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Abstract. Is it possible to prove that two DNA-fingerprints match,
or that they do not match, without revealing any further information
about the fingerprints? Is it possible to prove that two objects have
the same design without revealing the design itself? In the digital do-
main, zero-knowledge is an established concept where a prover convinces
a verifier of a statement without revealing any information beyond the
statement’s validity. However, zero-knowledge is not as well-developed
in the context of problems that are inherently physical. In this paper,
we are interested in protocols that prove physical properties of physi-
cal objects without revealing further information. The literature lacks a
unified formal framework for designing and analyzing such protocols. We
suggest the first paradigm for formally defining, modeling, and analyz-
ing physical zero-knowledge (PhysicalZK) protocols, using the Universal
Composability framework. We also demonstrate applications of physical
zero-knowledge to DNA profiling and neutron radiography. Finally, we
explore public observation proofs, an analog of public-coin proofs in the
context of PhysicalZK.

1 Introduction

Zero-knowledge proofs are protocols that prove an assertion without revealing
any information beyond that assertion’s validity. Zero-knowledge proofs were
first introduced by Goldwasser, Micali, and Rackoff in 1985 [16]. The power of
zero-knowledge proofs is quite remarkable: anything that can be proved effi-
ciently can be proved with a zero-knowledge protocol, under the cryptographic
assumption that one-way functions exist (see Goldreich [9]).

Zero-knowledge proofs have also been considered in a physical setting. A num-
ber of works have explored constructions of zero-knowledge protocols that can
be physically implemented [26,19,24,23]. One goal of those works was to design

* Most of the work was done while the authors were visiting the Weizmann Institute of
Science. Research in part supported by the Kupcinetz-Getz Summer Science School.
** Incumbent of the Judith Kleeman Professorial Chair.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 313-336, 2014.
© International Association for Cryptologic Research 2014



314 B. Fisch, D. Freund, and M. Naor

protocols with simple procedures and security arguments that the participating
parties could easily understand. An added advantage of simple physical proto-
cols is that humans can implement them without the aid of computers. Moran
and Naor [24] give methods for polling people on sensitive issues using physical
envelopes as an alternative to electronic polling, where humans might not trust
computers to behave honestly. Many works have also addressed the incorpora-
tion of physical hardware into broader cryptographic schemes. In some cases,
these hybrid protocols achieve efficiency or security gains that are unachievable
in a standard computation model. Examples of physically realizable functionali-
ties that have been suggested for aiding general cryptographic protocols include
tamper-evidence [23], tamper-proof tokens [12,7,21,22,25,20,18], one-time pro-
grams [15], and physically uncloneable functions [3].

Previous literature on zero-knowledge in a physical setting addressed physical
protocols for tasks that could otherwise be solved digitally. There is compara-
tively little formal work on protocols for inherently physical tasks that cannot
be solved digitally. One example that has been studied rigorously is distance
bounding protocols, introduced by Brands and Chaum in 1993 [2], in which a
verifier party determines or verifies an upper bound on its physical distance to
a prover party. In 2012, Glaser, Barak, and Goldston [8] suggested applying
zero-knowledge concepts to the task of proving that a nuclear weapon is authen-
tic without revealing sensitive information about its actual design, a problem
that arises in the context of nuclear disengagement treaties. They presented an
e-knowledge protocol for this task, but did not have a rigorous framework for
formally defining and analyzing the protocol’s e-knowledge security.

Our Contributions. We present the first formal treatment of physical zero-
knowledge (PhysicalZK) proofs for inherently physical claims. In our setting, a
prover convinces a verifier that an input object satisfies a given physical property.
Our framework for designing and analyzing PhysicalZK protocols uses the Uni-
versally Composable (UC) security framework [4], popularly applied in analysis
of hybrid protocols involving physical hardware.

Expanding on Glaser et al., we present the first PhysicalZK protocols for
the nuclear verification problem, or the general task of verifying object neutron
radiograph equality. We also demonstrate an application of PhysicalZK proofs
to DNA profiling in which a prover (e.g. a suspect) convinces a verifier (e.g. the
police) that its DNA profile does not match a target profile (e.g. obtained from
a crime scene) without revealing to the verifier any further information about
the profiles, and discuss a protocol for parental testing.

A further goal of our work is to initiate a rigorous study into the foundations of
physical zero-knowledge. We point out both differences and similarities between
physical and standard ZK where they arise. In particular, Section 3 compares
the UC properties of physical vs. digital ZK, and Section 6 explores a physical
analog of public coin proofs.
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2  What Is Physical Zero-Knowledge (PhysicalZK)?

A standard zero-knowledge proof involves a binary relation R and an input z. A
prover convinces a verifier that there exists a witness w such that (z,w) € R. The
verifier “learns nothing” from the protocol except the existence of w, and possibly
the fact that the prover “knows” w. (See Goldreich [9] for formal definitions,
classical theorems, and variants of zero-knowledge).

Previously, the term physical zero-knowledge was used for physically imple-
mented ZK protocols, involving physical tools such as scissors, playing cards,
envelopes, or pez dispensers. However, the underlying tasks in those protocols
were still logical in nature (e.g. solving a Sudoku puzzle [19], finding Waldo [26]).

In our definition of physical zero-knowledge (PhysicalZK), a prover convinces
a verifier that a physical input object has a physical property II. The verifier
should “learn nothing” except the validity of the statement “X satisfies I7.”
A physical measurement M verifies II, possibly requiring the assistance of a
measurement device D. Asymmetry between the prover and the verifier arises
not from secret knowledge or computational power, but from access permissions
to the object and measurement device. Since a verifier might forcefully break its
restricted access, the threat model we consider only addresses adversaries that
avoid being caught (similar to the covert adversary model [1]). Before proceeding,
we give a few simple examples.

1. Coke vs. Pepsi “blind test”: Alice demonstrates to Bob her ability to distin-
guish between the tastes of Coke and Pepsi using the classic blind test. However,
the simplest test is not zero-knowledge. Bob might give Alice a cup of Sprite, and
gain information from her response. One fix is to use indistinguishable coffee lids.
Alice observes that Bob prepares cups of Coke and Pepsi. Bob then supplies Alice
with the lids, Alice marks the inside of each lid with her secret signature, and cov-
ers the cups. After the blind test, Alice commits her response on a piece of paper.
But before handing the paper to Bob, she will remove the lid, and check for her
signature.

2. Bins and Balls Equality: Alice proves to Bob that two bins X and Y (of ca-
pacity n) contain the same number of balls. The following e-knowledge protocol
was given in [8]. Alice chooses N > n, and prepares two new pairs of bins, each of
capacity N + n, labelled By and B; respectively. Alice chooses two independent
random values 79 and 71 uniformly distributed in [0, N). Concealing the bins from
Bob, she adds 7o balls to each bin in Bp, and 71 to each bin in Bi. Bob randomly
selects ¢ € {0, 1}, Alice hands Bob the pair B;, and Bob checks that both bins in
the pair have equal numbers of balls. Alice then pours the contents of X into one
bin in the remaining pair, and the contents of Y into the other. Finally, Bob checks
the final contents of the bins to verify that they contain equal numbers of balls.
Alice’s success of cheating is at most 1/2. (Appendix A contains a full analysis).

3. Litmus Test: Alice proves to Bob that her solution is basic/acidic without reveal-
ing the actual pH. Blue litmus paper turns red in acidic solution, and red litmus
paper turns blue in basic solution. First, Bob tests Alice’s litmus paper in known
basic/acidic solutions to check that it operates correctly. After the protocol is
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complete, the litmus paper must be completely destroyed (to prevent Bob from
later examining traces of the solution remaining on the paper).

3 PhysicalZK in the UC Security Framework

The UC Framework. The Universally Composable security framework (UC)
of Canetti [4] defines two worlds: the “real” world in which the real protocol is
executed, and the “ideal” world in which an ideal process is implemented with
the help of a trusted third party. A protocol environment machine Z interacts
with the protocols in both worlds, setting each party’s inputs, and reading their
outputs. Although Z does not see internal communication between parties, it
communicates freely with an adversary A. When A corrupts a party, it assumes
the party’s identity, and takes control of its communication. A real protocol UC-
emulates an ideal process if for every real adversary A there exists an ideal world
adversary S such that no environment Z can distinguish between its interactions
with A in the real protocol and S in the ideal process. The universal composition
theorem states that if 7 is a protocol involving sub-protocol calls to an ideal
functionality F, p is a protocol that UC-emulates F, and 7*/% is the hybrid
protocol obtained by replacing calls to F in 7 with calls to p, then =#/F UC-
emulates 7.

Modeling Physical Protocols. We separate physical protocols into a logical
layer and a physical layer. All the physical operations of the protocol belong to
the physical layer. Every physical operation serves an ideal function, and can
be modeled by an ideal process in an abstract computation model with interac-
tive turing machines (ITMs). This translation is based on physical assumptions.
The logical layer is the hybrid world protocol obtained by replacing all physical
operations with oracle calls to their ideal functionalities.

For example, consider the operation of pouring z balls into a bin and sealing
the bin. We can define an ideal functionality 7 and an ideal process for this
operation as follows. T stores tuples of the form (value, id, creator, holder, state).
Upon receiving the two commands Create(z,id) and Seal(id) from party P,
T stores the tuple (z,id, P;, P;, sealed), and will deny requests to view the value
z that come from any party other than P;. However, any party P; may send
a special command Force(id) to T, and T will respond by sending the entire
tuple to P; and broadcasting to all other participating parties that P; issued
the Force command. This emulates the real behavior of a party who forcefully
breaks open the sealed bin without permission, and is labeled a cheater.

Rigorous analysis can be applied to the hybrid world logical layer. We can then
interpret the universal composition property of our model as formally reducing
security to the most basic physical assumptions necessary: if the hybrid world
logical layer UC-emulates F, then any real world physical protocol emulating
the hybrid protocol also realizes F.
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UC Physical Commitments. Bit-commitment is impossible to UC-realize in
the standard computation model without trusted setup assumptions [5]. How-
ever, physical assumptions change matters. Consider the following trivial proto-
col in which the parties continuously observe each other. Alice commits to her
bit by placing it in a sealed container, and de-commits by opening the container.
To prevent Bob from forcibly cheating, Alice could run the protocol behind a
secure glass screen (see Section 6 on public observation protocols). There is also
a more sophisticated UC secure bit-commitment protocol using tamper-evident
envelopes [23], which does not require continuous observation.

Likewise, ZK is not UC-realizable without setup assumptions, but there are
UC-secure ZK proofs for any NP relation given UC bit-commitment [5,6]. There-
fore, it is possible to implement UC-secure ZK protocols for any NP relation
using UC physical commitments.

Ideal Functionality ]:gK. The ideal functionality FZ,. is described in Fig-
ure 1, running with parties Prover, Verifier, and an oracle F¢ that compiles the
ideal functionalities for a collection C of physical operations in the real world.

Functionality FZ

I1 is a unary predicate representing a physical property IT. If idx uniquely identifies
a physical set X, the statement idx € II translates the physical world statement
“X satisfies property I1.” F¢ includes an ideal functionality F,, for the physical
measurement operation M™ required to verify II, which outputs I (idx) € {0,1}.
The parameter leak(idx ) represents information that is leaked when Verifier force-
fully cheats.

— Upon receiving (idx, pide, Prover, Verifier) from the party Prover, FJ queries
the F¢ specified by the process identifier pide to compute II(idx ), and sends
(II(idx),idx, IT) to Verifier.

— Upon receiving the instruction cheat from Verifier, send (idx,leak(idx)) to
Verifier, and send (Cheater, Verifier) to Prover. If Prover sends cheat, send
(Cheater, Prover) to Verifier. Upon receiving the instruction fail from either
party, send Failed to both parties.

Fig. 1. Ideal world PhysicalZK

Let p7¢/C denote the Fe-hybrid model translation of a physical protocol p
with physical operation collection C. A proof that p”¢/¢ UC-emulates F . cap-
tures (up to physical assumptions) that p is secure against any adversary in the
real physical world whose behavior is restricted to operations in C.! A generic

! Ideally, C should define a sufficient set of operations such that any action outside
this set will either be recognized as malicious or irrelevant to the protocol. This is
not a formal mathematical notion, but a physical assumption.
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procedure for this analysis is outlined in Figure 2. Appendix A includes a full UC
modeling and security proof for the Bins and Balls Equality protocol of [8]. Let
HYBRID) 7¢, 4,z and IDEALrr 7. s = respectively denote the random variables

Fec/C

describing the output of environment Z after interacting with A in p and

S in the ideal process for Ff .

Definition 1. 2A physical protocol p is a physical zero-knowledge protocol for
property IT with respect to the physical operation set C if for any A there exists
S such that for all environments Z outputting a single bit:

HYBRID), 7. .4,z & IDEALzn 7. s =

Main Differences from Standard F&,.. One difference is to allow the verifier
to obtain leakage by overtly cheating; however, FZ, could be extended similarly.
A more fundamental difference is the way FI- verifies IT. FF, requires the
prover to submit a witness w along with the input z so that F%;. may efficiently
verify (z,w) € R. FF cannot find a witness w on its own since UC requires the
trusted party to be computationally efficient. In contrast, F &, verifies idx € IT
on its own, as it only needs the prover to transfer access permissions, not secret
knowledge.

This difference has significant consequences. FZ; cannot be realized in UC
without trusted setup because the simulator must straight-line extract a witness
from its interaction with the real prover, implying that the real verifier could
do so as well. UC-emulation of F, does not require extraction. Standard ZK
proofs in UC are zero-knowledge proofs-of-knowledge (ZKPoK ), whereas F. is
not. Thus, although UC protocols for FZ;. may rely on physical assumptions,
they do not fundamentally require trusted setup assumptions.

4 Neutron Radiography

Glaser, Barak, and Goldston [8] were the first to suggest applying zero-knowledge
proofs to the problem of authenticating nuclear warheads without revealing
sensitive information about their design. One approach to authentication is
“template-matching.” The inspecting party possesses a template warhead, pre-
sumably confirmed to be authentic. The opposing party must prove that each
warhead brought to the dismantlement queue is identical (in design) to the
template.

Neutron radiography can be used to compare objects. An object is bombarded
with neutrons, and the intensity of neutron scattering is measured over a range
of angles. Glaser et al. suggested using passive bubble detectors® to physically

2 To differentiate statistical, computational, and perfect PhysicalZK, we can eas-
ily extend the definition to depend on the type of indistinguishability (statisti-
cal/computational/perfect) that the relation ~ describes.

3 A passive bubble detector contains droplets of superheated liquid dispersed through-
out a clear gel. When a neutron hits a droplet, it vaporizes the droplet producing a
visible air bubble trapped in the gel.
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Fe-hybrid protocol UC-emulation of FZ

We can assume that A acts as a proxy for the environment Z [4].

— When A corrupts Verifier, Z either sees a successful run of p*¢ /€ or receives

(0,idx, IT). Since S only receives a receipt (II(idx),idx, IT), it must simulate
the hybrid world proof, invoking an instance of F¢, and dummy parties P and
V. S plays the role of prover (P), and uses Z’s messages to play the verifier
(V), whose messages S forwards to Z. If failure occurs or cheating is detected
in the simulation, S sends either fail or cheat to FZx.

— S’s simulation must be straight-line (it cannot rewind Z), but S can extract
any hybrid world “physical commitments” that the dummy party V makes
with F¢. (S omits from its messages to Z any notification of the command
Force it internally uses with F¢ to force open the commitments).

— When A corrupts Prover, S simulates the hybrid world protocol with Z, but
now playing the verifier’s role (no secret input needed). If the simulation suc-
ceeds, S forwards Z’s input to FZx. If failure or cheating occurs, S sends
either fail or cheat to F&x.

Fig. 2. The F¢-hybrid model security proof

record the neutron counts at randomly selected angles. The task of comparing
the physically recorded counts essentially reduces to Bins and Balls Equality.
The GBG protocol for Bins and Balls Equality (see Section 2) only achieves e-
knowledge with € = n/N (security is broken with O(NV) repetitions). We present
a modified protocol that achieves perfect PhysicalZK.

Protocol 4.1 guarantees that the number of balls the verifier eventually counts
is uniformly distributed in [N,2N). Instead of preparing bin pair j containing
r; € [0, N) balls, the prover prepares a quadruple j of bins: one pair of bins with
r; € [0,N) balls each, and a second with N + r; balls each. If the number of
balls in the prover’s original bins is z < N, then exactly one of N + r; 4+ = and
r; + « lies in the interval [N, 2N). Only this bin pair is retained and displayed.

Soundness: The soundness error is at most 21k‘ The verifier would accept
a false claim (when x # y) only if it selects a quadruple j € [k] and labeling
of the bins in the final pair so that x +r; = y + r;, where r; and r;- are the
initializations of the bins labelled bin, and bin, respectively. If more than one
quadruple contains an incorrect initialization such that r; # r;, then the verifier
catches the prover. If one labeling results in = +7r; = y + r;-, then the opposite
labeling does not. Therefore, this event occurs with probability at most ;k.

Perfect Zero-Knowledge: We show that the distribution of balls in the
final pair of bins (bin, and bin,) is the uniform distribution over [N,2N). Fix
an arbitrary input value 0 < a < N for the number of balls that bins X and Y
each hold. Let Z denote the number of balls in bin, and bin, at the end of the
protocol. Z =r; +a whenr; +a > N,and Z =r; +a+ N when r; +a < N.
Consider t € [N,2N). If t € [N, N +a), then Pr(Z =t| = Pr[r; =t—a] =1/N.
Otherwise, if t € [N + a,2N), then Pr[Z =t] = Pr[rj =t —a— N] =1/N.



320 B. Fisch, D. Freund, and M. Naor

Protocol 4.1: Bins and Balls Quadruples

Input: Two bins X and Y, which both contain = and y balls respectively. The
maximum capacity of each bin is N.

1. Prover prepares and seals k “quadruples” of bins Qi,..., Qr, where each
“quadruple” @Q; consists of two pairs of bins, pair; o and pair; . Each bin
has capacity at least 2N. For all 1 < i < k, Prover randomly selects uniformly
distributed values r; € [0, N), and prepares each Q; such that each bin in
pairi,o contains r; balls, and each bin in pair; 1 contains r; + N balls.

2. Verifier randomly selects j uniformly distributed in [1, k], and requests to view
all Qix;. Prover reveals all quadruples Q;x;, and Verifier checks that these
quadruples were initialized correctly.

3. Prover selects a final pair out of Q);: if x+7; > N, then Prover chooses pair;,o,
and if x +7; < N, then Prover chooses pair;,1. Prover destroys the other pair.

4. Verifier labels the bins in the remaining pair as “bin,” and “bin,” (he can do
this randomly to add a 1/2 factor to the soundness error).

5. Prover pours the contents of X into bin,, and the contents of Y into bin,.
Prover reveals the contents of bin, and bin,, and Verifier accepts the proof if
and only if the two bins contain the same number of balls.

The complete formal proof is very similar to the proof in Appendix A.2.
Roughly, since the distribution in the final pair is uniform and independent of
the input, the simulator can run the protocol on an empty input.

4.1 From Bins and Balls to Neutron Bombardment

We adapt Protocol 4.1 to the problem of proving object radiograph equivalence.
Neutron detectors are placed at a finite number of angles around each object,
and a neutron source is fired at both objects for the same duration of time. A
measurement device is used to measure the counts of neutrons that each detector
has physically recorded.

Measurement Devices. The parties mutually possess a neutron source with
a known flow rate, and physical neutron detectors. Each party has its own mea-
surement device D for obtaining the physically recorded neutron count of any
neutron detector. In the hybrid world, D is modeled as an ideal functionality
Fp. When given the input idx corresponding to an object X, Fp records a
measurement value, and outputs a function of the measured value.

Operation Init(d,r). This initializes the given neutron detector d to the
integer value r. We assume that the prover and verifier can perform this operation
without the other party knowing the value 7.4

4 The appropriate time to run the neutron source at a detector during initialization is
calculated from the flow rate of the source. However, the initialization value should
be hidden from the other party. The initialization can be done privately, or using a
concealed on/off switch on the neutron source.
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Prover Types. We consider two types of provers. Prover Type I has prior
knowledge of the exact neutron counts zy and yy at any angle 6 that the verifier
chooses to examine, and Prover Type II does not possess this knowledge.

Drawbacks. A Type I prover is required to know the values of x and y for any
angle 0. A Type II prover is allowed to re-handle the detectors after the neutron
collection, possibly giving her the opportunity to dishonestly meddle with the
results. In Appendix B we include a different zero-knowledge protocol for ORE
that avoids both of these issues. The protocol uses a measurement device that
outputs neutron counts modulo N.

Protocol 4.2: Perfect PhysicalZK protocol for Object Radiograph
Equivalence (ORE)

Input: Two objects X and Y with equal ORE’s, denoted X ~ Y.

1. Prover: Prepare k “quadruples” Q1, ..., Qx of neutron detectors (as in Protocol
4.1), selecting random values r; € [0, N) for 1 < i < k, and using the Init(d,r;)
operation on each.

2. Verifier: For each Q;, 1 < ¢ < k, randomly select b; + {0, 1}.

— If b; = 0: examine the detectors in Q;, and check that the neutron count
initialization is valid. Fail if invalid.
— If b; = 1: run collection test on Q;.

Collection Test on Q;:

1. Verifier: For each pair of the quadruple Q;, randomly choose one detector to
label d¢,, and label the other d;‘ Select a random angle 6, and send this to the
prover.

2. Prover: Run the neutron source on X and Y, collecting at the angle 8, using
detectors labeled d., for X and d., for Y.

— Type I Prover: Choose the unique detector pair that has a count in the
range [N, 2N), and discard the other pair. Hand this pair to the verifier.

— Type 1I Prover: Examine the contents of both detector pairs, and proceed
as a Type I prover.

3. Verifier: Check that the detectors received from the prover have equal neutron
counts. Fail if the counts are not equal.

Tolerance ¢. The verifier could accept if and only if |zg — yo| < 6. Two
changes are necessary. First, the prover should choose which pair to discard
based on the lower of the two values x and y. Unfortunately, the difference |z —y|
is still revealed. Second, the verifier must ensure that N > maxg{|xg — yo| + 0}
Otherwise the prover could fool the verifier into accepting that |zg — yg| < &
when |zg — yp| > N — §. Verifier can incorporate checking the size of N into the
cut-and-choose protocol, but needs to know some loose upper bound on zg — yg.

Soundness and Completeness: Protocol 4.2 has perfect completeness and
soundness error at most (1;5 )%, where B < 1 is the probability that zg = ys
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at a uniformly distributed angle 6 (when X # Y'). Suppose Prover cheats on ¢
out of k detector quadruples. The probability that Verifier doesn’t check any of
the ¢ bad quadruples is 27¢. The probability Prover passes on all the k — ¢ good
quadruples is % + ; - B because it passes always if Verifier chooses to check and
with probability g if Verifier chooses to run a collection test. By independence,
the soundness error is thus (3)°- (3 + g)k_c. Since $ > 0, an optimal (cheating)
strategy is to set ¢ = 0, giving error at most (é + ’g)k
Perfect Zero-Knowledge: Follows from the analysis of Protocol 4.1.

5 DNA Profiling

In recent years, genetic privacy in DNA profiling has become the subject of wide
debate. Privacy issues obstruct criminal investigations, deterring non-guilty sus-
pects from otherwise providing DNA samples, and giving guilty suspects legit-
imate excuses to refuse testing. We present a zero-knowledge protocol through
which a suspect can prove to the police that his DNA profile does not match
a crime scene profile. We also sketch an adaptation of the BBQ (Protocol 4.1)
primitive to DNA testing. One potential application is a zero-knowledge protocol
for parental testing.

STR Analysis. DNA profiling uses STR analysis. STR stands for “Short
Tandem Repeats,” which are short nucleotide sequences that repeat in tandem.
In certain locations of the human genome, although all humans posses the same
repeating sequence, the exact number of repeat units is highly variable from per-
son to person. The variations of a gene or genetic locus in the human population
are called alleles. Every individual has two alleles of each gene, one from each
parent.

CODIS Profiles. In the United States, all forensic laboratories share CODIS
(the Combined DNA Index System), which uses 13 specific STR loci to identify
individuals. A CODIS DNA profile vector consists of 13 pairs of STR sequence
lengths, one pair for each loci.

DNA Primers. A genetic profile is generated through STR analysis. PCR
(the polymerase chain reaction) is run with oligonucleotide primers to isolate and
amplify each STR repeat sequence. Primers determine the specific start and end
nucleotides of the sequence to be amplified, and thus control the lengths of the
flanking regions that are cut out along with the STR sequences (see Figure 3).
We will use the notation F; ; to denote a primer pair that isolates the ith locus
STR sequence, and produces a pair of fragments of sizes m; ; + j and m; 2 + 7,
when m; ; and m; 2 are the sizes of the ith locus alleles.

Electrophoresis. In capillary electrophoresis, the most popular technique
for DNA profiling, DNA fragments are fluorescently labelled during PCR, and
passed through a capillary tube. Smaller fragments pass faster than larger ones.
A laser detects the fragments as they pass by. The length of a fragment is deduced
from the time the fragment takes to reach the laser.
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0-CE device. We imagine a slightly modified capillary electrophoresis ap-
paratus in which the laser can only be operated for a limited time window 4,
effectively limiting the range of DNA fragment sizes that will be detected.’

Primer A STR sequence m Primer B
s 5

Fig. 3. STR sequence of length m cut out with flanking region a + b

5.1 DNA Inequality

At a basic level, the police (POL) will give the defender (DEF) one of the two
DNA samples at random, and DEF must correctly identify the sample received.
In general, DEF is not the suspect, but a public defender forensic team represent-
ing the suspect. There are two main challenges in proving zero-knowledge. First,
the protocol simulator needs to extract the verifier’s challenges without rewind-
ing. Second, we must prevent POL from substituting a third auxiliary DNA
sample mid-protocol. (Similarly, in the ZK protocol for graph non-isomorphism
(GNI), the verifier proves it knows an isomorphism between its challenge graph
and one of the two input graphs [11]). Additionally, we rely on the physical
assumption that two DNA samples from the same person are always indistin-
guishable, whereas samples from individuals with distinct profiles are always
distinguishable.

Random Seals. We require non-forgeable tamper-evident seals. We imagine
that tamper-evident seals could be manufactured with a “random” pattern that
is uniformly and independently distributed in a sufficiently large domain. A
similar random pattern trick was suggested in [26].

Seal Covers. Our protocol also requires seal covers that function as physical
commitments. The covers should be designed to hide any identifiable markings
on the tamper-evident seals, and it should be possible to open the seals without
removing their covers.

Completeness and Soundness. As DEF is able to differentiate between
two distinct DNA samples, the protocol has perfect completeness. If the DNA
samples are the same, DEF guesses the challenge sample correctly with proba-
bility 1/2. (The error is exponentially reduced by repetition).

Hybrid Model. The compiler holds tuples for each DNA sample input. The
value attribute of each tuple is the DNA profile vector. The random seal oper-
ations queries an RO for a value r, tags r to the tuple, locks read/write access,

® Only the owner of the 6-CE can trust its operations. The party operating the -
CE can ensure the limited-laser functionality by using a charged capacitor to power
the laser so that the laser retains power for at most time §. The operation can be
repeated by recharging the capacitor.
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Protocol 5.1: Zero-knowledge proof for DNA inequality

Preparation: Two test tubes are jointly prepared, one with DNA sample C, and
one with S. DEF places identifiable tamper-evident seals on each test tube: one
identifies S, and the other identifies C. POL covers the seals.

1. POL conceals the two test tubes, selects one randomly, and hands it back to
DEF.

2. DEF checks that the seal has not yet been opened, and then opens the seal
without removing its cover. DEF determines the profile of the sample in the
test tube, and physically commits to the identity of the sample in the test
tube.

3. POL “de-commits” to the challenge test tube by removing the cover on its
seal.

4. DEF checks and identifies the uncovered seal to see that it wasn’t replaced. If
it is not the original seal, then DEF terminates the protocol. Otherwise, DEF
opens its commitment from Step 2.

5. POL checks that DEF committed to the correct identity of the challenge sam-
ple.

and outputs r to the calling party. The scramble functionality swaps the id at-
tributes of two tuples with probability 1/2. The environment machine initializes
and locks tuples for each DNA input sample. This emulates the “joint prepara-
tion” for the physical reason that no information is revealed to either party until
they use analysis tools, such as electrophoresis, to examine the products of the
PCR preparation.

Zero-Knowledge. The ideal functionality DNA Inequality is denoted F2L.
The job of the simulator S in the case that A corrupts the hybrid world prover
(DEF) was handled generically in Section 3, Figure 2. The case that A corrupts
the hybrid world verifier (POL) is more interesting. First, S learns from F21
if DEF passes or fails the ideal execution on the environment Z’s input. Next,
S simulates the hybrid model protocol, playing the role of DEF while Z uses A
to control POL. Recall that S can straight-line extract physical commitments
in the hybrid world (see Figure 2). Thus, S always knows the identity of POL’s
challenge sample, or that POL is cheating. S sets DEF’s commitment in Step 2
to the correct identity of the challenge if DEF should pass, and the incorrect if
DEF should fail. S only de-commits in Step 4 if POL did not cheat. If POL did
not cheat, both & and the hybrid world DEF supply identical responses to Z,
namely the identity of POL’s challenge. If POL did cheat on its challenge, then
S terminates its simulation. The hybrid world DEF will also terminate unless it
fails to catch POL cheating, which only occurs with negligible probability (POL
must guess the secret RO tag in order to fool DEF).

Testing a Village. There are cases where entire villages have been tested to
see if the DNA profile of anyone in the population matches the crime scene DNA
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profile. Protocol 5.1 can be naturally extended for proving that a DNA profile
does not exist in a population. Consider a population of 400 people. The verifier
DEF receives 401 DNA samples, one from every individual in the population,
plus a crime scene sample, all delivered in a set of 401 identical, covered, sealed,
and randomly permuted test-tubes. DEF is required to find the crime scene
sample C' and hand it back to POL. If another individual has the same profile
as C, then DEF fails with probability at least ;

5.2 Parental Testing

To prove a parent-child relationship using DNA profiling, it is necessary to show
that DNA samples from the parent and child share at least one allele in each STR
locus. We construct a zero-knowledge protocol for this task using an analogous
technique to the Bins and Balls Quadruples (BBQ) scheme from Section 4.

Recall that a primer P;; is used to cut out the ith locus STR alleles with
flanking regions of total length j. Performing STR analysis with randomized
primers P; ., for r; uniformly distributed in [0, N) is analogous to adding a
random number of balls to a bin. The quadruples of bins in BBQ translate to
quadruples of test tubes running reactions with randomized primers. However, a
technical caveat arises: each ith locus actually contains a pair of alleles that will
be amplified with the same P;,,, producing a pair of fragment lengths whose
joint distribution is not necessarily uniform!

In the special case of paternity testing, this issue can be easily avoided by
choosing to compare STR regions on the Y chromosome, which is uniquely passed
from father to son. In more general circumstances, the prover can choose to reveal
only one allele from each locus (using 6-CE), which is sufficient for showing that
the two DNA samples share at least one allele in each STR locus.

6 Public Coin and Public Observation Proofs

A private coin protocol is one in which the verifier’s random bits (“coin flips”)
must be kept private during the protocol. In contrast, the verifier’s messages in
a public coin protocol only consist of the outcomes of its coin flips. Public-coin
physical protocols are publicly observable in the sense that the verifier can sit
behind a glass screen throughout the protocol’s execution, sending messages to
the prover, and observing the prover’s physical operations. Thus, unlike general
physical zero-knowledge protocols, public observation physical zero-knowledge
protocols do not rely on tamper-evident functionalities or (as heavily) on a covert
threat model. While all public-coin protocols are publicly observable, not all
publicly observable protocols need to be public-coin. For instance, the protocol
may involve private-coin computational subprotocols.

In this section, we present an example of a public observation protocol for a
special case of DNA Inequality in which the suspect’s DNA S should pass if in
at least one of the 13 CODIS loci it has an allele that is not present in the crime
scene DNA C (notated S ¢ C). The protocol becomes a perfectly complete test
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for DNA Inequality when only homozygotic gene regions are compared (e.g. X or
Y chromosomes in males). The construction of the protocol involves a reduction
to standard cryptography, using bit-commitment and generic ZK proofs for NP
statements. Our protocol takes advantage of the fact that when S ¢ C, the total
number of distinct gene alleles in S UC' increases. Our protocol is closely related
to the well-known public-coin protocol for GNI, making use of a classical set
lower-bound protocol [17,10].

In the digital setting, public-coin ZK equals private-coin ZK [27,13,14,28].
In contrast, we don’t know of a general method for converting any physical
zero-knowledge protocol into a public observation zero-knowledge protocol. The
known constructions of public-coin Z/C proofs from private-coin Z/C proofs in-
volve simulating the private-coin verifier and applying universal hash functions
to its messages. We do not know of any general analogous method for hashing
physical messages. Furthermore, the public-coin verifier must be able to check
set containment in the private-coin verifier’s messages. In the physical setting, it
is unclear whether the public-coin verifier can always assess the physical content
of the private-coin verifier’s messages, particularly when they involve physical
concealment.f

Protocol 6.1: Public Observation ZK Protocol for DNA Inequality

— Allele vector sets. V(C) is the set of distinct vectors of length 13 that can
be formed by choosing one allele from each STR locus of C. 1 < |[V(C)] < 213,
Similarly, we define V(S U C), where each allele can be chosen from either
S or C. If S introduces a new allele in at least one locus, then [V (SUC)| >
3IV(C)|, and otherwise, |V(SUC)| = [V(C)|.

— Equipment. DEF has a mod 6-CE device, which is a §-CE device that
displays the lengths of DNA fragments modulo N, where N is a power of 2
greater than the longest possible fragment that will be measured. DEF also
has access to a collection of DNA primers { P, ;}.

— Parameters ¢ and m. Choose the smallest integers ¢ and m that satisfy
the following conditions: (3)¢ > 2m and 2™~2 < (3)¢- [V(C)[ < 2.6

— Allele length vector set Z. Z C (Zy)*? is the set of possible vectors whose
ith component is the length mod N of an allele taken from the ith locus of
either S or C. It is the set of vectors of allele lengths mod N corresponding
to V(SUC(Q).

— Randomized allele length vector set r(Z*). Let r be a random uniformly
distributed vector in (Zy)13¢. Define r(Z*) = {r+z | z € Z*} where addition
is over (Zy )13

 Let K = |V(C)|. Note that K = 2" for < 13. Choose the smallest integer = such
that (3)* > 2z - log(3K) + 1. One can verify that 2 < 15. Now find the smallest
¢ > x such that the fractional part of £ - log(3K) is in [5,1) U {0}. This will hold
for either =,z 4+ 1, or « + 2. Finally, set m to be the unique integer such that
m— 3 < L-log(3K) < m. Now £ and m satisfy (3)* > 2(-log(3K) +1 > 2m and

2m=s < (3K) < 2m.
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— Hash function family. Set k = log(NN)-13¢, and choose a canonical encod-
ing of (Zy)'3* in GF(2F). We will use a family Hy , := {ha} of universal
hash functions from GF(2%) — GF(2™) where a,b € GF(2¥), a # 0, and
ha,», maps x — ax + b and truncates the last kK —m bits.

— Hash function shift. For any vector r € (Zy)'¢ and h € Hpym, define
r(h) = hg.p—ra, where 7 is the encoding of r in GF(2*). Note that r(h)(r +
z) = h(z).

— Preparing r(Z*). DEF prepares ¢ sets of test tubes 71, ..., Ty. Each T; con-
sists of test tubes {Cj ;};eps containing C and {S;;};cns containing S.
For all (4, j), DEF selects an independent random value r; ; uniformly dis-
tributed in [0, N), and then runs PCR on C; ; and S; ; with the primer pair
Pj’”,j.7 To display a vector z € r(Z%) to POL, DEF chooses from every
T; the appropriate set of 13 test tubes containing the target fragments con-
tained in z, and then chooses time windows ¢; 1, ..., ¢;, 13 to run the mod J-CE
device on each test tube in order to only detect the target fragments.

Protocol 6.1 - Public observation ZK for DNA Inequality

POL observes DEF' throughout the rounds. We assume that DEF' cannot change
the behavior of the mod 6-CE device while under observation. Let (com, dec) denote
a commitment scheme.

1. DEF: Choose a random uniformly distributed r € (Zy)"** and prepare r(Z*).
Find a set of m hash functions H = {h;}/~, C H so that J", hi(Z*) =
{0,1}™. Compute commitments to the hash functions r(h;) for each ¢, denoted
Compg = {com(r(h1)), ..., com(r(hm))}. Send Comp to POL.

2. POL: Pick a uniformly distributed y € {0,1}™.

3. DEF: Find an h; € H and z € Z° such that h;(z) = y. Display the allele
vector v =z +r from the set r(Z*).

4. DEF and POL: Execute a UC-secure ZK proof of the NP statement “there
exists z € Compy such that dec(z) = h and h(v) = y.”

Perfect Completeness: We use the fact that for any set A C {0,1}™ of
size |A| > 2m*§, there there exists an (expected polynomial time computable)
set of m hash functions hi,...,hm € Hi,m such that U;h(A) = {0,1}™. (We
include a proof of this fact using the Probabilistic Method in the full version of
this paper).When S has at least one distinct allele from C, then |Z¢| = [V(S U
O = () |v(O) > 2™~ Given any z there is at least one h; among the
m preselected functions that satisfies h;(z) = y. Since r(h;)(z +r) = hi(z) = v,
there exists h € Comy such that h(v) = y.

Soundness error 1/2: When S does not contain any distinct alleles from
C, then |Z| = |V(C)|. For any set of m hash functions {h;};-,, the size of

" POL observes that the same primer is applied to C; ; and S; ;.
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i=1

the probability that a uniformly selected target y € {0,1}™ is in the image
U;hi(Z") is at most 1. Note that this soundness error bound is independent of the
prover’s mod §-CE device behavior, whether randomized or deterministic. The
device output ensemble consists of at most 2™~1/m distinct random variables
over {0,1}™ i.e. one variable X, for each input configuration z € Z¢. Given the
uniformly selected target y, the probability that h;(X,) = y for some i and z is
(by a union bound) at most 1/2.

Zero-Knowledge: We separately analyze the physical (DEF reveals v to
POL) and computational (DEF proves there exists x € Comy such that dec(x) =
h and h(v) = y) stages of the protocol. In the physical stage, POL only sees the
indices of v =z + r, and since r is uniformly distributed independent of z, v is
also uniformly distributed. In the computational stage, DEF and POL execute
a ZK protocol that is UC-secure under either physical assumptions or computa-
tional setup assumptions. The composed protocol securely realizes PhysicalZK
by the universal composition theorem.

™ hi(ZY) is at most m - [V(C)| < m - (5)7-2m < v - 2m = 2m7 L Thus,

7 Conclusion and Future Directions

The need for privacy pervades not only the world of digital information, but
physical information as well. Privacy in nuclear disengagement treaties and DNA
profiling are just two examples of pertinent real world problems requiring inher-
ently physical rather than digital solutions, and motivate the importance of
developing a better theoretical foundation for physical cryptography.

A starting point is the rigorous analysis of protocols. The approach presented
in this work separates the logical and physical components of a protocol using
the language of modern cryptography, formally reducing mathematical claims of
security and correctness to the underlying physical assumptions theory cannot
address. Beyond that, there are structural questions: are there ZK proofs for
every physical property, or secure computation protocols for every physical task?
We noted parallels between public observation physical ZK protocols and public
coin digital ZK protocols. Can any physical ZK protocol be made into a publicly
observable one?

In the physical world, opposite to the digital, general theories and impossibil-
ity results seem difficult or impossible to achieve with only the tools of mathe-
matics. Nonetheless, investigating general theories is an interesting direction for
future work, perhaps beginning with restricted classes of physical operations. An
orthogonal direction is to explore other models. In subsequent work, we show
several techniques for solving generic physical tasks using a disposable circuits
model in which digital information can be destroyed.
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A Full Security Proof Example: GBG e-Knowledge

The basic Bins and Balls Equality (BBE) protocol of [8] is described in Sec-
tion 2. The protocol does not actually achieve PhysicalZK, but it does achieve
the closely related notion of e-knowledge. Here ¢ = n/N, where n is the capacity
of the input bins, and N is the range of the random number of balls added.

Definition 2. A protocol p UC e-emulates an ideal functionality T if for any A
there exists S such that for all environments Z outputting a single bit:
A(REAL, 4,7,IDEALT s z) < €, where A denotes statistical variation distance.
Equivalently, |Pr[REAL, 4,7 = 1] — Pr[IDEALy sz =1]| <€

A physical protocol 7 is a physical e-knowledge protocol for property II with re-
spect to the physical operation set C if its Fe-hybrid translation p UC e-emulates
FL.

Hybrid World Modeling of the GBG Protocol. The operations of the
hybrid model compiler Fgg are listed in Figure 4. A bin in the hybrid world is
represented by a tuple of the form (id, value, holder, state) stored by Fgg. Every
operation listed models a real world operation used in the GBG protocol. In the
real world protocol, parties can monitor each other by seeing who is holding or
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operating on a bin. To model this in the hybrid world, Fgg allows any party to
request the (id, holder, state) of any tuple. Additionally, Fgg notifies all parties
of any operation executed, and its status (accept or reject). The hybrid world
GBG protocol is described in Figure 5.

Hybrid model compiler Fgg

For the following descriptions, each command is sent from party P; to Fag.

— Create (value): Initializes a new bin with value number of balls. Generate
a unique id for the bin, store the tuple (id,value, P;, “open”), and send the
receipt (id, value, P;, “open”) to P;.

— Seal (id): Seals a bin. Check in the tuple (id,value, holder, state) that
holder = P; and state = “open”. If yes, updates the tuple to
(id,value, P;, “sealed”). Otherwise reject.

— Break (id): Unseals a bin. Check in the tuple (id,value, holder, state) that
holder = P;. If yes, updates the tuple to (id,value, P;, “open”). Otherwise
reject.

— Combine (id1,id2): Combines the contents of two bins. Check that holder; =
holdery = P;, state; = states = “open”. If yes, then update the tuples to
(id1, 0, P;, “open”) and (id2,valuei + valuez, P;, “open”). Otherwise reject.

— Open (id): Opens and returns the bin contents count. Check in
(id, value, holder, state) that state = “open” and holder = P;. If yes, send
(id, value) to P;. Otherwise reject.

— Send (m, P;): Relays message to P;. Relay the message m to P;. In the phys-
ical setting this could be implemented using a number of equivalent forms of
communication (speech, writing, etc.)

— Transfer (id, P;): Transfers bin possession to P;. Check in
(id, value, holder, state) that holder = P;. If yes, update the tuple to
(id, value, P;, state).

— Force (id): Forcefully opens a bin. Send the entire tuple
(id, value, holder, state) to P;.

Fig. 4. The Fgg-hybrid model ideal functionalities for BB

Ideal Functionality Modeling for BBE. Recall the definition of the general
PhysicalZK ideal functionality 4 in Figure 1 of Section 3. The corresponding
ideal functionality of a PhysicalZK protocol for BBE is FEBE, where BBE de-
notes the physical property of bins containing equal numbers of balls. The GBG
protocol, however, has a non-negligible soundness error of 1/2. While normally
the error would be exponentially reduced by repetition, this protocol cannot be
repeated on the same physical input. The input is consumed when new balls are
added to the input bins. Thus, we will use a modified functionality F' %?55 that
allows the prover to cheat with probability at most § (Figure 6).

.7:5}8('% runs with a party Prover, a party Verifier, and an instance of Fgg specified
by a process identifier pidgg. If (idx,x, holder, state) and (idy,y, holder, state)
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Fee-hybrid protocol 7

Input: Fgs has the input stored as (idx,z,Prover, “sealed”) and
(idy, y, Prover, “sealed”) where 0 < z,y < n.

If x # y, Prover sends (Reject, (idx,idy ), BBE) to Verifier. If z = y:

1. Prover: Randomly select ro,71 in [0,N). Create (ro) twice and Create (r1)
twice, receiving receipts from Fgg with four unique id values Bo 0, Bo,1, B1,0,
and Bi,1. For each B; ;, Seal(B; ;) and Send(B; ;, Verifier).

2. Verifier: Select a random choice bit o € {0,1}. Send (o, Prover).

3. Prover: Break(Bi—s,), and Break(Bi—o,1). Transfer (Bi—_o,0, Verifier) and
Transfer (B1—o,1, Verifier).

4. Verifier: Open (Bi—,,0) and Open (Bi_o 1), receiving from Fgg two re-
ceipts (Bi—o,0,v) and (Bi_s,1,v"). Check that v = v'. If v # o', output
(Cheater, Prover).

5. Prover: Combine (idx,Bs0), and Combine(idy,Bs,1). Transfer
(Bo,0, Verifier) and Transfer (B,,1, Verifier).

6. Verifier: Open (B,,0) and Open (Bo.1), receiving (Bo,0,v) and (By,1,v’) from
Feg. Check that v = v'. If yes, output (Accept, (idx,idy ), BBE). Otherwise,
output (Reject, (idx,idy ), BBE).

If the protocol prematurely fails due to an invalid message or operation, both
parties output Failed. If Prover ever receives a receipt (Force, Verifier, accept)
from Fgg, it outputs (Cheater, Verifier).

Fig.5. The Fgg-hybrid model protocol for BBE

are two tuples stored by Fgg, the relation (idx,idy) € BBE holds if and only if
z=7y.

Hybrid Protocol Experiment. Z activates Fgg and sets the input to m,
the Fgp-hybrid protocol, by initializing the tuples (idx, x, Prover, “sealed”) and
(idy,y, Prover, “sealed”). Next, Z activates Prover and Verifier, sending them
the process identifier pidgg for Fgg. Prover and Verifier execute 7w as described
in Figure 5. A corrupts one, both, or none of the parties. A controls the com-
munication of any party it corrupts, but only acts as a proxy for Z. After 7 has
completed, each party sends its output to Z, who’s final view of the experiment
consists of its communication tape with A and the outputs of Prover and Verifier.
Finally, Z outputs a single decision bit HYBRID 7y, 4,2-

Ideal Process Experiment. Z activates Fgg with process identifier pidgg and

initializes the tuples (idx,x, Prover, “sealed”) and (idy,y, Prover, “sealed”). Z

sends (idx,idy,pidgg) to both Prover and Verifier. Prover will activate }'E%'i;,

whose PID we denote as L. First, Prover transfers input tuple access to F. 5185&

executing Transfer(idx, 1) and Transfer(idy, L). Next, it sends pidgg and the
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Functionality F22E;

— Upon receiving (idx, idy, pid, Prover, Verifier) from the party Prover, query the
instance of Fgg specified by pid to obtain the tuples (idx,z, L, “sealed”) and
(idy,y, L, “sealed”). If x = y, send (Accept, (idx,idy ), BBE) to the party
Verifier. If « # y, send (Reject, (idx,idy ), BBE).

— Upon receiving the instruction (Cheat, y) from Prover for 0 < p < §, with
probability u send (Accept, (idx,idy),BBE) to Verifier, and otherwise send
(Cheater, Prover). Upon receiving the instruction Cheat from Verifier, send
(Cheater, Verifier) to Prover, and (Cheater, z,y) to Verifier.

— If the queries to Fgg are unsuccessful, the initial input is invalid, or upon
receiving the instruction Fail from either party, send Failed to both parties.

Fig. 6. Ideal functionality for a ZK proof of BBE with soundness error ¢

input (idx,idy,pidgg, Prover, Verifier) to ]-'5?55, which in turn proceeds accord-
ing to Figure 6. As in [4], E%E’(; will also mediate the ideal adversary corruption
mechanism. S corrupts a party P by sending the command (corrupt P) to

Fo%s. Since S cannot corrupt P before FZ3E5 is activated, S cannot modify
the environment’s input before F EIB(% s receives it. Thus, while S may modify out-
puts to its corrupted parties, it cannot compromise the ideal process’s output to
an uncorrupted party. Prover and Verifier both forward the outputs they receive
to Z, and Z outputs a single decision bit IDEAL zeee 7. s 7-

Lemma 1. The Fgg-hybrid protocol m of Figure 5 UC e-emulates the ideal func-
tionality ]-'ZBf}ﬁs with 6 = 1/2 and e = n/N. In other words, for any A there exists
S such that for any Z:

|PT[HYBR/ID7T7]:BB7A,Z = 1] - PT[IDEAL]:SBI?&,FBB,S,Z = 1]‘ S €

Proof. We use the following simple fact. Given any distinguisher algorithm D
and random variables X and Y with finite range (2:

|Pr[D(X) =1] = PrD(Y) = 1]| < A(X,Y)

We will show that for all A there exists S such that for any environment Z,
the environment’s respective views in the hybrid protocol experiment with A
and the ideal process experiment with S are e-close in statistical distance. We
consider separately the four cases in which A corrupts the Prover, the Verifier,
both parties, or neither parties. (We continue to write F. 2%'?5, but it should be
understood that 6 = 1/2).

A corrupts Prover. S obtains (idx,idy, pidgp) from ]-'S?(F:&. S runs a sep-
arate instance of Fpp, and simulates the hybrid protocol 7 using empty entries
for idx and idy, and two dummy parties P (for Prover) and V (for Verifier). S
plays P using the messages coming from Z. S sends back to Z any receipts that
P receives from Fgp. However, S does not send P’s output from the simulation
Z. Instead, it sends one of the following messages to F. EIB(%:
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— If either P or V output Failed, then S sends Fail.

— If P cheated in the initialization of only one pair, then S sends (Cheat, 1/2).
— If P cheated in the initialization of both pairs, then S sends (Cheat,0).

— If none of the above apply, then S sends (idx,idy, pidgg, Prover, Verifier).

Verifier writes the output received from }'E%Eﬁ to its local output tape. S

receives Prover’s output from F EIB(E(;, and writes it to Prover’s output tape. Z’s

view is identical to its view in the hybrid protocol experiment with A corrupting
Prover.

A corrupts Verifier. S obtains Z’s input (idx,idy,pidgg), and receives
output from }'E%'i;: either (Accept, (idx,idy ), BBE) in the case that x =y, or
(Reject, (idx,idy), BBE) in the case that « # y. If Reject, then S writes the
output to Verifier’s output tape. If Accept, then S must simulate A’s view of
the hybrid protocol 7.

S runs a separate instance of Fpp, creating empty entries for idx and idy,
and dummy parties P and V. § uses messages coming from Z to play V, and
forwards any receipts that V receives to Z. The only possible receipts V' receives
that could be statistically different in this simulated 7 and the hybrid experiment
7 are the receipts (Bo,0, vr) and (B, 1,v,) obtained in Step 6. Since the output
is Accept, we know that v; = v. v is uniformly distributed in [z,z + N),
and the simulation output v, is uniformly distributed in [0, N). The statistical
difference is A(vy, Vsim) = /N <n/N =e.

Next, S determines what message to send F. 2%’%5. If P outputs Cheater, it
sends Cheat to FS?{F:&, receives (Cheater, z,y) as output, and writes to Ver-
ifier’s output tape whatever A would. If P outputs Failed, S sends Fail, and
writes Failed to Verifier's output tape. Otherwise, S does not send anything,
and simply writes (Accept, (idx,idy ), BBE) to Verifier’s output tape.

The outputs are identical to the outputs in the hybrid protocol experiment
given the same inputs. Therefore, the statistical difference between Z’s views of
the hybrid protocol experiment and ideal process experiment on the same inputs
is precisely the statistical difference in its communication with A and S during
7 and the simulated 7, which is at most ¢ = n/N.

A Corrupts Both or Neither Parties. If both, then S also corrupts both.
Since there are no secrets kept from S, it can run the hybrid world experiment
without help. If neither, S does nothing. For the same inputs, the outputs of
Prover and Verifier are identical in the hybrid protocol experiment and the ideal
process experiment when there is no corruption.

By Lemma 1, the GBG protocol is a physical e-knowledge protocol for BBE
with respect to the operation set BB.

B ORE with a Mod-Counter

We present an alternative zero-knowledge protocol for ORE using a mod-counter,
a measurement device that outputs neutron counts modulo N. When N is greater
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than the maximum possible neutron count, the neutron counts are equal if and
only if they are congruent modulo N.

Who brings the mod-counter M7 The verifier cannot trust a prover’s device
to output correct values. Likewise, the prover cannot trust the verifier, who
might program the device to secretly store actual integer count values. Thus,
our solution is to have the verifier program check the prover’s mod-counter. We
model M as an adaptive program computing a sequence of functions {f;} on a
sequence of inputs d;, where each f; is a function of d, ..., d;, and each d; is a
physical neutron detector. We assume that the prover cannot remotely change
the device’s state once the verifier takes possession of it.

1. Prover’s preparation: The prover prepares and labels m detector pairs.
In each pair 1 < i < m, the prover initializes the count of both detectors, d}
and d?, to a random 7; € [0, N). (Only a dishonest prover may set d} to r}
and d? to r? such that r} # r?).

2. Verifier’s tests: We assume the verifier has a device to obtain the neu-
tron count of any detector. For each ith detector pair, the verifier performs
RandomCompute with probability 1/5, and otherwise runs Random Test:

— RandomCompute. Choose random values y},y? € [0, N). Increase the
count of d} by y} to r} +y!, and increase the count of d? to r? + y2.
Select random 6;, and run the neutron source, recording the scattering
at 0; from X using d} and from X’ using d?. Query M with d} and d2.

The test passes if and only if M(d}) — y} = M(d?) — y2.
— RandomTest. Measure the detectors to uncover r} and r?, and reject the
protocol if 7} # r?. Select random t},¢? € [0,2N). Increase the count of

d} to r} + t}, and increase the count of d? to r? + t?. Query M with

d} and d?. The test passes if and only if M(d}) =r}! +t} (mod N) and
M(d?) =712 +t? (mod N).

Completeness: When zg, = x/& for all 7, then an honest prover will pass all
rounds. Since M behaves correctly, it will pass every RandomTest. For all 7, the
2

prover sets r} = r? = r; so that in RandomCompute M (zg, +7; +y}) —y} =

M(zy, +7ri+y7) — y7 = xg, +7i (mod N).

Zero-Knowledge: If the prover is honest, then on every round the initialization
values are r; = r? = r; and the neutron counts collected from X and X’ and
angle 0; are zg, = x = x;. Since r; is uniformly distributed in [0, N), z; +
r; (mod N) is also uniformly distributed in [0, N), independent of x;.
Soundness: The success probability of a cheating prover is bounded by (4?3 )
where < 1 is an upper bound on the probability that zp = xj at a uniformly
distributed angle 6 when X « X’.
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Proof: To simplify, assume M’s input on each round is the pair of detectors.
In reality, M is actually weaker, since it cannot examine the second detector
before outputting a response for the first. We’ll work with the hybrid model
M, which is an oracle taking integer pair inputs. Denote the output M(a,b) =
(Mi(a,b), Mz(a,b)). Further, assume that the prover knows the values of xg
and x, at every angle 6, and can predict the sequence of angles {6;}?™ that the
verifier selects. (Soundness with a stronger prover holds against a Weaker one). In
calculating our upper bound we only consider deterministic M strategies since
the verifier’s strategy is independent and for any fixed protocol input there is a
deterministic strategy for M that maximizes the soundness error.

Case 1: xg, = x_ , occurs with probability B. The prover doesn’t benefit from
cheating. Case 2: xg, # xe , the prover ’s strategles are to either cheat on the
initializations so that zp, + 7} = xe + 72, or instead to keep r} = r? and
program M to cheat. In the latter case, the prover preselects the k < N? pairs
for which M should pass RandomCompute. Setting M(a,b) = (a mod N,b +
x9, — ) mod N) results in k; = N2

If v, is the conditional probability that the prover passes RandomCompute on
the ith round given that xg, # x/&’ then Lemma 2 implies the prover succeeds in
rlot;nd i with probability at most: B+ (1—8) (}yi+ 2(1— %)) =8+(1-08)t =

+
5

Lemma 2. The prover’s probability of passing RandomTest on the ith round
given that g, # xy_ is at most 1 —+;/4, and the optimal prover strategy achieves
this probability exactly.

Proof. Consider first the case where 7"2»1 = 7“2»2 = r;. In this case, v; = ]]\“,2 , where k;

is the number of pairs (y},y?)in [0, N)x [0, N) for which /\/ll(xg +rityl) -yl =
Mo (g, +7; 2 +y2)—y2. For each of these k; pairs, let t} = g, +y} and t2 =y, +y2.

Either ./\/11(t1 +7;) ;é t! (mod N) or Ma(t? +1;) # t2 (mod N), and so M would
fail RandomTest if the verifier chooses the pair (¢}, tf) Thus, there are at least

k; distinct pairs in [0,2N) x [0,2N), that cause M to fail RandomTest, and
the prover’s conditional probability of passing RandomTest is at most 1 — (2’;\})2

= 1— 7. The prover can program M to pass (i.e. behave normally) on all
other 4N? — k; pairs, so there is a prover strategy that passes RandomTest
with probability exactly 1 — 7. We will show that this strategy is optirnal.
Consider the second case where the prover cheats by setting r and r? so that
xe, + 1 = = zy, + r2. With this strategy, 7; = 1, but since r} ;é 72 the prover
always falls RandornTest failing the overall round with probablhty 1/2. This
strategy is suboptimal because the previous strategy passes with probability 3/4

when setting k; = N2 so that v; = 1.
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