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Preface

IAPR Technical Committees TC1 and TC2 organized the Joint International
Workshops on Statistical Techniques in Pattern Recognition (SPR), and Struc-
tural and Syntactic Pattern Recognition (SSPR) during August 20-22, 2014,
in Joensuu, Finland. It is official biennial satellite event prior to the Interna-
tional Conference on Pattern Recognition (ICPR). The workshops (S+SSPR)
were hosted by the School of Computing, University of Eastern Finland.

The workshops received 78 submissions, of which 53 were selected into a three-
day program of 11 sessions. These include 47 original submissions (included in
the proceedings), and six journal track presentations (only abstracts included).
Original submissions were reviewed by three Program Committee members, on
average. The presentations cover the core topics of pattern recognition method-
ology including clustering, graph kernels, graph edit distance, discriminant anal-
ysis, graph models and embedding, combining and selecting, metrics and dissim-
ilarities, partial supervision and applications. Keynote talks were given by Prof.
Ali Shokoufandeh from Drexel University (Philadelphia, USA) about approxima-
tion of hard combinatorial problems via embedding to hierarchically separated
trees, and Prof. David Hand from Imperial College (London, UK) on evaluating
supervised classification methods: error rate, ROC curves, and beyond.

This is the first time that S+SSPR was organized in Nordic countries. For
many attendees, it was their first time to visit Finland, which has a unique
mix of nature and modern technology. The country has 5.4 million inhabitants,
7 million mobile phones, 9 million Internet connections, 2 million saunas, and
nearly 187,888 lakes. Joensuu is located by the beautiful lake Finland, and is
the main campus of the University of Eastern Finland.

We thank all the Program Committee members and local organizers for their
contributions toward making the workshops happen. Detailed information can
be found on the workshop’s website: http://cs.uef.fi/ssspr2014/.

August 2014 Pasi Fränti
Gavin Brown
Marco Loog

Francisco Escolano
Marcello Pelillo
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Heikki Kälviäinen Lappeenranta University of Technology,

Finland
Nikunj C. Oza NASA, USA
Filiberto Pla Jaume I University, Spain
Robi Polikar Rowan University, USA
Fabio Roli University of Cagliari, Italy
Clara I. Sánchez Radboud University, The Netherlands



VIII Organization

Carlo Sansone University of Naples Federico II, Italy
David Tax Delft University of Technology,

The Netherlands
Francesco Tortorella Cassino University, Italy
Seiichi Uchida Kyushu University, Japan
Giorgio Valentini University of Milan, Italy
Jinghao Xue University College London, UK
Terry Windeatt University of Surrey, UK
David Windridge University of Surrey, UK

SSPR Committee

Terry Caelli University of Melbourne, Australia
Tiberio Caetano University of Melbourne, Australia
Mario Figueiredo Technical University of Lisbon, Portugal
Marco Gori University of Siena, Italy
Edwin Hancock University of York, UK
Atsushi Imiya IMIT Chiba University, Japan
Walter G. Kropatsch Vienna University of Technology, Austria
Arjan Kuijper Technical University of Darmstadt, Germany
Christoph Lampert IST, Austria
Xuelong Li Chinese Academy of Sciences, China
Frank Nielsen Sony Corporation, Japan
Richard Nock University of the French West Indies and

Guiana, France
Tapio Pahikkala University of Turku, Finland
Novi Quadrianto University of Cambridge, UK
Antonio Robles-Kelly University of Melbourne, Australia
Anand Rangarajan University of Florida, USA
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Journal Track Abstracts

Comparison between supervised and unsupervised learning
of probabilistic linear discriminant analysis mixture
models for speaker verification

Timur Pekhovsky, Aleksandr Sizov
Pattern Recognition Letters, 34 (11), 1307–1313, August 2013.

We present a comparison of speaker verification systems based on unsupervised
and supervised mixtures of probabilistic linear discriminant analysis (PLDA)
models. This paper explores current applicability of unsupervised mixtures of
PLDA models with Gaussian priors in a total variability space for speaker veri-
fication. Moreover, we analyze the experimental conditions under which this ap-
plication is advantageous, taking into account the existing limitations of training
database sizes, provided by the National Institute of Standards and Technology
(NIST). We also present a full derivation of the Maximum Likelihood learn-
ing procedure for PLDA mixture. Experimental results for a cross-channel NIST
Speaker Recognition Evaluation (SRE) 2010 verification task show that unsuper-
vised PLDA mixture is more effective than other state-of-the-art methods. We
show that for this task a combination of a homogeneous i-vector extractor and
a mixture of two Gaussian PLDA models is more effective than a cross-channel
i-vector extractor with a single Gaussian PLDA.

Improving distance based image retrieval using
non-dominated sorting genetic algorithm

Miguel Arevalillo-Herráez, Francesc J. Ferri, and Salvador Moreno-Picot
Pattern Recognition Letters, http://dx.doi.org/10.1016/j.patrec.2014.05.
008

Relevance feedback has been adopted as a standard in Content Based Image
Retrieval (CBIR). One major difficulty that algorithms have to face is to achieve
and adequate balance between the exploitation of already known areas of interest
and the exploration of the feature space to find other relevant areas. In this paper,
we evaluate different ways to combine two existing relevance feedback methods
that place unequal emphasis on exploration and exploitation, in the context
of distance-based methods. The hybrid approach proposed has been evaluated
by using three image databases of various sizes that use different descriptors.
Results show that the hybrid technique performs better than any of the original
methods, highlighting the benefits of combining exploitation and exploration in
relevance feedback tasks.



XII Journal Track Abstracts

Information-theoretic selection of high-dimensional
spectral features for structural recognition

Boyan Bonev, Francisco Escolano, Daniela Giorgi, and Silvia Biasotti
Computer Vision and Image Understanding, 117 (3), 214–228, March 2013

Pattern recognition methods often deal with samples consisting of thousands
of features. Therefore, the reduction of their dimensionality becomes crucial to
make the data sets tractable. Feature selection techniques remove the irrele-
vant and noisy features and select a subset of features which describe better
the samples and produce a better classification performance. In this paper, we
propose a novel feature selection method for supervised classification within an
information-theoretic framework. Mutual information is exploited for measuring
the statistical relation between a subset of features and the class labels of the
samples. Traditionally it has been measured for ranking single features; how-
ever, in most data sets the features are not independent and their combination
provides much more information about the class than the sum of their individ-
ual prediction power. We analyze the use of different estimation methods which
bypass the density estimation and estimate entropy and mutual information di-
rectly from the set of samples. These methods allow us to efficiently evaluate
multivariate sets of thousands of features. Within this framework we experiment
with spectral graph features extracted from 3D shapes. Most of the existing
graph classification techniques rely on the graph attributes. We use unattributed
graphs to show what is the contribution of each spectral feature to graph clas-
sification. Apart from succeeding to classify graphs from shapes relying only on
their structure, we test to what extent the set of selected spectral features are
robust to perturbations of the dataset.

The active geometric shape model: A new robust
deformable shape model and its applications

Quan Wang, and Kim Boyer
Computer Vision and Image Understanding, 116 (12), 1178–1194, Dec 2012.

We present a novel approach for fitting a geometric shape in images. Similar to
active shape models and active contours, a force field is used in our approach.
But the object to be detected is described with a geometric shape, represented
by parametric equations. Our model associates each parameter of this geometric
shape with a combination of integrals (summations in the discrete case) of the
force field along the contour. By iteratively updating the shape parameters ac-
cording to these integrals, we are able to find the optimal fit of the shape in the
image. In this paper, we first explore simple cases such as fitting a line, circle, el-
lipse or cubic spline contour using this approach. Then we employ this technique
to detect the cross-sections of subarachnoid spaces containing cerebrospinal fluid
(CSF) in phase-contrast magnetic resonance (PC-MR) images, where the object



Journal Track Abstracts XIII

of interest can be described by a distorted ellipse. The detection results can be
further used by an s–t graph cut to generate a segmentation of the CSF struc-
ture. We demonstrate that, given a properly configured geometric shape model
and force field, this approach is robust to noise and defects (disconnections and
non-uniform contrast) in the image. By using a geometric shape model, this ap-
proach does not rely on large training datasets, and requires no manual labeling
of the training images as is needed when using point distribution models.

Multi-label learning under feature extraction budgets

Pekka Naula, Antti Airola, Tapio Salakoski, and Tapio Pahikkala
Pattern Recognition Letters, 40 (15), 56–65, April 2014.

We consider the problem of learning sparse linear models for multi-label pre-
diction tasks under a hard constraint on the number of features. Such budget
constraints are important in domains where the acquisition of the feature values
is costly. We propose a greedy multi-label regularized least-squares algorithm
that solves this problem by combining greedy forward selection search with a
cross-validation based selection criterion in order to choose, which features to
include in the model. We present a highly efficient algorithm for implementing
this procedure with linear time and space complexities. This is achieved through
the use of matrix update formulas for speeding up feature addition and cross-
validation computations. Experimentally, we demonstrate that the approach al-
lows finding sparse accurate predictors on a wide range of benchmark problems,
typically outperforming the multi-task lasso baseline method when the budget
is small.

Semi-supervised nearest mean classification through a
constrained log-likelihood

Marco Loog, and Are C. Jensen
IEEE Transactions on Neural Networks and Learning Systems
http://dx.doi.org/10.1109/TNNLS.2014.2329567

We cast a semi-supervised nearest mean classifier, previously introduced by the
first author, in a more principled log-likelihood formulation that is subject to
constraints. This, in turn, leads us to make the important suggestion to not only
investigate error rates of semi-supervised learners but to also consider the risk
they originally aim to optimize. We demonstrate empirically that in terms of clas-
sification error, mixed results are obtained when comparing supervised to semi-
supervised nearest mean classification, while in terms of log-likelihood on the test
set, the semi-supervised method consistently outperforms its supervised coun-
terpart. Comparisons to self-learning, a standard approach in semi-supervised
learning, are included to further clarify the way in which our constrained NMC
improves over regular, supervised nearest mean classification.
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Battista Biggio, Samuel Rota Bulò, Ignazio Pillai, Michele Mura,
Eyasu Zemene Mequanint, Marcello Pelillo, and Fabio Roli

A Comparison of Categorical Attribute Data Clustering Methods . . . . . . 53
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A Graph Kernel from the Depth-Based Representation

Lu Bai1, Peng Ren2, Xiao Bai3, and Edwin R. Hancock1,�

1 Department of Computer Science, University of York, York, UK
2 College of Information and Control Engineering, China University of Petroleum, China

3 School of Computer Science and Engineering, Beihang University, Beijing, China

Abstract. In this paper we develop a novel graph kernel by matching the depth-
based substructures in graphs. We commence by describing how to compute the
Shannon entropy of a graph using random walks. We then develop an h-layer
depth-based representations for a graph, which is effected by measuring the Shan-
non entropies of a family of K-layer expansion subgraphs derived from a vertex
of the graph. The depth-based representations characterize graphs in terms of
high dimensional depth-based complexity information. Based on the new repre-
sentation, we establish a possible correspondence between vertices of two graphs
that allows us to construct a matching-based graph kernel. Experiments on graphs
from computer vision datasets demonstrate the effectiveness of our kernel.

Keywords: Depth-based representation, graph matching, graph kernels.

1 Introduction

Graph-based representations are widely used in computer vision and pattern recogni-
tion for characterizing shapes and structures [1, 2]. In this context, there has recently
been an increasing interest in evolving graph kernels into kernel machines (e.g., a
Support Vector Machine (SVM)) for graph classification [3–5]. A graph kernel is usu-
ally defined in terms of a (dis)similarity measure between graphs. Haussler [6] pro-
posed a general graph kernel formulation referred to as R-convolution kernel, which
is effected by decomposing graphs into substructures separately and then measuring
the pairwise (dis)similarities between the resulting substructures. For a pair of sample
graphs Gp(Vp, Ep) and Gq(Vq, Eq), suppose {Sp;1, . . . ,Sp;x, . . . ,Sp;Np} and
{Sq;1, . . . ,Sp;y, . . . ,Sq;Nq} are the sets of the substructures ofGp(Vp, Ep) andGq(Vq ,
Eq) respectively. A R-convolution kernel kR between Gp(Vp, Ep) and Gq(Vq, Eq) can
be defined as

kR(Gp, Gq) =

Np∑
x=1

Nq∑
y=1

s(Sp;x,Sq;y),

where s(Sp;x,Sq;y) is the (dis)similarity measure between the substructures Sp;x and
Sq;y , and kR proves to be a positive definite kernel.

From the perspective of R-convolution, existing graph kernels can be generally cat-
egorized into three classes [3], i.e. graph kernels based on comparing all pairs of a)
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walks, b) paths and c) restricted subgraph and subtree structures. One major limitation
of these existing graph kernels is that in practical computation they do not easily scale
up to structures of large sizes. To overcome this problem, most existing graph kernels
compromise to use substructures of limited sizes, and examples include a) the shortest
path graph kernel [7], b) the graphlet count graph kernel [3], c) the fast neighborhood
subgraph pairwise distance kernel [9], and d) the backtrackless kernel [10] based on
non-backtracking cycles that are identified by the Ihara zeta function [11]. Although
this strategy curbs the notorious inefficiency of comparing large substructures, graph
kernels with limited sized substructures simply can only reflect restricted topological
characteristics of a graph.

In this work, we aim to overcome the topological restrictions by characterizing graph
substructures in terms of depth-based representations [12], which provide richer topo-
logical features but also easily scale up to as large size as the original graph. To this end,
we investigate how to incorporate the depth-based representations into graph matching
and thus develop a novel graph kernel which not only reflects the rich depth-based struc-
ture of graphs but also enables a fast computation. We commence by computing the
depth-based complexity traces [13] of a graph around each vertex. To avoid the burden-
some subgraph enumeration in computing the intrinsic complexity [12], we compute
the depth-based representation around a vertex by measuring a fast Shannon entropy
of its expansion subgraph. The depth-based representation gauges the Shannon entropy
flow via the expansion subgraphs, and thus reflects a high dimensional complexity char-
acteristics of the graph around the vertex. Based on the obtained depth-based represen-
tations for two graphs we develop a matching strategy similar to that Scott et al. [16]
previously used for point set matching. The purpose of this step is to match the vertices
of the graphs by using the vertex information extracted from the depth-based represen-
tations. For a pair of graphs, we use the Euclidean distance between the depth-based
representations to compute an affinity matrix. The correspondences between pairwise
vertices are obtained from the affinity matrix. The affinity matrix characterizes local
structural similarity between a pair of graphs and can be used for graphs of different
sizes. Finally, we develop the novel depth-based graph matching kernel by counting the
matched vertex pairs. We empirically demonstrate the effectiveness and efficiency of
our new graph kernel on graphs from computer vision datasets.

The remainder of this paper is organized as follows. Section 2 presents the defini-
tion of depth-based representations for graphs. Section 3 presents the definition of the
new graph matching kernel. Section 4 provides our experimental evaluations. Finally,
Section 5 concludes our work.

2 Depth-Based Representations

We commence by introducing a fast Shannon entropy measure for a graph. Moreover,
we show how to compute a depth-based representation around a vertex of a graph.

2.1 The Shannon Entropy of a Graph

We compute the Shannon entropy of a graph based on steady state random walks on the
graph. Consider a graph G(V,E) where V denotes the set of vertices and E ⊆ V × V
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denotes the set of undirected edges. The adjacency matrixA forG(V,E) is a symmetric
|V | × |V | matrix with the (v, u)th entry

A(v, u) =

{
1 if(v, u) ∈ E;
0 otherwise.

(1)

The vertex degree matrix ofG(V,E) is a diagonal matrixD whose vth diagonal element
is given byD(v, v) = d(v) =

∑
v,u∈V A(v, u). As a result, the probability of a steady

state random walk on G(V,E) visiting vertex v is PG(v) = d(v)/
∑

v,u∈V d(u). The
Shannon entropy of G(V,E) associated with the steady state random walk is

HS(G) = −
∑
v∈V

PG(v) logPG(v). (2)

For a graph G(V,E) (|V | = n), computing the Shannon entropy HS(G) requires
time complexity O(n2). This is because HS(G) relies on the degree matrix D that is
computed by visiting all the n2 entries of the adjacency matrix A. This indicates that
the Shannon entropy HS defined in Eq.(2) can be efficiently computed. By contrast,
the von Neumnann entropy defined in [14] and the Shannon entropy associated with an
information functional defined in [15] both require time complexityO(n3).

2.2 The Depth-Based Representation for a Graph

For an undirected graph G(V,E), the shortest path SG(v, u) between a pair of vertices
v and u can be computed by using Dijkstra algorithm. The matrix SG whose element
SG(v, u) represents the shortest path length between v and u is referred to as the shortest
path matrix forG. LetNK

v be a subset of V satisfyingNK
v = {u ∈ V | SG(v, u) ≤ K}.

For G, theK-layer expansion subgraph GKv (VK
v ; EKv ) around vertex v is{

VK
v = {u ∈ NK

v };
EKv = {(u, v) ⊂ NK

v | (u, v) ∈ E}.
(3)

Assume Lmax is the greatest length of the shortest paths from v to the remaining
vertices ofG(V,E). If Lv ≥ Lmax, the Lv-layer expansion subgraph is G(V,E) itself.

Definition 2.1 (h-layer depth-based representation). For a graph G(V,E) and a ver-
tex v ∈ V , the h-layer depth-based representation around v is a h dimensional vector

Dh
G(v) = [HS(G1v ), · · · , HS(GKv ), · · · , HS(Ghv )]T (4)

where h (h ≤ Lv) is the length of the shortest paths from v to other vertices inG(V,E),
GKv (VK

v ; EKv ) (K ≤ h) is the K-layer expansion subgraph of G(V,E) around v, and
HS(GKv ) is the Shannon entropy of GKv and is defined in Eq.(2). �

For a graph G(V,E) (|V | = n) and a vertex v ∈ V , computing the h-layer depth-
based representation Dh

G(v) of G(V,E) around v requires time complexity O(hn2).
This follows the definitions in Eq.(3). For G(V,E), the Dijkstra algorithm requires
time complexity O(n2). Computing the Shannon entropies of the h K-layer expansion
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subgraphs, which are derived from v, requires time complexity O(hn2). Hence, the
whole time complexity is O(hn2). This indicates that the h-layer depth-based repre-
sentation around a vertex of a graph can be efficiently computed. Key to this efficiency
is that the Shannon entropy on an expansion subgraph only requires time complexity
O(n2). By contrast, in [12] the intrinsic complexity measure of an expansion subgraph
for measuring the depth-based complexity requires time complexityO(n5).

Moreover, the h-layer depth-based representation Dh
G(v) characterizes the depth-

based complexity of G(V,E) with regard to the vertex v in a h dimensional fea-
ture space. It captures the rich depth-based complexity characteristics of substructures
around the vertex v in terms of the entropies of theK-layer expansion subgraphs withK
increasing from 1 to h. In contrast, the existing graph kernels in the literatures [4, 4, 5]
tend to compute similarities on global subgraphs of limited sizes and can only capture
restricted characteristics of graphs.

3 Depth-Based Graph Matching Kernel

We describe how the depth-based representations can be used for graph matching. Fur-
thermore, we define a novel graph kernel based on the proposed matching method.

3.1 Depth-Based Graph Matching

We develop a matching method similar to that introduced in [16, 17] for point set match-
ing, which computes an affinity matrix in terms of the distances between points. In our
work, for a vertex v ofG(V,E), we treat the h-layer depth-based representationsDh

G(v)
as the point coordinate associated with v. We use the Euclidean distance between the
depth-based representationsDh

Gp
(vi) andDh

Gq
(uj) as the distance measure of the pair-

wise vertices vi and uj of graphsGp(Vp, Ep) andGq(Vq, Eq), respectively. The affinity
matrix element R(i, j) is defined as

R(i, j) =
√
[Dh

Gp
(vi)−Dh

Gq
(uj)]T [Dh

Gp
(vi)−Dh

Gq
(uj)]. (5)

whereR is a |Vp|×|Vq|matrix. The elementR(i, j) represents the dissimilarity between
the vertex vi inGp(Vp, Ep) and the vertex uj inGq(Vq, Eq). The rows of R(i, j) index
the vertices ofGp(Vp, Ep), and the columns index the vertices ofGq(Vq, Eq). IfR(i, j)
is the smallest element both in row i and in column j, there should be a one-to-one
correspondence between the vertex vi of Gp and the vertex uj of Gq . We record the
state of correspondence using the correspondence matrix C ∈ {0, 1}|Vp||Vq| satisfying

C(i, j) =

⎧⎨
⎩

1 if R(i, j) is the smallest element
both in row i and in column j;

0 otherwise.
(6)

Eq.(6) implies that if C(i, j) = 1, the vertices vi and vj are matched. Note that, in
row i or column j there may be two or more than two elements satisfying Eq.(6). In
other words, for a pair of graphs a vertex from a graph may have two or more than two
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matched vertices from the other graph. To assign a vertex one matched vertex at most,
we update the matrix C by employing the Hungarian method that is widely used for
solving the assignment problem (e.g., the bipartite graph matching problem) in polyno-
mial time [18]. Here the matrix C ∈ {0, 1}|Vp||Vq| can be seen as the incidence matrix
of a bipartite graph Gpq(Vp, Vq, Epq), where Vp and Vq are the two sets of partition
parts and Epq is the edge set. By performing the Hungarian algorithm on the incidence
matrixC ∈ {0, 1}|Vp||Vq| (i.e., the correspondence matrix ofGp andGq) of the bipartite
graph Gpq , we assign each vertex from Gp or Gq at most one matched vertex from the
other graph Gq or Gp. Note finally that, directly performing the Hungarian algorithm
on the matrix R can also assign each vertex from Gp or Gq an unique matched vertex.
However, it cannot guarantee that each identified element is the smallest both in the row
and column in R. This is because some vertices will not have matched vertices.

For a pair of graphs Gp(Vp, Ep) and Gq(Vq , Eq) (|Vp| = |Vq| = n). Computing
the correspondence matrix C ∈ {0, 1}|Vp||Vq| (i.e. the final correspondence matrix up-
dated by the Hungarian algorithm) requires time complexity O(hn3). This follows the
definition in Section 3.1. For Gp, computing its n h-layer depth-based representations
derived from each of its vertices requires time complexityO(hn3), and it is the same for
Gq . Computing each element of the affinity matrix R requires time complexity O(h),
and hence computing the whole affinity matrix R requires time complexity O(hn2).
The computation of the correspondence matrix C need to enumerate all the n2 pairs of
elements in R and thus requires time complexity O(n2). The Hungarian algorithm on
the matrix C requires time complexity O(n3). As a result, the whole time complexity
is O(hn3).

3.2 A Depth-Based Graph Kernel

Based on the graph matching strategy in Section 3.1, we define a new graph kernel.

Definition 3.1 (The depth-based graph kernel). ConsiderGp(Vp, Ep) andGq(Vq , Eq)
as a pair of sample graphs. Based on the definitions in Eq.(4), Eq.(5) and Eq.(6), and
the Hungarian algorithm, we compute the correspondence matrix C. The depth-based
graph kernel k(h)DB using the h-layer depth-based representations of the graphs is

k
(h)
DB(Gp, Gq) =

|Vp|∑
i=1

|Vq|∑
j=1

C(i, j). (7)

which counts the number of matched vertex pairs betweenGp(Vp, Ep) andGq(Vq , Eq).

Note that, the kernel k(h)DB can also accommodate attributed graphs by computing the
number of pairwise matched vertices that have the same vertex label. �

Lemma 3.1. The depth-based graph kernel k(h)DB is positive definite (pd).

Proof. Intuitively, the proposed depth-based graph kernel is pd because it counts pairs
of matched vertices (i.e., the smallest subgraphs). More formally, let the base kernel k
be a function counting pairs of matched vertices in the pair of graphs Gp(Vp, Ep) and
Gq(Vq, Eq)
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k(Gp, Gq) = k
(h)
DB(Gp, Gq) =

∑
vi∈Vp

∑
uj∈Vq

δ(vi, uj). (8)

where

δ(vi, uj) =

{
1 if C(i, j) = 1;
0 otherwise.

(9)

where δ is the Dirac kernel, that is, it is 1 if the arguments are equal and 0 otherwise
(i.e. it is 1 if a pair of vertices are matched and 0 otherwise). Hence the proposed kernel
function k(h)DB is the sum of several positive definite Dirac kernels, and is thus pd. �

The depth-based graph kernel k(h)DB on a pair of graphs Gp(Vp, Ep) and Gq(Vq , Eq)
(|Vp| = |Vq| = n) requires time complexityO(hn3). For the pair of graphsGp(Vp, Ep)
and Gq(Vq , Eq), computing their correspondence matrix C in terms of h-layer depth-
based representations requires time complexity O(hn3), and counting the number of
matched vertex pairs from the matrix C needs to enumerate all the n2 pairs of ele-
ments in C. Hence, the whole time complexity of the depth-based graph kernel k(h)DB

is O(hn3). This indicates that our depth-based graph kernel k(h)DB can be computed in
polynomial time. Key to this efficiency is that the required h-layer depth-based repre-
sentations and the corresponding matching can be efficiently computed.

Discussions. The depth-based graph kernel is related to the depth-based representation
defined in [13]. However, there are two significant differences. First, the depth-based
representation in [13] is computed by measuring the complexities of subgraphs from
the centroid vertex, which is identified by evaluating the minimum shortest path length
variance to the remaining vertices. By contrast, we compute the h-layer depth-based
representation for each vertex as a point coordinate. Second,the depth-based represen-
tation from the centroid vertex can be seen as an embedding vector. Embedding a graph
into a vector tends to approximate the structural correlations in a low dimensional space,
and thus leads to information loss. By contrast, the depth-based graph kernel computed
by matching the h-layer depth-based representation characterizes graphs in a high di-
mensional space and thus better preserves graph structure.

4 Experimental Results

4.1 Graph Datasets from the SHREC 3D Shape and COIL Image Databases

We demonstrate the performance of our kernel on several standard graph datasets from
computer vision databases (i.e., the SHREC 3D Shape and COIL image databases).

a) BAR31, b) BSPHERE31 and c) GEOD31: The SHREC 3D Shape database con-
sists of 15 classes and 20 individuals per class, that is 300 shapes [20]. This is a usual
benchmark in 3D shape recognition. From the SHREC 3D Shape database, we establish
three graph datasets named BAR31, BSPHERE31 and GEOD31 datasets through three
mapping functions. These functions are a) ERG barycenter: distance from the center of
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mass/barycenter, b) ERG bsphere: distance from the center of the sphere that circum-
scribes the object, and c) ERG integral geodesic: the average of the geodesic distances
to the all other points. The number of maximum, minimum and average vertices for
the three datasets are a) 220, 41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for
BSPHERE31), and c) 380, 29 and 57.42 (for GEOD31), respectively.
d) COIL5: We establish a COIL5 dataset from the COIL database. The COIL image
database consists of images of 100 3D objects. We use the images for the first five
objects. For each object we employ 72 images captured from different viewpoints. For
each image we first extract corner points using the Harris detector, and then establish
Delaunay graphs based on the corner points as vertices. As a result, in the dataset there
are 5 classes of graphs, and each class has 72 testing graphs. The number of maximum,
minimum and average vertices for the dataset are 241, 72 and 144.90 respectively.

Table 1. Classification Accuracy (In % ± Standard Error) Using C-SVM and Runtime

Datasets DB WL SPGK GCGK GCGK4 JSK

BAR31 69.40 ± .56 58.53 ± .53 55.73 ± .44 22.96 ± .65 23.40 ± .60 24.10 ± .86
BSPHERE31 56.43 ± .69 42.10 ± .68 48.20 ± .76 17.10 ± .60 18.80 ± .50 21.76 ± .53

GEOD31 42.83 ± .50 38.20 ± .68 38.40 ± .65 15.30 ± .68 22.36 ± .55 18.93 ± .50
COIL5 74.22 ± .41 33.16 ± 1.01 69.97 ± .92 67.00 ± .55 68.77 ± .56 57.25 ± .46

Experimental Setup: a) First, we evaluate the performance of our depth-based graph
kernel (DB) on graph classification problems. We also compare our kernel with several
alternative state of the art graph kernels. These graph kernels include 1) the Weisfeiler-
Lehman subtree kernel (WL) [3], 2) the shortest path graph kernel (SPGK) [7], 3) the
graphlet count graph kernel with graphlets of size 3 (GCGK) and size 4 (GCGK4) [8],
and 4) the Jensen-Shannon graph kernel (JSK) with the von Neumann entropy (i.e., the
approximated von Neumann entropy [22] computed through the vertex degree) [21]. For
our DB kernel, we set h as 10. For the WL kernel, we set the highest dimension (i.e.
the highest height of subtrees) of the Weisfeiler-Lehman isomorphism as 10. For each
kernel, we compute the kernel matrix on each graph dataset. We perform 10-fold cross-
validation using the C-Support Vector Machine (C-SVM) Classification to compute the
classification accuracies, using LIBSVM [23]. We use nine samples for training and
one for testing. All the C-SVMs were performed along with their parameters optimized
on each dataset. We repeat the experiment 10 times. We report the average classifica-
tion accuracies and standard errors for each kernel in Table.1. b) Second, we evaluate
the performance of different kernels on graph clustering problems. We commence by
performing the kernel Principle Component Analysis (kPCA) on the kernel matrix to
embed graphs into a 2-dimensional principal space. We visualize the embedding results
of each kernel using the first two principal components. The embedding results on the
BAR31 and COIL5 datasets are shown in Fig.1 and Fig.2 respectively. Note that, for the
BAR31 dataset we only visualize the embedding points of the first six classes of graphs.
For each kernel, the embedding results on the BSPHERE31 and GEOD31 datasets are
similar to that on the BAR31 dataset. The space in the paper is also not sufficient to in-
clude all of the results obtained. Thus, we only show the results on the BAR31 dataset.
Finally, to place our analysis of graph clustering on a more quantitative footing, for
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each kernel we apply the K-means method to all the kernel embeddings. We calculate
the Rand Index for the resulting clusters. The Rand indicating each kernel is listed in
Table 2.

4.2 Experiments on Graph Datasets

Experimental Results and Discussions: a) In terms of the classification accuracies, we
observe that the accuracies of our DB kernel are the greatest for any dataset. The per-
formance of our kernel exceeds that of all other kernels. The reason for its effectiveness
is that the required depth-based representations of graphs used in our framework cap-
ture a high dimensional depth-based complexity information of graphs. In contrast, the
alternative graph kernels with limited sized substructures (including the vertex degree
required for the JSK) only capture local topological information and reflects restricted
characteristics of graphs. Moreover, we also observe that the classification performance
of our kernel is more stable than that of the alternative kernels. This verifies again that
our kernel defined by depth-based matching reflects precise similarities of graphs. b) In
terms of the embedding results, it is clear that our DB kernel produces the best clusters.
The different classes are separated better than other kernels on any dataset. Note that, for
the COIL5 dataset the 72 images for each object are taken from different viewing direc-
tions spaced at intervals of 5◦ around the object. Hence, the embedded graphs for each
class are expected to form a circular trajectory rather than a cluster in the feature space.
In the light of this observation, our method shows a greater representational power in
terms of giving a more trajectory-like embedding than the alternative methods. More-
over, Table 2 indicates that our DB kernel outperforms all the alternative kernels for all
the object classes studied on any dataset. These observations verify that our proposed
kernel has good ability to distinguish different classes of graphs.
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Fig. 1. Clusters of Graphs from the BAR31 Dataset
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Table 2. Rand Index for K-means Method

Datasets DB WL SPGK GCGK GCGK4 JSK

BAR31 0.2319 0.2047 0.1734 0.1638 0.1641 0.1697
BSPHERE31 0.1615 0.1304 0.1582 0.1210 0.1238 0.1202

GEOD31 0.1502 0.1136 0.1142 0.1002 0.1207 0.1025
COIL5 0.4436 0.3503 0.4124 0.4119 0.4272 0.3295
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Fig. 2. Clusters of Graphs from the COIL5 Dataset
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Fig. 3. The Accuracy with Different h Layer

Comparisons with Increasing h: To take our study one step further, we evaluate the
performance of our DB graph kernel on graph datasets with increasing h. Here, we
evaluate how the classification accuracies vary with increasing h (i.e. h = 1, 2, . . . , 10).
We report the results in Fig.3, in which the x-axis gives the varying of h, and the y-
axis gives the classification accuracies of our DB kernel. The lines of different colours
represent the results on different datasets. The classification accuracies tend to become
greater with increasing h. This is because the greater the h, the higher dimensional
depth-based complexity information of our kernel can be captured.
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5 Conclusion

In this paper, we have described how to construct a depth-based graph kernel in terms
of matching graphs based on the depth-based representations. The depth-based repre-
sentations for graphs capture a high dimensional depth-based complexity information
of graphs. Furthermore, our matching strategy incorporates structural correspondence
into the kernel. We have empirically demonstrated the effectiveness and efficiency of
our new kernel on synthetic graphs and real-world graphs abstracted from computer
vision datasets.
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Abstract. An important field of chemoinformatics consists in the pre-
diction of molecule’s properties, and within this field, graph kernels con-
stitute a powerful framework thanks to their ability to combine a natural
encoding of molecules by graphs, with classical statistical tools. Unfor-
tunately some molecules encoded by a same graph and differing only by
the three dimensional orientation of their atoms in space have different
properties. Such molecules are called stereoisomers. These latter proper-
ties can not be predicted by usual graph methods which do not encode
stereoisomerism. In this paper we propose to encode the stereoisomerism
property of each atom of a molecule by a local subgraph. A kernel be-
tween bags of such subgraphs provides a similarity measure incorporating
stereoisomerism properties. We then propose two extensions of this ker-
nel incorporating in each sub graph information about its surroundings.

1 Introduction

A molecular graph is a graphG = (V,E, μ, ν), where each node v ∈ V encodes an
atom and each edge e ∈ E a bond between two atoms. The labelling functions
μ and ν associate to each vertex and each edge a label encoding respectively
the nature of the atom (carbon, oxygen,. . . ) and the type of the bond (single,
double, triple or aromatic). However, those graphs have a limitation: they do not
encode the spatial configuration of atoms. Some molecules, called stereoisomers,
are associated to a same molecular graph but differ by the relative positioning
of their atoms.

Most of stereoisomers are characterized by the three dimensional orientation
of the direct neighbors of a single atom or two connected atoms. We can consider
for example, a carbon atom, with four neighbors, each of them located on a sum-
mit of a tetrahedron. If we permute two of the atoms, we obtain a different spatial
configuration and hence an alternative stereoisomer (Figure 1(a)). An atom is
called a stereocenter if a permutation of two atoms belonging to its neighbor-
hood produces a different stereoisomer. We should stress here that, to a large
extend, stereoisomerism is independent of a particular embedding of a molecule.
Indeed, in Figure 1(a), any particular embedding keeping the same relative posi-
tioning of atoms H, Cl, Br and F according to the central carbon atom C, would

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 12–21, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(a) Two different spatial configurations
of the neighbors of a carbon

(b) Two different spatial configura-
tions of two carbons linked by a dou-
ble bond.

Fig. 1. Two types of stereocenters

correspond to a same stereoisomer. In the same way, two connected atoms form
a stereocenter if a permutation of the positions of two atoms belonging to the
union of their neighborhoods produces a different stereoisomer (Figure 1(b)).
According to chemical experts [9], within molecules currently used in chemistry,
98% of stereocenters correspond either to carbons with four neighbors, called
asymmetric carbon (Figure 1(a)) or to couples of two carbons adjacent through
a double bond (Figure 1(b)). We thus restrict the present paper to such cases.

Graph kernels [10,6], provide a measure of similarity between graphs. Under
the assumption that a kernel k is symmetric and definite positive, the value
k(G,G′), where G and G′ encode two graphs, corresponds to a scalar product
between two vectors Ψ(G) and Ψ(G′) in an Hilbert space. This latter property
allows us to combine graph kernels with usual machine learning methods such
as SVM or kernel ridge regression by using the well known kernel trick, which
consists in replacing the scalar product between Ψ(G) and Ψ(G′) by k(G,G′) in
these algorithms.

Up to now, only few methods have attempted to incorporate stereoisomerism
within the graph kernel framework. Brown et al. [2] have proposed to incorpo-
rate this information through an extension of the tree-pattern kernel [10]. One
drawback of this method is that, patterns which encode stereo information, and
patterns which do not, are combined without any weighting in the final kernel
value. So for a property only related to stereoisomerism, patterns that do not
encode stereo information may be assimilated to noise which deteriorates the
prediction. Grenier et al. [8] have introduced the minimal subtree which char-
acterizes a stereocenter within an acyclic molecule. They also proposed a kernel
based on this minimal subtree, which takes into account stereoisomerism. This
kernel is however restricted to acyclic graphs.

Based on [8], we present in Section 2 an encoding of molecules distinguishing
stereoisomers. Section 3 present the construction of a subgraph, which allows
to characterizes locally a stereocenter. Then in Section 4, we use this subgraph
to propose new graph kernels valid for cyclic as well as acyclic molecules, thus
overcoming the main limitation of [8]. We finally present in Section 5 results
obtained using those kernels and compare these results with state of the art
methods.
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2 Ordered Graph and Stereo Vertices

The spatial configuration of the neighbors of each atom may be encoded through
an ordering of its neighborhood. For example, considering the left part of Fig-
ure 1(a), and looking at the central carbon from the hydrogen atom (H), the
sequence of remaining neighbors of the carbon: Cl, Br and F may be considered
as lying on a plane and are encountered clockwise. Thus, this spatial configu-
ration is encoded by the sequence H, Cl, Br, F and the sequence H, Br, Cl, F
encodes the second configuration.

In order to encode this information in a graph, we introduce the notion of
ordered graph. An ordered graph G = (V,E, μ, ν, ord) is a molecular graph
Gm = (V,E, μ, ν) together with a function ord : V → V ∗ which maps each
vertex to an ordered list of its neighbors. Two ordered graphs G and G′ are
isomorphic (G �

o
G′) if there exists an isomorphism f between their respective

molecular graphs Gm and G′
m such that ord′(f(v)) = (f(v1) . . . f(vn)) with

ord(v) = (v1 . . . vn) (where N(v) = {v1, . . . , vn} denotes the neighborhood of v).
In this case f is called an ordered isomorphism between G and G′.

However, different ordered graphs may encode a same molecule. In the ex-
ample of the left part of Figure 1(a), if we look to the central carbon from a
different neighbor, we can obtain a different sequence, for example F, Br, Cl,
H, that represents the same configuration but now considered from the atom F.
We thus have to define an equivalence relationship between ordered graphs, such
that two ordered graphs are equivalent if they represent a same configuration.

To do so, we introduce the notion of re-ordering function σ, which associates
to each vertex v ∈ V of degree n a permutation σ(v) on {1, . . . , n}, which allows
to re-order its neighborhood. The graph with re-ordered neighborhoods σ(G)
is obtained by mapping for each vertex v its order ord(v) = v1 . . . .vn onto the
sequence vσ(v)(1) . . . .vσ(v)(n) where σ(v) is the permutation applied on v.

In order to define a permutation σ(v) for each vertex of a graph, we first
introduce the notion of potential asymmetric carbon which corresponds to a
carbon with four neighbors. Such a vertex corresponds to a stereocenter if one
permutation of two of its neighbors provides a different stereoisomer (Section 1).
Permutations associated to a potential asymmetric carbon correspond to all
even permutations of its four neighbors [11]. For a double bond between two
carbons, permutations associated to each carbon of the double bound must have
a same parity. Finally, for any vertex which does not correspond to a potential
asymmetric carbon nor to a carbon of a double bond, we do not search to char-
acterize its spatial configuration. So these vertices are associated to all possible
permutations of their neighbors.

The set of re-ordering functions, transforming an ordered graph into another
one representing the same configuration is called a valid family of re-ordering
functions Σ [7]. We say that it exists an equivalent ordered isomorphism f be-
tween G and G′ according to Σ if it exists σ ∈ Σ such that f is an ordered
isomorphism between σ(G) and G′ (σ(G) �

o
G′). The equivalent order relation-

ship defines an equivalence relationship [7] and two different stereoisomers are
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encoded by non equivalent ordered graphs. We denote by IsomEqOrd(G,G′) the
set of equivalent ordered isomorphism between G and G′.

Potential asymmetric carbons, and double bonds between carbons, are not
necessarily stereocenters. For example if the label of vertex Br of Figure 1(a) is
replaced by Cl, both left and right molecules of Figure 1(a) would be identical.
In the same way, if the label of the vertex F in Figure 1(b) is replaced by Cl, the
left and right molecules of this figure also become identical. For those cases, any
permutation in the ordered list of the carbons would lead to an equivalent ordered
graph. We thus define a stereo vertex as a vertex for which any permutation of
two of its neighbors produces a non-equivalent ordered graph:

Definition 1 (Stereo vertex). Let G = (V,E, μ, ν, ord) be an ordered graph.
A vertex v ∈ V is called a stereo vertex iff:

∀(i, j) ∈ {1, . . . , |N(v)|}2, i 
= j, �f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v.
(1)

where τvi,j(G) corresponds to an ordered graph deduced from G by permuting
nodes of index i and j in ord(v).

3 Minimal Stereo SubGraph

Definition 1 is based on the whole graph G to test if a vertex v is a stereo vertex.
However, given a stereo vertex s, one can observe that on some configurations,
the removal of some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo vertex, we should
thus determine a vertex induced subgraph H of G, including s, large enough to
characterize the stereo property of s (i.e. ∀(i, j) ∈ {1, . . . , |N(s)|}2, i 
= j, �f ∈
IsomEqOrd(H, τsi,j(H)) with f(s) = s), but sufficiently small to encode only the
relevant information characterizing the stereo vertex s. Such a subgraph is called
a minimal stereo subgraph of s.

We now present an heuristic, used to compute a minimal stereo subgraph of
a stereo vertex. We focus our attention on asymmetric carbons. Let H be a sub-
graph of G containing a stereo vertex s corresponding to an asymmetric carbon.
We say that the stereo property of s is not captured by H if (Definition 1):

∃(i, j) ∈ {1, . . . , |N(s)|}2, i 
= j, ∃f ∈ IsomEqOrd(H, τsi,j(H)) with f(s) = s
(2)

To define a minimal stereo subgraph of s, we consider a finite sequence
(Hk

s )
n
k=1 of vertex induced subgraphs of G. The first element of this sequence

H1
s is the smaller vertex induced subgraph for which we can test (2) :

V (H1
s ) = {s} ∪N(s)

where V (H1
s ) and N(s) denote respectively the set of vertices of H1

s and the set
of neighbors of s in G.

If the current vertex induced subgraph Hk
s does not capture the stereo prop-

erty of s, we know by (2), that it exists some isomorphisms f of equivalent or-
dered graphs between Hk

s and τsi,j(H
k
s ) with i 
= j and f(s) = s. Let us consider
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such an isomorphism f . By definition of equivalent ordered isomorphism, it ex-
ists σ ∈ Σ such that f is an ordered isomorphism between Hk

s and σ
(
τsi,j(H

k
s )

)
.

By definition of ordered isomorphisms, and since f(s) = s, we have:

∀l ∈ {1, . . . , |N(s)|}, f(vl) = vσ(s)◦τs
i,j(l)

.

with ord(s) = v1, . . . , vn.
As σ(s) is an even permutation, σ(s) ◦ τsi,j is an odd one. Hence it exists l in

{1, . . . , |N(s)|} such that l 
= σ(s) ◦ τsi,j(l) and we have f(vl) 
= vl and f (2)(vl) 
=
f(vl). In other words, any equivalent ordered isomorphism corresponding to
equation (2) maps at least two vertices in the neighborhood of s in Hk

s onto
a different vertex in the same neighborhood. Let us denote by Ekf the set of

vertices of Hk
s connected to s by a path whose all vertices are mapped onto

other vertices by f :

Ekf = {v ∈ V (Hk
s ) | ∃c = (v0, . . . , vq) ∈ Hk

s with v0 = s and vq = v s.t.

∀r ∈ {1, . . . , q}, f(vr) 
= vr} (3)

For any equivalent ordered isomorphism f satisfying (2), the set Ekf is not

empty since it contains at least 2 vertices. A vertex v belongs to Ekf if neither

its label nor its neighborhood in Hk
s allows to differentiate it from f(v). The

basic idea of our algorithm consists in enforcing constraints on each v ∈ Ekf at

iteration k+ 1 by adding to Hk
s the neighborhood in G of all vertices belonging

to Ekf . This last set is denoted by N(Ekf ). The set of vertices of the vertex induced

subgraph Hk+1
s is thus defined by:

V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈Fk
s

N(Ekf ) (4)

where Fk
s denotes all equivalent ordered isomorphisms satisfying (2).

Since f ∈ Fk
s implies that Ekf is not empty, adding iteratively constraints on

the existence of vertices in Ekf removes f from Fk
s . The algorithm stops when

the set Fk
s becomes empty. Note that such a condition must be satisfied since s

is a stereocenter and hence the whole molecule does not satisfy (2).
The intermediate vertex induced subgraphs found by our algorithm are il-

lustrated in Fig. 2. Note that at iteration 2, it exists an equivalent ordered
isomorphism f ∈ F2

C mapping the path CCO (bottom right of the figure) onto
the same path located on the top right part of Fig 2. In this case E2f contains
the three carbons of these two paths and both oxygen atoms. The oxygen atoms
belong to E2f since their neighborhoods in H2

C does not allow to differentiate
them (Fig. 2). At iteration 3, the neighborhood in G of these oxygen atoms are
added to H3

C , hence adding N and Br which allow to differentiate both paths
and thus removes the equivalent ordered isomorphism f from F3

C .
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Fig. 2. An asymmetric carbon and its associated sequence (Hk
C)

3
k=1

4 Stereo Kernel and Extensions

4.1 Stereo Kernel

Given an ordered graph G, we can associate a minimal stereo subgraph to each
of its stereocenter. A same stereo subgraph may be present more than once in a
given molecule, we thus need to associate a unique code to each such subgraph in
order to enumerate efficiently the eventual multiple occurences of a stereo sub-
graph within a molecule. To do so, we use [13], which associates to each molecule
a unique code which allows to test the existence of an equivalent ordered isomor-
phism between two stereo subgraphs, unlike [1] which allows to find efficiently
all isomorphisms between two graphs. We can thus compute the set of minimal
stereo subgraphs H(G) together with the spectrum spec(G) = (fH(G))H∈H(G)

which encodes the frequency fH(G) of each H ∈ H(G). The set H(G) and the
spectrum spec provide a characterisation of each stereo center of G and hence
describe the stereoisomerism of G.

The comparison of the spectrum of two ordered graphs, is then used to define
a kernel between two molecules taking into account the stereoisomerism:

k(G,G′) =
∑

H∈H(G)∩H(G′)

K(fH(G), fH(G′)). (5)

where K denotes a kernel between real values (e.g. Gaussian, intersection or
polynomial). The choice of a particular kernel, together with its parameters is
performed through cross-validation.

4.2 Augmented Labels

Cycles are important sub-parts of molecules, and thus two atoms with identical
label could have different influence if one of them is included in a cycle. Thus it
can be useful, during the computation of a minimal stereo subgraph, to consider
two atoms with a same label, but not included in a same number of cycles, as
different.
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To do so, we first compute the set of relevant cycles of each ordered graph.
Relevant cycles are defined as cycles of a graph which can not be deduced from
shorter cycles [12]. We can associate to each vertex v, the number nv of relevant
cycles to which it belongs. Then, for an ordered graph G, this information is
added to the label of each of its vertex v (μA(v) = μ(v).nv) to obtain a new
ordered graph GA. The method described in Section 3 is then applied on the
ordered graph GA. We thus obtain a different set of minimal stereo subgraphs
H(GA), composed of smaller stereo subgraphs where nodes encode a more global
information. As in Section 4.1 we define from this set of subgraphs a spectrum
encoding the frequency of each subgraph, and define a kernel between graphs by
comparing those spectrum:

k(G,G′) =
∑

H∈H(GA)∩H(G′
A)

K(fH(G), fH(G′)). (6)

4.3 Expanded Subgraphs

Equations 5 and 6 allow to compare two molecules through the distribution of
their stereo subgraphs. However those kernels are based on a binary similar-
ity measure between configurations: either two stereo subgraphs are different,
and thus the configurations encoded by those subgraphs are dissimilar, or the
subgraphs are identical and thus the configurations are similar. By adding infor-
mation about the adjacency relationships between these stereo subgraphs and
the remaining part of the molecule, we can obtain a finer measure of similarity
between configurations around stereocenters.

To take into account the adjacency relationships between a stereo subgraph
Hs and its surrounding, we consider larger vertex induced subgraphs than Hs.
Let H be a subgraphs of G, the neighborhood N(H) of H is the set of vertices
of G−H which are neighbors of a vertex of H :

N(H) = {v ∈ V (G) − V (H) | ∃(u, v) ∈ E s.t u ∈ V (H)}

The set of vertex induced subgraphs obtained by adding k of its neighbors to
Hs can be used to construct a kernel between graphs. We can also consider
subgraphs where vertex located farther from the stereo subgraph than its direct
neighborhood are added. However we have to limit the number of vertices we
add, in order to keep a local information. Moreover the number of subgraphs in-
creases quickly with the number of added vertices. Indeed, Ck

N subgraphs can be
constructed by adding k vertices of N(Hs) to Hs, with N = |N(Hs)|. We thus,
have to determine a number of vertex to add, which is large enough to charac-
terize the adjacency relationships between a stereo subgraph and the remaining
part of a molecule, but also sufficiently small to keep a local information. In
our experiment, we have considered subgraphs obtained by adding up to three
different neighbors of Hs and those obtained by adding one neighbor v of Hs,
and one neighbor of v not included in the neighborhood of Hs.

For each minimal stereo subgraph, we have a set of subgraphs which encodes
its adjacency relationships with other parts of the molecule. As in section 4.1, we
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associate to those subgraphs a unique code. By adding those subgraphs to the set
of minimal stereo subgraphs, we obtain a new set of subgraphs HE(G), for which
we can associate a spectrum which encodes the frequency of each subgraphs H ∈
HE(G). We thus define a kernel between ordered graphs, which takes into account
stereoisomerism, and the adjacency relationships of each stereo subgraphs with
its surrounding:

k(G,G′) =
∑

H∈HE (G)∩HE(G′)

K(fH(G), fH(G′)). (7)

5 Experiments

Our first experiment is based on a dataset composed of all the stereoisomers
of the perindoprilate [3]. As this molecule has 5 stereocenters, the dataset is
composed of 25 = 32 molecules. In this dataset, we try to predict if a molecule
inhibit the angiotensin-converting enzyme (ACE). The dataset is split into a
training set of 23 molecules, and a test set of 9 molecules, as in [3].

Table 1 shows the results obtained by our kernels and the adaptation of the
tree pattern kernel to stereoisomerism [2]. All these kernels are combined with the
standard SVM method [4] to classify molecules. As all molecules in the dataset
are stereoisomers of each other, methods which do not include stereoisomerism
information [10,6] are unable to differentiate any molecule of this dataset and are
consequently unable to predict the considered property. Moreover, information
not related to stereoisomerism included in kernel [2] consists of the same patterns
for all molecules. This leads to add a constant shift to all values of the kernel and
hence does not deteriorate the prediction for this dataset. Two stereocenters of
the molecules of the dataset have a same minimal stereo subgraph, however one
of them contains vertices belonging to a cycle. The stereo kernel (Section 4.1)
is not able to distinguish these stereocenters, and hence misclassified molecules
containing these stereocenters. By using augmented labels (Section 4.2), these
two stereocenters are distinguished, and this distinction allows us to reach a
prediction accuracy of 100%. The expanded subgraph (Section 4.3) may also
help to differentiate the two stereocenters, but for this dataset, one molecule of
the testset remains misclassified due to the same stereocenters which are not
sufficiently discriminated by this kernel.

Table 1. Classification of the ACE inhibitory activity of perindopirilates stereoisomers

Accuracy Accuracy
Method Trainset % Testset %

Stereo Kernel (Section 4.1) 91.3 88.9
Stereo Kernel + Augmented Labels (Section 4.2) 100 100
Stereo Kernel + Expanded subgraph (Section 4.3) 100 88.9
Tree patterns Kernel with stereo information [2] 100 100
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The second dataset is a dataset of synthetic vitamin D derivatives, used in [2].
This dataset is composed of 69 molecules containing cycles, with an average of
9 stereocenters per molecule. This dataset is associated to a regression problem,
which consists in predicting the biological activities of each molecules. Each
kernel is test by using it with the standard SVM regression method [5].

After normalizing the values of the dataset, the standard deviation of the
biological activities is equal to 0.258. To choose the different parameters and
estimate the performance of each kernel on this dataset we use a nested cross-
validation. The outer cross-validation is a leave-one-out procedure, used to com-
pute an error for each molecule of the dataset. For each fold, we use another
leave-one-out procedure on the remaining molecules, to compute a validation
error. Parameters which provide the lowest root mean squared error on the vali-
dation are selected. We obtain for each molecule an error, and report in Table 2,
the mean of this distribution of errors together with the confidence interval at
95% of this distribution.

Greatest errors in Table 2 are obtained by methods [10,6] which do not in-
clude stereo information. The adaptation of the tree pattern kernel to stereoiso-
merism [2] improves the results over the two previous methods hence showing
the insight of adding stereoisomerism information. Our kernel with no exten-
sions obtain results not as good as [2]. For this experiment the modification of
label to incorporate information about cycles, decrease our results. However, the
addition of information about relationships between minimal stereo subgraphs,
and remaining part of the molecules, allow us to obtain better results than [2]. In
this case the best results are obtained by considering only subgraphs including
one neighbor of Hs. Our methods use a subgraph isomorphism algorithm, but
the minimal stereo subgraph are small and thus we have small execution times
as we can see in Table 2.

Table 2. Prediction of the biological activity of synthetic vitamin D derivatives

Mean Confidence Gram’s matrices
Method Error interval computation (s)

Tree patterns kernel [10] 0.193 ± 0.060 230
Treelet kernel [6] 0.207 ± 0.064 7
Tree patterns kernel with stereo information [2] 0.138 ± 0.043 230
Stereo kernel 0.141 ± 0.047 1
Stereo kernel + Augmented Labels (Sec. 4.2) 0.192 ± 0.061 3
Stereo kernel + Expanded subgraph (Sec. 4.3) 0.122 ± 0.041 8

6 Conclusion

The study of stereoisomers constitutes an important subfield of chemistry and
thus a major challenge in chemoinformatics. We have proposed in this paper, a
graph kernel based on an explicit enumeration of all the stereo subgraphs of a
molecule. Each stereo subgraph is associated to a stereo vertex and encodes the
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part of the graph which provides the stereo property to this vertex. Based on
the notion of stereo subgraphs we propose to describe a molecule by its bag of
stereo subgraphs. The similarity between two molecules is then encoded through
a graph kernel based on the similarity of both bags. Moreover we propose two
extensions of this kernel. One extension consists in adding to the labels of the
graphs information about cycles of molecules. The second one consists in con-
sidering larger subgraphs encoding relationships between each stereo subgraph
and the remaining part of the molecule. Experiments related to stereoisomerism
properties demonstrate the relevance of our approach and of its extensions.
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Abstract. Kernel methods provide a convenient way to apply a wide
range of learning techniques to complex and structured data by shift-
ing the representational problem from one of finding an embedding of
the data to that of defining a positive semidefinite kernel. One prob-
lem with the most widely used kernels is that they neglect the loca-
tional information within the structures, resulting in less discrimination.
Correspondence-based kernels, on the other hand, are in general more
discriminating, at the cost of sacrificing positive-definiteness due to their
inability to guarantee transitivity of the correspondences between multi-
ple graphs. In this paper we generalize a recent structural kernel based on
the Jensen-Shannon divergence between quantum walks over the struc-
tures by introducing a novel alignment step which rather than permuting
the nodes of the structures, aligns the quantum states of their walks. This
results in a novel kernel that maintains localization within the structures,
but still guarantees positive definiteness. Experimental evaluation vali-
dates the effectiveness of the kernel for several structural classification
tasks.

1 Introduction

Structural representations have become increasingly popular due to their repre-
sentational power. However, the descriptiveness comes at the cost of an increased
difficulty in applying standard machine learning and pattern recognition tech-
niques to them, as these usually require data that reside in a vector space. The
famous kernel trick allows the focus to be shifted from the vectorial represen-
tation of data, which now becomes implicit, to a similarity representation. This
allows standard learning techniques to be applied to structural data for which
no obvious vectorial representation exists.

One of the most influential works on structural kernels was the generic R-
convolution kernel proposed by Haussler [6]. Here graph kernels are computed
by comparing the similarity of the basic elements for a given decomposition
of the two graphs. Depending on the decomposition chosen, we obtain different
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kernels. Most R-convolution kernels simply count the number of isomorphic sub-
structures in the two graphs. For example, Kashima et al. [8] compute the kernel
by decomposing the graph into random walks, while Borgwardt et al. [3] have
proposed a kernel based on shortest paths. Here, the similarity is determined
by counting the numbers of pairs of shortest paths of the same length in a pair
of graphs. Shervashidze et al. [16] have developed a subtree kernel on subtrees
of limited size, where the number of subtrees common between two graphs is
computed efficiently using the Weisfeiler-Lehman graph invariant.

One drawback of these kernels is that they neglect the locational information
for the substructures in a graph. In other words, the similarity does not depend
on the relationships between substructures. As a consequence, these kernels can-
not establish reliable structural correspondences between the substructures. This
limits the precision of the resulting similarity measure. To overcome this prob-
lem, Fröhlich et al. [5] introduced alternative optimal assignment kernels. Here
each pair of structures is aligned before comparison. However, the introduction of
the alignment step results in a kernel that is not positive definite in general [19].
The problem results from the fact that alignments are not in general transitive.
In other words, if σ is the vertex-alignment between graph A and graph B, and π
is the alignment between graph B and graph C, in general we cannot guarantee
that the alignment between graph A and graph C is π ◦ σ. On the other hand,
when the alignments are transitive, there is a common simultaneous alignment
of all the graphs. Under this alignment, the optimal assignment kernel is simply
the sum over all the vertex/edge kernels, which is positive definite since it is
the sum of separate positive definite kernels. While lacking positive definiteness
the optimal assignment kernels cannot be guaranteed to represent an implicit
embedding into a Hilbert space, they have nonetheless been proven to be very
effective in classifying structures.

There has recently been an increasing interest in quantum computing because
of the potential speed-ups over classical algorithms. Recently Bai et al. [1]
introduced a graph kernel based on a Quantum analogue of the Jensen-Shannon
divergence between average states of continuous-time quantum walks over the
structures to be analyzed. Being based on the divergence which is conjectured to
be negative definite [4], the kernel is thought to be positive definite. However it
lacks permutational invariance, thus different permutations of the same graphs
result in different values of the kernel. This fact, while mitigated by the long
range interactions reinforced by the interference patterns in quantum walks, is
a rather undesirable property for a structural kernel. For this reason in this
paper we modify the kernel by adding a novel alignment step that rather than
permuting the nodes of the structures, aligns the quantum states of the walks.
This results in a novel kernel that is permutationally invariant and maintains
similar localization property of the alignment kernels [5]. Further, we prove that
the alignment transformations between multiple structures are transitive and
that, for this particular alignment, the kernel is always positive definite.
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2 Quantum Mechanical Background

Quantum walks are the quantum analogue of classical random walks. Given a
graph G = (V,E), the state space of the continuous-time quantum walk defined
on G is the set of the vertices V of the graph. Unlike the classical case, where
the evolution of the walk is governed by a stochastic matrix, in the quantum
case the dynamics of the walker is governed by a complex unitary matrix i.e., a
matrix that multiplied by its conjugate transpose yields the identity matrix. As
a consequence, the evolution of the quantum walk is reversible, which implies
that quantum walks are non-ergodic and do not possess a limiting distribution.
See [9] for an overview of the properties of quantum walks. Using Dirac notation,
we denote the basis state corresponding to the walk being at vertex u ∈ V as
|u〉. Here a ket |u〉 is simply representing a unit vector associated with state u,
for example, if we use the vertices as the basis for the space, |u〉 = eu, i.e., the
u-th vector in the canonical basis. Conversly, a bra 〈u| is the co-vector obtained
taking the conjugate-transpose of |u〉. A general state of the walk is a complex
linear combination of the basis states, such that the state of the walk at time t is
defined as |ψt〉 =

∑
u∈V αu(t) |u〉 where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V |

are both complex.
At each point in time the probability of the walker being at a particular vertex

of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let Xt be a random variable giving the location of the
walker at time t. Then the probability of the walker being at the vertex u at
time t is given by Pr(Xt = u) = αu(t)α

∗
u(t) where α

∗
u(t) is the complex conjugate

of αu(t). Moreover, in a closed system
∑

u∈V αu(t)α
∗
u(t) = 1.

The evolution of the walk over graph G = (V,E) is governed by Schrödinger
equation, where we take the Hamiltonian of the system to be the graph Laplacian
L, which, eliminating scaling constants, yields

d

dt
|ψt〉 = −iL |ψt〉 (1)

Given an initial state |ψ0〉, we can solve Equation 1 to determine the state
vector at time t |ψt〉 = e−iLt |ψ0〉 = Φe−iΛtΦ� |ψ0〉, where L = ΦΛΦ† is the
spectral decomposition of the Laplacian matrix.

While a pure state can be naturally described using a single ket vector, in
general a quantum system can be in a mixed state, i.e., a statistical ensemble
of pure quantum states |ψi〉, each with probability pi. The density operator (or
density matrix) of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| . (2)

Density operators are positive unit-trace matrices directly linked with the
observables of the (mixed) quantum system. Let O be an observable, i.e., an
Hermitian operator acting on the quantum states and providing a measurement.
The expected value of the measurement O over a mixed state can be calculated
from the density matrix ρ: 〈O〉 = tr (ρO), where tr is the trace operator.
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The Von Neumann entropy of a density operator ρ is

HN (ρ) = −Tr(ρ log ρ) = −
∑
j

λj logλj , (3)

where the λjs are the eigenvalues of ρ. With the Von Neumann entropy to hand,
we can define the quantum Jensen-Shannon divergence between two density
operators ρ and σ as

DJS(ρ, σ) = HN

(ρ+ σ
2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (4)

This quantity is symmetric, bounded between 0 and 1, and negative definite for
pure states and is conjectured with ample experimental evidence to be negative
definite for all states [4].

Finally, for a graph G(V,E), let |ψt〉 denote the state corresponding to a
continuous-time quantum walk that has evolved from time t = 0 to time t = T .
We define the time-averaged density matrix ρ†G for G(V,E)

ρ†G =
1

T

∫ T

0

|ψt〉 〈ψt| dt . (5)

Let φxy denote the (xy)th element of the matrix of eigenvectors Φ of the
Laplacian. Following [14], we compute the (r, c)th element of ρT as follows:

ρ†G(r, c) =
n∑

k=1

n∑
y=1

φrkφcyψ̄kψ̄y
1

T

∫ †

0

ei(λy−λk)t dt. (6)

If we let T →∞, Eq.(6) further simplifies to

ρ∞G =
∑
λ∈Λ̃

Pλρ0P
�
λ (7)

where Λ̃ is the set of distinct eigenvalues of the Laplacian matrix L and Pλ is
the orthogonal projector onto the eigenspace associated with λ.

3 State-Aligned QJSD Kernel

In [1] the Bai et al. defined a kernel based on the Quantum Jensen Shannon
divergence between two continuous-time quantum walks between the graphs.
The QJSD kernel was defined as

KQJSD(G1, G2) = exp (−βDJS(ρ1, ρ2)) (8)

where ρ1 and ρ2 are the time-averaged density matrices associated with the
quantum walks over G1 and G2 respectively, and β is a decay parameter of the
kernel. The walks are initialized in the starting state

|Ψ0〉 =
∑
u∈V

√
du∑

v∈V dv
|u〉 . (9)
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The kernel is positive definite under the conjecture that the quantum Jensen-
Shannon divergence is negative definite for all states, and exhibited good per-
formance on several graph classification tasks, but its value is dependent on the
order under which the nodes are presented due to the mixing term ρ+σ

2 in the
definition of the divergence.

In this paper we solve the permutational invariance problem of the QJSD
kernel by adding an alignment step to the computation of the kernel. In contrast
to alternative alignment kernels such as [5], the alignment is not performed
over the node permutations Σn of the graphs. Rather it is performed over the
quantum basis under which the walker can be observed. In classical random walks
the nodes of the graph provide a preferred basis for observation as the walker
cannot be simultaneously on multiple nodes, thus the only available degree of
freedom is in the choice of an order within the basis vectors, i.e., the observation
basis is fully defined up to a permutation π ∈ Σn. This is in stark contrast with
quantum mechanics where, due to quantum superposition, prior to observation
a quantum walker can be simultaneously at multiple nodes, and the observation
itself can be performed under any quantum superposition of states. This means
that any orthogonal basis is valid for observation and, thus, the basis is defined
up to a unitary transformation O ∈ U(n), where U(n) is the Unitary group over
Cn.

Following this property, we define a State-aligned QJSD kernel as

KSAQJSD(G1, G2) = max
O∈U(n)

exp
(
−βDJS(ρ1, Oρ2O

†)
)

(10)

= exp

(
−β min

O∈U(n)
DJS(ρ1, Oρ2O

†)

)

In the following we will prove some important properties of the state-aligned
kernel. Namely we will give a closed form solution to the alignment, prove that
the optimal transformation are transitive, and prove that the resulting kernel is
positive definite without making use of the negative-definiteness conjecture for
the quantum Jensen-Shannon divergence.

3.1 Properties of the State-Aligned QJSD Kernel

We start by enunciating a theorem relating the optimal state-alignment to the
eigenvectors of the density matrices. For a proof of this result see [18].

Theorem 1. Let ρ1 = Φ1Λ1Φ
†
1 and ρ2 = Φ2Λ2Φ

†
2 be the singular value decom-

positions of ρ1 and ρ2 respectively, with the eigenvalues in descending order in
both Λ1 and Λ2, then the global minimum of H̄N (O) is attained by O∗ = Φ1Φ

†
2.

This theorem tells us how to efficiently compute the state alignment. Further,
this transformation aligns the eigenvectors resulting in a mixed density matrix
1
2 (ρ1 + O

∗ρ2O
∗†) with eigenvalues 1

2 (λ1 + μi) where λ1, . . . , λn and μ1, . . . , μn
are the eigenvalues of ρ1 and ρ2 respectively taken in descending order with their
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multiplicity. This means that the aligned Jensen Shannon divergence only needs
the eigenvalues of ρ1 and ρ2 to be computed, in fact:

min
O∈Un

DJS(ρ1, Oρ2O
†) =

n∑
j=1

−λj + μj
2

log

(
λj + μj

2

)
+
λj log(λj) + μj log(μj)

2
.

(11)

This reduces the computational complexity of computing the kernel for all times
at which the mixed density matrix is computed, as we do not need to perform the
eigendecomposition of the mixed matrix 1

2 (ρ1+ρ2) for each pair of graphs in the
kernel. Rather, we only need to compute the eigenvalues (not the eigenvectors)
of all the density matrices beforehand. The resulting complexity for the whole
kernel computation is O(Nn3 + N2n) where N is the number of graphs and n
their (maximum) size. In contrast, the QJSD kernel has complexity O(Nn3 +
N2n2) due to the eigenvalue computation for each pair of graphs.

Further, in the case of the infinite-time mixing matrix, we can significantly
reduce the computational burden of computing the eigenvalues of the density
matrix, by using a result presented in [14]. There it was proven that the infinite-
time mixing matrix commuted with the graph Laplacian. As a consequence,
ρ∞ expressed in the eigenbasis of the Laplacian, is a block diagonal matrix
where blocks correspond to eigenspaces associated with a single eigenvalue. Let
L = ΦΛΦ†, be the spectral decomposition of the graph Laplacian, we denote
with Φj the matrix formed with the columns of Φ corresponding to the eigen-
vectors associated with the j-th distinct eigenvalue. The j-th diagonal block of
ρ∞ expressed in the eigenbasis Φ is Φ†

jρ
∞Φj . using Eq. (7) and recalling that

Pj = Φ
†
jΦj , we have

Φ†
jρ

∞Φj = Φ
†
jρ

∞Φj = Φ
†
jρ

0Φj = Φ
†
j |ψ0〉 〈ψ0|Φj =

∣∣∣Φ†
jψ0

〉〈
Φ†
jψ0

∣∣∣ (12)

which is a rank 1 matrix with a single non-zero eigenvalue λj = ‖Φ†
jψ0‖2. Hence,

once the singular value decomposition of the graph’s Laplacian is to hand, we
can compute the eigenvalues of the infinite-time mixing matrix directly, without
the need for an additional decomposition. This makes the infinite-time kernel
particularly efficient to compute.

It is worth noting that as the graph Laplacian has eigenvalues with higher
multiplicity the infinite-time mixing matrix has more zero eigenvalues resulting
in a lower Von Neumann entropy. This is particularly interesting since higher
multiplicities of the eigenvalues is associated with the presence of symmetries in
the graph [12] which, in turn, have been used to characterize the entropy of the
structure [11].

We can now prove the following properties for the state-aligned kernel.

Theorem 2. The Unitary transformations minimizing the quantum Jensen
Shannon divergence between pairs of density matrices in a set are transitive,
i.e. let

Oi,j = argmin
O∈U(n)

DJS(ρi, OρjO
†)
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with i, j ∈ {1, 2, 3}, then

DJS

(
ρ1, O1,2O2,3ρ3O

†
2,3O

†
1,2

)
= DJS

(
ρ1, O1,3ρ3O

†
1,3

)
Proof. The optimal transformation between two density matrices is completely
determined by the relation O∗

1,2 = Φ1Φ
†
2 up to a change of sign of the eigenvalue

and a change of base for each eignespace associated with an eigenvalue with
multiplicity greater than one. In any case these changes do not affect the value
of the divergence. However,

O∗
1,2O

∗
2,3 = Φ1Φ

†
2Φ2Φ

†
3 = Φ1Φ

†
3 = O∗

1,3 (13)

QED.

Theorem 3. The quantum aligned QJSD kernel is positive definite.

Proof. As a consequence of the previous theorems, the value of the quantum
Jensen Shannon divergence of the optimally aligned density matrices is equal to
the normal Jensen Shannon divergence of the sorted eigenvalues of the density
matrices (taken as probability distributions). Since the Jensen Shannon diver-
gence is proven to be negative definite [4] the state-aligned QJSD kernel, being
an exponentiation of a negative definite kernel is positive definite [10]. QED.

4 Experimental Results

We now evaluate the performance of the State-Aligned (SA) QJSD kernel and
we compare it with a number of well-known alternative graph kernels. More
specifically, we compare our kernel with the unaligned QJSD kernel [1], the
Weisfeiler-Lehman kernel [16], the graphlet kernel [17], the shortest-path ker-
nel [3], and the random walk kernel [8]. Note that for the Weisfeiler-Lehman we
set the number of iterations h = 3 and we attribute each node with its degree.

We run our experiments on the following datasets: 1) The PPI dataset, which
consists of protein-protein interaction (PPIs) networks related to histidine ki-
nase [7] (40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria).
2) The PTC (The Predictive Toxicology Challenge) dataset, which records the
carcinogenicity of several hundred chemical compounds for male rats (MR), fe-
male rats (FR), male mice (MM) and female mice (FM) [15] (here we use the
344 graphs in the MR class). 3) The COIL dataset, which consists of 5 objects
from [13], each with 72 views obtained from equally spaced viewing directions,
where for each view a graph was built by triangulating the extracted Harris cor-
ner points. 4) The Reeb dataset, which consists of a set of adjacency matrices
associated to the computation of reeb graphs of 3D shapes [2].

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-fold
cross validation, where for each sample we independently tune the value of C, the
SVM regularizer constant, by considering the training data from that sample.
The process is averaged over 100 random partitions of the data, and the results
are reported in terms of average accuracy ± standard error.
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Fig. 1. The average classification accuracy as the time parameter of the continuous-
time quantum walk varies, for an optimal (left) and sub-optimal value of the decay
factor β.

Fig. 1 shows the value of the average classification accuracy (± standard error)
on the PTC dataset as we let the time parameter of the continuous-time quantum
walk vary. Here the red horizontal line denotes the average accuracy for T →∞.
Note that in Fig. 1(a) we set the decay parameter β of the kernel to a sub-optimal
value, while in Fig. 1(b) we set it to its optimal value, i.e., the value that results
in the best classification accuracy. The plot shows that when β is sub-optimal
the choice of the time parameter has a clear influence on the performance of
our kernel. In fact, we see that the average accuracy reaches a maximum before
stabilizing around the asymptotic value. On the other hand, when β is optimized
the best classification performance is achieved when T → ∞. Moreover, in the
latter case the average classification accuracy is higher than that recorded for
smaller values of T and a sub-optimal β.

Table 1 shows the average classification accuracy (± standard error) of the
different kernels on the selected datasets. As expected, we see that the state
alignment almost invariably yields an increase of the performance with respect
to the standard QJSD kernel. Indeed, the localization property of the kernel that
results from the quantum state alignment leads to a better discrimination, and

Table 1. Classification accuracy (± standard error) on unattributed graph datasets.
SA QJSD and QJSD denote the proposed kernel and its original unaligned version,
respectively, WL is the Weisfeiler-Lehman kernel [16], GR denotes the graphlet kernel
computed using all graphlets of size 3 [17], SP is the shortest-path kernel [3], and RW
is the random walk kernel [8]. For each kernel and dataset, the best performing kernel
is highlighted in bold.

Kernel PPI PTC COIL Reeb

SA QJSD 75.69 ± 0.85 60.13± 0.51 67.84 ± 0.15 38.50 ± 0.26

QJSD 69.12 ± 1.01 56.06 ± 0.45 69.90± 0.22 35.78 ± 0.42

WL 79.40 ± 0.96 56.95 ± 0.31 29.00 ± 0.57 50.53 ± 0.41

GR 51.94 ± 0.97 55.22 ± 0.19 66.46 ± 0.44 22.80 ± 0.36

SP 63.31 ± 0.80 56.51 ± 0.36 69.68 ± 0.36 55.93± 0.36

RW 50.37 ± 0.78 55.68 ± 0.14 12.18 ± 0.21 16.47 ± 0.43
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Table 2. Runtime comparison on the four graph datasets

Kernel PPI PTC COIL Reeb

SA QJSD 3.68” 13.30” 33.66” 15.35”

QJSD 126.09” 35.28” 2371.17” 544”

WL 4.10” 3.79” 22.52” 11.86”

GR 2.51” 0.73” 9.25” 1.98”

SP 3.85” 0.74” 19.13” 6.15”

RW 11.58” 231” 294.24” 757.67”

thus a higher classification accuracy. Moreover, while the QJSD kernel has not
been proven to be positive definite, as the quantum Jensen-Shannon divergence
has only been experimentally shown to be negative definite for mixed states, our
kernel is indeed positive definite, as proved in the previous Section.

Finally, Table 2 shows the runtimes of the different kernels on the four graph
datasets. Note that in terms of runtime the SA QJSD kernel easily outperforms
the other spectral methods, i.e., the QJSD kernel and the random walk kernel,
and it is still competitive when compared with the remaining kernels.

With respect to the other kernels, the SA QJSD kernel achieves the best accu-
racy on the PTC dataset, and it remains competitive with the best performing
ones on the PPI and COIL dataset. On the Reeb dataset, on the other hand,
the shortest-path kernel and the Weisfeiler-Lehman kernel outperform our ker-
nel and the remaining ones. Note also that the Weisfeiler-Lehman mitigates the
localization problem by making use of the node labels and thus improving node
localization in the evaluation of the kernel. On the other hand, our kernel does
not take node attributes into account.

5 Conclusions

In this paper we have generalized a recent structural kernel based on the Jensen-
Shannon divergence between quantum walks over the graph by introducing a
novel alignment step which, rather than permuting the nodes of the structures,
aligns the quantum states of their walks. We proved that the resulting kernel
mantains the localization within the structures, but still guarantees positive
definiteness. We tested our kernel against a number of alternative graph kernels
and we showed its effectiveness in a number of structural classification tasks.
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http://www.dsi.unive.it/~atorsell/DAIS-2014-1.pdf

19. Vert, J.-P.: The optimal assignment kernel is not positive definite, arXiv:0801.4061
(2008)

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.dsi.unive.it/~atorsell/DAIS-2014-1.pdf


Balanced K-Means for Clustering

Mikko I. Malinen and Pasi Fränti
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Abstract. We present a k-means-based clustering algorithm, which op-
timizes mean square error, for given cluster sizes. A straightforward ap-
plication is balanced clustering, where the sizes of each cluster are equal.
In k-means assignment phase, the algorithm solves the assignment prob-
lem by Hungarian algorithm. This is a novel approach, and makes the
assignment phase time complexity O(n3), which is faster than the previ-
ous O(k3.5n3.5) time linear programming used in constrained k-means.
This enables clustering of bigger datasets of size over 5000 points.

Keywords: clustering, balanced clustering, assignment problem,
Hungarian algorithm.

1 Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [1], which groups n
data points into k clusters so that intra-cluster distances are low and inter-cluster
distances are high. Each group is represented by a center point (centroid). The
most common criterion to optimize is the mean square error (MSE):

MSE =

k∑
j=1

∑
Xi∈Cj

|| Xi − Cj ||2
n

, (1)

where Xi denotes data point locations and Cj denotes centroid locations. K-
means [19] is the most commonly used clustering algorithm, which provides a
local minimum of MSE given the number of clusters as input. K-means algorithm
consists of two repeatedly executed steps:

Assignment Step: Assign the data points to clusters specified by the nearest
centroid:

P
(t)
j = {Xi : ‖Xi − C(t)

j ‖ ≤ ‖Xi − C(t)
j∗ ‖

∀ j∗ = 1, ..., k}
Update Step: Calculate the mean of each cluster:

C
(t+1)
j =

1

|P (t)
j |

∑
Xi∈P

(t)
j

Xi

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 32–41, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://cs.uef.fi/~ mmali
http://cs.uef.fi/pages/franti


Balanced K-Means 33

These steps are repeated until centroid locations do not change anymore. K-
means assignment step and update step are optimal with respect to MSE: The
partitioning step minimizes MSE for a given set of centroids; the update step
minimizes MSE for a given partitioning. The solution therefore converges to a
local optimum but without guarantee of global optimality. To get better results
than in k-means, slower agglomerative algorithms [10,13,12] or more complex
k-means variants [3,11,21,18] are sometimes used.

In balanced clustering there are an equal number of points in each cluster. Bal-
anced clustering is desirable for example in divide-and-conquermethods where the
divide step is done by clustering. Examples can be found in circuit design [14] and
in photo query systems [2], where the photos are clustered according to their con-
tent. Applications can also be used in workloadbalancing algorithms.For example,
in [20] multiple traveling salesman problem clusters the cities, so that each sales-
man operates in one cluster. It is desirable that each salesman has equal workload.
Networking utilizes balanced clustering to obtain some desirable goals [17,23].

We next review existing balanced clustering algorithms. In frequency sensitive
competitive learning (FSCL) the centroids compete of points [5]. It multiplica-
tively increases the distance of the centroids to the data point by the times the
centroid has already won points. Bigger clusters are therefore less likely to win
more points. The method in [2] uses FSCL, but with additive bias instead of
multiplicative bias. The method in [4] uses a fast (O(kNlogN)) algorithm for
balanced clustering based on three steps: sample the given data, cluster the sam-
pled data and populate the clusters with the data points that were not sampled.
The article [6] and book chapter [9] present a constrained k-means algorithm,
which is like k-means, but the assignment step is implemented as a linear pro-
gram, in which the minimum number of points τh of clusters can be set as
parameters. The constrained k-means clustering algorithm works as follows:

Given m points in Rn, minimum cluster membership values τh ≥ 0, h = 1, ..., k

and cluster centers C
(t)
1 , C

(t)
2 , ..., C

(t)
k at iteration t, compute C

(t+1)
1 , C

(t+1)
2 ,

..., C
(t+1)
k at iteration t+ 1 using the following 2 steps:

Cluster Assignment. Let T t
i,h be a solution to the following linear program

with C
(t)
h fixed:

minimizeT

m∑
i=1

k∑
h=1

Ti,h · (
1

2
||Xi − C(t)

h ||
2
2) (2)

subject to

m∑
i=1

Ti,h ≥ τh, h = 1, ..., k (3)

k∑
h=1

Ti,h = 1, i = 1, ...,m (4)

Ti,h ≥ 0, i = 1, ...,m, h = 1, ..., k. (5)
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Cluster Update. Update C
(t+1)
h as follows:

C
(t+1)
h =

⎧⎨
⎩

∑m
i=1 T

(t)
i,hXi

∑
m
i=1 T

(t)
i,h

if
∑m

i=1 T
(t)
i,h > 0,

C
(t)
h otherwise.

These steps are repeated until C
(t+1)
h = C

(t)
h , ∀h = 1, ..., k.

A cut-based method Ratio cut [14] includes cluster sizes in its cost function

RatioCut(P1, ..., Pk) =

k∑
i=1

cut(Pi, P̄i)

|Pi|
.

Here Pi:s are the partitions. Size regularized cut SRCut [8] is defined as the sum
of the inter-cluster similarity and a regularization term measuring the relative
size of two clusters. In [16] there is a balancing aiming term in cost function
and [24] tries to find a partition close to the given partition, but so that cluster
size constraints are fulfilled. There are also application-based solutions in net-
working [17], which aim at network load balancing, where clustering is done by
self-organization without central control. In [23], energy-balanced routing be-
tween sensors is aimed so that most suitable balanced amount of nodes will be
the members of the clusters.

Balanced clustering, in general, is a 2-objective optimization problem, in which
two aims contradict each other: to minimize MSE and to balance cluster sizes.
Traditional clustering aims at minimizing MSE without considering cluster size
balance. Balancing, on the other hand, would be trivial if we did not care about
MSE; simply by dividing points to equal size clusters randomly. For optimizing
both, there are two alternative approaches: Balance-constrained and balance-
driven clustering.

In balance-constrained clustering, cluster size balance is a mandatory require-
ment that must be met, and minimizing MSE is a secondary criterion. In balance-
driven clustering, balance is an aim but not mandatory. It is a compromize be-
tween these two goals, namely the balance and the MSE. The solution can be
a weighted compromize between MSE and the balance, or a heuristic that aims
at minimizing MSE but indirectly creates a more balanced result than standard
k-means. Existing algorithms are grouped into these two classes in Table 1.

In this paper, we formulate balanced k-means, so that it belongs to the first
category. It is otherwise the same as standard k-means but it guarantees balanced
cluster sizes. It is also a special case of constrained k-means, where cluster sizes
are set equal. However, instead of using linear programming in the assignment
phase, we formulate the partitioning as a pairing problem [7], which can be
solved optimally by Hungarian algorithm in O(n3) time.
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Table 1. Classification of some balanced clustering algorithms

Balance-constrained

Balanced k-means (proposed)
Constrained k-means [6]
Size constrained [24]

Balance-driven

FSCL [5]
FSCL with additive bias [2]
Cluster sampled data [4]
Ratio cut [14]
SRcut [8]
Submodular fractional programming [16]

2 Balanced k-Means

To describe balanced k-means, we need to define what is an assignment problem.
The formal definition of assignment problem (or linear assignment problem)
is as follows. Given two sets (A and S), of equal size, and a weight function
W : A × S → R. The goal is to find a bijection f : A → S so that the cost
function is minimized:

Cost =
∑
a∈A

W (a, f(a)).

In the context of the proposed algorithm, sets A and S correspond respectively
to cluster slots and to data points, see Figure 1.

In balanced k-means, we proceed as in k-means, but the assignment phase is
different: Instead of selecting the nearest centroids we have n pre-allocated slots
(n/k slots per cluster), and datapoints can be assigned only to these slots, see
Figure 1. This will force all clusters to be of same size assuming that �n/k� =
�n/k� = n/k. Otherwise there will be (n mod k) clusters of size �n/k�, and
k − (n mod k) clusters of size �n/k�.

To find assignment that minimizes MSE, we solve an assignment problem
using Hungarian algorithm [7]. First we construct a bipartite graph consisting n
datapoints and n cluster slots, see Figure 2. We then partition the cluster slots
in clusters of as even number of slots as possible.

We give centroid locations to partitioned cluster slots, one centroid to each
cluster. The initial centroid locations can be drawn randomly from all data
points. The edge weight is the squared distance from the point to the cluster
centroid it is assigned to. Contrary to standard assignment problem with fixed
weights, here the weights dynamically change after each k-means iteration ac-
cording to the newly calculated centroids. After this, we perform the Hungarian
algorithm to get the minimal weight pairing. The squared distances are stored
in a n× n matrix, for the sake of the Hungarian algorithm. The update step is
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Fig. 1. Assigning points to centroids via cluster slots

Fig. 2. Minimum MSE calculation with balanced clusters. Modeling with bipartite
graph.

similar to that of k-means, where the new centroids are calculated as the means
of the data points assigned to each cluster:

C
(t+1)
i =

1

ni
·

∑
Xj∈C

(t)
i

Xj . (6)

The weights of the edges are updated immediately after the update step. The
pseudocode of the algorithm is in Algorithm 1. In calculation of edge weights,
the number of cluster slot is denoted by a and mod is used in calculation of
cluster where a cluster slot belongs to. The edge weights are calculated by

W (a, i) = dist(Xi, C
t
(a mod k)+1)

2 ∀a ∈ [1, n] ∀i ∈ [1, n]. (7)
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Algorithm 1. Balanced k-means
Input: dataset X , number of clusters k
Output: partitioning of dataset.

Initialize centroid locations C0.
t ← 0
repeat

Assignment step:
Calculate edge weights.
Solve an Assignment problem.

Update step:
Calculate new centroid locations Ct+1

t ← t+ 1
until centroid locations do not change.
Output partitioning.

After convergence of the algorithm the partition of points Xi, i ∈ [1, n], is

Xf(a) ∈ P(a mod k)+1. (8)

There is a convergence result in [6] (Proposition 2.3) for constrained k-means.
The result says that the algorithm terminates in a finite number of iterations at
a partitioning that is locally optimal. At each iteration, the cluster assignment
step cannot increase the objective function of constrained k-means (3) in [6].
The cluster update step will either strictly decrease the value of the objective
function or the algorithm will terminate. Since there are a finite number of
ways to assign m points to k clusters so that cluster h has at least τh points,
since constrained k-means algorithm does not permit repeated assignments, and
since the objective of constrained k-means (3) in [6] is strictly nonincreasing and
bounded below by zero, the algorithm must terminate at some cluster assignment
that is locally optimal. The same convergence result applies to balanced k-means
as well. The assignment step is optimal with respect to MSE because of pairing
and the update step is optimal, because MSE is clusterwise minimized as is in
k-means.

3 Time Complexity

Time complexity of the assignment step in k-means is O(k · n). Constrained k-
means involves linear programming. It takes O(v3.5) time, where v is the number
of variables, by Karmarkars projective algorithm [15,22], which is the fastest in-
terior point algorithm known to the authors. Since v = k ·n, the time complexity
is O(k3.5n3.5). The assignment step of the proposed balanced k-means algorithm
can be solved in O(n3) time with the Hungarian algorithm. This makes it much
faster than in the constrained k-means, and allows therefore significantly bigger
datasets to be clustered.
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Fig. 3. Sample clustering result. Most significant differences between balanced cluster-
ing and standard k-means (non-balanced) clustering are marked and pointed out by
arrows.

Table 2. MSE, standard deviation of MSE and time/run of 100 runs

Dataset Size Clusters Algorithm Best Mean St.dev. Time

s2 5000 15 Balanced k-means 2.86 (one run) (one run) 1h 40min
Constrained k-means - - - -

s1 1000 15 Balanced k-means 2.89 (one run) (one run) 47s
subset Constrained k-means 2.61 (one run) (one run) 26min

s1 500 15 Balanced k-means 3.48 3.73 0.21 8s
subset Constrained k-means 3.34 3.36 0.16 30s

K-means 2.54 4.21 1.19 0.01s

s1 500 7 Balanced k-means 14.2 15.7 1.7 10s
subset Constrained k-means 14.1 15.6 1.6 8s

s2 500 15 Balanced k-means 3.60 3.77 0.12 8s
subset Constrained k-means 3.42 3.43 0.08 29s

s3 500 15 Balanced k-means 3.60 3.69 0.17 9s
subset Constrained k-means 3.55 3.57 0.12 35s

s4 500 15 Balanced k-means 3.46 3.61 1.68 12s
subset Constrained k-means 3.42 3.53 0.20 45s

thyroid 215 2 Balanced k-means 4.00 4.00 0.001 2.5s
Constrained k-means 4.00 4.00 0.001 0.25s

wine 178 3 Balanced k-means 3.31 3.33 0.031 0.36s
Constrained k-means 3.31 3.31 0.000 0.12s

iris 150 3 Balanced k-means 9.35 3.39 0.43 0.34s
Constrained k-means 9.35 3.35 0.001 0.14s
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Fig. 4. Running time with different-sized subsets of s1 dataset

4 Experiments

In the experiments we use artificial datasets s1-s4, which have Gaussian clus-
ters with increasing overlap and real-world datasets thyroid, wine and iris. The
source of the datasets is http://cs.uef.fi/sipu/datasets/. As a platform,
Intel Core i5-3470 3.20GHz processor was used. We have been able to cluster
datasets of size 5000 points. One example partitioning can be seen in Figure 3, for
which the running time was 1h40min. Comparison of MSE values of constrained
k-means and balanced k-means is shown in Table 2, running times in Figure 4.
The results indicate that constrained k-means gives slightly better MSE in many
cases, but that balanced k-means is significantly faster when the size of dataset
increases. For dataset of size 5000 constrained k-means could no longer provide
result within one day. The difference in MSE is most likely due to the fact that
balanced k-means strictly forces balance within ±1 points, but constrained k-
means does not. It may happen, that constrained k-means has many clusters of
size �n/k�, but some smaller amount of clusters of size bigger than �n/k�.

5 Conclusions

We have presented balanced k-means clustering algorithm which guarantees
equal-sized clusters. The algorithm is a special case of constrained k-means,
where cluster sizes are equal, but much faster. The experimental results show
that the balanced k-means gives slightly higher MSE-values to that of the con-
strained k-means, but about 3 times faster already for small datasets. Balanced
k-means is able to cluster bigger datasets than constrained k-means. However,
even the proposed method may still be too slow for practical application and
therefore, our future work will focus on finding some faster sub-optimal algorithm
for the assignment step.
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Battista Biggio1, Samuel Rota Bulò2, Ignazio Pillai1, Michele Mura1,
Eyasu Zemene Mequanint1, Marcello Pelillo3, and Fabio Roli1

1 University of Cagliari, Italy
2 FBK-irst, Trento, Italy

3 Ca’ Foscari University, Venice, Italy

Abstract. Clustering algorithms are largely adopted in security appli-
cations as a vehicle to detect malicious activities, although few attention
has been paid on preventing deliberate attacks from subverting the clus-
tering process itself. Recent work has introduced a methodology for the
security analysis of data clustering in adversarial settings, aimed to iden-
tify potential attacks against clustering algorithms and to evaluate their
impact. The authors have shown that single-linkage hierarchical cluster-
ing can be severely affected by the presence of a very small fraction of
carefully-crafted poisoning attacks into the input data, highlighting that
the clustering algorithm may be itself the weakest link in a security sys-
tem. In this paper, we extend this analysis to the case of complete-linkage
hierarchical clustering by devising an ad hoc poisoning attack. We verify
its effectiveness on artificial data and on application examples related to
the clustering of malware and handwritten digits.

1 Introduction

Clustering algorithms play an important role in data analysis by allowing us to
gain insight into large sets of unlabeled data. Recently, clustering algorithms have
been adopted in the context of computer security to solve different problems, e.g.,
spotting compromised domains in DNS traffic [1], gathering information about
tools and sources of attacks against Internet websites [2], detecting malicious
software (i.e., malware) such as computer viruses or worms [3, 4], and even
identifying repackaged Android applications and Android mobile malware [5, 6].

The collection of data for most of the aforementioned scenarios is carried out
in an unsupervised way; e.g., malware samples such as files infected by computer
viruses are often gathered from the Internet using honeypots (i.e., machines that
purposely expose known vulnerabilities to be infected by malware [7]), or other
ad-hoc services, like VirusTotal.1 Accordingly, the clustering algorithms used
to analyze such data are exposed to possible attacks. Indeed, carefully-crafted
samples might be injected into the collected data to subvert the clustering process
and prevent the system from gaining useful knowledge. Due to these intrinsically
adversarial scenarios, evaluating the security of clustering algorithms against

1 http://virustotal.com

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 42–52, 2014.
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carefully-designed attacks and proposing suitable countermeasures has become
an important issue.

In the literature, the problem of learning in adversarial environments has been
mainly addressed in the area of supervised classification [8–11], and regression
[12]. Instead, only few works have addressed the issue of security evaluation
(and the design of countermeasures) of unsupervised learning approaches such as
clustering algorithms. The pioneering work in [13, 14] has focused the attention
on the problem of devising specific attacks to subvert the clustering process.
They showed how points could be easily hidden within an existing cluster by
forming a fringe cluster, i.e., by placing such points sufficiently close the border
of an existing cluster. They further designed attacks consisting in adding points
in a way to bridge two clusters, i.e., by inducing the fusion of two clusters. A step
further has been taken in [15], where the authors considered several potential
attack scenarios in a more systematic manner. Indeed, they introduced a model
of the attacker that allows one to make specific assumptions on the adversary’s
goal, knowledge of the attacked system, and capability of manipulating the input
data, and to subsequently formalize a corresponding optimal attack strategy.

In this paper, we extend the clustering security analysis proposed in [15], which
was focused on single-linkage hierarchical clustering, to the case of complete
linkage by devising an ad hoc poisoning attack. The reason is that single- and
complete-linkage hierarchical clustering algorithms are among the most used ones
for the purpose of malware detection and classification [3, 4]. To cope with the
computational problem of determining the optimal attack strategy, we propose
some heuristics that allow us to find good approximate solutions. We finally
verify the effectiveness of our approach on artificial data and on application
examples related to the clustering of malware and handwritten digits.

2 Clustering in Adversarial Settings

We review here the framework proposed in [15], which introduces an adversary’s
model that can be used to identify and devise attacks against clustering algo-
rithms. The adversary’s model comprises the definition of the adversary’s goal,
knowledge of the attacked system, and capability of manipulating the input data.

Adversary’s Goal. The adversary’s goal is defined based on the attack speci-
ficity and the security violation pursued by the adversary. The attack specificity
can be targeted, if it involves only the clustering of a given subset of samples; or
indiscriminate, if it potentially affects the clustering of any sample. The security
violations jeopardize the integrity of a system, its availability, or the privacy of
its users. The availability violations are targeted at compromising the function-
ality of the system, thus causing a denial of service. In a supervised setting this
amounts to achieving the largest possible classification error [10, 8, 16], while in
the unsupervised case it entails attacks that induce a significant perturbation
in the clustering result. The integrity violations aim at pursuing some specific
malicious activities without significantly compromising the normal system op-
eration. In the supervised learning setting [10, 11], these attacks camouflage
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some malicious samples (e.g., spam emails) to evade detection, without affect-
ing the classification of legitimate samples. In the unsupervised setting, instead,
integrity violations are attacks aiming at deflecting the grouping for specific
samples, while limiting the changes to the original clustering. As an example, an
attacker might change some samples in a way to hide them in a different cluster,
without excessively altering the initial clusters. Finally, the privacy violations
try to obtain information about the system’s users from the clustered data.

Adversary’s Knowledge. The knowledge that the adversary has about the
system can be divided into: (i) knowledge about the data, i.e. the adversary knows
the dataset or a surrogate set sampled from the same distribution; (ii) knowledge
of the feature space, i.e. the adversary knows how features are extracted for
each sample; (iii) knowledge about the algorithm, i.e. the adversary knows the
clustering algorithm and thus how data is organized into clusters; (iv) knowledge
about the algorithm’s parameters, i.e. the adversary knows the parameters used
to run the clustering algorithm. The scenario where the adversary has all the
aforementioned types of knowledge is referred to as the perfect knowledge case.

Adversary’s Capability. The adversary’s capability defines in which way and
to what extent the attacker can influence the clustering process. In practice, it
imposes some limits to the power of the attacker. In the supervised case [10, 8],
an attacker can exercise an influence on the training data and test data (a.k.a.
causative influence) or on the test data only (a.k.a. exploratory influence). In
the unsupervised case, instead, there is no distinction between training and test
set, so the adversary can exercise only a causative influence by manipulating the
samples to be clustered. The capabilities of the adversary can be circumscribed
by imposing a maximum number of samples that can be manipulated, e.g. in
the case of malware collected through honeypots [7] the adversary might easily
send few samples without having access to the rest of the data. An additional
constraint consists in limiting the extent of the modifications that the attacker
can do to a sample in order to preserve its malicious functionality. Indeed, mali-
cious samples like spam emails or malware code may not be manipulated in an
unconstrained manner. Such a constraint can be expressed in terms of a suitable
distance measure between the original, non-manipulated attack samples and the
manipulated ones, as in [8, 17, 10, 11].

3 Poisoning Attacks

Once the adversary’s model has been defined, one can design an optimal attack
strategy that specifies how data should be manipulated to meet the adversary’s
goal, given the restrictions imposed by her knowledge and capabilities. In this
section, we focus on poisoning attacks, i.e., attacks targeted at violating the
system’s availability by indiscriminately corrupting the cluster assignment of any
data point through the insertion of well-crafted poisoning samples in the input
data. We additionally take the worst-case perspective in which the adversary
has perfect knowledge. In more formal terms, following [15], the adversary’s goal
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is to maximize a distance measure between the clustering C obtained from the
original, unchanged dataset D and the clustering obtained by the application of
the clustering algorithm on the contaminated dataset D′. We assume D′ to be
the union of D with a set of (poisoning) attack samples A′, i.e. D′ = D ∪ A′.
Accordingly, the objective function for the adversary can be written as

g(A′) = dc(C, fD(D ∪A′)) , (1)

where dc is a distance measure between clusterings, and fD(D′) denotes the
output of the clustering algorithm f run on the data D′, but restricted to the
samples in D, since we are interested in measuring the clustering corruption with
respect only to the original data samples. The capability of the adversary is cir-
cumscribed by imposing a maximum number of m attack samples, i.e. |A′| ≤ m,
and by imposing a box constraint on the feature values of the attack samples, i.e.
xlb ≤ a ≤ xub for all a ∈ A′, where a ≤ b means that the inequality holds for
all vector components. In other terms, the set of attack samples A′ is an element
of Ωp = {{a′

i}mi=1 : xlb ≤ a′
i ≤ xub for i = 1, . . . ,m}. To summarize, the opti-

mal poisoning attack strategy with perfect knowledge under the aforementioned
capabilities is the solution of the following optimization problem:

maximize g(A′) s.t.A′ ∈ Ωp . (2)

4 Poisoning Complete-Linkage Hierarchical Clustering

In this section, we focus on solving the optimization problem given by Eq. (2)
for the complete-linkage hierarchical clustering algorithm.

Before delving into the details of our derivation, it is worth remarking here
that hierarchical clustering algorithms do not output a given partitioning of the
data into a set of clusters directly. They rather produce a hierarchy of clusterings
by carrying out an agglomerative bottom-up procedure [18]: each point is initially
considered as a separate cluster; then, at each iteration, the two closest clusters
are fused according to a given distance measure between clusters (i.e., the so-
called linkage criterion), until a single cluster (containing all data points) is
obtained. This procedure can be represented as a tree-like data structure called
dendrogram. To obtain a given partitioning of the data, the dendrogram has
to be cut at a certain height. Points that remain interconnected after the cut
will be considered part of the same cluster. Depending on the linkage criterion,
several variants of hierarchical clustering have been defined; in particular, for
the complete-linkage and the single-linkage clustering algorithms the distance
between any two clusters C1 and C2 is respectively defined as the maximum and
minimum Euclidean distance between all pairs of samples in C1 × C2.

We denote sample-to-cluster assignments as a binary matrix Y ∈ {0, 1}n×k

where Yik = 1 if the ith sample is assigned to the kth cluster. We also define the
distance measure dc between clusterings used in (1) as dc(Y, Y

′) = ‖YY�−Y′Y′�‖F ,
where ‖ · ‖F is the Frobenius norm. This distance counts the number of times
two samples have been clustered together in one clustering and not in the other,
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and viceversa. It is also known as the Mirkin metric, and its relationships with
other clustering indices can be found here [19]. To employ this distance measure
with hierarchical clustering, we have to specify an appropriate dendrogram cut
criterion. Similarly to [15], we take the worst-case scenario for the adversary in
order to obtain the minimum performance degradation incurred by the cluster-
ing algorithm under attack. This translates into selecting the dendrogram cut
minimizing the distance dc between the uncontaminated clustering result C and
the one induced by the cut.

The optimization problem in (2) is hard to solve due to the presence of func-
tion fD, which has in general no analytic form and a discrete output. For this
reason, we propose in the following some greedy optimization strategies aimed at
finding a local maximum of the objective function, by adding one attack sample
at a time, i.e., |A′| = m = 1.

Poisoning Attack. The idea of the optimization heuristic is to generate a
set S of 2k candidate attack samples that could significantly compromise the
clustering result, and retain as attack sample the one yielding the highest value
of the objective function. These candidate samples are determined in a way to
potentially induce a cluster to be split and to possibly induce one of those parts
to be merged to another cluster. To populate the set S, we determine for each
cluster V ∈ C a pair of points (x1,x2) ∈ V×V with maximum distance within the
cluster (a.k.a. cluster diameter), i.e. (x1,x2) ∈ arg max(x,y)∈V×V ||x−y||. Now,
to induce the cluster V to be split we aim at increasing the diameter of V . To this
end, we determine two points z1 and z2 that are collinear with x1 and x2, but
outside the segment joining them, i.e. z1 = x1+

1
2α1l and z2 = x2− 1

2α2l where
l = (x1 − x2)/‖x1 − x2‖ and α1,2 > 0. The parameters α1,2 are determined as
the minimum between the cluster diameter of V and the distance of x1,2 to the
closest sample not in V , i.e. α1,2 = minz∈(D\V)∪{x2,1} ‖x1,2 − z‖. By computing
z1,2 for each cluster, we obtain the set of candidate attack samples S (see Fig. 1).

We can now select the attack sample in z ∈ S maximizing g({z}) and take
A′ = {z} as the optimal (in an heuristic sense) attack strategy. We call this strat-
egy Extend (Best). For the sake of computational efficiency, we also experiment a
strategy that approximates the clustering matrix Y′ directly, without explicitly
running the clustering algorithm for each candidate attack point. Specifically,
given a candidate attack sample z ∈ S, we split its cluster V in two parts, one
part containing the |V|/2 closest points to z in V . The newly constructed cluster
containing z will be merged with another clusterW ∈ C, if the distance between
z andW is smaller than the diameter of V . Given this new clustering represented
with the matrix Y′, we can evaluate the objective value of z and again retain
the one with the best value among the ones in S. We call this strategy Extend
(Hard). Finally, we also experiment the computation of a soft version of the clus-
tering matrix Y′, where the element Yki holds the posterior probability of class
k given sample xi computed with the Bayes rule using a likelihood estimated
with a Gaussian kernel density estimator (as done in [15]). The soft matrix Y ′ is
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Fig. 1. Poisoning complete-linkage hierarchical clustering. In each plot, 100 samples
grouped into 4 clusters are represented with different markers and colors. The red
segments highlight the cluster’s diameter, while the red squares are the candidate
attack samples in S . The objective function of (2), shown in the background for each
greedy attack location (|A′| = 1) is computed with hard (left plot) and soft assignments
(right plot). Note how the set S of candidate attack points includes local maxima of
the objective function.

computed for each candidate attack sample z ∈ S and the objective value in (2)
evaluated. Finally, the sample with the best objective is retained. We call this
last strategy Extend (Soft).

5 Experiments

Following the experimental setting in [15], in this section we report an empirical
evaluation of the effectiveness of our heuristic poisoning attacks on an artificial
two-dimensional dataset, a realistic application example on malware clustering,
and a high-dimensional problem involving clustering of handwritten digits. In
each experiment, the proposed attacks are compared against the following two
strategies: Random, that chooses the attack point at random from the minimum
box enclosing the data; and Random (Best), that randomly selects 2k attack
points from the same enclosing box (being k the number of clusters), and retains
the one that maximizes the objective function. The rationale is to compare
our methods against random-based strategies that exhibit similar computational
complexities: Extend (Best) and Random (Best) require re-running the clustering
algorithm 2k times at each iteration to evaluate the objective and select the best
candidate attack sample, while Extend (Hard), Extend (Soft) and Random select
the attack point without re-running the clustering algorithm.

As for evaluating the attack effectiveness, we report the value of the objective
function and the number of clusters obtained at each iteration, and the two
measures Split and Merge defined in [15] as follows. Let C and C′ be the initial
and the final clustering of the samples inD, and C a binary matrix whose elements
Ckk′ indicate the co-occurrence of at least one sample in the kth cluster of C and
in the k′th cluster of C′, then:

Split = mean
i

∑
j

Cij , Merge = mean
j

∑
i

Cij . (3)
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The rationale is that Split evaluates the extent to which the initial clusters are
split across distinct final clusters, while merge evaluates to what extent the final
clusters include points originally belonging to distinct initial clusters.

Artificial Data.We consider here the standard two-dimensional banana-shaped
dataset from PRTools.2 A particular instance of this data is shown in Fig. 1.
The number of clusters is set to k = 4, which corresponds to the ideal, untainted
clustering C considered in this case. The experiment is repeated five times, each
time by randomly sampling 80 data points, and adding up to 20 attack samples
(i.e., 20% of the data). As described in Sect. 4, the attack proceeds greedily
by adding one sample at a time. After adding each attack sample, we allow the
clustering algorithm to change the number of clusters from 2 to 50. The criterion
used to determine the number of clusters is to minimize the distance of the
current partitioning with the clustering in the absence of attack, as explained in
Sect. 4. Extend (Soft) estimates soft clustering assignments Y′ using a Gaussian
KDE, whose kernel bandwidth h is set as the average distance between each pair
of data points, yielding h ≈ 2 in each run. On this dataset, we also compare our
heuristic attacks with a computationally-expensive greedy attack that selects
the best attack point at each iteration (by re-running the clustering algorithm
and evaluating the objective) from an equally-spaced grid of 50 × 50 points in
[−2.5, 2.5]×[−2.5, 2.5]. This attack can be thus retained very close to the optimal
greedy attack, and we refer to it as Optimal (Grid Search).

Results are reported in Fig. 2 (first column). From the top plot, one may
note how Extend (Best) is able to achieve very close values of the objective
function to those attained by Optimal (Grid Search), denoting the effectiveness
of the considered candidate attack points. Random (Best) performs only slightly
worse, in this case, due to the fact that the feature space is only two-dimensional
and bounded, and that the local maxima of the objective function typically
cover large areas (see, e.g., Fig. 1). Extend (Hard) and Extend (Soft) perform
similarly to Random (Best), and better than Random, confirming to some extent
that predicting the output of the complete-linkage clustering algorithm after the
addition of a given data point may not always be as trivial as assumed by our
heuristics. The bottom plot shows how the number of selected clusters vary as
the attack progresses. The main effect is an oscillation of the number of clusters,
highlighting that initial clusters are fragmented, and that the resulting fragments
are then merged to form distinct clusters. This effect is also confirmed by the
Split and Merge values reported in Table 1.

Malware Clustering. We focus here on a real-world application example in-
volving the behavioral malware clustering algorithm proposed in [3]. Its goal is
to obtain malware clusters that can be used to automatically generate network
signatures that can in turn spot botnet command-and-control (C&C) and other
malware-related communications at the network perimeter. With respect to the
original algorithm, we made the same simplifications done in [15], and use the

2 http://prtools.org

http://prtools.org
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Fig. 2. Results for the Banana-shaped (first column), the Malware (second column),
and the Digit (third column) datasets. Plots in the top and the bottom row respectively
show how the objective function dc(Y, Y

′) and the number of clusters vary as the fraction
of attack samples increases.

Table 1. Split and Merge averaged values and standard deviations for the Banana-
shaped dataset (at 20% poisoning), the Malware dataset (at 5% poisoning), and the
Digit dataset (at 1% poisoning)

Banana (20%) Malware (5%) Digits (1%)
Split Merge Split Merge Split Merge

Random 1.70 ± 0.27 1.56 ± 0.31 1.10 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Random (Best) 2.20 ± 0.32 1.52 ± 0.31 1.33 ± 0.12 1.31 ± 0.39 1.00 ± 0.00 1.00 ± 0.00
Extend (Hard) 2.10 ± 0.13 1.97 ± 0.41 1.33 ± 0.12 1.15 ± 0.08 1.00 ± 0.00 1.13 ± 0.18
Extend (Soft) 1.90 ± 0.38 1.81 ± 0.18 1.27 ± 0.09 1.11 ± 0.17 1.60 ± 0.15 1.07 ± 0.15
Extend (Best) 2.15 ± 0.22 2.05 ± 0.11 1.83 ± 0.00 1.36 ± 0.14 1.27 ± 0.28 1.07 ± 0.15
Optimal 2.00 ± 0.31 2.28 ± 0.41

complete-linkage criterion instead of the single linkage. Each malware is repre-
sented by six feature values, normalized in [0, 1]: (i) number of GET requests; (ii)
number of POST requests; (iii) average URL length; (iv) average number of pa-
rameters in the request; (v) average amount of data sent by POST requests; and
(vi) average response length. We use a dataset of 1,000 malware samples chosen
from Dataset 1 of [3], which includes malware collected from different sources,
like MWCollect3 and Malfease4. The experiments are repeated five times, by
randomly selecting a subset of 475 malware samples in each run. As in [3, 15],
the initial set of clusters C is selected as the partitioning that minimizes the
value of the Davies-Bouldin Index [20], yielding approximately 9 clusters in each
run. During the attack, a maximum of 25 attack samples are added (i.e., 5% of
the data), while the clustering algorithm can vary the number of clusters from

3 Collaborative Malware Collection and Sensing, https://alliance.mwcollect.org.
4 Project Malfease, http://malfease.oarci.net.

https://alliance.mwcollect.org
http://malfease.oarci.net


50 B. Biggio et al.

2 to 50. The value of h for the KDE used in Extend (Soft) is set to 0.2, as it is
close to the average distance between each pair of samples in each run.

Results are shown in Fig. 2 (second column). The effect of the attack is es-
sentially the same as for the Banana-shaped data, as witnessed by the variation
in the number of clusters (bottom plot) and from the values of Split and Merge
in Table 1: the initial clusters are fragmented to form different clusters. Extend
(Best) outperforms again the other methods, as shown by the values of the ob-
jective function (top plot). Extend (Soft) performs slightly worse than Random
(Best), instead, while Random tends to increase the number of clusters but not
the objective function. This happens since most of the attack points are clus-
tered separately in new, additional clusters without affecting the initial clusters
at all.

Handwritten Digits. We finally consider clustering of handwritten digits from
the MNIST dataset [21],5 where each digit is represented as a grayscale image
of 28× 28 pixels. Each pixel is considered here as a feature value (normalized in
[0, 1] by dividing its value by 255). The feature space has thus 784 dimensions.
For simplicity, as in [15], we restrict our analysis on a subset of the data made up
of the three digits ‘0’, ‘1’, and ‘6’. Three initial clusters, each representing one of
the considered digits, are obtained by first computing the average digit for each
class, and then selecting 700 samples per class, by retaining the closest samples
to the corresponding average digit. We run the experiments five times, each time
by randomly choosing 330 samples per digit from the corresponding set of 700
pre-selected samples. While the attack proceeds, the attacker can inject up to 10
attack samples (1% of the data), while the clustering algorithm can select from
2 to 100 clusters. The value of h for the KDE used in Extend (Soft) is set as
h ≈ 1, based on the average distance between all pairs of samples in each run.

Results are shown in Fig. 2 (third column). Notably, in this case Extend
(Soft) outperforms the other methods, including Extend (Best). Extend (Soft)
deals indeed with less sharp variations of the objective function, that may in
turn allow it to identify a better combination of attack points in the end. The
random-based methods are completely ineffective, instead. This is due to the
high dimensionality of the feature space, which drastically reduces the chances
of finding a good local maxima by selecting the attack points at random. In
particular, it can be noted from the bottom plot in Fig. 2 (third column) that
the number of clusters induced by the random-based attacks increases from 3 to
4, while the objective function (top plot) remains at zero, and Split and Merge
do not vary (see Table 1). This essentially means that all the corresponding
attack points are clustered together in a single cluster, separated from the initial
ones. Finally, it is worth noting that Merge approximately equals 1 in Table 1
for all the considered attacks, highlighting that even the effective (non-random)
attacks are mostly able to split the initial clusters but not to form clusters that
aggregate samples initially belonging to different clusters.

5 Publicly available at http://cs.nyu.edu/~roweis/data.html.

http://cs.nyu.edu/~roweis/data.html
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6 Conclusions and Future Work

In this paper, we addressed the problem of evaluating the security of clustering
algorithms in adversarial settings. We showed with real-world experiments that
complete-linkage clustering may be significantly vulnerable to deliberate attacks.
In general, finding the optimal attack strategy for an arbitrary clustering algo-
rithm is a difficult problem. Therefore, we have to rely on heuristic algorithms in
order to carry out our analysis. For the sake of efficiency, these heuristics should
be heavily dependent on the targeted clustering algorithm, as in our case. Never-
theless, it would be interesting to devise more general methods that can use the
clustering algorithm as a black box and find a solution by performing a stochas-
tic search on the solution space (e.g., by simulated annealing), or an educated
exhaustive search (e.g., by using branch-and-bound techniques).

Acknowledgements. This work has been partly supported by the project “Se-
curity of pattern recognition systems in future internet” (CRP-18293) funded by
Regione Autonoma della Sardegna, L.R. 7/2007, Bando 2009.
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Abstract. Clustering data in Euclidean space has a long tradition and
there has been considerable attention on analyzing several different cost
functions. Unfortunately these result rarely generalize to clustering of
categorical attribute data. Instead, a simple heuristic k-modes is the most
commonly used method despite its modest performance. In this study,
we model clusters by their empirical distributions and use expected en-
tropy as the objective function. A novel clustering algorithm is designed
based on local search for this objective function and compared against
six existing algorithms on well known data sets. The proposed method
provides better clustering quality than the other iterative methods at
the cost of higher time complexity.

1 Introduction

The goal of clustering [1] is to reveal hidden structures in a given data set by
grouping similar data objects together while keeping dissimilar data objects in
separated groups. Let X denote the set of data objects to be clustered. The
classical clustering problem setting considers data objects in a D-dimensional
vector space, X ⊂ RD. The most commonly used objective function for such
data is mean squared error (MSE). A generic solution is the well-known k-means
method [2], which consists of two steps that are iterated until convergence. In
assignment step (or E-step), all vectors are assigned to new clusters and re-
estimation step (or M-step), model parameters are updated based on the new
assigments.

Different from vector space data, data in educational sciences, sociology, mar-
ket studies, biology and bioinformatics often involves categorical attributes, also
known as nominal data. For instance, a data object could be a single question-
naire form that consists of multiple-choice questions. Possible outcomes of the
answers can be encoded as integers. In this way, each questionnaire would be
represented as an element of ND, where D is the number of questions. Unfortu-
nately, since, the categories do not have any natural ordering, applying clustering
methods developed for metric space data cannot be applied as such.

Hamming distance is a distance function designed for categorical data. It
counts the number of attributes where two vectors disagree, i.e., having different

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 53–62, 2014.
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attribute values. Cost functions and algorithms based on Hamming distance
include k-medoids [3] and k-modes [4], both being extensions of the classical
k-means [2]. In k-medoids, cluster representative (discrete median) is a vector
in the cluster that minimizes the sum of distances from all other vectors to
the cluster representative. In k-modes, the representative is the mode of the
cluster, calculated independently for every attribute. Mode is the most frequently
occurring value, in one attribute, over all the vectors in the cluster.

Using minimum Hamming distance as the assignment rule, one is also faced
with the so-called zero probability condition [5]. It is one of the the assumptions
behind the convergence proof of the classical k-means algorithm, stating that
that the probability of assigning a vector to more than one cluster must be zero.
With real valued data this condition holds. However, in tne case of categorical
attribute clustering based on Hamming distance this condition is clearly not met.
In the extreme case, when two D-dimensional vectors are maximally different,
their Hamming distance is D. Consequently, the Hamming distance can take up
only D unique values and it is likely that a vector is equally close to more than
one cluster. Moreover, in the k-modes method, the cluster representative (mode)
is not unique either. Tie-breaking needs to be employed in both the E- and the
M-steps.

Tie-breaking problem in the cluster assignment (E-step) phase can be solved
by testing each vector one by one whether its move to a new cluster will improve
the objective function value. If such a cluster is found, the cluster parameters are
immediately updated. Convergence of the algorithm can then be detected when
there is no movement of vectors. One way to tackle the tie-breaking problem in
the M-step is to represent the cluster by its probability mass function (pmf), that
is, the relative frequencies of each category value in the cluster. For example,
choices for educational background could have values P (elementary school) =
0.2, P (high school) = 0.7 and P (vocational school) = 0.1. In a sense, k-modes
can be considered as a quantized version of the pmf-based cost functions. In this
example, “high school” would be the cluster representative.

A number of different objective functions have been proposed, based on the the
idea of modeling each cluster by its pmf: k-histograms [6, 7], k-distributions [8],
minimum description length (MDL) [9], mutual information [10] and expected
entropy [11–14]. Expected entropy is the average entropy of the entire cluster-
ing. If the pmf of the cluster is sharply peaked, its entropy is small. Therefore
minimizing the expected entropy leads to compact clusters.

Despite the availability of multiple pmf-based methods, it is unclear which
objective function and method would be best suited for a given application. In
this work, we compare six well known categorical clustering methods in diverse
categorical data sets using expected entropy as a clustering quality measure.
Data sets vary from small sets of only 47 data points to large data set of more
than 47k entries. In addition, we propose a new local search algorithm that
directly optimizes the expected entropy.
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2 Modeling Cluster by Its Distribution

In hard clustering, the goal is to divide a data set X , of size N , into disjoint clus-
ters V = {V1, V2, . . . , VM}, where Vi ⊂ X,∪Mi=1Vi = X, and Vi∩Vj = ∅ ∀ i 
= j.

In categorical clustering, data set consists of vectors x = (x1, x2, . . . , xD),
where each xd takes values from a discrete set (categories). The number of cate-
gories in dimension d is denoted by Cd. We assume, without a loss of generality
that xd ∈ {1, . . . , C}, where C = maxd=1...D Cd.

Entropy [15] is a measure of “surprise” in the data. High entropy signifies flat
distribution whereas low entropy signifies peaked distribution. Formally, entropy
for discrete distribution is defined as:

H(X) � −
∑
x∈X

p(x) log p(x), (1)

where p(x) = p(x1, . . . , xD). Here, p(x) denotes estimated probability of the
joint event (x1, . . . , xD). In the rest of the discussion, by entropy we will mean
estimated entropy, also known as empirical entropy.

Our goal is to minimize the so-called expected entropy) [12]:

H(V) �
M∑

m=1

|Vm|
N
H(Vm), (2)

where |Vm| is the cardinality of Vm and H(Vm) is the entropy of the cluster Vm.
Note that by setting M = 1, we obtain H(V) = H(X), and by setting M = N ,
we obtain H(V) = 0, where each vector is in its own cluster. All other values are
between these two extremes.

3 Algorithms

We evaluate two different types of clustering approaches, iterative and agglom-
erative. In iterative algorithms, clustering cost is improved in each iteration by
repartitioning the datasets. The selected algorithms are summarized in Table 1.
In agglomerative algorithms, instead, clusters are merged one by one until a
desired number of clusters is reached. Two agglomerative methdos are consid-
ered: ACE [14], which optimizes the expected entropy (2), and ROCK [16] which
optimizes its own cost function.

3.1 Prototype Based Algorithms

Prototype-based iterative methods [3, 4] select one vector from each cluster as
a representative, analogous to centroid vector in conventional k-means. The k-
modes and k-medoid methods use minimum Hamming distance to assign vectors
to clusters. In the classical k-means, squared Euclidean distance was used. In the
M-step, the goal is to find such a prototype per cluster that minimizes Hamming
distance from each vector in the cluster to the prototype vector. In k-medoid,
one vector from the cluster is selected as the prototype and in k-modes, most
frequently observed category per dimension is selected.
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Table 1. Summary of k-means type methods experimented in this study, classified
according to cluster representative type and distance measure

Method Representative Measure

k-distributions [8] Distribution Product of m-estimates
k-histograms [6, 7] Distribution non-matching frequencies
k-modes [4] Mode Hamming distance
k-medoids [3] Medoid Hamming distance
k-entropies [this paper] Distribution Entropy change

3.2 k-Distributions

In k-distributions [8], there are no cluster prototypes but the histograms are
used to represent clusters. In the E-step, a vector is assigned to the cluster that
maximizes the likelihood p(x|Vm). The likelihood can be factorized into each di-
mension separately assuming that dimensions are independent. Some categories
may have zero count, the histogram is therefore processed by Laplacian smooth-
ing [17].

The expected entropy is not directly optimized by k-distributions. No proof of
convergence exists, but experimentally we have noticed that the method seems
to converge, albeit slowly. In the following, we attempt to give an explanation of
the slow convergence. It would benefit if the similarity measure between a vector
and cluster remains relatively stable when only small changes are made in the
cluster partitioning. Unfortunately, this is not the case with k-distributions. Let
us consider a case where we map a vector to a cluster, where one dimension has
a non-matching category (no vector in the cluster has that category). When a
new vector having this non-matching category is added to the cluster, comparing
likelihood before and after addition we notice a large difference. For example,
the likelihood from a vector after addition of the cluster with 15 vectors and
3 categories is 3.5 times more than before the addition. Thus, vectors end up
changing clusters very often, leading to a slow convergence.

3.3 k-Representatives and k-Histograms

K-representatives [7] first assigns randomly all vectors to clusters and computes
normalized histograms as representatives of each cluster. Frequencies are nor-
malized so that they sum up to one. The distance measure from vector to cluster
is Hamming distance weighted by the frequency. The method assigns new vec-
tors to clusters based on the distance measure and recomputes the histograms.
Process continues until no re-assignments of vectors are detected.

Unfortunately, contrary to the claim in [7], we found out that algorithm does
not always converge1, We, therefore, do not consider k-representatives method

1 Proof by explicit construction of a 5-dimensional data set that k-representatives does
not converge: http://cs.uef.fi/sipu/krepresentatives.pdf.

http://cs.uef.fi/sipu/krepresentatives.pdf
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further. In iterative clustering with immediate update, vector is moved from one
cluster to another if the move decreases the cost function. We considere here k-
histograms [6] cost, which is the sum of k-representatives distance measures. It is
a non-negative cost function, thus, the algorithm converges in a finite number of
steps. The k-histograms method uses the immediate update strategy, otherwise
it is the same as k-representatives.

3.4 Agglomerative Methods

A robust clustering algorithm for categorical attributes (ROCK) [16] defines a cost
function based on the idea of neighbours and links. Neighbourhood of each vector
is decided based on thresholded distance between vectors. We use Hamming
distance. A link between two vectors is made if they share at least one neighbour.
The goal of ROCK is to maximize pairwise links between vectors within the
clusters, and minimize links between clusters. In each iteration, ROCK merges
two the clusters that maximizes this criterion.

In Agglomerative Categorical clustering with Entropy criterion ACE method
[14], expected entropy is optimized. In each iteration, ACE merges two clusters,
Vi and Vj , so that the incremental entropy is minimized:

Im(Vi, Vj) = H(Vi ∪ Vj)−H(Vi)−H(Vj). (3)

3.5 The Proposed Method

We propose to optimize the expected entropy directly. We start by randomly
assigning each vector to a cluster. The method then iterates over all vectors and
tests whether moving it to a new cluster improves the expected entropy. The as-
signment that maximally improves is selected. The algorithm converges when no
vector changes its cluster assignment. It is easy to see that this strategy converges
as each iteration is forced to either improve on the previous solution, or keep the
existing one and stop. The proposed method is summarized in Algorithm 1.

Algorithm 1. The proposed method (k-entropies)

Randomly assign all vectors to M clusters.
Model clusters as their probability mass function (pmf).
repeat

for x ∈ X do
Vi ← Assign x according to minimum cost (2).
Estimate prototype of the cluster Vi as the pmf of the cluster.

end for
until No change in vector assignments.
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3.6 Summary

All the algorithms, mentioned above are summarized in Table 2. The time and
space complexities for ACE and ROCK are referenced from the respective pub-
lications, and the others have been derived by ourselves. The quadratic space
and time complexity of both ACE and ROCK makes them rather impractical for
large data sets. Here, I denotes the number iterations, Cavg the average number
of categories, TL the cost of computing logarithm, Rmax the maximum number
of neighbours, and Ravg the average number of neighbours.

Table 2. Summary of clustering algorithms

Algorithm Type Time complexity Space complexity

ACE [14] Agglomerative O(N2 logN +N2DCavg) O(N2)
ROCK [16] Agglomerative O(N2 logN +N2) O(min{N2, NRmaxRavg})
k-medoids [3] k-means O(INMD) O(N)
k-modes [4] k-means O(INMD) O(N)

k-distributions [8] k-means O(INMDTL) O(N)
k-histograms [6] Immediate update O(INMD) O(N)
k-entropies Immediate update O(INMDCavgTL) O(N)

4 Experiments

Experimental comparison were performed using six different categorical data
sets (Mushroom, Votes, Soybean, CENSUS, SPECT hearth and Plants) obtained
from UCI Machine Learning archive [18]. Data sets are summarized in Table 3.

Only two methods optimize directly the expected entropy: ACE and
k-entropies (proposed method). We are interested to find out how the other
methods perform in terms of expected entropy as a clustering objective function,
where low entropy is desired. For iterative schemes, the number of iterations I
depends on initialization, data set and cost function, it can have importance
on how fast the algorithm is in practice. Number of iterations I measures the
empirical convergence speed of the algorithm.

Mushroom data set includes 8124 observations from 23 different mushroom
species. it has 21 attributes, and 119 categories. Dimensions with large number
of missing values were discarded in our tasks. Dimensions of the vectors encode
forms and colours of the mushrooms. Congressional votes data set includes
votes from the US Congress of 1984. Each vector gives the votes of one of the
435 member of the US congress. In total, proposals were collected with possible
outcome of {yes, no, other}, where other means that politicians opinion on the
said proposal is not known. Total number of categories is 46. Soybean data set
contains observations from different soybeans. It contains 47 vectors, 35 dimen-
sions and 72 categories. CENSUS data set is selected to evaluate scalability of
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the compared methods. Data set size is 2,458,285, has 68 dimensions and 396
categories. This data set contains both nominal and ordinal data types. In our
experiments, special processing for ordinal data is not used. SPECT hearth is
data on cardiac single proton emission computed tomography (SPECT) images.
Each SPECT image was summarized to 22 binary pattern features. Data set con-
tains 267 patients, and 44 categories. Plants data set is transaction data about
different growth locations, containing 34781 vectors (plants), 70 dimensions and
140 categories.

Table 3. Data set summary

Data set Vectors D Categories Entropy

Mushroom 8124 21 119 21.44
Votes 435 16 46 13.98
Soybean 47 35 72 18.80
CENSUS 2458285 68 396 55.17
SPECT hearth 267 22 44 13.68
Plants 34781 70 140 25.35
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Fig. 1. Expected entropy as a function of model size. In order from top left to bottom
right: mushroom, plants, soybean and spect data sets.
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4.1 Quality of Clustering

Fig. 1 shows the expected entropy as a function of model size. First glance vali-
dates our intuition: methods that are based on optimizing distribution perform
similarly. In general, the order of performance is: ACE first, then k-entropies
and after that k-histograms. K-distributions gives different results for SPECT
data set, when comparing to other sets.

The prototype based methods, k-medoids and k-modes optimize sum of Ham-
ming distances and perform similarly, as expected. They cluster to the mushroom
and plants data sets differenty than the pmf-based methods. ROCK also seems
to follow its own trend. If no links exist between two clusters, then there is no
way to merge them. This behaviour is visible in mushroom and SPECT data
sets, in smaller model sizes ROCK is not able to obtain any results. Plants is
transaction data, where most attributes have zero values, resulting all zero vector
as a prototype with k-modes and k-medoids.

4.2 Summary of Experiments

Summary of average expected entropies and processing times with standard
deviations is shown in Table 4 and 5, when repeating all experiments 10 times.

Table 4. Summary obtained average expected entropies and standard deviations.

Algorithm Soybean Mushroom Votes SPECT Plants CENSUS
M = 4 M = 16 M = 2 M = 8 M = 1024 M = 16

H(V) std H(V) std H(V) std H(V) std H(V) std H(V) std

ACE 7.83 0 7.01 n/a 9.79 0.16 8.43 0.07 n/a n/a n/a n/a
ROCK 9.20 0 n/a n/a 9.30 0 10.82 0 n/n n/a n/a n/a

k-medoids 10.94 1.57 13.46 0.71 10.00 0.95 10.06 0.44 7.64 0.33 32.61 0.87
k-modes 8.66 1.06 10.19 1.45 9.70 0.03 9.25 0.29 6.19 0.18 31.00 1.26

k-distributions 9.00 0.93 7.87 0.44 9.59 0.01 8.25 0.13 5.19 0.09 28.58 0.27
k-representatives 8.30 0.83 7.51 0.30 9.60 0.01 8.64 0.13 n/a n/a n/a n/a
k-histograms 8.04 0.53 7.31 0.18 9.60 0.01 8.64 0.15 3.67 0.02 29.17 0.48
k-entropies 8.15 0.56 7.31 0.18 9.58 0 8.06 0.07 3.33 0.05 28.51 0.50

Table 5. Summary obtained average processing times (in seconds) and standard de-
viations

Algorithm Mushroom Plants CENSUS
Time std Time std Time std

ACE 2565.76 n/a n/a n/a n/a n/a
ROCK n/a n/a n/a n/a n/a n/a

k-medoids 0.06 0 30.89 8.12 184.95 18.63
k-modes 0.08 0.01 63.60 10.75 188.65 24.17

k-distributions 1.83 0.17 5043.80 1637.70 1748.34 530.97
k-representatives 0.30 0.07 n/a n/a n/a n/a
k-histograms 0.19 0.04 467.46 110.44 900.35 81.81
k-entropies 12.51 1.43 8669.55 1000.84 6068.72 1116.87
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Entry with n/a means that algorithm was not able to produce a result for that
configuration, either due to non-convergence or running out of memory. Model
sizes were selected for each data set separately, either by looking at the expected
entropy as function of model size plot, or by information from the data set
descriptions. For the plants data set we selected 1024, because for smaller model
sizes k-modes and k-medoids completely fail.

We notice that for Soybean and Mushroom data sets ACE is the best as it
directly optimizes the expected entropy. However, for the votes and SPECT data
sets the proposed method provides better clustering, than ACE. The usability
of ACE and ROCK are limited to their space complexity: those methods are not
able to cluster largest sets at all. The proposed method is the best in terms of
quality for the SPECT, plants and CENSUS data sets.

K-representatives results were also obtained for illustrative purposes for the
datasets it converged on. It is slower than k-histograms, which can be attributed
to the non-convergence behaviour of the algorithm. In terms of expected entropy,
k-representatives iteration strategy did not provide any visible advantage over
the immediate update of the k-histograms.

When comparing the proposed method and ACE in terms of processing time,
we see that the proposed method is a clear winner. However, other methods that
do not directly optimize expected entropy are clearly much faster.

5 Conclusions

We have compared existing pmf-based categorical clustering methods and found
them to be very similar in terms of expected entropy. We also found out that
the prototype-based methods (k-medoids and k-modes), while being the fastest
methods, are not able to reach the lowest expected entropy obtained by the
pmf-based methods. Thus, those methods are not recommended for clustering
categorical data sets. On the other hand, ACE, while providing the best overall
results, is not well-suited for large data sets, because of its quadratic time and
space complexities. The proposed k-entropies method yielded the best results
for the larger datasets. As a future work, we plan to investagate ways to obtain
a k-means type clustering algorithm for the expected entropy cost.
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Abstract. Many flexible methods for graph dissimilarity computation
are based on the concept of edit distance. A recently developed approx-
imation framework allows one to compute graph edit distances substan-
tially faster than traditional methods. Yet, this novel procedure considers
the local edge structure only during the primary optimization process.
Hence, the speed up is at the expense of an overestimation of the true
graph edit distances in general. The present paper introduces an exten-
sion of this approximation framework. Regarding the node assignment
from the original approximation as a starting point, we implement a
search procedure based on a genetic algorithm in order to improve the
approximation quality. In an experimental evaluation on three real world
data sets a substantial gain of distance accuracy is empirically verified.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. A large number of methods for graph matching have been proposed in
recent years (see [1, 2] for exhaustive surveys). Due to its ability to cope with
arbitrarily structured graphs with unconstrained label alphabets for both nodes
and edges, the concept of graph edit distance [3] can be applied to virtually any
kind of graphs. Therefore, graph edit distance has been used in the context of
classification and clustering tasks in diverse applications [4–6].

Given two graphs, the source graph g1 and the target graph g2, the basic idea
of graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes
u and v by (u → v), the deletion of node u by (u → ε), and the insertion of
node v by (ε → v)1. A sequence of edit operations e1, . . . , ek that transform g1
completely into g2 is called an edit path between g1 and g2.

1 For edges we use a similar notation.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 63–72, 2014.
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Let Υ (g1, g2) denote the set of all possible edit paths between two graphs g1
and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces a cost
for each edit operation, measuring the strength of the corresponding operation.
The edit distance of two graphs is then defined by the minimum cost edit path
between two graphs.

The computation of exact graph edit distance is usually carried out by means
of a tree search algorithm which explores the space of all possible mappings of the
nodes and edges of the first graph to the nodes and edges of the second graph. A
widely used method is based on the A* algorithm [7] which is a best-first search
algorithm. The computational complexity of the exact edit distance algorithm,
whether or not heuristic functions are used to govern the tree traversal process, is
exponential in the number of nodes of the involved graphs. Consequently, exact
edit distance can be computed for graphs of a rather small size only.

In recent years, a number of methods addressing the high computational com-
plexity of graph edit distance computation have been proposed (e.g. [8–11]). The
authors of the present paper also introduced an algorithmic framework which al-
lows the approximate computation of graph edit distance in a substantially faster
way than traditional methods [12]. Yet, the substantial speed-up in computation
time is at the expense of an overestimation of the actual graph edit distance.
The reason for this overestimation is that the algorithm is able to consider only
local, rather than global, edge structure during the optimization process. The
main objective of the present paper is to significantly reduce the overestimation
of edit distances in our approximation framework. To this end, the distance ap-
proximation found by the procedure of [12] is systematically improved using a
search procedure based on genetic algorithms.

Genetic algorithms have been proposed in the context of error-tolerant graph
matching in various publications [13–15]. The basic idea of this approach is to
formalize matchings as states (chromosomes) with a corresponding performance
(fitness). An initial pool of these chromosomes, i.e. matchings, evolves iteratively
into other generations of matchings. To this end, different genetic operations are
applied to the current matchings. Though the search space is explored in a
random fashion, genetic algorithms can be designed so as to favour promising
chromosomes, i.e. well fitting matchings, and further improve them by specific
genetic operations.

The remainder of this paper is organized as follows. Next, in Sect. 2 the
original framework for graph edit distance approximation [12] is summarized. In
Sect. 3 the extension of this specific framework using a genetic search procedure
is introduced. An experimental evaluation on diverse data sets is carried out in
Sect. 4, and in Sect. 5 we draw some conclusions and outline some possible tasks
and extensions for future work.

2 Bipartite Graph Edit Distance Approximation

In the framework presented in [12], for matching two graphs g1 and g2 with
nodes V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}, respectively, a cost matrix C is
first established as follows:
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C =

⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Entry cij thereby denotes the cost of a node substitution ui → vj , ciε denotes
the cost of a node deletion ui → ε, and cεj denotes the cost of a node insertion
ε→ vj .

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε→ ε) should not cause any costs. In the definition of
cost matrix C, to each entry cij , i.e. to each cost of a node edit operation, the
minimum sum of edge edit operation costs, implied by the corresponding node
operation, is added (i.e. the matching cost arising from the local edge structure
is encoded in the individual entries of C).

On the basis of the square cost matrix C a bipartite assignment algorithm is
executed (first step). The result returned by this bipartite optimization proce-
dure corresponds to the minimum cost mapping m of the nodes and their local
edge structure of g1 to the nodes and their local edge structure of g2. Mapping
m can be seen as partial edit path π = e1, . . . , el, where each edit operation
ei ∈ π reflects an operation on nodes from V1 and/or V2 (deletions, insertions
or substitutions). In a second step the edit path π between g1 and g2 is com-
pleted according to mapping m. Note that edit operations on edges are implied
by edit operations on their adjacent nodes, i.e. whether an edge is substituted,
deleted, or inserted, depends on the edit operations performed on its adjacent
nodes. Hence, given the set of node operations e1, . . . , el, the global edge struc-
tures from g1 and g2 can be edited accordingly. The cost of the complete edit
path π is finally returned as an approximate graph edit distance. We denote the
approximated edit distance between graphs g1 and g2 according to mapping m
with d(g1, g2,m).

Note that the edit path corresponding to d(g1, g2,m) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node mapping
m from step 1 is able to consider the structural information in an isolated way
only (single nodes and their adjacent edges). This is due to the fact that during
the optimization process no information about neighboring node mappings is
available. Hence, in comparison with optimal search methods for graph edit dis-
tance, our novel algorithmic framework might cause additional edge operations



66 K. Riesen, A. Fischer, and H. Bunke

in the second step, which would not be necessary in a globally optimal graph
matching. Hence, the distances found by this specific framework are – in the
optimal case – equal to, or – in a suboptimal case – larger than the exact graph
edit distance.

For the remainder of this paper we denote this graph edit distance approxi-
mation algorithm with BP (Bipartite).

3 Improving Graph Edit Distance Approximations Using
Genetic Algorithms

In several experimental evaluations we observed that the suboptimality of BP is
very often due to a few incorrectly assigned nodes in m. That is, only few node
assignments from the first step are responsible for the additional edge operations
in the second step (and the resulting overestimation of the true edit distance).
Our novel procedure ties in at this observation. Rather than returning the ap-
proximate edit distance directly, a genetic search procedure based on mapping
m is started.

The chromosomes in our genetic search procedure are mappings related to our
original node assignmentm. In order to build an initial population P (0) contain-

ing chromosomes (mappings), we computeN random variations {m(0)
1 , . . . ,m

(0)
N }

of m. A single variationm
(0)
i ∈ P (0) of m is computed as follows. Every node as-

signment ui → vj in m is possibly omitted with a certain probability p (referred
to as mutation probability). That is, in an alternative mapping we enforce nodes
ui and vj to be assigned to other nodes than vj and ui, respectively. This is
ensured by means of an update of the cost matrix C such that entry ci,j (corre-
sponding to the assignment ui → vj) is set to∞. Given the updated cost matrix
(with ∞-entries at certain positions) an optimal node assignment is computed

using our former procedure. This results in a new mapping m
(0)
i which does not

contain (ui → vj) any more. Note that m
(0)
i corresponds to an optimal node

assignment based on the altered cost matrix. Hence, m
(0)
i is consistent, i.e. every

node of g1 is assigned to a single node of g2 (or deleted) and every node of g2 is
assigned to a single node of g1 (or inserted).

This mutation procedure is repeated N times to mapping m in order to get N

different mappings P (0) = {m(0)
1 , . . . ,m

(0)
N } and thusN different approximations

of the true graph edit distance2. Note that all of these approximate edit distance
values are still equal to, or larger than, the exact distance values. Hence, without

knowing the exact graph edit distance, the fitness of every assignment m
(0)
i can

be rated according to its specific distance value d(g1, g2,m
(0)
i ), viz. the lower

d(g1, g2,m
(0)
i ) the better the fitness of m

(0)
i .

Given the initial population P (0) the following iterative procedure is carried
out next. A new population P (t+1) of mappings is built upon a subset E of P (t),

2 Note that the original mapping m is initially added to P (0) such that the approxi-
mation found by our extension is guaranteed to be at least as accurate as the original
approximation d(g1, g2,m).
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often referred to as parents. In order to select the parents from a given population
P (t), the (f ·N) best approximations, i.e. the approximations in P (t) with lowest
distance values, are selected (f ∈]0, 1]). In our framework, all approximations
from E are added without any modifications to the next population P (t + 1).
This ensures that the best solution found so far will not be lost during the search
procedure (known as survival of the fittest).

In order to derive the remaining mappings of the new population P (t + 1),
the following procedure is repeated (N − |E|)-times. Two mappings m′ and m′′

from the pool of parents E are randomly selected and eventually combined to one
mappingm. To this end, the cost matrices C′ = c′i,j and C′′ = c′′i,j corresponding
to mappings m′ and m′′, respectively, are merged by means of

Cm = max{c′i,j , c′′i,j}

Based on Cm an optimal mapping m is computed and eventually added to
P (t + 1). Due to the definition of Cm the node mappings omitted in at least
one of the mappings m′ and m′′ will also be prevented in the merged mapping
m. The detour via optimal assignment computation on a cost matrix Cm again
ensures that the merged mapping m is consistent with the underlying graphs
(nodes of both graphs are uniquely assigned to nodes of the other graph or
deleted/inserted).

The two main steps of the genetic algorithm (selection of parents E ⊆ P (t)
and computation of a new generation of mappings P (t + 1) based on E) are
repeated until the best distance approximation has not been improved during the
last τ iterations. It is well known that genetic algorithms are not deterministic.
Therefore, we repeat the complete search procedure s times from the scratch
and return the overall best approximation found in these s runs (which makes
the algorithmic procedure more stable and reduces the risk of finding a poor
approximation due to a poor random initialization).

Given that the genetic search procedure stops after t iterations on average, the
two main steps of our former approximation framework, namely the computation
of an optimal mapping m based on a cost matrix and the derivation of the
corresponding edit distance, have to be carried out (s · t ·N)-times. Hence, one
can expect that our extended framework increases the run time by the magnitude
of (s · t ·N) compared to our original framework.

The complete algorithmic procedure is given in Alg. 1. Note that the first
three lines of Alg. 1 correspond to the original framework BP, while line 4 to
18 describe the proposed extension, denoted by BPGA from now on.

4 Experimental Evaluation

For experimental evaluations, three data sets from the IAM graph database
repository3 for graph based pattern recognition and machine learning are used
[16]. The first graph data set involves graphs that represent molecular com-
pounds (AIDS). We construct graphs from the AIDS Antiviral Screen Database

3 www.iam.unibe.ch/fki/databases/iam-graph-database
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Algorithm 1. BPGA(g1, g2) (Meta Parameters: N, p, τ, f, s)

1: Build cost matrix C according to the input graphs g1 and g2
2: Compute optimal node assignment m on C
3: Derive edit path and approximate edit distance based on m
4: for i = 1, . . . , s do

5: build initial population P (0) of mappings {m(0)
1 , . . . ,m

(0)
N } based on m using mutation

probability p

6: dbest = mini=1,...,N{d(g1, g2,m(0)
i )}

7: t = 0; l = 0
8: while t − l < τ do
9: select a subset E ⊆ P (t) of parents (|E| = f · N)

10: build a new population P (t + 1) = {m(t+1)
1 , . . . ,m

(t+1)
N } from E

11: d = mini=1,...,N{d(g1, g2,m(t+1)
i )}

12: t = t + 1
13: if d < dbest then
14: dbest = d; l = t
15: end if
16: end while
17: end for

18: return dbest

of Active Compounds [17]. This data set consists of two classes (active, inac-
tive), which represent molecules with activity against HIV or not. The molecules
are converted into graphs in a straightforward manner by representing atoms as
nodes and the covalent bonds as edges. Nodes are labeled with the number of
the corresponding chemical symbol and edges by the valence of the linkage.

The second graph data set consists of graphs representing fingerprint im-
ages (FP) [18]. In order to obtain graphs from fingerprint images, the relevant
regions are binarized and a noise removal and thinning procedure is applied. This
results in a skeletonized representation of the extracted regions. Ending points
and bifurcation points of the skeletonized regions are represented by nodes. Ad-
ditional nodes are inserted in regular intervals between ending points and bi-
furcation points. Finally, undirected edges are inserted to link nodes that are
directly connected through a ridge in the skeleton. Each node is labeled with
a two-dimensional attribute giving its position. The edges are attributed with
an angle denoting the orientation of the edge with respect to the horizontal
direction.

The third data set consists of graphs representing symbols from architectural
and electronic drawings (GREC) [19]. The images occur at five different distor-
tion levels. Depending on the distortion level, either erosion, dilation, or other
morphological operations are applied. The result is thinned to obtain lines of
one pixel width. Finally, graphs are extracted from the resulting denoised im-
ages by tracing the lines from end to end and detecting intersections as well
as corners. Ending points, corners, intersections and circles are represented by
nodes and labeled with a two-dimensional attribute giving their position. The
nodes are connected by undirected edges which are labeled as line or arc. An
additional attribute specifies the angle with respect to the horizontal direction
or the diameter in case of arcs.
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Our procedure BPGA has five meta parameters to be defined by the user
(see Table 1 for a survey). In the following evaluations only two of them are
altered in order to evaluate their impact on the approximation quality, viz. the
population size N as well as the mutation probability p. The three remaining
parameters (τ, f, s) are freezed to constants. In fact, in preliminary experimental
evaluations it turns out that these parameters – given that they do not fall below
a certain threshold – do nearly not affect the resulting approximations.We choose
minimum values for τ, f, s such that stable and reasonable results on all of the
three data sets can be observed. In the Table 1 the meta parameters and their
respective values are summarized.

Table 1. Meta Parameters of BPGA

Parameter Meaning Value

N Population Size {50, 100}
p Mutation probability that a given node mapping in m is

prevented (needed to build P (0))
{0.1, 0.3, 0.5, 0.7}

τ Termination when best solution has not been improved
during the last τ iterations

6

f Percentage of chromosomes selected from P (t) as parents
to build P (t + 1)

0.25

s Number of runs 3

In Table 2 the achieved results are shown. On each data set and for each graph
edit distance algorithm two characteristic numbers are computed, viz. the mean
relative overestimation of the exact graph edit distance (�o) and the mean run
time to carry out one graph matching (�t). The algorithms employed are A*
and BP (reference systems) and eight differently parametrized versions of our
novel procedure BPGA (N ∈ {50, 100}; p ∈ {0.1, 0.3, 0.5, 0.7}).

First we focus on the degree of overestimations and regard the results of
BPGA with N = 50 only. The original framework (BP) overestimates the graph
distance by 12.68% in average on the AIDS data. On the Fingerprint and GREC
data the overestimations amount to 6.38% and 2.98%, respectively. These values
can be substantially reduced with our extended framework. For instance on the
AIDS data, the mean relative overestimation can be reduced to 2.01% in the best
case (p = 0.5). That is, the mean relative overestimation of our novel framework
is approximately six times smaller than the one of the original approximation
framework. On the GREC data set the mean relative overestimation is reduced
from 2.98% to 0.83% in the best case (p = 0.3) and on the Fingerprint data the
overestimation can be heavily reduced from 6.38% to 0.13% (p = 0.3 or p = 0.5).
We observe that a mutation probability between 0.3 and 0.5 works well on all
three data sets.

Comparing the mean run time of our novel procedure with the original frame-
work on the AIDS data, we observe that our extension takes approximately 300
times longer for one matching in average with N = 50 (approx. 167- and 200-
times longer matching times in average on the Fingerprint and GREC data,
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Table 2. The mean relative overestimation of the exact graph edit distance (�o) and
the mean run time for one matching (�t) using a specific graph edit distance algorithm

Algorithm

Data Set

AIDS FP GREC

� o � t � o � t � o � t

A* (Exact) - 5.63 - 5.00 - 3.10

BP 12.68 0.0004 6.38 0.0006 2.98 0.0004

BPGA(50, 0.1) 2.96 0.12 0.20 0.10 1.00 0.08

BPGA(50, 0.3) 2.18 0.11 0.13 0.10 0.83 0.08

BPGA(50, 0.5) 2.01 0.12 0.14 0.10 0.83 0.08

BPGA(50, 0.7) 2.12 0.11 0.15 0.10 0.89 0.08

BPGA(100, 0.1) 2.33 0.23 0.14 0.20 0.82 0.16

BPGA(100, 0.3) 1.53 0.22 0.09 0.21 0.66 0.17

BPGA(100, 0.5) 1.42 0.23 0.09 0.20 0.68 0.17

BPGA(100, 0.7) 1.54 0.23 0.11 0.20 0.74 0.16

(a) BP (b) BPGA(100, 0.3)

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance

respectively). The observed run time increase perfectly lies within the expected
multiplication of the average run time by (s · t ·N). However, compared to the
exact algorithm our extension is still very fast (approximately 40 to 50 times
faster on all data sets with N = 50).

Increasing the population size N to 100 allows us to further decrease the
overestimation. Yet, the reduction is at the prize of approximately doubling the
mean runtime when compared to N = 50 on all data sets. Also with N = 100
a mutation probability between 0.3 and 0.5 seems to be the best choice on all
data sets.

The substantial improvement of the approximation accuracy can also be ob-
served in the scatter plots in Fig. 1. These scatter plots give us a visual represen-
tation of the accuracy of the suboptimal methods on the Fingerprint data set4.
We plot for each pair of graphs their exact (horizontal axis) and approximate

4 On the other data sets similar results can be observed.
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(vertical axis) distance value. The reduction of the overestimation using our pro-
posed extension is clearly observable and illustrates the power of our extended
framework.

5 Conclusion and Future Work

In the present paper we propose an extension of our previous graph edit dis-
tance approximation algorithm (BP). The major idea of our work is to use the
suboptimal graph edit distance and the underlying node assignment in a genetic
search procedure to improve the approximation accuracy. With several experi-
mental results we show that this extension leads to a substantial reduction of
the overestimations typical for BP. Though the run times are increased when
compared to our former framework (as expected), they are still far below the
run times of the exact algorithm.

We see three important lines of research for future work. First, we want to im-
plement other search methods than genetic algorithms (e.g. floating search [20]).
Second, there seems to be room for developing other merging methods to build
a new assignment based on two given assignments (without the need to compute
optimal assignments based on C). Finally, the experimental evaluation will be
extended (more data sets, more exhaustive evaluations of the meta parameters,
etc.).
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Abstract. The definition of efficient similarity or dissimilarity measures
between graphs is a key problem in structural pattern recognition. This
problem is nicely addressed by the graph edit distance, which constitutes
one of the most flexible graph dissimilarity measure in this field. Unfor-
tunately, the computation of an exact graph edit distance is known to
be exponential in the number of nodes. In the early beginning of this
decade, an efficient heuristic based on a bipartite assignment algorithm
has been proposed to find efficiently a suboptimal solution. This heuristic
based on an optimal matching of nodes’ neighborhood provides a good
approximation of the exact edit distance for graphs with a large number
of different labels and a high density. Unfortunately, this heuristic works
poorly on unlabeled graphs or graphs with a poor diversity of neighbor-
hoods. In this work we propose to extend this heuristic by considering a
mapping of bags of walks centered on each node of both graphs.

1 Introduction

Graphs provide a generic data structure which allows to encode fine properties
of a large variety of objects such as shapes or molecules. The use of a graph rep-
resentation to address pattern recognition problems implies to define a similarity
measure between graphs. A widely used approach consists in using the graph edit
distance, which allows to measure the distortion required to transform one graph
into another. The distortion between two graphs G and G′ can be encoded by
an edit path defined as a sequence of operations transforming G into G′. Such a
sequence may include node or edge insertions, removals and substitutions. Given
a non-negative cost function c(.), associated to each operation, the cost of an edit
path is defined as the sum of its elementary operation’s costs. The optimal edit
path is defined as the one associated to the minimal cost among all edit paths
transforming G into G′. This minimal cost then corresponds to the edit distance
between G and G′. Unfortunately, beside its appealing properties, the compu-
tational time of the graph edit distance is known to grow exponentially with
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the number of implied nodes [9,2]. A close relationship exists between graph edit
distance and morphism between graphs. Indeed, Bunke [1] has shown that under
special conditions on the costs of node and edge insertions, removals and substi-
tutions, computing the graph edit distance is equivalent to compute a maximum
common subgraph of two graphs. More generally any mapping between the set
of nodes and edges of two graphs induces an edit path which substitutes all
mapped nodes and edges, and inserts or removes the non-mapped nodes/edges
of the two graphs. Conversely, given an edit path between two graphs such that
each node and each edge is substituted only once, one can define a mapping
between the substituted nodes and edges of both graphs.

This close relationship between mappings and edit distance constitutes the
main principle of the heuristic proposed by Riesen and Bunke [7] in order to
decrease the exponential growth of the computational cost of the graph edit
distance according to the number of considered nodes. This heuristic builds
a mapping between the node sets of two graphs using a bipartite assignment
algorithm, and deduces an edit path from this mapping. The cost of this edit
path, which may not be optimal, is considered as an approximation of the exact
edit distance. The optimal bipartite assignment algorithm is based on a cost
function defined between the neighborhoods of each pair of nodes of the two
graphs. The idea behind this heuristic being that a mapping between nodes
with similar neighborhoods should induce an edit path with a low cost. However,
this heuristic may work poorly on unlabeled graphs and more generally in cases
where neighborhoods do not allow to easily differentiate the nodes.

In this paper we propose to extend this heuristic by considering a bipartite as-
signment algorithm between bags of walks incident to each node of both graphs.
Hence, within this framework, a mapping of direct neighborhoods is similar to
a mapping of bags of walks of length 1.

Our paper is structured as follows: Section 2 defines the bipartite assignment
problem, and Section 3 defines the computation of an approximate edit distance
from a bipartite assignment algorithm together with the heuristic defined in [7].
Section 4 defines an efficient computation of the bag of walks associated to each
node of a graph, together with the costs of substituting, inserting or removing
such a bag. Finally, Section 5 presents experiments on molecule datasets showing
the accuracy gain obtained using our approach.

2 Assignment Problem

2.1 Linear Sum Assignment Problem (LSAP)

Let X = {xi}i and Y = {yi}i be two sets with |X |= |Y|=n. Assigning the n ele-
ments ofX to the n elements of Y can be described by a bijective mapping X →Y,
reduced to a permutation of {1, . . . , n} if indices of elements are considered. Pro-
vided a matrix C∈Rn×n

+ so that Ci,j = c(xi→ yj)= c(yj→xi) measures the cost
of assigning element xi ∈X to element yj ∈Y, the Linear Sum Assignment Prob-
lem (LSAP) finds an optimal permutation ϕ̂ ∈argmin

ϕ∈Sn

∑n
i=1 Ci,ϕ(i), where Sn is
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the set of all permutations of {1, . . . , n}. Recall that any permutation ϕ can be as-
sociated to a permutation matrixP∈ {0, 1}n×n satisfying Pi,j = δi,ϕ(i), where δi,j
is the Kronecker delta (δi,j =1 if i= j and 0 else). Note thatP is doubly stochastic
(sum of rows is equal to 1 and similarly for columns). Then, the LSAP corresponds
to find an optimal permutation matrix

P̂ ∈ argmin
P∈Pn

n∑
i=1

n∑
j=1

Ci,j Pi,j , (1)

where Pn denotes the set of all n×n permutation matrices.
The LSAP may also be formulated as a maximization problem, and is also

known as the maximum weighted bipartite matching problem. It can be solved
by the Hungarian or Kuhn-Munkres algorithm in O(n3) time complexity [5,6],
and it has been generalized in many directions, see [3] for more details.

2.2 LSAP with Insertion and Removal of Elements

Let X and Y be two sets, with n= |X | and m= |Y|. As before, each element
xi ∈X can be assigned to an element yj ∈Y according to a given substitution
cost matrix C(X ,Y)∈Rn×m

+ with [C(X ,Y)]i,j = c(xi→ yj). Also, assume that
each element of both X and Y can be deleted, or equivalently inserted, that
is assigned to the null element denoted by ε. Removal and insertion of an el-
ement xi ∈X have the same cost c(xi→ ε)= c(ε→xi), and similarly for the
elements of Y. Removal-insertion costs associated to the n elements of X can
be represented by the matrix Cε(X )∈Rn×n, with [Cε(X )]i,j = c(xi→ ε) if i= j
and +∞ else. Similarly consider Cε(Y)∈Rm×m. In other terms, each set is
augmented with null elements, Xε=X ∪{εi}i=1,...,m and Yε =Y ∪{εi}i=1,...,n,
such that |Xε|= |Yε|=n+m. Following [7], the optimal linear sum assignment
Xε→Yε, according to the cost matrix

Cε(X ,Y)= [Ci,j ]i,j =

[
C(X ,Y) Cε(X )
Cε(Y) 0

]
∈ [0,+∞](n+m)×(n+m), (2)

substitutes at most min(n,m) elements of X to at most min(n,m) elements of Y,
with insertion or removal of the remaining ones. Since the substitution of empty
elements should not cause any cost, we always have c(εi→ εj)= 0 (lower right
submatrix of Cε(X ,Y)). An optimal assignment Xε→Yε can then be defined as
a matrix P minimizing the total cost functional

A(Cε(X ,Y),P) =
n∑

i=1

m∑
j=1

Ci,j Pi,j

︸ ︷︷ ︸
substitution

+
n∑

i=1

Ci,m+i Pi,m+i +
m∑
j=1

Cn+j,j Pn+j,j

︸ ︷︷ ︸
removal/insertions

(3)

among the set Pn,m,ε of all doubly substochastic matrices

P=

[
Q R
S 0

]
∈ {0, 1}(n+m)×(n+m),
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where Q∈{0, 1}n×m represents the (partial) assignment X →Y, and
R∈{0, 1}n×n and S∈{0, 1}m×m are diagonal matrices representing removal and
insertions. Columns and rows of P are constrained to satisfy

Pi+j,j +
n∑

i=1

Pi,j =1, ∀j=1, . . . ,m, and Pi,j+i +
m∑
j=1

Pi,j =1, ∀i=1, . . . , n.

According to Section 2.1, the computation cost of the assignment is O((n+m)3).
This assignment problem with edition is used to design approximate graph edit
distances, as described in the following section.

3 Approximate Graph Edit Distance Based on the LSAP

We consider simple labeled graphs denoted by G=(V,E, μ, ν), where V is the
finite set of nodes, E⊂V ×V is the set of edges, μ :V →LV is the node labeling
function, and ν :E→LE is the edge labeling function. LV and LE are label sets
for both nodes and edges (e.g. the vector space Rn or a set of symbolic labels).

As mentioned in Section 1, a major drawback of graph edit distance is its
computational complexity. In fact, the problem of finding the minimum cost
edit path between G and G′ can be reformulated as an instance of a Quadratic
Assignment Problem (QAP), known to be NP-complete. Hence, exact compu-
tation of the graph edit distance is limited to graphs of rather small size in
practice.

3.1 Graph Edit Distance Approximation

The graph edit distance approximation framework introduced in [7] reduces the
QAP of graph edit distance computation to an instance of an LSAP which can
be, in contrast with QAPs, efficiently solved. The algorithmic framework mainly
consists of the following three steps.

Step 1. First, the graphs to be matched are subdivided into individual nodes
plus local structures whereon a cost matrix Cε, as defined in Eq. (2), is built.

Formally, let us consider an input graph G=(V,E, μ, ν) together with a bag
of bags of structural patterns B= {Bi}i=1,...,|V |. Every bag Bi is associated to
a node ui ∈V and characterizes the local structure of G around node ui. The
target graph G′ =(V ′, E′, μ′, ν′) and its corresponding bags of structural pat-
terns B′ = {B′

i}i=1,...,|V ′| are given analogously. We define a cost c(Bi→B′
j) for

the substitution of two bags of patterns, and a cost c(Bi→ ε) as well as a cost
c(ε→B′

j) for the removal and insertion of a bag, respectively. Given the cost
model and following the scheme outlined in Section 2 we build the cost matrix
Cε(B,B

′), encoding the cost of substitutions, insertions, and removals of bags
of structural patterns.
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Step 2. In the second step of the approximation framework, an assignment algo-
rithm is applied to the square cost matrix Cε(B,B

′) in order to find a minimum
cost assignment between both set of bags (possibly including removals and/or
insertions of bags):

P̂ ∈ argmin
P∈P|B|,|B′|,ε

A (Cε(B,B
′),P) . (4)

Note that each bag Bi is associated to a single node ui, and therefore, the optimal
assignment defined by Eq. (4) provides an optimal assignment between the nodes
of both graphs with respect to their bags of patterns. That is, the permutation
P̂ provides a mapping ψ :V ∪{ε}→V ′ ∪{ε} of the nodes V of G to the nodes
V ′ of G′. Due to the definition of the cost matrix, which allows both insertions
and removals of elements, the mapping ψ includes node assignments of the form
ui→u′j, ui→ ε, ε→u′j, and ε→ ε.

Step 3. Clearly, the mapping ψ can be interpreted as a partial edit path be-
tween the graphs G and G′ considering edit operations on nodes only. Thus,
in the last step this partial edit path is completed with respect to the edges.
This can be accomplished since edit operations on edges are implied by edit
operations on their nodes. That is, whether an edge is substituted, removed, or
inserted, depends on the edit operations performed on its nodes. Hence, given
the set of node operations in ψ, the global edge structures from G and G′ can
be edited accordingly. The cost of the complete edit path is finally returned as
an approximate graph edit distance between graphs G and G′.

3.2 Defining Bags of Structural Patterns

Note that the edit path corresponding to the approximate edit distance value
considers the edge structure of G and G′ in a global and consistent way while
the optimal permutation P̂ is able to consider the structural information in an
isolated way only (bags of local structural patterns). This is due to the fact
that during the optimization process of the specific LSAP, no information about
neighboring node mappings is available. Hence, the definition of powerful struc-
tural patterns is a crucial task in this approximation framework.

In [7], every bag Bi of structural patterns represents the set of edges incident
to node vi ∈ V . Formally, assume that node vi has incident edges Evi , then we
define Bi = { (vi, vk)∈Evi : vk ∈V }. The present paper introduces a major gen-
eralization of this formalism. That is, rather than “the star neighborhood” of
every node, bags of walks centered on each node are considered as bags of struc-
tural patterns. Both the computation of these bags of walks and the definition
of an adequate cost model on them are described in the next section.

4 Walks and Approximate GED for Labeled Graphs

Recall that a walk of length k in a simple graph G=(V,E, μ, ν), or k-walk, is a
sequence (ui)i of (k+1) nodes of V such that (ui, ui+1)∈E for all i=1, . . . , k.
Any k-walk (ui)i, in a labeled graph, can be associated to a sequence
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s = (sl)l = (μ(u0) ν(u0, u1) μ(u1) ν(u1, u2) · · · μ(uk−1) ν(uk−1, uk) μ(uk))

of (2k+1) labels, alternating node and edge labels. Let Bi be the bag of se-
quences of (2k+1) labels associated to all k-walks starting at node vi ∈V . Now
given two graphs G and G′, together with their bags B= {Bi}i=1,...,|V | and
B′ = {B′

i}i=1,...,|V ′| of bags of label sequences, for each pair of bags (Bi, B
′
j) ∈

B×B′, the substitution cost c(Bi→B′
j) can be defined by comparing the label

sequences. This is equivalent to the comparison of two bags of labeled k-walks,
starting at nodes vi and v

′
j respectively.

By assuming that the substitution of node or edge labels does not depend
on the labels themselves when they are different, the edit cost between two
sequences s∈Bi and s

′ ∈B′
j can simply be defined from the number of common

labels at the same position in both sequences:

c(s→ s ′)= cns
k∑

l=0

δ2l+1 + ces

k∑
l=1

δ2l, (5)

where δl =0 if sl = s
′
l and 1 else, and cns and ces denote node and edge substi-

tution costs, respectively. When s= s ′, the associated k-walks are equivalent,
or similar, and c(s→ s ′)= 0. In other cases, different labels at the same posi-
tion in s and s′ appear at least once, the k-walks are said to be different. Since
to compute this cost, k-walks needs to be explicitly extracted, it is difficult to
derive a cost between bags which is computationally attractive. So we propose
to restrict the knowledge of each k-walk to its terminal nodes (begin and end
nodes), together with their labels, which allows to consider the cost

ĉ(s→ s′) =
{
0 if s= s′

(δ1 + δ2k+1 + k− 1) cns + k ces else,
(6)

so that non-terminal node labels and also edge labels are treated as if they were
pairwise different when sequences are different. Obviously the cost ĉ satisfies
c(s→ s′)� ĉ(s→ s′) for any s and s′.

Any optimal mapping between the walks of two bags according to Eq. (6)
should include a mapping of similar walks with 0 cost. The cost of an optimal
mapping between two bags of walks may thus be rewritten as:

[C(B,B′)]i,j = 0 · |Bi ∩B′
j |+ min

P∈P|Bi\B′
j
|,|B′

j
\Bi|,ε

A
(
Cε(Bi \B′

j , B
′
j \Bi),P

)
, (7)

which separates similar and different k-walks. Determining if k-walks (sequences)
are similar can be achieved through the construction of the direct product of
the two corresponding labeled graphs (Section 4.1). This also allows to derive
assignment costs for the remaining different k-walks (Section 4.2).

4.1 Similar Walks

The direct product of two labeled graphs G=(V,E, μ, ν) and G′ =(V ′, E′, μ′, ν′)
is the graph G×G′ =(V×, E×, μ×, ν×). The node set and the edge set are given
by V× =

{
(vi, v

′
j)∈ V ×V ′ : μ(vi)=μ

′(v′j)
}
and E×, where E× is defined by
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{(
(vi, v

′
j), (vk, v

′
l)
)
∈ V××V× : (vi, vk)∈E ∧ (v′j , v

′
l)∈E′ ∧ ν(vi, vk)= ν′(v′j , v′l)

}
such that μ×((vi, v

′
j))=μ(vi)=μ

′(v′j) for all node (vi, v
′
j)∈V×, and similarly

ν×((vi, v
′
j), (vk, v

′
l))= ν(vi, vk)= ν

′(v′j , v
′
l) for all edge ((vi, v

′
j), (vk, v

′
l))∈E×. In

particular, a walk from node (vi, v
′
j) to node (vk, v

′
l ) in G×G ′ corresponds to a

walk from vi to vk in G, and to a similar walk from v ′
j to v ′

l in G ′, both having
the same sequence of node and edge labels by construction ([4] for an overview).
This allows to partially match the two bags with a zero cost according to Eq. (7).
Recall that the number of k-walks, between any pair of nodes of a graph, can
be computed by Wk, where W is the adjacency matrix of the graph. So, the
number of k-walks common to the two graphs G and G′ can be deduced from
Wk

×, where W× defines the adjacency matrix of the direct product graph. Note
that a walk in G similar to p walks in G′ will be duplicated p times in the direct
graph product.

4.2 Different Walks

Given a k value, and two different k-walks s and s′, c(s, s′) can only take four
different values depending on the values of δ1 and δ2k+1. This last point drasti-
cally simplifies the optimal assignment of the bags Bi and B

′
j defined by Eq. (7),

which can be efficiently approximated through histograms encoding terminal
node’s labels of sequences.

Let hi :LV→N be the histogram function which assigns to each label l∈LV ,
the number of k-walks ending at a node of label l in the bag Bi. This number of
k-walks can be efficiently computed using Wk. Similarly consider histograms h′j
and h×(i,j). From the definition of the direct product, we have h×(i,j) = zi z

′
j , where

zi (resp. z
′
j) defines the number of k-walks in Bi (resp. B

′
j), for each node label,

which are similar to at least one k-walk in B′
j (resp. Bi). The number of k-walks,

in each bag, which can be matched with 0 cost, is thus given by min{zi, z′j}. The
remaining k-walks in Bi is then given by hi\j =hi− min{zi, z′j}. Similarly we
consider hj\i = hj − min{zi, z′j}. Since computing zi and z′j may be computa-
tionally costly using an implicit enumeration of walks, hi\j is approximated by

ĥi\j =hi− min{hi, h′j , �(h×(i,j))1/2�}, and similarly for h′j\i. According to (6), the

cost of assigning the bag Bi to the bag B′
j is finally given by:

[C(B,B′)]i,j =((δ1 + k− 1) cns+ k ces)

|LV |∑
l=1

min
{
ĥi\j(l), ĥ

′
j\i(l)

}
+ ((δ1 + k) cns + k ces)min

{
ri,j , r

′
j,i

}
+ ((δ1 + k) cnri+ k ceri)

∣∣ri,j − r′j,i∣∣ ,
(8)

where cnri and ceri denote node and edge removal/insertion costs, and ri,j cor-
responds to the k-walks of Bi not similar to a k-walk of B′

j , and whose terminal
nodes need also to be substituted:
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ri,j =

|LV |∑
l=1

ĥi\j(l)−min
{
ĥi\j(l), ĥ

′
j\i(l)

}
, (9)

and similarly for r′j,i. The first line of (8) corresponds to substituted k-walks
ending with the same node label (δ2k+1 =0 in Eq. 6), the second line corre-
sponds to substituted k-walks ending with a different node label (δ2k+1 =1 in
Eq. (6)), and third line to the remaining k-walks to be removed/inserted. From
Eq. (8) and Eq. (9), the cost of removing/inserting a bag, i.e. the cost of remov-
ing/inserting all its k-walks, is given by [Cε(B)]i,i =((k+1) cnri+ k ceri) |Bi|,
and [Cε(B

′)]i,i = ((k+1) cnri+ k ceri) |B′
i|. The costs given by (8) and this last

equation allow to construct the cost matrix Cε(B,B
′) in order to build the op-

timal assignment of bags of walks B and B′. An efficient approximation of the
GED is then deduced from this optimal assignment (Sec. 3.1).

5 Experiments

Our new heuristic to compute an approximate edit distance has been tested on
4 graph datasets1 encoding molecular graphs. For all these experiments, inser-
tion/removal costs have been arbitrarily set to 3 for both edges and nodes and
substitution cost to 1 for edges and nodes, regardless of node’s or edge’s labels.
Graphs included within the 4 datasets have different characteristics: Alkane and
PAH are only composed of unlabeled graphs whereas MAO and Acyclic corre-
spond to labeled graphs. In addition, Alkane and Acyclic correspond to acyclic
graphs having a low number of nodes (8 to 9 nodes in average) whereas MAO
and PAH correspond to larger cyclic graphs (about 20 nodes in average). Ta-
bles 1 and 2 show a comparison of the accuracy of our proposition with state of
the art method [7] and exact edit distance. First, Table 1 shows the percentage
of distance matrix entries corresponding to a gain (i.e. computed edit distance is
lower), a loss or no changes on the accuracy of our approximation method versus
the one proposed by [7]. As we can see in column “Gain”, our approach provides
a more accurate approximation of the edit distance for 45% to 98% of molecules’
pairs while we observe a loss on the accuracy for only < 1% to 27% of computed
edit distances, depending on the dataset. Same conclusions are observed in Ta-
ble 2 which shows the average edit distance for each dataset and each method
together with the average time required to compute the associated edit distance
matrix. We can note that the time required to compute our edit distances is
higher, but still comparable, than the one required by [7]. However, one can
note that computation times obtained for the lines 1 and 2 have been computed
using a Java implementation [8] whereas line 3 corresponds to a Matlab imple-
mentation. Finally, results for A� method for MAO and PAH datasets are not
displayed since it takes too much time to compute. These first results allow us
to highlight the gain on the accuracy induced by using our matching approach
instead of the one initially proposed by [7]. In addition, we can note that taking

1 These datasets are available at http://iapr-tc15.greyc.fr/links.html

http://iapr-tc15.greyc.fr/links.html
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Table 1. Accuracy comparison between
our approach and [7]

Dataset Gain Loss Equality Size

Alkane 45% 28% 27% 3
PAH 73% 14% 13% 4
MAO 98% 2% < 1% 4
Acyclic 56% 24% 21% 4

Table 2. Average edit distance (d̄) and aver-
age time in seconds (t̄) for each method and
each dataset (BW=bags of walks)

Alkane Acyclic MAO PAH

d̄ t̄ d̄ t̄ d̄ t̄ d̄ t̄

A� 15 28 800 17 172 800 - - - -
[7] 35 20 35 22 105 20 138 40
BW 33 55 31 86 49 129 120 390
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(a) Scatter-plot of our approach (x-axis)
and [7] (y-axis)

Method MAO PAH

k 1 3 5 1 3 5

[7] 68% 62% 54% 59% 63% 61%
BW 93% 90% 71% 79% 78% 74%

(b) Classification results

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

(c) Percentage of distance matrix’s en-
tries corresponding to an accuracy gain
using our approach versus the size of con-
sidered walks (k) for each dataset

Fig. 1. Classification of MAO and PAH using k-ppv and walk size comparisons

into account a larger radius than the direct neighborhood (i.e. walk size > 1)
allows us to increase the percentage of distance matrix’s entries corresponding
to an accuracy gain using our approximation, with maximum percentage ob-
tained for walks of size equals to 3 or 4 (Figure 1(c)). However, we can note that
the accuracy decreases when considering walks up to 5 nodes. This observation
can be explained by the tottering phenomenon which induces non representative
walks into the computation of the cost matrix. In addition, we can note that this
observation is stronger for Acyclic and Alkane datasets which are more prone
to tottering since they are both composed of smaller molecules than PAH and
MAO.
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In order to validate our proposition on prediction problems, we predicted
the classes of PAH and MAO molecules thanks to a k-ppv algorithm, with k
equals to 1, 3 and 5. Table in Figure 1(b) shows the percentage of correctly
classified molecules using a 10-fold cross validation. As observed in previous
experiments, the gain on the accuracy provided by our approximation (line 2,
Table in Figure 1(b)) allows us to obtain significantly better classification results
than the ones obtained by the approximation method proposed in [7] (line 1,
Table in Figure 1(b)). This classification experiment shows thus the relevance of
our contribution for prediction problems. This accuracy gain is also shown by the
scatter plot of our approximation (x-axis) and the approximation of [7] (y-axis)
on PAH and MAO datasets (Figure 1(a)). Points over the diagonal corresponds
to a better accuracy of our approach than the one obtained by [7].

6 Conclusion

We have presented in this paper a natural extension of a well known heuris-
tic computing an approximate graph edit distance between labeled graphs. Our
heuristic is based on an assignment of bags of walks incident to each node. Ex-
periments show that the proposed heuristic brings a significant decrease of the
graph edit distance compared to the previous heuristic at a cost which remains
much lower than the computational cost of the exact edit distance. Moreover,
according to our experiments our heuristic provides a significant gain on classi-
fication results using a kppv classifier. Our future work will consist to test other
types of patterns and to compare explicit vs implicit enumeration of patterns.
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Abstract. Graph edit distance is a flexible and powerful measure of
dissimilarity between two arbitrarily labeled graphs. Yet its application
is limited by the exponential time complexity involved when matching
unconstrained graphs. We have recently proposed a quadratic-time ap-
proximation of graph edit distance based on Hausdorff matching, which
underestimates the true distance. In order to implement verification
systems for the approximation algorithm, efficiency improvements are
needed for the computation of the true distance. In this paper, we pro-
pose a Hausdorff heuristic that employs the approximation algorithm
itself as a heuristic function for efficient A* computation of the graph
edit distance. In an experimental evaluation on several data sets of the
IAM graph database, substantial search space reductions and runtime
speedups of one order of magnitude are reported when compared with
plain A* search.

Keywords: Graph matching, graph edit distance, A* search, Hausdorff
distance.

1 Introduction

Graphs are one of the most general data structures in pattern recognition for
representing objects. Individual parts of the objects are represented with nodes
which are linked with edges to represent binary relationships. Both nodes and
edges can be labeled with attributes, for instance in form of feature vectors. This
high representational power of graphs has proven successful in pattern recogni-
tion and led to widespread applications [1, 2], for example in bioinformatics [3],
image classification [4], and computer network analysis [5].

The complexity of the graph data structure usually leads to a high computa-
tional complexity when matching two objects. Therefore, many graph matching
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algorithms impose certain constraints on the graphs. For example spectral meth-
ods [6, 7], which are based on efficient eigendecomposition of the adjacency or
Laplacian matrix of a graph, primarily target unlabeled graphs or allow only
severely constrained label alphabets. Other examples include restrictions to or-
dered graphs [8] and graphs with unique node labels [9].

Graph edit distance (GED) [10] is a flexible measure of dissimilarity between
two graphs, which is able to cope with unconstrained graphs. In particular,
arbitrary labels are allowed on both nodes and edges. Originally proposed for
string matching [11], the concept of edit distance is to apply a series of edit
operations to one object in order to transform it into the other. The edit distance
then corresponds with the minimum cost among all possible edit paths.

However, the flexibility of GED comes at the cost of an exponential time
complexity with respect to the graph size. The search space of all possible edit
paths is usually traversed with a best-first A* search [12]. By using a heuristic
function to estimate the future cost of an incomplete edit path, the efficiency
of the search procedure can be greatly improved [13–15] but the computational
complexity remains the same.

In order to overcome the limitation of exponential time complexity, polyno-
mial approximation of GED is a promising line of current research. In [16], the
Hungarian algorithm [17] is used to obtain a cubic-time approximation of GED
by assigning nodes and their local edge structure of one graph to nodes and
their local edge structure of the other graph. Although only local structure is
considered, a high approximation quality is achieved and a strong performance
is reported for the task of pattern classification on different graph data sets [16].

Following the same idea of matching nodes and their local edge structure,
we have recently proposed an even faster quadratic-time approximation of GED
in [18, 19] based on Hausdorff matching [20]. Similar to the comparison of finite
subsets of a metric space by means of Hausdorff distance, each node of one graph
is compared with each node of the other graph only once to determine its best
matching cost, hence the quadratic time complexity. As expected, the deviation
from the true edit distance has proven to be larger when compared with the
cubic-time approximation. Still, the proposed Hausdorff edit distance (HED)
has achieved promising results for the task of pattern classification on diverse
graph data sets [18, 19]. It combines the high flexibility of GED to cope with
unconstrained graphs with a low quadratic time complexity, which makes HED
applicable to a wide range of real-world applications.

So far, a direct comparison of the proposed approximation algorithms with
the true edit distance could only be performed for relatively small graphs due
to the exponential time complexity of GED. There is a need to improve the
efficiency of GED for verification experiments, which can measure the approxi-
mation quality in the case of larger graphs observed in many real-world applica-
tions. As mentioned above, a common approach to improve the efficiency is the
development of accurate heuristic functions for A* computation of GED, which
can greatly reduce runtime and memory usage by avoiding a complete traver-
sal of the exponential search space of all possible edit paths. Note that only
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admissible heuristic functions, which underestimate the true edit distance, can
be used for exact computation of GED. Suboptimal variants of A* search like
Bayesian A* search [21, 22] do not guarantee a globally optimal solution. In-
stead, they are interesting for approximating GED as suggested in [23] for beam
search and weighted path length search.

In this paper, we propose a Hausdorff heuristic based on HED to improve
the efficiency of GED. Since HED underestimates the true edit distance, it is an
admissible heuristic function for A* search. The performance of the proposed
heuristic is experimentally evaluated on several data sets from the IAM graph
database [24] and is compared with plain A* search. Substantial search space
reductions and runtime speedups of one order of magnitude are reported.

The remainder of this paper is organized as follows. First, HED is reviewed in
Section 2. Afterwards, the proposed Hausdorff heuristic is presented in Section 3
and experimental results are reported in Section 4. Finally, we draw conclusions
in Section 5.

2 Hausdorff Edit Distance

In this section, we review the Hausdorff edit distance (HED) [18, 19]. After
providing some basic definitions in Section 2.1, HED is defined in Section 2.2.

2.1 Basic Definitions

A graph g is a four-tuple g = (V,E, μ, ν). V is the finite set of nodes, E ⊆ V ×V
is the set of edges, μ : V → LV is the node labeling function, and ν : E → LE

is the edge labeling function. LV and LE are label sets for nodes and edges, for
instance symbolic labels {α, β, γ, . . .} or the vector space Rn.

Given two graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2), edit opera-
tions transform nodes and edges of g1 into nodes and edges of g2. Three node
edit operations are usually considered for u ∈ V1 and v ∈ V2, namely substitu-
tions (u → v), deletions (u → ε), and insertions (ε → v). The same set of edit
operations is considered for edges p ∈ E1 and q ∈ E2, i.e. substitutions (p→ q),
deletions (p→ ε), and insertions (ε→ q).

A cost function C assigns non-negative costs to node and edge edit operations.
An example for Euclidean labels is the Euclidean cost function with substitution
cost C(u→ v) = ||μ1(u)− μ2(v)|| and C(p→ q) = ||ν1(p)− ν2(q)||. The cost for
deletion and insertion is often set to a constant value. Without loss of generality,
we will assume C(u → ε) = C(ε → v) = Cn and C(p → ε) = C(ε → q) = Ce in
the following for all types of cost functions.

2.2 HED Definition

The Hausdorff edit distance HED(g1, g2, C) between two graphs g1 and g2 is
defined with respect to the cost function C as follows:

HED(g1, g2, C) =
∑
u∈V1

min
v∈V2∪{ε}

f(u, v, C) +
∑
v∈V2

min
u∈V1∪{ε}

f(u, v, C) (1)
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It consists of two summation terms that each calculate nearest neighbor dis-
tances between the two node sets similar to the Hausdorff distance between
finite subsets of a metric space. Nearest neighbors are determined with respect
to the node function f(u, v, C), which is defined as

f(u, v, C) =

⎧⎪⎨
⎪⎩
Cn +

∑|P |
i=1

Ce

2 for node deletion (u→ ε)
Cn +

∑|Q|
i=1

Ce

2 for node insertion (ε→ v)
C(u→v)+HED(P,Q,C)

2

2 for node substitution (u→ v)
(2)

where P is the set of edges adjacent to u and Q is the set of edges adjacent to v.
In the case of deletions, the node deletion cost Cn and half of the implied edge
deletion cost is accumulated. Node insertion costs are obtained accordingly. In
the case of substitution, half of the substitution cost is considered, which itself
consists of the node substitution cost C(u→ v) and half of the implied edge cost.

In order to obtain an estimate of the implied edge cost, the edge sets P and
Q are matched in the same manner as the node sets, i.e. based on a Hausdorff
edit distance

HED(P,Q, C) =
∑
p∈P

min
q∈Q∪{ε}

g(p, q, C) +
∑
q∈Q

min
p∈P∪{ε}

g(p, q, C) (3)

with the corresponding edge function

g(p, q, C) =

⎧⎪⎨
⎪⎩
Ce for edge deletion (p→ ε)
Ce for edge insertion (ε→ q)
C(p→q)

2 for edge substitution (p→ q)
(4)

The two divisions by 2 for node substitutions in Equation 2 ensure that HED
approximates GED. Only half of the substitution cost is considered because
the substitutions, which are not required to be bidirectional, appear in both
summation terms in Equation 1. Only half of the implied edge cost is considered
because each edge edit operation is implied by exactly two nodes. In effect, an
optimal edit cost is assigned to each node without taking the assignments of the
other nodes into account. Therefore HED is always less than or equal to GED.

In order to limit the underestimation, lower bounds are used with respect to
the number of elements in the set. For HED(g1, g2, C), we use a lower bound of
||V1| − |V2|| ·Cn and for HED(P,Q, C), we use a lower bound of ||P | − |Q|| ·Ce.
For more details on HED, we refer to [18, 19].

3 Hausdorff Heuristic

In this section, a Hausdorff heuristic based on HED is presented for efficient
A* computation of GED. First, GED computation is discussed in Section 3.1.
Afterwards, the integration of HED as a heuristic into the A* search algorithm
is detailed in Section 3.2.
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Fig. 1. GED search tree

3.1 GED Computation

The search space for GED is usually spanned by all possible node edit operations
that transform V1 into V2. Edge edit operations are implied by the node edit
operations as soon as both nodes of an edge in g1 have been assigned to two
nodes in g2.

An example is shown in Figure 1 for V1 = {u1, u2} and V2 = {v1, v2, v3}. The
root of the search tree is an empty node assignment ∅. At the first level, the
first node of V1 is either assigned to one of the nodes in V2 or it is deleted. At
the second level, the second node of V1 is assigned in the same way considering
all remaining nodes in V2. At this leaf level, all remaining node insertions are
added to the node assignment N . Clearly, the number of entries in the tree is
exponential with respect to the number of nodes of the graphs.

Using A* best-first search, the non-expanded node assignments are kept in a
sorted open list, which is ordered by the cost function

f(N) = g(N) + h(N) (5)

where g(N) is the cost of all current node edit operations and implied edge edit
operations, and h(N) is a heuristic function that estimates the future cost of the
node assignment. Admissible heuristics are less than or equal to the real cost.
At each step of the search, the currently best node assignment from open with
the lowest cost function f(N) is removed and its successors are added to open.
As soon as the currently best node assignment is complete, i.e. it transforms V1
into V2, the cost of the assignment is returned as GED.

3.2 HED Heuristic

The proposed Hausdorff heuristic estimates the future cost of a node assignment
N by means of HED. We consider the subgraph g′1 of g1 that contains all free
nodes F1 ⊆ V1 according to N and the subgraph g′2 of g2 that contains all free
nodes F2 ⊆ V2. Then, we calculate the heuristic function

h(N) = HED(g′1, g
′
2, C) (6)

with respect to the underlying cost function C. Because HED underestimates the
edit distance between g′1 and g′2, the heuristic function h(N) underestimates the
future cost of the node assignment N and is therefore an admissible heuristic for
A* computation of GED.
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Algorithm 1. Hausdorff heuristic

Require: graphs g1, g2, cost function C, node assignment N
Ensure: minimum future cost c
1: for all free nodes u ∈ F1 ⊆ V1 according to N do
2: c1(u) ← f(u, ε, C)
3: end for
4: for all free nodes v ∈ F2 ⊆ V2 according to N do
5: c2(v) ← f(ε, v, C)
6: end for
7: for all nodes u in F1 do
8: for all nodes v in F2 do
9: cost ← f(u, v, C)
10: c1(u) ← min(cost, c1(u))
11: c2(v) ← min(cost, c2(v))
12: end for
13: end for
14: cost ← ∑

u∈F1
c1(u) +

∑
v∈F2

c2(v)
15: return max(cost, ||F1| − |F2|| · Cn)

A straight-forward computation of Equation 6 is detailed in Algorithm 1.
First, the minimum edit costs of each free node u ∈ F1 and v ∈ F2 are calculated
in lines 1-13. Then, line 14 performs the summation according to Equation 1 and
line 15 applies the lower bound (see Section 2.2).

We would like to point out two implementation details, which are important
for efficiency. First, the sorted open list of the A* search is implemented as a
binary search tree that allows to add new elements with O(log(n)) time com-
plexity. Secondly, the function f(u, v, C) from Equation 2 is independent from
the node assignment N . Therefore it is pre-computed before the A* search is
executed, which leads to an efficient quadratic time complexity of O(|F1| · |F2|)
for Algorithm 1 with a low constant factor. In particular, the time complexity
is independent from the number of edges adjacent to the nodes.

4 Experimental Evaluation

In this section, we report experimental results achieved with the proposed Haus-
dorff heuristic. The results are compared with plain A* search as a reference,
i.e. GED computation with the trivial heuristic h(N) = 0.

In the following, the selection of suitable graphs is discussed in Section 4.1
and performance results are provided in Section 4.2.

4.1 Graph Selection

Several data sets from the IAM graph database [24] are considered that differ in
object domain and graph structure. First, the Letter I-III data sets containing
graphs of letter drawings, which are artificially distorted with three distortion de-
grees. Secondly, the Fingerprints data set containing graphs of fingerprints from
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Table 1. Data set statistics. Number of selected graphs, median number of nodes and
edges, minimum and maximum number of nodes.

Data Set Graphs |V |med |E|med |V |min |V |max

Letters I 200 6 4 4 8
Letters II 200 6 4 4 9
Letters III 200 5 5 4 8
Fingerprints 186 4 6 2 8
Molecules I 95 8 7 4 9
Molecules II 103 9 8 3 9

Table 2. Search space reduction. Average size of the open list after A* search.

Data Set Reference Hausdorff Heuristic Reduction Factor

Letters I 568.2 27.3 20.8
Letters II 2,829.0 300.3 9.4
Letters III 2,955.1 386.0 7.7
Fingerprints 6,282.3 2,104.8 3.0
Molecules I 61,994.3 6,094.3 10.2
Molecules II 111,852.1 18,911.7 5.9

the NIST-4 reference database [25]. Thirdly, the Molecules I data set based on
molecular compounds from the Chemical Carcinogenesis Research Information
System (CCRIS) database [26]. And finally, the Molecules II data set which
is based on molecular compounds from the AIDS Antiviral Screen Database of
Active Compounds [27]. Cost functions and their parameter values are adopted
from previous work [16, 19].

Due to the exponential time complexity of GED, only relatively small graphs
can be included in the evaluation. Besides the runtime, the required memory
space is also a limiting factor since the size of the open list may grow exponen-
tially during A* search. For each data set, we have selected the first n graphs
with less than 10 nodes such that each computation of the n · n edit distances
with plain A* search is feasible with less than one million node assignments. If
possible n = 200 was chosen. Table 1 lists the resulting data set statistics.

4.2 Results

The performance results for search space reduction are listed in Table 2. The
proposed Hausdorff heuristic is compared with plain A* search as a reference on
the six graph data sets. The average number of elements in the open list after
A* search is indicated. This number is directly related to the memory space
required for GED. Despite the choice of rather small graphs for experimental
evaluation, the average size of 111, 852.1 for the Molecules II data set is already
very high with respect to the imposed limit of one million node assignments.
The experiment was performed with 4GB RAM.
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Table 3. Computational speedup. CPU runtime in seconds.

Data Set Reference Hausdorff Heuristic Speedup Factor

Letters I 18.5 1.1 17.1
Letters II 109.7 11.2 9.8
Letters III 110.5 14.6 7.6
Fingerprints 196.4 61.3 3.2
Molecules I 523.5 36.8 14.2
Molecules II 1,224.6 165.3 7.4

The search space reduction achieved with the Hausdorff heuristic is about one
order of magnitude in all cases. The best result is obtained on the Letters I data
set, where 20.8 times less memory is required to compute GED. We assume that
this large reduction factor is related to the suitability of the label domain for the
Hausdorff heuristic. The Letters I data set contains weakly distorted drawings
of letters whose line endings are labeled with their Cartesian coordinates. Using
an Euclidean cost function, this type of node label is effective for selecting the
nearest neighbor of u ∈ V1 in V2 and vice versa in Equation 1, even if the local
edge structure is similar. Furthermore, we report strong results for molecular
compounds using a Dirac cost function for matching chemical symbols. On the
Molecules I data set, a reduction factor of 10.2 is reported.

The performance results for runtime reduction are provided in Table 3. Ex-
periments were conducted with an Intel Core i7 processor with 2.0GHz CPU
using a Java implementation. The runtime is indicated in seconds for matching
all n · n selected graphs. The speedups are closely related to the search space
reductions, which indicates that the computation of the Hausdorff heuristic does
not lead to a significant overhead. In all cases, a CPU runtime reduction of one
order of magnitude is obtained. The best result is achieved for the Letters I data
set, where 17.1 times less CPU time is required to compute GED when using
the Hausdorff heuristic.

5 Conclusions

In this paper, we have proposed a Hausdorff heuristic for efficient A* computa-
tion of graph edit distance (GED). The heuristic is based on the Hausdorff edit
distance (HED), a quadratic-time approximation of GED, which underestimates
the true distance and is hence admissible as a heuristic function for A* search.
Based on a domain-specific cost function, the proposed Hausdorff heuristic can
cope with unconstrained graphs. In particular, arbitrary labels are allowed on
both nodes and edges.

An experimental evaluation is reported for six data sets from the IAM graph
database. In all cases, the proposed heuristic has achieved substantial reductions
of one order of magnitude in memory space and runtime. The best performance
is reported for graphs from the Letters I data set, where 20.8 times less memory
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and 17.1 times less CPU time were required to compute GED when using the
Hausdorff heuristic instead of plain A* search.

In future work, we aim to include larger graphs in the experimental evaluation
and to compare and combine different heuristic functions. Our overall aim is
to implement an efficient verification system that is able to calculate the true
edit distance for large graphs in order to evaluate the approximation quality of
HED and other GED approximations. We expect that in addition to software
acceleration, a massive hardware acceleration will be necessary to compute GED
for larger graphs.

Acknowledgments. This work has been supported by the SNSF grant P300P2-
151279 to A. Fischer, the NSERC grant RGPIN-915 to R. Plamondon, a Canada
Research Chair grant to Y. Savaria, and a grant from the Hasler Foundation
Switzerland to K. Riesen.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

2. Vento, M.: A one hour trip in the world of graphs, looking at the papers of the
last ten years. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.)
GbRPR 2013. LNCS, vol. 7877, pp. 1–10. Springer, Heidelberg (2013)

3. Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.P.:
Protein function prediction via graph kernels. Bioinformatics 21(1), 47–56 (2005)

4. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In:
Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

5. Shoubridge, P., Kraetzl, M., Wallis, W.D., Bunke, H.: Detection of abnormal
change in time series of graphs. Journal of Interconnection Networks 3(1-2), 85–101
(2002)

6. Umeyama, S.: An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 695–703
(1988)

7. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)

8. Jiang, X., Bunke, H.: Optimal quadratic-time isomorphism of ordered graphs. Pat-
tern Recognition 32(17), 1273–1283 (1999)

9. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels. Pattern Analysis and Applications 7(3), 243–254 (2004)

10. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs
for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3),
353–363 (1983)

11. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the Association for Computing Machinery 21(1), 168–173 (1974)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determi-
nation of minimum cost paths. IEEE Trans. on Systems, Science, and Cybernet-
ics 4(2), 100–107 (1968)



92 A. Fischer et al.

13. Berretti, S., Del Bimbo, A., Vicario, E.: Efficient matching and indexing of graph
models in content-based retrieval. IEEE Trans. on Pattern Analysis and Machine
Intelligence 23(10), 1089–1105 (2001)

14. Gregory, L., Kittler, J.: Using graph search techniques for contextual colour re-
trieval. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.)
SSPR&SPR 2002. LNCS, vol. 2396, pp. 186–194. Springer, Heidelberg (2002)

15. Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance computa-
tion with a bipartite heuristic. In: Proc. Int. Workshop on Mining and Learning
with Graphs, pp. 21–24 (2007)

16. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

17. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

18. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching
algorithm for graph-based handwriting recognition. In: Kropatsch, W.G., Artner,
N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 194–203.
Springer, Heidelberg (2013)

19. Fischer, A., Suen, C., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph
edit distance based on Hausdorff matching. Pattern Recognition (submitted)

20. Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing im-
ages using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine
Intelligence 15, 850–863 (1993)

21. Coughlan, J.M., Yuille, A.L.: Bayesian A* tree search with expected O(N) node
expansions: applications to road tracking. Neural Computation 14(8), 1929–1958
(2002)

22. Cazorla, M., Escolano, F., Gallardo, D., Rizo, R.: Junction detection and group-
ing with probabilistic edge models and Bayesian A*. Pattern Recognition 35(9),
1869–1881 (2002)

23. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F.,
de Ridder, D. (eds.) SSPR&SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer,
Heidelberg (2006)

24. Riesen, K., Bunke, H.: IAM graph database repository for graph based pat-
tern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.)
SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

25. Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National
Institute of Standards and Technology (1992)

26. Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for
mutagenicity prediction. Journal of Medicinal Chemistry 48(1), 312–320 (2005)

27. DTP: AIDS antiviral screen (2004),
http://dtp.nci.nih.gov/docs/aids/aids_data.html

http://dtp.nci.nih.gov/docs/aids/aids_data.html


Flip-Flop Sublinear Models for Graphs
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Abstract. Extending linear classifiers from feature vectors to attributed
graphs results in sublinear classifiers. In contrast to linear models, the
classification performance of sublinear models depends on our choice as
to which class we label as positive and which as negative. We prove that
the expected classification accuracy of sublinear models may differ for
different class labelings. Experiments confirm this finding for empirical
classification accuracies on small samples. These results give rise to flip-
flop sublinear classifiers that consider both class labelings during training
and select the model for prediction that better fits the training data.

Keywords: graph matching, classification, perceptron learning.

1 Introduction

Linear models are one of the most simple prediction methods that make strong
assumptions about the structure of the underlying data and yields stable, but
possibly inaccurate predictions [4]. In addition, linear methods form a basis for
understanding and devising nonlinear ones.

Application of linear methods, however, is confined to real-valued feature vec-
tors. In [5,12], linear models have been generalized to sublinear models for graphs.
Similarly as for linear models, an understanding of sublinear methods is essential
for understanding extensions of non-sublinear models on graphs [6,7].

Here, we are interested in understanding the relationship between the perfor-
mance of sublinear models and the different ways with which we can label the
classes. In two-class problems, it is common practice to label one class as positive
and the other as negative. For linear models, the classification performance is
independent of how we label both classes. The reason is that each vector has
an additive inverse. The existence of an inverse allows us to interpret the class
regions separated by a hyperplane H in two ways: the normal of H points to the
positive class. The additive inverse of a normal of H is also a normal pointing
towards the opposite direction. Thus, normal and its additive inverse define the
same class regions but with different class labels. As a consequence, there is a
dual to each linear function that defines the same class regions but with flipped
labels. Since a well-defined addition on graphs is unknown within the framework
of sublinear models, the question arises whether there is also a dual for each
sublinear function on graphs.

This contribution proves that in almost all cases there is no dual of a sub-
linear function. Empirical evaluation on relatively small samples confirm that

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 93–102, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the classification performance of sublinear models depend on whether we label
a given class as positive or negative. These findings suggest to devise flip-flop
sublinear models that choose the class labeling resulting in better classification
accuracy. In experiments we show that flip-flop sublinear models perform better
than standard sublinear models.

2 Sublinear Models on Attributed Graphs

This section introduces sublinear models for graphs as proposed by [12].

2.1 The Space of Attributed Graphs

Let A be a set of node and edges attributes. For the sake of convenience, we as-
sume that A is the Euclidean space Rd, though the theory presented in this paper
can be adapted to the case where node and edges attributes come from arbitrary
and possibly disjoint sets. We consider graphs of the form X = (V , E ,A), where
V represents a set of vertices, E a set of edges, and A ⊆ A a set of attributes of
the nodes and edges. Node attributes take the form xii ∈ A for each node i ∈ V
and edges attributes are given by xij ∈ A for each edge (i, j) ∈ E . By XG we
denote the space of all graphs with attributes from A.

Without loss of generality, we may assume that edges must have non-zero
attributes. Then each graph can be regarded as a complete graph, where non-
edges are treated as edges with zero-attribute. Note that vertices may have zero
as well as non-zero attributes. Including non-edges as edges with zero attribute
allows us to express graphs X by a matrix X = (xij) with elements xij ∈ A.

2.2 Sublinear Dot Product

We equip the space XG with a graph similarity, called sublinear dot product.
Suppose that X is a graph with matrix representation X. The particular

form of the matrix depends on how the nodes of X are ordered. Since there is
no canonical ordering of the nodes, each re-ordering may result in a different
matrix representation of X . Let [X] denote the equivalence class of all matrices
obtained by permuting the nodes of graph X in all possible ways. We write
X ′ ∈ X to denote that X ′ is a representtive of the equivalence class [X].

To formulate the sublinear dot product of two graphs X and Y , we assume
that both graphs have the same number of nodes. If this is not the case, we can
safely add isolated nodes with zero attribute to the smaller graph until both
graphs have the same number of nodes.

Let X = (xij) and Y = (yij) be matrix representations of X and Y , resp.,
of the same size. Then we define the dot product of X and Y by

XTY =
∑
i,j

xT
ijyij ,
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where xij
Tyij denotes the dot product between attribute vectors xij and yij .

Observe that the dot products xij
Tyij correspond to node and edge similarities.

The sublinear dot product maximizes the dot product over all possible matrix
representations and is of the form

X · Y = max
{
XTY : X ∈ X,Y ∈ Y

}
.

As shown in [8], we can equivalently express X · Y by

X · Y = max
{
XTY : X ∈ X

}
= max

{
XTY : Y ∈ Y

}
,

where Y ∈ Y is an arbitrarily chosen matrix representation for the first equation
and X ∈ X for the second equation. We call X and Y optimally aligned, if

X · Y = XTY .

The sublinear dot product extends the dot product from vectors to graphs. It is
straightforward to verify that the function fY (X) = X · Y as a pointwise max-
imizer of dot products is sublinear, that is convex and positively homogeneous.
For this reason, we call X · Y sublinear. Though the sublinear dot product is
not linear, it shares similar geometrical properties and generalizes the concept
of maximum common subgraph [8]. It can be reduced to a special case of the
graph-edit distance and is widely used in different guises as a common choice of
proximity measure for graphs [2,3,17].

2.3 Sublinear Models for Graphs

Sublinear Functions. Sublinear functions on graphs are functions of the form

f(X) =W ·X + b, (1)

where W is the weight graph and b ∈ R is the bias. We assign a graph X to
class y = +1 if f(X) ≥ 0 and to class y = −1 if f(X) < 0. Then the equation
f(X) = 0 defines a decision surface

Hf = {X ∈ XG : f(X) = 0} ⊆ XG

that separates both class regions.

The Learning Problem. The goal of learning consists in finding a weight
graph W and bias b such that the s-linear discriminant f(X) = W · X + b
minimizes the expected risk

E(f) =

∫
XG
L(f(X), y) dP (X, y), (2)

where P (X, y) is the joint probability distribution on XG × Y and L(ŷ, y) is a
differentiable loss function that measures the cost of predicting class ŷ when the
actual class is y.
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Since the distribution P (X, y) is usually unknown, the expected risk E(f)
can not be computed directly. Instead, we approximate the expected risk by
minimizing the empirical risk

EN (f) =
1

N

N∑
i=1

L(f(Xi), yi)

on the basis of N training examples (Xi, yi) ∈ XG × Y.

Subgradient Learning Rules. To minimize the empirical risk EN (f), we
present the margin perceptron algorithm for graphs. For this let f(X) =W ·X+b
be a sublinear function. We define a tube Tf,λ around the decision boundary Hf

consisting of all graphsX with |f(X)| ≤ λ, where λ ≥ 0 is the margin parameter.
Suppose that (X, y) is a new training example. The margin perceptron updates
the weight graph and bias if one of the two cases occurs: (1) f misclassifies X ,
or (2) f correctly classifies X , but X lies in the tube Tf,λ. Both conditions are
met when y · f(X) ≤ 0. In this case the update rule is of the form

W ← W + η · y ·X
b ← b+ η · y,

where η is the learning rate and W ∈ W and X ∈ X are optimally aligned
matrix representations of W and X , that is W ·X = W TX.

As shown in [12], the update rule of the graph perceptron minimizes the
empirical risk EN (f), where the underlying loss function is of the form

L(f(X), y) = max {0, λ− y · f(X)} .

For λ = 0, we obtain the graph perceptron algorithm as a special case. Conver-
gence is discussed in [11,12].

3 Flip-Flop Sublinear Models

The main result of this contribution is Theorem 1 stating that the performance
of sublinear models depends on which of both classes is labeled as positive class.
As an implication of Theorem 1, we introduce flip-flop sublinear models.

Each sublinear function f(X) =W ·X + b separates the graph space XG into
two class regions of the form

R+(f) = {X ∈ XG : f(X) ≥ 0} and R−(f) = {X ∈ XG : f(X) < 0},

where R+(f) is the region for the positive and R−(f) the region of the negative
class. We define the class-dual of f as a sublinear function f ′(X) =W ′ ·X + b′

separating XG into class regions of the form

R+(f
′) = R−(f) and R−(f

′) = R+(f).
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By definition, the class-dual f ′ is a sublinear function that implements the same
class regions as f but with flipped labels. In vector spaces, each linear function
h(x) = wTx+ b with non-zero weight w has a unique class-dual, which is of the
form h′(x) = −wTx− b. This statement is invalid in graph spaces as shown by
the next result (a proof is presented in [13]).

Theorem 1. There is no class-dual of a sublinear function with probability one.

Suppose that the graph space is partitioned in two class regions R+ and R−.
Consider the expected classification accuracy of the sublinear function f

Cref [f ] =

∫
[f(X), y] dP (X, y),

where [f(X), y] = 1 if f correctly classifiesX as y, and 0 otherwise. The subscript
of Cref refers to the current labeling of the classes as the reference labels. If
there is a sublinear model f∗ with Cref [f

∗] = 1, then f∗ perfectly separates
both classes. When flipping the labels, we assign graphs from class region R+

negative and graphs from class region R− positive labels. Under the assumption
that Cref [f

∗] = 1, Theorem 1 yields

max
f

Cflip[f ] < Cref [f
∗] = 1,

where Cflip is the expected classification accuracy when the original class labels
have been flipped. In a more general setting, we arrive at the following result:

Corollary 1. For two-class problem, we generally have

max
f

Cref [f ] 
= max
f

Cflip[f ],

where the maximum is taken over all sublinear functions on graphs.

Corollary 1 gives rise to flip-flop sublinear models that selects the labeling re-
sulting in a better separation of the data:

Algorithm 1. (Flip Flop Classifier)

Input:
Sample S ⊆ XG × Y.

Procedure:
Learn sublinear classifier f(X) on the basis of S with accuracy αS(f).
Construct dual sample S ′ according to (X, y) ∈ S ⇔ (X,−y) ∈ S ′.
Learn sublinear classifier f ′ on the dual sample S ′ with accuracy αS′(f ′).

Return:
Classifier and labeling that yields a higher classification accuracy

f∗ = argmax
f,f ′

{
αS(f), αS′(f ′)

}
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4 Experiments

Experiments on two-class problems aims at investigating the behavior of sublin-
ear models under different class-labelings. Experiments on multi-class problems
aim at assessing the performance of flip-flop sublinear models in a practical
setting when class-labeling is random-like.

4.1 Data

We selected subsets of the following training data sets from the IAM graph
database repository [16]: letter (low, medium, high), fingerprint, grec, and coil.
The letter data sets compile distorted letter drawings from the Roman alphabet
that consist of straight lines. Lines of a letter are represented by edges and
endpoints of lines by vertices. The distortion levels are low, medium, and high.
Fingerprint images of the fingerprints data set are converted into graphs, where
vertices represent endpoints and bifurcation points of skeletonized versions of
relevant regions. Edge represent ridges in the skeleton. The grec data set consists
of graphs representing symbols from noisy versions of architectural and electronic
drawings. Vertices represent endpoints, corners, intersections, or circles. Edges
represent lines or arcs. The coil13,16 and coil42,44 data sets are subsets of the
coil-100 data set consisting of objects corresponding to the subscripted pairs of
indices 3, 16 and 42, 44 (starting at index 0). The first pair of indices refers to
images representing two different types of rubber cats and the second pair to
images representing two different types of cups. After preprocessing, the images
are represented by graphs, where vertices represent endpoints of lines and edges
represent lines. All datasets consist of a fixed training-, validation-, and test-set.

4.2 Experiments – Label Dependency

Data. We considered the following two-class problems: (1) letters A and H of
the letter-high data set, (2) letters E and F of the letter-high data set, (3) classes
0 and 1 of the fingerprint data set, (4) coil13,16, and (5) coil42,44.

Experimental Protocol. For each data set, we randomly sampled 50% off all
data for training in a stratified manner. The remaining examples formed the
test set. Then we applied the graph-perceptron algorithm (λ = 0) using the
graduated assignment algorithm [3] for computing the sublinear dot product.
We recorded the classification accuracy on the training- and test-examples. The
learning-rates of the perceptron algorithm were taken from [12]. We repeated
this experiments 50 times. Next, for each data set, we flipped the labels of both
classes and repeated the same experiment again 50 times.

Results and Discussion. Table 1 summarizes the results. The Shapiro-Wilk
test at significance level α = 0.05 rejected in about half of the cases the hypoth-
esis that the classification accuracies are normally distributed. For this reason,
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Table 1. Results of the graph-perceptron algorithm for two-class classification prob-
lems using the original and the flipped class labeling. Shown are the average classifica-
tion accuracies over 50 trials, the standard deviation and the p-values obtained from
the Mann-Whitney U-Test. Rows marked with ′+′ refer to a class labeling with better
results than rows marked with ′−′. The quantity d/N is the ratio of the dimension d
of the largest matrix representation of a training graph and the number N of training
examples.

training test
d/N avg std p-val avg std p-val

Letter-HighA,H 0.3
+ 100.0 0.0

0.000
96.2 2.0

0.000− 95.4 1.4 89.2 2.7

Letter-HighE,F 0.3
+ 98.4 0.9

0.007
90.3 2.8

×0.259− 97.6 1.6 89.8 2.2

Fingerprint0,1 0.8
+ 99.8 0.1

0.000
96.3 0.3

0.000− 73.2 3.3 72.0 3.2

Coil13,16(cats) 59.1
+ 100.0 0.0

×0.230
89.2 7.0

0.000− 99.6 1.3 75.2 9.4

Coil42,44 (cups) 41.0
+ 100.0 0.0

0.000
87.3 5.5

0.000− 97.4 4.2 70.2 6.85

we applied the Mann-Withney U-Test for testing the null hypothesis whether
the classification accuracies of the original labeling and the flipped labeling come
from the same distribution. In all but two cases (marked as ×), the resulting
p-values were less than the significance levels α = 0.01 and α = 0.05. In these
8 out of 10 cases, we rejected the null hypothesis and accepted the alternative
hypothesis that the accuracies come from different distributions.

The results show that the average accuracies are different in 8 out of 10 cases
and that the differences are significant. From this we conclude that the average
accuracy of a graph-perceptron depends on our choice as to which class we label
as positive and negative. Recall that Theorem 1 and its implications consider
the expected classification accuracy. Empirical classification accuracies based on
finite samples of relatively small size according to the ratio d/N confirm that
the theoretical findings are of practical relevance.

In all cases, a class labeling with better average accuracy results in a better
average generalization performance. This also holds when the difference on the
training set is not statistically significant as in the Coil13,16 data set. Conversely,
a statistically significant difference on the training set does not guarantee a
statistically significant difference on the test set as shown for Letter-HighE,F .

As expected generalization performance was lower than the performance on
the training examples. Notable is the strong decrease of generalization perfor-
mance for both Coil data sets indicating overfitting. Inspecting the ratio d/N of
the dimension of the largest matrix representation of a graph in the training set
and the number N of training examples shows that the dimension is roughly 40
and 60 times higher than the number of training examples. According to Covers
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Function Counting Theorem, we can always find a separating decision surface
for the training set provided the classes are labeled favorably and the training
examples are in general position. In addition, we can also expect good results
on the training data, when the class labeling is unfavorable. Due to the high
dimension and the low number of training examples, it is likely that the learned
models do not generalize well.

4.3 Experiments – Flip-Flop Sublinear Models

Data. We considered the following multi-class problems: letter (low, medium,
high), fingerprint, and grec.

Experimental Protocol. To cope with multiple classes, we applied the flip-flop
perceptron and the flip-flop margin perceptron algorithm using a one-versus-
all approach. For computing the sublinear dot product, we again applied the
graduated assignment algorithm [3]. The learning-rates and margin parameters
were taken from [12]. For each data set, we trained both flip-flop sublinear models
on the union of the training and validation data. We assessed the generalization
performance on the test data. We repeated this experiment 10 times. We used
the given splits instead of random splits of the training and test data in order
to make the results comparable to other methods.

Results and Discussion. Table 2 summarizes the training and test results of
the flip flop perceptron and flip flop margin perceptron algorithm for multi-class
problems.

We first compare the training results of the four different graph perceptron
algorithms. We observe that on average both flip-flop perceptrons better sepa-
rate the training data than their standard counterparts. We also observe that
for flip-flop classifiers, the margin perceptron does not yield the best training
results on three out of five data sets (Letter M, F’print, GREC). This is in con-
trast to the standard versions of both perceptron algorithms. Finally, we see that
the differences are small compared to those obtained in our first experiments on
two-class problems. One reason for this is that our experiments on two-class
problems consider the extreme case of an unfavorable vs. a favorable labeling,
whereas these experiments consider the natural labeling vs. the favorable label-
ing. The natural labeling in a one-against-all classification approach labels the
corresponding single class as positive and all other classes as negative. For most
classes, this labeling turns out to be the favorable one, such that flipping the la-
beling is necessary only in few cases. Thus, for most one-against-all dichotomies
in these experiments, the natural labeling coincides with the favorable labeling.

Next, we compare the test results of the four different graph perceptron algo-
rithms. The first observation to be made is that both flip-flop perceptrons per-
form better on average than their standard counterparts on all but the GREC
data set.
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Table 2. Training and test classification accuracies for multi-class problems. The num-
ber of classes is shown in parentheses next to the identifier of the respective data set.
Shown are the average accuracy, standard deviation, and maximum accuracy over 10
runs of perceptron (perc), margin perceptron (mperc), flip-flop perceptron (ffperc),
and flip-flop margin perceptron (ffmperc) for training and test data. Generalization
performance is compared against graph Bayes (bayes2), generalized learning graph
quantization (glgq), similarity-kernel SVM (sk-svm), support vector machine applied
on dissimilarity embeddings after dimension reduction using PCA (pca+svm), and op-
timized dissimilarity space embedding (odse.v2). Results for entries with a dash – are
not available. Results marked with an asterique ∗ are not comparable, because the grec
data set as used in [1] differs from the on publicly available at [16].

train Letter L (15) Letter M (15) Letter H (15) F’print (4) GREC (22)
avg max avg max avg max avg max avg max

ffperc 97.0±0.5 97.6 93.3±0.4 94.0 86.7±0.8 87.7 87.1±0.5 88.0 99.5±0.3 100.0
ffmperc 98.9±0.2 99.2 93.1±0.2 93.5 88.9±0.5 89.7 86.5±0.7 87.3 99.4±0.2 99.8

perc 96.9±0.3 97.5 92.0±0.6 93.1 84.3±0.7 85.3 80.0±1.7 81.8 98.2±0.3 98.6
mperc 96.9±0.3 97.2 92.6±0.5 93.7 86.4±0.5 87.1 80.7±2.9 84.3 99.0±0.2 99.1

test Letter L (15) Letter M (15) Letter H (15) F’print (4) GREC (22)
avg max avg max avg max avg max avg max

ffperc 95.6±0.5 96.1 89.4±0.6 90.3 83.5±0.9 84.3 82.3±0.7 83.4 96.1±0.4 96.6
ffmperc 97.0±0.4 97.5 90.4±0.8 91.7 85.6±0.7 86.5 83.1±0.5 84.0 96.9±0.3 97.4

perc [12] 94.5±0.7 96.0 86.1±1.1 87.5 80.7±1.1 82.5 76.8±1.6 79.1 96.3±0.5 97.0
mperc [12] 95.5±0.3 95.7 88.7±0.6 89.5 84.1±0.5 84.8 79.5±2.6 82.4 97.5±0.6 98.1

bayes2 [9] – – 80.4 79.2 89.9
glgq [10] – – 88.4 84.8 97.5

sk-svm [1] 99.2 94.7 92.8 81.7 92.2∗

pca+svm [1] 99.2 94.9 92.1 82.2 92.0∗

odse.v2 [14] 99.0 96.8 96.2 – 97.9

Letus compare the results of theflip-flopclassifiers againstbayes2andglgq.Both
are also classifiers based on the graph orbifold framework. Bayes2 is based on bell-
shaped distributions around center graphs and glgq is an extension of generalized
learning vector quantization to the graph domain. The results show that both flip-
flop classifiers are superior than bayes2 but perform worse compared with glgq.

Finally, we compare both flip-flop classifiers against other state-of-the-art al-
gorithms. From the results we see that sk-svm, pca+svm, and odse.v2 are clearly
superior on all letter data set and therefore more robust against noise. The pic-
ture changes when it comes to the F’print and GREC data set. The graph per-
ceptrons algorithms are slightly better on F’print and comparable to odse.v2 on
GREC. These findings are similar to linear in vector spaces: graph perceptrons
are simple methods that yield possibly inaccurate results. Further improvements
are possible in two ways: first, by more extensively exploring the hyperparame-
ters, and second, by controlling the VC dimension via the number of nodes and
edges of the weight graph (for details see [12]).
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5 Conclusion

Theorem 1 states that there is no dual of a sublinear model with probability
one. An immediate consequence of this result is that the expected classification
performance of sublinear models depends on our choice as to which class we label
as positive and which as negative. Experiments on finite samples of relatively
small size compared to the dimensionality of the data confirm the theoretical
findings for empirical classification performance. This justifies flip-flop classifiers
that consider both labelings during training and select the model with the better
classification performance of the training data.
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Abstract. The study of complex networks has recently attracted in-
creasing interest because of the large variety of systems that can be
modeled using graphs. A fundamental operation in the analysis of com-
plex networks is that of measuring the centrality of a vertex. In this
paper, we propose to measure vertex centrality using a continuous-time
quantum walk. More specifically, we relate the importance of a vertex
to the influence that its initial phase has on the interference patterns
that emerge during the quantum walk evolution. To this end, we make
use of the quantum Jensen-Shannon divergence between two suitably de-
fined quantum states. We investigate how the importance varies as we
change the initial state of the walk and the Hamiltonian of the system.
We find that, for a suitable combination of the two, the importance of a
vertex is almost linearly correlated with its degree. Finally, we evaluate
the proposed measure on two commonly used networks.

Keywords: Vertex Centrality, Complex Network, Quantum Walk,
Quantum Jensen-Shannon Divergence.

1 Introduction

In recent years, an increasing number of researchers have turned their atten-
tion to the study complex networks [1]. Complex network are ubiquitous in a
large number of real-world systems. A non-exhaustive list of examples includes
metabolic networks [2], protein interactions [3], brain networks [4] and scientific
collaboration networks [5]. A fundamental task in complex network analysis is
that of measuring the centrality of a vertex, i.e., its importance. To this end, a
number of centrality indices have been introduced in the literature [1, 6–9]. Each
of these captures different but equally significant aspects of vertex importance.

Perhaps the most intuitive centrality measure is degree centrality [7]. This is
defined as the number of links incident upon a node, i.e., the degree of the node.
The degree centrality naturally interprets the number of edges incident on a ver-
tex as a measure of its “popularity”, or, alternatively, as the risk of a node being
infected in an epidemiological scenario. Closeness centrality [10], on the other
hand, links the importance of a vertex to its proximity to the remaining vertices
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of the graph. More precisely, the closeness centrality is defined as the inverse of
the sum of the distance of a vertex to the remaining nodes of the graph, i.e.,
CC(u) = n−1∑n

v=1 d(u,v) where d(u, v) denotes the shortest path distance between

nodes u and v. The betweenness centrality [7] is a measure of the extent to which
a given vertex lies on the paths between the remaining vertices, where the path
may be either that of shortest length or a random walk between the nodes. If
sp(v1, v2) denotes the number of shortest paths from node v1 to node v2, and
sp(v1, u, v2) denotes the number of shortest paths from v1 to v2 that pass through

node u, the betweenness centrality of u is BC(u) =
∑n

v1=1

∑n
v2=1

sp(v1,u,v2)
sp(v1,v2)

.

Note that this definition assumes that the communication takes place along the
shortest path between two vertices. A number of measures have been introduced
to account for alternative scenarios in which the information is allowed to flow
through different paths [1, 6–8].

Recently, there has also been a surge of interest in using quantum walks as a
primitive for designing novel quantum algorithms on graph structures [11]. Quan-
tum walks on graphs represent the quantum mechanical analogue of the classical
random walk on a graph. Despite being similar in their definition, the dynamics
of the two walks can be remarkably different. In the classical case the evolution
of the walk is governed by a double stochastic matrix, while in the quantum
case the evolution is governed by a unitary matrix, thus rendering the walk re-
versible and non-ergodic. Moreover, the state vector of the classical random walk
is real-valued, while in the quantum case the state vector is complex-valued. As
there is no constraint on the sign and phase of the amplitudes, different paths
are allowed to interfere with each other in both constructive and destructive
ways. This in turn gives rise to faster hitting times and reduces the problems of
tottering observed in classical random walks [11].

In this paper, we propose to measure the centrality of a vertex using a
continuous-time quantum walk. More specifically, we relate the importance of a
vertex to the influence that its initial phase has on the evolution of a suitably de-
fined quantum walk. To this end, we make use of the quantum Jensen-Shannon
divergence, a recently introduced generalisation of the classical Jensen-Shannon
divergence to quantum states [12]. Just as the classical Jensen-Shannon diver-
gence [13], the quantum Jensen-Shannon divergence is symmetric, bounded and
always defined. From a physical perspective, the QJSD is computed from density
matrices, whose entries are observables. As a consequence, it should be possible,
at least in theory, to design a quantum algorithm to compute the QJSD cen-
trality that could benefit from the power of quantum computers. However, the
design of such an algorithm is beyond the scope of this paper.

The remainder of this paper is organised as follows: Section 2 provides an
essential introduction to the basic terminology required for understanding the
proposed quantum mechanical framework. With these notions to hand, we intro-
duce our centrality measure in Section 3 and we study its properties. In Section 4
we apply the proposed measure to the analysis of two commonly used network
models, while the conclusions are presented in Section 5.
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2 Quantum Mechanical Background

The continuous-time quantum walk [14] is a natural quantum analogue of the
classical random walk. Given a graph G = (V,E), classical random walks model
a diffusion process over the node set V , and have proven to be a useful tool
in the analysis of its structure. Similarly, the continuous-time quantum walk is
defined as a dynamical process over the vertices of the graph. By contrast to the
classical case, where the state vector is constrained to lie in a probability space, in
the quantum case the state of the system is defined through a vector of complex
amplitudes over the node set V whose squared norm sums to unity over the nodes
of the graph, with no restriction on their sign or complex phase. These phase
differences allow interference effects to take place. Moreover, in the quantum case
the evolution of the state vector of the walker is governed by a complex valued
unitary matrix, whereas the dynamics of the classical random walk is governed
by a stochastic matrix. Hence the evolution of the quantum walk is reversible,
implying that quantum walks are non-ergodic and do not possess a limiting
distribution. As a result, the behaviour of classical and quantum walks differs
significantly, and quantum walks possess a number of interesting properties not
exhibited by classical random walks.

More formally, using the Dirac notation, we denote the basis state correspond-
ing to the walk being at vertex u ∈ V as |u〉. A general state of the walk is a
complex linear combination of the basis states, such that the state of the walk
at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.
At each instant in time the probability of the walker being at a particular

vertex of the graph is given by the square of the norm of the amplitude of the
relative state. Let Xt be a random variable giving the location of the walker
at time t. Then the probability of the walker being at the vertex u at time t
is given by Pr(Xt = u) = αu(t)α

∗
u(t), where α

∗
u(t) is the complex conjugate of

αu(t). Moreover
∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for all u ∈ V ,

t ∈ R+.
The evolution of the walk is then given by the Schrödinger equation, where we

take the time-independent Hamiltonian of the system to be the graph Laplacian,
yielding

∂

∂t
|ψt〉 = −iL |ψt〉 . (2)

Given an initial state |ψ0〉, we can solve Eq. (2) to determine the state vector at
time t

|ψt〉 = e−iLt |ψ0〉 . (3)

Note that generally one may use any Hermitian operator as the Hamiltonian.
Common choices are the graph adjacency matrix, the normalised Laplacian and
the signless Laplacian.
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Finally, we can compute the spectral decomposition of the graph Laplacian
L = ΦΛΦ�, where Φ is the n × n matrix Φ = (φ1|φ2|...|φj |...|φn) with the
ordered eigenvectors φjs of L as columns and Λ = diag(λ1, λ2, ..., λj , ..., λn) is
the n×n diagonal matrix with the ordered eigenvalues λj of L as elements, such
that 0 = λ1 ≤ λ2 ≤ ... ≤ λn. Using the spectral decomposition of the graph
Laplacian and the fact that exp[−iLt] = Φexp[−iΛt]Φ� we can then write

|ψt〉 = Φe−iΛtΦ� |ψ0〉 . (4)

2.1 Quantum Jensen-Shannon Divergence

The density operator (or density matrix) is introduced in quantum mechanics to
describe a system whose state is an ensemble of pure quantum states |ψi〉, each
with probability pi. The density operator of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| . (5)

The von Neumann entropy [15] HN of a density operator ρ is defined as

HN = − tr(ρ log ρ) = −
∑
i

ξi ln ξi (6)

where ξ1, . . . , ξn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum
system is a pure state |ψi〉 with probability pi = 1, then the Von Neumann
entropyHN (ρ) = − tr(ρ log ρ) is zero. On other hand, for a mixed state described
by the density operator σ we have a non zero Von Neumann entropy associated
with it.

With the Von Neumann entropy to hand, the quantum Jensen-Shannon di-
vergence between two density operators ρ and σ is defined as

DJS(ρ, σ) = HN

(ρ+ σ
2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (7)

This quantity is always well defined, symmetric and positive definite. Finally, it
can also be shown that DJS(ρ, σ) is bounded, i.e., 0 ≤ DJS(ρ, σ) ≤ 1.

3 QJSD Centrality

In order to measure the centrality of vertex v, we define two quantum walks
where v is initially set to be in phase and in antiphase with the respect to the
remaining nodes. Let the normalised graph Laplacian be the Hamiltonian of our
system, and let

∣∣ψv−
0

〉
=

∑
u∈V α

v−
u (0) |u〉 and

∣∣ψv+
0

〉
=

∑
u∈V α

v+
u (0) |u〉 denote

the quantum walks on G with initial amplitudes

αv−j (0) =

{
−

√
dj

C if j = v

+
√
dj

C otherwise
αv+j (0) =

{
+

√
dj

C ∀j (8)
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where C is the normalisation constant such that probabilities sum to 1. In other
words, we define the initial amplitude to be proportional to the square root of the
node degrees. Finally, let ρv+ and ρv− be the density operators which describe
the ensembles of quantum states

∣∣ψv−
t

〉
and

∣∣ψv+
t

〉
respectively, i.e.,

ρv− = lim
T→∞

1

T

∫ T

0

∣∣ψv−
t

〉 〈
ψv−
t

∣∣ dt ρv+ = lim
T→∞

1

T

∫ T

0

∣∣ψv+
t

〉 〈
ψv+
t

∣∣ dt (9)

Given this setting, we can measure how the initial phase of the vertex v
affects the evolution of the quantum walks by computing the distance between
the quantum states defined by ρv− and ρv+ . That is, we define the quantum
Jensen-Shannon divergence (QJSD) centrality of a vertex v as

CQJSD(v) = DJS(ρv− , ρv+) (10)

Note that the computational complexity of the QJSD centrality is bounded
by that of computing the eigendecomposition of the graph laplacian, i.e., O(n3).
Let ΦΛΦ� be the spectral decomposition of the graph normalised Laplacian and

let Pλ =
∑μ(λ)

k=1 φλ,kφ
�
λ,k be the projection operator on the subspace spanned

by the μ(λ) eigenvectors φλ,k associated with the eigenvalue λ of the graph
normalised Laplacian. Rossi et al. [16] have shown that ρ∞ =

∑m
λ=1 Pλρ0P

�
λ ,

where m denotes the number of unique eigenvalues of the graph normalised
Laplacian. Note that as a consequence of Eq. 9 we have that ρv− and ρv+ are
simultaneously diagonalisable. That is, there exist a single invertible matrix M
such that M−1ρv−M and M−1ρv+M are diagonal. More precisely, here M = Φ,
the n × n matrix Φ = (φ1|φ2|...|φj |...|φn) with the ordered eigenvectors φjs of
the Hamiltonian as columns.

3.1 Relation with Degree Centrality

We are now interested in studying the relation between the QJSD centrality
and the degree centrality. It has been shown, for example, that the degree and
the betweenness centrality are highly correlated [17]. This should not come as
a surprise, as we expect high degree vertices to be more often included in the
shortest path along a pairs of vertices.

Let the initial states of the walks be defined as in Eq. 8 and let the normalised
Laplacian be the Hamiltonian of our system. We start by observing that

∣∣ψv+
0

〉
=∑

u∈V α
v+
u (0) |u〉 corresponds to the eigenvector φ0 associated with the zero

eigenvalue of the Hamiltonian, and as a consequence
∣∣ψv+

0

〉
will remain constant

over time. In other words, we have that ρv+ =
∣∣ψv+

0

〉 〈
ψv+
0

∣∣. Note that the
spectrum of ρv+ is composed of a single eigenvector φ0 with eigenvalue equal to
1. Moreover, recall from Eq.9 that ρv− and ρv+ are co-diagonalisable matrices.
As a result, each eigenvalue of ρv− + ρv+ is a sum of eigenvalues of ρv− and ρv+ .
More precisely, when the two walks are initialised as in Eq. 8, all the eigenvalues
μi of

ρv−+ρv+

2 will be equal to the eigenvalues of ρv− , except for the eigenvalue
μ0 + 1 which is associated to the common eigenvector φ0.
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Fig. 1. The correlation between degree and QJSD centrality, for a star graph (red dots)
and a scale-free graph (blue squares). The blue line shows the predicted dependency
between the two centrality indices.

We now show that, as a consequence of this, the QJSD centrality is pro-
portional to the degree centrality. Note that since ρv+ has a single non-zero
eigenvalue which is equal to 1, we have that HN (ρv+) = 0. As a consequence of
this and of Eq. 7, we have that

DJS(ρv− , ρv+) = HN

(
ρv− + ρv+

2

)
− 1

2
HN (ρv−)

= −μ0 + 1

2
log2

μ0 + 1

2
−

∑
i�=0

μi
2

log2
μi
2

+
1

2

∑
i

μi log2 μi

=
μ0 + 1

2
− μ0 + 1

2
log2 (μ0 + 1) +

∑
i�=0

μi
2
− 1

2

∑
i�=0

μi log2 μi +
1

2

∑
i

μi log2 μi

= 1− 1

2
log2(μ0 + 1) +

μ0
2

log2
μ0

μ0 + 1
(11)

where μi denotes the ith eigenvalue of ρv− and we used the fact that
∑

i μi = 1.
We now proceed to show that μ0 is proportional to the degree of node v, and
therefore the QJSD centrality is proportional to the degree centrality. In fact,
we have that

μ0 = 〈φ0| ρ0 |φ0〉 =
〈
φ0

∣∣ψv−
0

〉2
=

(
1− dv
|E|

)2

(12)

where dv is the degree of v and |E| denotes the number of edges in the graph.
In other words, when we take the normalised Laplacian as our Hamiltonian

and we initialise the walks according to Eq. 8, the QJSD centrality turns out to be
quasi-linearly correlated with the degree centrality. Fig. 1 shows the correlation
between the QJSD centrality and the degree centrality for a scale-free random
graph and a star graph. Recall that the degree centrality is normalised between
0 and 1 by dividing it by |V |(|V | − 1), i.e., the maximum cardinality of the
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Fig. 2. Correlation between the QJSD centrality and the degree centrality for different
choices of the Hamiltonian (adjacency matrix or normalised Laplacian) and of the
initial state (normalised uniform distribution or normalised degree distribution)

edge set. Note that the non-linearity of the correlation becomes evident only for
those nodes with degree close to |E|, for which we have that dv

|E| ≈ 0 and thus

μ0 ≈ 1 + dv

|E|
2
.

So far we assumed that the Hamiltonian of the quantum walk is the graph
normalised Laplacian. However, any Hermitian operator encoding the structure
of the graph can be chosen as an alternative. Similarly, there is no constraint on
the initial state of the walk, as long as it is a valid amplitude vector. Fig. 2 shows
the correlation between the QJSD centrality and the degree centrality computed
on a stochastic Kronecker graph for different choices of the initial state and the
Hamiltonian. More specifically, we let the Hamiltonian be either the adjacency
matrix or the normalised Laplacian of the graph, while the initial state is either
proportional to the node degree as in Eq. 8 or uniformly equal to 1/

√
n, where n

denotes the number of nodes in the graph. As expected, our centrality measure is
strongly correlated with the degree centrality when the Hamiltonian is the graph
normalised Laplacian and the initial state is proportional to the node degree (see
Fig. 2(d)). In general, we see that when the starting state is proportional to the
node degree, the correlation tends to be very high, while the choice of a uniform
initial state leads to a value of the centrality which is less dependent on the node
degree.

Hence, in an attempt to capture structural information which are not trivially
revealed by examining the node degree, we explore the consequences of letting the
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1
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Fig. 3. Zachary’s karate club network, where we have drawn each node with a diameter
that is proportional to its QJSD centrality

walk start from a uniform amplitude vector and choosing the adjacency matrix
as the Hamiltonian. Moreover, in order to balance the strength of the positive
and negative signals, i.e., the contribution of the node amplitudes with either
positive or negative phases, we let the magnitude of the initial amplitude on the
node being analysed be equal to the sum of the amplitudes on the remaining
nodes, which gives the initial state

αv−j (0) =

{
− 1√

2
if j = v

+ 1√
2(|V |−1)

otherwise αv+j (0) =

{
+ 1√

2
if j = v

+ 1√
2(|V |−1)

otherwise .

(13)

4 Experimental Evaluation

We now apply the QJSD centrality to a pair of commonly used network datasets,
namely Zachary’s karate club [18] and Padgett’s network of marriages between
the 16 most eminent Florentine families in the 15th century [19]. Fig. 3 shows
Zachary’s karate club network, where each vertex is drawn with a diameter that
is proportional to the QJSD centrality. We see that there are two main actors,
node #1 and node #2, which correspond to the instructor and the administrator
of the club. Note that using our measure the instructor turns out to be the node
with the highest centrality, which is also the most central according to the degree
centrality, while the betweeness centrality elects the administrator as the most
important node. However, the betweenness centrality indicates as the second
most important actor node #3, as this vertex has many contacts with both the
members of the administrator cluster and the members of the instructor cluster
and thus it is misunderstood as a center by the betweenness centrality. Finally,
node #4 is identified as the third most important by the degree centrality, leaving
node #3 at the fourth place, although the latter is more central in the sense that
it shares many links with both groups.

Padgett’s network of marriages is depicted in Fig. 4. In Table 1, we show the
ranking of the 15 families according to their QJSD centrality. As expected, the
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Fig. 4. Padgett’s network of marriages between eminent Florentine families in the 15th
century [19]. We omit the Pucci, which had no marriage ties with other families.

Table 1. The QJSD centrality of the families of Padgett’s network [19]

Family Centrality Family Centrality Family Centrality

Medici 0.4867 Castellan 0.3245 Salviati 0.2248
Ridolfi 0.4619 Barbadori 0.3205 Ginori 0.1993
Strozzi 0.4192 Albizzi 0.3172 Acciaiuol 0.1534
Tornabuon 0.4041 Guadagni 0.3091 Lambertes 0.1267
Bischeri 0.3586 Peruzzi 0.2990 Pazzi 0.1126

Medici easily outperform the Strozzi , who are their main rivals. This agrees
with the historical view that Medici’s supremacy was largely due to their skills
in manipulating the marriage network. Interestingly the Pazzi, which is the most
loosely connected family of the graph, achieve the lowest centrality. Note also
that the Ridolfi family, which connect two of the most influential families at
that time, the Medici and the Strozzi, is assigned a high centrality. Moreover,
the Tornabuon, which form a tightly connected clique together with the Medici
and the Ridolfi, is the fourth most central node of the network.

5 Conclusions

In this paper, we have proposed to measure vertex centrality using a continuous-
time quantum walk. We measured the importance of a vertex as the influence
that its initial phase has on the interference patterns that emerge during the
quantum walk evolution. We have showed that, under particular settings, the
resulting centrality measure is almost linearly correlated with degree centrality.
Thus, we have proposed an alternative starting state where the contribution of
the node amplitudes with positive and negative phases is equal. Finally, we have
evaluated the resulting measure to two commonly used network models.
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Abstract. In this paper, we present a method to compute an embedding
matrix which maximises the dependence of the embedding space upon
the graph-vertex coordinates and the incidence mapping of the graph.
This treatment leads to a convex cost function which, by construction,
attains its maximum at the leading singular value of a matrix whose
columns are given by the incidence mapping and the embedded vertex
coordinates. This, in turn, maximises the correlation between the spaces
in which the embedding and the graph vertex coordinates are defined.
It also maximises the dependence between the embedding and the in-
cidence mapping of the graph. We illustrate the utility of the method
for purposes of approximating the colour sensitivity functions of a set of
over 20 commercially available digital cameras using a library of spectral
reflectance measurements.

1 Introduction

In the pattern analysis community, there has recently been renewed interest
in the embedding methods motivated by graph theory. One of the best known
of these is ISOMAP [1]. Related algorithms include locally linear embedding
which is a variant of PCA that restricts the complexity of the input data using
a nearest neighbor graph [2], and the Laplacian eigenmap that constructs an
adjacency weight matrix for the data-points and projects the data onto the
principal eigenvectors of the associated Laplacian matrix [3]. Collectively, these
methods are sometimes referred to as manifold learning theory.

Embedding methods can also be used to transform the graph-matching prob-
lem into one of point-pattern alignment. The problem is to find matches between
pairs of point sets when there is noise, geometric distortion and structural cor-
ruption. There is a considerable literature on the problem and many contrasting
approaches, including relaxation [4] and optimisation [5], have been attempted.
However, the main challenge in graph matching is how to deal with differences
in node and edge structure. One of the most elegant recent approaches to the
graph matching problem has been to use graph-spectral methods [6], and ex-
ploit information conveyed by the eigenvalues and eigenvectors of the adjacency
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matrix. For instance, Umeyama [7] has developed a method for finding the per-
mutation matrix which best matches pairs of weighted graphs of the same size,
by using a singular value decomposition of the adjacency matrices. Scott and
Longuet-Higgins [8], on the other hand, align point-sets by performing singular
value decomposition on a point association weight matrix. Shapiro and Brady
[9] have reported a correspondence method which relies on measuring the sim-
ilarity of the eigenvectors of a Gaussian point-proximity matrix. Kosinov and
Caelli [10] have improved this method by allowing for scaling in the eigenspace.
More recently, Sebastian and Kimia [11] have used a distance metric analogous
to the string edit distance to perform object recognition from a dataset of shock
graphs.

The main argument levelled against the techniques mentioned above is that
they adopt a heuristic approach to the relational matching problem by using a
goal-directed graph similarity measure. To overcome this problem, several au-
thors have proposed more general approaches using ideas from information and
probability theory. For instance, Wong and You [12] defined an entropic graph-
distance for structural graph matching. Christmas, Kittler and Petrou [4] have
shown how a relaxation labeling approach can be employed to perform matching
using pairwise attributes whose distribution is modelled by a Gaussian. Wilson
and Hancock [13] have used a MAP (maximum a posteriori) estimation frame-
work to accomplish purely structural graph matching. Recently, Caetano et al.
have proposed a method to estimate the compatibility functions for purposes of
learning graph matching [14].

Here, we focus on the recovery of an embedding matrix based upon the graph
and the embedding itself. We do this by maximising the correlation for both, the
node-set for the graph and the metric space in which the embedding is defined.
To this end, we depart from a cost function which aims at minimising the matrix
norm between the embedding and the incidence mapping of the graph. We then
rewrite the cost function so as to involve the eigenfunctions of two matrices of
inner products. We show the utility of the method presented here for purposes of
approximating the spectral sensitivity function of a set of over 20 digital cameras
using a library of reflectances of a calibration target, i.e. an X-Rite ColorChecker
chart.

2 Graph Theory and Spectral Geometry

As mentioned above, we aim at computing a linear mapping that can be used
to embed the graph-vertices into a space of finite dimensionality based upon
a known transformation to a subspace constrained by the edge space. In this
manner, the embedding will reflect the structure of the edge-space of the graph
while being based upon a known relationship between the graph vertex-set and
the target space Ω. This has two main advantages. Firstly, the target space
for the recovered mapping can be used to constrain the embedding. Secondly,
note that the mapping sought here embeds the graph vertices using a linear
operator drawn from spectral geometry. This is not only practically useful but
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theoretically important since it provides a link between the spectra of graphs
and linear operators.

2.1 On the Incidence Mapping of Graphs

Here, we aim at recovering a mapping T which is a matrix whose dimensionality
is Ω× | V |. In other words, we aim at recovering an operator which can embed
the nodes of a graph G into a space �Ω. To commence, we require some for-
malism. Let G = (V , E ,A) denote the graph with node-set Vi = {V1, . . . , V|V|},
edge-set E = {e|Va, Vc ∈ V} and attribute-set A = {A1, . . . , A|Vi|}.

Here, we view, in general, the vertex-attributes A(a) as vectors, where each
of these has a one-to-one correspondence to a graph vertex. This also permits
the computation of the weight matrix W with elements W(a, c) for the graph
G. The weight matrixW can be related to the un-normalised Laplacian through
the relationship L = D − W , where D is a diagonal matrix such that D =

diag(deg(1), deg(2), . . . , deg(|V|)) and deg(c) =
∑|V|

a=1W(a, c) is the degree of
the node indexed c in the graph [6].

The use of the graph Laplacian is important, since it permits the use of the
incidence mapping. Note that the incidence mapping I is independent of the
orientation of the edges in E . Moreover, it is an operator independent of the vertex-
basis, i.e. its permutation invariant [15], which can be recovered via a Young-
Householder [16] decomposition on the graph Laplacian such that L = IIT .

2.2 Embedding Computation

With these ingredients, we can formalise the problem as that of recovering the
linear mapping T such that

min
T

{
f(T )

}
= min

T

{
||Y − T I||2

}
(1)

given the embedding Y ∈ �Ω×|V| of V in Ω and I ∈ �Γ×|V|, as before, is the
incidence mapping of G.

It is worth noting in passing that this is akin to point pattern matching set-
tings where the problem is that of finding a transformation which can be used
to map the data points onto their counterparts in the model point-set. Nonethe-
less its similarities, the main difference is that, here, given the coordinates Iv,γ
and Yv,ω of the embeddings and incidence mappings for the node v ∈ V in the
dimensions γ ∈ Γ and ω ∈ Ω, we aim at recovering the entries φi,j of the matrix
T such that

min
T

{
f(T )

}
= min

φω,γ∈T

{∑
v∈V

(
||Yv,ω −

∑
γ∈Γ

φω,γIv,γ ||2
)}

(2)

rather than the corresponding permutation and rotation matrices.
Indeed, the cost function above could be tackled using a least squares solution.

This naturally leads to a solution akin to a linear regressor whereby φω,γ can be
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viewed as the slope of the lines Yv,ω = φω,γ

∑
γ∈Γ Iv,γ . This can be viewed as a

minimisation on the distance about the Yv,ω variables [17]. Note that it would be
more desirable to use the dintance, i.e. norm, spanned by both, the embedding
and the incidence mapping. Thus, we rewrite the cost function above making
use of the matrix Mω,γ = [Y·,ω|I·,γ ], where Y·,ω = [Y1,ω,Y2,ω, . . . ,Y|V|,ω]

T and
I·,γ = [I1,γ , I2,γ , . . . , I|V|,γ]

T as follows

min
T

{
f(T )

}
= min

ξ∈Ω
ψ∈Γ

{∑
v∈V

(
||Yv,ω −

∑
γ∈Γ

ξTMω,γψ

ξTψ
Iv,γ ||2

)}
(3)

where, by construction, ξT and ψ are the eigenvectors of MT
ω,γMω,γ and

Mω,γM
T
ω,γ , respectively [18].

The advantage of Equation 3 resides in the fact that, as we will see in the
following section, the term

φω,γ = max
ξ∈Ω
ψ∈Γ

{
ξTMω,γψ

ξTψ

}

maximises both, the correlation, in the geometric sense, of both, the pairs Y·,ω,
I·,γ and Yv,·, Iv,·. This is, it maximises the dependence of the recovered em-
bedding upon the incidence mapping and that of the target space on the vertex
coordinates. Moreover, as an added advantage, the computation of φω,γ can be
done in a straightforward manner via the application of Singular Value Decom-
position (SVD) to the matrix Mω,γ [18], i.e. φω,γ is the leading singular value
of Mω,γ .

2.3 Max-Correlation

Now we examine the link between the cost function above and the eigenvectors ξ
and ψ. To this end, we make use of the matrix of scalar productsH = Mω,γM

T
ω,γ .

Note that, since the developments here apply equally to the MT
ω,γMω,γ , we focus

on H throughout the section.
Let ξl be the lth eigenvector of H scaled so its sum of squares is equal to the

corresponding eigenvalue τl. Since Hξl = τlξl and (JJT )ξl = Hξl, it follows that
the squared distance between a pair of entries in the matrix H can be written
as

‖ ηi − ηj ‖2=
N∑
l=1

τl(ξl(i)− ξl(j))2 = H(i, i) +H(j, j)− 2H(i, j) (4)

where ηi and ηj are coordinates in the embedding space such that their inner
product corresponds to the entry indexed i, j of H and N is its rank.

With these ingredients, we can recover the variables ξi for the vertices in the
graph such that the weighted correlations between their embedding vectors are
maximum or minimum by extremasing the quantity

ε =
∑
i,j

∥∥ξiηi − ξjηj∥∥2
(5)
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To take our analysis further, we use Equation 4 and, after some algebra, write

ε =
∑
i,j

(
ξ2i H(i, i) + ξ2jH(j, j)− 2ξiξjH(i, j)) (6)

Note that, Equation 6 can be divided into two sets of terms, one for the diagonal
and the other for the off-diagonal elements of H as follows

ε = 2M
∑
i

ξ2iH(i, i)−
∑
i,j

2ξiξjH(i, j) (7)

where M is the order of H and we have used the fact that∑
i,j

ξ2iH(i, i) = N
∑
i

ξ2iH(i, i) (8)

and ∑
i,j

ξ2iH(i, i) =
∑
i,j

ξ2jH(j, j) (9)

Note that maximising the first term in the right-hand side of Equation 7
implies minimising the second one and vice versa. The proof of this hinges in the
properties of spectral radii of symmetric matrices [19, 20]. This is also consistent
with the work of Chung on isoperimetric inequalities [21]. Thus, we can focus
on the term

ε̂ = −
∑
i,j
i�=j

2ξiξjH(i, j) (10)

Furthermore, to write Equation 10 in compact form, we can define a matrix
Ĥ which comprises the off-diagonal elements of H as follows

Ĥ(i, j) =

{
H(i, j) if i 
= j
0 otherwise

(11)

and write
ε̂ = −2ΠT ĤΠ (12)

where ξ = [ξ1, ξ2, · · · , ξM ]T is a column vector of order M whose ith element
is given by ξi. Note that the expression above is a Rayleigh quotient. Thus,
maximising ε is equivalent to minimising ξT Ĥξ, which implies that ξ is given
by the eigenvector of Ĥ which corresponds to the eigenvalue whose rank is the
smallest. In this case, ξ is the maximiser of the correlation between the vectors
ηi and ηj .

3 Recovering Camera Spectral Sensitivity Functions

In computer vision, video and graphics, we rely upon cameras and rendering
contexts to capture and reproduce colour information. Moreover, the accurate
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capture and reproduction of colours as acquired by digital camera sensors is
an active area of research which has applications in colour correction [22–24],
camera simulation [25] and sensor design [26].

To better understand the relation between the spectral radiance and the colour
output of digital cameras, recall that we can express the colour output of the
detector at pixel u as follows

Ik(u) = g(u)S(u)
Tdiag(Qk)L, (13)

where Ik(u) is the image radiance for any of the three colour channels k =
{R,G,B} at the pixel u. S(u) is a vector indexed to wavelength whose entries
are given by the surface reflectance S(λ, u) at the wavelength λ. L is the power
spectrum of the light with the elements L(λ) corresponding to the spectral power
at the wavelength λ. Qk is a vector whose element Qk(λ) corresponds to the
spectral sensitivities of the kth colour sensor at the wavelength λ. When dealing
with flat surfaces such as colour charts, we can assume that g(u) = 1. This
expression has been used widely in the literature [27] and is consistent with
reflectance models in computer vision, such as that in [28].

By inspection, it is straightforward to note that, in Equation 13, if the object
reflectance and illuminant power spectrum are known, the camera spectral sen-
sitivity functions are, indeed, a linear mapping which “embeds” the product of
the reflectance and the illuminant into the colour space. Further, we can view
the product of the reflectance and the illuminant as the incidence mapping as
presented previously and the ensuing colour triples as the embedding Y. As a
result, the matrices Mω,γ are defined in the colour and wavelength spaces. This
is, Ω corresponds to the colour and Γ to the wavelength domain.

In the following experiments, we employ the dataset presented in [29]. This is
one of the most complete studies on commercial digital camera spectral responses
comprising 28 commercial models1 Note that the dataset presented in [29] does
not contain colour imagery, but rather the sensitivity functions themselves. Thus,
for the dataset in [29], we have used the ground-truth power spectrum of the
illuminants and the reflectance for each of the colour tiles in a semi-gloss (SG) X-
Rite ColorChecker target with 140 colour patches. This is straightforward since
the ColorChecker is a flat surface whose mean-scattered power can be easily
computed.

3.1 Illuminants

Throughout the section, we use two standard calibrated light sources. This is
in line with the standard illuminants defined by the CIE [30]. Our calibrated
light sources correspond to the A and D series of illuminants. For our A series
illuminant, we have used a tungsten-filament light with a correlated colour tem-
perature (CCT) [31] of 2700oK. Our D series light is an artificial sunlight with
a CCT of 6500oK (D65).

1 These can be downloaded from http://www.cis.rit.edu/jwgu/research/

camspec/db.php

http://www.cis.rit.edu/jwgu/research/camspec/db.php
http://www.cis.rit.edu/jwgu/research/camspec/db.php
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It is worth noting in passing that the use of these two light sources is also
aimed at spanning across a wide variety of real-world settings. This is as the
A series illuminant correspond to the incandescent filament lights widely used
in households and street lighting, whereas the D series illuminant accounts for
outdoor environments.

3.2 Reflectance Library

Recall that we also require the spectral reflectance of the color tiles in our X-Rite
target so as to compute the covariance matrices used by our method. To this end,
we have acquired the reflectance of each colour tile in the X-Rite charts using
a StellarNet Bluewave Spectrometer. The spectrometer delivers a spectrum of
1716 samples per tile over the visible and near infrared range. The measurements
have been effected using a two-way integrating sphere and a halogen-Deuterium
calibrated light source in the [200nm− 1700nm] range.

Note that, for our reflectance library, we have followed the ISO standard for
the visible spectrum and archived the reflectance in the range [400nm, 780nm],
which yields a total of 599 samples per tile over the 164 colours in the two charts.
It is worth stressing in passing that we have opted for the ISO standard over
the CIE since the latter is a subset of the former (the CIE standard dictates
the visible range is given by the interval [400nm, 700nm]) [32]. As mentioned
earlier, for our reflectance, we the 140 tiles of 100 different colours including the
white ones. The inclusion of the white tile is important since this allows for the
illuminant power spectrum computation as required in Equation 13.

3.3 Experiments

With the spectral and colour data in hand, we proceed to provide a quantitative
analysis regarding the approximation yielded by our method. To this end, we
have used the Euclidean deviation, in degrees, between the sensitivity functions
approximated by our method and the corresponding ground truth.

We have used these two metrics so as to account for both, variations in the
“shape” of the colour sensitivity functions and power spectrum of the illuminant
with respect to the ground truth as well as colour variations induced by the ap-
proximation presented here. For our dataset, we have used the colours extracted
from the trichromatic imagery of the X-Rite ColourChart as acquired by each
camera. For both datasets, we have compared these ground truth data to the
colours computed using the sensitivity functions and illuminant power spectrum
approximated by our method when applied to the colour checker reflectance
library.
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Fig. 1. The average angular error on the spectral responses across three channels for
each cameras in the dataset presented in [29]

Nikon D80 (Ground truth) Nikon D80 (Approximation)

Fig. 2. Colour sensitivity functions for a sample camera in our dataset. The two pan-
els show the ground truth and approximated sensitivity functions for the Nikon D80
camera in [29].

Figure 1 shows the Euclidean angular errors, in degrees, for the sensitivity
functions corresponding to the cameras in the dataset. Note that the Euclidean
angular errors are often in the order of 12 degrees for the dataset in [29].

To illustrate the quality of the approximation in a qualitative manner, in
Figure 2 we show the ground truth and approximated colour sensitivity func-
tions a sample camera in the dataset. Note the close accordance of the colour
sensitivity functions approximated by our method with respect to the ground
truth. Note, however, that even for 16.94 degrees average error yielded by the
method presented here, the overall shape approximated by our approach is in
good accordance with the ground truth (in the first panel).
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4 Conclusions

In this paper, we present a method to compute an embedding which maximises
the dependence of the embedding matrix upon the graph-vertex coordinates
and that of the target space on the incidence mapping. This treatment leads
to a convex cost function whose optimum is attained by the leading singular
value of a matrix whose columns are given by the incidence mapping and the
embedded vertex coordinates. We illustrate the utility of the method for purposes
of approximating the colour sensitivity functions of a set of over 20 commercially
available digital cameras from a single image of a colour calibration target. We
do this by using a set of spectral reflectance measurements. Thus, our spectral
sensitivity recovery via the computation of the corresponding embedding can be
viewed as the result of maximising the relationship between the colour values
yielded by the camera and the spectra in the reflectance library.
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Abstract. Supervised learning with pair-input data has recently be-
come one of the most intensively studied topics in pattern recognition
literature, and its applications are numerous, including, for example,
collaborative filtering, information retrieval, and drug-target interaction
prediction. Regularized least-squares (RLS) is a kernel-based learning al-
gorithm that, together with tensor product kernels, is a successful tool
for solving pair-input learning problems, especially the ones in which the
aim is to generalize to new types of inputs not encountered in during the
training phase. The training of tensor kernel RLS models for pair-input
problems has been traditionally accelerated with the so-called vec-trick.
We show that it can be further accelerated by taking advantage of the
sparsity of the training labels. This speed improvement is demonstrated
in a running time experiment and the applicability of the algorithm in a
practical problem of predicting drug-target interactions.

1 Introduction

In supervised learning, such as regression, classification and ranking, one is given
a training data comprised of a sequence S = {xh}nh=1 of inputs and a vector
y ∈ Rn consisting of their real-valued labels. Here, we consider learning tasks
in which the inputs are paired, a property that is characterized by the following
two circumstances. Firstly, the inputs can be naturally split into two parts, in
this paper referred to as the data point and task parts, of which both have their
own feature representations. Namely, x = (d, t), where d ∈ D, t ∈ T , and D and
T are sets consisting of all possible tasks and data points, respectively. Secondly,
the data with known labels tends to be available in sets, in which both parts
of a single input are likely to also appear as parts of other inputs, that is, the
input sequence for training contains several inputs associated to the same task
part and several inputs associated to the same data point part.

Typical examples of learning problems in which this type of split makes sense
can be found, for example, in the fields of recommender systems, where the in-
puts consist of customers and products (Basilico and Hofmann, 2004), informa-
tion retrieval, where they consist of queries and data to be retrieved (Liu, 2011),

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 123–132, 2014.
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biochemical interaction prediction, where the inputs can be split, for instance,
to drugs and targets (see e.g. Ding et al. (2013) for a recent review), predic-
tion of game outcomes (Pahikkala et al., 2010b), and several types of multi-task
learning problems involving task-specific features (see e.g. Bonilla et al. (2007);
Hayashi et al. (2012)) can be considered under this framework. In these prob-
lems, both parts of the input may appear several times in the training set, for
example, the same customer may have rated several products and the same
product may have been rated by several customers.

Let D ⊂ D and T ⊂ T denote, respectively, the in-sample data points and
in-sample tasks, that is, the sets of data points and tasks encountered in the
training set. Given a new input x = (d, t), whose label is to be predicted with
the model learned from the training set, the above type of learning problems can
be coarsely divided into four different settings of varying difficulty, shown in the
following table:

d ∈ D and t ∈ T d ∈ D and t /∈ T

d /∈ D and t ∈ T d /∈ D and t /∈ T

Of these, learning problems corresponding to the upper left setting are often
encountered in missing value estimation and link prediction problems, where
a partially filled matrix needs to be completed without the need for consider-
ing new rows and columns, as in collaborative filtering. The upper right and
lower left settings can be interpreted as typical multi-task or multi-label learn-
ing problems, where the tasks are fixed in advance and the aim is to learn to
solve several tasks together, so that the performance in the individual learning
tasks is improved compared to the approach in which the individual tasks would
be learned in isolation. The lower right setting is usually the most challenging
one. Neither the data point nor the task parts are in this case known during
training. This paper focuses mainly on this setting, but the proposed algorithms
can be straightforwardly applied for any of the above settings.

In this work we consider the setting where both the tasks and data points
of interest have feature representations, possibly defined implicitly via a ker-
nel function (Shawe-Taylor and Cristianini, 2004). Previously, learning methods
based on the tensor product (of Kronecker product) kernel have been success-
fully applied in such settings in order to solve problems such as product rec-
ommendation (Basilico and Hofmann, 2004; Park and Chu, 2009), prediction of
protein-protein interactions (Ben-Hur and Noble, 2005; Kashima et al., 2009).

The pair-input modes based on tensor product kernels can be trained
very efficiently with singular value decomposition based approaches (see e.g.
Martin and Van Loan (2006); Raymond and Kashima (2010); Pahikkala et al.
(2010a, 2013)), if the training set is complete in the sense that it contains every
possible datum-task pair with data point in D and task in T exactly once. How-
ever, if the training set is not complete, no computationally efficient closed form
solutions are known, and one must resort to iterative optimization approaches,
such as those based on the conjugate gradient (CG) method.
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There has been several articles about accelerating the gradient computation
used in these methods, all of which are based on the so-called “vec-trick”, which
avoids the expensive computation of the tensor product (see e.g. Kashima et al.
(2009)). In this paper, we show that the gradient computation can be further
accelerated by taking advantage of the sparsity of the training data, that is, only
a small subset of the datum-task pairs in D×T having a known label in training
time. This can not be achieved with the standard algorithms and data structures
used to implement sparse matrices and computations with them, but we propose
new algorithms specially tailored for solving the problem in question.

2 Training Algorithms for Pair-Input Problems

The training data consists of a sequence S = {xh}nh=1 ∈ Xn of inputs, X being
the set of all possible inputs, and a vector y ∈ Rn of the real-valued labels of the
inputs. As described above, we assume each input can be represented as a pair
consisting of a data point and task x = (d, t) ∈ D × T , where D and T are the
sets of all possible data points and tasks, respectively, to which we refer as the
data point space and the task space. Moreover, let D ⊂ D and T ⊂ T denote
the in-sample data points and in-sample tasks, that is, the sets of data points
and tasks encountered in the training sequence, respectively, and let m = |D|
and q = |T |. We further define

γ : [n]→ [m]× [q],

where the square bracket notation denotes the set [n] = {1, . . . , n}, to be the
function that maps the indices of the labeled inputs pairs to the index pairs
corresponding to the data point and task the data consist of, that is, γ(h) = (i, j)
if xh = (di, tj). Note that γ does not necessarily have an inverse, since in some
learning settings the training set may contain several data points with the same
datum-task pair.

Next, unless stated otherwise, we assume that the data point space and the
task space are real vector spaces, that is, D = Rd and T = Rr, and hence both
the data points and tasks have a finite dimensional feature representation. Let
D ∈ Rm×d and T ∈ Rq×r, respectively, contain the feature representations of the
in-sample data points and tasks. Then, the joint tensor feature representation
for the training data (used in several studies in the machine learning literature as
discussed in Section 1) can be expressed as X = B(T⊗D), where ⊗ denotes the
tensor (or Kronecker) product of matrices and B ∈ {0, 1}n×mq is a bookkeeping
matrix, whose rows are indexed by the n training points and columns by the mq
different tensor feature vector combinations, that is, the entries of B are

Bh,k =

{
1 if k = (j − 1)d+ i, where (i, j) = γ(h)
0 otherwise

.

Each row of B contains a single nonzero entry indicating to which training input
the datum corresponds. This matrix covers both the situation in which some of
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the possible paired inputs are not in the training data and the one in which
there are several occurrences of the same pair. We note that there are several
alternative approaches for constructing a joint feature representation for pair-
input data but the tensor-based representation is the most expressive one and it
enables the simultaneous generalization to both out-of-sample data points and
tasks (for further analysis about the expressivity and universality of the tensor-
based representation, we refer to our previous work in Waegeman et al. (2012)).

The objective function of the ridge regression problem (Hoerl and Kennard,
1970) can be expressed as

J(w) = (Xw − y)T(Xw − y) + λwTw, (1)

where λ > 0 is a regularization parameter controlling the trade-off between
the regression error made on the training set and the complexity of the model
represented by the real-valued vector w. The minimizer of J can be found by
solving the following system of linear equations:(

XTX+ λI
)
w = XTy

with respect to w. By substituting the tensor feature representations for X, the
system becomes(

(T ⊗D)TBTB(T⊗D) + λI
)
w = (T⊗D)TBTy. (2)

One can also introduce the corresponding optimization problem known as the
dual problem of (1), whose solution is obtained via solving the following system(

XXT + λI
)
a = y (3)

with respect to the dual variables a. According to the KKT conditions, the primal
and dual solutions are connected as w = XTa. In addition to having computa-
tional advantages under certain circumstances more elaborated below, the dual
problem also makes it possible to use nonlinear kernel functions in place of the
ordinary inner products between feature vectors (Shawe-Taylor and Cristianini,
2004). Note also that, when using kernels, the input space (e.g. here consisting
the Cartesian product of the data point space and task space) does not have to
be a finite dimensional vector space but, depending of the kernel function used,
any kind of set of inputs will do. By introducing the kernel matrices K = DDT

and G = TTT for the data points and tasks, respectively, (3) can be rewritten
as (

B(G⊗K)BT + λI
)
a = y. (4)

If one solves the primal system (2) with, for example, the conjugate gradient
(CG) algorithm (see e.g. Nocedal and Wright (2000)), it is easy to conclude that
the computationally most expensive operations are the following two types of
matrix-vector products:

u← B(T⊗D)v (5)

v← (T ⊗D)TBTu (6)
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where v ∈ Rdr and u ∈ Rn. Similarly, the computationally most expensive
operation involved in a CG step for solving the dual system (4) is the following
matrix-vector product:

u← B(G⊗K)BTu (7)

where u ∈ Rmq.
The machine learning literature consists of several studies in which these prod-

ucts have been accelerated with the so-called “vec-trick”, which is characterized
by the following well-known results of the tensor product algebra:

Lemma 1. Let P ∈ Ra×b, Q ∈ Rb×c, and R ∈ Rc×d be matrices. Then,

(RT ⊗P)vec(Q) = vec(PQR), (8)

where vec is the vectorization operator that stacks the columns of a matrix to a
vector.

It is obvious that the right hand size of (8) is considerably faster to compute
than the left hand side, because it avoids the direct computation of the large
tensor product.

Algorithm 1. Compute u← B(T⊗D)v

1: u ← 0 ∈ Rn

2: if mdr + rn < qdr + dn then
3: M ← DV � O(mdr) time operation
4: for h = 1, . . . , n do
5: i, j ← γ(h)
6: uh ← MiT:,j � O(r) time operation

7: else
8: N ← VTT � O(qdr) time operation
9: for h = 1, . . . , n do
10: i, j ← γ(h)
11: uh ← DiN:,j � O(d) time operation

12: return u

Let us consider both (5) and (6) in detail. Let V ∈ Rd×r be the matrix for
which v = vec(V) and U ∈ Rm×q be the matrix for which BTu = vec(U). Then,
applying (8) leads to

u← Bvec(DVTT) (9)

v← vec(DTUT), with BTu = vec(U). (10)

Similarly, using the vec-trick on (7) transforms it to

u← Bvec(KUG), with BTu = vec(U). (11)
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Multiplying a vector with the matrixB does not increase the complexity, because
it contains at most mq nonzero entries, and hence it can be performed with
the standard data structures and algorithms for sparse matrix-vector products.
Thus, if we restrict our consideration on only the products between the other
matrices, the complexity of the vec-trick method without taking advantage of
the sparsity of the label information is characterized by the following lemma:

Lemma 2. With the vec-trick, the computational complexity of a single gradient
step for solving the primal form (e.g. the computation of the right hand sides of
both (9) and (10)) and the corresponding complexity for solving the dual form
(e.g. the computation of the right hand side of (11)) are, respectively,

O(min(mdr +mrq, drq +mdq)) and O(m2q +mq2) .

Proof. The complexity results directly from performing the matrix multiplica-
tions in the optimal order. ��

Solving the primal problem is more cost-effective than solving the dual when the
number of features is smaller than the number data points. For pair input data
and tensor features, this is the case especially when both d << m and r << q
hold simultaneously. In the opposite case, or if nonlinear kernel functions are
used, it pays to solve the dual form instead.1

Next, we consider how the sparsity of the label information can be taken
advantage of to further accelerate the gradient computations for both the primal
and dual cases. With sparsity, we refer to the property that only a small portion
of the datum-task pairs with the data point and task parts encountered in the
training set has a known label. Formally, this means that n << mq.

Proposition 1. The time complexity of computing the right hand sides of both
(9) and (10), and the corresponding complexity of computing the right hand side
of (11) are, respectively,

O(min(mdr + rn, drq + dn)) and O(mn + qn) .

Proof. Calculating the right hand side of (9) can be started by first computing
either DV or VTT requiring O(mdr) and O(qdr) time, respectively. Assume
that we start with the former, and compute the matrix M ← DV. Then, each
entry of u can be computed by taking the inner product between a row of M
and a column of TT, which are of length r. Since u has n entries, the overall
complexity becomes O(mdr + rn). If the computation is started with the latter
way, each entry of u then requires the inner product between vectors of length
d, resulting to an overall complexity O(qdr + dn). This idea is summarized in
Algorithm 1.

1 The convergence properties of gradient descent methods (e.g. the number of steps
required for achieving good prediction performance) may differ considerably between
the primal and dual forms (Chapelle, 2007), but we leave this consideration out from
this article, since it would divert the discussion too far from the scope of the paper.
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The matrix U in (10) contains at most n nonzero entries, and hence com-
puting either the matrix product DTU or UT require O(dn) and O(rn) time,
respectively. The subsequent multiplications of either with T from right or with
DT from left, increase the overall complexities to O(drq + dn) or O(mdr + rn)
time, respectively. This is illustrated in Algorithm 2.

Algorithm 2. Compute v← (T⊗D)TBTu

1: if mdr + rn < qdr + dn then
2: M ← 0 ∈ Rm×r

3: for h = 1, . . . , n do
4: i, j ← γ(h)
5: Mi ← Mi + uhTj � O(r) time operation

6: v ← vec(DTM) � O(mdr) time operation
7: else
8: N ← 0 ∈ Rd×q

9: for h = 1, . . . , n do
10: i, j ← γ(h)
11: N:,j ← N:,j + (DT):,iuh � O(r) time operation

12: v ← vec(NT) � O(qdr) time operation

13: return v

The matrix U in (11) has at most n nonzero entries, and hence multiplying it
with K from left or with G from right take O(mn) and O(qn) time, respectively.
The subsequent filling of the entries of u require n inner products between vectors
of size q or m depending whether U was multiplied with K or G, resulting in an
overall time complexity of O(mn+ qn). This is illustrated in Algorithm 3. ��

Algorithm 3. Compute u← B(G⊗K)BTu

1: M ← 0 ∈ Rm×q

2: for h = 1, . . . , n do
3: i, j ← γ(h)
4: Mi ← Mi + uh(G)j � O(q) time operation

5: u ← 0 ∈ Rn

6: for h = 1, . . . , n do
7: i, j ← γ(h)
8: uh ← KiM:,j � O(m) time operation

9: return u

3 Experiments

In the experiments, we demonstrate the use of the algorithm on a practical
problem of predicting drug-target (DT) interactions, and compare the computa-
tional speed of the proposed training algorithm based on the one that employs
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Fig. 1. Prediction performance as a function of CG iterations for both the ranking and
classification tasks

the vec-trick only. The data we use for DT interaction prediction experiments
consists of 1421 drug compounds, 156 protein targets, and 93356 interaction
binding affinity values for DT pairs originally measured by Metz et al. (2011).
That is, a bit less than half of the possible DT pairs are labeled with a known
binding value. The binding values vary between 4.0 and 10.3, the larger the
values the tighter binding. The features of the drugs consists of their 2D Tani-
moto coefficient similarities with the other drugs, that is, the feature matrix D
is a symmetric 1421 × 1421-matrix. The feature representation for the protein
targets is their normalized Waterman-Smith sequence similarity with the other
targets, resulting to a symmetric 156 × 156-dimensional feature matrix T. We
refer to Pahikkala et al. (2014) for more in depth description of the data and the
similarities.2 The implementation of the algorithm will be put online as a part
of the RLScore open source machine learning library.3

As practical example problems, we consider the task of learning to rank the
DT pairs with respect to their binding value and a binary classification problem
in which a drug and target are said to interact if the binding value is larger than
7.6. In both experiments, we perform nine train-test splits of the whole data
over which the performance is averaged. The splits reflect the most challenging
of the four settings considered in the introduction section, that is, the one in
which the model must simultaneously generalize for new drugs and targets. The
performance of both learning problems is measured using the concordance index
(Gönen and Heller, 2005) (C-index), also known as the pairwise ranking accuracy

1
|{(i,j)|yi>yj}|

∑
yi>yj

H(ŷi − ŷj), where yi denote the true and ŷi the predicted

labels, and H is the Heaviside step function. Note that this measure reduces
to the area under ROC curve (AUC) in the binary classification problem. The
prediction performances for the tasks are illustrated in Figure 1. The Tikhonov
regularization parameter value is set to 0, and hence the only regularization
mechanism is the number of CG iterations. We observe that in both tasks one
requires only a few CG iterations until the performance converges, to a slightly

2 The data is avaliable at http://staff.cs.utu.fi/~aatapa/data/DrugTarget/
3 Available at https://github.com/aatapa/RLScore

http://staff.cs.utu.fi/~aatapa/data/DrugTarget/
https://github.com/aatapa/RLScore
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Table 1. The time (in seconds) spent for gradient computations by the proposed
accelerated method and the traditional vec-trick based approach

Drug-target Simulation

New method 57 0.17
Vec-trick method 67 11.43

better than random level (concordance index 0.6) for the ranking tasks but
notable better classification performance (AUC 0.75). These results are in line
with those published in our previous study with the data (Pahikkala et al., 2014).

We compare the running speeds of the new and the vec-trick based approach
on both the DT interaction prediction problem and with a simulated experiment
with randomly generated data. Table 1 presents the running time of both algo-
rithms on 50 CG iterations for the DT problem. Since almost half of the possible
DT pairs is known, the training labels are not really sparse and the difference
between the running times is small. We next generated artificial data and task
similarity matrices D,T ∈ R10000×100 and generated a vector y ∈ R10000 labels
for inputs with random datum-task indices. For this experiment, the running
time of the proposed algorithm for a single gradient iteration is almost two or-
ders of magnitude smaller than that of the vec-trick method, demonstrating the
potential of the new approach for large-scale and sparse data sets.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful comments.

References

Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In: Brod-
ley, C.E. (ed.) Proceedings of the Twenty-first International Conference on Machine
learning (ICML 2004). ACM (2004)

Ben-Hur, A., Noble, W.: Kernel methods for predicting protein-protein interactions.
Bioinformatics 21(suppl. 1), 38–46 (2005)

Bonilla, E.V., Agakov, F.V., Williams, C.K.I.: Kernel multi-task learning using task-
specific features. In: Meila, M., Shen, X. (eds.) 11th International Conference on
Artificial Intelligence and Statistics. JMLR Proceedings, vol. 2, pp. 43–50. JMLR.org
(2007)

Chapelle, O.: Training a support vector machine in the primal. Neural Computa-
tion 19(5), 1155–1178 (2007)

Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning
methods for predicting drug–target interactions: a brief review. Briefings in Bioin-
formatics (2013)

Gönen, M., Heller, G.: Concordance probability and discriminatory power in propor-
tional hazards regression. Biometrika 92(4), 965–970 (2005)

Hayashi, K., Takenouchi, T., Tomioka, R., Kashima, H.: Self-measuring similarity for
multi-task gaussian process. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W.,
Silver, D.L. (eds.) ICML Unsupervised and Transfer Learning Workshop. JMLR
Proceedings, vol. 27, pp. 145–154. JMLR.org (2012)



132 T. Pahikkala

Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12, 55–67 (1970)

Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., Tsuda, K.: Link propagation:
A fast semi-supervised learning algorithm for link prediction. In: Proceedings of the
SIAM International Conference on Data Mining (SDM 2009), pp. 1099–1110. SIAM
(2009)

Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)
Martin, C.D., Van Loan, C.F.: Shifted Kronecker product systems. SIAM Journal on

Matrix Analysis and Applications 29(1), 184–198 (2006)
Metz, J.T., Johnson, E.F., Soni, N.B., Merta, P.J., Kifle, L., Hajduk, P.J.: Navigating

the kinome. Nature Chemical Biology 7(4), 200–202 (2011)
Nocedal, J., Wright, S.J.: Numerical Optimization, 1st edn. Springer (2000)
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Abstract. The Bayesian a posterior probability is a very important el-
ement in pattern recognition. In classification problems, the posterior
probabilities reflect the uncertainty of assessing an example to particu-
lar class. Such residual information will be useful for more deep under-
standing or analysis of examples. In this paper, we propose a nonlinear
discriminant analysis based on the probabilistic estimation of the Gaus-
sian mixture model (GMM). We use GMM to estimate the Bayesian a
posterior probabilities of any classification problems. Then we use poste-
rior probabilities estimated by GMM to construct discriminative kernel
function. The performance of the proposed kernel function is confirmed
by several experiments using UCI machine learning repository.

Keywords: Fisher’s Linear Discriminant Analysis, Gaussian Mixture
Model, Bayesian a posterior probabilities, Discriminant Kernel.

1 Introduction

The Bayesian a posterior probability is a very important element in pattern
recognition. The task that classifies unknown example x can be interpreted as
the maximization procedure to the posterior probability P (Ck|x) which implies
the probability that x belongs to the k−th class Ck. Furthermore, in classifi-
cation problems, the posterior probabilities reflect the uncertainty of assessing
an example x to the class Ck. Such residual information will be useful for more
deep understanding or analysis of examples.

There are many ways to estimate the Bayesian a posterior probabilities. Naive
Bayes [16] is one of the most simple probabilistic classifier. Logistic regression
is a generalized linear model and it has saturated outputs which is suitable to
represent probabilities [2]. Several classifiers can also perform the estimation of
the posterior probability simultaneously with the classification task. Wu et al.
proposed how to presume the posterior probability from the output of SVM
[15]. The one of the most efficient methods to estimate the Bayesian a posterior
probabilities P (Ck|x) is to assume the probability densities of each class as
multivariate Gaussian distribution. To treat multi-modal distributions, Gaussian
mixture model is widely used many real application [3,17].
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Fisher’s Linear discriminant analysis (FLDA) [4] is one of the well known
methods to extract the best discriminating features for multi-class classification.
FLDA is useful for linear separable cases, but for more complicated cases, it is
necessary to extend it to nonlinear.

As one of the nonlinear extensions of FLDA, kernel discriminant analysis
(KFDA) has been successfully applied in many applications [9,1]. The polynomial
kernel, sigmoidal kernel or radial basis function (RBF) are popular and widely
used. However these functions are defined a priori and selected without the clear
reason. Also these functions are general and not related to probabilistic inference.

In recent years, discriminant kernel function (DKF) which is based on the
Bayesian a posterior probability estimation is proposed [8]. This kernel is derived
from the theory of optimum nonlinear discriminant analysis (ONDA) [11,12].
Since ONDA gives the optimum nonlinear mapping that maximizes the Fisher’s
discriminant criterion [4], the DKF derived from ONDA is also optimum in terms
of the discriminant criterion. The DKF is defined by explicitly using the Bayesian
a posterior probability P (Ck|x). Similar with the Bayesian decision theory, we
have to presume P (Ck|x) by a certain estimation method to use DKF for real
application.

In this paper, we propose a nonlinear discriminant analysis based on the prob-
abilistic estimation of the Gaussian mixture model. We use GMM to estimate
the Bayesian a posterior probabilities P (Ck|x) of any classification problems.
Then we use P (Ck|x) estimated by GMM to construct discriminative kernel
function which is optimal in terms of the Fisher’s discriminant criterion. We call
this Gaussian mixture (GM) kernel.

We investigate the performance of the proposed GM kernel by several experi-
ments using UCI machine learning repository [5]. We compare the discriminative
power of the discriminant spaces which are constructed from the proposed kernel
and usual kernels. The visualization experiments for the discriminant spaces or
kernel matrices show some good properties of our discriminant kernels.

The rest of this paper is organized as follows: Section 2 reviews FLDA, KFDA
and discriminant kernels. Section 3 reviews Gaussian mixture model. Section 3.2
describes our proposed Gaussian mixture kernel. The experiments are described
in Section 4. Finally, Section 5 concludes the paper.

2 Discriminant Analysis

2.1 Fisher’s Linear Discriminant

Fisher’s linear discriminant analysis (FLDA) [4] is one of the well known methods
to extract the best discriminating features for multi-class classification. FLDA
is formulated as a problem to find an optimum linear mapping by which the
within-class scatter in the mapped discriminant feature space is made as small
as possible relative to the between-class scatter.

Let an m dimensional feature vector be x = (x1, . . . , xm)T . Consider K
classes denoted by {C1, . . . , CK}. Assume that we have n feature vectors {xi|i =
1, . . . , n} as training samples and they are labeled as one of the K classes. Then
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FLDA constructs a dimension reducing linear mapping from the input feature
vector x to a new feature vector y as

y = AT (x− x̄T ) (1)

where A = [aij ] is the coefficient matrix.
The discriminant criterion

J = tr
(
Σ̂−1

W Σ̂B

)
(2)

is used to evaluate the performance of the discrimination of the new feature
vectors y, where Σ̂W and Σ̂B are respectively the within-class covariance ma-
trix and the between-class covariance matrix of the new feature vectors y. The
objective of FLDA is to maximize the discriminant criterion J .

The optimal coefficient matrix A is then obtained by solving the following
generalized eigenvalue problem

ΣBA = ΣWAΛ (ATΣWA = I) (3)

where Λ = diag (λ1, . . . , λL) is a diagonal matrix of eigen values and I denotes
the unit matrix. The matrices ΣW and ΣB are respectively the within-class
covariance matrix and the between-class covariance matrix of the input feature
vectors x, and they are computed as

ΣW =

K∑
k=1

P (Ck)Σk (4)

Σk =
1

nk

∑
li=Ck

(xi − x̄k)(xi − x̄T )
k (5)

ΣB =

K∑
k=1

P (Ck)(x̄k − x̄T )(x̄k − x̄T )
T , (6)

where nk, P (Ck), x̄k and x̄T denote the number of training samples of the class
Ck, a priori probability of the class Ck, the mean vector of the class Ck and the
total mean vector, respectively. Usually we compute the probability of the class
Ck as P (Ck) =

nk

n .
The j-th column of A is the eigenvector corresponding to the j-th largest

eigenvalue. Therefore, the importance of each element of the new feature vector y
is evaluated by the corresponding eigenvalues. The dimension of the new feature
vector y is bounded by min(K − 1, n) because the rank of the matrix ΣB is
bounded by min(K − 1, n).

2.2 Kernel Discriminant Analysis

FLDA is useful for linear separable cases, but for more complicated cases, it is
necessary to extend it to nonlinear. Kernel discriminant analysis (KFDA) [1,9] is
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one of the nonlinear extensions of FLDA and constructs a nonlinear discriminant
mapping as a linear combination of kernel functions.

Consider a nonlinear mapping Φ from a input feature vector x to the new
feature vector Φ(x). In KFDA the discriminant features y are constructed as a
linear combinations of the new feature Φ(x).

The discriminant mapping can be given as

y(x) = UTΦ(x). (7)

Similar with the case of the kernel PCA, the coefficient matrix U can be expressed
as a linear combinations of the training samples as

U =

n∑
j=1

Φ(xj)α
T
j , (8)

the discriminant mapping can be rewritten as

y(x) =

n∑
j=1

αjΦ(xj)
TΦ(x) =

n∑
j=1

αjK(xj ,x) = A
Tk(x), (9)

where K(xi,x) = Φ(xi)
TΦ(x) and k(x) = (K(x1,x), . . . ,K(xn,x)) are the

kernel function defined by the nonlinear mapping Φ(x) and the empirical kernel
vector, respectively.

Then the discriminant criterion is given as

J = tr
(
Σ̂−1

W Σ̂B

)
, (10)

where Σ̂W and Σ̂B are the within-class covariance matrix and the between-class
covariance matrix of the new feature vectors y(x), respectively.

The polynomial functions

K(x,y) = (xTy + 1)q (11)

or the Radial Basis functions

K(x,y) = exp

(
−||x− y||2

2σ2

)
(12)

are often used as the kernel function for KFDA.

2.3 Discriminant Kernel Functions

In the KFDA, usually the kernel functions are defined a priori and selected
without the clear reason. Also such kernel functions are general and not related
to the probabilistic inference.
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Recently, Kurita proposed the discriminant kernel function (DKF) which is
based on the Bayesian a posterior probability estimation [8]. This kernel function
is defined as

K(x,y) =

K∑
k=1

P (Ck|x)P (Ck|y)
P (Ck)

(13)

where P (Ck|x) is the Bayesian a posterior probability which is presumed by a
certain estimation method, and P (Ck) is the prior of the k-th class Ck.

The Eq. (13) is derived from the theory of optimum nonlinear discriminant
analysis (ONDA) [11,12]. Since ONDA gives the optimum nonlinear mapping
that maximizes the discriminant criterion, DKF derived from ONDA is also
optimum in terms of the discriminant criterion.

As shown in Eq. (13), DKF is defined by using the Bayesian a posterior prob-
ability P (Ck|x). Similar with the Bayesian decision theory, we have to estimate
P (Ck|x) by a certain estimation method to use DKF for real application. Con-
versely, DKF can be used as one of the optimal way to construct kernel functions
maximizing the discriminant criterion from the Bayesian a posterior probability
estimation.

There are many ways to estimate the Bayesian a posterior probabilities. De-
pending on the estimation method, we can define the corresponding discriminant
kernel function. In this paper we propose discriminant kernel function based on
Gaussian mixture model (GMM).

3 Gaussian Mixture Model

Multivariate Gaussian distribution is defined as

N (x;μ, Σ) =
1

(2π)m/2|Σ|1/2 exp

{
−1

2
(x− μ)TΣ−1(x− μ)

}
(14)

where m is a number of variables, μ is a mean vector and Σ is a covariance
matrix.

Gaussian mixture model (GMM) is a linear combination of multiple Gaussian
distributions. In GMM, each elemental Gaussian distribution is called compo-
nent. GMM is formulated as

p(x) =

J∑
j=1

πjN (x;μj , Σj) (15)

where J is a number of components, μj andΣj is a mean vectors and a covariance
matrix of the j-th component respectively, and πj is coefficient of the linear
combination.

The parameters μj , Σj and πj are usually estimated by Expectation Maxi-
mization (EM) algorithm [2].
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3.1 The Bayesian A Posterior Probability Estimation by GMM

To estimate the Bayesian a posterior probability P (Ck|x) by GMM, we define
the probability densitiy p(x|Ck) of each class Ck as

p(x|Ck) =

Jk∑
j=1

πk,jNk,j(x) (16)

where Nk,j(x) represetns N (x;μk,j , Σk,j), the j-th Gaussian component for the
class Ck. Jk is a number of components for the class Ck. The coefficient πk,j , the
mean vector μk,j and the covariance matrix Σk,j are estimated by using given
samples x belongs to the class Ck.

Then the posterior probability can be written as

P (Ck|x) =
P (Ck)p(x|Ck)

p(x)
=
P (Ck)

∑Jk

j=1 πk,jNk,j(x)

p(x)
(17)

where

p(x) =

K∑
k=1

P (Ck)p(x|Ck) =

K∑
k=1

P (Ck)

Jk∑
j=1

πk,jNk,j(x). (18)

3.2 Gaussian Mixture Kernel

As described in Sec. 2.3, the estimation of the Bayesian a posterior probabil-
ity P (Ck|x) can be used to construct the kernel function which is optimum in
terms of the discriminant criterion. We obtain kernel function based on Gaussian
mixture model by substituting Eq. (17) for Eq. (13):

KGM(x,y) =

K∑
k=1

P (Ck|x)P (Ck|y)
P (Ck)

=

∑K
k=1 P (Ck)p(x|Ck)p(y|Ck)

p(x)p(y)

=

∑K
k=1 P (Ck)

∑Jk

i=1

∑Jk

j=1 πk,iπk,jNk,i(x)Nk,j(y)

p(x)p(y)
(19)

We call this the Gaussian mixture (GM) kernel.
The matrix K̂ having the component kmn = KGM (xm,xn) is regarded as

the kernel matrix of GM kernel. We can perform a novel nonlinear discriminant
analysis by applying FLDA to the matrix K̂. We call it GMM based kernel
discriminant analysis (GM KDA).

After several deformations, Eq. (19) can be rewritten as

KGM (x,y) =

K∑
k=1

P (Ck)

Jk∑
i=1

Jk∑
j=1

αk,i,j exp

{
−Mk,i(x) +Mk,j(y)

2

}
p(x)p(y)

, (20)

αk,i,j =
πk,iπk,j

(2π)D
√
|Σk,i||Σk,j |

, (21)

Mk,i(x) = (x− μk,i)
TΣ−1

k,i (x− μk,i). (22)
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Table 1. Specifications of data sets

data set # of classes # of samples # of features

heart 2 270 13

breast cancer 2 683 10

australian 2 690 14

wine 3 178 13

vehicle 4 846 18

vowel 11 990 10

Mk,i(x) represents the Mahalanobis distance between x and μk,i, the mean
vector of the i-th Gaussian component for the class Ck. Then the proposed
kernel function can be interpreted as the sum of exponential of negative averaged
Mahalanobis distances.

4 Experiments

The performance of our GMM based nonlinear discriminant analysis is evaluated
by using six standard data sets (heart, breast cancer, australian, wine,
vehicle and vowel) from UCI Machine Learning Repository [5]. Table 1 shows
the statistics of these data sets.

For classification experiments, each data set is divided into a training set (2/3
of all samples) and a test set (remaining samples) at random. A training and
testing task is repeated 10 times with different random seeds, and the averaged
classification rate for the test sets are shown in the following sections. For all
experiments, we used the class prior P (Ck) = Nk/N where Nk is the number of
samples in Ck.

4.1 Evaluation of the Number of Components

Gaussian mixture model has the hyper-parameter J which implies the number
of Gaussian components. We confirm the relationship between the number of
components and classification accuracy. In this section we express the Gaussian
mixture model having J components as J-GMM.

For the dataset heart and vowel, five Gaussian mixture models (1-GMM to
5-GMM) are trained. Each model is used to make GM kernel, and these kernels
are used to do the GMM based discriminant analysis.

Tab. 2 shows the training and testing accuracy. Although the performances
to the training samples are improving with the number of components, the per-
formances to the test samples are not always increasing.

To avoid the over-fitting problem, we have to reduce the unnecessary compo-
nents. In this paper, we manually determine the appropriate number of compo-
nents based on the preliminary experiments. For all classes Ck, we use Jk = 1 for
heart, breast cancer, australian, wine, vehicle and use Jk = 3 for vowel.
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Table 2. Relationship between the number of components and classification accuracy

1-GMM 2-GMM 3-GMM 4-GMM 5-GMM

heart (train) 88.28% 90.11% 92.06% 93.50% 94.06%

heart (test) 81.56% 79.11% 77.22% 75.44% 76.00%

vowel (train) 94.11% 98.56% 99.26% 99.33% 99.38%

vowel (test) 85.67% 91.88% 94.18% 93.15% 94.03%

Table 3. Classification rates (and standard deviations) of 9-NN in discriminant spaces

Fisher’s LDA RBF KDA GM KDA (proposed)

heart 81.11% (1.57) 77.56% (8.84) 81.56% (3.02)

breastcancer 97.06% (1.48) 96.40% (1.79) 96.67% (1.51)

australian 85.48% (1.76) 84.87% (1.75) 85.74% (1.28)

wine 98.50% (1.46) 98.17% (2.00) 98.33% (1.76)

vehicle 76.95% (2.06) 84.49% (1.19) 82.45% (1.39)

vowel 75.52% (1.64) 97.03% (1.94) 94.18% (1.97)

Average 85.77% (1.66) 89.75% (2.92) 89.82% (1.82)

4.2 Visualization of Kernels

To compare the property of the proposed and the existing kernel functions, the
feature spaces or kernel matrices of the wine are illustrated in Fig. 1, 2.

Fig. 1 shows the PCA space of the original features or the discriminant spaces
of RBF or GM kernel. It shows a goodness of the proposed kernel. It is noticed that
samples of the GM kernel are distributing only on the triangle regions. Generally,
forK classes problems, the discriminant spaces of the proposed discriminant ker-
nel forms theK−1 dimensional hyper-tetrahedron (simplex) which is expected to
be ideal. Since the GM kernel is defined by the Bayesian a posterior probabilities,
it easily gives a probabilistic interpretation such as how a sample is close to each
class. On the other hand, samples of the original features and the RBF kernel are
freely and widely distributing in the two dimensional plane.

Fig. 2 shows the visualization result for three types of kernel matrices. The
first one is linear kernel; it is constructed from just a inner product of the pair
of the original features. Others are the RBF or GM kernel. The color of the
i-th row and the j-th column shows the similarity between sample i and j.
Since the samples are sorted in order of a class label beforehand, ideally, these
matrices should have a block diagonal structure. Such diagonal class structure
more clearly appears in the GM kernel than the Linear or the RBF kernel.

4.3 Comparison of Classification Accuracy

We compare the performances of the proposed GMM based discriminant anal-
ysis with usual Fisher’s Linear Discriminant Analysis (FLDA) and RBF Kernel
Discriminant Analysis (RBF KDA). For the classification method in their dis-
criminant spaces, k-nearest neighbor method is adopted. We use k = 9 for all
dataset and all discriminant spaces.
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Fig. 1. Sample distributions of wine data. The top row and the bottom row show the
training and test sets, respectively. (Left) PCA spaces of original features. (Center)
Discriminant spaces obtained from RBF kernel matrices. (Right) Discriminant spaces
obtained from GM kernel matrices.
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Fig. 2. Visualized kernel matrices of wine data. The top row and the bottom row show
the results of training and test sets, respectively. (Left) Linear kernel (inner product)
of original features. (Center) RBF kernel matrices. (Right) GM kernel matrices.

The parameters of RBF KDA, i.e. the coefficient σ in Eq. (12), are deter-
mined by grid search and 10-fold cross validation. We search the best σ from 31
candidates σ = 2−15, 2−14, 2−13, · · · , 2+14, 2+15.

Table 3 shows the classification rates for test samples of the proposed and
existing methods. The proposed GMM based discriminant analysis has a better
performance about averaged accuracy for six datasets. RBF KDA and GM KDA
have almost comparable accuracy, but GM KDA shows good (smaller) averaged
variance.

5 Conclusion

In this paper we propose GMM based nonlinear discriminant analysis which
is formulated by the Bayesian a posterior probabilities estimated by Gaussian
mixture model. The GM kernel has comparable classification performance with
RBF kernel while GM kernel has more good stability (smaller variance).

In the experiment, we manually determined the hyper-parameter J which
is the number of individual Gaussian distributions. We shoud automatically
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determine J by using cross validation or several statistical validation methods
as the future work.
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Abstract. In this paper we present a framework to unify information
theoretic feature selection criteria for multi-label data. Our framework
combines two different ideas; expressing multi-label decomposition meth-
ods as composite likelihoods and then showing how feature selection cri-
teria can be derived by maximizing these likelihood expressions. Many
existing criteria, until now proposed as heuristics, can be reproduced
from a single basis under the proposed framework. Furthermore we can
derive new problem-specific criteria by making different independence as-
sumptions over the feature and label spaces. One such derived criterion
is shown experimentally to outperform other approaches proposed in the
literature on real-world datasets.

1 Introduction

The problem of learning from multi-label data becomes increasingly interest-
ing because of the large number of applications in many different areas [15]. In
computer vision [2], multi-label data are used in automated image and video
annotation, in situations where images can be associated with a number of se-
mantic concepts. In bioinformatics [5], multi-label learning is used in functional
genomics, where a gene or protein is associated with multiple functional labels,
as an individual gene or protein usually performs a number of functions. In text
mining [8], multi-label data are used in text categorization, as a news webpage
can be associated with more than one category.

All of these areas have a common characteristic, a large number of features.
High dimensional feature spaces are associated with a number of problems, such
as over-fitting to irrelevant features and high computational complexity. The
features can be divided in three categories: features that are ‘relevant’ to our task,
features that are ‘irrelevant’ and features that are ‘redundant’ in the context of
other features. The objective of feature selection is to find a minimal subset of
features that provide us with maximal useful information about the data. In our
work we focus on filter methods for feature selection, which operate under the
assumption that the prediction and feature selection steps are independent [7].

More particularly the present work focuses on information theoretic feature
selection techniques in multi-label datasets, a problem that has recently received
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a lot of attention [4,10,9]. The starting point of our work is a recently proposed
framework for single label data by Brown et al. [3], which shows that many exist-
ing criteria can be seen as iterative maximizers of a common objective function:
the conditional likelihood of the true label given the selected features. We ex-
tend this work by incorporating the idea of expressing multi-label decomposition
methods via composite likelihood, as presented by Zhang & Schneider [16]; we
show that this leads naturally to the derivation of different feature selection cri-
teria appropriate for multi-label data. By introducing this framework we provide
insights into multi-label feature selection.

There are two main contributions in our work. First, we provide a theoreti-
cal foundation that unifies various multi-label criteria proposed in the literature
by maximizing full and composite likelihood expressions that describe different
independence assumptions over the feature and label spaces (Sections 3-4). Sec-
ond, we derive and evaluate new multi-label criteria which we compare with the
state-of-the-art in real-world datasets (Section 5).

2 Reviewing Likelihood Maximization Framework

In this section we review the single-label feature selection framework presented
by Brown et al. [3]. We assume that we have an underlying independent and
identically distributed (i.i.d.) process p : X → Y, and N samples of this process
are observed. The observations are pairs {xi, yi}Ni=1, where the features are d-
dimensional vectors xi = [xi1...x

i
d]. The features are drawn from the random

variables X1, ..., Xd, with their joint distribution being X = X1X2...Xd and the
labels are drawn from the random variable Y . Following Brown et al. [3], in
the feature selection procedure we define θ to be a d-dimensional binary vector,
where the elements have a value of 1 if the feature is selected and 0 otherwise.
Furthermore xθ is the vector of the chosen and xθ̃ the vector of the unchosen
features. We assume that the process p can be defined by a subset of features
and so for an optimal vector θ∗ we have p(y|x) = p(y|xθ∗), in other words
the unselected features xθ̃∗ are irrelevant or redundant given the selected ones.
We approximate the process p using a hypothetical predictive model f . This
model has two layers of parameters: θ, corresponding to the selected features,
and τ , corresponding to the parameters used in the learning procedure in order
to predict y. So the problem can be defined as searching for a minimal subset of
features, whilst maximizing the conditional likelihood of the training labels. For
single-label data the conditional likelihood (L) and the log-likelihood (�) have
the form:

L(θ, τ ; y|x) =
N∏
i=1

f(yi|xi
θ, τ)⇔ �(θ, τ ; y|x) =

1

N

N∑
i=1

log f(yi|xi
θ, τ).

Brown et al. [3] showed that this likelihood decomposes as so:

lim
N→∞

−� = EXY

{
log

p(y|xθ)

f(y|xθ, τ)

}
+ I(Xθ̃;Y |Xθ) +H(Y |X).
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From the above three terms, the first describes how well the model f approxi-
mates p given the selected features, the second term depends on the choice of
the selected features, while the third term is an irreducible constant which forms
a bound on the Bayes error rate. More details regarding this decomposition can
be found in Brown et al. [3]. The main assumption of filter methods is that
the classification and the feature selection steps are independent [7]. Under this
assumption and ignoring the constant term, the value of θ that maximizes the
conditional likelihood is the same as the value of θ that minimizes the conditional
mutual information

argmax
θ

L(θ; y|x) = argmin
θ

I(Xθ̃;Y |Xθ). (1)

As we see in Brown et al. [3] a greedy optimization process to minimize the
conditional mutual information in eq. (1) will select a feature Xk that maximizes
the following scoring function

JCMI(Xk) = I(Xk;Y |Xθ) with Xk ∈ Xθ̃, (2)

where the subscript CMI stands for Conditional Mutual Information.
Since Xθ is high-dimensional, the estimates of the mutual information become

less reliable as we increase the number of selected features; this can lead to poorly
selected subsets. For that reason there have been proposed in the literature low-
dimensional approximations of this conditional mutual information, such as the
Mutual Information Maximization (MIM) [1] and the Joint Mutual Information
maximization (JMI) [12]. The respective criteria are given by

JMIM (Xk) = I(Xk;Y ), JJMI(Xk) =
|Xθ|∑
j=1

I(XθjXk;Y ),

where we used the notation Xθj ∀ j ∈ {0, ..., |Xθ|} to represent the jth fea-
ture already selected, while |Xθ| is the number of selected features so far. As
we can see the MIM criterion selects the features independently and so it has
the ability to observe relevant features, but not to detect redundant ones. On
the other hand the JMI also controls the redundancy of the selected features,
as it examines the joint random variable XθjXk. Brown et al. [3] present the
assumptions made by each approximation, and derive these criteria from first
principles by incorporating the assumptions in eq. (2). Furthermore they show
in a large empirical study that assuming independence in the feature space (i.e.
with JMI /MIM ) has major benefits over the full dependence case of CMI. In
the following section we will extend the above framework to multi-label data,
exploring independence assumptions in the label space.

3 Extending the Framework to Multi-label Data

The key difference between single and multi-label classification is that in binary
single-label classification, for example, the label space Y is {0, 1}, while in multi-
label classification the space Y is {0, 1}q where q represents the number of labels.
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The labeling of the i-th instance is a q-dimensional binary vector yi = [yi1 . . . y
i
q],

with yil = 1 if the example i is positive to the label l and yil = 0 if it is nega-
tive. The labels are drawn from the random variables Y1, . . . , Yq with their joint
distribution denoted Y1:q.

3.1 Label-Powerset Transformation

When learning from multi-label data, the most general approach is to not as-
sume any label independencies [15]. This transforms the multi-label problem
into a multi-class single label one by combining each different label set into a
different “meta-class”. This approach is known as the Label Powerset (LP) trans-
formation, and the maximum number of classes is 2q. Figure 1 represents the
probabilistic graphical model for LP transformation, according to the framework
presented in Section 2.

X

Y1:q

θ

τ

Fig. 1. Label-powerset transformation

The framework presented in Sec-
tion 2 can be extended to multi-label
data just by substituting the single la-
bel output variable Y with the multi-
label joint random variable Y1:q. By
making this substitution we arrive at
the following multi-label filter:

JLP
CMI(Xk) = I(Xk;Y1:q|Xθ). (3)

The superscript LP denotes the assumption over the label space (i.e. none) and
the subscript CMI stands for the assumptions over the feature space (i.e. also
in this case, none). Using the chain rule of mutual information I(XkXθ;Y1:q) =
I(Xθ;Y1:q) + I(Xk;Y1:q|Xθ) we rewrite the CMI criterion as

Xk = argmax
Xk∈Xθ̃

I(Xk;Y1:q|Xθ) = argmax
Xk∈Xθ̃

I(XkXθ;Y1:q),

which is exactly the multi-label criterion heuristically proposed by Doquire &
Verleysen [4]. In our work we derived this criterion by maximising an explicit
objective function: the conditional likelihood of the training labels under the
probabilistic model presented in Figure 1.

3.2 Binary-Relevance Transformation

The number of distinct label combinations is 2q, increasing exponentially with
the number of labels. Thus we need a large amount of data to have reliable
estimates for the probabilities under the LP transformation. There have been
proposed various transformation approaches to deal with this problem, a detailed
exposition of these can be found in Zhang & Zhou [15]. The simplest transfor-
mation is to ignore any dependencies between the labels and predict each label
independently, this method is known as Binary Relevance (BR) or one-vs-all
transformation. The graphical model for the BR transformation can be seen in
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Figure 2. The conditional likelihood for this model, which has been given in
Zhang & Schneider [16] in the context of composite likelihood, has the form

LBR(θ, τ ;y|x) =
N∏
i=1

q∏
l=1

f(yil |xi
θ, τl).

X

Y2Y1 . . . Yq

θ

τ1 τ2 . . . τq

Fig. 2. Binary-relevance transformation

By maximising this likelihood and fol-
lowing the same procedure as in Sec-
tion 2 we can derive the following
multi-label criterion

JBR
CMI (Xk) =

q∑
l=1

I (Xk;Yl|Xθ). (4)

Again, the superscript BR represents
the assumption of the conditionally
independent labels, while the subscript represents the assumptions made in the
feature space. This can be seen as the BR version of eq. (3); to the best of our
knowledge this is the first time this has been proposed in the literature.

At this point, we can observe two types of assumption behind different criteria
– in the feature space, and in the label space. Table 1 represents the different
types of assumption we explore in this work. From now on we will follow this
notation to describe the criteria.

Table 1. Choices in the design of multi-label feature selection criteria

Feature space independence assumptions

Label space
CMI (none) JMI (partial) MIM (full)

independence
Label Powerset (none) JY:none

X:none JY:none
X:partial JY:none

X:full

assumptions
Binary Relevance (full) JY:full

X:none JY:full
X:partial JY:full

X:full

In the following section we will make no assumptions on feature space, and ex-
plore the effect of label space assumptions. We will thus compare the criteria
described by eqs. (3) and (4), in our new notation JY:none

X:none and JY:full
X:none respec-

tively.

3.3 Empirical Comparison of the Assumptions in the Label Space

The experiments are performed on real-world multi-label datasets — yeast [5]
and scene [2], taken from two characteristic applications for multi-label data:
biology and computer vision, respectively. These two datasets are used by both
Doquire & Verleysen [4] and Lee & Kim [9] to evaluate their criteria, with which
we compare our own in Section 5. Table 2 summarises some characteristics of
these datasets. In order to compare the different feature selection techniques we
use a nearest neighbor multi-label classifier, ML-kNN with k = 7 as suggested
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Table 2. Characteristics of the datasets

Name Application Examples Features Labels Distinct labelsets

Scene Computer Vision 2407 294 6 15
Yeast Bioinformatics 2417 103 14 198

in Zhang & Zhou [14]. We chose a k-nearest neighbor classifier, since it makes
few assumptions and it does not perform implicitly any sort of feature selection,
as all the features have the same weight. We evaluate our techniques using two
different loss functions: hamming loss and ranking loss [15]. Since in multi-label
classification the evaluation is a complex task, we chose these two representative
measures. We perform 30 random splits of the data into 50% training and 50%
testing, reporting averages and 95% confidence intervals. The training data was
used for selecting features and training the ML-kNN classifier, while the testing
for measuring the performance of the different approaches. To estimate the mu-
tual information we use maximum likelihood estimates, discretising continuous
features into 5 bins using an equal width strategy.

In Figure 3 we compare criteria derived from different label space assumptions,
making no assumptions in the feature space. The goal is to investigate the effect
that the independence assumptions made on the label space have on the quality
of the selected feature subset. As we can see the BR version

(
JY:full
X:none

)
very

marginally outperforms the LP version
(
JY:none
X:none

)
for yeast dataset. This reflects

that for yeast, a dataset with large number of distinct labelsets, the benefits of
the conditional independence assumption regarding the labels (better probability
estimates) outweigh its drawbacks (ignoring inter-label interactions). The effect
is slightly more pronounced in the case of ranking loss. Naturally, the difference
in performance decreases as we increase the number of selected features. We omit
the figures for the scene dataset since both approaches have similar performance,
and there is no statistically significant difference between the two criteria. Thus
in both datasets, the quality of the selected feature subset is not significantly
affected by the different independence assumptions in the label space. Since by
increasing the number of selected features Xθ the estimates of the conditional
mutual information in eq. (3) and (4) degrade, it will be interesting to explore
how feature space independence assumptions help the situation.

10 20 45 70 103

0.2

0.21

0.22

Number of features selected

Yeast

J
X:none
Y:full J

X:none
Y:none

(a) Hamming loss

10 20 45 70 103

0.18

0.19

0.2

Number of features selected

Yeast

J
X:none
Y:full J

X:none
Y:none

(b) Ranking loss

Fig. 3. Comparing criteria derived from different label space assumptions and making
no feature space assumption. Y:none indicates the LP transformation, while Y:full
indicates the BR transformation.
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4 Criteria under Different Feature Space Assumptions

The previous section investigated independence assumptions in the label space.
In this section we will explore assumptions on the feature space. While in Section
2 we reviewed the CMI, JMI and MIM criteria in the context of single label
data, in the current section we will present how the approximate criteria MIM
and JMI are converted in the multi-label context.

4.1 MIM and JMI Criteria under LP Transformation

Under the LP transformation, and following a similar procedure to that of Sec-
tion 2, eq. (3) can be approximated by the lower-order criteria

JY:none
X:full (Xk) = I (Xk;Y1:q), (5) JY:none

X:partial (Xk) =

|Xθ|∑
j=1

I
(
XkXθj ;Y1:q

)
. (6)

The JY:none
X:full criterion has been proposed heuristically by Spolaôr et al. [10].

4.2 MIM and JMI Criteria under BR Transformation

Under the BR transformation and following the framework presented in Section
2, eq. (4) can be approximated by the lower-order criteria

JY:full
X:full (Xk) =

q∑
l=1

I (Xk;Yl), (7) JY:full
X:partial (Xk) =

|Xθ|∑
j=1

q∑
l=1

I
(
XkXθj ;Yl

)
. (8)

Clearly JY:full
X:full , makes the most strict assumptions, full independence of both

features and labels. As such, this has been suggested heuristically in numerous
works [10,11,13]. Here we have shown that this can be derived as an approximate
maximizer of the composite likelihood of the model in Figure 2. However this is
the first time that JMI criteria, such as JY:none

X:partial and J
Y:full
X:partial, are introduced

in the multi-label setting.

4.3 Empirical Comparison of the Assumptions in the Feature Space

Figure 4 compares criteria derived from different feature space assumptions un-
der the same experimental setup we used in Section 3. This comparison was
performed under the BR transformation but the results under the LP transfor-
mation are similar. The goal now is to investigate which independence assump-
tion on the feature space gives the best feature selection results. We see that

the JMI criterion
(
JY:full
X:partial

)
outperforms the other two approaches as it con-

sistently achieves good performance for both datasets. On the yeast dataset the
JMI and MIM perform similarly, and we can draw the same conclusion as in
Doquire & Verleysen [4], i.e. that the relevant features are non-redundant in this
data. On the scene dataset JMI outperforms the other criteria for almost any
number of selected features in the cases of hamming loss, and for any number of
selected features for ranking loss.
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Fig. 4. Comparing criteria derived from different feature space assumptions and assum-
ing full independence in the label space. X:none indicates the CMI criterion, X:partial
the JMI and X:full the MIM .

5 Summary and Connections to Literature

In Section 3.3 we examined the effect of the label space assumptions on the
feature selection process and found that BR has a marginal advantage over LP.
In Section 4.3 we investigated the effect of the feature space assumptions and
observed an advantage of JMI over CMI and to a lesser extent overMIM. In this
section we connect our work with the literature, and we compare the criterion
with the best performance under our analysis, with the state-of-the-art in multi-
label feature selection.

5.1 Connections with the Literature

Yang & Pedersen [13] introduced the first multi-label feature selection criteria
which can be classified as the JY:full

X:full of our analysis. Trohidis et al. [11] present a
comparison between the JY:full

X:full and J
Y:none
X:full criteria, but using χ2-statistic instead

of mutual information, while recently these criteria were re-introduced under the
problem transformation approach [10]. Doquire & Verleysen [4] proposed JY:none

X:none .
In order to produce better estimates they use a nearest neighbor mutual infor-
mation estimator and they apply the pruned problem transformation technique,
under which the rare label combinations are discarded, and as a consequence this
leads to some loss of information. Finally, Lee & Kim [9] propose the use of mul-
tivariate mutual information for selecting features in a criterion without applying
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Fig. 5. Comparing the JY:full
X:partial criterion with criteria proposed in the literature

any transformation, but since this method is computationally inefficient they pro-
pose an approximate solution which involves only three variables.

5.2 Comparison to the State-of-the-Art

We compare JY:full
X:partial, the criterion with the best performance under our anal-

ysis, with two different criteria proposed recently in the literature: the pruned
transformation criterion proposed by Doquire & Verleysen [4] (we prune rare
examples using thresholds given in that work) and the multi-variate mutual in-
formation criterion proposed by Lee & Kim [9]. As we can see in Figure 5 the
proposed criterion JY:full

X:partial consistently performs well across the different num-
ber of selected features and the different datasets. On the yeast dataset it has
the best performance for both loss functions and all numbers of selected features.
On the scene dataset it outperforms the other techniques in all areas apart from
10-130 selected features under hamming loss. However, in terms of ranking loss
it continuously outperforms the other criteria.

6 Conclusions

We have provided a theoretical justification for multi-label feature selection crite-
ria. Our framework introduces the idea of maximizing the conditional composite
likelihood expression for multi-label decompositions. Different assumptions lead
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naturally to different filters, some of which have been heuristically proposed in
the literature, while others are novel. In our experiments we explored how differ-
ent assumptions of feature/label space compare. The best trade-off appears to be
assuming partial independence in feature space, and full independence in label
space. Our observation regarding the label space assumptions agrees with recent
empirical results in the context of wrapper feature selection [6]. The correspond-
ing filter we propose is shown to outperform the state-of-the-art approaches on
real-world datasets. Finally, under this framework we can incorporate assump-
tions that explicitly encode domain knowledge, leading to filters specialised for
particular problems.
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Abstract. In the past few years, a lot of attention has been devoted to multime-
dia indexing by fusing multimodal informations. Two kinds of fusion schemes are
generally considered: The early fusion and the late fusion. We focus on late classi-
fier fusion, where one combines the scores of each modality at the decision level.
To tackle this problem, we investigate a recent and elegant well-founded quadratic
program named MinCq coming from the machine learning PAC-Bayesian theory.
MinCq looks for the weighted combination, over a set of real-valued functions
seen as voters, leading to the lowest misclassification rate, while maximizing the
voters’ diversity. We propose an extension of MinCq tailored to multimedia in-
dexing. Our method is based on an order-preserving pairwise loss adapted to
ranking that allows us to improve Mean Averaged Precision measure while taking
into account the diversity of the voters that we want to fuse. We provide evidence
that this method is naturally adapted to late fusion procedures and confirm the
good behavior of our approach on the challenging PASCAL VOC’07 benchmark.

Keywords: Multimedia analysis, Classifier fusion, Majority vote, Ranking.

1 Introduction

Combining multimodal information is an important issue in pattern recognition. Indeed,
the fusion of multimodal inputs can bring complementary information from various
sources, useful for improving the quality of the final decision. In this paper, we focus
on multimodal fusion for image analysis in multimedia systems (see [1] for a survey).
The different modalities correspond generally to a relevant set of features that can be
grouped into views. Once these features have been extracted, another step consists in
using machine learning methods in order to build voters—or classifiers—able to dis-
criminate a given concept. In this context, two main schemes are generally considered
[17]. On the one hand, in the early fusion approach, all the available features are merged
into one feature vector before the learning and classification steps. This can be seen as
a unimodal classification. However, this kind of approach has to deal with many het-
erogeneous features which are sometimes hard to combine. On the other hand, the late
fusion1 works at the decision level by combining the prediction scores available for each
modality (see Fig. 1). Even if late fusion may not always outperform early fusion2, it
tends to give better results in multimedia analysis [17]. Several methods based on a fixed

1 The late fusion is sometimes called multimodal classification or classifier fusion.
2 For example, when one modality provides significantly better results than others.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 153–162, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



154 E. Morvant, A. Habrard, and S. Ayache

Fig. 1. Classical late classifier fusion scheme

decision rule have been proposed for combining classifiers such as max, min, sum, etc
[9]. Other approaches, often referred to as stacking [20], need of an extra learning step.

In this paper, we address the problem of late fusion with stacking. Let hi be the func-
tion that gives the score associated with the ith modality for any instance x. A classical
method consists in looking for a weighted linear combination of the scores seen as a
majority vote and defined by: H(x)=

∑n
i=1 qihi(x), where qi is the weight associated

with hi. This approach is widely used because of its robustness, simplicity and scala-
bility due to small computational costs [1]. It is also more appropriate when there exist
dependencies between the views through the classifiers [21,14]. The objective is then to
find an optimal combination of the classifiers’ scores by taking into account these de-
pendencies. One solution is to use machine learning methods to assess automatically the
weights [10,4,16,18]. Indeed, from a theoretical machine learning standpoint: consider-
ing a set of classifiers with a high diversity is a desirable property [4]. One illustration
is given by the algorithm AdaBoost [7] that weights weak classifiers according to dif-
ferent distributions of the training data, introducing some diversity. However, AdaBoost
degrades the fusion performance when combining strong classifiers [19].

To tackle the late fusion by taking into account the diversity between score functions
of strong classifiers, we propose a new framework based on a recent machine learning
algorithm called MinCq [12]. MinCq is expressed as a quadratic program for learning a
weighted majority vote over real-valued functions called voters (such as score functions
of classifiers). The algorithm is based on the minimization of a generalization bound
that takes into account both the risk of committing an error and the diversity of the vot-
ers, offering strong theoretical guarantees on the learned majority vote. In this article,
our aim is to show the usefulness of MinCq-based methods for classifier fusion. We
provide evidence that they are able to find good linear weightings, and also performing
non-linear combination with an extra kernel layer over the scores. Moreover, since in
multimedia retrieval, the performance measure is related to the rank of positive exam-
ples, we extend MinCq to optimize the Mean Average Precision. We base this extension
on an additional order-preserving loss for verifying ranking pairwise constraints.

The paper is organized as follows. The framework of MinCq is introduced in Sec-
tion 2. Our extension for late classifier fusion is presented in Section 3 and it is evaluated
on an image annotation task in Section 4. We conclude in Section 5.

2 MinCq: A Quadratic Program for Majority Votes

We start from the presentation of MinCq [12], a quadratic program for learning a
weighted majority vote of real-valued functions for binary classification. Note that this
method is based on the machine learning PAC-Bayesian theory, first introduced in [15].
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We consider binary classification tasks over a feature space X ⊆ Rd of dimension
d. The label space (or output space) is Y = {−1, 1}. The training sample of size m
is S = {(xi, yi)}mi=1 where each example (xi, yi) is drawn i.i.d. from a fixed—but
unknown—probability distribution D defined overX×Y . We consider a set of n real-
valued votersH, such that: ∀hi ∈ H, hi :X !→R. Given a voter hi ∈ H, the predicted
label of x ∈X is given by sign[hi(x)], where sign[a] = 1 if a≥ 0 and −1 otherwise.
Then, the learner aims at choosing the weights qi, leading to the Q-weighted majority
vote BQ with the lowest risk. In the specific setting of MinCq3, BQ is defined by,

BQ(x) = sign [HQ(x)] , with HQ(x) =
n∑

i=1

qihi(x),

where ∀i ∈ {1, . . . , n},
∑n

i=1 |qi| = 1 and −1 ≤ qi ≤ 1. Its true risk RD(BQ) is
defined as the probability that BQ misclassifies an example drawn according to D,

RD(BQ) = P(x,y)∼D (BQ(x) 
= y) .
The core of MinCq is the minimization of the empirical version of a bound—the

C-Bound [11,12]—over RD(BQ). The C-Bound is based on the notion of Q-margin,
which is defined for every example (x, y) ∼ D by: yHQ(x), and models the confidence
on its label. Before expounding the C-Bound, we introduce the following notations re-
spectively for the first momentMD

Q and for the second momentMD
Q2 of theQ-margin,

MD
Q = E

(x,y)∼D
yHQ(x) = E

(x,y)∼D

n∑
i=1

yqihi(x),

MD
Q2 = E

(x,y)∼D
(yHQ(x))

2
= E

(x,y)∼D

n∑
i=1

n∑
i′=1

qiqi′hi(x)hi′ (x). (1)

By definition, BQ correctly classifies an example x if theQ-margin is strictly positive.
Thus, under the convention that if yEh∼Q h(x) = 0, then BQ errs on (x, y), we have:

∀D overX × Y, RD(BQ) = Pr
(x,y)∼D

(
E

h∼Q
yh(x) ≤ 0

)
.

Knowing this, the authors of [11,12] have proven the followingC-bound overRD(BQ)
by making use of the Cantelli-Chebitchev inequality.

Theorem 1 (The C-bound). Given H a class of n functions, for any weights {qi}ni=1,
and any distributionD overX×Y , if E(x,y)∼DHQ(x)>0 then RD(BQ)≤CD

Q where,

CD
Q =

Var(x,y)∼D(yHQ(x))

E(x,y)∼D (yHQ(x))
2 = 1−

(MD
Q)

2

MD
Q2

.

In the supervised binary classification setting, [12] have then proposed to minimize the
empirical counterpart of theC-bound for learning a good majority vote overH, justified
by an elegant PAC-Bayesian generalization bound. Following this principle the authors
have derived the following quadratic program called MinCq.

3 In PAC-Bayes these weights are modeled by a distribution Q over H s.t. ∀hi ∈ H, qi=Q(hi).
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argminQ Qt
SMSQ−At

SQ, (2)

s.t. mt
SQ =

μ

2
+

1

nm

m∑
j=1

n∑
i=1

yjhi(xj), (3)

and ∀i ∈ {1, . . . , n}, 0 ≤ q′i ≤ 1
n , (4)

(MinCq)

where t is the transposed function, Q=(q′1, . . . , q
′
n)

t is the vector of the first n weights
qi, MS is the n×n matrix formed by 1

m

∑m
j=1 hi(xj)hi′(xj) for (i, i′) in {1, . . . , n}2,

AS =
(

1
nm

∑n
i=1

∑m
j=1 h1(xj)hi(xj), . . . ,

1
nm

∑n
i=1

∑m
j=1 hn(xj)hi(xj)

)t

, and,

mS =
(

1
m

∑m
j=1 yjh1(xj), . . . ,

1
m

∑m
j=1 yjhn(xj)

)t

.

Finally, the majority vote learned by MinCq is BQ(x)=sign[HQ(x)], with,

HQ(x) =
n∑

i=1

(
2q′i− 1

n

)︸ ︷︷ ︸
qi

hi(x).

Concretely, MinCq minimizes the denominator of the C-bound (Eq. (2)), given a fixed
numerator, i.e. a fixed Q-margin (Eq. (3)), under a particular regularization (Eq. (4))4.
Note that, MinCq has showed good performances for binary classification.

3 A New Framework for Classifier Late Fusion

MinCq stands in the particular context of machine learning binary classification. In
this section, we propose to extend it for designing a new framework for multimedia late
fusion. We actually consider two extensions for dealing with ranking, one with pairwise
preferences and a second based on a relaxation of these pairwise preferences to lighten
the process. First of all, we discuss in the next section the usefulness of MinCq in the
context of multimedia late fusion.

3.1 Justification of MinCq as a Classifier Late Fusion Algorithm

It is well known that diversity is a key element in the success of classifier combination
[1,10,4,6]. From a multimedia indexing standpoint, fuzing diverse voters is thus nec-
essary for leading to good performances. We quickly justify that this is exactly what
MinCq does by favoring majority votes with maximally uncorrelated voters.

In the literature, a general definition of diversity does not exist. However, there are
popular diversity metrics based on pairwise difference on every pair of individual clas-
sifiers, such as Q-statistics, correlation coefficient, disagreement measure, etc. [10,13]
We consider the following diversity measure assessing the disagreement between the
predictions of a pair of voters according to the distribution D,

diffD(hi, hi′) = E
(x,y)∼D

hi(x)hi′ (x).

4 For more technical details on MinCq please see [12].
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We then can rewrite the second moment of theQ-margin (see Eq.(1)),

MD
Q2 =

n∑
i=1

n∑
i′=1

qiqi′ diffD(hi, hi′). (5)

The first objective of MinCq is to reduce this second moment, implying a direct opti-
mization of Eq. (5). This implies a maximization of the diversity between voters: MinCq
favors maximally uncorrelated voters and appears to be a natural way for late fusion to
combine the predictions of classifiers separately trained from various modalities.

3.2 MinCq for Ranking
In many applications, such as information retrieval, it is well known that ranking docu-
ments is a key point to help users browsing results. The traditional measures to evaluate
the ranking ability of algorithms are related to precision and recall. Since a low-error
vote is not necessarily a good ranker, we propose in this section an adaptation of MinCq
to allow optimization of the Mean Averaged Precision (MAP) measure.

Concretely, given a training sample of size 2m we split it randomly into two subsets
S′ and S={(xj , yj)}mj=1 of the same size. Let n be the number of modalities. For each
modality i, we train a classifier hi from S′. Let H = {h1, . . . , hn} be the set of the n
associated prediction functions and their opposite. Now at this step, the fusion is achieved
by MinCq: We learn from S the weighted majority vote overH with the lowest risk.

We now recall the definition of the MAP measured on S for a given real-valued
function h. Let S+= {(xj , yj) : (xj , yj) ∈ S ∧ yj = 1} = {(xj+ , 1)}m

+

j+=1 be the set
of the m+ positive examples from S and S−= {(xj , yj) : (xj , yj) ∈ S ∧ yj =−1}=
{(xj− ,−1)}m

−
j−=1 the set of the m− negative examples from S (m++m−= m). For

evaluating the MAP, one ranks the examples in descending order of the scores. The
MAP of h over S is,

MAPS(h) =
1

|m+|
∑

j:yj=1

Prec@j,

where Prec@j is the percentage of positive examples in the top j. The intuition is that
we prefer positive examples with a score higher than negative ones.

MinCq with Pairwise Preference. To achieve this goal, we propose to make use of
pairwise preferences [8] on pairs of positive-negative instances. Indeed, pairwise meth-
ods are known to be a good compromise between accuracy and more complex perfor-
mance measure like MAP. Especially, the notion of order-preserving pairwise loss was
introduced in [23] in the context of multiclass classification. Following this idea, [22]
have proposed a SVM-based method with a hinge-loss relaxation of a MAP-loss. In our
specific case of MinCq for late fusion, we design an order-preserving pairwise loss for
correctly ranking the positive examples. For each pair (xj+,xj−)∈S+×S−, we want,

HQ(xj+)>HQ(xj− )⇔ HQ(xj− )−HQ(xj+ )<0.

This can be forced by minimizing (according to the weights) the following hinge-loss
relaxation of the previous equation (where [a]+=max(a, 0) is the hinge-loss),

1

m+m−

m+∑
j+=1

m−∑
j−=1

[ n∑
i=1

(
2qi − 1

n

) (
hi(xj−)− hi(xj+)

)
︸ ︷︷ ︸

HQ(x
j− )−HQ(x

j+
)

]
+
. (6)
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To deal with the hinge-loss of (6), we consider m+×m− additional slack variables
ξS+×S− =(ξj+j−)1≤j+≤m+,1≤j−≤m− weighted by a parameter β>0. We make a little
abuse of notation to highlight the difference with (MinCq): Since ξS+×S− appear only
in the linear term, we obtain the following quadratic program (MinCqPW ),

argminQ,ξ
S+×S− Qt

SMSQ−At
SQ+ β IdtξS+×S− ,

s.t. mt
SQ =

μ

2
+

1

nm

m∑
j=1

n∑
i=1

yjhi(xj),

∀(j+, j−)∈{1, ..,m+}×{1, ..,m−}, ξj+j− ≥0, ξj+j−≥
1

m+m−

n∑
i=1

(
2q′i− 1

n

)(
hi(xj−)−hi(xj+)

)
,

and ∀i ∈ {1, . . . , n}, 0 ≤ q′i ≤ 1
n
, (MinCqPW )

where Id = (1, . . . , 1) of size (m+×m−). However, one drawback of this method is the
incorporation of a quadratic number of additive variables (m+×m−) which makes the
problem harder to solve. To overcome this problem, we relax this approach as follows.

MinCq with Average Pairwise Preference. We relax the constraints by considering
the average score over the negative examples: we force the positive ones to be higher
than the average negative scores. This leads us to the following alternative problem
(MinCqPWav) with onlym+ additional variables.

argminQ,ξ
S+

Qt
SMSQ−At

SQ+ β IdtξS+ ,

s.t. mt
SQ =

μ

2
+

1

nm

m∑
j=1

n∑
i=1

yjhi(xj),

∀j+∈{1, . . . ,m+}, ξj+ ≥0, ξj+ ≥ 1

m+m−

m−∑
j−=1

n∑
i=1

(
2q′i− 1

n

)(
hi(xj−)−hi(xj+)

)
,

and ∀i ∈ {1, . . . , n}, 0 ≤ q′i ≤ 1
n
, (MinCqPWav)

where Id = (1, . . . , 1) of sizem+.
Note that the two approaches stand in the original framework of MinCq. In fact, we

regularize the search of the weights for majority vote leading to an higher MAP. To
conclude, our extension of MinCq aims at favoring Q-majority vote implying a good
trade-off between classifiers maximally uncorrelated and leading to a relevant ranking.

4 Experiments on PascalVOC’07 Benchmark

Protocol. In this section, we show empirically the usefulness of late fusion MinCq-
based methods with stacking. We experiment these approaches on the PascalVOC’07
benchmark [5], where the objective is to perform the classification for 20 concepts. The
corpus is constituted of 10, 000 images split into train, validation and test sets. For most
of concepts, the ratio between positive and negative examples is less than 10%, which
leads to unbalanced dataset and requires to carefully train each classifier. For simplicity
reasons, we generate a training set constituted of all the training positive examples and
negative examples independently drawn such that the positive ratio is 1/3. We keep the
original test set. Indeed, our objective is not to provide the best results on this bench-
mark but rather to evaluate if the MinCq-based methods could be helpful for the late
fusion step in multimedia indexing. We consider 9 different visual features, that are
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Table 1. MAP obtained on the PascalVOC’07 test sample

concept MinCqPWav MinCqPW MinCq Σ ΣMAP best hbest

aeroplane 0.487 0.486 0.526 0.460 0.241 0.287 0.382
bicycle 0.195 0.204 0.221 0.077 0.086 0.051 0.121

bird 0.169 0.137 0.204 0.110 0.093 0.113 0.123
boat 0.159 0.154 0.159 0.206 0.132 0.079 0.258

bottle 0.112 0.126 0.118 0.023 0.025 0.017 0.066
bus 0.167 0.166 0.168 0.161 0.098 0.089 0.116
car 0.521 0.465 0.495 0.227 0.161 0.208 0.214
cat 0.230 0.219 0.220 0.074 0.075 0.065 0.116

chair 0.257 0.193 0.230 0.242 0.129 0.178 0.227
cow 0.102 0.101 0.118 0.078 0.068 0.06 0.101

diningtable 0.118 0.131 0.149 0.153 0.091 0.093 0.124
dog 0.260 0.259 0.253 0.004 0.064 0.028 0.126

horse 0.301 0.259 0.303 0.364 0.195 0.141 0.221
motorbike 0.141 0.113 0.162 0.193 0.115 0.076 0.130

person 0.624 0.617 0.604 0.001 0.053 0.037 0.246
pottedplant 0.067 0.061 0.061 0.057 0.04 0.046 0.073

sheep 0.067 0.096 0.0695 0.128 0.062 0.064 0.083
sofa 0.204 0.208 0.201 0.137 0.087 0.108 0.147
train 0.331 0.332 0.335 0.314 0.164 0.197 0.248

tvmonitor 0.281 0.281 0.256 0.015 0.102 0.069 0.171

Average 0.240 0.231 0.243 0.151 0.104 0.100 0.165

SIFT, Local Binary Pattern (LBP), Percepts, 2 Histograms Of Gradient (HOG), 2 Local
Color Histograms (LCH) and 2 Color Moments (CM):

• LCH are 3×3×3 histogram on a grid of 8×6 or 4×3 blocs. Color Moments are
represented by the two first moments on a grid of 8×6 or 4×3 blocs.
• HOG is computed on a grid of 4×3 blocs. Each bin is defined as the sum of the

magnitude gradients from 50 orientations. Thus, overall EDH feature has 600 di-
mensions. HOG feature is known to be invariant to scale and translation.
• LBP is computed on grid of 2×2 blocs, leading to a 1, 024 dimensional vector. The

LBP operator labels the pixels of an image by thresholding the 3×3-neighborhood
of each pixel with the center value and considering the result as a decimal number.
LBP is known to be invariant to any monotonic change in gray level.
• Percept features are similar to SIFT codebook where visual words are related to

semantic classes at local level. There are 15 semantic classes such as ’sky’, ’skin’,
’greenery’, ’rock’, etc. We also considered SIFT features from a dense grid, then
map it on a codebook of 1000 visual words generated with Kmeans.

We train a SVM-classifier for each feature with the LibSVM library [2] and a RBF
kernel with parameters tuned by cross-validation. The set H is then constituted by the
9 score functions associated with the SVM-classifiers.

In a first series of experiments, the set of voters H is constituted by the 9 SVM-
classifiers. We compare our 3 MinCq-based methods to the following 4 baselines:

• The best classifier ofH: hbest = argmaxhi∈HMAPS(hi).

• The one with the highest confidence: best(x) = argmaxhi∈H |hi(x)|.

• The sum of the classifiers (unweighted vote): Σ(x) =
∑

hi∈H hi(x).
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Table 2. MAP obtained on the PascalVOC’07 test sample with a RBF kernel layer

concept MinCqrbfPWav MinCqrbf SVMrbf

aeroplane 0.513 0.513 0.497
bicycle 0.273 0.219 0.232

bird 0.266 0.264 0.196
boat 0.267 0.242 0.240

bottle 0.103 0.099 0.042
bus 0.261 0.261 0.212
car 0.530 0.530 0.399
cat 0.253 0.245 0.160

chair 0.397 0.397 0.312
cow 0.158 0.177 0.117

diningtable 0.263 0.227 0.245
dog 0.261 0.179 0.152

horse 0.495 0.450 0.437
motorbike 0.295 0.284 0.207

person 0.630 0.614 0.237
pottedplant 0.102 0.116 0.065

sheep 0.184 0.175 0.144
sofa 0.246 0.211 0.162
train 0.399 0.385 0.397

tvmonitor 0.272 0.257 0.230

Average 0.301 0.292 0.234

• The MAP-weighted vote: ΣMAP (x) =
∑

hi∈H

MAPS(hi)∑
h
i′ ∈H MAPS(hi′)

hi(x).

In a second series, we propose to introduce non-linear information with a RBF kernel
layer for increasing the diversity over the setH. We consider a largerH as follows. Each
example is represented by the vector of its scores with the 9 SVM-classifiers and H is
now the set of kernels over the sample S: Each x ∈ S is seen as a voter k(·,x). We
compare this approach to classical stacking with SVM.

Finally, for tuning the hyperparameters we use a 5-folds cross-validation process,
where instead of selecting the parameters leading to the lowest risk, we select the ones
leading to the best MAP. The MAP-performances are reported on Tab. 1 for the first
series and on Tab. 2 for the second series.

Results. Firstly, the performance ofΣMAP fusion is lower thanΣ, which means that the
performance of single classifiers is not correlated linearly with its importance on the fu-
sion step. On Tab. 1, for the first experiments, we clearly see that the linear MinCq-based
algorithms outperform on average the linear baselines. MinCq-based method produces
the highest MAP for 16 out of 20 concepts. Using a Student paired t-test, this result
is statistically confirmed with a p-value < 0.001 in comparison with ΣMAP , best and
hbest. In comparison of Σ, the p-values respectively associated with (MinCqPWav),
(MinCqPW ) and (MinCqPW ) are 0.0139, 0.0232 and 0.0088. We can remark that
(MinCqPW ) implies lower performances than its relaxation (MinCqPWav). A Stu-
dent test leads to a p-value of 0.223, which statistically means that the two approaches
produce similar results. Thus, when our objective is to rank the positive examples before
the negative examples, the average constraints appear to be a good solution. However,
we note that the order-preserving hinge-loss is not really helpful: The classical (MinCq)
shows the best MAP results (with a p-value of 0.2574). Indeed, the trade-off between di-
versity and ranking is difficult to apply here since the 9 voters are probably not enough
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expressive. On the one hand, the preference constraints appear hard to satisfy, on the
other hand, the voters’ diversity do not really vary.

The addition of a kernel layer allows us to increase this expressivity. Indeed, Tab.
2 shows that the MinCq-based methods achieve the highest MAP for every concept in
comparison with SVM classifier. This confirms that the diversity between voters is well
modeled by MinCq algorithm. Especially, MinCqrbfPWav with the averaged pairwise
preference is significantly the best: a Student paired test implies a p-value of 0.0003
when we compare MinCqrbfPWav to SVM, and the p-value is 0.0038 when it is com-
pared to MinCqrbf . Thus, the the order-preserving loss is a good compromise be-
tween improving the MAP and keeping a reasonable computational cost. Note that we
do not report the results for (MinCqPW ) in this context, because the computational
cost is much higher and the performance is lower. The full pairwise version implies too
many variables which penalize the resolution of (MinCqPW ). Finally, it appears that
at least one MinCq-based approach is the best for each concept, showing that MinCq
methods outperform the other compared methods. Moreover, a Student test implies a p-
value< 0.001 when we compareMinCqrbfPWav to the approaches without kernel layer.
MinCqrbfPWav is significantly then the best approach in our experiments.

We conclude from these experiments that MinCq-based approaches are a good alter-
native for late classifiers fusion as it takes into account the diversity of the voters. In
the context of multimedia documents retrieval, the diversity of the voters comes from
either the variability of input features or by the variability of first layer classifiers.

5 Conclusion and Perspectives

In this paper, we proposed to make use of a well-founded learning quadratic program
called MinCq for multimedia late fusion tasks. MinCq was originally developed for bi-
nary classification, aiming at minimizing the error rate of the weighted majority vote by
considering the diversity of the voters [12]. We designed an adaptation of MinCq able
to deal with ranking problems by considering pairwise preferences while taking into
account the diversity of the models. In the context of multimedia indexing, this exten-
sion of MinCq appears naturally appropriate for combining the predictions of classifiers
trained from various modalities in a late classifier fusion setting. Our experiments have
confirmed that MinCq is a very competitive alternative for classifier fusion in the con-
text of an image indexing task. Beyond these results, this work gives rise to many in-
teresting remarks, among which the following ones. Taking advantage of a margin con-
straint for late classifier fusion may allow us to prove a newC-bound specific to ranking
problems, and thus to derive other algorithms for classifier fusion by maximizing the
diversity between the classifiers. This could be done by investigating some theoretical
results using the Cantelli-Chebychev’s inequality [3] as in [12]. Additionally, it might
be interesting to study the impact of using other diversity metrics [10] on performances
for image and video retrieval. Such an analysis would be useful for assessing a trade-off
between the quality of the ranking results and the diversity of the inputs for informa-
tion retrieval. Finally, another perspective, directly founded on the general PAC-Bayes
theory [15], could be to take into account a prior belief on the classifiers ofH. Indeed,
general PAC-Bayesian theory allows one to obtain theoretical guarantees on major-
ity votes with respect to the distance between the considered vote and the prior belief



162 E. Morvant, A. Habrard, and S. Ayache

measured by the Kullback-Leibler divergence. The idea is then to take into account
prior information for learning good majority votes for ranking problems.
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Abstract. Although there are many existing alternative methods for
using structural characterizations of undirected graphs for embedding,
clustering and classification problems, there is relatively little literature
aimed at dealing with such problems for directed graphs. In this pa-
per we present a novel method for characterizing graph structure that
can be used to embed directed graphs into a feature space. The method
commences from a characterization based on the distribution of the von
Neumann entropy of a directed graph with the in and out-degree con-
figurations associated with directed edges. We start from a recently de-
veloped expression for the von Neumann entropy of a directed graph,
which depends on vertex in-degree and out-degree statistics, and thus
obtain a multivariate edge-based distribution of entropy. We show how
this distribution can be encoded as a multi-dimensional histogram, which
captures the structure of a directed graph and reflects its complexity. By
performing principal components analysis on a sample of histograms, we
embed populations of directed graphs into a low dimensional space. Fi-
nally, we undertake experiments on both artificial and real-world data
to demonstrate that our directed graph embedding method is effective
in distinguishing different types of directed graphs.

Keywords: directed graph embedding, von Neumann entropy, entropy
distribution.

1 Introduction

There has been a considerable body of work aimed at extracting features from
undirected graphs which reflect their structure and complexity. With such fea-
tures to hand, especially multi-dimensional ones, then problems such as graph
embedding, clustering and classification can be addressed using standard ma-
chine learning and pattern recognition techniques. Unfortunately, there is very
little work on the corresponding problems for directed graphs. This is unfortu-
nate since many of the most common networks structures, e.g. the World Wide
Web, exist in the form of directed graphs.

Motivated by the need to fill this gap in literature, in this paper we aim
to develop a method based on information theory to extract multi-dimensional
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features that can be used to characterize the structure of directed graphs, and
hence render them amenable to embedding, clustering and classification. The
starting point is a recent result where we have shown how to compute the von
Neumann entropy for a directed graph using the configurations of in and out-
degrees on directed edges.

1.1 Related Literature

Quantifying the intrinsic complexity of undirected graphs is a problem of fun-
damental practical importance in network analysis and pattern recognition. A
good recent review of the state of the art can be found in the collection of pa-
pers edited by Dehmer and Mowshowitz [1]. Moreover, the entropy measures
have also been shown to be an effective tool for representing the complexity in
graph structure. Han et al. [2] have shown how to approximate the calculation
of von Neumann entropy in terms of simple degree statistics rather than needing
to compute the normalized Laplacian spectrum.

However, while the problem of computing the entropy of undirected graphs
is well studied, the literature on directed graphs is rather limited. One recent
exception is the work of Berwanger et al. [3], who have proposed a new parameter
for the complexity of infinite directed graphs by measuring the extent to which
cycles in graphs are intertwined.

We now turn our attention to embedding methods, which has become a topic
of considerable interest for characterizing patterns and graphs in recent years.
Broadly speaking, with different choices of graph structure characteristics, there
are many existing alternative measures for embedding undirected graphs into fea-
ture vectors. An interesting method is provided by Ren et al. [4], who have used
the polynomial coefficients determined by the Ihara zeta function to construct
a feature vector, which shows good performance in graph clustering. Moreover,
feature vectors can also be derived by embedding graphs into a feature space
based on dissimilarity embedding [5]. Unfortunately, there are relatively few
corresponding methods developed for embedding directed graphs into a feature
space. One exception is the work proposed by Chen et al. [6], who have sug-
gested a directed graph embedding method by preserving the local information
of vertices in a directed graph. Similarly, directed graph embedding can also be
obtained by retaining the information of directionality of the graph [7].

1.2 Contribution

The motivation of this paper is to explore whether we can extract multi-
dimensional structural features from directed graphs, and hence apply standard
techniques from pattern recognition and machine learning to embed, cluster and
classify data in the form of samples of directed graphs. One natural way of cap-
turing the structure of a graph at the complexity level, is to use an entropic
characterization. Hence we commence by computing the von Neumann entropy
associated with each edge in a directed graph. An analysis, extending our own
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previously published work [8] shows that the entropy depends on the configu-
ration of in and out-degrees of the two vertices defining a directed edge. This
leads us to a four-dimensional characterization of directed graph structure, which
depends on the distribution of entropy with the in and out-degrees of pairs of
vertices connected by a directed edge. We represent this distribution by a four-
dimensional histogram, which can be encoded as a long-vector for the purposes
of analysis. To curb the size of the histogram, we show how to requantize the
bin-contents using quantiles of the four cumulative degree distributions.

2 Graph Embedding via Von Neumann Entropy
Distribution

In this section, we start from an approximation of the von Neumann entropy
of a directed graph [8], and quantify the entropy associated with each directed
edge. We show that this entropy is determined by the in and out-degrees of the
start and end vertices connected by a directed edge. Based on this observation
we explore the multivariate distribution of directed edge entropy with the dif-
ferent combinations of vertex in and out-degrees that define edges in a graph. In
practice this distribution can be computed by constructing a multi-dimensional
histogram whose bins are indexed by the in and out-degrees of the connected
vertices and whose contents accumulates the entropy contributions over the di-
rected edges in the graph. The contents of the histogram can be represented by a
multi-dimensional array whose contents can be encoded as a long-vector, which
serves as a feature vector for the graph.

One of the problems that potentially limits this approach is that the vertex
degree is unbounded. Hence, the size of histogram can become large. Moreover, it
can become populated by a large number of empty bins. This renders the analysis
of the feature vector unstable. In order to keep the vector length constant and
reduce the number of empty bins, we requantize the degree bins of the histogram
using quantiles of the cumulative distribution function (CDF). Specifically, we
determine the m-quantiles, which divides the ordered vertex degree data into
m essentially equal-sized parts. This allows us to relabel each vertex with two
quantile labels (1, 2, . . . ,m), one for in-degree and the second for out-degree. As
a result, the length of our proposed feature vector is not affected by the variance
of the degree distribution.

2.1 Edge-Based Local Entropic Measure

Suppose G(V,E) is a directed graph with vertex set V and edge set E ⊆ V ×V ,
then the adjacency matrix A is defined as follows

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(1)

The in-degree and out-degree of vertex u are

dinu =
∑
v∈V

Avu doutu =
∑
v∈V

Auv (2)
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Recently, commencing from Passerini and Severini’s work [9], Ye et al. [8]
have extended the calculation of von Neumann entropy from undirected graphs
to directed graphs, using Chung’s definition of the normalized Laplacian of a
directed graph [10], with the result that

HD
V N =

1

2|V |

{ ∑
(u,v)∈E

dinu
dinv d

out2
u

+
∑

(u,v)∈Eb

1

doutu doutv

}
(3)

where Eb = {(u, v)|(u, v) ∈ E and (v, u) ∈ E} is the set of bidirectional edges.
In particular, if the cardinality of Eb is very small (|Eb| # |E|), i.e. a graph

is strongly directed (SD), this expression can be simplified one step further by
ignoring the summation over Eb in Eq.(3),

HSD
VN =

1

2|V |
∑

(u,v)∈E

{
dinu

dinv d
out2
u

}
(4)

These approximations sum the entropy contribution from each directed edge,
and these are based on the in and out-degree statistics of the directed edge.
In other words we can compute a normalized local entropy measure for each
directed edge. Specifically, for an edge (u, v) ∈ E, we compute

Iuv =
dinu

2|E||V |dinv dout
2

u

(5)

as the entropy contribution. If this edge is bidirectional, i.e. (u, v) ∈ Eb, then we
add an addition entropy contribution

I ′uv =
1

2|Eb||V |doutu doutv

(6)

This local measure represents the entropy associated with each directed edge
since for arbitrary directed graphs, we have

∑
(u,v)∈E Iuv+

∑
(u,v)∈Eb

I ′uv = HD
V N

and for strongly directed graphs, we also have
∑

(u,v)∈E Iuv = HSD
V N . Moreover,

this measure avoids the bias caused by graph size, which means that it is the
edge entropy contribution determined by the in and out-degree statistics, and
neither the vertex number or edge number of the graph that distinguishes a
directed edge.

2.2 Feature Vector Extracted from Entropy Distribution

Our directed graph characterization is based on the statistical information con-
verged by the distribution of directed edge entropy with the in and out-degrees
of the start and end vertices. We represent this distribution of entropy using a
four-dimensional histogram over the in and out-degrees of the two vertices.

As noted above, one potential problem is that the bin-contents can become
sparse in a high dimensional histogram. To overcome this problem we turn to
the cumulative distribution function. Suppose a directed graph G(V,E) has |V |
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vertices which have been sorted according to in-degree (or out-degree) in the
sequence din1 ≤ din2 ≤ · · · ≤ din|V |. Let P (X = dini ) be the in-degree probability
distribution of the graph. The corresponding cumulative distribution function
for the in-degree is given by

FX(dini ) = P (X ≤ dini )

where i = 1, 2, . . . , |V |. This function describes the probability that a given in-
degree X takes on a value less than or equal to dini .

Quantiles are intervals of equal size over the cumulative distribution function.
They divide the ordered data din1 , d

in
2 , · · · , din|V | into a number of equal-sized

data subsets. Since vertex degree is always a non-negative integer, the quantiles
can thus be viewed as new quantization of the degree based on its statistical
distribution. We define our degree quantiles over the cumulative distribution of
degree for the entire sample of graphs under study, and produce requantized
versions of the individual entropy histograms for each individual graph. Suppose
the number of quantiles in each dimension of the degree distribution is fixed to
be m. Then, for example, the m-quantiles of the in-degree distribution can be
obtained as follows

Qj = argmin
din
i

{
FQj (d

in
i )− j

m

}
(7)

where i = 1, 2, . . . , |V | and j = 1, 2, . . . ,m. It is clear that these degree quantiles
satisfy Q1 ≤ Q2 ≤ · · · ≤ Qm and in fact, Qm = din|V |.

With the sample degree quantiles to hand, we assign each vertex degree quan-
tile labels. We first examine the original in-degree dinu of a vertex u, if dinu satisfies
the condition that Qk−1 < d

in
u ≤ Qk, then its in-degree quantile is qinu = k. The

corresponding out-degree quantile labels can also be obtained in the same man-
ner. Since all the vertices in the graph have in-degree and out-degree quantile
labels ranging from 1 to m, we can then simply construct the directed edge en-
tropy histogram whose size in each dimension is fixed to m. The histogram is
stored as a four-dimensional array.

To do this, we first construct a m × m × m × m array M whose elements
represent the histogram bin-contents, and whose indices represent the degree
quantile labels of the vertices. For instance, the elementM(1, 2, 3, 4) accumulates
the entropy contribution for all the directed edges starting from vertices with
out-degree quantile label 1 and in-degree quantile label 2, pointing to vertices
with out-degree quantile label 3 and in-degree quantile label 4. We then compute
the bin-contents by summing the directed edge entropy contributions over the
sample graph. The histogram bins contain all directed edges having the same
quantile label combinations. We store the accumulated sum in the corresponding
element of array M . The elementwise accumulation is formally given as

Mijkl =
∑

qout
u =i,qinu =j

qout
v =k,qinv =l
(u,v)∈E

{
dinu

2|E||V |dinv dout
2

u

}
(8)
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If the graph contains bidirectional edges, we additionally accumulate the follow-
ing quantity

M ′
ijkl =

∑
qout
u =i,qinu =j

qout
v =k,qinv =l
(u,v)∈Eb

{
1

2|Eb||V |doutu doutv

}
(9)

where i, j, k, l = 1, 2, . . . ,m. To extract a feature vector from M , we can simply
list all the elements in the array, with the result that

v = (M1111,M1112, · · · ,M111m,M1121,M1122, · · · ,Mmmmm)T (10)

Clearly, this feature vector has length m4.
It is worth pausing to consider the case of strongly directed graphs. For such

graphs, from Eq.(4) it is clear that directed edge entropy does not depend on doutv .
As a result the dimensionality of the corresponding histogram can be reduced
from four to three by ignoring the third index k in Mijkl (Eq.(8)). This leads to
a new feature vector with length m3. In the following discussion, to distinguish
between these two kinds of feature vectors, we name the former full-form (FF)
while the latter strongly-directed (SD).

When accumulated in this way we effectively count directed edges with the
same configurations of degree quantile labels, and weight them according to
their entropy. If the different quantile labels were independent, we would expect
a uniform histogram. However, structure in the individual sample graphs due
to preferred combinations of vertex in-degree and out-degree will give rise to a
non-uniform distribution. To some extent, the quantization of the distribution of
entropy with degree according to quantile labels, may dilute this structure due to
merging adjacent degree bins. However, the directed edge entropy contribution
is based on the original vertex in and out-degree statistics, and the m-quantiles
play a role in diminishing the bias caused by different populations of directed
graphs. Therefore our proposed representation can still be effective in capturing
statistical information concerning the local structural properties in the graph.
By embedding graphs into a space spanned by feature vectors, it provides a
theoretically principled and efficient tool for graph characterization tasks, which
captures the graph characteristics at both the statistical and structural levels.

3 Experiments and Evaluations

In this section, we aim to evaluate the experimental performance of our suggested
directed graph characterization. Specifically, we first explore the graph clustering
performance of our method on a set of random graphs generated from three
classical random graph models. Then we apply our method to some real-world
data, including the COIL object recognition data and protein database, and
report the graph classification results.



Entropic Graph Embedding via Multivariate Degree Distributions 169

3.1 Datasets

We commence by giving a brief overview of the datasets used for experiments in
this paper. We use three different datasets, the first one is synthetically generated
artificial networks, while the other two are extracted from real-world systems.

Artificial Data: Contains a large number of directed graphs which are randomly
generated according to a) the classical Erdős-Rényi model, b) the “small-world”
model, and c) the “scale-free” model. The different graphs in the database are
created using a variety of model parameters, e.g. the graph size and the vertex
connection probability in the Erdős-Rényi model, the edge rewiring probability
in the “small-world” model and the number of added connections at each time
step in the “scale-free” model.

COIL Data: Contains object recognition data collected by Nene et al. [11],
in which each 3D object consists of 72 images collected from equally spaced
changes in viewing direction over 360 degrees. For each image, we establish a
3-nearest neighbour graph on the extracted feature points, i.e. each feature point
have three directed edges going to its nearest neighbour points, thus the graph
is directed and the out-degree of all vertices is 3. There are two subsets in this
database, one contains the directed graphs extracted from 4 different 3D objects
while the other contains graphs from 8 objects.

Protein Data: Is extracted from the protein database previously used by Riesen
and Bunke [12]. It consists of over 200 graphs, representing proteins labelled with
their corresponding enzyme class labels from the BRENDA enzyme database.
The database consists of six classes (labelled EC 1, . . . , EC 6), which represent
proteins out of the six enzyme commission top level hierarchy (EC classes). The
proteins are converted into graphs by first replacing the secondary structure
elements of a protein with vertices, and then constructing a 3-nearest neighbour
graph for the secondary structure elements. The graphs are thus directed.

3.2 Graph Clustering Performance

To investigate the clustering performance of our proposed directed graph charac-
terization, we perform principle component analysis (PCA) on both FF feature
vectors and SD feature vectors extracted from the randomly generated graphs in
the Artificial Data. These feature vectors are long-vectors formed by concatenat-
ing the elements of the four and three-dimensional histograms respectively. Here
we select different parameter settings to generate 500 normal directed graphs
and 500 additional strongly directed graphs for each of the three random graph
models, with graph size ranged between 100 and 150. Moreover, in all the ex-
periments in this section, we choose the number of quantiles m = 3, giving all
the FF feature vectors with a constant length m4 = 81, while for SD feature
vectors, the length is m3 = 27.

Figures 1(a), (c) and (d) each show that by embedding different random
graphs into a feature space spanned by the first three principal components
constructed from the feature vectors, the three classes of random graphs display
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some clear separation between each other. However in Fig.1(b), which is the plot
of SD feature vectors extracted from normal directed graphs, the “small-world”
graphs and “scale-free” graphs show some overlap. This suggests the FF fea-
ture vectors are efficient in distinguishing any normal directed graphs while the
SD feature vectors are effective only for strongly directed graphs, which is an
expected result. Therefore in the following experiments we use the FF feature
vectors in our analysis.
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Fig. 1. Clustering performance for random graphs using PCA: a) FF feature vectors
extracted from normal directed graphs; b) SD feature vectors extracted from normal
directed graphs; c) FF feature vectors extracted from SD graphs; d) SD feature vectors
extracted from SD graphs. Red: Erdős-Rényi graphs; blue: “small-world” graphs; black:
“scale-free” graphs.

3.3 Graph Classification Results

To take this analysis one step further, we evaluate the classification performance
of our method on the graphs in COIL DATA and Protein Data, using standard
vector-based clustering and classification algorithms. In the following evaluation,
we perform the 10-fold cross-validation using two classifiers, namely support vec-
tor machine (SVM) classifier associated with the sequential minimal optimization
(SMO) [13] and the Pearson VII universal kernel (Puk), and k-nearest neighbour
(kNN) classifier. All the SMO-SVM and kNN parameters are optimized for each
method on a Weka platform, and all experiments are performed on an Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz processor, with 8 GB memory.

In Fig.2 we report the average classification rates of 10 runs for both SVM and
kNN classifiers as a function of quantile number m on three different datasets,
including the 4-object data and 8-object data in COIL Data and Protein Data.
Figure 3 gives the relationship between the average runtime and the quantile
number of the experiments on these datasets.

From Fig.3 we find that the experimental runtime for all three classification
problems grows as the quantile number increases, which is as expected since
greater quantile number leads to greater size of the feature vector, resulting in the
greater computational complexity. Moreover, it is clear that our directed graph
characterization is computationally tractable as the runtime does not increase
rapidly even when the size of the feature vector becomes particularly large.
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Fig. 2. Average classification rates for both SVM and kNN classifiers with different
quantile numbers on datasets: a) 4-object data; b) 8-object data and c) Protein Data.
Square: SVM classifier; circle: kNN classifier.
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Fig. 3. Average experimental runtime with various quantile numbers for different clas-
sification problems. Square: 4-object problem; circle: 8-object problem; star: protein
problem.

Turning attention to the classification results reported in Fig.2(a), (b) and
(c), we find the performance is particularly good on 4-object data, with a classi-
fication accuracy over 98%, and on 8-object data and 6-class protein database,
the accuracy is still acceptable (50% to 60%). Moreover, as the increase of the
quantile number, the classification rates for both classifiers on all three datasets
witness a slight growth, reaching a peak when the quantile number reaches 3,
then they drop significantly. This is because in the graphs of these datasets,
all vertices have the same out-degree 3, therefore when m = 3 the correspond-
ing feature vectors can precisely preserve the information of the vertex in and
out-degree statistics, which guarantees that m = 3 gives the best classification
performance and any greater quantile number will lead to a decrease of classi-
fication accuracy. Furthermore, with this choice of quantile number, the exper-
imental runtime is relatively low, which suggests that our method can achieve
a sufficient accuracy without causing expensive computation. Overall, based on
these observations we claim that that our directed graph characterization can be
both accurate and computationally efficient in clustering and classifying directed
graphs when the appropriate parameters are selected.
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4 Conclusion

In this paper we have suggested a novel and effective method for directed graph
characterization based on the multivariate distribution of local von Neumann
entropy contribution with vertex in-degree and out-degree. This provides a com-
plexity level characterization of graph structure based on the statistical infor-
mation residing edge degree distribution. By representing graphs using feature
vectors that encode the entropy distribution, both clustering and classification
can be addressed using standard pattern recognition and machine learning tech-
niques. We have undertaken experiments to demonstrate that our method is
both accurate and computationally efficient in dealing with both artificial and
real-world data. In the future, we intend to explore kernels defined over the inner
products of our entropy distribution feature vectors.
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Abstract. Quantification of the rectilinear configuration of typeset rules (lines) 
opens the way to form classification and content extraction. Line detection on 
scanned forms is often accomplished with the Hough transform. Here it is  
followed by simultaneous extraction of the dominant perpendicular sets of ex-
tracted lines, which ensures rotation invariance. Translation and scale inva-
riance are attained by using minimal horizontal and vertical sets of distance  
ratios (“rule gap ratios”) instead of rule-edge locations. The ratios are logarith-
mically mapped to an alphabet so that the resulting symbol strings can be classi-
fied by. edit distance. Some probability distributions associated with these steps 
are derived. Analytical considerations and small-scale experiments on scanned 
forms suggest that this approach has potential merit for processing degraded 
forms. 

Keywords: forms, tables, rules, distance ratio, rotation invariance, scale inva-
riance, random-phase noise, edit distance. 

1 Introduction 

Many documents exhibit an isothetic configuration consisting of orthogonal sets of 
parallel components. Line segments are explicit in ruled tables and forms, and impli-
cit in parallel rows of text and justified margins and gutters. Rectilinear structures are 
also common in artifacts like cultivated fields, cities, buildings and machines: in fact, 
their presence is one of the prime clues for distinguishing man-made from natural. 
Although parallel lines play a role in other image processing and computer vision 
tasks as well, here we address only scanned or photographed form images. Fig. 1 
shows examples of forms that offer a rich line structure but may have been scanned at 
too low resolution or are too noisy for OCR-based classification. 

The “near-horizontal” lines shown in Fig. 1 were extracted by the Hough transform 
in rho-theta format. The line configurations include both rectilinear rules (the printing 
and publishing term for typeset lines), and spurious lines induced by accidental 
alignments of diverse page content. The images display various rule configurations, 
with the members of each class sharing essentially the same rule configuration but 
exhibiting different spurious lines. The task at hand is classifying new images  
into predefined classes. Since the forms are captured by a scanner or a camera, their 
position, scale and skew angle within the image are unknown.   
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The ratios of the distances between pairs of rules (rule gap ratios) are geometrical-
ly invariant features. (Invariant features are more commonly used in scene image 
analysis than in document recognition.) The ordered sets of horizontal and vertical 
ratio values are converted to a pair of symbol strings that characterize the ruling con-
figuration of the underlying form. The forms are then classified according to the 
(1,1,1) edit distance between new images and existing class representative. So we  

1. Distinguish isothetic rules from spurious lines formed by accidental alignments; 
2. Compute the minimum set of algebraically independent rule gap ratios; 
3. Map the ordered horizontal and vertical gap ratios into symbol strings; 
4. Classify the unknown images based on the edit distance between symbol strings. 

In the following sections we review prior work, examine each of the above steps, and 
give an example of their application to a set of degraded and mutilated form images. 
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Fig. 1. Examples of forms with explicit isothetic rule structure. The two forms on top are from 
web archives. The partial form image on the bottom is from our classification experiment. Here 
only lines (shown in green) within ±30° of horizontal are extracted. 
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2 Prior Work 

Line segment recognition has been steadily improved during the last three decades as 
part of table interpretation, form processing, and engineering drawing analysis. His-
torical form analysis became popular even as most contemporary forms migrated to 
the web. The Hough transform for line location has remained one of the leading me-
thods for line and arc extraction since its rediscovery by Duda and Hart in the early 
seventies [1]. It does not require edge linking and is therefore often preceded only by 
edge extraction with the venerable Prewitt filter [2]. Other 3×3 pixel edge filters  
(Sobel, Roberts) yield similar results. We have found neither research addressing the 
extraction and quantification of rectilinear rule structures independently of other doc-
ument content, nor prior application of orthogonal line filtering to Hough lines. 

Our interest in spatial sampling noise was triggered by peaks in the autocorrelation 
function corresponding to opposite stroke edges in scanned character images [3]. The 
variation (noise!) due to repeated scanning was exploited by Zhou and Lopresti to 
decrease OCR error [4]. Random-phase sampling noise was systematically investi-
gated in remote sensing [5,6] and in scanned documents [7], but pixel jitter is usually 
modeled as if it were independent random displacement of sensor elements [8]. The 
relationship between spatial and amplitude quantization in scanning was explored 
thoroughly by Barney Smith [9].  

Levenshtein introduced the edit distance for error-correcting codes in 1965 [10]. 
The optimal Wagner-Fischer algorithm was published a decade later [11]. Many vari-
ations of the original algorithms have appeared since then [12,13,14]. The role of the 
edit distance in communications and text processing was augmented by its application 
to genome sequencing. Developments relevant to document image analysis include 
normalization methods [15] and kernel techniques for embedding the edit distance 
into a vector space [16]. The public-domain EDIT DISTANCE WEIGHTED program 
that we use was posted in 2010 by B. Schauerte [17]. 

The current study was initiated during a phase of the MADCAP project [18] con-
cerned with categorization of a small subset of the collection of Kurdish documents 
recovered during the Anfal uprising [19,20]. The Hough transform parameters and 
preliminary results on classification of some degraded forms were presented at the 
2014 SPIE Conference on Document Recognition and Retrieval [21].  

3 Orthogonal Line Extraction 

The accidental alignments of handwriting, stamps, binder holes, checkmarks and oth-
er non-rule pixels may give rise to far more spurious lines than the number actual 
rules on the page (Fig. 2). Since in contrast to the randomly distributed spurious lines 
all the nominally horizontal (or vertical) rules have the same angle, an obvious way to 
distinguish them is to histogram all the line angles. Then the lines in the most popu-
lated bin will be the rules. This stratagem fails only if too many spurious lines fall into 
some other bin. Below we calculate the dominant term of the probability of such an 
event as a proxy for the actual probability. 
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Fig. 2. A low-resolution, noisy and skewed death certificate. Near-horizontal and near vertical 
lines extracted by the Hough Transform and rules retained by orthogonal filtering. 

Extreme skew is unlikely, therefore only lines within ±20° of the nominal and x- 
and y-axes need be extracted. Let there be R rules and S spurious lines on a page. 
Their angles are sorted into a histogram with N uniformly spaced bins (N > R+S). The 
rules are parallel and therefore fall into the same bin, but the skew detection will be 
incorrect if R or more of the spurious lines fall into some other bin. Under a (ques-
tionable!) i.i.d. assumption, the most probable such case is that R of the S spurious 
lines fall into a single bin and that each of the others occupies one bin. This can hap-
pen in as many ways as there are of picking single-occupancy bins. Therefore a lower 
bound on the probability that at least R of the S spurious lines fall into the same bin is: 

( )
21

( max)
, 2,1,1,...,1 1

S NS
P false PeR N

S R N S RR N

−   > =     − − − −−    
 

Table 1. Dominant term of the probability of false maxima in the angle histogram 

N R S PeR %  N R S PeR % 
20 3 3 0.27701  40 3 3 0.065746 
20 3 6 3.95461  40 3 6 1.122005 
20 3 9 6.61081  40 3 9 3.119688 
20 3 12 3.33205  40 3 12 4.099149 
20 6 6 0.00004  40 6 6 1.11E-06 
20 6 9 0.00242  40 6 9 7.94E-05 
20 6 12 0.01060  40 6 12 0.000579 

The shaded cells of Table 1 show that while the probability of a false maximum for 
3 rules and 6 spurious lines is at least an appreciable 3.9%, doubling the number of 
lines reduces the dominant term to 0.01%. This can be achieved by adding 90° to the 
theta coordinate of every line within 20° of the vertical axis and histogramming all  
the line angles together. In the image of Fig. 2, every visible vertical rule is found, 
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including the edge of the box at the top right of the form marked with a red oval, with 
no false positives. Simultaneous identification of orthogonal lines pays off. 

4 Rule Gap Ratios 

No further use of the theta coordinates is made. The computation of the rule gap ratios 
requires only sorting the Hough rho coordinates of each set of extracted and ortho-
filtered parallel lines and subtracting them pairwise to find the successive horizontal 
and vertical edge-to-edge rule gaps. Given N parallel rules, there are O(N2) pairs of 
rules and O(N4) possible ratios. It is clear, however, that there cannot be more than  
N-2 algebraically independent ratios from which the value of all the others can be 
calculated. We choose as basis ratios the ratios of consecutive gaps, defined for hori-
zontal or vertical lines located at x1, x2, …, xi, …, xN (w.r.t. an arbitrary origin) as:  

( ) ( )1 2 1
/

i i i i i
R x x x x+ + += − −  

There are N-2 such ratios, and any other ratio of line segments can be recovered 
from them. The proof is conceptually simple but notationally tedious, so we give an 
example instead. Let the three distances between four lines be a, b, and c (Fig. 3).  

|_____________|_______|_________________| 
 a    b  c 

|_____________|_______|_________________|
a    b c

 

Fig. 3. Ratios of rule gaps 

The two basis ratios are R1 =  a/b, and R2 = b/c. An arbitrary ratio such as 
(b+c)/(a+b) can be expressed in terms of the basis ratios as: 

1 2 1

1 1

( / ) 1 ( / )( / 1)
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The general formula that proves the sufficiency of the basis ratios is: 

( )

( )
1 2 1 1 1

1 2 1 1 1

... 1 1 ... 1

... 1 1 ... 1
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s t

u v
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R R R R R R
x x
x x R R R R R R

     − + −     
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The rule configuration of a page is preserved by the two sets of translation, scale 
and rotation invariant basis ratios. Lines are considered to be of infinite extent. If end-
point information is required, it is kept separately. The accuracy of the rule gap ratios 
is affected by edge location variability and by random-phase sampling noise. 

4.1 Edge Location Variability 

Some applications must cope with forms reprinted at different times and by different 
printers. Even if the variability of the line and line-edge locations as a fraction of page 
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size is small, it may have a significant effect on the gap ratios. Each gap ratio is a 
function of the position of three (parallel) rules. What is the probability density func-
tion (pdf) of the ratio as a function of the variability of the edges?  

The only line-segment ratio we found discussed in the literature is that resulting 
from of splitting a unit-length line segment by a uniformly distributed point L, which 
results in ratio W = L/(1-L) [22]. The probability density of W,  

 

f(w) = 1/(1+w)2, 

is skewed because its range is zero to infinity but its mean must be 0.5.  
We extended the calculation of the pdf of W = L/(1-L) to two independent (non-

adjacent) gaps of lengths L1 and L2 distributed uniformly: L1 ∈ x0±a and L2 ∈ y0±a. 
The resulting piecewise rational polynomial functions provide further insight:  
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Fig. 4. The rule edges x, y, and z are uniformly distributed over a range of 2a. What is the pdf 
of the gap ratio L1/L2?? 

What we must consider, however, is the more difficult three-variable case of a ba-
sis ratio formed by three adjacent edges located at x, y, and z, where x is uniformly 
and independently distributed over x0±a, y over y0±a, and z over z0±a  (Fig. 4). The 
gaps are L1 = y-x and L2, = z-y. The basis ratio is W = L1/L2, as in Fig. 3, 
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The gap lengths L1 and L2 are the difference of uniformly and independently 
distributed variables and therefore have a simple triangular distribution centered on the 
mean difference. But analytical formulation of the joint pdf of L1 and L2 is complicated 
by the statistical dependence induced by the shared edge y. After deriving the lengthy 
formula we must still resort to simulation to compute the pdf of the ratio W.  

The effect on the ratio of edge variability is illustrated in Fig. 5 for x0 = 1, y0 = 4,  
z0 = 10, and three values of a. Large values of a correspond to high rule edge variabili-
ty. W ranges from (y0-x0-2a)/(z0-y0+2a) to (y0-x0+2a)/(z0-y0-2a). As a approaches zero, 
the distribution converges to a delta function located at the nominal value of the ratio. 

Fig. 5. Frequency distribution of gap ratio between variable edge locations 

4.2 Random-Phase Sampling Noise 

The precise quantification of gap ratios, like that of all image features, is also ham-
pered by the random-phase noise induced by the arbitrary placement of any document 
with respect to the scanner’s or camera’s sensor array. This noise can be reduced, but 
not eliminated, by increasing the spatial sampling rate.  

The distances between rule edges are quantized to integer values by scanning. As a 
one-dimensional analogy, consider rule gaps of length L1 and L2 sampled at δ-length 
intervals (Fig. 6). After sampling, L1 will be of length L1/δ or L1/δ − 1, and L2 will 
be L2/δ or L2/δ − 1. (Gap length is the number of background pixels minus1.) The 
ratio can take only one of three values: (L1/δ  −1)/(L2/δ ),  (L1/δ  −1)/(L2/δ  
−1), and (L1/δ )/(L2/δ  −1). In the worst case, when, Li = Li + δ/4,: the three poss-
ible values occur with probabilities of 0.25, 0.50, 0.25. If random-phase sampling 
noise changes the mapping of any ratio to a symbol (cf. §5), then identical rule confi-
gurations will result in different symbol strings and therefore in non-zero edit distance 
between them.  

      L1    L2 

 _____________________________________________________________ 

 |   δ  |   δ  |   δ  |   δ  |   δ  |   δ  |   δ   |   δ   | 
 

Fig. 6. Random-phase noise. Here L1 = 4.2δ. After spatial sampling L1 will be either 3 or 4 
pixels long, depending on its position relative to the sampling grid. 
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5 Ratio Quantization and Edit Distance 

The smallest gaps in a document typically correspond to the space required to print or 
write a word or a number. Even densely printed documents have no more than 60 
lines of text; most forms have fewer than 20. The smallest gaps are likely to be those 
from double rule dashes. The largest gap can be no larger than page height. Gap ratios 
typically range from 0.1 to 10, and the smallest significant difference is about 30%.  

Uniform quantization of the ratios – for edit distance computation – would map the 
prevalent near-unity ratios into very few symbols. Logarithmic mapping of gap ratios 
to string symbols flattens the resulting symbol probability distribution. Therefore gap 
ratio R is mapped into bin k, where k ranges from 1 to N: 

10(log )( 2)
( ; , ) min max 1, 1 ,

2

R K N
k F R K N N

K

+
= = +     

         
−

 

The parameters N and K govern the logarithmic bin size. The domain of the map-
ping includes two semi-open intervals for very small and very large ratios (for  
|logR| > K). Setting N =24 and K=1.3 yields 22 finite bins increasing by 30% from 
R=0.05 to R = 20. The resulting symbol alphabet is {‘1’, ‘2’, …, ‘24’}. 

The metric used for classification is the Levenshtein edit distance. Schauerte’s 
open-source program accepts arbitrary weights for the cost of the insertions, deletions 
and substitutions necessary to convert one string into another, but lacking enough 
training data to estimate the optimal weights we set them all equal. With more data, 
substitutions could be also weighted according to the size difference of the gap ratios. 

The edit distance computation could take into account missing or spurious rules. 
When a symbol does not match, the algorithm can check whether combining adjacent 
gaps would reduce the edit distance. (A rule missed in one document is equivalent to 
a spurious rule in the other and can be treated analogously.) This check can be ex-
tended, at exponentially growing cost, to several consecutive gaps. 

6 Plausible Applications 

Deteriorated and poorly-scanned forms abound in historical census, military and mu-
nicipal records. Some of the recent interest in such documents is due to genealogical 
research (including its medical implications). Even contemporary forms may be de-
graded by repeated photocopying, reduced resolution for web display, or batch scan-
ning with a page-feed scanner without adequate skew and binarization control. 

Modern form identification is generally based on a barcode or some Form Identifi-
cation Number (FIN) prominently printed at the top or near one of the corners. In 
their absence, OCR’d forms can be identified using preprinted text specific to each 
type of form. Both the FIN and the preprinted labels usually exhibit enough  
redundancy to tolerate OCR errors. The ruling-based classification discussed here is 
appropriate only for forms that cannot be OCR’d and have an isothetic rule structure 
without too many other aligned edges. In principle the method could be applied hie-
rarchically, possibly via the quad tree [23], to forms with highly localized rules.  
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The rule detection, logarithmic gap ratio quantization and string matching were ap-
plied as part of the MADCAT project to a set of 158 extremely noisy scanned forms 
of 15 types (Fig. 7). These filled-out forms contain personnel information collected by 
Iraqi government agencies and regrettably only redacted or partial images can be 
presented. The forms were classified by a Nearest Neighbor classifier with the edit 
distance function. The resulting error rate was 11% (17 errors). Ten errors are due to 
groups 3 and 12. One error is unavoidable because Group 13, with only one member, 
has no reference pattern for Nearest Neighbor. There are 6 confusions between groups 
2 and 3 that that differ only by a single ruling. The Matlab program runs in 1 second 
per form on a 2 GHz laptop, with 83% of the time taken by the Hough transform.  

Assigned
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ERROR TOTAL

1 3 0 3
2 23 2 1 3 24
3 4 0 2 6 6
4 37 0 37
5 10 0 10
6 6 0 8

True 7 4 0 4
8 5 0 5
9 5 0 5

10 1 1 11 2 13
11 1 3 1 4
12 2 1 1 8 4 12
13 1 0 1 1
14 6 0 6
15 20 0 20

0 5 2 1 6 1 1 0 1 0 0 0 0 0 0 17 158  

Fig. 7. Results from leave-one-out edit-distance based classification of 158 MADCAT forms 

7 Envoy 

In the expectation of future large-scale endeavors on degraded but rule-rich corpora, 
we examined some benefits and drawbacks of three related ideas:  

• Simultaneous orthogonal filtering of Hough lines to eliminate of spurious lines. 
• Extracting gap ratios of parallel rules for geometric invariance.  
• Classifying the ratios by edit distance, bridging statistical and structural methods. 
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Abstract. Showing the nearest neighbor is a useful explanation for the
result of an automatic classification. Given, expert defined, distance mea-
sures may be improved on the basis of a training set. We study several
proposals to optimize such measures for nearest neighbor classification,
explicitly including non-Euclidean measures. Some of them may directly
improve the distance measure, others may construct a dissimilarity space
for which the Euclidean distances show significantly better performances.
Results are application dependent and raise the question what charac-
teristics of the original distance measures influence the possibilities of
metric learning.

1 Introduction

The Nearest Neighbor (NN) rule is a classical and very natural classifier. It
does not need density estimation or function optimization as it entirely relies on
the user defined distance measure. An important advantage is that it gives an
intuitive motivation of the assigned class label by showing the nearest neighbor(s)
to the user. A second advantage is that the distance measure fully determines
the classification performance as there is no learning involved. All is based on
the collection of training examples.

The second advantage is also a disadvantage as it shows that there is room for
improvement by using a training set. In case the original objects are represented
in a vector space, e.g. by features, the performance may be improved by selecting
or rescaling features. Such methods can also be considered as procedures for
metric learning. In general, metric learning aims to find a better distance measure
between objects on the basis of a training set.
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Studies on metric learning either focus on adaptations of the vector space,
preserving the original Euclidean distance, or optimize the metric, preserving
the given vector representation, or combine a set of given distance measures.
Examples are the Large Margin NN Classifier [11] and the Direct Minimization
of the NN Error [3].

We will primarily deal with given, possible non-Euclidean, dissimilarities. New
dissimilarity measures defined on the given ones will be proposed and evaluated.
This may also yield a non-Euclidean result. We will use the word dissimilarity to
emphasize that we allow ill-defined measures that even may violate the triangle
inequality. This is in line with many applications based on images, shapes or
sequences. It will not harm the use of the NN rule as long as there is a monotonic
relation between measured dissimilarities and object differences.

An important possibility that we include in our considerations is that dissim-
ilarities may be used to define a dissimilarity space [4],[6] and that in this space
a distance measure is defined that combines the dissimilarities to the objects in
the representation set that constitutes the dissimilarity space.

The vector space defined by the dissimilarity representation differs from the
feature representation by the mentioned monotonic relation, as well as by the
natural correlations arising from using similar objects for representation. Three
proposals using these characteristics will be evaluated for some public domain
real-world datasets. For evaluation, the performance of the NN rule will be used.

In Section 2 the three proposals will be presented. They are evaluated with the
direct NN performance on the given distances as well as with the NN performance
in the dissimilarity space. In Section 3 the datasets and some of their properties
are reported. Results are presented in Section 4 and conclusions are summarized
in the final section.

2 Methods

Let X be a set of labeled training objects X = {xi, i = 1, ..., n} and let x be an
arbitrary object inside or outside X . The objects are initially only represented
by their dissimilarities d(x) = [d(x, xi), i = 1, ..., n]. These dissimilarities are
defined by some expert (e.g. as function of raw measurements on x and xi) in
such a way that if d(x, x1) < d(x, x2) it is more likely that x belongs to the same
class as x1 than that it belongs to the class of x2. For that reason the NN rule
using d(x) is an appropriate classifier.

We are searching for a modified dissimilarity measure dmod(x, xi) being a
function of all distances to the training set d(x) such that the performance of
the NN rule improves. Any such procedure can be used directly by classifying
new objects on the basis of their modified dissimilarities. Below we discuss one
existing and three new procedures that will be evaluated in Section 4.

The training set used for metric learning is a square dissimilarity matrix

D = [d(x1),d(x2), ...,d(xn)] (1)

It is not always symmetric and some procedures allow even non-zero diagonals.
When needed we make it symmetric by averaging and force a zero-diagonal.
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Such a matrix can be embedded in a (n−1)-dimensional pseudo-Euclidean space
(PE-Space) [6] that consists of two Euclidean subspaces. These are built by an
eigenvalue decomposition of a Gram matrix derived from (1). The eigenvectors
corresponding to the positive eigenvalues constitute the positive space, the other
ones constitute the negative space. For Euclidean dissimilarity matrices the di-
mensionality of the latter is zero as in that case all eigenvalues are positive. In
this paper the PE-Space will only be used to characterize the dissimilarities.

2.1 Dissimilarity Space, DS

A straightforward way to derive new dissimilarities to a given set of represen-
tative objects (the representation set) by combining the available ones is the
dissimilarity space, [6]. This is the vector space constructed by the vector of
distances as mentioned in the previous subsection: d(x) = [d(x, xi), i = 1, n].
Here we will use the training set for representation as well. If we use Euclidean
distances in the dissimilarity space the modified dissimilarity can be written as:

dDS(x, xi) = ‖d(x) − d(xi)‖
It has been found in the past [6] that the NN performance may improve as well
as deteriorate by this modification. It is still an open issue to find the conditions
when one or the other may happen.

2.2 Locally Adaptive Nearest Neighbor Distances, LANN

The locally adaptive distance measure was originally proposed by Wang et
al. [10], claiming that it significantly improves the performance of the kNN
rule when used with a metric distance measure. The rationale behind their lo-
cal adaptation approach is simple and elegant: dividing a conventional distance
measure —the authors restricted themselves to the Euclidean and Manhattan
metrics for five feature-based data sets— by the smallest distances from the cor-
responding training examples to training examples of different classes. We study
the application of the procedure, referred as LANN, to given and unconstrained
dissimilarity measures. More formally, LANN can be described as follows.

Let d be a dissimilarity measure and x and xi be a test object and a training
object, respectively. Let ri be the radius of the largest topological ball1 around
xi that excludes —in the corresponding PE-space— all training objects from
other classes. This radius is given by

ri = min
j:θj �=θi

d(xi, xj)

where θi is the class label associated to the i-th training object.
The locally adaptive dissimilarity measure dLANN(x, xi) is then defined as:

dLANN(x, xi) =
d(x, xi)

ri
(2)

1 Notice that depending on the dissimilarity measure, the neighborhoods defined by
objects with dissimilarity to xi less than ri may not be a proper ball.



186 R.P.W. Duin et al.

LANN can be understood as a columnwise scaling of the test dissimilarity matrix,
where the scaling factors correspond to the radii associated to the training ob-
jects. Dissimilarities to training objects with large radii are diminished/rewarded
since they are considered more trustable (a large neighborhood of the same class);
conversely, dissimilarities to objects with small radii are, comparatively, empha-
sized/penalized (less trustable due to a small neighborhood of the same class).
Two potential drawbacks associated to LANN are noise sensitivity and depen-
dency on the sample size: notice that (i) outliers, even though not trustable, are
associated to large radii and (ii) small training sample sizes will produce large
but empty neighborhoods where unseen objects of different classes might lie in.

2.3 Non-linear Scaling of Dissimilarities

Here we explore the possibility of transforming the input dissimilarities by em-
ploying a non linear function: in particular we explore the effect of applying the
power transformation to each pairwise dissimilarity:

dNLScale(x, xi) = d(x, xi)
ρ ρ > 0 (3)

Clearly, this operation does not have an impact on the NN rule based on the
original dissimilarities1, since a monotonic transformation does not change the
ordering of objects. On the contrary, this operation may change the behavior of
the NN rule in the dissimilarity space, as it represents a non-linear scaling of it.

In general, scaling feature spaces is often very useful, especially for classifiers
based on the Euclidean distance or inner products (like NN or SVM). The typ-
ical choice in this context is to perform a linear scaling, like the well known
z-score standardization (every feature is centered and divided by the standard
deviation). Nevertheless, there can be situations where the linearity assumption
is too restrictive, and a benefit may be obtained from a non-linear scaling, which
acts in different ways in different parts of the feature space. One clear example
of non-linear transformation, which has nevertheless scarcely applied in the clas-
sification context, is the well known Box-Cox transformation [1], [8], introduced
in the 60’s, representing a parametric way to non linearly transform a set of
points in order to make their distribution approximately Gaussian. More recent
approaches, explicitly devoted to the classification case, appeared in [2], where
kernels for HMM-based generative embeddings were successfully augmented via
a non-linear transformation of the space.

Here we propose to use this non-linear scaling to enhance the performances of
the NN rule in the dissimilarity space. Dissimilarities appear to be an optimal
context where to apply this non-linear mapping, for different reasons: i) the
power mapping does not change the rankings of the objects, so the original
information on which the space is built is preserved; ii) all the directions of the
dissimilarity space share the same nature (they are all dissimilarities), therefore

1 Even if useless in the NN case, this operation can be beneficial for other classification
techniques, especially if they rely on the Euclideaness of the space: actually for ρ < 1
the Euclideaness of the dissimilarity matrix is increased by this non linear mapping.
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idation experiments (re-
peated 10 times) averaged
over the 44 Chickenpieces
datasets

it may be simpler to find a common good parameter for all the directions; iii)
all directions are positives, avoiding strange effects for negative values.

In our implementation, the scaling factor ρ is optimized by a grid search
between 0.03 and 30 by a leave-one-out cross-validation. This is still fast up to
a few thousand objects (the dissimilarity matrix should fit in fast memory).

2.4 Distance in Eigenspace, ESL1.5

For various applications like histograms and images, other distance measures
may be more appropriate than the Euclidean distance based on bins or pixels.
In [5] it was suggested to use the L1 metric. As other metrics than the Euclidean
one (L2) are rotation sensitive, it was suggested in that study to perform an
eigenspace rotation first, thereby removing all correlation. (It is admitted that
this part of the procedure uses L2).

Dissimilarity spaces suffer, like pixel based representation, heavily from cor-
relations. We wondered whether other distance measures than L2 would make
sense in the dissimilarity space.

The distance transformation can thereby be written as follows. First the total
training set is considered in the dissimilarity space derived from the dissimilarity
matrix (1). It coincides with the training set represented in the dissimilarity
space. We compute the set of eigenvectors E, so ED = ΛD with Λ a diagonal
matrix. A vector d(x) in the dissimilarity space is transformed to the eigenspace
by

e(x) = Ed(x)

The Lp distance in this space of an object x and a training object xi is:

dESLp(x, xi) = (
∑
j

|ej(x) − ej(xi)|p)1/p (4)

in which ej(x) is the j-th component of e(x). Fig. 1 shows a preliminary ex-
periment based on the Chickenpieces dissimilarity dataset, see Section 3. The
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NN performances in a 2-fold cross validation experiment averaged of all Chick-
enpieces datasets are shown for Lp as a function of p. It shows that there is
a significant minimum between p = 1 and p = 2. This appeared to be true in
other experiments as well. In a more extensive study p might be optimized for
every application. Here we decided to use always p = 1.5, avoiding additional
cross-validation loops, and named the procedure ESL1.5.

3 Datasets

We use a set of public domain datasets, see Table 1. More information on the
datasets themselves can be found on the internet1. Most datasets are obtained
from real objects (images, text, protein sequences). PolyDisH57 and PolyDisM57
are the only two artificial datasets, obtained by the (modified) Hausdorff distance
on randomly generated pentagons and heptagons. The Chickenpieces dataset
consists out of 44 dissimilarity matrices. In the table, the average characteris-
tics are shown. The Pendigits dataset is much larger. To make our experiments
feasible we used a randomly selected subset of 4000 objects.

Here are short definitions of the properties used in Table 1, see also [4].

– size: the total number of objects in the dataset.
– class : the number of classes.
– ID : an estimate of the the intrinsic dimensionality.
– LOO : the leave-one-out NN error.
– NEF : the negative eigenfraction, a measure for the Euclideaness.
– NMF : the non-metricity fraction of triplets violating the triangle inequality.
– SignP : the number of positive eigenvalues in pseudo-Euclidean embedding2.
– SignN : the number of negative eigenvalues in pseudo-Euclidean embedding.
– Asym: the averaged deviation of symmetric dissimilarity measure.

4 Evaluation

The procedures described in Section 2 are applied to all datasets mentioned in
Section 3. A two-fold cross-validation is repeated 25 times. The errors found
by the NN rule are averaged. The mean errors and the standard deviation of
the means are listed in Table 2. Results that are significantly better than those
obtained for the original dissimilarities are printed in bold. (We judge a difference
in means as significant if the intervals defined by the two standard deviations do
not overlap). In order to save space, the errors over the Chickenpieces datasets
are averaged. Below they will be summarized in some figures.

Table 2 shows the results found by a direct use of the (modified) dissimilari-
ties in the left of every column and the results of the corresponding dissimilarity
space in the right. The two procedures LANN and ESL1.5 show many significant

1 http://37steps.com/prdisdata
2 The two numbers [SignP SignN] are called the signature of the embedding.

http://37steps.com/prdisdata
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Table 1. Dataset properties

Dataset size class ID LOO NEF NMF SignP SignN Asym

CatCortex 65 4 18 0.12 0.208 0.002 41 23 0.000
Chickenpieces 446 5 3 0.13 0.273 0.000 242 203 0.051
CoilDelftDiff 288 4 22 0.47 0.128 0.000 163 124 0.000
CoilDelftSame 288 4 13 0.65 0.027 0.000 249 38 0.000
CoilYork 288 4 4 0.23 0.258 0.000 169 118 0.009
DelftGestures 1500 20 6 0.04 0.308 0.000 765 734 0.000
FlowCyto 612 3 2 0.38 0.230 0.004 330 281 0.000
NewsGroups 600 4 83 0.25 0.202 0.000 153 387 0.000
Pendigits 4000 10 4 0.01 0.348 0.002 1944 2055 0.000
PolyDisH57 4000 2 9 0.03 0.415 0.000 2054 1945 0.000
PolyDisM57 4000 2 11 0.02 0.356 0.000 1819 2180 0.000
ProDom 2604 4 17 0.00 0.043 0.000 1502 680 0.000
Protein 213 4 14 0.02 0.001 0.000 205 4 0.000
WoodyPlants50 791 14 5 0.10 0.229 0.000 395 395 0.000
Zongker 2000 10 14 0.44 0.419 0.002 1038 961 0.000

improvements on the original dissimilarities. Note however that the ESL1.5 pro-
cedure itself already computes distances (using the L1.5 norm) in dissimilarity
space. NLScale transforms the given dissimilarities by a monotonic transforma-
tion, the same for all dissimilarities. This does not influence the NN assignments
as explained in Section 2.3. Its results on the given dissimilarities are thereby
identical to the original ones. The results for its dissimilarity space (right col-
umn) show many significant results. In general, it is shown that metric learning
may be useful for these datasets.

All Chickenpieces datasets refer to the same set of silhouettes. Bunke and
Spillmann [9] just used different parameters in the weighted edit distance mea-
sure. They constitute thereby an interesting set of slightly changing dissimilari-
ties. All results for these datasets are summarized in Fig. 2, clearly showing the
improvements that are obtained by the various methods.

Since the errors associated to the studied methods correspond to coordinates
in the vertical axis, dots below the line indicate that the modified dissimilarity
measures are better than their original counterparts (since the lower the error,
the better the performance). The further a dot is from the line, the greater the
margin of improvement.
Below the individual procedures proposed in Section 2 are discussed separately.

The dissimilarity space, Section 2.1 (the right part of each of the columns
in Table 2) is a general procedure to combine given dissimilarities into new
ones by treating them as vectors. It is not focussed on improvement, but it puts
pairwise dissimilarities in the context of all other objects. Sometimes the NN rule
on the distances obtained from the dissimilarity space shows an improvement,
sometimes it does not. It is an open issue to get a better understanding when
this happens.
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Table 2. Averaged two-fold cross validation results (error × 1000) for the NN-rule
based on 25 repetitions. In every column on the left the NN errors on the dissimilar-
ities, on the right the NN error in the corresponding dissimilarity space. In between
brackets the standard deviation of the estimated mean errors. In bold the results that
significantly improve the original dissimilarities.

Dataset Original LANN NLScale ESL1.5

CatCortex 138(10) 96( 7) 96(11) 126(11) 138(10) 95( 8) 88( 8) 106( 8)
Chickenpieces 161( 3) 150( 2) 123( 3) 156( 2) 161( 3) 122( 2) 144( 2) 216( 3)
CoilDelftDiff 513( 6) 464( 7) 465( 7) 464( 6) 513( 6) 456( 7) 450( 7) 531( 9)
CoilDelftSame 656( 6) 410( 8) 540( 8) 423( 8) 656( 6) 425( 9) 416( 8) 517(10)
CoilYork 319( 5) 396( 7) 333( 5) 411( 8) 319( 5) 331( 7) 392( 8) 546( 9)
DelftGestures 50( 1) 95( 1) 66( 2) 97( 1) 50( 1) 54( 2) 83( 2) 187( 2)
FlowCytoDis 403( 4) 408( 5) 338( 4) 417( 5) 403( 4) 404( 5) 403( 4) 426( 6)
NewsGroups 291( 5) 293( 6) 269( 4) 332( 6) 291( 5) 293( 5) 295( 6) 341( 7)
Pendigits 15( 1) 23( 1) 17( 1) 30( 1) 15( 1) 16( 1) 18( 1) 61( 1)
PolyDisH57 40( 1) 31( 1) 22( 1) 30( 1) 40( 1) 20( 1) 30( 1) 84( 1)
PolyDisM57 23( 1) 15( 1) 12( 0) 16( 0) 23( 1) 17( 1) 16( 1) 22( 1)
ProDom 9( 1) 19( 1) 5( 1) 20( 1) 9( 1) 8( 1) 13( 1) 143( 3)
Protein 37( 5) 6( 2) 14( 3) 4( 1) 37( 5) 8( 2) 5( 1) 17( 3)
WoodyPlants50 127( 3) 165( 3) 119( 3) 204( 3) 127( 3) 121( 3) 154( 3) 263( 3)
Zongker 358(25) 53( 1) 196(21) 130( 7) 358(25) 40( 2) 50( 1) 114( 2)

Metric learning based on the local adaptive NN procedure, LANN, Section 2.2
performs remarkably well. It always shows improvements except for the three
cases mentioned above. We were afraid that this procedure is very noise sensitive,
but apparently the noise introduced by the arbitrary distances to the nearest
neighbor does not harm. It is a simple, effective procedure that does not require
any optimization.

Let us try to understand the behavior of the non-linear scaling procedure,
NLScale, Section 2.3, concentrating on the case of ρ < 1 (for which we almost
always got the best results). When using ρ < 1 lower dissimilarities are raised,
whereas large ones are reduced. This operation has three effects:
– points tend to have the same distance from all the other points (since the

dissimilarities tend to be all equal): this potentially augments the intrinsic
dimensionality of the dataset (i.e. the dimensionality of the manifold where
the objects lie). The larger this dimensionality, the more Euclidean (flat)
the space: techniques relying on Euclidean assumptions (as the NN in the
dissimilarity space) can benefit from this. Clearly, such correction can also
destroy the information contained in the dissimilarities, as shown in [7].

– the contribution to the dissimilarity space of possible outliers is possibly
reduced, since high distances – namely distances from very far points, i.e.
outliers – are shrinked.

– the neighborhood of every point is enlarged: small distances, i.e. distances
between near points, are emphasized, therefore augmenting the importance
in the dissimilarity space of nearest points.
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Fig. 2. Results for the 44 Chickenpieces datasets

The eigenspace procedure, ESL1.5, Section 2.4, effectively operates in the orig-
inal dissimilarity space. For consistency we have printed in bold the signifi-
cant differences with the original dissimilarity results themselves. Improvements
in comparison with the dissimilarity space are less striking, but almost always
shown. We conclude from this that the idea of using a non-Euclidean measure in
the dissimilarity space (which is almost always used as an Euclidean space [6])
is effective.

5 Conclusion

This study is based on “given dissimilarities”: dissimilarity datasets arising from
applications, external to our study. In such applications the dissimilarity mea-
sure may have been optimized for the given objects. Thereby we might have
sometimes made a second attempt to improve this measure by learning from a
training set that has already been taken into account. We admit that thereby
overtraining may be introduced by squeezing the data further. Nevertheless it
is interesting that for 12 of the 15 datasets, one or even several significant im-
provements could be found. Systematic procedures for metric learning apparently
make sense for NN classification.
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The datasets have very diverse backgrounds and are based on entirely different
dissimilarity measures. One may wonder whether from the dataset characteristics
listed in Table 1 can be predicted which procedure for which dataset is promising
(meta-learning). At this moment we cannot answer this in a positive way. It is,
however, interesting that the datasets that could not be improved (CoilYork,
DelftGestures and Pendigits) belong to the most non-Euclidean ones according
to the NEF measure. PolyDisH57 and PolyDisM57 have a high NEF value as
well, but their distance measures have not been optimized for the application.
The ones that could not be improved are the result of studies in which the
researchers tried to obtain an optimal result. This might explain both, their
strong non-Euclidean behavior as well as the difficulty to improve the metric.

In conclusion, it has been shown that metric learning for a large variation
of given, non-Euclidean dissimilarities is well possible and may yield significant
improvements.
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Abstract. Semantic clustering of objects such as documents, web sites and 
movies based on their keywords is a challenging problem. This requires a simi-
larity measure between two sets of keywords. We present a new measure based 
on matching the words of two groups assuming that a similarity measure be-
tween two individual words is available. The proposed matching similarity 
measure avoids the problems of traditional measures including minimum, max-
imum and average similarities. We demonstrate that it provides better clustering 
than other measures in a location-based service application. 

Keywords: clustering, keyword, semantic, hierarchical. 

1 Introduction 

Clustering has been extensively studied for text mining. Applications include custom-
er segmentation, classification, collaborative filtering, visualization, document  
organization and indexing. Traditional clustering methods consider numerical and 
categorical data [1], but recent approaches consider also different text objects such as 
documents, short texts (e.g. topics and queries), phrases and terms.  

Keyword-based clustering aims at grouping objects that are described by a set of 
keywords or tags. These include movies, services, web sites and text documents in 
general. We assume here that the only information available about each data object is 
its keywords. The keywords can be assigned manually or extracted automatically. 
Fig. 1 shows an example of services in a location-based application where the objects 
are defined by a set of keywords. For presenting an overview of available services to 
a user in a given area, clustering is needed.  

Several methods have been proposed for the problem [2, 3, 4, 5] mostly by agglo-
merative clustering based on single, compete or average links. The problem is closely 
related to word clustering [6, 7, 8] but instead of single words, we have a set of words 
to be clustered. Both problems are based on measuring similarity between words as 
the basic component.  

To solve clustering, we need to define a similarity (or distance) between the ob-
jects. In agglomerative methods such as single link and complete link, similarity be-
tween individual objects is sufficient, but in partitional clustering such as k-means and 
k-medoids cluster representative is also required to measure object-to-cluster similari-
ty. Using semantic content, however, defining the representative of a cluster is not 
trivial. Fortunately, it is still possible to apply partitional clustering even without the 
representatives. For example, an object can be assigned to such cluster that minimizes  
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Fig. 1. Five examples of location-based services in Mopsi (http://www.uef.fi/mopsi): name of 
the service, representative image, and the keywords describing the service 

(or maximizes) the cost function where only the similarities between objects are needed.  
In this paper, we present a novel similarity measure between two sets of words, called 

matching similarity. We apply it to keyword-based clustering of services in a location-
based application. Assuming that we have a measure for comparing semantic similarity 
between two words, the problem is to find a good measure to compare the sets of words. 
The proposed matching similarity solves the problem as follows. It iteratively pairs two 
most similar words between the objects and then repeats the process for the rest of the 
objects until one of the objects runs out of words. The remaining words are then matched 
just to their most similar counterpart in the other object.  

The rest of the paper is organized as follows. In Section 2, we review existing me-
thods for comparing the similarity of two words, and select the most suitable for our 
need. The new similarity measure is then introduced in Section 2. It is applied to ag-
glomerative clustering in Section 3 with real data and compared against existing simi-
larity measures in this context. 

2 Semantic Similarity between Word Groups 

In this section, we first review the existing methods for measuring semantic similarity 
between individual words, because it is the basic requirement for comparing two sets 
of words. We then study how they can be used for comparing two set of words, 
present the new measure called matching similarity, and demonstrate how it is applied 
in clustering of services in a location based application. 

2.1 Similarity of Words 

Measures for semantic similarity of words can be categorized to corpus-based, search 
engine-based, knowledge-based and hybrid. Corpus-based measures such as point-
wise mutual information (PMI) [9] and latent semantic analysis (LSA) [9] define the 
similarity based on large corpora and term co-occurrence. Search engine-based meas-
ures such as Google distance are based on web counts and snippets from results of a 
search engine [8], [10, 11]. Flickr distance first searches two target words separately 
through the image tags and then uses image contents to calculate the distance between 
the two words [12].  
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Fig. 3. Minimum and maximum similarities between two location-based services is derived by 
considering two keywords with minimum and maximum similarities 

Now consider two objects with exactly the same keywords (100% similar) as follows: 

(a) Café, lunch 
(b) Café, lunch 

The word similarity between Café and lunch is 0.32. The corresponding minimum, 
average and maximum similarity measures would result in 0.32, 0.66 and 1.00. It is 
therefore likely that minimum and average measures would cluster these in different 
groups and only maximum similarity would cluster them correctly in the same group.  

Now consider the following two objects that have a common word: 

(a) Book, store 
(b) Cloth, store 

The maximum similarity measure gives 1.00 and therefore as soon as the agglomera-
tive algorithm processes to these objects, it clusters them in one group. However, if 
data contains lots of stores, they might have to be clustered differently.  

The following example reveals another disadvantage of minimum similarity. These 
two objects should have a high similarity as their only difference is the drive-in possi-
bility of the first service. 

(a) Restaurant, lunch, pizza, kebab, café, drive-in 
(b) Restaurant, lunch, pizza, kebab, café 

Minimum similarity would result to S(drive-in, pizza)=0.03, and therefore, place the 
two services in different clusters. 

2.3 Matching Similarity 

The proposed matching similarity measure is based on a greedy pairing algorithm, 
which first finds two most similar words across the sets, and then iteratively matches 
next similar words. Finally, the remaining non-paired keywords (of the object with 
more keywords) are just matched with the most similar words in the other object. 
Fig. 4 illustrates the matching process between two sample objects. 
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Fig. 4. Matching between the words of two objects 

Consider two objects with N1 and N2 keywords so that N1>N2. We define the nor-
malized similarity between the two objects as follows: 
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where SW measures the similarity between two words, and p(i) provides the index of 
the matched word for wi in the other object. 

The proposed measure provides more intuitive results than existing measures, and 
eliminates some of their disadvantages. As a straightforward property it gives the 
similarity 1.00 for the case of objects with same set of keywords. 

3 Experiments 

We study the method with Mopsi data (http://www.uef.fi/mopsi), which includes 
various location-tagged data such as services, photos and routes. Each service in-
cludes a set of keywords to describe what it has to offer. Both English and Finnish 
languages keywords have been casually used. For simplicity, we translated all Finnish 
words into English by Microsoft Bing translator for these experiments. Some issues 
raised in translation such as stop words, Finnish word converting to multiple English 
words, and some strange translations due to using automatic translator. We manually 
refined the data to remove the problematic words and the stop words. 

In total, 378 services were used for evaluating the proposed measure and compare 
it against the following existing measures: minimum, maximum and average similari-
ty. We apply complete and average link clustering algorithms as they have been wide-
ly used in different applications. Each of the clustering algorithms is performed based 
on three similarity measures. Here we fixed the number of clusters to 5 since our goal 
of clustering is to present user the main categories of services, with easy navigation to 
find the desired target without going through a long list. We find the natural number 
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of clusters using SC criteria introduced in [16] by finding minimum SC value among 
clusterings with different number of clusters. We then display four largest clusters and 
put all the rest in the fifth cluster. The data and the corresponding clustering results 
can be found here (http://cs.uef.fi/paikka/rezaei/keywords/). 

The three similarity measures of five selected services in Table 1 are demonstrated 
in Table 2. The first three and the last two services should be in two different clusters 
according to their similarities. However, both minimum and average similarities show 
small differences when they compare Parturi-kampaamo Nona with Parturi-
kampaamo Koivunoro and Kahvila Pikantti, whereas the proposed matching similari-
ty can differentiate them much better. Despite that Parturi-kampaamo Nona and  
Parturi-kampaamo Koivunoro have exactly the same keywords, only the matching 
similarity provides value 1.00 indicating perfect match. 

Table 1. Similarities between five services for the measures: minimum, average and matching 

Mopsi 
service: 

A1-Parturi-
kampaamo 
Nona 

A2-Parturi-
kampaamo 
Platina 

A3-Parturi-
kampaamo 
Koivunoro 

B1-Kielo 
B2-Kahvila 
Pikantti 

Keywords; 
barber 

hair 
salon 

barber 
hair 

salon 

barber 
hair 

salon 
shop 

cafe 
cafeteria 

coffe 
lunch 

lunch 
restaurant 

Table 2. Similarity between services described in Table 1  

Services A1 A2 A3 B1 B2 

 Minimum similarity 

A1 - 0.42 0.42 0.30 0.30 
A2 0.42 - 0.42 0.30 0.30 
A3 0.42 0.42 - 0.30 0.30 
B1 0.30 0.30 0.30 - 0.32 
B2 0.30 0.30 0.30 0.32 - 

 Average similarity 

A1 - 0.67 0.67 0.47 0.51 
A2 0.67 - 0.67 0.47 0.51 
A3 0.67 0.67 - 0.48 0.51 
B1 0.47 0.47 0.48 - 0.63 
B2 0.51 0.51 0.51 0.63 - 

 Matching similarity 

A1 - 1.00 0.99 0.57 0.56 
A2 1.00 - 0.99 0.57 0.56 
A3 0.99 0.99 - 0.55 0.56 
B1 0.57 0.57 0.55 - 0.90 
B2 0.56 0.56 0.56 0.90 - 
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In general, the problems of minimum and average similarities are observable in the 
clustering results both for complete and average link. Several services with the same 
set of keywords (barber, hair, salon) are clustered together, and a service with the 
same keywords has its own cluster when complete link clustering is applied with  
minimum similarity measure. Average link method clusters the services with these 
keywords correctly but for services with other keywords (sauna, holiday, cottage), it 
clusters them in different groups even when using average similarity. This problem 
does not happen with matching similarity.  

Another observation of minimum similarity with complete link clustering is that 
there appear many clusters with only one object, and a very large cluster that contains 
most of the other objects. Matching similarity leads to more balanced clusters with 
both algorithms. Interestingly, it also produces almost the same clusters with the two 
different clustering methods.  

For more extensive objective testing, we should have a ground truth for the wanted 
clustering but this is not currently available as it is non-trivial to construct. We there-
fore make indirect comparison by using the SC criterion from [16]. The assumption 
here is that the smaller the value, the better is the clustering. Fig. 5 summarizes the 
SC-values for different number of clusters. The overall minima for complete link and 
average link are 131, 86, 146 (minimum, average and matching similarities) and 279, 
96 and 140, respectively. Our method provides always the minimum SC value. The 
sizes of 4 biggest clusters in each case are listed in Table 3. 

Table 3. The sizes of the four largest clusters for complete and average link clustering 

Complete link  

Similarity: Sizes of 4 biggest clusters 

Minimum 106 88 18 18 
Average 44 22 20 19 
Matching 27 23 19 17 

Average link 

Similarity: Sizes of 4 biggest clusters 

Minimum 22 12 10 8 
Average 128 41 34 17 
Matching 27 23 17 17 

The effectiveness of the proposed method for displaying data with limited number 
of clusters still exists. The number of clusters is too large for practical use and we 
need to improve the clustering validity index to find larger clusters but without  
creating meaningless clusters. We also observed some issues in clustering that origi-
nate from the similarity measure of two words, which implies that better similarity 
measure would also be useful. 
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Fig. 5. Complete link and average link clustering using three similarity measures 

4 Conclusion 

A new measure called matching similarity was proposed for comparing two groups of 
words. It has simple intuitive logic and it avoids the problems of the considered min-
imum, maximum and average similarity measures, which fail to give proper results 
with rather simple cases. Comparative evaluation on a real data with SC criterion 
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demonstrates that the method outperforms the existing methods in all cases, and by a 
clear marginal. A limitation of the method is that it depends on the semantic similarity 
measure between two words. As future work, we plan to generalize the matching 
similarity to other clustering algorithms such as k-means and k-medoids. 
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Abstract. In this paper we explore the use of ranking as a mean of
guiding unsupervised image segmentation. Starting by the well known
Pagerank algorithm we introduce an extension based on quantum walks.
Pagerank (rank) can be used to prioritize the merging of segments em-
bedded in uniform regions (parts of the image with roughly similar ap-
pearance statistics). Quantum Pagerank, on the other hand, gives high
priority to boundary segments. This latter effect is due to the higher
order interactions captured by quantum fluctuations. However we found
that qrank does not always outperform its classical version. We ana-
lyze the Pascal VOC database and give Intersection over Union (IoU)
performances.

Keywords: random walks, quantum walks, ranking, segment grouping.

1 Introduction

When applied to image segmentation, random walks have been used to propagate
labels in a semi-supervised way. For instance, in [1] pixels are labeled in terms
of the probability that a random walk will reach them from a given seed.

However, the random walker approach assumes that the weighting function
quantifying the dissimilarity between pixel intensities is symmetric. From a graph
theoretic perspective this simplifies the problem since the Laplacian matrices of
undirected graphs are semi-definite positive. At the same time the resulting
asymmetric dissimilarity functions are richer since their directionality allows us
to deal with special cases which are particularly interesting in image segmen-
tation. For instance, a symmetric dissimilarity between adjacent segments (e.g.
superpixels) imposes a misleading transitivity which may lead to an incorrect
grouping. In Fig. 1 (bottom-left), segment X is very compatible with A and B
in terms of having similar statistics. However A is in turn more compatible with
B than with X. Therefore, A’s best candidate for a merging will be B instead of
X. This situation also occurs with second-order neighbors (compare X with E).

Incorporating assymetry into semi-supervised labeling has been done in the
area of machine learning. For instance, in [2] conditional probabilities are intro-
duced in the Markov chain, whereas in in [3] the graph Laplacian is symmetrized
for encoding the directness of the edges. However, to the best of our knowledge
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there have been no attempts in the literature to investigate the propagation of
information through the digraphs induced by asymmetric dissimilarity measures
in an unsupervised context.

In this paper, we explore the impact of both classical and quantum ranking
in the selection of the segments to merge in unsupervised segmentation. Our
hypothesis is that ranking may improve significantly the quality of the segmen-
tation, since the result of the process contains the information of random or
quantum walks probing the network given by the adjacency graph. Therefore,
ranking provides local-to-global information that may be critical in a greedy
merging process.

The remainder of the paper is organized as follows. In Section 2 we describe
the simple hierarchical grouping algorithm used for the study of ranking effects.
In Section 3 we review Pagerank from a perspective of digraphs. Section 4 is
devoted to the description of the quantum extension of the Pagerank method.
Experiments and analysis are presented in Section 5. Finally, in Section 6, we
present our conclusions and future work.

Fig. 1. Symmetric vs asymmetric dissimilarity. Top-left: Output of SLIC algorithm.
Bottom-left: Asymmetric dissimilarities (in red and blue) between superpixel X and
some of its 1st and 2nd−order neighbors (see text). Top-row: Best unsupervised segmen-
tation results imposing symmetry for some VOC Pascal objects. Bottom-row: results
by imposing asymmetry. See the scenes analyzed in Top-left of Fig. 2 and Fig. 3.

2 Hierarchical Grouping Algorithm

The algorithm starts with a basic set of segments which are output by the SLIC
algorithm [4]. We then build a segmentation hierarchy by merging/composing
segments as follows.

Each segment is described by an appearance vector V = (μ, σ, cx, cy, w, h),
where μ, σ are the mean and the standard deviation of (l, a, b,∇x,∇y,∇2

x,∇2),
and (cx, cy, w, h) are the centroid of the segment and the dimensions of its bound-
ing box. These appearance vectors are designed so that they can be efficiently
computed recursively for new segments composed by merging existing ones.
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Each segment has a neighborhood structure. This consists of 1st−order neigh-
bors, which are directly adjacent to the segment, and 2nd−order neighbors (i.e.
those adjacent to the 1st−order neighbors). Then, we define an asymmetric sim-
ilarity function ΔA

i|j between segments which are 1st or 2nd-order neighbors. An
appearance measure is defined to be:

ΔA
i|j = ||Vi − Vi⋃ j ||2.

This is the change in the appearance vector of region i caused by merging it
with region j. This quantity is asymmetric – i.e. ΔA

i|j 
= ΔA
j|i. This quantity will

encourage merging neighboring regions which have similar appearance vectors.
The appearance similarity measure is modified by an edge-term (Ei,j ranging

from 0 to 1) that computes the strength of the edge on the boundary between
two adjacent regions. This edge term is computed very simply using the Sobel
edge detector. The underlying intuition is that we reduce the similarity between
adjacent regions if there is an edge between them. We do not introduce an edge-
term between segments in the 2nd-order neighborhood (because we want this
type of merging to jump between regions) and instead we pay a fixed penalty of
size 1 (which is the maximum value the edge term can take).

This gives an asymmetric similarity function Δi|j :

Δi|j =

{
Ei,j +Δ

A
i|j if i, j are 1st−order neighbors

1 +ΔA
i|j if i, j are 2nd−order neighbors

Alternative segmentation algorithms such as the one in [5] can be used. Herein we
use the simple method described above in combination with PageRank algorithm
or with its quantum extension to rank the pairing between segments (i, j) on the
basis of the similarity function. We allow the 30 % highest ranked segments to
merge, see Fig. (1). This ranking encourages merging between segments which
are most similar. However we reject merges in situations where the similarity
function between two regions is too asymmetric (i.e. we do not allow merges
where i ”likes” j, but j does not ”like” i). After these merges, we re-compute
the PageRank algorithm and repeat the process.

3 Ranking Based on Random Walks

Since the similarity measure used for merging is asymmetric, we use a directed
graph for encoding each segmentation level in the hierarchy.

A directed graph (digraph) G = (V,E) with N = |V | vertices and edges
E ⊆ V × V is encoded by an adjacency matrix A where Aij > 0 if i → j ∈ E
and Aij = 0 otherwise (this definition includes weighted adjacency matrices).
The outdegree matrix Dout is a diagonal matrix where douti =

∑
j∈V Aij . The

transition matrix P is defined by Pij =
Aij

dout
i

if (i, j) ∈ E and Pij = 0 otherwise.

The transition matrix is key to defining random walks on the digraph and
Pij is the probability of reaching node j from node i. Given these definitions
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Fig. 2. Quantum vs classical ranking for car segmentation. Top-left: image. Bottom-
left: ground truth. Top-center: classical ranking of segments at iterations 8 and 13.
Bottom-center: quantum ranking of segments at the same iterations. Top-right: group-
ing result with the hierarchical algorithm based on the classical ranking (IoU = 0.43).
Bottom-right: result using quantum ranking (IoU=0.61).

we have that
∑

j∈V Pij 
= 1 in general. In addition, P is irreducible iff G is
strongly connected (there is path from each vertex to every other vertex). If
P is irreducible, the Perron-Frobenius theorem ensures that there exists a left
eigenvector φ satisfying φTP = λφT and φi > 0 ∀i. If P is aperiodic (spectral
radius ρ = 1) we have φTP = ρφT and all the other eigenvalues have an absolute
value smaller that ρ = 1. By ensuring strong connection and aperiodicity we also
ensure that any random walk in a directed graph satisfying these two properties
converges to a unique stationary distribution.

By correcting P so that Pij = 1
N if Aij = 0 and douti = 0, we obtain a row

stochastic matrix:
∑

j∈V Pij = 1∀i. This strategy is adopted in Pagerank [6] and
provides and allows for teleporting acting on the random walk to any other node

in the graph. Teleporting is modeled by definingG = ηP T+(1−η)eeT

N , where eT

is the all ones row vector and 0 < η < 1. The new matrix G is column stochastic
and ensures both irreducibility and aperiodicity. Under these conditions Gji is
the probability of reaching j from i. Teleporting means that for every node with
Aij > 0, Gji =

Aij

dout
i

is applied with probability η, whereas for nodes with Aij = 0

we have Gji =
1
N with probability 1− η. In [7] a trade-off between large values

η (preserving more the structure of P ′) and small ones (potentially increasing
the spectral gap) is recommended. For instance, in [3], where the task is to learn
classifiers on directed graphs, the setting is η = 0.99, but usually η = 0.85 is
recommended. In any case, when using the new P we always have that Gii 
= 0
due to the Pagerank masking.

Finding the stationary distribution φ can be then formulated as an eigenvector
problem Gφ = φ subject to a normalization constraint eTφ = 1 (see [8]). Usually
the power method is used. Accordingly iterate φ(k + 1) = Gφ(k) starting by
φ(0) = e 1

N until convergence (which will occur if the second eigenvalue λ2 is
smaller than λ1 = 1). The stationary distribution is used for ranking the nodes.
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4 Quantization of Random Walks

4.1 Unitary vs Stochastic Evolution

The above process for finding the stationary distribution simulates the diffusion
of a discrete-time classical random walk on the directed graph G = (V,E).
Then the states are the nodes and top-ranked nodes are those whose stationary
probability is high.

On the other hand a discrete-time quantum walk [9] diffuses in a very different
way since it is subject to quantum superpositions. In this approach states |ψ〉 ∈
CN are assumed to belong to a Hilbert space H = span{|j〉 |j = 1, . . . , N} = CN

where 〈j| = (0 . . . 1 . . . 0) with a 1 at the j − th position. We use the Dirac bra-
ket notation where: |a〉 = a, 〈a| = a∗, 〈a|b〉 = a∗b is the inner product and
therefore 〈j|k〉 = j∗k = δjk. Then, the state of the quantum walk at a given

time is |ψ〉 =
∑N

j=1 cj |j〉 with cj ∈ C so that |c1|2 + |c2|2 + . . . + |cN |2 = 1

and |ci|2 = cici. The probability that the quantum walk is at node i is given
by |〈i|ψ〉|2 = |ci|2. The |ci|2 are known as the amplitudes of the wave traveling
through the graph.

Given a initial state |ψ(0)〉 =
∑N

j=1 c
0
j |j〉, a quantum walk evolves through a

unitary operator instead of a stochastic one which is the case of random walks
do. A N × N complex matrix U is unitary if U∗U = UU∗ = IN , where U∗

is the conjugate transpose, that is (A∗)ij = Aji. Therefore, both the rows and
columns of U form a orthonormal basis in CN . In addition U is by definition
a normal matrix for it commutes with its conjugate transpose. In this case it is
unitarily similar to a diagonal matrix, i.e., it is diagonalizable by U = V ΛV ∗

where Λ = diag(λ1λ2 . . . λN ) contains the eigenvalues of U and V is unitary and
its columns contains the eigenvectors of U . Combining the latter diagonalization
with the property |det(U )| = 1 we have that all the eigenvalues of U must lie on
the unit circle. In other words, they must have either the form eiθ or the form
e−iθ, where θ is an angle on the complex plane.

Therefore we have |ψ(t)〉 = U t|ψ(0)〉 with the amplitudes of |ψ(t)〉 summing
to unity since U is unitary.

4.2 Szegedy’s Quantization

The problem of associating a unitary operator with a Markov chain (stochas-
tic matrix) has been posed in different ways. One of them is inspired in the
Grover’s search algorithm [10]. Grover’s search relies on projection operators

Π =
∑N

j=1 |Ψj〉〈Ψj | where, for instance, |Ψj〉 =
∑N

k=1
1√
N
|k〉. The projectors

satisfy the condition Π2 = Π and the operator 2(Π − 1) defines reflections
(coin flips) around the subspace spanned by vectors |Ψj〉. In [11] Szegedy uses a
product of reflections for quantizing a Markov chain.

To commence, the state space, originally placed at the N nodes, is moved
to the N × N directed edges of the graph. The Hilbert space is now H =
span{|i〉1|j〉2 : | i, j = 1, . . . , N} = CN ⊗ CN where |a〉|b〉 = |a, b〉 = |a〉 ⊗ |b〉 is
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the tensor (Kronecker) product, and the subindexes 1 and 2 make explicit the
orientation of each edge. Following the approach in [12][13] orientation is critical
when computing projections onto the vector encoding the second node of the
edge. Then, the superposition of the edges outgoing from node j are given by

|Ψj〉 =
N∑

k=1

√
Gkj |j〉1|k〉2 . (1)

Given the projector Π =
∑N

j=1 |Ψj〉〈Ψj | (coin flip) and the swap operator S =∑N
j=1

∑N
k=1 |j〉|k〉〈k|〈j| which alternates the direction of the edge (swaps both

edge spaces), a step of the quantum walk is given by the unitary operator U =
S(2Π − 1), where 1 is the identity matrix. However, Grover’s search requires a
two-step unitary operator per iteration. When translating this idea to Markov
chains, Szegedy suggested the use of the operator (2Π − 1)(2Π ′ − 1) in order
to contemplate the case of two Markov chains (each one with its own reflection
operator). When the two chains are coincident (e.g. for creating bipartite walks)
then we have (2Π − 1)2. If we include the swap operator, which is also unitary,
then the two-step evolution operator is given by U2 = (2SΠS − 1)(2Π − 1).
This operator swaps the directions of the edges an even number of times.

The initial state |ψ(0)〉 = 1√
N

∑N
j=1

∑N
k=1 |j〉|k〉 assumes uniform probabilities

for all the N ×N edges in the digraph. Given |ψ(0)〉, we have that the state of
the quantum walk at a given time t is given by |ψ(t)〉 = U2t|ψ(0)〉. In addition,
the probability of being at such state is 〈ψ∗(t)|ψ(t)〉. However, for ranking a
given node i it is desirable to compute the probability of being at i at time t.
This can be done by computing the probability that any edge ends at such node
after t time steps. Let the state |Iq(t)〉 be the superposition of all paths ending
at |i〉2 (the second space of each edge ending at i).

The superposition state is defined as |Ii(t)〉 = 2〈i|ψ(t)〉 = 2〈i|U2t|ψ(0)〉 and
it is given by the projection of |ψ(t)〉 onto the space |i〉2. Such projection can be
described more clearly if we exploit the spectral theorem, since we have U2t =∑

μ μ
2t|μ〉〈μ|, where the μ are the N2 eigenvalues of U2 and the |μ〉 are their

corresponding N2−dimensional eigenvectors. Then, 2〈i|U2t =
∑

μ μ
2t

2〈i|μ〉〈μ|.
If we consider that the structure of 2〈i|μ〉 is 2〈i|j〉1|k〉2, for |μ〉 is defined in the
tensor space H = CN ⊗CN , then we have that the proper projection is given by
the contraction 2〈i|k〉2|j〉1.

Consequently, we have that the probability that the quantum walk at vertex
i after t time steps (that is, its quantum ranking at this time) is

Ii(t) = 〈ψ(0)|U∗2t|i〉2〈i|U2t|ψ(0)〉 =
∥∥∥∥∥∑

μ

μ2t 2〈i|μ〉〈μ|ψ(0)〉
∥∥∥∥∥
2

(2)

In practice, the time-averaged quantum ranking is used (although the long time
average can be used since it only depends on the eigenvectors |μ〉). The average is
useful because quantum oscillation typically decrease in amplitude with Ii(t). In
any case, the main problem when this approach is applied to ranking segments is
to compute or to approximate U2 (memory storage) and/or the its eigensystem.
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4.3 The Eigensystem of the Unitary Operator

One of the nice properties of the Szegedy’s formulation is that it provides a direct
link between the eigenvalues and eigenvectors of U and those of a N×N matrix
D, where Dij =

√
GijGji, called the discriminant matrix. Such matrix is linked

with the projector operatorΠ and the half-projection A =
∑N

j=1 |ψj〉〈j| through
the following properties: (i) A∗A = 1, (ii) AA∗ = Π and (iii) A∗SA = D.

Let λ and |λ〉 be respectively the N eigenvalues and N−dimesional eigen-
vectors of the symmetric matrix D. Then, if we define |λ̃〉 = A|λ〉 and apply
the above properties, we have the following ansatz for the eigenvectors |μ〉 and
eigenvalues μ of U : |μ〉 = |λ̃〉 − μS|λ̃〉. This means that we can easily obtain
2N of the N2 eigenvalues and eigenvectors of U from the N ones of D, since
μ = e±i×arccosλ. These latter values come from the SVD decomposition of D,
whose singular values lie in (0, 1).

In addition, when we consider U2 we have that this operator splits H into the
subspaces Hdyn = span{|ψj〉,S|ψj〉} and its orthogonal complement Hnodyn =
H⊥

dyn. The dimension of Hdyn is at most 2N . Thus, the spectrum of U2 cor-

responding to Hdyn is given by, at most, the 2N values {e±2i×arccosλ}. The
spectrum corresponding to Hnodyn is given by at least N2 − 2N 1’s.

When estimating the eigenvectors |μ〉 and eigenvalues μ for segmentations
we have to confront the problem that at the lowest segmentation levels the
number of SLIC superpixels is too high for building an N2×N2 unitary operator
and then getting its eigensystem. The unitary operator is needed to extract
the eigenvectors |μ〉 corresponding to eigenvectors with value 1 (i.e. satisfying
U2|μ〉 = |μ〉). Obtaining the operator U2 (or even U) is infeasible for these
levels, unless a more in-depth analysis of the structure of these operators reveals
a shortcut. This latter question is beyond the scope of this paper and we have
approximated the instantaneous ranking Ii(t) with

Ĩi(t) =

∥∥∥∥∥∥
∑

μ∈Hdyn

μ2t 2〈i|μ〉〈μ|ψ(0)〉

∥∥∥∥∥∥
2

. (3)

Therefore Ĩi(t) is a low-pass approximation of Ii(t).

5 Analysis: Experiments and Conclusions

We evaluate to what extent the averaged Ĩi(t) can improve grouping when ap-
plied to rank segments at all levels of the hierarchy. In order to do that, we
measure the Intersection-over-Union (IoU) which quantifies this quality of the
segmentation of a particular object class (Pascal VOC 2010). This measure pe-
nalizes both obtaining a smaller area than the ground truth and obtaining a
larger area than the ground truth. We have access to an unpublished ground
truth where it has been assigned one of 57 labels to every pixel. For quantifi-
cation data we use a sample of 1, 100 images of the 10, 103 in the VOC 2010
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Table 1. IoU wrt the ground truth for 57 object classes of the Pascal VOC 2010

plane bicycle bird boat bottle bus car cat
CPMC 78.6 64.4 74.8 71.2 74.9 78.9 72.1 85.5

Uniform 53.7 39.7 55.8 48.3 54.6 46.5 51.7 57.1
R. Walks 53.3 41.9 57.8 56.9 51.7 52.5 53.9 60.5
Quantum 55.6 41.8 56.3 54.7 51.7 49.0 53.0 58.0

chair cow d. table dog horse motorbike person pot. plant
CPMC 51.7 79.9 62.2 82.6 77.5 74.2 67.6 63.9

Uniform 52.1 54.9 57.1 55.9 54.1 52.5 48.4 50.1
R. Walks 52.9 57.0 48.6 57.3 54.6 48.9 51.1 51.7
Quantum 49.7 57.1 51.0 57.5 51.8 49.2 50.3 51.6

sheep sofa train tv bag bed bench book
CPMC 73.7 64.2 78.2 76.8 53.2 65.4 36.5 36.3

Uniform 54.6 58.2 48.0 57.9 54.3 54.3 43.1 46.8
R. Walks 56.8 58.8 50.9 57.2 55.7 59.4 49.0 52.9
Quantum 56.1 57.5 48.5 57.5 54.9 62.4 54.6 55.1

building cabinet ceiling clothes pc cup door fence
CPMC 51.6 54.9 22.4 58.5 70.7 40.9 40.0 42.3

Uniform 51.8 55.5 54.6 57.3 48.8 47.3 50.8 44.5
R. Walks 53.5 54.6 60.1 57.8 48.6 46.8 56.2 45.7
Quantum 55.1 59.0 51.0 58.8 52.0 51.2 59.4 47.4

floor flower food grass ground keyboard light mountain
CPMC 54.5 51.0 44.9 56.5 55.0 46.8 8.3 55.2

Uniform 58.8 49.8 43.3 60.4 58.5 46.3 43.7 59.5
R. Walks 62.1 48.5 56.9 61.3 60.4 52.2 38.4 62.3
Quantum 65.0 49.9 50.7 61.8 60.9 53.5 42.5 63.8

mouse sign plate road rock shelves sidewalk sky
CPMC 12.6 24.6 44.5 56.3 61.1 52.6 53.0 65.1

Uniform 48.2 39.1 43.6 64.8 58.2 47.8 57.2 76.4
R. Walks 48.4 44.9 39.8 66.5 55.3 54.0 61.9 77.2
Quantum 48.3 47.4 39.0 67.5 58.2 49.9 59.2 81.0

snow table track tree truck wall water window
CPMC 60.0 48.9 42.3 54.5 61.8 51.7 65.4 50.9

Uniform 55.8 47.0 41.8 54.2 47.1 59.0 62.4 54.2
R. Walks 55.1 49.2 44.0 56.3 53.7 59.7 62.9 57.9
Quantum 59.1 47.2 41.7 56.7 55.8 61.1 65.1 56.1

wood all IoU
CPMC 49.4 59.6

Uniform 59.2 57.2
R. Walks 60.5 58.7
Quantum 60.3 59.4
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Fig. 3. Quantum vs classical ranking for person and bottle segmentation. First row,
from left to right: image, classical rank at iteration 28, grouping result using classical
rank for person (IoU=0.65), grouping using classical rank for bottle (IoU=0.36) . Sec-
ond row, from left to right: ground truth, quantum rank at iteration 28, result using
quantum rank for person (IoU=0.80), result with quantum rank for bottle (IoU=0.67).

dataset. In all cases the number of initial SLIC super pixels is 500 and there are
35 levels in the hierarchy until we reach a single segment.

Firstly, we analyze the behavior of Pagerank vs qrank (its low-pass approx-
imation), before going through IoU analysis. In Fig. 2 we try to detect a car
embedded in a textured environment. Pagerank seems to invert the priorities of
qrank. It prioritizes the selection of segments inside quasi-homogeneous regions,
whereas boundary segments have a low rank (blue). However, once the homo-
geneous region is built, its ranking decreases (see the grouping of the sky, in
first row, which starts at interation 8 and it is stopped at iteration 13). Most
top-ranked segments in qrank correspond to low-ranked ones in Pagerank (see
the shadowed region at the top of the car). However, this ”inversion” is mislead-
ing since some top/medium-ranked segments in qrank are also prioritized by
qrank. On the one hand, the tendency of Pagerank to propose merging inside a
quasi-homogeneous region may merge a part of the object with the background
when the appearance of the background and the part of the object are similar.
In the case of the car, this results in obtaining a smaller area than the ground
truth. On the other hand, the behavior of qrank may lead us to merge the object
with a part of the background producing a bigger area than the ground truth.
These behaviors are replicated in Fig. 3 where qrank outperforms Pagerank when
segmenting a person and a bottle.

We compare the IoUs obtained by both ranking methods with: (i) a state-of-
the-art unsupervised segmentation algorithm (CPMC) and (ii) our hierarchical
method with uniform ranking probabilities. We show the quantitative results in
Table. 1. In general CPMC [14] outperforms our method. The first stage of the
Constrained Parametric Min-Cuts method (CPMC) applies repeatedly a max-
flow algorithm to output a set of segments based on groupings of an edge map
provided by the gPb algorithm [15]. After a non-maximum supression filtering,
the second stage ranks the segments using cues trained on the Pascal VOC
dataset, provided the groundtruth masks of the objects.
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However, our grouping method uses only low-level cues and is not trained for
object-like segments. Thus, it is natural to outperform CPMC on background
region classes, for which it is not trained. Also, our method tends to group similar
appearance regions, while CPMC may group different appearance regions. This
explains that CPMC outperforms our method on many foreground object classes
and on the overall performance.

To conclude, qrank slightly outperforms its classical counterpart, and in some
cases both outperform a state-of-the-art learning-based method. These exper-
iments provide an initial insight of the power of quantum walks but we must
complete the low-pass ranking with higher-order experiments which become fea-
sible in segmentation settings.
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Abstract. In this paper we present a new method for foreground masks
denoising in videos. Our main idea is to consider videos as 3D images and
to deal with regions in these images. Denoising is thus simply achieved
by merging foreground regions corresponding to noise with background
regions. In this framework, the main question is the definition of a cri-
terion allowing to decide if a region corresponds to noise or not. Thanks
to our complete cellular description of 3D images, we can propose an
advanced criterion based on Betti numbers, a topological invariant. Our
results show the interest of our approach which gives better results than
previous methods.

Keywords: Video denoising, 3D Topological Maps, Betti numbers.

1 Introduction

Several video analysis applications, like video surveillance or traffic monitoring,
require as a preliminary sub-task the identification within the scene of the moving
objects (foreground) as opposed to the static parts of the scene (background).

Many algorithms have been proposed in the literature most based on the
background subtraction technique [17,3,11]. These algorithms are quite efficient
but no one is the best for all situations (see [5] for a comparison of the most
widely used background subtraction algorithms).

Some authors give up looking for an algorithm that directly provides the ideal
foreground mask, and apply, instead, some post-processing in order to reduce
or eliminate noise pixels, that is pixels erroneously detected as foreground. For
example in [15] the authors show a method to remove shadows, or in [6] the au-
thors propose some heuristics for removing some errors in the foreground mask.
Even if these approaches are efficient, they are based on some assumptions that
are not always true, being too dependent from the specific video characteristics.

Our paper fall in the last category: we propose an approach to reduce noise
on foreground masks. But we present a general method that can be used on any
video, in contrast to the more video-dependent approaches in the literature.

The basic idea of the method is that noise cannot be detected and removed
analyzing a single frame of the video (as the other approaches do), but noise
is easier to detect if more successive frames are examined: in fact real objects
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present, over the sequence, a regularity that noise seems not to have. There-
fore the approach is based on a 3D structural representation of the foreground
for a certain number of frames, and noise removal is done through structural
operations on that data structure.

The remainder of the paper is organized as follows: in Sect. 2 the 3D structural
representation of the scene is presented and explained, then in Sect. 3 the noise
removal algorithm is given; the validation of the method, together with a com-
parison with other approaches, is made by a robust quantitative experimentation
in Sect. 4; finally conclusions and perspectives are drawn in Sect. 5.

2 Definitions and Representation

We recall here the standard notions around 2D and 3D digital images, before
introducing the notions of cellular subdivision and Betti numbers.

2.1 Digital 2D and 3D Images and Video

A pixel (resp. voxel) is an element of the discrete space Z2 (resp. Z3) denoted
by its coordinates (x, y) (resp. (x, y, z)). A 2D (resp. 3D) image is a set of pixels
(resp. voxels) and a mapping between these pixels (resp. voxels) and a set of
colors or gray levels. Each pixel (resp. voxel) e is associated with its color or
gray level c(e). Furthermore, each pixel (resp. voxel) e is associated with a label
l(e) from a finite set of labels L. These labels can be obtained from the image
by a segmentation algorithm.

In this work, a temporal sequence of 2D images is considered as a 3D im-
age. Each image of the sequence is associated with a time t. Thus each pixel
is now considered as a temporal pixel, described by three coordinates (x, y, t),
(x, y) being the spatial coordinates and t being the temporal coordinate. Thus,
a temporal sequence of 2D images can be seen as a 3D image, where each voxel
is in fact a temporal pixel.

We use the classical notion of α-adjacency. Two voxels (x1, y1, z1) and
(x2, y2, z2) are 6-adjacent if |x1 − x2| + |y1 − y2| + |z1 − z2| = 1; they are 26-
adjacent if max(|x1−x2|, |y1−y2|, |z1−z2|) = 1 and they are 18-adjacent if they
are 26-adjacent and if |x1−x2|+ |y1−y2|+ |z1−z2| = 1 or 2. Adjacency relations
are extended to set of voxels: two sets of voxels S1 and S2 are α-adjacent if there
is v1 ∈ S1 and v2 ∈ S2 such that v1 and v2 are α-adjacent.

Given an α-adjacency, an α-path between two voxels v1, v2 is a sequence
of voxels starting from v1 and finishing from v2, such that two voxels of the
sequence are α-adjacent. A set of voxels S is α-connected if there is an α-path
between any pair of voxels in S having all its elements in S.

A region in 3D is a maximal set of 6-connected voxels having same label.
In addition to all the regions present in the labeled image, another region is
considered, called R0, which contains all the voxels that do not belong to the
image. R0 is the complementary of the image.
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(a) (b) (c)

Fig. 1. The 3D representation of a video. (a) The image sequence. (b) The construction
of the 3D image. (c) The final representation.

2.2 Cellular Subdivision of Video

A video seen as a 3D image is thus decomposed in 3D regions which form a
partition of the image (i.e. any voxel belongs to exactly one region and the union
of all the regions is equal to the entire image). Figure 1 shows an example of the
3D representation of a video. The partition is decomposed in the following cells:
0-cells are vertices, 1-cells are edges, 2-cells are faces and 3-cells are volumes.

Volumes describe the boundaries of 3D regions. Each volume is bounded by
a surface, i.e. a set of adjacent faces, each face corresponding to a maximal
contact area between two adjacent regions. Faces are bounded by edges, each
edge corresponding to a maximal contact between two adjacent faces; and edges
are bounded by vertices. Incidence relations are defined between the cells: two
cells are incident if they have different dimensions and if one belongs to the
boundary of the second one.

This cellular subdivision is a generalization of a region adjacency graph (RAG
[16]) which is a graph having a vertex for each region, and an edge between each
pair of adjacent regions. Vertices of the graph correspond to regions, and edges
correspond to faces which describe the adjacency relations. This RAG was ex-
tended in a multi-graph, called multi-RAG, in order to represent multi-adjacency
relations between regions (when two regions are adjacent several times). How-
ever our cellular structure is much more rich than RAG and multi-RAG since it
describes also the multi-adjacency relations but the relations are ordered (given
a region we can iterate through the adjacent regions in an ordered way which is
not directly possible with graphs); furthermore in our structure all the cells are
represented (RAG instead describes only 3-cells and 2-cells).

The cellular subdivision is represented thanks to 3D topological maps [7],
an efficient 3D model based on combinatorial maps [13,8] which represent the
subdivisions in cells plus all the incidence and adjacency relations between the
cells. In this work, 3D topological maps are used as an external tools and thus
we do not go into detailed definitions, see above references for more details.

Having a cellular subdivision makes it possible to use some classical tool of
algebraic topology, since our subdivision is an abstract cellular complex [2,12].
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In this work we use Betti numbers, a well-known topological invariant [14], in
order to characterize the topology of regions. These numbers are related to ho-
mology groups, but we give here their intuitive presentation. In 3D, there are
three non null Betti numbers: b0 is the number of connected components, b1 is
the number of tunnels and b2 is the number of voids. For a region R, b0(R) = 1
because by definition a region is connected, b1(R) is the number of tunnels of
R (a tunnel corresponds to a path of voxels in R that cannot be contracted into
a point) and b2(R) is the number of voids of R (a void is a set of connected
voxels that do not belong to R but that are fully surrounded by voxels in R).
An incremental method to compute Betti numbers and to update them during
region merging is given in [10].

3 Our Method

The main principle of our method is detailed in Algo. 1. First a given video of
foreground masks is cut in consecutive slices of 2D images. Then each slice is
consider as a 3D image (as explained in the previous section) and a 3D topological
map is built to describe the corresponding cellular subdivision. This gives a set
of regions, each one being labeled 0 or 1 depending if it corresponds to a set of
background voxels (0) or of foreground ones (1).

Algorithm 1: Reduce noise on foreground masks

Input: A video of foreground masks V ;
A boolean function criterion(r1, r2).

Result: V is modified by merging all the adjacent pairs of regions satisfying
criterion.

T ← build the 3D topological map describing V ;
foreach region R1 ∈ T labeled 1, R1 	= R0 do

foreach region R2 adjacent to R1, R2 	= R0 do
if criterion(R1, R2) then

R ← merge(R1, R2);
update region R;

return the partition described by T ;

The 3D topological map corresponding to a given slice is built by using the
algorithm given in [7] (wich is the extension in 3D of similar algorithm in 2D [9]).
During this construction, a cube is created for each voxel, and 6-adjacent voxels
having the same label are merged. Doing the merging during the construction
allows to process large video by avoiding to build the full model composed of all
the cubes describing all voxels.

Then, each pair of adjacent regions (R1, R2) are considered so that R1 is
labeled 1. Indeed in order to reduce the noise, it is enough to merge some white
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regions with the background, thus there is no need to process black regions. If
the pair (R1, R2) satisfies a given criterion, the two regions are merged. Merging
two regions is done using the algorithm given in [10] which mainly consists in
removing the faces separating the two regions, and possibly updating the edges
and the vertices if needed.

Additional information associated with region R (which is the result of the
merging of R1 and R2) must be updated. In this work, each region stores its
number of voxels and its label. The number of voxels of R is the sum of the
number of voxels of R1 and the number of voxels of R2. The label of R is always
fixed to 0. Indeed, R1 is labeled 1, thus by definition of regions, R2 is labeled 0
(two adjacent regions can not have the same label). Since our goal is to reduce the
noise, region R, considered as noise, and which is the merging of one background
region and one foreground region, must stay in the background.

At the end of the algorithm, all the pairs of regions were considered and
the new video is returned: this is the partition described by the modified 3D
topological map.

The complexity of Algo. 1 is linear in number of adjacencies between regions
times the complexity of the criterion. The number of adjacencies between regions
is equivalent to the number of edges in the multi-RAG. Indeed thanks to the
cellular decomposition we can iterate through all these adjacencies which are
explicited by the faces, and the regions around each face are directly retrieved
thanks to the incidence relations.

Now the main question is the definition of a criterion. Indeed, this is the main
tool used during the reduce noise algorithm and only a correct definition will
give good results. A first simple criterion, given in Eq. 1, consists in testing if the
size of the white region is smaller than a threshold τ given by the user. The idea
of this criterion comes from the fact that noise in image produces often small
regions comparing to real objects. It is also important to highlight that for real
objects there is always an overlapping between their appearances in consecutive
frames, even at a low frame rate. Video used in experiments are at 10 fps and
the overlapping between masks for real objects is always held.

size(R1) < τ (1)

(R1 being the region labeled 1)

The main interest of this criterion is to be very simple and computed in con-
stant time since each region stores its size and the sizes are updated incrementally
during the region merging. Note that this solution can be implemented using a
multi-RAG data-structure instead of 3D topological maps. Indeed additional
information described by topological maps are here not used.

One problem of this first criterion is that some white regions representing noise
can have a size larger than the threshold and thus are not removed. By studying
such regions, we have observed that they are often very porous because noise is
non regular and noisy adjacent pixels have often different labels. For this reason,
these regions have many voids and tunnels contrary to regions describing objects
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which have generally a small number of voids and tunnels. This observation
tends to show that the threshold associated with regions having many voids and
tunnels must be increased in order to have an higher chance to be removed. For
that, we propose in Eq. 2 a second criterion which mixes the size of the white
region and its Betti numbers. This second criterion has two parameters: τ the
threshold for the size of small regions, and ϕ, a percentage which is multiplied
by the sum of the Betti numbers of R1.

size(R1) < τ ∗ (1 + ϕ ∗ (b1(R1) + b2(R1))) (2)

(R1 being the region labeled 1)

This second criterion illustrates the interest of having an advanced description
of regions (more precise than a RAG) allowing to compute and to mix several
characteristics on regions. The complexity of this algorithm is equal to the com-
plexity of the Betti number computation, i.e. linear in number of vertices, edges
and faces describing region R1. These numbers can be bounded by the number
of voxels of R1 times a constant number (8 for vertices, 12 for edges and 6 for
faces).

4 Experiments

4.1 Dataset and Algorithms

We use the PETS 2010 Dataset [1]. This dataset is a standard database widely
used for the performance evaluation of tracking and surveillance algorithms.

In order to evaluate the performances of the proposed denoising algorithm, we
start from foreground detection masks on PETS video sequences, resulting from
the application of a basic background subtraction (BS) algorithm. We expressly
used the basic BS algorithm without any improvement and parameter optimiza-
tion, because we want to show that the proposed algorithm can clean detection
masks without any pre-processing prior. This allows to be not dependent on the
specific video sequence and it avoids the optimization parameters phase that is
tedious and not always possible.

Starting from the same detection masks, we compare our algorithm with:

A1 a denoising algorithm that uses only morphological operations (erosion and
dilatation);

A2 the algorithm proposed in [6] that adds, to the basic subtraction algorithm,
several post-processing improvements;

A3 the algorithm [6] with the addition of the grouping phase proposed by the
same authors in [4].

As shown in [4], these algorithms are effective in reducing noise regardless
of the method for foreground detection. Other approaches are not considered
because of their high computational complexity. Note that the algorithms A2
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and A3 require several parameters to set. A3 also requires a camera calibration
phase (for details see [4]) for each video (taken with different camera settings).
Therefore, in this experimentation we preliminary optimized these parameters,
which are therefore specific for each sequence.

Our new method has two parameters: τ the threshold for the size, and nb
which is the number of frames grouped in a same 3D slice. The method based on
Betti numbers has an additional parameter: ϕ the percentage of Betti numbers
added to the size.

4.2 Performance Index

We use an evaluation scheme inspired by the method presented in [18]; it takes
into account one-to-one as well as many-to-one and one-to-many matches.

The goal of a detection evaluation scheme, on a frame, is to take a list of
ground truth boxes G = G1, . . . , Gn and a list of detected boxesD = D1, . . . , Dm

and to measure the quality of the match between the two lists. From the two
lists D and G two overlap matrices σ and τ are created. The rows i = 1 . . . |G| of
the matrices correspond to the ground truth boxes and the columns j = 1 . . . |D|
correspond to the detected boxes.

The values are calculated as follows:

σij =
area(Gi ∩Dj)

area(Gi)
τij =

area(Gi ∩Dj)

area(Dj)
(3)

The matrices can be analyzed for determining the correspondences between
the two lists:

One-to-One Matches : Gi matches againstDj if row i of both matrices contains
only one non-zero element at column j and column j of both matrices contains
only one non-zero element at row i. The overlap area needs to have a certain
size compared to the rectangle in order to be considered successful (σij ≥ e1 and
τij ≥ e2).

One-to-Many Matches with One Ground Truth Box : Gi matches against sev-
eral detected boxes if row i of the matrices contains several non-zero elements.
The additional constraint of

∑
j σij ≥ e3 ensures that the single ground truth

rectangle is sufficiently detected.
One-to-Many Matches with One Detected Box : Dj matches against several

ground truth boxes if column j of the matrices contains several non-zero ele-
ments. Also here we add the constraint of

∑
i τij ≥ e4.

Parameters e1, . . . , e4 measure how much detected boxes against ground truth
have to overlap. For most applications a value of 0.8 (80% of overlapping) is good;
therefore we set e1 = · · · = e4 = 0.8.

Based on this matching strategy, the recall and precision measures are defined
as follows:

recall =

∑
iMatchG(Gi)

|G| precision =

∑
jMatchD(Dj)

|D| (4)
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where MatchG(Gi) is defined as follows:

MatchG(Gi) =

⎧⎨
⎩

1 if Gi matches against a single detected box
0 if Gi does not match against any detected box

0.8 if Gi matches against several detected boxes
(5)

and MatchD(Dj) accordingly.
The indexes Recall and Precision for a video sequence are the average values

of recall and precision over all the frames of the sequence.

4.3 Results

Results of our experiments are given in Table 1 for the precision and recall
measures, and in Table 2 for the F-score values (the harmonic mean of precision
and recall). In all the arrays, dark grey cells are the best scores for each video,
and light grey cells the second best scores. In these experiments, nb is always fix
to 15. tXXX is the value obtained by the method with the size criterion with
τ = XXX , and tXXX-pYYY is the value obtained by the method with the size
and Betti numbers criterion with τ = XXX and ϕ = Y Y Y .

Table 1. The values of the indexes precision and recall for the considered algorithms

v1 v3 v4 v5 v6 v7 v8

Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre

A1 0.55 0.09 0.38 0.27 0.54 0.24 0.55 0.16 0.44 0.45 0.57 0.12 0.68 0.14

A2 0.44 0.29 0.20 0.39 0.46 0.36 0.44 0.32 0.41 0.55 0.47 0.31 0.60 0.38

A3 0.49 0.22 0.31 0.42 0.52 0.33 0.50 0.20 0.43 0.47 0.52 0.19 0.65 0.24

t2000 0.54 0.20 0.36 0.45 0.55 0.37 0.54 0.26 0.46 0.50 0.55 0.23 0.66 0.25

t3000 0.54 0.20 0.35 0.46 0.55 0.39 0.53 0.28 0.46 0.50 0.55 0.22 0.66 0.25

t4000 0.53 0.21 0.33 0.46 0.54 0.40 0.53 0.28 0.46 0.51 0.54 0.23 0.66 0.26

t2000-p.05 0.54 0.23 0.34 0.46 0.54 0.38 0.53 0.33 0.46 0.53 0.54 0.33 0.66 0.29

t2000-p.1 0.48 0.28 0.22 0.47 0.31 0.39 0.51 0.36 0.44 0.54 0.46 0.37 0.56 0.32

t2000-p.15 0.39 0.36 0.08 0.34 0.09 0.37 0.45 0.35 0.36 0.52 0.37 0.36 0.47 0.33

t3000-p.05 0.50 0.26 0.25 0.45 0.53 0.38 0.53 0.36 0.45 0.54 0.50 0.34 0.62 0.31

t3000-p.1 0.37 0.37 0.07 0.28 0.08 0.32 0.45 0.35 0.35 0.52 0.36 0.37 0.46 0.33

t3000-p.15 0.23 0.37 0.03 0.14 0.03 0.17 0.32 0.30 0.29 0.46 0.27 0.32 0.34 0.29

t4000-p.05 0.47 0.29 0.17 0.44 0.26 0.36 0.49 0.36 0.44 0.54 0.46 0.37 0.55 0.33

t4000-p.1 0.26 0.38 0.03 0.14 0.03 0.17 0.36 0.32 0.32 0.48 0.29 0.34 0.39 0.30

t4000-p.15 0.14 0.40 0.01 0.07 0.01 0.06 0.21 0.22 0.19 0.33 0.22 0.29 0.25 0.28

These results show that our new method is competitive comparing with the
three previous algorithms. Generally, merging more regions (either by increasing
τ or by increasing ϕ) decreases the recall while increases the precision until a
certain point. Thus better results are obtained by finding the good thresholds
giving the best compromise for precision and recall.
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These results show a second important conclusion: the method using Betti
numbers can greatly improve the results. This is for example the case for video
v7 with τ = 2000, where the precision is improved from 0.23 without Betti to
0.37 with Betti using ϕ = .1.

These results are confirmed by the F-score values given in Table 2 which allow
to find the best compromise between precision and recall. For all videos, the best
scores are often obtained by the method using Betti numbers with τ = 2000 (best
score for 3 videos, and second best score for the 4 other videos).

Table 2. The values of the F-score for the considered algorithms

v1 v3 v4 v5 v6 v7 v8

Fsc Fsc Fsc Fsc Fsc Fsc Fsc

A1 0.15 0.31 0.33 0.25 0.44 0.20 0.23

A2 0.35 0.26 0.40 0.37 0.47 0.37 0.46

A3 0.30 0.36 0.40 0.28 0.45 0.28 0.35

t2000 0.29 0.40 0.45 0.35 0.48 0.32 0.36

t3000 0.30 0.40 0.45 0.37 0.48 0.32 0.37

t4000 0.30 0.39 0.46 0.37 0.48 0.32 0.37

t2000-p.05 0.33 0.39 0.45 0.41 0.49 0.41 0.40

t2000-p.1 0.35 0.30 0.34 0.42 0.49 0.41 0.41

t2000-p.15 0.37 0.13 0.14 0.39 0.43 0.37 0.38

t3000-p.05 0.34 0.32 0.44 0.43 0.49 0.41 0.41

t3000-p.1 0.37 0.12 0.13 0.39 0.42 0.36 0.38

t3000-p.15 0.28 0.05 0.05 0.31 0.36 0.30 0.31

t4000-p.05 0.36 0.25 0.30 0.41 0.49 0.41 0.41

t4000-p.1 0.31 0.05 0.05 0.34 0.38 0.31 0.34

t4000-p.15 0.20 0.02 0.01 0.21 0.24 0.25 0.26

5 Conclusion

In this paper, we presented a new method of noise reduction on foreground video
masks. Thanks to a 3D cellular description of the video, our method is defined
in an high abstraction level considering regions and adjacency relations between
these regions. This simplifies the denoising algorithm which consists mainly to
merge foreground regions with the background. A second main advantage is the
possibility of defining high level criteria on the regions. In this paper we use a
simple criterion using the size of regions, and a more advanced criterion using
Betti numbers (that gives better results). This second criterion can be defined
thanks to the full cellular representation, while this is not directly possible using
simpler data-structures such as region adjacency graph.

As future work, we first want to work on the automatic computation of the pa-
rameters of our method. A second perspective is to define other criteria. Thanks
to our representation, many possibilities could be studied mixing geometrical
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criteria and topological ones. A last perspective is to use similar techniques (con-
sidering the 3D cellular description of a video) in other fields of video processing
such that objects or activities recognition.
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Based on a Kinematic Model
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Abstract. Taking an inspiration from psychological studies of visual
attention, the contribution of this paper lies in prediction of the critical
points of the trajectory using the structure of a scene and physical motion
model. On one side, we present our approach for video analysis that
differs from traditional tracking techniques by predicting future states
of the moving object rather than its next consecutive position using the
physically-based motion functionality. On the other side, we propose to
use the structure of the scene, which contains the information about
the obstacles and space limits, for discovering the critical points of the
trajectory. As a proof of concept we developed the use case application
for analysing snooker footage.

1 Introduction

Tracking covers a vast number of applications in computer vision: from me-
dia production and augmented reality to robotics and unmanned vehicles [10].
By definition [10] it is a process which aims at defining the position of the
target in subsequent video frames. For the purpose of video understanding
and summarization storing the entire track of the objects is semantically and
computationally redundant. Moreover, high frequency temporal sampling, high
resolution data and contamination (i.e occlusions, distractors, illumination vari-
ations) makes tracking a challenging task to robustly perform in real time. Thus,
we inquired into a question of reducing the amount of processed data by pre-
dicting the future locations of the analysed object and select then semantically
meaningful moments which require further detailed analysis, such as recognition.

We derived our idea from psychological studies of human vision. Selective
visual attention is a mechanism that aims at filtering irrelevant parts of the
scene and focusing cognitive processes on the most important object at a given
time slot. It is accomplished based on either spatial location or object features.
It is worth mentioning that we are not aiming at modelling this phenomena. We
use its main principles, in order to argue in favour of neglecting redundant data.
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As a descriptor motion is assumed to be an inherent property of an object
taken apart from environment. Though, motion parameters are dependant not
only on characteristics of the object, but also are restricted by the structure of
the scene. The correct motion model enables to predict the trajectory, whereas
structure of the scene defines the conditions when the trajectory deviates. Crit-
ical point of the trajectory - is a point of the trajectory where the parameters
of motion are changed. On the example of a snooker game, motion of the ball is
limited by other balls, cushion (table borders) and pockets.

The existing approaches for snooker game analysis, [3], [11], [8], aim at predict-
ing the state of the balls in the current frame knowing its positions in previous
frame(s). When the tracked data of the whole video is collected, they select a
subsample for the tasks of summarization or event detection. In contrast, we
propose that tracking every position of the target with known motion model is
not influential in sense of video understanding. For this purpose, we predict the
evolution of object’s spatio-temporal changes according to its physical properties
(motion functionality). This prediction is then taken in conjunction with the
structure of the scene, in order to detect critical points of the trajectory and
correct the parameters of original motion model.

The remaining of the paper is organized as follows. Next section introduces the
idea of our approach. Section 3 is dedicated to the utilization of the proposed
method for the application of tracking a snooker game. Each important issue
is followed by the discussion of the state of the art approaches. The paper is
concluded in Section 4.

2 Motion as a Descriptor for Tracking

One of the main components in the tracking pipeline is dedicated to modelling
an object of interest, or shortly a target. There is no universal formal description
of the key object properties that enable successful tracking in all possible cases.
Generally, computer vision community is split into the adherents of the statistical
and structural approach [2]. The common feature for both approaches is that
they do not work with the real world objects, but with the image representations
and their properties.

In our view the model of the real object should not be limited to the properties
of the image. Tracking aims at analyzing dynamic scenes, which in turn reveal the
spatio-temporal changes of the objects. These dynamic changes are mostly not
an unpredictable phenomena with independent random states in each moment.
By the nature motion behaviour of an object has limitations that basically relate
to motion functionality of the object and/or to the structure of the scene (see
Table 1).

Functionality, in our opinion, represents a set of abilities that the object
possesses. From motion perspective, functionality defines how the object could
deform with time according to its physical nature. On one hand, it is defined by
the structure of the object (e.g. rigid/non-rigid parts, degrees of freedom). On
the other hand, it depends on the local motion models of the constituent parts
and the global motion model of the whole object.
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Table 1. Criteria impacting the motion behaviour

motion limitations

functionality structure of the scene

structure of the object motion model space limits obstacles

Structure of the scene is a set of objects and conditions influencing the motion
trajectory of the target. We consider obstacles and space limits to be of higher
importance. Obstacle is an object of the scene which lies on the trajectory
of the moving target. As a result the original motion model of the target is
changed either after a collision or due to bypassing. Obstacle is not a permanent
motionless part of a structure of the scene and may change its position. In
contrast, space limits are constant, they constraint further motion of the target,
such that bypassing is not feasible. Though collision and reflection scenarios are
possible.

The awareness about the above phenomena provides advantages as opposed
to other sources of guidance in the following current tracking problems:

• keep tracking in case of a partial or/and complete occlusion;
• prediction of the critical points of trajectory;
• lower the computational costs since processing only meaningful data.

Multiple Facets of Motion Functionality. Prediction based on functionality
makes a crucial impact and importance in a wide range of applications varying
from computer graphics to robotics.

In robotics time is of critical importance since interacting with dynamically
changing environment. Since 1980s the motion model of the flying ping pong
ball is used for its trajectory prediction [1, 5], in order to configure the paddle
for a successful ball return. Another example relates to a motion planner, where
the incorrectness of the robot’s navigation may lead to an injury of a human.
Robot uses the predicted trajectories of the moving human, in order to prevent
the collision risks [13].

Reconstructive facial surgery is a complex, radical (drastic) and irreversible
procedure. The functionality of facial muscles enables accurate bio-mechanical
facial soft tissue modelling and post-operative result simulation. Recent achieve-
ments in this direction relate to preoperative simulation of craniofacial surgery
on bones with respective soft tissue alterations [14]. Other areas of application
are human face visualization and mimics recognition [7], where the functionality
provides robustness for the approach.

Approaches based on Kalman filter [6] are widely used in navigation systems
and computer vision. This recursive physics-based method supports the esti-
mation of the current position of the object taking into consideration previous
states, measurements of the current state and a Gaussian nature of noise.
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The distinct feature of the proposed approach is that the motion of the object
is not taken apart and is observed in conjunction with the structure of the scene.
It enables not only to predict the future spatio-temporal states of the object
according to the given motion model, but also to be aware of the critical points
where the trajectory can deviate from original.

3 Analysing a Snooker Game

The intention of this section is to show the applicability of the proposed approach
to the real problem. For this purpose we selected the snooker game footage
analysis, but the same methodology can be used in other domains for tracking
objects with defined motion model and structure of the scene.

3.1 Motivation

Snooker is a variety of pool played with 21 balls of 6 distinct colors and a white
ball (cue ball). The goal is to pot the color balls with a cue ball in a particular
order and gain more points than the opponent. While watching or playing this
game people are not tracking the positions of the moving balls as the time
flows. On the contrary, they try to predict future positions and pay attention to
the prominent ones. The correct model of the ball’s movement should consider
physical properties of a cue stick, baze, table and balls as well as several forces:
rolling resistance, sliding friction, self-rotation [12]. In order to achieve planned
trajectories, players use the effect of ball spin, the reflection from the cushion,
or both. In case of disadvantageous position it makes sense to create a loosing
situation for the opponent while his turn. Overall, it is preferable to hit as
less balls as it is needed, in order to be able to predict the next state of the
game. From this hypothesis it is obvious that tracking positions of all the balls
in all the frames is not needed. Moreover, tracking the moving balls in all the
frames is redundant when this move has a predictable trajectory. Using the
abstract concept of visual attention together with the structure of the scene and
functionality for predicting time and location of critical points of the trajectory
becomes natural.

3.2 State of the Art in Snooker Video Analysis

Sport video analysis is widely represented in computer vision community: from
semantic event detection and summarization to computer-assisting referee sys-
tems. A frequent engineering approach is to combine several existing methods for
solving a particular task. Thus, the tools that seem to work on different problems
have issues in common. For example, Denman et al. [3] introduced several
approaches for video parsing, event detection and shot activity summarization in
snooker footage analysis. This includes table shots detection rested on geometry
and Hough Transformation, tracking a cue ball using color-based particle filter
and detecting pots by histogram analysis of pocket regions. On the basis of this
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work with a modified ball tracking method Rea et al. [11] build a system for
semantic event detection. For 3D reconstruction from snooker video [8] consider
ball movements to be of more semantic importance as opposed to players and
cue stick. In this manner they apply detection, classification and tracking of
the balls. Tracking the objects of interest is a building block in these tools.
According to its definition [10], searching for the object of interest is performed
in subsequent frames. In contrast, the idea of our approach is to predict the
evolution of object’s temporal changes using its physical properties.

3.3 Description

The above mentioned human attention strategy (see Section 3.1) is modelled
using motion functionality and structure of the scene. Prediction of future tra-
jectories of the moving balls in conjunction with the space limits and positions
of obstacles guide the selection of the prominent parts of the scene with corre-
sponding time slots.

Functionality. Having the set of the balls B={b1, b2,..., b21, bcue}, the func-
tionality is defined by a set bi ∈ B ={S,V,a}, where S is a vector of positions of
the ball in consecutive video frames (si = (xi, yi), si ∈ S, i = 1, N), V - a vector
of velocity values for consecutive pairs in vector S, a - acceleration of the ball.
The motion of the ball is constrained to uniformly accelerated linear model.

Remark 1. The velocity values vi ∈ V are computed as the first derivative
of distance with respect to time, and acceleration a as a second derivative.
The quality of the ordinary footage does not allow to precisely measure the
velocity for obtaining a real value of acceleration. For that we consider Gaussian
distribution of acceleration for getting the most likely value of it. When the
velocity is close to 0, it is assumed that the target does not move.

Remark 2. The velocity of the ball decreases in every consecutive time slot.
The exception of this rule occurs when during cushion collision the vector of
ball-spin supplements with the vector of ball-movement. As a result both the
rebound angle and rebound velocity increase.

Remark 3. The accurate model of the ball’s movement should consider physical
properties of a cue stick, baze, table and balls as well as several forces: rolling
resistance, sliding friction, self-rotation [12]. Particularly, the rotational compo-
nent of the moving ball makes an impact on the resultant trajectory such that
the rebound angle from the cushion is deviating from perfect reflection, and the
motion parameters change.

In order to obtain the consecutive positions S of the balls, traditional track-
ing approaches are combined in the following way. The first movement before
each shot corresponds either to the cue ball, or to the cue stick. Optical flow
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technique [4] is combined with the blob detection algorithm to get the moving
parts on the table. When the motion is detected, we check this region for the
white ball using a circular Hough transform combined with color thresholding.
The idea of color thresholding is to find such a circle in a region, which has the
highest density of pixels exceeding value of 200 at each of RGB levels. Next a
”snapshot” of this ball is taken and in the next frames apply template matching
technique. Template matching [9] is a procedure of finding a region in an image,
that correlates the most with the given template. Due to the changes of the
template caused by perspective projection and occlusions by the players or other
balls, we perform Kalman filter, in order to obtain comparably robust track.

Structure of the Scene. According to the definition in Section 2, structure
of the scene contains obstacles and space limits. In this application, obstacles
are represented by the balls other than the cue (white) ball. After the hit they
change the trajectory of the cue ball and move under their own functionality.
The space limits are represented by the area of the table and the billiard-pockets.
Under the rules, balls cannot cross the table borders. After cushion collision the
ball’s trajectory is changed due to the laws of reflection. Billiard-pocket is a part
of the structure of the scene where the ball’s trajectory ends.

Fig. 1. Points estimation of quadrangular
route in case of cushion collision

Obstacles. At the beginning of each
shot all the balls except the white
are static. Obstacle-ball becomes of
importance when belonging to the
trajectory of the moving ball. The
route of the moving ball is represented
as a binary mask:

I(x, y) =

{
1, (x, y) ∈ route
0, otherwise

where I(x,y) - value of a pixel at
position (x,y). Having a prediction of
the motion vector and the distance
until the ball stops, the vertices of
the quadrangular route are calculated
in the following way. Two vertices,
P1 and P2, represent the intersection
points between the circle of the ball
and the line perpendicular to the
motion vector passing through the
center of the circle. The other two
vertices, P3 and P4, are plotted on the line perpendicular to the motion
vector passing through the end point of the trajectory spredicted at a distance
(radius + δ) in both directions from the spredicted, where radius - radius of the



Video Analysis of a Snooker Footage Based on a Kinematic Model 229

ball, δ - parameter that copes with small deviations of the ball’s positions (see
Figure 1). There are two cases for computing the values ofP3 andP4 that should be
distinguished. First, when the distance to the end point spredicted is smaller than
the distance to the cushion. Second, when the distance to the end point spredicted
is greater than the distance to the cushion. In the latter case, the intersection point
between the trajectory and the cushion should be preliminary measured.

Fig. 2. Preliminary table detection based
on RGB histogram approach

Fig. 3. Comparison of the first successful
table view histogram with the current
video frame histogram

Fig. 4. Finding the position of middle
pockets as lying on the intersection of
diagonals

For the purpose of detecting,
whether the obstacle-ball is inside the
route, we multiply the binary masks
of this ball and the route. In case
the result is positive, we assume that
there will be a collision and predict
the time slot when it will happen. If
there exist several obstacle-balls on
the route, those which will be hit first
is taken into account.

Space Limits. In snooker broadcasts
the effect of presence and involvement
in a game is created via multiple
camera views. In this paper we are
particularly interested in a full-table
view from the top (see Figure 4). The
reason is that it has sufficient informa-
tion for predicting a trajectory of the
moving object. As opposed to other
camera positions, it provides clear
representation of the scene and is
not dependant on 3D information for
correct time and location estimations.
Identification of such full-table view
shots and parameters of the table is
a vital step in obtaining the structure
of the scene.

With the purpose to obtain the pa-
rameters of the full-table view frames,
we initially accomplish a histogram
approach in HSV color space. First,
color thresholding and morphological
closing are applied, in order to get
a binary image of the green areas of
the shot. For the resultant image 8-
neighbor-connected components are found and the largest of them is assumed
to be a candidate for a perspective view of the table. According to the
perspective projection, the amount of green color increases with approaching to
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the bottom of the image. A candidate region is, finally, tested on satisfying this
criterium.

When the first successful frame is detected, the corresponding candidate re-
gion is utilized to collect the information about the table – histogram, boundaries
and pocket positions. The boundaries of the table are obtained by Hough trans-
form as it finds the most prominent lines on the given binary image. After that
the intersection points between the boundaries are assumed to be the corner table
pockets. Two pockets in the center are estimated as the intersections between
lateral boundaries of the table and a straight line parallel to the remaining
boundaries through the intersection point of diagonals [3] (see Figure 4). For the
upcoming video frames we manage a histogram comparison with the first frame.
The above procedure is illustrated in Figures 2− 3. In case one of the pockets
lies on the route of the moving ball, it is then further analysed for potting.

Prediction. This part of the paper is dedicated to the method of predicting
the trajectory of the moving ball. It is assumed that the motion of the ball
is limited to uniformly accelerated linear model. Having a track of a moving
ball S = {s0, s1, .., sk} = {(x0, y0), (x1, y1), .., (xk, yk)}, the relation between the
parameters x and y is recovered using one-dimensional linear regression:

yi = αxi + β + εi, i = 0, k

(a, b) = argmin
α,β

k∑
i=0

(yi − αxi − β − εi)2

where α, β - motion model parameters (angular coefficient, absolute term); εi-
precision error; a,b - point estimates of α and β. We decided to restrict the motion
to the linear model, though, the extension to non-linear model is possible.

The distance from the current position scurrent = (xcurrent, ycurrent) with the
velocity vcurrent and acceleration a until the stop of the ball is computed using
the physical equation for uniformly accelerated motion:

spredicted =
v2end − v2current

2a
=

0− v2current
2a

Analysis of the video frames which correspond to the range scurrent and spredicted
is eliminated.

Experiments. Existing methods that aim at analysing snooker footage either
do not provide the results for tracking, or only give a few details. In this situation
a reasonable comparison of approaches is hardly achievable, and, thus, we can
only provide the summarization of our results.

This approach was tested on 17 minute snooker footage that is equal to 24980
video frames. Hereof 15352 frames(61%) contain full-table view, 868 frames(3.5%)
were neglected due to the absence of motion, 4083 frames(16%) were reduced
using prediction. The analysed videos have a frame rate from 15 fps to 29 fps.
Extreme conditions for the current system are the following. First, a high speed
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of the target causes the loss of a track. Second, a small distance between the
target and other objects of the scene makes it impossible to compute the fu-
ture trajectory. We tested the quality of prediction by comparing to the the
results of a Kalman filter. It is worth reminding that Kalman provides a pre-
diction/correction of the current target position. In contrast, our approach pre-
dicts/corrects the future important positions of the target which are collisions
with the cushion or other balls. In general case, when the trajectory is close
to a straight line, the proposed approach enables faster analysis by neglecting
at once in average 1-3 seconds of video (20-60 video frames) with an average
deviation of 10 pixels (diameter of the ball is 8-12 pixels). The advantage of
performing sequential tracking with Kalman filter can be shown on the example
of non-linear trajectory (Figure 5). In Figure 6 it is shown that Kalman corrects
the position step by step and follows the real path. As opposed to it, our system
predicts the linear future position and loses the robustness of a track.

Fig. 5. The outline of the shot with
non-linear motion

Fig. 6. The results of processing
the motion of the ball with non-
linear motion

4 Conclusion

This paper presented a framework for snooker video analysis. The future po-
sitions of the moving balls are predicted using physically-based linear motion
model with respect to the structure of the scene. Motion model is characterized
by notions of velocity, acceleration and previous states of the tracked object.
Structure of the scene represents the obstacles and space limits that impact the
trajectory and motion parameters of the target. In terms of snooker application
they are cushion, pockets and balls other than the target. For the future work
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we plan to research the rotational component of the ball-motion. This feature
makes a valuable impact on motion model, as well as on the reflection angle
while hitting the cushion or other balls.
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Abstract. Testing binary classifiers usually requires a test set with la-
beled positive and negative examples. In many real-world applications
however, some positive objects are manually labeled while negative ob-
jects are not labeled explicitly. For instance in the detection of defects in
a large collection of objects, the most obvious defects are normally found
with ease, while normal-looking objects may just be ignored. In this sit-
uation, datasets will consist of only positive and unlabeled samples. Here
we propose a measure to estimate the performance of a classifier with
test sets lacking labeled negative examples. Experiments are performed
to show the effect of several criteria on the accuracy of our estimation,
including that of the assumption of “random sampling of the labeled
positives”. We put the measure into use for classification of real-world
defect detection data with no available validation sets.

Keywords: Classifier performance measure, unlabeled examples, binary
classification.

1 Introduction

Unlabeled samples are often easily accessible in most artificial learning applica-
tions. They provide information about the structure of the data and combined
with the labeled samples, they can help a learner to distinguish between differ-
ent data clusters. A special situation arises when the labeled samples are only
from one class, called the target class. In this case, data consists of a number of
positively labeled samples and a large set of unlabeled samples with unidentified
positives and negatives. Such datasets are commonly said to have only positive
and unlabeled samples and abbreviated as PU datasets.

In the literature, several techniques are proposed for training classifiers with
PU data. Testing classifiers on the other hand, is a task that requires fully labeled
data. Performance measures normally provide a summary of the performance of
a classifier on test data. Almost all of these measures include the 4 components of
the confusion matrix ; the True Positive, False Negative, True Negative, and False
Positive rates. Baldi et al [1] argue that any performance measure depending
on less than all four of these numbers, is missing a part of the information
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and is bound to be biased. In PU learning, and therefore by the absence of
labeled negative samples, the False Positive and True Negative ratios cannot
be calculated reliably. Presence of a fully labeled validation set comprising fair
numbers of positive and negative samples, has thus been a necessity for the
testing, and occasionally for parameter adjustments [17,15,28].

Naturally, providing a fully labeled validation set is expensive, in terms of
cost and time effort. Elkan and Noto for example [11] explain how they had to
use manually identified [8] samples from a larger unlabeled set to construct a
validation set. In our case, identification of railway defects from a PU vibration
data has been a motivation for this paper. The rail data has a relatively small
number of positively labeled (defective) samples and a large set of unlabeled
ones. Providing a validation set has proven to be too expensive due to high
costs of physical defect detection tests. This has led us to the question: “Is it
possible to robustly estimate the performance of a classifier, using only positive
and unlabeled data?”.

In [15] by Lee and Liu, a PU performance measure is proposed that is inspired
by the F1 score. It equals to p.r/Pr[y = 1], where p is the precision, r is the recall,
and Pr[y = 1] represents the prior probability of the positive class. Precision p
and Pr[y = 1] cannot be calculated from PU data directly. But Lee and Liu derive
that p.r/Pr[y = 1] equals to r2/Pr[f(x) = 1], with f being a trained classifier,
allowing the measure to be calculated from only PU samples. Unfortunately
though, it makes the implicit assumption [11] (originally noted in [10]) that
the labeled object are sampled randomly from the positive class distribution.
This means that each actually positive object has had an equal chance of being
labeled. Satisfying this assumption can sometimes be difficult [3]. In the case of
the railway defect identification for example, the ground-truth labeling is carried
out by visual inspection of the rail, and therefore highly visible rail defects are
more likely to be identified and labeled. Another similar measure proposed by B.
Clavo et al [4] is called Pseudo-F and is calculated as 2×r/(Pr[f(x) = 1]+Pr[y =
1]). Pr[y = 1] is assumed provided to both the classifier and the performance
evaluator.

We propose a measure of performance for PU data (section 2) that is not
dependent either on the assumption of random sampling or on Pr[y = 1] in
its definition. We call this measure PULP for Positive and Unlabeled Learning
Performance. PULP calculates the probability for a classifier, to manage to ran-
domly correctly predict a certain number of labeled samples as positives. Our
proposition is that the less probable it is to accidentally detect a certain num-
ber of labeled positive examples, given the total number of positive predictions
made, the better the predicting classifier has performed.

Techniques for training a classifier with PU data is not a subject of this pa-
per. This has been studied in the literature of PU learning resulting several
models tailored for exploiting information of the unlabeled samples. A number
of approaches propose methods for identifying some potential negative sam-
ples from the unlabeled set and applying a normal binary classification algo-
rithm [12,27,19]. A less common approach, is to assign weights to unlabeled
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samples [11,20] that describe their likelihood of belonging to the positive class.
Expectation-maximization algorithms are also a common family of algorithms for
most notably: Biased SVM [17,18] and fitting logistic regressors [26]. PU learning
techniques are widely applied to several learning domains such as: bioinformat-
ics [11,26,5], geographic image processing [16,29], and document classification
[12,19,17,15].

If the random sampling assumption is valid, one can also fairly use a conven-
tional error measure (e.g. AUC) to estimate performance from a PU test set.
We compare five conventional classification performance measures from [1] that
are widely used in testing classifiers. These are the AUC, F1 score, Mean Aver-
age Precision (MAP), Pearson correlation (PEAR), and the mutual information
(MI) measure. We also test the proposed PU measures by Lee and Liu (referred
to by L&L) and Pseudo-F in our comparison. To examine the applicability of
all these measures to PU data, we perform several experiments. We first define
this applicability in terms of accuracy in section 3. We then show by experi-
ments in section 4 that PULP is affected the least when the random sampling
assumption is violated, making it a better choice in such cases as the rail defect
detection problem. We also investigate the effect of the prior distribution proba-
bility of the unlabeled positive samples, on the accuracy of the tested measures.
We conclude increasing positive class prior probability translates to decreasing
estimation accuracy, for all of the studied measures.

2 PULP – Positive and Unlabeled Learning Performance

PULP calculates the probability of randomly making a number of positive pre-
dictions, and yet managing to hit some of the positively labeled samples. Assume
that from a set of N samples, t samples are labeled as positive and the rest are
given unlabeled. Also assume that a classifier has predicted b out of the total
N samples as positive, and such that k of those predictions match the t labeled
samples. Clearly, k satisfies k ≤ min(t, b). We are interested in the probability
of hitting at least k of the t known positive samples; doing so merely by ran-
dom assignment of b positive tags to the N samples. We are keen to know how
easy it is to score at least as good as this classifier, just by random predictions.
To get that probability, we should first note that the probability of randomly
hitting exactly k of t labeled samples is equal to the hypergeometric probability
mass function f at point k, with parameters N , t, and b being respectively the
population size, number of successes, and number of draws:

f(k | N, t, b) =
(
t
k

)(
N−t
b−k

)(
N
b

) . (1)

The denominator simply equals all permutations of assigning b tags to N
samples. The numerator of the fraction is all permutations of such assignment
where exactly k hits are made. To get the probability of hitting at least k labeled
samples, it suffices to integrate f(i | N, t, b) over all values i where k ≤ i ≤ b.
This probability F (k | N, t, b) is the cumulative hypergeometric function F ,
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which makes PULP closely related to Fisher’s exact probability test (see e.g.
[22]).

F (k | N, t, b) =
b∑

i=k

f(i | N, t, b) = 1−
k−1∑
i=0

f(i | N, t, b)

= 1− F (k − 1 | N, t, b)
(2)

If b is larger than t in the first sum, then f will automatically yield zero,
meaning that in the summation i needs not to go any further than min(t, b).
Lower F values mean that it is less likely to perform at least as good as that
classifier just by random assignment, and indicate that the classifier has more
information about the positive class distribution. By taking 1− F (k | N, t, b) =
F (k − 1 | N, t, b) as the measure, this relation becomes straight so that higher
values now indicate better performances.

In standard testing and error estimation, it is a common practice to average
over all threshold values of a classifier decision boundary to summarize its perfor-
mance. This avoids dependence on a specific value for the operating point. The
Area Under the ROC Curve (AUC), and the Mean Average Precision (MAP)
are such summarizations. Applying the same rationale, PULP is also the aver-
age over all probabilities F (k | N, t, b) obtained by integrating over all operating
points of the classifier while recalculating k each time. Let S : {s1, s2, ..., sN} be
the sorted list of classified objects according to the output of the tested classifier.
Then PULP(S | N, t) can be evaluated as:

PULP(S | N, t) = 1

N + 1

N∑
i=0

F (k{S,i} − 1 | N, t, i) (3)

where k{R,i} is the number of hits given that objects s1 to si are predicted to be
positives. Here it is assumed that PULP is calculated for a binary classification
test with one target class. In the literature, this condition is usually referred to as
one-class classification [9]. While it is possible to extend PULP for application
to mutli-class classification tests, here we only present PULP as a one-class
performance estimator for PU test data.

In practice, evaluating f(k | N, t, b) for moderately large test set sizes can
become problematic due to large factorial computations. We have used the
workaround to rearrange combination terms to exponential function of natural
logarithms as:

f(k | N, t, b) = exp[ln t! + ln(N − t)! + ln b! + ln(N − b)!
− ln k!− ln(t− k)!− ln(N − t− b+ k)!− ln(b − k)!− lnN !].

(4)

Doing so, it will be possible to take advantage of natural logarithm of the
Gamma function which is approximated with a number of available techniques,
including Chebyshev approximation [7]. One other option is to approximate
hypergeometric mass function by other distributions such as Poisson [13].
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3 The Evaluation of a Performance Measure

Defining an “accurate” measure is an intricate matter. For the analysis and eval-
uation of a PU performance measure, one can artificially create PU classification
problems from standard two-class classification problems. In the standard binary
classification, each object x has a true label y that is positive or negative [2]. In
the derived PU problem only part of the positive class is labeled and the rest of
the samples are left unlabeled. To compare the applicability of the performance
measures to PU data we test them on both PU data and fully-labeled data and
check for the similarity of the two sets of results.

To quantify this similarity, we use the Mean Absolute Deviation (MAD) and
the rank (Spearman) correlation. The mean absolute deviation between the two
sets, is aimed at assessing the difference between fully-labeled and PU results
on average. Although this is informative, when a performance measure is used
to compare and select the best (PU) classifier, a correct ranking of the perfor-
mances can be even more important. A high correlation between the PU measure
and their fully-labeled pair indicates the suitability of a measure for evaluating
classifiers based on PU data. To be able to make a fair comparison, the rest of
the measures (i.e. F1, MI, PEAR, L&L, and Pseudo-F) are also averaged over all
classifier operating point similar to the way we calculate PULP. For calculation
of Pseudo-F we simply take the ratio of the positively labeled to all samples as
the prior probability of the positive class.

The prior probability that a sample is positive Pr[y = 1], has a strong in-
fluence on a PU evaluation measure. We aim to choose measures that are least
sensitive to Pr[y = 1]. Therefore, all experiments are performed over a increas-
ing range of the ratio of the actual positive objects in the unlabeled subset. We
also investigate the effect of the assumption that the labeled samples are drawn
randomly from the positive class. Experiments are performed that compare the
measures on 3 scenarios, where the labeled samples are either selected at ran-
dom, or selected so that the most representative ([24]) or the least representative
positives are labeled. These three situations are shown in Figure 1. First, from
the fully labeled data (Figure 1(a)) a random subset of the positive objects is
labeled, while the rest is unlabeled (Figure 1(b)). Next, a Gaussian mixture
model is trained on the whole class of the actual positives, and its output poste-
rior probabilities are used as indicators of representativeness. In Figure 1(c) the
positive samples that are less representative are left unlabeled. While in Figure
1(d) those which are considered to be more representative are left unlabeled.
Our experiments will investigate the sensitivity of PU performance measures to
these non-random sampling strategies.

Three datasets are selected from the literature of PU learning for experiments.
The first is the popular 20 newsgroup dataset which consists of 20 news categories
where each have 1000 sample documents. Similar to the procedure in [15] we
extract bag-of-words features and we apply TF-IDF normalization. The second
is the MNIST dataset of hand-written digits [14]. It includes 1000 samples per
each digit 0 to 9. Here, we simply take the raw pixels as the features and extract a
16×16 down-sampled version of the original images. Finally, we test an originally
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(a) (b) (c) (d)

Fig. 1. Diagram (a) shows the complete labeling [2] of positive and a negative objects.
Diagram (b) shows a PU labeling where selection of the labeled objects is random,
while the negative object are always unlabeled. In (c) the selection is made in a way
that the least representative positives are left unlabeled. On the contrary, in (d) the
most representative ones are unlabeled.

PU labeled dataset by [11]. It contains 7359 text records of protein specifications.
These records contain 2453 positive records from a special set of proteins [23]
that are known membrane transport proteins. The dataset also contains 4906
unlabeled protein records from [25] that are manually identified by [8] to have
348 positive records and 4558 negative ones. A compilation of this data is made
available by [11]. We extract bag-of-words features from these records and apply
TF-IDF normalization as well.

In accord with a generalization in [11] of a several PU learning techniques, we
first calculateweights for all unlabeled samples. The calculation of weights is either
done by heuristics mostly inspired by [18] or a weight assigning technique in [11].
These weights are regarded as the likelihood that an unlabeled sample belongs to
the positive class. An SVM classifier [6] is trained on the weighted datasets.

4 Experiments and Results

From experiments on individual classifiers, we hypothesized that Pr[y = 1] can
strongly influence accuracy of a measure. To examine this, we have calculated the
mean absolute deviation and the rank correlation for a broad range of training
and testing criteria. In total, 260 different configurations of datasets and classi-
fiers were tested while at first, the labeled positives were selected randomly from
all positive samples. The results are show in the left column of Figure 2 for the
correlation in upper row and for the mean absolute deviation in the lower row.

We also performed 2 rounds of similar experiments while labeling positives
according to the 2 non-random scenarios discussed in section 3. The middle
and right column of Figure 2 show these results where respectively the least
and the most representative positives are left unlabeled. Our first observation
is that while the rank correlations stay close for all measures in the random
labeling case, they tend to be dispersed more in the non-random cases. PULP is
affected the least by the non-random sampling. This suggests it can be a robust
choice compared to L&L and Pseudo-F if the random sampling assumption does
not hold. In such cases, PULP is also a better choice compared to the non-
PU measures of performance that as we anticipated, are affected more by the
non-random sampling scenarios. It is evident that all measures lose estimation
accuracy as Pr[y = 1] increases over the unlabeled data samples. However for
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all Pr[y = 1] values below 0.5, PULP scores a rank correlation that is above 90
percent regardless of the sampling scenario.

Mean absolute deviation is also a helpful accuracy evaluation for a PU per-
formance measure. The Mutual Information measure (MI) seems to have the
least mean absolute deviation for the two non-random labeling scenarios. This is
slightly difficult to interpret though, because the standard deviation calculated
over all MI outcomes is also the smallest (Table 1). This suggests that the range
of values produced by MI is narrower than the rest of the measures. Therefore,
interpretation of accuracy based on the mean absolute deviation can only be
meaningful in combination with the total Standard Deviation of its evaluations.
This helps avoid choosing measures that score a small mean absolute deviation
only because they have a limited or biased function range.

By taking an average over all results of different values Pr[y = 1], Table 1 gives
a summary of all evaluations of rank correlation and mean absolute deviation
for the 8 measures. Under the experiment setting in this paper, we believe the
PU measure introduced by Lee and Liu (L&L) is a more accurate PU estimate
than Pseudo-F, in both random and non-random labeling cases. This is visible in
the rank correlation evaluations, as well as the mean absolute deviations where
the deviation for L&L is always less despite having a higher overall standard
deviation. PULP in our opinion is a better choice that both of these measures
in cases that the “selected completely at random” assumption might be invalid.

Fig. 2. The rank correlations (upper row) and mean absolute deviations (lower row)
between the fully labeled data and the PU data for the seven performance measures on
260 combination of datasets and classifiers. The 3 columns are corresponding to random
selection and two non-random selection scenarios for partially labeling positives samples.
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Fig. 3. The first 3 rows show the top positive samples according to classifier C1 selected
by a higher L&L result. The second 3 rows are the same for classifier C2 selected by
a higher PULP result. C2 has managed to find more unlabeled potential positives.
Each sample is the wavelet spectrogram for a window of the signal. Vertical axes are
frequency scales. Horizontal axes are time. In the domain of rail defect detection, high
frequency excitations are usually associated with potential defects.

Table 1. Results from Figure 2 averaged over all measurements of individual p(y = 1)
values. Table presents this total results for the same 3 scenarios for selection of labeled
positive samples. Bold numbers are best scores in each row. All results are averaged
over a 8-fold cross-validation.

AUC F1 L&L MI PEAR MAP PULP PseudoF

Rank

Correlation

Random 0.918 0.903 0.916 0.837 0.923 0.870 0.916 0.903

Scenario 1 0.806 0.796 0.804 0.535 0.806 0.765 0.912 0.796

Scenario 2 0.495 0.474 0.494 0.422 0.504 0.465 0.769 0.474

Mean Absolute

Deviation

Random 0.117 0.168 0.034 0.055 0.057 0.370 0.127 0.148

Scenario 1 0.130 0.166 0.123 0.056 0.065 0.353 0.132 0.150

Scenario 2 0.165 0.160 0.120 0.065 0.0814 0.356 0.185 0.157

Overall Standard Deviation 0.197 0.099 0.248 0.061 0.100 0.147 0.324 0.143

Rail vibration data consists of 10 datasets of various sizes where features are
wavelet power spectrogram values and objects are frames from the vibration
signal. Using 6 out of 10 datasets in a train and test cross validation, we selected
two SVM classifiers: C1 and C2 that have disagreeing PULP and L&L results,
such that their PULP results are: 0.67, and 0.81 and L&L results are: 0.13 and
0.08 correspondingly.

We then tested these classifier on another test set of 139 samples with 23
labeled positives. For both classifiers, we sorted the 139 samples in descending
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order of their output and selected highest 15 top scored after excluding the
already labeled. These top 15 object for both classifiers are illustrated in Figure
3. The first 3 rows are the top positive samples according to C1, the second 3
rows are the same for C2. In at least 10 out of 15 unlabeled samples selected by
C2, there are traces of high frequency excitations that can indicate defects on
the rail [21]. For C1 this is down to around 5 samples. We conclude that PULP
has probably made a better choice between the two classifiers.

5 Conclusions

We proposed PULP: a measure PULP to evaluate the learning performance of
a classifier with only positive and unlabeled data. Besides a well-defined the-
ory, our experiments show that PULP has the advantage over the rest of the
tested measures, that it is affected the least by a non-random sampling of the
labeled positives. We test PULP and other performance measures, on a number
of datasets from the literature in these experiments. We have as well used PULP
to compare classifiers that are trained and tested on a real-world PU dataset
consisting of rail vibration signal, to detect rail defects. We were able to visu-
ally confirm that a stronger classifier according to PULP, detects more potential
positives compared to a weaker PULP classifier.
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Who Is Missing?

A New Pattern Recognition Puzzle

Ludmila I. Kuncheva and Aaron S. Jackson
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Abstract. Consider a multi-class classification problem. Given is a set
of objects, for which it is known that there is at most one object from
each class. The problem is to identify the missing classes. We propose
to apply the Hungarian assignment algorithm to the logarithms of the
estimated posterior probabilities for the given objects. Each object is
thereby assigned to a class. The unassigned classes are returned as the
solution. Its quality is measured by a consistency index between the
solution and the set of known missing classes. The Hungarian algorithm
was found to be better than the rival greedy algorithm on two data sets:
the UCI letter data set and a bespoke image data set for recognising
scenes with LEGO parts. Both algorithms outperformed a classifier which
treats the objects as iid.

Keywords: Pattern recognition, set classification, Bayes-optimal clas-
sifier, Hungarian algorithm.

1 Introduction

Who is missing? At your lecture, you are taking a class register from a single
snapshot of the audience. If the number of students in the audience is the same
as the size of your class, and you are satisfied that there are no impostors, then
all your program needs to do is count the faces in the snapshot. However, if the
number of attendees is smaller than the class list, you will need to find out who
the missing students are.

Suppose that you have a trained classifier to recognise the students’ faces.
If the face detection program and the classifier were ideal, all faces would be
correctly detected and recognised, hence the missing students will be identified
instantly. However, if the classifier is imperfect, classifying each face individually
may not be the optimal strategy. First, individual labelling will not prevent
assigning the same label to several objects. Second, individual labelling cannot
take into account any class dependencies. For example, suppose that students X
and Y are friends, and are always present or absent together. Individual labelling
will not be able to take advantage of this piece of knowledge. Therefore, some
form of set classification would be a more prudent strategy.

One of the standard assumptions in classical pattern recognition is that the
data points to be classified come as an independent identically distributed (iid)

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 243–252, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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sequence. In many problems this assumption does not hold. For examples of
non-iid classification paradigms are listed below.

1. The multiple-instance Problem. This problem arises in complex machine
learning applications where the information about the instances is incom-
plete or ambiguous [4, 7, 13, 19], e.g., in drug activity prediction [4]. The
training examples come in “bags” labelled either positive or negative. For
a positive bag, it is known that at least one instance in the bag has true
positive label. For a bag labelled negative, all instances are known to be
negative. The problem is to design a classifier that can label as accurately
as possible an unseen bag of instances.

2. Set Classification. In this problem, all the instances in a set are assumed to
have come from the same unknown class [16]. This problem may arise in face
recognition where multiple images of the same person’s face are submitted
as a set.

3. Collective Recognition. In this scenario, a set of instances are labelled to-
gether [14, 18]. The crucial assumption is that the instances within the set
are related, so that the dependencies can be used to improve the classifica-
tion accuracy. For examples, in classifying web pages into topic categories,
hyperlinked web pages are more likely to share common class labels than
non-linked pages [18].

4. Full-Class Set Classification [11]. Here a set of instances has to be classified
together, knowing that the set contains at most one instance from each class.
In other words, the c objects must be matched one-to-one to the c classes. We
can call this problem ‘who-is-who’ to distinguish it from the ‘who-is-missing’
problem. Simultaneous classification of a set of instances has been used in
tracking. For example, a moving object can be regarded as a patchwork
of parts [1] or a set of tracklets [10], which are matched from one image
frame to the next. This fits within the framework considered here because
each part/tracklet on the object can be referred to as a class label, and
the segmented pieces in the image have to be distributed to the different
class labels. However, the instances within the set are not iid, as the parts
are spatially linked within the object, and also follow physical motion laws.
Other potential applications include karyotyping (labelling the chromosomes
in a cell) [9,15] and identifying footballers on the pitch in a live-play video [3].

The who-is-missing problem is a variant of paradigm #4, the full set classifi-
cation [11]. In this study we formulate the who-is-missing problem and propose
a solution based on the Hungarian assignment algorithm.

2 The Who-Is-Missing Problem

2.1 Problem Description

Let Ω = {ω1, . . . , ωc} be the set of class labels. The set of objects presented for
classification is Z = {z1, . . . , zk}, where k < c, and the true labels of the objects
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in Z, denoted {y1, . . . , yk} are all different. The task is to find the set of missing
classes, that is the set

Ω(−) = Ω \Ω(+), (1)

where

Ω(+) =

k⋃
i=1

yi. (2)

Because of the strict inequality k < c, Ω(−) is a non-empty set.
Denote by P (ωj |x) the probability that the true class label for an observed x

is ωj ∈ Ω. We can arrange the posterior probabilities in a k × c matrix

P =

⎡
⎢⎣P (ω1|z1) . . . P (ωc|z1)...

...
...

P (ω1|zk) . . . P (ωc|zk)

⎤
⎥⎦ . (3)

The task is to determine the c−k missing classes based on P and the knowledge
that labels y1, . . . , yk are different. The probability that the class label for a given
x is not ωj is 1−P (ωj|x). If Z contained k iid objects, the probability that class
ωi is not represented in Z would be

Piid(∼ ωi|Z) =
k∏

j=1

(1 − P (ωi|zj)) . (4)

The c−k classes with the largest Piid should be returned as Ω(−). This approach,
however, is based on the false iid assumption and hence does not take advantage
of the fact that the elements of Z have different class labels.

Accurate identification of the missing classes is equivalent to accurate as-
signment of the present classes. Therefore the solution can be found using the
Hungarian assignment algorithm1. Proposed originally for c × c matrices, the
algorithm was extended for rectangular matrices [2].

It has been shown [11] that the Bayes-optimal solution of the who-is-who
problem (k = c) is the permutation of labels 〈s1, s2, . . . sc〉 which maximises the
criterion

c∑
i=1

logP (ωsi |zi) . (5)

The underlying assumption is that the object from each class is picked indepen-
dently of the objects from the other classes.

2.2 An Example

As an example, consider three objects, z1, z2 and z3, coming from three classes,
ω1, ω2 and ω3. The class assignment of the three objects is not known, apart
from the fact that there is one object from each class. Let P be

1 Further developed by Kuhn and Munkres, also known as Kuhn-Munkres algorithm.
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P =

⎡
⎣0.65 0.07 0.28
0.43 0.50 0.07
0.24 0.57 0.19

⎤
⎦ . (6)

Table 1 shows all possible label permutations, the corresponding posterior
probabilities and the sum-log criterion value (5) for each permutation. In addi-
tion, the sum of the posterior probabilities is also shown.

Table 1. An example of the class assignment problem

Class Posteriors
z1 z2 z3

∑
log() sum

3 2 1 0.28 0.50 0.24 -3.3932 1.02

3 1 2 0.28 0.43 0.57 -2.6791 1.28
2 3 1 0.07 0.07 0.24 -6.7456 0.38
2 1 3 0.07 0.43 0.19 -5.1640 0.69
1 2 3 0.65 0.50 0.19 -2.7847 1.34
1 3 2 0.65 0.07 0.57 -3.6522 1.29

According to the table, the best solution is z1 ∈ ω3, z2 ∈ ω1 and z3 ∈ ω2.
Interestingly, this is not the solution which maximises the sum of the posterior
probabilities.

A greedy approach would assign class ω1 to z1 (0.65), next assign class ω2
to z3 (0.57), and finally assign class ω3 to the remaining object z1 (0.07). This
permutation, (1,3,2), is ranked 4th of 6 on the sum-log criterion.

2.3 Proposed Solution

We propose to use the Hungarian assignment algorithm to a full c−by−c matrix
where c−k objects will be “dummy” objects. Their respective rows with posterior
probabilities are filled with values 1

c , indicating a complete lack of preference of
a class label. The class labels assigned by the algorithm to the dummy objects
will be the missing classes.

The hypothesis is that the Hungarian algorithm will provide better solution
to the who-is-missing problem compared to a greedy algorithm or independent
classification that assumes iid data.

2.4 Evaluation of the Solution

To find out how successful the proposed strategy is, we need a measure of match
between the true missing classes and the obtained missing classes. Simple mea-
sures based on the intersection between the two sets will not be adequate because
such measures will depend on the number of the missing classes and are not cor-
rected for chance. Therefore, we propose to use a consistency index [12].
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The Consistency Index IC(A,B) for two subsets A ⊂ X and B ⊂ X , such
that |A| = |B| = k, where 0 < k < |X | = n, is defined as

IC(A,B) =
r − k2

n

k − k2

n

=
rn− k2
k(n− k) . (7)

where r = |A ∩B|. The maximum value of the index, IC(A,B) = 1, is achieved
when r = k. The minimum value of the index is bound from below by −1. The
limit value is attained for k = n

2 and r = 0. Note that IC(A,B) is not defined
for the trivial cases k = 0 and k = n. They are not interesting from the point of
view of comparing subsets, so the lack of values for IC(A,B) in these cases is not
important. Finally, IC(A,B) will assume values close to zero for independently
drawn A and B.

The hypothesis will be supported if the consistency index for the results from
the Hungarian algorithm is higher than the indices for the rival methods.

3 Experiments

The purpose of this experiment is rather a proof of concept than comparison
of possible alternatives. Both the Hungarian and the greedy algorithms were
applied with criterion (5).2

Suitable data sets for the who-is-missing problem should have a large number
of classes.

3.1 Letter Data Set

We chose the Letter data set from the UCI Machine Learning Repository [5].
The number of classes is 26 (letters from the Latin alphabet), and the number
of objects is 20,000. The experimental protocol was as follows.

1. The data set was first standardised, and subsequently divided into a training
part (the first 10,000 objects) and a testing part (the latter 10,000 objects).

2. A linear discriminant classifier was trained on the training part.3 This classi-
fier was chosen on purpose so that there is sufficient scope for improvement.
Both the training and the testing errors are approximately 30%.

3. A level of noise η was chosen from the set {0.0, 0.1, 0.2, . . . , 0.8}. Gaussian
noise with mean zero and standard deviation η was added independently to
each value in the testing data set. The perturbed testing data was classi-
fied using the classifier trained on the original training data. The posterior
probabilities for all objects were stored.

4. The number of present classes k was chosen from the set {2, 3, . . . , 25}.
2 Since the logarithm is a monotonic transformation, the greedy algorithm would give
exactly the same result if applied straight on the posterior probabilities.

3 We used the classify function from the Statistics Toolbox of MATLAB.
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5. 1000 runs were carried out with the chosen η and k. In each run, a random
subset of k classes was sampled. One object was picked randomly from each
of the present classes. The posterior probabilities for the selected objects
(given by the classifier in Step 3) were retrieved and collated in matrix
P̂ . The matrix was augmented to 26 × 26 by adding 26 − k dummy rows
with values 1

26 . The Hungarian and the Greedy algorithms were applied and
the respective sets of missing classes (assigned to the dummy rows) were
recorded. Let HM be the set of missing classes according to the Hungarian
algorithm, GM , for the Greedy algorithm, and TM be the TRUE set of
missing classes. We applied the original classifier assuming iid data. Let CM
be the set of non-assigned classes. The respective values of the consistency
index were calculated as

IHungarian(k, η) = IC(TM,HM), IGreedy(k, η) = IC(TM,GM)

and

IClassifier(k, η) =

{
IC(TM,CM), if |CM | = |TM |,
0, otherwise.

The values of the consistency indices, averaged across the 1000 runs, for noise
levels η = 0 and η = 0.8, are shown in Figure 1. The graphs for the remaining
noise levels followed similar patterns. Plotted are also error bars spanning the
95% confidence intervals calculated from the 1000 values of the respective run.

The upward trend of the curves can be explained with the following argument.
When only a few objects are missing, their correct labelling depends on the
correct labelling of all the remaining objects. The scope for error is high. On
the other hand, when only a few classes are present, there is less room for error
in classifying all these objects correctly. Finally, when there is only one object
present (c− 1 absent), all methods converge to the original classifier.

 

 

(a) No noise (b) Noise 0.8

Fig. 1. Consistency indices for the sets of missing classes using the three algorithms
on the Letter data set. The error bars indicate the 95% confidence intervals.
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Clearly, the classifier alone is a poor choice according to the chosen measure.
The Hungarian and the Greedy algorithms behave similarly but the Hungarian
algorithm had an edge, giving support to our hypothesis. To demonstrate this
finding, Figure 2 shows the results from a statistical test between the results of
the two methods. We carried out a paired, two-sided test of the hypothesis that
the difference between the matched 1000 samples of consistency indices comes
from a distribution whose median is zero (Wilcoxon signed rank test). We chose
to show the results as a heat map. The grey level intensity corresponds to the p-
value. White indicates p = 1 and black, p = 0. Each square is the result from one
comparison across the 1000 iterations for the respective number of missing classes
c−k and noise level η. The comparisons where there was significant difference at
α = 0.5 are marked with dots. As the Hungarian method was always superior or
equivalent to the Greedy method, the dots mark the combinations of parameters
where the Hungarian method wins.

As expected, larger noise level showcase the proposed method. This is shown
by the larger number of dots in the top rows. For noise-free data (bottom row),
the algorithms tie for a smaller number of missing classes. For large number of
missing classes (rightmost column), the algorithms are similar.

Fig. 2. Heat map of the p-value of the Wilcoxon signed rank test for equal medians
of the consistency indices for the Hungarian and the Greedy algorithms. Dots signify
statistically significant difference at α = 0.05.

3.2 Who-Is-Missing: Objects in an Image

To illustrate the proposed solution in a real-life scenario, we took images of
a set of 22 parts from a LEGO Mindstorms NXT kit (Figure 3). Each of the
28 images contained all 22 LEGO parts. After segmentation, 706 objects were
detected, labelled, and saved as the training data. Five position-invariant and
rotation-invariant features were extracted: eccentricity, solidity,4, and the RGB
colour of the object.

Each feature was standardised to mean 0 and standard deviation 1. To eval-
uate the potential of the data set, we applied Principal Component Analysis
(PCA) to the data set and plotted the 23 classes in the space of the first two

4 The regionprops MATLAB function was used.
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(a) (b)

Fig. 3. (a) An image with all 22 LEGO pieces; (b) types of LEGO pieces with their
class labels. Class 1 corresponds to “other”.

principal components (Figure 4). The plot indicates that the classes are highly
overlapping, which will prevent the a classifier of iid objects from achieving a
high consistency for the who-is-missing problem.

Next we ran 10-fold cross-validation experiments with a small selection of
classifiers from WEKA [8], using the default parameter settings. The classifica-
tion accuracy ranged from 16.28% for AdaBoost.M1 [6] to 82.72% for Rotation
Forest [17], revealing that the data set is not too easy and, at the same time, high
classification accuracy is possible. This suits our purposes, as an ideal classifier
will not need an assignment algorithm to solve the who-is-missing problem.

We trained and tested the nearest mean classifier for the set, obtaining a
rather mediocre testing classification accuracy of 38.63%.

A new set of 100 images was collected, 25 with two random missing class,
25 with three random missing classes, 25 with four missing classes and the last
25 with five missing classes. Each image was segmented and the features of the
objects were extracted. To eliminate the effect of inaccurate segmentation on the
comparison of the Hungarian and the greedy algorithms, we accepted for this
analysis only images where the number of segmented objects tied with the true
number of non-missing classes. The averaged consistency indices for the different
number of classes are shown in Table 2.

Table 2. Average values of the consistency indices for the LEGO data and the p-value
of the Wilcoxon signed rank test

Number of missing classes
2 3 4 5 Mean p-value

# images 15 22 10 11

IHungarian 0.2667 0.3333 0.1444 0.2706 0.2716 0.0452
IGreedy 0.1200 0.2632 0.1750 0.1529 0.1900
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Fig. 4. A scatterplot of the 23 classes in the space of the first two principal components
of the training data

While the recognition of the missing classes has not been very accurate, the
results with the Hungarian Algorithm are markedly better for 2, 3 and 5 classes.
We ran the Wilcoxon signed rank test for the zero median of the pairwise dif-
ferences of the two consistency indices for all numbers of missing classes. The
p-value, also shown in the table, indicates that the Hungarian algorithm out-
performs significantly (α = 0.5) the greedy algorithm for the who-is-missing
problem.

4 Conclusions

This study formulates the who-is-missing problem and proposes a solution, com-
pleted with a measure of its quality. The Hungarian assignment algorithm, ap-
plied on the logarithms of the posterior probabilities of the objects in the set was
found to dominate the intuitive alternative, called here the Greedy algorithm.

Many extensions and variants of the who-is-missing problem are yet to be
formulated, for example, recognising one or more impostors in the given set,
dealing with known, larger than 1, numbers of objects from each class classes,
taking into the solution possible dependencies between the classes. Last but not
least, important application niches for these new pattern recognition puzzles are
yet to be discovered.
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Abstract. We present a new algorithm to compute the Graph Edit Distance in a 
sub-optimal way. We demonstrate that the distance value is exactly the same 
than the one obtained by the algorithm called Bipartite but with a reduced run 
time. The only restriction we impose is that the edit costs have to be defined 
such that the Graph Edit Distance can be really defined as a distance function, 
that is, the cost of insertion plus deletion of nodes (or arcs) have to be lower or 
equal than the cost of substitution of nodes (or arcs). Empirical validation 
shows that higher is the order of the graphs, higher is the obtained Speed up. 

Keywords: Graph Edit Distance, Bipartite Graph Matching, Munkres’ 
algorithm. 

1 Introduction 

Attributed Graphs have been of crucial importance in pattern recognition throughout 
more than 3 decades [1], [2], [3], [4], [5], [6], [7], [8], [9] and [10]. If elements in 
pattern recognition are modelled through attributed graphs, error-tolerant graph-
matching algorithms are needed that aim to compute a matching between nodes of 
two attributed graphs that minimizes some kind of objective function. Unfortunately, 
the time and space complexity to compute the minimum of these objective functions 
is very high. For this reason, some graph prototyping methods have appeared with the 
aim of reducing the run time while querying a graph in a large database [11], [12], 
[13]. 

Since its presentation, Bipartite algorithm [14] has been considered one of the best 
graph-matching algorithms due to it obtains a sub-optimal distance value almost near 
to the optimal one but with a considerable decrease on the run time. Other algorithms 
are [15] or [16]. There is an interesting survey in [2].  

This paper presents a new algorithm that obtains exactly the same distance value of 
the Bipartite algorithm but with a reduced run time. The only restriction we impose is 
that the edit costs have to be defined such that the Graph Edit Distance can be really 
defined as a distance function, that is, the cost of insertion plus deletion of nodes (or 
arcs) have to be lower or equal than the cost of substitution of nodes (or arcs). 
Experimental validation shows a Speed up of 5 on well-known databases. In fact, 
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higher is the order of graphs, higher is also the Speed up of our algorithm. This 
property is interesting since in the next years, we will see a need on representing the 
objects (social nets, scenes, proteins…) on larger structures. 

The outline of the paper is as follows, in the next section, we define the attributed 
graphs and the graph-edit distance. On section 3, we explain how to compute the 
graph edit distance using the Bipartite algorithm. Finally, on section 4, we present our 
new method and we schematically show our algorithm. On section 5, we show the 
experimental validation and we finish the article with some conclusions. 

2 Graphs and Graph Edit Distance 

In this section, we first define the Attributed Graphs, Cliques and Graph matching and 
then we explain the Graph Edit Distance. 

 
Attributed Graph and Cliques 
Let Δ and Δ denote the domains of possible values for attributed vertices and arcs, 
respectively. An attributed graph (over Δ  and Δ ) is defined by a tuple G(Σ , Σ , γ , γ ), where Σ v  | a  1, … , n  is the set of vertices (or nodes), Σ e |a, b ∈ 1, … , n  is the set of arcs (or edges), γ : Σ Δ  assigns attribute 
values to vertices and γ : Σ Δ  assigns attribute values to arcs. The order of graph G is n. 

We define a clique K  on an attributed graph G as a local structure composed of a 
node and its outgoing edges K (v , e |b ∈ 1, … , n , γ , γ ). 

 
Error Correcting Graph Isomorphism  
Let G (Σ , Σ , γ , γ ) and G (Σ , Σ , γ , γ ) be two attributed graphs of initial 
order n and m. To allow maximum flexibility in the matching process, graphs are 
extended with null nodes [17] to be of order n m. We will refer to null nodes of G  
and G  by Σ Σ  and Σ Σ  respectively. We assume null nodes have indices ∈ 1, … ,  and ∈ 1, … ,  for graphs G  and G , 
respectively. Let T be a set of all possible bijections between two vertex sets Σ  and Σ . We define the non-existent or null edges by Σ Σ  and Σ Σ . 

Bijection f , : Σ Σ , assigns one vertex of G  to only one vertex of G . The 
bijection between arcs, denoted by f , , is defined accordingly to the bijection of their 
terminal nodes.  

 

Graph Edit Distance between Two Graphs 

One of the most widely used methods to evaluate an error-correcting graph 
isomorphism is the Graph Edit Distance [18, 19, 20]. The dissimilarity is defined as 
the minimum amount of required distortion to transform one graph into the other. To 
this end, a number of distortion or edit operations, consisting of insertion, deletion 
and substitution of both nodes and edges are defined. Then, for every pair of graphs 
(  and ), there is a sequence of edit operations, or an edit path ( , ) ( , … , ) (where each  denotes an edit operation) that 
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transform one graph into the other. In general, several edit paths may exist between 
two given graphs. This set of edit paths is denoted by . To quantitatively evaluate 
which edit path is the best, edit cost functions are introduced. The basic idea is to 
assign a penalty cost to each edit operation according to the amount of distortion that 
it introduces in the transformation.  

Each ( , ) ∈  can be related to a univocal graph isomorphism , ∈  between the involved graphs. In this way, each edit operation assigns a node 
of the first graph to a node of the second graph. Deletion and insertion operations are 
transformed to assignations of a non-null node of the first or second graph to a null 
node of the second or first graph. Substitutions simply indicate node-to-node 
assignations. Using this transformation, given two graphs,  and , and a bijection 
between their nodes, , , the graph edit cost is given by (Definition 7 of [21]): 

 ( , , , )  ,∈∈
,∈ ∈

 

,∈∈
,∈∈

 

,∈ ∈
,∈∈

 

Where ,  and ,  

 
where  is the cost of substituting node  of  for node ,  of ,  is 

the cost of deleting node  of  and  is the cost of inserting node  of . 
Equivalently for edges,  is the cost of substituting edge  of graph  for edge ,  of ,  is the cost of assigning edge  of  to a non-existing edge of 

 and  is the cost of assigning edge  of  to a non-existing edge of . Note 
that we have not considered the cases in which two null nodes or null arcs are 
mapped. This is because this cost is zero by definition. 

Finally, the Graph Edit Distance is defined as the minimum cost under any 
bijection in : 

 ( , ) min, ∈ ( , , , )  
 
Using this definition, the Graph Edit Distance essentially depends on , , , 
,  and  functions and several definitions of these functions exist. 
We say the optimal bijection, , , is the one that obtains the minimum cost, , argmin, ∈ ( , , , )  
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We define the distance and the optimal bijection between two cliques in a similar 
way as the distance between two graphs since they are local structures of graphs. We 
name the cost of substituting clique K  by K  as , . The cost of deleting clique K  
as ,  and the cost of inserting clique K  as , . 

3 Edit Distance Computation by Bipartite Algorithm (BP) 

The assignment problem considers the task of finding an optimal assignment of the 
elements of a set  to the elements of another set , where both sets have the same 
cardinality | | | |. Let us assume there is a  cost matrix . The matrix 
elements ,  correspond to the cost of assigning the i-th element of  to the j-th 
element of . An optimal assignment is the one that minimises the sum of  
the assignment costs and so, the assignment problem can be stated as finding the 
permutation p that minimises ∑ C , ( ). Munkres’ algorithm [22] solves the 
assignation problem. It is a refinement of an earlier version by Kuhn [23] and is also 
referred to as Kuhn-Munkres or Hungarian algorithm. The algorithm repeatedly finds 
the maximum number of independent optimal assignments and in the worst case the 
maximum number of operations needed by the algorithm is O( ). Later, an 
algorithm to solve this problem applied to non-square matrices where presented [24].  

Bipartite, or BP for short [14], is an efficient algorithm for edit distance 
computation for general graphs that use the Munkres’ algorithm. That is, they 
generalised the original Munkres’ algorithm that solve the assignment problem to the 
computation of the graph edit distance by defining a specific cost matrix. In 
experiments on artificial and real-world data, authors demonstrate BP obtains an 
important speed-up of the computation respect other methods while at the same time 
the accuracy of the approximated distances is not much affected [14]. For this reason, 
since its publication, it has become one of the most used graph-matching algorithms. 

Given attributed graphs G  and G , the (n m) (n m) cost matrix C is defined 
as follows, 

 
 
Where ,  denotes the cost of substituting clique K  by K , ,  denotes the cost 

of deleting clique K  and ,   denotes the cost of inserting clique K . On the basis of 
this cost matrix definition, Munkres’ algorithm can be executed to find the minimum 
cost for all permutations. Obviously, as described in [14], this minimum cost is a  
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sub-optimal Edit Distance value between the involved graphs since cost matrix rows 
are related to cliques of graph G  and columns are related to cliques of G . Moreover, 
it is considered a correct permutation the one that ∑ , ( ) ∞. That is, all costs 
are assigned to non-infinitive values. 

Note that Munkres’ algorithm used in its original form is optimal for solving the 
assignment problem, but it is suboptimal for solving the graph edit distance. This is due 
to the fact that cliques are considered individually. The distance values obtained by this 
method are equal to or smaller than the distance values obtained in an optimal method 
(with exponential cost). The computational cost of the method is O(( ) ). 

4 Fast Bipartite Algorithm (FBP)  

We define the following edit cost, ( , , , )  ( , , , ) _ ( , ) 
 
Where,  _ ( , ) ,∈ ,∈  

,∈ ,∈  

and ∈ Σ , ∈ Σ , ∈ Σ  and ∈ Σ  

The new edit cost definition subtracts from the original edit cost the costs of 
deleting nodes and arcs from G  and inserting nodes and arcs from G . Nodes v  and v  (or arcs e  and e ) represent any extended node (or arc). Note that in cases that 

nodes or arcs where the extended ones (null nodes o arcs), that is, v ∈ Σ , v ∈ Σ , e ∈ Σ  or e ∈ Σ , then their corresponding cost is zero by definition. Moreover, 

the subtracted cost C _  does not depend on any bijection f , .   
In a similar way than the original edit cost, the optimal bijection, , , is the one 

that obtains the minimum cost, 
 , argmin, ∈ ( , , , )  
 
We define D as an n m vector. The first n positions are filled with the costs of 

deleting cliques K  that we named , , and the other  positions are filled with 
zeros: D , , … , , 0 … 0  . Moreover, we define I as an m n vector. The first 

 positions are filled with the costs of inserting cliques K  that we named , , and 
the other  positions are filled with zeros: I , , … , , 0 … 0 . Note that zeros in 
both vectors represent the cost of deleting or inserting null cliques. Besides, it is easy 
to demonstrate that C _ (G , G ) 1, (I D ) . 
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With these two vectors, we define two (n m) (m n) matrices,  and . The 
first one is obtained by the replication of vector D through columns and the second 
one is obtained by the replication of vector I through rows.  

We are ready to define our cost matrix C  as follows, C =C- , 
 

 
 
Similarly to cost matrix , this matrix is composed of four quadrants. The 

dimensions of each quadrant is: Q1 n X m, Q2 n X n, Q3 m X m 
and Q4 m X n. Cells in the first one are filled with the value of substituting the 
cliques (as in ) but the cost of deleting and inserting the respective cliques is 
subtracted. The second and third quadrants are composed of infinitive values except at 
the diagonal that is filled with zeros. All cells on the fourth quadrant have a zero. 

On the basis of the new cost matrix C  defined above, Munkres’ algorithm [22] can 
be executed and it finds the optimal permutation p that minimises ∑ C , ( ). Note 
that any correct permutation on p is equivalent to a bijection f ,  between nodes of 
graphs G  and G . 

It was demonstrated in [25] that, on the one hand, the equality , ,  holds 
for all pair of graphs  and . On the other hand, in the case that  
and  then the value of EditCost  is equal to a correct permutation cost 
of C . These demonstrations give us a way to compute the  through applying 
the Munkres’ algorithm to matrix C . Nevertheless, due to the dimensions of C  are the 
same than the original C, the computational cost would be equivalent. Again, in [25], 
it was demonstrated that, in the case that  and  then 
minimising a permutation on C  is exactly the same than minimising a permutation on 
the sub-matrix composed by the first quadrant composed of the first n rows and m 
columns, that we call it Q1 . 

Algorithm 1 computes the  . 
 
Algorithm 1. Fast Bipartite Q1 Computation_Cost(G , G )  
    // Q1  is the  first quadrant of cost matrix C  P Munkres( Q1 ). 
   // P is the  permutation matrix EditCost Sum ( . Q1 ) . 
    // .  represents the multiplication element by element EditCost EditCost C _   
     // Final distance value 
End. 
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As commented, the Munkres algorithm was initially implemented to find the 
permutation of a quadratic matrix. In case , matrix Q1  can be extended with 
negative values (lower than any original cost). Nevertheless, it is usual the implemented 
functions of the Munkres’ algorithm to automatically enlarge the cost matrix. The worst 
computational cost of Fast Bipartite is the cost of the Munkres’ algorithm, that is: (max ( , ) ). The cost of Bipartite algorithm [14] is (( ) ). 

5 Experimental Validation  

The goodness of the Bipartite algorithm has been tested in several papers, for this 
reason, we only want to present the Speed up of our method respect the classical one 
[14]. We do not present new recognition-ratio tests or correlation tests between the 
sub-optimal distance and the optimal one since we obtain exactly the same distance 
value (as described above) when the costs are defined such as  and 

.  
We present two different tests. The aim of the first one is to execute again the tests 

published in paper [14] where the Bipartite algorithm was presented and show the 
Speed up of our method on these largely used databases known as IAM graph 
database repository. These databases have been used during some years to test 
different a types of algorithms related to graphs such as, classification, clustering, 
prototyping or graph embedding. We do not want to add any comment to these 
databases since a lot of literature has been written talking about them. The first 
explanations of these databases can be found in [26] and also they have been 
commented in [14]. They can be downloaded from the IAPR-TC15 web page [27].  

In the experiments, we compared all graphs on the test set respect all graphs on the 
reference set as authors did in [14]. Then, from this large number of comparisons, we 
have extracted the mean computational times tBP and tFBP and the Speed up (table 1). 
We also show the mean and maximum number of graphs of each database. The source 
code in Matlab can be downloaded from [28]. 

Table 1. Mean computational time of Bipartite and Fast Bipartite and Speed Up of Fast 
Bipartite respect Bipartite 

 Mean
Order 

Max 
Order 

 
(mS) 

 
(mS) 

Speed
Up 

Letter (L) 4.5 8 1.6 1.4 1.08 
Letter (M) 4.6 10 2.1 1.8 1.13 
Letter (H) 4.7 9 1.8 1.6 1.14 

COIL 3.0 11 2.2 1.9 1.18 
GREC 12.9 39 29.3 13.1 2.23 

Fingerprint 5.4 26 9.8 6.2 1.60 
Molecules 9.5 85 391.3 99.7 3.92 

Proteins 32.6 126 1460.6 278 5.25 
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The Speed up is higher than one on the whole experiments therefore it is always 
worth to use the Fast Bipartite instead of the Bipartite algorithm. Moreover, the higher 
is the mean and the maximum number of nodes, the higher is the Speed up. 

The aim of the second test is to show how the Fast Bipartite algorithm performs 
when it is not guarantee that  and . In some 
applications, this is a too strong constrain. For instance, palmprint identification is an 
interesting application since the number of minutiae is around 1000 and it is usual to 
represent the palmprint image in an attributed graph where nodes represent minutiae 
and arcs represent the proximity relation (Delaunay triangulation or Nearest-
neighbours). Attributes on nodes are the angle of minutiae and edges do not have 
attributes. The distance between node attributes is the angular distance between the 
angles of both minutiae. Therefore, if angles are presented by degrees, the maximum 
distance is 180. For this reason, if we want to fulfil constrain  then we 
need  and  to be bigger or equal than 90. Nevertheless, it is usual to consider 
two minutiae cannot be mapped if the difference between the angles is lower than 
around 30 degrees. So, from the application point of view we wish 30 and 30. In this second experiment, we show in which extend our algorithm obtains 
the same distance value obtained by the Bipartite algorithm although the constrain 

 is not fulfilled. 
We used images contained in the Tsinghua 500 PPI Palmprint Database [29]. It is a 

public high-resolution palmprint database composed of 500 palmprint images of 2040 
x 2040 resolution and captured with a commercial palmprint scanner from Hisign. 
From each person, 16 palmprints are enrolled (8 ones per each hand). We used the 
algorithm presented in [30] to extract the minutiae from each image. Table 1 shows 
the mean and max order of the generated graphs as well as the average run time and 
the Speed up of FBP respect BP. Our database, called Tarragona Palmprint, is public 
available at [31]. 

Table 2. Mean computational time of Bipartite and Fast Bipartite and Speed Up of Fast 
Bipartite respect Bipartite 

 Mean 
Order 

Max 
Order 

 
(S) 

 
(S) 

Speed-
Up 

Palmprint 987 1505 365,35 40.46 9.03 

Table 3 shows the average Distance Error computed as  1    while computing these two algorithms with several edit costs  and 

. Recall that always holds    and    when  and . 
If we wish 30, as commented above, the average error is lower than 1% 
and we achieve a Speed Up higher than 9. The run time of these algorithms is 
independent of the edit costs. 
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Table 3. Distance between the distance value obtained using BP and FBP when several costs 
are applied 

 10 20 30 40 60 80 
Distance Error 0.145 0.019 0.009 0 0 0 

6 Conclusions 

This paper presents a new algorithm called Fast Bipartite to compute the Graph Edit 
Distance that obtains exactly the same distance value than the Bipartite algorithm but 
with a reduced run time. The only restriction we impose is that the edit costs have to 
be defined such that the insertion plus deletion have to be greater or equal than the 
substitution. This is a logical restriction since it is needed to be the Edit Distance 
defined as a distance function. Empirical evaluation shows the Fast Bipartite is always 
faster than the Bipartite algorithm and higher is the order of both graphs, better is the 
Speed up we obtain. Moreover, in cases that the application imposes not to hold this 
restriction, the algorithm also achieves a high Speed up with a reduced error. 
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Abstract. For the application of well-established image analysis algo-
rithms to low frame-rate image sequences, which are common in bio-
imaging and long-distance extrapolation, we are required to up-convert
the frame-rate of image sequences. For the motion analysis of low frame-
rate image sequences, we introduce a method for semantic segmentation
of the dominant plane, which is the largest planar area on an image
plane, from a low frame-rate image sequence, which is common for im-
age sequence obtained by remote extrapolation.

1 Introduction

In this paper, we introduce a method for semantic segmentation of the dominant
plane from the optical flow field of a low frame-rate image sequence combining
image registration [5] and optical flow computation [8, 7].

The optical flow field is a fundamental feature for the interpretation of tem-
poral image sequences [6]. For the motion analysis from low frame-rate image
sequence, we are required to generate a dense optical flow fields, since well-
established algorithms for motion analysis do not assume the use of low frame-
rate image sequences.

For the detection of safe areas for navigation, the robot probe detects the
dominant plane, which is the largest planar area on an image plane, from a
sequence of images captured by a camera mounted on the robot. In the image,
the safe areas and obstacle areas for navigation are detected using the optical
flow field and homography of the ground plane [2–4]. Figure 1 (a) shows a cycle
for autonomous navigation using optical flow.

Using an uncalibrated monocular camera as a sensor for obtaining information
on the environment, in ref. [1], a featureless robot navigation method based on a
planar area and an optical flow field computed from a pair of successive images
is proposed. A planar area in an environment is called a dominant plane, and
it corresponds to the largest part of an image. We accept the following five
assumptions.
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Observation

Perception Decision

Action

The robot observes an environment.

The robot percepts the optical flow. The robot decides on the local path.

The robot acts on the local path.
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Fig. 1. Observation-Perception-Decision-Action cycle for vision-based robot naviga-
tion. (a) First, a mobile robot equipped with a camera observes the environment. Next,
an optical flow field relative to the robot motion is computed from images obtained
by the camera. The optical flow field is used to decide the local path. (b) The mobile
robot has a camera, which corresponds to its eyes. The robot perceives an optical flow
field from its ego-motion. (c) If the camera moves a distance T approximately parallel
to the dominant plane, the optical flow vectors on the obstacle and on the dominant
plane areas have the same distance T . However, they differ at the same time.

1. The ground plane is the planar area.
2. The camera mounted on the mobile robot is looking downward.
3. The robot observes the environment using the camera mounted on itself for

navigation.
4. The camera on the robot captures a sequence of images while the robot is

moving.
5. The planar area occupies more than 1/2 on the image.

These assumptions are illustrated in Figs. 1 (b) and (c).
Since the planar flow vector on the ground plane is equal to the optical flow

vector ẋ on the dominant plane, we use the difference between these two flows to
detect the dominant plane. From the assumption 1 and 2, we have the following
property.

Property 1. Corresponding points on a dominant plane in a pair of successive
images are combined by homography.

2 Dominant Plane and Optical Flow

Setting H to be a 3 × 3 matrix [14], the homography between two images
of a planar surface can be expressed as ξ′ = Hξ, where ξ = (x, y, 1)� and
ξ′ = (x′, y′, 1)� are the homogeneous coordinates of corresponding points in two
successive images. Assuming that the camera displacement is small, the matrix
H can be approximated by affine transformations. These geometrical and math-
ematical assumptions are valid when the camera is mounted on a mobile robot
moving on the dominant plane. Therefore, the corresponding points x = (x, y)�

and x′ = (x′, y′)� on the dominant plane are related by x′ = Ax + b, where
A and b are a 2 × 2 affine-coefficient matrix and a two-dimensional vector, re-
spectively, which are approximations of H . This geometric relation implies that
u(x, y, t+ 1) = Ax+ b− x and that the next property is satisfied.



Semantic Extraction 265

Property 2. On the dominant plane, the optical flow vector is stationary and
the planar-flow vector on the ground plane is equal to the optical flow vector
ẋ = u.

We call x′−x the planar flow. The RANSAC-based method [11] for the estima-
tion of the affine coefficients is described as Algorithm 1.

Algorithm 1. Planar Flow

Require: Planar area u
Ensure: Affine coefficients A and b

Set the region counter m ← 0
repeat

Randomly select three points from {x};
Estimate A and b in x′ = Ax+ b
Compute planar flow field u′ = x′ − x
if |u− u′| < ε and #(|u− u′| < ε) > m then

assign these points as the plane;
m ← #(|u− u′| < ε)

end if
until predetermined number of times;

Once the affine coefficients are estimated, we can extract a segment for the
dominant plane. We use the difference between these two flows for semantic
segmentation of the dominant plane. Therefore, if |u(x, y, t)−u(x, y, t+ 1)| < ε
for a small positive number ε, we conclude that the point x = (x, y)� lies on
the dominant plane. If an obstacle exists in front of the robot, the planar flow
on the image plane differs from the optical flow on the image plane as shown in
Fig. 1 (c).

3 Semantic Segmentation Using Subframe Motion

We develop an algorithm to compute the optical flow field of a temporal image
sequence f(x, t+ 1

2 ), in which we set u 1
2
(x, t) from f(x, t) and f(x, t+ 1). For

the convenience of analysis, we set

f+(x) = f(x, t+ 1), f−(x, t) = f(x, t), g(x) = f(x, t+
1

2
), (1)

v = u 1
2
(x, t), w = u 1

2
(x, t+

1

2
). (2)

Algorithm 2 shows the procedure for dominant plane detection using subframe
optical flow computation.
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Fig. 2. Geometrical relations among images sequence and computational results. (a)
Geometrical relations among g, f−, f+, u, v and w. (b) Computational results the
original and subframe optical flow fields for the Etllinger-Tor sequence.

For large-displacement image sequences, we compute the dominant plane from
v and w, which are computed from f(x, y, t) and f(x, y, t + 1/2), and from
f(x, y, t + 1/2) and f(x, y, t + 1), respectively, using the subframe optical flow
computation method derived in the previous section. We conclude that the point
x = (x, y)� lies on the dominant plane if |u−w| < ε.

For f(x, t) and f(x, t+ 1), if the relation

∇f(x, t) ∼= ∇f(x, t+
1

2
) = ∇f(x, t) + δ(x) (3)

is satisfied, we have the next theorem.

Theorem 1. The relation ∇f�(v+w)+ft ∼= 0, where ∇f(x, t)�v+ft(x, t) = 0
and ∇f(x, t+ 1

2 )
�w + ft(x, t+

1
2 ) = 0, is satisfied 1.

Setting g(x) = f+(x − w), g(x) = f−(x + v) and u = v + w, Theorem 1
implies that we can have g, v and w as the minimisers of

J(g,v,w) = I+ + I− + αG+ βU + γV, (4)

where

I+ =

∫
Ω

(g(x)− f+(x−w))2dx, I− =

∫
Ω

(g(x)− f−(x+ v))2dx, (5)

G =

∫
Ω

|∇g|2dx, U =

∫
Ω

(|∇v|2 + |∇w|2)dx, V = |v +w − u|2. (6)

Figure 2 shows the relations among u, v, w and g and computational results of
them.

Using the subframe optical flow, we extract a segment corresponding to the
dominant plane DH using Algorithm 2. In Algorithm 2, for a pair of successive
images fi and fi+1, ui is the optical flow field between fi and fi+1, and vi and
wi are the subframe optical flow fields between fi and g, and between g and

1 From eqs. (1) and (3), we have the relation ∇f(x, t)�(v+w)+ ft ∼= 0, since ft(·, t+
1
2
) = f(x, t+ 1) − f(x, t+ 1

2
) and ft(·, t+ 1) = f(x, t+ 1 1

2
)− f(x, t).
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fi+1, respectively, where g is the interframe image. Furthermore, the procedure
Compute InterFrame(fi, fi+1,ui, α, β, γ) computes gi, vi and wi from fi, fi+1

and ui using the method proposed in the previous section. Moreover, in the
algorithm ui is computed from fi and fi+1 using the large-displacement optical
flow computation technique in [13].

Algorithm 2. Plane Detection

Require: Images fi, fi+1, fi+2, Flow field ui,ui+1, Parameters α, β, γ
Ensure: Plane D

(gi,vi,wi) ⇐ Compute InterFrame(fi, fi+1,ui, α, β, γ)
Set the region counter m ← 0
repeat

Compute affine coefficients by Planar-Flow(vi);
Estimate planar flow field v̂i from affine coefficients;
if |wi − v̂i| < ε and #(|wi − v̂i| < ε) > m then

assign these points as the plane d;
m ← #(|wi − v̂i| < ε)

end if
until predetermined number of times;
output the plane DH as a binary image;

From J(g,v,w), for g, v and w, we have the system of partial differential
equations

Δg − 1

β
F (g,v,w) = 0, Δv − 1

α
G−(g,u,w) = 0, Δw − 1

α
G+(g,u,w) = 0, (7)

where

F (g,v,w) = 2g(x)− (f−(x+ v) + f+(x−w)),

G−(g,v,w) = γ(v +w − u) + (f−(x+ v)− g(x))∇f−(x+ v), (8)

G+(g,u,w) = γ(v +w − u) + (g(x)− f+(x−w))∇f+(x−w).

The mimimisation of J(g,v,w) is achieved by numerically solving eq. (7). Using
semi-implicit discretisation of the associated diffusion equations such that

∂tg = Δg −
1

β
F (g,v,w),

∂tv = Δv − 1

α
G−(g,u,w), (9)

∂tw = Δw − 1

α
G+(g,u,w),



268 S. Inagaki and A. Imiya

we solve the system of iteration forms [12]

g(n+1) − g(n)
τ

= Δg(n+1) − 1

β
F (g(n),v(n),w(n)),

v(n+1) − v(n)

τ
= Δv(n+1) − 1

α
G−(g(n),u(n),w(n)), (10)

w(n+1) −w(n)

τ
= Δw(n+1) − 1

α
G+(g(n),u(n),w(n)).

4 Numerical Examples

In experiments, we compared the statistics of the optical flow field computed by
our method and by the pyramid-based Horn-Schunck method [8]. On the ground
plane which corresponds to the dominant plane, since the optical flow field is
smooth, we adopt the L2 regularisation terms, that is, the regularisation term
of the Horn-Schunck method is the square of the Frobenius norm tr∇u∇u� of
the vector gradient ∇u of the optical flow field u.

(a) sol13 (b) Flow HS u (c) Flow LDOF u

(d) sol250 (e) Flow HS u (f) Flow LDOF u

Fig. 3. Images and optical flows of Sol13 and Sol250. (a) Sol13. (b) Optical flow of
Sol13 computed by the Horn-Schanck method with pyramid transform [9]. (c) Optical
flow of Sol13 computed by the large-displacement method [13]. (d) Sol250. (e) Optical
flow of Sol250 computed by the Horn-Schanck method with the pyramid transform [9].
(f) Optical flow of Sol250 computed by the large-displacement method [13].

Figure 3 shows images and their optical flow fields computed by two methods.
The top and bottom rows show images and optical flow fields of Sol13 and Sol205,
respectively. (b) and (e) show optical flow fields of Sol13 and Sol250, respectively,
computed by the Horn-Schanck method [8] with pyramid transform (HSP). (c)
and (f) show optical flow fields of Sol13 and Sol 250, respectively, computed by
the Large-Displacement Optical Flow method [13] (LDOF).
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Fig. 4. Norm Histogram of Sol13 and Sol250. The top and bottom rows shows re-
sults for Sol13 and Sol250, respectively. From left to right, the histograms of u com-
puted by the Horn-Schunck method with pyramid transform, u computed by the large-
displacement optical flow method, v and w, which are computed by our method -the
temporal optical flow superresolurion, respectively.

Table 1. Kurtosis of histograms

HS u LDOF u TOSR v TOSR w

Sol13 7.04 50.33 33.66 15.82

Sol250 2.71 115.51 92.75 81.63

Figure 4 shows the histograms for the l2-norms of the optical flow vectors
for the results of Fig. 3. In Fig. 4, the top and bottom rows show results for
Sol13 and Sol250, respectively. Furthermore, from left to right, the histograms
of u computed by the HSP method, u computed by the LDOF method, v and
w, which are computed by our flow-field up-conversion based on the Temporal
Optical flow Superresolution (TOSR).

Figure 5 shows the second time derivatives of the histograms, since the second
time derivatives of distributions allow to detect peaks in the distributions. Table
1 shows the kurtoses of optical flow fields computed by the HSP method, the
LDOF method and TOSR method. Kurtoses of optical flow field computed by

Table 2. Unification of dominant plane segments by three methods for Sol13 and
Sol250. The entries are |Dα|/|Dk | for α{H,B,P} and k = 1, 2, 3.

Sol13 DB DP DH average Sol250 1.00 0.80 0.80 0.87

D1 0.99 0.34 0.51 0.61 D1 1.00 0.80 0.80 0.8

D2 0.63 0.71 0.88 0.74 D2 0.82 0.98 0.99 0.93

D3 0.23 0.87 0.71 0.60 D3 0.78 0.99 0.98 0.92
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Fig. 5. Second Time derivatives of the histograms of Sol13 and Sol250. The vertical
line in each figure show the peak of the histogram. The horizontal line in each figure
corresponds to the total variation of the optical flow vectors

∫
Ω
|∇u|dx. The green curve

in each figure shows the ration |Ω(k)|/|Ω|, where Ω(k) is the region corresponding to
the k-th bin in the histogram.

(a) sol13 (b) Binarisation (c) Homogarphy (d) Peak-based

(e) sol250 (f) Binarisation (g) Homography (h) Peak-based

Fig. 6. Results for Sol13 and Sol250. The top and bottom rows show results for Sol13
and Sol250, respectively. From left to right, original images and results computed by
image binarisation, the peak detection and the homograpy-based method, are shown.

the LDOF and TOSR methods are both larger than those by the HSP method. In
each frame, the histograms of the norm of the optical flow vectors computed by
the HSP method are unimodal with wide divergence. Therefore, we cannot detect
the dominant plane from the optical field. The histograms of the norm of the
optical flow vectors computed by our method are, however, multimodal or with
small divergence. If semantic planar segments exist in a frame, the optical flow
vectors are stationary on this region. Then, the peaks appear in the histogram
of the norm of th optical flow vectors. Comparison of the optical flow fields by
two methods leads to the conclusion that the LDOF method can detect these
peaks and that the HSP method fails to detect these peaks in both examples.

However, since as described in the previous sections, for the semantic segmen-
tation of the dominant plane as a safe area in the workspace, we are required
to have three successive frames of images. Therefore, we generate two successive
optical flow fields from a pair of successive images using the temporal superres-
olution of the optical flow field. As shown in Fig. 4, we can extract a semantic
segment using statistical bias of the optical flow vectors on the dominant plane.
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(a) 1 method (b) 2 methods (c) 3 methods

(d) 1 method (e) 2 methods (f) 3 methods

Fig. 7. Unification of the results obtained by three methods. The top and bottom row
are results for sol13 and sol250, respectively. From left to right, the unification results
for one-, tow- and three methods, respectively.

Setting h(u(x), t) for x = (x, y)�to be histogram of |u(x)|, the peaks t in
the histogram are bins which satisfy the relations h(u(x), t) > 2averageth(u(x))
and h(u(x), t) > 2averagethtt(u(x)). The peak-based segmentation detects the
region DP = {x|t ∈ T for h(u(x), t)}. Furthermore, we extract a segment DB =
{x|f(x, y, t) > A} by binarising grey-values of images using A computed by the
Otsu threshold method [15].

Figure 6 shows the results. For the comparison, we also computed seman-
tic segments using DP and DB. These results show that our proposing method,
which combines the homgraphy and temporal optical flow superrealution,
achieves semantic segmentation from a video sequence for navigation. Table 2
and Figure 7 show the results of the unification of the results obtained by three
methods. Using the Boolean functions

fH(x) =

{
1, if x ∈ DH

0, otherwise,
fB(x) =

{
1, if x ∈ DB

0, otherwise,
fP (x) =

{
1, if x ∈ DP

0, otherwise,
(11)

we define the three regions,

D1 = {x|fH(x) ∨ fB(x) ∨ fP (x) = 1}, (12)

D2 = {(fH(x ∧ fB(x)) ∨ (fB(x) ∧ fP (x)) ∨ (f(x) ∧ fH(x)) = 1}, (13)

D3 = {fH(x) ∧ fB(x) ∧ fP (x) = 1}. (14)

For k = 1, 2, 3, Dk is the collection of pixels which are categorised as elements
of dominant plane by the k different algorithms. Then, we evaluate |Dα|/|Dk|
for α{H,B, P} and k = 1, 2, 3, where |D| is the area of region D, since the
ground truths are not prepared for these image sequences. In Fig. (7), the top
and bottom row are results for sol13 and sol250, respectively, and From left to
right, the unification results for one-, tow- and three methods, respectively, are
shown. These results show that unification of the three methods improves the
results.
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5 Conclusions

In this paper, we introduced a method for semantic segmentation of the dominant
plane on an image sequence from a low-frame rate optical flow field.

In refs. [1] and [10], a dominant plane detection was achieved from a triplet
of successive images. We have proposed a method for the detection of the dom-
inant plane from low-frame rate image sequences using sub-frame optical flow
computation.
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Abstract. Kernel-based learning is widely known as a powerful tool for
various fields of information science such as pattern recognition and re-
gression estimation. For the last few decades, a combination of different
learning machines so-called ensemble learning, which includes learning
with multiple kernels, have attracted much attention in this field. Al-
though its efficacy was revealed numerically in many works, its theoret-
ical grounds are not investigated sufficiently. In this paper, we discuss
regression problems with a class of kernels and show that the general-
ization error by an ensemble kernel regressor with the class of kernels is
smaller than the averaged generalization error by kernel regressors with
each kernel in the class.

Keywords: kernel regressor, ensemble learning, orthogonal projection,
generalization error.

1 Introduction

Kernel-based learning machines [1], represented by the support vector machine
[2] and the kernel ridge regressor [3], are widely recognized as powerful tools for
various fields of information science such as pattern recognition and regression
estimation. In general, an appropriate model selection is required in order to
obtain a desirable learning result by kernel machines. Although the model selec-
tion in a fixed model space, such as selection of a regularization parameter, is
sufficiently investigated in terms of theoretical and practical senses (see [4, 5] for
instance), the selection of a model space is not sufficiently investigated in terms
of a theoretical sense, while many practical algorithms for selection of a kernel
(or its parameters) are proposed. In our previous works [6–9], we discussed the
generalization error of a model space specified by a kernel and obtained some
theoretical results.

For the last few decades, learning based on multiple kernels have attracted
much attention in this field, which can be regarded as one of model selection
schemes. The ensemble kernel learning (see [2] for instance), which is a combina-
tion of kernel-based learning machines, is representative one, whose theoretical

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 273–281, 2014.
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grounds are not also investigated sufficiently. In this paper, we discuss general-
ization errors of the ensemble kernel regressor with a class of kernels and the
kernel regressor using an individual kernel in the class; and show that the gen-
eralization error of the ensemble kernel regressor is smaller than the averaged
generalization error of kernel regressors by each kernel.

2 Mathematical Preliminaries for the Theory of
Reproducing Kernel Hilbert Spaces

In this section, we give some mathematical preliminaries concerned with the
theory of reproducing kernel Hilbert spaces [10, 11].

Definition 1. [10] Let Rn be an n-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rn, forming a Hilbert space of real-valued
functions. The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of H,
if the following two conditions hold.

1. For every x̃ ∈ D, K(·, x̃) is a function belonging to H.
2. For every x̃ ∈ D and every f(·) ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a reproducing
kernel Hilbert space, abbreviated by RKHS. Eq.(1) is called the reproducing
property of a kernel and it enables us to treat a value of a function at a point
in D. Note that reproducing kernels are positive definite [10]:

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (2)

for any N ∈ N, c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In addition, K(x, x̃) =
K(x̃,x) holds for any x, x̃ ∈ D [10]. If a reproducing kernel K(x, x̃) exists, it is
unique [10]. Conversely, every positive definite function K(x, x̃) has the unique
corresponding RKHS [10]. Hereafter, the RKHS corresponding to a reproducing
kernel K(x, x̃) is denoted by HK . In the following contents, we simply use the
symbol K for a kernel by omitting (x, x̃) except the cases where it is needed.

Next, we introduce the Schatten product [12] that is a convenient tool to
reveal the reproducing property of kernels.

Definition 2. [12] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)
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Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show
that the following relations hold for h, v ∈ H1, g, u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v), (4)

where the superscript ∗ denotes the adjoint operator.
We give the following theorem concerned with the sum of reproducing kernels,

which is used in the following contents.

Theorem 1. [10] If Ki is the reproducing kernel of the class Fi with the norm
|| · ||i, then K = K1+K2 is the reproducing kernel of the class F of all functions
f(·) = f1(·) + f2(·) with fi(·) ∈ Fi, and with the norm defined by

||f(·)||2 = min
[
||f1(·)||21 + ||f2(·)||22

]
, (5)

the minimum taken for all the decompositions f(·) = f1(·)+f2(·) with fi(·) ∈ Fi.

The most important consequence of Theorem 1 is that the RKHS correspond-
ing to K = K1 +K2 includes HK1 and HK2 .

3 Formulation of Regression Problems

Let {(yi,xi) | i ∈ {1, . . . , �}} be a given training data set with yi ∈ R, xi ∈ Rn,
satisfying

yi = f(xi) + ni, (6)

where f(·) denotes the unknown true function and ni denotes zero-mean additive
noise. The aim of the regression problem is to estimate the unknown function
f(·) by using the given training data set and statistical properties of the noise.

In this paper, we assume that the unknown function f(·) belongs to the RKHS
HK corresponding to a certain kernel K. If f(·) ∈ HK , then Eq.(6) is rewritten
as

yi = 〈f(·),K(·,xi)〉HK + ni, (7)

on the basis of the reproducing property of kernels. Let y = [y1, . . . , y�]
′ and

n = [n1, . . . , n�]
′ with the superscript ′ denoting the transposition operator,

then applying the Schatten product to Eq.(7) yields

y =

(
�∑

k=1

[e
(�)
k ⊗K(·,xk)]

)
f(·) + n, (8)

where e
(�)
k denotes the �-dimensional unit vector whose k-th element is unity.

For a convenience of description, we write

AK,X =

(
�∑

k=1

[e
(�)
k ⊗K(·,xk)]

)
, (9)



276 A. Tanaka et al.

where X = {x1, . . . ,x�}. Note that AK,X is a linear operator from HK onto R�

and Eq.(8) can be written by

y = AK,Xf(·) + n, (10)

which represents the relationship between the unknown true function f(·) and
an output vector y. Therefore, a regression problem can be interpreted as an
inversion problem of the linear equation Eq.(10) [13].

4 Kernel Specific Generalization Error and Some Known
Results

In general, a learning result by kernel machines is represented by a linear com-
bination of K(·,xk), which implies that the learning result is an element in the
range space of the linear operator A∗

K,X , written as R(A∗
K,X), since

f̂(·) = A∗
K,Xα =

(
�∑

k=1

[K(·,xk)⊗ e
(�)
k ]

)
α

=

�∑
k=1

αkK(·,xk) (11)

holds, where α = [α1, . . . , α�]
′ denotes an arbitrary vector in R�. The point at

issue in this paper is to discuss goodness of a model space, that is, the general-
ization error of R(A∗

K,X) which is independent from learning criteria. Therefore,
we define the generalization error of kernel machines specified by a kernel K and
a set of input vectors X as the distance between the unknown true function f(·)
and R(A∗

K,X) written as

JKe(f(·);K,X) = ||f(·)− PK,Xf(·)||2HKe
, (12)

where PK,X denotes the orthogonal projector onto R(A∗
K,X) in HK and || · ||HKe

denotes the induced norm of HKe . Note that Ke may or may not be identical to
K. Selection of an element in R(A∗

K,X) as a learning result is out of the scope
of this paper since the selection depends on learning criteria. We also ignore
the observation noise in the following contents since the noise does not affect
Eq.(12).

Here, we give some propositions as preparations to evaluate Eq.(12).

Lemma 1. [6]

PK,X =

�∑
i,j=1

(G+
K,X)ij [K(·,xi)⊗K(·,xj)] , (13)

where GK,X denotes the Gramian matrix of K with X and the superscript +

denotes the Moore-Penrose generalized inverse[14].
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From Lemma 1, the orthogonal projection of f(·) ∈ HK onto R(A∗
K,X ) is

given as

PK,Xf(·) =
�∑

i,j=1

f(xi)(G
+
K,X)ijK(·,xj). (14)

5 Analyses on Generalization Error of Ensemble Kernel
Regressors

We consider a class of kernels K = {K1, . . . ,Kn} and corresponding RKHS
written as HKp , (p ∈ {1, . . . , n}). We assume that

S = ∩np=1HKp (15)

forms a non-empty linear class.
In this section, we discuss the generalization error of the ensemble kernel

regressor with the kernels in K and the mean of the generalization errors of the
kernel regressors with each kernel in K. For any f(·) ∈ S, the learning result by
the kernel regressor with Kp, (p ∈ {1, . . . , n}) and the set of input vectors X is
written as

f̂p(·) =
�∑

i,j=1

f(xi)(G
+
Kp,X

)i,jKp(·,xj) = PKp,Xf(·) (16)

from Eq.(14); and its estimation error is reduced to

ep(·) = f(·)− f̂p(·). (17)

Since ep(·) ∈ HKp , we adopt an RKHS including all HKp , (p ∈ {1, . . . , n})
in order to evaluate the norm of ep(·), (p ∈ {1, . . . , n}) uniformly. As such an
RKHS, we adopt HKe whose corresponding kernel is given as

Ke =
n∑

p=1

Kp (18)

from Theorem 1. Therefore, the expected squared error of the kernel regressors
with Kp, (p ∈ {1, . . . , n}) and X , evaluated in HKe , is reduced to

Jm =
1

n

n∑
p=1

||ep(·)||2HKe
. (19)

On the other hand, the ensemble kernel regressor by the kernels in K is rep-
resented by

f̂e(·) =
1

n

n∑
p=1

PKp,Xf(·) =
1

n

n∑
p=1

f̂p(·), (20)
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and its generalization error, evaluated in HKe , is reduced to

Je = ‖f(·)− f̂e(·)‖2HKe

=

∥∥∥∥∥ 1n
n∑

p=1

(
f(·)− f̂p(·)

)∥∥∥∥∥
2

HKe

=

∥∥∥∥∥ 1n
n∑

p=1

ep(·)
∥∥∥∥∥
2

HKe

. (21)

Note that the adopting the norm of HKe in the evaluation Je is valid since

f(·), f̂e(·) ∈ HKe obviously holds.
The following theorem is the main result of this paper.

Theorem 2

Jm − Je =
1

2n2

n∑
p,q=1

∥∥∥f̂p(·)− f̂q(·)∥∥∥2

HKe

. (22)

Proof. Since ep(·)− eq(·) = f̂q(·)− f̂p(·) holds, we have

Jm −
1

2n2

n∑
p,q=1

∥∥∥f̂p(·)− f̂q(·)∥∥∥2

HKe

=
1

n

n∑
p=1

‖ep(·)‖2HKe
− 1

2n2

n∑
p,q=1

||ep(·)− eq(·)||2HKe

=
1

n

n∑
p=1

‖ep(·)‖2HKe
− 1

2n2

n∑
p,q=1

(
||ep(·)||2HKe

+ ||eq(·)||2HKe
− 2〈ep(·), eq(·)〉HKe

)

=
1

n2

n∑
p,q=1

〈ep(·), eq(·)〉HKe
=

∥∥∥∥∥ 1n
n∑

p=1

ep(·)
∥∥∥∥∥
2

HKe

= Je,

which concludes the proof. ��
According to Theorem 2, it is concluded that the generalization error of the

ensemble kernel regressor is smaller than or equal to the averaged generalization
error of the kernel regressors by each kernel since the right-hand side of Eq.(22)
is trivially non-negative, which implies that the ensemble kernel regressor gives
a better performance than the kernel regressor by each kernel in terms of the
averaged performance. Moreover, we can observe from Eq.(22) that when the
learning results by the kernel regressors with each kernel are quite similar, the
ensemble kernel regressor loses its advantage since the right-hand side of Eq.(22)
becomes smaller. On the contrary, when the estimation error by the kernel re-
gressors with each kernel, that is ep(·), tend to be orthogonal each other, the
generalization error of the ensemble kernel regressor Je tends to be Jm/n from
Eq.(21) and the Pythagorean theorem.
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6 Example

In this section, we give a toy example confirming Theorem 2. Let K = {K1,K2}
with

K1(x, y) = 1 + xy + x2y2, (23)

K2(x, y) = 1 + xy + x3y3 (24)

be a class of kernels. Note that a basis of HK1 is {1, x, x2} and that of HK2 is
{1, x, x3}. Therefore, we have

S = HK1 ∩HK2 = span{1, x}. (25)

We adopt f(x) = 1 + 2x ∈ S as an unknown true function and X = {0, 1} as a
set of input points. Therefore, we have

f̂1(·) = PK1,Xf(·) = 1 + x+ x2, (26)

f̂2(·) = PK2,Xf(·) = 1 + x+ x3 (27)

from Eq.(14) and

ê1(·) = f(x)− f̂1(x) = (1 + 2x)− (1 + x+ x2) = x− x2, (28)

ê2(·) = f(x)− f̂2(x) = (1 + 2x)− (1 + x+ x3) = x− x3. (29)

Let Ke(x, y) = K1(x, y) + K2(x, y) = 2 + 2xy + x2y2 + x3y3, then it is trivial
that dimHKe = 4. Since e1(x), e2(x) ∈ HKe , they can be expressed by linear
combinations of four linearly independent functions in HKe , such as

Ke(x, 0) = 2,

Ke(x, 1) = 2 + 2x+ x2 + x3,

Ke(x, 2) = 2 + 4x+ 4x2 + 8x3,

Ke(x, 3) = 2 + 6x+ 9x2 + 27x3.

In fact, e1(x) and e2(x) are represented by

e1(x) =
1

12
(−23Ke(x, 0) + 48Ke(x, 1)− 33Ke(x, 2) + 8Ke(x, 3)) , (30)

e2(x) =
1

4
(−3Ke(x, 0) + 4Ke(x, 1)− 1Ke(x, 2)) . (31)

By the well known property 〈Ke(·, x),Ke(·, y)〉HKe
= Ke(x, y), we have

||e1(·)||2HKe
= ||e2(·)||2HKe

=
3

2
, (32)

which immediately yields

Jm =
1

2

(
||e1(·)||2HKe

+ ||e2(·)||2HKe

)
=

3

2
. (33)
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On the other hand, the learning result by the ensemble kernel regressor by
K1 and K2 is reduced to

f̂e(x) =
1

2
(f̂1(x) + f̂2(x)) = 1 + x+

x2 + x3

2
(34)

and we have

f(x) − f̂e(x) = x−
x2 + x3

2
, (35)

which can be represented by

f(x)− f̂e(x) =
1

6
(−8Ke(x, 0) + 15Ke(x, 1)− 9Ke(x, 2) + 2Ke(x, 3)) , (36)

whose squared norm in HKe is

Je = ||f(x)− f̂e(x)||2HKe
= 1. (37)

Therefore, we have

Jm − Je =
1

2
. (38)

Accordingly, it is concluded that the ensemble kernel regressor gives a better
result than the kernel regressor by the individual kernel K1 or K2 in these
settings.

Finally, we evaluate the right-hand side of Eq.(22). Since

f̂1(x) − f̂2(x) = x2 − x3

=
1

6
(7Ke(x, 0)− 18Ke(x, 1) + 15Ke(x, 2)− 4Ke(x, 3)) (39)

and ||f̂1(x) − f̂2(x)||2HKe
= 2, the right-hand side of Eq.(22) is reduced to

1

2 · 22
2∑

p,q=1

||f̂p(x)− f̂q(x)||2HKe

=
1

8
(||f̂1(x) − f̂2(x)||2HKe

+ ||f̂2(x)− f̂1(x)||2HKe
)

=
1

2
, (40)

which agrees with Eq.(38). Note that calculation of right-hand side of Eq.(22)
does not require the unknown true function f(·), while the left-hand side of
Eq.(22) includes f(·), which implies that we can obtain the reduced squared
error by the ensemble kernel regressor only from the learning results by kernel
regressors with each kernel.

7 Conclusion

In this paper, we discussed the generalization error of the ensemble kernel re-
gressor with a class of kernels; and proved that the generalization error of the
ensemble kernel regressor is smaller than the averaged generalization error of the
kernel regressors by each kernel in the class. Similar analysis for the noise is one
of our future works that should be undertaken.
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Abstract. Structural human shape analysis is not a trivial task. This paper 
presents a novel method for a structural human shape analysis for modeling and 
recognition using 3D gait signatures computed from 3D data. The 3D data are 
obtained from a triangulation-based projector-camera system. To begin with, 
3D structural human shape data which are composed of representative poses 
that occur during the gait cycle of a walking human are acquired. By using 
interpolation of joint positions, static and dynamic gait features are obtained for 
modeling and recognition. Ultimately, structural human shape analysis is 
achieved. Representative results demonstrate that the proposed 3D gait 
signatures based biometrics provides valid results on real-world 3D data.  

Keywords: Structural Human Shape Analysis, Human Walking, 3D Human 
Body Model, Model Fitting, Modeling, 3D Recognition. 

1 Introduction 

Structural human shape analysis is an interesting topic to explore for many computer 
scientists around the world. This is because recognition based on human gait and 
structural human shape analysis has several advantages such as the acquisition of data 
at a distance from a non-cooperative subject and a characteristic biometrics signature 
that cannot be faked for a long time [1]. If the habit of walking is changed 
consciously, the motion seems unnatural and sooner or later a subject returns to 
his/her natural way of walking. In addition, gait involves not only surface shape, 
called static features of body parts, but also continuous motion of joints, called 
dynamic features. Nixon et al. [2] [3] introduced the concept of a total walking cycle 
according to which the action of walking is similarly assumed as a periodic signal. 
The gait cycle is assumed as the time interval. Each leg of human has two phases: 
swing period, when the foot is off the door moving forward to the next step, and 
stance period, when the foot is in contact with the floor. In the medical field, Murray 
et al. [4] introduced standard movement patterns of healthy subjects compared to 
disabled subjects pathologically. For data collection, required markers are attached to 
anatomical landmarks of human body. They advocate that the pelvic and thorax 
rotations are essentially variable from one subject to another. Moreover, agent-based 
simulation of human movement in street networks was discussed in [5] by Jiang and 
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Jia. They conclude interestingly that the moving agents of human movement in large 
street networks are different in their moving behaviour in the fundamental aspects. 
For this reason, structural human shape analysis is indeed not trivial.  

Recently, biometrics modalities with depth information are an interesting resource. As 
they can apply to many applications, range scanners have obviously become popular 
increasing the measurement accuracy and speed. It may be true that there are various 
approaches for 2D and 3D biometrics. Here, Multi-Cam indicates a single or multi-
camera system and Pro-Cam indicates a projector-camera system. While biometrics 
approaches using 3D face, finger, ear, and their multimodal data have been presented, 
gait recognition methods still utilized video sequences. Thus, we attempt to tackle human 
recognition using 3D gait biometrics where both the modeling and the test data are 
obtained in 3D. 

Yamauchi et al.’s work discussed about the possibility of recognition of a walking 
humans in [6]. However, only the initial results were proposed. In this paper, we present 
a structural human shape analysis method for recognition using 3D gait biometrics from a 
projector-camera system. A technique for person identification based on 3D body shape 
and gait is introduced. 3D human body data consisting of representative poses over one 
gait cycle are captured. 3D human shape model is fitted to the body data using a bottom-
up approach. Since the body data is dense and it is at a high resolution, we can interpolate 
the entire gait sequence to fill-in between gait acquisitions. Gait features are usually 
considered by both dynamic features and static features. By using gait features, the 
similarity measure is applied for recognition of a subject and his/her pose. 

The rest of this paper is clearly structured as follows. Section 2 introduces the 
framework of structural human shape analysis in detail. After that, in section 3, the 
experimental results are examined to ensure that the proposed 3D gait signatures 
based biometrics provides valid results on real-world 3D data. Section 4 ultimately 
concludes the paper and points to potential future research. 

2 Structural Human Shape Analysis  

To focus on structural human shape analysis, it is important to understand fundamentally 
the human gait. The truth is that gait consists of two distinct periods. First is a swing 
phase. This is a phase when the foot does not touch the ground moving the leg forward. 
Second is a stance phase. This phase is when the foot touches the ground. The gait cycle 
is expressed by the swing phase and the stance phase. The cycle begins with foot touch 
which marks the start of the swing phase. The body weight is transferred onto the other 
leg and the leg swings forward to meet the ground in front of the other foot. The cycle 
ends with the foot touch. The start of stance phase is when the heel strikes the ground. 
The ankle flexes to bring the foot flat on the ground and the body weight transferred onto 
it. The end of stance phase is when the heel leaves the ground. 

We use the assumption that there are four measured poses. The model of the human 
body we used comes from a kinematic tree. The tree consists of 12 segments. The body 
segment is approximated by a 3D tapered cylinder which has one free parameter: the 
cylinder length. It has two degrees of freedom in rotational joints, in the local coordinate 
system. Upper torso is the root segment, i.e. the parent of lower torso, right upper leg, 
and left upper leg. Similarly, other segments are linked to parent segments by the 
rotational joints. The bounding angles of rotational joints are also important. The 
constraints are enforced in the form of bounding values of the joint angles. Within these 
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constraints the model has enough range of movement to represent various poses. The 
whole body is rotated around three axes and the other segments are rotated around two 
axes. Here, neck is the fixed segment between head and upper torso, so the neck joint 
angles are not considered. The articulated structure of the human body has a total of 40 
degrees of freedom (DOFs). The pose is described by a 6-D vector, p, representing global 
position and rotation, a 22-D vector, q, representing the joint angles, and a 12-D vector, r, 
representing the lengths of body part. We denote s as the combination of the 
representative four poses. Joint DOF values concatenated along the kinematic tree define 
the kinematic pose as a tuple. One of the reasons why we use only 2-DOF rotational 
joints in this paper is since the 3D tapered cylinder has rotational symmetry along the 
direction orthogonal to the radial direction. 

Figure 1 shows the method overview of structural human shape analysis. To begin 
with, we measure 3D human body data by a triangulation-based projector-camera 
system with human in the walking postures. We build a temporal structural body 
model, and then extract static dynamic features. Following these data collection we 
separate the human body data into six regions, and then 3D human body model is 
fitted to the segmented body parts in a top-down hierarchy from head to legs. The 
body model is refined by the Iterative Closest Point algorithm during the optimization 
process. The output of structural human shape analysis is successfully obtained to 
compare it against a database. 

The intuition behind the principal component analysis (PCA) [7] is to find a set of 
basis vectors, so that they explain the maximum amount of variance of the data.  
PCA is applied to determine the coronal axis (X-axis), vertical axis (Y -axis), sagittal 
axis (Zaxis), and centroid (O) of a human body in the world coordinate system (O-X-Y 
-Z), as described in [8]. The constraints are enforced in the form of bounding values 
of the joint angles. The whole body is rotated around three axes and the other 
segments are rotated around two axes. Here, neck is the fixed segment between head 
and upper torso, so the neck joint angles are not considered.  

 

 

Fig. 1. Method overview of structural human shape analysis 
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The combination of the representative four poses is denoted by s. Joint DOF  
values concatenated along the kinematic tree define the kinematic pose, k, as a tuple, 
[p, q, r, s], where p ∈ R6, q ∈ R22, r ∈ R12, s = {s1, s2, s3, s4}. In the previous 
works, segments are linked to parent segments by either 1-DOF (hinge), 2-DOF 
(saddle) or 3-DOF (ball and socket) rotational joints [9]. We use only 2-DOF 
rotational joints, because the 3D tapered cylinder has rotational symmetry along the 
direction orthogonal to the radial direction. As a result, we eliminate the twist of body 
parts as an unnecessary variable. 

In our proposed method, we first measure 3D structural human shape data by a 
triangulation-based projector-camera system with human in the walking postures. 
Following these data collection we separate the human body data into six regions, and 
then 3D human body model is fitted to the segmented body parts in a top-down 
hierarchy from head to legs. The body model is refined by the Iterative Closest Point 
algorithm during the optimization process. The human body data are segmented into 
six regions: head/neck, torso, right arm, left arm, right leg, and left leg. It can be 
written as x0 = {x1, x2, x3, x4, x5, x6}.  The subscript, reg, indicates the region 
number. Fig. 1 shows body axes, three segments, and six major regions which include 
a total of twelve body parts. Here, r. and l. indicate right and left, u. and l. indicate 
upper and lower (e.g. r. l. arm is right lower arm). In the following we present a fully 
automatic parts-based segmentation method. 

To begin with, we measure 3D human body data by a triangulation-based 
projector-camera system with human in the walking postures. Following these data 
collection we separate the human body data into six regions, and then 3D human body 
model is fitted to the segmented body parts in a top-down hierarchy from head to legs. 
The body model is refined by the Iterative Closest Point algorithm during the 
optimization process. We first consider human body modeling. As discussed in [10], 
modeling methods usually fail when applied to real data. The real data captured by a 
projector-camera system have obviously some critical problems. For instance, the 
projector-camera system cannot cover well particular body parts. The groin region, 
axillary region, and the side of a human body are some examples. In this way, 3D 
points of the real data are dependently distributed as explained in [11]. Moreover, the 
body sways and deep color clothes have detrimental effects which appear as holes and 
gaps. To solve these mentioned problems, we present a modeling method for dealing 
with the problems occurring in real data. The proposed method to modeling a walking 
human incorporates two separate steps. First is model fitting, and second is 
optimization. The segmentation is useful for coarse registration, because it is 
unreasonable to fit a kinematic model to articulated objects without any prior 
knowledge. The prior knowledge allows automatic model fitting and the reduction in 
the computational cost. Therefore, we fit the model to body data by using the 
segmented regions. The distance between 3D data of a segmented region, x, and 
3D model of the tapered cylinder, y , is linearly minimized. The tapered cylinders 
can be fitted by determining two angles and one length in the order of levels 1, 2, 3 of 
the hierarchical structure. With regard to the head and neck, the parameters are 
estimated from the distribution of 3D points in the X-Y plane and Y-Z plane, 
respectively because the data for hair on the head and lower head region cannot be 
captured.  
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Next step is to get fine registration by minimizing the distance between the body 
data and kinematic model. The Iterative Closest Point algorithm [12] is utilized in our 
method. The key steps of the algorithm are: (a) Uniform sampling of points on both 
shapes. (b) Matching each selected point to the closest sample in the other shape. (c) 
Uniform weighting of point pairs. (d) Rejecting pairs with distances larger than some 
multiple of the standard deviation. (e) Point-to-point error metric. (f) Standard select-
match minimizes iteration. 

Obtaining the accurate results depends crucially on the type of gait features. 
Generally, gait features are divided into two types: (a) dynamic features and (b) static 
features. For example, the length of stride is one of the significant features of human 
gait. It can be computed by the leg length and its varying angles between poses. In 
addition, all the joint positions can be computed by using the same method. 
Therefore, both dynamic features and static features are used for recognition. We 
define the dynamic features as joint angles, qm, n, and static features as lengths of the 
body parts, rm, n. Here, m is the personal identification number, and n is the pose 
index. If dynamic features are only used, a feature vector is defined as Q[m, n]. 
Suppose that unknown feature vector, Qu, is one of M * N feature vectors, Q[m, n]. 
The minimum value of matching scores can be calculated as explained. The matching 
score is computed as distance. For unknown data, the personal identification number 
and pose index are recognized. 

3 Experimental Results 

The experiments were performed on the body data set collected by the human body 
measurement system. It contains twenty-four body data from the representative four 
poses of six subjects X ∈ {A,B,C,D,E, F}. The body data of representative poses are 
captured by a human body measurement system. The system consists of nine 
projector-camera pairs, which acquires nine range data in 2 seconds with 640 × 480 
pixels, 3 mm depth resolution, and 3 mm measurement accuracy.  

3D structural human shape data of walking humans of Subject A, Subject B, 
Subject C, Subject D, Subject E, and Subject F are depicted respectively. The number 
of measuring points is about 1/2 to one million depending on the subject and the pose. 
The full results of gait reconstruction are also experimented. It is defined that the one 
gait cycle is composed of twenty frames. The speed is given by dividing the stride 
length by the number of poses and the direction is not given automatically. The frame 
index 1, 6, 11, and 16 are representative poses, while the other frame indexes are 
calculated poses. The representative poses and their symmetric poses are used for the 
experiment. The poses are symmetric. They are synthesized by allocating right (or 
left) side parameters of representative poses to left (or right) side parameters of 
symmetrical poses. Figure 2 shows the results of human body modeling. Similarly, 
the six subjects of Subject A, Subject B, Subject C, Subject D, Subject E, and Subject 
F are used. The 3D human body model is fitted to four different walking poses. Thus, 
it contains a total of 24 different poses. The body model is suitably fitted to the 
captured body data. The joint angles are then obtained symmetrical poses, including 
the lengths of body parts.  
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Fig. 2. 3D structural human shape data of walking humans fitted to four poses 

 

Fig. 3. Representative training data for six subjects 
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Figure 3 represents the training data of six subjects, i.e. Subject A, Subject B, 
Subject C, Subject D, Subject E, and Subject F. Each subject has 40 poses, so that 
training data contains a total of 240 kinematic poses. For the testing data, one gait 
sequence is recovered by representative poses = {s1, s2, s3, s4}. Average pose error is 
calculated in order to estimate the quantitative accuracy of the proposed method. The 
identification rate is obtained by dividing the number of recognized subjects by the 
number of testing data. The pose error is the frame difference between the estimated 
pose and the ideal pose. From our experiment, although bodies for these two subjects 
are different, their joint angles, i.e. leg and arm swings, are quite similar. For the 
average pose error we achieve 0.41 frame using dynamic features and 1.31 frames 
using both features. The experiment using dynamic features has better results, because 
it focuses on estimating poses, i.e. dynamic features do not consider lengths of body 
parts. However, by using both features, it definitely provides better results.  

 

 

Fig. 4. Virtual front and side views 

In fact, gait recognition methods usually use only a single view. This means that 
the information of 2D gait biometrics is solely used. Figure 4 shows how to compare 
3D gait biometrics with 2D gait biometrics. Frontal view and side view are 
synthesized from our data by orthographic projection. We then use 2D gait biometrics 
for the experiment. From our experimental results, we achieve 95.83 percent using 
dynamic feature and 100 percent using both dynamic and static features for the 
identification rate. Furthermore, we achieve 0.57 using dynamic feature and 1.29 
using both features for the average pose error. When only dynamic feature is used, the 
method fails to recognize testing data Subject B with pose 4, Subject D with pose 7, 
Subject D with pose 8, and Subject D with pose 14 who should not be recognized as 
the training data for Subject C with pose 4, Subject A with pose 7, Subject A with 
pose 8, and Subject B with pose 13.  
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Table 1. Average pose error for frontal view and side view 

 Frontal View (%) Side View (%) 
Lower Average Pose Error for 3D 
Gait Biometrics 

29 percent 72 percent 

 
Furthermore, our experiments show that 3D gait biometrics provide lower average 

pose error. As shown in Table 1, it is 29 percent of the frontal view lower than that 
result of 2D gait biometrics. The number is also 72 percent of the side view lower 
than that of 2D gait biometrics. We believe that these numbers are suitable enough to 
make this proposed method newly useful for structural human shape analysis for 
modeling and recognition.  

4 Conclusions  

In this paper, an approach for a structural human shape modeling based on 3D gait 
biometrics and recognition where the input data are obtained from a triangulation-
based projector-camera system is presented. By separating the human body into six 
regions, a bottom-up approach is utilized to fit the 3D human body. After that, the 
entire gait sequence is recovered. Finally, both static and dynamic gait features are 
obtained for recognition task. Our database we used consists of a total of twenty-four 
body data. In each data, it is comprised of four poses of six subjects. The size of 
database, we believe, is still quite small. We intend to expand our database to collect a 
huge number of subjects for possible better results. After that, we intend to apply the 
proposed method to use in related-applications. In fact, it is applicable to various 
kinds of computer science fields. We plan to refine this problem in the future. 

References 

1. Bhanu, B., Han, J.: Human Recognition at a Distance in Video. Springer, London (2011) 
2. Nixon, M.S., Tan, T., Chellappa, R.: Human identification based on gait. Springer,  

New York (2005) 
3. Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proc. of the IEEE 94(11),  

2013–2024 (2006) 
4. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. Journal of 

Bone and Joint Surgery 46A(2), 335–360 (1964) 
5. Jiang, B., Jia, T.: Agent-based Simulation of Human Movement Shaped by the Underlying 

Street Structure. International Journal of Geographical Information Science 25(1) (2011) 
6. Yamauchi, K., Bhanu, B., Saito, H.: Recognition of walking humans in 3D: Initial results. 

In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 
(CVPR Workshops), June 20-25, pp. 45–52 (2009) 

7. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002) 
 



290 C. Kerdvibulvech and K. Yamauchi 

 

8. Kerdvibulvech, C., Saito, H.: Real-Time Guitar Chord Recognition System Using Stereo 
Cameras for Supporting Guitarists. Transactions on Electrical Engineering, Electronics, 
and Communications (ECTI) 5(2), 147–157 (2007) 

9. Vondrak, M., Signal, L., Jenkins, O.C.: Physical simulation for probabilistic motion 
tracking. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 1–8 (2008) 

10. Yu, H., Qin, S., Wight, D.K., Kang, J.: Generation of 3D human models with different 
levels of detail through point-based simplification. In: Proc. of the International 
Conference on “Computer as a Tool”, pp. 1982–1986 (2007) 

11. Werghi, N., Rahayem, M., Kjellander, J.: An ordered topological representation of 3D 
triangular mesh facial surface: concept and applications. EURASIP Journal on Advances 
in Signal Processing 1, 1–20 (2012) 

12. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of the 3-D 
Digital Imaging and Modeling, pp. 145–152 (2001) 

 
 



On Cross-Validation for MLP Model Evaluation

Tommi Kärkkäinen
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Abstract. Cross-validation is a popular technique for model selection
and evaluation. The purpose is to provide an estimate of generalization
error using mean error over test folds. Typical recommendation is to use
ten-fold stratified cross-validation in classification problems. In this pa-
per, we perform a set of experiments to explore the characteristics of
cross-validation, when dealing with model evaluation of Multilayer Per-
ceptron neural network. We test two variants of stratification, where the
nonstandard one takes into account classwise data density in addition to
pure class frequency. Based on computational experiments, many com-
mon beliefs are challenged and some interesting conclusions drawn.

Keywords: Cross-validation, Multilayer Perceptron, Model Selection.

1 Introduction

Cross-validation (CV) is a popular technique for model selection and evaluation,
whose roots go back, at least, to 1960’s [1]. The purpose of dividing data into
independent training and test sets is to enable estimation of the generalization
error of a trained model. This is especially important for the so-called universal
approximators, of which Multilayer Perceptron neural network (MLP) is an ex-
ample [2]. More precisely, with a real data set of input-output samples, a model
that can represent unknown functions very accurately is prone to overlearning.
Hence, its complexity should be determined using generalization as primary fo-
cus instead of training accuracy.

Kohavi [3] is probably the most well-known reference of CV in machine
learning. Using six classification benchmarks with over 500 instances from UCI
repository, two classification algorithms, C4.5 and naive Bayes, and amount of
misclassifications in percentages as error indicator, stratified 10-CV (i.e., with
ten folds) was concluded as the recommended approach. This approach has then
established itself as a kind of community practice. For example, in [4] it is stated
at page 153 (in relation to the amount of folds in CV): ”Why 10? Extensive
tests on numerous different datasets, with different learning techniques, have
shown that 10 is about the right number of folds to get the best estimate of
error, and there is also some theoretical evidence that backs this up.” No refer-
ences are given. At page 2980 in [5], which deals with nonlinear regression, it is
stated that ”Many simulation and empirical studies have verified that a reliable

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 291–300, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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estimate of [generalization] Err can be obtained with k = 10 for N > 100 as
recommended by Davison and Hinkley (1997).” The precise argument by Davi-
son and Hinkley [6] at page 294, in the context of linear regression, is to take
k = min{N1/2, 10} due to practical experience: ”taking k > 10 may be too com-

putationally intensive. . . while taking groups of size at least N
1
2 should perturb

the data sufficiently to give small variance of the estimate.” No computational
experiments are performed to support the claim.

Actually it has been observed in many articles that use of CV is not straight-
forward. In [7] it is shown, in the least-squares-estimation context, that for an
unstable procedure the predictive loss, i.e., difference between ”crystal ball”
and cross-validation based selection, is large. The difficulties of using (10-)CV
for the MLP model selection were already addressed in [8]: With fourteen UCI
benchmark data sets the experiments showed that CV is only slightly better
than random selection of MLP architecture and that the smallest size of the
hidden layer tested provided almost the same generalization performance than
the repeated folding. Based on experiments with the same UCI data sets as
Kohavi [3], for ID3 and Info-Fuzzy Network classifiers with 2-CV, [9] ended up
with ”CV uncertainty principle”: ”the more accurate is a model induced from
a small amount of real-world data, the less reliable are the values of simulta-
neously measured cross-validation estimates.” Finally, in [10] large and general
review of CV is given. Among the overall conclusions it is stated that i) usu-
ally CV overestimates generalization error compared to training error, ii) CV
method with minimal variance [of generalization error estimate] seems strongly
framework-dependent, and iii) the issue of ”optimal” amount of folds in CV is
not straightforward.

Hence, the purpose of this paper is to perform a set of experiments to explore
the characteristics of cross-validation, when dealing with model evaluation of
MLP. We test two variants of stratification, where the new approach takes into
account classwise data densities [11] in addition to pure class frequency. To sim-
plify the analysis, we restrict to ten folds. The contents are as follows: in Section
2 we summarize the model, the learning problem, and the actual algorithms.
Then, in Section 3, a sequence of computational experiments with observations
and subconclusions is presented. Finally, general conclusions are summarized in
Section 4.

2 Methods and Algorithms

2.1 MLP

Action of MLP in a layerwise form, with given input vector x ∈ Rn0 , can be
formalized as follows [12]: o0 = x, ol = F(Wlõ(l−1)) for l = 1, . . . , L. Here the
layer number has been placed as an upper index and by ˜ we indicate the vector
enlargement to include bias. This places these nodes in a layer as first column
of the layer’s weight matrix which then has the factorization Wl =

[
Wl

0 Wl
1

]
.

F(·) denotes the application of activation functions. We restrict to networks with
one hidden layer so that the two unknown weight matrices are W1 ∈ Rn1×(n0+1)
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Algorithm 1. Determination of neural network model using cross-validation

Input: Data {xi,yi}Ni=1 .
Output: Feedforward neural network.
1: Define β, n1max, nfolds, and nits
2: for n1 ← 2 to n1max do
3: for regs ← 1 to |β| do
4: Create nfolds using cross-validation
5: for k ← 1 to nfolds do
6: for i ← 1 to nits do
7: Initialize (W1,W2) from U([−1, 1])
8: Minimize (1) with current n1 and β(regs) over kth training set
9: Store network for smallest training set error
10: Compute test error over kth test set for the stored network
11: Store network for the smallest mean{test error}

and W2 ∈ Rn2×(n1+1). Using the given learning data {xi,yi}Ni=1 , xi ∈ Rn0 and
yi ∈ Rn2 , determination of weights is realized by minimizing the cost functional

J (W1,W2) =
1

2N

N∑
i=1

‖ei‖2 +
β

2n1

∑
i,j

(
|W1

i,j |2+|(W2
1)i,j |2

)
(1)

for ei = W2F̃(W1x̃i) − yi and β ≥ 0. The linear second layer and the special
form of regularization omitting the bias-column W2

0 are due to Corollary 1 in
[12]: For every locally optimal MLP-network with the cost functional (1), sat-

isfying ∇W2 J = 0, the average error 1
N

∑N
i=1 ei is zero. Hence, every locally

W2-optimal network provides un unbiased nonlinear estimator for the learning
data, independently on the regularization coefficient β.

The actual determination of MLP is documented in Algorithm 1. The main
point is to realize systematic grid search over the complexity landscape, deter-
mined by n1 (size of network) and β (size of weights; the larger β the closer
to zero). Hence, n1max determines largest size of the hidden layer and prede-
fined values in vector β = {βr} define possible regularization coefficients. Due
to preliminary testing, we use here βr = 10−r, r = 2, . . . , 6. Moreover, with the
fixed parameters we always create new folds to sample the CV approaches be-
low. The parameter nits determines the amount of local restarts with random
generation/initialization of weights from the uniform distribution. This is the
simplest globalization strategy when minimization of (1) will be done locally.

2.2 Two Folding Approaches for CV

We apply two stratification strategies for folding: the standard random creation
where class frequencies of the whole training data are approximated in folds
(SCV). As the second approach, DOB-SCV (Distribution Optimally Balanced
Standard CV) as proposed in [11] was implemented, see Algorithm 2. In this
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Algorithm 2. Distribution Optimally Balanced Standard CV (DOB-SCV)

Input: Data (X, C) = {xi, ci}Ni=1 of inputs and class labels and amount of folds k.
Output: k non-disjoint folds Fl, l = 1, . . . , k, such that X = ∪k

l=1Fl.
1: for each class j and input data Xj = {xi | ci = j} do
2: while |Xj | ≥ k do
3: Let x1 be random observation from Xj

4: Let x2, . . . ,xk be k − 1 closest neighbors of x1 from Xj

5: Let Fl = Fl ∪ {xl} and Xj = Xj \ {xl}, l = 1, . . . , k
6: Place the remaining observations from Xj into different folds Fl, l = 1, . . . , |Xj |

approach, using the division of a random observation from class j and its k −
1 nearest class neighbors to different folds, classwise densities in addition to
frequencies are approximated in all the folds. We remind that in [11,13] the
extensive experimentation on various data sets and classifiers did not include
MLP as classifier, not to mention the particular optimization problem (1) that
we solve here.

3 Computational Experiments

All methods described in the previous section were implemented and tested on
MATLAB (R2013b running on 64-bit Windows 7). For SCV, cvpartition routine
is used. Minimization of (1) is based on MATLAB’s unconstrained minimization
routine fminunc, using layerwise sensitivity calculus from [12] for computing
gradients. Standard sigmoid s(x) = 1/(1 + exp(−x)) is used as the activation
function. All input variables are preprocessed into the range [0, 1] of s(x) to
balance the overall scaling of unknowns [12]. Class encoding is realized in the
well-known manner by using standard basis in Rn2 : the lth unit vector is used
as target output for an input xi from class Cl.

As benchmark data we use ”Segmentation” from UCI repository, which is
multiclass (n2 = 7 classes) and many-input (n0 = 17 input variables when two
nearly constant ones are omitted) data set with small training set ”Sgm (Train)”
and large, separate validation set ”Sgm (Test)”. These sets are documented in
Table 1. In what follows, we use the term Training error, TrE, for the mean
error which is computed over the training sets, i.e. the subsets of ”Sgm(Train)”
without the test folds. Similarly, Test error TsE refers to mean error over test
folds. With Generalization error GeE, we refer to the error which is computed
using the validation set ”Sgm(Test)”.

Table 1. UCI classification data sets for CV experiments

Name N Class frequencies Comments

Sgm (Train) 210 [30 30 30 30 30 30 30] Features 3–4 removed
Sgm (Test) 2100 [300 300 300 300 300 300 300] Features 3–4 removed
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Table 2. 10-CV results for misclassification rate in percentages as error measure

10-SCV 10-SCV 3x10-SCV
7/1e-5/3.5/12.4(6.4) 12/1e-3/6.0/11.9(7.9) 11/1e-3/6.0/13.3(8.3)

10-DOB-SCV 10-DOB-SCV 3x10-DOB-SCV
7/1e-5/4.2/13.8(4.2) 9/1e-3/6.7/12.4(4.0) 6/1e-6/4.7/12.9(5.8)

3.1 Misclassification Rate in Percentages as Error Measure

In Table 2 first set of results using SCV and DOB-SCV with Algorithm 1 are
given. We use nits = 2 and n1max = 12. In the results, n∗1 and β

∗ for the smallest
TsE, its standard deviation Std, and the corresponding TrE are given. The actual
result format is thus n∗1/β

∗/TrE/TsE(Std). For both folding approaches the
algorithm is first tested two times separately, and then three times repeated
folding for fixed n1 and β is performed so that the errors are then computed
over 30 training and test set errors. As error measure the misclassification rate
in percentages is used.

From Table 2 one notices very high unstability of the results. Training and
Test errors are very different, best parameters between tests vary a lot, standard
deviations are large (round 30%–65% of means) and they do not decrease when
folding is reiterated. For DOB-SCV, Stds are typically smaller compared to
SCV, but there is no real difference in TsEs. Altogether one ends up with high
uncertainty with these results, especially when the relationship between Training
and Test errors, visualized using scatter plots in Fig. 1, is taken into account. The
quantized form of the discrete error measure does not allow accurate evaluation
of MLP models with different complexity, which is reflected as high variability
in parameter choices.

3.2 Testing Predictive Error Measures

Next we test whether the discrete approximation of classification error could
be one reason for difficulties with CV. Instead of misclassification rate in per-
centages, we test two error measures which are typical for estimating the actual
prediction error:

eMR =
1

N

N∑
i=1

√√√√ n2∑
j=1

(N (xi)− yi)2j (Mean-Root-Squared-Error),

eRM =

√√√√ 1

N

N∑
i=1

n2∑
j=1

(N (xi)− yi)2j (Root-Mean-Squared-Error).
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Fig. 1. Training/Test error scatterings for 3xSCV with n1 = 7 and β = 10−5 (left) and
for 3xDOB-SCV with n1 = 9 and β = 10−3 (right)

Even if the definitions are very close to each other, the amount of observations
weights the rest of the error measure differently (1/N in eMR compared to 1/

√
N

in eRM) and we want to find out how this affects comparisons of Training, Test,
and Generalization errors which are computed with data sets of different sizes.

In Fig. 2 scatter plots of training and test set errors for SCV are given for all
locally optimal MLPs obtained with Algorithm 1 for n1 = 5, . . . , 8 and nits = 2.
It is visually clear that eMR reflects the positive correlation between the two
errors in a better way than eRM. The visual appearance and the conclusion are
precisely the same for DOB-SCV.

Using eMR as CV error measure in MLP model evaluation in Algorithm 1,
we obtain the following choices of parameters using the same grid search as
in Table 2: for SCV, n1 = 5 and β = 10−5 and for DOB-SCV, n1 = 7 and
β = 10−5. We then fix these and reiterate the two folding approaches three
times with nits = 5. The individual results and their grand mean over different
foldings are documented in Table 3.

From Table 3 we conclude that Training error underestimates and Test error
overestimates Generalization error. For different foldings, SCV results are this
time more stable than those of DOB-SCV. However, there is one remarkable
difference in the characteristics of the results.

Fig. 2. Training/test set error scatterings with SCV: eMR (left) and eRM (right)
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Table 3. Repeated CV with eMR as error measure

3xSCV 3xDOB-SCV
Fold TrE TsE GeE TrE TeE GeE
1st 0.3065 0.3532 0.3443 0.1908 0.3421 0.3439
2nd 0.3063 0.3618 0.3480 0.1976 0.4478 0.3497
3rd 0.3080 0.3552 0.3497 0.1906 0.4852 0.3816

Grand 0.3069 0.3567 0.3473 0.1930 0.4250 0.3584

Namely, for one particular folding, one observation from the original training
data belongs to exactly one test set due to disjoint division. Hence, for one obser-
vation the maximum amount of false test classifications over the three foldings is
precisely three. Next, for 3xSCV with n1 = 5 and β = 10−5 and for 3xDOB-SCV
with n1 = 7 and β = 10−5 we checked their classwise behavior in this respect,
i.e. report the amount of indices per class where this maximum of three false
test classifications per one observation is reached:

SCV: [1 0 4 29 3 1 0] = 38 cases,
DOB-SCV: [1 0 4 7 3 3 0] = 18 cases.

Hence, for SCV the pure inside-class randomness can produce high variability be-
tween classwise test accuracies (because the test folds can be very different from
each other) whereas DOB-SCV compensates this dramatically better, through
and due to distributional balancing. Notice that in the mean accuracy estimates
without separating the classes, such behavior is completely hidden, as witnessed
in Tables 2 and 3. We also conclude that class 4 is the most difficult one, so
that to improve the classification performance more observations from that class
should be contained in the training data.

3.3 Predictive CV with Modified Data Sets

To this end, we remove 30 random observations of class 4 from the original
”Sgm(Test)” and add them to ”Sgm(Train)”. The previous stepwise experimen-
tation is repeated as follows: i) With three repetitions apply the grid search for
n1 and β with nits = 2 using eMR as error measure (cf. Table 2), ii) Compute
mean errors with the chosen parameters with three repetitions of foldings (cf.
Table 3) and visually assess an error scattering plot, and iii) check the classwise
error rates from the test folds.

Result of Step i) is given in Table 4. We have obtained much higher stability in
the parameter choice for both folding approaches. Also standard deviations are
smaller compared to mean errors (around 20%–25% of means). Still, Training
errors deviate from Test errors.
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Table 4. Best parameters and errors for 10-CV with modified data sets

10-SCV 10-SCV 3x10-SCV
6/1e-6/0.21/0.36(0.07) 6/1e-6/0.25/0.37(0.10) 6/1e-5/0.28/0.37(0.07)

10-DOB-SCV 10-DOB-SCV 3x10-DOB-SCV
7/1e-6/0.19/0.34(0.09) 6/1e-5/0.28/0.37(0.08) 6/1e-5/0.27/0.36(0.08)

As for Step ii), we fix the parameters according to Table 4 as n∗1 = 6 and
β∗ = 5 ·10−6 for SCV and n∗1 = 6 and β∗ = 10−5 for DOB-SCV. The result with
these choices for repeated foldings are given in Table 5.

We conclude from Table 5, especially compared to Table 3, that the increase
of the size of training set from 210 to 240, that yielded to increase of the size of
the hidden layer by one for SCV, then increased the differences between Training
and Test errors. The common trend of Generalization error underestimation by
Training error and overestimation by Test error remains. With the choices of
parameters, slightly smaller Generalization errors are this time obtained with
DOB-SCV compared to SCV. Now, for TrE’s and TsE’s the behavior of two
folding approaches is similar.

Scatter plots for training and validation set errors with the two approaches
are depicted in Figure 3. We see that both folding approaches yield to posi-
tive correlation between these errors, with DOB-SCV capturing such a desired
behavior slightly better.

To this end, for the three repetitions in Table 5 and taking into account only
those cases where an observation was always wrongly classified in a test set, we
obtained the following amount of misclassifications per class:
SCV: [1 0 3 8 5 6 0] = 23 cases,
DOB-SCV: [1 0 4 6 7 8 0] = = 26 cases.
We conclude that the modifications of training and validation sets paid off,
especially for SCV, by means of improved classwise balance of the classification
accuracy and significantly smaller overall misclassification rate. For DOB-SCV,
the amount of complete misclassifications increased significantly, from 18 into
26, because the emphasis on class 4 had negative effect on accuracies in classes
5 and 6. The smaller amount obtained by SCV does not imply superiority over
DOB-SCV but just the fact that the result was obtained with more flexible
model, i.e. with slightly smaller β∗.

Table 5. Repeated CV with modified sets

3xSCV 3xDOB-SCV
Fold TrE TsE GeE TrE TeE GeE
1st 0.2724 0.3754 0.3570 0.2728 0.4008 0.3597
2nd 0.2688 0.4080 0.3723 0.2795 0.3804 0.3570
3rd 0.2712 0.3840 0.3658 0.2743 0.3728 0.3402

Grand 0.2708 0.3891 0.3650 0.2755 0.3847 0.3532



On Cross-Validation for MLP Model Evaluation 299

Fig. 3. Scatter plots of training/validation set errors for 3xSCV (left) and 3xDOB-SCV
(right) with modified data sets

4 Conclusions

The performed set of experiments illustrate some difficulties related to model
assessment with cross-validation. The general statistical assumptions on fixed
input and input-output conditional distributions are not necessarily valid with
real data sets. The amount of folds and the actual folding strategy have an ef-
fect on the behavior of CV. The error measure used with different data sets
(training, test, validation) affects error computations and, hence, the form of
obtained relationships underlying model selection. Especially when a universal
prediction model, like MLP, is used in classification with typical output encod-
ing, a discrete and quantized error measure suppress the precious information
reflecting the quality of the model. In any case, estimation of the generalization
error through test folds is only an approximation, and with all the experiments
and techniques used here, we always ended up to overestimate the true general-
ization error using mean over ten test folds. Similarly, the standard deviation of
generalization error estimate can remain large and does not necessarily decrease
with repeated folding. We conclude, by comparing the Std estimates obtained
with different parameters (typically with simpler network - with smaller size of
hidden layer or larger regularization coefficient - we end up with smaller vari-
ance), that this estimate reflects more the variability of the model itself instead
of one model’s actual classification performance. Such an observation might be
valid for universal approximators in general. We also illustrated that the qual-
ity of data has an effect on cross-validation results, especially when using the
standard, stratified CV.

Through all the computational experiments performed we found that DOB-
SCV folding approach could be better suited for real data sets, because it po-
tentially provides better differentiation of a classifier’s true performance through
more homogenous test folds. This conclusion coincides with the results in [11]
that were obtained with other classifiers and for larger set of folding approaches.
Moreover, if classwise deviations in accuracy are revealed, one can, with sam-
ple data sets, augment the training data set accordingly or, in real applications,
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launch a new data collection campaign to improve the overall classification per-
formance. The findings here are obtained with only one benchmark data set with
k = 10 folds, so further experiments with larger sample of real data sets and
different amount of folds should be carried out in the future.
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Abstract. Consensus strategies have been recently studied to help machine 
learning ensure better results. Likewise, optimisation in graph matching has 
been explored to accelerate and improve pattern recognition systems. In this 
paper, we present a fast and simple consensus method which, given two 
correspondences of sets generated by separate entities, enounces a final 
consensus correspondence. It is based on an optimisation method that 
minimises the cost of the correspondence while forcing it (to the most) to be a 
weighted mean. We tested our strategy comparing ourselves with the classical 
minimum cost matching system, using a palmprint database, with each 
palmprint is represented by an average of 1000 minutiae. 

Keywords: Consensus strategy, Hamming Distance, Weighted Mean, Assignment 
Problem, Optimisation. 

1 Introduction 

When two subjects decide to solve the assignment problem, differences on the points’ 
mapping may occur. These differences appear due to several factors. Between them, 
we could cite the following. One of the subjects gives more importance to some of the 
point attributes and the other subject believes other ones are more important. For 
instance, if the sets of points represent regions of segmented images, one subject may 
think the area is more important than the colour, and the other one can think it is the 
opposite. If the assignment problem is solved by an artificial system, the fact of 
“believing” the area is more important than the colour is gauged by some weights. 
Another factor could be that the assignment problem is computed in a suboptimal 
algorithm, and different non-exact assignments can appear. In these scenarios, a 
system can intervene as a third party to decide the final assignment as a consensus of 
both assignments since some discrepancies will appear, especially as the number of 
involved points increase. 

This paper presents a method to find the consensus assignment between two sets 
given two different assignments between those sets. We model the consensus 
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Nacional de Ciencia y Tecnologías (CONACyT Mexico). 



302 C.F. Moreno-García and F. Serratosa 

 

assignment as the weighted mean assignment. This method is inspired in the one 
presented in [1] that obtains a clustering consensus given a set of clusterings. Other 
methods to perform this task are [2], where a final cluster is obtained based on a 
similarity graph and [3], where the least square algorithm is used. Our method, and 
also the one in [1], does not restrict the consensus assignment to be a strict mean but a 
weighted mean. This occurs because these methods aim to find an assignment (or 
clustering in [1]) that it is as closer as possible to both assignments (clusterings in [1]), 
but have to minimise the assignment cost (or the clustering cost in [1]). These methods 
are closely related to the unsupervised machine learning methods [4]. 

The drawback of this approach resides in the large number of possible solutions. 
One of the most well-known and practical options to reduce the complexity of a 
combinatorial calculation is combinatorial optimisation. The concept of optimisation 
is related to the selection of the “best” configuration or set of parameters to achieve a 
certain goal [5]. Functions involved in an optimisation problem can be either 
conformed by continuous values or discrete values, often called “Combinatorial 
Scenarios”. These second scenarios have been largely studied and applied for graph 
matching problems, particularly in the case of the Hungarian Algorithm [6]. This 
method converts a combinatorial problem into an assignment problem, which will 
eventually derive in an optimal configuration for a cost-based labelling. Many recent 
researches have used graph theory and optimisation to solve diverse problems. 
Examples can be found in [7], where a graph representation and an optimisation 
method helped to design a gas drainage system for a coal mine. On [8], a research 
group used graph representation of newspaper articles to optimize the arrangement of 
each article within the page. Energy reduction in machinery [9] and most recently, 
biomedical compounds represented as labelled graphs [10] have been classified by 
using optimisation methods. 

2 Basic Definitions 

Given a set of elements G g , g , … , g , where the elements posses g(m  , a  ), being m ∈  Σ (where Σ is a unique number of the elements) and a ∈  Τ 
(where Τ is the domain of the attribute of the elements), a labelling function  can be 
established between  G  and another set of elements with similar characteristics G . 
This labelling function  is understood as a bijective function that proposes a match : Σ  Σ from one element of G  to one element of G , where G  and G  have similar 
cardinality . 

We define the cost of a labelling ( , , ) as the addition of individual 
element costs in a similar way as in the Graph Edit Distance [11], 

 
              ( )  ∑  ,           ( )             (1) 
 

where c is defined as a distance function over the domain of attributes Τ and is 
application dependent [11]. 
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The distance between sets ( ), which also delivers the minimum cost of all the 
labellings, is a function defined as 

 
                          ( , ) ( , , )   :                       (2) 
 
The labelling that obtains this distance is known as the optimal labelling , and it 

is defined as 
 

               :   ( , , )                                 (3) 
 

We convert this linear minimisation problem into an assignment problem [6], for 
which any labelling  is related with a combination. With the calculation of a cost 
matrix , (a , a ), we can convert equation 3 into 

 
                             :                                            (4) 

 
where  is the cost of the combination  (or labelling in the set domain) applied to 
matrix . That is 

 
                                  ∑ ,  ( )                                (5) 

 
Assume f  and f  are two labelling functions between sets G g , g , … , g  

and G g , g , … , g . We then define the Hamming Distance dH( ) between the 
labellings f and f  as 

 

                          (  , )  ∑ 1  ,                               (6) 

 
being  and  such that f (m ) m  and f (m ) m . Function ∂ is the well-
known function known as the Kronecker Delta. 

 

                                                  ∂(a, b)  0  if a b1 if a b                                            (7) 

 
In its more general form, the mean of two elements e  and e  has been defined as 

an element e such that d(e , e) d e , e  and d e , e d(e , e)  d e, e , being 
 any distance measure defined on the domain of these elements. Moreover, the 

weighted mean is sometimes used to gauge the importance or the contribution of the 
involved elements. In this case, the most general definition is d(e , e)  and d e , e  d e, e  where  is a constant that controls the contribution of the 
elements and holds 0≤  ≤d e , e . Finally, if we do not need to introduce the 
weighting factor  in our model, we have that any element e is a weighted mean of 
two elements e  and e  if it holds that d e , e d(e , e)  d e, e . Note that 
elements e  and e  hold this condition so, they are also weighted means of 
themselves. 
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The most appropriate form to model a consensus scenario given two different 
options is the one done by [4], which is defined through the weighted mean of these 
two options. The aim of [4] is to find the consensus clustering of a set of elements 
given two different clustering proposals applied to this set of elements. If we want to 
translate this model to our problem, we should find the weighted mean labelling f 
given two different labelling f  and f . As commented in the previous paragraph, if 
we want f to be defined as a weighted mean labelling of f  and f  the following 
restriction has to hold, 

 
                          (  , )   ,    ,                              (8) 

 
Several labellings  hold this condition, and amongst them are  and . To 

select one, an option would be a brute force method that obtains all possible 
combinations and selects the best one from the application point of view. Another 
option is a standard minimisation approach, to reduce the computational time. 

Standard minimisation approaches aim to find an optimal element  that globally 
minimises a specific function. Usually this function is composed of an empirical risk (e) plus a regularization term Ω(e) weighted by a parameter λ [5]. The empirical 
risk is the function to be minimised per se and the regularisation term is a 
mathematical mechanism to impose some restrictions. Parameter λ weights how much 
these restrictions have to be imposed. 

 
                                      argmin  ( )  λ · Ω( )                                    (9) 

 
The aim of this paper is to present a method to find an approximation of the 

weighted mean labelling given two labellings. Therefore, we want to find  such that 
the following equation holds, 

 
                             argmin :    λC · ( )   λH · Ω( )                     (10) 

 
On the next section, we explain functions ( ) and Ω( ). Although it is not strictly 

necessary, we present this general equation with parameters λC and  λH, instead of 
only one parameter λ as in equation 9, to simplify some explanations and examples. 

3 Method 

Our method defines the optimal labelling  through equation 10 in which the Loss 
function and the Regularisation term are 

 
 ( ) ( , , ) and Ω( )  ( , )  ( , ) ( , )    (11) 
 
That is, we want to minimise the labelling cost (equation 1) of the obtained 

labelling but restricted to be a weighted mean (equation 8). The degree of restriction 
depends on weights  λC and  λH. Note that by definition of a distance,  ( , ) ( , ) ( , ) 0. 
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The aim of our method is to decide the labelling closer to both human’s labellings. 
Therefore it seems logical that our strategy only seeks for the partial labelling where 
both of the specialists disagree. The other partial labelling, which is the one that both 
specialist has decided the same point mapping, is directly assigned as the mappings of 
these specialists. For this reason we split labellings f  and f  in two disjoint partial 
labellings such that f f f  and f f f , where f  and f  are the partial 
labellings where f (m ) f (m ), and f  and f  are the other partial ones where f (m ) f (m ). This also means that the cost of both labellings is Cost(G , G , f ) Cost G , G , f Cost(G , G , f ) and Cost G , G , fCost G , G , f Cost G , G , f . We define Σ Σ Σ . The set of nodes Σ  in G  is composed of the nodes such that f (m ) f (m ) and the set of nodes Σ  in G  
is composed of the nodes such that f (m ) f (m ).  

Thus, we define the weighted mean labelling  we want to obtain as a union of 
two partial labellings,  where  (which is the same than 

) and f  is the one defined in the following equation, f C, H  argmin :    λC Cost(G , G , f )   λH ·  dH f , f                                                         dH f , f dH f , f                                    (12) 
 

To solve equation 12, we translate the linear minimisation problem to an 
assignment problem [5] as we have shown in equation 4, but instead of the cost 
matrix , our method minimises matrix H C, H  defined as follows, 

 
                     H C, H λC · C  λH · F ,                               (13) 

 
where C i, j c(m , m ) being m ∈ Σ and m ∈ Σ . Besides, F , FF , where F  and F are the labelling matrices corresponding to and , 
respectively. Aditionally,  is a matrix of all ones. Note that the number of rows and 
columns of matrices C , F  and F  is lower or equal than C. As more similar node 
mappings of f  and f  are, the smaller the number nodes in Σ  and Σ  is, and so, 
the dimensions of C , F  and F . This fact affects directly on the computational 
cost. In a practical application, if both specialists are good enough, they discern in few 
node mappings and therefore the computational time of finding the agreement 
labelling is very low. Considering equation 13, we obtain the following expression, 

 

                    , argmin H C, H                                (14) 

 
Several algorithms can be used to minimise equation 14, for instance the 

Hungarian algorithm [5]. Finally, the cost of the obtained weighted mean becomes, 
 C C, H C C, H , ,                             (15) 

On section 3.1 we demonstrate equations 12 and 14 minimise at the same 
approximation of the weighted mean labelling ,  for all weights λC and λH and 
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pair of graphs G  and G . Then on section 3.2 we demonstrate the cases in which the 
obtained labelling is an exact weighted mean labelling and not an approximated 
weighted mean labelling. 

3.1 Reasoning about Optimality 

If we want to use equation 14 to solve our problem instead of equation 12, we must 

now demonstrate that functional  λC Cost(G , G , f )   λH ·  , ( , ) ( , )  extracted from equation 12 minimises the same 

partial labelling than λC · C  λH · F ,  extracted from equation 14. 

Notice that, by definition, ( , , ) C  and for this reason, we have to 
demonstrate the following equation 

 F ,  dH f , f  dH f , f dH f , f ; : Σ Σ       (16) 
 
If equation 16 holds, then we can confirm that it is valid to use equation 14 to solve 

our problem. Suppose the cardinality of Σ and Σ  is n. Therefore, by definition of 
these sets, dH f , f . Given the involved labellings f , f  and f , we can 
define the three following natural numbers n , n  and n : 

 
1) n : number of nodes in Σ that hold f (m ) f (m ) and f (m ) f (m ). 
2) n : number of nodes in Σ that hold f (m ) f (m ) and f (m ) f (m ). 
3) n : number of nodes in Σ that hold f (m ) f (m ) and f (m ) f (m ). 

 
Again, by definition of these sets, there is not any m  such that f (m ) f (m ) 

and f (m ) f (m ). Therefore,  n  n  n . By simplicity of notation, we 
order the nodes in Σ  such that m  to m  hold the first condition, m  to m   hold the second condition and m   to m  hold the third condition. 

To demonstrate that equation 16 holds, we first demonstrate that F , n  and we second demonstrate that  dH f , f  dH f , f dH f , f  n . 
 

1) Demonstration of F ,  n : Suppose that f (m ) m  then F , ∑ F , ,  ∑ 1 ∑ 0  n . 

2) Demonstration of dH f , f  dH f , f dH f , f  n :  dH f , f  dH f , f n ∑ 2 ∂ f (m ), f (m ) ∂ f (m ), f (m )  ∑ 0 ∑ 1   ∑ 1   n  n  n . 
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3.2 Exact Weighted Mean Labelling 

In some cases, it is interesting to know if we have obtained an exact weighted mean 
labelling or an approximated one. First of all, we have to realise that whether both  
and  are exact partial weighted mean labellings, then the union  is an 
exact weighted mean labelling, assuming that that f f 0. It is clear that if 
equation 8 holds for both partial labellings then it holds for the complete one. 
Moreover, by definition of our partial labelling , it is always defined as weighted 
mean labelling. Therefore, we conclude that the obtained labelling f is an exact 
weighted mean labelling if f  is also an exact weighted mean labelling. These cases 
are the ones that that f  holds equation 8. Due to we have demonstrated 
that ,  ( , ) ,  n , then  n  has to be 0. By 
definition of  n , these labelling are the ones that ( ) ( ) or ( )( ). Therefore, we conclude the following expression, 

 f C, His a weighted mean labelling if: f C, H(m ) f (m ) or f C, H(m ) f (m ); m ∈ Σ            (17) 
 
The cost of testing if the labelling obtained is a weighted mean is linear on the 

number of discordances between labellings   and . 
Note that if λC 0 and λH 0 and we use the Hungarian method [6] to solve 

equation 14, then the method always obtains an exact weighted mean labelling. This 
is because equation 16 has been demonstrated, and also because the optimality of the 
Hungarian method has been demonstrated in equation 17. 

4 Experimentation 

We used images contained in the Tsinghua 500 PPI Palmprint Database [12]. It is a 
public high-resolution palmprint database composed of 500 palmprint images of a 
resolution of 2040 x2040 pixels. From each person, 8 palmprints are enrolled. We 
extracted the minutiae set of the 8 palmprints of the first 10 subjects of the database 
using the algorithm presented in [13], [14] and [15] and we obtained an average of 
1000 minutiae per palmprint. The attributes of minutiae are their position and angle, 
which means a θ , (x, y) . Therefore, our core database is composed by 80 sets 
of minutiae classified in 10 subjects. Nevertheless, we wish to have a database of 
several registers and each register composed of four elements: 2 minutiae sets  and 

 extracted from the same palm and two different labellings  and  between 
these minutiae sets. To do so, we matched each of the 8 minutiae sets of the same 
subject obtaining 64 correspondences per subject. Therefore, we defined an initial 
database of 8x8x10=640 registers composed of 2 minutiae sets  and  extracted 
from the same subject and a correspondence f between them. Correspondences were  
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computed through the Hungarian method [16] and a greedy method to select the 
matches from the resulting matrix. The distance between minutiae has been defined  
to be 

 
                c a  , a 0.5 ad θ , θ 0.5 dd (x, y) , (x, y)              (18) 

 
being ad the angular distance and dd the Euclidean distance. 

Given each of the 640 registers, we need to generate labellings  and  from the 
initial labellings f. Nevertheless, to perform our experiments, we need to control the 
distance between these labellings. Therefore, we introduce parameter α that decides 
the Hamming distance between them, (  , ) 2α. and  are randomly 
generated such that  , f α and  , f α. As we will see later, 
parameter α is the horizontal axis of the figures presented in this section and for each α ∈ 10,11, … ,212 we have a dataset of 640 registers, so, the values presented in 
these figures are the average of 640 times we computed f C, H . 

The aim of our method is to find the consensus labelling with the minimum cost 
and close to both labellings. For this reason, we have performed several tests using 
different configurations of λC and λH and parameter α. The aim of these tests is 
threefold. First, we want to know the cost of the obtained labellings f C, H , that is f C, H . Second, we want to analyse if the obtained labellings appear to be “in 
the middle” of both labellings. In this case, we propose the following measure, 

 

                 Middle , , f C, H  , C, H  , C, H ,                   (19) 
 

and third, we want to check if the obtained labellings are really weighted mean 
labellings. 

For this experimentation we chose three different configurations for  λH and λC. 
First, when  λH 0 and λC 1 the labellings are not being considered, thus basing 
the decision only on the minimum cost. Therefore, this configuration will reproduce a 
classical minimum-cost method (red in Figures 1 to 3). Second, when  λH 1 and λC 1 there is a contribution both of the cost and the labelling. Therefore, this 
approach would represent our method (green in Figures 1 to 3). Finally, when  λH 1 
and λC 0 only the labellings are being considered but no cost is used. Therefore this 
approach would be considered a pure consensus of the correspondences done by 

and (violet in Figures 1 to 3). 
Figure 1 shows the cost of f C, Has the number of mistakes increases. Notice that 

the y-axis represents the cost (equation 1, where the cost between nodes is equation 
18), being an application-dependent metric. However, it is clearly noticeable that the 
classical method (red) performs just as good as our method in terms of minimising the 
cost. It must be pointed out that a minimum cost not necessarily translates in a better 
result 
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Fig. 1. Comparison for the cost of f C, H  for the three configurations 

Figure 2 shows the Middle measure (equation 19) which measures how far in terms 
of Hamming Distance is the consensus labelling with respect of the median of  and 

. We can see once again that the classical method (red) performs slightly worse 
than our approach, however as mistakes increase, the distance “Middle” decreases and 
eventually stabilizes for every configuration. 

 

Fig. 2. Comparison for the position of f C, H  for the three configurations 

Figure 3 shows the percentage of experiments in whichf C, H  is really a weighted 
mean of  and . We can notice that the classical method (red) does not always 
give weighted means starting from 25 mistakes (which means that it stops delivering 
results that are consensus). As we deducted from equation 17, the labelling-only 
configuration (violet) will always result in weighted means, whereas the approach that 
equally considers both terms (green) will slightly decrease in successful weighted 
mean results as α increase. 
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Fig. 3. Comparison for the percent of f C, H  being a weighted mean for the three configurations 

5 Conclusions and Further Work 

We present a fast and efficient method to perform a consensus decision based on a 
regularization term consisting in two labellings developed by two separate entities, 
and a loss function consisting on a cost relation which is application dependant. We 
also demonstrate that an optimisation process can be applied to reduce the 
computational cost of calculating the multiple possibilities and that different 
configurations on the loss function and the regularisation term can be produced to 
obtain different results. As a further work, we would like to continue studying the 
effects of consensus techniques in with multiple inputs and multiple metrics [17]. 
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Abstract. There are two main types of approaches for handwritten
chemical symbol recognition: image-based approaches and trajectory-
based approaches. The current image-based approaches consider mainly
the geometrical and statistical information from the captured images of
users’ handwritten strokes, while the current trajectory-based recogni-
tion approaches only extract temporal symbol features on users’ writing
styles. To recognize chemical symbols accurately, however, it is important
to identify an effective set of important chemical features by consider-
ing the writer dependent features, writer independent features as well as
context environment features. In this paper, we propose a novel CF44
chemical feature set based on the trajectory-based recognition approach.
The performance of the proposed chemical features is also evaluated with
promising results using a chemical formula recognition system.

1 Introduction

There are two main types of approaches for handwritten chemical symbol recog-
nition, namely image-based approaches and trajectory-based approaches. The
image-based approaches aim at recognizing chemical symbols based on the image
input of the pen strokes. The trajectory-based recognition approaches recognize
chemical symbols when they are written with a pen-based device, where a sen-
sor picks up the pen-tip movements as well as pen-up/pen-down switching. The
actuarial pen trajectory data is known as digital ink and it is captured for the
recognition process.

For the past decade, different techniques such as Support Vector Machines
(SVM) [3], Hidden Markov Models (HMM) [8], hybrid SVM-HMM [7] and Sup-
port Vector Machine-Elastic Matching (SVM-EM) [6] have been proposed for
chemical symbol recognition. The current image-based approaches [3,5,4] mainly
considered the geometrical and statistical information from the captured images
of users’ handwriting strokes. As such, users’ writing styles during the writ-
ing process are not captured. On the other hand, the current trajectory-based
recognition approaches [8,7] only considered extracting temporal symbol features
based on stroke points. These techniques only focused on capturing features
about the writing process which are dependent on users’ writing styles.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 312–322, 2014.
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To recognize chemical symbols accurately, it is important to identify an ef-
fective set of important chemical features from users’ handwritten input data.
In this paper, we propose a novel CF44 chemical feature set which consists of
writer dependent features, writer independent features and context environment
features. We limit the feature set to a total of 44 important features in order not
to over influence the processing speed of the feature extraction process. The rest
of the paper is organized as follows. Section 2 reviews the related work. Section
3 presents the proposed chemical symbol features. Experimental results are then
presented in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Different kinds of features have been proposed based on the image-based symbol
recognition approaches. In [5], geometrical features based on lines and polygons
were extracted and recognized with text recognition. In [3], Ouyang and Davis
used both the geometrical and statistical features including number of strokes,
bounding-box dimensions, stroke ink density, inter-stroke distance and inter-
stroke orientation for SVM symbol recognition. In [4], Ouyang and Davis further
proposed to extract additional geometrical features from the stroke segments
including segment length, segment count, stroke diagonal, symbol diagonal and
symbol ink density for symbol recognition using the Conditional Random Field
(CRF). However, the current image-based approaches can only capture the visual
features about the handwritten chemical symbols.

For trajectory-based symbol recognition approaches, different types of chem-
ical features have also been extracted. In [8,7], Zhang et al. proposed 11 types
of chemical features including normalized stroke point coordinates, normalized
first derivatives and second derivatives of the stroke points, curvature, writing
direction, aspect, curliness and linearity for symbol recognition in HMM and
SVM-HMM. In [6], Tang et al. used some simple chemical features including
number of strokes, stroke point coordinates, horizontal angle and turning angle
for the SVM-EM symbol recognition. As the chemical features extracted by the
current trajectory-based approaches are quite limited, in this paper we propose
an effective set of chemical features based on the trajectory-based approach for
chemical symbol recognition.

3 Chemical Symbol Features

Chemical symbols consist of digits, alphabetic characters, bonds, and operators.
For the purpose of handwritten chemical symbol and formula recognition, we
propose a set of 44 chemical symbol features to capture the various aspects
of handwritten chemical symbols. They are classified into 11 writer dependent
features, 31 writer independent features and 2 context environment features.

First, we define the following fundamental concepts on stroke, chemical symbol
pattern and bounding box :
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Definition 1 (Stroke). A stroke s is a sequence of m two-dimensional points
(p1, p2, ..., pm):

s = (p1, p2, ..., pm),

where pi = (xi, yi), 1 ≤ i ≤ m, p1 is the pen-down point, pm is the pen-up point
and p2, ..., pm−1 are the pen-move points.

Definition 2 (Chemical Symbol Pattern). A chemical symbol pattern S is
a valid sequence of k strokes which are recognized together as a chemical symbol.
Therefore, it is also a sequence of n two-dimensional points (p1, p2, ..., pn):

S = (s1, s2, ..., sk) = (p1, p2, ..., pn),

p1 and pn are the starting point and ending point of the chemical symbol pattern.

Definition 3 (Bounding Box). The bounding box B = (w, h) of a symbol S is
the smallest rectangle which encloses S. The edges of the rectangle are in parallel
with the coordinate axes. w and h are the width and height of the bounding box.
And the center of the bounding box is defined as the center of S.

3.1 Writer Dependent Features

The writer dependent features are dynamic features including the order of points,
writing direction, and the number and order of strokes which model the writing
process of handwritten chemical symbols.

Pattern Starting and Ending Point Features. The positions of the starting
point and ending point of the chemical symbol pattern are important features
for the recognition of chemical symbols since users often write the same symbol
with similar positions on its starting point and ending point. However, if a hand-
written chemical symbol has very small width or height such as chemical bond
symbols, we will extract the pattern starting point and ending point features by
standardizing them with respect to a bounding square. The bounding square is
defined as follows:

Definition 4 (Bounding Square). The bounding square of a symbol pattern
S is the smallest virtual square which encloses S. The center of the bounding
square c = (xc, yc) is located at the center of the chemical symbol pattern. The
edges of the bounding square are in parallel with the coordinate axes. The length
l of the bounding square is the larger of the width w and height h of the bounding
box.

For a chemical symbol pattern S = (p1, ..., pn) with starting point p1 =
(x1, y1) and ending point pn = (xn, yn), the pattern starting point features (f1
and f2) and ending point features (f3 and f4) are formulated as follows:

Starting Point: f1 =
x1 − xc
l

+
1

2
, f2 =

y1 − yc
l

+
1

2
, (1)

Ending Point : f3 =
xn − xc
l

+
1

2
, f4 =

yn − yc
l

+
1

2
. (2)

where l is the length of the bounding square.
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Pattern Writing Direction Features. The pattern writing direction features
model users’ general writing direction when users write a chemical symbol.

Definition 5 (Pattern Writing Direction). For a chemical symbol pattern
S = (p1, p2, ..., pn), the pattern writing direction of S is defined as a vector from
the starting point p1 to the ending point pn.

The writing direction features are important since users often write the same
symbol with the same direction. The writing length feature (f5) and direction
features (f6 and f7) are formulated as follows:

Writing Length: f5 = ‖v‖ = ‖p1pn‖, (3)

Writing Direction: f6 =
vx · ux

‖v‖ , f7 =
vy · uy

‖v‖ , (4)

where v is the starting point to ending point vector −−→p1pn which models the
writing direction. ux and uy denote the unit vector of the horizontal and vertical
axes respectively.

The two direction features f6 and f7 become unstable when the writing length
feature f5 is too small. To tackle this problem, the values of the two direction
features will be set to zero when the writing length feature is less than a minimal
distance threshold which is set empirically to max(w, h)/4.

Pattern Closure Feature. It is used to distinguish the difference between
chemical symbols with closed or circular writing trajectory pattern (such as ‘O’)
and those with straight line writing trajectory pattern (such as ’I’ and chemical
bond symbols). This feature is defined based on the writing length feature f5.

Definition 6 (Pattern Closure). The pattern closure of a symbol pattern is
defined as the ratio between the writing length and the trajectory length of the
handwritten chemical symbol pattern.

For a chemical symbol pattern S = (p1, p2, ..., pn), the pattern closure feature
(f8) is formulated as follows:

Closure: f8 =
‖v‖
L
, (5)

where L = pathdist(p1, pn) =
k∑

i=1

∑
j

‖−−−−→pjpj+1‖, L is the path distance between the

pattern starting point p1 and ending point pn. And it is calculated by summing
up the length of each stroke segment −−−−→pjpj+1 in S. It indicates the length of the
writing trajectory by the user.

Pattern Inflection Features. The pattern inflection features are used to dis-
tinguish the convex and concave curvature patterns shown in the handwritten
chemical symbol.

Definition 7 (Pattern Inflection). The pattern inflection of a chemical sym-
bol pattern S is a measure of the relative positioning of the middle-path point
pmid of S with respect to the middle point pm of the straight line ‖−−→p1pn‖.
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The pattern inflection features (f9 and f10) are formulated as follows:

X and Y-Inflection: f9 =
1

w
(xmid − xm), f10 =

1

h
(ymid − ym), (6)

where pm = (xm, ym) = (x1+xn

2 , y1+yn

2 ) = p1+pn

2 .

The pattern inflection features f9 and f10 are normalized by the width w and
height h of the bounding box of the chemical symbol pattern respectively.

Total Stroke Number Feature. It is an important feature to indicate the
writing complexity of the handwritten chemical symbol. The total stoke number
feature (f11) accounts for the number of strokes k in the handwritten chemical
symbol pattern as follows:

Total Stroke Number: f11 = k. (7)

3.2 Writer Independent Features

The writer independent features are visual features which model the appearance
of the handwritten chemical symbols. These features will not be affected by
changes in users’ stroke order or writing direction.

Bounding Box Features. The bounding box features model the basic infor-
mation about the shape of the handwritten chemical symbol. The diagonal angle
feature (f13) and diagonal ratio feature (f14) are formulated as follows:

Diagonal Angle and Ratio: f13 = arctan
h

w
, f14 =

h+ w

L
. (8)

The diagonal angle feature measures the angle between the bounding box
diagonals with respect to the horizontal axis. And the diagonal ratio is a rela-
tive measure of the bounding box size which characterizes the complexity when
writing the chemical symbol.

Deviation Feature. The deviation feature is used to measure the dispersion of
stroke points in the handwritten chemical symbol. For a chemical symbol pattern
S = (p1, p2, ..., pn), the deviation feature (f15) is formulated as follows:

Pattern Deviation: f15 =
1

n

n∑
i=1

‖piμ‖, (9)

where μ =
∑n

i=1 pi/n, and pi is the i-th stroke point in the handwritten chemical
symbol. μ is the center of gravity which is calculated as the mean of all the stroke
points in the chemical symbol pattern. And ‖piμ‖ is the Euclidean distance
between the i-th stroke point pi and the center of gravity μ.

Average Direction Feature. The average direction feature is computed by
averaging the writing directions of all the stroke segments defined in the tra-
jectory of the handwritten chemical symbol. For a chemical symbol pattern
S = (p1, p2, ..., pn), the average direction feature (f16) is formulated as follows:
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Average Direction: f16 =
1

n

n−1∑
i=1

arctan(
yi+1 − yi
xi+1 − xi

). (10)

Curvature Feature. The curvature feature measures the curvature of the
handwritten chemical symbol. Here, we introduce stroke turning angle which
is used to measure the local curvature for two consecutive stroke segments.

Definition 8 (Stroke Turning Angle). The stroke turning angle is the turn-
ing angle between two consecutive stroke segments within the same stroke. For a
chemical symbol pattern S = (p1, p2, ..., pn), the stroke turning angle between the
stroke segments −−−−→pi−1pi and

−−−−→pipi+1 is defined as follows:

θi = arccos(
−−−−→pi−1pi · −−−−→pipi+1

‖−−−−→pi−1pi‖‖−−−−→pipi+1‖
).

An example on stroke turning angle is shown in Figure 1a. The curvature
feature (f17) is then formulated by summing up all the local curvatures in S:

Pattern Curvature: f17 =

n−1∑
i=2

θi. (11)

x

y

pi

pi-1

ux

pi-1 pi

pi+1

pi pi+1

θi

(a) Stroke Turning Angle

x

y

pi

pi-1

ux

pi-1 pi

αi

(b) Stroke Segment Orientation

Fig. 1. Stroke Turning Angle and Stroke Segment Orientation

Therefore, symbols which consist of straight lines will have low curvature,
whereas symbols which consist of curved strokes will have high curvature. For
example, the symbol ‘H’ will have lower curvature measure than the symbol ‘O’.

Perpendicularity Features. The perpendicularity features are important fea-
tures to identify the abrupt changes in the stroke trajectory, especially for sym-
bols with sharp turning strokes such as ‘A’ and ‘N’. For a chemical symbol
pattern S = (p1, p2, ..., pn), the perpendicularity features (f18 and f19) are for-
mulated as follows:
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Perpendicularity: f18 =

n−1∑
i=2

sin2θi, (12)

2-th Perpendicularity: f19 =

n−1∑
i=2

sin2(θ2i ), (13)

where 2nd-turning angle θ2i = arccos
{ −−−−→pi−2pi·−−−−→pipi+2

‖−−−−→pi−2pi‖‖−−−−→pipi+2‖

}
.

Directional Histogram Features. The directional histogram features help
to capture information about writing direction of each stroke segment of the
chemical symbol pattern. First, we define stroke segment orientation as follows:

Definition 9 (Stroke Segment Orientation). The stroke segment orienta-
tion is a measure for the writing direction of that stroke segment. For a chemical
symbol pattern S = (p1, p2, ..., pn), the stroke segment orientation for a stroke
segment −−−−→pipi+1 is calculated as:

αi = arccos

{−−−−→pipi+1 · ux

‖−−−−→pipi+1‖

}
. (14)

Figure 1b illustrates the definition of stroke segment orientation.
Since a chemical bond symbol can have 12 possible directions in chemical

formulas, the stroke segment range is divided into 12 directional histogram bins
(sh1 − sh12) and each directional histogram bin indicates one of the 12 possi-
ble directions for stroke segment orientations. The range between two consecu-
tive directional histogram bins is 30◦. A fuzzy quantization approach is used to
quantize the stroke segment orientation into histogram bins. A stroke segment
orientation αi contributes to two histogram bins with two different weights:

w(m,i) = 1− 6

π
· arccos{uαi

· vm}, w(m+1,i) =
6

π
· arccos{uαi

· vm+1}, (15)

where uαi
is the unit vector which has the same orientation as stroke segment

orientation αi and vm is the unit vector for the orientation of directional his-
togram bin shm. Each histogram bin is then calculated as the sum of weighted
contributions from each stroke segment:

shm =

n−k∑
i=1

w(m,i). (16)

We define 6 directional histogram features based on the stroke segment orien-
tation by inspecting the number of stroke segments oriented in the 12 directional
histogram bins. The 6 directional histogram features (f20 to f25) for the stroke
segment orientation are formulated as follows:
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Stroke Directional Histogram: f20 =
sh1 + sh7
n− k , ..., f25 =

sh6 + sh12
n− k . (17)

Similarly, we define 6 directional histogram features (f26 to f31) for the stroke
turning angle, which provides additional curvature information about the writing
trajectory of the symbol pattern, as follows:

Turning Directional Histogram: f26 =
th1 + th7
n− 2× k , ..., f31 =

th6 + th12
n− 2× k . (18)

where th1 to th12 are the 12 directional histogram bins for stroke turning angle.

2-Dimensional (2D) Histogram Features. The 2D histogram features mea-
sure which area of the symbol pattern is denser or has more stroke points. To
extract the features, the bounding box of a symbol is divided into 3 × 3 2D
histogram bins. Figure 2 shows the 3 × 3 2D histogram bins for a handwritten
chemical symbol ‘C’. Then, each stroke point will be quantized into 4 nearest
histogram bins with the respective weightings. The weighted contributions to
the 4 histogram bins are determined by the distance from the stroke point to
the center of the 4 respective histogram bins.

c11 c12 c13

c21 c23

c31 c32 c33

c22

pi

Fig. 2. 2D Histogram Bins

Nine 2D histogram features are extracted and each feature is calculated by
inspecting all the contributions to each 2D histogram bin from the stroke points
in the handwritten chemical symbol pattern. The 2D histogram features (f32 to
f40) are formulated as follows:

2D Histogram: f32 =
h11
n

=
1

n

n∑
i=1

w11(pi), ..., f40 =
h33
n

=
1

n

n∑
i=1

w33(pi).(19)

Convex Hull Features. The convex hull of the chemical symbol pattern is
a set of points which can be used to construct the smallest convex shape to
enclose the chemical symbol pattern. Therefore, the convex hull features are a
perfect measure to model the geometric information of the handwritten chemical
symbol pattern. In this research, the convex hull of the chemical symbol pattern
is computed using the Graham algorithm [2]. The two convex hull features (f40
and f41) are formulated as follows:
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Convex Hull Box Ratio: f41 =
AH

w × h, (20)

Convex Hull Trajectory Ratio: f42 =
L2

AH
, (21)

where the convex hull H is a sequence of points (v1, ..., vi, ..., vm) with vi =

(vi,x, vi,y) and the convex hull area AH = 1
2

∣∣∣∣p−1∑
i=1

(vi,x × vi+1,y − vi+1,x × vi,y)
∣∣∣∣.

3.3 Context Environment Features

The context environment features capture the related context information on
the handwritten chemical symbols when users write the chemical formulas. The
context environment features are only possible after the first symbol of a hand-
written chemical formula is recognized. The context environment features are
extremely useful to distinguish symbols with the same shape and writing di-
rection, for example, capital letters and its non-capital. There are two context
environment features: previous symbol type (f43) and relative symbol height
(f44). They are formulated as follows:

Previous Symbol Type: f43 =

⎧⎪⎪⎨
⎪⎪⎩

0 if SP is a digit
1 if SP is a character
2 if SP is an operator
3 if SP is a bond

, (22)

Relative Symbol Height: f44 =
h

hP
, (23)

where SP is the previous recognized symbol of the current unknown symbol
in the chemical formula. hP is the height of the previous symbol. f43 models
the symbol type of the previous symbol and f44 captures the relative height
information between the previous symbol and the current unknown symbol.

4 Performance Evaluation

In this research, we have developed a handwritten chemical formula recogni-
tion system on the iOS platform, called iDrawChem. In the system, LibSVM [1]
is used for symbol recognition with the proposed chemical features. The perfor-
mance evaluation was conducted as follows. First, we introduced the iDrawChem
system to 10 users. Then, the users spent about 10 minutes to familiarize them-
selves with the system and experimented a few simple expressions which were
different from those used for testing. We prepared 468 valid simple chemical ex-
pressions and the previous symbol of the chemical symbol was also contained in
each chemical expression. In the experiment, each user was required to write all
the chemical expressions. Then, the writer dependent features, writer indepen-
dent features and context environment features of the chemical symbols were
recorded. As a result, a total of 4680 valid symbol expressions were collected
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Table 1. Performance Results based on Symbol Categories

Category Precision@1 Precision@3 Precision@5

Digits 95.67% 98.33% 99.33%

Alphabetical

Characters
92.56% 96.22% 98.85%

Bonds & Operators 91.9% 97.50% 98.96 %

Average 93.80% 96.75% 98.93 %

Table 2. Performance Results based on Feature Types

Features Precision@1 Precision@3 Precision@5

WD 69.49% 75.56% 83.50%

WI 86.97% 90.47% 94.15%

WD+WI 92.82% 95.13% 97.61%

WD+WI+CE 93.80% 96.75% 98.93%

from the 10 users. Among them, 2340 of the symbol expressions were used for
training the SVM classifier and the rest were used for testing.

Table 1 shows the performance results based on different symbol categories.
As our symbol recognition is able to return a ranked list of candidate symbols for
user selection, we use precision@1, precision@3 and precision@5 for performance
evaluation. Precision@n reports the recognition accuracy that the correct symbol
is in the top-n candidate symbols. As shown in the table, the performances
at precision@1, precision@3 and precision@5 are 93.80%, 96.75% and 98.93%
respectively which are quite promising. The performance of digits is better than
that of alphabetical characters, bonds and operators, as digits generally have
more distinguishing features.

Table 2 gives the performance results based on different types of chemical
features: Writer Dependent (WD) features, Writer Independent (WI) features,
Context Environment (CE) features. As shown in the table, the performance
with WI features (86.97% at precision@1) is much higher than that with WD
features (69.49% at precision@1), as writer independent features which capture
the visual appearance of the symbols may help recognize the symbols more
effectively than writer dependent features. In addition, using WD features and
WI features together, the performance has improved to 92.82% at precision@1.
Furthermore, the CE features can further improve the performance to 93.80% at
precision@1 since they can help distinguish symbols with the same visual shape
and writing direction.
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5 Conclusion

In this paper, we have proposed a set of 44 chemical symbol features which
can effectively model the user writing process, visual appearance and context
environment of each handwritten chemical symbol. The proposed CF44 chem-
ical symbol features are designed by considering both writer dependent and
writer independent features as well as the context environment features. The
proposed features have been evaluated using our chemical formula recognition
system called iDrawChem. The performance evaluation has shown promising re-
sults with high accuracy up to 98.93% at precision@5. Therefore, the proposed
chemical features are effective to be used for the recognition of handwritten
chemical symbols for chemical formula recognition.
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Abstract. Distance metric learning has been a major research topic in
recent times. Usually, the problem is formulated as finding a Mahalanobis-
like metric matrix that satisfies a set of constraints as much as possible.
Different ways to introduce these constraints and to effectively formulate
and solve the optimization problem have been proposed. In this work, we
start with one of these formulations that leads to a convex optimization
problem and generalize it in order to increase the efficiency by appro-
priately selecting the set of constraints. Moreover, the original criterion
is expressed in terms of a reduced set of representatives that is learnt
together with the metric. This leads to further improvements not only
in efficiency but also in the quality of the obtained metrics.

1 Introduction

Classifying and/or conveniently representing high dimensional data has always
been a very important goal in many different domains across the pattern recog-
nition and image analysis fields. When the objects under study correspond to
large collections of images or any other kind of visual information, this issue
becomes even more critical due to the huge sizes usually involved. The classical
approach for dealing with such high dimensional data is to apply some kind of
dimensionality reduction in order to look for either numerical stability, perfor-
mance improvement or simply to be able to get results in a reasonable amount
of time [1, 2].

Dimensionality reduction has been largely studied from different points of
view. In particular, linear methods such as Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) are very well-known and commonly
used in practice [1, 3]. Particular implementations and extensions of these have
been proposed in particular domains such as face recognition [4–7].

The vast majority of approaches that propose using either linear or non linear
dimensionality reduction to map the original problem into a (usually simplified)
representation space, end up using a straightforward distance-based classification

� This work has been partially funded by FEDER and Spanish MEC through
projects TIN2009-14205-C04-03, TIN2011-29221-C03-02 and Consolider Ingenio
2010 CSD2007-00018.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 323–332, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



324 A. Perez-Suay et al.

method in this space. The combination of the mapping and distance function
can be seen as a composite (and possibly complex) metric in the original space.
This puts forward the close relation that exists between dimensionality reduction
and metric learning. Metric learning has received recent interest and has been
tackled from very different viewpoints [8–11] using rather different methodologies
to learn a convenient metric for a particular problem.

Basically, all methods that directly look for a (usually parameterized) distance
function follow to some extent the same rationale that guides most (discriminant)
dimensionality reduction approaches. This consists of increasing the effective
distances between objects from different classes while decreasing the distances
among objects of the same class. To this end, different approaches explicitly
use distances either to define criteria or introduce constraints in the formulation
along with different kinds of regularizers [8, 12, 13].

Regardless of the particular way of formulating the problem, one can distin-
guish between the criterion (and how exactly it relates to the ultimate goal of
obtaining an appropriate metric), and the particular training information that
is given to the algorithm (usually as sets of similar and dissimilar pairs). For ex-
ample, different particular methods use different strategies to select this training
information ranging from using all possible pairs [12] to pairs in the near vicinity
of particular points [14]. More recently, it has been proposed to learn the best
training pairs along with the metrics [15].

In this paper, we also propose a way of progressively adapting the train-
ing pairs along with the metric. Starting from the convex formulation used for
MCML (Maximally Collapsing Metric Learning, [12]), we generalize it by intro-
ducing a reduced set of representative prototypes. With this generalization it
is possible to obtain Mahalanobis like metrics that improve the results of the
original algorithm, using a smaller amount of (selected) training pairs. Exper-
imentation using several publicly available databases has been carried out to
empirically validate the benefits of the proposed approach.

2 Metric Learning and Collapsing Classes

Given a collection of objects in a multidimensional vector space,X = {x1, . . . , xn}
⊆ �d, let us consider distances parametrized by a positive semi-definite (PSD)
matrix, A, as dA(xi, xj) = (xi − xj)TA(xi − xj).

This quadratic distance (also referred to as Mahalanobis distance by analogy)
is at the root of much recent work on metric learning in which the goal consists of
appropriately estimating these matrices. As any PSD matrix can be decomposed
as A = WTW , using the above distance is equivalent to mapping the objects
using W and then using the Euclidean distance on them.

The MCML algorithm [12], works by looking for a matrix A whose corre-
sponding mapping makes all classes collapse into a single target point per class
(which means null distances), which are arbitrarily far away from each other.

To construct a criterion that measures goodness with regard to the above
idealized mapping, the following probability of xi being similar (i.e. from the
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same class in the context of the present paper) to any other xj is introduced as
follows.

pA(j|i) = 1

Zi
e−dA

ij =
e−dA

ij∑
k �=i e

−dA
ik

where dAij = d
A(xi, xj). For each i, this is a discrete probability density function

ranging for all j such that i 
= j.
The more classes collapse into a single point and are far away from each other,

the closer these probabilities will be to the following target probability:

p0(j|i) ∝
{
1 if xi and xj belong to the same class
0 otherwise

The Kullback-Leibler divergence can be used as an objective measure of how
far we are from the goal of having all classes maximally collapsed. The criterion
to be minimized is the above mentioned divergence averaged for all objects i,
which can be written as [12]:

JM (A,X) =
1

n

n∑
i=1

p0(j|i) log
p0(j|i)
pA(j|i)

This criterion can be changed to an equivalent one after obviating constant
terms:

J(A,X) =
1

n

n∑
i,j=1

p0(j|i)dAij +
1

n

n∑
i=1

log
∑
k �=i

e−dA
ik

When minimizing this criterion with regard to A, the problem becomes con-
vex. This adds some guarantees for applying optimization methods based on the
gradient, which is given by:

∇A J(A,X) =
1

n

n∑
i,j=1

(p0(j|i)− pA(j|i)) · ∇A d
A
ij

where ∇A d
A
ij = (xi − xj)(xi − xj)T .

The corresponding gradient descent algorithm is guaranteed to converge to a
global optimum but is extremely inefficient in practice as it needs to perform
O(n2) operations involving O(d2) matrices. Moreover, the PSD constraint on A
needs to be enforced at each iteration which implies a further O(d3) computa-
tional burden per iteration.

In the rest of the paper we will restrict ourselves to moderate dimensional
problems and will concentrate only in reducing the O(n2) cost as much as pos-
sible at the same time that the quality of the learned metric gets improved.
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Fig. 1. Illustrative example displaying same-class neighborhood sets, Sβ(yi), for a
synthetic banana-shaped set for values β = 0.15(left) and β = 0.4(right). Different-
class sets, Dβ(yi) are not shown.

3 Maximally Collapsing Clusters around Representative
Prototypes

One of the problems of MCML is related to the computational cost per iteration.
A relatively straightforward way of alleviating this problem while maintaining
the rationale of the method consists of considering a convenient set of landmark
or anchor points to which distances are measured instead of the whole training
set. The same idea has been largely used in the literature in different contexts [16,
17] and specifically for this very same problem [18].

The above expressions need to be rewritten in terms of the given training set,
X , and a (reduced) landmark set Y = {yi}mi=1. In both criterion and gradient
expressions all terms (xi − xj) must be substituted by (yi − xj) and the i index
must range now over the set Y . If the set Y is small but representative, the new
criterion obtained is a good approximation of the original one.

Regardless of the way in which landmark points are obtained, the correspond-
ing algorithm will be referred here to as MCMLA(α), where the A suffix refers
to the use of anchors and the proportion α = m

n is the only parameter that
controls the size of Y while maintaining the relative sizes of the classes as in
X . In the particular case of X = Y , we have MCMLA(1) which matches the
original MCML algorithm. For high proportion values, the behavior of the al-
gorithm is very similar to MCML. On the other hand, the smaller its value,
the more efficient the algorithm will be. Below a particular value of α which is
problem dependent, the MCMLA algorithm usually deteriorates due to the poor
representativity of the landmarks used with regard to the whole set X .

The first step of the new proposal consists of restricting the probability func-
tions only to objects, xj , in the close neighborhood of yi. In fact, for each (fixed)
landmark, yi, we define the (β ·n)-nearest same-class neighbors, Sβ(yi), and the
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(β · n)-nearest different-class neighbors, Dβ(yi), and then redefine the probabil-
ities as

pA(j|i) = 1

Zi
e−dA(yi,xj), ∀xj ∈ Nβ(yi)

where Zi must be redefined accordingly and Nβ(yi) = Sβ(yi) ∪ Dβ(yi). The
parameter β ∈ (0, 1] is a proportion over the size of X that controls the size of
the neighborhoods around each landmark. As far as the size of the neighborhoods
is fixed, it is straightforward to redefine the above criteria and gradient which
will be written now as JM (A, Y,X,Nβ), J(A, Y,X,Nβ) and ∇AJ(A, Y,X,Nβ),
respectively.

Figure 1 illustrates the Sβ sets for two different values of β (0.15 and 0.4) for
a fixed number of landmarks generated using k-means clustering on a synthetic
banana-shaped two dimensional set. Note that with the proposed modification,
probabilities still represent true similarities according to class labels but only in
a neighborhood of the landmarks. Note also that the optimization problem is
mathematically equivalent but it will lead to a different solution. In addition,
the effective size of the set of constraints (pairs of objects) taken into account
has been reduced to a proportion which is α ·β of the original MCML one while
the same reduction when using MCMLA is only α.

It is possible to generalize the problem further by considering the set Y as a
variable and then try to learn it. To this end, we first write the corresponding
gradient as

∇Y J(A, Y,X,Nβ) =
1

m

∑
i : yi ∈ Y

j : xj ∈ Nβ(xi)

(p0(j|i)− pA(j|i)) · ∇Y d
A
ij

with ∇Y d
A
ij = 2A(yi−xj). This expression can be plugged into the same gradient

based optimization algorithm along with∇A J(A, Y,X,Nβ) in order to learn both
metric and landmarks at the same time. It is important to note that the problem
is no longer convex in general. Nevertheless, with reasonable initializations and
in a wide range of experiments it is possible to obtain appropriately good results
that approximate the MCML ones as both parameters approach one.

The new algorithm will be referred to as MCMLC(α, β) where the C suffix
stands for changing anchors. In the following section, several experiments with
different kinds of data are carried out in order to put forward the main benefits
of the proposal with regard to previous algorithms.

4 Experiments and Results

Several different publicly available databases have been adopted in order to
compare the different methods and extensions described in this work. Firstly,
some small size databases from the UCI repository [19] as in previous works
have been considered. Moreover, databases involving handwritten digits from
the Multiple Features Database [20] and the well-known AR face database [21]
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Table 1. Details of the databases used in the experimental validation

Name Size Dimension Classes Objects/class

Iris 150 4 3 50

Wine 178 13 3 48–71

Balance 625 4 3 49–288

Ionosphere 351 34 2 126–225

Mfeat-kar 1000 20 10 100

AR 532 30 38 14

have also been used. For the purposes of this work, the dimensionality of these
two databases has been reduced to 20 and 30, respectively, by using PCA. Table 1
shows the details of the databases. In the particular case of the AR database,
only 14 images (the ones without occlusions: scarf, glasses, etc.) per individual
(20 men and 20 women) have been taken into account.

All data has been used to learn a metric matrix which has been evaluated
by computing the leaving one out error of the nearest neighbor classifier in the
corresponding mapped space. Although this is well known to be an optimistic
measure of (classification) performance, we have found it well suited to make
relative comparisons about the quality of the different metrics and mappings.
All the presented results correspond to the average of 5 independent runs.

Landmark points for MCMLA(α) have been selected by running a standard
k-means algorithm with k = α ·n (the number of desired landmark points given
by the proportion α). The initial set of prototypes for MCMLC(α, β) has been
computed in exactly the same way using α. Moreover, the size of the subsampled
set of neighbors for each prototype has been selected as a proportion, β, of the
total size of the available training set.

For the experiments in the present work, typical α values in { 18 ,
1
4 ,

1
2} for

the MCMLA have ben set [18]. The proportion of prototypes for MCMLC has
been set to smaller values, α ∈ { 1

20 ,
1
10 ,

1
5} while the proportion of neighbors per

prototype, β, has been set to 5 equally spaced values between 1
10 and 1

2 . In the
particular case of the AR database in which the number of objects per class is
only 14, the 3 values of α and 5 values of β have been set as equally spaced
between 1

5 and 2
5 , and

1
10 and 1

2 , respectively.
The methods considered in this work and corresponding extensions have been

implemented using the toolbox drtools [22]. All the other parameters of the
different methods have been tuned as in the above toolbox and taking into
account appropriate ranges. All databases were centered and normalized (to a
fixed and common domain) prior to using the algorithms.

For illustration purposes, some measures on the MCMLC algorithm as it
iterates using the small database Wine are shown in Figure 2. These are repre-
sentative of the behavior of the algorithm in all the databases considered in this
work. In particular, the value of the modified criterion, JM (A, Y,X,Nβ), along
with the corresponding original MCML criterion using all pairs, JM (A,X), are
shown for two different settings for (α, β) on the left hand side of this figure.
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Fig. 2. Criterion (left) and rank (right) values obtained at each iteration when using
algorithm MCMLC on the wine dataset. The original MCML criterion is shown to-
gether with the MCMLC one for two different (α, β) settings. Strict (or full) rank is
shown together with the rank when keeping only the largest eigenvalues up to 90% of
the total.

Even noting that absolute values are not directly comparable, we see that the
new criteria closely follow the behavior of the original one although it does not
necessarily optimize it. As expected, we also see that higher values of β lead
to (significantly) smaller values of the original criterion. A subproduct of the
new proposal is a reduced variability and consequently the possibility of faster
convergence. However, this advantage has not been fully exploited in the present
work.

On the right hand side of Figure 2, the values of the ranks of the (PSD version
of the) metric matrix with iterations is plotted. The same rank after keeping only
the directions that correspond to 90% of the eigenvalues is also shown. As was
previously put forward for the MCML algorithm [12, 18], the (full) ranks slowly
decrease to arrive at the optimum. Moreover, this decrease does not depend
much on the parameter β. On the other hand, a larger sparseness of the metric
matrices is observed for greater values of β. If we restrict the ranks in the same
way, we observe a significant decrease for higher values of β.

Comparative experiments using MCMLA and MCMLC with the different set-
tings mentioned have also been carried out. The corresponding performance mea-
sures on four of the databases are shown in Figure 3. In these plots, the averaged
leaving one out error rate estimate corresponding to the nearest neighbor clas-
sifier is displayed with regard to the relative number of constraints effectively
processed by each algorithm at each iteration (in a logarithmic scale). That is, α
for MCMLA(α) and the product α · β for MCMLC(α, β). This relative number
is an accurate estimate of the computational burden of each algorithm.

The results for the original MCML algorithm are not shown but they are in
all cases indistinguishable from the ones obtained for MCMLA( 12 ). Looking at
the curves in Figure 3, we see that it is possible to reproduce the behavior of
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Fig. 3. Performance obtained for the metric learning algorithm with different number
of anchors, MCMLA(α), and the proposed generalization with different number of
prototypes, MCMLC (α, β). The leaving one out estimate of the 1-NN classifier is
shown against the relative number of constraints each method uses (that is, α and
α · β, respectively).

the original MCML algorithm at 50 and 25% of its cost. When using α = 1
8

(12% in computational cost), the behavior of MCMLA begins to deteriorate in
the two larger databases and very significantly in the case of AR. On the other
hand, MCMLC with different settings is not only able to reproduce the original
behavior but also to improve it. It can be seen that in most of the cases there
is a tradeoff between reducing the two parameters and improving the result. In
general, we have observed very good results when using from 1% to 5% of the
original constraints (around 10% in the case of AR).

5 Concluding Remarks

An empirical evaluation of an extension of a metric learning algorithm that
includes prototype generation and adaptation has been considered. The proposed
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approach is able to improve both the quality of the metrics obtained and the
computational efficiency of the method by significantly reducing the effective
number of constraints effectively taken into account at each gradient step.

Some interesting facts and also some critical points have been discovered in
this work. Amongst the bad news, the tuning of these methods is not trivial
and it is not easy to automate. In fact, more experimentation is needed prior to
establishing whether an optimal tradeoff between the two parameters introduced
can be found. On the other hand, we have observed that the proposed method
leads to good results for a relatively wide range of its parameters.

Apart from consolidating some of the findings of the present work, efforts are
also being currently directed towards improving the behavior of the algorithm by
forcing and maintaining the sparseness of the metric matrix. A more ambitious
line of research tries to formulate some of the ideas in the present work in a more
general way. This would make possible to apply them to other metric learning
algorithms.
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Università di Salerno, Via Ponte Don Melillo, 1 I-84084 Fisciano (SA), Italy
{pfoggia,mvento}@unisa.it

Abstract. People re-identification consists in identifying a person that
comes back in a scene where it has been previously detected. This key
problem in visual surveillance applications may concern single or multi
camera systems. Features encoding each person should be rich enough
to provide an efficient re-identification while being sufficiently robust to
remain significant through the different phenomena which may alter the
appearance of a person in a video. We propose in this paper a method
that encodes people’s appearance through a string of salient points. The
similarity between two such strings is encoded by a kernel. This last
kernel is combined with a tracking algorithm in order to associate a set
of strings to each person and to measure similarities between persons
entering into the scene and persons who left it.

Keywords: Re-identification, String kernel, Visual surveillance.

1 Introduction

The purpose of re-identification is to identify people coming back into the field
of view of a camera. Several types of features including interest point [9,2],
histograms [3,10,16,8], shape [6] and graph based representations [17,11,13,2],
have been proposed in the literature. However, some features like histograms
do not encode any spatial information while some others like interest point and
graph based representations may induce a matching step that requires important
execution times. Moreover complex features like bags or graphs [13] of interest
points, RAG [2] may be sensitive to the evolution of the appearance of a person
in a video due to his displacements or occlusions.

Independently of the type of features used to perform the re-identification
step, re-identification methods may be split into two categories: methods of the
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first group [9] compute a unique signature for each object and perform the re-
identification based on this single signature. Methods of the second group [3,18]
delay the re-identification that is then performed on a set of signatures. Us-
ing a method of the latter category imposes to base the comparison between
two objects on a comparison of two sets of signatures rather than between two
single signatures. However such an approach can potentially better capture the
variability of the appearance of a person over a video.

Our approach belongs to the second category and describes the appearance
of a person by a set of RGB string descriptors (Section 2) computed over a
sliding window. A kernel between two sets of strings (Section 3) is then applied
in order to encode the similarity between two persons. The integration of this
kernel into a tracking method is described in Section 4 while Section 5 reports
several experiments that demonstrate the validity of our approach.

2 RGB String Descriptor Construction Scheme

One of the main challenge in people re-identification is to capture peoples’ ap-
pearance properties. As mentioned in Section 1, several modelings have been
developed. However, although complex models such as graph based representa-
tion offer the advantage of a precise modeling of an object, they usually require a
complex matching step and important execution times. An alternative solution
consists in using a string descriptor. Indeed, a string allows an effective com-
parison while preserving useful information of the region of interest. Although a
string usually encodes less information than a graph, we expect a greater stability
of this simpler structure over time.

The first step of our method consists in separating subjects from the back-
ground. To that end, we use binary object masks [2] defined by a foreground
detection with shadow removals. Each moving person within a frame is thus
associated to a mask and to a bounding box characterized using a salient string.
Each character of this last string is defined by a couple of coordinates (x,y) and
the associated RGB image’s color. The construction of a salient string is outlined
in Figure 1. This construction consists of the following 3 steps:

First, we apply a Deriche edge detector on each moving person according to
its binary mask within a frame.

Then, for the second stage we build a discriminating curve of the object using
contour points provided by the Deriche detector. Let us consider the bounding
box W × H of an object obja whose top-left corner’s coordinates are denoted
(tlx,tly). Thanks to the Deriche filter, obja, should be delineated by two main
contours (Figure 1-step-1). For each value h ∈ {0, . . . , H − 1}, we consider the
horizontal line segment defined as the intersection between the bounding box of
obja and the line yh = h + tly. The x coordinate of the central point of obja at
height yh is denoted xh and is defined as the x coordinate of the weighted mean
of all points along the line segment. More precisely, xh is defined as:

∀h ∈ {0, . . . , H − 1} x̄h =

∑W
w=0 |∇I(xw, yh)|2.xw∑W

w=0 |∇I(xw , yh)|2
, (1)
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Fig. 1. RGB string construction steps

where xw= tlx+w, I(xw , yh) denotes the pixel’s value of (xw, yh) and |∇I(xw, yh)|
is the amplitude of its gradient.

The last and third step, enforces the quality of the resulting curve. Indeed,
our resulting curve (Figure 1-step-2) is sensible to small perturbations of the
gradient on each line and contains important discontinuities. This last point
may alter the similarity of two curves of a same person taken on two different
frames. We thus propose to regularize this curve through an energy minimization
framework. Our energy function (equation 2) combines two terms: the former
encodes the attachment to the initial curve (x̄h,yh). The latter is a regularization
term, which enforces the continuity of the curve. Hence, we assume that, the
energy functional of the curve c = (x∗h, yh)h∈{0,...,H−1} is defined as follows:

j(c) =

H∑
h=1

(x̄h − x∗h)2 + λ(x∗h − x∗h−1)
2 , (2)

where λ is a tuning parameter. The average coordinate x̄h is given by equation 1
and x∗h is the corresponding final coordinate.

Minimization of equation 2 leads to search for the zeros of its gradient:

∂j

∂x∗h
= 2(1 + 2λ)x∗h − 2λ(x∗h−1 + x

∗
h+1)− 2x̄h = 0 . (3)

Equation 3 corresponds to the formulation of a tridiagonal system which can be
solved in O(n). This last minimization step obtained using equation 3 provides
the final curve c = (x∗h, yh)h∈{0,...,H−1} , where each point is associated to its
RGB value (Figure 1-step-3).

3 People Description

Curves encoding of people’s appearance may be altered by the addition of erro-
neous extremities; encoding, for example, a part of the floor or a difference of
sampling due to the variations of the distance between a person and the cam-
era. In order to cope with such variations we consider each curve as a string



336 A. Mahboubi et al.

and encode the similarity between two strings using the global alignment kernel
defined by [4]:

KGA(s1, s2) =
∑

π∈A(n,m)

e−Ds1,s2(π) , (4)

where n and m, denote the length of the first string s1 and the second string s2
respectively. An alignment is noted π and A(n,m) represents the set of all align-
ments between s1 and s2. The symbol D denotes the Dynamic Time Warping
distance. It measures the discrepancy between two strings s1 and s2 according
to an alignment π. Function D is defined [4] as:

Ds1,s2(π) =

|π|∑
i=1

ϕ(xπ1(i), yπ2(i)) , (5)

where s1 = (xi)i∈{1,..,n}, s2 = (yi)i∈{1,...m} and function ϕ corresponds to a
distance function defined [4] as follows:

ϕ(x, y) =
1

2σ2
‖x− y‖2 + log(2− e−

‖x−y‖2
2σ2 ) , (6)

where x and y denote the RGB values of the first object and the second object
respectively. Symbol σ denotes a tuning parameter. The log term is added to the
squared Euclidean distance ‖x−y‖2 in order to ensure the definite positiveness of
KGA (equation 4) [4]. Note that, using equation 5, equation 4 may be computed
using a slightly modified version of the classical string edit distance algorithm.
The computational complexity of equation 4 is thus bounded by O(nm) where
n and m denote respectively the length of s1 and s2.

Fig. 2. Geometrical interpretation of equation 7

3.1 People’s Kernel

As the appearance of a person evolves in a scene, due to slight changes of the
pose, the use of a single string is inappropriate to identify a person. Assuming
that, the appearance of a person is established in a set of successive frames, we
thus describe each person by a set of salient strings. The temporal window over
which this set is built is called the history tracking window (HTW).
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Each person in the video is hence not defined by a single string but by a set
of strings (on HTW). This set may include outlier strings, due to slight changes
of the pose or occlusion. The construction of a representative string based on
a simple average of all the strings of a set (in the Hilbert space defined by
the kernel) may be sensible to such outliers. We thus suggest to enforce the
robustness of our representative string through the use of an one class SVM
classifier.

Let H denotes the Hilbert space defined by KGA (equation 4). In order to get
a robust model encoding the mean appearance of a person, we first use KGA

to project the mapping of all strings onto the unit-sphere of H. This operation
is performed by normalizing our kernel [5]. Following [5], we then apply a one
class ν-SVM on each set of strings describing a person. From a geometrical point
of view, this operation is equivalent to model the set of projected strings by a
spherical cap defined by a weight vector w and an offset ρ both provided by the ν-
SVM algorithm. These two parameters define the hyper plane whose intersection
with the unit sphere defines the spherical cap. Strings whose projection on the
unit sphere lies outside the spherical cap are considered as outliers. Each person
is thus encoded by a triplet (w, ρ, S) where S corresponds to the set of strings
and (w, ρ) are defined from a one class ν-SVM. Figure 2 gives the geometric
interpretation of (w, ρ); The parameter w indicates the center of the spherical cap
and may be intuitively understood as the vector encoding the mean appearance
of a person over its HTW window. The parameter ρ influence the radius of the
spherical cap and may be understood as the extend of the set of representative
strings in S.

Let PA = (wA, ρA, SA) and PB = (wB , ρB, SB) denote two triplets encoding
two persons A and B. The distance between A and B is defined from the angle
between vectors wA and wB defined as follows [5]:

dsphere(wA, wB) = arccos

(
wT

AKA,BwB

‖wA‖‖wB‖

)
(7)

where ‖wA‖ and ‖wB‖ denote the norms of wA and wB in H and KA,B is a
|SA| × |SB| matrix defined by KA,B = (Knorm(t, t′))(t,t′)∈SA×SB

, where Knorm

denotes our normalized kernel.
Based on dsphere, the kernel between A and B is defined as the following

product of RBF kernels:

Kchange(PA, PB) = e

−d2sphere(wA,wB)

2σ2
moy e

−(ρA−ρB)2

2σ2
origin , (8)

where σmoy and σorigin are tuning variables.

4 Re-identification

Our tracking algorithm is based on a previous work [13]. The tracking algorithm
uses four labels ‘new’, ‘get-out’, ‘unknown’ and ‘get-back’ with the following
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Algorithm 1. Algorithm for re-identification. Note: frame is a collection of
object

1: DBo= φ ;
2: while ( not at end of this video ) do
3: for each (object in pastFrame ) do
4: if ((object not in currentFrame) AND (object.duration ≥ HTW )) then
5: DBo.Insert(video,object);
6: end if
7: end for
8: for each (object in currentFrame) do
9: object.computeString(); � section 2
10: if (object not in pastFrame) then
11: object.label=”unknown”;
12: object.duration=0;
13: if (DBo is empty) then
14: object.label=”new”;
15: object.duration=1;
16: end if
17: end if
18: if (object.label==”unknown”) then
19: object.duration++;
20: if (object.duration== HTW) then
21: var integer index=-1;
22: computeSimilarity(DBo,object,index);
23: if (index ≥ 0) then
24: object.label=”get-back”;
25: DBo.delete(index);
26: else
27: object.label=”new”;
28: end if
29: end if
30: end if
31: end for
32: end while

meaning: ‘new ’ refers to an object classified as new, ‘get-out ’ represents an ob-
ject leaving the scene, ‘unknown’ describes a query object (an object recently
appeared, not yet classified) and ‘get-back ’ refers to an object classified as an
old one after a re-identification step. All masks detected in the first frame of a
video are considered as new persons. The proposed re-identification approach is
depicted in Algorithm 1:

– ‘get-out’ processing (lines 3 to 7): when an object leaves the scene its triplet
P = (w, ρ, S) (Section 3) computed over the last |HTW | frames is stored in
an output object data base noted DBo.

– ‘new’ processing (lines 10 to 17): when an ‘unknown’ person is found and
DBo is empty we label this ‘unknown’ person as new.
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– ‘unknown’ processing (lines 18 to 30) when an ‘unknown’ person is found and
DBo is not empty we should postpone the identification of this ‘unknown’
person; The ‘unknown’ person is tracked on |HTW | frames in order to have
its description by a triplet (w, ρ, S). Using this description we calculate the
value of kernel Kchange (equation 8) between this ‘unknown’ person and all
‘get-out’ persons present in our database (line 22). Similarities between the
‘unknown’ person and the ‘get-out’ persons are sorted in decreasing order so
that the first ‘get-out’ person of this list corresponds to the best candidate
for a re-identification. Our criterion to map an ‘unknown’ person to ‘get-
out’, and thus to label it as ‘get-back’ is based on a threshold on the first
two maximal similarity values maxker and max2 of the list of similarities
(max2 ≤ maxKer). This criterion called, SC is defined as maxker > th1 and
max2

maxKer
< th2, where th1 and th2 are experimentally fixed thresholds.

Classically, any tracking algorithm has to cope with many phenomena such as
occlusions. In this paper we limit the study to overlapping bounding boxes.
When an overlap greater than an experimentally fixed threshold occurs between
two bounding boxes, an occlusion is found. We assume two kinds of occlusions:
partial occlusions; where the occluded object remains visible and severe occlu-
sions; where the occluded object is completely hidden. If two or more objects
(detected at time t) merge together (at time t+ 1) to form one new object, this
object is deemed to be a group rather than an occlusion. Group cases are not
considered in this work.

5 Experiments

The proposed algorithm has been tested on v01 and v05 video sequences of the
PETS’09 S2L1 dataset1. Each sequence contains multiple persons and occlusion
cases. We have to notice that all the tuning parameters used in this work are
set by cross-validation. As the used dataset does not contains a training set, the
tuning parameters are set using the test dataset.

In our first experiment we have evaluated how different values of the length of
HTW affect the re-identification accuracy. Figure 3 shows the effects for HTW
changes on the true positive measurement for each view. The obtained results
show that, v01 performs at peak efficiency for HTW=30. Video v05 reach its
optimum at HTW=20. These curves also show that the length of HTW is not a
crucial parameter of our method.

In a second experiment we show the improvement of the proposed kernel with
respect to a histogram based approach. Similarly to [15] where histograms are
defined from the already extracted blob (segmented parts), we propose the fol-
lowing histograms construction scheme: color histograms are computed on HTW
frames for both the query object and each ‘get-out’ persons contained in DBo.
Then, we try to map the query object with one of the ‘get-out’ objects already
stored in DBo using EMD distance [14] between histograms. If a map is found,

1 Available at http://www.cvg.rdg.ac.uk/PETS2009/a.html

http://www.cvg.rdg.ac.uk/PETS2009/a.html
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Fig. 3. HTW effects Fig. 4. CMC curves

the query object gets the label of the mapped ‘get-out’ object, and we update
DBo. Otherwise, we create a new label for the query object. The map criterion
used here is similar to the above SC criterion (Section 4), nevertheless the best
candidate corresponds to the minimum since we use distances. Table 1 reports
the comparison results between histogram-based, kernel-based approaches and
graph approach of [2]. As it can be seen from Table 1, the performance of the
proposed kernel is superior to the histogram method as expected. Furthermore,
the results of the proposed kernel give lower values than the graph approach
regarding v05, while the results are clearly better for v01. We attribute this to
the high detection accuracy in v01. Furthermore, v05 contains a lot of severe
occlusions that are not specifically addressed in the proposed method. Indeed
on such severe occlusions a large part of a person is usually hidden by another
person.

To validate our method of re-identification we used the Cumulative Match-
ing Characteristic (CMC) curves. The CMC curve represents the percentage of
times the correct identity match is found in the first n matches. Figure 4 shows
the CMC curves for the two views. We can see that the performance of v01 is
much better than that of v05. This last result being due to the large number of
occlusions occurring in v05.

In a third experiment, we assess the statistical performance of the proposed
kernel. To this end, we iteratively shift the beginning of the video by a unit of
50 frames to obtain 15 subsets of the original video i.e., t0 ∈ [50, 750]. We thus
reported for each set the TrueP and the FalseP values. Finally we computed
the mean (avg) and the standard deviation (σ) of the obtained results. As ex-
pected, the results are coherent with Table 1 (line 2) since the resulting couples
(avg, σ) regarding TrueP are equal to (0.90, 0.08) and (0.66, 0.165) for v01 and
v05 respectively.

Table 1. Comparison results

view01 view05
TrueP FalseP TrueP FalseP

histogram 51.46% 48.54% 49.91% 50.09%

kernel 100% 0% 62.61% 33.39%

graph of [2] 81% 7% 83% 13%

Table 2. Evaluation results

View
work of [1] current work
MODA MODA MOTA SFDA

v01 0.67 0.97 0.97 0.91

v05 0.72 0.60 0.60 0.81
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We also used the exhaustive comparison of 13 methods defined in [7] in order
to compare our results to the state of the art. The study [7] did a quantitative
evaluation of the results submitted by contributing authors of the two PETS
workshops in 2009 on PETS’09 S2.L1 dataset. We noticed that the submitted
results of [1] outmatch all other methods using the MODA, MOTA, MODP,
MOTP SODA and SFDA metrics described in [12]. Therefore, we only compare
our results to that last method. Table 2 depicts the following: the left column
shows the best results [1] obtained by methods described in [7] on each video.
The second column of Table 2 shows that our method obtains a lower MODA
index than [1] on v05 but clearly outperform this last method on v01. These
results may again be explained by the high number of occlusions in v05 which are
overcomed by [1] using multiple views of each person while the present method
is restricted to a single view. These results indicate thus the relevance of the
proposed re-identification method when objects are not severely occluded.

6 Conclusion

In this work, we addressed the people re-identification problem by proposing a
new approach based on RGB string kernels. A benchmark public dataset was
used to validate our method. Our results show that the proposed approach out-
performs state-of-the art methods when few severe occlusions occur.

Our future research will focus on the investigation of occlusion and group
problems still using a single camera. To handle these phenomena, we should for
each object severely occluded or entering into a group, suspend the update of its
curves for the frames where it is hidden. Indeed in such cases no reliable feature
may be extracted to characterize hidden persons.
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Sede Manizales. Kilómetro 7 v́ıa al Aeropuerto, Campus La Nubia – Bloque Q,
Piso 2, Manizales, Colombia

morozcoa@unal.edu.co

Abstract. How to select the prototypes for classification in the dissimi-
larity space remains an open and interesting problem. Especially, achiev-
ing scalability of the methods is desirable due to enormous amounts of
information arising in many fields. In this paper we pose the question:
are genetic algorithms good for scalable prototype selection? We propose
two methods based on genetic algorithms, one supervised and the other
unsupervised, whose analyses provide an answer to the question. Results
on dissimilarity datasets show the effectiveness of the proposals.

Keywords: dissimilarity space, scalable prototype selection, genetic
algorithm.

1 Introduction

The vector space representation is a common option to represent the data for
learning tasks since many statistical techniques are applicable for this kind of
representation. However, there is an increasing number of real-world problems
which are not vectorial. Instead, the data are given in terms of pairwise dis-
similarities which may be non-Euclidean and even non-metric. In [1] several
approaches were presented to learn from dissimilarity data, where the dissimi-
larity space (DS) has several advantages over the other approaches. In the DS
approach, the dissimilarities of the training objects to the representation set are
interpreted as coordinates in the space. Class separability is a property that one
wants to maintain after the mapping which can be accomplished by a careful
selection of the prototypes. However, a random selection was found to perform
well for large numbers of prototypes [2]. Since this is the fastest method, the
selection of good prototypes by more dedicated methods is of interest only for
small numbers of prototypes. A good method must be able to find a minimal set
without a significant decrease in accuracy of classifiers in the DS.
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Several methods have been proposed [2,3] to find small representation sets by
supervised or unsupervised strategies. Supervised methods have the advantage
of maintaining a high accuracy, however this is achieved at high computational
costs; besides, they might suffer from overfitting. Unsupervised methods have the
advantages of being fast, generalizing well and avoiding overfitting. However, as
a disadvantage, they are not always good in maintaining class separability since
class labels are not taken into account. When the purpose is to learn from large
datasets, the scalability of the method must also be considered since it is known
that the prototype selection problem is NP -complete. This has been overlooked
so far and only some studies such as the one in [4] copes with the problem. Large
datasets arise in several situations and being able to deal with them is of interest.
Some of the issues that cause the existence of large datasets are: vast amounts of
data due to dropping costs for capturing, transmitting, processing and storing;
modalities that have millions of classes such as biometrics; and modalities that
have hundreds of thousands samples such as brain tractography data in [4].

This paper is aimed to study if genetic algorithms (GAs) are good for scalable
prototype selection and if a fast clustering replacing the random initialization
can help to improve the results further. It is usually assumed in the literature
that linear-time algorithms are acceptable for scaling up to large datasets [5]. We
also adopt this assumption. The parameter that dominates the complexity in our
problem is the number of samples, since we assume that the other parameter, the
number of selected prototypes, will always be small and that the full dissimilarity
matrix is already computed. Some strategies to cope with scalability include
parallelism, techniques to work with data that do not fit into memory, stochastic
methods, etc. However in this study we focus on the time complexity and, in case
the full dissimilarity matrix do not fit into memory, the developed approaches
are easily adaptable by loading the dissimilarities on demand.

In [6], a GA was proposed for prototype selection but it is not able to cope with
scalability issues. Here, we develop two versions of a scalable GA that optimize
two different criteria for prototype selection. The remaining part of the paper
is organized as follows: Section 2 presents the dissimilarity representation and
prototype selection, Section 3 presents the two proposed methods. Experimental
results are reported and discussed in Section 4 and conclusions are drawn in
Section 5.

2 Dissimilarity Space and Prototype Selection

The dissimilarity space was proposed by Pekalska and Duin [1]. It was postulated
as a Euclidean vector space, which allows the use of several classifiers. Let X
be the space of objects which may not be vectorial, let R = {r1, r2, ..., rk} be
the set of prototypes such that R ∈ X , and let d : X ×X !→ R+ be a suitable
dissimilarity measure for the problem. The prototypes may be chosen based
on some criterion or even at random; however, the goal is that they have good
representation capabilities specially when pursuing small representation sets. For
a finite training set T = {x1, x2, ..., xn} such that T ∈ X , the dissimilarity space
is created by the data dependent mapping φdR : X !→ Rk where:
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φdR(xi) = [d(xi, r1) d(xi, r2) ... d(xi, rk)]. (1)

For dissimilarity representations, the adaptation of prototype selection tech-
niques for improving the k-nearest neighbour (k-NN) classifier as well as the
adaptation of clustering techniques have been investigated showing good re-
sults [2]. Other approaches use the geometry and the distribution of the objects
to find the prototypes [7]. In [2], various techniques were compared such as Kcen-
tres, mode seeking, forward selection (FS), linear programming, editing and con-
densing, and a mixture of Kcentres with linear programming. These techniques
showed good performances. However, some of them are computationally expen-
sive for very large datasets such as the FS, which runtime is quadratic in the
number of samples.

3 Proposed Methods

We propose two different variants of GA with different scalable criteria for pro-
totype selection. The two methods receive as parameter the desired number
of prototypes. Finding an appropriate number of prototypes for each particular
problem is out of the scope of this paper, however for this purpose some methods
can be applied. For example, a good practice is to find the intrinsic dimension-
ality and select the number of prototypes accordingly. We assume we have a
square dissimilarity matrix D among all training samples; the prototypes will
be selected from this set of samples. Note that our goal is not to generate new
prototypes as combinations of the original ones, but to select ones that already
exist.

The GA is a biologically motivated search method which explores individuals
(chromosomes or solutions) created after each generation by the best fitted ones.
This property of GAs makes them much better scalable than using a full search.
In our problem, each individual is a set of prototypes of fixed cardinality k
codified in a k − vector containing in each position the index of the potential
prototype. For example the 5 − vector (65, 30, 7, 19, 87) codifies an individual
representing a set of 5 potential prototypes which can be accessed in some data
structure by the indexes 65, 30 and so on. The GA starts the search in an initial
population of randomly generated individuals.

Before executing the GA, we propose to perform a 1-step K-centres clustering
in the space of candidates, where the number of clusters equals the desired
number of prototypes. The candidates are clustered in order to guide the GA
search in such a way that it has a faster convergence. The clustering runtime is
O(nk), where n = |T |, being T the training/validation set and k = |R|. The GA
is slightly modified since its initial population is now generated by randomly
sampling one potential prototype per cluster. Therefore, each element of an
individual (also named gene) is linked to a particular cluster since only objects
from that cluster are allowed in the corresponding position of the individual.
In each generation, the best solution according to the fitness function is found
and reproduced with each member of the population with a preset probability by
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Algorithm 1. Genetic Algorithm

Input: D: dissimilarity matrix among samples and candidates to
prototypes; k: desired number of prototypes, S: number of
individuals in the population, rp: reproduction probability, mp:
mutation probability, iter: number of generations

Output: bestindividual: set of prototypes indexes
// perform a 1-step Kcentres clustering in the candidates to

prototypes to find k clusters

cluslabs ← Kcentres(D, k, 1);1

// randomly generate the population ensuring that, in the j-th
position of the individual, only objects belonging to the j-th
cluster are allowed

P ← GenerateInitialPopulation(cluslabs, D, k, S);2

while number of generations < iter do3

// find the best solution from the population and assign it to

bestindividual

foreach currentindividual in P do4

if Fitness(currentindividual, D) > Fitness(bestindividual, D)5

then
bestindividual ← currentindividual;6

end7

end8

// Evolution cycle

foreach currentindividual in P do9

// Reproduction, replace a gene of currentindividual with

probability rp by a gene of the best

Reproduce(bestindividual, currentindividual, rp);10

// Mutation, change a gene of currentindividual with

probability mp
Mutate(currentindividual, mp);11

end12

end13

gene using uniform reproduction or crossover. Elitist selection is performed since
the best fitted individual is retained for the next generation without undergoing
mutation; in addition, only the best fitted individual is selected as parent of
the next population of individuals. The rest of the population undergoes gene
mutation with a preset probability which is usually small but also with the
constrain that the new index codified in a gene must belong to the related
cluster. The pseudo-code is presented in Algorithm 1.

To achieve full scalability these methods should be able to handle: (1) large
sets of candidates to prototypes, (2) large number of individuals in the search
space of the GA and (3) large number of samples to be used (if needed) to
compute the fitness function. In our proposal, the GA handles well (1) large sets
of candidates for prototypes since we discarded the standard binary codification
of individuals that demands vectors of length equal to n where n( k. Instead,



Scalable Prototype Selection by Genetic Algorithms 347

we resorted to vectors of length equal to the number of prototypes k since we
codify only the indexes of the prototypes to be evaluated. Scalability in the
number of individuals to analyze in the search space (2) is achieved since the
stopping condition is a small predefined number of GA generations that does
not depend on the number of individuals in the search space. A small number
of generations is sufficient for GA’s convergence thanks to its guided sampling
since not all the possible combinations of prototypes are explored but only the
best ones which arise after each generation. In addition, the initial clustering
helps to avoid redundant prototypes in the same individual. Scalability in the
number of samples to be used to compute the fitness (3) will be explained in the
next subsections.

3.1 Minimum Spanning Tree Based Unsupervised Criterion

In the fitness function computation, the set of prototypes being evaluated and
the training samples are usually involved. However, note that the proper number
of prototypes k depends on the intrinsic dimension of the data which is usually
small, thereby, n( k. For large datasets this implies that the dominant term for
the fitness computation is the total number of samples n. To achieve scalability
in the fitness function it must scale well to a large n. This highly depends on how
the criterion to be optimized in the fitness function by the GA is conceived. Our
first proposal for GA criterion is based on the minimum spanning tree (MST) of
a set of prototypes. The prototypes are interpreted as nodes in a graph and the
dissimilarity values between prototypes correspond to edge weights. The sum of
edge weights (named tree weight) is used as criterion to be maximized, thereby
improving the coverage over the DS. As we used the Prim’s algorithm to find the
MST and the graph is complete, the computation of this criterion has a runtime
of O(k2 log(k)). Therefore, it is completely independent on the large number of
samples n and as a consequence highly scalable for very large problems. The
pseudo-code is presented in Algorithm 2.

The total runtime of the proposed GA with this criterion is as follows. For
computing the initial clustering of the prototypes the runtime is O(nk), for the
fitness function O(k2 log(k)), and O(k) for mutation and reproduction since each
position of the vector representing an individual has to be analyzed. The domi-
nant term in the whole procedure is O(nk), as we assume that the desired number
of prototypes is small and fixed, therefore the total runtime is O(nk). However,
if the initial clustering step is discarded, the complexity is only O(k2 log(k)),
which in case of needing sub-linear (in n) methods is more appropriate.

3.2 Supervised Criterion Based on Counting Matching Labels

Our second criterion proposal is a linear-time supervised criterion that is different
from previous expensive supervised ones [8] since it does not compute a classi-
fication error in the DS or an intra-class distance, which are usually quadratic.
Our method, instead, considers each candidate to prototype as a representative
of a cluster and every object in T is assigned to the cluster represented by its
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Algorithm 2. Unsupervised Fitness function by MST

Input: w: vector of prototypes indexes; D: dissimilarity matrix
Output: res: fitness value
// Interpret the prototypes indexed in w as nodes and

dissimilarities among them as edges weights of a complete

graph G = (V,E)

// compute minimum spanning tree by Prim’s algorithm

V ′ ← V [1];1

k ← |V |;2

E′ ← ∅;3

while |E′| < k − 1 do4

// select an edge of minimum weight which connects one node in

V’ with a node which is not in V’

// add the new edge to E’, add the new node to V’

end5

T ← (V ′, E′);6

// sum all the weights of edges in E′

res ← SumWeights(E’);7

Algorithm 3. Supervised Fitness function

Input: w: vector of prototypes indexes; D: dissimilarity matrix
Output: res: fitness value
// interpret the prototypes rj indexed in w as centers of

clusters

res ← 0;1

foreach x ∈ T do2

// find the nearest prototype of x
r′ ← argmin(D[x, rj ]);3

if getclasslabel(x)=getclasslabel(r’) then4

res ← res+ 1;5

end6

end7

nearest prototype. The proposed criterion counts the number of assigned objects
whose labels match their representative label. The best solution is the one that
maximizes this value. This has the smallest runtime for a supervised method
that uses all the samples (O(nk)). The pseudo-code is presented in Algorithm 3.

The runtime of the whole supervised GA is as follows. For computing the
clustering the runtime is O(nk), for the fitness function O(nk), and for mutation
and reproduction O(k). The total runtime is O(nk). However, in practice, this is
higher than the unsupervised procedure since it is multiplied by a high constant
due to the cost for comparing the labels. In general these times are better than
or comparable to other linear (in n) algorithms compared in our experiments
such as the Kcentres which is O(nk) and the farthest first transversal (FFT)
which is also O(nk).
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4 Experiments

4.1 Datasets and Experimental Setup

Four different datasets of moderate size were used for the experiments: the
Zongker data [9] computed by deformable template matching, Pendigits [10,11]
computed by edit distances, XM2VTS [12] computed by chi square distances on
LBP histograms, and Diabetes [13] computed using Euclidean distances on fea-
tures. The characteristics of the datasets as well as the cardinality of the training
sets used are summarized in Table 1.

Table 1. Characteristics of the datasets used in this study, the |T | column refers to
the training/validation set cardinality used for the experiments

Datasets # Classes # Obj Metric |T |
Zongker 10 200 × 10 no 1000

Diabetes 2 500/268 yes 384

Pendigits 10 10992 no 5000

XM2VTS 295 12× 295 yes 1770

The datasets were randomly divided 30 times into training/validation set and
test set. The validation set is used to optimize the criteria. The candidates to
prototypes also belong to the validation set. The best performing classifier per
dataset between the linear discriminant classifier (LDC) and the 1-NN classifier
was used to report the classification errors for the different prototype selection
methods compared, which are: random selection, FS [2] optimizing the super-
vised criterion; FFT [4], Kcentres [2], GA in the space of clustered prototypes
with the proposed unsupervised fitness function based on MST (GA (clust)
span), GA with the proposed unsupervised fitness function based on MST with-
out clustering the prototypes (GA span), GA in the space of clustered prototypes
with the proposed supervised fitness function (GA (clust) sup), and GA with
the proposed supervised fitness function (GA sup).

The parameters used for the GA are: 20 individuals for the initial population,
0.5 for reproduction probability per gene, 0.02 for mutation probability per gene,
the stopping condition is 20 generations reached for the GA with initial clustering
in the space of prototypes, and 25 for the GA without the clustering.

4.2 Results and Discussion

From test set errors, for an increasing number of GA generations, we observed
that 20 generations provide a good compromise for acceptable classification er-
ror at acceptable runtime. We used this number in all the experiments. Figure 1
presents the average errors over 30 experiments for 10, 15, 20, 30, 40 and 50
prototypes. It can be seen in Fig. 1(a) that, for the Zongker dataset, the best
results are obtained with the FS and the supervised criterion, also the proposed
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Fig. 1. Average errors for different numbers of prototypes for the best performing
classifier in each dataset

GA with this criterion outperforms the other unsupervised methods in accuracy
with a comparable efficiency. The FS outperformed the GA in this dataset be-
cause it does not present a significant class overlap. However, when there is a
significant overlap among the classes as in XM2VTS (see Fig. 1(d)), the GA
outperforms the FS since it takes the relation among all the prototypes into
account. One problem of the FS that causes its lower performance is that when
an object is selected to be a prototype, it cannot be discarded afterwards.

From results on Diabetes dataset in Fig. 1(c), it can be seen that the proposed
GA with the unsupervised criterion outperforms the other methods except for
the FFT which has a similar performance but at a higher computational cost.
From results for Pendigits in Fig. 1(b) we find again that this method is among
the best performing ones both in speed and accuracy (see Fig. 2(b)); in addition,
the computation of times for some of the datasets reported in Fig. 2 shows that
the unsupervised GA is the fastest method. The supervised proposal is compa-
rable to other unsupervised methods in execution times. This analysis, together
with the computational complexity analysis, indicates that the presented GAs
are able to scale well to large datasets when the final goal is the selection of
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Fig. 2. Average times in seconds plotted in log scale

prototypes. However, the fitness function must also be designed scalable. As an
extra bonus, GAs are embarrassingly parallelizable. Regarding our second ques-
tion whether cluster analysis may be helpful, we see that results with initial
clustering are usually equal to or better than those without clustering the pro-
totypes before executing the GA, except for the XM2VTS complicated dataset
that presents a significant class overlap.

In the XM2VTS we find that the best method is the proposed supervised GA
but without the clustering. A clear explanation of why this happens was derived
from the data exploration by multidimensional scaling (MDS) and the knowledge
of the dataset characteristics. This is a dataset with strong illumination changes:
frontal, right, and left illuminations of the faces. The three different illuminations
create three large clusters of objects, so they are determined by noise instead of
by the identities. Due to this, the unsupervised clustering before the GA does
not find suitable clusters. However, our supervised criterion handles the class
overlap well. Thereby, the supervised clustering that we evaluate in our criterion
is not linked to the initial unsupervised clustering of the space of prototypes.
We analyzed relations between performance of methods and data distribution
by inspecting the MDS plots. We found that the supervised method handles well
datasets with homogeneous distributions or with class overlap. In contrast, the
unsupervised criterion copes better with inhomogeneous distributions where we
can find inside the same class densely populated regions as well as sparse ones.
In addition, the MST-based unsupervised method handles well elongated classes
as in the Diabetes dataset.

5 Conclusions

The selection of prototypes is a crucial step for classification in the dissimilarity
space. In this paper we proposed two different prototype selection methods by
a GA and two different supervised and unsupervised criteria. Our work focuses
on achieving low computational costs by finding approximate but sufficiently
good solutions by powerful search heuristics, and maintaining low asymptotic
complexities in the fitness function. Experimental results showed the validity of
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the proposals for selecting good prototypes. The runtime analysis showed that
the proposed methods are able to scale well to large datasets. Other general
approaches include parallelism, stochastic methods etc. The proposed unsuper-
vised method is the fastest since the evaluation of its criterion does not depend
on the size of the dataset but on the number of prototypes. Besides, the linear
time supervised criterion is also very fast compared to other supervised ones,
which are generally quadratic and thereby do not scale well, and is comparable
to unsupervised methods.
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Abstract. This paper presents a relevance feedback procedure based
on logistic regression analysis. Since, the dimension of the feature vector
associated to each image is typically larger than the number of evalu-
ated images by the user, different logistic regression models have to be
fitted separately. Each fitted model provides us with a relevance proba-
bility and a confidence interval for that probability. In order to aggregate
these set of probabilities and confidence intervals we use an IOWA oper-
ator. The results will show the success of our algorithm and that OWA
operators are an efficient and natural way of dealing with this kind of
fusion problems.

Keywords: Content-based image retrieval, logistic regression, IOWA.

1 Introduction

An aggregation operator is designed to reduce a set of objects into a unique rep-
resentative one. The average or the weighted average are prototypes of numeric
aggregation operators. OrderedWeighted Averaging (OWA) operators generalize
the idea of the weighted average and in an additive form include the minimum
and the maximum as particular cases. An important feature of these operators
is the reordering step: the arguments are ordered by their value. Then a vec-
tor of weights is selected in order to model some aggregation imperative. Since
their introduction in 1988 [8] OWA operators have been successfully used in
a wide range of applications Yager and Filev introduced the class of Induced
OWA (IOWA) operators in which the ordering of the arguments is induced by
another variable called the inducing order variable. IOWA operators allow us to
aggregate not only numerical quantities but also objects as intervals.

In a previous work we have made use of OWA operators [7] to fuse a collection
of relevance probabilities into a single one in a Content Based Image Retrieval
(CBIR) system. CBIR systems are one of the most promising techniques for
retrieving multimedia information [6]. Visual features related to color, shape
and texture are extracted in order to describe the image content. A general
classification can be made: low level features (color, texture and shape) and high
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level features (usually obtained by combining low level features in a reasonable
predefined model). Since high level features have a strong dependency with the
application domain, many research activities have been focused on the extraction
of good low level descriptors [3] [2]. A query can be seen as an expression of
an information need to be satisfied. Any CBIR system aims at finding images
relevant to a query. The relationship between any image in the database and
a particular query can be expressed by a relevance value. This relevance value
relies on the user perceived satisfaction and can be interpreted as a relevance
probability. In this work a relevance probability π(x) is a quantity which reflects
the estimate of the relevance of the image with low level feature vector x with
respect to the user’s information needs. Initially, every image in the database is
equally likely, but as more information of the user’s preferences is available, the
probability concentrates on a subset of the database. The iterative algorithms
which, in order to improve the result set from a query, require that the user enters
his preferences in each iteration are called relevance feedback algorithms [9]. In
[7] we presented a first version of the procedure (based on logistic regression
analysis) that we improve in this work. In our algorithm, the image database is
ranked by the output of the logistic regression model and shown to the user, who
selects a few positive and negative samples, repeating the process in an iterative
way until he/she is satisfied. The problem of the small sample size with respect
to the number of features is solved by adjusting several partial generalized linear
models and combining their relevance probabilities (and their confidence interval
for those probabilities). Thus, we face to the question of how to combine them in
order to rank the database. We have seen this question as an information fusion
problem which is takled by using OWA and IOWA operators.

The major improvements introduced in this paper compared to [7] are the
use of confidence intervals as the estimation for relevance probabilities, and the
aggregation of them using an IOWA operator. Another novelty comes from the
use of bootstrap sampling to compensate the size of the sample set that feeds
the different logistic regression models.

Section 2 is a brief recall of the notation corresponding to OWA and IOWA
operators. Section 3 summarize how logistic regression is applied to our CBIR
system. In section 4 IOWA operator is explained. The bootstrap selection of
sample images and the ranking procedure is detailed in section 5. In section 6
and 7 we present the experimental results and we extract some conclusions.

2 Notation and Preliminary Results

An OWA operator of dimension m is a mapping f : Rm → R with an asso-
ciated weighting vector W = (w1, . . . , wm) such that

∑m
j=1 wj = 1 and where

f(a1, . . . , am) =
∑m

j=1 wjbj being bj the j-th largest element of the collection of
aggregated objects a1, . . . , am. For W = (1, 0, . . . , 0) we obtain f(a1, . . . , am) =
maxi ai, forW = (0, 0, . . . , 1), f(a1, . . . , am)=mini ai and forW=( 1

m ,
1
m , . . . ,

1
m ),

we have that f(a1, . . . , am)= 1
m

∑m
j=i ai.
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As OWA operators are bounded by the Max and Min operators, Yager intro-
duced a measure call orness to characterize the degree to which the aggregation
is like an or (Max) operation: orness(W ) = 1

m−1

∑m
i=1(m− i)wi

This author also introduced the concept of dispersion or entropy associated
with the weighting vector Disp(W ) =

∑m
i=1 wi lnwi. It reflects how much of the

information in the arguments is used during an aggregation based on W .
Yager extended the OWA operator to the case where the arguments to be

aggregated are in an interval [a, b]. Let Q : [0, 1] → [0, 1] be a function having
the properties of Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y) if x > y, then Q is a basic
unit-interval monotonic (BUM) function. This function provides the weights of
the values in the interval. And the corresponding continuous interval argument
OWA (COWA) operator FQ is defined as :

FQ([a, b]) =

∫ 1

0

dQ(y)

dy
(b− y(b− a))dy = a+ (b − a)

∫ 1

0

Q(y)dy. (1)

If we denote λ =
∫ 1

0
Q(y)dy we have that FQ([a, b]) = (1− λ)a+ λb, and λ is

called the attitudinal character of the BUM function Q and its interpretation is
similar to the orness.

An Induced Ordered Weighted Average (IOWA) operator of dimension m
is a function ΦW : R × Rm → R with an associated weighting vector W =
(w1, . . . , wm) such that

∑m
j=1 wj = 1, and it is defined to aggregate the set of

second arguments of a list ofm 2-tuples {(v1, d1), . . . , (vm, dm)} according to the
expression ΦW ((v1, d1), . . . , (vm, dm)) =

∑m
i=1 widσ(i) where σ is a permutation

of {1, . . . ,m} such that vσ(i) ≥ vσ(i+1), ∀i ∈ 1, . . . ,m− 1, i.e. (vσ(i), dσ(i)) is the
2-tuple with vσ(i) the i-th highest value in the set {v1, . . . , vm}. Yager and Filev
[4] call the set of values {vi}mi=1 the values of an inducing order variable and
{di}mi=1 the values of the argument variable.

3 A Relevance Feedback Mechanism

Previously to the application of the CBIR algorithm each image has been de-
scribed by using low level features and the j-th image is identified to a k-
dimensional feature vector xj . Our system can work currently with different
low level features such as color and texture.

At every iteration of the procedure, the user inspects a (non-random) sample
of images from the database and makes a number of positive and negative selec-
tions We would like to point out that the first screen in our method shows a set
of representatives of the database obtained through a Partition Around Medoids
(PAM) method [5]. In this way, the user is able to inspect a variety of images and
hopefully some images are similar to his/her query. The information provided
by the user is captured in a binary variable Y where Y = 1 or Y = 0 indicates
that a given image in the sample is classified as an example or counter-example
respectively. We have to model the distribution of Y with the low level features
associated to the image.
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Generalized linear models (GLMs) extend ordinary regression models to en-
compass non-normal response distributions and modeling functions of the mean.
In particular, logistic regression models are the most important for categorical
response data. For a binary response variable Y and t explanatory variables
X1, . . . , Xt, the model for π(x) = P (Y = 1 | x) at values x = (x1, . . . , xt) of

predictors is logit[π(x)] = α+ β1x1 + . . .+ βtxt, where logit[π(x)] = ln π(x)
1−π(x) .

A practical question arises at this point: the user evaluates a small number of
images, let us say nr, at each iteration r of the whole search process, and nr is
very small compared to the dimension, k, of the vector of characteristics x. Our
approach consists in partitioning the set of characteristics into C homogeneous
subsets, i.e. we consider x = (x(1), . . . , x(C)) i.e. x ∈ Rk where k =

∑C
c=1 kc.

Each x(i) corresponds to a set of semantically related characteristics (for instance
color).

Then, we consider separately each subvector x(j), j = 1, . . . , C and fit a re-
gression model. For simplicity, let us denote by u one of these subvectors and by
t its dimension. We will estimate the probability that Y = 1 given the feature
vector u i.e. P (Y = 1|u) = π(u). In order to estimate this probability we take
into account that our data in a given iteration, will be the sample (ui, yi) with
i = 1, . . . , n where ui and yi are the feature vector and the user preference for the
i-th image evaluated in the iteration. We fit a logistic regression model assuming
that the data (ui, yi) with i = 1, . . . , n are independent. The random variable Y ,
giving the random preference for an image with feature vector u, has a Bernoulli
distribution (where 1 means success or that image is considered relevant) where
the probability of one is π(u). In summary, Y conditioned to u is distributed
as Y ∼ Bi(1, π(u)). Furthermore, the different Yi’s (given the feature vectors
ui’s) are conditionally independent. Furthermore the logistic regression model
will assume that

π(u) =
exp(β0 + β1u1 + . . .+ βtut)

1 + exp(β0 + β1u1 + . . .+ βtut)
. (2)

We can compute the maximun likelihood estimator of β = (β0, β1, . . . , βt)
′,

β̂, by using the Fisher Scoring method as usual (see [1], pp. 145-149). The
probability π(u) is estimated by replacing in the equation 2, the parameters

β by the corresponding MLE β̂. The corresponding confidence interval for this
probability can be calculated by using the distribution of β̂. Let us denote the
corresponding confidence interval as I({(u1, y1), . . . , (un, yn)}).

For each image the output of the logistic regression module provides a set of
C confidence intervals for C relevance probabilities, they have been obtained by
considering C different sets of low level characteristics of the image. Clearly, we
need to use an aggregation operator to combine them.

4 An IOWA Operator

We need to aggregate the different confidence intervals associated to the different
subvectors. Let us denote by I1(x), I2(x), . . . , IC(x) the confidence intervals for
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the probabilities of relevance associated to a given image with low level features
x. The indices 1, . . . , C correspond to different subsets of characteristics of the
image.

For any interval Ii(x) = (πi − li, πi + li) we define an inducing order variable
that takes into account both the interval amplitude 2li and its midpoint πi
according to: FQ(πi − li, πi + li) = πi − 1

3 li for i = 1, . . . , C. Notice that, in
this way, we aggregate the continuous intervals making use of a COWA operator
with BUM function Q(y) = y2, y ∈ [0, 1] with an attitudinal character λ = 1

3 .
Let us denote by vi the aggregated value of Ii(x) for i = 1, . . . , C, then

{vi}Ci=1 are the values of the variable, which induces the order within the inter-
vals. Let us denote by I(1)(x), . . . , I(C)(x) the ordered intervals, then we use a
vector of weights w = (wi, . . . , wC) to aggregate them. The final interval will be∑C

j=1 wjI(j)(x). Next, we will explain our proposal for the weighting vector.
A key issue in defining an OWA operator is the choice of the vector of weights.

Several approaches have been presented including learning from data, exponen-
tial smoothing or aggregating by quantifiers. Our proposal (already detailed in
[7]) is to construct a parametric family of weights as a mixture of a binomial
and a discrete uniform distributions. One of the advantages of the use of this
family of weights is that the binomial distribution allows us to concentrate the
higher values of the weights around μ = (m − 1)α, while the discrete uniform
component of the mixture allows us to keep the weights away from μ high enough
so the information from all relevance probabilities is taken into account in the
aggregation process.

5 Ranking the Database

This section explains how we combined historical information from all iterations
together with all the theoretical concepts explained in previous sections to obtain
one single relevance probability value that would allow us to rank the images in
the database.

5.1 Learning from Previous Iterations

Let us denote by n+r and n−r the number of images marked as relevant and
non-relevant at the r-th iteration respectively. The experience shows that n−r is
usually much greater than n+r , thus the sample is clearly unbalanced.

In order to correct the bias, we use a randomization procedure that takes
into account the positive and negative selections of the r-th iteration as well
as the ones selected by the user in all iterations previous to the r-th. Let us
denote by N+

r and N−
r the sets of relevant and non-relevant images stored along

the iterations 1, . . . , r respectively. The logistic regression model described in
section 3 is fed with a set of n+ and n− randomly selected images without
replacement from N+

r and N−
r respectively. In our procedure the sample sizes

n+ and n− remain constant through all iterations. A reasonable condition would
be that an image selected (as positive or negative) in a particular iteration, q,
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has more probability to be included amongst the n+ and n− sample images
than one selected in iteration q−1. This way, the probability of a positive image
to be included is: P (x+q ) = 2q∑

r
t=1 2tn+

t

, where q is the iteration where image

x+q was positively evaluated, r is the present iteration, and n+t is the number
of relevant images in iteration t. For a non-relevant image, the probability is:
P (x−q ) = q∑r

t=1 tn−
t

, where q is the iteration where image x−q was negatively

evaluated, and n−t is the number of non-relevant images in iteration t.
P (x−q ) increases linearly with respect to the iterations, while P (x+q ) increases

exponentially. This difference is because if the user considers an image as non-
relevant he will not change his mind at any point of the query. On the other
hand, as the search progresses, it can be assumed that the user is much more
interested in the most recently relevant selections than in the previous ones. This
is the reason why a much more abrupt memory function (like the exponential)
is used.

5.2 The Algorithm

Summarizing, in every iteration the ranking procedure works as follows:

– We have a database composed of N images, each one with feature vector xj ,

with j = 1 . . .N . Each feature vector is splitted in C subvectors x
(c)
j , with

c = 1 . . . C.
– For every x

(c)
j , S intervals for the estimation of the relevance probability

are computed: Icj,s, with s = 1 . . . S. The intervals I
(c)
j,s are the outcome of

S logistic regression models. The input of these models are random sets
composed of n+ and n− sample images.

– The S intervals I
(c)
j,s are averaged thus obtaining one single interval for ev-

ery subvector and image: Ĩ
(c)
j =< I

(c)
j,s >s, where <>s means arithmetical

averaging over the s variable.
– The C intervals corresponding to image j, j = 1 . . . N , are aggregated by

means of an IOWA to obtain a single and only interval for every image Ĩj .
– COWA operator with attitudinal character λ = 1/3 is used to select one

single value from the Ĩj intervals to represent them. These N values are
used to re-rank the database.

6 Experimental Results

6.1 Experimental Setup

A database with a total number of about 4700 images has been used for the
experiments. The semantic content of the images contained in this experimen-
tal database covers a wide variety of themes such as flowers, horses, paintings,
landscapes, trees, etc.

In order to evaluate our proposed search procedure, a test was repeated for
several distinct users and images. The objective of the test was to find a certain
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Fig. 1. Target images used in experiments. Figure also shows in (h) and (i) the evolu-
tion of (+) relevance probability, (*) superior and (o) inferior limits of confidence in-
terval, and (�) position through iterations for the target image in a particular search.

image (target image) amongst the 4700 images of the database. The initial rank-
ing of the target image was always higher than 2500. The developped system
permits to see 32 thumbnailed images at a time. Initially the images are ran-
domly ordered, except for the first 64 images (two first pages of the interface).
These first 64 images are the medoids obtained with a PAM method [5] applied
to the complete database. This new strategy would allow the user to find what
he/she may consider as relevant images more rapidly just by inspecting only a
few of the first pages of the database. In further iterations the images are ranked
according to the procedure explained in section 5.1. Several parameters need to
be adjusted for the algorithm to work properly. We set the values of n+, n− and
S (see section 5.1) to 4, 6 and 8 respectively. The number of images selected
by the user in every iteration could not be inferior to 6 considering the sum of
relevant plus non-relevant, and could not be zero for any of them individually.
The search is considered successful if the target appears in the ranking list in
a position between 1 and 32. If the number of iterations required to complete
the search is superior to 20 the system considers that the search failed. Different
users were asked to do the search for different images, while a total number of
seven different images corresponding to different themes were used (see figure 1).



360 E. de Ves et al.

The feature vector, with dimension k = 50, was splitted into C = 10 subvectors
with 5 components each. We have avoided to mix features of different nature in
the same subvector. A subvector could not contain information from color and
texture at the same time.

6.2 Descriptives

A total number of 40 queries were analyzed. Table 1 shows several descriptive
values of the experiment. The iterations means are calculated considering all
images and users. It must be noticed that the mean value of this variable is 3.07,
with quartiles 1 to 3 ranging from 2 to 3.25 iterations. These values show that
the number of iterations needed to successfully complete a query is quite small.
From this point of view the proposed procedure can be considered very effective.

The number of relevant and non-relevant selections (n+ and n− respectively)
are analyzed considering all iterations, users and images. Table 1 clearly shows
that the number of positive selections is usually much more smaller than negative
ones, therefore, our criteria for the random selection of images balancing the
sample sizes (see section 5.1) is justified.

Table 1. Descriptive values (quartiles, mean and standard deviation) of the distribu-
tion of the number of iterations, n+ and n−

Iterations Pos Neg

Mean 3.0732 5.2143 14.8333
Std 2.5039 3.4632 17.3826
Q1 2 3 4
Q2 2 5 7
Q3 3.25 7 17

=⇒
(a)

=⇒
(b)

2

1

(c)

Fig. 2. Pairs of images used for tests with two sequential images (a), (b). First images
on the left and second images on the right. The histogram of iterations for double
sequential queries is also shown in (c).
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Figure 1(h)(i) exhibits several typical learning curves for different particular
searches. The target ranking improves (approximates to the first page) through
iterations, while relevance probability increases and confidence interval value re-
duces. This curves also depend on the user abilities and experience. This can be
seen on figure 1 (i) where, although the search ends in 6 iterations, the learn-
ing curves are not as straight as in figure 1(h). Figures 3(a) and (b) show the
histograms of the amplitudes of the confidence intervals for a subset of texture
and color information respectively, for image in figure 1(b) where all users and
iterations are considered. Most of the information in these histograms is con-
centrated around extreme values: smaller than 0.01 meaning that the relevance
probabilities are very precise and reliable information can be extracted from
them, or between 0.49 and 0.5 pointing out the complete absence of knowledge
about the relevance probability values.

Another interesting experiment was performed in order to to evaluate if our
procedure is able to cope with a change in the user’s mind in the middle of a
search. For some images the users were asked to modify the search. Two target
images were sequentially shown, and after the first target image was found,
the users were asked to find the second one but without changing any of the
parameters of the system: the memory for positive and negative selections as
well as the database ranking remained without change from the first to the
second target. Figure 2 shows the pairs of images used for the tests.
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Fig. 3. Histograms of the amplitude of confidence intervals for a subset of (a) texture
information and (b) color information for the queries of image 1(b)

A total number of 10 tests were carried out. Figure 2(c) shows the histogram
of the number of iterations needed to complete the search of both images se-
quentially. Examples of target ranking and relevance probability evolution are
depicted in figure 4(a) and 4(b) for images 2(a) and 2(b) respectively. The re-
sults are shown to be very successful. In all cases the users were able to find both
target images in sequential order. As a conclusion we can say that our system
shows very satisfactory recovering capabilities.
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Fig. 4. Figure shows in (a) and (b) the evolution of (�) first and (o) second tar-
get ranking and (+) first and (�) second relevance probability for double sequential
searches

7 Conclusions and Further Developments

We have presented in this paper a content based image retrieval system that uses
as fundamental tools logistic regression, fuzzy aggregation operators and boot-
strap techniques. In fact, it could be considered as a very general and flexible
framework. We have shown that it can be adapted easily to a particular problem
(to find a target image) providing successful results. A major difficulty in this
context is concerned with the ratio between the dimension of the feature vector
associated to each image and the number of images evaluated by the user. This
drawback was approached in [7] by fitting several partial generalized linear mod-
els and combining their relevance probabilities by means of an OWA operator.
We have improved our previous work by describing the relevance probabilities
through their confidence intervals and aggregating them by means of an IOWA
operator. Although other improvements have been added, in our opinion the
correct aggregation of a more complete and complex information has become
the major strength of the algorithm.
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Abstract. A change detection algorithm for multi-dimensional data
reduces the input space to a single statistic and compares it with a
threshold to signal change. This study investigates the performance of
two methods for estimating such a threshold: bootstrapping and control
charts. The methods are tested on a challenging dataset of emotional
facial expressions, recorded in real-time using Kinect for Windows. Our
results favoured the control chart threshold and suggested a possible
benefit from using multiple detectors.

1 Introduction

Detecting a change point in a sequence of observations is a well researched sta-
tistical problem with applications in areas such as Economics [1], Data Stream
Mining [2] and Quality Control [3]. The basic premise of change point detec-
tion is that, given a sequence of observations x1, x2, ..., xn, there exists a change
point t such that x1, x2, ..., xt was generated exclusively by some process P0 and
xt, xt+1, ..., xn was generated exclusively by some other process P1.

Detecting change points in multivariate data is a challenging problem. A va-
riety of multivariate change detectors have been proposed [4–6], some of which
amount to a novel combination of univariate detectors, while others take a di-
mensionality reduction approach. In the latter case, the multidimensional data is
reduced to a single statistic which should ideally correlate with the appearance of
change. One of the main issues with such detectors is identifying a threshold on
the single statistic for flagging a change. Here we examine the suitability of two
approaches to setting a threshold: bootstrapping and control charts. Figure 1
illustrates the multivariate change detection process.

2 Related Work

Change detection has been an active area of research for more than 60 years, de-
veloping out of methods for statistical quality control. Being well researched and
statistically grounded, Control Charts are the basis for many methods such as
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Fig. 1. Illustration of the process of change detection in streaming multidimensional
data and the role of the threshold. The data was obtained from Kinect while a partic-
ipant was acting a sequence of emotional states: i. Happiness, ii. Sadness, iii. Anger,
iv. Indifference, v. Surprise.

CUSUM (Cumulative Sum) charts and EWMA (Exponentially Weighted Mov-
ing Average) charts. Some of the earliest work in the field is that of Shewhart
[3, 7] and his development of the control chart for sequential process control,
now widely adopted by industry. The field is now very broad, with a number
of reference monographs including Wald [8], Basseville and Nikiforov [9] and
Brodsky and Darkhovsky [10] although largely focussed on univariate data.

There are differing approaches to the problem of detecting change in multivari-
ate data. Lowry and Montgomery [11] reviewed multivariate control charts for
quality control. Consider n p-dimensional vectors of observations x1,x2, . . . ,xn.
It is possible to simply create p individual charts, one for each feature, not re-
ducing the dimensionality of the data. However, this approach does not account
for correlation between the features. Even truly multivariate control chart ap-
proaches such as the Hotelling Control Chart [12] can be equated to dimension-
ality reduction and thresholding, as it reduces the p dimensions of the data to a
single T 2 statistic. The list below demonstrates the inconsistency of approaches
to setting such a threshold.

Work: Decision method
Zamba & Hawkins [13]: γ set according to a desired false alarm rate.

Song et al. [14]: Original statistical test.
Dasu et al. [5]: Monte Carlo Bootstrapping.
Kuncheva [15]: Signficance of log-likelihood ratio.
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The scope of this work is concerned with establishing a method for threshold
setting that is applicable to multiple approaches to change detection.

3 Multivariate Change Detectors

Here we assume that the change detection criteria are calculated from pre-
specified windows of data W1 and W2. Change is sought between the distri-
butions in the two windows.

3.1 Parametric Detectors: Hotelling

The two windows of data contain points x = [x1, . . . , xp]
T ∈ �p. Hotelling [16]

proposes a statistical test for equivalence of the means of the two distributions
from which W1 and W2 are sampled. The null hypothesis is that W1 and W2 are
drawn independently from two multivariate normal distributions with the same
mean and covariance matrices. Denote the sample means by μ̂1 and μ̂2, the
pooled sample covariance matrix by Σ̂, and the cardinalities of the two windows
by M1 = |W1| and M2 = |W2|. The T 2 statistic is calculated as

T 2 =
M1M2(M1 +M2 − p− 1)

p(M1 +M2 − 2)(M1 +M2)
× (μ̂1 − μ̂2)T Σ̂−1(μ̂1 − μ̂2) (1)

Under the null hypothesis, T 2 has F distribution with degrees of freedom p
and M1 +M2− p+1. The T 2 statistic is the Mahalanobis distance between the
two sample means multiplied by a constant. The p-value of the statistical test is
instantly available and the desired significance level will determine the change
threshold.

The obvious problem with the Hotelling test is that it is only meant to detect
changes in the position of the means. Thus it will not be able to indicate change
of variance or a linear transformation of the data that does not affect the mean.

3.2 Semi-parametric Detectors: SPLL

The semi-parametric log-likelihood criterion (SPLL) for change detection [6]
comes as a special case of a log-likelihood framework, and is modified to ensure
computational simplicity. Suppose that the data before the change comes from
a Gaussian mixture p1(x) with c components each with the same covariance
matrix. The parameters of the mixture are estimated from the first window of
data W1. The change detection criterion is derived using an upper bound of the
log-likelihood of the data in the second window, W2. The criterion is calculated
as

SPLL = max{SPLL(W1,W2), SPLL(W2,W1)}. (2)

where

SPLL(W1,W2) =
1

M2

∑
x∈W2

(x− μi∗)TΣ−1(x− μi∗). (3)
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where M2 is the number of objects in W2, and

i∗ = arg
c

min
i=1

{
(x− μi)TΣ−1(x− μi)

}
(4)

is the index of the component with the smallest squared Mahalanobis distance
between x and its centre.

If the assumptions for p1 are met, and if W2 comes from p1, the squared
Mahalanobis distances have a chi-square distribution with p degrees of freedom.
The expected value is p and the standard deviation is

√
2p. If W2 does not come

from the same distribution, then the mean of the distances will deviate from
p. Subsequently, we swap the two windows and calculate the criterion again,
this time SPLL(W2,W1). By taking the maximum of the two, SPLL becomes a
monotonic statistic.

3.3 Non-parametric Detectors: Kullback-Leibler Distance

In this approach, the data distribution in window W1 is represented as a collec-
tion of K bins (regions in �p), with a probability mass value assigned to each
bin. Call this empirical distribution P̂1. The data inW2 is distributed in the bins
according to the points’ locations, giving empirical distribution P̂2. The criterion
function is

KL(P̂2||P̂1) =
K∑
i=1

P̂2(i) log

{
P̂2(i)

P̂1(i)

}
(5)

where i is the bin number, and P̂ (i) is the estimated probability in bin i.
If the two distributions are identical, the value of KL(P2||P1) is zero. The

larger the value, the higher the likelihood that P2 is different from P1. Note that
we have only approximations of P1 and P2. The usefulness of the KL criterion
depends on the quality of the approximations and on finding a threshold λ such
that change is declared if KL > λ.

In Dasu et al.’s change detector [5], W1 is expanded until change is detected,
giving a good basis for approximating P1. On the other hand, P2 has to be
estimated from a short recent window, hence the estimate may be noisy. Dasu
et al. approximate the P1 probability mass function by building kdq trees which
can be updated with the streaming data. Other approximations are also possible,
including the clustering approach for SPLL.

The KL distance criterion is not related to a straightforward statistical test
that will give us a fixed threshold λ, which was one of the motivations behind
our study.

4 Threshold Setting Approaches

Hotelling T 2 detector has the advantage of a statistically interpretable threshold.
However, it has a serious shortcoming in that it only detects change in the mean
of the data. To equip SPLL and KL with a similar type of threshold, here we
examine two threshold setting approaches for the change detection statistic.
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4.1 Bootstrapping

Let |W1| = M1. To determine a threshold, a bootstrap sample of M1 objects
is drawn from W1. A discrete probability distribution P̂1 is approximated from
this sample. Subsequently, another sample of the same size is drawn from W1

and its distribution Q̂1 is evaluated. For example, if P̂1 is a set of bins, Q̂1

is calculated as the proportion of the data from the second bootstrap sample
in the respective bins. The match between P̂1 and Q̂1 is estimated using, for
example, KL distance (5), which gives the change statistic. Running a large
number of such Monte Carlo simulations, a distribution of the change statistic
is estimated, corresponding to the null hypothesis that there is no change (all
samples were drawn from the same window,W1). We can take the Kth percentile
of this distribution as the desired threshold. This approach was adopted by Dasu
et al. [5] where the probability mass functions were approximated by a novel
combination of kd-trees and quad trees, called kdq-trees. We direct the reader
to [5] for an in-depth definition of kdq-trees. One drawback of this approach is
the excessive computation load when a new threshold is needed.

4.2 Control Chart

A less computationally demanding alternative to bootstrapping is a Shewhart
individuals control chart to monitor the change statistic. Inspired by this, our
hypothesis is that the process underlying an appropriate change statistic will
exhibit an out-of-control state when change occurs. Using a window of T obser-
vations, we calculate the centre line x̄ as the mean of the values of the statistic
returned from the change detector, and its standard deviation σ̂. The upper and
lower control limits are calculated as

x̄± 1.96
σ̂√
T
. (6)

If either of the control limits are exceeded, change is signalled. This (rather naive)
threshold estimation assumes that the change statistic has normal distribution,
and that we have a sufficiently large window so as to get reliable estimates. The
above value is for significance level α = 0.05. The bootstrap threshold does not
rely on any such assumption but is more cumbersome.

5 Experimental Investigation

All thresholds considered here, including the threshold of the Hotelling method,
are meant to control the type I error (“convict the innocent”, or accepting that
there is a change when there is none). If we set all these thresholds to 0.05, we
should expect to have false positive rate less than that. Nothing is guaranteed
about the type II error (“free the guilty”, or missing a change when there is
one). Thus we are interested to find out how the three chosen change detectors
behave for the two type of thresholds, in terms of both error types.
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5.1 Facial Expression Data

We chose a challenging real-life problem to test the change detectors. Sustained
facial expressions of five emotions were taken to be the stable states, and the
transition from one emotion to another was the change.

While a number of facial expression databases exist, they require camera
equipment and intermediate computer vision techniques to record data. In our
approach, we utilise the Face Tracking toolkit distributed with the Kinect SDK
to extract data directly from the device. This approach lends itself to analysis of
real-time streaming data The advantage of having a minimal setup is that data
capture does not have to be intrusive. This presents the opportunity of capturing
real-time data about a participant’s posture and facial expression whilst they
interact with the computer.

The Kinect Face Tracking SDK utilises the Active Appearance Model (AAM)
[17], taking into account the data from the depth sensor to allow head and face
tracking in 3D. The features we take from the Kinect are as follows:

• Features extracted by the Kinect software

◦ Face Points : 123 3D points on the face
◦ Skeleton Points : 10 3D points on the joints of the upper body
◦ Animation Units: 6 Animation Units [−1, 1]

• Six animation units and their equivalents in the Candide3 model

Animation Unit Candide3 [18] Description
AU0 AU10 Upper Lip Raiser
AU1 AU26/27 Jaw Lowerer
AU2 AU20 Lip Stretcher
AU3 AU4 Brow Lowerer
AU4 AU13/15 Lip Corner Depressor
AU5 AU2 Outer Brow Raiser

5.2 Data Capture

Each participant sat with their eyes trained on a computer screen, with a Kinect
observing them. Emotional transitions are triggered by visual instructions. The
participants were asked to hold their facial expression until instructed to change
it. The duration of a facial expression is 3 seconds. The timestamps of these
instructions are logged to provide the true positive values for the experiment.
Thus each experimental run produces about 5 expressions × 3 seconds × 30
FPS = 540 frames. Figure 2 shows an example of one of the animation units
throughout one run. The periods of sustained facial expressions are labelled.
The initial warm-up period, as well as the transition periods of 7 frames are also
indicated.

The process is facilitated by a bespoke application written in the C# language,
which utilises the Kinect SDK to retrieve frames from the sensor and extract
the features. The application acts as a TCP client which connects to a server
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Fig. 2. An example of an animation unit along one experimental run for collecting
data. The dashed vertical lines are the time points where the participant is prompted
to change their facial expression. The shaded regions are transition stages.

running in MATLAB, where the extracted features and timestamps are streamed
in real-time, ready for analysis.

5.3 Experimental Methodology

The experiment was conducted using the Animation Units from six participants,
each of whom recorded ten runs using the apparatus. Human reaction time to
visual stimuli is 180-200 ms. In a recording at approximately 30 frames per
second, a true positive detection should appear no earlier than 180/30 = 6
frames after the labelled change (prompt to change the facial expression). For
each run, we test Hotelling, KL Distance with Bootstrapping, KL Distance with
Control Charts, SPLL with Bootstrapping and SPLL with Control Charts. The
protocol below was followed for each run and for each participant:

1. Split the data into segments by label.

2. Sample a window W1 of T contiguous frames from a random segment S,
with cardinality |S| =M and random starting frame F , 7 ≤ F ≤ (M − T ).

3. Sample W2 from a random segment. If drawn from the same label as W1,
test for false positives, else test for true positives.

4. Calculate the threshold from W1 using the chosen method.

5. Calculate change statistic from W1 and W2 and compare with the thresh-
old. Store ‘change’ or ‘no change’, as well as the time taken to execute the
iteration steps.

6. Repeat 1–5 K times sampling W1 and W2 from the same label, K times
samplingW1 and W2 from different random labels. Calculate and return the
true positive and false positive rates for the chosen detector and threshold.

Five hundred runs were carried out for determining the bootstrapping thresh-
old.

To simulate a window of running change statistic only from data window W1,
we adopted the following procedure. A sliding split pointm was generated, which
was varied from 3 to T − 3. This point was used to create windows W ′

1, with
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data from 1 to m, and W ′′
1 , with data from m+ 1 to T . The statistic of interest

was calculated from these sub windows, which were assumed to come from the
same distribution.

We used T = 50, in order that the window size be above 50% of an expression
duration. While there is a great deal of literature on the subject of adaptive
windowing [19–21], this is beyond the scope of this paper. Such a technique
could be used to set T . We set K = 30. The experiment was performed on a
Core i7-3770K 4.6GHz Windows machine with 16GB RAM.

5.4 Results

We can examine the relative merit of the detectors and thresholds by plotting
them on a Receiving Operating Characteristic (ROC) curve. The x-axis is ‘1−
Specificity’ of the test, which is the false positive rate, and the y-axis is the ‘Sen-
sitivity’ of the test, which is the true positive rate. Each run for each participant
can be plotted as a point in this space. An ideal detector will reside in the top
left corner (point (0,1)), for which true positive rate is 1 and false positive rate
is 0. The closer a point is to this corner, the better the detector is.

Figure 3 shows 30 points (6 participants× 5 detector-threshold combinations).

 

 

Fig. 3. Results for the 5 detector-threshold combinations. Each point is the average
(FP,TP) for one participant, across the K = 30 iterations and 10 runs.

Each point corresponds to a participant. The marker and the colour indicate
the detector-threshold combination. The figure shows that, although the detec-
tors are not perfect individually, the points collectively form a high-quality ROC
curve.

All thresholds were calculated for level of significance 0.05. Applying this
threshold is supposed to restrict the false positives to that value. This happened
only for the SPLL detector. The price for the zero FP-rate is a low sensitivity,
making SPLL the most conservative of three detectors. The Hotelling detector
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does not live up to the expectation of FP < 0.05. It is not guaranteed to have
that FP rate if the assumptions of the test are not met - clearly the situation
here. Between this test and KL with bootstrap threshold, Hotelling is both faster
and more accurate (lower FP for the same TP). The best combination for our
type of data appeared to be the KL detector with the control chart threshold. It
exhibits an excellent compromise between FP and TP, and is faster to calculate.

Interestingly, the threshold-setting approach did not affect SPLL but did affect
the KL-detector. The control chart approach improved on the original bootstrap
approach by reducing dramatically the false positive rate without degrading
substantially the true positive rate.

We note that the way we sampled W1 and W2 may have induced some opti-
mistic bias because the samples from the same label could be overlapping. This
makes it easier for the detectors to achieve low FP rates than it would be in true
streaming data. Nevertheless, this set-up did not favour any of the detectors or
threshold-calculating methods, so the comparison is fair.

The execution time analyses favoured unequivocally the control-chart ap-
proach to finding a threshold. Also SPLL is the slowest of the detectors, fol-
lowed by KL and Hotelling. Therefore we recommend the KL-detector with a
control-chart threshold.

6 Conclusion

This paper examines the use of control charts as an alternative to the more
traditional bootstrap approach for determining a threshold for change detectors.
Our experimental study with a real-life dataset of facial expressions taken in real
time favoured the KL-detector with a control chart threshold.

We also observed that the statistical significance of the thresholds (type I
error) is not matched in the experiments, except for the SPLL detector. The non-
parametric bootstrap approach, was expected to give a more robust threshold,
not affected by a false assumption about the distribution of the change statistic.
The opposite was observed in our experiments for the KL-detector. The reason
for this could be that the window was too small to account for the variability of
the data sampled from the same label. The results of the experiment led us to
recommend the KL-detector with a control chart threshold for difficult streaming
data such as facial expressions and behavioural analysis. SPLL with control chart
threshold would be preferable where a conservative detector is needed. The same
detection accuracy would be achieved with a bootstrap threshold but the extra
computational expense is not justified.

Observing the excellent ROC curve shape offered by the collection of detec-
tors, a combination of change detectors with different threshold-setting strategies
looks a promising future research avenue. Investigation of adapting methods for
classifier fusion to this problem is required, to assess the feasibility of creating a
decision ensemble of change detectors.
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Abstract. This paper presents a novel approach to quantifying the in-
formation flow on a graph. The proposed approach is based on the solu-
tion of a wave equation, which is defined using the edge-based Laplacian
of the graph. The initial condition of the wave equation is a Gaussian
wave packet on a single edge of the graph. To measure the information
flow on the graph, we use the average return time of the Gaussian wave
packet, referred to as the wave packet commute time. The advantage of
using the edge-based Laplacian of a graph over its vertex-based coun-
terpart is that it translates results from traditional analysis to graph
theoretic domain in a more natural way. Therefore it can be useful in
applications where distance and speed of propagation are important.

Keywords: Edge-based Laplacian, wave equation, wave commute time,
speed of propagation, graph complexity.

1 Introduction

One of the most challenging problems in the study of a complex network is
to characterize the topological structure of a network, i.e., the way in which
the nodes interact with each other. Each real-world network exhibits certain
topological features that characterize its structure. Examples of such features are
clustering coefficient, maximum degree, average degree, and average path-length.
Over the recent years, researchers have developed different models that have
similar properties as the real-world network. These models help us to understand
or predict the structure of these systems. Examples of such models are scale-free
networks [15] and small-world networks [14].

Recently, spectral methods have been successfully used for quantifying the
complexity of a network. Passerini et al. [3] have used the spectrum of the nor-
malized discrete Laplacian to define the von Neumann entropy associated with a
graph. They have shown that this quantity can be used as the measure of the reg-
ularity of a graph. Han et al. [4] have approximated the von Neumann entropy
using quadratic entropy and have shown that the approximate von Neumann
entropy is related to the degree statistics of the graph. Escolano et al. [5] have
used the diffusion kernel to quantify the intrinsic complexity of the undirected
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networks. They have also extended their work to directed networks [6]. Suau et
al. [7] have analyzed the Schrödinger operator for characterizing the structure of
a network. Lee et al. [9] have used the spectral methods to discover the genetic
ancestry.

The structure of a complex network also plays an important role in the dynam-
ics of information propagation. For this reason the study of a complex networks
is becoming increasingly popular in epidemiology, where the goal is to study the
mathematical models that can be used to simulate the infectious disease out-
breaks in a social contact network. Grenfell [1] has discussed the traveling waves
in measles epidemics. Abramson et al. [2] considered traveling waves of infection
in the Hantavirus epidemics. Other real-life applications of information propa-
gation over a network include the study of spreading a message over a social
network and the study of a computer virus spreading over the internet [10].

While spectral method using discrete Laplacian have been successfully used,
they suffer from certain limitations. Since the traditional graph Laplacian is
an approximation of the continuous Laplacian to the discrete points, one of its
limitations is that it cannot be used to translate most of the continuous results
to a graph theoretic domain. For example the wave equation, defined using the
discrete Laplacian, does not have finite speed of propagation. This makes it
inappropriate for the applications that require spatial analysis or finite speed
of propagation; e.g., spread of information in a network. The problem can be
overcomed by treating edges of the network as real length intervals. This allows
us to define a new kind of Laplacian, the edge-based Laplacian (EBL) of the
graph [11][12]. The study of the edge-based Laplacian may be of great interest
in appplications where the distance and speed of propagation are important.

In this paper our goal is to study the use of a wave equation, for the purpose
of measuring the information flow across the network. The wave equation is
defined using the edge-based Laplacian of a graph, where the initial condition is
a Gaussian wave packet on a single edge of the graph. We define the wave packet
hitting time, i.e., the time required for a wave packet to reach an edge f starting
from an edge e, and the wave packet commute time, i.e., the time required for a
wave packet to come back to the same edge from where it started. The remaining
of this paper is organized as follows: We commence by introducing the edge-
based Laplacian of a graph. Next we give a solution of a wave equation defined
using the edge-based Laplacian, where the initial condition is a Gaussian wave
packet. Based on the solution of wave equation we define wave packet hitting
time (WHT) and wave packet commute time (WCT). Finally, in the experiment
section, we apply the proposed method to different network models.

2 Edge-Based Laplacian of a Graph

Before introducing the edge-based Laplacian (EBL), in this section we provide
some basic definitions and notations that will be used throughout the paper. A
graph G = (V , E) consists of a finite nonempty set V of vertices and a finite
set E of unordered pairs of vertices, called edges. A directed graph or a digraph
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D = (VD, ED) consists of a finite nonempty set VD of vertices and a finite set
ED of ordered pairs of vertices, called arcs. So a digraph is a graph with an
orientation on each edge. A digraph D is called symmetric if whenever (u, v)
is an arc of D, (v, u) is also an arc of D. There is a one-to-one correspondence
between the set of symmetric digraphs and the set of graphs, given by identifying
an edge of the graph with an arc and its inverse arc on the digraph on the same
vertices. We denote by D(G) the symmetric digraph associated with the graph
G. The oriented line graph is constructed by replacing each arc of D(G) by a
vertex. These vertices are connected if the head of one arc meets the tail of
another, except that reverse pairs of arcs are not connected, i.e. ((u, v), (v, u)) is
not an edge.

We now define the EBL of a graph. The eigensystem of the EBL of a graph
can be expressed in terms of the normalized adjacency matrix of a graph and the
adjacency matrix of the oriented line graph [11][12]. Let G = (V , E) be a graph
with a boundary ∂G. Let G be the geometric realization of G. The geometric
realization is the metric space consisting of vertices V with a closed interval of
length le associated with each edge e ∈ E . We associate an edge variable xe with
each edge that represents the standard coordinate on the edge with xe(u) = 0
and xe(v) = 1. For our work, it will suffice to assume that the graph is finite with
empty boundary (i.e., ∂G = 0) and le = 1. The eigenfunctions of the EBL are
of two types; vertex-supported eigenfunctions and edge-interior eigenfunctions.

2.1 Vertex Supported Edge-Based Eigenfunctions

The vertex-supported eigenpairs of the EBL can be expressed in terms of the
eigenpairs of the normalized adjacency matrix of the graph. Let A be the adja-
cency matrix of the graph G, and Ã be the row normalized adjacency matrix.
i.e., the (i, j)th entry of Ã is given as Ã(i, j) = A(i, j)/

∑
(k,j)∈E A(k, j). Let

(φ(v), λ) be an eigenvector-eigenvalue pair for this matrix. Note φ(.) is defined
on vertices and may be extended along each edge to an edge-based eigenfunction.
Let ω2 and φ(e, xe) denote the edge-based eigenvalue and eigenfunction. Here
e = (u, v) represents an edge and xe is the standard coordinate on the edge (i.e.,
xe = 0 at v and xe = 1 at u). Then the vertex-supported eigenpairs of the EBL
are given as follows:

1. For each (φ(v), λ) with λ 
= ±1, we have a pair of eigenvalues ω2 with
ω = cos−1 λ and ω = 2π − cos−1 λ. Since there are multiple solutions to
ω = cos−1 λ, we obtain an infinite sequence of eigenfunctions; if ω0 ∈ [0, π] is
the principal solution, the eigenvalues are ω = ω0 + 2πn and ω = 2π − ω0 +
2πn, n ≥ 0. The eigenfunctions are φ(e, xe) = C(e) cos(B(e) + ωxe) where

C(e)2 =
φ(v)2 + φ(u)2 − 2φ(v)φ(u) cos(ω)

sin2(ω)

tan(B(e)) =
φ(v) cos(ω)− φ(u)
φ(v) sin(ω)
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There are two solutions here, {C,B0} or {−C,B0 + π} but both give the
same eigenfunction. The sign of C(e) must be chosen correctly to match the
phase.

2. λ = 1 is always an eigenvalue of Ã. We obtain a principle frequency ω = 0,
and therefore since φ(e, xe) = C cos(B) and so φ(v) = φ(u) = C cos(B),
which is constant on the vertices.

3. If the graph is bipartite then λ = −1 is an eigenvalue of Ã. We obtain a
principle frequency ω = π, and therefore since φ(e, xe) = C cos(B + πxe)
and so φ(v) = −φ(u), implying an alternating sign eigenfunction.

2.2 Edge-Interior Eigenfunctions

The edge-interior eigenfunctions are those eigenfunctions which are zero on ver-
tices and therefore must have a principle frequency of ω ∈ {π, 2π}. These eigen-
functions can be determined from the eigenvectors of the adjacency matrix of
the oriented line graph.

1. The eigenvector corresponding to the eigenvalue λ = 1 of the oriented line
graph provides a solution in the case ω = 2π, and we obtain |E| − |V| + 1
linearly independent solutions.

2. Similarly the eigenvector corresponding to the eigenvalue λ = −1 of the
oriented line graph provides a solution in the case ω = π. If the graph is
bipartite, then we obtain |E| − |V|+ 1 linearly independent solutions. If the
graph is non-bipartite, then we obtain |E|−|V| linearly independent solutions.

This comprises all the principal eigenpairs which are only supported on the
edges.

Note that although these eigenfunctions are orthogonal, they are not norm-
laized. To normalize these eigenfunctions we need to find the normalization factor
corresponding to each eigenvalue and divide each eigenfunction with the corre-
sponding normalization factor. Once normalized, these eigenfunctions form a
complete set of orthonormal bases.

3 Wave Packet Commute Time

Recently, we have solved a wave equation on a graph, where the initial condition
is a Gaussian wave packet on a single edge of a graph [8]. The wave equation is
a second order partial differential equation, defined as

∂2u

∂t2
(X , t) = ΔEu(X , t), (1)

where ΔE is the EBL, and X represents the value of a standard coordinate x
on an edge e. Let ω2 represents the eigenvalue of the EBL with the correspond-
ing eigenfunction φω,n(X ) = C(e, ω) cos (B(e, ω) + ωx+ 2πnx). The complete
solution is given as [8]
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u(X , t) =
∑
ω∈Ωa

C(ω, e)C(ω, f)

2

(
e−aW(x+t+μ)2

cos

[
B(e, ω) +B(f, ω) + ω

⌊
x+ t+ μ+

1

2

⌋]

+ e−aW(x−t−μ)2 cos

[
B(e, ω)− B(f, ω) + ω

⌊
x− t− μ+ 1

2

⌋])
+

1

2|E|

(
e−aW(x+t+μ)2 + e−aW(x−t−μ)2

)
+

∑
ω∈Ωb

C(ω, e)C(ω, f)

4

(
e−aW(x−t−μ)2 − e−aW(x+t+μ)2

)

+
∑
ω∈Ωc

C(ω, e)C(ω, f)

4

(
(−1)�x−t−μ+ 1

2�e−aW(x−t−μ)2

−(−1)�x+t+μ+ 1
2�e−aW(x+t+μ)2

)
. (2)

HereW(z) wraps the value of z to the range [− 1
2 ,

1
2 ), and �z� is the floor function.

Once we have the solution of the wave equation, we can define a number of
interesting invariants to understand the properties of the flow of information
across the network. This also helps us to quantify the structure of the network.
We commence by defining the wave packet commute time of a graph. Given a
graph G = (E ,V) we define the wave packet commute time (WCT) of an edge e
as follows. Assume that the initial condition of the wave equation is a Gaussian
wave packet on the edge e ∈ E and zero elsewhere. Then

WCT(e) = mint>0{t : u(e, 0.5) > δ}, (3)

i.e., the WCT is the time when the wave packet with amplitude at least δ (at
the middle of the edge), returns back to the edge e. Figure 4(a) demonstrates
the wave commute time for a simple graph with 5 nodes and 7 links. Here the
initial condition is a Gaussian wave packet on the edge e1 of the graph. The
bottom right figure shows the fraction of the wave packet returned back at time
t = 3. Note that at time t = 1, a wave packet with negative amplitude (a trough)
returns to the edge e1. A trough will always be created when a wave packet is
traveling along an edge (u, v) in the directed of v, and the degree of v is at
least 3.

Edge-commute time can also be defined in terms of the hitting time of the
wave packet. Given two edges e, f ∈ E , the wave packet hitting time (WHT) can
be defined as follows. Assume that the initial condition of the wave equation is
a Gaussian wave packet on the edge e ∈ E and zero elsewhere. Then

WHT(e, f) = mint>0{t : u(f, 0.5) > δ}, (4)

i.e., the WHT is the time when the wave packet with amplitude at least δ (at the
middle of the edge), reaches the edge f , starting from edge e. The edge-commute
time can then be defined as:
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Fig. 1. Commute time of a Gaussian wave packet on a graph

WCT(e) =
1

|E|
∑
f∈E

WHT (e, f), (5)

i.e., the WCT for the edge e is the average of the WHT over all the edges of
the graph. However, the WCT defined using the WHT is computationally more
expensive, and therefore in the experiment section we use the WCT defined in
Equation 3.

To quantify the complexity of a network, we define a global invariant based
on the WCT as:

GWCT(G) =
1

|E|
∑
e∈E
WCT (e), (6)

i.e., GWCT of a network is the average of the WCT over all the links of the
network. In the next section we will show that GWCT provides a good measure
for distinguishing graphs with different structures.

4 Experiments

In this section we study the flow of information across a network using WCT and
WHT and demonstrate the ability of GWCT to distinguish graphs with different
structural properties. We experiment our proposed method on the following three
different types of network models.
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Erdős-Rényi Model(ER) [13]: An ER graph G(n, p) is constructed by con-
necting n vertices randomly with probability p. i.e., each edge is included
in the graph with probability p independent from every other edge. These
models are also called random networks.

Watts and Strogatz Model(WS) [14]: A WS graph G(n, k, p) is
constructed in the following way. First construct a regular ring lattice, a
graph with n vertices and each vertex is connected to k nearest vertices,
k/2 on each side. Then for every vertex take every edge and rewire it with
probability p. These models are also called small-world networks.

Barabási-Albert Model(BA) [15]: A BA graph G(n, n0,m) is constructed
by an initial fully connected graph with n0 vertices. New vertices are added
to the graph one at a time. Each new vertex is connected to m previous
vertices with a probability that is proportional to the number of links that the
existing nodes already have. These models are also called scale-free networks.

Figure 2 shows an example of each of these models.

(a) random graphs (b) small-world graph (c) scale-free graph

Fig. 2. Graph models

As mentioned earlier, one of the advantages of the wave equation defined using
the EBL is that it has finite speed of propagation [11]. This makes it suitable for
applications that require finite speed of propagation. In our first experiment, we
demonstrate the ability of edge-based wave equation for identifying infected links
in a network. For this purpose, we generate a BA network and a WS network
each with 60 nodes and 175 links. We have computed the WHT for each edge of
the graph starting from an edge e. The edge e = (u, v) ∈ E is selected, such that
u is the highest degree vertex in the graph and v is the highest degree vertex in
the neighbours of u. Figure 3 shows the cumulative frequencies of infected links
for both graphs with different values of δ. As expected, the cumulative number
of infected links decreases as δ increases. Note that the links in WS network
are infected quickly than links in BA network. This is due to the presence of
hub in BA network, which distributes the wave packet with small amplitudes to
more links. The WS network, on the other hand, has more regular structure that
allows the wave packet to transmit across the network with high amplitudes.

The above experiment shows that the WCT behaves differently on different
graphs. This suggests that the WCT can be used to quantify the structure of a
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Fig. 3. Number of links infected with time

complex network. In our next experiment, we demonstrate the ability of WCT to
distinguish networks with different substructures. For this purpose, we generate
100 graphs for each model with n = 50 + (d − 1)k with k = 1, 2, ..., 100, where
n is the number of vertices. We have chosen the other parameters in such a
way so that all three types of graphs with the same number of vertices have
approximately the same number of edges. For ER models we choose p = 10/n,
for WS models we choose p = 0.25 and k = 8, and for BA models we choose
n0 = 5 and k = 4. For each graph we compute the wave commute time and
average it over all the edges. Figure 4(a) shows the average value for the three
different types of graphs. Results suggest that the wave commute time is highly
robust in distinguishing the graphs with different structures.

Figure 4(b) shows a similar analysis for vertex commute time, which is defined
as the expected number of steps for a random walk starting from a vertex u, hits
vertex v and then returns to u. The commute time of a vertex u to a vertex v can
be computed from the eigenvalues and eigenvectors of the normalized Laplacian.
Let (λ, φ) be the eigenpair of the normalized Laplacian. Then the commute time
is defined as:

CT (u, v) =

|V|∑
i=2

(√
vol

λidu
φi(u)−

√
vol

λidv
φi(v)

)2

, (7)

where du represents the degree of the vertex u and vol represents the sum of
degrees for an unweighted graph. The x-axis in Figure 4(b) shows the average
commute time over all vertices.

The mean and the standard error of the edge-commute time depend on the
regularity structure of the graph. As the regularity of the graph increases, the
value of the standard error decreases. Note that the value of WCT depends on
the size of the smallest cycle to which the edge belongs. Figure 5 shows the
mean values and the standard errors for the graphs generated in the previous
experiment. Since WS networks are more regular as compared to BA networks,
they therefore have smaller standard errors. Also, if the probability p of rewiring
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(a) Wave commute time (b) Vertex commute time

Fig. 4. Wave commute time vs commute time

Fig. 5. Mean values and standard errors

is kept low, then the WS network has more small length cycles. Therefore the
mean values of WS networks are small as compared to BA networks. Note that
ER graphs exhibit more variation in the mean values due to their random struc-
ture. Their mean and standard error values lie between that of the BA graphs
and the WS graphs.

5 Conclusion

In this paper we have studied the properties of the commute time (WCT) and
the hitting time (WHT) of a Gaussian wave packet on a graph. The WCT and
WHT are based on the solution of the wave equation defined using the edge-
based Laplacian of a graph where the initial condition is a Gaussian wave packet
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on a single edge of the graph. We have shown the application of WCT and WHT
for quantifying the structure and information flow of a network. The advantage
of using the edge-based Laplacian (EBL) is that this approach is more closely
related to mathematical analysis than the usual discrete Laplacian. This allows
us to implement equation on graphs which have finite speed of propagation.
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Abstract. In bioinformatics, many learning tasks involve pair-input
data (i.e., inputs representing object pairs) where inputs are not inde-
pendent. Two cross-validation schemes for symmetric pair-input data
are considered. The mean and variance of cross-validation estimate devi-
ations from respective generalization performances are examined in the
situation where the learned model is applied to pairs of two previously
unseen objects. In experiments with the task of learning protein func-
tional similarities, large positive mean deviations were observed with the
relaxed scheme due to training–validation dependencies while the strict
scheme yielded small negative mean deviations and higher variances.
The properties of the strict scheme can be explained by the reduction
in cross-validation training set sizes when avoiding training–validation
dependencies. The results suggest that the strict scheme is preferable in
the given setting.

Keywords: cross-validation, pair-input, AUC, K-Nearest Neighbor.

1 Introduction

In supervised learning, the generalization performance is commonly estimated
by training a model on one part of the dataset (training set) and evaluating it
against another (validation set) to avoid optimistically biased estimates. Cross-
validation (CV) is a procedure to estimate the generalization performance by
aggregating the results of several such evaluations. [2].

A CV procedure consists of folds, each of which involving training and eval-
uating a model according to a training–validation split of the dataset. Since an
input (i.e., a data point) can belong to the training set of one fold and to the
validation set of another, CV can be used when the small size of the dataset
prevents from obtaining large enough training and validation sets in a single
split [6]. The properties of a CV estimator are influenced by the splitting scheme
as well as how the performance is measured.

In a general case, CV procedures assume that data are identically distributed
and the training set is independent from the validation set [2]. The conventional
approach of randomly partitioning data into training and validation sets is not
viable when the data contain dependencies [12].

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 384–393, 2014.
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Fig. 1. There are three types of pairs in a symmetric pair-input learning task. The set
A contains those objects that are pair members in the dataset on which a model is
trained and cross-validated. The set B contains the objects not present in the dataset.
The AA, AB, and BB types of pairs differ in the number of members seen in the
dataset. The types AtAt, AtAv, and AvAv are the analogous types within a CV fold
with the subscripts referring to the training (t) and validation (v) sets.

This study explores the properties of CV estimators in the case of symmetric
pair-input data. Pair-input data consist of inputs that represent pairs of objects
while symmetry refers to pair members being of a single type with a symmetric
relation. Among others, data of this type are encountered in bioinformatics when
considering the properties of protein pairs, such as binding [13] or functional sim-
ilarity. Research in biosciences typically focuses on specific aspects of organisms
and knowledge is consequently centered around a subset of proteins. Since the
protein pairs of which a particular property is known stem from a limited set of
proteins, it is common that a protein is a pair member in several inputs which
leads to strong dependencies (see, for example, [13]).

Object pairs were categorized in [13] by their composition with respect to a
given dataset. Figure 1 illustrates these three types: both members (AA), one
member (AB), or no members (BB) belonging to the set A that contains the
objects present in the dataset. It was observed that the CV estimator of the
generalization performance of a model learned from AA pairs using a conven-
tional scheme is acceptable when considering the performance on AA pairs but
optimistically biased when considering the performance on AB or BB pairs [13].

This study examines two CV schemes in the situation where predictions will
be made on BB pairs. They differ from conventional splitting schemes in that the
splitting is performed on objects, not on inputs, and validation sets are formed
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based on the selected objects. The relaxed scheme, involving models trained on
the union of AtAt and AtAv (see Fig. 1), is expected to be optimistically biased
because validation set inputs are exposed via shared pair members whereas the
strict scheme, involving models trained on AtAt and evaluated against AvAv,
should not exhibit an optimistically biased behavior because the setup is analo-
gous to learning fromAA pairs to predictBB pairs. The strict scheme is expected
to be pessimistically biased because the full model is trained on more data than
the CV models [1] and have higher variance than the relaxed scheme because its
training sets contain less data [11].

Experiments are performed on the prediction of the functional similarity of
two proteins from their sequences. While not a typical formulation of the protein
function prediction task, which is one of the major tasks in bioinformatics [9],
functional similarity serves as an example of a symmetric pair-input problem.

2 Cross-Validation Schemes

Let O be a set of objects and Z ⊂ X × Y a set of instances, where the input
space X = O2 and the output space Y = {−1, 1}. An instance z = (x, y) ∈ Z
consists of an input x = (o, o′) ∈ O2 and its associated label y such that
y = 1 ⇐⇒ x ∈ R, where R ⊆ O2 is the symmetric relation of interest.
A sequence Z = ((x1, y1), . . . , (xn, yn)) ∈ Zn, where X = (x1, . . . , xn) and
Y = (y1, . . . , yn) are the input and label sequences, respectively, is called a
training set. The set OZ = {o : (∃i)(Xi = (o, o′) ∨ Xi = (o′, o))} is the set of
training set objects. An input cannot be associated with both labels. That is,
(x, y) ∈ Z =⇒ (x,−y) /∈ Z. Also, (∃i)(Xi = (o, o′)) =⇒ (�j)(Xj = (o′, o))
because the inputs (o, o′) and (o′, o) are assumed to have identical represen-
tations in addition to their associated labels being identical due to symmetry.
Instances having y = 1 are called positive instances and those having y = −1
negative instances. Let DO and DZ be probability distributions over O and Z,
respectively.

The outputs of a prediction function fZ : X → R, learned from the training
set Z, rank the inputs by how likely their associated y = 1. The generalization
performance of a prediction function is measured by its conditional expected
area under the ROC curve (AUC) [1]

A(fZ) = Ez+∼D+,z−∼D− [H(fZ(x+)− fZ(x−))] , (1)

where z+ = (x+, 1), z− = (x−,−1), and H is the Heaviside step function with
H(0) = 1

2 , while D+ and D− are the conditional distributions of instances
derived from DZ given y = 1 and y = −1, respectively.

In each CV fold, a validation set OV of objects is picked such that OV ⊂ OZ .
The validation set V of instances is a subsequence of Z such that (∃i)(Vi = (x, y))
⇐⇒ ((∃j)(Zj = (x, y)) ∧ o ∈ OV ∧ o′ ∈ OV ), where x = (o, o′), (see AvAv in
Fig. 1) while the training set T of instances is a subsequence of Z. In the relaxed
scheme (∃i)(Ti = (x, y)) ⇐⇒ ((∃j)(Zj = (x, y)) ∧ (o /∈ OV ∨ o′ /∈ OV )) (see
AtAt and AtAv in Fig. 1) while in the strict scheme (∃i)(Ti = (x, y)) ⇐⇒
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((∃j)(Zj = (x, y)) ∧ o /∈ OV ∧ o′ /∈ OV ) (see AtAt in Fig. 1). The sequence
C = ((V1, T1), . . . , (Vn, Tn)) contains the validation and training set pairs of the
n folds.

The CV performance ÂCV(Z) is an estimator of A(fZ) obtained from Z using
the learning algorithm that yielded fZ . The quality of a CV scheme is evaluated
using the mean and variance of the deviation B(Z) = ÂCV(Z) − A(fZ) which
follows the approach taken, for example, in [6] and [1]. The second moment about
zero of B(Z) is also considered.

3 Estimation of AUC

The properties of ÂCV(Z) are influenced by how the validation set V and the
training set T are selected in each fold but also by how cross-validation AUC is
calculated. The choice between the relaxed and strict schemes affects T , which
is the focus of this study, while the selection of OV affects both V and T .

Two methods to calculate cross-validation AUC are considered: averaging and
pooled AUC [5,1]. The former is the mean AUC over folds whereas the latter is
calculated from the concatenation of the predictions made in the folds.

In an earlier study, AUC estimators were analyzed in a non-pair-input situa-
tion. Non-zero mean deviations were observed for pooled AUC on certain kinds
of data which was attributed to predictions from several models being compared
although strictly not compatible. Also, estimators involving more comparisons
of positive–negative instance pairs were observed to have lower variance than
those with fewer comparisons. [1].

Object-leave-two-out CV includes a fold for each of the
(
m
2

)
possible validation

sets fulfilling the condition |OV | = 2, where m = |OZ |. If X is restricted to the
inputs (o, o′) such that o 
= o′ (like in this study, see Sect. 4.3), each validation
set contains only one instance and all instances are included in exactly one
validation set.

In object-n-fold CV, OZ is partitioned into n parts of approximately equal
sizes with the ith part being OV in the ith fold. Consequently, some instances
do not belong to any of the validation sets and the number of excluded instances
increases as n increases (Fig. 2). To cover all instances, overlapping validation
sets can be selected such that two parts form a validation set in each fold which
results in

(
n
2

)
folds. In this case, however, the pairs in which the members are

from the same part appear in n− 1 validation sets while the other pairs appear
only once (diagonal blocks vs. non-diagonal blocks in Fig. 2). As n approaches
m, overlapping object-n-fold CV approaches object-leave-two-out CV (Fig. 2).

4 Experiments

The properties of the relaxed and strict schemes were investigated by conducting
experiments on learning protein functional similarities. A protein is a biomolecule
composed of amino acid chains folded into a three-dimensional structure that
is capable of accomplishing (possibly jointly with other proteins) a particular
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Fig. 2. The validation sets (patterned areas) of object-2-fold CV (upper left) cover
more instances than those of object-3-fold CV (upper right). Both overlapping object-
3-fold CV (lower left) and object-leave-two-out CV (lower right) cover all instances
but three instances are present in two validation sets, distinguished by pattern types,
in the former. Dashed lines indicate the boundaries of the parts of OZ = {o1, . . . , o6}
while grey squares represent the excluded (o, o) pairs.

task. How the amino acid sequence (and the structure) of a protein defines its
function is one of the major topics in bioinformatics.

The task of protein function prediction can be formulated as one of predicting
the function of a protein from its sequence [8] while other sources of information
may also be utilized as well [4,7]. In this study, instead of directly predicting the
function, the functional similarity of two proteins is considered because it fulfills
the requirements of symmetric pair-input data.

4.1 Data

Datasets were derived from the Universal Protein Resource1 (UniProt) [14].
UniProt entries contain amino acid sequences of proteins together with di-
verse annotations, literature references, and cross-references to other databases.
Its UniProtKB/Swiss-Prot section contains manually curated entries while the
UniProtKB/TrEMBL section contains unreviewed, computer-annotated entries.
Only the former was used in the experiments in order to minimize noise.

1 http://www.uniprot.org/

http://www.uniprot.org/
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The functional similarity of two proteins was determined by their Gene Ontol-
ogy annotations. Gene Ontology2 (GO) [3] is a comprehensive classification and
widely adopted in bioinformatics. It provides hierarchical controlled vocabularies
for three complementary domains – molecular function, biological process, and
cellular component – referenced by UniProt entries.

Three datasets were created by considering one of the GO domains at the time
and the fourth by considering the domains jointly. The information regarding
the function was assumed to be complete when an entry had any GO annotation
belonging to the given domain(s). All such proteins were included in the dataset
while the others were discarded to avoid false negative labels. This produced
datasets ranging approximately from 387,000 to 511,000 proteins in size.

4.2 Features and Labels

Each protein sequence was represented by a vector containing the frequencies
of amino acids as well as the frequencies of bigrams of adjacent amino acids
categorized into four classes according to [10]. A protein pair was represented by
the sum of the two protein feature vectors. This low-dimensional representation
is more suitable for the K-Nearest Neighbor classifiers used in the experiments
(see Sect. 4.3) than high-dimensional representations.

A protein pair was labeled positive if its members had any GO annotation in
common. The hierarchy of GO classes was not taken into account.

4.3 Experiment Details

The set Z was defined as the set of instances covering all protein pairs (o, o′) such
that o 
= o′ to avoid trivially positive instances skewing performance scores. Both
DO and DZ were chosen to be uniform distributions. Since its exact value is im-
practical to calculate, the conditional expected AUC was estimated from a ran-
dom sample S with the Wilcoxon–Mann–Whitney statistic [5]. For each dataset,
the sequence S was drawn without replacement from Z such that |S| = 104. Let
OS = {o : (∃i)(Si = (x, y) ∧ (x = (o, o′) ∨ x = (o′, o)))}.

The relaxed and strict schemes were evaluated with all possible combinations
of the four datasets, two validation set selection methods (object-ten-fold or
object-leave-two-out), and two AUC calculation methods (averaging or pooled).
Note that averaging AUC cannot be calculated in the object-leave-two-out case
because each validation set contains only one instance.

The sampling distribution of deviations was obtained from one thousand in-
dependent repeats. In each repeat, a sequence O = (o1, . . . , on) of 100 proteins
was conditionally drawn without replacement from O given that oi /∈ OS . The
training set Z was formed by including the inputs (o, o′) fulfilling the condition
(∃i)(Oi = o) ∧ (∃j)(Oj = o

′).
In all experiments, K-Nearest Neighbor classifiers were trained with inverse

distance weighing. The parameter K was varied from K = 10 to K = 100 in
steps of ten to analyze its effect.

2 http://www.geneontology.org/

http://www.geneontology.org/
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Table 1. The observed mean deviations for K = 50. 10x and LTO refer to object-ten-
fold and object-leave-two-out CV while A and P refer to averaging and pooled AUC,
respectively.

Relaxed Strict

Dataset A-10x P-10x LTO A-10x P-10x LTO

Union 0.1799 0.1870 0.1919 −0.0113 −0.0209 −0.0187
Molecular function 0.1509 0.1614 0.1642 −0.0167 −0.0282 −0.0285
Biological process 0.0673 0.0909 0.0907 −0.0508 −0.0402 −0.0410
Cellular component 0.1745 0.1797 0.1842 −0.0220 −0.0290 −0.0246

Table 2. The observed variances of deviations for K = 50. 10x and LTO refer to
object-ten-fold and object-leave-two-out CV while A and P refer to averaging and
pooled AUC, respectively.

Relaxed Strict

Dataset A-10x P-10x LTO A-10x P-10x LTO

Union 0.0020 0.0017 0.0009 0.0028 0.0028 0.0015
Molecular function 0.0032 0.0025 0.0012 0.0051 0.0046 0.0025
Biological process 0.0111 0.0086 0.0027 0.0160 0.0147 0.0064
Cellular component 0.0016 0.0015 0.0009 0.0027 0.0028 0.0016

5 Results and Discussion

The relaxed and strict schemes resulted in positive and negative mean devia-
tions, respectively, and the experiments with the relaxed scheme yielded lower
variances of deviations than their counterparts with the strict scheme. Increases
in K resulted in decreases in the means in both schemes, though the effect was
minor in the strict scheme, while the variances increased in the strict scheme
and decreased in the relaxed scheme. The peak generalization performance was
reached in the given range ofK with the Union and Cellular component datasets.

Illustrating typical observations, Tables 1 and 2 show the means and vari-
ances, respectively, of the observed deviations of CV estimates from respective
(estimated) generalization performances for K = 50. The means of the observed
generalization performances for K = 50 are 0.5857, 0.6524, 0.7423, and 0.6351,
in the order of the datasets in the tables.

The absolute values of the deviation means are generally approximately an
order of magnitude lower and the deviation variances higher but of the same
order of magnitude in the experiments with the strict scheme than in their
counterparts with the relaxed scheme. The Biological process dataset differs from
the others by having notably lower absolute values in the relaxed setting, higher
absolute values in the strict setting, and higher variances in both settings.

The above observations are reflected in the second moments about zero being
approximately an order of magnitude lower in the experiments with the strict
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Fig. 3. The second moments about zero of the relaxed and strict schemes become equal
at approximately K = 30, K = 60, or K = 100 in the Biological process dataset (left)
whereas they are well-separated in the Molecular function dataset (right). Triangle,
square, and circle refer to P-10x , A-10x , and LTO (see Tables 1 and 2) whereas hollow
and solid symbols denote the relaxed and strict schemes, respectively.

scheme than in their counterparts with the relaxed scheme in all except the Bio-
logical process dataset. The changes in mean and in variance as K increases both
contribute toward the decreasing and increasing trends in the second moments
seen with the relaxed and strict schemes, respectively. However, as illustrated in
Figure 3, the point after which the relaxed scheme yields lower second moments
depends on the dataset and the CV details.

The absolute values of the deviation means are higher in the experiments
with pooled AUC than in their counterparts with averaging AUC in all but
one experiment pair. This is not surprising given that pooling can have either
a positive or negative effect on deviations [1]. An increase in the number of
positive–negative instance comparisons (A-10x < P-10x < LTO , see Table 2)
generally has a decreasing effect on variance, as expected, although A-10x and
P-10x are in the opposite order in two experiment pairs for high K values.

The observed deviation means suggest that the positive effect of training–
validation dependencies generally dominates over the negative effect of the re-
duced size of training sets and, consequently, that the strict scheme is preferable
to the relaxed scheme in the setting where the learned model will be applied to
pairs of two previously unseen objects. However, given the limited number of ex-
periments in this study, it remains unanswered to what extend these observations
can be generalized to other datasets and/or learning algorithms. Particularly, the
results obtained with the Biological process dataset raises the question whether
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the unexpectedly small differences in the absolute values of the mean deviations
between the two schemes are due to the properties of the dataset or due to the
schemes generally yielding more similar absolute values as generalization perfor-
mance increases. In the latter case, the strict scheme would not necessarily be
preferable at high performance levels although it would still have the advantage
of yielding conservative estimates.

5.1 Future Directions

The results of this study illustrate the potential of the strict scheme. In future
experiments, the scheme will be applied to a variety of learning algorithms and
datasets to get a better understanding of its behavior. With preliminary re-
sults from another dataset suggesting otherwise, it is of particular interest to
investigate whether higher absolute values of deviations should be expected at
higher levels of generalization performance as is hinted by the Biological process
dataset. Different approaches to select validation sets (see, for example, [2]) will
also be examined in order to discover their properties when operating on objects
instead of on instances. Last, the analysis of the strict scheme will be expanded
to the experimental setup outlined in [13] where some pairs of objects are not
included in the dataset due to incomplete knowledge of objects.

The two schemes considered in this study are expected to fail to reliably
estimate the generalization performance of a learned model when predictions
will be made on inputs where an object seen in the dataset is paired with a
previously unseen object (AB pairs in Fig. 1). Adapting the strict scheme to
this setting likely requires only minor modifications.

6 Conclusions

Two CV schemes for symmetric pair-input data were considered. They differ
from conventional CV schemes by acknowledging the fact that inputs represent
pairs of objects. They first make training–validation splits on objects and then
use the selected objects to form training and validation sets. The strict scheme
avoids dependencies between the training and validation sets that would arise
from shared pair members by discarding offending instances from the training
sets. Consequently, its folds are analogous to learning a model from a dataset
and making predictions on pairs that are composed of objects not encountered
in the dataset. The relaxed scheme utilizes all instances in each fold and is hence
similar to conventional CV schemes that assume independent instances.

The properties of the relaxed and strict schemes were examined in the task
of learning functional similarities of proteins. Four datasets were derived from
UniProt database and evaluated using various combinations of AUC calculation
method and validation set selection method. Positive mean deviations were ob-
served for the relaxed scheme while negative mean deviations were observed for
the strict scheme. The strict scheme yielded lower absolute values of deviation
means but higher deviation variances than the relaxed scheme. These observa-
tions can be explained by dependencies between training and validation sets,
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relative training set sizes, and the properties of the AUC calculation methods
used in the experiments.

The results suggest that the generalization performance of a model is better
estimated by the strict scheme than the relaxed scheme in the situation where
predictions will be made on pairs of previously unseen objects. Such pairs may
be encountered in significant numbers, for example, when predicting protein–
protein binding [13]. However, further experiments are needed to get a better
understanding of the properties of the strict scheme.
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A Binary Factor Graph Model for Biclustering
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Abstract. Biclustering, which can be defined as the simultaneous clus-
tering of rows and columns in a data matrix, has received increasing
attention in recent years, particularly in the field of Bioinformatics (e.g.
for the analysis of microarray data). This paper proposes a novel biclus-
tering approach, which extends the Affinity Propagation [1] clustering
algorithm to the biclustering case. In particular, we propose a new ex-
emplar based model, encoded as a binary factor graph, which allows
to cluster rows and columns simultaneously. Moreover, we propose a li-
near formulation of such model to solve the optimization problem using
Linear Programming techniques. The proposed approach has been tested
by using a well known synthetic microarray benchmark, with encouraging
results.

1 Introduction

Unsupervised learning, also known as clustering, is an active and historically
fecund research area, which offers a wide range of solution techniques [2]. In
recent years, the interest of the research community has been focused also on a
particular kind of clustering problems, the so-called biclustering, also known, in
other scenarios, as co-clustering. This term encompasses a large set of techniques
generally aimed at “performing simultaneous row-column clustering” [3].

Bi-clustering techniques have been applied in different scenarios, such as doc-
ument analysis [4], scene categorization [5], and, most importantly, expression
microarray data analysis – see the reviews [3,6,7]. In this last scenario, the -
starting point is a matrix whose rows and columns represent genes and experi-
ments, respectively. Each entry measures the expression level of a particular gene
in a particular experiment. The classical analysis in this scenario is to cluster
genes, with the aim of discovering which genes show the same behavior over all
the experiments – this permitting the discovery of co-regulation mechanisms.
However, a more interesting question can be raised: are there genes that share
similar expression only in a certain subset of experiments? Addressing this is-
sue, which can not be faced using a standard clustering approach, can provide
invaluable information to biologists, and represents the main goal of biclustering
approaches.

Different biclustering techniques have been proposed in the past [3,6,7], each
one characterized by different features, such as computational complexity, ef-
fectiveness, interpretability and optimization criterion . Many of such previous
approaches are based on the idea of adapting a given clustering technique to the
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biclustering problem, for example by repeatedly performing experiments and
genes clustering [8,9].

This paper follows the above-described research trend, and proposes a novel
biclustering algorithm, which extends and adapts to the biclustering scenario the
well known Affinity Propagation (AP) clustering algorithm [1]. This technique,
which is based on the idea of iteratively exchanging messages between data points
until a proper set of representatives (called exemplars) are found, has shown
to be very effective (in terms of clustering accuracy) and efficient (due to its
fast learning algorithm) in many different application scenarios, including image
analysis, gene detection and document analysis [1]. In Affinity Propagation the
clustering problem is formulated as an objective function and a set of constraints;
the objective function summarizes the intracluster-similarity and the constraints
guide the grouping of the points to a valid solution. Specifically, the objective
function and the constraints are encoded as a binary factor graph [10], and the
objective function is optimized by using the max-sum message passing algorithm
[1,10].

Even if some variants of the AP approach have been applied to the microarray
scenario – see for example [11,12] – its use in the biclustering context remains
somehow unexplored, with few papers recently published (such as [9], and [13]).
In particular, in [9] the AP model is used as the clustering module in an ite-
rative rows and columns clustering scheme [8]: however no modifications to the
basic AP model has been introduced, which is still used as a standard clus-
tering method. In contrast, [13] proposes an exemplar-based strategy to find
biclusters. However, while such approach shares many similarities with AP (e.g.,
it is exemplar-based and encodes the problem as a factor graph), a crucial dif-
ference is that the proposed factor graph is not binary thus drifting away from
the spirit of the original AP scheme, which exploits the binary nature of the
factor graph to derive efficient and fast update messages [14].

In this paper we propose an extension of the Affinity Propagation model,
which i) is based on a binary factor graph, and ii) directly performs biclustering.
In particular we extend the AP model in two ways: i) we consider as datapoints
to be analysed the single entries of the input data matrix, instead of the classi-
cal row/column vector; ii) we add to the model a constraint which forces points
belonging to the same cluster to represent a valid bicluster (namely all points
of a subset of rows and columns). Given the new factor graph, a possible solu-
tion to optimize the objective function is to resort to the max-sum algorithm
[1,10]. However, given the high number of cycles present in the factor graph, the
max-sum algorithm is likely to produce poor quality solutions [15]. Therefore
we derived an alternative linear formulation of the optimization problem, and
use Linear Programming techniques to find the optimal solution of our model.
Finally, while the space complexity of the model and the time complexity of
the algorithm are both polynomial in the number of entries of the data ma-
trix, the number of variables and constraints that our model introduces is very
large (i.e., O(n2m2) variables and O(n3m3) functions for an input matrix with n
rows and m columns). Hence, storing our model for typical biclustering matrices
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(which can contain hundreds of rows/columns) is an issue. Consequently, we
derived an aggregation methodology, which groups results obtained on smaller
matrices: this allows the evaluation of the proposed approach on a standard ex-
pression microarray benchmark [6]. Obtained results confirm the potentials of
the proposed method.

The remainder of paper is organized as follows: Sect. 2 presents Affinity Prop-
agation, the starting point of our model; the proposed approach is then described
in Sect. 3 and Sect. 4, whereas the experimental evaluation is given in Sect. 5;
finally Sect. 6 concludes the paper.

2 Affinity Propagation

Affinity Propagation (AP) is a well known clustering technique recently proposed
by Frey and Dueck [1]. The efficacy of this algorithm (in terms of clustering
accuracy) and efficiency (due to the fast resolution) have been shown in many
different clustering contexts [1].

The main idea behind AP is to perform clustering by finding a set of exemplar
points that best represent the whole data set. This is obtained by representing
the input data as a factor graph [16]: a bipartite graph that encodes an objective
function as an aggregation (e.g., a sum) of functions (typically called factors).
In the graph, the nodes (circles) define the data points and the factors (squares)
are functions defined over a subset of nodes – for details please refer to [10]. The
objective function is then optimized by running an iterative message passing
approach, which, in the typical task of maximizing a sum of functions, is the
max-sum algorithm [10].

In particular, in Affinity Propagation the factor graph is composed by two
parts: the first encodes the choice of the points and their exemplars via a binary
matrix C, where an entry C(i, j) = ci,j is set to one if the point i chooses j
as exemplar. This choice is ruled by the pairwise similarity values si,j , which
define the similarity between each pair of points i and j. The values si,i, given
as an input, represent the preference for point i of being itself an exemplar: such
choice influences the final number of clusters, which is automatically found by
the algorithm. The second part of the factor graph define two constraints, which
ensure to retrieve only valid solutions:

1. 1-of-N constraint : every point has to chose one, and only one, exemplar. This
can be represented by a function I over n nodes:

Ii =

{
0, if

∑n
i=1 ci,j = 1

−∞, otherwise
(1)

where n is the number of the points;

2. Exemplar consistency constraint : if a point is chosen as an exemplar by some
other data point, it must choose itself as an exemplar. This constraint avoids
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circular choices (“a” chooses “b”, “b” chooses “c”, “c” chooses “a”) and can
be represented by a function E over n nodes:

Ej =

{
−∞, if cjj = 0 and

∑n
i=1 ci,j ≥ 1

0, otherwise
(2)

where n is the number of data points.

Note that we have as many I and E functions as the number of data points in
input. Figure 1(a) reports the factor graph used in AP.
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Fig. 1. Factor Graph for Affinity Propagation (a) and the proposed Factor Graph for
Biclustering (b)

The objective function expressed by the AP factor graph is the sum of all
the factors, i.e., the constraints expressed in Equations (1) and (2) and the sum
of all similarity functions S(i, j) which are defined as the similarity value si,j
multiplied by the variables ci,j .

F =

n∑
i=1

n∑
j=1

sij · cij +
n∑

i=1

Ii +

n∑
i=1

Ej (3)

3 The Proposed Approach

In this section the proposed approach is presented. In general terms, given a data
matrix D = (dij)i∈N,j∈M , with N set of rows (|N | = n) and M set of columns
(|M | = m), a bicluster B = (dij)i∈T,j∈K is a submatrix of D, for T ⊆ N and
K ⊆ M , which meets specific spatial constraints ruled by a certain similarity
criterion. Here we assume that different biclusters do not overlap1.

1 i.e. each element of the data matrix must belong to a unique bicluster.
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In our approach, instead of considering as basic elements the rows and the
columns, we directly consider the single entries of the input data matrix. Starting
from {dij}i∈N,j∈M , we look for biclusters as sets of “coherent” entries of the
matrix respecting the specific spatial constraint. To obtain this, we re-define
the factor graph of Affinity Propagation: in particular, we have one variable
for each pair of entries of the data matrix D to encode the exemplar choice;
moreover, we introduce a constraint to ensure that points that belong to the same
cluster represent a bicluster. In what follows, we define our model, specifying the
variables, the constraints and the objective function, and motivate the use of an
LP optimization approach.

3.1 The Model

Variables. Our goal is to cluster the single entries of the data matrix: therefore
we encode the exemplar chosen by each entry of the data matrix D with a four-
dimensional Boolean matrix, where an entry C(i, j, t, k) = cijtk is 1 if the point
in position (i, j) of the matrix chooses (t, k) as its exemplar. For reasons which
will be clearer later, we replace the indices of the second point with a single value
(z = 1, 2, 3, · · · , n ·m) obtaining a three-dimensional structure C(i, j, z); again,
a variable cijz is set to 1 if the point (i, j) chooses the point z as its exemplar.
As in Affinity Propagation, this choice is based on a certain similarity matrix S,
which now encodes the similarities between every pair of entries (i, j) and (t, k)
of the input data matrix. As for C, we rearrange this four-dimensional matrix
in a three dimensional one S(i, j, z).

Functions. Following Affinity Propagation, we include in our model the con-
straint Iij (which is similar to (1) and encodes that one data entry should choose
only one exemplar) and Ez (which is similar to (2) and encodes that if ci,j,z = 1

then cî,ĵ,z = 1, where î and ĵ are the indices that correspond to z), which
guarantee valid variable assignments. Next, we introduce an extra constraint,
which ensures that the entries of the matrix which are in the same cluster do
represent a bicluster. In this perspective, we observe that, given a certain value
z, the bidimensional matrix

C(:, :, z) =

⎡
⎢⎢⎢⎣
c11z c12z . . . c1mz

c21z c22z . . . c2mz

...
...

. . .
...

cn1z cn2z . . . cnmz

⎤
⎥⎥⎥⎦ with 1 ≤ z ≤ n ·m (4)

immediately summarizes the relation between all the entries of the matrix and
the entry z: in particular, cijz = 1 indicates that (i, j) has chosen z as its
exemplar. Now, the constraints Iij and Ez ensure that all the points in a given
cluster had chosen the same exemplar, hence every matrix C(:, :, z) represents
a potential bicluster. However, to be a valid bicluster, such matrix should fulfil
one of the two following conditions:



A Binary Factor Graph Model for Biclustering 399

1. (trivial constraint) it should contain all zeros: there are no points choosing
as exemplar the point z;

2. (bicluster integrity constraint) the coordinates of the entries with 1 (namely
the coordinates of the entries in the bicluster) should represent all the points
of a given subset of rows and columns: in simple words, after rows-columns
re-arrangements, the ones in the C(:, :, z) matrix should form a full rectangle
(a rectangle with no zero elements).

This can be ensured by defining a constraint for every 4 points of the matrix
C(:, :, z): if cijz and ctkz are set to 1, then also cikz and ctjz should be set to 1.
More formally, the bicluster integrity constraint is defined as:

Bijtkz =

{
−∞, if cijz = 1, ctkz = 1 and cikz · ctjz = 0

0, otherwise
(5)

Notice that the function B is defined, for every sheet z, on all the possible pairs
of points (i, j) and (t, k).

Objective Function. Given the variables and the constraints above described
– represented in Fig. 1(b) – we can now write the objective function, defined
by the sum of the intra-biclusters similarity (via the matrix C and S) and the
constraints (I, E, and B):

F =
∑
i,j,z

cijz · sijz +
∑
i,j

Iij +
∑
z

Ez +
∑

z,i,j,t,k

Bijtkz (6)

where: 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ z ≤ n ·m, 1 ≤ t ≤ n and 1 ≤ k ≤ m.

3.2 Optimization of the Objective Function

Now, there are many possible approaches to maximize the objective function
expressed by the factor graph in Fig. 1(b). In AP the binary nature of the nodes
in graph is exploited to calculate an approximation of the maximum through the
max-sum algorithm [1]. However, the biclustering integrity constraint (defined
over every pair of entries of the matrix) induces a high number of cycles in
the graph, and it is well known that the performances of the approximated
maximization algorithms degrade in such conditions [15]. Therefore we follow an
alternative route, giving a linear formulation of the objective function, and using
linear programming (LP) techniques [17] to find the optimal variable assignment.
In general, LP approaches maximize/minimize an objective function where the
constraints defined on the data points are all linear [17]. In the objective function
(6), the first three addends can be easily written in a linear form; in the following
we will show how to transform the biclustering integrity constraint (5) into a
linear set of constraints.

The idea is that, when considering the matrix C(:, :, z), the biclustering in-
tegrity constraint is satisfied if, and only if, all rows (or columns) of this matrix
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are either zero or equal to each other. By exploiting the Boolean nature of the
variables, this can be enforced by checking if, for every pair of rows (or columns)
U = (u1, . . . , um) and X = (x1, . . . , xm), one of the following conditions is true:
i) U = X , ii) U = 0, iii) X = 0. This can be expressed through Boolean algebra
as: i) NOT (

∑
i (ui ⊕ xi)), ii) NOT (

∑
i ui), NOT(

∑
i xi), where “+” denotes the

OR operator and “⊕” is the XOR operator. By using De Morgan laws and some
proprieties of the Boolean algebra we can derive the set of linear constraints
representing the OR operation between the previous i), ii) and iii) constraints
as:

−u1 + x1 + u2 < 2 −u1 + x1 + u3 < 2 · · · −u1 + x1 + un < 2

u1 − x1 + x3 < 2 −u2 + x2 + u1 < 2 · · · u1 − x1 + xn < 2

this has to be done for all the pairs of rows (or columns) of every matrix C(:, :, z).
Now, all the elements of the model (objective function and constraints) are

linear, and the model can be solved by using LP approaches.
Let us analyse the complexity of the proposed approach. Given an input ma-

trix formed by n rows and m columns, the model contains O(n2m2) variables
and O(nm) functions for the constraints I and E. Unfortunately, when conside-
ring the biclustering integrity constraint, the number of functions to completely
describe all possibilities raises to O(m3n3). Even if being still polynomial (and
not exponential) in the number of rows and columns of the data matrix, the
number of functions to store in memory can be very large. In particular, for
typical biclustering problems (e.g., microarray analysis), the data matrix can
contain hundreds of rows and columns, hence our approach might require a
prohibitive amount of memory to store the model. About time complexity, an
Integer Programming problem is exponential in the number of constraints (in
the worst case). Anyway, there are many well established methods which pro-
vide, on average, time satisfactory solutions. To overcome the scalability issue
we run our algorithm on smaller matrices, extract biclusters and devise an ag-
gregation algorithm to find biclusters in the original data matrix. We describe
such aggregation algorithm in next Section.

4 Aggregation of Biclusters

Let a kernel be a window glass selecting a sub-matrix, we start by analyzing
the data matrix by means of a fixed dimension kernel, which is shifted along the
matrix, with no overlap. For every kernel, the optimal solution is retrieved (using
our model and the LP approach). Once the whole matrix has been analyzed, the
set of biclusters is then processed in three steps:

1. we apply a clustering algorithm on the exemplars retrieved in the different
kernels, to partition the set of biclusters in groups of biclusters with co-
herent values. Here we adopt as a clustering algorithm the original Affinity
Propagation method.
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2. for every group of biclusters, we perform a hierarchical agglomerative group-
ing which, starting from single biclusters, repeatedly joins together the most
similar groups of biclusters. Similarity between two groups of biclusters is
defined as the number of rows and columns that they share – when the
similarity of the nearest group is zero (no overlap) the algorithm stops. In
other words, we perform a classical agglomerative clustering of biclusters by
using as similarity the degree of column/rows overlap. Every group in the
final partition now represents a set of biclusters with no row/column overlap
with the other groups.

3. we post-process the final groups in order to be sure that they represent an
actual bicluster: this is done by removing rows (or columns) which violate
the bicluster definition.

Notice that, the third step is necessary because merging biclusters may not
produce a bicluster as result. A possible alternative would be to merge only
pairs of biclusters that result in a bicluster, however by so doing we would not
obtain large biclusters given by the simultaneous merge of k biclusters (where
k > 2). Having described our approach, we now turn to the empirical evaluation.

5 Results

The methodology proposed in this paper has been tested on a set of synthetic ma-
trices which represent a classical benchmark in the microarray scenario [6]: such
set comprises synthetic expression matrices, perturbed with different schemes2.
In the experiments, we have 10 non-overlapping biclusters, each extending over
10 rows and 5 columns. Such datasets have been widely used to investigate
the effects of noise on the performance of various biclustering approaches. The
accuracy of the biclustering has been assessed with the so-called Gene Match
Score [6]: the average bicluster relevance reflects to what extent the generated
biclusters represent a true bicluster in gene dimensions, and the average biclus-
ter recovery quanties how well each of the true biclusters is recovered by the
biclustering algorithm (such scores vary between 0 and 1, where the higher the
better the accuracy).

In our model we used as similarity the negative of the Euclidean distance
(as in [9]), which allows to retrieve only constant value biclusters. As in the
original Affinity Propagation model, a proper setting of the preferences (namely
the self similarities) is crucial: in our experiments we found that a good choice
is represented by the first integer number below the median (which represents
the standard setting [1]). The Linear Programming model was implemented and
resolved using CPLEX (version 12.4).

Figures 2(a) and 2(b) report the Gene Match Scores (the recovery and the
relevance values respectively – see [6]) for different levels of noise and for different
dimensions of the kernel, averaged over the different repetitions (also standard
deviations are displayed). As expected the approach provides better solutions as

2 All datasets may be downloaded from: www.tik.ee.ethz.ch/sop/bimax

www.tik.ee.ethz.ch/sop/bimax
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Fig. 2. Results for the proposed approach: (a) recovery and (b) relevance – for further
information we refer to [6]

the kernel dimension increases. Please note that when using the [1x1] kernel only
the aggregation algorithm described in Section 4 is employed (every data point
is in its own bicluster). As we can see in Fig.2, increasing the noise completely
corrupts the performances of the aggregation algorithm. Notice that, obtained
results are competitive with other state of the art approaches (see figure 2 in [6],
figure 1 in [18] or figure 3 in [9]), confirming the potentialities of the proposed
approach.

6 Conclusions

In this paper we propose a novel model, inspired by Affinity Propagation [1], to
retrieve biclusters from a data matrix. A key innovative element of our approach
is to analyze directly the entries of the data matrix, instead of considering whole
rows and columns, and to use Linear Programming techniques for computing
the optimal solution [17]. The space/time complexity of the model does not
allow to run our approach on typical biclustering problems, hence we partition
the original data matrix in small kernels and analyse each such kernel with our
approach. We then propose an aggregation approach to reconstruct the original
biclusters. We evaluate our approach on standard benchmarking datasets for
biclustering [6], and results show that the method is competitive with respect to
other state of the art approaches.

Future work in this area includes two main research directions: first, investi-
gate possible extensions of the approach to reduce the complexity of the data
representation model, second to test the approach on real biological data sets,
hence assessing the practical significance of the approach.
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Abstract. While bi-directional long short-term (BLSTM) neural net-
work have been demonstrated to perform very well for English or Arabic,
the huge number of different output classes (characters) encountered in
many Asian fonts, poses a severe challenge. In this work we investigate
different encoding schemes of Bangla compound characters and compare
the recognition accuracies. We propose to model complex characters not
as unique symbols, which are represented by individual nodes in the out-
put layer. Instead, we exploit the property of long-distance-dependent
classification in BLSTM neural networks. We classify only basic strokes
and use special nodes which react to semantic changes in the writing,
i.e., distinguishing inter-character spaces from intra-character spaces. We
show that our approach outperforms the common approaches to BLSTM
neural network-based handwriting recognition considerably.

Keywords: Handwritten Text, BLSTM NN, Bangla Text, Complex
Temporal Pattern.

1 Introduction

The recognition of complex temporal structures, or sequences, is a difficult prob-
lem. In particular long-distant dependencies are hard to model. A common ex-
ample of sequences with long-distance dependencies is the pen trajectory of
handwritten text. In the shape of the digit ‘0’, e.g., the position of the end of
the stroke depends upon the position at the beginning of the stroke.

While such long-distant dependencies pose severe problems for hidden Markov
models, which explicitly makes use of the Markov-property, recently introduced
recurrent neural networks, called long short-term memory (LSTM) neural
networks are designed specifically for this task. For writing systems with a
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limited number of different output classes, like Latin1 or Arabic, BLSTM neural
networks are currently among the best performing recognition approaches for
handwritten text.

However, this is not the case for highly complex scripts, such as Japanese or
Chinese. The large number of different output classes pose a severe problem in
the design of the networks, where normally each possible character is assigned to
a different node in the network output layer. To the knowledge of the authors, no
publication exists that shows how BLSTM neural network, which performs very
well for English and Arabic texts, can deal with languages containing hundreds
or thousands of characters.

In this regard, Bangla (the writing system of the Bengali language) shares
several similarities to the Latin or Arabic writing system, but also to Chinese
or Japanese. Bangla words are sequences of characters, each of which is either a
basic character (similar to English) or a compound character, which is composed
of several basic strokes, similar to radicals in a Chinese character.

This is the first work, to the knowledge of the authors, that explores the
applicability of BLSTM neural network to Bangla words containing compound
character. Therefore it constitutes an intermediate step to apply such networks
to highly complex temporal pattern containing long-term dependencies. The
main contribution of this paper is therefore to demonstrate how BLSTM neural
network can deal with complex patterns of a language which has a large number
of distinct characters.

The rest of the paper is structured as follows. Section 2 reviews relevant lit-
erature. The particularities of the Bangla writing Systems are introduced in
Section 3. An explanation of the BLSTM neural networks is given in Section 4.
The different approaches to Bangla compound character recognition are pre-
sented in Section 5. Section 6 provides an experimental evaluation and conclu-
sions are drawn in Section 7.

2 Related Work

The most successful approaches to classify temporal pattern involve hidden
Markov Models [21] or recurrent neural networks [8]. Long-term dependencies
within sequences have been successfully addressed using BLSTM neural networks
for handwriting recognition of Latin an Arabic scripts [11,9], speech recogni-
tion [12], or abstract sequences [10].

The recognition of on-line handwritten text is an active field of research [20],
including on-line Chinese [13] and Japanese [17] handwriting recognition.

Some works are available on on-line isolated Bangla character/numeral recog-
nition in [7,22,19,2,16]. In [3], handwritten words were segmented estimating the
position of headline of the word. Preprocessing operations such as smoothing and
re-sampling of points were done before feature extraction. They used 77 features
considering 9 chain-code directions. Modified quadratic discriminant function
(MQDF) classifier was used for recognition. In [4], the authors divided each

1 Used for English, Spanish, German, etc.



406 V. Frinken et al.

stroke of the preprocessed word sample into several sub-strokes using the angle
incurred while writing. Feature values representing its shape, size and relative
position are computed. Then HMM was used for recognition. A system for seg-
mentation and recognition of Bangla on-line handwritten text containing both
basic and compound characters is described in [1]. At first, cursive words are
segmented into primitives. Next primitives are recognized. Directional features
were used in SVM for recognition.

In [18], Bangla character are recognized with hidden Markov models based
on manually grouping complete strokes of ideal character shapes. As opposed
to their work, we do not rely on a manual stroke grouping nor any information
about ideal character shapes.

3 Bangla Writing System

Bangla is the second most popular language in India and the fifth most popular
language in the world. More than 200 million people speak in Bangla and this
script is used in Assamese and Manipuri languages in addition to Bangla lan-
guage. Handwriting recognition of unconstrained Bangla text is difficult because
of the presence of many complex shaped characters as well as variability involved
in the writing style of different individuals. Writing two or more characters by
a single stroke (a stroke is a collection of points from pen down to pen up) is
another difficulty for on-line Bangla text recognition. The main difficulty of any
character recognition system is the shape similarity. It can be noted that because
of handwritten style, two different characters in Bangla may look very similar.

The Bangla writing system is made up of basic charactersas well as more than
300 compound characters, each of which consists of up to four basic shapes. Of-
ten, the shapes of the basic characters are preserved in the compound characters,
but sometimes the basic characters take a new shape. An example of a Bangla
word containing a compound character is given in Fig. 1.

With these property, the Bangla writing system shares several similarities to
other eastern writing systems, in particular Chinese and Japanese ones, yet to a
less complex extend. At the same time it shares some similarities to English or
Arabic with its cursive writing style and the use of basic characters. This makes
the Bangla writing system a well-suited testing ground for adapting BLSTM
neural networks to Asian handwriting recognition in general.

4 BLSTM Neural Networks

The recognizer used in this paper is a BLSTM neural network, which is a re-
cently developed recurrent neural network [11]. A hidden layer is made up of
so called long short-term memory blocks instead of simple nodes. These mem-
ory blocks are specifically designed to address the vanishing gradient problem
which describes the exponential decay of influence of sequence observations as a
function of the distance within the sequence.
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Fig. 1. A handwritten Bangla word, consisting of three characters. The first and last
character consists of a basic character, each, encoded as SU and LA, respectively. The
second character is a compound character composed out of three basic characters,
which are encoded as JA, JA, and BA. In a) the decomposition of the strokes is given,
in b) the printed Bangla text of the strokes and in c) the transcription according to
our encoding of the symbols.

The network is made up of two separate input layers, two separate recurrent
hidden layers, and one output layer. Each input layer is connected to one hid-
den layer. The hidden layers are connected to the output layer. The network
is bidirectional, i.e. a sequence is fed into the network in both the forward and
the backward mode. The input layers consist of one node for each feature. One
input and one hidden layer deal with the forward sequence, the other input and
hidden layer with the backward sequence. At each position p of the input se-
quence of length l, the output layer sums up the values coming from the hidden
layer that has processed positions 1 to p and the hidden layer that has processed
the positions l down to p. The output layer contains one node for each possible
character in the sequence plus a special ε node, to indicate “no character”. At
each position, the output activations of the nodes are normalized so that they
sum up to 1, and are treated as probabilities that the node’s corresponding char-
acter can occur at this position. The output of the network is therefore a matrix
of probabilities for each letter and each position. A visual representation of a
BLSTM neural network is given in Fig. 2.

To arrive at a final recognition, the most likely path through the output
probability sequence is sought after. The probability of a path through the output
sequence p(ck1ck2 . . . ckn |O) is given by multiplying the individual probabilities∏

i yki(i). To recognize class sequences that might be shorter than the input
sequence, a given path can be shortened using operator B. The operator first
deletes consecutive occurrences of the same class (a) and then all ε entries (b):

B(c1, c2, c2, c2, ε, c2)
(a)
= B(ε, c1, c2, ε, ε, c2)

(b)
= c1c2c2 .

For lexicon-based word recognition, all words from a dictionary V are matched
to the output layer via dynamic programming, by implementing the operator
B. First the word w = c1c2 . . . cm is written as ŵ = εc1εc2ε . . . εcmε. With this,
a set of character transitions rules ensures that the sequence of nodes from the
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Fig. 2. The matrix of output activations returned by the neural network. The darker
the color of the cell, the higher the corresponding output activation.

output path is in B−1(w). The matching score is the product of all corresponding
output activations. The word leading to the highest matching score is chosen to
be the recognized word. For a detailed explanation of the recognition algorithm,
the reader is referred to [11].

5 Compound Character Detection and Recognition

The target problem addressed by the research presented in this paper is the
recognition of complex compound characters alongside simple basic characters.
In order to do that, several different strategies (configurations) for encoding the
characters have been explored.

In the first configuration, each characters, compound or basic, is mapped to a
dedicated output node. This is the basic approach and resembles the known
strategy employed in all published works of BLSTM NN-based handwriting
recognition, known to the authors. In this paper, this configuration serves as
a reference performance.

In all other configurations, compound characters do not have a dedicated
output node, but are encoded in various different ways.

In the second configuration, the output layer in endowed with a special com-
pound connection node ‘+’. The network is trained to activate this node between
activations of the basic node to indicate a compound character. Consequently, a
string such as “SU JA + JA + BA LA” encodes a compound character composed
out of the 3 basic shapes ‘JA’, ‘JA’, and ‘BA’ between the simple characters ‘SU’
and ‘LA’.
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Table 1. The 5 different configurations, the number |OL| of nodes in the output layer
OL, and as an example the encoding of a Bangla word containing the characters “SU
JA·JA·BA LA”, where JA·JA·BA is a compound character made from the basic characters
JA (2 times) and BA

Configuration |OL| Encoding of “SU JA·JA·BA LA”

1 171 SU JAJABA LA

2 73 SU JA + JA + BA LA

3 73 SU � JA JA BA � LA

4 74 SU ( JA JA BA ) LA

5 72 SU JA JA BA LA

In the third configuration, the network is trained to indicate the end of each
character with the node ,. Compund characters are trained by returning the
sequence of basic characters without a , node activation. The same word as
above is therefore encoded as “SU , JA JA BA , LA”.

In the forth configuration, compound characters are with a starting and ending
symbol ‘(’ and ‘)’. As a main difference to the third configuation, these symbols
do not occur between basic characters.

For the fifth configuration, no special characters are used in the output layer.
The network is trained to simply return the sequence of basic characters and a
post-processing step using a language model is needed to re-create the original
word. An overview of the 5 different configurations can be seen in Tab. 1.

Finally, to fully exploit the diversity in the data representation, we combine
the network outputs. We tested three different combination methods. For each
combination method, we chose 2 networks from each configuration, hence 10 dif-
ferent networks. First, the network output is transformed into pairs of words and
posterior probabilities. This is done by summing up the matching score returned
from the dynamic programming in the the lexicon-based word recognition (see
Section 4) for all possible words in the dictionary and dividing the matching
score by that sum.

The first combination uses the Max combination rule [14]. It returns the
word having the highest posterior probability. Similarly, in the second combina-
tion experiment, we implement the Average combination rule, which returns the
word with the highest average posterior probability. The last combination ex-
periments uses and Exponentiated Borda count. For combining recognizers with
Borda Count [15], each recognizer’s n-best list is used and the word at position
i on the list is given the score n − i + 1. For each word in the dictionary, the
score is summed up over each recognizer’s list and the word with the highest
score is returned. In contrast, Exponentiated Borda Count makes use of the score
(n − i + 1)p, with p being a free parameter and has been shown to outperform
normal Borda Count [6].

6 Experimental Evaluation

A total set of 1 552 Bangla words were collected using an I-ball A4 Takenote
tablet from 40 different writers, each contributing at least 30 words. Writers were
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requested to write words from a given a lexicon of 149 words. Input data consist
of (x, y) coordinates along the trajectory of the pen together with positions of
pen-downs (stroke starting points). The sampling rate of the signal is considered
fixed for all the samples. We have divided the input samples into a training
and a testing set. Each set contains 149 directories, one for each of the input
words. Training and testing contains distinct sets of inputs, i.e. a writer who
contributed to one of the two sets did not contribute any words to the other set.
Ground truths (transcriptions) are written in corresponding text file in each of
149 directories in both training and testing set2.

To be processed by the BLSTM NN, each word is represented as a sequence
of vectors, one for each sample point of the recorded pen trajectory. A vector
(d(s, p1), d(s, p2), . . . , d(s, pk))

T consists of distances d(·, ·) between the local con-
text s (the sub-stroke of length l ending in that point) and a set of k prototypes
{p1, p2, . . . , }, which are sub-strokes randomly selected from the training data.
This form of dissimilarity space embedding feature description has been shown
to work well [5]. In our implementation, the distance function d is the sum of the
Euclidean distances between the individual points. We chose to consider k = 12
prototypes and a sub-stroke length of s = 12.

6.1 Setup

The initialization of the BLSTM neural networks is done by assigning random
weights to the connections. Therefore, we trained 9 the BLSTM neural networks
for each of the different output layer configurations and report the best results
of all networks.

The number of LSTM nodes was set to 100, the learning rate was set to 10−4,
and the momentum to 0.9. These parameters have been optimized of and verified
on different databases and shown to perform well. Due to the lack of a validation
set, training was stopped after 600 training epochs.

The word recognition accuracy of the different configurations are: 17.21% for
Configuration 1 (the reference system), 36.47% for Configuration 2, 48.38% for
Configuration 3, 32.10% for Configuration 4, and 44.81% for Configuration 5.
Hence, all alternative encodings for complex compound characters outperform
the reference system substantially.

The reason for the first configuration, which is the common approach to
BLSTM NN-based sequence recognition, to perform so poorly is very likely the
large number of nodes in the output layer combined with a small training set,
which is not sufficient to robustly train such a large network, leading to such a
high confusion rate.

In Configuration 3 the training target for the extra node is to recognize inter-
character transitions. This seems to be an easier task than the recognition of
the opposite as done in Configuration 2. There, the extra node is trained to be
activated only if a new basic stroke occurs, but not in a new character.

2 The database is available upon request.
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Fig. 3. The recognition accuracy using the different combination methods Maximum
(Max.), Average (Avg.), and Exponentiated Borda Count (E.B.C.).

Configuration 4 has two extra nodes, both of which should only be activated
in the surrounding of a compound character. Furthermore, as opposed to Con-
figuration 3, these symbols are not trained to occur between basic characters.
Hence the number of occurrences in the training set is much less, which might
lead to a less robust recognition. This task seems to challenging as well and leads
to the second worst recognition rate.

The fifth configuration achieves the second best recognition rate by training
the network to recognize only the basic shapes, while the disambiguation is left
to the lexicon-based word-recognition.

From these results we can see that the traditional approach of associating
each output symbol with its own node in the output layer is not a suitable
approach for recognition tasks with a large number of output classes. Instead,
the recognition of composing strokes, combined with special output activations
to guide the final recognition, seems more promising.

6.2 Combination Experiments

The final recognition results after combining the recognition systems are shown
in Fig. 3 for combining the best two nets of all different configurations as well as
combining only the best two nets of Configuration 3 and Configuration 5. The
highest performance can be achieved using the Average combination rule and a
combination of the Configurations 3 and 5 and it has a recognition accuracy of
55.05%. Nevertheless, the Average and the Maximum combination rules perform
similarly well, much better than not only the baseline system but each single
individual configuration. Exponentiated Borda Count does not perform well,
which clearly underlines the importance of the recognition posterior probability
which is not used in this combination method. The free parameter p was set to
1.2 which gave good results according to previous experiements. Normal Borda
Count performed even worse with less than 20% recognition rate (not shown).
The oracle combination, which returns the true class if it occurs in at least one
of the recognizers, achieves a recognition accuracy of 70.77% when combining
Configuation 3 and 5, and 79.10% when combining all 5 configuations, clearly
showing that there is room left for improvement.
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7 Conclusion

We have shown in this work how complex temporal pattern can be recognized
with BLSTM NN. In the standard approach, each output class is represented by
an individual node.

For languages with a large number of characters, unlike English and Arabic,
BLSTM neural networks are still unexplored. The Bangla writing system, with
a few hundred symbols, is a straightforward testing ground for such problems.
In the proposed approach for on-line Bangla handwriting recognition, complex
shapes are not recognized as a single unit, but as a composition of basic shapes.
Dedicated output notes are used in addition to the nodes representing the basic
shapes to separate compound characters and help in the recognition.

Through experimental evaluation we show that the proposed approach out-
performs the common approach used for Latin and Arabic scripts. This is an
important step towards Japanese or Chinese on-line handwriting recognition
using BLSTM.

In the future, we will continue the research on more complex shapes in a
variety of different input sources. For a robust text recognition, the problem of
stroke ordering also needs to be addressed. In a one-dimensional input sequence,
the order in which strokes are written influences the recognition output, yet
writers do not always follow the common consent on the order in which to draw
complex characters.
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Abstract. Object detection has long been considered a binary-
classification problem, but this formulation ignores the relationship be-
tween examples. Deformable part models, which achieve great success in
object detction, have the same problem. We use learning to rank methods
to train better deformable part models, and formulates the optimization
problem as a generalized convex concave problem. Experiments show
that, using same features and similar part configurations, performance
of detection by the ranking model outperforms original deformable part
models on both INRIA pedestrians and Pascal VOC benchmarks.

Keywords: Object Detection, Deformable Part Model, Learning to
Rank.

1 Introduction

Object detection is a task for localizing objects of specific categories, it has
been playing a critical role in high-level image understanding. Previous models
formulate object detection as a binary classification problem[9,17,13]. All can-
didate detections are judged a true object area or not. These detections can be
sampled either by sliding windows on a feature pyramid[9,13], or from a shrunk
space generated by objectness models[1,17].

Here comes the problem: Assuming that the feature of a detection candidate
is x, and with its label y. Classification models only focus on the relationship
between x and y, while ignoring relationships between different x. We argue that
these types of relationships are also important: for example, if a xa is better than
xb(that is, candidate a with feature xa have a higher overlap ratio with some
objects than candidate b with feature xb), an ideal model should give a a higher
score. Similarly, if two detections have close best overlap ratios, the model should
give them close scores. Classification models fails to model these situations. As
Figure 1 shows, we focus on ”Why is a detection better than another” rather
than ”Why is a detection true”.

This paper aims to overcome the shortcomings of previous object detection
mentioned above. Our contributions are:

– We provide a ranking perspective on object detection. To search objects from
candidate space, three types of information are available:item-wise, pair-wise
and list-wise. Classification models use only item-wise information, while our
model uses both pair-wise and list-wise information.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 414–423, 2014.
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Fig. 1. In the image on the left-hand side, detection a and b are both true detections,
but a is definitely a better detection than b; In the image on the right-hand side, c and
d are both false detections whose overlap ratios with ground truth objects are below
0.5, but still we can tell c is better than d

– We propose a new objective function based on learning to rank theory, and
apply it on deformable part models[13]. The objective function is a variant
of LambdaRank[6].

– We formulate the optimization problem as a generalized-CCCP problem,
and solve it in a similar way as CCCP[18].

We have a brief review on background works in section 2. The details of
ranking formulation for object detction are discussed in section 3.2. In section 3.3
we describe our objective function. Section 4 shows the procedure of optimizing
the objective function. Section 5 shows the results on well-known object detection
datasets. In section 6 we conclude our work and discuss possible improvements.

2 Related Work

Research on generic object detection is originating from person detection[9].
From then on sliding-window methods with HOG pyramids have been a main
stream on object detection. For every category of objects, sliding-window build
a set of templates to represent all its poses. During training, cropped objects and
backgrounds are extracted to train the template. During detecting, a matching
score is computed at every position in the feature space, then the position with
scores above a threshold is considered to be an object position[9].

Deformable part models(DPM)[13] have greatly pushed the research on object
detection. As a variation of sliding windows, DPMs establish a set of hierarchical
templates for every category of objects. Each template is organized into a root
and its parts. Not only the appearance(vision features) of roots and parts, but
also the parts’ relative positions(structural features) to the root are taken into
consider, so that DPMs can tolerate a certain degree of deformation.

Our work is mainly based on DPMs. We follow the definition of hierarchical
templates, but improve the training procedure. Unlike an equivalent conversion
from latent svm to latent struct svm[20], we use a totally new objective function
based on the theory of learning to rank, and adopt it suitable for object detction.
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We notice that there are several works on strong supervised models[4,2] that
need additional annotations for parts. Additional annotations may help but re-
duces the difficulty of detection task. Our model can be applied on such models
easily.

The work from Balschko[3] uses ranking svm[15] to model object detection,
it is similar to our work in the sense that we both want to capture the essence
why a detection is better than another. But there are significant differences:
they use ranking to handle unlabeled data rather than take object detection as
a ranking problem; they do not model the latent variables while we do, they use
a svm-style objective function while we use a cross entropy style one, which is
more flexible for adding list-wise information.

Learning to rank methods use cross entropy to measure distribution diverge
between empirical probability and model probability[5]. LambdaRank[6] mod-
ifies the form of objective function by interpolating information retrieval mea-
sures. We adopt LambdaRank for more efficient computing in object detection.

During optimization of the cross-entropy style objective function, we find it an
ensemble of Convex Concave Problems[18]. We also notice that finding a convex
lower bound for the concave part of every CCCP would make the whole problem
convex, so the two-stage optimization for original CCCP is suitable for our new
problem.

3 Model

3.1 Deformable Part Models: A Review

Before introducing our model, let us have a brief review on deformable part
models.

An object detection model defines a score function for detections. The function
gives a confidence on the detections. Let x be the position of detections, I be
the image on which detection is performed, a one-layer linear score function is
defined as:

f(x, I;ω, b) = ω ·HI(x) + b (1)

where HI is the feature pyramid, and Hi(x) is the features covered by x. b is a
bias.

DPMs introduce parts into original flat templates. Because locations of parts
are un-observed variables, they may take any position in the image. Let position
of parts be z, then the score function of DPM is simply a maximum of all possible
zs:

f(x, I;ω) = max
z
g(x, z, I;ω) (2)

The function g, which is a score function for joint x and z, is defined as:

g(x, z, I;ω) = ωa
0 ·HI(x) +

K∑
k=1

[ωa
k ·HI(zk)− ωd

k · d(x, zi, vi)] + ωb (3)
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Where d(x, zi, vi) is the deformation function for zi relative to x. vis are ideal
anchors for the ith part, they could be defined either heuristically[13] or by
pre-defined rules[19]. We use ω to represent all parameters: ωa for parameters
of appearance, ωd for parameters of deformation, and ωb for bias. Note that
g(x, z, I;ω) is linear function of ω

To train such functions, DPM then defines an svm-style loss function. Suppose
we have n samples (xi, Ii, yi), where yi ∈ +1,−1 representing whether xi on Ii
is a true detection or not.

L(ω) =
1

2
‖ω‖2 + C ·

n∑
i=1

max(0, 1− yif(xi, Ii;ω)) (4)

3.2 Ranking Perspective on Object Detection

Classical learning to rank systems focus on selecting relevant items from a set
of candidates. Object detection is similar to these models, if we interpret the
searching space of object detection as a set of candidates. Following the way of
Pascal VOC evaluation[11], the set of candidates are all positions of all images
in a dataset. The aim of object detection is then selecting candidates that have
more overlap ratios with ground truth objects.

In information retrieval systems, when modeling the relationship of some sam-
ples x and their corresponding labels y, there are three types of information:

– item-wise information, the direct relationship between x and y.
– pair-wise information, the relationship between a paired (xi, xj).
– list-wise information, the importance of x’s position in the ordered list.

The key difficulties for applying ranking models on object detection is its large
space of candidates. All rectangles in images are candidates to rank. Sliding win-
dow methods largely reduce the number of candidates by making the constraint
that all candidates should be in certain sizes[9], while in recent years there are
several useful technologies directly aiming to shrink the space of candidates[17,8].

We use a sliding window way to generate candidates, but it is very convenient
to apply our model on a shrunk space of candidates.

3.3 Ranking DPM

Different from original DPM, we do not generate detections with their labels, we
organize samples into a list of pairs. Instead of representing the list explicitly,
we use a set of pairs, J , to represent the list. Every pair (i, j) in the set J means
that detection xi has a higher overlap ratio than xj with some ground truth
objects. Then the ordered list defined by J is strict partially ordered[16], and
contains sufficient information of relationships between examples.

We define a simple empirical distribution on every pair (i, j) in J :

P̄ij ≡
{
1, (i, j) ∈ J
0, (j, i) ∈ J (5)
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The empirical probability is a statistical measure of the pair-wise information
in training datasets. During the train stage of our model, the score function is
applied on each detction, and the score outputted would also generate a model
distribution. We define it in a form of sigmoid function:

Pij ≡
1

1 + e−σ(fi−fj)
(6)

For simplicity, we use fi to denote f(xi, Ii;ω).
The two distributions should be as close as possible. We use cross entropy to

measure the divergence of them:

Cij = −P̄ij log(Pij)− (1− P̄ij)log(1− Pij) (7)

Combining Eq.(5) ,(6) and (7), we got:

Ci,j = log(1 + e
−σ(fi−fj)) (8)

To some extent, Eq.(8) can be a loss function on a single pair. Before summing
up the Cijs, it is necessary to examine how important the pair is in the whole
strict ordered list. Note that Cij is an increasing function of fi − fj , and an
obvious fact is that for a pair of detections, they should be scored more discrim-
inatively when they have bigger differences on overlap ratios. So it is reasonable
to give the pairs weights according to the differences of overlap ratios.

This configuration is similar to [10], while we replace the changes of informa-
tion retrieval measures with the differences of overlap ratios. As we discussed
above, differences of overlap ratios plays a role similar to the changes of in-
formation retrieval measures, they both denote the importance of the binary
relationship within the whole list.

Then we have the following loss function:

L(ω) = α · ‖ω‖2 +
∑

(i,j)∈J

log(1 + e−σ(fi−fj))(ovi − ovj) (9)

α is a factor for regularization item. Note that xi is a better detection than xj ,
so the weight factor ovi − ovj is always positive.

4 Optimization

4.1 Generalized CCCP

The loss function for every pair is not convex, but it is semi-convex in the sense
that, the loss function is convex under specific constraints of fi.

We have the following lemma:

Lemma 1. if f(x) and g(x) are both convex, g(x) is non-decreasing, then g(f(x))
is convex.
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With this lemma, we can prove that:

Theorem 1. If fi is concave and fj is convex, Eq.(9) is convex.

Proof log(1 + eσx) is convex and non-decreasing, then the loss function is
convex if fj − fi is convex. On the other hand, if fi is concave, then −fi is
convex, and then we get a convex fj − fi.

Recall that f is maximum of some linear functions, and therefore is convex.
So, it is fi that make Eq.(9) non-convex. But if we find a concave lower bound
for fi, the loss function is convex. As suggested in [18], we can obtain the concave
function by fixing fi with its best latent variable(part locations):

hi = g(Ii, xi, z
∗
i ;ω)

z∗i = argmax
z

g(Ii, xi, z;ω)
(10)

Then the linear function hi is both convex and concave, and thus is a concave
lower bound for fi, and the loss function is convex if we replace fi with hi.

As we show above, fj − fi is a Convex-Concave Problem(CCCP)[18], and the
whole loss function is a so-called ”Generalized CCCP”.

4.2 Optimization Procedure

To solve Generalized CCCP, we follow a similar way to solve standard CCCP,
which uses an iteration of two stages:

– Latent Variable Finding. In this stage, for every i that there exists some
(i, j) ∈ J , we extract z∗i , and calculate hj based on z∗i .

– Optimization. In this stage, we try to optimizing the convex problem α ·
‖ω‖2 +

∑
(i,j)∈J

log(1 + e−σ(hi−fj))(ovi − ovj).

It is worth noting that, for pairs (i, j) in the set of pairs J , some positive
examples may be in the position of i in some pairs, while in the position of
j in others. When scoring these examples, we have to calculate h(x, I;ω) and
f(x, I;ω) simultaneously. For convenience of computing, we use h(x, I;ω) for
scoring all examples from positive images.

In the latent variable finding stage, we use three subroutines:
detect best denotes the procedure of finding z∗ for ground truth boxes in I.

Distance transform[12] is used in the max finding. All z∗s are extracted with
their overlap ratios with ground truth boxes.
detect hard denotes the procedure of detection on negative images, the posi-

tions with top scores are considered to be hard examples, and are selected. All
examples are labeled with overlap ratio 0.
generate pairs generates the set of pairs J using all examples, every pair with

different overlap ratios are put into the set.
During the optimization stage, we use L-BFGS[7] as the loss function is deriv-

able:

∇L(ω) = 2α · ω +
∑

(i,j)∈J

−σ
1 + eσ(hi−fj)

(ovi − ovj)[∇hi −∇fj ] (11)
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The training procedure is illustrated in Algorithm 1.

Data:
Positive Examples:P = {(IP1 , B1), . . . , (I

P
n , Bn)}

Negative Examples:N = {IN1 , . . . , INm}
Initial model parameters:ωold

Result: New model parameters:ωnew

1 ω0 := ωold;
2 for t:=1 to T do
3 for i:=1 to n do

4 F := detect best(IPi , ωt−1);
5 Add F to FP ;

6 end
7 for j:=1 to m do
8 F := detect hard(INj , ωt−1);
9 Add F to FN ;

10 end
11 J := generate pairs(FP , FN );
12 ωt := l bfgs(J);

13 end
14 ωnew := ωT

Algorithm 1. optimization

5 Experiments

We have evaluated our method on two well known datasets: INRIA pedestrians[9]
and PASCAL VOC 2007[11]. Performance is measured in term of Average Pre-
cision (AP) according to the PASCAL VOC protocol[11].

We first initialize models with [14], and then apply our training procedure. To
show whether the new objective function captures more information of training
sets, we use the same features(an adopted version of HOG) suggested by [13].

5.1 INRIA Person

INRIA pedestrians dataset contains 1832 training images and 741 testing images
[9]. Only persons are labeled with their bounding boxes. We evaluate our models
and original DPM in Pascal VOC measures.

Figure 2 Shows the comparison of performances on INRIA dataset, our model
promote the mAP measure from 0.8520 to 0.8571. Simultaneously, our model
gives a much smaller number(1020 ) of detections on test dataset compared to
original DPM(2952 ). These results clearly shows that our model provides a
more discriminative divide for object-related detections and backgrounds. The
reduction of detection number would be very useful in practice.

But it is also worth noting that, it is not the main difference that our model pro-
vides a better divide. Our model has a higher precision almost at any recall value.
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Fig. 2. Compared to original DPM, our model achieves better AP value while giving
fewer candidates

5.2 Pascal VOC

Pascal VOC dataset is a more challenging benchmark. It contains 20 categories
of objects, more complex backgrounds. Objects within each category have signif-
icant differences in appearances, scales and poses(for animals). And the numbers
of objects in each category vary largely[11].

We evaluate our model and original DPM on the dataset. For convenience
of comparison, we do not apply any post-processing technologies such as box
predicting and context predicting.

Table 1 shows the results of our model(Ranking) and original DPM on Pascal
VOC 2007. Our model outperforms original DPM on bicycle, chair,dog, motor-
bike, sheep, train and tvmonitor, while have a poorer performance on bus and
sofa. Results on other categories are close.

The results show that in most cases, our model captures more characteristics
of training data, and the characteristics are helpful or at least not harmful when
applied on testing data. But still in some cases, the characteristics do play a role
like noise.

Table 1. Evaluation results on Pascal VOC 2007, in Average Precision(%)

class plane bike bird boat bottle bus car cat chair cow

DPM 31.04 59.73 4.02 12.12 23.47 50.55 54.63 17.12 17.71 22.79
Ranking 31.04 59.93 4.02 12.12 23.77 50.51 54.63 17.12 17.95 22.80

table dog horse mbike person plant sheep sofa train tv AVG

DPM 22.14 4.59 58.29 47.88 41.76 8.54 18.76 35.86 45.37 40.84 30.86
Ranking 22.14 4.81 58.29 48.01 41.90 8.54 20.00 35.50 45.39 40.90 30.96
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6 Conclusion and Future Work

In this paper, we proposed a new modeling perspective on object detection:
learning to rank. Following this perspective, we defined an ranking model based
on information retrieval theory and DPM, and then formulated the optimization
problem to a generalized CCCP. We evaluated our model on INRIA and Pascal
VOC datasets, and performances on both benchmarks outperform original DPM
which is based on latent svm.

According to our observation, the usefulness of the model is not directly linked
with the shallow features of datasets, like the number of training examples or the
ratio of positive examples and negative examples. The investigation of reasons
are a main direction of our future work.

While ranking is useful for object detection, there are still differences of object
detection with classical ranking problems: a much larger space of candidates. So
it would be more useful to run the ranking model on a smaller space of candidates
generated by objectness methods.
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Abstract. We describe and illustrate a novel algorithm for clustering
a large number of time series into few ’regular groups’. Our method is
inspired by the famous Szemerédi’s Regularity Lemma (SRL) in graph
theory. SRL suggests that large graphs and matrices can be naturally
’compressed’ by partitioning elements in a small number of sets. These
sets and the patterns of relations between them present a kind of struc-
ture of large objects while the more detailed structure is random-like. We
develop a maximum likelihood method for finding such ’regular struc-
tures’ and applied it to the case of smart meter data of households. The
resulting structure appears as more informative than a structure found
by k-means. The algorithm scales well with data size and the structure it-
self becomes more apparent with bigger data size. Therefore, our method
could be useful in a broader context of emerging big data.

1 Introduction

Szemerédi’s Regularity Lemma (SRL), [14], is fundamental in graph theory.
Roughly speaking, it states that any large enough graph can be approximated
arbitrarily well by a bounded cardinality collection of pseudo-random bipartite
graphs, a structure called ’an ε-regular partition’. In many graph problems it
is possible to substitute a graph with such a simple random-like structure, thus
opening a way for analysis, [7,5].

Despite very impressive theoretical impact, SRL has not attracted much in-
terest among applied scientists. Direct use of SRL is prohibited by its nature as
an existence result. For instance, the existing algorithms for finding regular par-
titions are somehow unpractical and require enormous size of the graph, never
seen in applications. We suggest an efficient method that is able to find a coun-
terpart of regular partition, that we call regular decomposition, in graphs and
matrices found in applications.

Our approach of finding the regular decomposition is based on statistical
model fitting using likelihood maximization,[9,10] and can be seen also as a
variant of so called Stochastic block modeling, see e.g. [11,2]. The novelty of
our approach comes from systematic use of SRL as a prototype and theoreti-
cal back up of structure we are looking for, defining a new modeling space for
a graph-like data. Regular decomposition is a partition of nodes into k sets
in such a way that structure between sets and inside sets are random-like.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 424–433, 2014.
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Another important point is that such regular structures can be found in a realis-
tic time. Even for very large data, or ’big data’, the structure can be found from
a modest size sample and the rest of data is partitioned in just one-pass. The
number of sets in the partition of a regular decomposition, k, is optimized. The
algorithm increases number of clusters as long as large clusters are created and
then stops. This halting point is determined using Rissanen’s minimum descrip-
tion length principle, MDL, see in [6], as the first local minimum of description
length.

A real matrix can be treated as a weighted graph, where weights are the matrix
elements and thus our graph-based approach can be used. In this paper we focus
on case of multivariate time series. A key ingredient of our method is a Poisson
random matrix model allowing maximum likelihood fitting of data to the model.
The regular partition is a clustering of time series into few groups. We illustrate
our method on analyzing time series of households electricity consumption mea-
sured by smart meters. Our first results are encouraging: reasonable classes of
households could be identified comparing favorable to other customary methods
like k-means.

1.1 Other Approaches of SRL Related Clustering and Graph
Compression

An alternative, spectral approach for finding a block structure in real matrices
by associating protruding eigenvalues or singular values to regular-type large
blocks of real matrices, was developed and founded by Bolla, [3,4]. The follow-
ing works [12,13] relax SRL so that a relaxed SRL can be used in the area of
practical machine learning, producing some promising results. Other promising
approaches for ’graph compression’ can be found in [16,8], with different methods
and without direct references to Regularity Lemma.

2 Regular Decomposition of Multivariate Time Series

We now describe our SRL-inspired approach for modeling of multivariate discrete
time series as a special case of weighted graphs or real matrices. Consider a set
of n non-negative finite series of length m, as an n×m matrix:Such a

{Xi(t)}t=1,2,···m
i=1,2,···,n.

n is assumed to be large and formally we consider case n → ∞, while m is a
fixed constant. Matrix elements are reals with finite precision, p. The space of
all such matrices is denoted as Mn×m. Such matrices can be seen as weighted
bipartite graphs, with rows and columns as bipartition of nodes. Each time series
is a node and each time instance is a node and between them there is a link with
weight equal to the corresponding matrix element with those particular row- and
column indexes. Say, for a row i and column j, the corresponding weight equals
to Xi(j) , value of the time series i at the moment of time j. Our goal is to find
’regular’ groups of time series, in the form of a particular partition of rows.
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The main new tool is the following random multi-graph interpretation of a
data matrix. For a given weighted link {i, j} with weight Xi(j), we associate
a Poisson random variable, with expectation equal to the weight of the link.
All links are independent. As a result we can associate to every data matrix a
random multi-graph, where multiple links between pair of nodes are allowed.

The target is to ’compress’ such a random multi-graph, using a regular decom-
position of rows. More precisely, the goal is to minimize the expected code length
over such a random source. In this case the modeling space is infinite, because
the weights are just real numbers. To tackle this problem, we assume that we
have a series of discrete modeling spaces with a finite precision, approaching the
real-parameter model as the precision goes to infinity. In practical applications
it suffices to have a finite modeling space, corresponding to a finite precision
of reals. We define a modeling space of matrices from space,Mn×m(p, a) with
finite accuracy of real matrix elements (reals from range [0, a] and the matrix
elements are approximated by rationals from a range of p+ 1 values):

Definition 1. A Poisson random matrix modeling space,Mn/k(p, a), of regular
decompositions of n time series of length m fromMn×m(p, a) into k non-empty
classes:Mn/k(p, a) = {set of all integer valued n×m random matrices, Y where
rows are partitioned into k non-empty sets V1, V2, · · · , Vk and where matrix ele-
ments are all independent random variables and distributed according to Poisson
distribution: matrix element Yi(j) with i ∈ Vα is a Poisson random variable with

parameter λα(j) that belongs to a rational range λα(j) ∈ {r : r = g�a�
p , p is a

fixed integer, and g is an integer s.t. 0 ≤ r ≤ a, a is fixed positive real}}.
The elements of the modeling space are denoted by Θk, incorporating a partition
V1, V2, · · · , Vk and set of Poisson parameters {λα(i)}. For a given integer m× n
matrix X we can compute its probability, P (X | Θk), assuming a model Θk.
Particularly the maximum likelihood model for a matrix X is found from a
program:

Θ∗
k(X) := arg max

Θk∈Mn/k

P (X | Θk), (1)

where we omitted p, a-arguments since it is assumed in sequel. However we have a
different problem: our real matrix A is interpreted as a source of random integer
matrices X as described above. The task is to find a model that maximizes
the expected likelihood of matrices drawn from such a source. According to
information theory this can be seen as compression of the random source. Using
log-likelihood this task is formulated as:

Θ∗
k(A) := arg max

Θk∈Mn/k

∑
X

P (X | A) log(P (X | Θk)) =

arg max
Θk∈Mn/k

(∑
X

P (X | A) log P (X | Θk)

P (X | A) +
∑
X

P (X | A) logP (X | A)
)

=

arg max
Θk∈Mn/k

(−D(PA || PΘk
))−H(PA)),
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where sum is over all non-negative n ×m integer matrices, D is the Kullback-
Leibler divergence and H is entropy of a distribution. Thus we end up with
following minimization of Kullback-Leibler divergence between the two distribu-
tions PA and PΘk

:

Θ∗
k(A) := arg min

Θk∈Mn/k

D(PA || PΘk
), (2)

where we omitted the entropy term that does not depend on Θk. We call the
following expression the expectation of maximum likelihood coding length of the
source A:

lk(A) := D(PA || PΘ∗
k(A))) +H(PA), (3)

Such an interpretation follows from basic of information theory (see e.g.[15]):

Theorem 1. (Kraft’s inequality) For a finite alphabet: L = {1, 2, · · ·m} there
exists a binary prefix coding scheme with (integer) code lengths {l1, l2, · · · , lm}
iff

∑m
i=1 2

−lm ≤ 1 and where li is the length of the code for letter i.

The prefix coding is such that no code is a prefix of another and coding is
an injective mapping of letters to the set of all binary tuples. As a result, if
we have a probability distribution P in L, we can be sure that there exists a
prefix coding with code lengths li = �− logP (i)�, because such integers fulfill
the Kraft’s inequality as a result of normalization of the probability distribution∑

i P (i) = 1. Following the line of MDL, we can define a distribution in the
space of matricesMn×m that we call normalized maximum expected likelihood
distribution Pnml,k:

Pnml,k(A) =
2−lk(A)∑

B∈Mn×m(p) 2
−lk(B)

, (4)

Thus we proved:

Proposition 1. For any matrix A ∈ Mn×m, there exists a prefix coding with
code length:

lnml,k(A) = lk(A) + COMP (Mn/k),

where the model complexity is by definition:

COMP (Mn/k) := log

⎛
⎝ ∑

B∈Mn×m

2−lk(B)

⎞
⎠

and lk(·) is defined by Eqs. (2)-(3).

Remark 1. The model complexity, as it often happens, is uncomputable since it
requires solving a program for a general matrix. An asymptotic formula could be
possible. Based on our experience and results with simpler case of binary matrix
we just conjecture:
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Conjecture 1. For fixed k and m, and with n→∞, we have the asymptotic:

COMP (Mn/k) ∼ log(S2(n, k)) ∼ n log k,

where S2(n, k) is the Stirling number of the second kind.

The Stirling number is just number of partitions of n element set into k non-
empty sets. Choosing the best partition among huge collection is the hardest
part of our procedure.

Our next point is the MDL-optimum. However, we will not try to find the
global optima, since it would require searching the whole range of possible values:
1 ≤ k ≤ n. For large matrices this would be computationally too difficult.
On the other hand, in the spirit of SRL, we suggest that it makes sense to
search for large scale regular structure, corresponding to a local MDL optimum
with smallest value of k. Even such a structure could be very useful for getting
an overall picture of large data sets. Our Poisson-modeling space belongs to
the exponential family. As a result the log-likelihood function is monotonously
increasing function of k, preventing spurious local minimum of MDL, see [6].
Another point is that this space allows computation of goal function in a simple
form. Thus we end up with the following program for finding the large scale
regular structure of multivariate time series, belonging to the spaceMn×m:

PROGRAM 1
Input: A ∈ Mn×m and an integer k′, the maximal depth of search. Output:

optimal regular structure Θ∗
f (A) ∈ Mn/f where

f = inf{k : 1 ≤ k ≤ k′ − 1 ≤ n− 1, lnml,k+1(A) ≥ lnml,k(A)}

or if f is not found in the range 1 ≤ k ≤ k′, conclude that ’no regular structure
found and the best structure found is Θ∗

k′(A)’.
Next we need a program that find optimal structure for fixed k and matrix

A. For this we just need to minimize the Kullback-Leibler divergence, as stated
in Eq. 2. In both models PA and PΘk(A), matrix elements are independent and
Poisson distributed. K-L divergence between two Poisson distributions with pa-
rameters λ and λ0 is denoted and computed as:

D(λ || λ0) = λ0 − λ+ λ log
λ

λ0
. (5)

If we fix partition of rows into k non-empty sets we should choose the parameters
for Poisson variables. We use notation, row i belongs to row class u(i). For a
set Vi of partition we should select the parameters λi(t), 1 ≤ t ≤ m. As is well
known the parameter that gives the maximum likelihood is the average:

λi(j) =

∑
s∈Vi

as(j)

| Vi |

in sequel such a selection is always assumed. Using the two previous relations
we end up with:
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Proposition 2. The regular decomposition of multiple time series, given by a
matrix (A)i,j = ai(j) fromMn×m with fixed size k correspond to solution of the
program:

min
V1,V2,···Vk

∑
1≤i≤n;1≤t≤m

(λu(i)(t)− ai(t) log λu(i)(t)).

where λi(j) =
∑

s∈Vi
as(j)

|Vi| and V1, V2, · · ·Vk is a partition of n-rows into k non-

empty sets and u(·) maps rows to the sets of the partition they belong.

The trivial case is when we have k classes of time series where within each
class all time series are identical. It is easy to see that our program finds such a
structure.

Proposition 3. If time series have k classes and within each class time series
are identical but different across different classes. Then the program in Prop.2
finds such a structure.

Proof. The Program is equivalent of minimizing sum of K-L divergences, D for
all random multi links. It is known that D ≥ 0 between any distributions and
equality to 0 happens when the distributions are equal. Obviously this can be
achieved in this case by using k-classes as regular partition, resulting in the
global optima.

Next we present a result showing that under some condition ’noisy’ clusters can
be also classified correctly. The following lemma is needed to make assumptions
in following Proposition 4 natural:

Lemma 1. For every positive real x and for any fixed real y > 0

x− y log x ≥ y − y log y

and equality holds only when x = y.

Proposition 4. Assume that we have k noisy clusters, meaning that n time
series {Xi(t)} can be clustered into k clusters in such a way that all members
of any cluster have the same expected time series and use the notation if i ∈ Vα
then EXi(t) = λα(t) and Xi(t) = λα(i) + φi(t), for all t. The discrete time
is in the range from 1 to m. The noise components φi are assumed uniformly,
over i and time, upper bounded by a constant. Assume that all mean profiles
λα > 0 and are bounded above by a constant, assume that all profiles {λα} fulfill
condition that if z is a convex combination of these profiles, then

∑
1≤t≤m[z(t)−

λα(t) log z(t) − (λα(t) − λα(t) logλα(t))] > cmu, c, u > 1
2 , ∀α, unless z = λα.

Assuming k is fixed and n → ∞ in such a way that all clusters have size that
is a fixed ratio from n, then noisy clusters are detected asymptotically correctly
in the sense that probability of misclassification is exponentially small with the
length of time series m.
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Proof. First we note that for average profiles the strong law of large numbers
is valid, since the noise is uniformly bounded. Thus with probability 1 asymp-
totically, as n → ∞, we can replace average profiles by their expected profiles,
the errors are o(1) and are not written explicitly in sequel. Let us show that
Proposition 4 holds. Let us assume another partition instead of noisy clusters.
Then the Poisson parameters of such clusters, assuming that they are also large,
are convex combinations of the parameters of noisy clusters, denote one of them
by z(t). Let Xi(t) = λα(t) + φ(t). The probability that it is better fitted to a
new cluster with parameters z(t) is

P{
∑
t

[λα(t)− (λα(t) + φi(t)) logλα(t)] <

<
∑
t

[(z(t)− (λα(t) + φi(t)) log z(t)]}.

Equivalently the condition is written (for brevity time is not written) as:

∑
t

[z − λα log z − (λα − λα logλα)− φi log
λα
z
] > 0.

According to assumption (see Lemma 1 that guarantees a positive bound of
following expression in any point when z(t) 
= λα(t)):∑

t

[z − λα log z − (mα − λα logλα)] > cm
u

As a result the claim holds if
∑

t φi(t) log(λα/z) ≤ cmu. All variables

φi(t) log(λα(t)/z(t))

are uniformly bounded by some positive constant, g, and have zero expecta-
tion. As a result Azuma’s inequality for sum of independent summands holds.
According to this result our desired event has probability with a bound:

P (
∑
t

φi(t) log(λα/z) ≤ cmu) ≥ 1− e
−c2m2u

g2m .

Since 2u > 1 we have that for any other clustering than that underlying noisy
clusters, only some time series would benefit with exponentially small probability.

For clarity we describe the most basic algorithm for finding the optimal parti-
tion using a greedy algorithm of the expectation-maximization (EM) type, [9].
Generally it finds only a local optima and it should be repeated several times to
hit global optima (or replaced by simulated annealing-type algorithm).

Algorithm 1
INPUT a matrix A ∈Mn×m, k a fixed integer 1 ≤ k ≤ n.
STEP 1, find a random partition of set of n rows V into k non-empty sets U ,



Regular Decomposition of Multivariate Time Series and Other Matrices 431

STEP 2 (expectation) compute k-rows of Poisson parameters matrix Λ =

{λα(j)}1≤j≤m
1≤α≤k corresponding to A and given partition U , as averages over sets.

STEP 3 (-maximization) sequentially consider all rows i from 1 to n, and find
an updated partition U ′, consider all variants u′(i) = 1, 2, · · · , k and compute
target function for each choice:∑

1≤t≤m

(λu′(i)(t)− ai(t) logλu′(i)(t))

Take u′(i) = s, that has the smallest value among k variants.
STEP 4 Check IF U ′ = U , then STOP, U ′ is the (local) optimal partition;

other wisely : put U = U ′ and GOTO to STEP 2.
It should be noted, that if the matrix is multiplied by a constant, the partition

of regular structure does not change. This is due to linearity of K-L divergence
for Poisson variables, see Eq. (5), with respect to scaling of parameters.

3 Classification of Households Based on Their Recorded
Electric Power Usage Time Series

As an example we analyze, using regular decomposition method, smart meter
reading of 783 residential, SME and other subjects of electric consumption pro-
vided by ISSDA, Irish Social Science Data Archive [1] with additional informa-
tion on each household available. The time interval is 535 subsequent half hours
or around 10 days. Each row of raw data was normalized by dividing all ele-
ments by the average of the row. We wish to have clustering based on a patterns
of activity not on the level of power consumption. The overall result of regular
decomposition is shown in Fig 1. The regular structure reveals many interesting

Fig. 1. Data matrix, left hand picture raw data of 783 users with 535 half hour period.
Right hand side picture the same data after rearranging rows into 9 groups of regular
behavior. k = 9 was found optimal using MDL-criteria. Pixel darkness corresponds to
value. For instance group 3 has first 3 darker vertical bands, corresponding to working
day activity, followed by 2 weaker bands of Saturday and Sunday. This is line that the
group 3 constitutes of companies.
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Fig. 2. The average profiles of 6 largest groups, the plots of parameters λα(t), α =
3, 4, 5, 6, 7, 9. Peaks are day-time activity, weekend is shown as smaller peaks for group 3.

features, like the group 2 with quite regular time pattern consists of companies
and similar sites (SME). On the contrary group 4 has quite diffuse time pattern
and has mos members of households with retired persons. We made a similar
analysis using k-means or k-medoids method. The result was quite poor, only
two large sets were formed one with SME-type sites and the other having most
of the residential. Thus the differentiation of residential sites failed. the regular
decomposition method on the contrary was able to find 6 significant residential
groups with different social and housing content.

Fig. 3. Social status distributions along regular groups 4-9. A line per a group, the value
is fraction of members that have a certain social status. Group 4 is like non-working
household group, retired etc. Group 6 is the other extreme with highest amount of
employees, that also correlates with a sharper day rhythm of electricity consumption.

4 Conclusions

We describe and demonstrate on real-life electric smart meter customer data, a
novel information theoretic method for clustering multivariate time series into
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few groups. The method is inspired by Szemerédi’s Regularity Lemma (SRL)
from graph theory. Our method compares favorable to such traditional method
as k-means and k-medoids. Our method has potential in similar applications and
particularly in case of emerging big data.

Acknowledgments. The authors are grateful for many useful discussions and
contributions by Ilkka Norros, Tatu Koljonen, Marianna Bolla, Teemu Roos and
Jari Hämäläinen. We thank ISSDA for providing the data files.
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12. Sárkozy, G., Song, F., Szemerédi, E., Trivedi, S.: A practical regularity partitioning
algorithm and its application in clustering (September 28, 2012) arXiv:1209.6540v1
[math.CO ]
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Texture Synthesis: From Convolutional

RBMs to Efficient Deterministic Algorithms

Qi Gao and Stefan Roth

Department of Computer Science, TU Darmstadt

Abstract. Probabilistic models of textures should be able to synthesize
specific textural structures, prompting the use of filter-based Markov ran-
dom fields (MRFs) with multi-modal potentials, or of advanced variants
of restricted Boltzmann machines (RBMs). However, these complex mod-
els have practical problems, such as inefficient inference, or their large
number of model parameters. We show how to train a Gaussian RBM
with full-convolutional weight sharing for modeling repetitive textures.
Since modeling the local mean intensities plays a key role for textures,
we show that the covariance of the visible units needs to be sufficiently
small – smaller than was previously known. We demonstrate state-of-
the-art texture synthesis and inpainting performance with many fewer,
but structured features being learned. Inspired by Gibbs sampling infer-
ence in the RBM and the small covariance of the visible units, we further
propose an efficient, iterative deterministic texture inpainting method.

1 Introduction

Modeling prior knowledge on images and scenes is an important research problem
in computer vision. Somewhat different challenges arise when only considering
specific kinds of images or scenes, since the specific structure of the data needs
to be taken into account. For example, visual textures, even though playing a
large part in the composition of natural images, cannot be modeled well by
directly applying the ideas for building generic image priors. The major reason
is that generic image priors mainly consider the smoothness and continuity of
the image, while texture models have to capture the specific textural structures.

To this end, the seminal FRAME texture model [16] uses Markov random
fields (MRFs) with non-parametric, multi-modal potentials to allow for spatial
structure generation. More recently, Heess et al . [5] suggested an MRF with para-
metric bi-modal potentials, which can be learned alongside the filters (features).
Another class of probabilistic texture models extends restricted Boltzmann ma-
chines (RBMs) [6] toward capturing the spatial structure of textures, e.g. work
by Kivinen et al . [7] and Luo et al . [8]. Common to these MRF- or RBM-
based texture models is that they can be interpreted as a conditional Gaussian
random field whose parameters are controlled by discrete latent variables. More-
over, all of them simultaneously perform regularization and generate textural
structures through modeling the conditional covariance and mean, respectively.
Due to their complex “mean+covariance” construction, these models are not

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 434–443, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Texture Synthesis: From RBMs to Deterministic Algorithms 435

easy to train in practice. Some compromises toward stabilization of training,
e.g. tiled-convolutional weight-sharing [7,8], can be detrimental to the quality of
the generated textures. Moreover, the relative importance of the mean vs. the
covariance component of these models is unclear in light of modeling textures.

In this paper we ask how important the regularization effect from the co-
variance component is for modeling textures. To that end, we explore the abil-
ity and efficiency of “mean” only RBMs for modeling Brodatz texture images
(www.ux.uis.no/~tranden/brodatz.html). We learn full-convolutional Gaus-
sian RBMs (cGRBMs), for which the conditional Gaussian distribution has fixed
identity covariance, and its mean is determined by the hidden variables. Block
Gibbs sampling can be used for efficient learning and inference. Most impor-
tantly, we find that to learn good cGRBM texture models, the covariance of
the visible units needs to be sufficiently small, quite a bit smaller than the
typical best practice [6]. Similarly, the coefficient norms of the convolutional
features must be carefully constrained during learning. Our contributions are
threefold: First, our learned convolutional RBMs have several favorable proper-
ties – simplicity, efficiency, spatial invariance, and a comparatively small number
of structured, more interpretable features – yet they outperform more complex
state-of-the-art methods in repetitive texture synthesis and inpainting. Second,
as the conditional covariance of the visibles is a diagonal matrix with small vari-
ance, we show that the “mean” units actually take the most important role in
modeling textures. Third, inspired by the procedure of inference through block
Gibbs sampling, we further propose an efficient deterministic method for texture
inpainting based on the learned features.

Other Related Work. Hao et al . [4] modified high-order Gaussian gated Boltz-
mann machines for texture modeling, and also directly model the dependencies
between two visible units. They learned 1000 features with convolutional weight
sharing and achieved good texture classification performance. The performance
in texture generation are less satisfactory, however, with block artifacts appear-
ing in texture inpainting results. Efros et al. [1,2] proposed non-parametric meth-
ods for texture synthesis. In [2] the synthesized image is grown by one pixel at a
time according to the best matches between its neighbors and patches from the
texture. [1] instead stitches together small patches directly.

2 Texture Modeling and Mean Units

2.1 MRF Models Based on Filters and Potentials

A typical way of formulating a prior for a generic image x is through modeling
the response to some linear filters with potential functions [3]:

pMRF(x;Θ) ∝
∏
c,j

φ
(
fTj xc; θj

)
, (1)

where xc denotes the pixels of clique c, fj are linear filters, and φ(·; θj) are
the potential functions. As the filter responses usually have heavy-tailed em-
pirical distributions around zero, the potential functions are also chosen to be

www.ux.uis.no/~tranden/brodatz.html
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Fig. 1. Tiled-convolutional (left) and full-convolutional (right) weight sharing. Lines
converging to the hidden units (shaded) are the filters; they share their parameters
when indicated using the same color or line type.

heavy-tailed (e.g., Student-t). Many heavy-tailed potentials can be formulated
as Gaussian scale mixtures (GSMs) [10]. For better understanding and more ef-
ficient inference, such GSM potentials allow augmenting the prior with hidden
variables h = (hjc)j,c, one for each filter fj and clique c, which represent the
index of the Gaussian mixture component modeling the filter response [12]. It
holds that pMRF(x;Θ) ∝

∑
h pMRF(x,h;Θ). Given the hidden variables, the

conditional distribution for the image is a zero-mean Gaussian

pMRF(x|h;Θ) ∝ N
(
x;0,Σ(h,Θ)

)
. (2)

As changing the hidden units only changes the conditional covariance, such basic
image priors focus on modeling the covariance structure of the image, which is
intuitive as they are primarily aimed at regularization.

Heess et al . [5] showed that such generic MRF priors for natural images are
not suitable for textures, and propose to extend them using bi-modal potential
functions. Multi-modal potentials can also be modeled with Gaussian mixtures,
however the components may no longer all have zero means. Given the hidden
units, the conditional distribution of such an MRF texture model

pMRFt(x|h;Θ) ∝ N
(
x;μ(h,Θ),Σ(h,Θ)

)
(3)

shows that bi-modal potentials capture not only the covariance structure, but
also the local mean intensities. The seminal FRAME texture model [16] with its
non-parametric potentials is also consistent with this observation. Comparing
Eq. (3) with Eq. (2) suggests that modeling the conditional mean is a particular
trait of texture models. The intuitive explanation is that the model does not
“just” want to perform regularization, but instead generate textural structure.

Note that in these models the filters are applied convolutionally across the
entire image. Since filters can be understood as weights connecting visible and
hidden units, this is called convolutional weight sharing (cf . Fig. 1). Importantly,
this keeps the number of parameters manageable, even on images of an arbitrary
size, and also gives rise to the model’s spatial invariance.

Nonetheless, learning such a “mean+covariance” model is difficult in practice,
since the hidden units affect both conditional mean and covariance in complex
ways. Since the filters need to be sufficiently large to generate coherent struc-
tures, the resulting covariance matrix will furthermore be quite dense, making
both learning and inference rather inefficient. Moreover, the learned texture fil-
ters from [5] lack clear structure (see Fig. 2), making them difficult to interpret.
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(a) D21,
BiFoE

(b) D53,
BiFoE

(c) D21, our cGRBM (d) D53, our
cGRBM

Fig. 2. Comparison of learned texture filters/features

2.2 Boltzmann Machine Models

Models derived from restricted Boltzmann machines (RBMs) take a different
route. A Gaussian RBM [6] models an image by defining an energy function over
visible units x (here, the image pixels) and binary hidden units h. The random
variables have a Boltzmann distribution pRBM(x,h) = 1

Z exp{−ERBM(x,h)},
where Z is the partition function. Gaussian RBMs have the property that the
conditional distribution of the visible units given the hidden ones is a Gaussian

pRBM(x|h;Θ) ∝ N
(
x;μ(h,Θ),Σ

)
, (4)

in which only the conditional mean depends on the hidden variables.
More recent variants of Boltzmann machines for texture modeling [7,8] not

only model the conditional mean, but also the covariance akin to Eq. (3). [7]
experimentally compared three models: Gaussian RBMs, Products of Student-t
(PoT) [15], and their combination, which corresponds to modeling conditional
mean, covariance, and mean+covariance, respectively. The results revealed the
importance of the conditional mean for texture synthesis and inpainting.

Note that both [7,8] adopt tiled-convolutional weight sharing [11] (cf . Fig. 1).
The apparent reason is that the states of hidden units are less correlated, thus
making training of the models easier. Unfortunately, tiled-convolutional models
involve many parameters, since several sets of features (filters) must be learned.
For example, [7,8] learn and use more than 300 features for every texture, which
are moreover not spatially invariant. Consequently, tiled-convolutional weight
sharing requires copious training data, which for textures is often not available.

3 Learning Full-Convolutional RBMs for Textures

Mean units appear to be an important component of many texture models. As
these models also include covariance units and/or complex weight sharing, it is
not clear how important the mean units are. We now investigate this and explore
the capability of “mean-only” Gaussian RBMs for textures.
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3.1 Convolutional Gaussian RBM

A spatially invariant model is obtained through applying the Gaussian RBM
convolutionally to all overlapping cliques of a large texture image. The energy
function of the convolutional Gaussian RBM (cGRBM) is then written as

EcGRBM(x,h) =
1

2γ
xTx−

∑
c,j

hjc
(
wT

j xc + bj
)
, (5)

where we add a weight γ to the quadratic term. Here wj determine the inter-
action between pairs of visible units xc and hidden units hjc. Thus wj are the
features or filters, bj are the biases, c and j are indices for all overlapping image
cliques and filters, respectively. The conditional distribution of x given h is a
Gaussian

pcGRBM(x|h) ∝ N
(
x; γ

∑
c,j

hjcwjc, γI

)
, (6)

where the vector wjc is defined as wT
jcx = wT

j xc. The conditional of h given x
is a simple logistic sigmoid function

pcGRBM(hjc|x) ∝ logsig(wT
jcx+ bj). (7)

3.2 Data

For a fair comparison with other models [5,7,8], we follow their use of the Brodatz
texture images for training and testing our models. The images are rescaled to
either 480×480 or 320×320, while preserving the major texture features, and
then are normalized to 0-mean and unit standard deviation. We also divide each
image into a top half for training and a bottom half for testing.

3.3 Learning

As the partition function of the model is intractable, we perform approximate
maximum likelihood (ML) learning based on persistent contrastive divergence
(PCD) [13]. Model samples are obtained using standard, efficient block Gibbs
sampling, which alternately samples the visibles x or the hiddens h given the
other. The parameters are updated using gradient ascent, e.g. for filters using

w
(t+1)
j = w

(t)
j + η

[〈∂E(x)
∂wj

〉
XPCD −

〈∂E(x)
∂wj

〉
X0

]
, (8)

where η is the learning rate, 〈·〉 denotes the average over the training data X0

or the samples XPCD.
The standard learning procedure [6], however, does not ensure that a good

convolutional RBM texture model is learned in practice. E.g. even the sim-
ple mean-only RBM baseline of [7] stabilizes learning using tiled-convolutional
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Fig. 3. (a) Texture similarity scores (TSS) of synthesized textures (black, dashed)
and model samples (red, solid) vs. the choice of γ. (b) The covariance matrix of 1000
samples of h when γ = 0.03. Results are based on D21.

weight sharing and a slowly mixing Hybrid Monto Carlo (HMC) sampler. Con-
sequently, care must be taken to be able to train a cGRBM for textures.

Choice of Parameter γ. The typical best practice in Gaussian RBMs is to
set the weight γ to 1 when the training data is normalized [6]. But we find that
γ = 1 is far from the optimum and its value can greatly affect the generative
properties of the trained texture models. Fig. 3(a) shows how γ changes the
texture similarity score (TSS) [5] (see Sec. 3.4 for details) of model samples and
synthesized textures. Actually, since a texture sample drawn with the Gibbs
sampler is a sum of the conditional mean and i.i.d. Gaussian noise, γ = 1 will lead
to the textural structures being dominated by noise. But even if we synthesize
textures by taking the conditional mean of the final sampling iteration, as we
do here, we see that γ can greatly affect the quality of the texture and that the
previous best practice of γ = 1 does not work well. This may be the reason why
other texture models considered more complex pixel covariances and/or rely on
less well-mixing samplers for stabilizing training.

Although Fig. 3(a) suggests that smaller values of γ should be preferred, an
overly small γ will lead to a small covariance for the Gaussian in Eq. (3) and
consequently to slow mixing of the Gibbs sampler. We find γ = 0.03 to be a good
trade-off. To illustrate this, Fig. 3(b) shows the covariance matrix computed from
1000 consecutive samples of h corresponding to one feature. As it is close to a
diagonal matrix, the variables in h are approximately independent, thus the
sampler mixes well. We use γ = 0.03 for all our experiments.

Other Best Practices. To obtain structured filters and – in our experience –
also better texture models, we have to impose some constraints on the filters. As
usual, the filters are initialized with random values, but their coefficient norms
are ensured to be small initially. During training they are moreover constrained
to have 0-mean and limited to not increase above an empirical threshold of
0.05/γ. Otherwise the filters will often get stuck in poor local optima without
any clear structure. Since the biases do not change significantly during learning,
we fix them to bj = − 1

3‖wj‖, similar to [9]. The bias depends on the current
norm of filter coefficients to keep a reasonable portion of the hidden units being
“on” (cf . Eq. 7).
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Also note that the typical whitening of the training data cannot be applied
for textures, even if it is common for natural image priors. Since whitening will
remove the major structural pattern of a single texture, it is in our experience
difficult for the RBM to represent the remaining spatial patterns.

The Learned Models. We trained cGRBM models for several Brodatz tex-
tures, each of which is trained based on 40 patches of size 76×76, randomly
cropped from the corresponding preprocessed training image. As all the training
images are rescaled, we simply fix the filter size to 9×9 for all models. The mod-
els for textures D6, D21 and D53 consist of 15 learned filters, while the model
for D77 has 20 filters due to its slightly more complex pattern. Examples of the
learned filters are shown in Fig. 2; we observe clearly apparent structure, e.g.
unlike [5].

3.4 Generative Properties

To evaluate the generative performance of our learned cGRBM texture mod-
els, we quantitatively compute texture similarity scores (TSS) [5] between the
synthesized textures and real texture patches, which is defined based on the

maximum normalized cross correlation TSS(s,x) = maxi
sTx(i)

‖s‖·‖x(i)‖ , where s is

the synthesized texture and x(i) denotes the patch of the same size as s within
the texture image x, at location i.

We collect 100 samples of size 76×76 for each model (each texture) using Gibbs
sampling. Since in Gibbs sampling the texture samples are obtained by summing
the final conditional mean and i.i.d. Gaussian noise, we use the conditional
means from the last sampling step as the synthesized texture. For computing the
TSS, only the center 19×19 pixels are considered (the same size as in [5,7,8]).
Tab. 1 shows the means and standard deviations of TSS. Thanks to the full-
convolutional weight sharing scheme, our simple cGRBM models only require 15
(or 20 for D77) features (filters) to exceed the generative properties of much more
complex Boltzmann machine models [7,8] with many more (> 300) features.
Note the considerable performance difference between our learned cGRBMs and
the Gaussian RBM baseline “Tm” of [7], which is based on a standard learning
procedure and tiled-convolutional weight sharing. Our cGRBMs even outperform
the deep belief networks (DBNs) of [8]. Meanwhile, the 9×9 filter size of our
models is also smaller than that of [7,8] (11×11). The BiFoE models [5] only use
9 filters of size 7×7, but the paper argues that more and larger filters do not
lead to a large difference in model quality, but greatly reduce the efficiency of
inference.

3.5 Texture Inpainting

In a texture inpainting application, following previous work [7,8], we take 76×76
patches from the testing texture images and create a 54× 54 square hole in
the middle of each patch by setting the intensity values to zero. The task is to
generate texture in the square hole that is consistent with the given boundary.
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Table 1. Means and standard deviations of TSS of the synthesized textures

Model D6 D21 D53 D77

BiFoE [5] 0.757 ± 0.059 0.871 ± 0.032 0.827 ± 0.087 0.646 ± 0.022
Tm [7] 0.930 ± 0.021 0.890 ± 0.079 0.849 ± 0.061 0.866 ± 0.008
TmPoT [7] 0.933 ± 0.036 0.896 ± 0.070 0.853 ± 0.056 0.870 ± 0.008
TssRBM [8] 0.937 ± 0.047 0.948 ± 0.025 0.941 ± 0.022 0.841 ± 0.012
DBN [8] 0.952 ± 0.016 0.947 ± 0.032 0.950 ± 0.026 0.864 ± 0.160
cGRBM (ours) 0.963± 0.005 0.961± 0.008 0.965± 0.004 0.875 ± 0.013

Table 2. Means and standard deviations of MSSIM scores of the inpainted textures

Model D6 D21 D53 D77

Tm [7] 0.858 ± 0.016 0.866 ± 0.019 0.849 ± 0.023 0.764 ± 0.027
TmPoT [7] 0.863 ± 0.018 0.874 ± 0.012 0.860 ± 0.023 0.767 ± 0.032
TssRBM [8] 0.888 ± 0.023 0.912 ± 0.014 0.916 ± 0.024 0.763 ± 0.031
DBN [8] 0.889 ± 0.025 0.906 ± 0.016 0.924 ± 0.029 0.774 ± 0.023
cGRBM (ours) 0.909± 0.017 0.928± 0.012 0.933 ± 0.010 0.783± 0.027

Efros & Leung [2] 0.827 ± 0.028 0.801 ± 0.029 0.863 ± 0.018 0.632 ± 0.041
Deterministic (ours) 0.899 ± 0.019 0.918 ± 0.014 0.926 ± 0.016 0.775 ± 0.034

Inpainting is done through sampling conditioned on the given boundaries.
This procedure is quite efficient when using a block Gibbs sampler. For each
texture, we use 20 different inpainting frames and perform inpainting 5 times
with different initializations, leading to 100 inpainting results. The quality of the
inpainted texture is measured by the mean structural similarity (MSSIM) score
[14] between the inpainted region and the ground truth. Fig. 4 shows examples of
inpainting results and Tab. 2 gives a quantitative comparison with other models1,
which we outperform considerably despite a simpler model architecture.

4 Deterministic Texture Synthesizer

From Sec. 3 we know that the value for γ in our cGRBM model is small. Looking
at Eq. (6), this on the one hand means that the sample will not deviate signifi-
cantly from the conditional mean. Moreover, the norms of filter coefficients must
be large to balance the small γ, which implies that most values of wT

jcx+ bj will
fall outside of the smooth transition area of the logistic sigmoid in Eq. (7). This
suggests that, in applications, it may be possible to use deterministic functions to
replace sampling the two conditionals. In particular, we apply a unit step func-
tion on wT

jcx+ bj, then use the obtained binary auxiliary variable to modulate
the filters to reconstruct the image, and repeat the procedures until convergence
(Alg. 1). Note that this is equivalent to a block coordinate descent on the model
energy Eq. (5). Since this scheme only works well if some reference pixels are
given, such as in texture inpainting, we use it in this context. While slightly worse
than sampling the cGRBM, the performance of the deterministic approach is still

1 Our implementation of Efros & Leung [2] uses a window size of 15×15.
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(a) Inpainting
frames

(b) Our
cGRBM

(c) Our
deterministic

(d) Efros &
Leung [2]

(e) Ground
truth

Fig. 4. Examples of inpainting results. From top to bottom: D6, D21, D53, D77.

better than the state of the art. In our inpainting experiment, our deterministic
method only needed 30–50 iterations to reach convergence, while sampling the
cGRBM usually required ∼ 100 iterations. It is moreover quite efficient, because
the computation in each iteration is very simple. By contrast, nonparametric
methods (e.g. [2]) are often not as efficient due to the necessary matching step.

5 Summary

In this paper we analyzed the role of the conditional mean in modeling visual
repetitive textures. We showed that simple Gaussian RBMs trained in a con-
volutional fashion are able to outperform much more complex state-of-the-art
texture models, in which the latent variables also control the conditional covari-
ance. We showed that the covariance of the cGRBM must actually be rather

Algorithm 1. Deterministic Texture Inpainting

Require: Image x to be inpainted
repeat
hjc ← H(wT

jcx+ bj) # where H is a unit step function
x← γ

∑
j,c hjcwjc

until no change of x (or h)
return x



Texture Synthesis: From RBMs to Deterministic Algorithms 443

small to enable high texture quality, and suggest new best practices for mod-
eling repetitive textures with RBMs. Our model requires only a small number
of learned features, with a clearly emerging structure, and is spatially invari-
ant. Inspired by efficient RBM inference using block Gibbs sampling, we further
propose a fast, iterative deterministic texture synthesis method.

An open question for future work is to automatically determine the number
of filters based on the complexity of the respective texture. Moreover, although
a mean-only model can capture repetitive textures well, covariances might have
to be considered for general textures. We leave this for future work.
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Abstract. This paper presents a method for object matching that uses
local graphs called keygraphs instead of simple keypoints. A novel method
to compare keygraphs was proposed in order to exploit their local struc-
tural information, producing better local matches. This speeds up an
object matching pipeline, particularly using RANSAC, because each key-
graph match contains enough information to produce a pose hypothesis,
significantly reducing the number of local matches required for object
matching and pose estimation. The experimental results show that a
higher accuracy was achieved with this approach.

Keywords: Local feature matching, SIFT, hierarchical k-means tree,
RANSAC, graph-based structural information.

1 Introduction

An important problem in computer vision is object recognition through match-
ing, which consists in localising objects in test images and estimating their 3D
pose. Solutions to this problem are useful in different application domains, such
as robotics, medical images analysis and augmented reality. One of the most suc-
cesful approaches for this problem involves establishing correspondences between
interest points (keypoints) in test and training images; next, a pose estimation
algorithm is used, e.g. based on RANSAC, which operates by removing outliers
that do not conform with global pose parameters. In this paper, we present a
novel method that is capable of providing more accurate solutions besides being
computationally cheaper. Our method is generic, in the sense that it can be used
with any keypoint extractor method; we validate it using SIFT features [1].

In keypoint-based object recognition, point-to-point correspondences are ob-
tained by matching discriminative features and reducing the set of matches in a
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post-processing step. For instance, the ratio test [1] compares the distances to
the first and the second nearest neighbor and only establishes a match if the for-
mer is significantly smaller than the latter. However, usually there are locations
on manmade objects that have similar local appearances, thus discriminative
matching may prevent features with similar descriptors from being matched,
which becomes a problem particularly when matching keypoints coming from
different images.

In our work, initially, we also produce matches solely based on photometric
information, but we allow a large number of matches to be established. Then,
aiming to eliminate most of the incorrect matches, we use structural information
within the images; this is done by establishing matches between small sets of
keypoints, which we treat as graphs. In this way, our method produces a better
set of keypoint matches, even when there are locations on the objects with similar
appearances. Not only those matches have a high probability of being correct,
but this also benefits the next stage, based on RANSAC, which ends up using a
small set of graph correspondences.

Differently from previous approaches that model an image as a global graph
and then proceed by employing graph matching methods, such as the work of Sir-
macek and Unsalan [2] which uses SIFT keypoints as graph vertices or the work
of McAuley and Caetano [3], our approach is local: we decompose the scene and
pattern into collections of local graphs and perform only local graph matching,
leaving the global matching to the RANSAC procedure. We built upon insights
from the work of Morimitsu et al. [4], which focused on fast object detection
using a single training image. For that, they used a graph edge descriptor based
on Fourier transform and explicitly stored several structures obtained from the
training image, which are matched to similar structures found in the test image.
In the present paper, we focus on an object recognition task in which there are
several images per training object and also many objects stored. We use a more
discriminative keypoint extractor (SIFT), and since it is not computationally
feasible to explicitly store structures found in the (many) training images, we
develop a strategy based on quickly evaluating, during execution time, different
aspects of strucures within test and training images.

2 Methodology

The first step of our object recognition process involves extracting SIFT key-
points from all the training images. We use the ground-truth segmentation to
eliminate keypoints that are not on the object. We store all the training keypoints
in a global indexing structure, which allows to quickly find the approximate near-
est neighbors of a query (test) keypoint. We chose to use the hierarchical k-means
tree proposed by Muja and Lowe [5] due to its efficiency. For each SIFT keypoint
extracted from a training image we store its normalized descriptor (a 128-D fea-
ture vector), its scale, its orientation, an identifier of its source image and its x,
y position in that image.

Matching of a test object is done following a pipeline of three stages. First,
photometric information is used: each SIFT descriptor of the test image runs
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through the hierarchical k-means tree, producing many matches to the key-
points of the training images. In the second stage, most of the incorrect keypoint
matches are eliminated using structural information within images. The strategy
consists in substituting the matches previously established between one-to-one
keypoints by matches established between small sets of keypoints, i.e., graphs,
called keygraphs [4]. A keygraph is a graph whose vertices are keypoints, and
whose edges carry structural information about its keypoints. The third stage of
the matching process consists in using a modified RANSAC (Random Sample
Consensus) algorithm, which employs matches established between keygraphs.

2.1 Keypoint Matching

SIFT keypoints are often located very close to each other and this can lead to
poor pose estimation results with minimal sets. We select a maximal subset S
of keypoints in the test image such that the distance, in pixels, between any two
keypoints in S is above a threshold dpix; we use dpix = 10 pixels.

After selecting the set S of keypoints in the test image, we match them to
the keypoints of the training images, which are stored in a hierarchical k-means
tree. We let each test keypoint establish a match with at most two keypoints of
each training image. In order to establish a match between keypoints, it is nec-
essary that the Euclidean distance between their (normalized) SIFT descriptors
is below a threshold t; we set t with a relatively high value, as the next stage
eliminates possibly incorrect matches. If a test keypoint can establish more than
two matches with a same training image, only the two closest matches are kept.

2.2 Keygraph Matching

A keygraph is defined as a graph G = (V,E), where the vertex set V is com-
posed of keypoints, and E is the set of graph edges. All the keypoints in a
keygraph are present in the same image. Every keygraph has the same number
of vertices, κ, and it consists in an oriented circuit in the clockwise direction,
G = (v1, v2, . . . , vκ).

Each keygraph in the test image can establish matches with keygraphs in
every training image. Let G = (v1, v2, . . . , vκ) and H = (w1, w2, . . . , wκ) be
keygraphs in a test and in a training image, respectively. The existence of a
match between G and H , denoted as M = (G,H), implies κ matches between
the keypoints (vertices) of G and H . For instance, (G,H) may imply the set
of keypoints matches M = {(v1, w1), (v2, w2), . . . , (vκ, wκ)}, i.e., it implies the
occurrence of κ matches between pairs of keypoints.

Obtaining Keygraphs in the Test Image. We begin with the subset S of
keypoints in the test image and execute the Delaunay Triangulation, generating
a set of triangles, i.e. we use keygraphs with κ = 3 vertices, G = (v1, v2, v3),
represented as triangles whose edges are oriented in the clockwise direction.
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Obtaining Keygraphs in the Training Images The keygraphs in the train-
ing images are not obtained using the Delaunay Triangulation. Instead, we first
calculate the potential keygraph matches that may occur from the test image to
each training image. Then we analyse which of those potential keygraph matches
imply a valid keygraph in the training image.

LetG = (v1, v2, v3) be a keygraph in a test image, obtained using the Delauney
Triangulation. For each training image, we verify whether G establishes keygraph
matches with that image. As an illustration, consider the case in which every
keypoint of G, v1, v2 and v3, establishes two matches with keypoints of a same
training image; then there are eight different possible matches between G and
keygraphs of that training image: choose one of the two matches of v1 and choose
one of the two matches of v2 and choose one of the two matches of v3. Considering
that the keypoint matches are (v1, w1), (v1, w2), (v2, w3), (v2, w4), (v3, w5) and
(v3, w6), at most eight sets of keypoint matches (i.e. keygraph matches) can be
established:

M1 = {(v1, w1), (v2, w3), (v3, w5)},M2 = {(v1, w1), (v2, w3), (v3, w6)},
M3 = {(v1, w1), (v2, w4), (v3, w5)},M4 = {(v1, w1), (v2, w4), (v3, w6)},
M5 = {(v1, w2), (v2, w3), (v3, w5)},M6 = {(v1, w2), (v2, w3), (v3, w6)},
M7 = {(v1, w2), (v2, w4), (v3, w5)} and M8 = {(v1, w2), (v2, w4), (v3, w6)}.

Each one of those keygraph matches requires the existence of a specific keygraph
in the training image; for instance, M1 = {(v1, w1), (v2, w3), (v3, w5)} requires
H1 = (w1, w3, w5) in the training image. As we assume that mirroring is not a
possible distortion of the test image, the circuit of a keygraph H in a training
image must be oriented in the clockwise direction; if it is oriented in the counter-
clockwise direction thenH and the tentative keygraph match involvingH are not
accepted1.The set of possible keygraph matches M1, M2, . . ., M8 established
by a test keygraph G = (v1, v2, v3) with a training image can also be reduced
if v1, v2 or v3 establish fewer keypoint matches with that image; naturally, this
set becomes empty if v1, v2 or v3 does not establish any match or none of the
implied circuits is in the clockwise direction.

Discarding Keygraph Matches Using Structural Relations. After ob-
taining a set of (at most eight) tentative keygraph matches between a test key-
graph G and keygraphs in a training image, we use five additional tests aiming
to eliminate incorrect keygraph matches. This is very effective: the total number
of keygraph matches is reduced in orders of magnitude. The tests are based on
photometric and structural information within the keygraphs.

To illustrate the tests, let G = (v1, v2, v3) be a keygraph in the test image
and M = {(v1, w1), (v2, w2), (v3, w3)} be a tentative keygraph match implied
by G in a training image, such that M requires the existence of the keygraph
H = (w1, w2, w3) in that training image.

1 We assume that training objects are convex or that there is, in the training set, at
least one viewpoint of the object where this assumption is valid.
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The first test is based on the edges of a training keygraph. InH = (w1, w2, w3),
there are three edges: eH1,2 = (w1, w2), e

H
2,3 = (w2, w3) and e

H
3,1 = (w3, w1), whose

lengths in pixels in the training image are denoted as, respectively, |eH1,2|, |eH2,3|
and |eH3,1| (an edge is a straight line connecting two vertices). This first test
verifies whether the edges length respect a minimum and a maximum value: we
use 10 and 100 pixels, i.e. this test verifies whether 10 ≤ |eHi,j| ≤ 100. As the
keygraphs in the test image in general have edges with a length equal to or
slightly greater than dpix = 10 pixels, this test allows the objects to appear in
the test image considerably smaller than the (large) object in the training image.

The second test is based on the ratio of edges length in corresponding
keygraphs. Considering the tentative match M between the keygraphs G =
(v1, v2, v3) and H = (w1, w2, w3), the three ratios between the length of corre-
sponding edges are rij = |eGi,j |/|eHi,j |. This test verifies whether the larger ratio,
rij , is at most twice the smaller one, rkl, i.e. rij ≤ 2rkl. This test still allows the
occurrence of a large variation between the viewpoints of the object in the test
and the training images, but since many training images are taken around an
object, a very drastic viewpoint change is not allowed to occur.

The third test is based on the ratio of the scale of corresponding SIFT key-
points. The motivation of this third test is similar to that of the second one. In
the test keygraph G = (v1, v2, v3), consider that the scale of the SIFT keypoint
v1 is sG1 and similarly we have the scales sG2 for v2 and sG3 . In a similar way, for
the training keygraph H = (w1, w2, w3) we have the scales s

H
1 , sH2 and sH3 . Thus

the three ratios between the scale of corresponding keypoints are r1 = sG1 /s
H
1 ,

r2 = sG2 /s
H
2 and r3 = sG3 /s

H
3 . Similarly to the second test, this third test verifies

whether the larger ratio is at most twice the smaller one.
The fourth test is based on both edges and scales. It uses results calculated in

the second and the third tests: the ratios between edges length r12, r23 and r31
and the ratios between scales r1, r2 and r3. Ideally, the value E = r12+ r23+ r31
would be similar to the value S = r1 + r2 + r3, as the change in the object size
and viewpoint from the training image to the test image should impact similarly
the edges length and the SIFT scale. However, as imprecisions can occur, we let
the values E and S differ: this fourth test verifies whether the larger value is at
most 50% greater than the smaller value, i.e., if E > S this test verifies whether
E ≤ 1.5S and if S > E it verifies whether S ≤ 1.5E.

The fifth test uses the orientation (angle) of SIFT keypoints. One of the three
pairs of matched keypoints is selected, and the variation of angle between the test
and the training keypoints is calculated; then, for the other two keypoint pairs,
this variation is applied and it is verified whether the resulting angle is within a
margin of error of 45 degrees from the original SIFT orientation. The test suceeds
if both keypoint pairs agree with the angle variation implied by the first keypoint
pair. If the test fails using a keypoint pair to calcule the angle variation, it can
be evaluated again using the other two keypoint pairs to calculate the angle
variation: it must suceed for at least one of the three pairs. For example, in the
tentative matchM of keygraphs G = (v1, v2, v3) and H = (w1, w2, w3), the pair
(v1, w1) is used to calculate the angle variation. The angle of v1 is 0◦ and the
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angle of w1 is 30◦, i.e. from v1 to w1 occurs an increasing of 30◦. Now, this angle
variation (+30◦) is verified with the other two pairs of keypoints. The angles
of v2 and w2 are, respectively, 40◦ and 80◦; applying the variation of +30◦, we
obtain that the angle of w2 should be 70◦ (40◦ plus 30◦), which is within the
margin of error of 45◦, as the true orientation of w2, 80

◦, is just 10◦ above the
70◦ implied by the first keypoint pair. A similar verification is made by applying
the variation of +30◦ to the pair (v3, w3). The whole evaluation can also be
made using the angle variation from v2 to w2 or the angle variation from v3 to
w3. We use a large margin of error of 45 degrees which allows the occurrence of
imprecisions but still avoids the establishment of absurd keygraph matches.

Figure 2.2 illustrates the establishment of keygraph correspondences.

2.3 Third Stage: RANSAC on Keygraphs

One keygraph match generates κ = 3 keypoint matches. In the experiments in
this paper, we use an affine transformation to instantiate an object, thus one
keygraph match is necessary to instantiate an affine transformation. Compared
to the tradicional RANSAC approach, which would require the random selec-
tion of three independent keypoint matches, the keygraph method requires the
verification of a smaller number of poses.

Let G be the set of all keygraph matches between the test image and a training
image, G = {M1,M2, . . . ,M|G|}, in whichMi is a set of three keypoint matches;
thus the set P of keypoint matches between those images is P =M1∪M2∪ . . .∪
M|G|. To evaluate the quality of an affine transformation which instantiates, in
the test image, the object present in that training image, we count the number of
keypoint matches that agree with it: for each keypoint in the training image, let
x, y be its position in the test image as established by the keypoint match, and let
x′, y′ be its position in the test image as predicted by the affine transformation
under evaluation. If the distance between x, y and x′, y′ is below three pixels,
we consider that this keypoint match agrees with the transformation. If at least
six keypoint matches agree with a transformation (i.e. the three matches used
to instantiate it plus three other matches), we consider that a correct pose of
the object is found, and the algorithm returns this affine transformation. If more
than one solution is found for a test image, the algorithm returns the one with
more matches agreeing with it.

3 Experiments and Results

In our experiments we use a challenging object recognition dataset which con-
tains ten different types of common household objects. For each object type,
there are 25 training images taken around the object and 50 test images in
which the object appears in a cluttered, realistic scene (in half of them there is
one object instance, in the other half, two instances). This dataset was produced
and made available by Hsiao et al. [6]. The authors evaluated it in a 3D ob-
ject recognition task, in which a 3D model was created for each training object.
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Fig. 1. Keygraph matches established between training (left side) and test (right side)
images. Top: “clam chowder can” object: after using the five structural tests, three
keygraph matches remain, where two of them are correct. Middle: for the same pair
of images of the previous example, we show the keygraph matches that remain after
using only four of the five tests; the fifth test, which uses SIFT angle, is not used.
It can be seen that the number of (wrong) keygraph matches increases significantly.
Bottom: “orange juice carton” object: after using the five tests, we obtain more correct
keygraph matches than incorrect ones.
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In the present paper, we follow a simpler approach, in which we recognize objects
by using an affine transformation between a test and a training image.

We compare the keygraph method proposed in this paper to the ratio test
approach [1]. We run each SIFT descriptor v of the test image through the
hierarchical k-means tree [5] and obtain the nearest neighbor of v, which is at a
distance d1 from v, and the second nearest neighbor of v that is of a different
object type than the first nearest neighbor, which is at a distance d2 from v; a
match is established between v and its nearest neighbor if d1/d2 ≤ 0.8 [1]. Then,
for every training image for which there are at least four keypoint matches to the
test image, we use an exhaustive version of RANSAC, evaluating every possible
combination of three keypoint matches to instantiate an affine transformation
and then count the number of keypoint matches that agree with this pose. We
consider that an instance of an object is found when at least four keypoint
matches agree with a transformation (i.e. the three matches used to instantiate
it plus one match). We use only four matches for the ratio test method, while for
the keygraph method we use six matches (as explained in section 2.3), because
the former usually produces fewer keypoints matches than the latter.

We use the same hierarchical k-means tree (with k = 16) for both methods,
keygraph and ratio test. A query (test) keypoint is compared to a total of 4000
training keypoints stored in the tree leaves; the use of a smaller number of
comparisons lowers the accurary of both methods. On average, a training image
is described by 1080 SIFT keypoints (using the ground-truth segmentation) and
a test image is described by 1070 keypoints (selected to compose the maximal
subset S of keypoints). SIFT descriptors are normalized for zero mean and unit
standard deviation; this normalization is useful because we use a threshold t = 14
for establishing keypoint matches in the first stage of the keygraph method.

We also compare our keygraph approach to the modified ratio test proposed
by Hsiao et al. [6]. Aiming to establish more keypoint matches, the authors
proposed to use the regular ratio test in conjunction with a modified ratio test
which establishes discriminative matches with clusters of keypoints, such that
establishing a match with a cluster produces matches to all the training keypoints
in that cluster. For that, we create two additional hierarchical k-means trees
(with k = 16 and k = 32). For each test keypoint, for each additional tree
we verify whether that test keypoint establishes a discriminative match with a
cluster composed of original training keypoints (i.e. a cluster that stores tree
leaves); a discriminative match is established if d1/d2 ≤ 0.8, in which d1 is
the distance to the closest cluster and d2 is the distance to the second nearest
cluster. We also use the traditional ratio test (using the original tree with k =
16), and employ all the established keypoint matches. Since the modified ratio
test generates more keypoint matches then the ratio test, we consider that an
instance of an object is found when at least six keypoint matches agree with a
transformation, similarly to the keygraph method (for the ratio test, we consider
that a pose is found when four keypoint matches agree it).

Table 1 summarizes the results obtained. When a pose is found, we manually
verified it by checking if the correct viewpoint of the object was projected in



452 E. Dazzi, T. de Campos, and R.M. Cesar Jr.

Table 1. Percentage of test images for which a correct object was found (and for which
a wrong object was found), i.e. true positives (and false positives), for the original ratio
test [1], the modified ratio test [6] and the keygraph method.

Object type Ratio test Modified ratio test Keygraph method
(Lowe [1]) (Hsiao et al. [6]) (this paper)

Clam chowder can 14% (4%) 22% (4%) 46% (2%)
Soy milk can 2% (12%) 2% (10%) 8% (6%)
Tomato soup can 14% 10% (4%) 36%
Orange juice carton 54% (4%) 58% (2%) 72%
Soy milk carton 44% (8%) 46% (4%) 54% (4%)
Diet coke can 0% (2%) 2% (6%) 2%
Pot roast soup 10% (2%) 6% (4%) 36%
Juice box 26% (10%) 32% (12%) 42% (6%)
Rice pilaf box 64% 62% (2%) 74% (2%)
Rice tuscan box 68% (4%) 58% 62% (2%)

the test image. For the test images with two object instances, we consider that
finding just one of them is a correct solution.

Our method performs significantly better than the ratio test and the modi-
fied ratio test. In the matching stage (before RANSAC), the keygraph method
established an average of 2.8 keygraph matches (7.4 keypoint matches) between
a test image and each training image, while the modified ratio test, on average,
established only 1.7 keypoint matches between a test and each training image;
this number could be increased by using additional k-means trees in the modified
ratio test, but we observed that this also increased the false positive rate.

Before the RANSAC stage, the computational time demanded by the ratio
test method and the keygraph method is similar, as the time spent to establish
keypoint matches through the hierarchical k-means tree is largely dominant in
comparison to the next stage of keygraph matching.

4 Conclusion

In this paper we described a method for object matching based on keygraphs,
rather than keypoints, i.e., objects are matched using sets of triangles, where
each vertex is a keypoint detected and described using SIFT. In the first step,
keypoints are matched using a hierarchical k-means tree. Delaunay triangula-
tion generates keygraphs in the test image and the matched keypoints generate
keygraphs in the training images. We proposed to use five triangle features in
order to evaluate the match between keygraphs, removing a significant number
of false matches before running RANSAC to select inliers to compute an affine
transformation between training and test images. Our method achieved a sig-
nificantly higher accuracy than two state-of-the-art methods, the ratio test [1]
and the modified ratio test [6]. Furthermore, the number of keygraph matches
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is small. On average, 2.8 keygraph matches are established between a test im-
age and each training image. The quality of these matches is high, i.e., a small
number of false matches occur. Besides, each keygraph match carries enough
information to instantiate a pose hypothesis using an affine transformation. On
the other hand, the ratio test method requires at least three keypoint matches.

As future work, we plan to use our method for 3D object recognition and pose
estimation as in [6], which uses a structure-from-motion algorithm to create a
3D model of each training object. We believe that our approach is especially
suited for this 3D setting. Only two keygraph matches between a test image and
(possibly different) training images generate six keypoint matches, which is a
good minimal set to generate a 3D pose [7]. This is an important advantage in
comparison to a method that solely uses keypoints, which requires the selection
of six keypoint matches to instantiate a 3D pose [7] or the selection of four
keypoints matches with the use of an algorithm such as EPnP [8]. We expect
that the keygraph method will demand a smaller number of 3D pose evaluations.

Another future work involves the use of Domain Adaptation (D.A.) tech-
niques, which are useful when the training data is different from the test data
(e.g. [9]). Such a domain change can occur due to variations in the object view-
point, camera parameters, illumination change, motion etc. We expect that the
use of D.A. will improve the first stage of our method (keypoint matching), as
this stage is, essentially, a classification task through the hierarchical k-means
tree. We also suggest the use of structured learning methods in order to optimize
the weight of features used for graph matching, as done in [10].
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Abstract. In this paper we analyze a framework for an ECOC clas-
sification system founded on the use of LPDC codes, a class of codes
well-known in Coding Theory. Such approach provides many advantages
over traditional ECOC codings. First, codewords are generated in an al-
gebraic way without requiring any selection of rows and columns of the
coding matrix. Second, the decoding phase can be improved by exploit-
ing the algebraic properties of the code. In particular, it is possible to
detect and recover possible errors produced by the dichotomizers through
an iterative mechanism. Some experiments have been accomplished with
the focus on the parity-check matrix used to define the codewords of the
LDPC code, so as to determine how the code parameters influence the
performance of the proposed approach.

Keywords: ECOC, LDPC codes, Ensemble Methods.

1 Introduction

To face a classification problem with several possible classes the most immediate
way is to build a single monolithic classifier capable of producing multiple outputs.
However, over the last years, a widely diffused technique consists in decomposing
the original problem into a set of two-class problems that can be faced through
an ensemble of two-class classifiers. The rationale of this approach relies on the
stronger theoretical roots characterizing dichotomizers and makes it possible to
employ some very effective classifiers, such as AdaBoost or Support Vector Ma-
chines, which are not capable to directly perform multiclass classification.

In this context, the most simple approach is One-vs-All that subdivides an n-
class problem into n two-class problems each one isolating a class from the others.
Another approach, suggested by [11], is One-vs-One that defines as many binary
problems as the possible pairs of different classes so dividing the n-class problem
into a set of n(n− 1)/2 two-class problems.

A further technique that emerged for its good generalization capabilities is
the Error Correcting Output Coding(ECOC) [5]. ECOC is commonly used for
many applications in the field of Pattern Recognition and Data Mining such as
text classification [10] or face recognition and verification [20,13]. A bit string
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of length L (referred to as codeword) is associated with each class so as to have
every class represented by a different codeword. The set of codewords is arranged
in an n×L coding matrix C where the columns define L binary problems, each
requiring a specific dichotomizer. The classification task is performed by feeding
an unknown sample to the L dichotomizers and collecting their outputs in a
vector that is then compared with the n codewords of C with a proper decoding
procedure usually based on the Hamming distance.

In the literature, many studies focused their attention on different aspects of
the ECOC technique to improve both the coding and the decoding phase. Sev-
eral approaches have been proposed to design efficient codes through an analysis
of data distribution [7,17,2] or a change of the learning algorithms of the di-
chotomizers [4,18]. Other techniques tries to minimize the number of employed
dichotomizers [3] or to define new decoding rules not based on the Hamming
distance [1,6].

In this paper we exploit an ECOC classification system based on well-known
codes widely used in the field of Coding Theory, the Low Density Parity Check
(LDPC) codes [9], to provide a strong theoretical framework both in coding and
decoding phase. The aim is to adapt the ECOC framework to the strong algebraic
topology of the Coding Theory that is also the original goal of the seminal paper
of [5] where the ECOC system is described as a typical communications problem
where each sample is transmitted over a communication channel.

We made a preliminary analysis of LDPC codes in the ECOC framework
in [15] where a novel decoding rule was proposed to deal with a reject option
employed on the dichotomizers. In this paper, instead, we focus on the analysis of
the parity-check matrix used to define the codewords of the LDPC code so as to
determine how the code parameters influence the performance of the proposed
approach. Moreover, besides the design of the coding matrix, we propose an
iterative decoding algorithm that exploits the redundancy of the code to increase
the performance of the classification system.

The rest of the paper is organized as follows: the next section gives an overview
of the Coding Theory. Sect. 3 describes how to design of the coding matrix
for LDPC codes and the decoding procedure employed. Some experiments are
reported in Sect. 4 while Sect. 5 draws some conclusions and possible future
developments.

2 ECOC and Coding Theory

In the usual ECOC approach a multiclass problem is commonly faced by creating
a certain number L of two-class subproblems that aggregate in different ways
the original M classes into two classes. Each class label ωi, ∀i = 1, . . . ,M is
represented by a bit string of length L (referred to as codeword) only ensuring
that every class is represented by a different codeword. Usually, anM×L coding
matrix C = {cij}i=1,..,M ;j=1,..,L, with cij ∈ {0,+1}, is created where each row
defines a codeword and each column defines the two-class problem on which a
dichotomizer has to be trained.
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When an unknown sample x has to be classified by the L dichotomizers the
outputs are collected in an output word o = {o1(x), o2(x), . . . , oL(x)} that is
compared with the codewords of C with a proper decoding procedure. Differ-
ent decoding strategies are commonly adopted [18] but we will only refer to the
Hard Decoding (HD) where crisp decisions are taken on the outputs of the di-
chotomizers, i.e., when oj(x) ∈ {0, 1}, ∀j = 1, . . . , L. Generally speaking, with
the HD rule the decision is taken according to the Hamming distance1 DH be-
tween the output word and the codewords in C and the chosen class is typically
the “closest” codeword to the output word.

Focusing on the Coding Theory, the main idea of Error Correcting Coding is
to introduce redundancy by augmenting the length of the codewords so that it
is still possible to recover the original information from the output of a noise-
contaminated channel through sets of suitably distinct codewords. In this case,
to correctly design the coding matrix C we have to refer to the algebraic prop-
erties of the Galois field GF (2), i.e., a set of two elements, e.g. {0, 1}, where
the mod 2 operations of sum and product are defined. Let us indicate with
GFL(2) the vector space of all L-tuples over GF (2). An (L,K, d) code C is a
K-dimensional vector subspace of GFL(2) where each vector is a codeword of
C and d is the minimum Hamming distance d = mini,j DH(ci, cj) between any
pair of codewords. d is related to the redundancy (i.e., L−K) since d ≤ L−K+1
and thus, it is a measure of the quality of the code since it is possible to decide
for the correct codeword if the output word contains no more than �(d− 1)/2�
erroneous bits.

Let us denote with u = [u0, u1, ..., uK−1] a K-bit source message associated
with a codeword c = [c0, c1, ..., cL−1] of C. Since C is a K-dimensional vector
subspace, it is possible to define a basis g0, . . . ,gK−1 for GFL(2). Considering

the matrix G =
(
g0 . . . gK−1

)T
the codeword c corresponding to the source

message u are determined using the linear combination of the basis vectors
through u, i.e.,

c = uG (1)

The matrix G is a K × L matrix referred to as generator matrix of C. Such a
matrix, and thus the codewords, can be evaluated from the parity-check matrix

H =
(
h0 . . . hL−K−1

)T
since the relation HGT = 0 holds. The parity-check

matrix collects the L−K vectors hi of the basis of the orthogonal complement
of C, so that each codeword of C has to satisfy the condition HcT = 0. In this
way, the matrix H is an (L − K) × L matrix that defines L − K parity-check
equations that are used to verify if the received word is actually a codeword of
C.

To apply this approach to the ECOC framework, we have to determine the
matrices G and H of the code C and thus, the values L and K from the original
multiclass problem. Our goal is to keep K as low as possible and thus, we can
choose K = �log2M�. L, instead, is a variable parameter chosen by considering

1 The Hamming distance between two words is given by the number of position where
the bit patterns of the two words differ.
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that higher values correspond to a higher error correction capability. When G
is evaluated, codewords (and thus, the coding matrix C) are calculated through
eq. 1 and the learning phase can proceed by training a dichotomizer on each
column of C. In the decoding phase, when classifying an unknown sample x,
the output vector o is received. Generally speaking, o can be seen as the sum
between a codeword c and an error pattern e, i.e., o = c+ e and thus, we have:

s = HoT = HcT +HeT = HeT 
= 0 (2)

where s is a L−K-vector referred to as the syndrome of o. Eq. (2) represents a
parity-check condition and can be used to determine when a valid codeword is
found (i.e., when the syndrome is equal to zero). This does not necessarily means
that the ECOC system has correctly classified the sample x. In fact, the error
pattern e can be such that the vector c + e corresponds to another codeword,
different from the true one. This happens when at least d dichotomizers are
wrong. If the number of errors is less than d, we obtain s 
= 0 and the HD rule
can be applied as in the usual ECOC framework.

3 Designing LDPC Codes

Among the several families of code provided by the Coding Theory, we considered
the Low Density Parity Check (LDPC) codes presented by Gallager [9] in 1963.
LDPC codes are a class of linear block codes characterized by a sparse pseudo-
random parity-check matrix able to reach very high performance by strongly
increasing the redundancy. The term “low density” indicates that LDPC codes
are specified by a matrix H containing mostly 0’s and relatively few 1’s so that
each parity-check equation defined by H involves a small number of bits of the
output vector and each bit enters in a small number of parity-check equations.

The main difference between LDPC codes and classical block codes is the
way they are decoded. Classical codes employ the HD rule and are algebraically
designed to make this task less complex. LDPC codes, instead, are iteratively
decoded using the sparseness of the parity-check matrix and thus, are designed
with the properties of H as focal point. In this context, two different families of
LDPC codes are usually employed: regular and irregular codes. To this end, let
us define wc and wr as the number of 1’s, respectively, in each column and each
row of the parity-check matrix. A (wc, wr)-regular LDPC code is a binary linear

code where wc is constant for every column and wr = wc
L−K
L

is also constant

for every row. On the other hand, an LDPC code is irregular if the number of
ones per row or per column are not fixed.

To easily represent an LDPC code, a bipartite graph (referred to as Tanner
graph [19]) is commonly used to show how each component of the output vector
is involved in the parity check constraints. The nodes of the graph are separated
into L variable nodes, corresponding to every component of the output vector,
and L − K check nodes, corresponding to the parity check constraints, i.e., to
the rows of H. Edges only connect nodes of different types so that every check
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Fig. 1. The parity-check matrix H and its corresponding Tanner graph for a regular
LDPC codes with wc = 2, wr = 3 and L = 6

node i is connected to a variable node j if and only if hij = 1. Denoting with
degree of the node the number of connections deriving from a node, we can refer
to a (wc, wr)-regular LDPC code when its Tanner graph has every variable node
with degree wc and every check node with degree wr. An example of Tanner
graph for a regular LDPC code is shown in Fig. 1.

Several different algorithms exists to construct suitable LDPC codes. The
original LDPC codes presented by [9] are regular and consists of forming a sparse
parity-check matrix by randomly determining the positions of 1’s. Beyond the
constant number of 1’s in the H matrix, another important condition to be
satisfied is that the overlapping of 1’s per column and per row should be at most
equal to one. The goal here is to avoid the presence of cycles of length 4 (referred
to as 4-cycles) in the corresponding bipartite graph [16]. A cycle in a Tanner
graph is a sequence of connected vertices which start and end at the same vertex
in the graph, and which contain other vertices only once. The length of a cycle
is the number of edges it contains. Designing efficient LDPC codes without 4-
cycles is however quite unavoidable. To this end, [14] proposed another common
construction for LDPC codes useful to also define irregular codes and easily
adapted to avoid 4-cycles by checking each pair of columns in H to see if they
overlap in two places.

The main advantage of an LDPC code are very effective in the decoding pro-
cedure. In particular, LDPC codes can be usefully exploited to possibly correct
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Table 1. Data sets and code parameters used in the experiments

Data Sets Classes Features Samples K Dichotom.

SatImage 6 36 6435 3 7
Dermatology 6 33 366 3 7
Glass 7 9 214 3 7
Segmentation 7 18 2310 3 7
Ecoli 8 7 341 4 7
Optdigits 10 62 5620 4 14
Pendigits 10 16 10992 4 14
Yeast 10 8 1484 4 14
Vowel 11 10 435 4 15

the errors obtained after the Hard Decoding procedure. To this end, a very ef-
fective iterative message-passing decoding algorithm has been proposed in [9].
Such method is based on the principle that a bit of an output word involved in
a large number of incorrect check equations is likely to be incorrect itself. The
parity-check equations unlikely contain the same set of codeword bits because
the sparseness of H helps to disperse variable bits into check nodes. To explain
how the iterative decoding works, let us consider an initial hard decision for each
received bit, i.e., oi ∈ {0, 1} and let us focus on the Tanner graph representation.
The decoding algorithm is based on message passing between the nodes of the
Tanner graph: a variable node sends its bit value to each of the check nodes
to which it is connected and each check node answers determining if its parity-
check equation is satisfied or not. If the majority of the check values received by
a variable node are different from zero the variable node flips its current value.

A last remark to be done on LDPC codes is that depending on the structure
of H, the matrix C can contain equal columns as well as all-zeros or all-ones
columns. Unlike the usual ECOC, when using the LDPC codes such columns
are not eliminated otherwise the algebraic properties of the code would not be
guaranteed. Actually, the all-zeros/all-ones columns are not considered during
the training of the dichotomizers and the bits corresponding to them are then
recovered within the output word before the decoding phase starts. As for the
equal columns, they are assigned the same dichotomizer; in this way the number
of dichotomizers is reasonable even though the number of total columns is high
(100 or more). This is an important issue since the sparseness of the parity-
check matrix guarantees a minimum Hamming distance linearly increasing with
the code length while the decoding complexity linearly increases only with the
number of employed classifiers.

4 Experiments

The goal of the experiments is to verify how the structure of the parity-check
matrix affects the performance of the proposed approach. For this purpose, we
have considered some data sets publicly available at the UCI Machine Learning



460 C. Marrocco and F. Tortorella

Repository [8]. All the employed data sets have numerical input features and a
variable number of classes. For each data set, to avoid any bias in the compari-
son, 10 runs of a multiple hold-out procedure have been performed. In each run,
we considered three subsets: a training, a tuning and a test set containing respec-
tively the 50%, the 30% and the 20% of the samples of each class. The training
set has been used to train the base classifiers while the test set to evaluate the
performance of the multiclass classification system. The tuning set, instead, is
used to optimize the parameters of the base dichotomizers that are SVM with
RBF kernel [12]. The optimization of the parameters (γ of the kernel and C)
has been done by following a grid approach.

Some parameters of the LDPC coding architecture have been varied and the
matrix H obtained has been used with all the data sets to evaluate the coding
matrix and to apply the iterative decoding rule. Accordingly, both regular and
irregular codes were considered. For each data set a coding matrix has been
determined according to Sect. 2 withK depending on the number of classes and L
equal to 50 and 100 (the details on data sets, code parameters and dichotomizers
are resumed in Table 1). Moreover, the coding matrix parameters wc and wr were
varied: for regular codes, between the 10% and the 50% of, respectively, L and
L−K while for irregular codes wc between the 10% and the 50% of L while wr

has been randomly chosen with the procedure in [14] trying to avoid the 4-cycles.
For the sake of comparison we have also considered the results obtained with
a decomposition One-vs-All (OVA) and One-vs-One (OVO) both with a Hard
Decoding rule.

In each experiment (i.e., for each of the coding matrices and for each dataset),
we have evaluated the mean classification error, calculated by averaging the error
rates obtained on the test set in the 10 runs of the multiple hold-out procedure.
However, since the results obtained on the different datasets are not commen-
surable, we have used a rank-based comparison. For each dataset separately, we
evaluated the reverse rank for each coding matrix: the best performing matrix
got the maximum rank (i.e., 22, since we considered 20 different LDPC coding
matrices plus OVA and OVO), while the worst got 1. In case of ties, average
ranks were assigned. In this way, if rhk was the rank obtained by the h-th coding
matrix on the k-th dataset, the average performance of the h-th coding ma-

trix on all the datasets was rh = 1
T

T∑
k=1

rhk , where T is the number of datasets

considered.
Table 2 reports the results obtained on all datasets. We can observe that the

best results are attained for relatively low values of the parameters wr and wc

(20%-30%), while the best choice is a regular LDPC code with L = 100. As for
the “classical” decompositions, OVO works worse than the most part of LDPC
code matrices considered, while OVA is definitely the worst solution.

In order to have some more insights we have also split the datasets in two
groups according the number of classes: the first group contains the datasets
with 6-8 classes, while the second one collects the more numerous datasets (10-
11 classes). The results on the two groups of datasets are separately shown in
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Table 2. Results on all the datasets in terms of mean rank among the various datasets.
The higher the value, the better performing the corresponding coding matrix.

L 10 20 30 40 50 OVA OVO

50 Regular 12.00 12.33 15.33 8.44 7.78
100 Regular 14.89 18.00 16.56 12.11 12.33 2.33 7.67
50 Irregular 14.67 14.33 11.33 11.33 12.89
100 Irregular 15.22 11.78 13.56 8.78 13.00

Table 3 and Table 4, adopting the same approach described before. What we
can observe is that, while the best results are still in correspondence of low
values of wr and wc, there is now some slight difference in performance when
varying these parameters. In fact, the first group has remarkably better results
for wc = 20%, while the second group works better when wc = 30%. Obviously
this is not sufficient to establish a sort of relation between the number of classes
and the value of wr: more experiments are needed on datasets with higher and
higher number of classes. Any way, a regular LDPC code with L = 100 is still
the best choice in both cases.

Table 3. Results on the datasets with 6-8 classes in terms of mean rank among the
various datasets. The higher the value, the better performing the corresponding coding
matrix.

L 10 20 30 40 50 OVA OVO

50 Regular 12.00 13.20 17.60 10.80 10.40
100 Regular 16.80 19.60 13.80 12.80 10.80 3.00 11.80
50 Irregular 16.00 13.20 11.80 12.60 14.00
100 Irregular 14.40 9.40 16.20 12.20 12.40

Table 4. Results on the datasets with 10-11 classes in terms of mean rank among the
various datasets. The higher the value, the better performing the corresponding coding
matrix.

L 10 20 30 40 50 OVA OVO

50 Regular 12.00 11.25 12.50 5.50 4.50
100 Regular 12.50 16.00 20.00 11.25 14.25 1.50 2.50
50 Irregular 13.00 15.75 10.75 9.75 11.50
100 Irregular 16.25 14.75 10.25 4.50 13.75

5 Conclusions and Future Works

In this paper an approach based on the Coding Theory and in particular on the
LPDC codes has been analyzed. Such approach provides several advantages over
traditional ECOC code solutions since codewords are generated in an algebraic
way without requiring any selection of rows and columns of the coding matrix.
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Moreover, the decoding phase can be improved by employing an iterative mech-
anism that, exploiting the algebraic properties of the code, is able to detect and
recover possible errors produced by the dichotomizers. Some preliminary experi-
ments have been focused on the analysis of the parity-check matrix used to define
the codewords of the LDPC code, so as to determine how the code parameters
influence the performance of the proposed approach. The results seem encour-
aging even though more trials are needed to verify if some general relation can
be drawn.

Some possible future developments will focus on a deeper analysis of the
employed coding matrix and on the use of other decoding rules. In particular,
the performance of the ECOC system in our experiments increases when the
codeword length L increases and thus, an analysis on longer codewords should
be conducted to better delineate this point. Another issue worth of considera-
tion is the use of decoding rules working with soft-output dichotomizers, i.e.,
dichotomizers providing real valued outputs instead of crisp decisions. In such
case, the confidence of the dichotomizer in making a classification can be used to
provide an additional information to the decoding phase and suitable decoding
techniques (e.g., a loss-based technique [18]) can be employed to improve the
recognition performance.
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Abstract. Probabilistic linear discriminant analysis (PLDA) is com-
monly used in biometric authentication. We review three PLDA variants
— standard, simplified and two-covariance — and show how they are
related. These clarifications are important because the variants were
introduced in literature without argumenting their benefits. We anal-
yse their predictive power, covariance structure and provide scalable al-
gorithms for straightforward implementation of all the three variants.
Experiments involve state-of-the-art speaker verification with i-vector
features.

Keywords: PLDA, speaker and face recognition, i-vectors.

1 Introduction

Biometric person authentication — recognizing persons from their physiologi-
cal or behavioral traits — plays an increasingly important role in information
security [1]. Face [2] and speaker [3] recognition are particularly attractive due
to their unintrusiveness and low costs. Unfortunately, both involve prominent
sample-to-sample variations that lead to decreased recognition accuracy; face
images can be shot under differing lighting conditions or cameras and speech
signals acquired using different microphones. Compensating for these nuisance
variations is crucial for achieving robust recognition under varying conditions.

From various techniques studied, generative probabilistic models are among
the top-performing ones for both face and speaker verification. A powerful, yet
simple technique is factor analysis [4]. Given a feature vector that represents
a single speech utterance or a face image, factor analysis captures the main
correlations between its coordinates. A successful recent extension is the prob-
abilistic linear discriminant analysis (PLDA) model [2,5], where we split the
total data variability into within-individual and between-individual variabilities,
both residing on small-dimensional subspaces. Originally introduced in [2] for
face recognition, PLDA has become a de facto standard in speaker recognition.
We restrict our focus and experiments to speaker recognition but the general
theory holds for arbitrary features.

Besides the original PLDA formulation [2], we are aware of two alternative
variants that assume full covariance: simplified PLDA [6] and two-covariance
model [7]. It is worth noting that the three models are related in terms of their
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predictive power (degrees of freedom), covariance structure and computations.
The main purpose of the current study is to provide a self-contained summary
that elaborates the differences. The main benefit in doing so is that, instead of
three different PLDA variants and learning algorithms, we show how to apply the
same optimizer by merely modifying the latent subspace dimensions appropri-
ately. As a further practical contribution, we provide an optimized open-source
implementation1.

2 Unified Formulation of PLDA and Its Variants

We assume that the training set consists of K disjoint persons. For the i-th
person we have ni enrolment samples, each being represented by a single feature
vector 2 φi·. The PLDA models described below assume these vectors to be
drawn from different generative processes.

2.1 Three Types of a PLDA Model

The first one is a standard PLDA as defined in the original study [2]:

φij = μ+Vyi +Uxij + εij , (1)

yi ∼ N (0, I) , (2)

xij ∼ N (0, I) , (3)

εij ∼ N (0,Λ−1) , (4)

where φ ∈ RD×1, Λ is a diagonal precision matrix, μ is a global mean, columns
of the matrices V ∈ RD×P and U ∈ RD×M span the between- and within-
individual subspaces. The second one is a simplified PLDA introduced in [6]
and used in [9], [10], [11]:

φij = μ+ Syi + εij , (5)

yi ∼ N (0, I) , (6)

εij ∼ N (0,Λ−1
f ) , (7)

where Λf is a full precision matrix instead of the diagonal matrix in the stan-
dard PLDA case and S ∈ RD×L. The third one is a two-covariance model
introduced in [7] and used extensively in [12]:

yi ∼ N (yi|μ,B−1) , (8)

φij |yi ∼ N (φij |yi,W
−1) , (9)

where both B and W are full precision matrices. Thus, unlike the two previous
models, we no longer have any subspaces with reduced dimensionality.

1 https://sites.google.com/site/fastplda/
2 Traditionally, speech utterances have been represented as a sequence of acoustic
feature vectors. In this paper we use the i-vector [8] representation that produces a
fixed length vector from the variable length sequence. More on this in Section 4.

https://sites.google.com/site/fastplda/
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2.2 Exploring the Structure of the Models

All the latent variables in the standard PLDA formulation (1) have a Gaussian
distribution. Thus, the distribution of the observed variables is also a Gaussian:

φij |yi,xij ∼ N (φij |μ+Vyi +Uxij ,Λ
−1) , (10)

and an integration of the channel latent variables {xij} leads to a closed-form
result:

φij |yi ∼ N (φij |μ+Vyi,UUT +Λ−1) . (11)

We can now formulate (11) in a similar style as the two-covariance model:

ỹi ∼ N (ỹi|μ,VVT) , (12)

φij |ỹi ∼ N (φij |ỹi,UUT +Λ−1) . (13)

Comparing (12) with (8) and (13) with (9) reveals that the structure of a stan-
dard PLDA and a two-covariance model is the same and their only difference is
in the covariance matrices. Let us call within- and between-individual covariance
matrices of the n-th model as W−1

n and B−1
n (see Table 1), so that,

W−1
3 = W−1 , (14)

B−1
3 = B−1 . (15)

From (12) and (13) we conclude that

W−1
1 = UUT +Λ−1 , (16)

B−1
1 = VVT . (17)

Applying the same analysis to the simplified PLDA leads to the following equa-
tions:

W−1
2 = Λ−1

f , (18)

B−1
2 = SST . (19)

2.3 Calculating the Degrees of Freedom

We have seen that all the three models have the same structure, but their predic-
tive powers differ because they have different number of independent parameters.
It is a known fact that for a factor analysis model latent subspace has rotational
invariance (see [4, Page 576]). If R is an arbitrary orthogonal matrix (that is,
RRT = RTR = I) then

B−1
1 = VVT = V(RRT)VT = (VR)(VR)T, (20)

so that V and Ṽ = VR lead to the same covariance matrix and the same model.
This ambiguity means that a particular solution is not unique.
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In the two-covariance model both W−1
3 and B−1

3 are full and symmetric ma-
trices so each of them has D(D+1)/2 degrees of freedom. In the case of standard
PLDA, W−1

1 = UUT + Λ−1 has DM +D −M(M − 1)/2 degrees of freedom,
where the second term is due to diagonal noise matrix and the last term is due
to rotational invariance property. The same argument can be applied to the re-
maining matrices. Table 1 summarizes the degrees of freedom for each of the
three models.

Table 1.Degrees of freedom for each model. Here,D is the dimensionality of the feature
vectors, P and L are the number of basis vectors for between-individual subspaces of the
corresponding models, M is a number of basis vectors for within-individual subspace,
Bn and Wn are a between-individual and within-individual precision matrices for n-th
model.

PLDA type μ Bn Wn

n = 1
D+ DP − P (P − 1)

2
+ DM +D − M(M − 1)

2(standard)

n = 2
D+ DL− L(L− 1)

2
+

D(D + 1)

2(simplified)

n = 3
D+

D(D + 1)

2
+

D(D + 1)

2(two-covariance)

Regarding the degrees of freedom, we conclude the following from Table 1:

1. When L = D (factor loadings matrix is of full rank) the simplified PLDA is
equivalent to the two-covariance model.

2. When P = D and M = D − 1 the standard PLDA model is equivalent to
the two-covariance model.

3. When P = L and M = D − 1 the standard PLDA model is equivalent to
the simplified PLDA.

To sum up, the standard PLDA is the most general model, and a two-
covariance is the least general model.

2.4 Over-Complete Case

It is important to note that the above equations hold only when the dimension-
ality of the latent variables is less or equal to the dimensionality of the data.
Otherwise, we have an over-complete basis for a latent variable subspace and
we need an additional step before analysing the model. To this end, suppose
that the matrix V ∈ RD×P has more columns than D, then this matrix affects
generative process (12) only in the form VVT. When P > D, this D×D matrix
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has a rank D. As a symmetric positive-definite matrix, we may apply Cholesky
decomposition to get,

VVT = LLT, (21)

where L ∈ RD×D is an upper triangular matrix. Without loss of generality, we
can choose V = L and transform an over-complete case to a complete one. The
same argument holds for matrices U and S.

2.5 Scoring

At verification stage we are given a pair of individual models: one created from
the test features and the other from enrolment features of the claimed person
and we need to decide whether these models belong to the same person. To do
this in a PLDA approach we need to calculate a log-likelihood ratio between two
hypothesis: both models share the same latent identity variable or they share a
different identity variables. The scoring equations are the same for all models
but due to lack of space we do not present them here. For an optimized scoring
procedure please consult [13].

3 EM-Algorithms

The original EM-algorithm proposed in [2] has a serious drawback: at the E-step
we need to invert a matrix whose size grows linearly with the number of samples
per individual. For large datasets this algorithm becomes highly impractical. A
number of solutions for this problem have been introduced. In [14], the authors
utilize a special matrix structure of PLDA model and manually derive equations
for the required matrix inversions. In [15], the authors proposed a special change
of variables that lead to a diagonalized versions of the required matrices. The
most detailed derivations are given in [16]. Our version was based on [14] and
accelerated in a similar style as in [16]. The algorithm 1 summarizes it and the
details are presented in the appendix A.

Incomplete algorithm (only E-step) for the two-covariance model is given in
[7]. Here we present complete solution in the form of short summary (see algo-
rithm 2). The details are available in the appendix B.

Technical notes:

– The rank of matrix V is equal to the rank of Ty, which is just the number
of individuals in the training set. So, this is an upper bound for the number
of columns of matrix V that we should choose.

– If in the algorithm 1 we set matrix U to zero and do not constrain noise
precision matrix Λ to be diagonal we get EM-algorithm for the simplified
PLDA model [17].

– For the two-covariance model the number of individuals in the training set
should be bigger than the dimensionality of feature vectors (i-vectors, in our
case).
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Algorithm 1. Scalable PLDA learning algorithm

Input: Φ = {φij}K,ni
i=1,j=1, where K is a total number of persons, and ni is the

number of samples for i-th person.
Output: Estimated matrices V, U and Λ.
Sort persons according to the number of samples {ni} ;
Find total number of samples N and center the data (eq. A.1 and A.2) ;
Compute data statistics {fi} and S (eq. A.3 and A.4) ;
Initialize V and U with small random values, Λ ← NS−1 ;
repeat

E-step:
Set R ← 0 ;
Compute auxiliary matrices Q, J (eq. A.5 and A.6) ;
for i = 1 to K do

if ni 	= ni−1 then compute Mi (eq. A.7);
else Mi ← Mi−1 ;
Find E[yi] (eq. A.8) ;
Update Ryy (eq. A.13);

Calculate T, Ryx and Rxx (eq. A.12, A.14 and A.15) ;

M-step:
Find V, U, Λ (eq. A.16 and A.17) ;

MD-step:
Compute auxiliary matrices Y, G, X (eq. A.18, A.19 and A.20) ;
Update U, V (eq. A.21 and A.22) ;

until Convergence;

Algorithm 2. Two-covariance model learning algorithm

Input: Φ = {φij}K,ni
i=1,j=1, where K is a total number of persons, and ni is a

number of samples for i-th person.
Output: Estimated matrices μ, B and W.
Sort persons according to the number of samples {ni} ;
Compute data statistics N , {fi} and S (eq. B.1, B.2 and B.3) ;
Initialize μ, B, W ;
repeat

E-step:
Set T ← 0, R ← 0, Y ← 0 ;
for i = 1 to K do

if ni 	= ni−1 then compute Li (eq. B.4);
else Li ← Li−1 ;

Find E[yi] and E[yiy
T
i ] (eq. B.5, B.6) ;

Update T, R and Y (eq. B.8, B.9 and B.10);

M-step:
Find μ, B and W (eq. B.11, B.12 and B.13) ;

until Convergence;
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4 Experiments

4.1 System Setup

In modern speaker and language recognition, a speech utterance can be repre-
sented using its i-vector [8]. Briefly, variable-duration feature sequences are first
mapped to utterance-specific Gaussian mixture models (GMMs). The i-vector is
a low-dimensional latent representation of the corresponding GMM mean super-
vector [18], typical dimensionality varying from 400 to 600. This is sufficiently
low to robustly estimate a full within-individual variation covariance matrix [6].

Our i-vector system uses standard Mel-frequency cepstral coefficient (MFCC)
features involving RASTA filter, delta and double delta coefficients, energy-based
speech activity detector [19] and utterance level cepstral mean and variance
normalization (CMVN), in this order. Gender-dependent universal background
models (UBMs) were trained with data from NIST 2004, 2005 and 2006 data and
gender-dependent i-vector extractors from NIST 2004, 2005, 2006, Fisher and
Switchboard. For more details, see [20]. For the experiments we used only female
subset which has 578 train speakers, 21216 train segments, 459 test speakers,
10524 target trails and 6061824 non-target trials.

The UBM has 1024 Gaussians and i-vector dimensionality is set to 600. The
i-vectors are whitened and length-normalized [9]. Speaker verification accuracy
is measured through the equal error rate (EER) corresponding to the operating
point with equal false acceptance and false rejection rates.

4.2 Comparison of Different PLDA Configurations

We made a thorough comparison of different PLDA configurations. Since PLDA
training uses random initialization, we made 10 independent runs for each tested
configuration and averaged the EERs. Although usually PLDA models achieve
the best performance when they are slightly under-trained, the number of iter-
ations and relative increase in a log-likelihood at the optimal point are different
for every configuration. That is why in this experiment we set the number of
iterations to 50, that was more than enough for the convergence in all cases.

The averaged EERs are presented in Fig. 1. Here, we fix the number of columns
of one subspace matrix and vary the other. Our training dataset has only 578
unique speakers that is why to compare standard and simplified PLDA to the
two-covariance model we applied LDA to reduce the dimensionality to be 550.

The figures clearly show that for the 600-dimensional i-vectors channel sub-
space should be as large as possible whereas after LDA projection the channel
variability is compensated and the best performance is achieved when matrix U
is set to zero.

Another interesting finding is that usually deviations from the standard PLDA
show better performance even when they are supposed to be theoretically equiv-
alent. It could be the result of simpler EM-algorithms with less intermediate
steps and matrices.
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Fig. 1. Comparison of different configuration of the standard PLDA model with simpli-
fied and two-covariance models. Here, Vdim is a number of basis vectors for between-
individual subspace (number of columns in matrix V), Udim is a number of basis
vectors for within-individual subspace (number of columns in matrix U). Experiments
a) and b) is done on the uncompressed i-vectors with 600 dimensions, c) and d) — on
the LDA-projected 550-dimensional i-vectors.

5 Conclusion

We compared the standard, simplified and two-covariance PLDA variants. We
have shown that the standard PLDA is the most general formulation and that,
for certain configurations, it is equivalent to the other two models in terms of
the predictive power. Our experimental results suggested that it is better to use
the simplest possible model suited for the particular application. We presented
the algorithms for all three models and shared their implementation online.
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A EM-Algorithm for Standard/Simplified PLDA

Suppose that we haveK individuals in total and the i-th person has ni enrolment
samples {φij}ni

j=1. It is more convenient to subtract the global mean from the
data before learning the model. Let

μ =
1

N

∑
i,j

φij , (A.1)

where N =
∑K

i=1 ni is a global zero-order moment (total number of PLDA
training vectors). We centralize the data

ϕij = φij − μ (A.2)

and define the first-order moment for the i-th person as

fi =

ni∑
j=1

ϕij , (A.3)

and the global second-order moment as

S =
∑
ij

ϕijϕ
T
ij . (A.4)

In the E-step we first pre-compute the following matrices:

Q = (UTΛU+ I)−1 (A.5)

J = UTΛV (A.6)

Mi = (niV
TΛ(V −UQJ) + I)−1 , (A.7)

where the matrices U, V and Λ as defined in (1) and (4). After that we can
easily find the first moments of the latent variables:

E[yi] = Mi(V −UQJ)TΛf i (A.8)

E[xij ] = Q(UTΛϕij − JE[yi]) (A.9)

Let us define zTij =
[
yT
i xT

ij

]
. In the M-step, we need an aggregated second

moment of the compound variables zij :

R =
∑
ij

E

[(
yi

xij

)(
yT
i xT

ij

)]
=

[
Ryy Ryx

RT
yx Rxx

]
(A.10)

where

E[zijz
T
ij ] =

[
Mi −MiJ

TQT

−QJMi Q+QJMiJ
TQT

]
+ E[zij ]E[zij ]

T (A.11)
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T =
∑
ij

E[zij ]f
T
i =

∑
ij

E

[
yi

xij

]
fT
i =

[
Ty

Tx

]
=

[
Ty

Q(UTΛS− JTy)

]
(A.12)

Ryy =
∑
i

ni(Mi + E[yi]E[yi]
T) (A.13)

Ryx = (TyΛU−RyyJ
T)Q (A.14)

Rxx = Q(UTΛSΛU−UTΛTT
yJ

T − JTyΛU+ JRyyJ
T)Q+NQ (A.15)

At the M-step we update the matrices V, U and Λ as following[
V U

]
= TTR−1 (A.16)

Λ−1 =
1

N
diag

{
S−

[
V U

]
T
}

(A.17)

To speed up convergence it is highly recommended to apply a so-called
minimum-divergence (MD) step as well [21], [22]. During this step we assume
that a prior for the latent variables {yi} and {xij} could be in a non-standard
Gaussian form, maximize w.r.t. its parameters and then find equivalent represen-
tation but with a standard prior. This step is very efficient against saddle-points.
For MD-step we need a number of auxiliary matrices:

Y =
1

K

∑
i

(Mi + E[yi]E[yi]
T) , (A.18)

G = RT
yxR

−1
yy , (A.19)

X =
1

N
(Rxx −GRyx) . (A.20)

After that it is enough to apply the following transformations:

U← Uchol(X ) , (A.21)

V← Vchol(Y) +UG . (A.22)

where chol(X ) is a Cholesky decomposition of the matrix X . The algorithm 1
presents a compact version of the derivations above.

B EM-Algorithm for Two-Covariance Model

As before we have K individuals in total and the i-th person has ni enrolment
samples {φij}ni

j=1. Let’s define a global zero-order moment:

N =
K∑
i=1

ni , (B.1)

the first-order moment for the i-th person as

fi =

ni∑
j=1

φij , (B.2)



Unifying PLDA Variants in Biometric Authentication 475

and the global second-order moment as

S =
∑
ij

φijφ
T
ij . (B.3)

In the E-step we first pre-compute the following matrices

Li = B+ niW , (B.4)

where the matrices B and W are defined in (8) and (9). After that we can
easily find the first and second moments of the latent variables:

E[yi] = L−1γ , (B.5)

E[yiy
T
i ] = L−1

i + E[yi]E[yi]
T, (B.6)

where
γ = Bμ+Wfi . (B.7)

At the M-step we need to compute the following matrices

T =
∑
i

E[yi]f
T
i , (B.8)

R =
∑
i

niE[yiy
T
i ] , (B.9)

Y =
∑
i

niE[yi] . (B.10)

After that we update the parameters μ, B and W as follows

μ =
1

N
Y , (B.11)

B−1 =
1

N
(R − 2μYT) + μμT , (B.12)

W−1 =
1

N
(S− 2T+R) . (B.13)

The algorithm 2 presents a compact version of the derivations above.
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