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Abstract. In this paper we develop a novel graph kernel by matching the depth-
based substructures in graphs. We commence by describing how to compute the
Shannon entropy of a graph using random walks. We then develop an h-layer
depth-based representations for a graph, which is effected by measuring the Shan-
non entropies of a family of K-layer expansion subgraphs derived from a vertex
of the graph. The depth-based representations characterize graphs in terms of
high dimensional depth-based complexity information. Based on the new repre-
sentation, we establish a possible correspondence between vertices of two graphs
that allows us to construct a matching-based graph kernel. Experiments on graphs
from computer vision datasets demonstrate the effectiveness of our kernel.
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1 Introduction

Graph-based representations are widely used in computer vision and pattern recogni-
tion for characterizing shapes and structures [1, 2]. In this context, there has recently
been an increasing interest in evolving graph kernels into kernel machines (e.g., a
Support Vector Machine (SVM)) for graph classification [3—5]. A graph kernel is usu-
ally defined in terms of a (dis)similarity measure between graphs. Haussler [6] pro-
posed a general graph kernel formulation referred to as R-convolution kernel, which
is effected by decomposing graphs into substructures separately and then measuring
the pairwise (dis)similarities between the resulting substructures. For a pair of sample
graphs Gp,(V,, Ep) and Gy(Vy, E;), suppose {Sp1,...,Spa,.-.,Spn,} and
{Sg1,-- - Spyy, -+ Sgn, } are the sets of the substructures of G, (V},, E,) and G (Vy,
E,) respectively. A R-convolution kernel kr between G, (V,, Ep) and G4(Vy, E,) can
be defined as

2
=

k’R(Gpa Gq) = S(Sp;xv Sq;y)v

r=1 1

<
Il

where s(Sp;z, Sq;y) 18 the (dis)similarity measure between the substructures Sy, and
Sy, and kg proves to be a positive definite kernel.

From the perspective of R-convolution, existing graph kernels can be generally cat-
egorized into three classes [3], i.e. graph kernels based on comparing all pairs of a)
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walks, b) paths and c) restricted subgraph and subtree structures. One major limitation
of these existing graph kernels is that in practical computation they do not easily scale
up to structures of large sizes. To overcome this problem, most existing graph kernels
compromise to use substructures of limited sizes, and examples include a) the shortest
path graph kernel [7], b) the graphlet count graph kernel [3], c) the fast neighborhood
subgraph pairwise distance kernel [9], and d) the backtrackless kernel [10] based on
non-backtracking cycles that are identified by the Thara zeta function [11]. Although
this strategy curbs the notorious inefficiency of comparing large substructures, graph
kernels with limited sized substructures simply can only reflect restricted topological
characteristics of a graph.

In this work, we aim to overcome the topological restrictions by characterizing graph
substructures in terms of depth-based representations [12], which provide richer topo-
logical features but also easily scale up to as large size as the original graph. To this end,
we investigate how to incorporate the depth-based representations into graph matching
and thus develop a novel graph kernel which not only reflects the rich depth-based struc-
ture of graphs but also enables a fast computation. We commence by computing the
depth-based complexity traces [13] of a graph around each vertex. To avoid the burden-
some subgraph enumeration in computing the intrinsic complexity [12], we compute
the depth-based representation around a vertex by measuring a fast Shannon entropy
of its expansion subgraph. The depth-based representation gauges the Shannon entropy
flow via the expansion subgraphs, and thus reflects a high dimensional complexity char-
acteristics of the graph around the vertex. Based on the obtained depth-based represen-
tations for two graphs we develop a matching strategy similar to that Scott et al. [16]
previously used for point set matching. The purpose of this step is to match the vertices
of the graphs by using the vertex information extracted from the depth-based represen-
tations. For a pair of graphs, we use the Euclidean distance between the depth-based
representations to compute an affinity matrix. The correspondences between pairwise
vertices are obtained from the affinity matrix. The affinity matrix characterizes local
structural similarity between a pair of graphs and can be used for graphs of different
sizes. Finally, we develop the novel depth-based graph matching kernel by counting the
matched vertex pairs. We empirically demonstrate the effectiveness and efficiency of
our new graph kernel on graphs from computer vision datasets.

The remainder of this paper is organized as follows. Section 2 presents the defini-
tion of depth-based representations for graphs. Section 3 presents the definition of the
new graph matching kernel. Section 4 provides our experimental evaluations. Finally,
Section 5 concludes our work.

2 Depth-Based Representations

We commence by introducing a fast Shannon entropy measure for a graph. Moreover,
we show how to compute a depth-based representation around a vertex of a graph.

2.1 The Shannon Entropy of a Graph

We compute the Shannon entropy of a graph based on steady state random walks on the
graph. Consider a graph G(V, E') where V' denotes the set of verticesand E C V x V
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denotes the set of undirected edges. The adjacency matrix A for G(V, E) is a symmetric
|[V| x |V| matrix with the (v, u)th entry

1if(v,u) € E;
0 otherwise.

A(v,u) = { (1
The vertex degree matrix of G(V, E) is a diagonal matrix D whose vth diagonal element
is givenby D(v,v) = d(v) = 3_, ,cy A(v,u). As aresult, the probability of a steady
state random walk on G(V,, E) visiting vertex v is Pg(v) = d(v)/ >_, ,ey d(u). The
Shannon entropy of G(V, E) associated with the steady state random walk is

Hg(G) ==Y Pg(v)log Pa(v). 2)

veV

For a graph G(V, E) (]V| = n), computing the Shannon entropy Hg(G) requires
time complexity O(n?). This is because Hs(G) relies on the degree matrix D that is
computed by visiting all the n? entries of the adjacency matrix A. This indicates that
the Shannon entropy Hg defined in Eq.(2) can be efficiently computed. By contrast,
the von Neumnann entropy defined in [14] and the Shannon entropy associated with an
information functional defined in [15] both require time complexity O(n?).

2.2 The Depth-Based Representation for a Graph

For an undirected graph G(V, E), the shortest path S¢ (v, u) between a pair of vertices
v and u can be computed by using Dijkstra algorithm. The matrix S whose element
S (v, u) represents the shortest path length between v and w is referred to as the shortest
path matrix for G. Let NX be a subset of V satisfying NX = {u € V| Sg(v,u) < K}.
For G, the K -layer expansion subgraph GX (VX ; £K) around vertex v is

EK = {(u,0) C NX | (u,v) € E}. (

Assume Ly, is the greatest length of the shortest paths from v to the remaining
vertices of G(V, E). If L, > Lz, the Ly-layer expansion subgraph is G(V, E) itself.

Definition 2.1 (h-layer depth-based representation). For a graph G(V, E) and a ver-
tex v € V, the h-layer depth-based representation around v is a h dimensional vector

Dg(v) = [Hs(Gy), -+ Hs(Gy), -~ Hs ()] (4)

where h (h < L,) is the length of the shortest paths from v to other vertices in G(V, E),
GE(VE; €KY (K < h) is the K-layer expansion subgraph of G(V, E) around v, and
Hs(GXK) is the Shannon entropy of GX and is defined in Eq.(2). O

For a graph G(V, E) (|[V| = n) and a vertex v € V, computing the h-layer depth-
based representation D2 (v) of G(V, E) around v requires time complexity O(hn?).
This follows the definitions in Eq.(3). For G(V, E), the Dijkstra algorithm requires
time complexity O(n?). Computing the Shannon entropies of the i K -layer expansion
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subgraphs, which are derived from v, requires time complexity O(hn?). Hence, the
whole time complexity is O(hn?). This indicates that the h-layer depth-based repre-
sentation around a vertex of a graph can be efficiently computed. Key to this efficiency
is that the Shannon entropy on an expansion subgraph only requires time complexity
O(n?). By contrast, in [12] the intrinsic complexity measure of an expansion subgraph
for measuring the depth-based complexity requires time complexity O(n®).

Moreover, the h-layer depth-based representation D/ (v) characterizes the depth-
based complexity of G(V, E) with regard to the vertex v in a h dimensional fea-
ture space. It captures the rich depth-based complexity characteristics of substructures
around the vertex v in terms of the entropies of the K -layer expansion subgraphs with K
increasing from 1 to h. In contrast, the existing graph kernels in the literatures [4, 4, 5]
tend to compute similarities on global subgraphs of limited sizes and can only capture
restricted characteristics of graphs.

3 Depth-Based Graph Matching Kernel

We describe how the depth-based representations can be used for graph matching. Fur-
thermore, we define a novel graph kernel based on the proposed matching method.

3.1 Depth-Based Graph Matching

We develop a matching method similar to that introduced in [16, 17] for point set match-
ing, which computes an affinity matrix in terms of the distances between points. In our
work, for a vertex v of G(V, E), we treat the h-layer depth-based representations DY (v)
as the point coordinate associated with v. We use the Euclidean distance between the
depth-based representations D}ép (v;) and ng (u;) as the distance measure of the pair-
wise vertices v; and u; of graphs G, (V),, Ep,) and G4(Vy, Ey), respectively. The affinity
matrix element R(i, j) is defined as

R(i,j) = /D, (v5) = D&, ()| (Dl (0:) — D (uy)]; 5)

where R is a |V, | x|V, | matrix. The element R(i, j) represents the dissimilarity between
the vertex v; in G, (V},, E;,) and the vertex u; in G4 (V;, E;). The rows of R(i, j) index
the vertices of G,,(V),, E,), and the columns index the vertices of G4(Vy, Ey). If R(i, 7)
is the smallest element both in row ¢ and in column j, there should be a one-to-one
correspondence between the vertex v; of G, and the vertex u; of Gy. We record the
state of correspondence using the correspondence matrix C' € {0, 1}!V»!IVal satisfying

1if R(i, ) is the smallest element
C(i,j) = both in row 7 and in column 7; (6)
0 otherwise.

Eq.(6) implies that if C'(4,j) = 1, the vertices v; and v; are matched. Note that, in
row ¢ or column j there may be two or more than two elements satisfying Eq.(6). In
other words, for a pair of graphs a vertex from a graph may have two or more than two
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matched vertices from the other graph. To assign a vertex one matched vertex at most,
we update the matrix C' by employing the Hungarian method that is widely used for
solving the assignment problem (e.g., the bipartite graph matching problem) in polyno-
mial time [18]. Here the matrix C' € {0, 1}/V»IIVal can be seen as the incidence matrix
of a bipartite graph G,q(Vy, Vg, Epg), where V,, and V, are the two sets of partition
parts and E,,, is the edge set. By performing the Hungarian algorithm on the incidence
matrix C' € {0, 1}/V#IVal (i.e., the correspondence matrix of G, and G,) of the bipartite
graph G, we assign each vertex from G, or G4 at most one matched vertex from the
other graph G, or G,,. Note finally that, directly performing the Hungarian algorithm
on the matrix R can also assign each vertex from G, or G4 an unique matched vertex.
However, it cannot guarantee that each identified element is the smallest both in the row
and column in R. This is because some vertices will not have matched vertices.

For a pair of graphs G, (V,, Ep) and Go(Vy, Ey) (|Vp| = |V4| = n). Computing
the correspondence matrix C' € {0, 1}‘VPHV‘1| (i.e. the final correspondence matrix up-
dated by the Hungarian algorithm) requires time complexity O(hn?). This follows the
definition in Section 3.1. For GG, computing its n h-layer depth-based representations
derived from each of its vertices requires time complexity O(hn?), and it is the same for
G. Computing each element of the affinity matrix R requires time complexity O(h),
and hence computing the whole affinity matrix R requires time complexity O(hn?).
The computation of the correspondence matrix C need to enumerate all the n? pairs of
elements in R and thus requires time complexity O(n?). The Hungarian algorithm on
the matrix C requires time complexity O(n?). As a result, the whole time complexity
is O(hn?).

3.2 A Depth-Based Graph Kernel

Based on the graph matching strategy in Section 3.1, we define a new graph kernel.

Definition 3.1 (The depth-based graph kernel). Consider G,(V},, E,) and G (V;, E;)
as a pair of sample graphs. Based on the definitions in Eq.(4), Eq.(5) and Eq.(6), and
the Hungarian algorithm, we compute the correspondence matrix C'. The depth-based
graph kernel k:g% using the h-layer depth-based representations of the graphs is

Vol [Vl

Kb (GpnGo) = 3 Y Clin). )

=1 j=1

which counts the number of matched vertex pairs between G, (V,, Ep) and G, (Vy, Ey).

Note that, the kernel kgj p can also accommodate attributed graphs by computing the
number of pairwise matched vertices that have the same vertex label. |

Lemma 3.1. The depth-based graph kernel kg% is positive definite (pd).

Proof. Intuitively, the proposed depth-based graph kernel is pd because it counts pairs
of matched vertices (i.e., the smallest subgraphs). More formally, let the base kernel &
be a function counting pairs of matched vertices in the pair of graphs G,(V,, E,) and
Gq(Vy, Eq)
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k(Gp.Gy) = kph(Gp Gy = 3 3 d(viuy). (8)
v; €EVp u; EVy
where
[t Cl ) =1
0(vi; ug) = {0 otherwise. ®)

where 0 is the Dirac kernel, that is, it is 1 if the arguments are equal and 0 otherwise
(i.e.itis 1 if a pair of vertices are matched and O otherwise). Hence the proposed kernel

function k(D  1s the sum of several positive definite Dirac kernels, and is thus pd. W

The depth-based graph kernel kgzg on a pair of graphs G, (V,, Ep) and G4(Vy, Ey)
(|Vp| = |V4| = n) requires time complexity O(hn?). For the pair of graphs G),(V},, E,)
and G4(V;, E,), computing their correspondence matrix C' in terms of h-layer depth-
based representations requires time complexity O(hn?), and counting the number of
matched vertex pairs from the matrix C' needs to enumerate all the n? pairs of ele-
ments in C. Hence, the whole time complexity of the depth-based graph kernel kg%

is O(hn?). This indicates that our depth-based graph kernel kg% can be computed in
polynomial time. Key to this efficiency is that the required h-layer depth-based repre-
sentations and the corresponding matching can be efficiently computed.

Discussions. The depth-based graph kernel is related to the depth-based representation
defined in [13]. However, there are two significant differences. First, the depth-based
representation in [13] is computed by measuring the complexities of subgraphs from
the centroid vertex, which is identified by evaluating the minimum shortest path length
variance to the remaining vertices. By contrast, we compute the h-layer depth-based
representation for each vertex as a point coordinate. Second,the depth-based represen-
tation from the centroid vertex can be seen as an embedding vector. Embedding a graph
into a vector tends to approximate the structural correlations in a low dimensional space,
and thus leads to information loss. By contrast, the depth-based graph kernel computed
by matching the h-layer depth-based representation characterizes graphs in a high di-
mensional space and thus better preserves graph structure.

4 Experimental Results

4.1 Graph Datasets from the SHREC 3D Shape and COIL Image Databases

We demonstrate the performance of our kernel on several standard graph datasets from
computer vision databases (i.e., the SHREC 3D Shape and COIL image databases).

a) BAR31, b) BSPHERE31 and ¢) GEOD31: The SHREC 3D Shape database con-
sists of 15 classes and 20 individuals per class, that is 300 shapes [20]. This is a usual
benchmark in 3D shape recognition. From the SHREC 3D Shape database, we establish
three graph datasets named BAR31, BSPHERE31 and GEOD31 datasets through three
mapping functions. These functions are a) ERG barycenter: distance from the center of
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mass/barycenter, b) ERG bsphere: distance from the center of the sphere that circum-
scribes the object, and c) ERG integral geodesic: the average of the geodesic distances
to the all other points. The number of maximum, minimum and average vertices for
the three datasets are a) 220, 41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for
BSPHERE31), and c) 380, 29 and 57.42 (for GEOD31), respectively.

d) COILS: We establish a COILS dataset from the COIL database. The COIL image
database consists of images of 100 3D objects. We use the images for the first five
objects. For each object we employ 72 images captured from different viewpoints. For
each image we first extract corner points using the Harris detector, and then establish
Delaunay graphs based on the corner points as vertices. As a result, in the dataset there
are 5 classes of graphs, and each class has 72 testing graphs. The number of maximum,
minimum and average vertices for the dataset are 241, 72 and 144.90 respectively.

Table 1. Classification Accuracy (In % = Standard Error) Using C-SVM and Runtime

Datasets DB WL SPGK GCGK GCGK4 JSK

BAR31 69.40 = .56 58.53+ .53 55.73 £ .44 22.96+ .65 23.40+ .60 24.10 %+ .86
BSPHERE31 56.43 + .69 42.104+ .68 48.20+ .76 17.10+ .60 18.804+ .50 21.76 £ .53
GEOD31 42.83 + .50 38.20 £ .68 38.40+ .65 15.30+ .68 22.36 £ .55 18.93+ .50
COILS5 7422 + .41 33.16 £1.01 69.97 4+ .92 67.00£ .55 68.77 £ .56 57.25+ .46

Experimental Setup: a) First, we evaluate the performance of our depth-based graph
kernel (DB) on graph classification problems. We also compare our kernel with several
alternative state of the art graph kernels. These graph kernels include 1) the Weisfeiler-
Lehman subtree kernel (WL) [3], 2) the shortest path graph kernel (SPGK) [7], 3) the
graphlet count graph kernel with graphlets of size 3 (GCGK) and size 4 (GCGK4) [8],
and 4) the Jensen-Shannon graph kernel (JSK) with the von Neumann entropy (i.e., the
approximated von Neumann entropy [22] computed through the vertex degree) [21]. For
our DB kernel, we set h as 10. For the WL kernel, we set the highest dimension (i.e.
the highest height of subtrees) of the Weisfeiler-Lehman isomorphism as 10. For each
kernel, we compute the kernel matrix on each graph dataset. We perform 10-fold cross-
validation using the C-Support Vector Machine (C-SVM) Classification to compute the
classification accuracies, using LIBSVM [23]. We use nine samples for training and
one for testing. All the C-SVMs were performed along with their parameters optimized
on each dataset. We repeat the experiment 10 times. We report the average classifica-
tion accuracies and standard errors for each kernel in Table.1. b) Second, we evaluate
the performance of different kernels on graph clustering problems. We commence by
performing the kernel Principle Component Analysis (kPCA) on the kernel matrix to
embed graphs into a 2-dimensional principal space. We visualize the embedding results
of each kernel using the first two principal components. The embedding results on the
BAR31 and COILS datasets are shown in Fig.1 and Fig.2 respectively. Note that, for the
BAR31 dataset we only visualize the embedding points of the first six classes of graphs.
For each kernel, the embedding results on the BSPHERE31 and GEOD31 datasets are
similar to that on the BAR31 dataset. The space in the paper is also not sufficient to in-
clude all of the results obtained. Thus, we only show the results on the BAR31 dataset.
Finally, to place our analysis of graph clustering on a more quantitative footing, for
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each kernel we apply the K-means method to all the kernel embeddings. We calculate
the Rand Index for the resulting clusters. The Rand indicating each kernel is listed in
Table 2.

4.2 Experiments on Graph Datasets

Experimental Results and Discussions: a) In terms of the classification accuracies, we
observe that the accuracies of our DB kernel are the greatest for any dataset. The per-
formance of our kernel exceeds that of all other kernels. The reason for its effectiveness
is that the required depth-based representations of graphs used in our framework cap-
ture a high dimensional depth-based complexity information of graphs. In contrast, the
alternative graph kernels with limited sized substructures (including the vertex degree
required for the JSK) only capture local topological information and reflects restricted
characteristics of graphs. Moreover, we also observe that the classification performance
of our kernel is more stable than that of the alternative kernels. This verifies again that
our kernel defined by depth-based matching reflects precise similarities of graphs. b) In
terms of the embedding results, it is clear that our DB kernel produces the best clusters.
The different classes are separated better than other kernels on any dataset. Note that, for
the COILS dataset the 72 images for each object are taken from different viewing direc-
tions spaced at intervals of 5° around the object. Hence, the embedded graphs for each
class are expected to form a circular trajectory rather than a cluster in the feature space.
In the light of this observation, our method shows a greater representational power in
terms of giving a more trajectory-like embedding than the alternative methods. More-
over, Table 2 indicates that our DB kernel outperforms all the alternative kernels for all
the object classes studied on any dataset. These observations verify that our proposed
kernel has good ability to distinguish different classes of graphs.
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Table 2. Rand Index for K-means Method

First eigenvector

Datasets DB WL SPGK  GCGK
BAR31 0.2319 0.2047 0.1734 0.1638
BSPHERE31 0.1615 0.1304 0.1582 0.1210
GEOD31 01502 0.1136 0.1142 0.1002
COIL5 0.4436 0.3503 0.4124 0.4119
Om é
Waoan | @ =
Lk 0l o ot

246000 —8000 6000 4000 21
s

000 0 2000 4000 6000 8000
econd eigenvector

(a) For DB Kernel

o

o 1
‘Second eigenvector

(b) For WL Kernel

First sigenvector

Class 1
class2
class 3
class 4
class 5

vron

GCGK4

0.1641
0.1238
0.1207
0.4272

0.1697
0.1202
0.1025
0.3295

First eigenvector

Class 1
class2
class 3
class 4
class 5

vHow

o 1 D
‘Second sigenvector

(c) For SPGK Kernel

x10°

First sigenvector

\

Class 1
calss 2
class 3
class 4
class 5

vaos

o
‘Second aigenvactor

(d) For GCGK Kernel

o ] o
‘Second aigenvactor

2 4

(e) For GCGK4 Kernel
Fig. 2. Clusters of Graphs from the COIL5 Dataset

20 20

ED o
‘Second aigenvactor

(f) For JSK Kernel

0.8

0.6

Classification Accuracies (%)

O-ﬁk//é/‘/&’/%

0

0.4
—6— COIL5
—=— BAR31
—<— BSPHERES31 []
—#*— GEOD31
I I I I I I N N
01 2 3 4 5 6 7 8 9 10

Layer h of Depth-based Representations

Fig. 3. The Accuracy with Different h Layer

Comparisons with Increasing h: To take our study one step further, we evaluate the
performance of our DB graph kernel on graph datasets with increasing h. Here, we
evaluate how the classification accuracies vary with increasing h (i.e. h = 1,2, ..., 10).
We report the results in Fig.3, in which the x-axis gives the varying of h, and the y-
axis gives the classification accuracies of our DB kernel. The lines of different colours
represent the results on different datasets. The classification accuracies tend to become
greater with increasing h. This is because the greater the h, the higher dimensional
depth-based complexity information of our kernel can be captured.
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Conclusion

In this paper, we have described how to construct a depth-based graph kernel in terms
of matching graphs based on the depth-based representations. The depth-based repre-
sentations for graphs capture a high dimensional depth-based complexity information
of graphs. Furthermore, our matching strategy incorporates structural correspondence
into the kernel. We have empirically demonstrated the effectiveness and efficiency of
our new kernel on synthetic graphs and real-world graphs abstracted from computer
vision datasets.
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