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Genome-Wide Association Scans (GWAS)
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Jordi Comadran, and Joanne Russell

18.1 Introduction

Genetic analysis in barley using molecular markers has been conducted extensively

over the past 20 years. Based initially on the framework provided by the develop-

ment of genome-wide linkage maps (Graner et al. 1990; Kleinhofs et al. 1993),

important major genes and quantitative trait loci (QTL) have been located using a

range of F2, RIL and doubled haploid mapping populations. These studies have

yielded genetic markers that have been used extensively for the indirect selection of

traits that are difficult to assess in a breeding programme context [e.g. resistance to

the soilborne pathogen barley yellow mosaic virus (BaYMV) (Graner et al. 1998)

and epiheterodendrin content in barley for the whisky industry (Thomas 2003)] and

that, if translated into financial value, have generated millions of € by increasing

yield under adverse conditions or improving product quality. These same studies

have led to the identification of causal genes and corresponding alleles that confer a

variety of traits, generally through the well-established route of positional cloning
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[e.g. mlo (Büschges et al. 1997), Mla (Wei et al. 1999), Rym4/Rym5 (Stein

et al. 2005), Vrn3 (Yan et al. 2006), Ppd-H1 (Turner et al. 2005)].

The use of experimental mapping populations derived from parents that contrast

for a target trait has however been of limited use to the more applied research sector

because the parents used are frequently irrelevant to current breeding germplasm and

the traits identified are already frequently fixed in the elite breeding gene pool.

Consequently a move to assess traits that still segregate in such much more closely

related germplasm has been promoted. Genome-wide association scans (GWAS)

provide a mechanism to assess variation that segregates in a gene pool, rather than

in a biparental population. Fashioned originally in human genetics where it was

developed to take account of the types of populations available for genetic analysis, it

has become popular in plant genetic research over the last decade (Waugh

et al. 2009). GWAS is attractive for multiple reasons, the first of which is that it

potentially provides an opportunity to exploit existing and extensive phenotypic data

collected during the plant registration process, thus making it directly relevant to

current breeding material. Second, it holds the promise of increasing genetic resolu-

tion because GWAS populations typically contain more genetic breakpoints and

more alleles than are found in conventional mapping populations. However,

GWAS approaches also raise issues in genetic analysis. These are largely caused

by the origins and history of the population, which introduce a tendency to reveal

significant false-positive associations due to factors other than genetic linkage. Here,

we will attempt to summarise some of the progress and the problems that have been

encountered in establishing effective GWAS in barley and the approaches that have

been developed or applied to take account of them. Whilst several studies from

various groups have shown that GWAS in barley can be an effective tool for QTL

analysis, within our group we have focused on the potential of the approach for

identifying the actual genes underlying specific plant phenotypes.

18.2 Linkage Disequilibrium in Different Barley Gene

Pools

Determining the extent of linkage disequilibrium (LD) in a target gene pool allows

us to estimate the number of molecular markers required to conduct a saturated

GWAS and the mapping resolution it is likely to achieve. Studies in outbreeding

(e.g. maize; Remington et al. 2001) and inbreeding (e.g. Arabidopsis; Nordborg
et al. 2002) species revealed that the extent of LD is very different according to

breeding habit and, as predicted theoretically, tends to be considerably less exten-

sive in outbreeders. For inbreeders, the derived homozygosity reduces the effective

recombination rate at each round of meiosis, and LD is more extensive. However,

LD is also highly population dependent, as reported for several species including

barley (Caldwell et al. 2006). This has led subsequently to significantly revised

estimates of LD (Nordborg et al. 2005; Kim et al. 2007; Yan et al. 2009). Thus, in

barley, whilst the initial studies of Kraakman et al. (2004) assayed a collection of

146 modern two-row spring barley cultivars using 236 AFLPs observed significant

346 R. Waugh et al.



LD between markers extending up to 10 cM, Morrell et al. (2005) concluded that

intra-locus LD decayed at a rate similar to that observed in outbreeding maize from

looking at intra- and inter-gene LD in 18 nuclear genes in a collection of 25 wild

barley accessions sampled from across its natural geographic range.

Caldwell et al. (2006) illustrated this population dependency issue very clearly.

By resequencing genes present on a small BAC contig across cultivars, landraces

and wild barley isolates, they observed a sharp decline in the extent of LD with

increasing wildness, consistent with the evolutionary time between the individuals

within each sampled set. Although this study was based on a small region of the

barley genome, its general conclusions have been confirmed several times since in

both diverse and narrow barley collections, and more importantly at a genome-wide

scale (Malysheva-Otto et al. 2006; Cuesta-Marcos et al. 2010; Zhang et al. 2009).

Subsequent studies have also shown that LD based on physical distance measure-

ments varies enormously according to genomic position (Hamblin et al. 2010;

Comadran et al. 2011a). Thus, within the same elite-cultivated gene pool, LD

may extend from hundreds of kilobases in recombinogenic portions of the genome

to hundreds of megabases in the rarely recombining (but gene rich) centromere-

proximal regions.

18.3 Genetic Markers

A knowledge and understanding of how LD is elaborated in different gene pools

allows us to estimate the number of genetic markers required to best capture the

diversity and recombination history of the population (Fig. 18.1). In the cultivated

gene pool where LD is extensive, a relatively small number of markers are

theoretically required to capture the majority of the recombination events present

L
D

Target gene Target gene Target gene

Fig. 18.1 A cartoon of linkage disequilibrium (LD) in three different barley gene pools (black
arc). The three graphs from left to right symbolise the situation observed in the cultivated, landrace

and wild gene pools of barley. They show the impact of changes in the extent in LD due to

recombination on the number of genetic markers (vertical red and purple lines on a portion of a

hypothetical chromosome) required to detect significant associations between a marker and a

target gene. Thus, with more extensive LD in the cultivated gene pool, fewer markers are required

to detect the target gene by GWAS when compared to the wild gene pool
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in the population. Based on practical observations, this led Rostoks et al. (2006) to

suggest that roughly 5� 102 to 5� 103 markers may be required to adequately

survey the elite NW European barley gene pool. At the other end of the spectrum,

the number required to capture the resolution afforded by thousands of years of

effective recombination in wild species are likely to exceed this by orders of

magnitude. In many respects the density of markers required has constrained the

adoption of GWAS, and in many species there is still insufficient understanding of

LD and available genetic markers and marker technologies that can be adequately

applied for this purpose.

Genetic marker technologies have been evolving continuously for the last 25 years

or more in barley, as in most major crops. Despite the early attempts by Kraakman

et al. (2004, 2006) and Kraakman (2005) to apply AFLP technology to association

mapping in barley, it only became realistic to attempt GWAS studies in large

populations of related germplasm with the availability of high-throughput (HTP)

single-nucleotide polymorphism (SNP) marker technologies such as Illumina’s
‘GoldenGate’ oligo pool assays (OPAs) (Fan et al. 2003; Rostoks et al. 2005, 2006;

Close et al. 2009). These technologies effectively eradicated unintentional error

within genotypes introduced during serial marker assays and allowed the collection

of massive marker datasets that were virtually inconceivable only a few years earlier.

These markers also revealed much about legacy biparental mapping populations,

highlighting genotypic errors and unintentional mix-ups, sometimes at frequencies of

10 % or higher, and by eradicating single-marker double recombinants, promoted

map shrinkage to lengths broadly consistent with observed numbers of chiasmata

during meiosis (Nilsson et al. 1993). HTP SNP marker sets were similarly informa-

tive in germplasm collections, revealing sample incongruence, heterogeneity and

duplication at previously unprecedented resolution. Recently, SNP platforms

containing many thousands of markers have been developed, such as Illumina’s
Barley-OPA1 (BOPA1), Barley-OPA2 (BOPA2) (Close et al. 2009) and iSELECT

platforms (Comadran et al. 2012), and used widely to genotype thousands of samples

in both the public and private sectors (e.g. AGOUEB, http://www.agoueb.org;

BarleyCAP, http://barleycap.cfans.umn.edu; ExBarDiv: http://pgrc.ipk-gatersleben.

de/barleynet/projects_exbardiv.php) (Waugh et al. 2010).

Despite their success, these SNP marker platforms are already coming under

threat from methods that exploit the massive increase in data volumes and reduction

in costs associated with next-generation sequencing technologies (NGS). Methods

including the use of reduced-representation libraries (RRLs), complexity reduction

of polymorphic sequences (CRoPSTM), restriction-site-associated DNA sequencing

(RAD-seq) and low-coverage genotyping by sequencing (GbS) provide ultra-high

density genotyping at extremely low cost per datapoint (reviewed in Davey

et al. 2011). These sequence-based methods have no prior development require-

ments and can be used in species lacking reference genome sequences. In barley

RAD-seq on the Oregon Wolfe Barley population generated 463 new RAD loci on

all seven linkage groups (Chutimanitsakun et al. 2011) and GbS on the same

population over 25,000 additional markers at exceedingly low cost (Elshire

et al. 2011). However, at this point in time, the commercial propositions such as

the iSELECT platform remain more accessible to the general user as the vendor
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provides an ‘out-of-the-box’ informatics solution to capturing, analysing, recording

and exporting defined genotypic data into a wide range of analytical software.

At the time of writing, the sequence-based methods still require specialised bioin-

formatics support to collect and interrogate the genotypic data—a big disadvantage

for many smaller groups. However, it is a logical development and a significant step

forward. Not surprisingly, GbS has already been implemented in barley association

mapping studies.

18.4 Marker Ascertainment Issues

Whilst the ‘marker constrained’ highly multiplex assays such as the OPA and

iSELECT technologies from Illumina are tremendously effective and simple to

use, they are not ideally suited to all applications. Because their development

generally involves mining sequence data extracted from a limited number of

individuals, the utility of the SNPs obtained is affected by this discovery protocol.

Basically, SNPs are identified in a small panel of individuals selected from a much

larger population. As they represent only a small subset of the individuals, only a

fraction of total polymorphisms will be discovered. When these SNPs are then

scored on a larger sample of individuals, an ‘ascertainment bias’ is introduced

(Nielsen 2000). Because the SNP discovery panel is small, the probability that an

SNP will be identified is a function of its frequency in the discovery population.

Rare SNPs will go undiscovered more often than common SNPs, and SNPs not

present in the discovery population will never be incorporated in the assay platform.

When the platform is then used to screen a much broader set of germplasm, this

ascertainment bias will compromise measures of relatedness and genetic diversity

because statistical measures that rely on allele frequency, such as nucleotide

diversity, population genetics parameters and linkage disequilibrium, will be

affected (Nielsen 2000; Schlotterer and Harr 2002; Rosenblum and Novembre

2007; Storz and Kelly 2008).

BOPA1, BOPA2 and the 9K iSELECT platforms were developed from SNP

data extracted from a limited number of barley accessions (Rostoks et al. 2005,

2006; Close et al. 2009; Comadran et al. 2012), and several large-scale

projects have used them effectively to identify marker-trait associations in elite

cultivars (AGOUEB, http://www.agoueb.org; Barley CAP, http://barleycap.cfans.

umn.edu; ExBarDiv: http://pgrc.ipk-gatersleben.de/barleynet/projects_exbardiv.

php) (Waugh et al. 2010) and in diversity panels comprising both elite cultivars

and landraces (Pasam et al. 2012). Despite these apparent successes, we should be

mindful that the extent and patterns of diversity observed have been affected by

ascertainment issues and that results generated in these studies in most cases still

need to be validated. This is particularly true when examining diverse genotypes.

For example, understanding genetic diversity inherent within accessions that toler-

ate extreme conditions of temperature and water availability is likely to be partic-

ularly important in future breeding efforts that seek to respond to future

environmental challenges. It is therefore important that issues such as
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ascertainment bias are fully taken into account when using a marker platform

derived from one gene pool to investigate another.

One example that highlights this issue and that has been examined in some detail

is the use of SNPs sampled from the cultivated gene pool to examine diversity in

collections of landrace barleys from Syria and Jordan (Fig. 18.2). Moragues

et al. (2010) evaluated the effects of SNP number and selection strategy on

estimates of germplasm diversity and population structure in different barley

collections. Using the 1,536 BOPA1 SNP data and random or optimised subsets

of 384 and 96 SNPs, they compared diversity statistics for 161 landraces from

Jordan and Syria with 171 European cultivars that had previously been studied

using SSRs (Russell et al. 2003). They observed differences in the patterns of SNP

polymorphisms and, somewhat counter-intuitively, a lower estimate of diversity in

the landraces, contradicting the SSR results. This bias could be at least partially

nullified by selecting an appropriate subset of SNPs.

More recently Russell et al. (2011) described the first application of BOPA1 to

assess the evolution of barley in a portion of the Fertile Crescent. Specifically, they

were interested in examining diversity across the genome but in particular those

regions that have been previously identified as playing a role in domestication.

They genotyped geographically matched landrace and wild barleys (448 accessions)

from Jordan and Syria. One consequence of ascertainment bias would be to skew

the landrace-wild comparison by excluding rarely polymorphic markers in the wild

barleys, resulting in an underestimate of their true genetic diversity. However, the

experimental data showed higher levels of genetic variation in wild material, and

furthermore, the differences were similar to those found in previous work (Russell

et al. 2004). Also, if the effect of bias introduced by using SNPs sampled from elite

Fig. 18.2 Principle coordinates analysis illustrating the effect of ascertainment bias on estima-

tions of genetic diversity in diverse barley gene pools. The SNPs were ascertained from the

cultivated gene pool and were chosen based on high allele frequencies. The wild and landrace

barley germplasm ‘looks’ as if it is much narrower than the cultivated germplasm—which we

know from many other studies is completely the wrong way around
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cultivars was problematic, the expectation would be a reduction of diversity in the

wild compared to landraces around the domestication genes (because SNPs in the

wild would not have been assayed). But they identified 141 cases where rolling

diversity estimates were significantly different between wild and landrace barley

genotypes, with diversity higher in wild material for 94 % of the cases, many in

regions where domestication genes are known. As ascertainment bias would have

pushed this comparison in the other direction, their observations become increas-

ingly significant.

18.5 Accounting for Population Structure

When mapping by association, underlying population structure can be a strong

confounding factor that results in a high frequency of false-positive associations.

(Rostoks et al. 2006; Mackay and Powell 2007). Considering a hypothetical trait, if

this trait was frequently associated with any sub-population, then all corresponding

background markers that identify alleles with a similar clustering distribution

between populations would also be associated with the trait, regardless of whether

they were physically linked to it. Minimising these false-positive effects has been

the focus of considerable effort in the statistical genetics community, and a number

of approaches have been developed in an attempt to nullify them whilst allowing

true associations to be detected.

GWAS analysis that does not account for population substructure (a naive
approach) is based on the same principles as those applied in biparental QTL

mapping populations. Simply, it consists of regressing the phenotype against the

alleles at each genetically mapped locus to detect QTLs and is successful because

each marker allele in the genetic map has a given probability of being associated

with the QTL of interest. The naive approach is not generally suitable for use in

structured populations for the reasons given above. However, it is suitable for use in

populations in which structure has been intentionally minimised. A popular exam-

ple of this type is a multiparent advanced generation intercross (MAGIC) popula-

tion (Cavanagh et al. 2008). Another possibility is to use substantially unstructured

sub-populations identified by PCO or STRUCTURE analysis of the associated

marker data (Waugh et al. 2010), although some would argue that even within

these populations, a structure correction should always be applied.

The reality is that barley germplasm sampled across the world is strongly

stratified into sub-populations, reflecting growth habit, ear morphology and geo-

graphical origin, and is linked to local adaptation and crop end use. As a naive

approach is unsuitable in this case, several different statistical approaches that

correct and/or account for the effects of population structure within such germ-

plasm have been developed. Indeed, correcting for structure has guided most of the

research on GWAS for the last few years (Pritchard et al. 2000; Mackay and Powell

2007). Issues arise when the application of different statistical approaches reveal an

inconsistent number and/or identity significant associations or remove known
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biological factors that are correlated at some level with population structure. This

can result in uncertainty over what QTL to prioritise for further studies or to use as

diagnostics in marker-assisted selection (MAS).

Structured association uses genome-wide molecular diversity data to compute

statistics that define the genetic structure contained within the germplasm. The

derived statistics can then be modelled within a mixed linear model (MLM)

framework to account for the multiple levels of relatedness that result from histor-

ical stratification and kinship (Yu et al. 2006). Statistical softwares including

Genstat (VSN International 2011), R (http://www.R-project.org/) and TASSEL

(Bradbury et al. 2007, http://www.maizegenetics.net) can then provide (different)

corrections for population structure. A variance covariance matrix containing

coefficients of co-ancestry (kinship matrix) can be included in the mixed model

to account for genetic relatedness between genotypes. Eigenanalysis (Patterson

et al. 2006) uses the scores of the most significant PCA axes from the molecular

marker matrix as co-variables in the mixed model, approximating the use of a

kinship matrix. In barley Cockram et al. (2010) and Comadran et al. (2011b) found

that a mixed linear regression model that accounts for relatedness due to kinship

and historical population substructure to perform well. A significance threshold is

usually estimated for each analysis using a Bonferroni-corrected p-value of 0.05.

Importantly, with the observed increase in marker data volumes, methods that are

able to cope with thousands to millions of computationally intensive analyses have

emerged that provide a choice of both approximate [e.g. GRAMMAR (Aulchenko

et al. 2007), implemented in GenABEL (http://www.genabel.org/packages/

GenABEL); P3D (Zhang et al. 2010), implemented in TASSEL (http://www.

maizegenetics.net/tassel); EMMAX (Kang et al. 2010) (http://genetics.cs.ucla.

edu/emmax/)] and exact methods [e.g. FMM (W. Astle & D. Balding, http://

www.genabel.org/MixABEL/FastMixedModel.html); FaST-LMM (Lippert

et al. 2011) (http://mscompbio.codeplex.com/); GEMMA (M. Stephens lab,

http://stephenslab.uchicago.edu/software.html)] to account for structure effects.

18.6 Data Management and Display

With the size of the datasets generated, both molecular and phenotypic, a key issue

for longer-term value of an association mapping population surrounds data man-

agement, quality control and data visualisation, particularly if the dataset forms a

reference for the wider research community and has been derived from multiple

datasets generated by groups from remote locations. Whilst there may be local

solutions to this issue, within our programme we have developed and implemented

a GERMINATE data warehouse (Lee et al. 2005; http://bioinf.scri.ac.uk/public/?

page_id¼159) modified to hold high-density phenotypic and genotypic diversity

data, Illumina iSELECT and GbS SNP metadata together with the results of our

analyses. Working closely with the breeding community has prompted the devel-

opment of a number of features in GERMINATE that assist data querying,
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manipulation and visualisation. In particular, interfacing with the Flapjack graph-

ical genotyping environment (Milne et al. 2010) has been of particular significance,

with the Flapjack data model (Fig. 18.3) now being widely adopted by other plant

breeding and germplasm diversity projects including the ‘SeeD’ programme at

CIMMYT, the Triticeae CAP (T-CAP) project in the United States (http://www.

triticeaecap.org/?q¼node/2), Gates Foundation-funded GCP Integrated Breeding

Platform (http://wiki.cimmyt.org/confluence/display/MBP/Home) and the

Gramene Diversity project (http://www.gramene.org/db/diversity/diversity_view).

Further developments in these latter projects will enable users to automatically load

data and analysis results and provide enhanced tool integration with various genetic

analysis platforms. Thus, efforts are underway to more intimately integrate Flap-

jack with data analysis software such as TASSEL, R, Genstat and genetic simula-

tion tools like QuGene (Podlich and Cooper 1998).

18.7 Phenotypic Analysis

One of the original attractions of association mapping was that it promised to be

able to exploit rich phenotypic information that had already been collected either by

prior academic studies or of the rigorous trialling and testing procedures that

cultivars must go through as part of the official registration process. For example

in the United Kingdom, up to 80 morphological-developmental traits are described

Fig. 18.3 A screenshot of the Flapjack graphical genotyping environment. The marker alleles are

colour coded (A, C, G, T, white¼missing data) and arranged in genetic marker order along each

chromosome (horizontal axis). Individual accessions are shown in the vertical axis. Tracks for

visualising trait data are available but not shown. The pattern of SNP alleles along a chromosome

can be easily inspected visually (see http://ics.hutton.ac.uk/flapjack/ for further details)

18 Genome-Wide Association Scans (GWAS) 353

http://www.triticeaecap.org/?q=node/2
http://www.triticeaecap.org/?q=node/2
http://www.triticeaecap.org/?q=node/2
http://wiki.cimmyt.org/confluence/display/MBP/Home
http://www.gramene.org/db/diversity/diversity_view
http://ics.hutton.ac.uk/flapjack/


and available for use in assessing the distinctiveness, uniformity and stability

(DUS) of prospective cultivars and up to 40 (including grain yield, quality and

disease resistance) tested for value for cultivation and use (VCU) (http://www.fera.

defra.gov.uk/plants/plantVarieties/nationalListing/documents/protocolCereals10.

pdf). Work carried out in the AGOUEB population in the United Kingdom and

cultivated barley collections at IPK in Germany have reported the use of such data

(Cockram et al. 2010; Comadran et al. 2011a; Wang et al. 2012; Matthies

et al. 2009, 2012). This may be because it can often be difficult to extract this

type of data from archives or because it may be difficult to use as official testing

protocols and ways of recording the phenotypic data have been modified over time

and accessions may have undergone further selection between the point of testing

for DUS/VCU and genotyping. However, where the data are clean, it remains a

highly valuable asset that obviates the need for de novo phenotyping. Conducting

the necessary quality control prior to analysis is however time consuming and may

involve a considerable amount of retesting.

For certain phenotypes, like disease resistance, that are tested on relatively

young leaf material using a common ‘treatment’ (e.g. a pathogen population),

morphological-developmental differences between accessions can have limited

impact on the collected data. However, the opposite can be true when attempting

to collect equivalent data on diverse genotypes that may be confounded by signif-

icant developmental and morphological differentiation. For example, wild barley

isolates and landraces from around the world have highly diverse heading dates and

heights and using data such as ‘grain yield’ collected in a single environment across

such a diverse population may be effectively meaningless. Because of these diffi-

culties we have found it advantageous to ‘tune’ the accessions in our association

mapping population by including only those with broadly similar developmental

characteristics. Whilst this necessarily restricts the amount of variation that segre-

gates in the population, we have found that this approach enables rather than

restricts genetic dissection of the considerable genetic variation that remains in

the population.

18.8 Association Mapping in Barley

Several individual groups and consortia have recently assembled collections of

germplasm into association mapping panels and have phenotyped and genotyped

them at varying depths with the objective of performing GWAS (e.g. Haseneyer

et al. 2010). To date, none are artificially constructed populations such as nested

association mapping (NAM; McMullen et al. 2009) or MAGIC (Cavanagh

et al. 2008) that are promoted as exploiting the power of both linkage analysis

and association mapping approaches and designed to avoid the population structure

issues that inflate false-positive associations in natural populations. Such

populations are currently under development (http://triticeaecap.org/?q¼node/1).

Examples of some of the populations already used for GWAS are as follows.
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18.8.1 Wild Barley Populations

Steffenson et al. (2007) assembled a Wild Barley Diversity Collection (WDBC)

comprising 318 accessions selected on the basis of eco-geographic parameters that

included longitude/latitude, elevation, high/low temperature, rainfall and soil type.

Most were from the Fertile Crescent, Central Asia, North Africa and the Caucasus

region. Single plant selections were repeatedly selfed to near homozygosity and the

resulting inbreds genotyped using 558 Diversity Array Technology (DArT®;

Jaccoud et al. 2001) and 2,878 BOPA1 and BOPA2 SNPs. GWAS was conducted

after correcting for structure, initially for leaf, stem and stripe rust (Steffenson

et al. 2007) and latterly for spot blotch (Roy et al. 2010) resistance. 13–15

significant associations of small effect, some corresponding with the location of

known resistance genes, were detected for each phenotype. Given the expected

extent of LD in the WDBC (Caldwell et al. 2006; Morrell et al. 2005), these results

are somewhat surprising and it will be interesting to see if any of the detected

associations are subsequently validated. It is tempting to speculate that SNP

ascertainment issues, combined with low levels of recombination in the genetic

centromeres may have played some role in these findings.

18.8.2 Landraces

A European Union-funded project under the acronym EXBARDIV (http://pgrc.ipk-

gatersleben.de/barleynet/projects_exbardiv.php) was founded on the hypothesis

that stratified germplasm collections may allow genetic resolution to be manipu-

lated in GWAS by shuttling between cultivated, landrace and wild association

mapping populations. The Europe-wide team assembled a collection of 360 elite

European barley cultivars (overlapping with the UK AGOUEB Project summarised

below), 480 landraces from Jordan and Syria and known as the ICARDA Syrian-

Jordanian Landrace Collection (SJLC; Ceccarelli et al. 1987) and two sets of wild

barleys, including a subset of 131 individuals from the WBDC summarised above.

These lines have been phenotyped for a wide range of characters at multiple sites

across Europe and simultaneously genotyped with the barley 9K iSELECT SNP

platform. Several manuscripts describing the analysis of the data associated with

several of these phenotypes are currently in the pipeline (unpublished). In addition,

Casas et al. (2011) surveyed the Spanish Core Collection of barley landraces

(Igartua et al. 1998) to identify candidate genes affecting flowering time variation

by GWAS. There are, however, few other GWAS studies specifically of barley

landraces. Some include landraces as a subset of a wider germplasm collection,

e.g. Comadran et al. (2011b), and others have used a limited number of SSR

markers, e.g. Jones et al. (2011).
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18.8.3 Cultivars

Several populations have been assembled specifically to exploit the potential power

of GWAS in cultivated barley material starting with the relatively small population

used in the original studies of Kraakman et al. (2004, 2006) and Kraakman (2005).

We focus on two of these here. However, whilst we highlight these major efforts,

other association mapping populations have been assembled and that have now

exploited using the BOPA marker technology. These include MABDE (Comadran

et al. 2009), EXBARDIV (see above) and GABI-Genobar (Rode et al. 2012), and

results from these are now starting to emerge in the literature.

18.8.3.1 Barley CAP

In order to conduct association mapping (AM) studies of economically important

traits in US barley breeding germplasm, a panel of 3,840 US barley breeding lines

originating from 10 major breeding programmes was assembled and genotyped

with 3,072 SNPs (BOPA1 and BOPA2). Population structure was examined using

the programme STRUCTURE (Pritchard et al. 2000) and principle component

analysis (PCA), revealing 7–9 sub-populations with some correspondence with

the different breeding programmes (Hamblin et al. 2010; Zhou et al. 2012). The

major population subdivisions were imposed by inflorescence morphology

(two-row versus six-row) growth habit (spring vs. winter) and end use (malt

vs. feed). Average LD within sub-populations was found to decay across a range

of 20–30 cM in Hamblin et al. (2010) and between 4.0 and 19.8 cM in Zhou and

Steffenson (2012) as determined by calculating r2. The authors estimated that

quantitative trait loci (QTL) should be detected in their population with a 50 %

probability within a genetic interval of 5 cM and with 95 % probability within

25 cM. These and other studies using subsets of the Barley CAP material

(e.g. Cuesta-Marcos et al. 2010; von Zitzewitz et al. 2011; Wang et al. 2012;

Massman et al. 2011) and phenotypic data from breeding programmes, were able

to detect QTL previously detected in other studies, validating the investment in the

association mapping approach. However, none so far have advanced as far as

identifying the causal underlying genes. In each of these studies, the authors stress

that careful consideration must be given to population diversity, size and experi-

mental design.

18.8.3.2 AGOUEB

The AGOUEB (pronounced Ag-web) consortium was established as a public/

private partnership in the United Kingdom and was set up to explore the diversity

present in European plant breeding programmes using contemporary molecular

marker technologies (BOPA1 and BOPA2). Using the same marker platform as
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Barley CAP, Cockram et al. (2010) genotyped a collection of c. 500 cultivars

selected from UK registration trials over the past 20 years. As with Barley CAP

significant population structure was detected generating high levels of false-

positive associations between markers. Significant intrachromosomal LD was

observed across the full length of chromosomes (mean distance between significant

marker pairs¼ 40.2 cM, median¼ 30.7 cM, similar to that observed by Hamblin

et al. (2010) in US germplasm). However, after adjustment using a mixed model to

take account of population structure, this was reduced to <10 cM (mean¼ 1.2 cM,

median¼ 0.6 cM), with the proportion of significant inter-chromosomal associa-

tions controlled to just 0.1 %. They examined historical phenotypic data for

32 different morphological traits, successfully identifying loci controlling 15 and

attributing failure in the other 17 cases to low-quality or variably recorded pheno-

typic data (e.g. Fig. 18.4). Cockram et al. (2010) also modelled the power to detect

1, 2 and 10 independent loci distributed randomly across the genome, with herita-

bilities (h2) of 0.5 and 0.9. Using a mixed model to correct for genetic substructure,

simulations based on a trait controlled by one locus predicted that their experimen-

tal design had a high probability (�0.92 for both values of h2) of detecting

significant (q value �0.1) associations within windows of �8 cM. However, for a

ten-locus trait, they reported that the power to detect one or more loci after

correction with the mixed model was low (0.25, h2¼ 0.5; 0.58, h2¼ 0.9). As with

Barley CAP the issues associated with using highly structured populations in

AGOUEB were therefore again highlighted as a potential impediment to successful

GWAS.

18.9 GWAS to Single Gene Resolution

An advantage of GWAS over the use of biparental populations for trait dissection is

that the amount of recombination that has occurred in the population should

potentially afford single-gene resolution provided that the gene target does not

reside in a genomic region with restricted recombination rate, such as the peri-

centromeric heterochromatin. Whilst the success of this depends on a large extent

on the population assembled, several examples now exist in the literature where this

Fig. 18.4 GWAS for three morphological characters—sterile spikelet attitude, auricle anthocy-

anin intensity and hairiness of the leaf sheath using 1,536 SNPs on a collection of c. 500 mixed

barley cultivars (adapted from Cockram et al. 2010). Resolution to single-gene level was achieved

for anthocyanin pigmentation where a deletion in HvbHLH1 was shown to be the causal

polymorphism

18 Genome-Wide Association Scans (GWAS) 357



has indeed turned out to be the case. In Arabidopsis, Atwell et al. (2010) provide a
number of examples where large-scale phenotyping combined with high-resolution

genotyping and GWAS has identified a significant enrichment of a priori candidate

genes for a wide range of traits. Thus, Todesco et al. (2010) demonstrated that

allelic variation at ACCELERATED CELL DEATH 6 was responsible for fitness

benefits elaborated as resistance to microbial infection and herbivory. However, the

same locus also had a marked impact on pleiotropic variation in vegetative growth.

In the maize-nested association mapping population, Tian et al. (2011) recently

showed that variation in leaf angle and size, parameters that have allowed maize

planting density to be increased due to more efficient light capture, is partially

controlled by allelic variation at the LIGULELESS genes. Similar successes have

been achieved in a collection of c. 500 rice landraces (Huang et al. 2010).

In barley there are currently three examples in the literature of the successful use

of GWAS to single-gene resolution (Fig. 18.3). In the first, Cockram et al. (2010)

clearly demonstrated that this level of resolution was achievable in a germplasm

collection comprised of winter and spring, two-rowed and six-rowed elite barley

cultivars. By focusing on a robust single-gene phenotype, the presence or absence

of anthocyanin pigmentation, they were able to show that variation in the anthocy-

anin pathway regulatory gene HvbHLH1 was responsible for the observed pheno-

type. ‘White’ alleles contained a diagnostic deletion that resulted in a premature

stop codon upstream of the basic helix-loop-helix domain. By assaying for the

presence of the deletion in a collection of ‘red’ and ‘white’ alleles present in

landrace germplasm originating from across Europe, they were able to infer the

geographical origin of the white allele and map its subsequent spread throughout

Europe.

In the second, Ramsay et al. (2011) were able to identify and prove that SIX-
ROWED SPIKE 5 (INTERMEDIUM-C), a gene that affects barley row type, was a

functional orthologue of the maize domestication gene TEOSINTE BRANCHED 1.
They achieved this despite the phenotype being a cause of major population

subdivision in the germplasm used in the analysis. Although it is a simple

two-state morphological character, GWAS identified four highly significant asso-

ciations, suggestive of strong epistatic interactions. As would have been predicted,

one association peak mapped to the SIX-ROWED SPIKE 1 (Vrs1) locus

(Komatsuda et al. 2007), another with SIX-ROWED SPIKE 5 and the remaining

two with separate loci on chromosome 1H. One of these latter loci has subsequently

been shown to correspond to the SIX-ROWED SPIKE 3 locus (our unpublished

results). Importantly, Ramsay et al. (2011) were able to validate their candidate

gene using a legacy collection of independent spike mutants (Druka et al. 2011) that

had previously been attributed to lesions in SIX-ROWED SPIKE 5 by allelism tests.

Finally Comadran et al. (2012) used a modified analytical approach based on

divergent selection between the winter and spring barley gene pools to identify

regions of the barley genome where contrasting alleles had been selected in these

different lifestyle types. They eventually focussed on one such region which from

QTL studies had been called EARLINESS PER SE 2 and mapped as the major

determinant of earliness in a study examining adaptation of barley to droughted
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environments. Using available mutant resources they were able to show that the

gene responsible for the observed phenotype was the barley orthologue of the

Antirrhinum majus gene CENTRORADIALIS, a paralogue of the Arabidopsis
flowering repressor TERMINAL FLOWER 1 (TFL1). Within our group we have

now used GWAS to identify a number of additional genes and validated them using

the same strategy, i.e. with independent barley mutants.

Conclusions

The successes in GWAS-associated identification of gene alleles encoding

barley traits described above bode well for the future of this approach,

especially since the potential power of the method is continuously increasing.

It is not unreasonable to predict that in the next few years, hundreds of

thousands of polymorphic sites that are mapped on a reliable physical frame-

work for the barley genome will become available for GWAS in barley.

Furthermore, the arrival of GWAS populations with lower substructure,

more allelic variation and higher numbers of recombination breakpoints

will increase the mapping resolution. In such circumstances single-gene

resolution for GWAS will become commonplace.

Future directions of GWAS in barley will to some extent be driven by the

falling cost of genotyping associated with next-generation sequencing tech-

nologies (NGS). Given the potential to saturate marker coverage of the

genome, the discriminatory power of GWAS in barley will be determined

by the size of the population studied and the patterns of LD and population

structure within the population. The use of large more genetically balanced

populations that are specifically developed for GWAS (McMullen et al. 2009;

Cavanagh et al. 2008) will undoubtedly play an increasing role though

recombination rates in this inbreeding crop will continue to be a limiting

factor particularly in certain regions of the genome. In addition to the

importance of choice of population, the potential discriminatory power of

GWAS will certainly concentrate more attention onto experimental design

and the opportunities offered by high-throughput phenotyping. Whilst it is

now possible to conduct QTL x environment AM analyses using Genstat

(VSN International 2011), current analytical methods are largely single-locus

additive models. Future analytical developments will lead to multi-locus

models with the potential to detect epistatic interactions, as now in biparental

QTL mapping. Finally the discrimination of GWAS in barley down to the

gene level will also necessitate the further development of validation strate-

gies and the integration of future population studies with developments in

functional genomics and systems analyses in the crop.

To avoid the majority of the potential issues with population

substructuring, we have assembled a population of approaching 1,000

two-rowed spring barley varieties that exhibit low population substructure

(continued)
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and show similar morpho-developmental characteristics (particularly

flowering time). We are currently using this population extensively to inves-

tigate a range of simple and more complex traits, and our experience to date

suggests that such populations do simplify underlying genetic complexity

making it more amenable to statistical interpretation (Waugh et al. 2010).

This population is a powerful resource for future genetic analysis in barley,

and we welcome collaboration with groups who would like to exploit the

power and resolution it affords.
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