ೌ೛್ ೐೛ିஊ෡೐೛௘೔ೕ೜ఀא ஊ೐೜ିஊ෡೐೜א

൅ 

෍ ௘ௗ൫݁௔௕௣ܥ , ݁௜௝௤ ൯௘ೌ೛್ ೐೛ିஊ෡೐೛௘೔ೕ೜ఀא ஊ෡೐೜א
൅ ෍ ௘௜൫݁௔௕௣ܥ , ݁௜௝௤ ൯௘ೌ೛್ ஊ෡೐೛௘೔ೕ೜א ஊ೐೜ିஊ෡೐೜א

 

Where ݂௣,௤൫ݒ௔௣൯ ൌ ௜௤ݒ  and ௘݂௣,௤൫݁௔௜௣ ൯ ൌ ݁௜௝௤  

 
where ܥ௩௦ is the cost of substituting node ݒ௔௣ of ܩ௣ for node ݂௣,௤൫ݒ௔௣൯ of ܩ௤  ௩ௗ isܥ ,

the cost of deleting node ݒ௔௣ of ܩ௣ and ܥ௩௜ is the cost of inserting node ݒ௜௤  of ܩ௤ . 
Equivalently for edges, ܥ௘௦ is the cost of substituting edge ݁௔௕௣  of graph ܩ௣ for edge ௘݂௣,௤൫݁௔௕௣ ൯ of ܩ௤ ௘ௗ is the cost of assigning edge ݁௔௕௣ܥ ,  of ܩ௣ to a non-existing edge of ܩ௤  and ܥ௘௜ is the cost of assigning edge ݁௔௕௤  of ܩ௤  to a non-existing edge of ܩ௣. Note 
that we have not considered the cases in which two null nodes or null arcs are 
mapped. This is because this cost is zero by definition. 

Finally, the Graph Edit Distance is defined as the minimum cost under any 
bijection in ܶ: 

,௣ܩሺݐݏ݅ܦݐ݅݀ܧ  ௤ሻܩ ൌ min௙೛,೜்א ,௣ܩሺݐݏ݋ܥݐ݅݀ܧ ,௤ܩ ݂௣,௤ሻ  
 
Using this definition, the Graph Edit Distance essentially depends on ܥ௩௦, ܥ௩ௗ, ܥ௩௜, ܥ௘௦, ܥ௘ௗ and ܥ௘௜ functions and several definitions of these functions exist. 
We say the optimal bijection, ݂௣,௤כ, is the one that obtains the minimum cost, ݂௣,௤כ ൌ argmin௙೛,೜்א ,௣ܩሺݐݏ݋ܥݐ݅݀ܧ ,௤ܩ ݂௣,௤ሻ  
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We define the distance and the optimal bijection between two cliques in a similar 
way as the distance between two graphs since they are local structures of graphs. We 
name the cost of substituting clique Kୟ୮ by K୧୯ as ࡯௔,௜. The cost of deleting clique Kୟ୮ 
as ࡯௔,ఌ and the cost of inserting clique K୧୯ as ࡯ఌ,௜. 
3 Edit Distance Computation by Bipartite Algorithm (BP) 

The assignment problem considers the task of finding an optimal assignment of the 
elements of a set ܣ to the elements of another set ܤ, where both sets have the same 
cardinality ݊ ൌ |ܣ| ൌ  The matrix .ܥ Let us assume there is a ݊ܺ݊ cost matrix .|ܤ|
elements ܥ௜,௝ correspond to the cost of assigning the i-th element of ܣ to the j-th 
element of ܤ. An optimal assignment is the one that minimises the sum of  
the assignment costs and so, the assignment problem can be stated as finding the 
permutation p that minimises ∑ C୧,୮ሺ୧ሻ୬୧ୀଵ . Munkres’ algorithm [22] solves the 
assignation problem. It is a refinement of an earlier version by Kuhn [23] and is also 
referred to as Kuhn-Munkres or Hungarian algorithm. The algorithm repeatedly finds 
the maximum number of independent optimal assignments and in the worst case the 
maximum number of operations needed by the algorithm is Oሺ݊ଷሻ. Later, an 
algorithm to solve this problem applied to non-square matrices where presented [24].  

Bipartite, or BP for short [14], is an efficient algorithm for edit distance 
computation for general graphs that use the Munkres’ algorithm. That is, they 
generalised the original Munkres’ algorithm that solve the assignment problem to the 
computation of the graph edit distance by defining a specific cost matrix. In 
experiments on artificial and real-world data, authors demonstrate BP obtains an 
important speed-up of the computation respect other methods while at the same time 
the accuracy of the approximated distances is not much affected [14]. For this reason, 
since its publication, it has become one of the most used graph-matching algorithms. 

Given attributed graphs G୮ and G୯, the ሺn ൅ mሻݔሺn ൅ mሻ cost matrix C is defined 
as follows, 

 
 
Where ࡯௔,௜ denotes the cost of substituting clique Kୟ୮ by K୧୯, ࡯௔,ఌ denotes the cost 

of deleting clique Kୟ୮ and ࡯ఌ,௜  denotes the cost of inserting clique K୧୯. On the basis of 
this cost matrix definition, Munkres’ algorithm can be executed to find the minimum 
cost for all permutations. Obviously, as described in [14], this minimum cost is a  



 Edit Distance Computed by Fast Bipartite Graph Matching 257 

sub-optimal Edit Distance value between the involved graphs since cost matrix rows 
are related to cliques of graph G୮ and columns are related to cliques of G୯. Moreover, 
it is considered a correct permutation the one that ∑ ۱ୟ,୮ሺୟሻ୬ା୫ୟୀଵ ൏ ∞. That is, all costs 
are assigned to non-infinitive values. 

Note that Munkres’ algorithm used in its original form is optimal for solving the 
assignment problem, but it is suboptimal for solving the graph edit distance. This is due 
to the fact that cliques are considered individually. The distance values obtained by this 
method are equal to or smaller than the distance values obtained in an optimal method 
(with exponential cost). The computational cost of the method is Oሺሺ݊ ൅ ݉ሻଷሻ. 

4 Fast Bipartite Algorithm (FBP)  

We define the following edit cost, ݐݏ݋ܥݐ݅݀ܧᇱሺீ೛,ீ೜,௙೛,೜ሻ ൌ ݐݏ݋ܥݐ݅݀ܧሺܩ௣, ,௤ܩ ݂௣,௤ሻ െ ,௣ܩ௩௘_ௗ௜ሺܥ  ௤ሻܩ
 
Where,  ܥ௩௘_ௗ௜ሺܩ௣, ௤ሻܩ ൌ ෍ ,௔௣ݒ௩ௗ൫ܥ థ௤ݒ ൯௩೛ೌఀאೡ೛ ൅ ෍ థ௣ݒ௩௜൫ܥ , ஊೡ೜א௜௤൯௩೔೜ݒ ൅ 

൅ ෍ ௘ௗ൫݁௔௕௣ܥ , ݁థ௤൯௘ೌ೛್ ೐೛ఀא ൅ ෍ ,௘௜൫݁థ௣ܥ ݁௜௝௤ ൯௘೔ೕ೜ ஊ೐೜א  

and ݒథ௤ א Σ෠௩௤, ݒథ௣ א Σ෠௩௣, ݁థ௤ א Σ෠௘௤ and ݁థ௣ א Σ෠௘௣ 

The new edit cost definition subtracts from the original edit cost the costs of 
deleting nodes and arcs from G୮ and inserting nodes and arcs from G୯. Nodes vம୯  and vம୮  (or arcs eம୯  and eம୮ ) represent any extended node (or arc). Note that in cases that 

nodes or arcs where the extended ones (null nodes o arcs), that is, vୟ୮ א Σ෠୴୮, v୧୯ א Σ෠୴୯, eୟୠ୮ א Σ෠୮ୣ or e୧୨୯ א Σ෠୯ୣ, then their corresponding cost is zero by definition. Moreover, 

the subtracted cost C୴ୣ_ୢ୧ does not depend on any bijection f ୮,୯.   
In a similar way than the original edit cost, the optimal bijection, ݂Ԣ௣,௤כ, is the one 

that obtains the minimum cost, 
 ݂Ԣ௣,௤כ ൌ argmin௙೛,೜்א ,௣ܩԢሺݐݏ݋ܥݐ݅݀ܧ ,௤ܩ ݂௣,௤ሻ  
 
We define D as an n ൅ m vector. The first n positions are filled with the costs of 

deleting cliques Kୟ୮ that we named ࡯௔,ఌ, and the other ݉ positions are filled with 
zeros: D ൌ ,ଵ,ఌ࡯ൣ … ,௡,ఌ࡯ 0 … 0൧ . Moreover, we define I as an m ൅ n vector. The first ݉ positions are filled with the costs of inserting cliques K୧୯ that we named ࡯ఌ,௜, and 
the other ݊ positions are filled with zeros: I ൌ ൣ۱க,ଵ, … ۱க,୫, 0 … 0൧. Note that zeros in 
both vectors represent the cost of deleting or inserting null cliques. Besides, it is easy 
to demonstrate that C୴ୣ_ୢ୧ሺG୮, G୯ሻ ൌ ,1തۃ ሺIୟ ൅ Dୟሻۄ. 
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With these two vectors, we define two ሺn ൅ mሻݔሺm ൅ nሻ matrices, ܦ෡ and ܫመ. The 
first one is obtained by the replication of vector D through columns and the second 
one is obtained by the replication of vector I through rows.  

We are ready to define our cost matrix CԢ as follows, CԢ=C-൫ܦ෡ ൅  ,መ൯ܫ
 

 
 
Similarly to cost matrix ܥ, this matrix is composed of four quadrants. The 

dimensions of each quadrant is: ܥQ1ᇱ ൌ n X m, ܥQ2ᇱ ൌ n X n, ܥQ3ᇱ ൌ m X m 
and ܥQ4ᇱ ൌ m X n. Cells in the first one are filled with the value of substituting the 
cliques (as in ܥ) but the cost of deleting and inserting the respective cliques is 
subtracted. The second and third quadrants are composed of infinitive values except at 
the diagonal that is filled with zeros. All cells on the fourth quadrant have a zero. 

On the basis of the new cost matrix CԢ defined above, Munkres’ algorithm [22] can 
be executed and it finds the optimal permutation p that minimises ∑ CԢୟ,୮ሺୟሻ୬ା୫ୟୀଵ . Note 
that any correct permutation on p is equivalent to a bijection f ୮,୯ between nodes of 
graphs G୮ and G୯. 

It was demonstrated in [25] that, on the one hand, the equality ݂Ԣ௣,௤כ ൌ ݂௣,௤כ holds 
for all pair of graphs ܩ௣ and ܩ௤ . On the other hand, in the case that ܥ௩௦ ൑ ௩௜ܥ ൅  ௩ௗܥ
and ܥ௘௦ ൑ ௘௜ܥ ൅  ௘ௗ then the value of EditCostԢ is equal to a correct permutation costܥ
of CԢ. These demonstrations give us a way to compute the ݐݏ݋ܥݐ݅݀ܧ through applying 
the Munkres’ algorithm to matrix CԢ. Nevertheless, due to the dimensions of CԢ are the 
same than the original C, the computational cost would be equivalent. Again, in [25], 
it was demonstrated that, in the case that ܥ௩௦ ൑ ௩௜ܥ ൅ ௘௦ܥ ௩ௗ andܥ ൑ ௘௜ܥ ൅  ௘ௗ thenܥ
minimising a permutation on CԢ is exactly the same than minimising a permutation on 
the sub-matrix composed by the first quadrant composed of the first n rows and m 
columns, that we call it ܥQ1ᇱ. 

Algorithm 1 computes the ݁ݐ݅ݐݎܽ݌݅ܤ ݐݏܽܨ. 
 
Algorithm 1. Fast Bipartite ܥQ1ᇱ ൌ Computation_CostሺG୮, G୯ሻ  
Q1ᇱ is the ݊ܺ݉ first quadrant of cost matrix Cᇱ Pܥ //     ൌ MunkresሺܥQ1ᇱሻ. 
   // P is the ݊ܺ݉ permutation matrix EditCostᇱ ൌ Sum൫ܵ݉ݑሺܲ.כ  .Q1ᇱሻ൯ܥ
represents the multiplication element by element EditCost כ. //     ൌ EditCostᇱ ൅ C୴ୣ_ୢ୧  
     // Final distance value 
End. 
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As commented, the Munkres algorithm was initially implemented to find the 
permutation of a quadratic matrix. In case ݉ ് ݊, matrix ܥQ1ᇱ can be extended with 
negative values (lower than any original cost). Nevertheless, it is usual the implemented 
functions of the Munkres’ algorithm to automatically enlarge the cost matrix. The worst 
computational cost of Fast Bipartite is the cost of the Munkres’ algorithm, that is: ܱሺmax ሺ݉, ݊ሻଷሻ. The cost of Bipartite algorithm [14] is ܱሺሺ݉ ൅ ݊ሻଷሻ. 

5 Experimental Validation  

The goodness of the Bipartite algorithm has been tested in several papers, for this 
reason, we only want to present the Speed up of our method respect the classical one 
[14]. We do not present new recognition-ratio tests or correlation tests between the 
sub-optimal distance and the optimal one since we obtain exactly the same distance 
value (as described above) when the costs are defined such as ܥ௩௦ ൑ ௩௜ܥ ൅ ௘௦ܥ ௩ௗ andܥ ൑ ௘௜ܥ ൅   .௘ௗܥ

We present two different tests. The aim of the first one is to execute again the tests 
published in paper [14] where the Bipartite algorithm was presented and show the 
Speed up of our method on these largely used databases known as IAM graph 
database repository. These databases have been used during some years to test 
different a types of algorithms related to graphs such as, classification, clustering, 
prototyping or graph embedding. We do not want to add any comment to these 
databases since a lot of literature has been written talking about them. The first 
explanations of these databases can be found in [26] and also they have been 
commented in [14]. They can be downloaded from the IAPR-TC15 web page [27].  

In the experiments, we compared all graphs on the test set respect all graphs on the 
reference set as authors did in [14]. Then, from this large number of comparisons, we 
have extracted the mean computational times tҧBP and tҧFBP and the Speed up (table 1). 
We also show the mean and maximum number of graphs of each database. The source 
code in Matlab can be downloaded from [28]. 

Table 1. Mean computational time of Bipartite and Fast Bipartite and Speed Up of Fast 
Bipartite respect Bipartite 

 Mean
Order 

Max 
Order 

 ۾ҧ۰ܜ
(mS) 

 ۾ҧ۴۰ܜ
(mS) 

Speed
Up 

Letter (L) 4.5 8 1.6 1.4 1.08 
Letter (M) 4.6 10 2.1 1.8 1.13 
Letter (H) 4.7 9 1.8 1.6 1.14 

COIL 3.0 11 2.2 1.9 1.18 
GREC 12.9 39 29.3 13.1 2.23 

Fingerprint 5.4 26 9.8 6.2 1.60 
Molecules 9.5 85 391.3 99.7 3.92 

Proteins 32.6 126 1460.6 278 5.25 
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The Speed up is higher than one on the whole experiments therefore it is always 
worth to use the Fast Bipartite instead of the Bipartite algorithm. Moreover, the higher 
is the mean and the maximum number of nodes, the higher is the Speed up. 

The aim of the second test is to show how the Fast Bipartite algorithm performs 
when it is not guarantee that ܥ௩௦ ൑ ௩௜ܥ ൅ ௘௦ܥ ௩ௗ andܥ ൑ ௘௜ܥ ൅ ௘ௗܥ . In some 
applications, this is a too strong constrain. For instance, palmprint identification is an 
interesting application since the number of minutiae is around 1000 and it is usual to 
represent the palmprint image in an attributed graph where nodes represent minutiae 
and arcs represent the proximity relation (Delaunay triangulation or Nearest-
neighbours). Attributes on nodes are the angle of minutiae and edges do not have 
attributes. The distance between node attributes is the angular distance between the 
angles of both minutiae. Therefore, if angles are presented by degrees, the maximum 
distance is 180. For this reason, if we want to fulfil constrain ܥ௩௦ ൑ ௩௜ܥ ൅  ௩ௗ then weܥ
need ܥ௩௜ and ܥ௩ௗ to be bigger or equal than 90. Nevertheless, it is usual to consider 
two minutiae cannot be mapped if the difference between the angles is lower than 
around 30 degrees. So, from the application point of view we wish ܥ௩௜ ൌ 30 and ܥ௩ௗ ൌ 30. In this second experiment, we show in which extend our algorithm obtains 
the same distance value obtained by the Bipartite algorithm although the constrain ܥ௩௦ ൑ ௩௜ܥ ൅  .௩ௗ is not fulfilledܥ

We used images contained in the Tsinghua 500 PPI Palmprint Database [29]. It is a 
public high-resolution palmprint database composed of 500 palmprint images of 2040 
x 2040 resolution and captured with a commercial palmprint scanner from Hisign. 
From each person, 16 palmprints are enrolled (8 ones per each hand). We used the 
algorithm presented in [30] to extract the minutiae from each image. Table 1 shows 
the mean and max order of the generated graphs as well as the average run time and 
the Speed up of FBP respect BP. Our database, called Tarragona Palmprint, is public 
available at [31]. 

Table 2. Mean computational time of Bipartite and Fast Bipartite and Speed Up of Fast 
Bipartite respect Bipartite 

 Mean 
Order 

Max 
Order 

 ۾ҧ۰ܜ
(S) 

 ۾ҧ۴۰ܜ
(S) 

Speed-
Up 

Palmprint 987 1505 365,35 40.46 9.03 

Table 3 shows the average Distance Error computed as ݎ݋ݎݎܧ ݁ܿ݊ܽݐݏ݅ܦ ൌ 1 െ ாௗ௜௧ ஽௜௦௧௔௡௖௘ಳುாௗ௜௧ ஽௜௦௧௔௡௖௘ಷಳು while computing these two algorithms with several edit costs ܥ௩௜ and ܥ௩ௗ. Recall that always holds ݁ܿ݊ܽݐݏ݅ܦ ݐ݅݀ܧ஻௉ ൑ ஻௉݁ܿ݊ܽݐݏ݅ܦ ݐ݅݀ܧ ி஻௉ and݁ܿ݊ܽݐݏ݅ܦ ݐ݅݀ܧ ൌ ௩௦ܥ ி஻௉ when݁ܿ݊ܽݐݏ݅ܦ ݐ݅݀ܧ ൑ ௩௜ܥ ൅ ௘௦ܥ ௩ௗ andܥ ൑ ௘௜ܥ ൅  .௘ௗܥ
If we wish ܥ௩௜ ൌ ௩ௗܥ ൌ 30, as commented above, the average error is lower than 1% 
and we achieve a Speed Up higher than 9. The run time of these algorithms is 
independent of the edit costs. 
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Table 3. Distance between the distance value obtained using BP and FBP when several costs 
are applied ࢏࢜࡯ ൌ  80 60 40 30 20 10 ࢊ࢜࡯

Distance Error 0.145 0.019 0.009 0 0 0 

6 Conclusions 

This paper presents a new algorithm called Fast Bipartite to compute the Graph Edit 
Distance that obtains exactly the same distance value than the Bipartite algorithm but 
with a reduced run time. The only restriction we impose is that the edit costs have to 
be defined such that the insertion plus deletion have to be greater or equal than the 
substitution. This is a logical restriction since it is needed to be the Edit Distance 
defined as a distance function. Empirical evaluation shows the Fast Bipartite is always 
faster than the Bipartite algorithm and higher is the order of both graphs, better is the 
Speed up we obtain. Moreover, in cases that the application imposes not to hold this 
restriction, the algorithm also achieves a high Speed up with a reduced error. 
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