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Preface

CRYPTO 2014, the 34rd Annual International Cryptology Conference, was held
August 17–21, 2014, on the campus of the University of California, Santa Bar-
bara. The event was sponsored by the International Association for Cryptologic
Research (IACR) in cooperation with the UCSB Computer Science Department.

The program represents the recent significant advances and trends in all areas
of cryptology. Out of 227 submissions, 60 were included in the program; these
two-volume proceedings contains the revised versions of all the papers. Two of
the papers shared a single presentation slot in the program. The program also
included two invited talks. On Monday, Mihir Bellare from UCSD delivered the
IACR Distinguished Lecture, entitled “Caught in Between Theory and Practice.”
OnWednesday, Yael Tauman Kalai from Microsoft Research New England spoke
about “How to Delegate Computations: The Power of No-Signalling Proofs.” As
usual, the rump session took place on Tuesday evening, and was chaired by Dan
Bernstein and Tanja Lange.

This year’s program continued the trend started last year of trying to accom-
modate as many high-quality submissions as possible, yielding a high number of
accepted papers. As a result, sessions were also held on Tuesday and Thursday
afternoons, and presentations were kept short (20 minutes per paper, including
questions and answers). The option of having parallel sessions, which would al-
low for longer presentations and an early adjournment on Thursday, was also
discussed and decided against, since we assessed that our research field is still
sufficiently homogeneous and the community would benefit from the option of
attending all the talks. However, we believe that future Program Committees
should continue to explore possible options to implement some form of parallel
sessions.

The submissions were reviewed by a Program Committee (PC) consisting of
38 leading researchers in the field, in addition to the two co-chairs. Each PC
member was allowed to submit one paper, plus an additional one if co-authored
with a junior researcher (a student or a postdoc). PC-authored submissions were
held to higher standards during the review process. Papers were reviewed in a
double-blind fashion. Initially, each paper was assigned to three reviewers (four
for PC-authored papers); during the discussion phase, when necessary, extra re-
views were solicited. The process also included a rebuttal phase after preliminary
reviews were finalized, where authors received them and were given the option
to comment on the reviews within a window of several days. The authors’ com-
ments were then taken into account in the discussions within the PC and the final
reviews. Despite being labor-intensive, we feel the rebuttal phase was a worth-
while process as it resulted in the significantly better understanding of many
submissions. As part of the discussion phase, the PC held a 1.5-day in-person
meeting on May 15 and 16 in Copenhagen, Denmark, right after Eurocrypt.



VI Preface

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our deep
appreciation also goes out to the PC members, who invested an extraordinaty
amount of time in reviewing papers, interacting with the authors via the re-
buttal mechanism, and participating in so many discussions on papers, their
contribution, and the state of the art in their areas of expertise. We also sym-
pathize with the occasional frustration from seeing decisions go against personal
recommendations and preferences, in spite of all the hard work.

We are also indebted to the many external reviewers who significantly con-
tributed to the comprehensive evaluation of the submissions. A list of PC mem-
bers and external reviewers appears after this note. Despite all our efforts, the
list of external reviewers may contain errors or omissions; we apologize for that
in advance.

We would like to thank Sasha Boldyreva, the general chair, for working closely
with us throughout the whole process and providing the much needed support
at every step, including artfully creating and maintaining the website and tak-
ing care of all aspects of the conference’s logistics—especially the in-person PC
meeting arrangements.

As always, special thanks are due to Shai Halevi for his tireless support
regarding the websubrev software, which we used for the whole conference plan-
ning and operation, including paper submission and evaluation and interaction
among PC members and with the authors. Alfred Hofmann and his colleagues
at Springer provided a meticulous service for the timely production of these
proceedings.

Finally, we would like to thank Google, Microsoft Research, and the National
Science Foundation for their generous support.

August 2014 Juan A. Garay
Rosario Gennaro
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XII Table of Contents – Part II

Side Channels and Leakage Resilience II

Leakage-Tolerant Computation with Input-Independent
Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Nir Bitansky, Dana Dachman-Soled, and Huijia Lin

Interactive Proofs under Continual Memory Leakage . . . . . . . . . . . . . . . . . 164
Prabhanjan Ananth, Vipul Goyal, and Omkant Pandey

Information-Theoretic Security

Amplifying Privacy in Privacy Amplification . . . . . . . . . . . . . . . . . . . . . . . . 183
Divesh Aggarwal, Yevgeniy Dodis, Zahra Jafargholi, Eric Miles, and
Leonid Reyzin

On the Communication Complexity of Secure Computation . . . . . . . . . . . 199
Deepesh Data, Manoj M. Prabhakaran, and Vinod M. Prabhakaran

Optimal Non-perfect Uniform Secret Sharing Schemes . . . . . . . . . . . . . . . . 217
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Related-Key Security for Pseudorandom Functions Beyond the Linear
Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and
Kenneth G. Paterson

Formal Methods

Automated Analysis of Cryptographic Assumptions in Generic Group
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Gilles Barthe, Edvard Fagerholm, Dario Fiore, John Mitchell,
Andre Scedrov, and Benedikt Schmidt

Hash Functions

The Exact PRF-Security of NMAC and HMAC . . . . . . . . . . . . . . . . . . . . . . 113
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Quantum Position Verification
in the Random Oracle Model

Dominique Unruh

University of Tartu, Tartu, Estonia

Abstract. We present a quantum position verification scheme in the random
oracle model. In contrast to prior work, our scheme does not require bounded
storage/retrieval/entanglement assumptions. We also give an efficient position-
based authentication protocol. This enables secret and authenticated commu-
nication with an entity that is only identified by its position in space.

1 Introduction

What Is Position Verification? Consider the following setting: A device P
wishes to access a location-based service. This service should only be available to
devices in a certain spacial region P, e.g., within a sports stadium. The service
provider wants to be sure no malicious device outside P accesses the service. In
other words, we need a protocol such that a prover P can prove to a verifier V
that P is at certain location. Such a protocol is called a position verification (PV)
scheme. A special case of position verification is distance bounding: P proves that
he is within a distance δ of V . In its simplest form, this is done by V sending
a random message r to P , and P has to send it back immediately. If r comes
back to V in time t, P must be within distance tc/2 where c is the speed of light.
In general, however, it may not be practical to require a device V in the middle
of a spherical region P. (E.g., P might be a rectangular room.) In general PV,
thus, we assume several verifier devices V1, . . . , Vn, and a prover P somewhere
in the convex hull of V1, . . . , Vn. The verifiers should then interact with P in
such a way that based on the response times of P , they can make sure that P
is at the claimed location (a kind of triangulation). Unfortunately, [5] showed
that position verification based on classical cryptography cannot be secure, even
when using computational assumptions, if the prover has several devices at dif-
ferent locations (collusion). [4] showed impossibility in the quantum setting, but
only for information-theoretically secure protocols. Whether a protocol in the
computational setting exists was left open.1 In this work, we close this gap and
give a simple protocol in the random oracle model.

Applications. The simplest application of PV is just for a device to prove
that it is at a particular location to access a service. In a more advanced set-
ting, location can be used for authentication: a prover can send a message
which is guaranteed to have originated within a particular region (position-based
1 But both [5,4] give positive results assuming bounded retrieval/entanglement, see

“related work” below.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 1–18, 2014.
c© International Association for Cryptologic Research 2014
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time

V1 P∗
2

V2

V 1
’s

m
sg

V
2 ’s

m
sg

P∗
1

P∗
3

Fig. 1. Message flow in [4,11]. Se-
curity is only guaranteed if no en-
tanglement is created before the
shaded region. The scheme can be
attacked if P ∗

2 sends EPR pairs to
P ∗
1 , P

∗
3 who then can execute the at-

tack from [8, Section 1].

authentication, PBA). Finally, when com-
bining PBA with quantum key distribution
(QKD), an encrypted message can be sent
in such a way that only a recipient at a
certain location can decrypt it. (E.g., think
of sending a message to an embassy – you
can make sure that it will be received only
in the embassy, even if you do not know
the embassy’s public key.) More applica-
tions are position-based multi-party compu-
tation and position-based PKIs, see [5].

Our Contribution. We present the first
PV and PBA schemes secure against col-
luding provers that do not need bounded
storage/retrieval/entanglement assump-
tions. (Cf. “related work” below.) Our
protocols use quantum cryptography and are proven secure in the (quantum)
random oracle model, and they work in the 3D setting. (Actually, in any number
of dimensions, as well as in curved spacetime.2) Using [4], this also immediately
implies position-based QKD. (And we even get everlasting security, i.e., if the
adversary breaks the hash function after the protocol run, he cannot break the
secrecy of the protocol.)

We also introduce a methodology for analyzing quantum circuits in spacetime
which we believe simplifies the rigorous analysis of protocols that are based on
the speed of light (such as, e.g., PV or relativistic commitments [7,6]). And for
the first time (to our knowledge), a security analysis uses adaptive programming
of the quantum random oracle (in our PBA security proof).3

Related Work. [5] showed a general impossibility of computationally secure PV
in the classical setting; [4] showed the impossibility of information-theoretically
secure PV in the quantum setting. [5] proposed computationally secure protocols
for PV and position-based key exchange in the bounded retrieval model. Their
model assumes that a party can only retrieve part of a large message reaching
it. In particular, a party cannot forward a message (“reflection attacks” in the
language of [5]); this may be difficult to ensure in practice because a mirror
might be such a forwarding device. [4,11] provide a quantum protocol that is
secure if the adversary can have no/limited entanglement before receiving the
verifiers’ messages. (I.e., in the message flow diagram Figure 1, only in the shaded
areas.) In particular, using the message flow drawn in Figure 1, the attack from

2 At the first glance, taking curvature of spacetime into account might seem like
overkill. But for example GPS needs to take general relativity into account to ensure
precise positioning (see, e.g., [1]). There is no reason to assume that this would not
be the case for long-distance PV.

3 The semi-constant distribution technique from [13] programs the random oracle be-
fore the first adversary invocation, i.e., only non-adaptive programming is possible.
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B := H(x1 ⊕ x2)
y := measure |Ψ〉

in basis B

Fig. 2. One-dimensional PV protocol.
Dotted lines indicate additional mes-
sage flows of the adversary P ∗

1 , P
∗
2 .

[8, Section 1] can be applied, even
though no entanglement is created be-
fore the protocol start (t = 0) and no
entanglement needs to be stored. This
makes the assumption difficult to justify.
Our protocol is an extension of theirs,
essentially adding one hash function ap-
plication. [4] also gives a generic trans-
formation from PV to PBA; however,
their construction is considerably less
efficient than our specialized one and
does not achieve concurrent security
(see the discussion after Definition 7 be-
low). Furthermore, the protocols from
[4,11] only work in the one-dimensional
setting. ([4] has a construction for the
3D case, but their proof seems incorrect,
see the full version [12] for a discussion.)

Organization. In Section 2 we first explain our scheme in the 1D case. In
Section 3.1 we explain the difficulties occurring in the 3D case which we solve in
Sections 3.2 and 3.3. In Section 4 we present our PBA scheme. Full proofs and
further discussion are deferred to the full version [12].

1.1 Preliminaries

ω(x) denotes the Hamming weight of x. h(p) = −p log p − (1 − p) log(1 − p)
denotes the binary entropy. |x| denotes the absolute value or cardinality of x.
‖x‖ denotes the Euclidean norm. x $←M means x is uniformly random from M ,
and x←A() means x is chosen by algorithm A.

For a background in quantum mechanics, see [9]. But large parts of this
paper should be comprehensible without detailed knowledge on quantum me-
chanics. For x ∈ {0, 1}n, |x〉 denotes the quantum state x encoded in the
computational basis, and |Ψ〉 denotes arbitrary quantum states (not necessar-
ily in the computational basis). 〈Ψ | is the conjugate transpose of |Ψ〉. For
B ∈ {0, 1}n, |x〉B denotes x encoded in the bases specified by B, more precisely
|x〉B = HB1 |x1〉⊗· · ·⊗HBn |xn〉 where H is the Hadamard matrix. An EPR pair
has state 1√

2
|00〉+ 1√

2
|11〉. TD(ρ, ρ′) denotes the trace distance between states

ρ, ρ′. Given a (quantum) oracle algorithm A and a function H , AH() means that
A has oracle access to H and can query H on different inputs in superposition.
This is important for modeling the quantum random oracle correctly [3].

2 1D Position Verification

In this section, we consider the case of one-dimensional PV only. That is, all
verifiers and the honest and malicious provers live on a line. Although this is an
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unrealistic setting, it allows us to introduce our construction and proof technique
in a simpler setting without having to consider the additional subtleties arising
from the geometry of intersecting light cones. We also suggest the content of this
section for teaching.

We assume the following specific setting: There are two verifiers V1 and V2

at positions −1 and 1, and an honest prover P at position 0. The verifiers
will send messages at time t = 0 to the prover P , who receives them at time
t = 1 (i.e., we assume units in which the speed of light is c = 1), and his
immediate response reaches the verifiers at time t = 2. In an attack, we assume
that the malicious prover has devices P ∗

1 and P ∗
2 left and right of position 0, but

no device at position 0 where the honest prover is located. See Figure 2 for a
depiction of all message flows in this setting. This setting simplifies notation and
is sufficient to show all techniques needed in the 1D case. The general 1D case (P
not exactly in the middle, more malicious provers, not requiring P ’s responses
to be instantaneous) will be a special case of the higher dimensional theorems
in Section 3.3.

In this setting, we use the following PV scheme:

Definition 1 (1D position verification). Let n (number of qubits) and � (bit
length of classical challenges) be integers, 0 ≤ γ < 1/2 (fraction of allowed
errors). Let H : {0, 1}� → {0, 1}n be a hash function (modeled as a quantum
random oracle).
– Before time t = 0, verifier V1 picks uniform x1, x2 ∈ {0, 1}�, ŷ ∈ {0, 1}n and

forwards x2 to V2 over a secure channel.
– At time t = 0, V1 sends |Ψ〉 and x1 to P . Here B := H(x1⊕x2), |Ψ〉 := |ŷ〉B.

And V2 sends x2 to P .
– At time t = 1, P receives |Ψ〉, x1, x2, computes B := H(x1 ⊕ x2), measures

|Ψ〉 in basis B to obtain outcome y1, and sends y1 to V1 and y2 := y1 to V2.
(We assume all these actions are instantaneous, so P sends y1, y2 at time
t = 1.)

– At time t = 2, V1 and V2 receive y1, y2. Using secure channels, they check
whether y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 arrived in time), they
accept.

We can now prove security in our simplified setting.

Theorem 2 (1D position verification). Assume P ∗
1 and P ∗

2 perform at most
q queries to H. Then in an execution of V1, V2, P

∗
1 , P

∗
2 with V1, V2 following the

protocol from Definition 1, the probability that V1, V2 accept is at most 4

2q2−�/2 +
(
2h(γ)

1 +
√
1/2

2

)n
.

Proof. To prove this theorem, we proceed using a sequence of games. The first
game is the original protocol execution, and in the last game, we will be able
to show that Pr[Accept] is small. Here we abbreviate the event “y1 = y2 and
ω(y1 − ŷ) ≤ γn” as “Accept”.
4 This probability is negligible if γ ≤ 0.037 and n, � are superlogarithmic.



Quantum Position Verification in the Random Oracle Model 5

time

t = 0

t = 1

t = 2

V1 V2

|Ψ
〉, x

1

y 2

x
2

y
1 ba

rr
ie

r

pick B
program H

no prover
here

AH
1

AH
2

x1 known here

x2 known here

Fig. 3. Spacetime diagram depicting various steps
of the proof of Theorem 2

Game 1. An execution as de-
scribed in Theorem 2.

As a first step, we use EPR
pairs to delay the choice of
the basis B. This is a stan-
dard trick that has been used
in QKD proofs and other set-
tings. By choosing B suffi-
ciently late, we will be able to
argue below that B is indepen-
dent of the state of P ∗

1 and P ∗
2 .

Game 2. As in Game 1, ex-
cept that V1 prepares n EPR
pairs, with their first qubits in
register X and their second
qubits in Y . Then V1 sends X
at time t = 0 instead of send-
ing |Ψ〉. At time t = 2, V1 measures Y in basis B := H(x1 ⊕ x2), the outcome
is ŷ.

Note in particular that V1, V2 never query H before time t = 2. (But P ∗
1 , P

∗
2

might, of course.) It is easy to verify (and well-known) that for any B ∈ {0, 1},
preparing a qubit X := |y〉B for random y ∈ {0, 1} is perfectly indistinguishable
(when given X, y,B) from producing an EPR pair XY , and then measuring Y
in bases B to get outcome y. Thus Pr[Accept : Game 1] = Pr[Accept : Game 2].

The problem now is that, although we have delayed the time when the basis
B is used, the basis is still chosen early: At time t = 0, the values x1, x2 are
chosen, and those determine B via B = H(x1 ⊕ x2). We have that neither P ∗

1

nor P ∗
2 individually knows B, but that does not necessarily exclude an attack.

(For example, [8, Section 1] gives an efficient attack for the case that H is the
identity, even though in this case B would still not be known to P ∗

1 nor P ∗
2

individually before time t = 1.) We can only hope that H is a sufficiently complex
function such that computationally, B is “as good as unknown” before time t = 1
(where x1 and x2 become known to both P ∗

1 , P ∗
2 ). The next game transformation

formalizes this:

Game 3. As in Game 1, except that at time t = 1, the value B
$←{0, 1}n is

chosen, and the random oracle is reprogrammed to return H(x1 ⊕ x2) = B after
t = 1.

To clarify this, if H0 : {0, 1}� → {0, 1}n denotes a random function chosen
at the very beginning of the execution, then at time t ≤ 1, H(x) = H0(x) for
all x ∈ {0, 1}�, while at time t > 1, H(x0 ⊕ x1) = B and H(x) = H0(x) for all
x �= x0 ⊕ x1.

Intuitively, the change between Games 2 and 3 cannot be noticed because
before time t = 1, the verifiers never query H(x1 ⊕ x2), and the provers cannot
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query H(x1⊕x2) either: before time t, in no spacial location the prover will have
access to both x1 and x2.

This is illustrated in Figure 3: The hatched areas represent where x1 and x2

are known respectively. Note that they do not overlap. The dashed horizontal
line represents where the random oracle is programmed (t = 1).

Purists may object that choosing B and programming the random oracle to
return B at all locations in a single instant in time needs superluminal com-
munication which in turn is know to violate causality and might thus lead to
inconsistent reasoning. Readers worried about this aspect should wait until we
prove the general case of the PV protocol in Section 3.3, there this issue will
not arise because we first transform the whole protocol execution into a non-
relativistic quantum circuit and perform the programming of the random oracle
in that circuit.

To prove that Games 2 and 3 are indistinguishable, we use the following
lemma shown in the full version.

Lemma 3. Let H : {0, 1}� → {0, 1}n be a random oracle. Let (A1, A2) be oracle
algorithms sharing state between invocations that perform at most q queries to
H. Let C1 be an oracle algorithm that on input (j, x) does the following: Run
AH

1 (x) till the j-th query to H, then measure the argument of that query in the
computational basis, and output the measurement outcome. (Or ⊥ if no j-th
query occurs.) Let

P 1
A := Pr[b′ = 1 : H

$←({0, 1}� → {0, 1}n), x←{0, 1}�, AH
1 (x), b′←AH

2 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$←({0, 1}� → {0, 1}n), x←{0, 1}�, B $←{0, 1}n,
AH

1 (x),H(x) := B, b′←AH
2 (x,B)]

PC := Pr[x = x′ : H $←({0, 1}� → {0, 1}n), x←{0, 1}�, j $←{1, . . . , q}, x′←CH
1 (j, x)]

Then |P 1
A − P 2

A| ≤ 2q
√
PC .

In other words, an adversary can only notice that the random oracle is repro-
grammed at position x if he can guess x before the reprogramming takes place.

To apply Lemma 3 to Games 2 and 3, let AH
1 (x) be the machine that executes

verifiers and provers from Game 2 until time t = 1 (inclusive). When V1 chooses
x1, x2, AH

1 (x) chooses x1
$←{0, 1}� and x2 := x ⊕ x1. And let AH

2 (x,B) be the
machine that executes verifiers and provers after time t = 1. When V1 queries
H(x1 ⊕ x2), AH

2 uses the value B instead. In the end, AH
2 returns 1 iff y1 = y2

and ω(ŷ − y1) ≤ γn. (See Figure 3 for the time intervals handled by AH
1 ,AH

2 .)
Since V1, V2 make no oracle queries except for H(x1⊕x2), and since P ∗

1 , P
∗
2 make

at most q oracle queries, we have that AH
1 , AH

2 perform at most q queries.
By construction, P 1

A = Pr[Accept : Game 2]. And P 2
A = Pr[Accept : Game 3].

And PC = Pr[x′ = x1 ⊕ x2 : Game 4] for the following game:

Game 4. Pick j
$←{1, . . . , q}. Then execute Game 2 till time t = 1 (inclusive),

but stop at the j-th query and measure the query register. Call the outcome x′.
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Since Game 4 executes only till time t = 1, and since till time t = 1, no gate can
be reached by both x1, x2 (note: at time t = 1, at position 0 both x1, x2 could be
known, but no malicious prover may be at that location), the probability that
x1⊕x2 will be guessed is bounded by 2−�. Hence Pr[x′ = x1⊕x2 : Game 3] ≤ 2−�.
(This argument was a bit nonrigorous; we will be more precise in the proof of
the generic case, in the proof of Theorem 6.)

Thus by Lemma 3, we have∣∣Pr[Accept : Game 2]− Pr[Accept : Game 3]
∣∣ = |P 1

A − P 2
A| ≤ 2q

√
PC

= 2q
√
Pr[x′ = x1 ⊕ x2 : Game 4] ≤ 2q2−�/2. (1)

We continue to modify Game 3.

Game 5. Like Game 3, except that for time t > 1, we install a barrier at po-
sition 0 (i.e., where the honest prover P would be) that lets no information
through.

The barrier is illustrated in Figure 3 with a thick vertical line.
Time t = 1 is latest time at which information from position 0 could reach

the verifiers V1, V2 at time t ≤ 2. Since we install the barrier only for time
t > 1, whether the barrier is there or not cannot influence the measurements of
V1, V2 at time t = 2. And Accept only depends on these measurements. Thus
Pr[Accept : Game 3] = Pr[Accept : Game 5].

Let ρ be the state of the execution of Game 5 directly after time t = 1 (i.e.,
after the gates at times t ≤ 1 have been executed). Then ρ is a threepartite
state consisting of registers Y , L, R where Y is the register containing the EPR
qubits which will be measured to give ŷ (cf. Game 2), and L and R are the
quantum state left and right of the barrier respectively. Then ŷ is the result
of measuring Y in basis B, and y1 is the result of applying some measurement
M1 to L (consisting of all the gates left of the barrier), and y2 is the result of
applying some measurement M2 to R. Notice that due to the barrier, M1 and
M2 operate only on L and R, respectively, without interaction between those
two. We have thus:

Pr[Accept : Game 5] = Pr[y1 = y2 and ω(ŷ − y1) ≤ γn : B
$←{0, 1}n, Y LR←ρ,

ŷ←MB(Y ), y1←M1(L), y2←M2(R)]

where Y LR←ρ means initializing Y LR with state ρ. And MB is a measurement
in bases B. And ŷ←MB(Y ) means measuring register Y using measurement
MB and assigning the result to ŷ. And y1←M1(L), y2←M2(R) analogously.

The rhs of this equation is a so-called monogamy of entanglement game,

and [11] shows that the rhs is bounded by
(
2h(γ)

1+
√

1/2

2

)n
. Thus Pr[Accept :

Game 5] ≤
(
2h(γ)

1+
√

1/2

2

)n
. And from (1) and the equalities between games,

we have
∣∣Pr[Accept : Game 1]− Pr[Accept : Game 5]

∣∣ ≤ 2q2−�/2.

Thus altogether Pr[Accept : Game 1] ≤ 2q2−�/2 +
(
2h(γ)

1+
√

1/2

2

)n
. �



8 D. Unruh

R1

R2 R3

|Ψ〉
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V2 V3

R1
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1.13√ 3
2

≈
0.
86 δ
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Fig. 4. The geometry of space at time tδ (i.e., when B first becomes known). Left for
δ = 0, right for δ =

√
4−

√
12− 1

2
≈ 0.23.

3 Position Verification in Higher Dimensions

3.1 Difficulties

Excepting special cases where the honest prover happens to lie on a line between
two verifiers, one-dimensional PV with two verifiers is not very useful. We there-
fore need to generalize the approach to three dimensions. It turns out that some
non-trivialities occur here. For n-dimensional PV we need at least n+1 verifiers.5
To illustrate the problems occurring in the higher dimensional case, we sketch
what happens if we try to generalize the protocol and proof from Section 2 to
the 2D case.

In the 2D case we need at least three verifiers V1, V2, V3. Let’s assume that
they are arranged in a equilateral triangle, each at distance 1 from an honest
prover P in the center. (Cf. Figure 4 (a).) V1 sends a quantum state |Ψ〉, and
all Vi send a random xi. At time t = 1, all xi are received by P who computes
B := H(x1 ⊕ x2 ⊕ x3) and measures |Ψ〉 in basis B, yielding the value y to be
sent to V1, V2, V3.

Now as in Section 2 we can argue that before time t = 1, there is no point in
space where all x1, x2, x3 are known. Hence B := H(x1 ⊕ x2 ⊕ x3) will not be
queried before t = 1. Hence by programming the random oracle (using Lemma 3)
we can assume that the basis B is chosen randomly only at time t = 1. In
Section 2 we then observed that space is partitioned into two disjoint regions:
5 PV (in Euclidean space) can only work if the prover P is in the convex hull C of the

verifiers. Otherwise, if we project P onto the hypersurface H separating C from P ,
we get a point P ′ that is closer to any point of C than P . Since the convex hull of n
provers can at most be n− 1 dimensional, we need at least n+ 1 provers to get an
n dimensional convex hull.
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Fig. 5. The surface S in spacetime at which B is sampled. The dots floating over S
denote when the verifiers need to receive y (i.e., the dots are at time 2 and space
V1, V2, V3). The thick black lines enclose the areas R1, R2, R3 on S from which the
verifiers can be reached in time. (Right: top view. In PDF: click figures for interaction.)

Region L from which light can reach V1 by time t = 2, and region R from which
light can reach V2 by time t = 2. The results from [11] then imply that the correct
y cannot be obtained from two independent (but possibly entangled) quantum
registers L and R simultaneously. What happens if we apply this reasoning in
the 2D case? Figure 4 (a) depicts the three regions R1, R2, R3 of points that can
reach V1, V2, V3 until time t = 2. These regions are not disjoint! We cannot argue
that measuring y in each of these regions violates the monogamy of entanglement,
y does not result from measuring separate quantum registers.

Can we fix this? The most obvious consequence would be to weaken the se-
curity claim: “A malicious prover which has devices anywhere except at point P
or distance δ from P cannot make the verifiers accept.” Then the time tδ when
the random oracle is programmed is the earliest time at which some point at
distance δ from P has access to all x1, x2, x3. Then R1, R2, R3 are the regions
from which light can travel to V1, V2, V3 within time 2− tδ. We can compute that
they are disjoint iff δ >

√
4−

√
12 − 1

2 ≈ 0.23. (Cf. Figure 4 (b).) This means
that the malicious prover is only guaranteed to be within a circle of diameter 2δ,
which is about 46% of the distance between prover and verifier. In the 3D case,
using a numerical calculation, we even get δ ≈ 0.38.

Can we improve on this bound? Indeed, when we said that the B is sampled
at time t = 1, this was not a tight analysis. At time t = 1, the query B =
H(x1 ⊕ x2 ⊕ x3) can only occur at point P . The farther away from P we get,
the later we get all of x1, x2, x3. Thus, if we plot the earliest time of querying B
as a function of space, we get a surface S in 3D spacetime (Figure 5) which is
not a plane. Now, instead of considering the state of the provers at time t = 1,
we consider the state of the prover on S. (I.e., the state of all devices of the
prover at points in spacetime in S.) We ask the reader to take it on trust for the
moment this is actually a well-defined state. And now we can again ask whether

http://tinyurl.com/kdjp6n2
http://sagecell.sagemath.org/?z=eJyFVEtv2zAMvvtXEG2BSpmTNtktQLbDigG7DEOw21oEqk0nAvTwJDqPFv3vo2Q39Q7dDMOQaJL6HrQv4XtnHzGAb6DWFl3U3sUZ_AwnuOAArGBxAeRhj0E3J6AdwuIOKmWqziji5KLP-lgUNTbgfLDiKJcF8BWQuuAg_g4kYmeFmihofAAF2sFRylxR60jiWJ7eqRHqOFUnOZkscilvS96mBk-6zXXcp7iEL962HWEGmLFqJmV8lTGCYJAf5ucXERTfQEhB7bAO3pXcAlW1y3CUqxDm0ARv4cdy5YPeaieLqG1r8MhkW29O5FuMM7cZoumEc8qm8iFwXlZjiM34cNIVxo1JjOWv2wdZvAFaAXWcJvrnei3UzbiZHAuX18e0fqf3WJElEPsKnSNtIHpetl47gkYF1ioMLFk35aBGQwq2SJHrLcaothj7DGXMm3zZOMrZIj8H81K4Ea1cvtpoVRKGIbXlvoe9T7DPjWQui94wf6udtvoJma-LbIx2WIumzBn_uIyyj7WCdtmr3cppRvTfOjEv5SSbNhq7RjAW-V5JUvXudT4ekQ6IDujgR8LsE1smk0mfw-x1-baZP2R_vrIaW73HQfYSdv6QXIHa5ykOuE3fIqzn5XoBnuuNaj9n6YfNX9pTnWZo7EkfNtgkQIsp1WOmfXwKGfDNIgPSrh5G4KBpB08Y_OtRRR9fQcNJm-A9ieFNeVvOZdGGNFM7skZcf3Pw_DL6m5TgEGu4us89Pj2_XM2uZzwLVlH6asoerfwDA2pyPw==
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S decomposes into distinct regions R1, R2, R3 if we consider regions that can
reach the verifiers V1, V2, V3 by time t = 2. (See Figure 5.) This approach has
the potential of giving a much tighter security analysis. However, it is quite
complicated to reason about the geometry of S and R1, R2, R3, and in the 3D
case things will get even more complicated. Therefore in the following section we
will take an approach that abstracts away from the precise geometry of spacetime
and uses a more generic reasoning. This has the twofold advantage that we do not
need to analyze what S actually looks like (although S implicitly occurs in the
proof), and that our result will be much more general: it holds in any number of
dimensions, and it even holds if we consider curved spacetime (general relativity
theory). To state and prove our results, we first need to introduce some (simple)
notation from general relativity theory.

3.2 Circuits in Spacetime

Spacetime is the set of all locations in space and time. That is, intuitively space-
time consists of all tuples (t, x1, . . . , xn) where t is the time and x1, . . . , xn is
the position in space. Such a location in spacetime is called an event. Relativity
theory predicts that there is no natural distinction between the time coordinate
t and the space coordinates x1, . . . , xn. (In a similar way as in “normal” space
there is no reason why three particular directions in space are coordinates.) As it
turns out, for analyzing our PV protocol, we do not need to know the structure
of spacetime, so in the following spacetime will just be some set of events, with
no particular structure.6 However, the reader may of course assume throughout
the paper that spacetime consists of events (t, x1, . . . , xn) with t, x1, . . . , xn ∈ �.
This is called flat spacetime.

The geometry of spacetime (to the extent needed here) is described by a
partial order on the events: We say x causally precedes y (x≺y) iff infor-
mation originating from event x can reach event y. Or in other words, if
you can get from x to y traveling at most the speed of light. In flat space-
time, this relation is familiar: (tx, x1, . . . , xn)≺(ty, y1, . . . , yn) iff tx ≤ ty and
‖(x1, . . . , xn)− (y1, . . . , yn)‖ ≤ ty − tx.

Given this relation, we can define the causal future C+(x) of an event x as
the set of all events reachable from x, C+(x) := {y : x ≺ y}. Similarly, we define
the causal past C−(x) := {y : y ≺ x}.

In the case of flat spacetime, the causal future of x = (t, x1, . . . , xn) is an
infinite cone with its point at x and extending towards the future. Thus it is also
called a future light cone. Similarly the causal past of x is an infinite cone with
its point at x extending into the past.

This language allows us to express quantum computations in space that do not
transfer information faster than light. A spacetime circuit is a quantum circuit
6 For readers knowledgeable in general relativity: We do assume that spacetime is a

Lorentzian manifold which is time-orientable (otherwise the notions of causal future/-
past would not make send) without closed causal curves (at least in the spacetime
region where the protocol is executed; otherwise quantum circuits may end up having
loops).
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where every gate is at a particular event. There can only be a wire from a gate at
event x to a gate at event y if x causally precedes y (x ≺ y). Note that since ≺ is a
partial order and thus antisymmetric, this ensures that a circuit cannot be cyclic.
Note further that there is no limit to how much computation can be performed
in an instant since ≺ is reflexive. We can model malicious provers that are not
at the location of an honest prover by considering circuits with no gates in P,
where P is a region in spacetime. (This allows for more finegrained specifications
than, e.g., just saying that the malicious prover is not within δ distance of the
honest prover. For example, P might only consist of events within a certain
time interval; this means that the malicious prover is allowed to be at any space
location outside that time interval.) Notice that a spacetime circuit is also just a
normal quantum circuit if we forget where in spacetime gates are located. Thus
transformations on quantum circuits (such as changing the execution order of
commuting gates) can also be applied to spacetime circuits, the result will be a
valid circuit, though possibly not a spacetime circuit any more.

3.3 Achieving Higher-Dimensional Position Verification

We can now formulate the definition of secure PV in higher dimensions using
the language from the previous section.

Definition 4 (Sound position verification). Let P be a region in spacetime.
A position verification protocol is sound for P iff for any non-uniform polynomial-
time7 spacetime circuit P ∗ that has no gates in P, the following holds: In an
interaction between the verifiers and P ∗, the probability that the verifiers accept
(the soundness error) is negligible.

The smaller the region P is, the better the protocol localizes the prover. Infor-
mally, we say the protocol has higher precision if P is smaller.

Next, we describe the generalization of the protocol in Section 2. In this gen-
eralization, only two of the verifiers check whether the answers of the prover are
correct. Although we believe that we get higher precision if more verifiers check
the answers, it is an open problem to prove that.

Definition 5 (Position verification protocol). Let P be a prover, and P ◦ an
event in spacetime (P ◦ specifies where and when the honest prover performs its
computation). Let V1, . . . , Vr be verifiers. Let V +

1 , . . . , V +
r be events in spacetime

that causally precede P ◦. (V +
i specifies where and when the verifier Vi sends its

challenge.) Let V −
1 , V −

2 be events in spacetime such that P ◦ causally precedes
V −
1 , V −

2 . (V −
i specifies where and when Vi expects the prover’s response.)

Let n (number of qubits) and � (bit length of classical challenges) be integers,
and 0 ≤ γ < 1

2 (fraction of allowed errors). Let H : {0, 1}� → {0, 1}n be a hash
function (modeled as a quantum random oracle).
7 Non-uniform polynomial-time means that we are actually considering a family of

circuits of polynomial size in the security parameter, consisting only of standard
gates (from some fixed universal set) and oracle query gates. In addition, we assume
that the circuit is given an (arbitrary) initial quantum state that does not need to
be efficiently computable.
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– The verifiers choose uniform x1, . . . , xr ∈ {0, 1}�, ŷ ∈ {0, 1}n. (By commu-
nicating over secure channels.)

– At some event that causally precedes P ◦, V0 sends |Ψ〉 to P . Here B :=
H(x1 ⊕ · · · ⊕ xr), |Ψ〉 := |ŷ〉B.

– For i = 1, . . . , r: Vr sends xr to P at event V +
r .

– At event P ◦, P will have |Ψ〉, x1, . . . , xr. Then P computes B := H(x1 ⊕
· · · ⊕ xr), measures |Ψ〉 in basis B to obtain outcome y1, and sends y1 to V1

and y2 := y1 to V2.
– At events V −

1 , V −
2 , V1 and V2 receive y1, y2. Using secure channels, the ver-

ifiers check whether y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 indeed
arrived at V −

1 , V −
2 ), the verifiers accept.

In the protocol description, for simplicity we assume that V1, V2 are the re-
ceiving verifiers. However, there is no reason not to choose other two verifiers, or
even additional verifiers not used for sending. Similarly, |Ψ〉 could be sent by any
verifier, or by an additional verifier. In the analysis, we only use the events at
which different messages are sent/received, not which verifier device sends which
message.

Note that this protocol also allows for realistic provers that cannot perform
instantaneous computations: In this case, one chooses the events V −

1 , V −
2 such

that the prover’s messages can still reach them even if the prover sends y1, y2
with some delay.

We can now state the main security result:

Theorem 6. Assume that γ ≤ 0.037 and n, � are superlogarithmic.
Then the PV protocol from Definition 5 is sound for P :=

⋂r
i=1 C

+(V +
i ) ∩

C−(V −
1 ) ∩ C−(V −

2 ). (In words: There is no event in spacetime outside of P at
which one can receive the messages xi from all Vi, and send messages that will
be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries, then the

soundness error is at most ν :=
(
2h(γ)

1+
√

1/2

2

)n
+ 2q2−�/2.

Notice that the condition on the locations of the provers is tight: If E ∈⋂r
i=1 C

+(V +
i ) ∩ C−(V −

1 ) ∩ C−(V −
2 ) \ P �= ∅, then the protocol could even be

broken by a malicious prover with a single device: P ∗ could be at event E, receive
x1, . . . , xr, compute y1, y2 honestly, and send them to V1, V2 in time. The same
reasoning applies to any protocol where only two verifiers receive. Our protocol
is thus optimal in terms of precision under all such protocols.

Proof of Theorem 6. In the following, we write short C+
i for C+(V +

i ) and C−
i

for C−(V −
i ). We also write

⋂
instead of

⋂r
i=1. The precondition of the theorem

then becomes:
⋂

C+
i ∩C−

1 ∩ C−
2 ⊆ P. Let Ω denote all of spacetime.

We now partition the gates in the spacetime circuit P ∗ into several disjoint
sets of gates (subcircuits), depending on where they are located in spacetime.
For each subcircuit, we also give an rough intuitive meaning; those meanings
are not precisely what the subcircuits do but help to guide the intuition in the
proof.
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Subcircuit Region in spacetime Intuition
P ∗
pre (C−

1 ∪C−
2) \

⋂
C+

i Precomputation
P ∗
P

⋂
C+

i ∩ C−
1 ∩ C−

2 Gates in P (empty)
P ∗
1

⋂
C+

i ∩ C−
1 \ C−

2 Computing y1
P ∗
2

⋂
C+

i ∩ C−
2 \ C−

1 Computing y2
P ∗
post Ω \ C−

1 \ C−
2 After protocol end

Note that all those subcircuits are disjoint, and their union is all of Ω. The
subcircuits have analogues in the proof in the one-dimensional case. P ∗

pre corre-
sponds to the gates below the dashed line in Figure 3; P ∗

1 to the gates above
the dashed line and left of the barrier; P ∗

2 above the dashed line and right of
the barrier; P ∗

post to everything that is above the picture. This correspondance
is not exact, because as discussed in Section 3.1, the dashed line needs to be
replaced by a surface S (Figure 5) which is not flat. In our present notation, S
is the border between P ∗

pre and the other subcircuits.
In addition, in some abuse of notation, by V1 we denote the circuit at V −

1 that
receives y1. Similar for V2.

By definition of spacetime circuits, there can only be a wire from gate G1 to
gate G2 if G1, G2 are at events E1, E2 with E1≺E2 (E1 causally precedes E2).
Thus, by definition of causal futures and the transitivity of ≺, there can be no
wire leaving C+

i. Similarly, there can be no wire entering C−
i. These two facts

are sufficient to check the following facts:

P ∗
1 , P

∗
2 , P

∗
post�P ∗

pre, P ∗
1�P ∗

2 , P ∗
2�P ∗

1 ,

P ∗
1�V2, P ∗

2�V1, P ∗
post�P ∗

1 , P
∗
2 , V1, V2.

(2)

Here A�B means that there is no wire from subcircuit A to subcircuit B.
Given these subcircuits, we can write the execution of the protocol as the

following quantum circuit:

P ∗
pre

P ∗
1

P ∗
2

V1

V2

y1

y2

x

P ∗
post

|x〉B

(3)

Here x is short for x1, . . . , xr. And we have omitted wires between subcircuits
that are in the transitive hull of the wires drawn. (E.g., there can be a wire from
P ∗
pre to V1, but we did not draw it because we drew wires from P ∗

pre to P ∗
1 to

V1.) Note that P ∗
P does not occur in this circuit, because it contains no gates (it

consists of gates in
⋂

C+
i ∩ C−

1 ∩ C−
2 = P which by assumption contains no

gates).
From (2) it follows that no wires are missing in (3). In particular, (2) implies

that the quantum circuit is well-defined. If we did not have, e.g., P ∗
1�P ∗

pre, there
might be wires between P ∗

1 and P ∗
pre in both directions; the result would not be

a quantum circuit. We added arrow heads in (2), these are only to stress that the
wires indeed go in the right directions, below we will follow the usual left-to-right
convention in quantum circuits and omit the arrow heads.
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The circuit (3) now encodes all information dependencies that we will need,
we can forget that (3) is a spacetime circuit and treat it as a normal quantum
circuit.

We now proceed to analyze the protocol execution using a sequence of games.
The original execution can be written as follows:

Game 1 (Protocol execution). Pick x1, . . . , xr
$←{0, 1}�, ŷ

$←{0, 1}n,
H

$←Fun where Fun is the set of functions {0, 1}� → {0, 1}n. Let
B := H(x1 ⊕ · · · ⊕ xr). Execute circuit (3) resulting in y1, y2. Let accept := 1 iff
y1 = y2 and ω(y1 − ŷ) ≤ γn.

To prove the theorem, we need to show that Pr[accept = 1 : Game 1] ≤ ν.
As in the proof of the 1D case, we now delay the choice of x by using EPR

pairs. And we remove the subcircuit P ∗
post which clearly has no effect on the

outputs y1, y2.

Game 2 (Using EPR pairs). Pick x1, . . . , xr
$←{0, 1}�, H

$←Fun. Let B :=
H(x1 ⊕ · · · ⊕ xr). Execute circuit (4) resulting in y1, y2.

Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

P ∗
pre

P ∗
1

P ∗
2

V1

V2

y1

y2

x

|epr〉

MB ŷ

(4)

Here |epr〉 is the state consisting of n EPR pairs, i.e., |epr〉 =
2−n/2

∑
x∈{0,1}n |x〉⊗ |x〉. The top and bottom wire originating from |epr〉 repre-

sent the first and last n qubits, respectively. And MB is the gate that measures
n qubits in bases B ∈ {0, 1}n. The wiggly line can be ignored for now.

As in the 1D case, we use that preparing a qubit X := |y〉B for random
y ∈ {0, 1} is perfectly indistinguishable (when given X, y,B) from producing an
EPR pair XY , and then measuring Y to get outcome y. Thus Pr[accept = 1 :
Game 1] = Pr[accept = 1 : Game 2].

Again like in the 1D case, we will now reprogram the random oracle. That is,
instead of computing B := H(x1 ⊕ · · · ⊕ xr), we pick B

$←{0, 1}n at some point
in the execution and then program the random oracle via H(x1 ⊕ · · ·⊕xr) := B.
The question is: at which point shall we program the random oracle? In the 1D
case, we used the fact that before time t = 1 (dashed line in Figure 3), there is no
event at which both x1 and x2 are known. An analogous reasoning can be done
in the present setting: since P ∗

pre consists only of gates outside
⋂

C+
i, it means

that any gate in P ∗
pre is outside some C+

i and thus does not have access to xi.
(We will formally prove this later.) So we expect that left of the wiggly line in
(4), H(x1 ⊕ · · · ⊕ xr) occurs with negligible probability only. In other words, the
wiggly line corresponds to the surface S discussed in Section 3.1. In fact, if we
draw the border between P ∗

pre and the remaining gates, we get exactly Figure 5
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(in the 2D case at least). However, the approach of decomposing spacetime into
subcircuits removes the necessity of dealing with the exact geometry of S.

Formally, we will need to apply Lemma 3. Given a function H and values
x,B, let Hx �→B denote the function identical to H , except that Hx �→B(x) = B.
Let AH

1 (x) denote the oracle machine that picks x1, . . . , xr−1
$←{0, 1}� and sets

xr := x ⊕ x1 ⊕ · · · ⊕ xr−1 and prepares the state |epr〉 and then executes P ∗
pre.

Let AH
2 (x,B) denote the oracle machine that, given the state from AH

1 , executes
P ∗
1 , P

∗
2 , V1, V2,M

B with oracle access to Hx �→B instead of H , sets accept := 1 iff
y1 = y2 and ω(y1 − ŷ) ≤ γn, and returns accept. Let C1, P

1
A, P

2
A, PC be defined

as in Lemma 3. Then by construction, P 1
A = Pr[accept = 1 : Game 2] (using the

fact that H = Hx �→H(x)). And P 2
A = Pr[accept = 1 : Game 3] for the following

game:

Game 3 (Reprogramming H). Pick x1, . . . , xr
$←{0, 1}�, H

$←Fun. Execute
circuit (4) until the wiggly line (with oracle access to H). Pick B

$←{0, 1}n. Ex-
ecute circuit (4) after the wiggly line (with oracle access to Hx �→B) resulting in
y1, y2, ŷ. Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.
And finally PC = Pr[x′ = x1 ⊕ · · · ⊕ xr : Game 4] for the following game:

Game 4 (Guessing x1 ⊕ · · · ⊕ xr). Pick x1, . . . , xr
$←{0, 1}�, H

$←Fun, and
j

$←{1, . . . , q}. Prepare |epr〉 and execute circuit P ∗
pre until the j-th query to H.

Measure the argument x′ of that query.
By Lemma 3, we have |P 1

A − P 2
A| ≤ 2q

√
PC . Thus, abbreviating x = x1⊕· · ·⊕xr

as guessX, we have∣∣Pr[accept = 1 : Game 2]− Pr[accept = 1 : Game 3]
∣∣

≤ 2q
√
Pr[guessX : Game 4]. (5)

We now focus on Game 3. Let ρY LR denote the state in circuit (4) at the wiggly
line (for random x1, . . . , xr, H). Let L refer to the part of ρY LR that is on the
wires entering P ∗

1 , and R refer to the part of ρLR on the wires entering P ∗
2 . Let

Y refer to the lowest wire (containing EPR qubits). Notice that we have now
reproduced the situation from the 1D case where space is split into two separate
registers R and L, and the computation of y1, y2 is performed solely on R, L,
respectively. In fact, we have now also identified the regions R1, R2 from the
discussion in Section 3.1 (Figure 5): R1 is the boundary between P ∗

pre and P ∗
1 ;

analogously R2. (R3 from Figure 5 has no analogue here because V3 does not
receive here.) For given B, let ML(B) be the POVM operating on L consisting of
P ∗
1 and V1. (ML can be modeled as a POVM because P ∗

1 and V1 together return
only a classical value and thus constitute a measurement.) Let MR(B) be the
POVM operating on R consisting of P ∗

2 and V2. Then we can rewrite Game 3
as:
Game 5 (Monogamy game). Prepare ρY LR. Pick B

$←{0, 1}n. Apply mea-
surement ML(B) to L, resulting in y1. Apply measurement MR(B) to R, result-
ing in y2. Measure Y in basis B, resulting in ŷ. Let accept := 1 iff y1 = y2 and
ω(y1 − ŷ) ≤ γn.
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Then Pr[accept = 1 : Game 3] = Pr[accept = 1 : Game 5]. Furthermore, Game 5
is again a monogamy of entanglement game, and [11] shows that Pr[accept =

1 : Game 5] ≤
(
2h(γ)

1+
√

1/2

2

)n
. We can furthermore show (see the full version

[12]) that Pr[guessX : Game 4] ≤ 2−�. With (5) we get

Pr[accept = 1 : Game 1] ≤
(
2h(γ)

1 +
√
1/2

2

)n
+ 2q2−�/2 = ν.

Numerically, we can verify that for γ ≤ 0.037, we have 2h(γ)
1+

√
1/2

2 < 1 and
thus ν is negligible (for superlogarithmic n, � and polynomially bounded q). �
In Flat Spacetime. Theorem 6 tells us where in spacetime a prover can be
that passes verification. (Region P.) However, the theorem is quite general; it is
not immediate what this means in the concrete setting of flat spacetime. In the
full version [12] we derive specialized criteria for flat spacetime and show that
Theorem 6 implies that a prover can be precisely localized by verifiers arranged
as a tetrahedron.

4 Position-Based Authentication

Position verification is, in itself, a primitive of somewhat limited use. It guaran-
tees that no prover outside the region P can pass the verification. Yet nothing
forbids a prover to just wait until some other honest party has successfully passed
position verification, and then to impersonate that honest party. To realize the
applications described in the introduction, we need a stronger primitive that
not only proves that a prover is at a specific location, but also allows him to
bind this proof to specific data. (The difference is a bit like that between iden-
tification schemes and message authentication schemes.) Such a primitive is be
position-based authentication. This guarantees that the malicious prover cannot
authenticate a message m unless he is in region P (or some honest party at
location m wishes to authenticate that message).

Definition 7 (Secure position-based authentication). A position-based
authentication (PBA) scheme is a PV scheme where provers and verifiers get an
additional argument m, a message to be authenticated.

Let P be a region in spacetime. A position-based authentication (PBA) protocol
is sound for P iff for any non-uniform polynomial-time spacetime circuit P ∗ that
has no gates in P, the probability that the challenge verifiers ( soundness error)
accept is negligible in the following execution:

P ∗ picks a message m∗ and then interacts with honest verifiers (called the
challenge verifiers) on input m∗. Before, during, and after that interaction, P ∗

may spawn instances of the honest prover and honest verifiers, running on inputs
m �= m∗. These instances run concurrently with P ∗ and the challenge verifiers
and P ∗ may arbitrarily interact with them. Note that the honest prover/honest
verifier instances may have gates in P.

http://sagecell.sagemath.org/?z=eJxdkU9vnDAQxe98ilESCXvDsuBVmmpV1J4i9RZVvXWbyMAstmQwsU2WFeK71_xJtQon_Px-M_PGJZ5A6YqRnh4C8J9B15lm0kgf5dxixmgQlN4m_nvkCfosSw4f5uRKTT-p62Hbb9Y2W5Jue7qcpr8g-CEbh4YXbm5jhT6_tkbnPJdKugupeF1zyCCJk_0jPQDcwm9zAa6sXrQkfXz4uv_ywPZzxyvWU2yzEUsJChsg6b19M46kO0bpjgUzcAu_fj4RpIDvXHXcoQWEzsqmgnkyrwI30okanSwiWCEZYxyBE-gz2k45kBaqjhvuGSzBacgRCm0MFg66dqUmf-slaaVuoJS2VfyC5bIr3TWlR7N5oKscdL5eKzz7lfporfHDzVKj3VmbCQvD6RU-ynyDFFBZhNA7IFyX4ykQrlbk5kkbuDvOu8mG8Q7OCIK_o9eOz-bPseZO2NMw8KLA1o1jlv71Lcgw0pfmnr2xl2HYHlGpHRsnWMhCTCsYxgYrJSuZK4xv4pM2vtDyApF1hqzT0digj14gCb-HURjHcUijNQmlwT_yocsE
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PBA was already studied in [4]. They give a generic transformation to con-
vert a PV protocol into a PBA. The generic solution has two drawbacks, though:

– It needs Ω(�μ) invocations of the PV protocol for
ell-bit messages and 2−μ security level. (Our protocol below will need only
one invocation.)

– It is only secure if a single instance of the honest prover runs concurrently. If
the malicious prover can suitably interleave several instances of the honest
prover, he can authenticate arbitrary messages.

(We do not know whether their solution gives adaptive security, i.e., whether
the adversary can choose m∗ and the honest provers’ inputs m depending on
communication he has seen before.) Although we do not have a generic trans-
formation from PV to PBA that solves these issues, a small modification of our
PV protocol leads to an efficient PBA secure against concurrent executions of
the honest prover:

Definition 8 (Position-based authentication protocol). The protocol is
the same as in Definition 5, with the following modification only: Whenever in
Definition 5, the verifier or prover queries B := H(x1⊕· · ·⊕xr), here he queries
B := H(x1⊕· · ·⊕xr‖m) instead. (Where m is the message to be authenticated.)
We also require that the verifiers do not start sending the messages xi or expect
y1, y2 before all Vi got m, and that V +

1 �= V +
2 (i.e., V1, V2 do not send x1, x2

from the same location in space at the same time, a natural assumption).

Theorem 9. Assume that γ ≤ 0.037 and n, � are superlogarithmic.
Then the PBA protocol from Definition 8 is sound for P :=

⋂r
i=1 C

+(V +
i ) ∩

C−(V −
1 ) ∩ C−(V −

2 ). (In words: There is no event in spacetime outside of P at
which one can receive the messages xi from all Vi, and send messages that will
be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries, then the

soundness error is at most
(
2h(γ)

1+
√

1/2

2

)n
+ 6q2−�/2.

The main difference to Theorem 6 is that now oracle queries are performed
even within P (by the honest provers). We thus need to show that these queries
do not help the adversary. The main technical challenge is that the message m∗

is chosen adaptively by the adversary. The proof is given in the full version [12].

Position-Based Quantum Key Distribution. Once we have PBA, we im-
mediately get position-based quantum key distribution, and thus we can send
messages that can only be decrypted by someone within region P. We refer to
[4] who describe how to do this, their construction applies to arbitrary PBA
schemes. (As long as it has adaptive security, since in the QKD protocol, the
adversary can influence the messages to be authenticated.)
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Abstract. One-time memories (OTM’s) are simple, tamper-resistant
cryptographic devices, which can be used to implement sophisticated
functionalities such as one-time programs. Can one construct OTM’s
whose security follows from some physical principle? This is not possi-
ble in a fully-classical world, or in a fully-quantum world, but there is
evidence that OTM’s can be built using “isolated qubits” — qubits that
cannot be entangled, but can be accessed using adaptive sequences of
single-qubit measurements.

Here we present new constructions for OTM’s using isolated qubits,
which improve on previous work in several respects: they achieve a
stronger “single-shot” security guarantee, which is stated in terms of
the (smoothed) min-entropy; they are proven secure against adversaries
who can perform arbitrary local operations and classical communication
(LOCC); and they are efficiently implementable.

These results use Wiesner’s idea of conjugate coding, combined with
error-correcting codes that approach the capacity of the q-ary symmet-
ric channel, and a high-order entropic uncertainty relation, which was
originally developed for cryptography in the bounded quantum storage
model.

Keywords: Quantum cryptography, information theory, local opera-
tions and classical communication (LOCC), oblivious transfer, one-time
programs.

1 Introduction

One-time memories (OTM’s) are a simple type of tamper-resistant crypto-
graphic hardware. An OTM has the following behavior: a user Alice can write
two messages s and t into the OTM, and then give the OTM to another user
Bob; Bob can then choose to read either s or t from the OTM, but he can only
learn one of the two messages, not both. A single OTM is not especially exciting
by itself, but when many OTM’s are combined in an appropriate way, they can
be used to implement one-time programs, which are a powerful form of secure
computation [3,4,5,6]. (Roughly speaking, a one-time program is a program that
can be run exactly once, on an input chosen by the user. After running once,

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 19–36, 2014.
c© International Association for Cryptologic Research 2014
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the program “self-destructs,” and it never reveals any information other than
the output of the computation.)

Can one construct OTM’s whose security follows from some physical princi-
ple? At first glance, the answer seems to be “no.” OTM’s cannot exist in a fully
classical world, because information can always be copied without destroying it.
One might hope to build OTM’s in a quantum world, where the no-cloning prin-
ciple limits an adversary’s ability to copy an unknown quantum state. However,
this is also impossible, because an OTM can be used to perform oblivious trans-
fer with information-theoretic security, which is ruled out by various “no-go”
theorems [7,8,9,10].

One way around these no-go theorems is to try to construct protocols that are
secure against restricted classes of quantum adversaries, e.g., adversaries who can
only perform k-local measurements [11], or adversaries who only have bounded
or noisy quantum storage [12,13,14,15,16,17]. More recently, Liu has proposed a
construction for OTM’s in the isolated qubits model [1], where the adversary is
only allowed to perform local operations and classical communication (LOCC).
That is, the adversary can perform single-qubit quantum operations, including
single-qubit measurements, and can make adaptive choices based on the classical
information returned by these measurements; but the adversary cannot perform
entangling operations on sets of two or more qubits. (Honest parties are also
restricted to LOCC operations.) The isolated qubits model is motivated by re-
cent experimental work using solid-state qubits, such as nitrogen vacancy (NV)
centers; see [1] for a more complete discussion of this model, and [18] for earlier
work on implementing quantum money using NV centers.1

In this paper we show a new construction and security analysis for OTM’s in
the isolated qubits model, which improves on the results of [1] in several respects.
First, we show a stronger “single-shot” security guarantee, which is stated in
terms of the (smoothed) min-entropy [19,20]. This shows that a constant fraction
of the message bits remain hidden from the adversary. This stronger statement
is necessary for most cryptographic applications; note that the previous results
of [1] were not sufficient, as they used the Shannon entropy.

Second, we prove security against general LOCC adversaries, who can perform
arbitrary measurements (including weak measurements), and can measure each
qubit multiple times. This improves on the results of [1], which only showed
security against 1-pass LOCC adversaries that use 2-outcome measurements.
Our new security proof is based solely on the definition of the isolated qubits
model, without any additional assumptions.

Third, we show a construction of OTM’s that is efficiently implementable, i.e.,
programming and reading out the OTM can be done in polynomial time. This
improves on the construction in [1], which was primarily an information-theoretic

1 Note that the devices constructed in [1], and in this paper, are more precisely de-
scribed as leaky OTM’s, because they can leak additional information to the adver-
sary. It is not known whether such leaky OTM’s are sufficient to construct one-time
programs as defined in [3]. We will discuss this issue in Section 1.2; for now, we will
simply refer to our devices as OTM’s.
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result, using random error-correcting codes that did not allow efficient decoding.
(In fact, our new construction is quite flexible, and does not depend heavily on
the choice of a particular error-correcting code. Our OTM’s can be constructed
using any code that satisfies two simple requirements: the code must be linear
over GF (2), and it must approach the capacity of the q-ary symmetric channel.
We show one such code in this paper; several more sophisticated constructions
are known [22,23,24].)

We will describe our OTM construction in the following section. Here, we
briefly comment on some related work. Note that OTM’s cannot make use of
standard techniques such as privacy amplification. This is because OTM’s are
non-interactive and asynchronous: all of the communication between Alice and
Bob occurs at the beginning, while the adversary can wait until later to attack the
OTM. (To do privacy amplification, Alice would have to first force the adversary
to take some action, and then send one more message to Bob. This trick is very
natural in protocols for quantum key distribution and oblivious transfer, but it
is clearly impossible in the case of an OTM.) As we will see below, the security of
our OTM’s follows from rather different arguments. (A similar issue was studied
recently in [17], albeit with a weaker, non-adaptive adversary.)

In addition, it is a long-standing open problem to prove strong upper-bounds
on the power of LOCC operations. Previous results in this area include demon-
strations of “nonlocality without entanglement” [25] (see [26] for a recent sur-
vey), and constructions of data-hiding states [27,28,29,30]. Our OTM’s are not
directly comparable to these earlier results, as the security requirements for our
OTM’s are quite different.

1.1 Our Construction

We now describe our OTM construction, which is based on Wiesner’s idea of
conjugate coding [21]. Our OTM will store two messages s, t ∈ {0, 1}�, and will

use n lg q qubits, where q is a (large) power of 2. Let C : {0, 1}� → {0, 1}n lg q

be any error-correcting code that satisfies the following two requirements: C is
linear overGF (2), and C approaches the capacity of the q-ary symmetric channel
Eq with error probability pe := 1

2 − 1
2q (where the channel treats each block of

lg q bits as a single q-ary symbol). Note that, when q is large, the capacity of
the channel Eq is roughly 1− pe, which is roughly 1

2 , so we have n lg q ≈ 2�.
Given two messages s and t, let C(s) and C(t) be the corresponding code-

words, and view each codeword as n blocks consisting of lg q bits. We prepare
the qubits in the OTM as follows. For each i = 1, 2, . . . , n,

– Let γi ∈ {0, 1} be the outcome of a fair and independent coin toss.
– If γi = 0, prepare the i’th block of qubits in the standard basis state corre-

sponding to the i’th block of C(s).
– If γi = 1, prepare the i’th block of qubits in the Hadamard basis state

corresponding to the i’th block of C(t).

To recover the first message s, we measure every qubit in the standard basis,
which yields a string of measurement outcomes z ∈ {0, 1}n lg q

, and then we
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run the decoding algorithm for C. To recover the second message t, we measure
every qubit in the Hadamard basis, then follow the same procedure. It is easy to
see that all of these procedures require only single-qubit state preparations and
single-qubit measurements, which are allowed in the isolated qubits model.2

(We remark that this OTM construction uses blocks of qubits, rather than
individual qubits as in [21] and [1]. That is, we set q large, instead of using q = 2.
This difference seems to help our security proof, although it is not clear whether
it affects the actual security of the scheme.)

We now sketch the proofs of correctness and security for this OTM. With
regard to correctness, note that an honest player who wanted to learn s will
obtain measurement outcomes that have the same distribution as the output of
the q-ary symmetric channel Eq acting on C(s); hence the decoding algorithm
will return s. A similar argument holds for t.

To prove security, we consider adversaries that make separable measurements
(which include LOCC measurements as a special case). The basic idea is to
consider the distribution of the messages s and t, conditioned on one particu-
lar measurement outcome z obtained by the adversary. Since the adversary is
separable, the corresponding POVM element Mz will be a tensor product of
single-qubit operators

⊗n lg q
a=1 Ra (up to normalization). Now, one can imagine a

fictional adversary that measures the qubits one at a time, and happens to ob-
serve this same string of single-qubit measurement outcomes R1, R2, . . . , Rn lg q.
This event leads to the same conditional distribution of s and t. But the fictional
adversary is easier to analyze, because it is non-adaptive, it measures each qubit
only once, and the measurements can be done in arbitrary order.

Now, our proof will be based on the following intuition. In order to learn
both messages s and t, the adversary will want to determine the basis choices
γ = (γ1, γ2, . . . , γn), so that he will know which blocks of qubits should be
measured in the standard basis, and which blocks of qubits should be measured in
the Hadamard basis. The choice of the code C is crucial to prevent the adversary
from doing this; for instance, if the adversary could predict some of the bits in
the codewords C(s) and C(t), he could then measure the corresponding qubits,
and gain some information about which bases were used to prepare them. (Note
moreover that the adversary has full knowledge of C, before he measures any
of the qubits.) We will argue that certain properties of the code C prevent the
adversary from learning these basis choices γ perfectly, and that this in turn
limits the adversary’s knowledge of the messages s and t.

Since C is a linear code over GF (2), it has a generator matrix G, which has
rank �. Thus there must exist a subset of � bits of the codeword C(s) that look
uniformly random, assuming the message s was chosen uniformly at random;
and a similar statement holds for C(t). Now, let A be the subset of � qubits that
encode these bits of C(s) and C(t). We can imagine that the fictional adversary
happens to measure these qubits first. Therefore, during these first � steps, the
fictional adversary learns nothing about which bases had been used to prepare

2 We note in passing that Winter’s “gentle measurement lemma” [31] does not imply
an attack on this OTM using LOCC operations; see the full paper [2] for details.
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the state, i.e., the basis choices γ are independent of the fictional adversary’s
measurement outcomes.

One can then show that the conditional distribution of s and t after these first
� steps of the fictional adversary is related to the distribution of measurement
outcomes when the state

⊗
a∈A Ra is measured in a random basis. This kind of

situation has been studied previously, in connection with cryptography in the
bounded quantum storage model. In particular, we can use a high-order entropic
uncertainty relation from [16] to show a lower-bound on the smoothed min-
entropy of this distribution. We then use trivial bounds to analyze the remaining
n lg q − � steps of the fictional adversary. Roughly speaking, we get a bound of
the form:

Hε
∞(S, T |Z) � 1

2 �, (1)

for any separable adversary (where Z denotes the adversary’s measurement out-
come). Thus, while the OTM may leak some information, it still hides a constant
fraction of the bits of the messages s and t. For more details, see Section 3.

Finally, we show one construction of a code C that satisfies the above require-
ments and is efficiently decodable. The basic idea is to fix some q0 < q, first en-
code the messages s and t using a random linear code C0 : {0, 1}� → {0, 1}n lg q0 ,

then encode each block of lg q0 bits using a fixed linear code C1 : {0, 1}lg q0 →
{0, 1}lg q

. The code C1 is used to detect the errors made by the q-ary symmet-
ric channel; these corrupted blocks of bits are then treated as erasures, and we
can decode C0 by solving a linear system of equations, which can be done effi-
ciently. Moreover, choosing C0 to be a random linear encode ensures that, with
high probability, C approaches the capacity of the q-ary symmetric channel. For
more details, see Section 4.

1.2 Outlook

The results of this paper can be summarized as follows: we construct OTM’s
based on conjugate coding, which achieve a fairly strong (“single-shot”) notion of
security, are secure against general LOCC adversaries, and can be implemented
efficiently. These results are a substantial improvement on previous work [1].

We view these results as a first step in a broader research program that aims
to develop practical implementations of isolated qubits, one-time memories, and
ultimately one-time programs.We now comment briefly on some different aspects
of this program.

Experimental realization of isolated qubits is quite challenging, though there
has been recent progress in this direction [39,40]. Broadly speaking, isolated
qubits seem to be at an intermediate level of difficulty, somewhere between pho-
tonic quantum key distribution (which already exists as a commercial product),
and large-scale quantum computers (which are still many years in the future).

Working with quantum devices in the lab also raises the question of fault-
tolerance: can our OTM’s be made robust against minor imperfections in the
qubits? We believe this can be done, by slightly modifying our OTM con-
struction: we would use a slightly noisier channel to describe the imperfect
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measurements made by an honest user, and we would choose the error-correcting
code C accordingly. The proof of security would still hold against LOCC adver-
saries who can make perfect measurements. There is plenty of “slack” in the
security bounds, to allow this modification to the OTM’s.

In addition, one may wonder whether our OTM’s are secure against so-called
“k-local” adversaries [11], which can perform entangled measurements on small
numbers of qubits (thus going outside the isolated qubits model). There is some
reason to be optimistic about this: while we have mainly discussed separable
adversaries in this paper, our security proof actually works for a larger set of
adversaries, who can generate entanglement among some of the qubits, but are
still separable across the partition defined by the subset A (as described in
the proof). Also, from a physical point of view, k-local adversaries are quite
natural. In particular, even when one can perform entangling operations on
pairs of qubits, it may be hard to entangle large numbers of qubits, due to error
accumulation.

Finally, let us turn to the construction of one-time programs. Because our
OTM’s leak some information, it is not clear whether they are sufficient to
construct one-time programs. There are a couple of approaches to this problem.
On one hand, one can try to strengthen the security proof, perhaps by proving
constraints on the types of information that an LOCC adversary can extract
from the OTM. We conjecture that, when our OTM’s are used to build one-time
programs as in [3], the specific information that is relevant to the security of the
one-time program does in fact remain hidden from an LOCC adversary.

On the other hand, one can try to strengthen the OTM constructions, in
order to eliminate the leakage. As noted previously, standard privacy amplifica-
tion (e.g., postprocessing using a randomness extractor) does not work in this
setting, because the adversary also knows the seed for the extractor. However,
there are other ways of solving this problem, for instance by assuming the avail-
ability of a random oracle, or by using something similar to leakage-resilient
encryption [32,33] (but with a different notion of leakage, where the “leakage
function” is restricted to use only LOCC operations, but is allowed access to
side-information).

2 Preliminaries

2.1 Notation

For any natural number n, let [n] denote the set {1, 2, . . . , n}. Let lg(x) = log2(x)
denote the logarithm with base 2.

For any random variable X , let PX be the probability density function of X ,
that is, PX(x) = Pr[X = x]. Likewise, define PX|Y (x|y) = Pr[X = x|Y = y],
etc. For any event E , define PEX to be the probability density function of X
smoothed by E , that is PEX(x) = Pr[X = x and E occurs].

We say that C is a binary code with codeword length n and message length
k if C is a subset of {0, 1}n with cardinality 2k. We say that C has minimum
distance d = minx,y∈C dH(x, y), where dH(·, ·) denotes the Hamming distance.
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We say that C is a binary linear code if C is a linear subspace of GF (2)n.
(Note, GF (2) and {0, 1} denote the same set, but we will write GF (2) in situ-
ations where we use arithmetic operations.) In this case, there exists a matrix
G ∈ GF (2)k×n, such that the map x �→ xTG is a bijection from GF (2)k to the
code subspace C. We will overload the notation and use C to denote the map
x �→ xTG; then the codewords consist of the strings C(x) for all x ∈ GF (2)k.

2.2 The q-ary Symmetric Channel

The q-ary symmetric channel with error probability pe acts as follows: given an
input x ∈ GF (q), it returns an output y ∈ GF (q), with conditional probabilities
Pr(y|x) = 1− pe (if y = x) and Pr(y|x) = pe/(q − 1) (if y �= x). The capacity of
this channel, measured in q-ary symbols per channel use, is given by [23]:

L(pe) = 1 + (1− pe) logq(1 − pe) + pe logq(pe)− pe logq(q − 1)

= 1− h2(pe)

lg q
− pe

lg(q − 1)

lg q
≥ 1− 1

lg q
− pe,

(2)

where h2(·) is the binary entropy function.

2.3 LOCC Adversaries and Separable Measurements

An LOCC adversary is an adversary that uses only local operations and classi-
cal communication (LOCC). Here, “local operations” consist of quantum oper-
ations on single qubits, and “classical communication” refers to the adversary’s
ability to choose each single-qubit operation adaptively, depending on classical
information, such as measurement outcomes, that were obtained from previous
single-qubit operations. However, the adversary is not allowed to make adaptive
choices that depend on quantum information, or perform entangling operations
on multiple qubits.

Formally, an LOCC adversary can be described as follows. Consider a system
of n qubits. The adversary makes a sequence of steps, labelled by i = 1, 2, 3, . . ..
At step i, the adversary chooses one of the qubits qi ∈ [n], and performs a
general quantum measurement Mi on that qubit; this returns a measurement
outcome, which is described by a classical random variable Zi. The adversary’s
choices of qi and Mi can depend on Z1, Z2, . . . , Zi−1. Also, note that the adver-
sary can perform weak measurements, and can measure the same qubit multiple
times. Finally the adversary discards the qubits, and outputs the sequence of
measurement outcomes Z1, Z2, Z3, . . ..

A POVM measurement M = {Mz | z = 1, 2, 3, . . .} is called separable if every
POVM element Mz can be written as a tensor product of single-qubit operators.
It is easy to see that any LOCC adversary can be simulated by a separable
measurement, i.e., for any LOCC adversary A, there exists a separable POVM
measurement M, such that for every quantum state ρ, the output of M acting
on ρ has the same distribution as the output of A acting on ρ [38].
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2.4 Leaky OTM’s

We will use the following definition of a leaky OTM [1].

Definition 1. Fix some class of adversary strategies M, some leakage parameter
δ ∈ [0, 1], and some failure probability ε ∈ [0, 1]. A leaky one-time memory (leaky
OTM) with parameters (M, δ, ε) is a device that has the following behavior. Sup-
pose that the device is programmed with two messages s and t chosen uniformly
at random in {0, 1}�; and let S and T be the random variables containing these
messages. Then:

1. Correctness: There exists an honest strategy M(1) ∈ M that interacts with
the device and recovers the message s with probability ≥ 1 − ε. Likewise,
there exists an honest strategy M(2) ∈ M that recovers the message t with
probability ≥ 1− ε.

2. Leaky security: For every strategy M ∈ M, if Z is the random variable
containing the classical information output by M, then Hε

∞(S, T |Z) ≥ (1−
δ)�.

Here Hε
∞ is the smoothed conditional min-entropy, which is defined as follows

[19,20]:

Hε
∞(X |Y ) = max

E: Pr(E)≥1−ε
min
x,y

[
− lg

[
PEX|Y (x|y)

]]
, (3)

where the maximization is over all events E (defined by the conditional proba-
bilities PE|XY ) such that Pr(E) ≥ 1− ε. Observe that a lower-bound of the form
Hε

∞(X |Y ) ≥ h implies that there exists an event E with Pr(E) ≥ 1−ε such that,
for all x and y, Pr[E , X = x|Y = y] ≤ 2−h.

The definition of a leaky OTM is weaker than that of an ideal OTM in two
important respects: it assumes that the messages s and t are chosen uniformly
at random, independent of all other variables; and it allows the adversary to
obtain partial information about both s and t, so long as the adversary still has
(1 − δ)k bits of uncertainty (as measured by the smoothed min-entropy). We
suspect that this definition of a leaky OTM is not strong enough to construct
one-time programs (although we conjecture that our actual constructions of
OTM’s in Sections 3 and 4 are, in fact, strong enough for this purpose).

2.5 Uncertainty Relations for the Min-entropy

We will use an uncertainty relation from [16], with a slight modification to de-
scribe quantum systems that consist of many non-identical subsystems:

Theorem 1. Consider a quantum system with Hilbert space
⊗�0

i=1 C
di , i.e., the

system can be viewed as a collection of �0 subsystems, where the i’th subsystem
has Hilbert space dimension di.

For each i ∈ [�0], let Bi be a finite collection of orthonormal bases for Cdi ,
and suppose that these bases satisfy the following uncertainty relation: for every
quantum state ρ on Cdi , |Bi|−1

∑
ω∈Bi

H(Pω) ≥ hi, where Pω is the distribution
of measurement outcomes when ρ is measured in basis ω.
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Now let ρ be any quantum state over
⊗�0

i=1 C
di , let Θ = (Θ1, . . . , Θ�0) be

chosen uniformly at random from B1 × · · · ×B�0 , and let X = (X1, . . . , X�0) be
the measurement outcome when ρ is measured in basis Θ (i.e., each Xi is the
outcome of measuring subsystem i in basis Θi).

Then, for any τ > 0, and any λ1, . . . , λ�0 ∈ (0, 12 ), we have:

Hε
∞(X |Θ) ≥ −τ +

�0∑
i=1

(hi − λi), (4)

where ε ≤ exp(−2τ2/c), and c =
∑�0

i=1 16
(
lg |Bi|di

λi

)2
.

The proof is essentially the same as in [16]; it uses a martingale argument and
Azuma’s inequality, but it allows the martingale to have different increments at
each step.

In addition, we will use the following chain rule for the smoothed min-entropy
[20]:

Hε+ε′
∞ (X |Y ) > Hε

∞(X,Y )−H0(Y )− lg( 1
ε′ ). (5)

3 One-Time Memories

We now show the correctness and security of the OTM construction described
in Section 1.1. Recall that this OTM uses n lg q qubits, stores two messages of
length �, and uses an error-correcting code C. We will show how to set n and q,
and how to choose the code C.

Let us introduce some notation. We view the code C as a function C :
{0, 1}� → {0, 1}n lg q

. We view each codeword x ∈ {0, 1}n lg q
as a sequence of n

blocks, where each block is a binary string of length lg q. We write the codeword
as x = (xij)i∈[n],j∈[lg q], and we write the i’th block as xi = (xij)j∈[lg q]. Finally,
let H be the Hadamard gate acting on a single qubit.

We now prepare the qubits in the OTM as follows. For each i = 1, 2, . . . , n,

– Let γi ∈ {0, 1} be the outcome of a fair and independent coin toss.
– If γi = 0, prepare the i’th block of qubits in the state |C(s)i〉.
– If γi = 1, prepare the i’th block of qubits in the state H⊗(lg q)|C(t)i〉.

To recover the first message s, we measure every qubit in the standard basis,
which yields a string of measurement outcomes z ∈ {0, 1}n lg q

, and then we run
the decoding algorithm for C. To recover the second message t, we measure every
qubit in the Hadamard basis, obtain a string of measurement outcomes z, and
again run the decoding algorithm for C.

We will prove the following general theorem, which works for any code C that
satisfies certain properties:

Theorem 2. Let q ≥ 2 be any power of 2. Let Eq be the q-ary symmetric channel
with error probability pe = (1/2) − (1/2q). Let � ≥ 1 and n ≥ 1, and let C :

{0, 1}� → {0, 1}n lg q
be any error-correcting code that satisfies the following two

requirements:
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1. C can transmit information reliably over the channel Eq (where the channel
treats each block of lg q bits as a single q-ary symbol).

2. C is a linear code over GF (2).

Then the above OTM stores two messages s, t ∈ {0, 1}�, and has the following
properties:

1. The OTM behaves correctly for honest parties.
2. For any small constants 0 < λ � 1

2 , 0 < τ0 � 1, and 0 < δ � 1, the follow-
ing statement holds. Suppose the messages s and t are chosen independently
and uniformly at random in {0, 1}�. For any separable adversary,3 we have
the following security bound:

Hδ+ε
∞ (S, T |Z)

≥
(
(12 − λ)− 4τ0 (1 +

1√
lg q

(1 + lg 1
λ)) + (2− 1

α )
)
· �− lg 1

δ

�
(

1
2 + (2 − 1

α )
)
· �.

(6)

Here S and T are the random variables describing the two messages, Z is
the random variable representing the adversary’s measurement outcome, we
have ε ≤ exp(−2τ20 �/ lg q), and α = �/(n lg q) is the rate of the code C.

Note that, to get a strong security bound, one must use a code C whose rate α
is large. It is useful to ask, then, how large α can be. Let Lq denote the capacity
of the channel Eq, measured in q-ary symbols per channel use. Using a good code
C, we can hope to have rate α ≈ Lq. Moreover, Lq is lower-bounded by:

Lq ≥ 1− 1
lg q − pe =

1
2 − 1

lg q + 1
2q ≈ 1

2 , (7)

which is nearly tight when q is large. So we can hope to have α ≈ 1
2 , in which

case our security bound becomes:

Hδ+ε
∞ (S, T |Z) � 1

2 �. (8)

3.1 Correctness for Honest Parties

We first show the “correctness” part of Theorem 2. Without loss of generality,
suppose we want to recover the first message s. (A similar argument applies

if we want to recover the second message t.) Let z ∈ {0, 1}n lg q
be the string

of measurement outcomes obtained by measuring each qubit in the standard
basis. Observe that z is the output of a q-ary symmetric channel Eq with error

probability pe = (1/2)−(1/2q), acting on the string C(s) ∈ {0, 1}n lg q
(viewed as

a sequence of n symbols in GF (q)). Since the code C can transmit information
reliably over this channel, it follows that we can recover s.

3 Note that this includes LOCC adversaries as a special case.
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3.2 Security against Separable Adversaries

We now show the “security” part of Theorem 2. Let us first introduce some nota-
tion (see Figure 1). Suppose the OTM is programmed with two messages s and t

that are chosen independently and uniformly at random in {0, 1}�. Let S and T
be the random variables representing these messages. Let Γ be the random vari-
able representing the coin flips γ = (γ1, . . . , γn) used in programming the OTM.

C denotes the error-correcting code, which maps {0, 1}� to {0, 1}n lg q. “Select”

is an operation that maps {0, 1}n lg q×{0, 1}n lg q
to {0, 1}n lg q

, depending on the
value of Γ , as follows:

Select(x, y)i,j =

{
xi,j if Γi = 0,

yi,j if Γi = 1,
for all i ∈ [n], j ∈ [lg q]. (9)

“Select” outputs a string of n lg q classical bits, which are converted into n lg q
qubits (in the standard basis states |0〉 and |1〉). H denotes a Hadamard gate
controlled by the value of Γ ; that is, for each i ∈ [n] and j ∈ [lg q], if Γi = 1,
then H is applied to the (i, j)’th qubit.

Fix any separable adversary A, let L be the number of possible outcomes that
can be observed by the adversary, and let M = {Mz | z ∈ [L]} be the separable
POVM measurement performed by the adversary. Let Z be the random variable
representing the adversary’s output; so Z takes values in [L].

Coin flips Γ

Message S

Message T

C

Select

C

�

H

�

Adversary A Z [Z = z]

Fictional A(f) Q [Q = 0]

Fig. 1. OTM with separable adversary A, and “fictional” adversary A(f). In the proof,
we will analyze the distributions of S and T conditioned on the events Z = z and
Q = 0.

Fix some small constant δ > 0. We say that a measurement outcome z ∈ [L]
is “negligible” if Pr[Z = z] ≤ (δ/2n lg q) tr(Mz). Note that the probability of
observing any of these “negligible” measurement outcomes is small:

Pr[Z is “negligible”] =
∑

z “negl.”

Pr[Z = z] ≤ (δ/2n lg q)
∑

z “negl.”

tr(Mz) ≤ δ. (10)

The proof will proceed as follows: for all messages s, t ∈ {0, 1}�, and for all
measurement outcomes z ∈ [L] that are not “negligible,” we will upper-bound
Pr[S = s, T = t|Z = z]. This will imply a lower-bound on Hδ

∞(S, T |Z), which is
what we desire.
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A Fictional Adversary. We begin by fixing some measurement outcome z ∈
[L] that is not “negligible.” Since the adversary performed a separable measure-
ment, we can write the corresponding POVM element Mz as a tensor product of
single-qubit operators. In particular, we can write Mz = tr(Mz)

⊗n
i=1

⊗lg q
j=1 Rij ,

where each Rij is a single-qubit operator, positive semidefinite, with trace 1.
We now construct a fictional adversary A(f), which we will use in the proof.

The fictional adversary acts in the following way: for each qubit (i, j) ∈ [n]×[lg q],
it performs the POVM measurement {Rij , I −Rij} on qubit (i, j), which yields
a binary measurement outcome Qij (where Qij = 0 corresponds to the POVM
element Rij , and Qij = 1 corresponds to I − Rij). Let us write the vector of

measurement outcomes asQ = (Qij)i∈[n], j∈[lg q], which takes values in {0, 1}n lg q.

Let 0 denote the vector (0, 0, . . . , 0) ∈ {0, 1}n lg q
.

Intuitively, the event Q = 0 (in an experiment using the fictional adversary)
corresponds to the event Z = z (in an experiment using the real adversary).

More precisely, for any s, t ∈ {0, 1}�, we have

PST |Z(s, t|z) =
PZ|ST (z|s, t)PST (s, t)

PZ(z)

=
PQ|ST (0|s, t) tr(Mz)PST (s, t)

PQ(0) tr(Mz)
= PST |Q(s, t|0).

(11)

We will proceed by upper-bounding PST |Q(s, t|0) (with the fictional adversary);
this will imply an upper-bound on PST |Z(s, t|z) (with the real adversary).

Properties of the Codewords C(S) and C(T ). Recall that the messages S
and T are independently and uniformly distributed in GF (2)�. Now consider the
codewords C(S) and C(T ). We claim that there exists a subset of � coordinates
of C(S) and C(T ) that are independently and uniformly distributed in GF (2)�.

To see this, recall that C is a linear code over GF (2). Hence the encoding
operation C : GF (2)� → GF (2)n lg q can be written in the form C(x) = xTG
for some matrix G ∈ GF (2)�×n lg q. Since the codewords C(x) are all distinct,
the matrix G must have row-rank �. Hence the column-rank of G must also be
�, so there exists a subset of � columns of G that are linearly independent over
GF (2). Let us denote this subset by A ⊂ [n]× [lg q], |A| = �.

Now look at those coordinates of C(S) and C(T ) that correspond to the subset
A; we write these as C(S)A = (C(S)ij)(i,j)∈A and (C(T )ij)(i,j)∈A. It follows that

C(S)A and C(T )A are independently and uniformly distributed in GF (2)�.

Behavior of the Fictional Adversary on the Subset of Qubits A. We now
analyze the behavior of the fictional adversary on those qubits belonging to the
subset A. Without loss of generality, we can assume that the fictional adversary
measures the qubits in the subsetA first, and then measures the remaining qubits
in the subset ([n] × [lg q]) \ A. (This follows because the fictional adversary is
non-adaptive, in that it makes all its decisions about what measurements to
perform, before seeing any of the results of the measurements; and because all
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of the measurements commute with one another, since each measurement only
involves a single qubit.)

For convenience, let B = ([n] × [lg q]) \ A. Let QA = (Qij)(i,j)∈A denote the
measurement outcomes of the qubits in the subset A, and let QB = (Qij)(i,j)∈B

denote the measurement outcomes of the qubits in the subset B.
We claim that the OTM’s coin tosses Γ , conditioned on the event QA = 0, are

still uniformly distributed in {0, 1}n. This is a fairly straightforward calculation;
see the full paper [2] for details.

Using the Uncertainty Relation. We will upper-bound these probabilities
PST |ΓQA

(s, t|γ, 0), using an entropic uncertainty relation. The basic idea is to
consider another experiment, where one runs the OTM and the fictional adver-
sary “backwards” in time. This experiment can be analyzed using the uncertainty
relation in Theorem 1 (originally due to [16]).

We now describe this new experiment (see Figure 2). One prepares the quan-
tum state

⊗
(i,j)∈A Rij , one chooses a uniformly random sequence of measure-

ment bases Θ = (Θ1, . . . , Θn) (where Θi = 0 denotes the standard basis and
Θi = 1 denotes the Hadamard basis), and then one measures each qubit (i, j) ∈ A
in the basis Θi to get a measurement outcome Xij (which can be either 0 or 1).

Intuitively, the state
⊗

(i,j)∈A Rij corresponds to the fictional adversary’s
measurement outcome QA = 0, the random bases Θ correspond to the OTM’s
coin flips Γ , and the measurement outcomes X correspond to those bits C(S)A
and C(T )A used in the OTM. (Note that the OTM’s coin flips Γ are uniformly
distributed, even when one conditions on the event QA = 0, as shown in the
previous section.)

H

�

State
⊗

(i,j)∈A Rij

Coin flips Θ

MeasureX

Fig. 2. In order to understand the behavior of the fictional adversary, conditioned on
the event QA = 0, we consider an analogous experiment, where the state

⊗
(i,j)∈A Rij

is measured in a random basis. We will analyze this using an entropic uncertainty
relation.

To make this intuition precise, we will first show that:

Hε
∞(S, T |Γ,QA = 0) = Hε

∞(X |Θ) + �. (12)

(See the full version [2] for details.) Then note that conditioning on Γ can only
reduce the entropy, hence we have:

Hε
∞(S, T |QA = 0) ≥ Hε

∞(X |Θ) + �. (13)

We then use Theorem 1 to show a lower-bound on Hε
∞(X |Θ); see the full paper

[2] for details.
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Combining All the Pieces. The fictional adversary’s complete sequence of
measurement outcomes is denoted by Q = (QA, QB). So far we have analyzed
the adversary’s actions on those qubits belonging to the subset A, and we have
shown a lower-bound on Hε

∞(S, T |QA = 0). Now, we will show a lower-bound on
Hε

∞(S, T |Q = 0). To do this, we bound the adversary’s actions on the subset B in
a more-or-less trivial way, using the fact that Pr[Q = 0] = Pr[Z = z]/ tr(Mz) ≥
δ/2n lg q, since z was assumed to be “non-negligible.”

We will then consider the real adversary, and show a lower-bound on
Hδ+ε

∞ (S, T |Z). Here we use the following identity that relates the real adver-
sary and the fictional adversary (see equation (11)):

Hε
∞(S, T |Z = z) = Hε

∞(S, T |Q = 0). (14)

Finally we combine these results to prove the theorem; see the full paper [2] for
details.

4 Efficient Implementations of One-Time Memories

In the previous section, we showed that one-time memories can be constructed
from any code that approaches the capacity of the q-ary symmetric channel, and
is linear over GF (2). In this section, we will construct codes that have these
properties, and moreover can be encoded and decoded efficiently. Using these
codes, we will get efficient implementations of one-time memories.

Message S
� = k lg q0

C0

n lg q0

lg q0
C1

lg q

C1

(n blocks)

n lg q

Codeword X

Fig. 3. Efficient codes for the q-ary symmetric channel, based on erasure coding and
error detection

There are several known constructions for codes that approach the capacity
of the q-ary symmetric channel, and are efficiently decodable [22,23,24]. To il-
lustrate how these techniques can be applied in our setting, we will describe one
simple approach, which is based on erasure coding and error detection [23]. (See
Figure 3.)

The basic idea is to take the message s, encode it using a code C0 that outputs
a string of q0-ary symbols (where q0 < q), and then encode each q0-ary symbol
using a code C1 that outputs a q-ary symbol. The code C1 is used to detect
errors made by the q-ary symmetric channel; once detected, these errors can be
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treated as erasures. The code C0 is then used to correct these erasures, which is
relatively straightforward. For instance, we can choose C0 to be a random linear
code; then we can decode in the presence of erasure errors by solving a linear
system of equations, which we can do efficiently.

We now describe the construction in detail. Let k ≥ 2 be an integer, let
pe ∈ (0, 1), and choose any small constants 0 < ε � 1, 0 < δ � 1 and 0 < θ � 1.
Define:

n =

⌊
k

1− pe − θ

⌋
, (15)

q = 2c, c = lg q =
⌊
2
δ

⌋ ⌈
εn+ lg(npe)

⌉
, (16)

q0 = 2c0, c0 = lg q0 =
⌈
2
δ − 2

⌉ ⌈
εn+ lg(npe)

⌉
. (17)

Note that our setting is slightly unusual, in that we will be constructing codes
for the q-ary symmetric channel where q is not fixed. In particular, lg q (the
number of bits used to describe each q-ary symbol) grows polynomially with the
codeword length n, which is proportional to the message length k.

We will construct a code C : {0, 1}k lg q0 → {0, 1}n lg q as follows:

1. Choose a uniformly random matrix G0 ∈ GF (2)k lg q0×n lg q0 , and define a

code C0 : {0, 1}k lg q0 → {0, 1}n lg q0 by setting C0(s) = sTG0.
2. Fix any full-rank matrix G1 ∈ GF (2)lg q0×lg q, and define a code C1 :

{0, 1}lg q0 → {0, 1}lg q
by setting C1(v) = vTG1.

3. Define C(s) = C1 ◦ C0(s), where we view C0(s) ∈ {0, 1}n lg q0 as a sequence
of n blocks of lg q0 bits, and C1 acts separately on each of these blocks.
Equivalently, we can write C(s) = sTG0(

⊕n
i=1 G1), where

⊕n
i=1 G1 denotes

a direct sum of n copies of the matrix G1.

We use the following decoding algorithm:

1. Given a string z ∈ {0, 1}n lg q, write it as a sequence of n blocks of lg q bits:
z = (zij)i∈[n],j∈[lg q].

2. For each i ∈ [n], try to decode the q-ary symbol zi ∈ {0, 1}lg q
, i.e., try to find

some v ∈ {0, 1}lg q0 such that C1(v) = zi. Let bi be the result (or set bi = ∗
if zi lies outside the image of C1). Thus we get a string b = (b1, b2, . . . , bn) ∈(
{0, 1}lg q0 ∪ {∗}

)n
.

3. Try to decode the string b, treating the ∗ symbols as erasures, i.e., try to find
some a ∈ {0, 1}k lg q0 such that, for all i ∈ [n] such that bi �= ∗, and for all
j ∈ [lg q], C0(a)ij = bij . If a solution exists, output it; if there are multiple
solutions, choose any one of them and output it; otherwise, abort.

Finally, we introduce some more notation. Let us choose a message (repre-

sented by a random variable S) uniformly at random in {0, 1}k lg q0 . Let Eq be
the q-ary symmetric channel with error probability pe. We take the message S,
encode it using the code C, transmit it through the channel Eq, then run the

decoding algorithm, and get an estimate of the original message; call this Ŝ.
We prove the following statement (see the full paper [2] for details):
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Theorem 3. Let k ≥ 2 be an integer, let pe ∈ (0, 1), and choose any small
constants 0 < ε � 1, 0 < δ � 1 and 0 < θ � 1. Let us construct the code
C : {0, 1}k lg q0 → {0, 1}n lg q

as described above. Then C has the following
properties:

1. With high probability (over the choice of the random matrix G0), C can
transmit information reliably over the q-ary symmetric channel Eq with error
probability pe.
More precisely, choose any small constant τ such that 0 < τ < θ, and choose
any large constant λ � 1. Then, with probability ≥ 1 − 1

λ (over the choice
of G0), the code C can transmit information over the channel Eq, and the
probability of decoding failure is bounded by:

Pr[Ŝ �= S] ≤ λ
(
e−2τ2n + 2−εn + 2(−nθ+nτ+1) lg q0

)
≤ e−Ω(n). (18)

2. C is a linear code over GF (2).
3. C has rate α := k lg q0

n lg q ≥ (1 − pe − θ)(1 − δ). (Note that this approaches the

capacity of the channel Eq, as shown in equation (2), when q is large.)
4. The encoding and decoding algorithms for C run in time polynomial in n lg q.

(Also note that lg q grows at most linearly with n, and n is proportional to
k.)

Finally, we can take the code C constructed above (for pe =
1
2 ), and combine

it with the OTM construction of Theorem 2, to get the following result:

Corollary 1. For any k ≥ 2, and for any small constant 0 < μ � 1, there exists
an OTM construction that stores two messages s, t ∈ {0, 1}�, where � = Θ(k2),
and has the following properties:

1. The OTM behaves correctly for honest parties.
2. The OTM can be implemented in time polynomial in k.
3. Let 0 < δ � 1 be any small constant. Suppose the messages s and t are

chosen independently and uniformly at random in {0, 1}�. For any separable
adversary,4 we have the following security bound:

Hδ+ε
∞ (S, T |Z) ≥ (12 − μ) �− lg 1

δ . (19)

Here S and T are the random variables describing the two messages, Z is
the random variable representing the adversary’s measurement outcome, and
we have ε ≤ exp(−Ω(k)).
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Abstract. We study random number generators (RNGs) with input,
RNGs that regularly update their internal state according to some aux-
iliary input with additional randomness harvested from the environment.
We formalize the problem of designing an efficient recovery mechanism
from complete state compromise in the presence of an active attacker. If
we knew the timing of the last compromise and the amount of entropy
gathered since then, we could stop producing any outputs until the state
becomes truly random again. However, our challenge is to recover within
a time proportional to this optimal solution even in the hardest (and
most realistic) case in which (a) we know nothing about the timing of
the last state compromise, and the amount of new entropy injected since
then into the state, and (b) any premature production of outputs leads to
the total loss of all the added entropy used by the RNG. In other words,
the challenge is to develop recovery mechanisms which are guaranteed to
save the day as quickly as possible after a compromise we are not even
aware of. The dilemma is that any entropy used prematurely will be lost,
and any entropy which is kept unused will delay the recovery.

After formally modeling RNGs with input, we show a nearly optimal
construction that is secure in our very strong model. Our technique is
inspired by the design of the Fortuna RNG (which is a heuristic RNG
construction that is currently used by Windows and comes without any
formal analysis), but we non-trivially adapt it to our much stronger ad-
versarial setting. Along the way, our formal treatment of Fortuna enables
us to improve its entropy efficiency by almost a factor of two, and to show
that our improved construction is essentially tight, by proving a rigorous
lower bound on the possible efficiency of any recovery mechanism in our
very general model of the problem.
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1 Introduction

Randomness is essential in many facets of cryptography, from the generation
of long-term cryptographic keys, to sampling local randomness for encryption,
zero-knowledge proofs, and many other randomized cryptographic primitives. As
a useful abstraction, designers of such cryptographic schemes assume a source
of (nearly) uniform, unbiased, and independent random bits of arbitrary length.
In practice, however, this theoretical abstraction is realized by means of a Ran-
dom Number Generator (RNG), whose goal is to quickly accumulate entropy
from various physical sources in the environment (such as keyboard presses or
mouse movement) and then convert it into the required source of (pseudo) ran-
dom bits. We notice that a highly desired (but, alas, rarely achieved) property
of such RNGs is their ability to quickly recover from various forms of state
compromise, in which the current state S of the RNG becomes known to the at-
tacker, either due to a successful penetration attack, or via side channel leakage,
or simply due to insufficient randomness in the initial state. This means that
the state S of practical RNGs should be periodically refreshed using the above-
mentioned physical sources of randomness I. In contrast, the simpler and much
better-understood theoretical model of pseudorandom generators (PRGs) does
not allow the state to be refreshed after its initialization. To emphasize this dis-
tinction, we will sometimes call our notion an “RNG with input”, and notice that
virtually all modern operating systems come equipped with such an RNG with
input; e.g., /dev/random [21] for Linux, Yarrow [14] for MacOs/iOS/FreeBSD
and Fortuna [10] for Windows [9].

Unfortunately, despite the fact that they are widely used and often referred to
in various standards [2,8,13,16], RNGs with input have received comparatively
little attention from theoreticians. The two notable exceptions are the works of
Barak and Halevi [1] and Dodis et al. [5]. The pioneering work of [1] emphasized
the importance of rigorous analysis of RNGs with input and laid their first
theoretical foundations. However, as pointed out by [5], the extremely clean and
elegant security model of [1] ignores the “heart and soul” issue of most real-
world RNGs with input, namely, their ability to gradually “accumulate” many
low-entropy inputs I into the state S at the same time that they lose entropy due
to premature use. In particular, [5] showed that the construction of [1] (proven
secure in their model) may always fail to recover from state compromise when
the entropy of each input I1, . . . , Iq is sufficiently small, even for arbitrarily large
q.

Motivated by these considerations, Dodis et al. [5] defined an improved se-
curity model for RNGs with input, which explicitly guaranteed eventual re-
covery from any state compromise, provided that the collective fresh entropy
of inputs I1, . . . , Iq crosses some security threshold γ∗, irrespective of the en-
tropies of individual inputs Ij . In particular, they demonstrated that Linux’s
/dev/random does not satisfy their stronger notion of robustness (for simi-
lar reasons as the construction of [1]), and then constructed a simple scheme
which is provably robust in this model. However, as we explain below, their
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robustness model did not address the issue of efficiency of the recovery mecha-
nism when the RNG is being continuously used after the compromise.

The Premature Next Problem. In this paper, we extend the model of [5]
to address some additional desirable security properties of RNGs with input not
captured by this model. The main such property is resilience to the “premature
next attack”. This general attack, first explicitly mentioned by Kelsey, Schneier,
Wagner, and Hall [15], is applicable in situations in which the RNG state S
has accumulated an insufficient amount of entropy e (which is very common
in bootup situations) and then must produce some outputs R via legitimate
“next” calls in order to generate various system keys. Not only is this R not
fully random (which is expected), but now the attacker can potentially use R
to recover the current state S by brute force, effectively “emptying” the e bits
of entropy that S accumulated so far. Applied iteratively, this simple attack,
when feasible, can prevent the system from ever recovering from compromise,
irrespective of the total amount of fresh entropy injected into the system since
the last compromise.

At first, it might appear that the only way to prevent this attack is by dis-
covering a sound way to estimate the current entropy in the state and to use
this estimate to block the premature next calls. This is essentially the approach
taken by Linux’s /dev/random and many other RNGs with input. Unfortunately,
sound entropy estimation is hard or even infeasible [10,20] (e.g., [5] showed sim-
ple ways to completely fool Linux’s entropy estimator). This seems to suggest
that the modeling of RNGs with input should consider each premature next call
as a full state compromise, and this is the highly conservative approach taken
by [5] (which we will fix in this work).

Fortuna. Fortunately, the conclusion above is overly pessimistic. In fact, the
solution idea already comes from two very popular RNGs mentioned above,
whose designs were heavily affected by the desire to overcome the premature
next problem: Yarrow (designed by Schneier, Kelsey and Ferguson [14] and used
by MacOS/iOS/FreeBSD), and its refinement Fortuna (subsequently designed
by Ferguson and Schneier [10] and used by Windows [9]). The simple but brilliant
idea of these works is to partition the incoming entropy into multiple entropy
“pools” and then to cleverly use these pools at vastly different rates when pro-
ducing outputs, in order to guarantee that at least one pool will eventually accu-
mulate enough entropy to guarantee security before it is “prematurely emptied”
by a next call. (See Section 4 for more details.)

Ferguson and Schneier provide good security intuition for their Fortuna “pool
scheduler” construction, assuming that all the RNG inputs I1, . . . , Iq have the
same (unknown) entropy and that each of the pools can losslessly accumulate
all the entropy that it gets. (They suggest using iterated hashing with a cryp-
tographic hash function as a heuristic way to achieve this.) In particular, if q is
the upper bound on the number of inputs, they suggest that one can make the
number of pools P = log2 q, and recover from state compromise (with premature
next!) at the loss of a factor O(log q) in the amount of fresh entropy needed.
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Our Main Result. Inspired by the idea of Fortuna, we formally extend the
prior RNG robustness notion of [5] to robustness against premature next. Unlike
Ferguson and Schneier, we do so without making any restrictive assumptions
such as requiring that the entropy of all the inputs Ij be constant. (Indeed,
these entropies can be adversarily chosen, as in the model of [5], and can be
unknown to the RNG.) Also, in our formal and general security model, we do
not assume ideal entropy accumulation or inherently rely on cryptographic hash
functions. In fact, our model is syntactically very similar to the prior RNG model
of [5], except: (1) a premature next call is not considered an unrecoverable state
corruption, but (2) in addition to the (old) “entropy penalty” parameter γ∗, there
is a (new) “time penalty” parameter β ≥ 1, measuring how long it will take to
recover from state compromise relative to the optimal recovery time needed to
receive γ∗ bits of fresh entropy. (See Figures 2 and 3.)

To summarize, our model formalizes the problem of designing an efficient recov-
ery mechanism from state compromise as an online optimization problem. If we
knew the timing of the last compromise and the amount of entropy gathered since
then, we could stop producing any outputs until the state becomes truly random
again. However, our challenge is to recover within a time proportional to this op-
timal solution even in the hardest (and most realistic) case in which (a) we know
nothing about the timing of the last state compromise, and the amount of new
entropy injected since then into the state, and (b) any premature production of
outputs leads to the total loss of all the added entropy used by the RNG, since
the attacker can use brute force to enumerate all the possible low-entropy states.
In other words, the challenge is to develop recovery mechanisms which are guar-
anteed to save the day as quickly as possible after a compromise we are not even
aware of. The dilemma that we face is that any entropy used prematurely will be
lost, and any entropy which is kept unused will delay the recovery.

After extending our model to handle premature next calls, we define the gen-
eralized Fortuna construction, which is provably robust against premature next.
Although heavily inspired by actual Fortuna, the syntax of our construction
is noticeably different (See Figure 5), since we prove it secure in a stronger
model and without any idealized assumptions (like perfect entropy accumula-
tion, which, as demonstrated by the attacks in [5], is not a trivial thing to sweep
under the rug). In fact, to obtain our construction, we: (a) abstract out a rigor-
ous security notion of a (pool) scheduler; (b) show a formal composition theorem
(Theorem 2) stating that a secure scheduler can be composed with any robust
RNG in the prior model of [5] to achieve security against premature next; (c)
obtain our final RNG by using the provably secure RNG of [5] and a Fortuna-like
scheduler (proven secure in our significantly stronger model). In particular, the
resulting RNG is secure in the standard model, and only uses the existence of
standard PRGs as its sole computational assumption.

Constant-Rate RNGs. In Section 5.3, we consider the actual constants in-
volved in our construction, and show that under a reasonable setting or param-
eters, our RNG will recover from compromise in β = 4 times the number of
steps it takes to get 20 to 30 kB of fresh entropy. While these numbers are a
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bit high, they are also obtained in an extremely strong adversarial model. In
contrast, remember that Ferguson and Schneier informally analyzed the security
of Fortuna in a much simpler case in which entropy drips in at a constant rate.
While restrictive, in Section 6 we also look at the security of generalized Fortuna
(with a better specialized scheduler) in this model, as it could be useful in some
practical scenarios and allow for a more direct comparison with the original For-
tuna. In this simpler constant entropy dripping rate, we estimate that our RNG
(with standard security parameters) will recover from a complete compromise
immediately after it gets about 2 to 3 kB of entropy (see the full version for de-
tails [6]), which is comparable to [10]’s (corrected) claim, but without assuming
ideal entropy accumulation into the state. In fact, our optimized constant-rate
scheduler beats the original Fortuna’s scheduler by almost a factor of 2 in terms
of entropy efficiency.

Rate Lower Bound. We also show that any “Fortuna-like construction” (which
tries to collect entropy in multiple pools and cleverly utilize them with an arbi-
trary scheduler) must lose at least a factor Ω(log q) in its “entropy efficiency”,
even in the case where all inputs Ij have an (unknown) constant-rate entropy.
This suggests that the original scheduler of Fortuna (which used log q pools
which evenly divide the entropy among them) is asymptotically optimal in the
constant-rate case (as is our improved version).

Semi-Adaptive Set-Refresh. As a final result, we make progress in address-
ing another important limitation of the model of Dodis et al. [5] (and our direct
extension of the current model that handles premature nexts). Deferring techni-
cal details to the full version [6], in that model the attacker A had very limited
opportunities to adaptively influence the samples produced by another adver-
sarial quantity, called the distribution sampler D. As explained there and in [5],
some assumption of this kind is necessary to avoid impossibility results, but it
does limit the applicability of the model to some real-world situations. As the
initial step to removing this limitation, in the full version we introduce the “semi-
adaptive set-refresh” model and show that both the original RNG of [5] and our
new RNG are provably secure in this more realistic adversarial model [6].

Other Related Work. As we mentioned, there is very little literature focusing
on the design and analysis of RNGs with inputs in the standard model. In
addition to [1,5], some analysis of the Linux RNG was done by Lacharme, Röck,
Strubel and Videau [17]. On the other hand, many works showed devastating
attacks on various cryptographic schemes when using weak randomness; some
notable examples include [4, 7, 11, 12, 15, 18, 19].

2 Preliminaries

Entropy. For a discrete distribution X , we denote its min-entropy by H∞(X) =
minx{− logPr[X = x]}. We also define worst-case min-entropy of X conditioned
on another random variable Z by in the following conservative way: H∞(X |Z) =



42 Y. Dodis et al.

− log([maxx,z Pr[X = x|Z = z]]). We use this definition instead of the usual
one so that it satisfies the following relation, which is called the “chain rule”:
H∞(X,Z)−H∞(Z) ≥ H∞(X |Z).

Pseudorandom Functions and Generators. We say that a function F :
{0, 1}�×{0, 1}m → {0, 1}m is a (deterministic) (t, qF, ε)-pseudorandom function
(PRF) if no adversary running in time t and making qF oracle queries to F(key, ·)
can distinguish between F(key, ·) and a random function with probability greater
than ε when key

$← {0, 1}�. We say that a function G : {0, 1}m → {0, 1}n is a
(deterministic) (t, ε)-pseudorandom generator (PRG) if no adversary running in
time t can distinguish between G(seed) and uniformly random bits with proba-
bility greater than ε when seed

$← {0, 1}m.

Game Playing Framework. For our security definitions and proofs we use
the code-based game-playing framework of [3]. A game GAME has an initialize
procedure, procedures to respond to adversary oracle queries, and a finalize pro-
cedure. A game GAME is executed with an adversary A as follows: First, initialize
executes, and its outputs are the inputs to A. Then A executes, its oracle queries
being answered by the corresponding procedures of GAME. When A terminates,
its output becomes the input to the finalize procedure. The output of the latter
is called the output of the game, and we let GAMEA ⇒ y denote the event that
this game output takes value y. AGAME denotes the output of the adversary and
AdvGAME

A = 2 × Pr[GAMEA ⇒ 1] − 1. Our convention is that Boolean flags are
assumed initialized to false and that the running time of the adversary A is de-
fined as the total running time of the game with the adversary in expectation,
including the procedures of the game.

3 RNG with Input: Modeling and Security

In this section we present formal modeling and security definitions for RNGs
with input, largely following [5].

Definition 1 (RNG with input). An RNG with input is a triple of algorithms
G = (setup, refresh, next) and a triple (n, �, p) ∈ N3 where n is the state length,
� is the output length and p is the input length of G:

– setup: a probabilistic algorithm that outputs some public parameters seed for
the generator.

– refresh: a deterministic algorithm that, given seed, a state S ∈ {0, 1}n and
an input I ∈ {0, 1}p, outputs a new state S′ = refresh(seed, S, I) ∈ {0, 1}n.

– next: a deterministic algorithm that, given seed and a state S ∈ {0, 1}n,
outputs a pair (S′, R) = next(seed, S) where S′ ∈ {0, 1}n is the new state
and R ∈ {0, 1}� is the output.

Before moving to defining our security notions, we notice that there are two
adversarial entities we need to worry about: the adversary A whose task is (intu-
itively) to distinguish the outputs of the RNG from random, and the distribution
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sampler D whose task is to produce inputs I1, I2, . . . , which have high entropy
collectively, but somehow help A in breaking the security of the RNG. In other
words, the distribution sampler models potentially adversarial environment (or
“nature”) where our RNG is forced to operate.

3.1 Distribution Sampler

The distribution sampler D is a stateful and probabilistic algorithm which, given
the current state σ, outputs a tuple (σ′, I, γ, z) where: (a) σ′ is the new state for
D; (b) I ∈ {0, 1}p is the next input for the refresh algorithm; (c) γ is some fresh
entropy estimation of I, as discussed below; (d) z is the leakage about I given
to the attacker A. We denote by qD the upper bound on number of executions
of D in our security games, and say that D is legitimate if

H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ0, . . . , γqD ) ≥ γj (1)

for all j ∈ {1, . . . , qD} where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qD} and
σ0 = 0.1

Dodis et al. provide a detailed discussion of the distribution sampler
in [5], which we also include in the full version of this paper for completeness [6].
In particular, note that the distribution sampler D is required to output a lower
bound γ on the min-entropy of I. These entropy estimates will be used in the
security game. In particular, we of course cannot guarantee security unless the
distribution sampler has provided the challenger with some minimum amount of
entropy. Many implemented RNGs try to get around this problem by attempting
to estimate the entropy of a given distribution directly in some ad-hoc manner.
However, entropy estimation is impossible in general and computationally hard
even in very special cases [20]. Note that these entropy estimates will be used
only in the security game, and are not given to the refresh and next procedures.
By separating entropy estimation from security, [5] provides a meaningful defini-
tion of security without requiring the RNG to know anything about the entropy
of the sampled distributions.

3.2 Security Notions

We define the game ROB(γ∗) in our game framework. We show the initialize and
finalize procedures for ROB(γ∗) in Figure 1. The attacker’s goal is to guess the
correct value b picked in the initialize procedure with access to several oracles,
shown in Figure 2. Dodis et al. define the notion of robustness for an RNG with
input [5]. In particular, they define the parametrized security game ROB(γ∗)
where γ∗ is a measure of the “fresh” entropy in the system when security should
be expected. Intuitively, in this game A is able to view or change the state of the
RNG (get-state and set-state), to see output from it (get-next), and to update
1 Since conditional min-entropy is defined in the worst-case manner, the value γj in the

bound below should not be viewed as a random variable, but rather as an arbitrary
fixing of this random variable.
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it with a sample Ij from D (D-refresh). In particular, notice that the D-refresh
oracle keeps track of the fresh entropy in the system and declares the RNG to
no longer be corrupted only when the fresh entropy c is greater than γ∗. (We
stress again that the entropy estimates γi and the counter c are not available
to the RNG.) Intuitively, A wins if the RNG is not corrupted and he correctly
distinguishes the output of the RNG from uniformly random bits.

proc. initialize

seed
$← setup; σ ← 0; S $← {0, 1}n

c ← n; corrupt ← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Fig. 1. Procedures initialize and finalize for G = (setup, refresh, next)

proc. D-refresh
(σ, I, γ, z)

$← D(σ)
S ← refresh(S, I)
c ← c+ γ
IF c ≥ γ∗,

corrupt ← false
OUTPUT (γ, z)

proc. get-state
c ← 0; corrupt ← true
OUTPUT S

proc. set-state(S∗)
c ← 0; corrupt ← true
S ← S∗

proc. next-ror
(S,R0) ← next(S)

R1
$← {0, 1}�

IF corrupt = true,
c ← 0
RETURN R0

ELSE OUTPUT Rb

proc. get-next
(S,R) ← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

Fig. 2. Procedures in ROB(γ∗) for G = (setup, refresh, next)

Definition 2 (Security of RNG with input). A pseudorandom number gen-
erator with input G = (setup, refresh, next) is called ((t, qD , qR, qS), γ

∗, ε)-robust
if for any attacker A running in time at most t, making at most qD calls to
D-refresh, qR calls to next-ror or get-next and qS calls to get-state or set-state,
and any legitimate distribution sampler D inside the D-refresh procedure, the
advantage of A in game ROB(γ∗) is at most ε.

Notice that in ROB(γ∗), if A calls get-next when the RNG is still corrupted,
this is a “premature” get-next and the entropy counter c is reset to 0. Intu-
itively, [5] treats information “leaked” from an insecure RNG as a total com-
promise. We modify their security definition and define the notion of robustness
against premature next with the corresponding security game NROB(γ∗, γmax, β).
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Our modified game NROB(γ∗, γmax, β) has identical initialize and finalize proce-
dures to [5]’s ROB(γ∗) (Figure 1). Figure 3 shows the new oracle queries. The
differences with ROB(γ∗) are highlighted for clarity.

In our modified game, “premature” get-next calls do not reset the entropy
counter. We pay a price for this that is represented by the parameter β ≥ 1.
In particular, in our modified game, the game does not immediately declare
the state to be uncorrupted when the entropy counter c passes the threshold γ∗.
Instead, the game keeps a counter T that records the number of calls to D-refresh
since the last set-state or get-state (or the start of the game). When c passes γ∗, it
sets T ∗ ← T and the state becomes uncorrupted only after T ≥ βT ∗ (of course,
provided A made no additional calls to get-state or set-state). In particular, while
we allow extra time for recovery, notice that we do not require any additional
entropy from the distribution sampler D.

Intuitively, we allow A to receive output from a (possibly corrupted) RNG
and, therefore, to potentially learn information about the state of the RNG
without any “penalty”. However, we allow the RNG additional time to “mix the
fresh entropy” received from D, proportional to the amount of time T ∗ that it
took to get the required fresh entropy γ∗ since the last compromise.

As a final subtlety, we set a maximum γmax on the amount that the entropy
counter can be increased from one D-refresh call. This might seem strange, since
it is not obvious how receiving too much entropy at once could be a problem.
However, γmax will prove quite useful in the analysis of our construction. Intu-
itively, this is because it is harder to “mix” entropy if it comes too quickly. Of
course γmax is bounded by the length of the input p, but in practice we often
expect it to be substantially lower. In such cases, we are able to prove much
better performance for our RNG construction, even if γmax is unknown to the
RNG. In addition, we get very slightly better results if some upper bound on
γmax is incorporated into the construction.

Definition 3 (Security of RNG with input against premature next).
A pseudorandom number generator with input G = (setup, refresh, next) is called
((t, qD, qR, qS), γ

∗, γmax, ε, β)-premature-next robust if for any attacker A run-
ning in time at most t, making at most qD calls to D-refresh, qR calls to next-ror
or get-next and qS calls to get-state or set-state, and any legitimate distribu-
tion sampler D inside the D-refresh procedure, the advantage of A in game
NROB(γ∗, γmax, β) is at most ε.

Relaxed Security Notions. We note that the above security definition is
quite strong. In particular, the attacker has the ability to arbitrarily set the
state of G many times. Motivated by this, we present several relaxed security
definitions that may better capture real-world security. These definitions will be
useful for our proofs, and we show in Section 4.2 that we can achieve better
results for these weaker notions of security:

– NROBreset(γ
∗, γmax, β) is NROB(γ∗, γmax, β) in which oracle calls to set-state

are replaced by calls to reset-state. reset-state takes no input and simply sets
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proc. D-refresh
(σ, I, γ, z)

$← D(σ)
S ← refresh(S, I)

IF γ > γmax, THEN γ ← γmax

c ← c+ γ

T ← T + 1

IF c ≥ γ∗,
corrupt ← false

IF T ∗ = 0,
T ∗ ← T

IF T ≥ β · T ∗,
corrupt ← false

OUTPUT (γ, z)

proc. next-ror
(S,R0) ← next(S)

R1
$← {0, 1}�

IF corrupt = true,
c ← 0
RETURN R0

ELSE OUTPUT Rb

proc. get-next
(S,R) ← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0; corrupt ← true

T ← 0; T ∗ ← 0

OUTPUT S

proc. set-state(S∗)
c ← 0; corrupt ← true

T ← 0; T ∗ ← 0

S ← S∗

Fig. 3. Procedures in NROB(γ∗, γmax, β) for G = (setup, refresh, next) with differences
from ROB(γ∗) highlighted

the state of G to some fixed state S0, determined by the scheme and sets the
entropy counter to zero.2

– NROB1set(γ
∗, γmax, β) is NROB(γ∗, γmax, β) in which the attacker may only

make one set-state call at the beginning of the game.
– NROB0set(γ

∗, γmax, β) is NROB(γ∗, γmax, β) in which the attacker may not
make any set-state calls.

We define the corresponding security notions in the natural way (See Def-
inition 3), and we call them respectively robustness against resets, robustness
against one set-state, and robust without set-state.

4 The Generalized Fortuna Construction

At first, it might seem hopeless to build an RNG with input that can recover from
compromise in the presence of premature next calls, since output from a com-
promised RNG can of course reveal information about the (low-entropy) state.
Surprisingly, Ferguson and Schneier presented an elegant away to get around
this issue in their Fortuna construction [10]. Their idea is to have several “pools
of entropy” and a special “register” to handle next calls. As input that potentially
has some entropy comes into the RNG, any entropy “gets accumulated” into one
pool at a time in some predetermined sequence. Additionally, some of the pools
may be used to update the register. Intuitively, by keeping some of the entropy
away from the register for prolonged periods of time, we hope to allow one pool
to accumulate enough entropy to guarantee security, even if the adversary makes
arbitrarily many premature next calls (and therefore potentially learns the entire
2 Intuitively, this game captures security against an attacker that can cause a machine

to reboot.
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state of the register). The hope is to schedule the various updates in a clever way
such that this is guaranteed to happen, and in particular Ferguson and Schneier
present an informal analysis to suggest that Fortuna realizes this hope in their
“constant rate” model (in which the entropy γi of each input is an unknown
constant).

In this section, we present a generalized version of Fortuna in our model and
terminology. In particular, while Fortuna simply uses a cryptographic hash func-
tion to accumulate entropy and implicitly assumes perfect entropy accumulation,
we will explicitly define each pool as an RNG with input, using the robust con-
struction from [5] (and simply a standard PRG as the register). And, of course,
we do not make the constant-rate assumption. We also explicitly model the
choice of input and output pools with a new object that we call a scheduler,
and we define the corresponding notion of scheduler security. In addition to pro-
viding a formal model, we achieve strong improvements over Fortuna’s implicit
scheduler.

As a result, we prove formally in the standard model that the generalized
Fortuna construction is premature-next robust when instantiated with a number
of robust RNGs with input, a secure scheduler, and a secure PRG.

4.1 Schedulers

Definition 4. A scheduler is a deterministic algorithm SC that takes as input
a key skey and a state τ ∈ {0, 1}m and outputs a new state τ ′ ∈ {0, 1}m and two
pool indices, in, out ∈ N ∪ {⊥}.

We call a scheduler keyless if there is no key. In this case, we simply omit the
key and write SC(τ). We say that SC has P pools if for any skey and any state
τ , if (τ ′, in, out) = SC(skey, τ), then in, out ∈ [0, P − 1] ∪ {⊥}.

Given a scheduler SC with skey and state τ , we write

SCq(skey, τ) = (inj(SC, skey, τ), outj(SC, skey, τ))qj=1 (2)

to represent the sequence obtained by computing (in, out, τ) ← SC(skey, τ) re-
peatedly, a total of q times. When SC, skey, and τ are clear or implicit, we will
simply write inj and outj . We think of inj as a pool that is to be “filled” at time
j and outj as a pool to be “emptied” immediately afterwards. When outj = ⊥,
no pool is emptied.

For a scheduler with P pools, we define security game SGAME(P, q, wmax, α, β)
as in Figure 4. In the security game, there are two adversaries, a sequence sampler
E and an attacker A. We think of the sequence sampler E as a simplified version
of the distribution sampler D that is only concerned with the entropy estimates
(γi)

q
i=1. E simply outputs a sequence of weights (wi)

q
i=1 with 0 ≤ wi ≤ wmax,

where we think of the weights as normalized entropies wi = γi/γ
∗ and wmax =

γmax/γ
∗.

The challenger chooses a key skey at random. Given skey and (wi)
q
i=1, A

chooses a start state for the scheduler τ0, resulting in the sequence (ini, outi)
q
i=1.
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proc. SGAME
w1, . . . , wq ← E
skey

$← {0, 1}|skey|
τ0 ← A(skey, (wi)

q
i=1)

(ini, outi)
q
i=1 ← SCq(skey, τ0)

c ← 0; c0 ← 0, . . . , cP−1 ← 0; T ∗ ← 0
FOR T in 1, . . . , q,

IF wT > wmax, THEN OUTPUT 0
c ← c+wT ; cinT ← cinT + wT

IF out �= ⊥,
IF coutT ≥ 1, THEN OUTPUT 0
ELSE coutT ← 0

IF c ≥ α
IF T ∗ = 0, THEN T ∗ ← T
IF T ≥ β · T ∗, THEN OUTPUT 1

OUTPUT 0

Fig. 4. SGAME(P, q, wmax, α, β), the security game for a scheduler SC

Each pool has an accumulated weight cj , initially 0, and the pools are filled and
emptied in sequence; on the T -th step, the weight of pool inT is increased by wT

and pool outT is emptied (its weight set to 0), or no pool is emptied if out = ⊥.
If at some point in the game a pool whose weight is at least 1 is emptied, the
adversary loses. (Remember, 1 here corresponds to γ∗, so this corresponds to the
case when the underlying RNG recovers.) We say that such a pool is a winning
pool at time T against (τ0, (wi)

q
i=1). On the other hand, the adversary wins if∑T∗

i=1 wi ≥ α and the game reaches the (β · T ∗)-th step (without the challenger
winning). Finally, if neither event happens, the adversary loses.

Definition 5 (Scheduler security). A scheduler SC is (t, q, wmax, α, β, ε)-
secure if it has P pools and for any pair of adversaries E ,A with cumulative
run-time t, the probability that E ,A win game SGAME(P, q, wmax, α, β) is at
most ε. We call r = α · β the competitive ratio of SC.3

We note that schedulers are non-trivial objects. Indeed, in the full version of
the paper [6], we prove the following lower bounds, which in particular imply
that schedulers can only achieve superconstant competitive ratios r = α · β.

Theorem 1. Suppose that SC is a (t, q, wmax, α, β, ε)-secure scheduler running
in time tSC. Let r = α · β be the competitive ratio. Then, if q ≥ 3, ε < 1/q,
t = Ω(q · (tSC + log q)), and r ≤ wmax

√
q, we have that

3 The intuition for the competitive ratio r = α ·β (which will be explicit in Section 6)
comes from the case when the sequence sampler E is restricted to constant sequences
wi = w. In that case, r bounds the ratio between the time taken by SC to win and
the time taken to receive a total weight of one.
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r > loge q − loge(1/wmax)− loge loge q − 1 , (3)

α >
wmax

wmax + 1
· loge(1/ε)− 1

loge loge(1/ε) + 1
. (4)

4.2 The Composition Theorem

Our generalized Fortuna construction consists of a scheduler SC with P pools, P
entropy pools Gi, and register ρ. The Gi are themselves RNGs with input and ρ
can be thought of as a much simpler RNG with input which just gets uniformly
random samples. On a refresh call, Fortuna uses SC to select one pool Gin to
update and one pool Gout from which to update ρ. next calls use only ρ.

Formally, we define a generalized Fortuna construction as follows: Let SC
be a scheduler with P pools and let pools Gi = (setupi, refreshi, nexti) for i =
0, . . . , P − 1 be RNGs with input. For simplicity, we assume all the RNGs have
input length p and output length �, and the same setup procedure, setupi =
setupG . We also assume G : {0, 1}� → {0, 1}2� is a pseudorandom generator
(without input). We construct a new RNG with input G(SC, (Gi)

P−1
i=0 ,G) =

(setup, refresh, next) as in Figure 5.

proc. setup :

seedG
$← setupG()

skey
$← {0, 1}|skey|

OUTPUT seed = (skey, seedG)

proc.next(seed, S) :
PARSE

(
τ, Sρ, (Si)

P−1
i=0

)
← S

(Sρ, R) ← G(Sρ)

OUTPUT (S =
(
τ, Sρ, (Si)

P−1
i=0

)
, R)

proc. refresh(seed, S, I) :
PARSE (skey, seedG) ← seed
PARSE

(
τ, Sρ, (Si)

P−1
i=0

)
← S

(τ, in, out) ← SC(skey, τ )
Sin ← refreshin(seedG , Sin, I)
(Sout, R) ← nextout(seedG , Sout)
Sρ ← Sρ ⊕R

OUTPUT S =
(
τ, Sρ, (Si)

P−1
i=0

)

Fig. 5. The generalized Fortuna construction

We prove the following composition theorem in the full version of this paper
[6].

Theorem 2. Let G be an RNG with input constructed as above. If the sched-
uler SC is a (tSC , qD, wmax, α, β, εSC)-secure scheduler with P pools and state
length m, the pools Gi are ((t, qD, qR = qD, qS), γ

∗, ε)-robust RNGs with input and
the register G is (t, εprg)-pseudorandom generator, then G is ((t′, qD, q

′
R, qS), α ·

γ∗, wmax · γ∗, ε′, β)-premature-next robust where t′ ≈ min(t, tSC) and ε′ = q2D ·
qS · (qD · εSC + P · 2m · ε+ q′Rεprg).

For our weaker security notions, we achieve better ε′:

– For NROBreset, ε′ = q2D · qS · (qD · εSC + P · ε+ q′Rεprg).
– For NROB1set, ε′ = qD · εSC + P · 2m · ε+ q′Rεprg.
– For NROB0set, ε′ = qD · εSC + P · ε+ q′Rεprg.



50 Y. Dodis et al.

5 Instantiating the Construction

5.1 A Robust RNG with Input

Recall that our construction of a premature-next robust RNG with input still
requires a robust RNG with input. We therefore present [5]’s construction of
such an RNG.

Let G : {0, 1}m → {0, 1}n+� be a (deterministic) pseudorandom generator
where m < n. Let [y]m1 denote the first m bits of y ∈ {0, 1}n. The [5] construction
of an RNG with input has parameters n (state length), � (output length), and
p = n (sample length), and is defined as follows:

– setup(): Output seed = (X,X ′) ← {0, 1}2n.
– S′ = refresh(S, I): Given seed = (X,X ′), current state S ∈ {0, 1}n, and a

sample I ∈ {0, 1}n, output: S′ := S · X + I, where all operations are over
F2n .

– (S′, R) = next(S): Given seed = (X,X ′) and a state S ∈ {0, 1}n, first
compute U = [X ′ · S]m1 . Then output (S′, R) = G(U).

Theorem 3 ( [5, Theorem 2]). Let n > m, �, γ∗ be integers and εext ∈ (0, 1)
such that γ∗ ≥ m+2 log(1/εext)+1 and n ≥ m+2 log(1/εext)+log(qD)+1. Assume
that G : {0, 1}m → {0, 1}n+� is a deterministic (t, εprg)-pseudorandom generator.
Let G = (setup, refresh, next) be defined as above. Then G is a ((t′, qD, qR, qS), γ

∗,
ε)-robust RNG with input where t′ ≈ t, ε = qR(2εprg + q2Dεext + 2−n+1).

Dodis et al. recommend using AES in counter mode to instantiate their PRG,
and they provide a detailed analysis of its security with this instantiation. (See [5,
Section 6.1].) We notice that our construction only makes next calls to their RNG
during our refresh calls, and Ferguson and Schneier recommend limiting the
number of refresh calls by simply allowing a maximum of ten per second [10].
They therefore argue that it is reasonable to set qD = 232 for most security
cases (effectively setting a time limit of over thirteen years). So, we can plug in
qD = qR = qS = 232.

In this setting, guidelines of [5, Section 6.1] show that their construction can
provide a pseudorandom 128-bit string after receiving γ∗

0 bits of entropy with γ∗
0

in the range of 350 to 500, depending on the desired level of security.

5.2 Scheduler Construction

To apply Theorem 2, we still need a secure scheduler (as defined in Section 4.1).
Our scheduler will be largely derived from Ferguson and Schneier’s Fortuna
construction [10], but improved and adapted to our model and syntax. In our
terminology, Fortuna’s scheduler SCF is keyless with log2 q pools, and its state
is a counter τ . The pools are filled in a “round-robin” fashion. Every log2 q steps,
Fortuna empties the maximal pool i such that 2i divides τ/ log2 q.

SCF is designed to be secure against some unknown but constant sequence
of weights wi = w.4 We modify Fortuna’s scheduler so that it is secure against
4 We analyze their construction against constant sequences more carefully in Section 6.
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proc. SC(skey, τ ) :
IF τ �= 0 mod P/wmax, THEN out ← ⊥
ELSE out ← max{out : τ = 0 mod 2out · P/wmax}
in ← F(skey, τ )
τ ′ ← τ + 1 mod q
OUTPUT (τ ′, in, out)

Fig. 6. Our scheduler construction

arbitrary (e.g., not constant) sequence samplers by replacing the round-robin
method of filling pools with a pseudorandom sequence.

Assume for simplicity that log2 log2 q and log2(1/wmax) are integers. We let
P = log2 q − log2 log2 q − log2(1/wmax). We denote by skey the key for some
pseudorandom function F whose range is {0, . . . , P − 1}. Given a state τ ∈
{0, . . . , q − 1} and a key skey, we define SC(skey, τ) formally in Figure 6. In
particular, the input pool is chosen pseudorandomly such that in = F(skey, τ).
When τ = 0 mod P/wmax, the output pool is chosen such that out is maximal
with 2out · P/wmax divides τ . (Otherwise, there is no output pool.)

The following theorem is proven in the full version of this paper [6].

Theorem 4. If the pseudorandom function F is (t, q, εF)-secure, then for any
ε ∈ (0, 1), the scheduler SC defined above is (t′, q, wmax, α, β, εSC)-secure with
t′ ≈ t, εSC = q · (εF + ε), α = 2 · (wmax · loge(1/ε) + 1) · (log2 q − log2 log2 q −
log2(1/wmax)), and β = 4.

Remark. Note that we set P = log2 q − log2 log2 q − log2(1/wmax) for the sake
of optimization. In practice, wmax = γmax/γ

∗ may be unknown, in which case we
can safely use log2 q − log2 log2 q pools at a very small cost. So, one can safely
instantiate our scheduler (and the corresponding RNG) without a known bound
on wmax, and still benefit if wmax happens to be low in practice.

Instantiation and Concrete Numbers. To instantiate the scheduler in
practice, we suggest using AES as the PRF F. As in [5], we ignore the com-
putational error term εF and set εSC ≈ qε.5 In our application, our scheduler
will be called only on refresh calls to our generalized Fortuna RNG construction,
so we again set q = 232. It seems reasonable for most realistic scenarios to set
wmax = γmax/γ

∗ ≈ 1/16 and εSC ≈ 2−192, but we provide values for other wmax

and ε as well:

εSC q wmax α P
2−128 232 1/64 115 21
2−128 232 1/16 367 23
2−128 232 1/4 1445 25
2−128 232 1 6080 27

εSC q wmax α P
2−192 232 1/64 144 21
2−192 232 1/16 494 23
2−192 232 1/4 2000 25
2−192 232 1 8476 27

εSC q wmax α P
2−256 232 1/64 174 21
2−256 232 1/16 622 23
2−256 232 1/4 2554 25
2−256 232 1 10, 871 27

5 See [5] for justification for such an assumption.
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5.3 Putting It All Together

Now, we have all the pieces to build an RNG with input that is premature-next
robust (by Theorem 2). Again setting q = 232 and assuming wmax = γmax/γ

∗ ≈
32/500 ≈ 1/16, our final scheme can output a secure 128-bit key in four times
the amount of time that it takes to receive roughly 20 to 30 kilobytes of entropy.

6 Constant-Rate Adversaries

We note that the numbers that we achieve in Section 5.3 are not ideal. But, our
security model is also very strong. So, we follow Ferguson and Schneier [10] and
consider the weaker model in which the distribution sampler D is restricted to
a constant entropy rate. Analysis in this model suggests that our construction
may perform much in practice. Indeed, if we think of the distribution sampler
D as essentially representing nature, this model may not be too unreasonable.

Constant-Rate Model. We simply modify our definitions in the natural way.
We say that a distribution (resp., sequence) sampler is constant if, for all i, γi = γ
(resp., wi = w) for all i for some fixed γ (resp., w). We say that a scheduler is
(t, q, wmax, r, ε)-secure against constant sequences if, for some6 α, β such that
α · β = r it is (t, q, wmax, α, β, ε)-secure when the sequence sampler E is required
to be constant. When ε = 0 and the adversaries are allowed unbounded compu-
tation (as is the case in our construction), we simply leave out the parameters t
and ε. We similarly define premature-next robustness for RNGs with input.

In the full version [6], we the note that our composition theorem, Theorem 2,
applies equally well in the constant-rate case. This allows us to construct an RNG
with input that is premature-next robust against constant adversaries with much
better parameters.

Optimizing Fortuna’s Scheduler. Ferguson and Schneier essentially analyze
the security of a scheduler that is a deterministic version of our scheduler from
Section 5.2, with pseudorandom choices replaced by round-robin choices [10].
(This is, of course, where we got the idea for our scheduler.) They conclude
that it achieves a competitive ratio of 2 log2 q. However, the correct value is
3 log2 q.7 Ferguson and Schneier’s model differs from ours in that they do not
consider adversarial starting times τ0 between the emptying of pools. Taking
this (important) consideration into account, it turns out that SCF achieves a
competitive ratio of rF = 3.5 log2 q in our model.8

Interestingly, the pseudocode in [10] actually describes a potentially
stronger scheduler than the one that they analyzed. Instead of emptying just
6 We note that when the sequence sampler E must be constant, (t, q, wmax, α, β, ε)-

security is equivalent to (t, q, wmax, α
′, β′, ε)-security if α · β = α′ · β′.

7 There is an attack: Let w = 1/(2i +1) and start Fortuna’s counter so that pool i+1
is emptied after 2i · log2 q steps. Clearly, SCF takes (2i +2i+1) · log2 q = 3 · 2i · log2 q
total steps to finish, achieving a competitive ratio arbitrarily close to 3 log2 q.

8 This follows from the analysis of our own scheduler in the full version [6].
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pool i, this new scheduler empties each pool j with j ≤ i. Although Ferguson
and Schneier did not make use of this in their analysis, we observe that this
would lead to significantly improved results provided that the scheduler could
“get credit” for all the entropy from multiple pools. While our model cannot syn-
tactically capture the notion of multiple pools being emptied at once, we notice
that it can simulate a multiple-pool scheduler by simply treating any set of pools
that is emptied together at a given time as one new pool.

In the full version of this paper, we make this observation concrete and further
optimize the scheduler of Fortuna to obtain the following result [6].

Theorem 5. For any integer b ≥ 2, there exists a keyless scheduler SCb that is
(q, wmax, rb)-secure against constant sequences where

rb =
(
b+

wmax

b
+

1− wmax

b2

)
· (logb q − logb logb q − logb(1/wmax)) . (5)

In particular, with wmax = 1 and q → ∞, b = 3 is optimal with

r3 ≈ 2.1 log2 q ≈ rF
1.66

≈ r2
1.19

≈ r4
1.01

. (6)

We note that SCb performs even better in the non-asymptotic case. For exam-
ple, in the case that Ferguson and Schneier analyzed, q = 232 and wmax = 1, we
have r3 ≈ 58.2 ≈ rF

1.9 , saving almost half the entropy compared to Fortuna.
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Cryptography with Streaming Algorithms�
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Abstract. We put forth the question of whether cryptography is fea-
sible using streaming devices. We give constructions and prove lower
bounds. In streaming cryptography (not to be confused with stream-
ciphers) everything—the keys, the messages, and the seeds—are huge
compared to the internal memory of the device. These streaming algo-
rithms have small internal memory size and make a constant number
of passes over big data maintained in a constant number of read/write
external tapes. Typically, the internal memory size is O(log n) and we
use 2 external tapes; whereas 1 tape is provably insufficient. In this set-
ting we cannot compute instances of popular intractability assumptions.
Nevertheless, we base cryptography on these assumptions by employing
non-black-box techniques, and study its limitations.

We introduce new techniques to obtain unconditional lower bounds
showing that no super-linear stretch pseudorandom generator exists, and
no Public Key Encryption (PKE) exists with private-keys of size sub-
linear in the plaintext length.

For possibility results, assuming the existence of one-way functions
computable in NC1—e.g. factoring, lattice assumptions—we obtain
streaming algorithms computing one-way functions and pseudorandom
generators. Given the Learning With Errors (LWE) assumption we con-
struct PKE where both the encryption and decryption are streaming
algorithms. The starting point of our work is the groundbreaking work
of Applebaum-Ishai-Kushilevitz on Cryptography in NC0. In the end,
our developments are technically orthogonal to their work; e.g. there is
a PKE where the decryption is a streaming algorithm, whereas no PKE
decryption can be in NC0.

Keywords: streaming, lower bound, big data, randomized encoding,
non-black-box, PRG, PKE.

1 Introduction

In most cryptosystems the keys can be assumed to reside in a local memory
provided with unlimited access.What if access to the keys is not for free? Suppose
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that the key is very long and, together with everything else in the input, is stored
as a stream that can be sequentially scanned only a few times. Is it possible to
compute cryptographically secure functions in this way?

More formally, we consider the possibility of cryptography against arbitrary
polynomial time adversaries, who are as powerful as usual, using a (less powerful)
streaming algorithm which has access to a bounded internal memory, and to
external read/write tapes (RW streams) where we quantify on the number of
passes over them. These RW streams are commonly thought (see e.g. [19,17] and
references within) to correspond to hard disk drives or other sequentially accessed
buffers. The question of cryptography using streaming devices is motivated in
practice in settings where the keys and messages are huge (e.g. authenticating
big data), whereas theoretically it falls in the fundamental study of cryptography
with rudimentary resources.

Below, we give an overview of our results, then we discuss related work and
several subtleties of streaming cryptography, and finally we compare to previous
work in randomized encodings.

Our results. For the rest of this paper and unless mentioned otherwise, a stream-
ing algorithm has 2 RW streams (external tapes), over which it makes O(1) many
passes, and it uses O(log n) internal memory size1 for input length n. These are
optimal parameters, within constants, under which streaming cryptography may
exist (we show that 1 read/write stream is not sufficient). We devise streaming
constructions of private- and public-key primitives by synthesizing various pre-
vious works along with new techniques necessary for streaming. This possibility
is quite unexpected for distinct reasons. We also introduce technically novel ma-
chinery and study the limitations of private- and public-key cryptography in this
setting.

Impossibility results. We show the impossibility of super-linear stretch streaming
pseudorandom generator, and we also obtain a linear (in the security parameter)
lower bound on the key-size of streaming PKE. The proof technique is inspired
by [19,17]. However, a cryptography lower bound is not for a specific function as
per usual streaming lower bounds. It must hold for all cryptographically secure
functions realizing the same primitive.

Possibility results. Given that one-way functions exist in NC1, e.g. based on fac-
toring or lattice assumptions, we construct one-way functions and pseudorandom
generators by streaming algorithms that use: internal memory of size O(log n),
2 RW streams (one contains the input and the other one is auxiliary), 5 passes
in total for one-way functions and 7 for pseudorandom generators.

Starting from the Learning With Errors (LWE) assumption [8] and based
on the constructions in [8,7] we construct an Indistinguishable under Chosen-
Plaintext Attack (IND-CPA) secure (or semantically secure [21]) Public-Key

1 Logarithmic memory size precludes uninteresting trivialities that can happen for
size ω(log n), when one assumes the existence of very hard functions. In this case,
in principle the question is not about streaming.
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Encryption (PKE), where both the encryption and the decryption are streaming
algorithms. This is mainly a feasibility result. Improved key-lengths, and a CCA-
secure PKE are very interesting open questions.

For the existence of streaming one-way functions and pseudorandom genera-
tors, the assumption can be relaxed to existence of one-way functions in Logspace.
For PKE we rely on LWE, a concrete intractability assumption.

Relation to previous work. The construction of streaming one-way functions
from an arbitrary one-way function in NC1 relies on Barrington’s characteriza-
tion [20]. In particular, computing a boolean NC1 function reduces in some very
local sense to computing the product σ1σ2 · · ·σm of permutations from Sym(5),
the symmetric group over 5 letters. Kilian [23] encoded σ = σ1 · · ·σm as σ̂ =
〈σ1r1, r

−1
1 σ2r2, . . . , r

−1
m−1σm〉 for uniformly random chosen ri’s. Then, given σ̂ we

canefficiently “decode”σ,whereasno additional informationaboutσ1, · · · , σm can
be extracted. The seminal work of Applebaum-Ishai-Kushilevitz [10,9,11,3] pro-
vides a paradigm for dealing with general forms of similar randomized encodings.

Constructing a pseudorandom generator is more complex. One could have
tried to implement as a streaming algorithm the steps of the celebrated [14]
construction. Indeed, such a streaming pseudorandom generator is non-trivially
achievable given certain entropy parameters of hashed values. But, there is no
obvious way to streaming-compute these values, neither can it be circumvented
by creating many copies as in [14]. We instead adapt [5,16] that bypass this
obstacle and also buys us efficiency over [14]. Both [5] and [16] can be non-
trivially modified into streaming algorithms. We use [5] because it is simpler
and gives better parameters.

Regarding Public Key Encryption systems, we base our construction on [8,7],
where the original constructions are not streaming computable.

Why streaming cryptography is not immediate from concrete hardness as-
sumptions, such as lattice assumptions? By modifying [17] we see that multiply-
ing a matrix by a vector requires Ω(logn) many passes if the number of streams
is constant and the internal memory logarithmic. This limitation is circumvented
by taking randomized encodings of NC1 computations of such functions (these
are non-black-box constructions since the computation itself is encoded). We
note that [12] ruled out families of black-box streaming cryptography construc-
tions and it conjectured impossibility of streaming cryptography with a constant
number of passes, which we refute in this paper. Thus, the possibility of stream-
ing cryptography is unexpected.

One more reason that makes streaming cryptography counter-intuitive is that
no single-stream algorithm with internal memory size O(log n) and O(1)-many
passes computes a one-way function. However, by adding a second stream we
can bring the number of passes down to a constant, and this strongly contrasts
folk wisdom2 in streaming computation.

2 It was believed that for common types of functions, if when adding a second tape
helps then permuting the input in the single-stream model will help as well. But a
permuted one-way function is also one-way.
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The multiple read/write (RW) streammodel we consider here is closely related
to the reversals-parameterized Turing Machines [2,18], except that we only make
forward scans. To the best of our knowledge, before our work for o(log n) many
passes in the literature there were only lower bounds, e.g. [19,17]. This multiple
stream model generalizes the single-streammodel, aka “online model”, which has
been scrutinized for quite a while. In the study of randomness [15] gives lower
bounds in the single-stream model as well as constructions for online universal
hash functions, extractors, and condensers. Also, a restricted form of the single-
stream model with read-only (RO) input was studied in [13,6].

Table 1. Cryptography with Streaming Algorithms vs Cryptography in NC0

Streaming Model NC0

one-way function
pseudorandom generator (PRG)

� �

PKE (Enc & Dec) � ×
linear-stretch PRG ? from Alekhnovitch’s assumption [22]

super-linear-stretch PRG × ?

Streaming Cryptography vs NC0 and Locality. Streaming cryptography
and [10,9,1,11,3] rely on randomized encodings, but they are incomparable in a
number of places. There are obvious things streaming algorithms can do (e.g.
sample almost uniformly from Sym(5)) but NC0 cannot, whereas, generally, NC0

functions with underlying dependency graphs of poly(n) treewidth cannot be
computed by streaming algorithms. This holds in particular for circuits associ-
ated with cellular automata (CA) as they appear in [3], where the treewidth is
Ω(

√
n). Furthermore, there are concrete technical separations between stream-

ing and highly parallel cryptography. For example, IND-CPA secure PKE with
streaming encryption and decryption exists whereas no NC0 decryption is possi-
ble (and for AC0 is still open). The CAs constructions are based on the concrete
DRLC assumption (see Section 7), whereas even for [1] (these CAs make a single
step that makes them a special case of constant input/output locality circuits
[1]) it is impossible to start from general encodings. Our streaming private-key
primitives are from generic assumptions.

2 Preliminaries

We use capital bold letters, e.g. A, to denote matrices, and use lower case bold
letters, e.g. x, for column vectors, and correspondingly xT for row vectors. Let
Zq := Z/qZ = {0, 1, 2, · · · , q − 1} be the ring of integers with addition and
multiplication modulo q.

Probability distributions are denoted by calligraphic letters, e.g. D. We use
x ← D to denote that x is sampled from D, and x ∈R S when x is sampled
uniformly from the set S. Un denotes the uniform distribution over {0, 1}n and
US is the uniform distribution over the set S.
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In this work all complexity classes are function classes (but we prefer to write
e.g. NC0 instead of FNC0). Logspace denotes the set of all functions computable
by a Turing Machine (transducer) with a read-only input, O(log n) large working
tape, and a write-only output tape.

For i ∈ Z≥0, NCi denotes the set of functions computable by families of poly-
size boolean circuits with constant fan-in gates and O(logi n) depth for input
length n. A family of circuits is (log-space) uniform if there is a (log-space)
Turing machine such that on input 1n, n ∈ Z≥0, it generates the description of
the corresponding circuit in the family.

An (s, p, t) streaming algorithm is a Turing machine that has internal mem-
ory s(n), t-many unbounded external RW streams which we can scan from left
to right for p(n) passes. Unless mentioned otherwise for a streaming algorithm
s(n) = O(log n), t = 2, and p = O(1). A function is streaming computable if it
can be computed by a streaming algorithm. An oblivious streaming algorithm
is one where the head movement and the internal memory depend only on the
time step.

Private and public key primitives. f : {0, 1}∗ → {0, 1}∗ is a (T, ε)-secure one-
way function for T = T (n), ε = ε(n) if f is polynomial time computable and
for all sufficiently large n, for every time T randomized algorithm A, we have
Pry←f(Un)[f

(
A(y)

)
= y] < ε.

A polynomial time computable function G : {0, 1}∗ → {0, 1}∗ is a (T, ε)-
pseudorandom generator if ∀x, |G(x)| > |x| and G(Un) is (T, ε)-pseudorandom,
i.e. for sufficiently large n and for every time T randomized algorithm D, there
is
∣∣Pr[D(G(Un)) = 1]− Pr[D(U|G(1n)|) = 1]

∣∣ < ε . For simplicity, we omit (T, ε)

for computational security, i.e. when T = nω(1), ε = n−ω(1).
A public-key encryption (PKE) system consists of three polynomial time al-

gorithms KeyGen, Enc, Dec, for key-generation, encryption and decryption
respectively, where the key-generation and the encryption are probabilistic. (i)
KeyGen takes the security parameter 1n as input and it generates a public en-
cryption key PK and a private decryption key SK; (ii) Enc outputs a ciphertext
c on input (PK,m), for every m drawn from the message space; (iii) Dec takes
(SK, c) as input to decrypt m from c with overwhelming probability over the
random choices of Enc. We say that a PKE system is streaming computable if
both Enc and Dec are streaming algorithms.

In a PKE system, IND-CPA security is defined in the following security ex-
periment as a game between a Challenger and an Adversary:

– The challenger runs KeyGen and uses its random choices to generate a
public PK and a private SK key, and reveals the PK to the adversary.

– The adversary chooses two equal-length messages x0 and x1, and sends them
to the challenger.

– The challenger flips an unbiased coin b ∈R {0, 1}, computes c = Enc(PK,xb)
and gives the ciphertext c to the adversary.

– The adversary outputs b′ ∈ {0, 1} based on PK and c, and it wins if and
only if b′ = b.
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Here the adversary is a probabilistic polynomial time algorithm. The PKE is
IND-CPA secure if for every k ∈ R, we have Pr[b′ = b] < 1

2 +
1

Nk , when N = |xi|
is sufficiently large.

Randomized Encoding. For a function f : {0, 1}n → {0, 1}m, the function

f̂ : {0, 1}n × {0, 1}ρ → {0, 1}m′
is a randomized encoding of f if the follow-

ing conditions hold

1. For every x ∈ {0, 1}n, the output distribution f̂(x,Uρ) uniquely determines

a f(x), i.e. f̂(x, r) �= f̂(x′, r′) for any r, r′, as long as f(x) �= f(x′).
2. The output distribution is fully determined by the encoded value f(x), i.e.

if f(x) = f(x′) then f̂(x,Uρ) and f̂(x′,Uρ) are identically.

3. |ρ| = poly(n) and there are poly(n)-time algorithms to decode f(x) from any

sample in f̂(x,Uρ), and to sample from f̂(x,Uρ) when given f(x).

Intuitively, (1) means that f̂(x, r) contains all information about f(x), and

(2) asserts that f̂(x,Uρ) reveals no extra information about x other than the
value of f(x). Putting these two together we have that if f is a one-way function

then f̂ is also one-way [10].

3 Warm-Up: How to Construct Streaming One-Way
Functions?

We present a generic compiler (Section 3.2) that maps every f ∈ NC1 to its

streaming randomized encoding f̂ . Due to a very useful coincidence regarding
the specific encoding we use, and after a little “massaging” we get f̂ computable
with 2 streams (the reader is encouraged to think ahead to see where the issue
is). Corollary 1 immediately follows by [10].

Theorem 1. Every function f ∈ NC1 has a randomized encoding function f̂
which is oblivious streaming computable with 5 passes.

Corollary 1. A streaming one-way function exists if a one-way function exists
in Logspace.

Here is an advanced remark. The construction in the proof of Theorem 1
relies on a specific randomized encoding that also causes a polynomial blow-up
compared to the regular output of Barrington (see below). unavoidable (for this
technique) and why the AIK encoding [10] cannot be used.

3.1 Background: NC1 to Width-5 Branching Programs

Let us now recall the definition of a bounded-width permutation branching pro-
gram.
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Definition 1. A width-w permutation branching program is a sequence of m =
m(n) instructions Bn = (s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉), where for every
1 ≤ i ≤ m, ji ∈ {1, · · · , n}, σi, τi ∈ Sym(w). Here Sym(w) refers to the group of
permutations over [w] = {1, 2, · · · , w}. On input x = (x1, · · · , xn) ∈ {0, 1}n, Bn

is evaluated as Bn(x) = s1 · s2 · · · · · sm, where si = σi if xji = 1 and si = τi if
xji = 0.

A function f : {0, 1}n → {0, 1} is recognized by Bn if there exists a cycle
θ ∈ Sym(w), such that ∀x ∈ {0, 1}n, Bn(x) = θ when f(x) = 1, and Bn(x) = e
is the identity permutation when f(x) = 0.

Everything in the following theorem holds as well for log-space uniform
branching programs.

Theorem 2 (Barrington’s Theorem [20]). Any boolean function f com-
putable by a family of depth d and fan-in 2 circuits can be recognized by a
family of width-5 permutation branching programs for m ≤ 4d. In particular,
m = poly(n) for f ∈ NC1 and input length n.

Thus, evaluating f : {0, 1}n → {0, 1} on input x reduces to deciding whether

Bn(x) = s1s2 · · · sm is the identity. Define f̂ : {0, 1}n × Sym(5)m−1 → Sym(5)m

as f̂(x; r) = 〈π1, · · · , πm〉 = 〈s1r1, r−1
1 s2r2, · · · , r−1

m−2sm−1rm−1, r
−1
m−1sm〉, where

ri ∈R Sym(5), si follows the i-th instruction in Bn and m is the length of Bn.

Then, f̂ is a randomized encoding of f , since 〈π1, · · · , πm〉 uniformly distributes
over Sym(5)m conditioned on π1π2 · · ·πm = s1s2 · · · sm.

We define Sample : {0, 1}q → Sym(5) to be the algorithm that samples ri ∈R

Sym(5) within statistical distance 2−Ω(q) using q = q(n) (read-once) random
bits. Then, every permutation in Sym(5) is identified by its unique binary ID

from {0, 1}7. Thus, f̂ is represented in binary as f̂ : {0, 1}n × ({0, 1}q)m−1 →(
{0, 1}7

)m
that induces a loss of at most 2−Ω(q(n)) in the output distribution. It

remains to make f̂ streaming computable. The issue is that non-consecutive si’s
may be arbitrarily associated with the same input bit, so we must do something
about this.

3.2 Streaming Computable Randomized Encoding

Our streaming algorithm is based on the following observations:

– fixing any poly-time invertible permutation ψ over {1, . . . ,m}, g(x; r) =

〈πψ(1), · · · , πψ(m)〉 is a one-way function as long as f̂ is a one-way function,

recalling that f̂(x; r) = 〈π1, · · · , πm〉;
– a permutation branching program (e.g. Bn) recognizes exactly the same

function after inserting dummy instructions like (s,< j, e, e >); that is,
(s1, 〈j1, σ1, τ1〉) · · · (sm, 〈jm, σm, τm〉) recognizes exactly the same function
as (s1, 〈j1, σ1, τ1〉) · · · (s,< j, e, e >) · · · (sm, 〈jm, σm, τm〉).

Due to space limitations we omit the (not hard) full proof of Theorem 1.
Here is a sufficiently detailed outline. By the second observation,we may replace
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in Bn, the length m branching program that recognizes f , the first instruction(
s1, 〈j1, σ1, τ1〉

)
with

(
s′1, 〈1, e, e〉

)
· · ·

(
s′j1 , 〈j1, σ1, τ1〉

)
· · ·

(
s′n, 〈n, e, e〉

)
, i.e. s′j1 =

s1, whereas s
′
i = e for i �= j1, so that s

′
1 · · · s′n = s1 for every input. The advantage

of the new instructions is that ∀i ∈ {1, 2, . . . , n}, s′i depends on exactly xi.
With similar tricks for s2, · · · , sm, we get a length mn = poly(n) new branching
program B′

n and s′1, · · · , s′mn with oblivious input dependency. In what follows,
we use Bn and si instead of B′

n and s′i for simplicity.
In a single pass, we compute the si’s in the order: s1, sn+1, · · · , smn−n+1,

s2, sn+2, · · · , smn−n+2, · · · · · · , sn, s2n, · · · , smn (sorted by their dependency on
x, which coincide the subscripts modular n). Then, for f : {0, 1}n → {0, 1},
we apply the first observation to construct the oblivious streaming computable
randomized encoding f̂ : {0, 1}n × ({0, 1}q)mn−1 →

(
{0, 1}7

)mn
as follows

f̂(x; y1, . . . , ymn−1) =〈
s1r1, r

−1
n sn+1rn+1, · · · , r−1

mn−nsmn−n+1rmn−n+1 · · · , · · · , r−1
mn−1smn

〉
where ri = Sample(yi), r

−1
i is the inverse of ri, and si is a function of x(i mod n)

for i = 1, 2, · · · ,mn.
When f(x) = 〈f1(x), f2(x), · · · , f�(n)(x)〉 has �(n) output bits, we design f̂ =

〈f̂1, · · · , f̂�(n)〉, which consists of an individual randomized encoding f̂i one for
each fi. It is not too hard to globally rearrange the output bits and obtain the
final streaming computable function f̂ .

4 Streaming Pseudorandom Generators

The encoding in Section 3.2 does not preserve pseudorandomness, simply be-
cause 27 � |Sym(5)|. In fact, Barrington’s theorem holds also for the non-solvable
Sym(w), w ≥ 5 but there is no k ∈ Z such that 2k|(w!). Yet, we provide a rather
technical adaptation of [5] to build streaming pseudorandom generators from
any streaming one-way function f .

Theorem 3. Let f : {0, 1}n → {0, 1}m be a streaming one-way function. Then,
there is a streaming computable pseudorandom generator G requiring 2 additional
passes to the streaming algorithm for 〈f (1), · · · , f (�t)〉, for �, t defined as below

Moreover, if m = O(n), then � = n
logn , t = O(n2 log2 n), and the seed length

of G is O(n6 log3 n).

In fact, the construction in Section 3.2 gives an oblivious streaming one-way
function, which implies that evaluating polynomial many copies of f does not
need more passes than f .

There are four steps in the [5] construction: 1) next-block pseudoentropy gen-
eration; 2) entropy equalization; 3) converting Shannon entropy to min-entropy
and amplifying the gap; 4) randomness extraction. The first three steps remain
intact for our streaming algorithm, whereas the fourth has to be modified.
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In a nutshell, the first step constructs the generator Gnb(s) = 〈f(s), s〉 for a
random seed s ← Un. For notation convenience, let f : {0, 1}n → {0, 1}m−n, so
that Gnb : {0, 1}n → {0, 1}m. The second step concatenates the outputs of Gnb

on � independent seeds to get z(1), . . . , z(�), and randomly shifts (by discarding
from the head and the tail) blocks to convert total entropy into the entropy in

individual blocks, via EQ : {0, 1}logm× ({0, 1}m)
� → {0, 1}m� for m� = m(�−1)

and

EQ
(
j, z(1), · · · , z(�)

)
:=

〈
z
(1)
j , · · · , z(1)m , · · · , z(�)1 , · · · , z(�)j−1

〉
Let X := EQ

(
J,Gnb(U (1)

n ), · · · , Gnb(U (�)
n )

)
for J = Ulogm, the third step con-

catenates t independent copies of X within each block (we do this step virtually

by allowing non-consecutive cells in one block), i.e. Y =
〈(

X (1)
1 , · · · ,X (t)

1

)
, · · · ,(

X (1)
m� , · · · ,X

(t)
m�

)〉
, thus every block has high pseudo-min-entropy conditioned

on previous blocks. The details for these steps can be found in [5,16].
Now, let us give an informal but accurate description of the part that has to be

non-trivially modified for the streaming construction. The fourth step requires
evaluating a single random universal hash function H : {0, 1}t → {0, 1}αt−log2 n

on every block of Y to extract randomness, where αt is the next-block pseudo-
min-entropy of each block. This step is difficult since streaming algorithms
cannot re-read the code of H. To that end, we prove that each block can be as-
sociated with a different linear hash function H(i) ∈ {0, 1}t×(αt−log2 n). Then, in

the streaming algorithm we use Ĥ(i), the randomized encoding ofH(i), to extract

randomness. Let H
(i)
j be the j-th row of H(i), and R

(i)
j the j-th row of the ran-

dom input R(i) ∈ {0, 1}(t−1)×(αt−log2 n), then Ĥ(i)
((

X (1)
i , · · · ,X (t)

i

)
,R(i)

)
=〈

X (1)
i H

(i)
1 +R

(i)
1 , . . . ,X (j)

i H
(i)
j +R

(i)
j−1 +R

(i)
j , . . . ,X (t)

i H
(i)
t +R

(i)
t−1

〉
where all

the additions are modular 2. Combining the four steps, G appears as follows

G
(
J(1), · · · ,J(t),U (1)

n , · · · ,U (t�)
n ;H;R

)
=
〈
H, X (1)

1 H
(1)
1 +R

(1)
1 , · · · ,X (1)

m�
H

(m�)
1 +R

(m�)
1 ,

· · · ,X (j)
1 H

(1)
j +R

(1)
j−1 +R

(1)
j , · · · ,X (j)

m�
H

(m�)
j +R

(m�)
j−1 +R

(m�)
j ,

· · · ,X (t)
1 H

(1)
t +R

(1)
t−1, · · · ,X (t)

m�
H

(m�)
t +R

(m�)
t−1

〉
Note that we use a family of linear hash functions because it is not clear how

to implement with streaming algorithms the description-succinct hash family in
[5,16]. This causes loss in efficiency (which contrasts the purpose of [5,16]), but
here we strive for a streaming feasibility result which is not at all obvious how
to get. Theorems 1 and 3, and [10] yield:

Corollary 2. If there is a one-way function in Logspace, then there exists a
pseudorandom generator which is streaming computable with 7 passes.
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5 Limitations for Super-Linear Stretch Pseudorandom
Generators

We devise a new lower bounding methodology, which a central technical contri-
bution of this work. We first use this to show that streaming computable super-
linear stretch pseudorandom generators do not exist. Note that n1−ε stretch is
easy to achieve by running in parallel n1−ε copies of a single-bit stretch pseudo-
random generator on independent seeds.

Theorem 4. Suppose �(n) = ω(n) and G : {0, 1}n → {0, 1}�(n) is a pseudoran-
dom generator. Then, no streaming algorithm can compute G.

We prove Theorem 4 by analyzing the information flow in the computation,
and by partitioning appropriately the output into blocks, we upper bound the
entropy transferred to each output block from the input. Intuitively, a single
block cannot collect much entropy and therefore it cannot induce large stretch.

Our proof makes use of the following observation and the concept of a de-
pendency graph originally introduced in [19,17] (in fact, [24]). We tailor them
for cryptographic applications to partition the computation into p + 1 phases
corresponding to p passes.

Observation 5 ([24]). When a tape cell is written, its content only depends on
the internal memory and the t cells currently being scanned by the heads of the
external streams. Moreover, those t cells are written before this pass, since no
cell can be visited twice before making a new pass.

5.1 Dependency Graphs and Dependency Trees

First, we provide the definition of dependency graph. Due to space limitations
we omit concrete examples and diagrams of dependency graphs and trees.

Definition 2. Fix a streaming algorithm G which on input x it makes ≤ p
passes over t external tapes. The dependency graph, denoted by Γ (x), is a di-
rected graph with p + 1 levels. Each beginning of a new pass (at any tape) is
associated with a distinct level. The i-th level in Γ (x) contains all nodes labeled
(v, i) if the tape cell v has ever been visited before the i-th pass begins. We assume
that all input cells are written at the beginning. (e.g. {(v, 1)| v is an input cell}
contains exactly all the nodes in level 1, and {(v, p+1)| v is written in the com-
putation of G on input x } for level p+ 1.) Γ (x) has edges (u, i) → (v, i+ 1) iff
there is a head reading (u, i) when (v, i+1) is being written. Furthermore, there
is always an edge (u, i) → (u, i+ 1) as long as (u, i) is in Γ (x).

In the dependency graph, each level represents a single phase in the compu-
tation. Therefore the nodes (except for those at level 1) have in-degree at most
t, while all edges are heading to the next level. Intuitively, those directed edges
depict the information flow excluding the internal memory.

We also remark it possible that old passes are not yet finished when a new
pass begins. In this case, old passes will be processed in the new level.
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5.2 Overview of the Lower-Bound

We first introduce the definition of blocks. Intuitively, blocks are used to pack-
age the entropy from the input, and the dependency of blocks describes the
information flow during the computation, except for the information carried in
the bounded internal memory. By analyzing the dependency of blocks we have
devised an elegant information-theoretic way of upper bounding the amount of
entropy in part of the output.

Definition 3. A block is an equivalence class consisting of all nodes correspond-
ing to tape cells at the same level on the same tape such that they depend on
exactly the same set of blocks at the previous level. Specifically, an input block
refers to a set of nodes at the first level corresponding to consecutive tape cells
on the input tape.

Note that if two cells, from the same tape and the same level, have the same
dependency on blocks at the previous level, then any cell in between would have
exactly the same dependency, because the dependency changes “monotonically”.
Therefore, our partition of blocks is well-defined such that every block consists
of only consecutive tape cells.

Then, we partition the input x into b input blocks as x = (x1, x2, · · · , xb),
and use a corollary of Proposition 3.1 in [19] to bound the number of blocks.

Proposition 1. Partition x into b input blocks and let Γ (x) be the dependency
graph. Then, the number of blocks at level i in Γ (x) is bounded ≤ (b + 1)ti−1,
where t denotes the number of tapes.

Due to space limitation, here we give only a proof sketch of Theorem 4.

Proof (Proof Sketch of Theorem 4). By Proposition 1, there are at most (b +
1)tp = O(b) blocks at level p+ 1 because both t, p are constants.

We consider G : {0, 1}n → {0, 1}�(n) where �(n) = ω(n). Partition the input
equally into b = �n/ logn� blocks, so that each input block has length ≤ logn.
Recalling that there are O(b) output blocks, there is an output block v with
�(n)/O(b) = ω(logn) many bits in expectation.

However, every output block depends on O(1) input blocks when t, p are both
constants. That is, the block v has expected length ω(logn), while it only receives
O(log n) bits of entropy from O(1) input blocks plus another O(log n) bits from
the internal memory. This immediately suggests an advised distinguisher DA:

DA : Distinguishing G(Un) from U�(n) (with advice A):

1 For all z ∈ A, check whether z is a sub-string of the input;
2 If find any z ∈ A in the input, output 1;
3 Otherwise output 0.

The advice A is a poly(n) long list containing all strings that are sufficiently long
(i.e. Ω(�(n)/b) = ω(logn)) and could appear in the block v. DA

(
G(Un)

)
= 1
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if the block v is sufficiently long to be captured by A, which happens with
probability Ω(1/b) by Markov’s inequality. On the other hand, Pr[DA(U�(n)) =

1] < poly(n) · �(n) · 2−Ω(�(n)/b) = 2−ω(n). Therefore

Pr
[
DA

(
G(Un)

)
= 1

]
− Pr

[
DA(U�(n)) = 1

]
≥ Ω(

1

b
)− 2−ω(n) = Ω(logn/n)

For a uniform distinguisher, the advice A is efficiently generated as follows:
enumerate every input block and internal memory on every possible dependency
tree of v, then simulate the computation of v, and add only sufficiently long
output substrings to the list. Although suffering from a polynomial blow-up
than optimal, such advice A suffices for the above argument of DA.

6 Public-Key Encryption in the Streaming Model

We construct an IND-CPA secure PKE system based on Regev’s LWE assump-
tion together with the PKE construction in [8], where the encryption and the de-
cryption algorithms are streaming algorithms, henceforth called streaming PKE.
The private keys contain a good deal of redundancy. We also show that large
private-keys are necessary. A lower bound on the length of the private key is
given in Theorem 7 (using the technique introduced in Section 5), though there
is still a gap with our construction.

Theorem 6. Given the decision-LWE assumption (Assumption 1), the con-
struction in Section 6.1 is an IND-CPA secure PKE. Moreover, both the en-
cryption and the decryption algorithms are streaming computable.

Theorem 7. For every IND-CPA secure PKE whose decryption scheme is a
streaming algorithm, the private-key has length Ω(N), where N is the length of
the plaintext.

The main challenge of a streaming PKE is the decryption algorithm. The
techniques we developed so far do not apply, because the decryption algorithm
should output exactly the plaintext rather than any code.

We construct our streaming PKE based on the decision-LWE assumption. The
intuition of such assumption is exposited in [8], which also gives reductions from
worst-case lattice problems (by now these lattice assumptions and reductions
are common place).

Definition 4 (LWE problem). Let q = q(n) ≤ poly(n), consider a list of
equations bi = 〈s, ai〉+ei (mod q) for i = 1, 2, · · · , poly(n), where s ∈ Zn

q , ai ∈R

Zn
q and bi ∈ Zq. If furthermore ei ∈ Zq follows a discrete Gaussian distribution3

with parameter α, we denote by search-LWEq,α the problem of recovering s from
such equations. In decision-LWEq,α the goal is to distinguish (a, 〈s, a〉+e mod q)
from U

Z
n+1
q

with non-negligible advantage, when both s, a ∈R Zn
q .

3 A discrete Gaussian distribution over Zq is defined by DZq ,α(x) = ρα(x/q)/ρα(Zq),
where ρα(x) =

∑∞
k=−∞ α−1 exp(−π(x+k

α
)2) follows a continuous Gaussian distribu-

tion, and ρα(Zq) =
∑

x∈Zq
ρα(x/q).
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Assumption 1 (cf. [8,7]). When α ≥ 2
√
n, search-LWEq,α cannot be solved in

probabilistic polynomial time with non-negligible probability. If α ≥ ω(
√
n logn)

then decision-LWEq,α cannot be solved in probabilistic polynomial time with non-
negligible advantage.

6.1 The Construction

In our construction the public and private keys are “streaming useable” forms of
the following two matrices: A and a random matrix D. Matrix A is statistically

close to uniform, and at the same time orthogonal to

[
I
D

]
. The latter consists

of short vectors which cannot be retrieved from a uniformly random matrix (this
is the lattice hardness assumption).

KeyGen: Pick a matrix D ∈ Z
(m−w)×w
p uniformly at random from

{0,±1}(m−w)×w. Uniformly at random pick A ∈ Z
n×(m−w)
q , and compute

A ∈ Zn×m
q as A = [−AD | A] mod q. Let

[
I
D

]
= [d1, · · · ,dw]. Here

k = �2 logn�, q = 2k,m = 3nk,w = nk, for the security parameter n.
Output N copies of A as the public key, and nN copies of d1, · · · ,dw as the

private key. Each copy of A is written in row-first order, i.e. (a11, a12, · · · , a1m,
a21, · · · , a2m, · · · , an1, · · · , anm).

Enc: On input x = (x(1), · · · , x(N)) ∈ {0, 1}N , for i = 1, 2, · · · , N , uniformly
choose si ∈R Zn

q and xi ∈R {qx(i)/2} × Zw−1
q .

Sample ei ∈ Zm
q for i = 1, 2, · · · , N , where each entry eij ∼ Dα follows

the discrete Gauss distribution with mean 0 and standard deviation α, for j =
1, 2, · · · ,m.

For every i = 1, 2, · · · , N , sequentially output yi, where yi is a randomized

encoding of sTi A + eTi + (xT
i ,0) mod q. That is, for R ∈R Z

(n−1)×m
q , realizing

eTi , (x
T
i ,0) as 1 × m row vectors, and recalling that A is an n × m matrix, we

define yi is the row-first order of Yi as follows

Yi =

⎡⎢⎣ si1
. . .

sin

⎤⎥⎦ ·A+

[
R

(xT ,0)

]
+

[
eTi
−R

]

Dec: Given the ciphertext {yi}i=1,2,··· ,N and the decryption key nN copies of
d1. We compute b = [1 1 · · · 1]1×nYid1 mod q and output x(i) =  2b/q+1/2!
mod 2 for every i = 1, · · · , N .

Comparison with [8]. The above construction is similar to the PKE construction
in [8]. We borrow from [7] the key generation and encryption algorithms which
enable us to turn them into streaming computable encryption/decryption. Note
that [7], unlike us, achieves a CCA-secure PKE. Currently, we do not know how
to perform ciphertext validity checks (as in e.g. [7]) in a streaming fashion.
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This Public-Key Encryption scheme is statistically correct and IND-CPA se-
cure, and it has both encryption and decryption in a streaming fashion.

7 Conclusions and Some Remarks on Practical
Constructions

Our work leaves open the possibility of streaming cryptography for a number of
popular private and public-key primitives. As a next step we propose to study
the streaming possibility for the following cryptographic primitives: (i) linear-
stretch pseudorandom generators, (ii) CCA-secure PKE, (iii) signature schemes,
and (iv) message authentication.

It is also open whether the number of passes we achieve (see Table 2 below)
are optimal, and also simultaneously improve the seed-efficiency of streaming
pseudorandom generators from NC1 one-way functions. For example, our generic
streaming one-way function is done with 5 passes, whereas when starting from
a concrete assumption (see below) we can do it with 4, which is optimal.

Some remarks on practicality. Randomized encodings generally use huge
amounts of randomness (typicallyΩ(n4)) for input length n, and thus our generic
compilers can be understood as feasibility results. In practice, starting from
concrete intractability assumptions we can do much better. Here is a practical
example which in fact resembles a lot the one in [3] (but a few model-specific
differences – our model is not two dimensional but things are arranged similarly).

Assumption 2 (Decoding Random Linear Codes (DRLC) ). A random
linear code fcode is defined as fcode : (A,x, e) �→ (A,Ax + e), where A ∈
GF(2)m×n, x ∈ GF(2)n, e ∈ GF(2)m. Choose positive constants κ, ε, δ such that
κ = n

m < 1 − H2

(
(1 + ε)δ

)
, where H2(p) = −p log2 p − (1 − p) log2(1 − p) for

p < 1/2 and H2(p) = 1 otherwise. If A,x are chosen uniformly at random, while
e has at most δm

2 one-entries, then fcode is a one-way function.

Theorem 8. Suppose that the DRLC assumption holds true. Then, there exists
a one-way function F computable by a streaming algorithm with 2 streams, 4
passes and O(log n) internal memory. Furthermore, if the DRLC input is of size
N the corresponding input size for F is n ≤ 2N .

Proof (Construction outline). Suppose the random bits (r11, r21, · · · , rmn)
are given on the extra stream (this is without loss of general-
ity/not necessary), and parse the input stream as (x1, a11, a21, · · · ,
am1, · · · , xn, a1n, · · · , amn, e1, · · · , em).

In the first pass (over two streams) we compute (a11x1 + r11, · · · , am1x1 +
rm1, a12x2+r12, · · · , am2x2+rm2, · · · , a1nxn+r1n, · · · , amnxn+rmn, e1, · · · , em).

In the next pass we compute (a11x1 + r11, · · · , am1x1 + rm1, a12x2+ r12 − r11,
· · · , am2x2+rm2−rm1, · · · , a1nxn+r1n−r1(n−1), · · · , amnxn+rmn−rm(n−1), e1−
r1n, · · · , em − rmn). Thus, a randomized encoding of Ax + e is computed with
4 passes over 2 streams.
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Table 2. OWF & PRG from any OWF in Logspace; PKE from LWE

# of passes external tapes

one-way function 5 1 RO & 1 RW

pseudorandom generator
7
15

2 RW
1 RO & 1 RW

PKE Enc 5 1 RO & 1 RW

PKE Dec 2
key & cipher in
different tapes

We conclude with a note on the practicality of the multi-stream model. One
physical analog of a stream is a hard-disk or a disk-array. Although it makes
sense to think of physical disks to be of size 2n or 3n, for an input of length
n, under no stretch of imagination n3 is reasonable size. For more than one
stream we believe that this stream-size parameter should be added to the other
parameters: number of streams, number of passes, internal memory size. In this
paper all constructions make ≤ 9 passes and the stream size never exceeds
2× input length. In practice, though the stream size is even more important and
in the sense that perhaps we might be able to tolerate slightly super-constant
many passes given that the stream size stays linear throughout the computation.
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Abstract. In this paper we show that indistinguishability obfuscation
for general circuits implies, somewhat counterintuitively, strong impossi-
bility results for virtual black box obfuscation. In particular, it implies:

– The impossibility of average-case virtual black box obfuscation with
auxiliary input for any circuit family with super-polynomial pseudo-
entropy (for example, many cryptographic primitives). Impossibility
holds even when the auxiliary input depends only on the public
circuit family, and not which circuit in the family is being obfuscated.

– The impossibility of average-case virtual black box obfuscation with
a universal simulator (with or without any auxiliary input) for any
circuit family with super-polynomial pseudo-entropy.

These bounds significantly strengthen the impossibility results of Gold-
wasser and Kalai (FOCS 2005).

1 Introduction

The study of program obfuscation—a method that transforms a program (say,
described as a Boolean circuit) into a form that is executable, but otherwise
completely unintelligible—has been a longstanding research direction in cryp-
tography. Barak et al. [BGI+01] formalized a number of security notions for this
task. The strongest and most applicable of these notions is virtual black box
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(VBB) obfuscation, which requires that any adversary trying to learn informa-
tion from an obfuscated program cannot do better than a simulator that is given
only black-box access to the program. Barak et al. constructed contrived function
families that cannot be VBB obfuscated, thus ruling out a universal obfuscator,
but they left open the possibility that large classes of programs might still be
obfuscated. Subsequently, VBB obfuscators were produced only for a number
of restricted (and mostly simple) classes of programs [Can97, CD08, CRV10,
BR13a, BBC+14].

In contrast, recent progress for more relaxed notions of obfuscation suggests
a much more positive picture: Garg et al. [GGH+13] proposed a candidate con-
struction for indistinguishability obfuscation for all circuits. This notion requires
only that it is hard to distinguish an obfuscation of C0 from an obfuscation of C1,
where C0 and C1 are circuits of the same size that compute the same function
[BGI+01]. Indeed, unlike the case of VBB obfuscation, there are no known im-
possibility theorems for indistinguishability obfuscation. Furthermore, the Garg
et al. construction and variants thereof were shown to satisfy the VBB guarantee
in ideal algebraic oracle models [CV13, BR13b, BGK+13].

Although indistinguishability obfuscation might initially sound arcane, it
is surprisingly powerful. For example, it amounts to best possible obfuscation
[GR07], in the sense that anything that can be hidden by some obfuscator will
be hidden by every indistinguishability obfuscator. Subsequent to [GGH+13],
a flood of results have appeared showing that indistinguishability obfuscation
suffices for many applications [SW13, GGH+13, HSW13, GGJS13].

Still, for many program classes the meaningfulness and applicability of in-
distinguishability obfuscation is unclear. Thus, understanding which classes of
programs are VBB obfuscatable remains of central importance. Aiming towards
such a characterization, Goldwasser and Kalai [GK05] proved strong limitations
on VBB obfuscation for a broad class of pseudo-entropic programs, including
many cryptographic functions, such as pseudo-random functions and certain
natural instances of encryption and signatures. They showed the impossibility
of a form of VBB security with respect to adversaries that have some a priori
auxiliary information. When the auxiliary information depends on the actual
obfuscated program, they showed that no class of pseudo-entropic functions can
be obfuscated, assuming VBB obfuscation for a simple class of point-filter func-
tions. For auxiliary information that depends only on the class of programs to
be obfuscated, they gave an unconditional result, but only for a restricted class
of programs (those that evaluate NP-filter functions).

This Work in a Nutshell. We strengthen the impossibility results for VBB
obfuscation with auxiliary input, and we suggest another interpretation of
auxiliary-input obfuscation. In a somewhat strange twist, our negative results
are based on indistinguishability obfuscation, which is typically viewed positively.
Specifically:

– We weaken the conditions for the impossibility of dependent auxiliary-input
VBB obfuscation to witness encryption, which in turn follows from indistin-
guishability obfuscation.
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– We extend the impossibility of independent auxiliary-input VBB obfuscation
to all pseudo-entropic functions, assuming indistinguishability obfuscation.

– We observe that auxiliary-input VBB obfuscation is equivalent to a natural
formulation of VBB obfuscation with universal simulation. This equivalence
provides conceptual support for the significance of our impossibility results.

In the rest of the introduction, we introduce the notion of universal simulation
and further discuss the notion of auxiliary-input VBB obfuscation. Then, we
provide an overview of the results and sketch the proof techniques involved.

Universal Simulators. The definition of VBB obfuscation requires that for
each PPT adversary A, there exists a PPT simulator S that succeeds in sim-
ulating the output of A when A is given the obfuscation O(f) but S is given
only black-box access to f . This definition does not say how hard (or easy)
it is to find the corresponding simulator S for a given adversary A. When se-
curity with black-box access to the function depends on computational hard-
ness assumptions, this definition leaves open the possibility that the obfuscation
could be broken in practice without providing an algorithm that breaks these
assumptions.

A stronger and arguably more meaningful definition requires that there exist
an efficient transformation from an adversary to its corresponding simulator, or
equivalently a universal PPT simulator capable of simulating any PPT adversary
A given the code of A. We will refer to such a definition as VBB obfuscation with
a universal simulator.

As we said above, we will show that VBB obfuscation with a universal sim-
ulator is impossible for function families with super-polynomial pseudo-entropy
if general indistinguishability obfuscation is possible.

Auxiliary Input. The definition of VBB security with auxiliary inputs, origi-
nally considered in [GK05], is a strengthening of VBB security, corresponding to
a setting in which the adversary may have some additional a priori information.

Allowing auxiliary input is crucial when obfuscation is used together with
other components in a larger scheme or protocol. Consider, for example, a zero-
knowledge protocol in which one of the prover’s messages to the verifier contains
an obfuscated program O(f). To prove that the protocol is zero-knowledge, we
would like to show that every verifier V has a zero-knowledge simulator Szk that
can simulate V’s view of the protocol. Intuitively, Szk would rely on the security
of O by thinking of V as an “obfuscation adversary” that is trying to learn
information from O(f). Such an adversary has an “obfuscation simulator” SO
that can learn the same information given only black-box access to f , and Szk
can try to use SO. The problem is that the view of V does not depend only on
the code of V, but also on auxiliary input to V, such as other prover messages
and the statement being proven. An obfuscation definition that does not allow
auxiliary input is insufficient to handle this case.

The problem can be avoided by using a definition that guarantees the existence
of an obfuscation simulator that can simulate the view of V given any auxiliary
input. If the obfuscated program f depends on other prover messages or on the
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statement, then we require security with respect to dependent auxiliary input.
Otherwise independent auxiliary input suffices. The paper [GK05] considered
both of these notions. In the case of dependent auxiliary input, the virtual black
box property is required to hold even when the auxiliary input given to the
adversary and simulator depends on the actual, secret circuit being obfuscated.
In the case of independent auxiliary input, this requirement is weakened: the
auxiliary input may depend only on the family of circuits, which is public. The
actual circuit to be obfuscated is chosen randomly from the family, independently
of the auxiliary input given to the adversary and simulator.

More precisely, an obfuscator O for a function family F is (worst-case) VBB
secure with dependent auxiliary inputs if for every probabilistic polynomial-time
(PPT) adversary A, there exists a PPT simulator S such that for every f ∈ F
and every auxiliary input aux (which may depend on the function f), the out-
put of A(O(f), aux(f)) is computationally indistinguishable from Sf (aux(f)). The
average-case analogue of this definition requires that the output ofA(O(f), aux(f))
be computationally indistinguishable from Sf (aux(f)) for a random function
f ← F .

VBB security with independent auxiliary inputs is defined only with respect to
an average-case definition.1 An obfuscator O for a function family F is average-
case VBB secure with independent auxiliary inputs if for every PPT adversary A,
there exists a PPT simulator S such that for every auxiliary input aux and for a
random f ← F , the output of A(O(f), aux) is computationally indistinguishable
from Sf (aux).

For the case of dependent auxiliary input, Goldwasser and Kalai [GK05]
showed that functions with super-polynomial pseudo-entropy cannot be VBB
obfuscated, assuming that a different class of point filter functions can be VBB
obfuscated. For the weaker notion of VBB obfuscation with independent aux-
iliary input, they showed a more restricted impossibility result for a subclass
of functions called filter functions. Our results extend these theorems, assuming
indistinguishability obfuscators exist.

1.1 Overview of Results and Techniques

First we prove that VBB security with a universal simulator is equivalent to VBB
security with auxiliary inputs, which is the obfuscation version of the known
equivalence for zero-knowledge proofs [Ore87]. More specifically, we prove that
worst-case VBB security with a universal simulator is equivalent to worst-case
VBB security with dependent auxiliary inputs, and that average-case VBB secu-
rity with a universal simulator is equivalent to average-case VBB security with
independent auxiliary inputs. To be consistent with the literature, when we refer
to VBB security we always consider the worst-case version. When we would like
to consider the average-case version we refer to it as average-case VBB.

1 It is not clear how to enforce that the auxiliary input is independent of the function
in a worst-case definition.
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Informal Lemma 1. A candidate obfuscator is a (worst-case) VBB obfuscator
with a universal simulator for a class of functions F if and only if it is a (worst-
case) VBB obfuscator for F with dependent auxiliary inputs.

Informal Lemma 2. A candidate obfuscator is an average-case VBB obfuscator
with a universal simulator for a class of functions F if and only if it is an
average-case VBB obfuscator for F with independent auxiliary inputs.

We state and prove these results as Lemmas 1 and 2 in Section 3.
The above two lemmas imply that in order to obtain negative results for VBB

obfuscation with a universal simulator, it suffices to obtain negative results for
VBB obfuscation with auxiliary inputs.

New Impossibility Results. We show that indistinguishability obfuscation
implies that any function family with super-polynomial pseudo-entropy cannot
be VBB obfuscated with auxiliary input. Loosely speaking, a function family
F has super-polynomial pseudo-entropy if it is difficult to distinguish a genuine
function in F from one that has been randomly modified in some locations:
for every polynomial p there exists a polynomial-size set I of inputs such that
no efficient adversary can distinguish between a random function f ← F and
such a function with its values on I replaced with another random variable with
min-entropy p. We refer the reader to Definition 7 for the precise definition, but
note that such families include all pseudo-random function families. They also
include all semantically secure secret-key or public-key encryption schemes or
secure digital signature schemes, provided that the randomness is generated by
using a (secret) pseudo-random function. (See Claim 4.0.1 in [GK05].)

Recently, the notion of witness encryption was put forth by Garg
et al. [GGSW13]. It was observed by Goldwasser et al. [GKP+13] that an ex-
tractable version of witness encryption can be used to obfuscate the class of
point-filter functions with respect to dependent auxiliary inputs. Thus, together
with [GK05], this shows that the existence of an extractable witness encryption
scheme implies that any function with super-polynomial pseudo-entropy cannot
be obfuscated with respect to dependent auxiliary inputs.

Here we show that the proof of [GK05] actually implies that witness encryp-
tion, without the extractability property, suffices to prove that all functions with
super-polynomial pseudo-entropy are not obfuscatable with respect to dependent
auxiliary inputs.

Informal Theorem 3. Assume the existence of a witness encryption scheme.
Then no function family with super-polynomial pseudo-entropy has an average-
case VBB obfuscator with respect to dependent auxiliary input.

The idea behind the proof is that functions with high pseudo-entropy cannot
be efficiently compressed; i.e., given oracle access to such a function, one can-
not produce a small circuit for it. The reason is that functions with genuinely
high entropy cannot be compressed at all (let alone efficiently), and no efficient
algorithm can distinguish them from those with high pseudo-entropy.

Using this observation, the proof works as follows. Suppose we wish to con-
struct an obfuscation O(f) of a function f that has high pseudo-entropy on a
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polynomial-size set I of inputs. We use witness encryption to encrypt a random
bit b so that it can be read only by someone who knows a circuit of size at most
|O(f)| for the values of f on I. Given this encryption of b as auxiliary input,
knowledge of the circuit O(f) suffices to decrypt b. However, black-box access to
f is not enough to produce any small circuit, and so VBB security is violated.

We note that this theorem is true in a strong sense: for any secret pred-
icate π(f) that is not learnable from black-box access to f , there exists an
adversary and auxiliary input aux(f) such that given O(f) and aux(f), the ad-
versary efficiently recovers π(f), whereas given aux(f) and oracle access to f , it
is computationally hard to recover π(f). Moreover, the theorem holds even if we
restrict aux(f) to be an efficiently computable function of f .

It was shown by Garg et al. [GGSW13] (using different terminology) that
indistinguishability obfuscation for point-filter functions implies the existence
of witness encryption. Thus, the informal theorem above can be restated as
follows: assuming the existence of indistinguishability obfuscation for point-filter
functions, functions with super-polynomial pseudo-entropy are not average-case
VBB obfuscatable with respect to dependent auxiliary inputs.

For independent auxiliary input, we make use of a different hypothesis, namely
indistinguishability obfuscation for puncturable pseudo-random functions (see
Definition 6). Roughly speaking, these are pseudo-random functions for which we
can produce alternate keys that effectively randomize the output for a specified
input while leaving the rest of the function unchanged.

Informal Theorem 4. Assume the existence of indistinguishability obfuscation
for a class of puncturable pseudo-random functions. Then no function family
with super-polynomial pseudo-entropy has an average-case VBB obfuscator with
respect to independent auxiliary input.

The proof of this theorem is a little more subtle than the previous proof.
Suppose we are trying to obfuscate a circuit family with high pseudo-entropy
on a set I of inputs. The auxiliary input will be iO(Ks), where iO denotes
indistinguishability obfuscation and Ks is a circuit that takes another circuit
C̃ as input and applies a puncturable pseudo-random function Gs to the values
C̃(I) of C̃ on I. Here, s is a random key.

Now, let O(C) be a candidate obfuscation of a circuit C. By definition, ap-
plying the auxiliary circuit iO(Ks) to O(C) yields Ks(C) (i.e., Gs(C(I))), but
we will show that Ks(C) cannot be computed using only black-box access to C.
If it could, then we could replace the C oracle with suitable random values Y
on I and still get the answer Gs(Y ), by the definition of pseudo-entropy. Then
we could modify the auxiliary input to be iO(K∗

s ), where the pseudo-random
function in K∗

s has been punctured to randomize its value at Y . The reason this
modification is allowable is that with high probability, Ks and K∗

s define the
same function (Y has entropy too high to be compressible to any small circuit,
so no input C̃ to K∗

s will ever satisfy C̃(I) = Y ). Thus, iO(Ks) and iO(K∗
s ) are

indistinguishable. However, by construction K∗
s does not determine the value

Gs(Y ), which is a contradiction.
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We state and prove these results more formally as Theorems 1 and 2. Together
with Lemmas 1 and 2, they immediately yield impossibility results for VBB
obfuscation with a universal simulator. In particular, Theorem 1 and Lemma 1
imply the following corollary.

Corollary 1. Assume the existence of a witness encryption scheme. Then no
function family with super-polynomial pseudo-entropy has a VBB obfuscator with
a universal simulator.

As was the case for Theorem 1, this corollary is true in a strong sense: for
any secret predicate π(f) that is not learnable from black-box access to f , there
exists an adversary that efficiently recovers π(f) given O(f), whereas given the
code of the adversary and given oracle access to f , it is computationally hard to
recover π(f).

Theorem 2 and Lemma 2 imply the following corollary.

Corollary 2. Assume the existence of indistinguishability obfuscation for a class
of puncturable pseudo-random functions. Then no function family with super-
polynomial pseudo-entropy has an average-case VBB obfuscator with a universal
simulator.

2 Preliminaries

Let F = {fs} be a family of polynomial-size circuits. In what follows, we write
F =

⋃
k∈N

Fk with Fk = {fs}s∈{0,1}k . Each circuit fs will have size poly(|s|),
where poly denotes an unspecified, polynomially-bounded function.

Definition 1 (VBB obfuscation with universal simulator). Let F = {fs}
be a family of polynomial-size circuits. We say that a probabilistic algorithm O
(mapping circuits to circuits) is an obfuscation of F with a universal simulator
if the following conditions hold:

– Correctness: For every function fs ∈ F and every possible input x,

O(fs)(x) = fs(x).

– Polynomial slowdown: There exists a polynomial p such that for every
fs ∈ F ,

|O(fs)| ≤ p(|fs|).

– Security with a universal simulator: There exists a (possibly non-
uniform) PPT S such that for every (possibly non-uniform) PPT A, every
predicate π, every k ∈ N, and every s ∈ {0, 1}k,∣∣Pr[A(O(fs)) = π(s)] − Pr[Sfs(A) = π(s)]

∣∣ = negl(k), (1)

where the probabilities are over the random coin tosses of A and S. Here
negl(k) denotes an unspecified, negligible function (i.e., |negl(k)| = O(1/kc)
for each constant c > 0).
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We say that O is an average-case obfuscation of F with a universal simulator
if Equation (1) holds for random s ← {0, 1}k; in other words, it means there
exists a (possibly non-uniform) PPT S such that for every (possibly non-uniform)
PPT A, every predicate π, and every k ∈ N,∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k),

where the probabilities are over s ← {0, 1}k and over the coin tosses of A and S.

When A is non-uniform, the notation Sfs(A) of course means that S is given
a circuit for A for inputs of the appropriate size. When A is uniform, it means
the same thing as in the non-uniform case; equivalently, S is given the code for
A together with 1time(A(O(fs))) to ensure that it is allowed enough time.

In Definition 1, we have conflated the circuit size parameter k and the security
parameter of the obfuscation method. One could distinguish between them at the
cost of more notation, but this conflation is harmless for impossibility theorems.

Definition 2 (VBB obfuscation with auxiliary inputs). Let F = {fs} be
a family of polynomial-size circuits. We say that a probabilistic algorithm O is an
obfuscation of F with (dependent) auxiliary inputs if it satisfies the correctness
and polynomial slowdown conditions of Definition 1, and in addition it satisfies
the following security requirement:

– Security with auxiliary inputs: For every (possibly non-uniform) PPT A,
there exists a (possibly non-uniform) PPT S such that for every predicate π,
every k ∈ N, every s ∈ {0, 1}k, and every auxiliary input aux(s) of size poly(k),
∣
∣
∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣
∣
∣ = negl(k),

where the probabilities are over the random coin tosses of A and S. We write
aux(s) as a function of s for clarity, but this is implicit in the quantification.

We say that O is an average-case obfuscation of F with (dependent) auxiliary
inputs if the above equation holds for random s ← {0, 1}k; namely, if for every
(possibly non-uniform) PPT A there exists a (possibly non-uniform) PPT S such
that for every predicate π, every k ∈ N, and every auxiliary input aux(s) of size
poly(s) (and allowed to depend on s),∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),

where the probabilities are over s ← {0, 1}k and over the random coin tosses
of A and S.

In the definition above we allowed the auxiliary input to depend on the func-
tion being obfuscated. In what follows we define VBB obfuscation with indepen-
dent auxiliary inputs, where we restrict the auxiliary input to be independent of
the function being obfuscated. For this definition, only the average-case version
makes sense.



The Impossibility of Obfuscation with Auxiliary Input 79

Definition 3 (Average-case VBB obfuscation with independent aux-
iliary inputs). Let F = {fs} be a family of polynomial-size circuits. We say
that O is an obfuscation of F with independent auxiliary inputs if it satisfies the
correctness and polynomial slowdown conditions of Definition 1, and in addition
it satisfies the following security requirement:

– Average-case security with independent auxiliary input: For every
(possibly non-uniform) PPT A, there exists a (possibly non-uniform) PPT
S such that for every predicate π, every k ∈ N, and every auxiliary input
aux ∈ {0, 1}poly(k),∣∣Pr[A(O(fs), aux) = π(s, aux)]− Pr[Sfs(aux) = π(s, aux)]

∣∣ = negl(k),

where the probabilities are over s ← {0, 1}k and the coin tosses of A and S.

Definition 4 (Witness encryption). A witness encryption scheme for an NP
language L with corresponding witness relation RL is a pair of PPT algorithms
(Enc,Dec) such that the following conditions hold:

– Correctness: For all (x,w) ∈ RL and every b ∈ {0, 1},

Pr[Dec(Encx(1
k, b), w) = b] = 1− negl(k).

– Semantic Security: For every x �∈ L and every (possibly non-uniform)
PPT adversary A,∣∣Pr[A(Encx(1k, 0)) = 1]− Pr[A(Encx(1

k, 1)) = 1]
∣∣ = negl(k),

where the probability is over the random coin tosses of Enc and A.

Definition 5 (Indistinguishability obfuscation). Let C be a family of
polynomial-size circuits. A PPT algorithm iO is said to be an indistinguishability
obfuscator for C if it satisfies the correctness and polynomial slowdown conditions
of Definition 1, and in addition it satisfies the following security requirement:

– Indistinguishability: For all C,C′ ∈ C that are of the same size and define
the same function, iO(C) and iO(C′) are computationally indistinguishable.
More formally, for every (possibly non-uniform) PPT distinguisher D,

|Pr[D(iO(C)) = 1]− Pr[D(iO(C′)) = 1]| = negl(k),

where the probability is over the random coin tosses of iO and D.

We next define puncturable pseudo-random functions, following [SW13]. We
consider a simple case in which any PRF might be punctured at a single point.

Definition 6 (Puncturable PRFs). Let �,m be polynomially bounded length
functions. An efficiently computable family of functions

G =
{
Gs : {0, 1}m(k) → {0, 1}�(k)

∣∣∣ s ∈ {0, 1}k, k ∈ N
}
,
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associated with an efficient (probabilistic) key sampler GenG, is a puncturable
PRF if there exists a puncturing algorithm Punc that takes as input a key s ∈
{0, 1}k and a point x∗ ∈ {0, 1}m(k) and outputs a punctured key sx∗ so that the
following conditions are satisfied:

– Functionality is preserved under puncturing: For every x∗ ∈
{0, 1}m(k), if we sample s from GenG(1

k) and let sx∗ = Punc(s, x∗), then
Gs and Gsx∗ have the same values at every point other than x∗ with proba-
bility 1.

– Indistinguishability at punctured points: The two ensembles
{(

x∗, sx∗ ,Gs(x
∗)
) ∣∣
∣ s ← GenG(1k), sx∗ = Punc(s, x∗)

}

x∗∈{0,1}m(k),k∈N

,

{(
x∗, sx∗ , u

) ∣
∣
∣ s ← GenG(1

k), sx∗ = Punc(s, x∗), u ← {0, 1}�(k)
}

x∗∈{0,1}m(k),k∈N

are computationally indistinguishable by (possibly non-uniform) PPT distin-
guishers.

To be explicit, we include x∗ in the distribution; throughout, we shall assume
for simplicity that a punctured key sx∗ includes x∗ in the clear. As shown in
[BGI13, BW13, KPTZ13], the pseudo-random functions from [GGM86] yield
puncturable PRFs as defined above.

Definition 7 (Pseudo-entropy of a circuit class). Let p = p(k) be a poly-
nomial. We say that a class of circuits C =

⋃
k∈N

Ck has pseudo-entropy at least

p = p(k), if there exists a polynomial t = t(k) and a subset Ik ⊆ {0, 1}k of
size t(k), and for every C ∈ Ck there exists a random variable Y C = (Yi)i∈Ik ∈
{0, 1}Ik, such that the following conditions hold:

1. The random variable Y C has statistical min-entropy at least p(k). In other
words, each of its values occurs with probability at most 2−p(k).

2. For every (possibly non-uniform) PPT distinguisher D,∣∣∣Pr[DC(1k) = 1]− Pr[DC◦Y C

(1k) = 1]
∣∣∣ = negl(k),

where C ◦ Y C denotes an oracle that agrees with C except that Y C replaces
the values of C for inputs in Ik. Here the probabilities are over C ← Ck, the
random variable Y C , and the random coin tosses of D.

We say that C has super-polynomial pseudo-entropy if it has pseudo-entropy at
least p for every polynomial p, and we then call the circuits in C pseudo-entropic.

3 Equivalence between a Universal Simulator and
Auxiliary Inputs

In this section we show that VBB obfuscation with a universal simulator is
equivalent to VBB obfuscation with auxiliary inputs. Specifically, we prove the
following two lemmas.
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Lemma 1. Let F = {fs} be a family of polynomial-size circuits. Then O is
a VBB obfuscator for F with a universal simulator if and only if it is a VBB
obfuscator for F with dependent auxiliary inputs.

Lemma 2. Let F = {fs} be a family of polynomial-size circuits. Then O is an
average-case VBB obfuscator for F with a universal simulator if and only if it
is an average-case VBB obfuscator for F with independent auxiliary inputs.

Proof of Lemma 1
(⇒): Suppose that O is a VBB obfuscator for F with a universal simulator.
Namely, there exists a (possibly non-uniform) PPT S such that for every (possi-
bly non-uniform) PPT A, every predicate π, every k ∈ N and every s ∈ {0, 1}k,∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S.
We will prove that O is a VBB obfuscator for F with dependent auxiliary in-

puts. To this end, fix any (possibly non-uniform) PPT adversary A. Let SA be the

PPT simulator defined as follows: for every auxiliary input aux(s), SfsA (aux(s))
runs the universal simulator Sfs on input Aaux(s), where Aaux(s) is the (non-
uniform) adversary that simulates A with auxiliary input aux(s). We need to
prove that for every predicate π, every k ∈ N, and every s ∈ {0, 1}k,∣∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[SfsA (aux(s)) = π(s, aux(s))]

∣∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S.
To do so, we check that∣∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[SfsA (aux(s)) = π(s, aux(s))]

∣∣∣
=
∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(Aaux(s)) = π(s, aux(s))]

∣∣
≤
∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Aaux(s)(O(fs)) = π(s, aux(s))]

∣∣
+
∣∣Pr[Aaux(s)(O(fs)) = π(s, aux(s))]− Pr[Sfs(Aaux(s)) = π(s, aux(s))]

∣∣
= negl(k),

where the first equation follows by the definition of SA, the inequality follows
from the triangle inequality, and the last equation follows from the definition
of Aaux(s) and from the fact that O is VBB secure with the universal simulator S.

(⇐): Suppose that O is a VBB obfuscator for F with dependent auxiliary inputs.
Namely, for every (possibly non-uniform) PPT A there exists a (possibly non-
uniform) PPT S such that for every predicate π, every k ∈ N, every s ∈ {0, 1}k,
and every auxiliary input aux(s) of size poly(k),∣∣Pr[A(O(fs), aux(s)) = π(s, aux(s))]− Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),

where the probabilities are over the random coin tosses of A and S. We prove
that O is a VBB obfuscator for F with a universal simulator. To this end, let A∗
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be a universal PPT adversary that interprets its auxiliary input aux = aux(s) as
a (possibly non-uniform) PPT adversary and runs this adversary. (As pointed
out after Definition 1, we must interpret this carefully regarding running times in
the uniform case.) The fact that O is a VBB obfuscator with dependent auxiliary
inputs implies that there is a PPT simulator S such that for every predicate π,
every k ∈ N, every s ∈ {0, 1}k, and every auxiliary input aux(s) of size poly(k),∣∣Pr[A∗(O(fs), aux(s)) = π(s, aux(s))] − Pr[Sfs(aux(s)) = π(s, aux(s))]

∣∣ = negl(k),
(2)

where the probabilities are over the random coin tosses of A∗ and S. We claim
that S is a universal simulator for O. Namely, we claim that for every (possibly
non-uniform) PPT adversary A, every predicate π, every k ∈ N, and every
s ∈ {0, 1}k, ∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣ = negl(k).

To see why, note that∣∣Pr[A(O(fs)) = π(s)]− Pr[Sfs(A) = π(s)]
∣∣

≤ |Pr[A(O(fs)) = π(s)] − Pr[A∗(O(fs),A) = π(s)]|
+
∣∣Pr[A∗(O(fs),A) = π(s)]− Pr[Sfs(A) = π(s)]

∣∣
=
∣∣Pr[A∗(O(fs),A) = π(s)] − Pr[Sfs(A) = π(s)]

∣∣
= negl(k),

where the inequality follows from the triangle inequality, the next equation follows
from the definition of A∗, and the last equation follows from Equation (2). #$

The proof of Lemma 2 is almost identical to that of Lemma 1 (see arXiv paper
1401.0348v3 at http://arXiv.org/abs/1401.0348v3 for the details).

4 Impossibility for Obfuscation with Auxiliary Inputs

As mentioned in the introduction, Goldwasser and Kalai [GK05] proved that
either point-filter functions are not obfuscatable with dependent auxiliary in-
puts or all function families with sufficient pseudo-entropy are not obfuscat-
able with dependent auxiliary inputs. It was recently observed by Goldwasser
et al. [GKP+13] that extractable witness encryption implies that point-filter
functions are obfuscatable with dependent auxiliary inputs, and thus that any
function family with sufficient pseudo-entropy is not obfuscatable with depen-
dent auxiliary inputs. We now show that the same impossibility result (with
essentially the same proof as in [GK05]) can be obtained assuming the existence
of witness encryption, without any extractability property.

Theorem 1. Assume the existence of a witness encryption scheme for an
NP-complete language. Then no function family with super-polynomial pseudo-
entropy has an average-case VBB obfuscator with respect to dependent auxiliary
input.

http://arXiv.org/abs/1401.0348v3
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In fact, the proof rules out average-case obfuscation if we restrict the auxiliary
input to be efficiently computable given the function (or even oracle access to
the function).

Theorem 2. Assume the existence of indistinguishability obfuscation for a class
of puncturable pseudo-random functions. Then no function family with super-
polynomial pseudo-entropy has an average-case VBB obfuscator with respect to
independent auxiliary input.

We describe the specific class for which we need indistinguishability obfusca-
tion in the proof of the theorem.

Theorems 1 and 2, together with Lemmas 1 and 2, immediately yield impos-
sibility results for VBB obfuscation with a universal simulator. In particular,
Theorem 1 and Lemma 1 imply the following corollary.

Corollary 1. Assume the existence of a witness encryption scheme for an
NP-complete language. Then no function family with super-polynomial pseudo-
entropy has a VBB obfuscator with a universal simulator.

Theorem 2 and Lemma 2 imply the following corollary.

Corollary 2. Assume the existence of indistinguishability obfuscation for a
class of puncturable pseudo-random functions. Then no function family with
super-polynomial pseudo-entropy has an average-case VBB obfuscator with a
universal simulator.

All that remains is to prove Theorems 1 and 2. For notation in both proofs,
let C =

⋃
k∈N

Ck be a class of circuits with super-polynomial pseudo-entropy

such that each C ∈ Ck maps {0, 1}�(k) to {0, 1}�′(k). Let O be any candidate
obfuscator for C, and let m(k) be a polynomial such that |O(C)| ≤ m(k) for
every C ∈ Ck.

4.1 Proof of Theorem 1

The fact that C has super-polynomial pseudo-entropy implies that it has pseudo-
entropy at least m(k) + k. In particular, recalling Definition 7, this implies that
there exists a polynomial t = t(k) and a subset Ik ⊆ {0, 1}k of size t(k) such
that for every C there exists a random variable Y C = (Y1, . . . , Yt) such that the
following conditions hold:

1. The random variable Y C has statistical min-entropy at least m(k) + k.
2. For every (possibly non-uniform) PPT distinguisher D,∣∣∣Pr[DC(1k) = 1]− Pr[DC◦Y C

(1k) = 1]
∣∣∣ = negl(k),

where C ◦ Y C denotes an oracle that agrees with C except that Y C replaces
the values of C for inputs in Ik. Here the probabilities are over C ← Ck, the
random variable Y C , and the random coin tosses of D.
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We define an NP language L by

L={(xi)i∈Ik | k ∈ N and ∃ circuit C with |C| ≤ p(k) and C(i) = xi for i ∈ Ik} .

Set x = (C(i))i∈Ik and let aux(C) = Encx(1
k, b), where b ← {0, 1} is a random

bit and Enc is a witness encryption for the language L. Note that the fact that
there is a witness encryption for an NP-complete language implies that there is
a witness encryption for every NP language, and in particular for L.

Given O(C) and aux(C) = Encx(1
k, b), one can efficiently decrypt b with

probability 1 − negl(k), since O(C) is a valid witness of x. It remains to prove
the following claim.

Claim. For any (possibly non-uniform) PPT adversary S which takes as input
aux(s) = Encx(1

k, b) and has black-box access to C,

Pr[SC(Encx(1
k, b)) = b] ≤ 1

2
+ negl(k).

Proof. Suppose for the sake of contradiction that there exists a PPT adversary
S such that

Pr[SC(Encx(1
k, b)) = b] ≥ 1

2
+ ε(k)

for some non-negligible function ε, where the probability is over random C ← Ck,
the choice of b, and the randomness of Enc.

Let D be the distinguisher that, given oracle access to C, does the following.
First, it computes x = (C(i))i∈Ik by querying the oracle t(k) times. Then it
computes Encx(1

k, b) and simulates SC(Encx(1
k, b)) to arrive at its output.

By assumption,

Pr[DC(1k) = b] ≥ 1

2
+ ε(k).

Thus, because C has super-polynomial pseudo-entropy,

Pr[DC◦Y C

(1k) = b] ≥ 1

2
+ ε(k) + negl(k). (3)

When it is given oracle access to C ◦ Y C , D replaces x with x∗ = Y C , and at
the end it is trying to recover b from Encx∗(1k, b).

Note however that x∗ has min-entropy m(k) + k, and so the probability that
it is in L is at most 2−k. (For each of the at most 2m(k) circuits of size m(k)
in the definition of L, the probability of obtaining x∗ is at most 2−m(k)−k.)
Thus, Equation (3) contradicts the semantic security of the underlying witness-
encryption scheme.

Remark 1. Note that for any secret predicate π that is not learnable from black-
box access to the circuit, we could have taken the auxiliary input to be aux(C) =
Encx(1

k, b) where b = π(C) (as opposed to being truly random). In this case,
there exists a PPT adversary A that given the obfuscated circuit O(C) and
the auxiliary input aux(C) outputs π(C) with probability 1, whereas any PPT
simulator cannot learn π(C) from aux(C) and black-box access to C.
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Using Lemma 1, we conclude that for any secret predicate π that is not learn-
able from black-box access to the circuit and for any circuit C there exists an
adversary Aaux(C) that outputs π(C) with probability 1, whereas any universal
simulator S, which is given black box access to C and takes as input the code
of Aaux(C), cannot learn the predicate π(C).

Thus our negative result is a strong one: VBB obfuscation with a universal
simulator cannot conceal any secret predicate that is not learnable from black-
box access to the circuit.

4.2 Proof of Theorem 2

We first describe an auxiliary-input distribution ensemble Z and a PPT adver-
sary A such that given z ← Z and an obfuscation of C ← C, A always learns
some predicate π(C, z). Then, we show that any PPT simulator that is only
given oracle access to C fails to learn the predicate.

The Auxiliary Input Distribution Z. By assumption, C has pseudo-entropy
at least m(k) + k. Let {Ik}k∈N

be the sets guaranteed by Definition 7, where Ik
is of polynomial size t(k), and let G be a puncturable one-bit PRF family

G =
{
Gs : {0, 1}�

′(k)·t(k) → {0, 1}
∣∣∣ s ∈ {0, 1}k, k ∈ N

}
.

We define two circuit families

K =
{
Ks : {0, 1}m(k) → {0, 1}

∣∣∣ s ∈ {0, 1}k, k ∈ N
}
,

K∗ =
{
K∗

sx∗ : {0, 1}m(k) → {0, 1}
∣∣∣ s ∈ {0, 1}k, x∗ ∈ {0, 1}�

′(k)·t(k), k ∈ N
}
.

Given a circuit C̃ : {0, 1}� → {0, 1}�′ of size m as input, the circuit Ks com-
putes x := C̃(Ik) := (C̃(i))i∈Ik and outputs Gs(x). See Figure 1.

Hardwired: a PRF key s ∈ {0, 1}k and the set Ik.

Input: a circuit C̃ : {0, 1}� → {0, 1}�′ , where |C̃| = m(k).
1. Compute x = C̃(Ik).
2. Return Gs(x).

Fig. 1. The circuit Ks

The circuit K∗
sx∗ , has a hardwired PRF key sx∗ that was derived from s by

puncturing it at the point x∗. It operates the same as Ks, except that when
x = x∗, it outputs an arbitrary bit, say, 0. See Figure 2. In particular, if x∗ �=
C̃(Ik) for all circuits C̃ ∈ {0, 1}m(k), then K∗

sx∗ and Ks compute the exact same
function.
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Hardwired: a punctured PRF key sx∗ = Punc(s, x∗) and the set Ik.

Input: a circuit C̃ : {0, 1}� → {0, 1}�′ , where |C̃| = m(k).
1. Compute x = C̃(Ik).
2. If x �= x∗, return Gsx∗ (x).
3. If x = x∗, return 0.

Fig. 2. The circuit K∗
sx∗

We are now ready to define our auxiliary-input distribution Z = {Zk}k∈N
.

Let d = d(k) be the maximal size of circuits in either K or K∗, corresponding
to security parameter k. Denote by [K]d a circuit K padded with zeros to size
d, and by [K]d the class of circuits where every circuit K ∈ K is replaced with
[K]d. Let iO be an indistinguishability obfuscator for the class [K ∪ K∗]d.

The distribution Zk simply consists of an obfuscated (padded) circuit Ks for
a randomly generated s. See Figure 3.

1. Sample s ← GenG(1k).
2. Sample an obfuscation z ← iO([Ks]d(k)).
3. Output z.

Fig. 3. The auxiliary input distribution Zk

The Adversary A and Predicate π. The adversary A, given auxiliary input
z = [iO(Ks)]d(k) and an obfuscation O(C) with C ∈ Ck, outputs

z(O(C)) = Ks(O(C)) = Gs(O(C)(Ik)) = Gs(C(Ik)),

where the above follows by the definition of Ks and the functionality of iO and
O.

Thus, A always successfully outputs the predicate

π(C,Ks) = Ks(C) = Gs(C(Ik)).

Adversary A Cannot Be Simulated. We prove the following claim implying
that the candidate obfuscator O for the class C fails to meet the virtual black
box requirement:

Claim. For any PPT simulator S,

Pr
C←Ck
z←Zk

[
SC(z) = π(C, z)

]
≤ 1

2
+ negl(k).
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Proof. Assume towards contradiction that there exists a PPT simulator S that
learns π(C, z) with probability 1

2 + ε(k), for some non-negligible ε. We show how
to use S to break either the pseudo-entropy of C or the pseudo-randomness at
punctured points of G.

According to the definition of Zk,

Pr
[
SC(iO([Ks]d) = Gs(C(Ik))

]
≥ 1

2
+ ε(k),

where the probability is over C ← Ck, s ← GenG(1
k), and the random coin tosses

of S.
Now, for every C ∈ Ck, let Y C = (Y1, . . . , Yt) be the random variable guaran-

teed by the pseudo-entropy of values in Ik (Definition 7). We first consider an
alternative experiment in which the oracle C is replaced with an oracle C ◦ Y C

that behaves like C on all points outside Ik, and on points in Ik answers accord-
ing to Y C . We claim that

Pr
[
SC◦Y C

(iO([Ks]d) = Gs(Y
C)
]
≥ 1

2
+ ε(k)− negl(k),

where the probability is over C ← Ck, the random variable Y C , s ← GenG(1
k),

and the coin tosses of S. Indeed, this follows directly from the pseudo-entropy
guarantee (Definition 7), together with the fact that a distinguisher can sample
s and compute iO([Ks]d) on its own.

Next, we change the above experiment so that instead of an indistinguisha-
bility obfuscation of Ks, the simulator gets an indistinguishability obfuscation
of the circuit K∗

s∗x
, where s is punctured at the point x∗ = Y C . We claim that

Pr
[
SC◦Y C

(iO([K∗
sx∗

]d) = Gs(Y
C)
]
≥ 1

2
+ ε(k)− negl(k),

where the probability is over C ← Ck, the random variable Y C , s ← GenG(1
k),

and the coin tosses of S, x∗ = Y C , and sx∗ = Punc(s, x∗). Indeed, recalling that
Y C has min-entropy m(k) + k for every C ∈ Ck, there does not exist a circuit C̃
such that x∗ := Y C = C̃(Ik), except with negligible probability 2−k. However,
recall that in this case Ks and K∗

sx∗ have the exact same functionality, and thus
the above follows by the indistinguishability obfuscation guarantee.

It is now left to note that S predicts with noticeable advantage the value
of Gs at the punctured point x∗, and thus violates the pseudo-randomness at
punctured points requirement (Definition 6).

References

[BBC+14] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.:
Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 26–51. Springer, Heidelberg (2014)



88 N. Bitansky et al.

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI13] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. Cryptology ePrint Archive, Report 2013/401

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631

[BR13a] Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. Cryp-
tology ePrint Archive, Report 2013/557

[BR13b] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. Cryptology ePrint Archive, Report 2013/352

[Can97] Canetti, R.: Towards realizing random oracles: Hash functions that hide
all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

[CD08] Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
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Abstract. A self-bilinear map is a bilinear map where the domain and
target groups are identical. In this paper, we introduce a self-bilinear map
with auxiliary information which is a weaker variant of a self-bilinear
map, construct it based on indistinguishability obfuscation and prove
that a useful hardness assumption holds with respect to our construc-
tion under the factoring assumption. From our construction, we obtain a
multilinear map with interesting properties: the level of multilinearity is
not bounded in the setup phase, and representations of group elements
are compact, i.e., their size is independent of the level of multilinearity.
This is the first construction of a multilinear map with these properties.
Note, however, that to evaluate the multilinear map, auxiliary informa-
tion is required. As applications of our multilinear map, we construct
multiparty non-interactive key-exchange and distributed broadcast en-
cryption schemes where the maximum number of users is not fixed in
the setup phase. Besides direct applications of our self-bilinear map, we
show that our technique can also be used for constructing somewhat ho-
momorphic encryption based on indistinguishability obfuscation and the
Φ-hiding assumption.

Keywords: self-bilinear map, indistinguishability obfuscation, multilin-
ear map.

1 Introduction

1.1 Background

Bilinear maps are an important tool in the construction of many cryptographic
primitives, such as identity-based encryption (IBE) [2], attribute-based encryp-
tion (ABE) [22], non-interactive zero-knowledge (NIZK) proof systems [16] etc.
The bilinear maps which are mainly used in cryptography, are constructed on
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elliptic curve groups. In these constructions, the target group is different from
the domain groups.

This leads to the natural question: is it possible to construct a bilinear map
where the domain and target groups are identical? Such a bilinear map is called
a self-bilinear map, and has previously been studied by Cheon and Lee [5]. They
showed that a self-bilinear map is useful to construct cryptographic primitives by
highlighting that it can be used for constructing a multilinear map [3]. However,
in contrast to this useful property, they also proved an impossibility result: the
computational Diffie-Hellman (CDH) assumption cannot hold in a group G of
known prime order if there exists an efficiently computable self-bilinear map on
G. This is undesirable for cryptographic applications. The overview of the proof
is as follows. Let e : G × G → G be a self-bilinear map and g be a generator
of G, then we have e(gx, gy) = e(g, g)xy = gcxy where c is an integer such that
e(g, g) = gc. Then we can compute gxy by computing c-th root of e(gx, gy) since
G is a prime and known order group.1 However, their impossibility result cannot
be applied for the case that G is a composite and unknown order group. This is
the setting we focus on in this paper.

1.2 Our Contribution

In this paper, we consider a group of composite and unknown order and con-
struct a self-bilinear map with auxiliary information which is a weaker variant
of a self-bilinear map, by using indistinguishability obfuscation [10]. Though our
self-bilinear map with auxiliary information has a limited functionality com-
pared with a self-bilinear map, we show that it is still useful to construct various
cryptographic primitives. Especially, it is sufficient to instantiate some multilin-
ear map-based cryptographic primitives such as multiparty non-interactive key
exchange (NIKE), broadcast encryption and attribute-based encryption for cir-
cuits. Our multiparty NIKE and distributed broadcast encryption schemes are
the first schemes where all algorithms can be run independent of the number of
users. We also show that our technique can be used for constructing a somewhat
homomorphic encryption scheme for NC1 circuits.

Applications of Our Self-bilinear Map with Auxiliary Information. As
applications of our self-bilinear map with auxiliary information, we construct a
multilinear map. From our construction, we obtain multiparty NIKE, distributed
broadcast encryption and ABE for circuits schemes. The details follow.

– Multilinear map. We can construct a multilinear map by iterated usage
of a self-bilinear map. Since our variant of a self-bilinear map in this paper
requires auxiliary information to compute the map, the resulting multilin-
ear map also inherits this property. However, we show that it is sufficient
to replace existing multilinear maps in some applications which are given

1 Here, we consider only the case in which c is known. However, [5] proved that the
CDH assumption does not hold even if c is unknown as long as G is a group of known
prime order.
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below. Moreover, our multilinear map has an interesting property that ex-
isting multilinear maps do not have: the level of multilinearity is not bounded
at the instance generation phase and representations of group elements are
compact, i.e., their sizes are independent of the level of multilinearity.

– Multiparty NIKE. We construct a multiparty NIKE scheme where the
maximum number of users is not fixed in the setup phase. In particular,
the size of both the public parameters and a public key generated by a
user are independent of the number of users. The construction is a natural
extension of the Diffie-Hellman key exchange by using our multilinear map
[7,3]. We note that [4] also constructed multiparty NIKE schemes based
on indistinguishability obfuscation. However, in their schemes, the setup
algorithm or key generation algorithm have to take the number of users
as input unlike ours.

– Distributed broadcast encryption. Distributed broadcast encryption is
broadcast encryption where a user can join the system by himself with-
out the assistance of a (semi) trusted third party holding a master key. We
construct a distributed broadcast encryption scheme where the maximum
number of users is not fixed in the setup phase based on our multiparty
NIKE scheme. In particular, the size of both the public parameters and a
ciphertext overhead are independent of the number of users. We note that
[4] also constructed a distributed broadcast encryption scheme based on in-
distinguishability obfuscation. However, in their scheme, the setup algorithm
have to take the number of users as input unlike ours.

– ABE for circuits. We construct an ABE scheme for general circuits by
using our multilinear map. The construction is an analogue of the scheme
in [11]. Note that this is not the first ABE scheme for general circuits based
on indistinguishability obfuscation since a indistinguishability obfuscation
implies witness encryption [10], and [12] constructed ABE for circuits based
on witness encryption. We also note that Gorbunov et al. [15] constructed
attribute based encryption for circuit based on the standard learning with
errors (LWE) assumption.

The above results can be interpreted as evidence that our multilinear map can
replace existing multilinear maps in some applications based on the multilinear
CDH assumption since all of the above constructions are simple analogue of
multilinear map-based constructions.

Besides direct applications of our self-bilinear map with auxiliary information,
we construct a somewhat homomorphic encryption scheme by using a similar
technique. Our somewhat homomorphic encryption scheme is chosen plaintext
(CPA) secure, NC1 homomorphic and compact.

Note that all known candidate constructions of indistinguishability obfusca-
tion are far from practical, and hence, the above constructions are mostly of
theoretical interest.

Technical Overview. Here, we give a technical overview of our result. Our ba-
sic idea is to avoid the impossibility result of self-bilinear maps which is explained
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above by considering a group of composite and unknown order. Note that even
if we consider such a group, many decisional assumptions such as the decisional
Diffie-Hellman (DDH) assumption cannot hold if there exists an efficiently com-
putable self-bilinear map on the group. Therefore we consider only computational
assumptions such as the CDH assumption. For a Blum integer N , we consider
the group QR+

N of signed quadratic residues [17]. On this group, we consider a
self-bilinear map e : QR+

N ×QR+
N → QR+

N which is defined as e(gx, gy) := g2xy.
The reason why we define it in this manner is that we want to ensure that the
CDH assumption holds in QR+

N , even if e is efficiently computable. That is, even
if we can compute e(gx, gy) = g2xy, it is difficult to compute gxy from it since the
Rabin function is hard to invert under the factoring assumption. However, given
only the group elements gx and gy, we do not know how to compute e(gx, gy) ef-
ficiently. To address this, we introduce auxiliary information τy for each element
gy ∈ QR+

N which enables us to compute a map e(·, gy) efficiently. This leads to
the notion of self-bilinear map with auxiliary information which we introduce in
this paper.

The problem is how to define auxiliary information τy which enables us to
compute e(·, gy) efficiently. The most direct approach is to define τy as a circuit
that computes the 2y-th power. However, if we define τy as a “natural” circuit
that computes the 2y-th power, then we can extract 2y from τy , and thus we
can compute y. This clearly enables us to compute gxy, which breaks the CDH
assumption.

A more clever way is to define τy as a circuit that computes the ty-th power
where ty = 2y±ord(QR+

N ).2 In this way, it seems that τy does not reveal y since
ty is a “masked” value of 2y by ord(QR+

N ) which is an unknown odd number.
This idea is already used by Seurin [25] to construct a trapdoor DDH group.
Actually, he proved that even if ty is given in addition to gx and gy, it is still
difficult to compute gxy. In this way, it seems that we can construct a self-bilinear
map with auxiliary information. However, this creates a problem: we do not have
an efficient algorithm to compute ty from y without knowing the factorization of
N . If such an algorithm does not exist, then we cannot instantiate many bilinear
map-based primitives using the resulting map such as the 3-party Diffie-Hellman
key exchange [19].

To overcome the above difficulty, we use indistinguishability obfuscation. An
indistinguishability obfuscator (iO) is an efficient randomized algorithm that
makes circuits C0 and C1 computationally indistinguishable if they have exactly
the same functionality.

We observe that a circuit that computes the 2y-th power and a circuit that
computes the ty-th power for an element of QR+

N have exactly the same func-
tionality since we have ty = 2y ± ord(QR+

N ). Therefore if we obfuscate these
circuits by iO, then the resulting circuits are computationally indistinguishable.
Then we define auxiliary information τy as an obfuscation of a circuit that com-
putes the 2y-th power. With this definition, it is clear that τy can be computed
from y efficiently, and the above mentioned problem is solved. Moreover, τy is

2 In the definition of ty, whether + or − is used depends on y. See [25] for more details.
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computationally indistinguishable from an obfuscation of a circuit that computes
the ty-th power. Therefore it must still be difficult to compute gxy even if τy is
given in addition to gx and gy.

Thus we obtain a self-bilinear map with auxiliary information on QR+
N while

ensuring that the auxiliary information does not allow the CDH assumption
to be broken. Moreover, by extending this, we can prove that an analogue of
multilinear CDH assumption holds with respect to a multilinear map which is
constructed from our self-bilinear map with auxiliary information based on iO
and the factoring assumption.

1.3 Related Work

In cryptography, bilinear maps on elliptic curves were first used for breaking
the discrete logarithm problem on certain curves [21]. The first constructive
cryptographic applications of a bilinear map are given in [19,24,2]. Since then,
many constructions of cryptographic primitives based on a bilinear map have
been proposed.

Boneh and Silverberg [3] considered a multilinear map which is an extension
of a bilinear map, and showed its usefulness for constructing cryptographic prim-
itives though they did not give a concrete construction of multilinear maps. Garg
et al. [8] proposed a candidate construction of multilinear maps based on ideal
lattices. Coron et al. [6] proposed another construction over the integers.

The notion of indistinguishability obfuscation was first proposed by Barak et
al. [1]. The first candidate construction of indistinguishability obfuscation was
proposed by Garg et al. [10]. Since then, many applications of indistinguishability
obfuscation have been proposed [23,9,18,14,4].

2 Preliminaries

2.1 Notations

We use N to denote the set of all natural numbers, and [n] to denote the set

{1, . . . n} for n ∈ N. If S is a finite set, then we use x
$← S to denote that x is

chosen uniformly at random from S. If A is an algorithm, we use x ← A(y; r)
to denote that x is output by A whose input is y and randomness is r. We often
omit r. We say that a function f(·) : N → [0, 1] is negligible if for all positive
polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say
f is overwhelming if 1−f is negligible. We say that an algorithm A is efficient if
there exists a polynomial p such that the running time of A with input length λ
is less than p(λ). For two integers x �= 0 and y, we say that x and y are negligibly
close if |x−y|/x is negligible. For a set S and a random variable x over S, we say
that x is almost random on S if the statistical distance between the distribution
of x and the uniform distribution on S is negligible. For a circuit C, we denote
the size of C by |C|. For a wire w which is an output wire of a gate, we denote
the first input incoming wire of the gate by A(w) and the second incoming wire
of the gate by B(w). We use λ to denote the security parameter.
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2.2 Indistinguishability Obfuscator

Here, we recall the definition of an indistinguishability obfuscator [10,23].

Definition 1. (Indistinguishability Obfuscator.) Let Cλ be the class of circuits
of size at most λ. An efficient randomized algorithm iO is called an indistin-
guishability obfuscator for P/poly if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[∀x C′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) efficient algorithm A = (A1,A2), there
exists a negligible function α such that the following holds: if A1(1

λ) always
outputs (C0, C1, σ) such that we have C0, C1 ∈ Cλ and ∀x C0(x) = C1(x),
then we have

|Pr[A2(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← A1(1
λ)]

−Pr[A2(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← A1(1
λ)]| ≤ α(λ)

Note that a candidate construction of iO that satisfies the above definition is
given in [10].

2.3 Group of Signed Quadratic Residues

Here, we recall the definition and some properties of a group of signed quadratic
residues [17] that we mainly work with in this paper. An integer N = PQ is
called a Blum integer if P and Q are distinct primes and P ≡ Q ≡ 3 mod 4
holds. Let RSAGen(1λ) be an efficient algorithm which outputs a random �N(λ)-
bit Blum integer N = PQ and its factorization (P,Q) so that the length of P
and Q are the same and we have gcd(P − 1, Q− 1) = 1. For simplicity, we often
omit λ and simply denote �N (λ) as �N . We say that the factoring assumption
holds with respect to RSAGen if for any efficient adversary A, Pr[x ∈ {P,Q} :
(N,P,Q) ← RSAGen(1λ), x ← A(1λ, N)] is negligible. We define the group of
quadratic residues as QRN := {u2 : u ∈ ZN

∗}. Note that QRN is a cyclic group
of order (P − 1)(Q− 1)/4 if N is output by RSAGen(1λ).

For any subgroup H ∈ Z∗
N , we define its signed group as H+ := {|x| : x ∈ H}

where |x| is the absolute value of x when it is represented as an element of {−(N−
1)/2, . . . , (N−1)/2}. This is certainly a group by defining a multiplication as x◦
y := |(xy mod N)| for x, y ∈ H+. For simplicity, we often denote multiplications
on H+ as usual multiplication when it is clear that we are considering a signed
group. If H is a subgroup of QRN , then H

∼
= H+ by the natural projection since

−1 /∈ QRN . In particular, QR+
N is a cyclic group of order (P − 1)(Q− 1)/4. We

call QR+
N a group of signed quadratic residues. A remarkable property of QR+

N

is that it is efficiently recognizable. That is, there exists an efficient algorithm
that determines whether a given string is an element of QR+

N or not [17].



96 T. Yamakawa et al.

3 Self-bilinear Maps

In this section, we recall the definition of a self-bilinear map [5]. Next, we in-
troduce the notion of self-bilinear map with auxiliary information which is a
weaker variant of a self-bilinear map. Finally we define hardness assumptions
with respect to a multilinear map which is constructed from a self-bilinear map.

3.1 Definition of a Self-bilinear Map

First, we recall the definition of a self-bilinear map. A self-bilinear map is a
bilinear map where the domain and target groups are identical. The formal
definition is as follows.

Definition 2. (Self-bilinear Map [5]) For a cyclic group G, a self-bilinear map
e : G×G → G has the following properties.

– For all g1, g2 ∈ G and α ∈ Z, it holds that

e(gα1 , g2) = e(g1, g
α
2 ) = e(g1, g2)

α.

– The map e is non-degenerate, i.e, if g1, g2 ∈ G are generators of G, then
e(g1, g2) is a generator of G.

In addition to the above, we usually require that e is efficiently computable.
As shown in [5], we can construct an n-multilinear map for any integer n ≥ 2
from a self-bilinear map e. This can be seen by easy induction: suppose that an
n-multilinear map en can be constructed from a self-bilinear map e, then we can
construct an (n+ 1)-multilinear map en+1 by defining

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

3.2 Self-bilinear Map with Auxiliary Information

Instead of constructing a self-bilinear map, we construct a self-bilinear map with
auxiliary information which is a weaker variant of a self-bilinear map. In a self-
bilinear map with auxiliary information, the map is efficiently computable only if
“auxiliary information” is given. That is, when we compute e(gx, gy), we require
auxiliary information τx for gx or τy for gy. This is the difference from an“ideal”
self-bilinear map in which e(gx, gy) can be computed only from gx and gy. We
formalize a self-bilinear map with auxiliary information as a set of algorithms
SBP = (InstGen, Sample,AIGen,Map,AIMult) and a set R of integers.

InstGen(1λ) → params : InstGen takes the security parameter 1λ as input and
outputs the public parameters params which specifies an efficiently recogniz-
able cyclic group G on which the group operation is efficiently computable.
We require that an approximation Approx(G) of ord(G) can be computed
efficiently from params and that Approx(G) is negligibly close to ord(G).
Additionally, params specifies sets T �

x of auxiliary information for all integers
x and � ∈ N.
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Sample(params) → g : Sample takes params as input and outputs an almost ran-
dom element g of G. The self-bilinear map e : G × G → G is defined with
respect to the element g.

AIGen(params, �, x) → τx : AIGen takes params, level � and an integer x ∈ R as
input, and outputs corresponding auxiliary information τx ∈ T �

x.
Map(params, gx, τy) → e(gx, gy) : Map takes params, gx ∈ G and τy ∈ ∪�∈NT

�
y

as input and outputs e(gx, gy). By using this algorithm iteratively, we can
compute en(g

x1
1 , . . . , gxn

n ) if we are given gx1 , . . . , gxn
n and τx1 , . . . , τxn . (Note

that not all of these elements are required to evaluate the map.)
AIMult(params, �, τx, τy) → τx+y : AIMult takes params, �, τx ∈ T �1

x , τy ∈ T �2
y

such that � > max{�1, �2} as input and outputs τx+y ∈ T �
x+y.

In addition to the above algorithms, we require for SBP to satisfy the following
property.

Indistinguishability of Auxiliary Information.We require that any efficient
algorithm which is given auxiliary information cannot tell whether it is generated
by AIGen or AIMult. More formally, for any params ← InstGen(1λ), � ∈ N (which
does not depend on λ), natural numbers �1, �2 < �, integers x, y and z (which
are polynomially bounded in λ), such that z ∈ R and z ≡ x + y mod ord(G),
and auxiliary information τx ∈ T �1

x and τy ∈ T �2
y , the following two distributions

are computationally indistinguishable:

D1 = {τz : τz ← AIGen(params, �, z)}

D2 = {τx+y : τx+y ← AIMult(params, �, τx, τy)}.

Remark 1. A level � of auxiliary information grows by at least 1 when AIMult
is applied. One can think of it as an analogue of a noise level in the GGH graded
encoding [11]. In our construction, the size of auxiliary information grows expo-
nentially in a level �. Therefore an efficient algorithm can only handle auxiliary
information of a constant level. Actually, in our applications in this paper, � is
set at most 2.

3.3 Hardness Assumptions

For cryptographic use, we introduce some hardness assumptions. We use SBP
to construct a multilinear map, and thus our hardness assumptions are associ-
ated with a multilinear map which is constructed from SBP. In the following,
we let SBP = (InstGen, Sample,AIGen,Map,AIMult) be self-bilinear map proce-
dures. First, we define the multilinear computational Diffie-Hellman with auxil-
iary information (MCDHAI) assumption which is an analogue of the multilinear
computational Diffie-Hellman (MCDH) assumption.

Definition 3. (MCDHAI assumption) We say that the n-MCDHAI assumption
holds with respect to SBP if for any efficient algorithm A,

Pr[en(g, . . . , g)
sΠn

i=1xi ← A(params, g, gs, gx1, . . . , gxn , τs, τx1 . . . , τxn)]
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is negligible, where params ← InstGen(1λ), g ← Sample(params), s, x1, . . . , xn ←
[Approx(G)], τs ← AIGen(params, 1, s), τxi ← AIGen(params, 1, xi) for all i ∈ [n].

We say that the MCDHAI assumption holds with respect to SBP if the n-
MCDHAI assumption holds with respect to SBP for any integer n which is poly-
nomially bounded in λ.

We also define the multilinear hashed Diffie-Hellman with auxiliary information
(MHDHAI) assumption which is an analogue of the multilinear hashed Diffie-
Hellman (MHDH) assumption.

Definition 4. (MHDHAI assumption) We say that the n-MHDHAI assumption
holds with respect to SBP and a family of hash functions H = {H : G → {0, 1}k}
if for any efficient algorithm D,

|Pr[1 ← D(params, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn , H, T )|β = 1]

−Pr[1 ← D(params, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn , H, T )|β = 0]|

is negligible, where params ← InstGen(1λ), g ← Sample(params), s, x1, . . . , xn ←
[Approx(G)], τs ← AIGen(params, 1, s), τxi ← AIGen(params, 1, xi) for all i ∈ [n],

β
$← {0, 1} and T

$← {0, 1}k if β = 0, and otherwise T = H(en(g, . . . , g)
sΠn

i=1xi).
We say that the MHDHAI assumption holds with respect to SBP and H if

the n-MHDHAI assumption holds with respect to SBP and H for any integer n
which is polynomially bounded in λ.

Note that if the MCDHAI assumption holds with respect to SBP then the MHD-
HAI assumption holds with respect to SBP and the Goldreich-Levin hardcore
bit function [13].

4 Our Construction of a Self-bilinear Map

In this section, we construct a self-bilinear map with auxiliary information by
giving a construction of self-bilinear map procedures SBP . We prove that the
MCDHAI assumption holds with respect to SBP if the factoring assumption
holds and there exists an indistinguishability obfuscator for P/poly.

4.1 Construction

First we prepare some notations for circuits on QR+
N .

Notation for Circuits on QR+
N . In the following, for an �N -bit RSA modulus

N and an integer x ∈ Z, CN,x denotes a set of circuits CN,x that work as follows.
For input y ∈ {0, 1}�N , CN,x interprets y as an element of ZN and returns yx

where the exponentiation is done on QR+
N if y ∈ QR+

N and otherwise returns

0�N (which is interpreted as ⊥). We define the canonical circuit C̃N,x in CN,x in
a natural way 3. For circuits C1, C2 whose output can be interpreted as elements

3 There is flexibility to define the canonical circuit. However, any definition works if
the size of C̃N,x is polynomially bounded in λ and |x|.
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of QR+
N , Mult(C1, C2) denotes a circuit that computes Cmult(C1(x), C2(y)) for

input (x, y) where Cmult is a circuit that computes a multiplication for elements
of QR+

N . If an input of Cmult is not a pair of two elements in QR+
N , then it outputs

0�N .
Now we are ready to describe our construction. The construction of SBP is

as follows.

InstGen(1λ) → params : Run RSAGen(1λ) to obtain (N,P,Q), and outputs
params = N . params defines the underlying group G = QR+

N and
Approx(G) = (N − 1)/4. For an integer x and � ∈ N, the set T �

x is de-
fined as T �

x = {iO(M�, CN,2x; r) : CN,2x ∈ CN,2x such that |CN,2x| ≤ M�, r ∈
{0, 1}∗}, where M� is defined later.

Sample(params) → g : Choose a random element g ∈ Z∗
N , computes g2 in Z∗

N and
outputs |g2| where the absolute value is taken when it is represented as an
element of {−(N − 1)/2, . . . , (N − 1)/2}. When params = N and a generator
g ∈ QR+

N are fixed, the self-bilinear map e is defined as e(gx, gy) = g2xy.
AIGen(params, �, x) → τx : Define the range of x as R := [(N − 1)/2]. Take the

canonical circuit C̃N,2x ∈ CN,2x, set τx ← iO(M�, C̃N,2x) and output τx.
Map(params, gx, τy) → e(gx, gy) : Compute τy(g

x) and output it. (Recall that τy
is a circuit that computes the 2y-th power for an element of QR+

N .)
AIMult(params, �, τx, τy) → τx+y : Compute τx+y ← iO(M�,Mult(τx, τy)) and

output it.

Definition of M�. M� represents an upper bound of the size of a circuit which
is obfuscated by iO when auxiliary information with level � is generated. To
define it, we consider another integer M ′

� which represents an upper bound of
the size of auxiliary information with level �. We define M� and M ′

� recursively.

We define M ′
0 as an integer which is larger than maxx∈[(N+1)/2]{|C̃N,x|}. For

� ≥ 1, we define M� := 2M ′
�−1 + |CMult| and M ′

� := poly(M�, λ) where poly is a
polynomial that satisfies |iO(M,C)| < poly(M,λ) for any integer M and circuit
C such that |C| < M .

Indistinguishability of Auxiliary Information. If z ≡ x+y mod ord(QR+
N )

holds, then CN,2z and Mult(τx, τy) have exactly the same functionality. Therefore
if we obfuscate these circuits by iO, then the resulting circuits are computation-
ally indistinguishable.

4.2 Hardness Assumptions

We prove that the MCDHAI assumption holds with respect to our construction
of a self-bilinear map if iO is an indistinguishability obfuscator for P/poly and
the factoring assumption holds. From that, we can immediately see that the
MHDHAI assumption also holds with respect to our construction if we use the
Goldreich-Levin hardcore bit function [13] as H.

First, we prove that the MCDHAI assumption holds if iO is an indistinguisha-
bility obfuscator for P/poly and the factoring assumption holds.
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Theorem 1. The MCDHAI assumption holds with respect to SBPOurs if the
factoring assumption holds with respect to RSAGen and iO is an indistinguisha-
bility obfuscator for P/poly.

Proof. For an algorithm A and an integer n (which is polynomially bounded by
the security parameter), we consider the following games.

Game 1. This game is the original n-MCDHAI game. More precisely, it is as
follows.

(N,P,Q) ← RSAGen(1λ)

g
$← QR+

N

s, x1, . . . , xn
$← [(N − 1)/4]

τs ← iO(M1, C̃N,2s), τxi ← iO(M1, C̃N,2xi) for i ∈ [n]
U ← A(N, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn)

Game 1′ This game is the same as Game 1 except that s, x1, . . . , xn are chosen
from [ord(QR+

N )].
Game 2′ This game is the same as Game 1′ except that g, s, x1, . . . , xn,

τs, τx1 , . . . , τxn are set differently. More precisely, it is as follows.

(N,P,Q) ← RSAGen(1λ)

h
$← QR+

N

g := h2

s′, x′
1, . . . , x

′
n

$← [ord(QR+
N )]

gs := gs
′
h, gxi := gx

′
ih for i ∈ [n]

(This implicitly defines s ≡ s′ + 1/2 mod ord(QR+
N ) and xi ≡

x′
i + 1/2 mod ord(QR+

N )).

τs ← iO(M1, C̃N,2s′+1), τxi ← iO(M1, C̃N,2x′
i+1) for i ∈ [n]

U ← A(N, g, gs, gx1 , . . . , gxn , τs, τx1 . . . , τxn)

Game 2. This game is the same as Game 2′ except that s, x1, . . . , xn are chosen
from [(N − 1)/4].

We say that A wins if it outputs U = en(g, . . . , g)
sΠn

i=1xi . For i = 1, 2, we let Ti

and T ′
i be the events that A wins in Game i and Game i′, respectively. What we

want to prove is that Pr[T1] is negligible. We prove it by the following lemmas.

Lemma 1. |Pr[Ti]− Pr[T ′
i ]| is negligible for i = 1, 2

Proof. This follows since (N − 1)/4 is negligibly close to ord(QR+
N ).

Lemma 2. |Pr[T ′
1]− Pr[T ′

2]| is negligible if iO is an indistinguishability obfus-
cator for P/poly.

Proof. We consider hybrid games H0, . . .Hn+1. A hybrid game Hi is the same
as Game 1′ except that the first i auxiliary information (i.e, τs, τx1 , . . . , τxi−1)
are generated as in Game 2′. It is clear that H0 is identical to Game 1′ and
Hn+1 is identical to Game 2′. Let Si be the event that A wins in Game Hi.
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It suffices to show that |Pr[Si] − Pr[Si−1]| is negligible by the standard hybrid
argument. We construct an algorithm B = (B1,B2) that breaks the security of
iO for the security parameter M1 by using A that distinguishes Hi and Hi−1.
In the following, we use x0 to mean s for notational convenience.

B1(1
λ): B1 runs (N,P,Q) ← RSAGen(1λ), chooses h

$← QR+
N and x0, . . . ,

xn
$← [ord(QR+

N )] and sets g := h2. B1 computes x′
0, . . . , x

′
n ∈ ord(QR+

N )
such that xj ≡ x′

j + 1/2 mod ord(QR+
N ) for j = 0, . . . , n. (This can be com-

puted since B1 knows the factorization of N .) Then B1 sets C0 := C̃N,2xi−1 ,

C1 := C̃N,2x′
i−1+1 and σ := (N,P,Q, h, g, x0, . . . , xn, x

′
0, . . . , x

′
n) and outputs

(C0, C1, σ).
B2(σ,C

∗): B2 sets

τxj ←

⎧⎨⎩
iO(M1, C̃N,2x′

j+1) if j = 0, . . . , i− 2

C∗ if j = i− 1

iO(M1, C̃N,2xj) if j = i, . . . , n.

Then B2 runs A(N, g, gx0 , . . . , gxn , τx0 , . . . , τxn) to obtain U . If we have U =
en(g, . . . , g)

Πn
i=0xi , then B2 outputs 1, and otherwise outputs 0.

The above completes the description of B. First, we note that each of gj (j =
0, . . . , n) is distributed in QR+

N independently of each other in all hybrid games
Hi for i = 0, . . . , n+ 1. Therefore B generates them in exactly the same way as
those are generated in the hybridsHi−1 andHi. Then we can see that B perfectly
simulates Hi−1 if C∗ ← iO(M1, C0) and Hi if C

∗ ← iO(M1, C1) from the view
of A. If the difference between the probability that A wins in Hi−1 and that
in Hi is non-negligible, then B succeeds in distinguish whether C∗ is computed
as C∗ ← iO(M1, C0) or C∗ ← iO(M1, C1), with non-negligible advantage, and
thus breaks the security of iO.

Lemma 3. Pr[T2] is negligible if the factoring assumption holds.

Proof. Assuming that A wins in Game 2 with non-negligible probability, we
construct an algorithm B that computes h1/2 given an RSA modulus N and
a random element h ∈ QR+

N with non-negligible probability. This yields the
factoring algorithm [17]. The construction of B is as follows.

B(N, h) : B sets g := h2 and chooses s′, x′
1, . . . , x

′
n

$← [(N − 1)/4]. Then B
sets gs := gs

′
h, gxi := gx

′
ih for all i ∈ [n], τs ← iO(M1, C̃N,2s′+1) and

τxi ← iO(M1, C̃N,2x′
i+1) for all i ∈ [n]. Then B runs A(N, g, gs, gx1 , . . . ,

gxn , τs, τx1 . . . , τxn). Let U be the output of A. Then B computes X :=
Πn

i=1(2x
′
i+1) and outputs Ug−(s′X+(X−1)/2). (Note that X is odd and there-

fore (X − 1)/2 is an integer.)

Since B perfectly simulates Game 2 from the view of A, A outputs
en(g, . . . , g)

sΠn
i=1xi with non-negligible probability. If it occurs, then we have

U = en(g, . . . , g)
sΠn

i=1xi = g2
n−1sΠn

i=1xi = h2nsΠn
i=1xi = hsΠn

i=12xi

= h(s′+1/2)Πn
i=1(2x

′
i+1) = hs′X+X/2 = hs′X+(X−1)/2+1/2

and therefore we have Ug−(s′X+(X−1)/2) = h1/2.
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Theorem 1 is proven by the above lemmas. #$

The following is immediate from Theorem 1 and the Goldreich-Levin theorem.

Theorem 2. The MHDHAI assumption holds with respect to SBPOurs and the
Goldreich-Levin hardcore bit function if the factoring assumption holds with re-
spect to RSAGen and iO is an indistinguishability obfuscator for P/poly.

5 Applications of Our Self-bilinear Map

In Sec. 4, we constructed a self-bilinear map with auxiliary information. In
this section, we construct a multilinear map, multiparty NIKE, distributed
broadcast encryption and ABE for circuits by using it.

Multilinear Map. Here, we consider a multilinear map which is constructed
from a self-bilinear map with auxiliary information. As shown in Sec. 3.1 we can
construct a multilinear map by iterated usage of a self-bilinear map. However, if
we use a self-bilinear map with auxiliary information as a building block, then
the resulting multilinear map has a restricted functionality: we need auxiliary
information to compute the map. The concrete formulation is as follows.

Similarly to self-bilinear map procedures in Sec. 3.2, we formalize a multilin-
ear map with auxiliary information as a set of algorithms SBP = (InstGenmult,
Samplemult,AIGenmult,Mapmult,AIMultmult) and a set R of integers. InstGenmult

takes the security parameter as input and outputs the public parameters params
which specify an underlying group G and a multilinear map e on it. Samplemult

takes params as input and outputs an almost random element of G. AIGenmult

takes params, �, and x ∈ R as input and outputs auxiliary information τx of
level � with respect to x. Mapmult takes params, gx1 , . . . , gxn, τx1 , . . . , τxn−1 and a
level of multilinearity n as input, and outputs en(g

x1 , . . . , gxn). AIMultmult takes
params, an integer � and auxiliary information τx and τy whose levels are less
than � as input and outputs auxiliary information τx+y of level � with respect
to x+ y. A more precise definition is given in the full version.

In spite of the limitation that it requires auxiliary information to compute
the map, a multilinear map with auxiliary information is sufficient to replace
existing multilinear maps in some applications. Moreover, our multilinear map
has interesting properties that existing multilinear maps do not have: the
level of multilinearity is not bounded at the instance generation phase and
representations of group elements are compact, i.e., their sizes are independent
of the level of multilinearity. By this property, cryptographic primitives which
are constructed from our multilinear map inherit these properties too.

Multiparty NIKE. By extending the Diffie-Hellman key exchange [7] to a
multilinear setting as in [3], we obtain a multiparty NIKE scheme. By using
our multilinear map (with auxiliary information) as a building block, we obtain
a multiparty NIKE scheme where the maximum number of users is not fixed
in the setup phase. In particular, the size of both the public parameters and a
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public key generated by a user are independent of the number of users. Note
that [4] also constructed multiparty NIKE schemes based on indistinguishability
obfuscation. However, in their schemes, the setup algorithm or key generation
algorithm have to take the number of users as input unlike ours.

Distributed Broadcast Encryption. It is known that a multiparty NIKE
scheme can be converted to a distributed broadcast encryption [3,4], where a user
can join the system by himself without the assistance of a (semi) trusted third
party holding a master key. The conversion is very simple: The setup algorithm
runs SetupNIKE(1

λ) to obtain PP and publishes it. A user who wants to join the
system runs PublishNIKE(PP) to obtain (pk, sk), publishes pk as his public key
and keeps sk as his secret key. A sender who wants to send a message M to a
set S of users plays the role of a user of the underlying NIKE, shares a derived
key K with users in S and encrypts M to obtain a ciphertext Ψ by a symmetric
key encryption scheme using the key K. A ciphertext consists of S, the sender’s
public key and Ψ . It is easy to prove that the resulting broadcast encryption
scheme is CPA secure if the underlying multiparty NIKE scheme is statically
secure. In our scheme, as in the multiparty NIKE scheme, all algorithms
can be run independently of the number of users. In particular, the size of
both the public parameters and a ciphertext overhead are independent of the
number of users. This is the first distributed broadcast encryption scheme with
this property. Note that [4] also constructed distributed broadcast encryption
schemes based on indistinguishability obfuscation. However, in their schemes,
the setup algorithm or key generation algorithm have to take the number of
users as input unlike ours.

Attribute Based Encryption for Circuits. We can construct ABE for cir-
cuits based on our self-bilinear map almost similarly to the scheme in [11]. The
concrete construction can be found in the full version.

6 Homomorphic Encryption

In this section, we construct a somewhat homomorphic encryption scheme by
using an indistinguishability obfuscator. This is not a direct application of our
self-bilinear map. However, the idea behind the construction is similar.

6.1 Definition of Homomorphic Encryption

Here, we recall some definitions for homomorphic encryption. A homomorphic
encryption scheme HE consists of the four algorithms (KeyGen,Enc,Eval,Dec).
KeyGen takes the security parameter 1λ as input and outputs a public key pk and
a secret key sk. Enc takes a public key pk and a massagem ∈ {0, 1} as input, and
outputs a ciphertext c. Eval takes a public key pk, a circuit f with input length
� and a set of � ciphertexts c1, . . . , c� as input, and outputs a ciphertext cf . Dec
takes a secret key sk and a ciphertext c as input, and outputs a message m. For
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correctness of the scheme, we require that for all (pk, sk) ← KeyGen(1λ) and all
m ∈ {0, 1}, we have Dec(sk,Enc(pk,m)) = m with overwhelming probability.

Next, we define some properties of homomorphic encryption such as the CPA
security, C-homomorphism, and compactness.

Definition 5. (CPA security) We say that a scheme HE is CPA secure if for
any efficient adversary A,

|Pr[1 ← A(pk,Enc(pk, 0))]− Pr[1 ← A(pk,Enc(pk, 1))]|

is negligible, where (pk, sk) ← KeyGen(1λ).

Definition 6. (C-homomorphism) Let C = {Cλ}λ∈N be a class of circuits. A
scheme HE is C-homomorphic if for any family of circuits {fλ}λ∈N such that
fλ ∈ C whose input length is � and any messages m1, . . . ,m� ∈ {0, 1},

Pr[Dec(sk,Eval(pk, C, c1, . . . , c�)) �= C(m1, . . . ,m�)]

is negligible, where (pk, sk) ← KeyGen(1λ) and ci ← Enc(pk,mi).

Remark 2. We can also consider the additional property that an output of Eval
can be used as input of another homomorphic evaluation. This is called “multi-
hop” homomorphism, and many fully homomorphic encryption schemes have
this property. However, our scheme does not.

Definition 7. (Compactness) A homomorphic encryption scheme HE is com-
pact if there exists a polynomial poly such that the output length of Eval is at
most poly(λ)-bit.

6.2 Φ-Hiding Assumption

Here, we give the definition of the Φ-hiding assumption [20] as follows. Let
RSA[p ≡ 1 mod e] be an efficient algorithm which takes the security parame-
ter 1λ as input and outputs (N,P,Q) where N = PQ is an �N -bit Blum integer
such that P ≡ 1 mod e and QR+

N is cyclic. Let P� be the set of all �-bit primes.

Definition 8. For a constant c, we consider the following distributions.

R = {(e,N) : e, e′
R← Pc�N ;N ← RSA[p ≡ 1 mod e′](1λ)}

L = {(e,N) : e
R← Pc�N ;N ← RSA[p ≡ 1 mod e](1λ)}

We say that the Φ-hiding assumption holds with respect to RSA if for any efficient
adversary A, |Pr[1 ← A(L)]− Pr[1 ← A(R)]| is negligible.

Parameters. According to [20], N can be factorized in time O(N ε) where e
R←

Pc�N ;N ← RSA[p ≡ 1 mod e](1k) and c = 1/4− ε. In our scheme, we set c to be
the value such that c�N = λ. This setting avoids the above mentioned attack in
a usual parameter setting (e.g., �N = 1024 for 80-bit security).
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6.3 Our Construction

Here, we construct a somewhat homomorphic encryption scheme by using in-
distinguishability obfuscation. We use the notation for circuits on QR+

N which
is given in Sec. 4. In addition to that, here, we use the following notation. For
circuits C1 and C2 such that an output of C1 can be interpreted as input for C2,
C1 ◦C2 denotes the composition of C1 and C2, i.e, C1 ◦C2 is a circuit that com-
putes C2(C1(x)) for input x. The construction of our homomorphic encryption
HEOurs = (KeyGen,Enc,Eval,Dec) is as follows.

KeyGen(1λ): Choose e
$← Pλ and (N,P,Q) ← RSA[p ≡ 1 mod e](1λ). Choose

g
$← QR+

N and compute an integer ρ such that ρ ≡ 0 mod ord(QR+
N )/e

and ρ ≡ 1 mod e. It outputs a public key pk = (N, e, g) and a secret key
sk = (ρ, pk).

Enc(pk,m ∈ {0, 1}): Choose r
$← [(N − 1)/4], set c ← iO(Max, C̃N,m+re) and

output c, where Max is defined as an integer larger than
maxm∈{0,1},r∈[(N−1)/4]{|C̃N,m+re|}.

Eval(pk, f, c1, . . . , c�): Work only if c1, . . . , c� are circuits (i.e., generated by Enc).
Convert f into an arithmetic circuit f ′ on Ze. (That is, each gate of f ′ is
addition, multiplication or negation on Ze.)

4 Compute as follows for all wires
of f ′ from wires with lower depth.

– Input: Let w be the i-th input wire. Then ci is assigned to this wire.
– Addition: Let w be an output wire of an addition gate. Set cw :=

Mult(cA(w), cB(w)).
– Multiplication: Let w be an output wire of a multiplication gate. Set

cw := cA(w) ◦ cB(w).
– Negation: Let w be an output wire of a negation gate. Set cw := CN,inv ◦

cA(w) where CN,inv is a circuit that computes an inverse on QR+
N .

Let v be the output wire. Compute ceval = cv(g) and output it. Note that it
is a group element and not a circuit. Therefore we cannot evaluate it again.

Dec(sk, c): Work differently depending on whether c is an output of Enc or Eval.
If c is an output of Enc, then compute M = c(g). If Mρ = 1, then output 0,
and otherwise output 1. If c is an output of Eval, then output 0 if cρ = 1,
and otherwise output 1.

First, we prove the correctness of the scheme. We have e|ord(QR+
N ) by the choice

of N . Therefore, there exists a subgroup G+
e of order e of QR+

N . We can see that
for any element h ∈ QR+

N , hρ is the G+
e component of h. In the decryption, we

haveM = iO(Max, CN,m+re)(g) = gm+re. ThereforeMρ is the G+
e component of

gm. We can see that G+
e component of g is not 1 with overwhelming probability

since e is a λ-bit prime. Therefore Mρ = 1 is equivalent to m = 0 and Mρ �= 1 is
equivalent to m = 1 with overwhelming probability. Thus the correctness follows.

The security of HEOurs relies on the Φ-hiding assumption.

4 This can be done since we have a∧ b = a · b mod e and a ∨ b = a+ b− a · b mod e if
a, b ∈ {0, 1}.
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Theorem 3. HEOurs is NC1-homomorphic, compact and CPA secure if the Φ-
hiding assumption holds with respect to RSA and iO is an indistinguishability
obfuscator for P/poly.

Here, we give only an intuitive explanation. The full proof can be found in the
full version. The compactness is clear since an output of Eval consists of one
group element of QR+

N . It is easy to see that evaluated ciphertexts are decrypted
correctly. The problem is whether Eval works in polynomial time. To see this, we
observe that the size of a circuit assigned to a wire of depth i is O(2ipoly(λ)).
Thus if the depth of an evaluated circuit is O(log λ), then the size of the circuit
assigned to an output wire is O(poly(λ)) and thus Eval works in polynomial time.
The CPA security is reduced to the φ-hiding assumption: by the assumption, ifN
is replaced withN ′ such that e does not divide ord(QR+

N ′), any efficient adversary
cannot tell the difference. We can see that (re mod ord(QR+

N ′)) is distributed

almost uniformly where r
$← [(N ′ − 1)/4] since gcd(e, ord(QR+

N )) = 1 holds.
Thus ((m+ re) mod ord(QR+

N ′)) is uniformly distributed regardless of the value
of m and the ciphertexts of 0 and 1 are distributed almost identically.

Acknowledgment. We would like to thank the anonymous reviewers and mem-
bers of the study group “Shin-Akarui-Angou-Benkyou-Kai” for their helpful
comments. Especially, we would like to thank Satsuya Ohata for his instruc-
tive comment on self-bilinear maps, and Takahiro Matsuda and Jacob Schuldt
for their detailed proofreading.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temporary Mathematics 324, 71–90 (2002)

4. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

5. Cheon, J.H., Lee, D.H.: A note on self-bilinear maps. Bulletin of the Korean Math-
ematical Society 46 (2009)

6. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

8. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)



Self-bilinear Map on Unknown Order Groups 107

9. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS,
pp. 40–49 (2013)

11. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

12. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC, pp. 467–476 (2013)

13. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32 (1989)

14. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

16. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

17. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

18. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

19. Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

20. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

21. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–
1646 (1993)

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

23. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In: STOC (2014)

24. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
(2000) (in Japanese)

25. Seurin, Y.: New constructions and applications of trapdoor DDH groups. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 443–460. Springer,
Heidelberg (2013)



On Virtual Grey Box Obfuscation

for General Circuits

Nir Bitansky1,, Ran Canetti1,2,, Yael Tauman Kalai3,
and Omer Paneth2,

1 Tel Aviv University, Tel Aviv, Israel
2 Boston University, Boston, MA, USA

3 Microsoft Research New England, Cambridge, MA, USA

Abstract. An obfuscator O is Virtual Grey Box (VGB) for a class C
of circuits if, for any C ∈ C and any predicate π, deducing π(C) given
O(C) is tantamount to deducing π(C) given unbounded computational
resources and polynomially many oracle queries to C. VGB obfuscation is
often significantly more meaningful than indistinguishability obfuscation
(IO). In fact, for some circuit families of interest VGB is equivalent to
full-fledged Virtual Black Box obfuscation.

We investigate the feasibility of obtaining VGB obfuscation for general
circuits. We first formulate a natural strengthening of IO, called strong
IO (SIO). Essentially, O is SIO for class C if O(C) ≈ O(C′) whenever
the pair (C,C′) is taken from a distribution over C where, for all x,
C(x) �= C′(x) only with negligible probability.

We then show that an obfuscator is VGB for a class C if and only
if it is SIO for C. This result is unconditional and holds for any C. We
also show that for some circuit collections, SIO implies virtual black-box
obfuscation.

Finally, we formulate a slightly stronger variant of the semantic secu-
rity property of graded encoding schemes [Pass-Seth-Telang Crypto 14],
and show that existing obfuscators such as the obfuscator of Barak et. al
[Eurocrypt 14] are SIO for all circuits in NC1, assuming that the under-
lying graded encoding scheme satisfies our variant of semantic security.

Put together, we obtain VGB obfuscation for all NC1 circuits under
assumptions that are almost the same as those used by Pass et. al to
obtain IO for NC1 circuits. We also show that semantic security is in
essence necessary for showing VGB obfuscation.

1 Introduction

Program obfuscation, namely the ability to efficiently compile a given program
into a functionally equivalent program that is “unintelligible”, is an intriguing
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concept. Indeed, much effort has been devoted to understanding this concept
from the definitional aspect, the algorithmic aspect, and the applications aspect.
Here let us concentrate on the first two aspects.

Starting with the works of Hada [Had00] and Barak et al. [BGI+01], a num-
ber of measures of security for program obfuscation have been proposed. Let us
briefly review three notions of interest. The first, virtual black box (VBB) obfus-
cation [BGI+01], requires that having access to the obfuscated program is essen-
tially the same as having access to the program only as black box. Concretely,
focusing on programs represented as circuits, an obfuscator O for a family of
circuits is worst-case VBB if for any poly-time adversary A, there exists a poly-
time simulator S, such that for any circuit C from the family, and any predicate
π(·), A cannot learn π(C) from O(C) with noticeably higher probability than S
can, given only oracle access to C. The obfuscator O is average-case VBB if the
above is only required to hold for circuits C that are sampled at random from
the family.

While this VBB obfuscation is natural and strong, Barak et al. [BGI+01]
showed that this definition, and variants thereof, are unobtainable in general by
demonstrating a family of unobfuscatable functions: these are functions f where
any circuit computing the function inherently leaks secrets that are infeasible
to compute given only black box access to f . Moreover it turns out that, under
cryptographic assumptions, if the simulator S is universal (or equivalently, works
for any adversarial auxiliary input) then VBB obfuscation is unobtainable for
any circuit family whose functionality has super-polynomial “pseudo entropy”
[GK05, BCC+14].

A weaker variant of VBB, called virtual grey-box (VGB) [BC10], allows the
simulator to be semi-bounded, namely it can be computationally unbounded,
while still making only a polynomial number of queries to the circuit C. While
significantly weaker than VBB in general, VGB is still meaningful for circuits
that are unlearnable even by semi-bounded learners. Furthermore, VGB obfus-
cators for circuits escape the general impossibility results that apply to VBB
obfuscators.

A weaker notion yet, called indistinguishability obfuscation (IO) [BGI+01],
allows the (now computationally unbounded) simulator to also make an un-
bounded number of queries to C. Equivalently, O is an IO for a circuit collection
if for any two circuits C0 and C1 in the collection, having the same size and
functionality, O(C0) and O(C1) are indistinguishable.

While IO has some attractive properties (e.g., any IO is the “best possible”
obfuscation for its class), and some important cryptographic applications [SW13,
GGH+13b], the security guarantees provided by IO are significantly weaker than
those provided by either VBB or VGB obfuscation.

On the algorithmic level, for many years we had candidate obfuscators only for
very simple functions such as point functions and variants. The landscape has
changed completely with the recent breakthrough work of [GGH+13b], which
proposed a candidate general-purpose obfuscation algorithm for all circuits.
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[GGH+13b] show that their scheme resists some simple attacks; but beyond
that, they do not provide any analytic evidence for security.

Considerable efforts have been made to analyze the security of the [GGH+13b]
obfuscator and variants. The difficulty appears to be in capturing the security
properties required from the graded encodings schemes [GGH13a, CLT13], which
is a central component in the construction. As a first step towards understanding
the security of the [GGH+13b] obfuscator, [BR13, BGK+13] consider an ideal
algebraic model, where the adversary is given “generic graded encodings” that
can only be manipulated via admissible algebraic operations. They show that,
in this model, variants of the [GGH+13b] scheme are VBB obfuscators for all
poly-size circuits. (We remark that [CV13] construct a VBB general obfuscator
with similar properties; however their abstract model is different and does not
seem to correspond to any existing cryptographic primitive.)

Still, neither of these idealized constructions or their analyses have, in of
themselves, any bearing on the security of obfuscation algorithms in the plain
model.

Pass et al. [PTS13] make the first step towards proving the security of a gen-
eral obfuscation scheme based on some natural hardness assumption in the plain
model. Specifically, they define a semantic security property for graded encod-
ing schemes, which is aimed at capturing what it means for a graded encoding
scheme to “behave essentially as an ideal multi-linear graded encoding oracle”.
They then show, assuming the existence of such a semantically-secure encod-
ing scheme, that a specially-crafted variant of the [BGK+13] obfuscator, with
the graded encoding scheme replaced by a semantically-secure graded encoding
scheme, is IO for all circuits.

In this work we address the following question:

What is the strongest form of security for general obfuscation that can be
based on natural cryptographic assumptions such as semantically-secure
graded encoding?

Our contributions. As our main result we obtain worst-case VGB obfuscation
for NC1, based on almost the same assumptions as those used in [PTS13] to
show IO for NC1. As an intermediate step towards this goal, we put forth a
somewhat stronger variant of indistinguishability obfuscation, called strong IO
(SIO). Informally, an obfuscatorO is SIO for a class of circuits C ifO(C) ≈ O(C′)
not only when C,C′ ∈ C have the same functionality, but also when C and C′

come from distributions over circuits in C that are “close together”, in the sense
that at any given input x, the probability that C(x) �= C′(x) is negligible. An
alternative view of the definition (which turns out to be equivalent) is that if
no adversary (even computationally unbounded) can distinguish oracle access to
C from access to C′ given only polynomial many queries, then the obfuscated
circuits should be indistinguishable as well.

We then show that:

1. Strong IO is in fact equivalent to worst-case VGB obfuscation. Furthermore,
for certain classes of functions, such as point functions, hyperplanes, or fuzzy
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point functions, SIO is equivalent to full-fledged worst-case VBB obfuscation.
These equivalences hold unconditionally. We consider this to be the main
technical step in this work.

2. Assuming the existence of graded encoding schemes that satisfy a somewhat
stronger variant of the semantic security notion of Pass et al. [PTS13], we
show that known obfuscation schemes are SIO for all circuits in NC1. More
generally, we show that any obfuscator for a class of circuits C that is VBB
in the ideal graded encoding model, is SIO in the plain model, when the
ideal graded encoding oracle is replaced by a graded encoding scheme that
satisfies a variant of the [PTS13] assumption.

We also give evidence for the necessity of semantically-secure graded encoding
for obtaining VGB. Specifically we show that, assuming the existence of VGB
obfuscators for all circuits, there exists mutlilinear jigsaw puzzles, a simplified
variant of multilinear maps [GGH+13b], that satisfies a form of semantic security.
Such mutlilinear jigsaw puzzles are sufficient for obtaining the positive result
described in Item 2 above.

Finally, we investigate the plausibility of the semantic security assumption on
graded encoding schemes, propose some relaxed variants, and show that our main
results can be obtained under all these relaxations. Namely, we first give new
evidence for the relative strength of the semantically-secure graded encodings
assumption. Specifically, we show that semantically-secure graded encodings are
subject to the following limitations:

1. SAT lower bounds. We show that semantically-secure graded encodings im-
ply exponential circuit lower bounds for SAT. Such lower bounds are cur-
rently not known to follow from IO (even assuming P �= NP).

2. A generic attack. We present an attack showing that any graded encoding
scheme with certain efficiency properties cannot satisfy semantic security.
While the attack does not apply to currently known candidate graded en-
codings [GGH13a, CLT13], it does point out potential limitations of this
notion. We complement this observation by suggesting a natural relaxation
of semantic security called bounded semantic-security that bypasses this at-
tack. Our main results can be obtained also under this relaxed assumption.

In addition to the above relaxation, we consider several other relaxations, and
investigate their relations. We show that our main results can be obtained under
all these relaxations.

The rest of the introduction provides a more detailed overview of our results.
Section 1.1 presents the implication from SIO to VGB and VBB obfuscation.
Section 1.2 provides background on graded encoding schemes and the semantic
security assumption. Sections 1.3 presents the construction of strong IO obfusca-
tors from semantically-secure graded encoding schemes, and Section 1.4 describes
additional results on the viability of the semantic security assumption of graded
encoding schemes, and relations among various variants.
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1.1 From Strong IO to VGB and VBB Obfuscation

We first define strong IO a bit more precisely. A distribution C̃ over circuits
is said to be ε-concentrated around a boolean function f if for any value x in
the domain of f we have that Pr[C̃(x) �= f(x)] ≤ ε. We say that C̃ is simply
concentrated if it is ε-concentrated for some negligible function ε. An obfuscator
O is strong IO for a class C of circuits if O(C̃) ≈ O(C̃ ′) for any two distributions
C̃, C̃′ over circuits in C that are concentrated around the same function. We
stress that these distributions need not be efficiently samplable. We show the
following.

Theorem 1 (informal). An obfuscator is SIO for a class of circuits C if and
only if it is worst-case VGB obfuscator for C.

Showing that VGB implies SIO is straightforward. In the other, more chal-
lenging, direction we construct an (inefficient) simulator S for any adversary A.
Recall that, for any circuit C ∈ C in the given collection C, the simulator S
should simulate what A learns from an obfuscation O(C), given only oracle ac-
cess to C. The high level idea is as follows: S will use its oracle to C to gradually
reduce the set K of candidates for the circuit C, starting from K0 = C, and
ending with a smaller set of candidates

Ki � Ki−1 � · · · � K0 = C.

S will continue this process until it obtains a set K∗ where A cannot distinguish
an obfuscation O(C) of C from an obfuscation O(C′) of a random circuit C′ in
K∗.

To carry out this plan, SC iteratively performs two main steps: concentra-
tion, and majority separation. In the concentration step S tries to learn C in
a straightforward way: it queries C on a point xi that splits the current set of
candidate circuits Ki as evenly as possible. Based on the value of C(xi), S rules
out some of the candidates. This process is repeated until there is no query that
necessarily shrinks the set of candidates by a factor of at least 1 − ε, where ε
is a parameter of the simulation that is chosen such that 1/ε is a polynomial,
depending only on A and on the required simulation accuracy. Note that at
the end of the concentration step, S must reach a set of candidates Kj that is
ε-concentrated. This occurs after at most log |C|/ε queries. The concentration
step alone essentially suffices to ensure average-case VGB simulation; indeed,
we show that for a circuit C chosen at random from a concentrated set Kj , A
cannot compute any predicate π(C), given O(C), better than it can given an
obfuscation O(C′) of an independent random C′ ← Kj .

However, the concentration step alone does not guarantee worst-case simula-
tion. In particular, A may have some hardwired information that allows it to
distinguish C from a random circuit in Kj . In this case, however, S can further
reduce the set of candidates Kj by separating any such distinguishable circuit C
from the majority majKj

. Concretely, we define the set DA(Kj) of distinguishable
circuits in Kj , as those circuits C in Kj such that A can ε-distinguish between
O(C) and O(C′) for a random C′ ← Kj .
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In the majority-separation step, the simulator will query its oracle C on a
small set of roughly log |C|/ε points LKj that separates all the distinguishable
circuits in DA(Kj) from the majority circuit majKj

. This means that, if the
oracle C agrees with the majority majKj

on all points x ∈ LKj , then A cannot
tell apart O(C) form O(C′) for a random C′ ← Kj , in which case, the simulation
can be completed. Otherwise, S manages to separate C from majKj

, and obtain
a new set of candidates Kj+1 � Kj which is necessarily smaller by a 1−ε factor,
since Kj is ε-concentrated.

By iteratively applying the two steps we either reach some K∗ for which
A cannot distinguish O(C) from O(C′) for a random C′ ← K∗, or we have
completely exhausted the collection C and found exactly the circuit C. In any
case, since we reduce Kj at each step by a 1 − ε factor, the process must end
after at most log |C|/ε steps, and at most poly(log |C|/ε) queries.

But how do we establish the existence of a small set LKj that separates
DA(Kj) from the majority majKj

? Here we rely on the fact that O is a strong
IO obfuscator. Specifically, strong IO implies that any subset S of the distin-
guishable circuits DA(Kj), cannot be ε-concentrated around majKj

, because A
distinguishes O(C), for C ← Kj from O(C′) for C′ ← S ⊆ DA(Kj).

1 Since no S
as above is ε-concentrated around majKj

, we can separate all of the circuits in
DA(Kj) from majKj

with at most poly(log |C|/ε) points, as required.

On the possibility of VBB obfuscation. The simulation strategy described above
requires only a polynomial number of queries poly(log |C|/ε); however, the overall
running time of the simulator may not be bounded in general. Indeed, in the
concentration step, finding a point xj that significantly splits Kj may require
super-polynomial time. Also, in the majority-separation step, while the sets LKj

are small, computing them from Kj may also require super-poly time.
Nevertheless, we show that for certain classes of circuits, simulation can be

done more efficiently, or even in polynomial time. Specifically, abstracting away
from the above simulation process, we consider the notion of learning via a
majority-separation oracle, where a given circuit C (or more generally a function)
in a prescribed family is learned via oracle access to C and oracle access to
the majority separation oracle S, which takes as input (the description of a) a
concentrated sub-family K that includes C and outputs a point x that separates
C from majK (the majority of functions in K).

The complexity of our simulator is then determined by how well can the
class in question be learned by majority-separation oracles. While the strategy
described above shows that any class of circuits can be learned by a majority-
separation oracle with polynomially many queries to C and S, the pattern of
these queries and the way in which they are interleaved affects the complexity of
the simulation. As a simple example, suppose that there is a constant number of
oracle calls to either S or C. (This is the case in some classes for which worst-case
VBB obfuscation was previously shown, such as point functions, constant-size

1 We assume here (for simplicity and without loss of generality), that the distinguish-
ing gap is always of the same sign.
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set functions, and constant dimension hyper-planes.) In this case we can non-
uniformly hardwire in advance a polynomial number of separating sets LKj into
our simulator, without having to compute them on the fly. Otherwise, the sets
LKj are determined adaptively and need to be computed on the fly.

Comparison to [BBC+14]. Barak et al. show that average-case VBB obfuscation
for all evasive collections (these are collections that are concentrated around
the constant zero function) implies weak average-case VGB for all collections,
where weak VGB means that the simulator is allowed to make a slightly super-
polynomial number of queries. The result is weaker in the sense that it only
achieves average-case (rather than worst-case) simulation, and only weak VGB.

At a technical level, what allows us to get standard VGB, as opposed to
weak VGB, is the fact that we assume IO for the family in question. More
specifically, the level to which the simulator has to concentrate the candidate set
is determined by the adversary and simulation quality. In the time of obfuscation,
these parameters are not known. Relying on IO allows us to push the decision of
how many iterations to make all the way to the simulation rather than having
to make this decision at the time of obfuscation.

1.2 Semantically-Secure Graded Encoding Schemes: Background

Before describing how we get strong IO from semantically secure graded encoding
schemes, we provide some background on the latter. A graded encoding scheme
[GGH13a] consists of the following algorithms: InstGen that give a universe set
[k], outputs public parameters pp and secret parameters sp, where pp contains a
description of a ring R; Encode that given sp, a set S ⊆ [k] and α ∈ R, generates
an encoding [α]S ; Add and Sub that, given encodings [α1]S and [α2]S , generate
encodings [α1 + α2]S and [α1 − α2]S respectively; Mult that, given encodings
[α1]S1

and [α2]S2
such that S1 ∩ S2 = ∅, generates an encoding [α1 · α2]S1∪S2

;
and isZero that given an encoding [α][k] outputs 1 if and only if α = 0 (all the

algorithms above also take as input pp).
[GGH13a, CLT13] consider standard versions of DDH-type security that can

be conjectured to hold for their graded encoding schemes. Basing the security
of obfuscation mechanisms on these assumptions seems at this point far out
of reach, even if one considers only IO security. So which security properties of
encoding schemes would suffice for this purpose? The high-level approach of Pass
et al. [PTS13] is to devise a property that, not only hides “DDH-type relations”
between encodings, but also any other relation that cannot be revealed using
the admissible algebraic operations provided by the graded encoding interface. In
other words, the encoding scheme should amount to an “ideal encoding scheme”,
where encodings are truly accessed only through admissible algebraic operations.
This may, in particular, allow leveraging the existing proofs of VBB security in
the ideal graded encoding model [BR13, BGK+13].

More specifically, Pass et al. take the following approach (described first in
an oversimplified manner). Consider a message sampler M([k], R) that samples,
from one of two distributions D0 or D1, a tuple (S1,m1), . . . , (S�,m�), where
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each Si ⊆ [k] and each mi ∈ R, and � is polynomial in the security parameter.
We say that the sampler is admissible if no polynomially-bounded “algebraic
adversary” that is given S = (S1, . . . , S�), and can access the ring elements m =
(m1, . . . ,m�) only via an ideal encoding oracle, is able to tell whether (S,m) were
taken from D0 or D1. The ideal encoding oracle only allows the same algebraic
manipulations allowed by the graded encoding interface, or put abstractly, it
allows the adversary to choose any arithmetic circuit C that respects the set
structure given by S, and test whether C(m) = 0. The requirement is that, for
such an admissible sampler, an efficient adversary that obtains actual encodings
([mi]Si

: i ∈ [�]), along with the corresponding public parameters pp, also cannot
tell whether (S,m) was sampled from D0 or D1.

As noticed by Pass et al., the assumption formulated above is actually false—it
is susceptible to a diagonalization attack in the spirit of the [BGI+01] impossi-
bility result for general VBB obfuscation. More specifically, the unobfuscatable
functions constructed in [BGI+01] can be directly used to obtain two distribu-
tions on circuits C0 and C1 which cannot be distinguished given only black-box
access to C sampled from either C0 or C1, but given any circuit with the same
functionality as the circuit C, it is easy to tell from which one of the two C
was sampled from. This distinguishing attack could now be translated to our
setting using any obfuscation scheme that uses ideal graded encoding, such as
the ones of [BR13, BGK+13]. Indeed, we can define an admissible sampler that
corresponds to distributions D0 and D1, which sample (S,m) by first sampling
a circuit C taken from C0 or C1, respectively, and letting (S,m) correspond to
the ideal obfuscation of C. Admissibility is guaranteed due to the VBB guaran-
tee in the ideal encoding model, whereas in the real world, the actual encodings
([mi]Si

) give a circuit that computes the same function of C, and thus allows
determining from where the sample was taken.

Pass et al. get around this caveat by strengthening the admissibility re-
quirement to require that D0,D1 are indistinguishable even to a semi-bounded
algebraic adversary, namely an algebraic adversary that is computationally un-
bounded, but makes only a polynomial number of queries to the ideal graded
encoding oracle. The above attack no longer applies since the circuit distri-
butions C0 and C1 involve computational elements, such as encryption, which
makes them completely distinguishable to unbounded attackers, even given only
polynomially many oracle queries. More generally, as mentioned above, we do
not have any analogous unobfuscatability results for VGB obfuscation, and thus
there are no known attacks on this notion of semantic security.

Furthermore, Pass et al. show that even this relaxed assumption suffices for
obtaining IO in the plain model. This is the case since for NC1 circuits, the
[BGK+13] obfuscator in the ideal-graded encoding model is VBB even against
semi-bounded adversaries. (VBB, in this context, means that the simulator is
poly-time, given oracle access to the algebraic adversary and the obfuscated
program.) The eventual Pass et al. assumption is further relaxed in several ways,
while still yielding their main application to IO.
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1.3 Strong IO from Semantically-Secure Graded Encoding,
and Back Again

We sketch our variant of the semantic security assumption, and explain how we
obtain strong IO for NC1 circuits from this variant. We also give evidence for
the necessity of semantic security for obtaining strong IO.

To get strong IO for arbitrary circuit distributions (including distributions
that are not efficiently samplable) we will need to rely on a somewhat stronger
version of the semantic security assumption discussed above, that allows for com-
putationally unbounded samplers. Some care has to be taken when formalizing
this assumption.

Recall that the message sampler is given the description of a ring R. (This is
required in order to sample obfuscations in the ideal graded encoding model that
consist, for example, of random elements in R.) A computationally unbounded
sampler that sees R may be able to recover information that compromises the
security of the encodings (for example, the secret parameters). The sampler can
produce encodings that reveal this secret information. Note that such a sampler
may still be admissible since learning the secret parameters gives no advantage
to an algebraic adversary. Luckily, however, we can do with a significantly weaker
variant of semantic security where this attack is avoided.

Specifically, the sampling is done in two stages: first, an unbounded sampler S
generates a poly-size auxiliary input string; second, an efficient encoder M gets
the ring R and the auxiliary input string, and generates the final samples. We
call this variant strong-sampler semantic security.

Strong-sampler semantic security is already sufficient for constructing strong
IO for arbitrary circuit distributions. The idea is to have the unbounded sampler
S sample the description of a circuit as an auxiliary input string, and then, the
efficient encoder M samples an obfuscation of the auxiliary input circuit. We
show, with a straightforward proof, that the following holds.

Theorem 2 (informal). LetO be any obfuscator for a class C of circuits, that is
VBB against semi-bounded adversaries in the ideal graded encoding model. Then
instantiating the graded encoding oracle with a strong-sampler semantically-secure
graded encoding scheme results in a strong indistinguishability obfuscator O′ for
C, in the plain model.

Then, relying on the Barak et al. obfuscation for NC1 in the ideal graded
encoding model [BGK+13] (which is indeed VBB against semi-bounded adver-
saries), we obtain the following corollary.

Corollary 1 (informal). Assume there exists a strong-sampler semantically-
secure encoding scheme. Then there exists a strong indistinguishability obfuscator
for NC1.

We also give evidence for the necessity of semantically-secure graded encoding
schemes for obtaining VGB. To this end, we focus on a version of graded encoding
with restricted functionality called mutlilinear jigsaw puzzles [GGH+13b]. Unlike
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graded encodings, in mutlilinear jigsaw puzzles, encodings can only be generated
together the the system parameters. We refer to the public parameters, together
with the set of initialized encodings, as a puzzle. Instead of performing individual
permitted operations over the encodings, all the jigsaw puzzle user can do is
to specify an arithmetic circuit C that respects the set structure of the set of
initialized encodings, and test whether C evaluates to 0 on these encodings or
not. Semantic security of mutlilinear jigsaw puzzles is defined similarly to the
graded encoding case. Despite their restricted functionality, semantically-secure
mutlilinear jigsaw puzzles can replace graded encodings in our construction of
strong IO for NC1.

We observe that the existence of semantically-secure jigsaw puzzles is implied
by VGB obfuscation for all circuits. To see why this is the case, consider the
circuit P that has a set of ring elements m = (m1, . . . ,m�) hardwired into it,
together with the corresponding sets S = (S1, . . . , S�). The circuit P takes as
input an arithmetic circuit C that respects the set structure given by S, and
tests whether C(m) = 0. To initialize a puzzle from a set of encodings (S,m)
we simply VGB obfuscate the circuit P .

1.4 More on Semantic Security

Next we discuss our results pertaining to the study of semantic security of graded
encoding schemes. The negative results discussed below hold even for the basic
notion of semantic security, where the message sampler is of polysize.

SAT lower bounds. As additional evidence to the power of semantically-secure
graded encodings, we observe that they imply that there do no exist SAT solvers
that run in time 2o(n) · poly(|C|), for a boolean circuit C with n input variables;
namely, any worst-case SAT solver must be exponential in the number of vari-
ables. To show this lower bound, we rely on a result by Wee [Wee05], showing a
similar lower from any point function obfuscation.

Efficiency limitations via a generic attack. We present an attack against any
graded encoding scheme satisfying certain efficiency properties. Before specifying
these efficiency properties, let us first describe the high-level idea behind the
attack, from which they emerge.

Similarly to the attack described in Section 1.2, this attack is based on ideal
graded encoding obfuscation. However, this attack holds even when admissibil-
ity is defined with respect to semi-bounded algebraic adversaries, rather than
just bounded ones. More specifically, it relies on the fact that the [BGK+13]
ideal obfuscation scheme is also VBB with respect to semi-bounded algebraic
adversaries. Recall that this on its own is not enough to recover the attack from
Section 1.2, since there is no general impossibility VGB obfuscation. The attack
we describe now will indeed take a somewhat different approach, exploiting the
particular interface of graded encoding schemes.

The idea is to construct two circuit distributions C0, C1, where any circuit Cb,r

sampled from Cb is associated with a random ring element r ∈ R. The circuit
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Cb,r reveals the hidden bit b only when given as input some public parameters
pp and a proper encoding [r][k] of the ring element r. The corresponding admis-
sible sampler M would then sample from one of two distributions D0,D1, where
sampling from Db is done by sampling Cb,r from Cb, and outputting (S,m),
that represents an ideal obfuscation of Cb,r, together with ([k], r). Intuitively, an
ideal, even semi-bounded, algebraic adversary gains no more than oracle-access
to Cb,r, together with the ability to evaluate low-degree arithmetic circuits on
the random ring element r, thus it cannot learn the bit b.2 In contrast, the real
world distinguisher, which is given the public parameters pp and an actual en-
coding of r, can simply run the obfuscation on pp and the encoding of r, and
learn b.

So what is needed to make the above attack applicable? First, since we only
have ideal obfuscation against semi-bounded adversaries for NC1, the circuit Cb,r

should be implementable in NC1. Second, it is required that the size of the public
parameters pp and the size of an encoding grows slower than k, the size of the
universe for the sets that control the depth of allowed arithmetic computations.
Indeed, in order to obfuscate Cb,r in the ideal graded encoding model, it is
required that the universe set [k] is appropriately large (in particular, larger
than the circuit’s input). Thus, the public parameters and encoding received by
Cb,r as input must grow slower than k.3

Both of the above efficiency requirements are not satisfied by the candidate
constructions of [GGH13a, CLT13] in their current forms. Indeed, for these
schemes it is not known how to implement Cb,r (or any procedure of equiva-
lent effect) in NC1. Also, in these schemes the size of the public parameters and
encodings does grow with the maximal level k.

Still, it may be good to keep this attack in mind, pending potential improve-
ments in the efficiency of obfuscation algorithms or graded encoding schemes. In
fact, it appears prudent to weaken semantic security by requiring that it holds
only given some a priory bound on either the level k, or on the number of ele-
ments � output by an admissible sampler M. This allows considering candidate
schemes where certain parameters, such as the size of the ring (and induced size
of encodings), are larger than these bound and are thus not susceptible to this
type of attacks.

There may also exist certain tradeoffs in efficiency. For instance, in certain
settings it may be more reasonable to let the size of parameters grow with �,
rather than with k. We define such a variant of bounded semantic security.

Relaxations of semantic security. Asmentioned above, the notion of semantically-
secure graded encodings lends itself to a number of variants along several axes.
We study the relations among these relaxations and show that eventually they all

2 This argument is a bit oversimplified; indeed, to argue that one cannot learn b given
oracle access to r, we should also deal with the case that the adversary queries with
improper public parameters and encodings. In the body, we deal with this by using
a variant of the circuit Cb,r that checks that any query corresponds to at most a
small number of ring elements, and thus hits r only with negligible probability.

3 We thank Rafael Pass for pointing this out.
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suffice for obtaining the implications presented above for program obfuscation.
Below we address two relaxations that were introduced by Pass et al. [PTS13]
(and are already embedded into their main definition of semantic security).

First, Pass et al. consider constant-message samplers where the first �−O(1)
elements in the distributions D0 and D1 are required to be exactly the same,
and are viewed as polynomially long “auxiliary-input” correlated to the last
constant number of elements. (In later versions, Pass et al. limit the number of
elements in the auxiliary distribution Z to a fixed polynomial, partially in light
of the attacks described in this work.) Second, they strengthen the notion of
admissibility where indistinguishability with respect to the algebraic adversary
needs to hold in a strong pointwise sense. That is, for almost any two samples
(S0,m0), (S1,m1), taken from (potentially joint) distributions (D0,D1), the
algebraic adversary outputs the same bit when given (S0,m0) and when given
(S1,m1) . Finally, admissibility is further strengthened to only allow for “highly-
entropic” samples. Indeed, this relaxation turns out to be essential in the context
of the [GGH13a] graded encoding scheme (but not necessarily in the [CLT13]
scheme).

From a technical perspective, the difference between the constant-message
and multi-message definitions (in either the pointwise or non-pointwise case) is
that the general transformation of Theorem 2 appears to require the seemingly
stronger multi-message definition. In contrast, the specific construction of Pass
et al. works even using only the single-message version.

We show that, in fact, the relaxed constant-message notion is equivalent to the
multi-message notion. However, there are certain nuances to this equivalence:

– In the non-pointwise case, we show that even single-message (rather than
constant-message) semantic-security impliesmulti-message semantic-security.
Here the reduction essentially preserves the number of elements output by
the attacker’s message sampler. Specifically, any attacker against m-message
semantic-security translates to an attacker against single-message semantic-
security with auxiliary input of lengthm.

– In the pointwise case, this implication still holds, but with certain loss in
parameters. Specifically, any attacker against m-message semantic-security
with distinguishing advantage ε translates to an attacker against single-
message semantic-security with auxiliary input of length m · poly(n/ε).

In conclusion, in the non-pointwise case, constant-message semantic-security
does not constitute an actual relaxation, and would also lead to a generic con-
struction of (strong) IO. In the pointwise case, however, the specific obfuscator
of Pass et al. gives a quantitative security advantage compared with the generic
construction. In particular, for bounded constant-message pointwise semantic-
security, the generic transformation does not apply as far as we know, whereas
the obfuscator of Pass et al. does. It would thus be interesting to come up with
evidence as to whether moving to pointwise security amounts to a meaningful
relaxation of the assumption.
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Strong IO from new assumptions? Pass et al. also consider an alternative mod-
ification of semantic security, where instead of requiring indistinguishability
with respect to any admissible sampler, it is only required for a single specific
sampler. To get IO, however, they also require that indistinguishability holds
against subexponential distinguishers. This assumption is incomparable to the
assumption discussed here, and is not further studied in this work. Gentry et al.
[GLSW14] recently constructed indistinguishability obfuscators based on a new
assumption of a somewhat different flavor, regarding a more demanding variant
of graded encoding. Whether these assumptions suffice for constructing strong
indistinguishability obfuscators is an intriguing question.

Organization. Section 2 reviews the definitions of VBB, VGB and IO. Section 3
defines SIO and shows its equivalence to VBB for concentrated circuit distribu-
tions. Section 4 constructs worst case VGB and VBB obfsucators from strong
IO. Section 5 constructs SIO from semantically-secure graded encoding schemes.
The study of the semantically-secure graded encoding assumption appear in the
full version of this work.

2 Obfuscation: VBB, VGB, Indistinguishability

We review three basic definitions of obfuscation that are used throughout the
paper. We start by defining the functionality requirement, which all the notions
share, and then define different security notions.

Definition 1 (Functionality). A PPT algorithm O is an obfuscator for a col-
lection of circuits C =

⋃
n∈N

Cn, if for any C ∈ C,

Pr
O

[∀x : O(C)(x) = C(x)] = 1 .

VBB and VGB Obfuscation. Virtual Black Box (VBB) obfuscation [BGI+01]
guarantees that an obfuscated circuit O(C) does not reveal any predicate π(C)
that cannot be learned by an efficient simulator that is given only black-box
access to C. The basic definition is worst-case in the sense that the simulator
needs to be successful for any circuit in a given circuit collection. We later also
address an average-case notion. In the definition below we use a slightly weaker
definition than the standard one, and allow the simulator to depend on the
distinguishing probability p.

Definition 2 (Worst-case VBB Obfuscation). An obfuscator O for a col-
lection of circuits C =

⋃
n∈N

Cn is worst-case VBB if for every poly-size adversary
A, and polynomial p, there exists a poly-size simulator S, such that for every
n ∈ N, every predicate π : Cn → {0, 1}, and every C ∈ Cn:∣∣∣∣ PrA,O

[A(O(C)) = π(C)] − Pr
S
[SC(1n) = π(C)]

∣∣∣∣ ≤ 1/p(n) .
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Virtual Grey Box (VGB) obfuscation [BC10] relaxes VBB by allowing the
simulator to have unbounded computational power, but still only a bounded
number of oracle queries to C.

Definition 3 (Worst-case VGB Obfuscation). An obfuscator O for a col-
lection of circuits C =

⋃
n∈N

Cn is worst-case VGB if for every poly-size adversary
A, and polynomial p, there exists an unbounded simulator S, and a polynomial
q, such that for every n ∈ N, every predicate π : Cn → {0, 1}, and C ∈ Cn:∣∣∣∣ PrA,O

[A(O(C)) = π(C)]− Pr
S
[SC[q(n)](1n) = π(C)]

∣∣∣∣ ≤ 1/p(n) ,

where C[q(n)] is an oracle that allows at most q(n) queries.

Indistinguishability Obfuscation. We next define the notion of indistinguishabil-
ity obfuscation, introduced in [BGI+01].

Definition 4 (Indistinguishability obfuscation [BGI+01]). An obfuscator
for C is said to be an indistinguishability obfuscator for C, denoted by iO, if for
any poly-size distinguisher D, there exists a negligible function μ such that for
all n ∈ N, and any two circuits C0, C1 ∈ Cn of the same size and functionality,

Pr[b ← {0, 1};D(C0, C1, iO(Cb)) = b] ≤ 1

2
+ μ(n) .

It can be readily seen that if an obfuscatorO is VBB for a function collection C
then it is also VGB for C. Furthermore, if O is VGB for C then it is also an
indistinguishability obfuscator for C.

3 Strong Indistinguishability Obfuscation

In this section we define the notion of strong indistinguishability obfuscation
(SIO). We start by defining the notion of concentrated distributions over circuits.

Concentrated Circuit Distributions. At a high-level, a distribution ensemble C̃,
over a circuit collection C, is concentrated, if given polynomially many oracle
queries to a random circuitC from the distribution, it is information theoretically
hard to find an input x such that C does not agree with majC̃ on the point x,

where majC̃ is the common output of circuits distributed according to C̃. If C̃
corresponds to the uniform distribution on some collection C, majC̃ is simply
the majority vote. Concentrated distributions naturally generalize the concept
of evasive distributions studied in [BBC+14], in which the majority is always the
all-zero function, i.e. majC̃ ≡ 0.

Definition 5 (Concentrated circuit distributions)
Let C =

⋃
n∈N

Cn be a circuit collection, where Cn consists of circuits C :

{0, 1}n → {0, 1} of size poly(n), and let C̃n be a distribution on Cn. Let
majC̃n

(x) :=  EC←C̃n
C(x)� be the common output at point x of circuits drawn

from C̃n.
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1. For any ε ∈ [0, 1], C̃n is said to be ε-concentrated if

max
x∈{0,1}n

Pr
C←C̃n

[
C(x) �= majCn

(x)
]
≤ ε .

2. C̃ is said to be concentrated if for some negligible μ(·), and any n ∈ N, C̃n is
μ(n)-concentrated.

3. C̃ is said to be evasive if it is concentrated, and for any n ∈ N and any
x ∈ {0, 1}n, majC̃n

(x) = 0.

4. We say that the collection C itself is concentrated (evasive) if the uniform
distribution ensemble on circuits in C is concentrated (evasive).

Strong Indistinguishability Obfuscation. Strong Indistinguishability Obfuscation
requires that indistinguishability holds, even when C0 and C1 do not necessarily
compute the exact same function, but are taken from two distributions C̃0

n and
C̃1
n that are concentrated around the same function; namely, majC̃0

n
≡ majC̃1

n
:

Definition 6 (Strong indistinguishability obfuscation). An obfuscator for
C is said to be a strong indistinguishability obfuscator for C, denoted by iO∗,
if for any two concentrated distribution ensembles C̃0, C̃1 on C, such that ∀n ∈
N : majC̃0

n
≡ majC̃1

n
, and any poly-size distinguisher D, there exists a negligible

function μ such that for all n ∈ N,

Pr[b ← {0, 1}; (C0, C1) ← (C̃0
n, C̃1

n);D(iO∗(Cb)) = b] ≤ 1

2
+ μ(n) .

Remark 1. Above, we do not require that the distributions C̃0, C̃1 are efficiently
samplable. We can also consider a weaker definition where this restriction is
added. In the full version of this work we show that this weaker version can be
obtained from a weaker notion of semantic security.

We observe that any strong IO obfuscator for C is also an IO obfuscator for
C. Indeed, for any two circuits C0, C1 of equivalent functionality, each of these
circuits on its own is trivially concentrated around their common functionality.

4 Strong IO Is Equivalent to Worst-Case VGB

In this section, we prove that the notion of strong indistinguishability obfuscation
(strong IO) is equivalent to VGB. Clearly, any VGB obfuscator for a class C is
also a strong IO for C. We show that the converse is true as well. Namely, we
show that any strong indistinguishability obfuscator O for a class C of circuits is
a worst-case VGB obfuscator for C. In addition, we show that for classes C with
some additional properties, O is in fact worst-case VBB. We refer the reader to
Section 1.1 for an overview.
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4.1 Definitions and Statement of Main Theorem

Notation and terminology. For a function f : {0, 1}n → {0, 1}, we say that a
point x ∈ {0, 1}n separates a circuit C from f if C(x) �= f(x). We say that a
set L ⊆ {0, 1}n separates C from f , if some x ∈ L separates C from f . Given a
circuit collection K, we say that L separates K from f , if L separates any C ∈ K
from f . Recall, that we say that a collection K is concentrated if the uniform
distribution on K is concentrated around its majority function majK.

Definition 7 (Majority-separating oracle). Let C be a collection of boolean
circuits defined over {0, 1}n, let C ∈ C, and let ε > 0. An oracle S is said to be
(C, C, ε)-separating if given any ε-concentrated sub-collection K ⊆ C, represented
by a circuit that samples uniform elements in K, S(K) outputs a point x ∈ {0, 1}n
that separates C from majK, or ⊥ if no such point exists.

Remark 2. In the above definition, and throughout this section, we often abuse
notation and denote by K both the sub-collection and the circuit that samples
uniform elements from the sub-collection.

Definition 8 (Learnability by majority-separating oracles). A collection
C =

⋃
n∈N

Cn of boolean circuits is said to be (t, c, s, ε)-learnable by a majority-
separation oracle if there exists a deterministic oracle-aided machine L such that,
given oracle access to C ∈ Cn and a (Cn, C, ε(n))-separating oracle S, LC,S(1n)
outputs Ĉ ∈ Cn of equivalent functionality to C, in time t(n), using at most s(n)
queries to S, and at most ci(n) queries to C between the i − 1-st and the i-th
calls to S.

Our main technical theorem shows that any strong indistinguishability obfus-
cator for a circuit collection C that is learnable via a majority separation oracle
is also a worst-case simulation-based obfuscator. The size and query complexity
of the worst-case simulator, in particular whether it is a VBB or VGB simulator,
is determined by the learnability parameters (t, c, s, ε).

Theorem 3. Let C =
⋃

n∈N
Cn be a circuit collection that is (t, c, s, 1q )-learnable

by a majority-separating oracle, for some polynomial q. Let O be a strong indis-
tinguishability obfuscator for C, let A be a boolean poly-size adversary, and let p
be a polynomial. Then (A, p) has a simulator S of size O(|A|+ t ·s ·qs ·

∏s
i=1 2

ci)
with O(‖c‖1 + q · s) oracle queries. The simulator works in the worst-case for
any C ∈ C.

In Section 4.2 we show that any circuit collection C is indeed (t, c, s, 1
q )-

learnable, for some setting of parameters (where ‖c‖1, q, s are polynomially
bounded).

4.2 VGB and VBB by Majority-Separation Learning

In this section, we show that any class of circuits is learnable by a majority-
separating oracle, with parameters that yield VGB simulation. In the full version
of this work we discuss additional classes that can be learned with better pa-
rameters, yielding VBB simulation. This includes previously obfuscated classes
as well as new ones.
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VGB Obfuscation for All Circuits. We show

Theorem 4. Let C be any circuit collection and let O be a strong indistinguisha-
bility obfuscator for C. Then O is also a worst-case VGB obfuscator for C.

To prove Theorem 4, we show that any circuit collection is learnable by a
majority-separating oracle, where the learner is of unbounded size, but only
performs a polynomial number of queries to its oracles. Theorem 4 then follows
from Theorem 3.

Lemma 1. For any q > 2, any circuit collection C = {Cn}n∈N is (t, c, s, 1
q )-

learnable by a majority-separating oracle for t(n) = ∞, s(n) ≤ ‖c(n)‖1 ≤ q(n) ·
log |Cn|.

5 From Semantically-Secure Graded Encodings to Strong
IO for NC1

In this section we show that any semantically-secure graded encoding scheme,
together with any ideal graded encoding obfuscation (i.e., any obfuscation that
is virtual-black-box secure in the ideal encoding model) for a class C of circuits,
implies strong indistinguishability obfuscation for C.

Proposition 1. Assume there exists a semantically-secure graded encoding
scheme, and assume there exists an ideal graded encoding obfuscation for a cir-
cuit class C. Then there exists a strong IO obfuscator for the circuit class C, in
the plain model (Definition 6).

Our definition of semantically-secure graded encoding is a strengthening of the
assumption of [PTS13]. One key difference from the assumption in [PTS13] is
that here we consider semantic security even for distributions of messages that
are not efficiently samplable. The definition can be found in the full version
of this work where we also discuss several relaxations. The definition of VBB
obfuscation in the ideal-graded-encoding model is also deferred to the full version
of this work.

Proposition 1, combined with the recent VBB obfuscators for NC1 in the ideal-
graded-encoding model [BR13, BGK+13], and with our results from Section 4,
immediately yields strong IO and VGB obfuscation for NC1.

Theorem 5. Assume there exists a semantically-secure graded encoding
scheme. Then there exist strong IO and worst-case VGB obfuscation for any
collection in NC1.

Acknowledgements. We are grateful to Rafael Pass for enlightening discus-
sions and valuable comments.
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Abstract. In late 2012 and early 2013 the discrete logarithm problem
(DLP) in finite fields of small characteristic underwent a dramatic se-
ries of breakthroughs, culminating in a heuristic quasi-polynomial time
algorithm, due to Barbulescu, Gaudry, Joux and Thomé. Using these de-
velopments, Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed
the concrete security of the DLP, as it arises from pairings on (the Jaco-
bians of) various genus one and two supersingular curves in the literature,
which were originally thought to be 128-bit secure. In particular, they
suggested that the new algorithms have no impact on the security of a
genus one curve over F21223 , and reduce the security of a genus two curve
over F2367 to 94.6 bits. In this paper we propose a new field represen-
tation and efficient general descent principles which together make the
new techniques far more practical. Indeed, at the ‘128-bit security level’
our analysis shows that the aforementioned genus one curve has approx-
imately 59 bits of security, and we report a total break of the genus two
curve.

Keywords: Discrete logarithm problem, supersingular binary curves,
pairings, finite fields.

1 Introduction

The role of small characteristic supersingular curves in cryptography has been
a varied and an interesting one. Having been eschewed by the cryptographic
community for succumbing spectacularly to the subexponential MOV attack in
1993 [39], which maps the DLP from an elliptic curve (or more generally, the
Jacobian of a higher genus curve) to the DLP in a small degree extension of
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the base field of the curve, they made a remarkable comeback with the advent
of pairing-based cryptography in 2001 [41,30,9]. In particular, for the latter it
was reasoned that the existence of a subexponential attack on the DLP does not
ipso facto warrant their complete exclusion; rather, provided that the finite field
DLP into which the elliptic curve DLP embeds is sufficiently hard, this state of
affairs would be acceptable.

Neglecting the possible existence of native attacks arising from the super-
singularity of these curves, much research effort has been expended in making
instantiations of the required cryptographic operations on such curves as effi-
cient as possible [6,17,14,27,26,5,29,7,11,18,3,1], to name but a few, with the
associated security levels having been estimated using Coppersmith’s algorithm
from 1984 [12,38]. Alas, a series of dramatic breakthrough results for the DLP in
finite fields of small characteristic have potentially rendered all of these efforts
in vain.

The first of these results was due to Joux, in December 2012, and consisted
of a more efficient method – dubbed ‘pinpointing’ – to obtain relations be-
tween factor base elements [31]. For medium-sized base fields, this technique
has heuristic complexity as low as L(1/3, 21/3) ≈ L(1/3, 1.260)1, where as
usual L(α, c) = LQ(α, c) = exp((c + o(1))(logQ)α(log logQ)1−α), with Q the
cardinality of the field. This improved upon the previous best complexity of
L(1/3, 31/3) ≈ L(1/3, 1.442) due to Joux and Lercier [36]. Using this technique
Joux solved example DLPs in fields of bitlength 1175 and 1425, both with prime
base fields.

Then in February 2013, Göloğlu, Granger, McGuire and Zumbrägel used a
specialisation of the Joux-Lercier doubly-rational function field sieve (FFS) vari-
ant [36], in order to exploit a well-known family of ‘splitting polynomials’, i.e.,
polynomials which split completely over the base field [19]. For fields of the
form Fqkn with k ≥ 3 fixed (k = 2 is even simpler) and n ≈ dq for a fixed
integer d ≥ 1, they showed that for binary (and more generally small char-
acteristic) fields, relation generation for degree one elements runs in heuristic
polynomial time, as does finding the logarithms of degree two elements (if qk

can be written as q′k
′
for k′ ≥ 4), once degree one logarithms are known. For

medium-sized base fields of small characteristic a heuristic complexity as low as
L(1/3, (4/9)1/3) ≈ L(1/3, 0.763) was attained; this approach was demonstrated
via the solution of example DLPs in the fields F21971 [21] and F23164 .

After the initial publication of [19], Joux released a preprint [32] detailing
an algorithm for solving the discrete logarithm problem for fields of the form
Fq2n , with n ≤ q + d for some very small d, which was used to solve a DLP
in F21778 [33] and later in F24080 [34]. For n ≈ q this algorithm has heuristic
complexity L(1/4 + o(1), c) for some undetermined c, and also has a heuristic
polynomial time relation generation method, similar in principle to that in [19].
While the degree two element elimination method in [19] is arguably superior

1 The original paper states a complexity of L(1/3, (8/9)1/3) ≈ L(1/3, 0.961); however,
on foot of recent communications the constant should be as stated.
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– since elements can be eliminated on the fly – for other small degrees Joux’s
elimination method is faster, resulting in the stated complexity.

In April 2013 Göloğlu et al. combined their approach with Joux’s to solve
an example DLP in the field F26120 [22] and later demonstrated that Joux’s
algorithm can be tweaked to have heuristic complexity L(1/4, c) [20], where c can
be as low as (ω/8)1/4 [20], with ω the linear algebra constant, i.e., the exponent
of matrix multiplication. Then in May 2013, Joux announced the solution of a
DLP in the field F26168 [35].

Most recently, in June 2013, Barbulescu, Gaudry, Joux and Thomé announced
a quasi-polynomial time for solving the DLP [4], for fields Fqkn with k ≥ 2 fixed
and n ≤ q + d with d very small, which for n ≈ q has heuristic complexity

(log qkn)O(log log qkn). (1)

Since (1) is smaller than L(α, c) for any α > 0, it is asymptotically the most effi-
cient algorithm known for solving the DLP in finite fields of small characteristic,
which can always be embedded into a field of the required form. Interestingly,
the algorithmic ingredients and analysis of this algorithm are much simpler than
for Joux’s L(1/4 + o(1), c) algorithm.

Taken all together, one would expect the above developments to have a sub-
stantial impact on the security of small characteristic parameters appearing in
the pairing-based cryptography literature. However, all of the record DLP com-
putations mentioned above used Kummer or twisted Kummer extensions (those
with n dividing qk ∓ 1), which allow for a reduction in the size of the factor
base by a factor of kn and make the descent phase for individual logarithms
relatively easy. While such parameters are preferable for setting records (most
recently in F29234 [25]), none of the parameters featured in the literature are of
this form, and so it is not a priori clear whether the new techniques weaken
existing pairing-based protocol parameters.

A recent paper by Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez has be-
gun to address this very issue [2]. Using the time required to compute a single
multiplication modulo the cardinality of the relevant prime order subgroup as
their basic unit of time, which we denote by Mr, they showed that the DLP in
the field F36·509 costs at most 273.7 Mr. One can arguably interpret this result
to mean that this field has 73.7 bits of security2. This significantly reduces the
intended security level of 128 bits (or 111 bits as estimated by Shinohara et
al. [42], or 102.7 bits for the Joux-Lercier FFS variant with pinpointing, as esti-
mated in [2]). An interesting feature of their analysis is that during the descent
phase, some elimination steps are performed using the method from the quasi-
polynomial time algorithm of Barbulescu et al., when one might have expected

2 The notion of bit security is quite fuzzy; for the elliptic curve DLP it is usually
intended to mean the logarithm to the base 2 of the expected number of group
operations, however for the finite field DLP different authors have used different
units, perhaps because the cost of various constituent algorithms must be amortised
into a single cost measure. In this work we time everything in seconds, while to
achieve a comparison with [2] we convert to Mr.
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these steps to only come into play at much higher bitlengths, due to the high
arity of the arising descent nodes.

In the context of binary fields, Adj et al. considered in detail the DLP in
the field F212·367 , which arises via a pairing from the DLP on the Jacobian of a
supersingular genus two curve over F2367 , first proposed in [3], with embedding
degree 12. Using all of the available techniques they provided an upper bound of
294.6 Mr for the cost of breaking the DLP in the embedding field, which is some
way below the intended 128-bit security level. In their conclusion Adj et al. also
suggest that a commonly implemented genus one supersingular curve over F21223

with embedding degree 4 [29,7,11,18,1], is not weakened by the new algorithmic
advances, i.e., its security remains very close to 128 bits.

In this work we show that the above security estimates were incredibly opti-
mistic. Our techniques and results are summarised as follows.

– Field representation: We introduce a new field representation that can
have a profound effect on the resulting complexity of the new algorithms.
In particular it permits the use of a smaller q than before, which not only
speeds up the computation of factor base logarithms, but also the descent
(both classical and new).

– Exploit subfield membership: During the descent phase we apply a prin-
ciple of parsimony, by which one should always try to eliminate an element
in the target field, and only when this is not possible should one embed it
into an extension field. So although the very small degree logarithms may
be computed over a larger field, the descent cost is greatly reduced relative
to solving a DLP in the larger field.

– Further descent tricks: The above principle also means that elements
can automatically be rewritten in terms of elements of smaller degree, via
factorisation over a larger field, and that elements can be eliminated via
Joux’s Gröbner basis computation method [32] with k = 1, rather than
k > 1, which increases its degree of applicability.

– ‘128-bit secure’ genus one DLP: We show that the DLP in F24·1223 can
be solved in approximately 240 s, or 259 Mr, with r a 1221-bit prime.

– ‘128-bit secure’ genus two DLP: We report a total break of the DLP in
F212·367 (announced in [24]), which took about 52240 core-hours.

– L(1/4, c) technique only: Interestingly, using our approach the elimination
steps à la Barbulesu et al. [4] were not necessary for the above estimate and
break.

The rest of the paper is organised as follows. In §2 we describe our field rep-
resentation and our target fields. In §3 we present the corresponding polynomial
time relation generation method for degree one elements and degree two ele-
ments (although we do not need the latter for the fields targeted in the present
paper), as well as how to apply Joux’s small degree elimination method [32] with
the new representation. We then apply these and other techniques to F24·1223 in
§4 and to F212·367 in §5 . Finally, we conclude in §6.
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2 Field Representation and Target Fields

In this section we introduce our new field representation and the fields whose
DLP security we will address. This representation, as well as some preliminary
security estimates, were initially presented in [19].

2.1 Field Representation

Although we focus on binary fields in this paper, for the purposes of generality,
in this section we allow for extension fields of arbitrary characteristic. Hence let
q = pl for some prime p, and let K = Fqkn be the field under consideration, with
k ≥ 1.

We choose a positive integer dh such that n ≤ qdh + 1, and then choose
h0, h1 ∈ Fqk [X ] with max{deg(h0), deg(h1)} = dh such that

h1(X
q)X − h0(X

q) ≡ 0 (mod I(X)), (2)

where I(X) is an irreducible degree n polynomial in Fqk [X ]. Then K =
Fqk [X ]/(I(X)). Denoting by x a root of I(X), we introduce the auxiliary vari-
able y = xq, so that one has two isomorphic representations of K, namely Fqk(x)
and Fqk(y), with σ : Fqk(y) → Fqk(x) : y �→ xq. To establish the inverse
isomorphism, note that by (2) in K we have h1(y)x − h0(y) = 0, and hence
σ−1 : Fqk(x) → Fqk(y) : x �→ h0(y)/h1(y).

The knowledgeable reader will have observed that our representation is a syn-
thesis of two other useful representations: the one used by Joux [32], in which
one searches for a degree n factor I(X) of h1(X)Xq − h0(X); and the one used
by Göloğlu et al. [19,20], in which one searches for a degree n factor I(X) of
X − h0(X

q). The problem with the former is that it constrains n to be approx-
imately q. The problem with the latter is that the polynomial X − h0(X

q) is
insufficiently general to represent all degrees n up to qdh. By changing the coef-
ficient of X in the latter from 1 to h1(X

q), we greatly increase the probability
of overcoming the second problem, thus combining the higher degree coverage
of Joux’s representation with the higher degree possibilities of [19,20].

The raison d’être of using this representation rather than Joux’s representa-
tion is that for a given n, by choosing dh > 1, one may use a smaller q. So why is
this useful? Well, since the complexity of the new descent methods is typically a
function of q, then subject to the satisfaction of certain constraints, one may use
a smaller q, thus reducing the complexity of solving the DLP. This observation
was our motivation for choosing field representations of the above form.

Another advantage of having an h1 coefficient (which also applies to Joux’s
representation) is that it increases the chance of there being a suitable (h1, h0)
pair with coefficients defined over a proper subfield of Fqk , which then permits
one to apply the factor base reduction technique of [36], see §4 and §5.

2.2 Target Fields

For i ∈ {0, 1} let Ei/F2p : Y 2 + Y = X3 + X + i. These elliptic curves are
supersingular and can have prime or nearly prime order only for p prime, and
have embedding degree 4 [16,6,17]. We focus on the curve
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E0/F21223 : Y 2 + Y = X3 +X, (3)

which has a prime order subgroup of cardinality r1 = (21223 + 2612 + 1)/5, of
bitlength 1221. This curve was initially proposed for 128-bit secure protocols [29]
and has enjoyed several optimised implementations [7,11,18,1]. Many smaller p
have also been proposed in the literature (see [5,16], for instance), and are clearly
weaker.

For i ∈ {0, 1} let Hi/F2p : Y 2+Y = X5+X3+i. These genus two hyperelliptic
curves are supersingular and can have a nearly prime order Jacobian only for p
prime (note that 13 is always a factor of #JacH0(F2p), since #JacH0(F2) = 13),
and have embedding degree 12 [5,16]. We focus on the curve

H0/F2367 : Y 2 + Y = X5 +X3, (4)

with #JacH(F2367) = 13 · 7170258097 · r2, and r2 = (2734 + 2551 + 2367 + 2184 +
1)/(13 ·7170258097) is a 698-bit prime, since this was proposed for 128-bit secure
protocols [3], and whose security was analysed in depth by Adj et al. in [2].

3 Computing the Logarithms of Small Degree Elements

In this section we adapt the polynomial time relation generation method
from [19] and Joux’s small degree elimination method [32] to the new field rep-
resentation as detailed in §2.1. Note that henceforth, we shall refer to elements
of Fqkn = Fqk [X ]/(I(X)) as field elements or as polynomials, as appropriate,
and thus use x and X (and y and Y ) interchangeably. We therefore freely apply
polynomial ring concepts, such as degree, factorisation and smoothness, to field
elements.

In order to compute discrete logarithms in our target fields we apply the
usual index calculus method. It consists of a precomputation phase in which by
means of (sparse) linear algebra techniques one obtains the logarithms of the
factor base elements, which will consist of the low degree irreducible polyno-
mials. Afterwards, in the individual logarithm phase, one applies procedures to
recursively rewrite each element as a product of elements of smaller degree, in
this way building up a descent tree, which has the target element as its root and
factor base elements as its leaves. This proceeds in several stages, starting with a
continued fraction descent of the target element, followed by a special-Q lattice
descent (referred to as degree-balanced classical descent, see [19]), and finally
using Joux’s Gröbner basis descent [32] for the lower degree elements. Details
of the continued fraction and classical descent steps are given in §4, while in
this section we provide details of how to find the logarithms of elements of small
degree.

We now describe how the logarithms of degree one and two elements (when
needed) are to be computed. We use the relation generation method from [19],
rather than Joux’s method [32], since it automatically avoids duplicate relations.
For k ≥ 2 we first precompute the set Sk, where

Sk = {(a, b, c) ∈ (Fqk)
3 | Xq+1 + aXq + bX + c splits completely over Fqk}.
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For k = 2, this set of triples is parameterised by (a, aq,Fq ) c �= aq+1), of which
there are precisely q3 − q2 elements. For k ≥ 3, Sk can also be computed very
efficiently, as follows. Assuming c �= ab and b �= aq, the polynomial Xq+1 +
aXq + bX + c may be transformed (up to a scalar factor) into the polynomial

fB(X) = X
q+1

+ BX + B, where B = (b−aq)q+1

(c−ab)q , and X = c−ab
b−aq X − a. The

set L of B ∈ Fqk for which fB splits completely over Fqk can be computed
by simply testing for each such B whether this occurs, and there are precisely
(qk−1 − 1)/(q2 − 1) such B if k is odd, and (qk−1 − q)/(q2 − 1) such B if k is
even [8]. Then for any (a, b) such that b �= aq and for each B ∈ L, we compute

via B = (b−aq)q+1

(c−ab)q the corresponding (unique) c ∈ Fqk , which thus ensures that

(a, b, c) ∈ Sk. Note that in all cases we have |Sk| ≈ q3k−3.

3.1 Degree 1 Logarithms

We define the factor base B1 to be the set of linear elements in x, i.e., B1 =
{x− a | a ∈ Fqk}. Observe that the elements linear in y are each expressible in

B1, since (y − a) = (x− a1/q)q.
As in [36,19,20], the basic idea is to consider elements of the form xy + ay +

bx+ c with (a, b, c) ∈ Sk. The above two field isomorphisms induce the following
equality in K:

xq+1 + axq + bx+ c =
1

h1(y)

(
yh0(y) + ayh1(y) + bh0(y) + ch1(y)

)
. (5)

When the r.h.s. of (5) also splits completely over Fqk , one obtains a relation
between elements of B1 and the logarithm of h1(y). One can either adjoin h1(y)
to the factor base, or simply use an h1(y) which splits completely over Fqk .

We assume that for each (a, b, c) ∈ Sk that the r.h.s. of (5) – which has degree
dh + 1 – splits completely over Fqk with probability 1/(dh + 1)!. Hence in order
for there to be sufficiently many relations we require that

q3k−3

(dh + 1)!
> qk, or equivalently q2k−3 > (dh + 1)!. (6)

When this holds, the expected cost of relation generation is (dh + 1)! · qk ·
Sqk(dh + 1, 1), where Sqk(n,m) denotes the cost of testing whether a degree
n polynomial is m-smooth, i.e., has all of its irreducible factors of degree ≤ m.
The cost of solving the resulting linear system using sparse linear algebra tech-
niques is O(q2k+1) arithmetic operations modulo the order r subgroup in which
one is working.

3.2 Degree 2 Logarithms

For degree two logarithms, there are several options. The simplest is to apply
the degree one method over a quadratic extension of Fqk , but in general (without
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any factor base automorphisms) this will cost O(q4k+1) modular arithmetic op-
erations. If k ≥ 4 then subject to a condition on q, k and dh, it is possible to find
the logarithms of irreducible degree two elements on the fly, using the techniques
of [19,20]. In fact, for the DLP in F212·367 we use both of these approaches, but
for different base fields, see §5.

Although not used in the present paper, for completeness we include here the
analogue in our field representation of Joux’s approach [32]. Since this approach
forms the basis of the higher degree elimination steps in the quasi-polynomial
time algorithm of Barbulescu et al., its analogue in our field representation should
be clear.

We define B2,u to be the set of irreducible elements of Fqk [X ] of the form
X2+uX+v. For each u ∈ Fqk one expects there to be about qk/2 such elements3.
As in [32], for each u ∈ Fqk we find the logarithms of all the elements of B2,u

simultaneously. To do so, consider (5) but with x on the l.h.s. replaced with
Q = x2 + ux. Using the field isomorphisms we have that Qq+1 + aQq + bQ + c
is equal to

(y2+uqy)
(
(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)
)
+ a(y2+uqy) + b

(
(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)) + c

= 1
h1(y)2

(
(y2+uqy)(h0(y)

2+uh0(y)h1(y)+ah1(y)
2)+b(h0(y)

2+uh0(y)h1(y))+ch1(y)
2
)
.

The degree of the r.h.s. is 2(dh+1), and when it splits completely over Fqk we have
a relation between elements of B2,u and degree one elements, whose logarithms
are presumed known, which we assume occurs with probability 1/(2(dh + 1))!.
Hence in order for there to be sufficiently many relations we require that

q3k−3

(2(dh + 1))!
>

qk

2
, or equivalently q2k−3 > (2(dh + 1))!/2. (7)

Observe that (7) implies (6). When this holds, the expected cost of relation
generation is (2(dh+1))! ·qk ·Sqk(2(dh+1), 1)/2. The cost of solving the resulting
linear system using sparse linear algebra techniques is again O(q2k+1) modular
arithmetic operations, where now both the number of variables and the average
weight is halved relative to the degree one case. Since there are qk such u, the
total expected cost of this stage is O(q3k+1) modular arithmetic operations,
which may of course be parallelised.

3.3 Joux’s Small Degree Elimination with the New Representation

As in [32], let Q be a degree dQ element to be eliminated, let F (X) =
∑dF

i=0 fiX
i,

G(X) =
∑dG

j=0 gjX
j ∈ Fqk [X ] with dF + dG + 2 ≥ dQ, and assume without loss

of generality dF ≥ dG. Consider the following expression:

G(X)
∏
α∈Fq

(F (X)− αG(X)) = F (X)qG(X)− F (X)G(X)q (8)

3 For binary fields there are precisely qk/2 irreducibles, since X2+uX+v is irreducible
if and only if TrF

qk
/F2(v/u

2) = 1.
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The l.h.s. is max(dF , dG)-smooth. The r.h.s. can be expressed modulo h1(X
q)X−

h0(X
q) in terms of Y = Xq as a quotient of polynomials of relatively low degree

by using

F (X)q =

dF∑
i=0

f q
i Y

i, G(X)q =

dG∑
j=0

gqjY
j and X ≡ h0(Y )

h1(Y )
.

Then the numerator of the r.h.s. becomes

( dF∑
i=0

f q
i Y

i
)( dG∑

j=0

gqjh0(Y )jh1(Y )dF−j
)
−
( dF∑

i=0

f q
i h0(Y )ih1(Y )dF−i

)( dG∑
j=0

gqjY
j
)
. (9)

Setting (9) to be 0 modulo Q(Y ) gives a system of dQ equations over Fqk in
the dF + dG + 2 variables f0, . . . , fdF , g0, . . . , gdG. By choosing a basis for Fqk

over Fq and expressing each of the dF + dG +2 variables f0, . . . , fdF , g0, . . . , gdG

in this basis, this system becomes a bilinear quadratic system4 of kdQ equations
in (dF + dG + 2)k variables. To find solutions to this system, one can specialise
(dF + dG + 2 − dQ)k of the variables in order to make the resulting system
generically zero-dimensional while keeping its bilinearity, and then compute the
corresponding Gröbner basis, which may have no solution, or a small number of
solutions. For each solution, one checks whether (9) divided by Q(Y ) is (dQ−1)-
smooth: if so then Q has successfully been rewritten as a product of elements of
smaller degree; if no solutions give a (dQ − 1)-smooth cofactor, then one begins
again with another specialisation.

The degree of the cofactor of Q(Y ) is upper bounded by dF (1 + dh) − dQ,
so assuming that it behaves as a uniformly chosen polynomial of such a degree
one can calculate the probability ρ that it is (dQ − 1)-smooth using standard
combinatorial techniques.

Generally, in order for Q to be eliminable by this method with good probabil-
ity, the number of solutions to the initial bilinear system must be greater than
1/ρ. To estimate the number of solutions, consider the action of Gl2(Fqk) on the
set of pairs (F,G). The subgroups Gl2(Fq) and F×

qk
(via diagonal embedding)

both act trivially on the set of relations, modulo multiplication by elements in
F×
qk
. Assuming that the set of (F,G) quotiented out by the action of the com-

positum of these subgroups (which has cardinality ≈ qk+3), generates distinct
relations, one must satisfy the condition

q(dF+dG+1−dQ)k−3 > 1/ρ . (10)

Note that while (10) is preferable for an easy descent, one may yet violate it and
still successfully eliminate elements by using various tactics, as demonstrated
in §5.

4 The bilinearity makes finding solutions to this system easier [44], and is essential for
the complexity analysis in [32] and its variant in [20].
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4 Concrete Security Analysis of F24·1223

In this section we focus on the DLP in the 1221-bit prime order r1 subgroup of
F×
24·1223 , which arises from the MOV attack applied to the genus one supersingular

curve (3). By embedding F24·1223 into its degree two extension F28·1223 = F29784

we show that, after a precomputation taking approximately 240 s, individual
discrete logarithms can be computed in less than 234 s.

4.1 Setup

We consider the field F28·1223 = Fqn with q = 28 and n = 1223 given by the
irreducible factor of degree n of h1(X

q)X − h0(X
q), with

h0 = X5 + tX4 + tX3 +X2 + tX + t , h1 = X5 +X4 +X3 +X2 +X + t ,

where t is an element of F22 \ F2. Note that the field of definition of this
representation is F22 .

Since the target element is contained in the subfield F24·1223 , we begin the
classical descent over F24 , we switch to Fq = F28 , i.e., k = 1, for the Gröbner
basis descent, and, as explained below, we work over Fqk with either k = 1 or a
few k > 1 to obtain the logarithms of all factor base elements.

4.2 Linear Algebra Cost Estimate

In this precomputation we obtain the logarithms of all elements of degree at
most four over Fq. Since the degree 1223 extension is defined over F22 in our
field representation, by the action of the Galois group Gal(Fq/F22) on the factor
base, the number of irreducible elements of degree j whose logarithms are to be
computed can be reduced to about 28j/(4j) for j ∈ {1, 2, 3, 4}.

One way to obtain the logarithms of these elements is to carry out the degree 1
relation generation method from §3.1, together with the elementary observation
that an irreducible polynomial of degree k over Fq splits completely over Fqk .
First, computing degree one logarithms over Fq3 gives the logarithms of irre-
ducible elements of degrees one and three over Fq. Similarly, computing degree
one logarithms over Fq4 gives the logarithms of irreducible elements of degrees
one, two, and four over Fq. The main computational cost consists in solving the
latter system arising from Fq4 , which has size 228 and an average row weight
of 256.

However, we propose to reduce the cost of finding these logarithms by us-
ing k = 1 only, in the following easy way. Consider §3.3, and observe that for
each polynomial pair (F,G) of degree at most d, one obtains a relation between
elements of degree at most d when the numerator of the r.h.s. is d-smooth (ig-
noring factors of h1). Note that we are not setting the r.h.s. numerator to be zero
modulo Q or computing any Gröbner bases. Up to the action of Gl2(Fq) (which
gives equivalent relations) there are about q2d−2 such polynomial pairs. Hence,
for d ≥ 3 there are more relations than elements if the smoothness probability of
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the r.h.s. is sufficiently high. Notice that k = 1 implies that the r.h.s. is divisible
by h1(Y )Y − h0(Y ), thus increasing its smoothness probability and resulting in
enough relations for d = 3 and for d = 4. After having solved the much smaller
system for d = 3 we know the logarithms of all elements up to degree three, so
that the average row weight for the system for d = 4 can be reduced to about
1
4 ·256 = 64 (irreducible degree four polynomials on the l.h.s.). As above the size
of this system is 228.

The cost for generating the linear systems is negligible compared to the linear
algebra cost. For estimating the latter cost we consider Lanczos’ algorithm to
solve a sparse N ×N , N = 228, linear system with average row weight W = 64.
As noted in [40,20] this algorithm can be implemented such that

N2 (2W ADD + 2SQR+ 3MULMOD) (11)

operations are used. On our benchmark system, an AMD Opteron 6168 processor
at 1.9GHz, using [28] our implementation of these operations took 62 ns, 467 ns
and 1853 ns for an ADD, a SQR and a MULMOD, respectively, resulting in a
linear algebra cost of 240 s.

As in [2], the above estimate ignores communication costs and other possible
slowdowns which may arise in practice. An alternative estimate can be obtained
by considering a problem of a similar size over F2 and extrapolating from [37].
This gives an estimated time of 242 s, or for newer hardware slightly less. Note
that this computation was carried out using the blockWiedemann algorithm [13],
which we recommend in practice because it allows one to distribute the main
part of the computation. For the sake of a fair comparison with [2] we use the
former estimate of 240 s.

4.3 Descent Cost Estimate

We assume that the logarithms of elements up to degree four are known, and
that computing these logarithms with a lookup table is free.

Small Degree Descent. We have implemented the small degree descent of §3.3
in Magma [10] V2.20-1, using Faugere’s F4 algorithm [15]. For each degree from
5 to 15, on the same AMD Opteron 6168 processor we timed the Gröbner basis
computation between 106 and 100 times, depending on the degree. Then using a
bottom-up recursive strategy we estimated the following average running times
in seconds for a full logarithm computation, which we present to two significant
figures:

C[5, . . . , 15] = [ 0.038 , 2.1 , 2.1 , 93 , 95 , 180 , 190 , 3200 , 3500 , 6300 , 11000 ] .

Degree-Balanced Classical Descent. From now on, we make the conserva-
tive assumption that a degree n polynomial which is m-smooth, is a product of
n/m degree m polynomials. In practice the descent cost will be lower than this,
however, the linear algebra cost is dominating, so this issue is inconsequential
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for our security estimate. The algorithms we used for smoothness testing are
detailed in the full version of the paper [23].

For a classical descent step with degree balancing we consider polynomials
P (X2a , Y ) ∈ Fq[X,Y ] for a suitably chosen integer 0 ≤ a ≤ 8. It is advantageous
to choose P such that its degree in one variable is one; let d be the degree in
the other variable. In the case degX2a (P ) = 1, i.e., P = v1(Y )X2a + v0(Y ),
deg vi ≤ d, this gives rise to the relation

L2a

v =
( Rv

h1(X)2a

)28
where

Lv = ṽ1(X
28−a

)X + ṽ0(X
28−a

) ,
Rv = v1(X)h0(X)2

a

+ v0(X)h1(X)2
a

in Fq[X ]/(h1(X
q)X − h0(X

q)) with degLv ≤ 28−ad + 1, degRv ≤ d + 5 · 2a,
and ṽi being vi with its coefficients powered by 28−a, for i = 0, 1. Similarly, in
the case degY (P ) = 1, i.e., P = w1(X

2a)Y + w0(X
2a), degwi ≤ d, we have the

relation

L2a

w =
( Rw

h1(X)2ad

)28
where

Lw = w̃1(X)X28−a

+ w̃0(X) ,

Rw = h1(X)2
ad
(
w1

(
(h0(X)
h1(X) )

2a
)
X + w0

(
(h0(X)
h1(X) )

2a
))

with degLw ≤ d + 28−a, degRw ≤ 5 · 2ad + 1 and again w̃i being wi with its
coefficients powered by 28−a, for i = 0, 1.

The polynomials vi (respectively wi) are chosen in such a way that either
the l.h.s. or the r.h.s. is divisible by a polynomial Q(X) of degree dQ. Gaussian
reduction provides a lattice basis (u0, u1), (u

′
0, u

′
1) such that the polynomial pairs

satisfying the divisibility condition above are given by rui+su′
i for i = 0, 1, where

r, s ∈ Fq[X ]. For nearly all polynomials Q it is possible to choose a lattice basis
of polynomials with degree ≈ dQ/2 which we will assume for all Q appearing
in the analysis; extreme cases can be avoided by look-ahead or backtracking
techniques. Notice that a polynomial Q over F24 ⊂ Fq can be rewritten as a
product of polynomials which are also over F24 , by choosing the basis as well as
r and s to be over F24 . This will be done in all steps of the classical descent. The
polynomials r and s are chosen to be of degree four, resulting in 236 possible
pairs (multiplying both by a common non-zero constant gives the same relation).

In the final step of the classical eliminations (from degree 26 to 15) we relax
the criterion that the l.h.s. and r.h.s. are 15-smooth, allowing also irreducibles
of even degree up to degree 30, since these can each be split over Fq into two
polynomials of half the degree, thereby increasing the smoothness probabilities.
Admittedly, if we follow our worst-case analysis stipulation that all polynomials
at this step have degree 26, then one could immediately split each of them into
two degree 13 polynomials. However, in practice one will encounter polynomials
of all degrees ≤ 26 and we therefore carry out the analysis without using the
splitting shortcut, which will still provide an overestimate of the cost of this step.

In the following we will state the logarithmic cost (in seconds) of a classical
descent step as cl+cr+cs, where 2

cl and 2cr denote the number of trials to get the
left hand side and the right hand side m-smooth, and 2cs s is the time required
for the corresponding smoothness test. Our smoothness tests were benchmarked
on the AMD Opteron 6168 processor.
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– dQ = 26 to m = 15: We choose degX2a P = 1, a = 5, Q on the right, giving
d = 17 and (deg(Lv), deg(Rv)) = (137, 151). On average the smoothness
test S28(137, 30) takes 1.9 ms, giving a logarithmic cost of 13.4+ 15.6− 9.0,
hence 220.0 s. The expected number of factors is 19.2, so the subsequent cost
will be less than 217.7 s. Note that, as explained above, we use the splitting
shortcut for irreducibles of even degree up to 30, resulting in the higher than
expected smoothness probabilities.

– dQ = 36 to m = 26: We choose degX2a P = 1, a = 5, Q on the right, giving
d = 22 and (deg(Lv), deg(Rv)) = (177, 146). On average the smoothness test
S28(146, 26) takes 1.9 ms, giving a logarithmic cost 18.7 + 13.6− 9.0, hence
223.3 s. The expected number of factors is 12.4, so the subsequent cost will
be less than 223.9 s.

– dQ = 94 to m = 36: We choose degY P = 1, a = 0, Q on the left, giving
d = 51 and (deg(Lw), deg(Rw)) = (213, 256). On average the smoothness
test S28(213, 36) takes 5.1 ms, giving a logarithmic cost 15.0 + 20.3 − 7.5,
hence 227.8 s. The expected number of factors is 13.0, so the subsequent cost
will be less than 228.4 s.

Continued Fraction Descent. For the continued fraction descent we multiply
the target element by random powers of the generator and express the product
as a ratio of two polynomials of degree at most 611. For each such expression
we test if both the numerator and the denominator are 94-smooth. On average
the smoothness test S28(611, 94) takes 94 ms, giving a logarithmic cost of 17.7+
17.7−3.4, hence 232.0 s. The expected number of degree 94 factors on both sides
will be 13, so the subsequent cost will be less than 232.8 s.

Total Descent Cost. The cost for computing an individual logarithm is there-
fore upper-bounded by 232.0 s + 232.8 s < 234 s.

4.4 Summary

The main cost in our analysis is the linear algebra computation which takes
about 240 s, with the individual logarithm stage being considerably faster. In
order to compare with the estimate in [2], we write the main cost in terms of Mr

which gives 259 Mr, and thus an improvement by a factor of 269. Nevertheless,
solving a system of cardinality 228 is still a formidable challenge, but perhaps not
so much for a well-funded adversary. For completeness we note that if one wants
to avoid a linear algebra step of this size, then one can work over different fields,
e.g., with q = 210 and k = 2, or q = 212 and k = 1. However, while this allows a
partitioning of the linear algebra into smaller steps as described in §3.2 but at
a slightly higher cost, the resulting descent cost is expected to be significantly
higher.
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5 Solving the DLP in F212·367

In this section we present the details of our solution of a DLP in the 698-bit
prime order r2 subgroup of F×

212·367 = F×
24404 , which arises from the MOV attack

applied to the Jacobian of the genus two supersingular curve (4). Note that the
prime order elliptic curve E1/F2367 : Y 2 + Y = X3 + X + 1 with embedding
degree 4 also embeds into F24404 , so that logarithms on this curve could have
easily been computed as well.

5.1 Setup

To compute the target logarithm, as stated in §1 we applied a principle of parsi-
mony, namely, we tried to solve all intermediate logarithms in F212·367 , considered
as a degree 367 extension of F212 , and only when this was not possible did we
embed elements into the extension field F224·367 (by extending the base field to
F224) and solve them there.

All of the classical descent down to degree 8 was carried out over F212·367 ,
which we formed as the compositum of the following two extension fields. We
defined F212 using the irreducible polynomial U12 +U3 +1 over F2, and defined
F2367 over F2 using the degree 367 irreducible factor of h1(X

64)X − h0(X
64),

where h1 = X5 + X3 + X + 1, and h0 = X6 + X4 + X2 + X + 1. Let u and
x be roots of the extension defining polynomials in U and X respectively, and
let c = (24404 − 1)/r2. Then g = x + u7 is a generator of F×

24404 and ḡ = gc is a
generator of the subgroup of order r2. As usual, our target element was chosen
to be x̄π = xc

π where

xπ =

4403∑
i=0

( π · 2i+1! mod 2) · u11−(i mod 12) · x�i/12�.

The remaining logarithms were computed using a combination of tactics, over
F212 when possible, and over F224 when not. These fields were constructed as de-
gree 2 and 4 extensions of F26 , respectively. To define F26 we used the irreducible
polynomial T 6 + T + 1. We then defined F212 using the irreducible polynomial
V 2+tV +1 over F26 , and F224 using the irreducible polynomialW 4+W 3+W 2+t3

over F26 .

5.2 Degree 1 Logarithms

It was not possible to find enough relations for degree 1 elements over F212 , so
in accordance with our stated principle, we extended the base field to F224 to
compute the logarithms of all 224 degree 1 elements. We used the polynomial time
relation generation from §3.1, which took 47 hours. This relative sluggishness
was due to the r.h.s. having degree dh + 1 = 7, which must split over F224 .
However, this was faster by a factor of 24 than it would have been otherwise,
thanks to h0 and h1 being defined over F2. This allowed us to use the technique
from [36] to reduce the size of the factor base via the automorphism (x + a) �→
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(x + a)2
367

, which fixes x but has order 24 on all non-subfield elements of F224 ,
since 367 ≡ 7 mod 24 and gcd(7, 24) = 1. This reduced the factor base size to
699252 elements, which was solved in 4896 core hours on a 24 core cluster using
Lanczos’ algorithm, approximately 242 times faster than if we had not used the
automorphisms.

5.3 Individual Logarithm

We performed the standard continued fraction initial split followed by degree-
balanced classical descent as in §4.3, using Magma [10] and NTL [43], to reduce
the target element to an 8-smooth product in 641 and 38224 core hours re-
spectively. The most interesting part of the descent was the elimination of the
elements of degree up to 8 over F212 into elements of degree one over F224 , which
we detail below. This phase was completed using Magma and took a further 8432
core hours. However, we think that the combined time of the classical and non-
classical parts could be reduced significantly via a backwards-induction analysis
of the elimination times of each degree.

Small Degree Elimination. As stated above we used several tactics to achieve
these eliminations. The first was the splitting of an element of even degree over
F212 into two elements of half the degree (which had the same logarithm modulo
r2) over the larger field. This automatically provided the logarithms of all degree
2 elements over F212 . Similarly elements of degree 4 and 8 over F212 were rewritten
as elements of degree 2 and 4 over F224 , while we found that degree 6 elements
were eliminable more efficiently by initially continuing the descent over F212 , as
with degree 5 and 7 elements.

The second tactic was the application of Joux’s Gröbner basis elimination
method from §3.3 to elements over F212 , as well as elements over F224 . However,
in many cases condition (10) was violated, in which case we had to employ various
recursive strategies in order to eliminate elements. In particular, elements of the
same degree were allowed on the r.h.s. of relations, and we then attempted to
eliminate these using the same (recursive) strategy. For degree 3 elements over
F212 , we even allowed degree 4 elements to feature on the r.h.s. of relations, since
these were eliminable via the factorisation into degree 2 elements over F224 .

In Figure 1 we provide a flow chart for the elimination of elements of degree
up to 8 over F212 , and for the supporting elimination of elements of degree up
to 4 over F224 . Nearly all of the arrows in Figure 1 were necessary for these
field parameters (the exceptions being that for degrees 4 and 8 over F212 we
could have initially continued the descent along the bottom row, but this would
have been slower). The reason this ‘non-linear’ descent arises is due to q being
so small, and dH being relatively large, which increases the degree of the r.h.s.
cofactors, thus decreasing the smoothness probability. Indeed these tactics were
only borderline applicable for these parameters; if h0 or h1 had degree any larger
than 6 then not only would most of the descent have been much harder, but it
seems that one would be forced to compute the logarithms of degree 2 elements
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1 2 3 4

1 2 3 4 5 6 7 8

F224

F212

ι ιs
s

s

Fig. 1. This diagram depicts the set of strategies employed to eliminate elements over
F212 of degree up to 8. The encircled numbers represent the degrees of elements over
F212 on the bottom row, and over F224 on the top row. The arrows indicate how an
element of a given degree is rewritten as a product of elements of other degrees, possibly
over the larger field. Unadorned solid arrows indicate the maximum degree of elements
obtained on the l.h.s. of the Gröbner basis elimination method; likewise dashed arrows
indicate the degrees of elements obtained on the r.h.s. of the Gröbner basis elimination
method, when these are greater than those obtained on the l.h.s. Dotted arrows indicate
a fall-back strategy when the initial strategy fails. An s indicates that the element is
to be split over the larger field into two elements of half the degree. An ι indicates that
an element is promoted to the larger field. Finally, a loop indicates that one must use
a recursive strategy in which further instances of the elimination in question must be
solved in order to eliminate the element in question.

over F224 using Joux’s linear system method from §3.2, greatly increasing the
required number of core hours. As it was, we were able to eliminate degree 2
elements over F224 on the fly, as we describe explicitly below.

Finally, we note that our descent strategy is considerably faster than the
alternative of embedding the DLP into F224·367 and performing a full descent in
this field, even with the elimination on the fly of degree 2 elements over F224 ,
since much of the resulting computation would constitute superfluous effort for
the task in hand.

Degree 2 Elimination over F224. Let Q(Y ) be a degree two element which is
to be eliminated, i.e., written as a product of degree one elements. As in [19,20]
we first precompute the set of 64 elements B ∈ F224 such that the polynomial
fB(X) = X65 + BX + B splits completely over F224 (in fact these B’s happen
to be in F212 , but this is not relevant to the method). We then find a Gaussian-
reduced basis of the lattice LQ(Y ) defined by

LQ(Y )={(w0(Y ), w1(Y )) ∈ F224 [Y ]2: w0(Y )h0(Y )+w1(Y )h1(Y ) ≡ 0 (mod Q(Y ))}.

Such a basis has the form (u0, Y + u1), (Y + v0, v1), with ui, vi ∈ F224 , ex-
cept in rare cases, see Remark 1. For s ∈ F224 we obtain lattice elements
(w0(Y ), w1(Y )) = (Y + v0 + su0, sY + v1 + su1).

Using the transformation detailed in §3, for each B ∈ F224 such that fB splits
completely over F224 we perform a Gröbner basis computation to find the set of
s ∈ F224 that satisfy
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B =
(s64 + u0s+ v0)

65

(u0s2 + (u1 + v0)s+ v1)64
,

by first expressing s in a F224/F26 basis, which results in a quadratic system in 4
variables. This ensures that the l.h.s. splits completely over F224 . For each such
s we check whether the r.h.s. cofactor of Q(Y ), which has degree 5, is 1-smooth.
If this occurs, we have successfully eliminated Q(Y ).

However, one expects on average just one s per B, and so the probability of
Q(Y ) being eliminated in this way is 1− (1− 1/5!)64 ≈ 0.415, which was borne
out in practice to two decimal places. Hence, we adopted a recursive strategy in
which we stored all of the r.h.s. cofactors whose factorisation degrees had the
form (1, 1, 1, 2) (denoted type 1), or (1, 2, 2) (denoted type 2). Then for each type
1 cofactor we checked to see if the degree 2 factor was eliminable by the above
method. If none were eliminable we stored every type 1 cofactor of each degree 2
irreducible occurring in the list of type 1 cofactors of Q(Y ). If none of these were
eliminable (which occurred with probability just 0.003), then we reverted to the
type 2 cofactors, and adopted the same strategy just specified for each of the
degree 2 irreducible factors. Overall, we expected our strategy to fail about once
in every 6 · 106 such Q(Y ). This happened just once during our descent, and so
we multiplied this Q(Y ) by a random linear polynomial over F224 and performed
a degree 3 elimination, which necessitates an estimated 32 degree 2 polynomials
being simultaneously eliminable by the above method, which thanks to the high
probability of elimination, will very likely be successful for any linear multiplier.

5.4 Summary

Finally, after a total of approximately 52240 core hours (or 248 Mr2), we found
that x̄π = ḡlog, with (see [24] for a Magma verification script) log =

40932089202142351640934477339007025637256140979451423541922853874473604

39015351684721408233687689563902511062230980145272871017382542826764695

59843114767895545475795766475848754227211594761182312814017076893242 .

Remark 1. During the descent, we encountered several polynomials Q(Y ) that
were apparently not eliminable via the Gröbner basis method. We discovered
that they were all factors of h1(Y ) · c + h0(Y ) for c ∈ F212 or F224 , and hence
h0(Y )/h1(Y ) ≡ c (mod Q(Y )). This implies that (9) is equal to F (c)G(q)(Y ) +
F (q)(Y )G(c) modulo Q(Y ), where G(q) denotes the Frobenius twisted G and
similarly for F (q). This cannot become 0 modulo Q(Y ) if the degrees of F and G
are smaller than the degree of Q, unless F and G are both constants. However,
thanks to the field representation, finding the logarithm of these Q(Y ) turns
out to be easy. In particular, if h1(Y ) · c + h0(Y ) = Q(Y ) · R(Y ) then Q(Y ) =
h1(Y )((h0/h1)(Y ) + c)/R(Y ) = h1(Y )(X + c)/R(Y ), and thus modulo r2 we
have log(Q(y)) ≡ log(x + c) − log(R(y)), since log(h1(y)) ≡ 0. Since (x + c) is
in the factor base, if we are able to compute the logarithm of R(y), then we
are done. In all the cases we encountered, the cofactor R(y) was solvable by the
above methods.
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6 Conclusion

We have introduced a new field representation and efficient descent principles
which together make the recent DLP advances far more practical. As example
demonstrations, we have applied these techniques to two binary fields of central
interest to pairing-based cryptography, namely F24·1223 and F212·367 , which arise
as the embedding fields of (the Jacobians of) a genus one and a genus two super-
singular curve, respectively. When initially proposed, these fields were believed
to be 128-bit secure, and even in light of the recent DLP advances, were believed
to be 128-bit and 94.6-bit secure. On the contrary, our analysis indicates that
the former field has approximately 59 bits of security and we have implemented
a total break of the latter.
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Abstract. Following a rich line of research on leakage-resilient cryptog-
raphy, [Garg, Jain, and Sahai, CRYPTO11] and [Bitansky, Canetti, and
Halevi, TCC12] initiated the study of secure interactive protocols in the
presence of arbitrary leakage. They put forth notions of leakage tolerance
for zero-knowledge and general secure multi-party computation that aim
at capturing the best-possible security when the private inputs of honest
parties are exposed to direct leakage. So far, only a handful of specific
two-party functionalities have been successfully realized under the no-
tion. General functionalities were only realized under weaker security
notions [Boyle, Garg, Jain, Kalai, and Sahai, Crypto13], or relying on
leakage-immune input-processing, which needs to be repeated for each
and every execution [Boyle, Goldwasser, Jain, Kalai, STOC12].

We construct leakage-tolerant multi-party computation protocols for
general functions, relying on input-independent preprocessing that is per-
formed once and for-all. The protocols tolerate continual leakage, through-
out an unbounded number of executions, provided that leakage is bounded
within any particular execution. In the malicious setting, we also require
a common reference string, and a constant fraction of honest parties.

At the core of our construction, is a tight connection between secure
compilers in the Only-Computation-Leaks (OCL) model and leakage-
tolerant protocols. In particular, we show that two-party leakage-tolerant
protocols with input-independent preprocessing are essentially equivalent
to two-component OCL compilers satisfying certain strong properties.
We then show how to construct such strong OCL compilers in the plain
model, with the help of O(1) auxliary components.

1 Introduction

Secure Multiparty Computation (MPC) [Yao82, GMW87, BGW88, CCD88] is
a central facet of modern cryptography. MPC protocols allows m mutually
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distrustful parties to securely compute any function f(x̄) of their private inputs
x̄ = (x1, . . . , xm). The security of such a protocol π, which guarantees privacy
and correctness to honest parties, is captured through the simulation paradigm
(also known as the real-ideal paradigm). The paradigm stipulates that the ad-
versarial effect and view, in a “real-world” execution of π, can be simulated in
an “ideal-world”, where parties run an idealized protocol If . In the idealized
protocol inputs are simply handed to a trusted party, often referred as an ideal
functionality, that performs the computation for the parties.

Protocols in the traditional MPC model crucially rely on the assumption
that the internal computation state of honest parties is kept completely secret
from the attackers, and the sole way of affecting honest parties and gaining
information regarding their secret state is through the communication interface.
However, in reality, the attackers may design their own interfaces, via a myriads
of side-channels (e.g. timing, radiation, etc., see [Sta09]), and learn information—
termed leakage—about the secret state of honest parties. This growing threat has
spurred a large body of research devoted to the development of leakage-resilient
cryptography (see [ADW09] for a survey).

Following this line of research, the works of [GJS11, BCH12] initiated the
study of secure interactive protocols in the presence of leakage.In this setting,
the adversary can obtain leakage on honest parties’ secret states (in addition to
controlling the corrupted parties), modelled as the outputs of arbitrary leakage
functions, chosen adaptively by the adversary during protocol execution.

A fundamental question concerns the level of security that can be achieved
in this model. The common aim in leakage-resilient cryptography is to achieve
the same security properties as in the traditional attack model, where there is
no leakage. In the context of protocols, such a guarantee means that leakage
on the state of honest parties causes no degradation of security; namely, the
real world protocols retain the same security guarantees that the ideal world
protocols have in a leakage-free environment, where honest parties’ inputs are
totally secret. However, such a strong guarantee is inherently impossible if the
real world adversary can directly leak on parties’ inputs.

The model in focus of this work: leakage-tolerance. Acknowledging that direct
leakage on parties’ inputs is often unavoidable, [GJS11, BCH12] put forth the
model of leakage-tolerance (rather than resilience) that aims to achieve the “best-
possible” security guarantee in this scenario. Intuitively, leakage-tolerance means
that �-bits of leakage on an honest party’s internal state, including inputs, mes-
sages, and randomness, “translate” to at most �-bits of leakage only on its private
input and output. More precisely, under the real-ideal paradigm, it is required
that a real-world executions subject to � bits of leakage on honest parties’ secret
states, can be simulated by an ideal-world execution, subject to � bits of leakage
on the honest parties’ ideal states.1 Here, the ideal state of a party is specified

1 [GJS11] proposes a weaker notion of leakage-tolerance for zero-knowledge protocols
that allows a bigger leakage budget, (1 + ε)� bits, in the ideal-world execution. In
this work, we follow the more stringent notion, with ε = 0, proposed in [BCH12].
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as a part of the description of the ideal functionality; in the most natural (and
best possible) setting, it contains only the party’s private input and output.

Prior Work. Boyle, Goldwasser, Jain and Kalai [BGJK12] circumvent the impos-
sibility of leakage-resilient protocols, by relying on leakage-free input-processing.
Informally, in every execution, a leakage-free input processing phase is executed
first to encrypt each party’s input, and only the ciphertexts are delivered to the
parties; thus, the inputs themselves are never exposed to direct leakage. In ad-
dition, they rely on a leakage-free input-independent preprocessing phase that is
performed once for all executions. In this setting, they construct MPC protocols
for general m-party functions, which are resilient under continual leakage, if a
constant fraction of parties is uncorrupted, the number of parties m is polyno-
mial in the security parameter λ, and the leakage on any party within any single
execution is a-priori bounded.

While leakage-free input processing leads to a strong guarantee of leakage-
resilience; however, it significantly deviates from the regime of leakage-tolerance.
Indeed, the main narrative behind leakage-tolerance is that leakage on inputs
may be unavoidable; in particular, leakage-free input processing in each and
every execution may be impossible or expensive to impose.

Boyle, Goldwasser, Jain, Kalai and Sahai [BGJ+13] construct MPC proto-
cols for general deterministic functions that achieve joint-state leakage-tolerance
(they do not rely on any leakage-free phase and do not require an a-priori bound
on the amount of leakage). Specifically, they consider ideal functionalities where
the ideal leaky state of each individual party includes the joint inputs and outputs
of all parties. Roughly, this means that the effect of learning a leakage function
on the isolated state of any single party can be “emulated” by a simulator that
learns a leakage function of the joint inputs and outputs of all parties.

While certainly meaningful, the joint-state model does not seem to capture
the best-possible tolerance in the face of leakage. Indeed, in the real world,
parties maybe physically separated; thus allowing the real-world adversary only
separate leakage on the isolated state of each parties. Ideally, we would expect
that such separate leakage on the real state of a given party would translate to
leakage on the inputs and outputs corresponding to this party alone. Joint-state
leakage-tolerance, however, effectively means that, by leakage on any single party,
the adversary may vicariously obtain leakage on the joint inputs and outputs
of all the parties together. In this work, we shall aim at obtaining (separate-
state) leakage-tolerance, and will refer to protocols achieving joint-state leakage
tolerance as weak leakage-tolerant protocols.

Leakage-tolerant protocols with direct leakage on inputs (i.e., without leakage-
free input-processing), in the separate-state model, are only known for specific
two-party tasks, such as secure message transmission, commitment, oblivious
transfer and zero knowledge [BCG+11, GJS11, BCH12, Pan14]. Determining
the feasibility of such leakage-tolerant protocols for general tasks remains open.
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1.1 Contributions

Our primary contribution is constructing multi-party leakage-tolerant protocols
for general functions, relying only on an input-independent leakage-free prepro-
cessing phase. The input-independent processing is done once and for all, and
continual leakage-tolerance is maintained throughout any number of executions,
provided that the leakage within each execution is bounded.

In more detail, in the model of input-independent processing, each party ob-
tains an initial state to be used later in the computation. The initial states are
sampled, without leakage, from a fixed (joint) distribution that is independent
of the inputs (or function), which are determined online. The online phase pro-
ceeds in an arbitrary number of executions, where in each execution a multiparty
function is computed on a new set of inputs. The entire state of each party, in-
cluding its current inputs, randomness, and initial state, are subject to leakage
at any point in the protocol’s execution, with the restriction that between every
two executions, the leakage on each party’s private state is a-priori bounded (in
length). The initial state is updated between the executions, under leakage, and
previous states and inputs are erased (which is, in fact, necessary in the contin-
ual setting). The continual leakage-tolerance achieved in this model means that
in every execution, the leakage from each honest party can be emulated by a
simulator obtaining the same amount of leakage from its ideal state, consisting
only of its own input and output in the current execution.

At the heart of our constructions, is a strong connection that we establish
between Leakage-Tolerant Computation (LTC for short) and secure compilers
in the Only Computation Leaks (OCL) model. We next recall the basics of OCL
compilers, and overview the main results.

OCL vs. LTC. The OCL model [MR04] considers a setting where computa-
tion is performed with leaky memory, under the assumption that only the parts
“touched” by the computation can leak information. The memory is initialized
ahead of time and without leakage, typically with secret information associated
with the computation. A (continual) OCL scheme, is meant to take any compu-
tation represented by a circuit C(k, ·) with an associated secret k, and compile it,
offline and without leakage, into a new computation C′(k, ·) that fully protects
the secret k when executed using leaky memory. The intuitive property that C′

protects the secret k is formalized by the requirement that the adversary’s view
can be simulated given only the input and output of the computation.

To see the connection with the LTC setting, it is convenient to interpret the
evaluation of an OCL-compiled circuit as a leaky distributed computation per-
formed jointly by t honest parties (or components) [BCG+11, DF12, BGJK12]:
The parties’ memories are initiated with some preprocessed information about
the secret k, and they communicate with each other via secret and authenticated
secure channels; during the compuation, bounded leakage can be obtained from
the different parties separately, but it is not possible to leak on the joint state
of any two parties. Furthermore, in the basic OCL model, leakage is assumed to
be ordered; namely, computations are done by the parties in a certain order, and
at any point it is only possible to leak from the active party.
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Thus, the differences between the models of OCL and LTC are the follow-
ing: First, the secure communication assumption. This difference can be bridged
using existing constructions of leakage-tolerant communication [BCG+11] to re-
place the secure channels. Second, the preprocessing of secret inputs: In OCL, a
shared secret input k is preprocessed offline without leakage and split between
the t parties; in contrast, in LTC, the parties receive their private inputs online
under direct leakage. Another difference is that in the LTC model leakage is
unordered; namely, it is possible to leak from any party at any time. Finally, the
OCL model assumes that all parties are honest and only subject to bounded
leakage, whereas in LTC, we must also deal with corruption of parties.

Bridging the gap: LTC with input-independent preprocessing and strong OCL.
As discussed above, the LTC model is meant to model settings where inputs are
unavoidably subject to leakage. Our first contribution is a generic transformation
from a strengthened form of two-party OCL, referred to as strong OCL, to two-
party LTC with input-independent preprocessing. Informally, the main feature of
strong OCL schemes is that they allow simulating the internal states of the two
parties without knowledge of the adversary’s leakage functions, and moreover,
simulation of the party that produces the output depends only on the output
of the computation, obliviously of the input. In addition, strong OCL security is
guaranteed even under unordered leakage.

The transformation yields (continual) LTC protocols for the case of two-party
LTC with no corruptions, and is a crucial step towards achieving stronger forms
of security. Furthermore, we show that strong OCL is necessary for LTC.

Theorem 1 (informal). Any two-party strong continual OCL scheme implies
two-party continual LTC relying on input-independent preprocessing (and secure
channels), and vice versa. The LTC protocol is secure when no party is corrupted
and can tolerate the same amount of leakage on every party as the OCL scheme.

Obtaining Strong continual OCL. There are several known (continual) OCL
schemes in the literature [JV10, GR10, DF12, GR12]; however, none satisfies the
requirements of strong OCL as is.The OCL schemes of [JV10, GR10, DF12] can
be rather directly augmented to satisfy the required strong properties; however,
all of these schemes rely on a leakage-free hardware component. Thus far, the
only scheme in the literature that does not rely on hardware is the Goldwasser
and Rothblum scheme [GR12] (referred to as the GR scheme henthforth), which
requires more than two components.2

To avoid any reliance on leakage-free hardware in our end result, we relax
the requirement of strong 2-component OCL to strong 2-component OCL with
auxiliary parties. Here the computation is carried out by two main components
with the assistance of several auxiliary parties, where we require that the states of
the auxiliary parties can be simulated obliviously of both the input and output

2 In most part of [GR12], the scheme is described with polynomially many components.
This same scheme can be reduced, however, to O(1) > 2 components at the cost of
a worst leakage rate.
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(the simulation guarantee for the two main parties remains unchanged). We
construct such an OCL scheme, without any reliance on hardware. This, in
particular, yields a multi-component OCL scheme without hardware.

Theorem 2 (informal). There exists a continual strong 2-component OCL
scheme with O(1) auxiliary parties that does not rely on any hardware. Moreover,
the scheme is unconditionally secure.

Given a strong two-component OCL scheme with O(1) auxiliary parties, The-
orem 1 is then generalized to yield two-party LTC, with O(1) auxiliary parties,
whose ideal state is empty. These LTC protocol (assisted by the auxiliary parties)
eventually lead to standard multi-party LTC, with no auxiliary parties.

Multiparty LTC and security against corruptions. We then leverage the two-
party protocols, with O(1) auxiliary parties, to obtain m-party (continual) LTC
protocols that withstand up to (1 − ε)m corrupted parties, for any number of
parties m that is polynomial in the security parameter.

We provide two transformations: The first is a generic transformation for the
case of no party corruptions: it takes any m-party LTC protocol with (leakage-
free) input-dependent preprocessing and obtains a new protocol relying only on
input-independent preprocessing and two-party LTC (with auxiliary parties).
The second achieves the same in the case of (1 − ε)m corruptions and is based
on the specific protocol of Boyle et al. [BGJK12] in the common reference string.
(The first transformation applies assuming that m is a large enough constant.
The second requires that m is polynomial in the security paramter λ, which is
inherited from [BGJK12].)

Theorem 3 (informal). Any m-party LTC protocol with input-dependent
preprocessing and two-party LTC with O(1) auxiliary parties, both secure when
no party is corrupted, imply an m-party LTC protocol with input-independent
preprocessing when no party is corrupted (without additional auxiliary parties
or hardware). Moreover, the [BGJK12] protocol, in the common reference string
model, and any two-party LTC with O(1) auxiliary parties as above, imply secu-
rity under (1 − ε)m corruptions, for any constant ε, m = λΩ(1). The resulting
protocols can tolerate the same amount of leakage as the original protocols.

Universal composability and oblivious simulation. All of our construc-
tions are presented within the framework of universal composability (UC) with
leakage [Can01, BCH12]. In particular, our protocols admit the strong form of
emulation known as leakage-oblivious simulation. An oblivious simulator works
obliviously of the actual leakage function that the adversary produces, and pro-
vides a way (more precisely, a state-translation function) that simulates the real
world states of honest parties using their ideal state; namely, inputs and out-
puts. An essential feature of protocols with oblivious simulation (and thus of
the protocols constructed in this work) is that they respect the (leaky) universal
composition theorem [Can01, BCH12].

We note that [NVZ13] show how leakage-tolerant protocols with oblivious
simulation imply protocols with a relaxed form adaptive security. Their result,
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however, does not address the input-independent processing model. Applying the
same ideas to our leakage-tolerant protocols would naturally result in (relaxed)
adaptively-secure protocols in the preprocessing model.

Randomized functionalities. We can further extend the constructions of m-
party LTC protocols from Theorem 3 to also support randomized functionalities.
For this purpose we design a new leakage-tolerant m-party coin-tossing protocol
(in the input-independent processing model). The protocol requires that the
number of honest parties is as large as the number of parties in the two-party
LTC protocol with auxiliary parties, for the no-corruption setting.

1.2 Techniques

We now present the main ideas and techniques behind out results. We begin by
giving some intuition regarding the difficulty of constructing LTC protocols.

Why classical protocols are not leakage-tolerant. A common paradigm for 2PC
and MPC protocols is for parties to first secret share their inputs, and then
homomorphically compute a given boolean circuit over their shares. For example,
in two-party GMW [GMW87], the invariant is that throughout the computation
each one of the parties holds one random additive share for each wire in the
circuit, where the two shares together encode the actual value of the wire; then,
addition is done locally over shares, and multiplication is done with the help of
oblivious transfer.

The additive secret sharing commonly used, however has very poor leakage-
resilience properties. Indeed, it is possible to learn the value of any intermediate
value in the circuit, by simply leaking a single bit from every party. In contrast,
in the ideal world, where it is only possible to separately leak a single bit on the
input and output of each party, learning the value of some intermediate wires
might be impossible. This renders classical protocols entirely insecure.3

Aplausible route towards circumventing this problemwould be to use a leakage-
resilient secret sharing scheme [BGK11, DLWW11, DF11], such as the inner prod-
uct two-source extractor. The challenge is, however, to be able to compute the
circuit gates over such shares in a leakage-resilient way. While this is not known
in the plain model, this approach is successfully executed in existing OCL proto-
cols (e.g. in [GR12, DF12] with the inner-product extractor), with the help of a
leakage-free preprocessing phase. In the OCL setting, however, all secret inputs
are preprocessed offline, while online inputs are public. Thus, a natural question
is whether we can import the OCL techniques to the setting of LTC.

Before discussing how to bridge the gap between LTC an OCL, we first quickly
cover some of the technical basics of the OCL compiler, which will be instru-
mental for our technical exposition.

3 For example, the value of an intermediate wire might be the inner product of two
uniformly random inputs, and thus statistically close to uniform, even under inde-
pendent leakage as above. A rather similar problem also appears in other classical
protocols (e.g., Yao [Yao82]), even if not as explicitly.
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Strong OCL. It is convenient to consider two-party OCL schemes for universal
circuits U(k, ·) with a fixed secret input k. A continual strong OCL scheme Λ con-
sists of a compiler algorithm Comp that preprocesses a secret k, and splits it into
two shares, and a two party protocol between a left component PL and a right
component PR whose memories are initiated with the two shares respectively; to
evaluate a function f on k, the two components PL and PR interact with each
other, where PL receives the input f and PR produces the output y = f(k). The
scheme may be assisted by additional auxiliary parties PA1 , . . . , PAa , who obtain
an initial state from Comp and participate together with PL, PR in the protocol
for computing f(k).

The protocol proceeds in iterations: In each iteration i, the adversary may
specify f = fi and obtain leakage from any one of the parties PL, PR, PA1 , . . . ,
PAa . Any leakage functions is evaluated only on the individual state of the leaking
party; the number of bits leaked from any given party during a single iteration
is bounded by some prefixed length function �.

We require an oblivious simulator S that simulates the states of all parties
PL, PR, PA1 , . . . , PAa without knowledge of the leakage functions specified by
the adversary; the leakage to the adversary is computed by evaluating these
functions on the simulated states. We further require that S admits a special
structure: The state of PL in every iteration i can be simulated given the current
input fi and output yi = fi(k). The state of PR can be simulated given only
the output yi, and obliviously of fi. The state of any auxiliary party PAi can be
simulated obliviously of either fi, yi.

From strong OCL to LTC without corruption: To illustrate the idea behind our
construction of LTCprotocols securewithout corruption, we focus in this technical
overview, on the case where (P0, P1), assisted by (PA1 , . . . , PAa), jointly compute
a single-output function f of their private inputs (x0, x1), and only one of them
receives the output.Furthermore,we focus on thenon-continual setting,where only
a single execution is performed, and later on generalize to the continual setting.

Given a strong OCL scheme, obtaining a one-time leakage-tolerant protocol
ρ is straightforward. An easy way to compute a function is to ask P0 to send
its input x0 to P1, who then computes y = f(x0, x1) directly; however, this is
obviously non-private. Instead, we may have P0 encrypt its input x0 using a one-
time pad r and send the ciphertext c = x0⊕ r to P1. Now privacy is re-installed,
but it becomes unclear how to perform the computation.

To remedy this, the OCL scheme provides a way for the two parties to jointly
decrypt x0 and compute f(x0, x1). More precisely, the preprocessing phase sam-
ples the initial states of the OCL scheme with respect to a random string r,
which will set as the OCL secret (referred to before as k, and distributes the
left-component initial state to P1 and the right-component initial state together
with r to P0. During the protocol execution, P0 sends c = r ⊕ x0 to P1; then,
jointly with the auxiliary parties PA1 , . . . , PAa , they perform an OCL evalua-
tion, where P0 acts as the right component and P1 acts the left component with
input function g((c, x1), ·) = f(c ⊕ (·), x1) = y. The OCL evaluation computes
the function g on the secret r, producing the desired output y at P0.
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Showing that the above protocol ρ is indeed leakage tolerant reduces to show-
ing that the states of P0 and P1 can be simulated using their own input and
output. By construction, P0’s state consists of x0, r and the right-component
state of OCL, while P1’s state contains x1, c and the left-component state of
OCL. A key observation is that since r is truly random, so is c. Therefore, the
ciphertext c can be simulated directly using a random string c̃ ← U , and later,
the secret r can be simulated as c̃ ⊕ x0; and the pair (c̃, r̃) is distributed iden-
tically to their counterparts (c, r) in the real execution. Next, it follows from
the strong leakage resilience of the OCL scheme that the left-component state
stateL in P1 can be simulated using the input function g(c̃, x1), ·) and the out-
put y, while the right-component state stateR in P0 can be simulated using only
y. Therefore, overall the simulated state (x0, r̃, stateR) of P0 and the simulated
state of (x1, c̃, stateL) of P1 depend, respectively, on their own input and output.
The state of the auxiliary parties is guaranteed, by strong OCL, to be simulat-
able independently of the input and output, as required. Thus, leakage-tolerance
follows as required.

To generalize the above to the continual setting, requires a modification of the
above protocol. We design a slightly more complicated protocol ρ′, in which even
the ciphertext c is computed using the OCL scheme by evaluating the function
g′(x0, ·) = x0⊕(·) on the secret r; To do this, the preprocessing stage is modified
to sample an additional set of OCL initial states with respect to the secure r,
and to distribute the left-component initial state to P0 who later acts as the left
component when evaluating g′. The protocol ρ′ is still a one-time protocol, but
in which r is not fully revealed.

Moving to the continual case, instead of directly using r as the one-time pad,
in the ith iteration, we use the pseudo-random string produced by PRF(r, i) as
the one-time pad, where r is used as the seed. It follows from the continual strong
leakage-resilience of the OCL scheme that the seed r is always kept secret, and
thus all the one-time pads generated are pseudo-random.

From LTC with input-independent processing back to strong OCL. We briefly
sketch how LTC with input-independent processing can be used to obtain strong
OCL, thus implying that OCL is necessary for our goal. For simplicity, we de-
scribe the transformation with two parties, and with no auxiliary parties. It is
not hard to see that by starting from an LTC with a auxiliary parties, we get
strong OCL with a auxiliary parties.

The idea relies on the properties of inner product as a two-source extrac-
tor [CG88]. For an OCL secret k ∈ {0, 1}n we consider a two-party func-
tion g(f,Li,L

′), (R,R
′)) that takes as input a description of f : {0, 1}n →

{0, 1}∗, matrices Li,Ri ∈ Fκ×n
2 , which will be inner product shares of the

key k (that is, Li[j],Ri[j] ∈ Fκ
2 and 〈Li[j],Ri[j]〉 = kj), and two ran-

dom matrices L,R ∈ Fκ′×κ′
2 , where κ′ = poly(κ). The function computes

f(k) = f(〈Li[1],Ri[1]〉, . . . , 〈Li[n],Ri[n]〉), and in addition new random shares
Li+1[j],Ri+1[j] ∈ Fκ

2 of the key k, which will be computed using randomness
〈L′[1],R′[1]〉, . . . , 〈L′[κ′],R′[κ′]〉, derived by inner-product extraction.
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At compilation, initial shares L1,R1 of the key k are sampled and distributed
to the parties, and input-independent processing is done with respect to the
function g. Then at each iteration i the parties compute the function where P0

inputs f,Li,L
′, where Li was produced in the previous iteration and L′ was

sampled uniformly at random by P0 itself. P1 accordingly inputs Ri,R
′. The

properties of the LTC ensure that throughout all the different shares L,L′,R,R′

are only leaked on separately, within some small bound. Strong OCL simulation
then follows directly by the LTC simulation guarantee.

Obtaining strong OCL. Intuitively, our construction combines the two-component
OCL scheme of Dziembowski and Faust [DF12] (referred to as the DF scheme
henceforth), which relies on a leakage-free hardware that samples random orthog-
onal vectors, with the key ciphertext bank module in the Goldwasser-Rothblum
OCL scheme [GR12] (henceforth, the GR scheme). The ciphertext bank allows
continual sampling of random orthogonal vectors at the presence of leakage using
multiple components.

A natural idea is to use auxiliary parties to emulate the GR ciphertext bank in
order to implement the hardware needed for the DF-scheme. However, combining
the two schemes and showing that the joint scheme admits strong simulation
turns out to be quite challenging: First, the GR-scheme is proven secure in a
weaker model of OCL, where the leakage adversary can only obtain leakage from
the component that is currently activated, implying that leakage occurs in the
same order as the sequence of sub-computations. As a first step towards our
construction, we argue that the GR-scheme is also secure against “unordered
leakage”. Second, we provide new simulation procedures for the DF-scheme and
the GR ciphertext banks as required by strong OCL. We defer a more detailed
description of the joint scheme to the full version.

From two-party LTC to multiparty LTC. We now briefly explain our trans-
formations from m-party LTC protocols with input-dependent preprocessing to
protocols, relying only on input-independent preprocessing and two-party LTC.

The high-level idea behind our transformations is as follows: The input pro-
cessing of the multi-party LTC can be performed online, and under leakage,
jointly by two parties. To process an input xi of a given party Pi0 , it will use the
help of another party Pi1 , and possibly of other auxiliary parties Pi′1 , . . . , Pi′a .
The two parties would each sample independently a long enough random string
ri0 and ri1 , respectively, and will use the LTC to compute the two-party function
g((xi, ri0 ), ri1) that computes the processing function x̄i = Π(xi;Ext(ri0 , ri1)),
where the randomness r = Ext(ri0 , ri1) is derived from the two random strings
using a two-source extractor (e.g., inner product).

Once each party obtains this processed input, the parties then run the
original protocol, no longer requiring leakage-free preprocessing. Intuitively, the
two-source extraction guarantees—provided that there is only bounded separate
leakage on each of the random strings—that the randomness r = Ext(ri0 , ri1) is
statistically independent of the leakage, achieving the same effect as leakage-free
input preprocessing.
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The above intuition holds assuming that the party Pi1 assisting Pi0 , as well as
the other assisting parties Pi′1 , . . . , Pi′a , are all honest. In particular, we achieve a
protocol in the no corruption model. Indeed, assuming Pi0 is (even semi-honestly)
corrupted, the adversary, who now knows ri0 can learn any �-bounded function
of r, by leaking on ri0 . Furthermore, a malicious party may even bias the result
and hurt the correctness of the protocol.

An appealing approach towards overcoming this problem is to have each party
Pi jointly process its input with all other parties Pj , and aggregate the processed
inputs into a single input that is safe to use. We observe that the input-processing
in the [BGJK12] protocol possesses additional properties, which give rise to such
an approach. Specifically, in the [BGJK12] protocol the input processing func-
tion Π(xi, pk, crs) := (Encpk(xi), π) samples an encryption of the input xi under
a public key pk for a fully-homomorphic encryption scheme, and a NIZK of
knowledge π of the input xi. Here the public key pk and the common refer-
ence string crs are determined as part of the input-independent processing (in
particular, in [BGJK12], there is no leakage on the encryption’s randomness).

We implement the above idea as follows: Let a = O(1) be the number of
auxiliary parties required for the two-party LTC. We let each Pi jointly compute
with each coalition C of parties of size a + 1 an encryption cC of zero, and a
NIZK for it being an encryption of zero with respect to pk. The randomness
for this computation is computed by a two-source extractor, as above. Then, Pi

aggregates all these ciphers by adding them together to a new zero encryption
c =

∑
C∈( [m]

a+1)
cC , and uses them to get a rerandomnized encryption cxi of his

input xi, by encrypting xi under leakage (and thus non-securely) and then adding
to it the aggregated zero encryption c. Also, Pi computes a NIZK of knowledge
that it knows xi and that cxi was generated by adding an encryption of xi to
ciphers c, and that NIZKs for the fact that they’re zero ciphers were verified.

It can be shown that, in known fully homomorphic encryption schemes, the
final encryption of xi is semantically-secure provided that any one of the zero
encryptions cC , which is the case as long as there exists some non-corrupted
coalition C of parties. Moreover, the NIZKs guarantee that malicious parties
cannot bias the result of the computation.

The above transformation withstands the same number of corruptions as the
[BGJK12] protocol: it allows (1− ε)m corruptions, for m > λ−Ω(1).

A note on universal composability and randomized functionalities. In the stand-
alone setting, the security of our LTC protocols follows directly from the leak-
age resilience of [BGJK12] protocols in the stand-alone setting, which is shown
in [BGJK12]. To show the full leakage tolerance defined in the UC setting
[BCH12], we need to rely on protocols that are leakage-resilient in the UC set-
ting, which is outside the scope of [BGJK12]. To bridge this gap, we modify the
original [BGJK12] protocols to a UC variant, by replacing all building blocks
in [BGJK12] with their corresponding UC counterparts. While most building
blocks have standard UC version, there is no known leakage-tolerant m-party
coin-tossing protocol in the UC setting. We construct such a protocol, in the
input-independent pre-processing model, relying on our two-party LTC proto-



Leakage-Tolerant Computation with Input-Independent Preprocessing 157

cols with auxliary parties. This yields a coin-tossing protocol that us secure as
long as sufficiently many parties are honest (the same as the number of parties in
the LTC protocol). This coin-tossing protocol not only facilitates a UC variant
of [BGJK12], but also allows implementing randomized functionalities.

1.3 Organization

In Section 2, we provide the formal definition of strong OCL compilers, and in
Section 3 we construct two party LTC protocols secure with no corruption and
only leakage from two component strong OCL compilers. Due to the lack of
space, we leave the security proof of the two party LTC protocols, as well as the
construction of strong OCL compilers and the final multiparty LTC protocols
secure with corruptions to the full version.

2 Strong Only-Computation-Leaks Compilation

N -component OCL. A N -component OCL scheme for a circuit C(k, ·), asso-
ciated with a secret k, consists of an efficient compiler Comp and a N -party
protocol Π = (POCL

1 , POCL
2 , · · · , POCL

N ). To compute C(k, ·) in a leakage-resilient
way, the circuit is compiled ahead of time by Comp(C(k, ·)) that produces an

initial state (init
(k)
1 , · · · , init(k)N ) for each one of the N parties, and this compi-

lation is done “in the dark” without any leakage. Then, at computation time,
the parties can compute together y = C(k, x) for any input x by running the
protocol Π .

Below we provide the formal definition of OCL schemes for universal circuits
Since our end goal is constructing composable leakage tolerant protocols, where
the simulator is oblivious of the leakage queries from the adversary, we consider
strengthened OCL schemes which have obvious simulators.

OCL schemes with oblivious simulation: Let {UT (k, f)}T∈N denote the family of
universal circuits where UT takes two inputs k and f of length at most T , where
f represents a T -step deterministic computation, and computes f(k). (If the
computation does not complete in T steps, we assume w.l.o.g. that the output
of UT (k, f) is ⊥).

Definition 1 (Continual N-component OCL schemes). We say that Λ =
(Comp, Π = 〈P OCL

1 , · · · , P OCL

N 〉) is a continual, N -component OCL scheme for the
universal circuit family {UT (k, f)}T∈N if it satisfies the following properties.

Initialization: For every security parameter λ and T ∈ N, k ∈ {0, 1}T , the
compiler Comp(1λ, UT , k) runs in time poly(λ, T ) and outputs N initial
states init1, init2, · · · , initN .

Unbounded-time evaluation: The evaluation procedure invokes the protocol
Π between the components P OCL

1 (init1), P
OCL
2 (init2) to P OCL

N (initN ), which in-
teract in an arbitrary polynomial number of iterations: In the ith iteration,
P OCL
1 receives an input fi ∈ {0, 1}T and P OCL

2 produces an output yi. At the
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end of the evaluation, an update procedure is carried out, producing the new
initial states for the next iteration; then all information other than the new
initial states are erased.
For every component j ∈ [N ], denote by initi,j the initial states of component
j at the onset of the ith iteration (in the first iteration, init1,j = initj), and
evli,j the random coins tossed and messages exchanged by each P OCL

j during

the ith iteration, including its state during the update phase.
Correctness with adaptive input selection: For every λ ∈ N, T ∈ N poly-

nomially related to λ, k ∈ {0, 1}T , auxiliary input z ∈ {0, 1}poly(λ), and PPT
adversary A, in the following real experiment RealExp∞A (1λ, T, k, z) where A
initiates an arbitrary number of evaluations with adaptively chosen inputs,
it holds that with all but negligible probability, the outputs of all evaluations
are correct.
We say that Λ has perfect correctness, if the above holds with probability 1.

We next describe the security experiments of OCL schemes. Λ is said to be
�-leakage-resilient with oblivious simulation if there is a simulator S, such that,
for every λ ∈ N, T ∈ N polynomially related to λ, every k ∈ {0, 1}T , and auxil-
iary input z ∈ {0, 1}poly(λ), the views of the adversary in the following real and
ideal experiments are indistinguishable. In the real world, the adversary obtains
leakage independently from each component during OCL evaluations (with in-
puts chosen adaptively by the adversary), whereas in the ideal world, it obtains
leakage from states of the components simulated by an oblivious simulator. More
formally,

RealExp∞A (1λ, T, k, z) (Real experiment): The adversary A(1λ, T, k, z) proceeds
as follows:

1. The initial states (init1, · · · , initN ) ← Comp(1λ, UT , k) are sampled.
2. A launches �-bounded leakage attacks on an unbounded number of evalua-

tions of its choice: In the ith iteration,
(a) A submits an input function fi ∈ {0, 1}T , which is evaluated on k by re-

suming the protocol execution ofΠ between the componentsPOCL
1 (initi,1),

· · · , POCL

N (initi,N ) with input fi to the first component POCL
1 .

(b) A launches an �-bounded leakage attack on the ith evaluation: It issues
an arbitrary number of leakage queries (POCL

j , L) for j ∈ [N ] adaptively,
and obtains leakage answers L(initi,j , evli,j), as long as the total amount
of leakage on each POCL

j in this iteration is smaller than �(λ) bits.
(c) A obtains the output of the evaluation, which is the output of POCL

2 .

Denote by view�,∞
A (1λ, T, k, z) the view of A in the above experiment.

IdealExp∞S,A(1
λ, T, k, z) (Ideal experiment): The adversary A(1λ, T, k, z) partici-

pates in the same experiment as above, except that during its �-bounded leakage
attacks, it is given simulated answers: In the ith iteration,

(a) A submits an input function fi ∈ {0, 1}T . S(1λ, T, i, fi, fi(k); wi) is invoked,

producing simulated states (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N ), where wi
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is the fresh random coins tossed for the simulation in iteration i and
wi = w1, · · · , wi is all the random coins that have been tossed for simu-
lation in the first i iterations.

(b) Whenever A issues a leakage query (POCL

j , L) for j ∈ [N ], it is given the

simulated answer L(ĩntli,j , ẽvli,j), as long as the total amount of leakage on
each POCL

j in this iteration is smaller than �(λ) bits.

(c) A obtains the simulated output of the evaluation in ẽvli,2.

Denote by ṽiew
�,∞
S,A(1

λ, T, k, z) the view of A in the above experiment.

Definition 2 (Continual �-Leakage-resilience with oblivious simula-
tion). We say that a continual OCL scheme Λ is continually �-leakage-resilient
with oblivious simulation if there is a PPT simulator S, such that, for every PPT
adversary A, the following two ensembles are indistinguishable.

– {view�,∞
A (1λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

– {ṽiew
�,∞
S,A(1

λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

Strong OCL schemes: In the above definition, the oblivious simulator simulates
the states of all N components in each evaluation i depending on both the input
fi and output fi(k). We consider the following strengthening: Only the simula-
tion of the first component depends on both the input and output, whereas the
simulation of the second component depends solely on the output, and simulation
of the rest components depends on neither the input nor the output.

Definition 3 (Continual strong OCL Schemes). We say that Λ = (Comp,
Π = (P OCL

1 , P OCL
2 , · · · , P OCL

N )) is a continually �-leakage-resilient strong OCL
scheme if it satisfies the following property.

Strong �-leakage resilience: Λ admits an oblivious simulator S satisfying
Definition 2 with the following structure: S consists of three sub-algorithms
(S1,S2,S3) and on input (1λ, T, i, fi, fi(k) ; wi), S invokes these sub-
algorithms as follows:
– S1(1

λ, T, i, fi, fi(k); wi) = (ĩntli,1, ẽvli,1)

– S2(1
λ, T, i, fi(k); wi) = (ĩntli,2, ẽvli,2)

– S3(1
λ, T, i; wi) = (ĩntli,3, · · · , ĩntli,N , ẽvli,3, · · · , ĩntli,N )

and outputs (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N ).

Strong two-component OCL with auxiliary components. In this work, we often
consider the special case of a strong two-component OCL scheme, and refer to
the two components as the left and right components, denoted by POCL

L and
POCL

R . The strong oblivious simulation property ensures that the state of the
left component in each evaluation can be simulated using both the input and
output, whereas the state of the right component can be simulated using only
the output. We sometimes view a strong (N + 2)-component OCL scheme as
a strong 2-component OCL scheme using N auxiliary parties POCL

A1
, · · · , POCL

AN
,

whose states can be simulated independently of the input and output; in this
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case, we denote the strong oblivious simulator as S = (SL, SR, SA). Viewing
strong N -component OCL as strong two-component OCL with auxiliary com-
ponents is instrumental for our construction of leakage tolerant protocols.

3 Two-Party Leakage-Tolerant Protocols without
Corruption

In this section, we show how to construct a two-party, a auxiliary-party, continual
leakage-tolerant protocol ρ in the input-independent pre-processing model based
on any strong, continual 2-component OCL scheme with a auxiliary parties. Our
tranformation works for any number a of auxiliary parties, and, in particular
works for the special case of a = 0. The protocol is secure against adversaries
that leak a bounded amount of � bits of information on the state of each honest
party (separately) in each time period, but do not corrupt any of the parties.

Notation. By Ff
2LTC-AUX we denote the 2-party ideal leaky functionality com-

puting function f with auxiliary parties. By FLSC we denote the secure commu-
nication functionality and by FLFS we denote the input-idependent leakage-free
preprocessing functionality which provides the initial states for all parties.

We now state the main theorem of this section:

Theorem 4. Assume the existence of a �-continual-leakage-resilient strong OCL
Λ scheme with some number, a, of auxiliary components for the universal cir-
cuit family and the existence of one-way functions. Then for every efficiently
computable deterministic two-input two-output function f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗×{0, 1}∗, there is a protocol ρ that strongly UC-emulates the functionality

Ff
2LTC-AUX under �-bounded continual leakage, with a auxiliary parties, when no

party is corrupted, in the (FLSC,FLFS)-hybrid model (i.e. with secure communi-
cation and input-independent leakage-free preprocessing). Furthermore, if Λ has
perfect correctness, ρ also has perfect correctness.

Towards proving the theorem, we first observe that it suffices to consider only
functions with a single output and design leakage-tolerant protocols where both
parties obtain this output.

Proposition 1. Assume the existence of a �-continual-leakage-resilient strong
OCL Λ scheme with a auxiliary components for the universal circuit family.
Then, for every efficiently computable deterministic two-input function f : {0, 1}∗
× {0, 1}∗ → {0, 1}∗, there is a protocol ρ that strongly UC-emulates the func-

tionality Ff,∞
2LTC-AUX under �-bounded continual leakage, when no party is cor-

rupted, in the (FLSC,FLFS)-hybrid model (i.e. with secure communication and
input-independent leakage-free preprocessing). Furthermore, if Λ has perfect cor-
rectness, ρ also has perfect correctness.

Theorem 4 directly follows from Proposition 1 using standard techniques.
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3.1 The Protocol ρ

Let λ be security parameter, and let f be an efficiently computable determinis-
tic two-input function. Below we present a two-party leakage-tolerant protocol
ρ that strongly emulates the functionality Ff,∞

2LTC-AUX in the (FLSC,FLFS)-hybrid
model, where FLSC is the secure communication functionality and FLFS captures
the leakage-free preprocessing functionality. The protocol assumes a �-continual

The leakage tolerant protocol ρ

The input-independent preprocessing stage: The leakage-free sampling

(LFS) functionality FCompρ
LFS , on input (1λ, T ), where T will be specified later,

invokes a compilation algorithm Compρ on (1λ, T ), proceeding as follows4 :
1. Sample r ← Uλ uniformly at random.
2. Sample two pairs of initial states of the OCL scheme Λ w.r.t. secret r

independently and randomly: (init1L, init
1
R, init

1
A) ← Comp(1λ, UT , r) and

(init2L, init
2
R, init

2
A) ← Comp(1λ, UT , r).

3. Distribute Φ0 = (init1L, init
2
R) to P0, Φ1 = (init1R, init

2
L) to P1 and ΦA =

(init1A, init
2
A) to the auxiliary parties.

The online stage: For each iteration j, given the initial states Φ0, Φ1 and ΦA

sampled in the preprocessing stage, P0, P1 and P aux
1 , . . . , P aux

a on common input
(1λ, f, T ), and private inputs xj

0 ∈ {0, 1}n and xj
1 ∈ {0, 1}n, proceed in the

following steps, where all messages are sent via the secure channel functionality
FLSC:
1. The first OCL evaluation—Compute an encryption cj = xj

0 ⊕ PRF(r, j) of
xj
0:

P0, P1 and the auxiliary parties P aux
1 , . . . , P aux

a compute xj
0⊕PRF(r, j) using

the OCL protocol Π : P0 acts as the left component using initial state initj,1L ,
P1 acts as the right component using initial state initj,1R and P aux

1 , . . . , P aux
a

act as the auxiliary components using initial states initj,1A,i, . . . , init
j,1
A,a. P0

feeds the following function gj1(r) = g
(j,x

j
0)

1 (r) = xj
0 ⊕ PRF(r, j) to the left

component as input. At the end of the evaluation P1 obtains c̃j .
2. The second OCL evaluation—Compute the output f(xj

0, x
j
1):

P0, P1 and P aux
1 , . . . , P aux

a compute yj = f(xj
0, x

j
1) by evaluating the func-

tion g((c̃j, xj
1),PRF(r, j)) using Π again: P0 acts as the right compo-

nent using initial state initj,2R , P0 acts as the left component using ini-
tial state initj,2L and parties P aux

1 , . . . , P aux
a act as the auxiliary components

using initial states initj,2A,1, . . . , init
j,2
A,a, respectively. P1 feeds the function

gj2(r) = g
(j,c̃j,x

j
1)

2 (r) = f(c̃j ⊕PRF(r, j), xj
1) to the left component as input.

At the end of the evaluation P0 obtains ỹj .
3. P0 sends ỹj to P1. They both output ỹj .

T = T (n) is thus set to bound on the time for computing the functions (gj1, g
j
2)

on two n-bit inputs.

Fig. 1. The Leakage Tolerant Protocol ρ
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leakage-resilient strong 2-component OCL scheme with a auxiliary parties. Λ =
(Comp, Π = (PL, PR, PA1 , . . . , PAa)) with an oblivious simulatorS=(SL,SR,SA).

Let n be the length of the inputs xj
0, x

j
1 ∈ {0, 1}n to be evaluated in the j-

th iteration, which is polynomially related with the security parameter5. Our
leakage-tolerant protocol below utilizes the OCL scheme to perform the evalua-
tion of f(xj

0, x
j
1). To ensure input privacy, a party must avoid sharing its input in

the clear with another party. Instead, in the j-th iteration, the parties first use the
OCL scheme to allow P1 to obtain an encrypted version xj

0⊕PRF(r, j) of P0’s in-
put, where PRF is a pseudorandom function and the PRF key r is encoded as the
OCL secret. Then, instead of directly evaluating f , the OCL scheme is used again
to evaluate the following function g((cj = (xj

0 ⊕ PRF(r, j)), x1),PRF(r, j)) =

f(cj ⊕ PRF(r, j), xj
1).

In the following, we simplify notation by denoting by initj,bA = initj,bA,1, . . . , init
j,b
A,a,

for j ∈ [a] and b ∈ {1, 2}, the initial states of all auxiliary components of the b-th

OCL in the j-th iteration. We similarly define evlj,bA . Moreover, by xj
0 = x1

0, . . . , x
j
0

we denote the sequence of inputs of P0 in the first j iterations, by xj
1 = x1

1, . . . , x
j
1

wedenote the sequence of inputs ofP1 in the first j iterations and byy
j=y11 , . . . , y

j
1

the sequence of outputs in the first j iterations.
We present the leakage-tolerant protocol ρ in detail in Figure 1:
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Abstract. We consider the task of constructing interactive proofs for NP which
can provide meaningful security for a prover even in the presence of continual
memory leakage. We imagine a setting where an adversarial verifier participates
in multiple sequential interactive proof executions for a fixed NP statement x. In
every execution, the adversarial verifier is additionally allowed to leak a fraction
of the (secret) memory of the prover. This is in contrast to the recently introduced
notion of leakage-resilient zero-knowledge (Garg-Jain-Sahai’11) where there is
only a single execution. Under multiple executions, in fact the entire prover wit-
ness might end up getting leaked thus leading to a complete compromise of prover
security.

Towards that end, we define the notion of non-transferable proofs for all lan-
guages in NP . In such proofs, instead of receiving w as input, the prover will
receive an “encoding” of the witness w such that the encoding is sufficient to
prove the validity of x; further, this encoding can be “updated” to a fresh new en-
coding for the next execution. We then require that if (x,w) are sampled from a
“hard” distribution, then no PPT adversary A∗ can gain the ability to prove x (on
its own) to an honest verifier, even if A∗ has participated in polynomially many
interactive proof executions (with leakage) with an honest prover whose input is
(x,w). Non-transferability is a strong security guarantee which suffices for many
cryptographic applications (and in particular, implies witness hiding).

We show how to construct non-transferable proofs for all languages in NP
which can tolerate leaking a constant fraction of prover’s secret-state during each
execution. Our construction is in the common reference string (CRS) model. To
obtain our results, we build a witness-encoding scheme which satisfies the fol-
lowing continual-leakage-resilient (CLR) properties:

– The encodings can be randomized to yield a fresh new encoding,
– There does not exist any efficient adversary, who receiving only a constant

fraction of leakage on polynomially many fresh encodings of the same wit-
ness w, can output a valid encoding provided that the witness w along with
its corresponding input instance x were sampled from a hard distribution.

Our encoding schemes are essentially re-randomizable non-interactive zero-
knowledge (NIZK) proofs for circuit satisfiability, with the aforementioned CLR
properties. We believe that our CLR-encodings, as well as our techniques to build
them, may be of independent interest.
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1 Introduction

Traditionally, when defining security of a cryptographic primitive, the adversary is al-
lowed to interact with the underlying cryptographic algorithms only in a black-box
manner. Emergence of side channel attacks [39,5,6,32,25,31] has shown that enforcing
only black-box access may be difficult in many practical settings. Such attacks exploit
the physical characteristics of a cryptographic device, such as the time and electrical
power taken by the device, to learn useful information about its secrets. This informa-
tion is often sufficient to “break” the system completely.

Leakage resilient cryptography [16] focuses on the algorithmic aspects of this prob-
lem, by developing theoretical paradigms and security notions which can deliver mean-
ingful security under such attacks. In the last few years, we have seen many exciting
developments in this direction, resulting in interesting attack models for leakage, as well
as cryptographic primitives that guard against leakage [26,16,3,35,38,15,17,22,34,33].

Continual Memory Leakage. To model leakage, one typically allows the adversary to
submit leakage queries in the form of efficiently computable functions f , and provide
it with f(st), where st is the internal state st of the system during execution. The class
of functions f and the length of their output determines the kind and the amount of
leakage tolerated by the system. Initial works focused on the bounded leakage model
which requires that the total amount of leakage throughout the life time of the system
is a priori bounded. Construction of several cryptographic primitives such as public-
key encryption, identity based encryption, signatures schemes, stream ciphers etc. are
known in this model [30,9,4,12,2].

However, enforcing an a priori bound on the total leakage is somewhat unreasonable
since usually it is not known how many times the system will be used. The emerg-
ing standard for leakage attacks, therefore, seems to be the continual memory leakage
model. In this attack model, the secret state st of the cryptographic system is “updated”
after each time-period without changing its public parameters (if any). The adversary is
allowed queries f as before—we only require that the amount of leakage between any
two successive updates is bounded. This a very natural and powerful attack model, al-
lowing the adversary to learn an unbounded overall leakage. Many basic cryptographic
primitives such as public-key encryption, signatures schemes, identity-based encryption
etc. are now known in this model [14,29,9,8]. With few exceptions, almost all results in
the continual leakage model have focused on non-interactive tasks such as public-key
encryption.

Interactive Protocols under Leakage attacks. Modeling meaningful security for interac-
tive protocols in the presence of leakage is a more delicate task. Very recent works focus-
ing on zero-knowledge [20,37] and multi-party computation [7,8] have now emerged.
While leakage-resilient zero-knowledge (LRZK) protocols of [20,37] do not put a bound
on total leakage, the system still does not protect against continual leakage. Indeed, the
LRZK notion as defined in [20,7] do not model updating a witness; the notion becomes
meaningless as soon as the entire witness is leaked. In this work, we will focus on pro-
viding meaningful security for the prover in face of continual leakage.
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Encoding-based Proofs under Continual Leakage. The goal of this paper is to construct
interactive protocols in the continual leakage model for arbitrary NP relations. The set-
ting for our interactive protocol, defined for an NP relation, is the following. There
exists a prover, who has an instance and a witness that the instance belongs to that re-
lation. The prover executes polynomially (in the security parameter) many times and in
each execution he convinces a verifier (which can be different for different executions)
that he has a valid witness corresponding to that instance without actually revealing the
witness. Now that we have defined the model, we need to come up with a meaningful
notion of security that will help us apply this in many practical scenarios especially
identification schemes and witness hiding schemes which are of primary interest for us.

1. The first thing to observe here, irrespective of the security notion we consider, is
that the prover cannot use the same witness in all the executions because by ob-
taining leakage on the witness bit-by-bit, the verifier can obtain the entire witness.
To this end, we need a refreshing mechanism that updates the witnesses in between
executions.

2. The first candidate security definition for our setting is the standard simulation
based notion. This says that there exists a PPT simulator who can simulate (en-
tirely on its own) the transcript of conversation between the prover and the verifier
as well as simulate the leakage queries made by the verifier. However similar to an
argument in [20], we observe that it is unlikely that such a security notion can be
satisfied in our setting even if we allow a preprocessing phase1. An informal argu-
ment to rule out the simulation based notion in the preprocessing model for single
execution leakage can be found in [20] (and the same argument applies directly for
multiple executions with continual leakage as well). At a high level, the problem
occurs when the verifier submits a leakage function that tests whether the memory
state of the prover has a valid witness (or an encoding of the witness) or not. In
this case, the simulator has no way of answering such a function query since the
function query may be “obfuscated” in some sense. Hence, the simulator doesn’t
know what the right answer to such a query would be (the function may output a
pre-encoded value on getting a valid witness which the simulator doesn’t know).
We refer the reader to [20] for more details.

3. Garg et. al. [20] overcame the above problem by giving more capability to the sim-
ulator. Their simulator is given access to a leakage oracle containing the witness.
The security requirement is that the simulator, with access to a leakage oracle on
the witness, should be able to output a transcript which is indistinguishable from
the one obtained by the interaction between the honest prover and the verifier. One
can try to adopt such a security notion to our setting as well. In each execution,
the simulator is given access to a leakage oracle holding the witness. However note
that this becomes meaningless under multiple executions. This is because, under
multiple executions, the entire witness can be leaked from the leakage oracle by the
simulator!

4. Next option we consider is a variant of the above model where in each execu-
tion, the simulator is given access to a leakage oracle containing an encoding of a

1 In a preprocessing phase, a witness can be preprocessed before the execution of the protocol
begins.



Interactive Proofs under Continual Memory Leakage 167

witness. In between executions, there is an update phase which refreshes the en-
codings. While this is a step towards our final definition, this does not quite give us
anything meaningful yet. The reason is that there could be a protocol which satis-
fies this definition yet an adversarial verifier could obtain a valid encoded witness,
by possibly combining leakages on many encodings obtained during its interac-
tion with the prover! Thus, one needs to be more specific about the properties this
witness encoding scheme satisfies.

5. From the above observation it follows that any security definition we consider
should have the following property – given leakage on many encodings, an effi-
cient adversary should not be able to compute a valid encoding. This is indeed the
starting point of our work.

6. We introduce the security notion that we study in the paper. Suppose an efficient
adversary after receiving leakage across many executions with the honest prover is
able to convince an honest verifier, with non-negligible probability, that he has a
valid encoding, then, we should be able to extract the encoding from the adversary
with non-negligible probability. Not only does this definition imply that given leak-
age on many encodings, computing a valid encoding is hard but our definition is
in fact stronger. This is because our definition rules out the possibility of obtaining
even a partial encoding from the leakage on many encodings, using which mem-
bership of the instance in the language can be proven. We term proof systems that
satisfy this definition as non transferable proof systems (NTP). We consider this
as a simplified and a more direct way of obtaining the guarantees that notion in
the previous bullet had (where we talk about obtaining leakage on encodings in the
ideal world).

Our main result is to achieve the notion outlined above for all of NP in the common
reference string (CRS) model. Achieving this notion in the plain model is left as an
interesting open problem (and as we discuss later, even in the CRS model, achieving
this notion already turns out to be quite intricate and non-trivial).

Note that most of the above discussions can be translated to the CRS setting with
the exception of simulatability of encodings (see bullet 2). In other words, it is still
possible to have a standard simulation based notion where the encodings are completely
simulated. Towards that end, consider the following protocol. The prover receives a
non interactive zero knowledge proof that the instance belongs to that language and
then it sends the same proof to the verifier in every execution. Thus, this protocol is
zero-knowledge for any polynomial number of executions even when the entire state of
the prover is leaked in every execution. However, it is not clear how meaningful this
protocol is: the adversary gets to learn a valid encoding of the witness which it can later
use on its own. This is no different from the scenario where the prover gives out the
witness to the verifier. Indeed, it cannot be used in the applications like identification
schemes that we are interested in.

We believe that requiring the adversary to not be able to compute a valid encoding
(which would allow him to prove on his own) is indeed a “right” security notion in
the setting of interactive proofs with continuous leakage (indeed, there may be others
notions). If the adversary can obtain the same witness (or the witness encoding) as being
used by the prover, there is very little left in terms of the security guarantees that can
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be satisfied. Indeed, our notion of NTP is a formalization of this “intuition”: not only it
ensures that the adversary cannot get any valid witness encoding, but also, that it cannot
compute any “partial” witness encoding which still allows him to complete the proof
on his own.

To summarize, the main question that we are concerned with in this work is the
following:

Do non-transferable proofs, under (non-trivial) continual memory leakage, exist for
NP?

Our Results. In this work, we construct non-transferable CLR proof systems for all
languages in NP assuming DDH is hard in pairing-based proofs (called eXternal Diffie
Hellman assumption). Our results are in the CRS model. We obtain our result by
constructing the so called CLR-encodings for all NP languages, and then use them
to construct non-transferable (interactive) proofs for all of NP. We work in the CRS
model; recall that, as we argued above, non-transferable proofs are non-trivial in the
CRS model as well. In our continual leakage model, we do not allow leakage during
the update phase. Further, we follow [20,37] and require that the randomness of a par-
ticular round of the protocol is not available to the prover until that round begins.2

To construct CLR-encodings, we first construct re-randomizable NIZK-proofs for all
NP-languages. Prior to our work, such proofs were known only for specific, number-
theoretic, relations. In addition, our re-randomizable NIZK proofs satisfy the stronger
property of “controlled malleability”: roughly, it means that the only way to construct
new valid proofs is to either re-reandomize given proofs or create them from scratch
(using the knowledge of an appropriate witness). These are of independent interest.

Finally, we find that the CLR-encodings are a cryptographic primitive of indepen-
dent interest as well. We show how to use them to build other cryptographic primi-
tives secure under continual memory leakage. In particular, we show how to construct
continual leakage resistant public key encryption schemes, identity based encryption
schemes as well as attribute based encryption schemes (for polynomial sized attribute
space) using CLR-encodings and the recent new primitive of witness encryption [19]
(see full version for more details). We hope that this will inspire future work, and our
CLR-encoding primitive will be useful in obtaining more primitives resilient against
continual leakage attacks. Even though some of these applications already exist under
standard assumptions, ours is the first work that describes a generic tool that can be
used to construct many continual-leakage-resilient primitives at once.

A brief overview of our approach. The starting point of our construction is the obser-
vation that we can use the “proof of a proof” approach which was used in [13]. That
is, instead of receiving a witness w as input, the prover will receive a non-interactive
proof π that x ∈ L. If such a proof is sound, then the prover can prove to the verifier

2 It might be possible to avoid this model and allow leakage on all randomness from the start;
however, it is usually difficult to ensure without making further assumptions on the statements.
For example, in the context of LRZK, it might be impossible to support such leakage because
a cheating verifier can first obtain a “short” commitment to the witness and randomness, and
later try to check if the transcript is consistent with this state.
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that “there exists a convincing non-interactive proof π for x ∈ L.” Therefore, π acts as
a different kind of witness for x, or, as an “encoding of w.” A natural choice for such
proofs is NIZK-proofs (which exist for all NP languages). These proofs have strong se-
curity properties, e.g., an adversary cannot decode w from a NIZK-proof for x (unless
x is easy).

We start by constructing re-randomizable NIZKs for the NP-complete language of
circuit satisfiability. However, re-randomization does not guarantee much as it might be
possible to use leakage on many such NIZK-proofs and “stitch them together” to obtain
a valid proof. To avoid this, we turn to the notion of non-malleability. More specifically,
we require the following two properties:

– First, we require that each proof must have sufficient min-entropy of its own, say
�+ ω(logn), where n is the security parameter. This guarantees that � bits of leak-
age do not suffice to predict this proof exactly. In turn, given � bits of leakage from
polynomially many independent proofs will not suffice to guess any of those proofs
exactly. This step guarantees some protection against leakage information theoret-
ically.

– However, this leakage might still suffice to compute a new proof (that is different
from all other proofs so far). To counter this, we require that each proof must be
simulation-extractable [40,41]. This would essentially mean that the adversary can-
not compute new proofs unless he knows a witness for x. But this is a bit too strong
since it means that the proofs cannot even be re-randomized! Therefore, we need a
“controlled” form of simulation extractability; one such notion is CM-SSE [10] but
this falls short of what we need.

We formulate an appropriate notion called decomposable NIZK with controlled mal-
leability. These are NIZK-proofs which can be re-randomized, and essentially “that is
all” an adversary can do with such proofs. We construct such proofs for circuit satis-
fiability. To construct such proofs, at a very high level, we show how to combine the
re-randomizable garbled circuits [21] with malleable proof-systems of Groth and Sahai
[23,10].

Prior Work. A series of works [39,5,6,32,25,31], to name a few, studied a class of
hardware-based attacks on various cryptosystems, which were later referred to as side
channel attacks. Early theoretical works focused on increasingly sophisticated modeling
of such attacks and protecting against them[3,15,38,26], resulting in constructions for
public key encryption schemes [35,34], signature schemes [17], identity based encryp-
tion schemes [12] and so on. Early schemes in the bounded leakage model also appear
in [4,30,12]. Later several works focused on continual leakage [14,29,8,22]. The works
of [20,7,37,8] focused on interactive protocols in presence of leakage. Dodis et. a. [14]
were the first to consider identification schemes in presence of continual leakage. To
the best of our knowledge, ours is the first work to address the security of general inter-
active proofs in the presence of continual leakage.

The concept of non-transferrable proof systems appear in the works of [27,28,36],
as well as early works on identification schemes [18,42,24,11]. The idea of “proof of a
proof” has appeared, in a very different context, in the work of [13].
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2 Notation and Definitions

We will use standard notation and assume familiarity with common cryptographic con-
cepts. We use n as a security parameter. We say that a PPT sampling algorithm Sampler
is a hard distribution over an NP relation R if Sampler outputs pairs (x,w) ∈ R, and
for every PPT adversary A∗ it holds that the probability, Pr[(x,w) ← Sampler(1n);w′

← A∗(x) ∧ (x,w′) ∈ R] is negligible in n. For an NP-language L, we define a witness
relation, denoted by RL, such that x ∈ L iff there exists w such that (x,w) ∈ RL. We
now define the notion of encoding schemes.

Encoding schemes. An encoding scheme offers a mechanism to not only encode the
witnesses of an NP relation, say RL, but also to refresh these encodings. Further, it
can be verified whether x is in the language L or not by using the encodings of the wit-
ness(es) of x. Looking ahead, the prover in the continual leakage resistant system would
not have the witness corresponding to the original relation. Instead he will possess the
encoding of the witness, which he will consequently refresh in between executions. We
now formally define the encoding scheme.

An encoding scheme for an NP-relation RL, in the CRS model, is a tuple of PPT
algorithms E = (PubGen,Encode, Update, VL)

3. The PubGen takes as input a security
parameter and outputs a string CRS. The algorithm Encode takes as input (x,w) ∈ RL

as well as CRS and it outputs a fresh “encoded” witness, say w̃. The update algorithm
takes as input (x, w̃) as well as CRS and outputs an encoded witness w̃′ which may be
different from w̃. The requirement from the update algorithm is that the distributions
{Encode(x,w,CRS)} and {Update(x,Encode(x,w,CRS))} are computationally in-
distinguishable. The verifier VL on input (CRS, x, w̃) either decides to accept or reject.

Any encoding scheme for a relation RL needs to satisfy two properties, namely com-
pleteness and soundness. These properties are defined the same way they are defined in
an interactive proof system4. Intuitively, except with negligible error it should happen
that the verifier VL accepts an encoding (generated using either Encode or Update) of
w iff w is a valid witness.

Encoding based proofs. Let (P, V ) be a pair of PPT interactive Turing machines, L an
NP language and E = (PubGen,Encode,Update, VL), a refreshable encoding scheme
for L. We say that (P, V,E) is an encoding-based proof for L if the following two
conditions hold: firstly, (P, V ) is an interactive proof (or argument) for L; and second,
the prover algorithm P gets as input x ∈ L along with an encoded witness w̃ such that
w̃ = Encode(x,w,CRS) (where CRS is the output of PubGen algorithm.), where w is

3 The corresponding scheme in the standard model will not have the CRS generation algorithm.
That is, it will consist of (Encode,Update, VL).

4 Completeness. Let (x,w) ∈ RL. And let CRS be the output of PubGen. Let (x, w̃i) be such
that w̃i is either the output of (i) Encode on input (x,w,CRS) if i = 1 or (ii) it is the output of
Update(x,CRS, w̃i−1) for i > 1. Then, completeness property says that VL accepts the input
(CRS, x, w̃) with probability 1.
Soundness. For every x /∈ L, and every PPT algorithm P ∗, and for sufficiently large n and
advice z ∈ {0, 1}∗ we have that Pr[CRS ← PubGen(1n); VL(CRS, x, P

∗(x,CRS, z)) =
1] is negligible in n.
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a witness such that (x,w) ∈ RL. Further, the prover can participate in many executions
and in between executions he refreshes his encoded witness using the Update procedure
by executing Update on an encoded witness w̃ to obtain a new encoding w̃′. In this
work, we consider encoding based proof systems which satisfy extractabilty property,
which is stronger than soundness.

We can also consider encoding based proofs in the CRS model. In this case, there
is a Setup algorithm in addition to the algorithms (P, V,E). Note that E has its own
CRS generation algorithm PubGen. For simplicity we assume that the encoding based
proof has a single CRS generation algorithm, denoted by PubGen, that internally runs
the CRS generation algorithms of both E as well as the encoding based proof system
(P, V ).

Continual leakage attacks on encoding based proofs. Let l := l(n) be a leakage pa-
rameter used for bounding the maximum leakage (in number of bits) allowed during a
single execution of the proof. Let (P, V,E) be an encoding-based proof for L ∈ NP .
From now on, we will denote by RL a witness relation for L. Let A∗ be a PPT algo-
rithm, called the leakage adversary and let (x,w) ∈ RL. An adversary A∗, taking the
role of a verifier, on input a statement x ∈ L (and some advice z ∈ {0, 1}∗), interacts
with an honest prover P in polynomially many executions (or sessions). At the start
of the first execution, the prover receives as auxiliary input an encoding of witness w,
denoted by w̃1. At the start of the i-th session, the prover receives as its auxiliary input a
“refreshed” encoding of the encoded witness, namely w̃i = Update(x, w̃i−1), and fresh
randomness. Following prior work on LRZK [20,37], we will assume that the random-
ness required by P to execute round j of any given session i is not sampled until that
round begins.

During the execution of session i, A∗ is allowed to make adaptively chosen leakage
queries by submitting an efficient leakage function fj at the beginning of round j of the
proof (P, V ). In response, the adversary is given the value of fj(stj) where stj denotes
the state of the honest prover in round j; stj consists of the refreshed witness w̃i and
the randomness of the prover in session i up to round j denoted (ri1, . . . , r

i
j) for that

session. It is required that the total leakage bits received by A∗ in session i – i.e., the
sum of lengths of outputs of queries sent during session i only—is at most l. We say
that A∗ launches a continual leakage attack on the system (PubGen, P, V,E).

In this work, we study continual-leakage-resilient encoding based proofs under a
specific security notion called non-transferability, and we term all the encoding based
proofs that satisfy this security definition as non transferable proof systems.

Definition 1 (Continual-Leakage-Resilient Non-transferable Proofs). Let Π :=
(PubGen, P , V , E) be an encoding-based proof in the CRS model (as defined above)
for an encoding scheme E = (PubGen, Encode, Update, VL). We say that Π is a
continuous-leakage-resilient non-transferable proof for L (CLR-NTP) with leakage-
parameter l(n), if for every PPT adversary Adv and every algorithm Sampler that is a
hard distribution over RL, and every advice string z ∈ {0, 1}∗, the success probability
of A∗ in the following NTPGame, taken over the randomness of the game, is negligible
in n.

NTPGame(n, Sampler, Π,Adv, z). The game proceeds in the following steps:
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1. Initialize RunPubGen(1n)5 to obtain a CRS, say ρ; then run Sampler(1n) to obtain
(x,w) ∈ RL.

2. Phase I: Initiate the adversary algorithm Adv on inputs (x, z), who launches a
continual-leakage attack on the encoding-based proof system (P, V,E), as
described earlier. The prover P starts by receiving an encoded witness obtained us-
ing Encode and this is refreshed (using Update) at the start of every new session. At
some point, Adv signals the end of this phase, at which point the next phase begins.

3. Phase II: The adversary Adv attempts to prove that x ∈ L to the honest verifier al-
gorithm V . The verifier V receives fresh random coins in this (stand alone) session.
The game ends when this session ends.

4. Adv wins the game if V accepts the proof.

In what follows, the leakage parameter l(n) will often be implicit in the abbreviation
CLR-NTP and clear from the context.

3 A Construction from CLR Encodings

In this section we describe a construction of non-transferable proof for all of NP . The
construction will use encoding schemes (defined in Section 2) that are secure against
continual leakage attacks and we term such encodings as CLR encodings. We first de-
fine CLR encodings and then assuming the existence of CLR encodings, we construct
non-transferable proof systems. We defer the construction of the CLR encodings to the
next section.

3.1 CLR Encodings for NP Languages

Continuous-Leakage-Resilient Encodings. Let L ∈ NP , E := (PubGen, Encode,
Update, VL) an encoding scheme defined for language L, l := l(n) a leakage parame-
ter, and Sampler a sampling algorithm for the relation RL. Informally, we require that
for every hard distribution Sampler for RL, no PPT adversary Adv receiving at most l
bits of leakage from polynomially many valid encodings w̃1, w̃2, . . . , w̃p(n), generated
by either Encode or Update, where p is a polynomial chosen by adversary Adv, can
output a valid encoding that will be accepted by VL.

Formally, we consider the following EncodingGame, parameterized by l(n), played
between a PPT adversary Adv and a challenger CH. At the start of the game, CH sam-
ples (x,w) by executing Sampler(1n) and ρ by executing PubGen(1n). It sends x to
Adv and sets private1 = Encode(ρ, x, w). The game now proceeds in sessions and a
session must end before a new fresh session can be started. In each session s, Adv is
allowed to make adaptively chosen leakage queries f1, f2, . . . , fm such that their to-
tal output length, that is the sum of the output lengths of f1, . . . , fm, is at most l. It
receives f1(privates), f2(privates), . . . , fm(privates) in response. At the beginning of
session s+ 1, the challenger sets privates+1 = Update(x, ρ, privates). In the end, Adv
halts by outputting an encoding π∗. Adv wins the EncodingGame if VL(ρ, x, π

∗) = 1.

5 Recall that PubGen includes the CRS generation algorithm of the proof system (P, V ) as well
as the CRS generation algorithm of the encoding scheme E.
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We say that the scheme E := (PubGen,Encode,Update, VL) is a CLR Encoding
with leakage-parameter l(n) if for every Sampler that is a hard distribution over RL,
there does not exist any PPT algorithm Adv that can win the EncodingGame with prob-
ability non-negligible in n.

In the next section, we will prove the following theorem.

Theorem 1. There exists a CLR Encoding scheme for every language L ∈ NP in
the CRS model under the validity of eXternal Diffie Hellman assumption; the encoding
scheme supports a constancy fraction of leakage, i.e., it supports l(n) = δ ·p(n) where δ
is a constant and p(n) is a polynomial bounding the size of the encodings for statements
of length n.

3.2 Our Construction

We are now ready to describe our construction. Given a CLR encoding, we can use
standard tools and paradigms to build a CLR-NTP system for L. We only need to make
sure that tools used have an appropriate “leakage resilient” property.

To this end, we use a leakage resilient zero-knowledge proof system (LRZK) for NP
denoted by (Plr , Vlr). Such proof systems were constructed in [20,37]. Recall that an
interactive proof system (Plr , Vlr) is said to be leakage-resilient if for every cheating
verifier V ∗ there exists a simulator Slr who produces a computationally indistinguish-
able view on input the statement x and access to a leakage-oracle Ln

w(·). The leakage
oracle takes as input efficient functions f and returns f(w). While, in LRZK, Slr must
read no more leakage from Ln

w than it gives to V ∗ in the simulated view, for us a weaker
requirement suffices as used by GJS. We use a leakage-parameter l := l(n) which we
wll fix later.

GJS construct a variant denoted (1+ε)-LRZK in n/ε rounds for any constant ε based
on general assumptions. This notion in fact suffices for our purpose. However, since we
are willing to use a CRS, we can replace the “preamble” of the GJS protocol (whose
sole purpose is to extract a secret string r from the verifier) by Epk(r) where Epk is a
binding public-key encryption scheme and pk is a part of the CRS. As a result we get a
constant round protocol; the modified simulator now extracts the string r by decrypting
the cipher-text and then continue as in GJS. Further, we now get standard LRZK instead
of (1 + ε)-LRZK. Therefore, we let (Plr , Vlr) denote this modified constant-round ver-
sion of the GJS protocol.

The protocol. Let E := (PubGen,Encode,Update, VL) be a CLR L-Encoding for the
circuit-satisfiability problem, and let (Plr, Vlr) be the above mentioned LRZK protocol
for an NP -complete language.

Our continual-leakage-resilient non-transferable proof system (CLR-NTP). denoted
by (Pntp, Vntp), for a language L ∈ NP is an encoding-based proof system which uses
E as its encoding. It proceeds as follows:

1. A public CRS ρ ← PubGen(1n) is sampled at the beginning.
Let (x,w) ∈ RL, and let private1 ← Encode(ρ, x, w) be an encoded witness. The
prover Pntp receives (x, private1) as input; the verifier Vntp receives x as its only
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input. (Note that there is no leakage during this step or during any of the update
phases).

2. The prover Plr proves to the verifier Vlr) that there exists an input private∗ such
that the (deterministic) algorithm VL accepts the string (ρ, x, private∗).

3. At the end of each session, the prover applies the Update algorithm of the encoding
schemeE to its encoded witness private and receives a fresh encoding which is used
for the next session.

We only state the following theorem. A formal proof of the theorem can be found in the
full version.

Theorem 2. The protocol (Pntp, Vntp) is a non-transferable proof system for circuit
satisfiability in the continual memory leakage model (CLR-NTP), supporting a constant
fraction of leakage under the validity of XDH assumption.

4 Constructing CLR Encodings in the CRS Model

In this section, we provide a detailed overview of our construction of CLR encodings.
We refer the reader to the full version of this work for full technical details and proofs
of various theorems.

We construct CLR-encodings for the NP -complete language of circuit-satisfiability
under standard assumptions. The language consists of circuits C as instances and w
as witnesses such that C(w) = 1. From here on, L denotes the language of circuit-
satisfiability and R is the corresponding relation. We will be working in the CRS model.

4.1 Step 1: NIZK Proofs as Encodings

As mentioned in the introduction, we start with the idea of “proof of a proof” [13],
and encode a given witness as a NIZK-proof. The prover can prove to the verifier that
“there exists a convincing non-interactive proof π for x ∈ L.” Since we need to update
the encodings in future executions, we need to find a way to update the NIZK-proofs.
At this point, we have two options:

1. We can take the idea of “proof of a proof” even further. To update the encoding,
the update algorithm computes a NIZK proof, say π1 proving the statement that
“there exists a valid NIZK proof π for x ∈ L.” This process continues so that πi

uses πi−1, and so on.
Unfortunately, in this approach, the size of the encodings grows exponentially. We
can attempt to reduce the size of π using more advanced techniques such as CS-
proofs or SNARKs. However, these systems are usually based on either the random-
oracle model or non-standard (knowledge-type) assumptions.

2. Another approach is to use NIZK proof systems which are re-randomizable: given
π, it is possible to publicly compute a new proof π′ of the same size; proof π′ is
computationally indistinguishable from a freshly computed NIZK proof. This is a
promising approach, and also the starting point of our solution.
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While re-randomization allows us to update the encodingsπ, it does little to “protect”
the encoding under leakage. Consider an encoding which contains two (re-randomizable)
proofs (π1, π2). Clearly, this new encoding is valid and re-randomizable; yet if one of
the proofs is leaked, an adversary can obtain a full encoding from it and use it to prove
that x ∈ L. Therefore, in addition to re-randomization, we need the property that it
should be hard to obtain a valid encoding even given the leakage from polynomially
many refreshed copies of an encoding.

We tackle this problem by considering two more properties of NIZKs:

– Large min-entropy: Suppose that each proof π has � + ω(logn) bits of min-
entropy. Then, even given � bits of leakage on π, no adversary can predict π exactly
with more than negligible probability. Consequently, if π, . . . , πk=poly(n) are inde-
pendently generated proofs, then no adversary receiving at most � bits of leakage
from each proof, can predict πi exactly (for any i ∈ [k]) with more than negligible
probability.
At a high level, this property ensures that if an adversary computes a valid encoding,
say π∗, it will be different from all of the encodings prover generates (via the update
algorithm).6

– Controlled malleability: The previous bullet rules out the possibility that an ad-
versary can output a π∗ that is one of the valid encodings from π1, . . . , πk; we
now want to rule out the possibility that π∗ can be a re-randomization of one of
the encodings, say πi. This is actually easily guaranteed if the proofs also have
“controlled malleability” (CM) property. More details follow.

• First, consider the simpler property of simulation-extractability (a strengthened
version of simulation soundness) [40,41]. It states that if an adversary A, who
receives polynomially many simulated proofs (possibly to false statements),
outputs a new proof π∗ for some statement x∗, and π∗ is different from all
proofs A has received, then there exists an extractor which extracts a witness
for x∗ from the proof π∗.7

Clearly, if our proofs satisfy this notion, then A cannot output a new proof
π∗ (for x) that differs from all previous proofs. This is because if it does, the
extractor will extract a witness w for x. This however, is not possible, since x is
sampled from a hard distribution (in the CLR-encoding game). Unfortunately,
this notion is too strong for us: it also rules out re-randomization which is
essential to update the proofs.

• We therefore turn to the notion of controlled malleability which is a general-
ization of simulation-extractability to allow for very limited type of mauling,
specifically re-randomization [10].8 In particular, suppose that the NIZK proof

6 Note that this property by itself still does not guarantee much: most proofs already have this
property, and if not, it is trivially satisfied by appending sufficiently many random bits (at the
end of the proof) which will be ignored by the verifier. We therefore need the second property,
which rules out the proofs of this kind.

7 The extractor uses an extraction trapdoor corresponding to the system’s CRS.
8 The CKLM definition is more general: it talks about a general set of allowable transformations
T instead of re-randomization.
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system has the following extraction property. Consider an adversary A receiv-
ing several freshly computed proofs π1, . . . , πk for the statement x. If A out-
puts a convincing proof π∗ for x that is different from all proofs it receives,
then there exists an extractor which on input π∗ outputs one of the following:
(1) a witness for x, or (2) one of the previous proofs πi and randomness r such
that π∗ is a re-randomization of πi using randomness r. We will refer to this
property as the controlled malleability (CM) property.9

Note that in our setting, these two properties would indeed suffice: it would be hard
to extract one of the previous proofs πi because A only receives � bits of leakage but
the proofs have large min-entropy property; further, it would also be hard to extract a
witness for x since x would be sampled from a hard distribution in the security game
of CLR-encodings. Therefore, if we have a NIZK satisfying these properties, we would
indeed have CLR encodings.

4.2 Step 2: Decomposable NIZK Proofs

Unfortunately, the CM property defined above is a bit too strong, and we do not achieve
it. Instead, we consider a slight variation of both large min-entropy and CM property,
which will also suffice to construct CLR-encodings.

To do this, we consider NIZKs in which the proof Π for a statement x can be decom-
posed into a pair (y, π). We view y as an encoding of the statement x, and π as the ac-
tual proof. We require that Π = (y, π) satisfy all usual properties of a re-randomizable
NIZK proof. Let reRand = (reRand1, reRand2) be re-rerandomization algorithm where
the first and second parts re-randomize y and π respectively and appropriately.

Then, we modify the large min-entropy and CM properties, and require them to hold
w.r.t. the first and second parts. More precisely, we require that:

– Large min-entropy of first part: We require that the first component y of an hon-
estly generated proof Π = (y, π) have sufficient min-entropy, e.g., �+ ω(logn) to
tolerate � bits of leakage. Note that this is a stronger property since if y has large
min-entropy then so does Π . As before, it holds that given � bits of leakage from
polynomially many independent proof Π1, . . . , Πk, it will be hard to compute yi
for any i where Π = (yi, πi).

– (Modified) Controlled malleability: As before we consider an adversary A who
receives independently generated proofs {Πi = (yi, πi)}ki=1 and outputs a valid
proof Π∗ = (y∗, π∗). All proofs are for the same statement x. Then, there exists
an extractor which, on input Π∗, either outputs a witness for x, or it outputs (yi, r)
such that y∗ is a re-randomization of yi using r: i.e., y∗ = reRand1(yi; r). Note
that this property is strictly weaker than before: the extractor is only required to
extract the first part of one of the proofs, namely yi, but not the second part πi.

Using the same arguments as before, it is not hard to see that NIZK-proofs satis-
fying these properties also imply CLR-encodings. We therefore formally define such

9 We remark that this property is inspired by — but different from — the work of [10]. For
simplicity, we are only presenting what is relevant to our context.
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proofs, and call them decomposable proofs with controlled malleability (CM) prop-
erty, or decomposable �-CM-NIZK where � is the parameter for large-min-entropy
property. The construction of CLR-encodings from these proofs is straightforward: if
Pcm = (CRSSetupcm, Pcm, Vcm, reRandcm) is decomposable �-CM-NIZK then the cor-
responding CLR encoding scheme E = (PubGen,Encode,Update, V ) is obtained by
setting PubGen = CRSSetupcm, Encode = Pcm, Update = reRandcm, and V = Vcm.
We have the following theorem.

Theorem 3. Suppose that Pcm = (CRSSetupcm, Pcm, Vcm, reRandcm) is a decompos-
able �-CM-NIZK for an NP relation R. Then, E = (PubGen,Encode,Update, V ) is a
CLR-encoding with leakage parameter � w.r.t. every hard distribution D on relation R.

4.3 Step 3: The Sub-proof Property

It is clear that in one of the the key challenge in our system is the (modified) controlled-
malleability property (we will drop the word “modified” from here on). In this sec-
tion, we will focus on this property only, and show that it can be achieved from a
weaker property call the sub-proof property. More specifically, let P be a NIZK-PoK
system which satisfies the first three properties — decomposability, re-randomization,
and large min-entropy — and the following sub-proof property:

– Sub-proof property: There exist a special language Lsub and an (ordinary) NIZK-
proof system Psub for Lsub such that a pair Π = (y, π) is a valid proof for a state-
ment x ∈ L if and only if :
1. x is a prefix of y, i.e., ∃ ỹ such that y = x ◦ ỹ;
2. π is a valid proof that y ∈ Lsub (according to the proof system Psub);

We refer to such a proof system as the decomposable NIZK with sub-proof (SP)
property, or decomposable �-SP-NIZK. We now show that the sub-proof property can
be “boosted up” to achieve the CM-property using the techniques of Chase et al. [10].

To do so, we first observe that the re-randomization property of P imposes the fol-
lowing malleability requirement on Psub:

(Psub must be malleable): Suppose that Π = (y, π) is a NIZK-proof that x ∈ L ac-
cording to the main system P (under some CRS ρ). By the sub-proof property, π
is a NIZK-proof that y ∈ Lsub according to the sub-proof system Psub. By re-
randomization property, if we let Π ′ = reRand (Π) = (reRand1(y), reRand2(π)) :
= (y′, π′), then Π ′ would also be a valid NIZK-proof for x ∈ L. This means that
y′ is a statement in Lsub and π′ is a valid NIZK-proof for y′. Hence, the sub-proof
system Psub is malleable in the following sense: given a proof π for the statement
y ∈ Lsub, it is possible to obtain a proof π′ for a related statement y′ = reRand(y)
(in the same language).

In the terminology of [10], reRand1 is called an allowable transformation over the
statements in Lsub, reRand2 is the corresponding mauling algorithm, and Psub is a
reRand1-malleable proof system. We now recall one of the main results from [10].
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Result from [10]. Chase et al. formalize the general notion of a T -malleable proof
systems where T is an appropriate set of allowable transformations. They give a com-
piler which can convert such a T -malleable proof system into a new proof system that
achieves controlled malleability in the following sense. In the new proof system, given
a proof π for a statement y, an adversary can obtain proof for another statement y′ if and
only if y′ = τ(y) where τ is a transformation from the set T . This property is formal-
ized by defining the notion of controlled-malleable simulation-soundness extractability
(CM-SSE) proofs. In our context, the set T corresponds to reRand1, and a specific τ
is equivalent to executing reRand1 with a specific randomness. The notion of CM-SSE
then amounts to the following (simpler) experiment:

– (CM-SSE in our context): Let (ρ, t1, t2) ← FakeCRS(1n) where ρ is a simulated
CRS, and t1 and t2 are simulation and extraction trapdoors respectively. A PPT
adversary A is allowed to interact with the simulator polynomially many times,
say k times, where in i-th interaction A sends an (adaptively chosen) statement yi
and receives a simulated proof πi (proving that yi ∈ Lsub). In the end, A outputs
a pair (y∗, π∗) such that y∗ is different from all previous statements y1, . . . , yk
and π∗ is a valid proof for y∗. We say that the system is CM-SSE if for every A
who outputs (y∗, π∗) with noticeable probability, the extraction trapdoor t2 either
extracts a witness w∗ for the statement y∗, or it extracts a previous statement (say)
yi and randomness r such that y∗ = reRand1(yi; r).

Remark 1. To apply the CKLM transformation, the underlying proof system must sat-
isfy some structural properties. In particular, the NP-relation R (for which the system
works) and the set of transformations T , both must be expressible as a system of bilin-
ear equations over elements in bilinear groups. This property is called CM-friendliness.
In our context, relation Rsub and algorithm reRand1 must be CM-friendly, i.e., be ex-
pressible as a system of bilinear equations. We remark that the CKLM transformation
can be based on the XDH assumption10.

This essentially means that by suitably applying the CKLM compiler to the sub-proof
system of a given (decomposable) �-SP-NIZK, it should be possible to obtain the de-
sired �-CM-NIZK. This idea indeed works as proven in theorem below. One subtlety is
that we need to assume that reRand1 does not change the prefix x of its input. This is
because, by definition, CM-SSE only extracts an instance yi from which y∗ has been
obtained. To achieve �-CM-NIZK we need extract a witness for x (which is same in all
proofs). By requiring that reRand1 does not change the prefix, we enforce that yi and
y∗ will have the same prefix x, and this allows the reduction to go through.

Theorem 4. Suppose that there exists a decomposable �-SP-NIZK system P for an NP-
relation R. Let reRand = (reRand1, reRand2) be the re-randomization algorithm, Psub

be the sub-proof system, and Rsub be the sub-relation associated with P. Then, under the
validity of XDH assumption, there exists a decomposable �-CM-NIZK for R provided
that Rsub and reRand1 are CM-friendly and reRand1 does not change the prefix of its
input.

10 CKLM transformation makes use of a structure-preserving signature scheme which can be
based on DDH assumption in bilinear groups [1].



Interactive Proofs under Continual Memory Leakage 179

4.4 Step 4: Achieving the Sub-proof Property

We have seen that in order to construct a CLR L-encoding, it suffices to construct a
proof-system P with the sub-proof property. In the final step, we construct such a proof
system for the circuit satisfiability problem. Only an overview of the construction is
provided here and the details appear in our full version.

From here on, let L represent the circuit satisfiability language, and R be the cor-
responding relation. The instances in L are circuits C and witness w is an input such
that C(w) = 1. To construct P, we will actually start by constructing the sub-proof
system in question Psub. The sub-proof system has to be malleable and must work for
a “CM-friendly relation”, say Rsub. The starting point of our construction is the obser-
vation instead of directly working with the given circuit C, we can actually work with
a “garbled version” of C, denoted by GC. If we use re-randomizable garbled circuits,
then we can randomize GC to yield a new garbled circuit GC′ for the same C. For the
proofs, we need to construct an NIZK proof system which proves the correctness of
GC and can also be re-randomized. One of the approaches is to use the malleable proof
systems of Groth and Sahai [23]. However, such proof systems only exist for special
languages involving number-theoretic statements in bilinear groups.

Therefore, our next task is to represent GC (and the fact that it is a garbled version of
a given C) using a system of bilinear equations such that we can deploy GS-proofs to
argue about the solutions to such a system. This is a rather complex step in the proof: we
show in several smaller steps how to represent simple relations using bilinear equations,
and use them to represent an entire circuit. By doing so, we actually hit two birds with
one stone: on one hand, we obtain malleable-proofs for an NP-complete language, and
on the other hand, the resulting system is CM-friendly (since we already start with
equations in bilinear groups). This strategy eventually works out, although there are
several other details to be filled in.

To summarize, the main steps in the construction are as follows:

1. The first step is to devise a method to represent a garbled circuit as a system of bi-
linear equations. We use a slight variant of the garbled-circuit construction in [21].
Thereafter, we show how to represent such a garbled circuit using a system of bi-
linear equations. We require that this representation of GC must re-randomizable
(in a manner that is consistent with the randomization of garbled circuits).

2. Next, we define the InpGen algorithm (which will define the first part of the prover
algorithm in the main system) as follows. InpGen first generates the garbled cir-
cuits and then outputs their representation as a system of bilinear equations. I.e.,
InpGen, on input (C,w), outputs (y, w′) where y := (C,GC,wGC), GC is the gar-
bled circuit of C expressed as appropriate bilinear equations, wGC are wire-keys for
w expressed as appropriate group elements, and w′ is the randomness (and wire-
keys) used to generate everything so far. The sub-relation over (y, w′) is essentially
the garbled circuit relation, and denoted by Rgc.
The re-randomization algorithm of the garbled-circuit construction will act as the
algorithm reRand1. Note that this algorithm will not change (the prefix) C of the
input y. We also show that reRand1 can also be appropriately expressed as a system
of bilinear equations, and hence satisfy the condition of CM-friendliness.
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3. Next, we show how to use GS-proofs to obtain a NIZK-proof that y is indeed con-
sistent with C and that it is satisfiable. Using previous work [10], we can ensure
that this system is malleable w.r.t. reRand1. The prover algorithm at this step be-
comes the second component of the final prover; rest of the algorithms become the
corresponding algorithms of the final system.

The resulting system is a decomposable NIZK with the sub-proof property, as stated in
the theorem below. We defer the proof of the theorem to the full version.

Theorem 5. Assuming the validity of XDH assumption, there exists a constant 0 <
δ < 1 and a decomposable �-SP-NIZK P for the relation Rgc such that � = δ · p(n)
where p(n) is a fixed polynomial defining the length of proofs (for statements of length
n) generated by P. Further, Rgc and P are both CM-friendly.
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Abstract. We study the classical problem of privacy amplification,
where two parties Alice and Bob share a weak secret X of min-entropy
k, and wish to agree on secret key R of length m over a public commu-
nication channel completely controlled by a computationally unbounded
attacker Eve.

Despite being extensively studied in the literature, the problem of de-
signing “optimal” efficient privacy amplification protocols is still open,
because there are several optimization goals. The first of them is (1)
minimizing the entropy loss L = k − m. Other important considera-
tions include (2) minimizing the number of communication rounds, (3)
maintaining security even after the secret key is used (this is called post-
application robustness), and (4) ensuring that the protocol P does not
leak some “useful information” about the source X (this is called source
privacy). Additionally, when dealing with a very long source X, as hap-
pens in the so-called Bounded Retrieval Model (BRM), extracting as
long a key as possible is no longer the goal. Instead, the goals are (5)
to touch as little of X as possible (for efficiency), and (6) to be able to
run the protocol many times on the same X, extracting multiple secure
keys.

Achieving goals (1)-(4) (or (2)-(6) in BRM) simultaneously has re-
mained open. In this work we improve upon the current state-of-the-art,
by designing a variety of new privacy amplification protocols, thereby
achieving the following goals for the first time:
– 4-round (resp. 2-round) source-private protocol with optimal entropy

loss L = O(λ), whenever k = Ω(λ2) (resp. k > n
2
(1 − α) for some

universal constant α > 0).
– 3-round post-application-robust protocols with optimal entropy loss

L = O(λ), whenever k = Ω(λ2) or k > n
2
(1 − α) (the latter is also

source-private).
– The first BRM protocol capable of extracting the optimal number

Θ(k/λ) of session keys, improving upon the previously best bound
Θ(k/λ2). (Additionally, our BRM protocol is post-application-
robust, takes 2 rounds, and can be made source-private by increasing
the number of rounds to 4.)
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1 Introduction

We study the classical problem of privacy amplification [3,22,2,23] (PA), in which
two parties, Alice and Bob, share a weak secret X (of length n bits and min-
entropy k < n) and wish to agree on a close-to-uniform secret key R of length m
bits. We consider the active-adversary case, in which the communication channel
between Alice and Bob can be not only observed, but also fully controlled, by a
computationally unbounded attacker Eve. The most natural quantity to optimize
here is the entropy loss L = k−m (for a given security level ε = 2−λ), but several
other parameters (described below) are important as well.

Aside from being clean and elegant, this problem arises in a number of ap-
plications, such as biometric authentication, leakage-resilient cryptography, and
quantum cryptography. Additionally, the mathematical tools used to solve this
problem (such as randomness extractors [24]) have found many other applica-
tions in other areas of cryptography and complexity theory. Not surprisingly, PA
has been extensively studied in the literature, as we survey below.

In the easier “passive adversary” setting (in which Eve can observe, but not
modify), PA can be solved by applying a (strong) randomness extractor [24],
which uses a uniformly random nonsecret seed S to extract nearly uniform se-
cret randomness from the weak secret X . A randomness extractor accomplishes
passive-adversary PA in one message: Alice sends the seed S to Bob, and both
parties compute the extracted key R = Ext(X ;S). Moreover, it is known that
the optimal entropy loss of randomness extractors is L = Θ(log (1/ε)) [25], and
this bound can be easily achieved (e.g. using the Leftover Hash Lemma [16]).

Active Eve Setting: Number of Rounds vs. Entropy Loss. The sit-
uation is more complex in the “active Eve” setting. Existing one-message so-
lutions [23,9] work for min-entropy k > n/2 and require large entropy loss
L > n − k. It was shown by [13,14] that k > n/2 is necessary, and that the
large entropy loss of n− k is likely necessary, as well. Thus, we turn to protocols
of two or more rounds.

Two rounds were shown to be sufficient by [14], who proved, nonconstruc-
tively, the existence of two-round PA protocols with optimal entropy loss
L = Θ(log (1/ε)) for any k. (This was done using a strengthening of extractors,
called non-malleable extractors, whose existence was shown in [14].) Construc-
tively, no such protocols are known, and all known constructive results sacrifice
either the number of rounds, or the entropy loss, or the minimum entropy re-
quirement. A protocol of [19, Theorem 1.9] (building on [27,17,6]) sacrifices the
number of rounds: it achieves L = O(log (1/ε)), but only in O(1+log (1/ε) /

√
k)

rounds. The protocol of [19, Theorem 1.6] (building on [14]) sacrifices the mini-
mum entropy requirement: it achieves L = O(log (1/ε)) in two rounds, but only
when k = Ω(log2(1/ε)). Protocols of [10,7,18,20] make an incomparable mini-
mum entropy requirement: they also achieve L = O(log (1/ε)) in two rounds,
but require that k > n/2 (with the exception of [20], who slightly relaxed it
to k > n

2 (1 − α) for some tiny but positive constant α). These protocols also
built the first constructive non-malleable extractors when k > n/2. The result of
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[19, Theorem 1.8] (building on [10,18]) further relaxes the entropy requirement
to k > δn for any constant δ > 0. It also achieves L = O(log (1/ε)) in two
rounds, but the constant hidden in the O-notation is g(δ) = 2(1/δ)

c

for some
astronomical (and not even exactly known) constant c.1 More generally, since
some of the protocols mentioned above hide relatively large (or, as in the last
example, even astronomical) constant factors, simpler protocols (such as [14] or
[17]) may outperform asymptotically optimal ones for many realistic settings of
parameters.

To summarize, the landscape of existing PA protocols is rather complex, even
if we consider only the tradeoff between the min-entropy, the entropy loss, and
the number of rounds. The situation becomes even more complex, if one adds ad-
ditional highly desirable properties: source privacy, post-application robustness,
and local computability. We consider those next.

Source Privacy. Intuitively, this property demands that the transcript of
the protocol (even together with the derived key R!) does not reveal any “use-
ful information” about the source X ; or, equivalently (as shown by [12]), that
the transcript does not reveal any information at all about the distribution of
X (beyond a lower bound k on its min-entropy). For the case of passive Eve,
source privacy was considered by Dodis and Smith [12], who showed that ran-
domness extractors are indeed source-private. For active Eve, the only work that
considered this notion is the elegant paper [4], which constructed a 4-round pri-
vate protocol with entropy loss L = O(log2(1/ε)). Thus, unlike for PA protocols
without source privacy,

(A) no source-private PA protocol is known which achieves either optimal en-
tropy loss L = O(log (1/ε)), or fewer than four rounds.

Post-Application Robustness. Informally, the basic authenticity notion of
PA protocols, called pre-application robustness by [9], simply states that Eve
cannot force Alice and Bob to agree on different keys RA �= RB. While easy to
define, this property is likely insufficient for most applications of PA protocols,
because in any two-party protocol, one party (say, Bob) has to finish before the
other party. In this case, Bob is not sure if Alice ever received his last message,
and must somehow decide to use his derived key RB. In doing so, he might leak
some partial information about RB (possibly all of it!), and Eve might now use
this partial (or full) information to modify the last message that Bob originally
sent to Alice. Motivated by these considerations, [9] defined a strong property
called post-application robustness, which (intuitively) requires that Eve cannot
modify Bob’s last message and cause Alice to output RA �= RB, even if given
Bob’s key RB.

The only protocols known to achieve post-application robustness are
in [9,14,10]. Of those, only the protocol of [10] achieves asymptotically optimally
entropy loss: for entropy k > δn, it achieves entropy loss O((1/δ)c log (1/ε)) in

1 The value c depends on some existential results in additive combinatorics. However,
it appears safe to conclude that it is astronomical, which translates into “triply
astronomical” g(δ) = 2(1/δ)

c

, even for δ = 0.49.
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O((1/δ)c) rounds for some astronomical constant c mentioned in Footnote 1.
Most protocols in [27,9,14,6,10,7,18,20,19] are proven only for pre-application
robustness (some works simply ignored the distinction). In particular,

(B) no post-application robust, constant-round protocol with optimal entropy loss
is known (with the exception of protocol of [10] using astronomical constants
mentioned above).

Local Computability and Reusability. Local computability is of interest
when the length and the min-entropy of the source X is much larger than the
desired number of extracted bits m. In such a case, it is desirable to compute the
output without having to read all of the source. This property is traditionally
associated with the Bounded Retrieval Model (BRM) [15,8], where the random
source X is made intentionally huge, so that X still has a lot of entropy k even
after the attacker (“virus”) managed to download a big fraction of X over time.
For historical reasons, we will also use the term “BRM”, but point out that
local computability seems natural in any scenario where k � m, and not just
the BRM application.

The right way to think about entropy loss in such a scenario is not via the
formula L = k − m, because entropy from X is not “lost”: much entropy re-
mains in X even after the protocol execution, because most of X is not even
accessed. In fact, the PA protocol may be run multiple times on the same X , to
obtain multiple keys, until the entropy of X is exhausted. Specifically focusing
on m = Θ(log (1/ε)) (so that the extracted key can be used to achieve ε se-
curity), “optimal” reusability means the ability to extract Θ(k/ log (1/ε)) keys
(assuming the entropy rate of X is constant).

In the passive adversary case, optimal reusability is achievable with locally
computable randomness extractors [21,28]. In the active adversary case, how-
ever, the story is again more complicated. The only prior work to consider local
computability in this setting is the work of [14]. Reusability has not been explic-
itly considered before, but it is easy to see that the locally computable protocol
of [14] allows the extraction of Θ(k/ log2(1/ε)) keys. Thus,

(C) no prior locally computable protocol achieves optimal reusability.

1.1 Our Results

In this work, we solve open problems (A), (B), and (C), by designing several new
techniques for building PA protocols. Many of our techniques are general trans-
formations that convert a given protocol P into a “better” protocol P ′. Given a
wide variety of incomparable existing PA protocols (surveyed above), this modu-
lar approach will often allow us to obtain several improved protocols in “one go”.

Two Methods of Adding Source Privacy. Our first method (Section 3.2)
maintains the number of rounds at 2, at the expense of using a strengthening of
non-malleable extractors [14] (which we call adaptive non-malleable extractors)
to derive a one-time pad to mask the “non-private” message which should be
sent in the second round. (Given that we already use non-malleable extractors
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however, we might as well combine our protocol with the non-private protocol
of [14] based on non-malleable extractors with similar parameters; this is what
we do to keep things simple.) Our second method (Section 3.3), inspired by the
specific protocol of [4], turns certain 2-round non-private protocols into 4-round
private protocols, using standard extractors and XOR-universal hash functions.
(The concrete protocol of [4] implicitly applied a very particular variant of our
transformation to the two-round protocol of [14], but we get improved results
using “newer” protocol [19].) In particular, either one of these transformations
will provide (with different tradeoffs) a positive answer to Open Question (A).
For completeness, we also observe (Section 3.1) that the 1-round PA protocols
of [9] are already source-private.

Pre- to Post-Application Robustness. We make a very simple trans-
formation which converts pre-application robust protocols to post-application
robust protocols, at the cost of one extra round, but with almost no increase in
the entropy loss. Although very simple, it immediately gives a variety of answers
to Open Question (B) (and can also be combined with our first transformation,
since it preserves source privacy).

Overall, by applying our transformations above to different protocols and in
various orders, we get several improvements to existing protocols, summarized
in Table 1 (which includes various solutions to Questions (A), (B), and more).

Table 1. Our improvement (also marked in RED) over prior PA protocols

Result Entropy Rounds Entropy Loss Source
Pre-app Post-app Privacy

[14] k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) NO

(non-expl.)

This work k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) YES

(non-expl.)

[9] k > n
2

1 n − k − Θ(log (1/ε)) n
2

+ Θ(log (1/ε)) YES2

[19] k = Ω(log2(1/ε)) 2 Θ(log (1/ε)) Θ(log2(1/ε)) NO

This work k = Ω(log2(1/ε)) 3 Θ(log (1/ε)) Θ(log (1/ε)) NO

[4] k = Ω(log2(1/ε)) 4 Θ(log2(1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 4 Θ(log (1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 5 Θ(log (1/ε)) Θ(log (1/ε)) YES

[20] k > n
2
(1 − α) 2 Θ(log(1/ε)) n

2
(1 − α) + Θ(log (1/ε)) NO

This work k > n
2
(1 − α) 2 Θ(log(1/ε)) n

2
(1 − α) + Θ(log (1/ε)) YES

This work k > n
2
(1 − α) 3 Θ(log(1/ε)) Θ(log (1/ε)) YES

Achieving Local Computability and Optimal Reusability. While only
the work of [14] explicitly considered local computability, it is reasonable to ask
if other existing protocols can be modified to be locally computable and reusable.
To achieve optimal reusability, we focus on protocols with optimal entropy loss,
because they have the property that the protocol transcript reduces the entropy
of X by O(log (1/ε)), leaving residual entropy of X high. They can be modified
to extract a short key of length Θ(log (1/ε)), which will give optimal reusability.

To achieve local computability, extractors used within a protocol can be re-
placed with locally computable extractors. Indeed, the protocol of [6] seems

2 We observe in this paper that this protocol is private.
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to amenable to such modification. However, it is not constant-round. Most
other constant-round protocols with optimal entropy loss [10,7,18,20] use non-
malleable extractors, and this approach fails, because no locally computable
(even non-constructive!) instantiations of non-malleable extractors are known.

However, we observe that the 2-round, optimal entropy loss protocol of [19,
Theorem 1.6] does not use non-malleable extractors. Moreover, by making all
extractors in that protocol locally computable, we get a locally computable,
2-round protocol. However, the security analysis of [19] uses a very delicate
and interdependent setting of various parameters for the security proof to go
through. Hence, it is not immediately clear if this intricate proof will go though
if one uses locally computable extractors. Instead, we will develop a different,
modular analysis underlying the key ideas of [19], which will give us a rigorous
2-round solution to open problem (C), as well as have other benefits we de-
scribe shortly. Specifically, we show a general transformation that turns certain
(post-application) secure 2-round protocols into 2-round protocols with optimal
entropy loss L = O(log (1/ε)) and residual min-entropy k′ = k − O(log (1/ε))
(Section 5). The transformation uses two-source extractor of [26] to compress
the second message of the protocol to only O(log (1/ε)) bits. By applying this
transformation to the original (non-BRM) protocol of [14], we get a protocol
very similar to the protocol of [19], but with a much more modular and easier-
to-follow security analysis. On the other hand, by using the locally computable
protocol of [14] instead (see Section 6), we get a 2-round locally computable pro-
tocol with optimal residual entropy (and, thus, reusability), solving open prob-
lem (C).3 Furthermore, we can add source privacy by using our 2-to-4-round
transformation mentioned earlier, which can be done via local computation as
well.

These results are summarized in Table 2.

Improving Entropy Loss of Post-Application Robust Protocols. As
another advantage of our modular approach, we note that the transformation
described in the previous paragraph is interesting not only in the context of
local computability. It also allows one to turn post-application robust 2-round
protocols with sub-optimal entropy loss L into 2-round pre-application robust
protocols with optimal entropy loss, which then (using our pre-application to
post-application transformation described above) can be turned into 3-round
post-application robust protocols with optimal entropy loss. Namely, we can ob-
tain optimal entropy loss at the expense of one extra round. (For the BRM
setting, no extra round is needed, as we only extract “short” keys of length
O(log (1/ε)).)

3 Interestingly, the main limitation of the non-BRM protocol of [19] — high min-
entropy requirement k = Ω((log (1/ε))2) — is not an issue in the BRM model. Thus,
we can view our result as finding a “practical application scenario” for the very
elegant communication reduction technique developed by [19].
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Table 2. Protocols in the Bounded Retrieval Model; each extracts Θ(log(1/ε)) bits
per key, is post-application robust, and requires k = Ω(log2(1/ε)). Entries in RED
mark our improvements.

Result Rounds Residual Min-entropy # Keys Extracted Source Privacy

[14] 2 k − Θ(log2(1/ε)) Θ(k/ log2(1/ε)) NO

This work 2 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) NO

This work 4 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) YES

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer
m ∈ N, we let Um denote the uniform distribution over {0, 1}m, the bit-strings
of length m. For a distribution or random variable X we write x ← X to denote
the operation of sampling a random x according to X . For a set S, we write
s ← S as shorthand for s ← US .

Entropy and Statistical Distance. The min-entropy of a random variable

X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We say that X is an (n, k)-

source if X ∈ {0, 1}n and H∞(X) � k. For X ∈ {0, 1}n, we define the entropy
rate of X to be H∞(X)/n. We also define average (aka conditional) min-entropy
of a random variable X conditioned on another random variable Z as

H∞(X |Z)
def
= − log

(
Ez←Z

[
max

x
Pr[X = x|Z = z]

])
= − log

(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over z ← Z.
The statistical distance between two random variables W and Z distributed over
some set S is

Δ(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) = 1

2

∑
s∈S

|W (s)− Z(s)|.

Note that Δ(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a
probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if Δ(W,Z) ≤
ε. We write Δ(W,Z|Y ) as shorthand for Δ((W,Y ), (Z, Y )).

We introduce some cryptographic primitives needed for our constructions.

Extractors. An extractor [24] can be used to extract uniform randomness out
of a weakly-random value which is only assumed to have sufficient min-entropy.
Our definition follows that of [11], which is defined in terms of conditional min-
entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is an (average-case, strong) (k, ε)-extractor, if for all X,Z such that X
is distributed over {0, 1}n and H∞(X |Z) ≥ k, we get

Δ( (Z, Y,Ext(X ;Y )) , (Z, Y, Um) ) � ε
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where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k −m
is called the entropy loss of Ext, and the value d is called the seed length of Ext.

Message Authentication Codes. One-time message authentication codes
(MACs) use a shared random key to authenticate a message in the information-
theoretic setting.

Definition 2 (One-time MACs). A function family {MACR : {0, 1}d →
{0, 1}v} is an ε-secure one-time MAC for messages of length d with tags of
length v if for any w ∈ {0, 1}d and any function (adversary) A : {0, 1}v →
{0, 1}d × {0, 1}v,

Pr
R
[MACR(W

′) = T ′ ∧W ′ �= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}�.

XOR-universal hash functions. We recall the definition of XOR-universal-
hashing [5].

Definition 3 (ρ-XOR-Universal Hashing). A family H of (deterministic)
functions h : {0, 1}u → {0, 1}v is a called ρ-XOR-universal hash family, if for
any x1 �= x2 ∈ {0, 1}u and any a ∈ {0, 1}v we have Prh←H[h(x1) ⊕ h(x2) =
a] ≤ ρ. When ρ = 1/2v, we say that H is (perfectly) XOR-universal. The value
log |H| is called the seed length of H.

2.1 Privacy Amplification

We define a privacy amplification protocol (PA, PB), executed by two parties
Alice and Bob sharing a secret X ∈ {0, 1}n, in the presence of an active, compu-
tationally unbounded adversary Eve, who might have some partial information
E about X satisfying H∞(X |E) � k. Informally, this means that whenever a
party (Alice or Bob) does not reject, the key R output by this party is random
and statistically independent of Eve’s view. Moreover, if both parties do not re-
ject, they must output the same keys RA = RB with overwhelming probability.
The formal definition is given below.

Definition 4. An interactive protocol (PA, PB), executed by Alice and Bob on a
communication channel fully controlled by an active adversary Eve, is a (k,m, ε)-
privacy amplification protocol if it satisfies the following properties whenever
H∞(X |E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB∧ RA �=⊥ ∧ RB �=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness,
which states that even if Eve is active, Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] � ε.
The stronger notion of post-application robustness is defined similarly, except
Eve is additionally given the key RA the moment she completed the left exe-
cution (PA, PE), and the key RB the moment she completed the right execution
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(PE , PB). For example, if Eve completed the left execution before the right execu-
tion, she may try to use RA to force Bob to output a different key RB �∈ {RA,⊥},
and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be ⊥ if r =⊥,
and otherwise replace r �=⊥ by a fresh m-bit random string Um: purify(r) ← Um.
Letting E′ denote Eve’s view of the protocol, we require that

Δ(RA, purify(RA) | E′) ≤ ε and Δ(RB , purify(RB) | E′) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string
to Eve.

The quantity k − m is called the entropy loss and the quantity log(1/ε) is
called the security parameter of the protocol.

Source Privacy. Following Bouman and Fehr [4], we now add the source
privacy requirement for privacy amplification protocols. To define this property,
we let FullOutput(X,E) denote the tuple (E′, RA, RB), where Alice and Bob
share a secret X and output keys RA and RB, respectively, and Eve starts with
initial side information E and ends with final view E′ at the end of the protocol.

Definition 5 (Source Privacy). An interactive protocol (PA, PB), executed
by Alice and Bob on a communication channel fully controlled by an active ad-
versary Eve, is (k, ε)-private, if for any two distributions (X0, E) and (X1, E),
where H∞(X0|E) ≥ k and H∞(X1|E) � k, we have

Δ(FullOutput(X0, E),FullOutput(X1, E)) ≤ ε

Our definition is stronger than the definition of [4], who only required that
the final transcript E′ does not reveal any information about X .

3 New Private Protocols

3.1 One Round Private Protocol

Dodis et al [9] gave a construction of robust extractors using which they gave one-
round (k,m, ε)-secure privacy amplification protocols for k > n/2+O(log (1/ε)).
We argue the source privacy of their protocols in the full version[1], and thus
get the following result.

Theorem 1. For k > n/2, there is an explicit polynomial-time, one-round
(k, 2ε + 2−n/2)-private, (k,m, ε)-secure privacy amplification protocol with pre-
application robustness and entropy loss k − m = n − k + O(log (1/ε)). We
get post-application robustness at the cost of increasing the entropy loss to
n/2 +O(log (1/ε)).
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3.2 Two Round Private Protocol with Optimal Entropy Loss

In this section, we give a two round protocol that achieves optimal entropy
loss O(log (1/ε)) for pre-application robustness. For post-application robustness,
the entropy loss is about n/2, but we show how to improve it to O(log (1/ε))
in Section 4 at the cost of 1 additional round.

Alice: X Eve: E Bob: X

Sample random Y

Y −−−−−−−−−−−→ Y ′

Sample random W ′, S′ �= Y ′
K′ = anmExt(X;Y ′)
T ′ = MACK′ (W ′)
P ′ = anmExt1..�(X;S′)
C′ = T ′ ⊕ P ′
Set final RB = Ext(X;W ′)

(W,S, C) ←−−−−−−−−−−− (W ′, S′, C′)

If Y = S reject

K = anmExt(X;Y )

P = anmExt1..�(X;S)

If C ⊕ P �= MACK(W ) reject

Set final RA = Ext(X;W )

Protocol 1. New 2-round Source-Private Protocol for H∞(X |E) > n/2

Our Two Round Private Protocol. Our protocol (Protocol 1) makes the
protocol of [14] private, using the same idea as [4]: we apply a one-time pad P ′

to the tag sent by Bob in the second round, T ′, where the pad P ′ is derived from
X . We make use of an adaptive non-malleable extractor, where the adversary A
is allowed to see Y, Z, and additionally either anmExt(X ;Y ) or R ≡ Um before
producing the modified seed Y ′, and still anmExt(X ;Y ) should be statistically
close to R given anmExt(X ;Y ′), Y, Z.

Using this, our protocol achieves the following result.

Theorem 2. Let 2−n/4 < ε < 1/n, and ε′ = ε/7. Given a (τ, ε′)-adaptive non-
malleable extractor, for k > τ + Θ(log (1/ε)) and output length Θ(log (1/ε)),
there exists an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-secure
privacy amplification protocol with pre-application robustness and entropy loss
O(log (1/ε)). Furthermore, we get post-application robustness with entropy loss
to τ +O(log (1/ε)).

We can instantiate the above result using our construction (resp. existential
proof) of adaptive non-malleable extractors to obtain the following results. The
details can be found in the full version [1].

Corollary 1. There exists a universal constant α > 0, such that for k > n/2(1−
α), there exists an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-
secure privacy amplification protocol with pre-application robustness and entropy
loss O(log (1/ε)). We get post-application robustness at the cost of increasing the
entropy loss to n/2(1− α) +O(log (1/ε)).
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Corollary 2. For k = Ω(log (1/ε)), there exists a two-round (k, ε)-private,
(k,m, ε)-secure privacy amplification protocol with post-application robustness
and entropy loss k −m = O(log (1/ε)).

3.3 Privacy Using Extractors and XOR-Universal Hashing

In this section, we use a ρ-XOR universal hash function family to construct a
4-round protocol for private privacy amplification, given any 2 round privacy
amplification protocol of the form Protocol 2, where the string sent in the first
round is sampled independent of X . We note that all known 2 round protocols
in the literature are of this generic form.

Alice: X Eve: E Bob: X

Sample random Y Sample random W ′
Y −−−−−−−−−−−→ Y ′

K′ = f1(X,Y ′)
T ′ = f2(K

′,W ′)
Set final RB = g(X,W ′)

(W, T ) ←−−−−−−−−−−− (W ′, T ′)

K = f1(X,Y )

If T �= f2(K,W ) reject

Set final RA = g(X,W )

Protocol 2. A Generic 2-round Privacy Amplification Protocol

Let � = log (1/ε). Let H be a ε-XOR universal family of hash functions from
{0, 1}|T | to {0, 1}2�, and let Ext : {0, 1}n × {0, 1}d �→ {0, 1}2� be a (k − 2� −
2|K| − |RB |, ε) extractor. Using these, our protocol is depicted as Protocol 3.

Alice: X Eve: E Bob: X

Sample random Y, h Sample random W ′, S′
Y −−−−−−−−−−−→ Y ′

W,S ←−−−−−−−−−−− W ′, S′

h −−−−−−−−−−−→ h′

K′ = f1(X,Y ′)
T ′ = f2(K

′,W ′)
C′ = h′(T ′) ⊕ Ext(X;S′)
Set final RB = g(X,W ′)

C ←−−−−−−−−−−− C′

K = f1(X,Y )

T = f2(K,W )

If C �= h(T ) ⊕ Ext(X;S) reject

Set final RA = g(X,W )

Protocol 3. A Generic 4-round Private Privacy Amplification Protocol

Theorem 3. Let Protocol 2 be a 2-round (k− u,m, ε)-secure privacy amplifica-
tion protocol with pre- (resp. post-) application robustness for k − |T | − 2|K| −
|RB| � 2�. Then Protocol 3 is a 4-round (k,m,O(

√
ε))-secure (k,O(

√
ε))-private

privacy amplification protocol with pre- (resp. post-) application robustness.
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For a proof, refer to the full version. We apply this generic transforma-
tion to Li’s recent 2 round (k, ε)-secure privacy amplification protocol for
k = Ω(log2(1/ε)), that achieves entropy loss O(log (1/ε)) for pre-application
robustness, and O(log2(1/ε)) for post-application robustness [19]. We get the
following result.

Corollary 3. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time,
4-round (k, ε)-private, (k,m, ε)-secure privacy amplification protocol with pre-
application robustness and entropy loss L = k − m = O(log (1/ε)). We get
post-application robustness with entropy loss O(log2(1/ε)).

In Section 4, we will see how to get a 5-round private privacy amplification
protocol with post-application robustness and entropy loss O(log (1/ε)).

4 From Pre-application to Post-application Robustness

In this section, we show a generic transformation from a t-round privacy ampli-
fication protocol P that achieves pre-application robustness to a (t + 1)-round
protocol P ′ that achieves post-application robustness. The transformation can
be described as follows.

Let � = log (1/ε). Without loss of generality, assume that the last message

in P was sent from Bob to Alice. Let R̃A, R̃B denote the first u bits of the
keys computed by Alice and Bob, respectively (Set R̃A = ⊥ if Alice rejects, and

R̃B = ⊥ if Bob rejects). We need a (k−O(�), ε)-extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}m and an ε-secure one-time MAC for d-bit messages, whose key length is
u. Using these, the (t+ 1)-round protocol is depicted as Protocol 4.

Alice: X Eve: E Bob: X

· · ·
Protocol P

←−−−−−−−−−−−
Sample random S

T = MAC
R̃A

(S)

Set RA = Ext(X;S)

S, T −−−−−−−−−−−→ S′, T ′

If T ′ �= MAC
R̃B

(S′) reject

Set final RB = Ext(X;S′)

Protocol 4. (t+1)-round Privacy Amplification Protocol P ′ with post-application
robustness.

Theorem 4. If Protocol P is (k,m, ε)-secure privacy amplification protocol with
pre-application robustness and residual entropy k − O(log (1/ε)), then Protocol
P ′ is a (k,m−O(log (1/ε)), O(ε)) secure privacy amplification protocol with post-
application robustness. Additionally, if P is (k, ε) private, then P ′ is (k,O(ε))
private.
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For a proof of this theorem, refer to the full version [1].
Using this result, we can get optimal entropy loss for post-application robust-

ness for several protocols as described in the full version [1].

5 Increasing Residual Entropy

We now consider the task of preserving as much entropy as possible in the weak
source X , which is a natural goal and has implications in the Bounded Retrieval
Model (see section 6). Formally, the residual entropy of an interactive protocol
is minE′ (H∞(X |E′)) where E′ is the adversary’s view after the protocol. We
refer to H∞(X |E) − minE′ (H∞(X |E′)) as the loss in residual entropy. Our
main result is the following transformation achieving loss in residual entropy
O(log(1/ε), i.e. linear in the security parameter, which is optimal up to constant
factors.

Theorem 5. Assume that there is a 2-round (k,m, ε)-secure privacy amplifica-
tion protocol with post-application robustness in which the first message is inde-
pendent of the (n, k)-source X and we have logn = O(log(1/ε)), ε ≥ 2−m/C,
and k ≥ C log(1/ε) for sufficiently large C.

Then there is a 2-round (k′,m′, ε′)-secure privacy amplification protocol with
residual entropy ≥ k′ − O(log(1/ε′)) provided that k′ ≥ k + C′ log(1/ε) and
ε′ ≥ ε1/C

′
for sufficiently large C′, and m′ = k′−O(log(1/ε′)) for pre-application

robustness or m′ = k′ − k −O(log(1/ε′)) for post-application robustness.

To achieve the transformation of Theorem 5, we need the following notion of a
receipt protocol, which is essentially a 2-round message authentication protocol
in which the party who speaks first chooses the message. Such protocols can be
defined as follows.

Definition 6. A (k, �, ε)-receipt protocol (for messages of length d) is a function
Receipt : {0, 1}d×{0, 1}r×{0, 1}n → {0, 1}� that satisfies the following: for Y ≡
Ur, every μ ∈ {0, 1}d, every X such that H∞(X |E) ≥ k, and every μ′ �= μ, Y ′

chosen by an adversary given μ, Y,E,

H∞(Receipt(μ, Y,X) | Y, Receipt(μ′, Y ′, X)) ≥ log(1/ε).

The main ingredient in proving Theorem 5 is the following, the proof of which
is deferred to the full version [1].

Theorem 6. Assume that there exists a polynomial-time (k, �, ε)-receipt proto-
col for d-bit messages such that Alice communicates ≤ � bits and 2−C� ≤ ε ≤
1/(C�) for sufficiently large C.

Then for any r ≤ log(1/ε)/100, there exists a polynomial-time (k, r, 2−Ω(r))-
receipt protocol for d-bit messages where Alice communicates O(�) bits.

Finally, we obtain the following corollary by instantiating Theorem 5 using
the 2-round privacy amplification protocol with post-application robustness due
to Dodis and Wichs [14, Cor. 4].
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Corollary 4. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time
2-round (k,m, ε)-secure privacy amplification protocol with post-application ro-
bustness that achieves m = Ω(log(1/ε)) and residual entropy k −O(log(1/ε)).

6 Applications to the Bounded Retrieval Model

In the Bounded Retrieval Model (BRM) [8,15], Alice and Bob share an (in-
tentionally) very large secret key X . The idea is that the size of X makes it
infeasible for an attacker Eve to learn the entire string, even if she has infil-
trated either Alice or Bob’s storage device, because of limits on the amount of
data that can be transmitted out of the device. Thus as in previous sections we
assume that Eve has some adversarially chosen side information E about X , but
that k := H∞(X |E) is not too small. Specifically here we think of k = αn for
some constant 0 < α < 1.

Since reading the entire string X would be prohibitively inefficient, any func-
tion used by Alice or Bob that takes X as input must only read a small number
of positions, i.e. it must be locally computable. Dodis and Wichs observe [14,
Sec. 5] that their privacy amplification protocol has the property that each func-
tion taking X as input is a standard extractor. These can be replaced with the
constructions of locally computable extractors due to Vadhan [28], and thus the
protocol works in the BRM.

One downside of the [14] protocol is that the second message (which de-
pends on X) has length Ω(log2(1/ε)), and thus the loss in residual entropy is
Ω(log2(1/ε)) = Ω(m2). It would be more desirable to have loss in residual en-
tropy O(m), as then Alice and Bob could derive a total of Ω(k/m) secret keys,
as opposed to only O(k/m2) keys.

Corollary 4 shows that the loss in residual entropy can be reduced to O(m).
This protocol remains locally computable and thus applicable to the BRM, be-
cause still every function that takes X as input is a standard extractor and
can be replaced by a locally computable extractor. In summary, we have the
following.

Theorem 7. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time 2-
round (k,m = Ω(log(1/ε)), ε)-secure privacy amplification protocol in the BRM
with post-application robustness and residual entropy k − O(log(1/ε)), thus al-
lowing a total of Ω(k/m) keys to be derived.

By relaxing the number of rounds to four, we can obtain a BRM protocol that
additionally has source privacy by instead plugging the [14, Cor. 4] protocol into
the transformation of Theorem 3.

Theorem 8. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time
4-round (k,m = Ω(log(1/ε)), ε)-secure (k, ε)-private privacy amplification pro-
tocol in the BRM with post-application robustness and residual entropy k −
O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be derived.
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2. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy am-
plification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)

3. Bennett, C.H., Brassard, G., Robert, J.: Privacy amplification by public discussion.
SIAM Journal on Computing 17(2), 210–229 (1988)

4. Bouman, N.J., Fehr, S.: Secure authentication from a weak key, without leaking
information. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
246–265. Springer, Heidelberg (2011)

5. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

6. Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification
with asymptotically optimal entropy loss. In: Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing (2010)

7. Cohen, G., Raz, R., Segev, G.: Non-malleable extractors with short seeds and ap-
plications to privacy amplification. In: IEEE Conference on Computational Com-
plexity, pp. 298–308. IEEE (2012)

8. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

9. Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extrac-
tors and authenticated key agreement from close secrets. IEEE Transactions on
Information Theory 58(9), 6207–6222 (2012)

10. Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification and non-
malleable extractors via character sums. In: Ostrovsky, R. (ed.) FOCS, pp. 668–677.
IEEE (2011)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing 38,
97–139 (2008)

12. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

13. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: Proceed-
ings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
p. 376. IEEE Computer Society (2002)

14. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) STOC, pp. 601–610. ACM (2009)

15. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

16. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

17. Kanukurthi, B., Reyzin, L.: Key agreement from close secrets over unsecured
channels. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 206–223.
Springer, Heidelberg (2009)

18. Li, X.: Design extractors, non-malleable condensers and privacy amplification. In:
Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 837–854. ACM (2012)



198 D. Aggarwal et al.

19. Li, X.: Non-malleable condensers for arbitrary min-entropy, and almost optimal
protocols for privacy amplification. CoRR, abs/1211.0651 (2012)

20. Li, X.: Non-malleable extractors, two-source extractors and privacy amplification.
In: FOCS, pp. 688–697. IEEE Computer Society (2012)

21. Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong ex-
tractors. J. Cryptology 17(1), 27–42 (2004)

22. Maurer, U.M.: Protocols for secret key agreement by public discussion based on
common information. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
461–470. Springer, Heidelberg (1993)

23. Maurer, U.M., Wolf, S.: Privacy amplification secure against active adversaries.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer,
Heidelberg (1997)

24. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst.
Sci. 52(1), 43–52 (1996)

25. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)

26. Raz, R.: Extractors with weak random seeds. In: Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pp. 11–20 (2005)

27. Renner, R.S., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily
weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95.
Springer, Heidelberg (2003)

28. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. J. Cryptology 17(1), 43–77 (2004)



On the Communication Complexity
of Secure Computation

Deepesh Data1,, Manoj M. Prabhakaran2,, and Vinod M. Prabhakaran1,  

1 School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai, India

{deepeshd,vinodmp}@tifr.res.in
2 Department of Computer Science,

University of Illinois, Urbana-Champaign, USA
mmp@illinois.edu

Abstract. Information theoretically secure multi-party computation
(MPC) is a central primitive of modern cryptography. However, relatively
little is known about the communication complexity of this primitive.

In this work, we develop powerful information theoretic tools to prove
lower bounds on the communication complexity of MPC. We restrict our-
selves to a concrete setting involving 3-parties, in order to bring out the
power of these tools without introducing too many complications. Our
techniques include the use of a data processing inequality for residual in-
formation — i.e., the gap between mutual information and Gács-Körner
common information, a new information inequality for 3-party protocols,
and the idea of distribution switching by which lower bounds computed
under certain worst-case scenarios can be shown to apply for the general
case.

Using these techniques we obtain tight bounds on communication
complexity by MPC protocols for various interesting functions. In partic-
ular, we show concrete functions that have “communication-ideal” proto-
cols, which achieve the minimum communication simultaneously on all
links in the network. Also, we obtain the first explicit example of a func-
tion that incurs a higher communication cost than the input length in
the secure computation model of Feige, Kilian and Naor [17], who had
shown that such functions exist. We also show that our communication
bounds imply tight lower bounds on the amount of randomness required
by MPC protocols for many interesting functions.

1 Introduction

Information theoretically secure multi-party computation has been a central
primitive of modern cryptography. The seminal results of Ben-Or, Goldwasser,
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and Wigderson [3] and Chaum, Crépeau, and Damgård [9] showed that infor-
mation theoretically secure function computation is possible between parties
connected by pairwise, private links as long as only a strict minority may col-
lude in the honest-but-curious model (and a strictly less than one-third minority
may collude in the malicious model). Since then, several protocols have improved
the efficiency of these protocols.

However, relatively less is known about lower bounds on the amount of com-
munication required by a secure multi-party computation protocol, with a few
notable exceptions [31,21,10,17]. In fact, [28] shows that establishing strong com-
munication lower bounds (even with restrictions on the number of rounds) would
imply breakthrough lower bound results for other well-studied problems like
private-information retrieval and locally decodable codes. Further, due to the
standard upper bounds on the communication needed in a secure multi-party
computation protocol [3,9], such lower bounds would imply non-trivial circuit
complexity lower bounds — a notoriously hard problem in theoretical computer
science. The goal of this work is to develop tools to tackle the difficult problem
of lower bounds for communication in secure multi-party computation, even if
they do not immediately have direct implications to circuit complexity or locally
decodable codes.

In this work we develop novel information-theoretic tools to obtain lower
bounds on the communication complexity of secure computation. Our tools have
connections with information-complexity techniques developed in the context of
communication complexity and related problems. In particular, all these tools
are related to notions of “common information” introduced by Gács-Körner [22]
and Wyner [43].1

We shall restrict our study to a concrete setting that brings out the power of
these tools without introducing too many additional complications. Our setting
involves 3 parties (with security against corruption of any single party) of which
only two parties have inputs, X and Y , and only the third party produces an
output Z as a (possibly randomized) function of the inputs. This class of func-
tions is similar to that studied in [17], but our protocol model is more general
(since it allows fully interactive communication), making it harder to establish
lower bounds. Also, our lower bounds apply to the semi-honest setting, where
security is required only against passive corruption.

Results and Techniques. We study the setting shown in Figure 1. We obtain
lower bounds on the expected number of bits that need to be exchanged between
each pair of parties when securely evaluating a (possibly randomized) function
of two inputs, so that Alice and Bob feed the inputs to the function, and Charlie
receives the output from the function. In fact, our bounds are on the entropy

1 In communication complexity and related problems, the lower bound techniques re-
late to Wyner common information [39,6], whereas the tools in this work are more
directly related to Gács-Körner common information. Wyner common information
and Gács-Körner common information have been generalized to a measure of corre-
lation represented as the “tension region” in [40].
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Fig. 1. A three-party secure computation problem. Alice (party-1) has input X and
Bob (party-2) has Y . We require that (i) Charlie (party-3) obtains as output a ran-
domized function of the other two parties’ inputs, distributed as pZ|XY , (ii) Alice and
Bob learn no additional information about each other’s inputs, and (iii) Charlie learns
nothing more about X,Y than what is revealed by Z. All parties can talk to each
other, over multiple rounds over bidirectional pairwise private links.

of the transcript between each pair,2 and hence hold even when the protocol is
amortized over several instances with independent inputs. Further, often these
bounds do not depend on the input distribution (as long as the distribution has
full support), and hold even if the protocol is allowed to depend on the input
distribution.

At a high-level, the ingredients in deriving our lower bounds are the following:

– Firstly, we observe that, since Alice and Bob do not obtain any outputs, they
are both forced to reveal their inputs fully (up to equivalent inputs) to the
rest of the system, and further, Charlie’s output depends on the inputs only
through all the communication he has with the rest of the system. Combined
with the privacy requirements, this immediately leads to a naïve lower bound:
specifically, writing X,Y, Z as X1, X2, X3, we have H(Mij) ≥ H(Xi, Xj |Xk),
where {i, j, k} = {1, 2, 3}.3
We strengthen the naïve lower bounds by relying on a “data-processing in-
equality” for residual information — i.e., the gap between mutual-information
and (Gács-Körner) common information — which lets us relate the residual
information between the messages to the residual information between the
inputs/outputs. This bound is given in Theorem 1.

– We can further improve the above lower bounds using a new tool, called
distribution switching. The key idea is that the security requirement forces the

2 The entropy bounds translate to bounds on the expected number of bits communi-
cated, when we require that the messages on the individual links are encoded using
(possibly adaptively chosen) prefix-free codes. See the full version [14] for details.

3 We point out a simple example for which one can obtain a tight bound from this
naïve bound: addition (in any group) requires one group element to be communi-
cated between every pair of players, even with amortization over several independent
instances. Previous lower bounds for secure evaluation of addition, while considering
an arbitrary number of parties, either restricted themselves to bounding the number
of messages required [21,10], or relied on non-standard security requirements (like
“unstoppability” [21]).
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distribution of the transcript on certain links to be independent of the inputs.
Hence, we can optimize our bounds over all input distributions having full
support. Further, this shows that even if the protocol is allowed to depend
on the input distribution, our bounds (which depend only on the function
being evaluated) hold for every input distribution that has full support over
the input domain. The resulting bound is summarised in Theorem 2.

– A different improvement comes from exploiting the fact that in a protocol, the
transcripts have to be generated by the parties interactively, rather than be
created by an omniscient “dealer.” An important technical contribution of this
work is to provide a new tool towards this, in the form of a new information
inequality for 3-party interactive protocols (Lemma 4). We use this along with
the idea of distribution switching to significantly improve the above lower
bounds by optimizing them using appropriate distributions of inputs. In fact,
we can take the different terms in our bounds and optimize each of them
separately using different distributions over the inputs. The resulting bounds
(Theorem 3 and Theorem 4) are often stronger than what can be obtained by
considering a single input distribution for the entire expression.

The resulting bounds are summarized in Theorem 1, Theorem 2, Theorem 3
and Theorem 4. We remark that unlike most of the existing results (for e.g. the
bounds in [21] for summation (mod 2)), our lower bounds are not restricted to
specific functions, but are applicable to all 3-party functions (except Theorem 2
and Theorem 4, which place some restrictions on the functions). To illustrate the
use of our lower bounds, we apply them to several interesting example functions.
In particular, we show the following:

– We analyze secure protocols for a few functions – group-add, controlled-

erasure and remote-ot – and, applying our lower bounds, show that these
protocols achieve optimal communication complexity simultaneously on each
link. We call such a protocol a communication-ideal protocol. We leave it open
to characterize which functions have communication-ideal protocols.

– We show an explicit deterministic function f : {0, 1}n × {0, 1}n → {0, 1}n−1

which has a communication-ideal protocol in which Charlie’s total commu-
nication cost is (and must be at least) 3n − 1 bits. In contrast, [17] showed
that there exist functions f : {0, 1}n × {0, 1}n → {0, 1}, for which Charlie
must receive at least 3n − 4 bits, if the protocol is required to be in their
non-interactive model. (Note that our bound is incomparable to that of [17],
since we require the output of our function to be longer; on the other hand,
our bound uses an explicit function, and continues to hold even if we allow
unrestricted interaction.)

In the full version of this paper [14], we extend the above results to lower bounds
on a couple of related quantities. Firstly, we identify a multi-secret sharing prim-
itive that is interesting on its own right, but also has the property that lower
bounds on its share sizes serve as lower bounds for communication complexity
of MPC protocols; some of our preliminary lower bounds are, in fact, bounds
on the share sizes for such a multi-secret sharing scheme. Secondly, we show
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that our lower bounds for communication complexity also yield lower bounds on
the amount of randomness needed in secure computation protocols. We analyze
secure protocols for several natural functions, and prove that these protocols are
randomness-optimal, i.e., they use the least amount of randomness.

Related Work. Communication complexity of multi-party computation with-
out security requirements has been widely studied since [44] (see [33]), and more
recently has seen the use of information-theoretic tools as well, in [7] and subse-
quent works. Independently, in the information theory literature communication
requirements of interactive function computation have been studied (e.g. [37]).

In secure multi-party computation, there has been a vast literature on
information-theoretic security, focusing on building efficient protocols, as well
as characterizing various aspects like corruption models that admit secure pro-
tocols (e.g. [3,9,8,27,20,26]) and the number of rounds of interaction needed (e.g.
[18,24,19,38,30]). Among other things, these results upper-bounded the commu-
nication complexity of multi-party secure computation in terms of the circuit
complexity of the computation. Recently, [1] showed that, in general this up-
per bound is not tight by showing that all functions can be securely evaluated
with sub-exponential communication (in our model of 3-party computation pro-
tocols), whereas most functions have exponential circuit complexity.

But lower-bounding communication complexity has received much less atten-
tion. For 2-party secure computation with security against passive corruption of
one party (when the function admits such a protocol), communication complex-
ity was combinatorially characterized in [31]. [21,10] gave tight lower and upper
bounds on the number of messages needed for secure computation of addition
(mod 2) by n parties. Further, relying on a stronger corruption model (fail-stop
corruption), [21] also argued a lower bound for the amortized communication
complexity of secure addition over any finite field. Feige et al. [17] obtained a
lower bound on the communication complexity for a restricted class of 3-party
protocols; along with positive results, they gave a modest lower bound for com-
munication needed for evaluating random functions in this model. The difficulty
of obtaining general lower bounds was pointed out by Ishai and Kushilevitz [28],
who related such lower bounds to lower bounds for locally decodable codes and
private information retrieval protocols. The connection to private information
retrieval protocols was recently used in [1] to, among other things, derive the
best known general upper bound on communication for Boolean functions in
the model of [17]. The related question of how much randomness is required for
secure computation seems to have received even less attention, but again, with
some notable exceptions [32,5,23,34].

We remark that in a model with computational security, under computational
hardness assumptions, the communication complexity of secure computation is
linear in the input size, relying on fully homomorphic encryption ([25] and sub-
sequent works) or exponential computation by the parties [36]. Also, in a model
with exponential amount of correlated randomness shared among the parties,
such a result was obtained in [29].
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Information-theoretic tools have been successfully used in deriving bounds in
various cryptographic problems like key agreement (e.g. [35,11]), secure 2-party
computation (e.g. [15]) and secret-sharing and its variants (e.g. [2] and [4]). In
this work, we rely on information-theoretic tools developed in [42,40], which also
considered cryptographic problems. Some preliminary observations leading to
this work appeared in [13].

2 Preliminaries

Notation. We write pX to denote the distribution of a discrete random variable
X ; pX(x) denotes Pr[X = x]. When clear from the context, the subscript of pX
will be omitted. The conditional distribution denoted by pZ|U specifies Pr[Z =
z|U = u], for each value z that Z can take and each value u that U can take. A
randomized function of two variables, is specified by a probability distribution
pZ|XY , where X,Y denote the two input variables, and Z denotes the output
variable.

For random variables T, U, V, we write the Markov chain T−U−V to indicate
that T and V are conditionally independent conditioned on U : i.e., I(T ;V |U) =
0. All logarithms are to the base 2 and entropies are in bits.
Protocols. A 3-party protocol Π is specified by a collection of “next message
functions” (Π1, Π2, Π3) which probabilistically map a state of the protocol to
the next state (in a restricted manner), and output functions (Πout

1 , Πout
2 , Πout

3 )
used to define the outputs of the parties as probabilistic functions of their views.
We shall also allow the protocol to depend on the distribution of the inputs to
the parties. (This would allow one to tune a protocol to be efficient for a suitable
input distribution. Allowing this makes our lower bounds stronger; on the other
hand, none of the protocols we give for our examples require this flexibility.)

Without loss of generality, the state of the protocol consists only of the inputs
received by each party and the transcript of the messages exchanged so far.4 We
denote the final transcripts on the three links, after executing protocol Π on its
specified input distribution by MΠ

12,M
Π
23 and MΠ

31. When Π is clear from the
context, we simply write M12 etc. We define M1 = (M12,M31) as the transcripts
that party 1 can see; M2 and M3 are defined similarly. We define the view of the
ith party, Vi to consist of Mi and that party’s inputs and outputs (if any).

It is easy to see that a protocol, along with an input distribution, fully defines
a joint distribution over all the inputs, outputs and the joint transcripts on all
the links.
Secure Computation. We consider three party computation functionalities,
in which Alice and Bob (parties 1 and 2) receive as inputs the random variables
X ∈ X and Y ∈ Y, respectively, and Charlie (party 3) produces an output
Z ∈ Z distributed according to a specified distribution pZ|XY . The sets X , Y
4 Since the parties are computationally unbounded, there is no need to allow private

randomness as part of the state; randomness for a party can always be resampled at
every round conditioned on the inputs, outputs and messages in that party’s view.
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and Z are always finite. In secure computation, we shall consider the inputs to
the computation to come from a distribution pXY over X × Y.

A (perfectly) secure computation protocolΠ(pXY , pZ|XY )=(Π1, Π2, Π3, Π
out
3 )

for (pXY , pZ|XY ) is a protocol which satisfies the following conditions:

– Correctness: Output of Charlie, is distributed according to pZ|X=x,Y=y, where
x, y are the inputs to Alice and Bob

– Privacy: The privacy condition corresponds to “1-privacy”, wherein at most
one party is passively corrupt. Corresponding to security against Alice, Bob
and Charlie, respectively, we have the following three Markov chains. V1−X−
(Y, Z), V2 − Y − (X,Z) and V3 − Z − (X,Y ). Equivalently (see Footnote 4),
I(M1; (Y, Z)|X) = I(M2; (X,Z)|Y ) = I(M3; (X,Y )|Z) = 0.

Intuitively, the privacy condition guarantees that even if one party (say Alice)
is curious, and retains its view from the protocol (in particular, M1), this view
reveals nothing more to it about the inputs and outputs of the other parties
(namely, Y, Z), than what its own inputs and outputs reveal (as long as the
other parties erase their own views). In other words, a curious party may as well
simulate a view for itself based on just its inputs and outputs, rather than retain
the actual view it obtained from the protocol execution.

For simplicity, we prove all our results for perfect security as defined above;
this is also the setting for classical positive results like that of [3]. But in fact,
we expect all our bounds to extend to the setting of statistical security as well
(following [41,40] who extend similar results to the statistical security case).5
Also, the above security requirements are for an honest execution of the protocol
(corresponding to honest-but-curious or passive corruption of at most one party).
The lower bounds derived in this model typically continue to hold for active
corruption as well (since for many functionalities, every protocol secure against
active corruption is a protocol secure against passive corruption); in this case,
when a party uses a broadcast channel (as would be necessary in our setting,
where 1 out of 3 parties is corrupted), it is counted as sending individual messages
to every other party.
Communication Complexity and Entropy. A standard approach to lower-
bounding the number of bits in a string is to lower-bound its entropy. However, in
an interactive setting, a party sees the messages in each round, rather than just
a concatenation of all the bits sent over the entire protocol. In a setting where
we allow variable length messages, this would seem to allow communicating
more bits of information than the length of the transcript itself. But this allows
the parties to learn when the message transmitted in a round ends, implicitly
inserting an end-of-message marker into the bit stream. To account for this,
one can require that the message sent in every round is a codeword in a prefix-
free code. (The code itself can be dynamically determined based on previous
5 We remark that our bounds do not apply to a relaxed security setting sometimes con-

sidered in the information theory literature: there the error in computation/security
is only required to go to 0 as the size of the input grows to infinity. [12] gives an
example where there is a strict gap between the communication complexity under
this relaxed setting and the perfect security setting of this paper.
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messages exchanged over the link.) It can be shown that, with this requirement,
the number of bits communicated in each link is indeed lower-bounded by the
entropy of the transcript in that link.

Normal Form. For a pair (pXY , pZ|XY ), define the relations x ∼= x′, y ∼= y′

and z ∼= z′ as follows.

1. For any x, x′ ∈ X , let Sx,x′ = {y ∈ Y : pXY (x, y) > 0, pXY (x
′, y) > 0}. We say

that x ∼= x′, if ∀y ∈ Sx,x′ and z ∈ Z, we have pZ|XY (z|x, y) = pZ|XY (z|x′, y).
2. For any y, y′ ∈ Y, let Sy,y′ = {x ∈ X : pXY (x, y) > 0, pXY (x, y

′) > 0}. We say
that y ∼= y′, if ∀x ∈ Sy,y′ and z ∈ Z, we have pZ|XY (z|x, y) = pZ|XY (z|x, y′).

3. Let S = {(x, y) : pXY (x, y) > 0}. For any z, z′ ∈ Z, we say that z ∼= z′, if
∃c ≥ 0 such that ∀(x, y) ∈ S, we have pZ|XY (z|x, y) = c · pZ|XY (z

′|x, y).

A pair (pXY , pZ|XY ) is said to be in normal form if x ∼= x′ ⇒ x = x′, y ∼= y′ ⇒
y = y′, and z ∼= z′ ⇒ z = z′.

It is easy to show (as we do in the full version) that we may assume without loss
of generality that (pXY , pZ|XY ) is in normal form since any given (pXY , pZ|XY )
can be transformed to a (pX′Y ′ , pZ′|X′Y ′) in normal form so that any secure
computation protocol for the former can be transformed to one for the latter
with the same communication costs, and vice versa.

Communication-Ideal Protocol. We say that a protocol Π(pXY , pZ|XY )
for securely computing a randomized function pZ|XY , for a distribution pXY is
communication-ideal if for each ij ∈ {12, 23, 31},

H(MΠ
ij ) = inf

Π′(pXY ,pZ|XY )
H(MΠ′

ij ),

where the infimum is over all secure protocols for pZ|XY with the same distri-
bution pXY . That is, a communication-ideal protocol achieves the least entropy
possible for every link, simultaneously. We remark that it is not clear, a priori,
how to determine if a given function pZ|XY has a communication-ideal protocol
for a given distribution pXY .

Common Information and Residual Information

Gács and Körner [22] introduced the notion of common information to measure
a certain aspect of correlation between two random variables. The Gács-Körner
common information of a pair of correlated random variables (U, V ) can be
defined as H(U # V ), where U # V is a random variable with maximum entropy
among all random variables Q that are determined both by U and by V (i.e.,
there are functions f and g such that Q = f(U) = g(V )). In [40], the gap between
mutual information and common information was termed residual information:
RI(U ;V ) := I(U ;V )−H(U # V ).

In [42], Wolf and Wullschleger identified (among other things) the following
important data processing inequality for residual information.
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Lemma 1 ([42]). If T, U, V,W are jointly distributed random variables such
that the following two Markov chains hold: (i) U − T −W , and (ii) T −W −V ,
then

RI(T ;W ) ≤ RI((U, T ); (V,W )).

The Markov chain conditions above correspond to the requirement that it is
secure (against honest-but-curious adversaries) to require a pair of parties hold-
ing the views (U, T ) and (V,W ), to produce outputs T,W , respectively, because
for the first party, the rest of its view, U , can be simulated based on the out-
put T , independent of the output W (and similarly, for the second party). The
lemma states that under such a secure transformation from views to outputs,
the residual information can only decrease.

It is easy to see that the following is an equivalent definition of residual infor-
mation (see [40]).

RI(U ;V ) = min
Q:∃f,g s.t.

Q=f(U)=g(V )

I(U ;V |Q). (1)

The random variable Q which achieves the minimum is, in fact, U # V . Note
that the residual information is always non-negative.

3 Lower Bounds on Communication Complexity

This section is divided into three parts. In Section 3.1, we derive preliminary
lower bounds for secure computation. In each of the subsequent subsections, we
give different improvements of the lower bounds derived in Section 3.1. Omitted
proofs are available in the full version [14].

3.1 Preliminary Lower Bounds

We first state the following basic lemma for any protocol for secure computation.
Similar results have appeared in the literature earlier (for instance, special cases
of Lemma 2 appear in [16,41,13]).

Lemma 2. Suppose (pXY , pZ|XY ) is in normal form. Then, in any secure pro-
tocol Π(pXY , pZ|XY ), the cut isolating Alice from Bob and Charlie must reveal
Alice’s input X, i.e., H(X |M12,M31) = 0. Similarly, H(Y |M12,M23) = 0 and
H(Z|M23,M31) = 0.

Lemma 2 states the simple fact that, for (pXY , pZ|XY ) in normal form, the in-
formation about a party’s input must flow out through the links she/he is part
of, and the information about Charlie’s output must flow in through the links he
is part of. This crucially relies on the fact that Alice and Bob obtain no output,
and Charlie has no input in our model.

We obtain a preliminary lower bound in Theorem 1 below by using the above
lemma and the data-processing inequality for residual information in Lemma 1.
Recall that the assumption below of (pXY , pZ|XY ) being in normal form is with-
out loss of generality.
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Theorem 1. Any secure protocol Π(pXY , pZ|XY ), where (pXY , pZ|XY ) is in
normal form, should satisfy the following lower bounds on the entropy of the
transcripts on each link.

H(M23) ≥ max{RI(X ;Z), RI(X ;Y )}+H(Y, Z|X), (2)
H(M31) ≥ max{RI(Y ;Z), RI(X ;Y )}+H(X,Z|Y ), (3)
H(M12) ≥ max{RI(X ;Z), RI(Y ;Z)}+H(X,Y |Z). (4)

Proof: We shall prove (2). The other two inequalities follow similarly.

H(M23) ≥ max{H(M23|M31), H(M23|M12)}
= max{I(M23;M12|M31), I(M23;M31|M12)}+H(M23|M12,M31) (5)

We can bound the last term of (5) as follows (to already get a naïve bound):

H(M23|M12,M31)
(a)
= H(M23, Y, Z|M12,M31, X)

≥ H(Y, Z|M12,M31, X)
(b)
= H(Y, Z|X),

where (a) follows from Lemma 2 and (b) follows from the privacy against Alice.
Next, we lower bound the first term inside max of (5) by RI(X ;Z) as follows.

I(M23;M12|M31) = I(M23M31;M12M31|M31) ≥ RI(M23,M31;M12,M31) (6)

where the inequality follows from (1) by taking Q = M31. Now, by privacy
against Charlie, we have (M23,M31) − Z −X and by privacy against Alice, we
have (M12,M31) − X − Z. Applying Lemma 1 with the above Markov chains,
together with Lemma 2, we get

RI(M23,M31;M12,M31) ≥ RI(Z;X) = RI(X ;Z).

Similarly, we can lower-bound the second term inside max of (5) by RI(X ;Y ),
completing the proof. �
In the rest of the paper we will restrict our attention to pXY which have full
support. This will allow us to strengthen the preliminary bounds in Theorem 1.

3.2 Improved Lower Bounds via Distribution Switching

To improve the bounds in Theorem 1, we will use a technique we call distribution
switching. This significantly improves the above bounds and leads to one of our
main theorems.

The following lemma states that privacy requirements imply that the tran-
script M12 generated by a secure protocol computing pZ|XY is independent of
both the inputs. Moreover, if the function pZ|XY satisfies some additional con-
straints, then the other two transcripts also become independent of the inputs.
The characteristic bipartite graph of a distribution pXY is defined as a bipartite
graph on vertex set X ∪ Y such that x ∈ X and y ∈ Y have an edge between
them whenever pXY (x, y) > 0. The proof of the following lemma is along the
lines of a similar lemma in [13].
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Lemma 3. Consider a function pZ|XY .

1. Suppose that pXY is such that the characteristic bipartite graph of pXY is
connected. Then, for any secure protocol Π(pXY , pZ|XY ), we have
I(X,Y, Z;M12) = 0.

2. Suppose pXY has full support and pZ|XY satisfies the following condition:

Condition 1. There is no non-trivial partition X = X1∪X2 (i.e., X1∩X2 =
∅ and neither X1 nor X2 is empty), such that if Zk = {z ∈ Z : x ∈ Xk, y ∈
Y, p(z|x, y) > 0}, k = 1, 2, their intersection Z1 ∩ Z2 is empty.

Then, for any secure protocol Π(pXY , pZ|XY ), we have I(X,Y, Z;M31) = 0.
3. Suppose pXY has full support and pZ|XY satisfies the following condition:

Condition 2. There is no non-trivial partition Y = Y1 ∪ Y2 such that if
Zk = {z ∈ Z : x ∈ X , y ∈ Yk, p(z|x, y) > 0}, k = 1, 2, their intersection
Z1 ∩ Z2 is empty.

Then, for any secure protocol Π(pXY , pZ|XY ), we have I(X,Y, Z;M23) = 0.

We note that pXY will have a connected characteristic bipartite graph if it has
full support.

We will now strengthen the lower bounds from Theorem 1. Specifically, we will
argue that even if the protocol is allowed to depend on the input distribution
(as we do here), correctness and privacy conditions will require that the lower
bounds derived for when the distributions of the inputs are changed continue to
hold for the original setting.

Theorem 2. Consider any secure protocol Π(pXY , pZ|XY ), where pXY has full
support and (pXY , pZ|XY ) is in normal form.

1. We have the following strengthening of (4):

H(M12) ≥ max{ sup
pX′Y ′

(RI(X ′;Z ′) +H(X ′, Y ′|Z ′)),

sup
pX′Y ′

(RI(Y ′;Z ′) +H(X ′, Y ′|Z ′))}, (7)

where the sup operations are over pX′Y ′ having full support and the objective
functions are evaluated using pX′Y ′Z′(x, y, z) = pX′Y ′(x, y)pZ|XY (z|x, y).

2. If pZ|XY satisfies Condition 1 of Lemma 3, we have the following strength-
ening of (3):

H(M31) ≥ max{ sup
pX′Y ′

(RI(Y ′;Z ′) +H(X ′, Z ′|Y ′)),

sup
pX′Y ′

(RI(X ′;Y ′) +H(X ′, Z ′|Y ′))}, (8)

where the sup operations are over the same set of pX′Y ′ as in (7).
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3. If pZ|XY satisfies Condition 2 of Lemma 3, we have the following strength-
ening of (2):

H(M23) ≥ max{ sup
pX′Y ′

(RI(X ′;Z ′) +H(Y ′, Z ′|X ′)),

sup
pX′Y ′

(RI(X ′;Y ′) +H(Y ′, Z ′|X ′))}, (9)

where the sup operations are over the same set of pX′Y ′ as in (7).

Proof: Notice that any secure protocol Π(pXY , pZ|XY ), where distribution pXY

has full support, continues to be a secure protocol even if we switch the input
distribution to a different one pX′Y ′ . This follows directly from examining the
correctness and privacy conditions required for a protocol to be secure.

By Lemma 3, it follows that the transcript M12 of the protocol (under both
the original and the switched input distributions) must remain independent of
the input data X,Y . Furthermore, since (pXY , pZ|XY ) is in normal form and
pX′Y ′ has full support, (pX′Y ′ , pZ|XY ) is also in normal form. Hence, (7) follows
from (4) of Theorem 1. Similarly, if the function pZ|XY satisfies the condition 1
(resp. 2) of Lemma 3, we can show (8) (resp. (9)) as well. �

3.3 An Information Inequality for Protocols and Improved Lower
Bounds

We can give a different improvement to Theorem 1 by exploiting the fact that, in
a protocol, transcripts are generated by the parties interactively rather than by
an omniscient dealer. Towards this, we derive an information inequality relating
the transcripts on different links in general 3-party protocols, in which parties
do not share any common or correlated randomness or correlated inputs at the
beginning of the protocol.

Lemma 4. In a 3-party protocol, if the inputs to the parties are independent of
each other, then, for {α, β, γ} = {1, 2, 3},

I(Mγα;Mβγ) ≥ I(Mγα;Mβγ |Mαβ).

Further, as in (6), I(Mγα;Mβγ |Mαβ) ≥ RI(Mγα,Mαβ ;Mβγ ,Mαβ). Hence, if the
inputs are independent of each other,

I(Mγα;Mβγ) ≥ I(Mγα;Mβγ|Mαβ) ≥ RI(Mγα,Mαβ ;Mβγ,Mαβ). (10)

This inequality provides us with a means to exploit the protocol structure
behind the transcripts. For instance, consider a secure protocol Π(pXpY , pZ|XY ),
where pX , pY have full support and (pXpY , pZ|XY ) is in normal form. We have,

H(M12) = I(M12;M23) +H(M12|M23)

= I(M12;M23) + I(M12;M31|M23) +H(M12|M23,M31)

≥ RI(X ;Z) +RI(Y ;Z) +H(X,Y |Z),
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where the last inequality used H(M12|M23,M31) ≥ H(X,Y |Z) and
I(M12;M31|M23) ≥ RI(Y ;Z) (both as in the proof of Theorem 1) as well as
I(M12;M23) ≥ RI(X ;Z). Thus the term max{RI(X ;Z), RI(Y ;Z)} in (4) can
be replaced by RI(X ;Z) +RI(Y ;Z) for independent inputs.

In the full version we prove the following two theorems by making use of
Lemma 4 and distribution switching:

Theorem 3. The following communication complexity bounds hold for any se-
cure protocol Π(pXY , pZ|XY ), where pXY has full support and (pXY , pZ|XY ) is
in normal form:

H(M23) ≥
(
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

H(Y, Z ′′|X ′′)

)
, (11)

H(M31) ≥
(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

H(X,Z ′′|Y ′′)

)
, (12)

H(M12) ≥ max

{
sup
pX′

(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

RI(X ′;Z ′′) +H(X ′, Y ′′|Z ′′)

)
,

sup
pY ′

(
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

RI(Y ′;Z ′′) +H(X ′′, Y ′|Z ′′)

)}
, (13)

where the sup operations are over distributions pX′ , pX′′ , pY ′ , pY ′′ having full
support. The terms in the right hand side of (11) are evaluated using the distri-
bution pY of the data Y of Bob, i.e.,

pX′Y Z′(x, y, z) = pX′(x)pY (y)pZ|XY (z|x, y),
pX′′Y Z′′(x, y, z) = pX′′(x)pY (y)pZ|XY (z|x, y).

Similarly, the terms in (12) are evaluated using the distribution pX of the data
X of Alice. The lower bound in (13) does not depend on the distributions pX and
pY of the data. The terms on the top row of (13), for instance, are evaluated
using

pX′Y ′Z′(x, y, z) = pX′(x)pY ′(y)pZ|XY (z|x, y),
pX′Y ′′Z′′(x, y, z) = pX′(x)pY ′′(y)pZ|XY (z|x, y).

When the function satisfies certain additional constraints, we can strengthen the
lower bounds on the H(M23) and H(M31) as follows:

Theorem 4. Consider any secure protocol Π(pXY , pZ|XY ), where pXY has full
support and (pXY , pZ|XY ) is in normal form.

1. Suppose the function pZ|XY satisfies Condition 1 of Lemma 3. Then, we have
the following strengthening of (12).

H(M31) ≥ sup
pX′

((
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

H(X ′, Z ′′|Y ′′)

))
, (14)
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where the sup operations are over distributions pX′ , pY ′ , pY ′′ having full sup-
port and the terms in the right hand side are evaluated using the distribution

pX′Y ′Z′Y ′′Z′′(x′, y′, z′, y′′, z′′) =

pX′(x′)pY ′(y′)pZ|XY (z
′|x′, y′)pY ′′(y′′)pZ|XY (z

′′|x′, y′′).

2. Suppose the function pZ|XY satisfies Condition 2 of Lemma 3. Then, we have
the following strengthening of (11).

H(M23) ≥ sup
pY ′

((
sup
pX′

RI(X ′;Z ′)

)
+

(
sup
pX′′

H(Y ′, Z ′′|X ′′)

))
, (15)

where the sup operations are over distributions pX′ , pX′′ , pY ′ having full sup-
port and the terms in the right hand side are evaluated using the distribution

pX′Y ′Z′X′′Z′′(x′, y′, z′, x′′, z′′) =

pX′(x′)pY ′(y′)pZ|XY (z
′|x′, y′)pX′′(x′′)pZ|XY (z

′′|x′′, y′).

Note that in Theorem 2, Theorem 3 and Theorem 4, any choice of pX′Y ′ ,
pX′ , pX′′ , pY ′ , pY ′′ (with full support) will yield a lower bound. For a given
function, while all choices do yield valid lower bounds, one is often able to obtain
the best lower bound analytically (as in Theorem 5, where it is seen to be the
best as it matches an upper bound) or numerically (as in Theorem 6).

To summarize, for any secure computation problem (pXY , pZ|XY ), expressed
in the normal form, Theorem 1 gives lower bounds on entropies of transcripts
on all three links. If, in addition, pXY has full support, then for H(M31), our
best lower bound is the larger of (3) and (12); for H(M23), it is the larger of (2)
and (11); and for H(M12), it is the larger of (7) and (13). Further, if pZ|XY

satisfies condition 1 of Lemma 3, then for H(M31), our best lower bound is
the larger of (8) and (14); if pZ|XY satisfies condition 2 of Lemma 3, then for
H(M23), our best lower bound is the larger of (9) and (15).

Our communication lower bounds were developed for protocols whose designs
may take into account the joint distribution of X and Y . However, the right
hand sides of (7) and (13) do not depend on the distribution pXY of the inputs.
Thus, even though we allow the protocol to depend on the distributions, our
lower bound on H(M12) does not. The same is true for (8) and (14) for H(M31)
(resp. (9) and (15) for H(M23)), which apply when the function pZ|XY satisfies
condition 1 (resp. 2) of Lemma 3. When these conditions are not satisfied, the
communication complexity of the optimal protocol may indeed depend on the
distribution of the input (see full version for an example).

4 Application to Specific Functions

In this section we consider a few important examples, and apply our generic
lower bounds from above to these examples, to obtain interesting results. While
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many of these results are natural to conjecture, they are not easy to prove (see,
for instance, Footnote 3).
Optimality of the FKN Protocol. Feige et al. [17] provided a generic (non-
interactive) secure computation protocol for all 3-party functions in our model.
This protocol uses a straight-forward (but “inefficient”) reduction from an arbi-
trary function to a variant of the oblivious transfer problem, which we shall call
the remote OT function (defined below), and then gives a simple protocol for this
new function. While the resulting protocol is inefficient for most functions, one
could ask whether the protocol that [17] used for remote OT itself is optimal.
We use our lower bounds from above to show that this is indeed the case.

The remote

(
m
1

)
-OT

n
2 function, is defined as follows: Alice’s input X =

(X0, X1, . . . , Xm−1) is made up of m strings each of length n bits, and Bob has
an input Y ∈ {0, 1, . . . ,m − 1}. Charlie wants to compute Z = f(X,Y ) = XY .
The protocol of [17] requires nm bits to be exchanged over the Alice-Charlie (31)
link, n+ logm bits over the Bob-Charlie (23) link and nm+ logm bits over the
Alice-Bob (12) link. In the full version, we prove the following theorem, which
shows that this protocol is optimal and in fact, a communication-ideal protocol.

Theorem 5. Any secure protocol Π(pXY ,remote-ot) for computing remote(
m
1

)
-OT

n
2 for inputs X and Y , where pXY has full support, must satisfy

H(M31) ≥ nm, H(M23) ≥ n+ logm, and H(M12) ≥ nm+ logm.

In the full version we also give two other examples (group-add, controlled-
erasure) which have communication-ideal protocols.
Separating Secure and Insecure Computation. A basic question of secure
computation is whether it needs more bits to be communicated than the input-
size itself (which suffices for insecure computation). While natural to expect, it is
not easy to prove this. In their restricted model, [17] showed a non-explicit result,
that for securely computing most Boolean functions on the domain {0, 1}n ×
{0, 1}n, Charlie is required to receive at least 3n− 4 bits, which is significantly
more than the 2n bits sufficient for insecure computation.

remote

(
2
1

)
-OT

n
2 from above already gives us an explicit example of a func-

tion where this is true: the total input size is 2n+ 1, but the communication is
at least H(M31)+H(M23) ≥ 3n+1. To present an easy comparison to the lower
bound of [17], we can consider a symmetrized variant of remote

(
2
1

)
-OT

n
2 , in

which two instances of remote
(
2
1

)
-OT

n
2 are combined, one in each direction.

More specifically, X = (A0, A1, a) where A0, A1 are of length (n − 1)/2 (for an
odd n) and a is a single bit; similarly Y = (B0, B1, b); the output of the function
is defined as an (n − 1) bit string f(X,Y ) = (Ab, Ba). Considering (say) the
uniform input distribution over X,Y , the bounds for remote

(
2
1

)
-OT

n
2 add up

to give us H(M31) ≥ 3(n− 1)/2 + 1 and H(M23) ≥ 3(n− 1)/2 + 1, so that the
communication with Charlie is lower-bounded by H(M31) +H(M23) ≥ 3n− 1.

This compares favourably with the bound of [17] in many ways: our lower
bound holds even in a model that allows interaction; in particular, this makes
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the gap between insecure computation (n−1 bits in our case, 2n bits for [17]) and
secure computation (about 3n bits for both) somewhat larger. More importantly,
our lower bound is explicit (and tight for the specific function we use), whereas
that of [17] is existential. However, our bound does not subsume that of [17],
who considered Boolean functions. Our results do not yield a bound significantly
larger than the input size, when the output is a single bit. It appears that this
regime is more amenable to combinatorial arguments, as pursued in [17], rather
than information theoretic arguments.
Communication Complexity of Securely Computing and. We define the
3-party and function as follows: Alice has an input bit X , Bob has an input bit
Y and Charlie should obtain Z = f(X,Y ) = X ∧ Y . In the full version, we
compute the following lower bound.

Theorem 6. Any secure protocol Π(pXY ,and) for computing and for inputs
X and Y , where pXY has full support over {0, 1}n × {0, 1}n, must satisfy

H(M31) ≥ n log(3), H(M23) ≥ n log(3), and H(M12) ≥ n(1.826).

The best known protocol for and (due to [17]) achieves H(M12) = 1 + log(3),
H(M23) = H(M31) = log(3). Our lower bounds on H(M31) and H(M23) match
this, but there is a gap for H(M12): an upper bound of 1+log(3) ≈ 2.585 against
a lower bound of 1.826. Closing this gap remains an open problem.

5 Conclusion

In this work we presented new tools to obtain lower bounds on the communica-
tion complexity of secure 3-party computation, and showed that they yield tight
bounds for interesting examples. However, the general problem of obtaining tight
lower bounds for communication complexity of secure computation is wide open;
indeed, their implications to circuit lower bounds presents a “barrier” to obtain-
ing super-linear bounds for explicit functions. We propose a possibly easier open
problem: do there exist Boolean functions with super-linear communication com-
plexity for secure computation? Note that lower bounds on circuit complexity do
not directly translate to lower bounds on communication complexity of secure
computation, as established by a sub-exponential upper bound of 2Õ(

√
n) for the

latter [1]. Though it is plausible that for random Boolean functions, the actual
communication cost is 2Ω(nε) for some ε > 0, none of the current techniques
appear capable of delivering such a result.
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1 Introduction

A secret sharing scheme is a method to protect a secret value by distributing it
into shares among a set of participants in order to prevent both the disclosure
and the loss of the secret. Only information-theoretically secure secret sharing
schemes are considered in this paper. A set of participants is authorized if their
shares determine the secret value, while the shares of the participants in a forbid-
den set do not contain any information on the secret value. The access structure
Γ = (A,B) of a secret sharing scheme consists of the families A and B of the for-
bidden and, respectively, authorized sets of participants. A secret sharing scheme
is perfect if every subset of participants is either authorized or forbidden.

Secret sharing was independently introduced by Shamir [35] and Blakley [6].
They presented constructions of perfect threshold secret sharing schemes, in
which the authorized subsets are those having at least a certain number of par-
ticipants. In these schemes, the shares have the same length as the secret, which
is optimal for perfect secret sharing schemes [22].

Blakley and Meadows [7] introduced the ramp secret sharing schemes, the first
proposed non-perfect secret sharing schemes. Their main purpose was to improve
the efficiency of perfect threshold schemes by relaxing the security requirements.
Namely, the shares can be shortened if some unauthorized sets are allowed to
obtain partial information on the secret value. The access structure of a ramp
scheme is described by means of two thresholds t and r. Every set with at
most t participants is forbidden, while every set with at least r participants is
authorized. In the ramp schemes proposed in [7], the length of every share is
1/(r − t) times the length of the secret, which is also optimal [29].

The threshold and ramp schemes proposed in those seminal works [6, 7, 35]
are linear, that is, they can be described in terms of linear maps over a finite
field [8, 23] or in terms of linear codes [27, 28]. Because of their efficiency and ho-
momorphic properties, linear perfect secret sharing schemes play a fundamental
role in several areas of cryptography.

Most of the works in the literature on secret sharing deal with perfect schemes.
One of the main lines of research is the search for bounds on the length of the
shares in perfect secret sharing schemes for general access structures. The main
fundamental problems remain unsolved and, in particular, there is a huge gap
between the known upper and lower bounds. Most of the known lower bounds
are derived from bounds on the information ratio, that is, the ratio between the
maximum length of the shares and the length of the secret. Such bounds can
be found by using the entropy function, a method initiated Karnin et al. [22]
and Capocelli et al. [10]. On the basis of the connections between information
theory, matroid theory, and secret sharing found by Fujishige [16, 17], Brickell
and Davenport [9], and Csirmaz [13], matroids and polymatroids have appeared
to be a powerful tool, as it can be seen from several recent works [2–4, 25, 26].
Similar questions have been considered for non-perfect secret sharing schemes
too [15, 18, 24, 29, 30, 33], but the research is much less developed in this
direction. In particular, only basic bounds on the information ratio of non-perfect
secret sharing schemes are known [29, 30].
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This work deals with the search for bounds on the information ratio of non-
perfect secret sharing schemes. Our main purpose is to further extend results
and techniques on perfect secret sharing schemes to the non-perfect case, with a
special stress on the use of polymatroids and the construction of efficient linear
secret sharing schemes.

Our first step is to choose a suitable way to describe the security requirements
of non-perfect secret sharing schemes. This description should be more precise
than the access structure. That is, in addition to the forbidden and qualified
sets, also the amount of information on the secret value that is obtained by the
other sets should be taken into account. We introduce the access function of a
secret sharing scheme (Definitions 1 and 5), which is a refinement of the access
hierarchies that are used in [24, 30, 33]. The access function is defined in terms
of the entropy function and it is a monotone increasing function on the power
set of the set of participants. The forbidden and authorized sets are those in
which the value of the access function is 0 and, respectively, 1. For all other
sets, the access function measures the relative amount of information on the
secret value given by the shares. A similar concept, fractional access structure,
was introduced in [18], but the partial information on the secret is measured
in a different way. The relation between these two approaches is discussed in
Section 2.

Our first result deals with a fundamental question. Namely, given a real-valued
access function, does there exist a secret sharing scheme realizing it? By answer-
ing this question in the affirmative in Theorem 1, we generalize the result by
Ito, Saito and Nishizeki [19], who proved that there exists a perfect secret shar-
ing scheme for every access structure. Our result is not entirely obvious since
the usual approach of using linear schemes cannot work. Indeed, there are only
countably many linear secret sharing schemes over finite fields, while there are
uncountably many access functions. Therefore, some access functions are inher-
ently non-linear or might only be realized in the limit by a sequence of linear
schemes. Nevertheless, we prove that every rational-valued access function ad-
mits a linear secret sharing scheme. If the access function takes non-rational
values, then our construction requires to take a non-uniform probability distri-
bution on the set of possible values of the secret. Similarly to the known general
constructions of perfect secret sharing schemes [5, 19], our general construction is
inefficient because the length of the shares grows exponentially with the number
of participants.

The main problem we consider in this work is the search for bounds on the
information ratio of secret sharing schemes for general access functions. For the
first time, we apply to non-perfect schemes the polymatroid-based techniques
that have been so useful for the perfect case.

The well known connection between perfect secret sharing and polymatroids
is extended to non-perfect schemes in Section 5. Our definition of access function
appears to be most suitable for our purposes. This can be seen, for instance, in
Proposition 3, in which the characterization by Csirmaz [13, Proposition 2.3] of



220 O. Farràs et al.

the compatibility between polymatroids and access structures is easily extended
to non-perfect secret sharing.

Two different lower bounds on the optimal information ratio of access func-
tions are discussed in Section 6. The first one is the extension of the parameter
κ [25] to the non-perfect case. The second one, which is denoted by ε, is in-
troduced in this paper. It is a lower bound on κ, and hence a lower bound on
the optimal information ratio. The value of ε is 1 on every perfect access func-
tion, and hence this new parameter is relevant only for the non-perfect case.
As a consequence of Proposition 4, the parameter ε improves the previously
known lower bound in Proposition 1 [29, 30]. We prove in Proposition 5 that
ε ≤ κ ≤ nε, where n is the number of participants. This generalizes the known
bounds 1 ≤ κ ≤ n [13, 25] for perfect secret sharing. As in the perfect case, the
upper bound on κ indicates the limitations of using only Shannon information
inequalities in the search of lower bounds on the information ratio.

Our main result deals with uniform access functions, that is, the ones that
take the same value on sets that have the same cardinality. They generalize the
perfect threshold access structures. Our main result is presented in Section 8.
Namely, we determine in Theorem 4 the exact value of the optimal information
ratio of all uniform access functions. Moreover, our proof provides a method to
construct a linear secret sharing scheme with optimal information ratio for every
given rational uniform access function. This is done in several steps. First, we
prove in Proposition 8 that every uniform access function is a suitable convex
combination of ramp access functions. As a consequence, the values of κ and
ε coincide for the uniform access functions. Moreover, combining Proposition 8
with the basic concatenation method described in Section 7, one can construct
a linear secret sharing scheme with optimal information ratio (that is, equal to
the lower bound ε) for every rational uniform access function.

Due to space restrictions, we only present the proofs of the main results. The
reader can find the remaining proofs in the full version of the paper [14].

2 Related Work

Brickell and Davenport [9] proved that every perfect secret sharing scheme in
which all shares have the same length as the secret defines a matroid. This
connection between secret sharing schemes and matroids was first extended to
non-perfect schemes by Kurosawa et al. [24], who characterized the non-perfect
secret sharing schemes that define a matroid. Recently, a characterization with
weaker conditions has been presented [15]. Similarly to the results in this paper,
its proof is based on the connection between secret sharing and polymatroids.

The polymatroid-basedmethod described in [13, 25] is applied here for the first
time to find lower bounds on the optimal information ratio of non-perfect secret
sharing schemes. Some lower bounds on the information ratio of non-perfect
secret sharing schemes were found by that entropy-based method. Namely, the
one given in Proposition 1 [29, 30] and a lower bound for a particular access
function [30] that proves that the bound in Proposition 1 is not always attained.
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The almost-perfect secret sharing schemes introduced in [21] are schemes
whose access functions are close to a perfect access function. The possibility
of improving the information ratio by realizing a perfect access structure with
non-perfect secret sharing schemes with close access functions is explored in that
work.

Ishai, Kushilevitz and Strulovich [18] introduced the notion of fractional se-
cret sharing, which is a restriction of non-perfect secret sharing. The security
requirements of a fractional secret sharing scheme are described in terms of its
fractional access structure, which is a monotone decreasing function F : P(P ) →
{1, . . . ,m}, where P(P ) is the power set of the set P of participants. Given the
shares of the participants in a set X ⊆ P , the secret is uniformly distributed
over a set of f(X) possible values. In particular, the secret value is uniformly
distributed over a set of m = F (∅) elements. Observe that F (X) measures the
number of guessing attempts, and hence the amount of work, needed by the par-
ticipants in X to find the secret value. The main results in [18] are the following:
every fractional access structure is realizable, and every uniform (or symmetric
in their terminology) fractional access structure is efficiently realizable.

The main difference between the approaches in [18] and in this paper is that
a fractional access structure fixes the size of the set of possible values of the
secret. The following observation illustrates this difference. Every fractional ac-
cess structure determines a unique access function, but the converse is not true
because an access function does not fix the size of the secret, but only the ratio
with the amount of information obtained by the sets of participants. Being a
more restrictive concept, the problems related to fractional secret sharing are
more difficult. In particular, our results do not appear to have a direct applica-
tion to fractional secret sharing. For example, no optimality result for uniform
fractional access structures (an open problem posed in [18, Section 5]) can be
directly obtained from our optimality results on uniform access functions. An-
other difference between the two approaches is the limited power of linear secret
sharing schemes when dealing with fractional secret sharing. Indeed, a fractional
access structure can be realized by a linear secret sharing scheme over a field of
order q (see Definition 11) only if all its values are powers of q.

Our optimality result for uniform access functions (Theorem 4) is closely
related to a recent result by Chen and Yeung [11]. They proved that every
(1, n − 1)-uniform polymatroid is almost entropic. By taking into account that
κ = ε for the uniform access functions, that implies the result in Remark 6.
Nevertheless, the other results in Section 8, namely the value of the optimal
information ratio of all uniform access functions and the optimal construction
for rational uniform access functions cannot be derived from the results in [11].

3 Secret Sharing Schemes

In this work we consider the definition of secret sharing scheme that is based on
information theory, specifically, on the entropy function. For a complete intro-
duction to secret sharing, see [1, 31], and for a textbook on information theory
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see [12]. We begin by introducing some notation. For a finite set Q, we use P(Q)
to denote its power set, that is, the set of all subsets of Q. We use a compact
notation for set unions, that is, we write XY for X ∪ Y and Xy for X ∪ {y}.
In addition, we write X − Y for the set difference and X − x for X − {x}. Let
X = {1, . . . , t} be a set and let (Si)i∈X be a tuple of discrete random variables.
We write SX for the random variable S1 × · · · × St, and H(SX) for its Shannon
entropy. Recall that, for two such random variables SX , SY , one can consider the
conditional entropy H(SX |SY ) = H(SXY )−H(SY ) and the mutual information
I(SX :SY ) = H(SX) − H(SX |SY ). All through the paper, P and Q stand for
finite sets with Q = Ppo for some po /∈ P .

Definition 1 (Access function). An access function on a set P is a monotone
increasing function

Φ : P(P ) → [0, 1]

with Φ(∅) = 0 and Φ(P ) = 1. An access function is said to be perfect if its only
values are 0 and 1. An access function is called rational if it only takes rational
values.

Definition 2 (Access structure). If A,B ⊆ P(P ) are nonempty families of
subsets of P such that A is monotone decreasing, B is monotone increasing, and
A ∩ B = ∅, then the pair Γ = (A,B) is called an access structure on P . The
sets in A and the sets in B are, respectively, the forbidden and the authorized
sets of the access structure Γ . In a perfect access structure, every subset of P is
either forbidden or authorized.

Definition 3. For an access function Φ on P , a set X ⊆ P is forbidden for
Φ if Φ(X) = 0, and it is authorized for Φ if Φ(X) = 1. Then every access
function Φ on P determines an access structure Γ (Φ) = (A(Φ),B(Φ)) on P ,
where A(Φ) ⊆ P(P ) and B(Φ) ⊆ P(P ) are the families of the forbidden and,
respectively, the authorized subsets for Φ.

Definition 4 (Secret sharing scheme). Let Q be a finite set of partici-
pants, let po ∈ Q be a distinguished participant, which is called dealer, and
take P = Q−po. A secret sharing scheme Σ on the set P is a collection (Si)i∈Q

of discrete random variables such that H(Spo) > 0 and H(Spo |SP ) = 0. The ran-
dom variable Spo corresponds to the secret, while the random variables (Si)i∈P

correspond to the shares of the secret that are distributed among the participants
in P .

Definition 5 (Access function and access structure of a secret sharing
scheme). The access function Φ of a secret sharing scheme Σ = (Si)i∈Q is
defined by

Φ(X) =
I(Spo :SX)

H(Spo)
.

In addition, Γ (Φ) is the access structure of the secret sharing scheme Σ. A secret
sharing scheme is perfect if its access function is perfect.
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If X ⊆ P is an authorized set for Σ, then H(Spo |SX) = 0, which implies
that the secret values can be recovered from the shares of the participants in X .
On the other hand, the random variables Spo and SX are independent if X is
a forbidden set for Σ. In this situation the shares of the participants in X do
not provide any information on the secret value. In any other case, the value
Φ(X) determines the amount of information on the secret that is provided by
the shares of the participants in X .

Definition 6 (Gap and maximum increment). The gap g(Γ ) of an access
structure Γ = (A,B) is defined as g(Γ ) = min{|B − A| : A ∈ A, B ∈ B}. The
gap g(Φ) of an access function Φ is defined as the gap of the associated access
structure. The maximum value Φ(Xy) − Φ(X) for X ⊆ P and y ∈ P is called
the maximum increment of the access function Φ is denoted by μ(Φ).

Definition 7 (Least common denominator of a rational access func-
tion). The least common denominator M(Φ) of a rational access function Φ is
the least common denominator of the values of Φ.

Definition 8 (Uniform access function). An access function Φ on P is uni-
form if Φ(A) = Φ(B) for every A,B ⊆ P with |A| = |B|. Uniform secret sharing
schemes are those with uniform access function.

Definition 9 (Threshold access structure). Let t, r, n be integers with 0 ≤
t < r ≤ n. In the (t, r, n)-threshold access structure on a set P with |P | = n,
the forbidden sets are those with at most t participants, and the authorized sets
are those with at least r participants. The values t and r are called, respectively,
the privacy threshold and the reconstruction threshold.

A threshold access structure is perfect if and only if r = t + 1. Observe
that every uniform access function defines a threshold access structure. The
privacy and reconstruction thresholds of a uniform access function are those
of the associated threshold access structure. Ramp access functions form an
important class of uniform access functions.

Definition 10 (Ramp access function). Given integers t, r, n with 0 ≤ t <
r ≤ n, the (t, r, n)-ramp access function on a set P with |P | = n is defined by:
Φ(X) = 0 if |X | ≤ t, and Φ(X) = (|X |− t)/(r− t) if t < |X | < r, and Φ(X) = 1
if |X | ≥ r.

Example 1. A variant of Shamir’s threshold scheme [35] provides a secret sharing
scheme for every ramp access function. This construction was first presented in
the seminal work on non-perfect secret sharing by Blakley and Meadows [7].
Consider the (t, r, n)-ramp access function on the set P = {1, . . . , n}. Let K be a
finite field of size |K| ≥ n+g, where g = r−t is the gap of the access function, and
take n+g different elements y1, . . . , yg, x1, . . . , xn ∈ K. By choosing uniformly at
random a polynomial f ∈ K[X ] with degree at most r − 1, one obtains random
variables Spo = (f(y1), . . . , f(yg)) ∈ Kg and Si = f(xi) ∈ K for every i ∈ P . It is
not difficult to check that these random variables define a secret sharing scheme
for the (t, r, n)-ramp access function on P .
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The length of the shares is a measure for the efficiency of a secret sharing
scheme. We use the Shannon entropy as an approximation of the shortest binary
codification. The information ratio σ(Σ) of a secret sharing Σ = (Si)i∈Q is the
ratio between the maximum length of the shares and the length of the secret
value, that is,

σ(Σ) =
maxi∈P H(Si)

H(Spo)
.

The optimal information ratio σ(Φ) of an access function Φ is defined as the
infimum of the information ratios of the secret sharing schemes for Φ. A secret
sharing scheme attaining σ(Φ) is called optimal. The following is a well known
lower bound on the optimal information ratio. An alternative proof for this result
is presented here in Propositions 4 and 5.

Proposition 1 ([22, 29, 30]). Let Φ be an access function with maximum
increment μ(Φ) and gap g(Φ). Then its optimal information ratio σ(Φ) satisfies
σ(Φ) ≥ μ(Φ) ≥ 1/g(Φ). In particular, the optimal information ratio of every
perfect access function is at least 1.

Definition 11 (Linear secret sharing scheme). Let K be a finite field and
let � be a positive integer. In a (K, �)-linear secret sharing scheme, the random
variables (Si)i∈Q are given by surjective K-linear maps Si : E → Ei, where the
uniform probability distribution is taken on E and dimEpo = �.

In a K-linear secret sharing scheme (Si)i∈Q, the random variable SX is uniform
on its support for every X ⊆ Q. Because of that, H(SX) = rankSX · log |K|, and
hence

I(Spo :SX) = (rankSpo + rankSX − rankSXpo) log |K|.
This implies that the access function of every linear secret sharing scheme is
rational and its information ratio is rational too. For a rational access function
Φ, we define λ(Φ) as the infimum of the information ratios of the linear secret
sharing schemes for Φ. Clearly, λ(Φ) is an upper bound of σ(Φ).

Remark 1. The secret sharing scheme presented in Example 1 is linear. As a con-
sequence, the (t, r, n)-ramp access function admits a (K, g)-linear secret sharing
scheme for every finite field K with |K| ≥ n+g, where g = r−t. By Proposition 1,
this linear scheme has optimal information ratio, equal to the lower bound 1/g.

Remark 2. A (K, �)-linear secret sharing scheme with information ratio σ is de-
termined by linear maps Si : E → Ei with dimEi ≤ max{�, σ�} for every i ∈ Q
and dimE ≤

∑
i∈Q dimEi. Therefore, the computation time for both the distri-

bution phase (computing the secret value and the shares) and the reconstruction
phase (partially or totally recovering the secret value from some shares) is poly-
nomial in log |K|, �, σ and the number of participants.

Remark 3. Let Φ be a rational access function on P and let M = M(Φ) be its
least common denominator. Clearly, � ≥ M for every (K, �)-linear secret sharing
scheme for Φ. Therefore, by Remark 2, the efficiency of the linear secret sharing
schemes for Φ depends on M(Φ).
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4 A Secret Sharing Scheme for Every Access Function

It is well known that every perfect access function admits a perfect secret sharing
scheme [19, 5]. We present in Theorem 1 an extension of this result to the general
case.

Remark 4. Similarly to the construction in [19] for the perfect case, our general
construction is based on a very simple perfect secret sharing scheme for which the
only authorized set is the full set of participants. Let G be a finite abelian group
(with additive notation). Let Tpo be an arbitrary random variable with support
G. Fix a participant q ∈ P and take independent uniform random variables
(Ti)i∈P−q with support G. Finally, take Tq = Tpo −

∑
i∈P−q Ti. It is not difficult

to see that T = (Ti)i∈Q is a perfect secret sharing scheme whose only authorized
set is P .

Theorem 1. Every access function admits a secret sharing scheme. Moreover,
every rational access function Φ admits a (K,M(Φ))-linear secret sharing schemes
for every finite field K.

Proof. Let Φ be an access function on the set of participants P . Let M be the
smallest positive integer such that �MΦ(X)� �= �MΦ(Y )� if Φ(X) �= Φ(Y ).
Consider the sets

– Ω = {�MΦ(X)� : X ⊆ P} − {0} ⊆ {1, . . . ,M}, and
– Ω1 = {�MΦ(X)� : X ⊆ P, MΦ(X) /∈ Z} ⊆ Ω.

We construct in the following a secret sharing scheme Σ = (Si)i∈Q for Φ.
We begin by describing the random variable Spo corresponding to the secret

value. Specifically, we take Spo =
∏M

k=1 S
k, where (Sk)1≤k≤M are independent

random variables with entropy H(Sk) = 1 that are described next. Let F2 be the
field with order 2 and let h be the binary entropy function. If k = �MΦ(X)� ∈
Ω1, take εk = k −MΦ(X), which satisfies 0 < εk < 1, and take Sk = Sk

0 × Sk
1 ,

where Sk
0 and Sk

1 are independent random variables with support F2 such that
Pr[Sk

0 = 0] = min h−1(εk) and Pr[Sk
1 = 0] = minh−1(1−εk). If k ∈ {1, . . . ,M}−

Ω1, then Sk is a uniform random variable with support F2.
Now, we proceed to describe the random variables corresponding to the shares

of the participants. Take k ∈ Ω. Let Ck ⊆ P(P ) be the family of the subsets
X ⊆ P with �MΦ(X)� = k that are minimal with this property. Consider the
random variable

T k
po

= S1 × · · · × Sk−1 × Ŝk,

where Ŝk = Sk
1 if k ∈ Ω1 and Ŝk = Sk otherwise. Observe thatH(T k

po
) = MΦ(X)

for every X ∈ Ck. The support of T k
po

is Fm
2 for some integer m ≥ k. For

every X ∈ Ck, take the secret sharing scheme T(X) = (T
(X)
i )i∈Xpo described in

Remark 4 with T
(X)
po = T k

po
and G = Fm

2 . The random variable T k
po

is the same

for all schemes T(X) with X ∈ Ck, that is, all these schemes distribute shares

for the same secret value. The other random variables T
(X)
i are instantiated
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independently for different sets X . For every participant i ∈ P take the family
of subsets

Di =
⋃
k∈Ω

{X ∈ Ck : i ∈ X} ⊆ P(P ).

Finally, the random variable Si corresponding to the share of a participant i ∈ P
is defined by

Si =
∏

X∈Di

T
(X)
i .

That is, the share of every participant is composed of sub-shares from the
schemes T(X) corresponding to the sets X ⊆ P such that i ∈ X and X ∈ Ck for
some k ∈ Ω.

Clearly, H(T k
po
|SY ) = 0 for every subset Y ⊆ P with k = �MΦ(Y )�. On the

other hand, it is not difficult to prove that the shares of the participants in Y
do not provide any information about the other components of the secret value,
and hence I(Spo :SY ) = H(T k

po
) = MΦ(Y ). Since H(Spo) = M , this implies that

the scheme Σ = (Si)i∈Q has access function Φ.
Some modifications in the previous construction are needed to prove the sec-

ond part of the theorem. If Φ is rational, take M = M(Φ), the least common
denominator of Φ. The set Ω is defined analogously but in this case Ω1 = ∅.
Given a finite field K, take Spo =

∏M
k=1 S

k, where (Sk)1≤k≤M are independent
random variables and each Sk is a uniform random variable with support K. At
this point, a (K,M)-linear secret sharing scheme with access function Φ can be
constructed by using the same steps as in the previous construction. #$

The above construction is not efficient because the information ratio is expo-
nential in the number of participants. The construction can be refined in order
to slightly decrease the information ratio, but no constructions are known in
which the information ratio is not exponential.

5 Polymatroids and Secret Sharing

The connection between perfect secret sharing schemes and polymatroids has
been used in order to obtain bounds on the information ratio [13, 25]. It is
derived from the connection between polymatroids and Shannon entropy that
was discovered by Fujishige [16, 17] and is described here in Theorem 2. In this
section, we discuss the extension of this connection to non-perfect secret sharing
schemes. For a function F : P(Q) → R, a subset X ⊆ Q and y, z ∈ Q, we notate

ΔF (X ; y, z) = F (Xy) + F (Xz)− F (Xyz)− F (X).

Definition 12. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the
ground set, and a rank function f : P(Q) → R satisfying the following properties.

– f(∅) = 0.
– f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
– f is submodular: f(X ∪Y )+ f(X ∩Y ) ≤ f(X)+ f(Y ) for every X,Y ⊆ Q.
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If S = (Q, f) is a polymatroid, then λS = (Q, λf) is also a polymatroid
for every positive real number λ. We say that λS is a multiple of S. The fol-
lowing characterization of rank functions of polymatroids is a straightforward
consequence of [34, Theorem 44.1].

Proposition 2. A map f : P(Q) → R is the rank function of a polymatroid with
ground set Q if and only if f(∅) = 0 and Δf (X ; y, z) ≥ 0 for every X ⊆ Q and
y, z ∈ Q−X.

Theorem 2 (Fujishige [16, 17]). If (Si)i∈Q is a tuple of discrete random
variables, then the map f : P(Q) → R defined by f(X) = H(SX) is the rank
function of a polymatroid with ground set Q.

Because of the connection between polymatroids and the Shannon entropy
described in the previous theorem, and by analogy to the conditional entropy,
we write f(X |Y ) = f(XY )− f(Y ) for every X,Y ⊆ Q.

As a consequence of Theorem 2, every secret sharing scheme determines a
polymatroid. For perfect secret sharing schemes, this connection was first used
in [13]. This is a useful tool for the study of secret sharing schemes.

Definition 13. Let Σ = (Si)i∈Q be a secret sharing scheme on P . Every mul-
tiple of the polymatroid (Q, f), where f(X) = H(SX) for every X ⊆ Q, is called
a Σ-polymatroid.

Definition 14. Let Φ be an access function on P and let S = (Q, f) be a poly-
matroid. Then S is an Φ-polymatroid if

Φ(X) =
f(po)− f(po|X)

f(po)

for every X ⊆ P .

We say that a polymatroid S = (Q, f) is normalized if f(po) = 1. A polyma-
troid S = (P, f) is compatible with the access function Φ if S can be extended
to a normalized Φ-polymatroid S ′ = (Q, f). The following is a generalization of
a result by Csirmaz [13, Proposition 2.3] on perfect secret sharing.

Proposition 3. A polymatroid S = (P, f) is compatible with an access function
Φ on P if and only if Δf (X ; y, z) ≥ ΔΦ(X ; y, z) for every X ⊆ P and y, z ∈
P −X.

6 Lower Bounds on the Information Ratio

On the basis of the connection between secret sharing and polymatroids, we
introduce in this section two parameters, κ(Φ) and ε(Φ), that provide lower
bounds on the optimal information ratio σ(Φ). The first one is a straightforward
generalization of the corresponding parameter for perfect secret sharing that
was introduced in [25]. The second one is only relevant for non-perfect secret



228 O. Farràs et al.

sharing. It makes it possible to generalize a previous result by Csirmaz on the
limitation of Shannon inequalities to find lower bounds on the information ratio
and, more importantly, to find a tight lower bound on the optimal information
ratio of uniform access functions.

For a polymatroid S = (Q, f) we define

σpo(S) =
maxx∈P f(x)

f(po)
.

If S is a Σ-polymatroid, then σ(Σ) = σpo(S). In addition, we define

κ(Φ) = inf{σpo(S) : S is a Φ-polymatroid}. (1)

Observe that, if Σ is a secret sharing with access function Φ, then every Σ-
polymatroid is a Φ-polymatroid. Because of that, κ(Φ) ≤ σ(Φ). It is not difficult
to prove that κ(Φ) ≥ μ(Φ) ≥ 1/g(Φ) for every access function Φ [15, 29, 30]. In
particular, this implies the well known fact that the information ratio of every
perfect secret sharing scheme is at least 1.

The search of κ(Φ) for an access function Φ can be restricted to the family of
the normalized Φ-polymatroids. The value of κ(Φ), which is a lower bound on
σ(Φ), can be computed by means of the linear programming program determined
by the Shannon information inequalities and the access function. This approach
has been used in several works on perfect secret sharing, as for instance [32]. The
infimum in (1) is a minimum and, moreover, κ(Φ) is rational if Φ is rational.

For an ordering τ = (τ1, . . . , τn) of the participants in P , we take Aτ
0 = ∅

and Aτ
i = {τ1, . . . , τi} for every i = 1, . . . , n. For a function F : P(P ) → R and

for i = 1, . . . , n, consider δτi (F ) = ΔF (A
τ
i−1; τi, τn). Observe that

∑n
i=1 δ

τ
i (F ) =

F (τn)− F (∅).

Definition 15. Let Φ be an access function on P , with |P | = n. We define ε(Φ)
as the maximum of

∑n
i=1 max{0, δτi (Φ)} among all orderings τ of P .

Observe that max{0, δτi (Φ)} ≤ Φ(Aτ
i ) − Φ(Aτ

i−1), and hence ε(Φ) ≤ 1. As a
consequence of the next proposition, ε(Φ) = 1 if Φ is a perfect access function.
In addition, this result provides an alternative proof for the previously known
basic lower bounds [29, 33] (see Proposition 1).

Proposition 4. Let Φ be an access function on P . Then ε(Φ) ≥ Φ(Xy)−Φ(X)
for every X ⊆ P and y ∈ P −X. In particular, ε(Φ) ≥ μ(Φ) ≥ 1/g(Φ).

It is known that 1 ≤ κ(Φ) ≤ |P | for every perfect access function [13, 22].
These bounds on κ are extended to the non-perfect case by proving that ε(Φ) ≤
κ(Φ) ≤ ε(Φ) · |P | in Proposition 5. Combined with Proposition 4, this implies
that ε(Φ) is in general a better lower bound on κ(Φ) than 1/g(Φ).

Proposition 5. Let Φ be an access function on a set of n participants. Then
ε(Φ) ≤ κ(Φ) ≤ nε(Φ).
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7 Concatenating Secret Sharing Schemes

We analyze here a simple way to combine secret sharing schemes. For each j =
1, . . . ,m consider a positive integer qj and a secret sharing scheme Σj = (Sji)i∈Q

with access function Φj . A secret sharing scheme Σ =
∏m

j=1 Σ
qj
j is obtained by

concatenating m secret sharing schemes, each consisting of qj instances of Σj .
That is, Σ = (Si)i∈Q with Si = (S1i)

q1 × · · · × (Smi)
qm for every i ∈ Q. Observe

that H(SX) =
∑m

j=1 qjH(SjX) for every X ⊆ Q. Because of that, the access
function Φ of Σ is given by

Φ(X) =
I(Spo :SX)

H(Spo)
=

∑m
j=1 qjI(Sjpo :SjX)∑m

j=1 qjH(Sjpo)

for every X ⊆ Q. Therefore,

Φ =

m∑
j=1

ρjΦ
j , where ρj =

qjH(Sjpo)∑m
k=1 qkH(Skpo)

for j = 1, . . . ,m.

That is, Φ is a convex combination of the access functions Φ1, . . . , Φm. Moreover,
if σj is the information ratio of Σj, then the information ratio σ of Σ satisfies
σ ≤

∑m
j=1 ρjσj . For more details, see [14].

This leads to the following result, which will be used in our construction of
optimal secret sharing schemes for rational uniform access functions.

Proposition 6. For j = 1, . . . ,m, let Φj be an access function on P that admits
a (K, �j)-linear secret sharing scheme with information ratio σj. Let ρ1, . . . , ρn
be rational numbers with 0 < ρj < 1 and

∑m
j=1 ρj = 1. Let M be a positive

integer such that Mρj is integer for every j = 1, . . . ,m. Then the access function
Φ =

∑m
j=1 ρjΦ

j admits a (K, �)-linear secret sharing scheme with information

ratio σ ≤
∑m

j=1 ρjσj and � = M�1 · · · �m.

8 Uniform Secret Sharing Schemes

Uniform access functions generalize the perfect threshold access structures. It
is well known that these access structures admit a linear secret sharing scheme
with optimal information ratio, namely Shamir’s secret sharing scheme [35]. We
extend here this fundamental result by determining in Theorem 4 the optimal
information ratio of all uniform access functions and presenting in Theorem 3 a
construction of linear secret sharing schemes with optimal information ratio for
all rational uniform access functions.

A uniform access function Φ on a set P with |P | = n is determined by the
values

0 = Φ0 ≤ Φ1 ≤ · · · ≤ Φn = 1,

where Φ(X) = Φi for every X ⊆ P with |X | = i. Therefore, a uniform access
function is determined by its increment vector

Φ′ = (Φ′
1, . . . , Φ

′
n),
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where Φ′
i = Φi − Φi−1. Observe that Φ′

i ≥ 0 and
∑n

i=1 Φ
′
i = 1. We use the

convention Φ′
n+1 = 0.

Proposition 7. Every (rational) uniform access function is a (rational) convex
combination of perfect ramp access functions.

Similarly to the perfect case, every rational uniform access function admits a
linear secret sharing scheme with information ratio equal to 1.

Corollary 1. Let Φ be a rational uniform access function on a set P of n par-
ticipants and let M = M(Φ) be the least common denominator of Φ. Then, for
every finite field K with |K| ≥ n+1, the access function Φ admits a (K,M)-linear
secret sharing scheme with information ratio equal to 1.

Remark 5. By Remark 2, the efficiency of this linear scheme depends on the
least common denominator of the access function. Specifically, the computation
time for both the distribution phase and the reconstruction phase is polynomial
in log |K|, M(Φ) and n.

In the rest of this section we present a construction of optimal linear se-
cret sharing schemes for all rational uniform access functions. Nevertheless, the
schemes that are obtained in this way are not efficient in general because the
size of the secret value is too large.

Clearly, δτi (Φ) = Φ′
i − Φ′

i+1 for i = 1, . . . , n and for every ordering τ of P .
Because of that, we notate δi(Φ) = Φ′

i −Φ′
i+1. In particular, the value of ε(Φ) is

determined by the increment vector.

Lemma 1. Let Φ be a uniform access function on a set P of size n. Then

ε(Φ) =

n∑
i=1

max{0, δi(Φ)} =

n∑
i=1

max{0, Φ′
i − Φ′

i+1}.

Example 2. Let Φ be the (t, r, n)-ramp access function, which is uniform and
has gap g = r − t. The increment vector Φ′ is given by Φ′

i = 0 if 1 ≤ i ≤ t or
r + 1 ≤ i ≤ n + 1, and Φ′

i = 1/g if t + 1 ≤ i ≤ r. Therefore, δt(Φ) = −1/g and
δr(Φ) = 1/g, and δi(Φ) = 0 if i �= r, t, and hence ε(Φ) = 1/g.

We proved in Proposition 7 that every uniform access function is a convex
combination of ramp access functions. The next proposition is a refinement of
that result that makes it possible to find an optimal secret sharing scheme for
every rational uniform access function.

Proposition 8. Let Φ be a uniform access function on a set P . Then there exist
ramp access functions Φ1, . . . , Φm on P and positive real numbers ρ1, . . . , ρm with∑m

j=1 ρi = 1 such that

Φ = ρ1Φ
1 + · · ·+ ρmΦm

and ε(Φ) = ρ1ε(Φ
1) + · · ·+ ρmε(Φm). Moreover, if Φ is rational, then the values

ρ1, . . . , ρm are rational.
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Proof. We use induction on the gap g = g(Φ). If g = 1, then Φ is a ramp access
function and the result obviously holds. Suppose that g > 1. Take n = |P | and
let t and r be, respectively, the privacy and the reconstruction thresholds of Φ.
Then g = r−t and Φ′

i = 0 if 1 ≤ i ≤ t or r+1 ≤ i ≤ n+1, while Φ′
t+1, Φ

′
r > 0. Let

� be the smallest integer satisfying t + 1 ≤ � ≤ r and Φ′
� = min{Φ′

t+1, . . . , Φ
′
r}.

We distinguish two cases.

Case 1: Φ′
� = 0. Then t + 1 < � < r and 0 < Φ� < 1. Take ρ = Φ� and consider

the uniform access functions Ψ1 and Ψ2 defined by

Ψ1
i = min

{
Φi

Φ�
, 1

}
, Ψ2

i = max

{
Φi − Φ�

1− Φ�
, 0

}
for every i = 0, 1, . . . , n. Clearly, Φ = ρΨ1+(1−ρ)Ψ2. Since Φ′

� = Φ�−Φ�−1 = 0,
we have that Ψ1

i = 1 if i ≥ � − 1, and hence δi(Ψ
1) = 0 if i ≥ �. In addition,

Ψ2
i = 0 if i ≤ �, and hence δ�(Ψ

2) ≤ 0 and δi(Ψ
2) = 0 if i ≤ �− 1. Therefore,

ε(Φ) =
n∑

i=1

max{0, ρδi(Ψ1) + (1− ρ)δi(Ψ
2)}

= ρ
�−1∑
i=1

max{0, δi(Ψ1)}+ (1− ρ)
n∑

i=�+1

max{0, δi(Ψ2)}

= ρε(Ψ1) + (1− ρ)ε(Ψ2).

Since g(Ψ1) ≤ � − t < g(Φ) and g(Ψ2) ≤ r − � < g(Φ) the theorem holds for Φ
by the induction hypothesis.

Case 2: Φ′
� > 0. Let Ψ1 be the (t, r, n)-ramp access function on P and take

ρ = gΦ′
�. If ρ = 1, then Φ = Ψ1 and the proof is concluded. Suppose that

ρ < 1 and take Ψ2 = (Φ − ρΨ1)/(1 − ρ). Observe that Ψ2
0 = 0 and Ψ2

n = 1.
We claim that (Ψ2)′i ≥ 0 for every i = 1, . . . , n, and hence Ψ2 is a uniform
access function on P . Indeed, (Ψ2)′i = 0 if 1 ≤ i ≤ t or r + 1 ≤ i ≤ n, and
(Ψ2)′i = (Φ′

i − ρ(Ψ1)′i)/(1− ρ) = (Φ′
i − Φ′

�)/(1− ρ) ≥ 0 if t+ 1 ≤ i ≤ r. Since Ψ1

is a ramp access function, δt(Ψ
1) = −1/g and δr(Ψ

1) = 1/g, and δi(Ψ
1) = 0 if

i �= r, t. Then the three values δt(Φ), δt(Ψ
1) and δt(Ψ

2) are non-positive, while
δr(Φ), δr(Ψ

1) and δr(Ψ
2) are non-negative. Therefore, Φ = ρΨ1 + (1− ρ)Ψ2 and

ε(Φ) = ρε(Ψ1) + (1 − ρ)ε(Ψ2). The proof is concluded by checking that Ψ2 is a
convex combination of ramp access functions in the required conditions. Observe
that (Ψ2)′� = 0. If � = t+ 1 or � = r, then g(Ψ2) < g(Φ) and the result holds by
the induction hypothesis. Finally, we can reduce to Case 1 if t+ 1 < � < r. #$

Corollary 2. For every uniform access function Φ, κ(Φ) = ε(Φ).

Theorem 3. Let Φ be a rational uniform access function on a set of partici-
pants P . For every finite field K with |K| ≥ |P | + g(Φ), there exists a K-linear
secret sharing scheme with access function Φ and information ratio σ = ε(Φ).
As a consequence, every rational uniform access function admits a linear secret
sharing scheme with optimal information ratio.
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Corollary 3. For every rational uniform access function Φ, ε(Φ) = κ(Φ) =
σ(Φ) = λ(Φ).

The fact that κ(Φ) = σ(Φ) for a rational uniform access function Φ, proved
in Corollary 3, can also be derived from [11]. The result was obtained indepen-
dently by means of different techniques. However, the computation of the explicit
optimal information ratio, and the construction of the optimal scheme was an
open problem.

The results presented in Theorem 3 and Corollary 3 deal with rational ac-
cess functions. For some non-rational access functions, we can also apply the
techniques used in the proof of Proposition 8 and construct optimal schemes
(see [14]).

We do not have a general method to construct a scheme with optimal in-
formation ratio for every uniform access function but, as it is demonstrated in
the following remark, we can find secret sharing schemes whose parameters are
arbitrarily close to the required ones.

Remark 6. For every non-rational uniform access function Φ on a set P with
n participants, there is a sequence of rational uniform access functions (Φk)k∈N

such that limk→∞
∑n

i=0 |Φi − Φk
i | = 0. Since limk→∞ ε(Φk) = ε(Φ) and ε(Φk) =

σ(Φk), there is a sequence of linear secret sharing schemes (Σk)k∈N satisfying
Φ(Σk) → Φ and σ(Σk) → ε(Φ).

Nevertheless, this is not enough to prove our main result, Theorem 4. Instead,
the following proposition is needed.

Proposition 9. For every uniform access function Φ, there exists a sequence
of secret sharing schemes (Σk)k∈N realizing Φ whose information ratios σ(Σk)
converge to ε(Φ) as k → ∞.

Proof. By Theorem 3, the result is obvious for rational access functions. Let Φ
be a non-rational uniform access function on a set P with n participants. By
Proposition 8, there exist ramp access functions Φ1, . . . , Φm on P and positive
real numbers ρ1, . . . , ρm with

∑m
j=1 ρi = 1 such that Φ = ρ1Φ

1 + · · · + ρmΦm

and ε(Φ) = ρ1ε(Φ
1) + · · · + ρmε(Φm). For every j = 1, . . . ,m, there exists a

sequence of rational numbers (ρjk)k∈N with limk→∞ ρjk = ρj and ρjk ≤ ρj for
every k ∈ N. For every k ∈ N, consider αk =

∑m
j=1 ρjk and the uniform access

functions

Ψk =
ρ1k
αk

Φ1 + · · ·+ ρmk

αk
Φm and Υ k =

ρ1 − ρ1k
1− αk

Φ1 + · · ·+ ρm − ρmk

1− αk
Φm.

Let s be a positive integer with 2s ≥ n+ g(Φ) and let K be the finite field with
order 2s. Since Ψk is rational and g(Ψk) ≤ g(Φ), by Theorem 3 there exists a
(K, �k)-linear secret sharing scheme Σk

1 = (Sk
i )i∈Q with access function Ψk and

information ratio

σ(Σk
1 ) =

m∑
j=1

ρjk
αk

ε(Φj) = ε(Ψk).
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Observe that H(Sk
po
) = s�k. Moreover, we can take �k large enough such that

�s�kΥ k
i � �= �s�kΥ k

i+1� for every 0 ≤ i ≤ n − 1 with Υ k
i �= Υ k

i+1. From the proof
of Theorem 1, there exists a secret sharing scheme Σk

2 = (T k
i )i∈Q with access

function Υ k and H(T k
po
) = s�k. The information ratio of Σk

2 is upper bounded by
a quantity νn that only depends on the number n of participants. Take positive
integers qk and q′k such that 1+qk/q

′
k = 1/αk. Let Σ

k be the concatenation of qk
copies of Σk

1 and q′k copies of Σk
2 . Then the access function of Σk is αkΨ

k +(1−
αk)Υ

k = Φ and its information ratio satisfies ε(Φ) ≤ σ(Σk) ≤ αkε(Ψ
k) + (1 −

αk)νn. The proof is concluded by taking into account that limk→∞ ε(Ψk) = ε(Φ)
and limk→∞ 1− αk = 0. #$

Theorem 4. The optimal information ratio of every uniform access function Φ
is equal to ε(Φ).
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Abstract. The TLS Internet Standard features a mixed bag of crypto-
graphic algorithms and constructions, letting clients and servers negoti-
ate their use for each run of the handshake. Although many ciphersuites
are now well-understood in isolation, their composition remains prob-
lematic, and yet it is critical to obtain practical security guarantees for
TLS, as all mainstream implementations support multiple related runs
of the handshake and share keys between algorithms.

We study the provable security of the TLS handshake, as it is imple-
mented and deployed. To capture the details of the standard and its main
extensions, we rely on miTLS, a verified reference implementation of the
protocol. We propose new agile security definitions and assumptions for
the signatures, key encapsulation mechanisms (KEM), and key deriva-
tion algorithms used by the TLS handshake. To validate our model of key
encapsulation, we prove that both RSA and Diffie-Hellman ciphersuites
satisfy our definition for the KEM. In particular, we formalize the use
of PKCS#1v1.5 and build a 3,000-line EasyCrypt proof of the security
of the resulting KEM against replayable chosen-ciphertext attacks under
the assumption that ciphertexts are hard to re-randomize.

Based on our new agile definitions, we construct a modular proof
of security for the miTLS reference implementation of the handshake,
including ciphersuite negotiation, key exchange, renegotiation, and re-
sumption, treated as a detailed 3,600-line executable model. We present
our main definitions, constructions, and proofs for an abstract model of
the protocol, featuring series of related runs of the handshake with dif-
ferent ciphersuites. We also describe its refinement to account for the
whole reference implementation, based on automated verification tools.

1 Introduction

TLS is the most widely deployed protocol for securing communications and yet,
after two decades of attacks, patches and extensions, its practical security re-
mains unresolved. One of the most troublesome aspects of the protocol is its
handling of a large number of cryptographic algorithms and constructions. New
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extensions are added to the protocol and its implementations, while older fea-
tures remain for backward compatibility. Thus, TLS clients and servers offer
many choices, and each run of the handshake involves a negotiation of the best
protocol version, ciphersuite, and extensions available at both ends. Such a trade-
off between flexibility and security creates several problems:

(1) It makes the security of TLS depend on its correct configuration, inasmuch
as some versions (e.g. SSL2) and algorithms (e.g. MD5 and RC4) are much
weaker than others, and may also suffer from different implementation flaws.
In theory, only very restrictive configurations have been proved secure. In
practice, dangerous mis-configurations of TLS are commonplace.

(2) It complicates the protocol logic, as the integrity of the negotiation itself re-
lies on algorithms being negotiated; this is a persistent source of attacks, from
protocol regression in SSL2 [27] to version fallback in current browsers [18].

(3) It demands stronger security assumptions, to reflect the fact that honest par-
ties may use the same key materials with different algorithms. Intuitively,
TLS on its own enables a range of chosen-protocol attacks whereby a weak
algorithm (chosen by the attacker) may compromise the security of stronger
algorithms (chosen by honest parties). We detail below several constructions
of TLS that demand joint assumptions on collections of algorithms. Sur-
prisingly, prior work on the provable security of TLS failed to make this
observation or left it implicit.

Besides interference between multiple algorithms, TLS features dependencies
between multiple runs of the handshake. For instance, a client connection may
first run an RSA-based session to establish a master secret and keys for the
record layer, then run a second session on the same connection, possibly with
different algorithms and certificates. Using a parallel connection, the client may
run a third resumption handshake, re-using the master secret of a prior session to
derive new keys. At that point, the security of those keys depends on algorithms
and constructions used in three runs of the handshake. (See for instance [5] for
recent attacks involving three related handshakes.) This is in sharp contrast with
prior work on the provable security of TLS [13, 16, 17], which focus on a fixed
run of the protocol, for a fixed choice of algorithms.

1.1 Cryptographic Agility

Agile security considers families of schemes or protocols, all serving the same
purpose, when the same keys are shared across members of the family. Acar
et al. [1] propose agile definitions for pseudo-random functions (PRF) and en-
cryption schemes, and advocate agility as a major practical concern for protocols
like TLS. Instead, combined, or joint security [12] studies the sharing of keys be-
tween constructions serving different purposes, e.g. encryption and signing. TLS
requires both agile and joint security; in the remainder we let the term agility
encompass both concepts.

The agility mechanisms of TLS ares primarily driven by ciphersuites of the
form TLS e s WITH r, which indicates a key encapsulation mechanism (KEM) e
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and signature scheme s for the handshake, and an authenticated encryption
scheme r for the record layer. For instance, the commonly-used ciphersuite TLS
RSA WITH AES 256 CBC SHA indicates an RSA handshake: the client sends a fresh
premaster secret encrypted under the server public key; both parties use it to
extract a master secret, used in turn as the seed of a SHA1-based PRF to derive
4 keys for SHA1-based MACs and AES encryption in CBC mode. TLS 1.2 cur-
rently has 314 registered ciphersuites. More precisely, the choice of algorithms
depends on additional data exchanged during the handshake (hence subject
to active attacks), including protocol versions, certificate requests, certificate
chains, and various extensions in the first two messages of the handshake (e.g.
for choosing hash functions and elliptic curves). Still, because of key reuse across
algorithms, we stress that the security of TLS does not reduce to the security of
a few thousand fixed-algorithm variants of the handshake.

1.2 Empirical Study of Web Servers and Browsers

Using an online analyzer [24], we gathered extended information on server
configurations for 215 of the top 500 domains,1 including the TLS versions,
ciphersuites, certificates, and extensions they offer. These servers accept 64 ci-
phersuites, with an average of 12 and standard deviation of 6. They still widely
deploy weak algorithms: 70% accept at least one ciphersuite with MD5 and 90%
at least one with RC4. All servers but one offer several versions; 37% offer only
SSL3 and TLS 1.0; 56% offer all 4 versions from SSL3 to TLS 1.2. Although now
forbidden by the standard, 3% still accept SSL2.

We also tested 12 TLS clients, including major web browsers (Chrome, Fire-
fox, Internet Explorer, Safari) and libraries (NSS, OpenSSL, SChannel, Secure
Transport). These clients similarly propose a large number of ciphersuites, rang-
ing from 19 to 36; they all propose weak hash (MD5) or encryption methods
(RC4, or even no encryption).

1.3 Cross-Ciphersuite Attacks

As a first example, most TLS servers are configured to use the same RSA certifi-
cate both for signing handshake messages and for decrypting premaster secrets.
Experimentally, 69% of the servers we tested propose at least one ciphersuite
using RSA for encryption and one using it for signing, and all 138 of those use
the same key for both purposes.

As a second example, Mavrogiannopoulos et al. [20] report a cross-protocol
attack between plain Diffie-Hellman (DH) and Elliptic-Curve Diffie-Hellman
(ECDH) ciphersuites, due to a mis-interpretation of the signed group description
sent by the server. Each family of ciphersuites is (a priori) secure in isolation,
but configurations enabling a DH client and an ECDH server are subject to their
attack.

1 http://www.alexa.com/topsites/global, as of January 2014, excluding domains
with no valid HTTPS certificate.

http://www.alexa.com/topsites/global
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Our third example concerns the record algorithms (the r in TLS e s WITH r).
Recall that both parties derive keys for r immediately after the KEM phase,
and start using them before verifying the Finished messages that confirm the
integrity of the handshake. As an optimization, the optional False Start TLS
extension [19] lets clients send private application data before key confirmation.
Depending on r, the same key materials are split into IVs, MAC keys, and
encryption keys of various lengths. Hence, the client and the server may start
using the same bits with different algorithms rC and rS , for instance as an IV at
the client and as a MAC key at the server. To our knowledge, we are the first to
report this cross-algorithm attack against [19]. We do not have an exploit based
on two standard record algorithms (rC , rS) but one can easily design a pair of
schemes strong in isolation and subject to the attack, and key recovery attacks
against any standard algorithm rC could be used to attack strong rS algorithms.

1.4 Multiple Sessions and Connections

Following the standard, we recall TLS terminology for multiple related hand-
shakes; this differs from the key-exchange model of Bellare & Rogaway [3] with
only one kind of sessions and no shared state between sessions. Local instances
of the protocol provide a connection (concretely, taking ownership of a TCP con-
nection), either as client or as server. Each connection goes through a sequence
of epochs, each epoch running one handshake. For a given connection, we refer
to additional handshakes in the sequence as renegotiations. We refer to epochs
performing full handshakes as sessions, and to epochs performing abbreviated
handshakes as resumptions. We have a transition from the current epoch to the
next each time a handshake completes by successfully processing the last mes-
sage of the handshake. Abstractly, the local instance never stops; it is then ready
to send (or receive) the first message of the next handshake.

Sessions intend to establish a fresh master secret, associated with data ex-
tracted from the handshake messages that record its origin and purpose, and
used to derive fresh keys for the record layer. Resumptions instead rely on a
prior complete session to save the cost of public-key cryptography and directly
derive fresh keys using the algorithms and master secret of the original session.
For each epoch, the handshake consists of a series of messages exchanged us-
ing the current record-layer protection mechanisms, initially in the clear, then
typically using authenticated encryption.

1.5 Proving the TLS Handshake Secure

The scope of this paper is the TLS handshake, as it is specified in the Internet
Standard and (to a lesser extent) as it is commonly used. We model multiple,
related sessions and connections, and the agility issues caused by multiple ci-
phersuites featuring RSA and DHE key exchanges. We also model unilateral
and mutual authentication, based on RSA and (EC)DSA signatures. On the
other hand, we do not cover static DH, PSK, and ECDHE key exchanges, and
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we do not investigate the joint usage of keys for signing and encryption. (See the
full paper for their discussion.)

Our main result is provable security for a standard-compliant, reference im-
plementation of the handshake, seen as a detailed cryptographic model of the
protocol. Our provably-secure handshake code consists of 3,600 lines of F#. Its
security relies on new agile assumptions, notably for its KEMs. We reduce them
to lower-level assumptions on RSA encryption and Diffie-Hellman exchange, us-
ing a 3,000-lineEasyCrypt [2] proof. Working with a reference implementation,
and testing it against mainstream implementations, forces us to handle the de-
tails of multiple handshakes and algorithms. Proving it secure requires both
modularity and automation.

A feature of TLS that traditionally resists abstraction is that the handshake
releases algorithms and derived keys to the record layer before the handshake
completes, so that its last messages can be exchanged as TLS fragments protected
by the new keys. We revisit the cryptographic folklore that the handshake can
only be proved secure by including these encrypted messages. The kernel of the
lore is that it cannot be proved using a Bellare & Rogaway-style key-exchange
definition. To achieve modularity, we separate record-key generation from hand-
shake completion: our main definition releases the record keys in the middle of
the handshake, before signaling its completion a few messages later. Since the
handshake does not rely on record-layer protection, we can safely let the hand-
shake adversary control both the network and the record layer. Completion is
still necessary to confirm that the record keys are secure before encrypting any
application data—but not for encrypting handshake Finished messages.

We stress that this paper establishes the security of the handshake, seen as a
component of TLS, not the full communications protocol. Our main construc-
tion provides key indistinguishability, and ensures agreement on parameters for
the record layer. Our results complement those of Bhargavan et al. [4], who de-
scribe miTLS, an implementation of TLS verified in the computational model
of cryptography; they focus on the main TLS API and application security, but
rely on stronger, ad hoc assumptions for RSA and Diffie-Hellman ciphersuites.
Our handshake is integrated with miTLS, which provides additional definitions
and verified code for the record layer and the protocol logic. (Their security
model ensures in particular that the record keys are used for protecting applica-
tion data only after handshake completion [4].) By composing our results with
theirs, we obtain security for a reference implementation of the TLS standard
and the sample applications built and verified on top of miTLS.

1.6 Overview of the Paper

We see the use of a verified reference implementation and automated tools as es-
sential to precisely account for multiple related epochs and algorithms in TLS; §6
briefly describes our use of high-level programming, type systems, and provers to
carry outmodular cryptographic verification at this scale.Topresent our result and
explain its proof structure, however, we rely on more succinct definitions and con-
structions, given in §2–5 and outlined below. Thismore abstract treatment suffices
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to convey the main ideas, but it necessarily omits many aspects of the handshake,
such as its message formats.We refer to the standard [9] or the implementation for
the details. Also, for simplicity, we do not model forward secrecy and state reveal
e.g. for master secrets, and we consider only static compromise for long-term keys.

Signatures (§2) and Certificates. We begin with a relatively simple agile def-
inition. TLS supports three core signature algorithms, s ∈ {RSA,DSA,ECDSA},
used with a range of algorithms h to hash the text before signing. The hash al-
gorithm depends on protocol versions, ciphersuites and extensions. TLS does
not enforce any key-based hash algorithm policy, so we need a notion of security
that tolerates some weak algorithms in the standard. For instance, a verifier
tricked into using MD5 may remain secure, provided the signer only uses SHA1,
and vice-versa. For each core algorithm s, we define h∗-H-security against an
adversary that must forge a valid signature for algorithms (s, h∗), given access
to signing oracles for any algorithms (s, h) with h ∈ H . We show that a family of
secure schemes may not be jointly secure, but we leave open its concrete analysis
for the range of algorithms used in TLS.

Our model excludes any validation rules for certificates and their PKI, an
important problem outside the scope of the TLS standard. Our constructions
simply authenticate the exchanged certificate chains, and use a specification
function to extract from them the public keys used in the handshake.

Master Secrets, Key Encapsulation, and Key Derivation (§3). Following
Krawczyk et al. [17], we use KEMs [8] to model key-exchange; this allows us to
unify RSA and Diffie-Hellman within the same formalism. Instead of treating the
whole handshake as a KEM, however, following Morrissey et al. [21], we decom-
pose it into premaster secret, master secret, and record-key derivation phases;
this yields the modularity we need e.g. for modeling the re-use of master secrets
between handshakes. We show how to securely construct a master secret KEM
from a premaster secret KEM for RSA and Diffie-Hellman ciphersuites (The-
orem 1) and, independently, how to derive record keys and Finished messages
from master secrets (see the full paper). We formalize the proof of Theorem 1
in EasyCrypt. For RSA, this involves showing that countermeasures to Ble-
ichenbacher’s attacks [6, 15] provide enough protection against chosen-ciphertext
attacks. We rely on the assumption that PKCS#1v1.5 ciphertexts are hard to
re-randomize; we leave open the problem of further reducing this conjecture to
standard RSA assumptions. Our result does not directly compare to the one of
Krawczyk et al. as their KEM also includes key derivation and Finished mes-
sages, whereas we rely on this new assumption. To comply with the standard,
we also support agility in the algorithm used to extract master secrets from a
premaster secrets. As for agile signatures, we arrive at a definition parameterized
by an algorithm for the encryptor and a set of algorithms for the decryptor.

Once established, the master secret is used to key a pseudo-random function
(PRF) for multiple epochs for two purposes: (1) to derive the record-layer key
materials for the epoch; and (2) to compute the MACs of all messages exchanged
in an epoch to verify its integrity. Our corresponding security definition (in the
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full paper) requires that adversaries commit to a record-layer algorithm r before
key derivation. This let us support the negotiation of r without having to make
agile assumptions for the record layer, as discussed in §1.3.

Agile Security Model (§4) and Proof (§5) for Sequences of Hand-
shakes. The main two goals of the handshake are to establish shared keys for
the record layer, and to agree on many parameters, including those used in the
handshake itself. To this end, we propose a new security definition that covers
multiple epochs on different connections, related by resumptions and renegotia-
tions. We equip our adversary (informally including the rest of TLS, the applica-
tion, and the network) with oracles to create honest connections and long-term
keys for clients and servers, to control their usage, and to exchange handshake
messages. Each honest instance of the protocol represents a connection, and logs
a sequence of local assignments, recording its view on the successive epochs of
the connection. This enables us to capture TLS assignments in a generic manner.
Our main integrity result is that, when a handshake completes, and under suit-
able conditions on algorithms and keys, honest clients and servers agree on all
assignments for all epochs on the connection. More explicitly, for new sessions,
both parties agree on a unique label; the negotiation algorithms, parameters,
and key-exchange values; and the optional certificate chains for the client and
the server. For resumptions, both parties agree on the label of the session being
resumed, as well as a fresh unique label for key derivation.

We also provide secure key derivation, depending on distinguished exchange-
value assignments for each ciphersuite. They are somewhat similar to session
identifiers in Bellare-Rogaway models but are used to define both safety, akin
to freshness, and partnering. A session is safe when honest client and server
agree on these assignments, under suitable conditions on algorithms and long-
term keys. As discussed above, our definition immediately releases all connection
keys. We guarantee that the keys of safe sessions are indistinguishable from fresh
random keys; this accounts for selective session key reveal and test queries in
Bellare-Rogaway models. Additionally, we provide verified safety, that is, suffi-
cient conditions on the recorded long-term keys that enable honest parties to
infer that their session is safe.

Our main result (§5, Theorem 2) reduces the concrete security of the TLS
handshake to agile assumptions on the constructions used for signatures, KEMs,
and PRFs. Each epoch assigns a distinguished agility-parameter a, selecting all
algorithms for the epoch. The theorem statement is parameterized by a predicate
α on a that holds whenever all algorithms selected by a are (assumed to be)
secure. Thus, it provides meaningful security only for epochs where α(a) holds,
despite any other epochs. If α is always false, there is nothing to prove. If we care
specifically about one ciphersuite, say TLS DHE DSS WITH 3DES EDE CBC SHA, we
may apply our theorem with α set to true only when a selects that ciphersuite.
This already improves on non-agile results for TLS that assume all honest parties
agree in advance on a ciphersuite and reject any others.

Our model accounts for agility with respect to record algorithms, and yields
channel security for miTLS without agile assumptions on the algorithms r used
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in the record layer. We thus validate the use of stateful LHAE [23] for clients
and servers that negotiate r. We require, however, that no application data be
sent before the Finished messages are verified. For implementations that violate
this requirement [19], stronger agile assumptions seem unavoidable.

Code-Based Verified Implementation (§6). We finally present the reference
implementation of the handshake we integrated into miTLS, and its verification
against our security definition, based on the same modular proof structure but
at a greater level of detail, relying on type-based verification for scalability. Our
code supports the standard and commonly-used extensions; we tested it against
various mainstream TLS clients and servers, using 4 versions ranging from SSL3
to TLS 1.2, 12 ciphersuites, and various subsets of extensions. It improves on
the original miTLS code [4], which supported less features, and whose security
relied on monolithic, TLS-specific assumptions for RSA and DH ciphersuites.
The full paper reports experimental results showing that our code runs hand-
shakes with reasonable performance. To enable its automated verification, our
code is structured into small, independent modules (that is, program libraries)
parameterized by algorithm descriptors. For instance, our library code for the
HMAC-based PRF used in TLS implements agility before calling selected core
algorithms, e.g. SHA1. In contrast, the code that implements SHA1 is outside the
scope of our verification effort—we document our agile cryptographic assump-
tion on it, and call a standard library. Each cryptographic construction used
in the handshake corresponds to a separate library in the code. We define the
security of libraries for multiple keys and multiple algorithms; the corresponding
definitions and reductions to single-key security of individual algorithms appear
in the full paper.

In summary, our work sheds light on important design and implementation
issues of TLS. To our knowledge, we provide the first provable-security results for
TLS that account for algorithm agility. We are also the first to give an abstract
security model for handshakes related by resumption and renegotiation.

Further Reading. Our website http://www.mitls.org provides additional
materials: the miTLS source code; the EasyCrypt proof of Theorem 1; and
a companion paper with empirical data on TLS handshakes, auxiliary defini-
tions, constructions, and proofs, and extended discussions of attacks and related
work.

2 Agile Signatures

An agile signature scheme consists of three algorithms: KeyGen is a standard key
generation algorithm, while Sign and Verify take an extra agility parameter. For
instance, given a core signature scheme s = (keygen, sign, verify), the hash-then-
sign scheme Ss = (KeyGen, Sign,Verify) of TLS is defined as follows: KeyGen

�
=

keygen generates a key pair for algorithm s; Sign(h, sk,m)
�
= sign(sk, h(m)) com-

putes a signature using the core scheme s and hash algorithm h; and Verify(h,
pk,m, σ)

�
= verify(pk, h(m), σ) verifies a purported signature σ for message m

http://www.mitls.org
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hashed with algorithm h. We define existential unforgeability under chosen-
message attacks (EUF-CMA) for agile signatures.

Definition 1 (EUF-CMA). Let (KeyGen, Sign,Verify) be an agile signature
scheme, p a parameter, and P a set of parameters, and consider the following
forgery game:

Game EUF
�
=

pk, sk ← KeyGen(); M := ∅

m ′, σ ← ASIGN(pk)
return m ′ /∈ M ∧ Verify(p�, pk,m ′, σ)

Oracle SIGN(p,m)
�
=

if p /∈ P then return ⊥
M := M ∪ {m}
return Sign(p, sk,m)

The scheme is (ε, t, p, P )-secure against EUF-CMA if, for any A that runs in
time t, the EUF game returns true with probability at most ε.

This definition generalizes plain EUF-CMA security; the two coincide for a
scheme with fixed hash algorithm h, i.e. (p, P ) = (h, {h}). We do not require
p ∈ P ; for instance, one may pragmatically assume that forging an MD5-
based signature is hard when given only SHA1-based signatures. Indeed, the
attacks of Stevens et al. [26] rule out (MD5, {MD5, . . .})-security, but (MD5,
{SHA1})-security may still hold. On the other hand, non-agile security does
not imply agile security. Consider for instance the scenario where the pre-image
security of MD5 is broken. Then the attacks described by Naccache and Shpar-
linski [22] are likely to break (SHA256, {MD5, SHA256})-security, even though
(SHA256, {SHA256})-security would still hold.

The TLS standard features the following hash-then-sign schemes: prior to ver-
sion 1.2, RSA PKCS#1v1.5 signatures use the concatenation of MD5 and SHA1
hashes and (EC)DSA signatures use SHA1. TLS 1.2 introduces additional agility
to facilitate migration from MD5 and SHA1 to stronger algorithms. Designers
are aware of agility problems, and prescribe ad hoc countermeasures [9, §7.4.3].
The standard still requires that (EC)DSA use SHA1, delaying the migration to
stronger algorithms. It also adds an encoding of the hash algorithm identifier to
guarantee that all hash algorithms have disjoint range.

Given algorithms h and h′ with disjoint ranges, if the core signature scheme it-
self is (ε, t)-EUF-CMA secure on their joint range, then we have (ε′, t′, h, {h, h′})-
security for the corresponding agile hash-then-sign signature scheme, where the
difference between ε, t and ε′, t′ depends on the reduction to the collision resis-
tance of h. Sadly, the core signature schemes used in TLS are not EUF-CMA
secure. The best we can do, for now, is thus to assume that the hash-then-sign
signature scheme that uses them meets Definition 1.

3 Master Secrets and Key Encapsulation

Following [14, 17], we model the basic key-exchange functionality of TLS as dif-
ferent variations on KEMs. However, we separate the derivation of the master se-
cret from the derivation of keys for the record-layer. We model the premaster se-
cret phase for RSA and Diffie-Hellman exchanges as agile KEMs (keygen, !enc,dec)
parameterized by a 2-byte protocol version string.
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RSA. keygen generates a fresh RSA key pair (pk, sk); enc(pv, pk) appends a
randomly chosen 46-byte string to pv to obtain the premaster secret pms, and
returns it with the ciphertext c resulting from its PKCS#1v1.5 encryption un-
der pk; dec(pv, sk, c) decrypts c with sk. If the padding is correct and the de-
crypted pms is exactly 48 bytes long, it returns pms with the first 2 bytes replaced
by pv, otherwise it returns ⊥; such errors are handled in our ms-KEM below.

Diffie-Hellman. keygen selects group parameters pp, generates a fresh pair of
DH values (gx, x), and returns pk = (pp, gx) and sk = (pk, x) as public and
private KEM keys; enc(pv, (pp, gx)) samples y and returns pms = gxy and c = gy;
dec(pv, (pk, x), c) returns cx = gxy. The ciphertext space guarantees that c is in
a large prime-order subgroup specified by pk. In contrast to the RSA pms-KEM,
neither enc nor dec depend on pv.

On their own, these two premaster secret KEMs are not secure under any
indistinguishability notion, even under relatively weak active attacks such as,
for instance, plaintext-checking attacks (PCA): recall the Bleichenbacher attack,
and the lack of active security for basic Diffie-Hellman (e.g., querying a plaintext-
checking oracle on cr and pmsr for any r �= 1, suffices to distinguish a random
pms from the one encapsulated in c). Rather than using pms as a key, TLS
feeds it through an agile key extraction function (KEF) parameterized by a hash
algorithm, to compute the master secret ms.

We model this phase of the handshake as an agile labeled KEM, extending the
labeled KEMs of [14, 17] with an agility parameter. Given an agile (unlabeled)
pms-KEM e = (keygen, enc, dec) and an agile key extraction function family KEF,
the master secret KEM Ee = (KeyGen,Enc,Dec) of TLS is defined as follows:

– KeyGen()
�
= keygen();

– Enc(pv, h, pk, �)
�
= pms, c ← enc(pv, pk); ms ← KEF(pv, h, pms, �);

return ms, c
generates a premaster secret pms and a ciphertext c using e, then derives a
master secret ms for � using KEF.

– Dec(pv, h, sk, �, c)
�
= pms ← dec(pv, sk, c); if pms = ⊥ then pms ← pv‖$;

return KEF(pv, h, pms, �)
decrypts the ciphertext c to obtain pms. If decryption fails, it computes a
fake pms by appending a random 46-byte string to pv (this is never the case
for DH). It returns the value obtained from pms and � using the agile KEF.

We assume sufficient checks to ensure that all arguments are well-formed before
calling the master secret KEM algorithms; e.g., for Diffie-Hellman, our code
validates group parameters and checks that pk and c belong to a large prime-
order subgroup before calling Dec.

We define security for agile labeled KEMs as indistinguishability under re-
playable chosen-ciphertext attacks (IND-RCCA), a relaxation of CCA security,
first introduced for public-key encryption by Canetti et al. [7].
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Definition 2 (IND-RCCA). Let (KeyGen,Enc,Dec) be an agile labeled KEM,
p a parameter, P a set of parameters; and consider the following game:

Game RCCA
�
=

pk, sk ← KeyGen()
K,L := ∅
b ← {0, 1}
b′ ← AENC,DEC(pk)
return (b′ = b)

Oracle ENC(�)
�
=

if � ∈ L then return ⊥
k0, c ← Enc(p�, pk, �)
k1 ← $
K(�) := K(�) ∪ {k0, k1}
return kb, c

Oracle DEC(p, �, c)
�
=

if � ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {�}
k ← Dec(p, sk, �, c)
if k ∈ K(�) then return ⊥
return k

The RCCA advantage of A, AdvRCCA
p�, P (A) is defined as 2 Pr[RCCA : b′ = b]− 1.

The scheme is (ε, t, p, P )-secure against IND-RCCA-n when the advantage of
any adversary A running in time t and making at most n queries to ENC is at
most ε. We write IND-RCCA instead of IND-RCCA-1.

The check � ∈ L in the decryption oracle reflects a property of TLS: honest
servers decrypt at most once for each nonce. The check � ∈ L in the encryption
oracle is analogous to the restriction of Krawczyk et al. [17] to define IND-CCCA
security for non-agile KEMs.

The lemma below (proved by a standard hybrid argument in the full paper)
enables us to prove security for a single query, then use the multi-query variant
for reasoning about TLS in our main theorem.

Lemma 1. If a KEM (KeyGen,Enc,Dec) is (ε/n, t′, p, P )-secure against IND-
RCCA, then it is (ε, t, p, P )-secure against IND-RCCA-n, where t′ = t+O(n ·
tEnc) and tEnc is the worst-case cost of algorithm Enc.

Next, we define the assumptions for our main theorem on the TLS master
secret KEM: non-randomizability under plaintext-checking attacks (NR-PCA)
and one-wayness under plaintext-checking attacks (OW-PCA).

Definition 3 (NR-PCA, OW-PCA). Let (keygen, enc, dec) be an agile (un-
labeled) KEM, p a parameter, and P a set of parameters. Consider the two
games:

Game OW-PCA
�
=

pk, sk ← keygen()
k�, c� ← enc(p�, pk)
k ← APCO(pk, c�)
return (k = k�)

Game NR-PCA
�
=

pk, sk ← keygen()
k�, c� ← enc(p�, pk)
c ← APCO(pk, c�)
return (c �= c� ∧ k� = dec(p�, sk, c))

Oracle PCO(p, k, c)
�
=

if p /∈ P ∨ k = ⊥ then
return ⊥

k′ ← Dec(p, sk, c)
return (k′ = k)

The NR-PCA advantage of A, AdvNR-PCA
p�, P (A) is the probability that the NR-PCA

game returns true. The KEM is (ε, t, p, P )-secure against NR-PCA if the ad-
vantage of any adversary A running in time t is at most ε. OW-PCA advantage
and security are defined analogously.

The full paper gives preliminary theorems and conjectures on these assump-
tions, and relates our agile IND-RCCA KEMs to prior work and more standard
assumptions. We hope this will stimulate further cryptanalytic work on TLS.
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Our main result on KEMs is that the generic ms-KEM Ee of TLS is IND-
RCCA secure if the underlying pms-KEM e is both NR-PCA and OW-PCA
secure. The proof (in the full paper) has been formalized using EasyCrypt.
The proof is in the random oracle model for the agile KEF. As explained above,
we consider the single challenge case.

Theorem 1 (RCCA from NR-PCA and OW-PCA). Let A be a (p, P )-
RCCA adversary for Ee running in time tA and making at most qKEF and qDEC

queries to the random and decryption oracle, respectively. Let p = (pv, h) and
P ′ �

= {pv | (pv, h) ∈ P}. There exist an OW-PCA adversary B and an NR-PCA
adversary C against e, both running in time tA +O(qDEC · qKEF), such that

AdvRCCA
p�, P (A) ≤ 2

(
AdvNR-PCA

pv�, P ′ (B) +AdvOW-PCA
pv�, P ′ (C) + 2|pv|−|pms| (qKEF + qDEC)

)
.

The factor 2|pv|−|pms| is the entropy of the value pv‖$ used to derive the mas-
ter secret when RSA decryption fails, as recommended by TLS 1.2 to mitigate
Bleichenbacher attacks. With the DH pms-KEM, decryption never fails (as the
ciphertext validation is done beforehand) so the last term above can be omitted.

4 Defining Agile Security for Sequences of Handshakes

Our security definition for handshakes is general enough to apply to TLS, as
specified in the standard and coded in miTLS, while hiding implementation
details like message formats and specific cryptographic constructions. The ad-
versary creates and interacts with multiple instances i of a handshake protocolΠ
by calling Π ’s oracles, detailed below. Each instance has a fixed role R, either
C for Client or S for Server, and models a connection endpoint.

– KeyGen(v) creates and stores a new honest keypair for the long-term public-
key algorithm v (in TLS, ranging over s for signing and e for key encapsu-
lation) and returns the associated public key. Similarly, KeyInject(v, pk, sk)
stores a dishonest keypair (assuming pk is not yet in the store).

– Init(R, cfgR) creates an instance with role R and local configuration cfgR; it
returns a fresh handle i.

– Sendi(frag) lets an existing instance i process a fragment, depending on its
current state. As a result, the instance may update its state, assign local
variables, and return a response. (In TLS, responses range over sequences of
handshake and CCS message fragments, intended to be sent to the peer, as
well as error messages.)

– Controli(env) changes the global, internal state of the handshake, e.g., en-
abling the adversary to control access to stored sessions and private keys by
the protocol the next time Send will be called, or to trigger a renegotiation
request. This single oracle accounts for many control functions in the miTLS

handshake implementation. For example, Control provides the environment
with means to reject certificates that it deems invalid.
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Each instance maintains its private local state (e.g. using local variables). Each
instance can go through a sequence of epochs (e.g. recording the number of
cycles in the state machine). For each epoch, it records a sequence of variable
assignments, extended as the result of calls to Send and Control. Each variable is
assigned at most once in every epoch. The selection and ordering of assignments
within an epoch depends on the protocol; for instance, a client epoch may assign
its client-certificate variable, then send a message to the server, causing the
server epoch to record the same assignment later in the protocol.

Our definition is based on local variable assignments, which summarize the
view of clients and servers so far about each epoch. This is adequate to model
the handshake as a component within TLS, but this differs from models based
on matching conversations [3] that compare the (unparsed) messages they have
sent and received so far. We use assignments to express the main goals of the
protocol, for instance assigning a fresh random value to the record key variable k;
and agreeing on all assignments as a session completes. We list below the main
variables used in our presentation, but our definition can account for a more
detailed model of the TLS handshake.

� epoch identifier; in TLS, the concatenation of the client and server random
values.

�session resumption identifier; in TLS, the identifier of the epoch that completed the
session being resumed. (The miTLS code also assigns the TLS sessionId,
chosen by the server, but we do not use it as an identifier as it is not
necessarily unique.)

aC, aS client and server negotiation parameters; in TLS, they consist of protocol
versions, ciphersuites, and extension messages.

a agility parameter; in TLS, the protocol version, the negotiated ciphersuite,
and data extracted from the first flight of messages sent by the server.

certC,certS client and server certificate chains. In TLS, these certificates are optional;
e.g. the assignment certC := ⊥ denotes the absence of client certificate.

exC, exS client and server exchange variables, possibly secret, used to specify safety.
k record key for the epoch; in TLS, depending on a, this key is usually split

into 4 keys for MAC & encrypt.
complete successful completion flag, marking the end of the handshake for this epoch.

Unless explicitly mentioned for key-exchange materials, these variables are
public: the adversary can read them, but not change them; the protocol can
write them once in every epoch, but not read them. (This restriction matters
only for the record key, as we replace it with a random value.) The agility-
parameter variable a determines the algorithms and constructions used by the
handshake. Our security properties are conditioned by a strength predicate α(a)
that indicates whether those algorithms are strong enough to secure the epoch.
When the role of an epoch is clear from the context, the peer refers to the
opposite role, and the peer-exchange variable refers to the exchange variable of
the opposite role (e.g. exC when R is S).

We deliberately avoid modeling certificate validation. For the handshake, cer-
tificate chains are authenticated, uninterpreted bitstrings. We leave as future
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work supplementing our model with an application-level certificate infrastruc-
ture above the miTLS API. We assume given a public specification function
pk(cert) that returns either the public key associated with a certificate chain,
or ⊥. The session state does not need to explicitly mention public keys, but
public keys can appear in exchange variables.

A security model for a protocol describes how queries are answered and how
session variables are assigned. Next, we define properties of these models as they
interact with an adversary.

Definition 4 (Honesty, Safety, Matching Algorithms and Completion).
For a handshake protocol Π and a strength predicate α(·), an adversary that
calls Π’s oracles any number of times produces a trace of interleaved variable
assignments for a series of epochs for each instance. In this trace:

– As determined by its assigned agility parameter a: an epoch is either a ses-
sion, with distinguished client- and server-exchange variables, or a resump-
tion, with an �session variable; sessions (and their exchange variables) are
either static or ephemeral; a static session has at least one static exchange
variable; an ephemeral session has only ephemeral exchange variables.

– A (long-term) public key is honest for algorithm v if it was returned by a call
to KeyGen(v). A session’s ephemeral server-exchange variable assignment is
honest if there is a server session with the same assignment to its server-
exchange variable—and conversely for ephemeral client-exchange variables.

– A client session is safe if (i) α(a) holds; (ii) honest public keys for a’s
algorithms are assigned to all static exchange variables; and (iii) there is a
server session with the same assignment to the ephemeral server-exchange
variable. A server session is safe if the converse holds.

– A resumption is safe if α(a) holds and �session is the identifier of a safe and
complete session.

– An epoch has matching algorithm r = record(a) when there is a peer epoch
with the same identifier � and algorithm r.

– An epoch is complete when it includes the assignment complete := 1.

Anticipating on §5, for TLS we define the client exchange value exC to be the
master secret ms together with the KEM public key pk, and the server-exchange
variable exS to be the public key pk of the KEM. The latter is static for TLS-
RSA, but ephemeral for TLS-DHE. Here ms is explicitly secret and ephemeral.

Definition 5 (Handshake Security). Let Π be a handshake protocol, α(·) a
strength predicate, and A an adversary that calls Π’s oracles any number of
times. Consider the following properties:

(1) Uniqueness: epoch identifiers are used at most once in each role.
Let AdvU(A) be the probability that two different epochs with the same role
assign the same value to � when A terminates.

(2) Verified Safety: if the peer of a session uses a strong signature algorithm
to authenticate and the public-key for the peer signature is honest, then the
peer-exchange variable assignment is honest.
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Let AdvS(A) be the probability that, when A terminates, there is an epoch
such that α(a) holds; the public key of the peer is honest; and the assignment
to the peer exchange value is not honest (i.e. not assigned by any peer);

(3) Agile Key Derivation: depending on a random bit b, replace the record
key assigned in safe epochs with matching algorithm r with a fresh k ←
KeyGen(r), assigning the same value to epochs that have the same identifier �,
algorithms kdf(a) and exchange variables or resumption identifier.
Let AdvK(A) = 2p− 1 where p is the probability that A returns b.

(4) Agreement: for every safe and complete epoch, there is a safe epoch in the
other role such that their two instances agree on all prior assignments.
Let AdvI(A) be the probability that, when A terminates: an instance created
by Init(R, cfg) assigns complete := 1 in a safe epoch; and no instance created
by Init(R, cfg′) begins with a series of epochs with the same assignments to
all variables (up to, but possibly excluding complete := 1).

The handshake is (ε, t, α)-secure when for any adversary A running in time t,
we have AdvG(A) ≤ ε, for G = U, S,K, I.

Discussion. The properties above are given in chronological order: in TLS in
particular, protocol instances first exchange fresh random values, then derive
keys, and finally confirm the integrity of the session negotiation.

Property (1) simply ensures that � provides a unique identifier, later authen-
ticated using (4); we use these identifiers for matching client and server sessions.

Property (2) enables, for instance, a client that trusts both the negotiated
algorithm and the server certificates to deduce that its server-exchange variable
is honest, and conclude that its session is safe.

Property (3) idealizes the derived key; this is key indistinguishability. Recall
that TLS uses the key before the two parties actually agree on the record al-
gorithms. Conservatively, (3) idealizes the key only when the record algorithms
match. As Krawczyk et al. [17], our model does not consider forward secrecy.

Property (4) guarantees agreement on all variable assignments at the client
and server instances since their creation, not just the assignments of the current
epoch. Hence, as soon as one epoch safely completes, the peers agree also on all
prior epochs on that connection—even those that were not safe, or not verifiably
safe. For TLS, this property holds only thanks to the (mandatory) secure rene-
gotiation extension, which links each epoch to its predecessor. This property is
closely related to the TLS renegotiation results of Giesen et al. [11]. They addi-
tionally propose an extension of TLS that would guarantee agreement on the full
stream of application data, not just the handshake epochs. On the other hand,
our model and security definition also cover resumptions and RSA ciphersuites,
which are not covered by their results. Unlike previous analyses of TLS, our def-
inition accounts for session resumptions. Property (4) guarantees agreement on
the new epoch identifier � and the identifier �session of the resumed session (and
hence on the new record keys), as long as the original session is safe. The epochs
of the original session may be on a different connection, between a different pair
of instances; for those instances, safety for the original session independently
guarantees agreement on all its original variable assignments.
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TLS applications often group connections that use the same session or the
same long-term key, allowing them to share resources and access rights. For ex-
ample, web browsers allow all connections to the same server to share resources
via the Same Origin Policy. It may seem desirable to guarantee a strong rela-
tionship between such connections, but our Property (4) guarantees agreement
only for the sequence of epochs over a single connection. Indeed, the natural ex-
tension of this property to multiple connections does not hold for TLS, as shown
by the triple handshake attack of Bhargavan et al. [5]. In this attack, an unsafe
server-authenticated session is resumed on a new connection and then renego-
tiated with a new safe mutually-authenticated session. For the new safe epoch,
Property (4) retroactively guarantees agreement on the prior resumption, but
not on the original unsafe session that was resumed. Consequently, it is possible
for a client and server instance to have a safe epoch but inconsistent variable
assignments for the session associated with a prior resumed epoch; this leads to
a variety of attacks, similar to the renegotiation attacks of Ray [25]. A stronger
agreement can be achieved either at the application level, by checking agreement
on prior connections, or by a protocol extension that includes a hash of the log
of the original session in resumption handshakes [5]; we leave the modeling of
this extension and its security for future work.

Compared with classic key exchange models [3] and the key exchange part
of ACCE [13], our definition yields useful additional properties. Property (4)
guarantees agreement on the negotiation parameters aC and aS for safe and
complete epochs, thereby preventing version and ciphersuite rollback attacks.

Our definition also provides (some) security for anonymous connections, which
can be composed with other authentication mechanisms to achieve application
security. For example, renegotiation with client and server certificates may pro-
vide mutual authentication on top of an initial, safe, but anonymous handshake.
Late application-level, client password authentication may also yield mutual au-
thentication, as illustrated by miTLS [4].

5 Proving Agile Security for TLS Handshakes

We are now ready to reduce the security of TLS handshakes to the security of ag-
ile signatures, KEMs and PRFs. We structure the proof to apply simultaneously
to the protocol, illustrated in Figures 1 and 2, and to its miTLS implementation.

Figure 1 shows the assignments performed by a client instance and a server
instance that run two successive, matching handshakes on the same connection:
for both instances, a static session, followed by a (renegotiated) resumption.
Figure 2 similarly shows the assignments for an ephemeral session. The agility
parameter a of the handshake indicates which algorithm to use for each underly-
ing functionality. We write for instance a := algC(cfgC , aS) to retrieve a from the
client configuration and the negotiation parameter of the server; e, p := kem(a)
to retrieve the core algorithm e and public parameter of the master secret KEM
from a; and Ee.Enc for encryption using the master-secret KEM for e.

Our second main theorem reduces the security of TLS handshakes to their un-
derlying algorithms, depending on a strength predicate on their agility parameters.
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Client Server

�C ← $; aC :=cfgC.aC ClientHello[�C, aC] �S ← $; � :=�C‖�S ; sid ← $;
certS :=cfgS .cert; certC := ⊥
pk :=pk(certS); exS := pk
sk := lookup sk using pk
a, aS :=algS(cfgS , aC);ServerHelloDone

ServerHello[�S , aS , sid]
ServerCertificate[certS ]

� :=�C‖�S ; a :=algC(cfgC , aS)
pk :=pk(certS)
c,ms ← Ee.Enc(pE, pk, �)
exS :=pk; exC :=(pk,ms)
k := �PRF(pD,ms, t1 ‖�S ‖�C)�r
logC := 〈prior messages〉
tagC :=�PRF(pD,ms, t2‖logC)�p

ClientKeyExchange[c]

ClientFinished[tagC]

ms ← Ee.Dec(pE, sk, �, c)
exC :=(pk,ms)
logC := 〈prior messages〉
tagC

?
=�PRF(pD,ms, t2‖logC)�p

k :=�PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=�PRF(pD,ms, t3‖logS)�p
complete :=1; store(�, sid,ms)

ServerFinished[tagS ]
logS := 〈prior messages〉
tagS

?
=�PRF(pD,ms, t3‖logS)�p

complete :=1

Client resumes session (�, sid,ms) using aC and tagC from the epoch above

�C ← $; �session :=� ClientHello
[�C, aC, sid, tagC ]

lookup (�′,ms,tagS) using sid
�S ← $; �session :=�′

ServerHello
[�S , aS , sid, tagC, tagS ]

� :=�C ‖�S
k :=�PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=�PRF(pD,ms, t3‖logS)�p
logC := 〈prior messages〉

ServerFinished[tagS ]

� :=�C ‖�S
k :=�PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS

?
=�PRF(pD,ms, t3‖logS)�p

logC := 〈prior messages〉
tagC :=�PRF(pD,ms, t2‖logC)�p
complete :=1

tagC
?
=�PRF(pD,ms, t2‖logC)�p

complete :=1
ClientFinished[tagC ]

Two epochs on the same connection: the first handshake establishes a session without
client authentication using static keys; the second one resumes the session.
Conventions in the figure:
(1) We use

?
= for checks; a failed check stops the instance.

(2) We use := for assigning epoch variables; variables exchanged in messages are im-
plicitly assigned, e.g. the server assigns �C and aC after parsing the first message.
(3) We omit the extraction of the negotiated key exchange algorithm e and the param-
eters pE, pD from a; for instance, we write pD for prf(a).
(4) We omit ChangeCipherSpec messages: they are not part of the handshake protocol.
(5) We write 〈prior messages〉 for the concatenation of all messages sent and received
so far in the epoch, starting from the latest ClientHello. (6) We let �.�r and �.�p be
functions that truncate to record-key and MAC sizes.
(7) We let t1, t2, t3 abbreviate the constant strings "derive key", "client finished",
"server finished"; we write ‖ for bytestring concatenation.

Fig. 1. Abstract model of TLS handshake protocol (static handshake; resumption)
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Client Server

�C ← $; aC :=cfgC.aC ClientHello[�C, aC, tagC ] �S ← $; � :=�C‖�S ; sid ← $
certS :=cfgS .cert; certC :=⊥
pk :=pk(certS)
sk := lookup sk using pk
a, aS :=algS(cfgS , aC)
ske, pke ← Ee.KeyGen()
exS :=pke
σ ← Ss.Sign(pS, sk, pke)ServerHelloDone

ServerHello
[�S, aS, sid, tagC,tagS ]
ServerCertificate[certS ]
ServerKeyExchange[pke, σ]

� :=�C‖�S ; a :=algC(cfgC , aS)

Ss.Verify(pS, pk, pke, σ)
?
=1

c,ms ← Ee.Enc(pE, pke, �)
exS :=pke; exC :=(pke,ms)
k :=�PRF(pD,ms, t1 ‖�S ‖�C)�r
logC := 〈prior messages〉
tagC :=�PRF(pD,ms, t2‖logC)�p

ClientKeyExchange[c]

ClientFinished[tagC]

ms ← Ee.Dec(pE, ske, �, c)
exC :=(pke,ms)
logC := 〈prior messages〉
tagC

?
=�PRF(pD,ms, t2‖logC)�p

k :=�PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=�PRF(pD,ms, t3‖logS)�p
complete :=1; store (�, sid,ms)

ServerFinished[tagS ]

logS := 〈prior messages〉
tagS

?
=�PRF(pD,ms, t3‖logS)�p

complete :=1

Fig. 2. Abstract model of TLS handshake protocol (ephemeral renegotiation)

Its proof (in the full paper) relies on intermediate definitions for multi-key li-
braries and, as a first step, uses hybrid arguments to lift security from our agile
definitions to the multi-key setting.

Theorem 2 (TLS Handshake). Let a, a range over the agility parameters
supported by TLS. Let Ps = {p | s, p := sig(a)}, Pe = {p | e, p := kem(a)},
and P = {p | p := prf(a)}. Let α be a strength predicate (Definition 4) such
that the following assumptions hold:

(1) If α(a) and s, p :=sig(a) then Ss is EUF-CMA (εs,p, ts,p, p, Ps)-secure.
(2) If α(a) and e, p :=kem(a) then Ee is IND-RCCA-nms (εe,p, te,p, p, Pe)-secure.
(3) If α(a) and p :=prf(a) then PRF is an (εp, tp, p, P )-secure PRF.

Let ns bound the number of calls to Ss.KeyGen. Let n and nms bound the number
of epochs and sessions. Let ne bound the number of calls to Ee.KeyGen, both for
ephemeral and static KEMs. The TLS handshake is (ε, t, α)-secure, where

ε =
∑
s

∑
p

nsεs,p +
∑
e

∑
p

neεe,p + nms

∑
p

εp + n2(2−225 + 2−minp|�.�p|)

and where each t∗ in the assumptions is at most t plus the cost of simulating Π
in the reduction.

Discussion. In the theorem, the sets Ps, Pe, and P represent the worst case.
Indeed, signers may, for those keys that they consider honest, stop using signa-
ture algorithm s together with weak hash functions, like MD5, while TLS may
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still support verification using such hash algorithms for backward compatibility.
To model such scenarios, one could instead add Ps, Pe, and P to the state of the
experiment to record which hash algorithms have been used so far for signing,
decrypting and deriving keys to obtain a more precise statement.

6 Verified Reference Implementation

We jointly programmed the TLS handshake and developed its proof. We finally
outline our code, and explain how its structure and automated verification relate
to the cryptographic models of §2–5; we provide additional details and perfor-
mance results in the full paper. Our handshake implementation for miTLS con-
sists of 3,600 lines of F# code plus 2,050 lines of F7 specifications; it supports four
protocol versions, three key exchange mechanisms, two signature algorithms, and
four hash functions. It deals mostly with the protocol aspects; indeed, our cryp-
tographic proof for Theorem 1, conducted with EasyCrypt, concerns less than
200 lines of F#. Conversely, Theorem 2 involves the full codebase and proving
it requires a modular design and automated program verification techniques.

We adopt the type-based cryptographic verification method of Fournet et al.
[10], previously applied to miTLS by Bhargavan et al. [4, §2]. The miTLS library
consists of 45 modules, not counting application code or platform libraries. Each
module implements a single cryptographic functionality or protocol component
and represents an abstraction boundary through its interface. A module is ei-
ther trusted to be implemented correctly (e.g. the session database), or idealized
under a cryptographic assumption (e.g. signatures) then verified, or perfectly
verified (e.g. the protocol state machine). Each module interface specifies precon-
ditions, postconditions, and type abstractions that govern the conditions under
which secrets (keys, plaintexts, etc.) may be read or written by other modules.

We discuss the design of three important components that we modified during
the course of this paper. TLSInfo defines agility parameters and logical predicates
(corresponding to α in Definition 4) that specify algorithmic strength, honesty
for both long-term-keys and ephemeral secrets, matching record algorithms, and
handshake completion events. This new logical model is more detailed than the
original one [4]; furthermore, we extended the session structure and logical model
to provide a general treatment of protocol extensions. HandshakeMessages imple-
ments message formatting and parsing; agreement (Definition 5(4)) depends on its
details, since only formatted data is cryptographically authenticated. This code is
complicated but not especially deep, and best handled using automated verifica-
tion. Handshake implements the handshake state machine (Send in §5). Its code
is not as simple as suggested by the KEMs of §3, since the TLS standard employs
different sequences of messages for (say) RSA and DHE handshakes. Hence, we
have similar but separate code for them, each of their interfaces complying with
the KEM abstraction of §3. Also, our code handles errors and warnings, omitted
in this presentation but also verified.



254 K. Bhargavan et al.

Our new results on the handshake, composed with prior results on miTLS [4]
(the record layer, the top-level API, and various applications) yield agile, verified
application security for TLS as it is.
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Abstract. Passwords are inherently vulnerable to dictionary attacks, but are
quite secure if guessing attempts can be slowed down, for example by an online
server. If this server gets compromised, however, the attacker can again perform
an offline attack. The obvious remedy is to distribute the password verification
process over multiple servers, so that the password remains secure as long as no
more than a threshold of the servers are compromised. By letting these servers
additionally host shares of a strong secret that the user can recover upon entering
the correct password, the user can perform further cryptographic tasks using this
strong secret as a key such as encrypting data in the cloud. Threshold password-
authenticated secret sharing (TPASS) protocols provide exactly this functionality.
Unfortunately, the two only known schemes by Bagherzandi et al. (CCS 2011)
and Camenisch et al. (CCS 2012) leak the password if a user mistakenly exe-
cutes the protocol with malicious servers. Authenticating to the wrong servers
is a common scenario when users are tricked in phishing attacks. We propose
the first t-out-of-n TPASS protocol for any n > t that does not suffer from
this shortcoming. We prove our protocol secure in the UC framework, which
for the particular case of password-based protocols offers important advantages
over property-based definitions, e.g., by correctly modeling typos in password
attempts.

1 Introduction

You wake up in a motel room. Where are you? How did you get here? You can’t remem-
ber anything. Or perhaps you can. One word, a password, is engraved in your mind. You
go outside and walk into the street. The first person you meet doesn’t know you. The
second seems to recognize you, or at least pretends to do so. He says he’s your friend.
He introduces you to other people who claim they are also your friends. They say they
can help you reconstruct your memory—if you give the correct password. But why
would you trust them? What if they are not your friends? What if they’re trying to plant
false memories into your brain? What if they’re trying to learn your password, so they
can retrieve your real memories from your real friends? How can you tell?

The above scenario, inspired by the movie “Memento” in which the main character
suffers from short-term memory loss, leads to an interesting cryptographic problem that
is also very relevant in practice. Namely, can a user securely recover his secrets from a
set of servers, if all the user can or wants to remember is a single password and all of
the servers may be adversarial? In particular, can he protect his precious password when
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accidentally trying to run the recovery with all-malicious servers? A solution for this
problem can act as a natural bridge from human-memorizable passwords to strong keys
for cryptographic tasks, all while avoiding offline dictionary attacks on the password.
Practical applications include secure password managers (where the shared secret is a
list of strongly random website passwords) and encrypting data in the cloud (where the
shared secret is the encryption key) based on a single master password.

A single master password may seem a bad idea given that over the past few years,
hundreds of millions of passwords have been stolen through server compromises, with
major data breaches being reported at popular websites such as LinkedIn, Adobe, Ya-
hoo!, and Twitter. Storing passwords in hashed form offers hardly any protection due to
the efficiency of brute-force offline attacks using dictionaries. According to NIST [8],
sixteen-character human-memorizable passwords have only 30 bits of entropy on av-
erage. With current graphical processors testing more than three hundred billion pass-
words per second [33], security must be considered lost as soon as an offline attack
against the password data can be performed. Indeed, more than ninety percent of the
6.5 million password hashes pilfered from LinkedIn were cracked within six days [32].
Dedicated password hashes such as bcrypt [43] or PBKDF2 [37] only give a linear
security improvement: a factor x more effort to verify passwords for an honest server
makes offline dictionary attacks at a factor x harder.

However, as poorly as passwords stand their ground against offline attacks, they are
actually fairly secure against online attacks, as long as attempts are slowed down or
throttled by an honest server, e.g., by blocking accounts, presenting CAPTCHAs, or
introducing time delays. The problem is that if a single server can check the correctness
of a password, then that server—or any adversary breaking into it—must have access
to some information that can be used for an offline attack. The obvious solution is to
verify passwords through a distributed protocol involving multiple servers, in such a
way that no single server, or no collusion up to a certain threshold, stores or obtains any
information that can enable an offline attack.

Scenario. Recall our original goal that we don’t just want to authenticate to a set of
servers, we also want to store a (strong) secret that the user can later reconstruct from a
subset of the servers using a single password, in such a way that the servers don’t learn
anything about the secret or the password. The secret can be used as a key for any other
cryptographic purpose, for example, to encrypt and store a file in the cloud containing
strong passwords and other credentials required for websites or online services. Those
services thereby do not have to change their standard authentication mechanisms, en-
suring a smooth deployment path. A commercial product along these lines called RSA
Distributed Credential Protection [44] is already available.

When the user sets up his account, he carefully selects a list of names of servers that
he will use in the protocol. He may make his selection based on the servers’ reputa-
tion, perceived trust, or other criteria; the selection is important, because if too many
of the selected servers are malicious, his password and secret are already compromised
from the beginning. It is also clear that at setup the user must be able to authenticate
the servers that he selected. In previous password-based schemes, setup is often as-
sumed to take place out-of-band. Given the importance of the setup phase, we follow
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Camenisch et al. [13] by explicitly modeling account setup and assuming that a public-
key infrastructure (PKI) is in place to link server names to public keys.

When later the user wants to retrieve his secret, ideally, he should not need anything
else than his username and password. In particular, he should not even have to remember
the names of the servers he selected at setup. The list may be too long for the user to
remember, and he can certainly not be expected to, at every retrieval, spend the same
amount of thought on composing the list of names of the servers as during setup. Also,
the user may retrieve his secret with a different device than the one that he used to create
the account. For example, he may be logging in from his phone instead of his laptop, he
may be installing a new device, or he may be borrowing a friend’s tablet PC. Of course,
we do have to assume that the device on which the user enters his single password is
“clean”, i.e., is not infected with malware, doesn’t have a key-logger attached, etc. We
make the minimal requirement that the user has a clean operating system and a clean
web browser to work with, containing hardcoded keys of root certification authorities
(CAs) and an implementation of our protocol. We explicitly do not want any user-
specific state information from the setup phase to be needed on the device at the time of
retrieval. Different users may select different server names, so the names of the selected
servers cannot be hardcoded in the browser either. The list of servers that is used at
retrieval may be different from the list used at setup: the user may forget some servers
when authenticating, involve some servers that were not present at setup, mistype server
URLs, or even be tricked into running the protocol with a set of all-malicious servers
through a sort of phishing attack. Note that a PKI doesn’t prevent this: malicious servers
also have certified keys. Also note that users cannot rely on the servers to store user-
specific state information that they later send back signed to the user, because the servers
during retrieval may be malicious and lie about the content or wrongly pretend to have
been part of the trusted setup set.

Existing Solutions. Threshold password-authenticated secret sharing (TPASS) schemes
are the best fit for our problem: they allow a user to secret-share a secret K among n
servers and protect it with a password p, so that the user can later recover K from any
subset of t + 1 of the servers using p, but so that no coalition smaller than t learns
anything about K or can mount an offline attack on p. Unfortunately, the two currently
known TPASS protocols by Bagherzandi et al. [3] and Camenisch et al. [13] break
down when the user tries to retrieve his secret from a set of all-malicious servers. In
the former, the password is exposed to offline attacks, in the latter it is plainly leaked.
We outline the attacks on both protocols in our full paper [12]. These attacks are of
course quite devastating, as once the password is compromised, the malicious servers
can recover the user’s secret from the correct servers.

Our Contribution. We provide the first t-out-of-n TPASS protocol for any n > t that
does not require trusted, user-specific state information to be carried over from the setup
phase. Our protocol requires the user to only remember a username and a password,
assuming that a PKI is available; if he misremembers his list of servers and tries to
retrieve his secret from corrupt servers, our protocol prevents the servers from learning
anything about the password or secret, as well as from planting a different secret into
the user’s mind than the secret that he stored earlier.
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Our construction is inspired by the protocol of Bagherzandi et al. [3] by relying
on a homomorphic threshold cryptosystem, but the crucial difference is that in our re-
trieve protocol, the user never sends out an encryption of his password attempt. Instead,
the user derives an encryption of the (randomized) quotient of the password used at
setup and the password attempt. The servers then jointly decrypt the quotient and verify
whether it yields “1”, indicating that both passwords matched. In case the passwords
were not the same, all the servers learn is a random value.

The Case for Universal Composability. We prove our protocol is secure in the universal
composability (UC) framework [16]. The particular advantages of UC security notions
for the special case of password-based protocols have been pointed out before [18,13];
we recall the main arguments here. First, all property-based security notions for thresh-
old password-based protocols in the literature [40,47,38,3] assume that honest users
choose their passwords from known, fixed, independent distributions. In reality, users
share, reuse, and leak information related to their passwords outside of the protocol.
Second, all known property-based notions allow the adversary to observe or even in-
teract with honest users with their correct passwords, but not on incorrect yet related
passwords—which is exactly what happens when a user makes a typo while entering
his password. In the UC framework, this is modeled more naturally by letting the en-
vironment provide the passwords, so no assumptions need to be made regarding their
distributions, dependencies, or leakages. Finally, property-based definitions consider
the protocol in isolation, while the composition theorem of the UC framework guaran-
tees secure composition with itself as well as with other protocols. Composition with
other protocols is of particular importance in the considered TPASS setting, where a
user shares and reconstructs a strong key K with multiple servers, and should be able
to securely use that key in a different protocol, for instance to decrypt data kept in the
cloud. Modeling secure composition of password-based protocols is particularly deli-
cate given the inherent non-negligible success probability of the adversary when guess-
ing the password. Following previous work [18,13], our UC notion absorbs the inherent
guessing attacks into the ideal functionality itself. A secure protocol guarantees that the
real world and ideal world are indistinguishable, thus the composition theorem contin-
ues to hold.

Building a UC secure protocol requires many additional tools, such as simulation-
sound non-interactive zero-knowledge proofs with online witness extraction (which
can be efficiently realized for discrete-logarithm based relations in the random-oracle
model) and CCA2-secure encryption. It is all the more surprising that our final protocol
is efficient enough for use in practice: It requires only 5n+15 and 14t+24 exponenti-
ations from the user during setup and retrieval, respectively. Each server has to perform
n+ 18 and 7t+ 28 exponentiations in these respective protocols.

Related Work. In spite of their practical relevance, TPASS protocols only started to
appear in the literature very recently. The t-out-of-nTPASS protocol by Bagherzandi et
al. [3] was proved secure under a property-based security notion. As mentioned above, it
relies on untamperable user memory and breaks down when the user retrieves its secret
from all-corrupt servers. Our protocol can be seen as a strengthened version of the
Bagherzandi et al. protocol; we refer to Section 4 for a detailed comparison. The 1-out-
of-2 TPASS protocol by Camenisch et al. [13] was proved secure in the UC framework,
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but, by construction, leaks the password and secret if a user tries to retrieve his secret
from all-corrupt servers.

Constructing TPASS protocols from generic multi-party computation (MPC) is pos-
sible but yields inefficient protocols. Our strong security requirements require public-
key operations to be encoded in the to-be-evaluated circuit, while the state-of-the-art
MPC protocols [23,24,22] require an expensive joint key-generation step to be per-
formed at each retrieval. We refer to the full paper [12] for details.

The closely related primitive of threshold password-authenticated key exchange
(TPAKE) lets the user agree on a fresh session key with each of the servers, but doesn’t
allow the user to store and recover a secret. Depending on the desired security proper-
ties, one can build a TPASS scheme from a TPAKE scheme by using the agreed-upon
session keys to transmit the stored secret shares over secure channels [3].

The first TPAKE protocols due to Ford and Kaliski [29] and Jablon [36] were not
proved secure. The first provably secure TPAKE protocol, a t-out-of-n protocol, was
proposed by MacKenzie et al. [40]. The 1-out-of-2 protocol of Brainard et al. [9,47]
is implemented in EMC’s RSA Distributed Credential Protection [44]. Both protocols
either leak the password or allow an offline attack when the retrieval is performed with
corrupt servers (see the full paper [12]). The t-out-of-n TPAKE protocols by Di Rai-
mondo and Gennaro [26] and the 1-out-of-2 protocol by Katz et al. [38] are proved
secure under property-based (i.e., non-UC) notions. These protocols actually remain
secure when executed with all-corrupt servers, but are restricted to the cases where
n > 3t and (t, n) = (1, 2), respectively.

Boyen [7] presented a protocol related to TPASS, where a user can store a random
value under a password with a single server. While being very efficient, this protocol
fails to provide most of the security properties we require, i.e., the server can set up the
user with a wrong secret, throttling is not possible, and no UC security is offered.

2 Definition of Security

Recall the goal of a TPASS scheme: at setup, a user secret-shares his data amongst n
servers protected by a password p; at retrieval, he can recover his data from a subset of
t + 1 of these n servers, assuming that at most t of them are corrupt. For the sake of
simplicity, we assume that the user’s data is a symmetric key K; the user can then al-
ways use K to encrypt and authenticate his actual data and store the resulting ciphertext
in the cloud.

We want the user to be able to retrieve his data remembering only his username uid
and his password, and perhaps the name of one or a couple of his trusted servers. The
user has access to the PKI but cannot be assumed to store any additional information,
cryptographic or other. In particular, the user does not have to remember the names or
public keys of all of the servers among which he shared his key. Rather, in a step pre-
ceding the retrieval (that we don’t model here), he can ask some servers to remind him
of his full list of servers. Of course, these servers may lie if they are malicious, tricking
the into retrieving his key from servers that weren’t part of the original setup. We want
to protect the user in this case and prevent the servers from learning the password.
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Certain attacks are inherent and cannot be protected against. For example, a corrupt
user can always perform an online attack on another user’s password p by doing sev-
eral retrieval attempts. It is therefore crucial that honest servers detect failed retrieval
attempts, so that they can apply throttling mechanisms to stop or slow down the attack,
such as blocking the user’s account or asking the user to solve a CAPTCHA. The throt-
tling mechanism should count retrieval attempts that remain pending for too long as
failed attempts, since the adversary can always cut the communication before some of
the servers were able to conclude.

A second inherent attack is that if at least t+ 1 of the n servers at setup are corrupt,
then these servers can mount an offline dictionary attack on the user’s password p.
Given the low entropy in human-memorizable passwords and the efficiency of offline
dictionary attacks on modern hardware, one may conservatively assume that in this case
the adversary simply learns p and K—which is how we model it here.

A somewhat subtle but equally unavoidable attack is that when an honest user makes
a retrieval attempt with a set of all-corrupt servers, the servers can try to plant any key
K∗ of their choice into the user’s output. This attack is unavoidable, because the corrupt
servers can always pretend that they participated in a setup protocol for a “planted”
password p∗ and a “planted” key K∗, and then execute the retrieve protocol with the
honest user using the information from this make-believe setup. If the planted password
p∗ matches the password p′ the user is retrieving with, the user will retrieve the planted
key K∗ instead of his real key. Note that in the process, the adversary learns whether
p∗ = p′, thus he gets a guess at the password p′. This planting attack is even more
critical if the user previously set up his account with at least t + 1 corrupted servers,
because in that case the adversary already knows the real password p, which most likely
is equal to the password p′ with which the user runs the retrieval.

Finally, in our model, all participants are communicating over an adversarial net-
work, which means that protocol failures are unavoidable: the adversary may block
communication between honest servers and the user. As a result, we cannot guarantee
that the user always succeeds in retrieving his data. In view of this, we chose to restrict
the retrieval protocol to t+ 1 servers: although this choice causes the retrieve protocol
to fail if just one server refuses to (being adversarial), adversarial failures are already
unavoidable in our network model. We could still try to guarantee some limited form
of robustness (recall that, in the threshold cryptography literature, a protocol is robust
if it can successfully complete its task despite malicious behavior from a fraction of
participants) by requiring that, when t + 1 or more honest servers participate and the
network does not fail, the user successfully recovers his data. However, while it seems
not hard to add robustness to our protocols by applying the usual mechanisms found in
the literature, it turns out that modeling robustness would considerably complicate our
(already rather involved) ideal functionality.

2.1 Ideal Functionality

Assuming the reader is familiar with the UC framework [16], we now describe the ideal
functionalityFTPASS(t,n) of t-out-of-nTPASS. For simplicity, we refer to FTPASS(t,n)

as F from now on. It interacts with a set of users {U}, a set of servers {Si} and an
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adversary A. We consider static corruptions and assume that F knows which of the
servers in {Si} are corrupt.

The UC framework allows us to focus our analysis on a single protocol instance
with a globally unique session identifier sid . Security for multiple sessions follows
through the composition theorem [16] or, if different sessions are to share state, through
the joint-state universal composition (JUC) theorem [19]. Here, we use the username
uid as the session identifier sid , and let each setup and retrieve query be assigned a
unique sub-session identifier ssid and rsid within the single-session functionality for
sid = uid . When those sub-session identifiers are established through the functionality
by Barak et al. [4], they have the form ssid = (ssid ′,S) and rsid = (rsid ′,S′), re-
spectively, i.e., they consist of a globally unique string and the identifiers of the servers
S = (S1, . . . ,Sn) that agreed on that identifier. We will later motivate these choices;
for now, it suffices to know that a session identifier sid = uid corresponds to a single
user account, and that the sub-session identifiers ssid and rsid refer to individual setup
and retrieve queries for that account.

The functionality F has two main groups of interfaces, for setup and retrieve. For the
sake of readability, we describe the behavior of those interfaces in a somewhat informal
way here and provide their formal specification in the full paper [12].

Setup Interfaces: The SETUP-related interfaces allow a user U to instruct F to store
the a key K , protected under a password p, among n servers S = (S1, . . . ,Sn) of the
user’s choice.

1. A (SETUP, sid , ssid , p,K ) message from a user U initiates the functionality for
user name uid = sid . The sub-session identifier ssid contains a list of n differ-
ent server identities S = (S1, . . . ,Sn) among which U wants to share his key K
protected by the password p. If at least t + 1 servers in S are corrupt, F sends the
password and the key to the adversary, otherwise it merely informs A that a setup
sub-session is taking place. F also creates a record s where it stores s.ssid , s.p, s.K
and sets s.R ← U .

2. A (JOIN, sid , ssid ,Si) message from the adversary A instructs F to let a server Si

join the setup. If Si is honest, this means that Si registers the setup and will not join
any further setups for the same username uid = sid . The user is informed that Si

joined the setup.
3. A (STEAL, sid , ssid , p̂, K̂ ) message from A models a rather benign but unavoid-

able attack where the adversary “steals” the sub-session ssid by intercepting and
replacing the network traffic generated by U , allowing A to replace the password
and the key provided by U with his own choice s.p ← p̂ and s.K ← K̂ . Note that
this is not a very powerful attack, since the adversary could achieve essentially the
same effect by letting a corrupt user initiate a separate setup session for p̂, K̂ . Thus,
the only difference is that here the adversary uses the ssid generated by an honest
user, and not a fresh one. Servers are unaware when such an attack takes place,
but the user U cannot be made to believe that an honest server Si has accepted his
inputs. This is modeled by setting the recipient of server confirmations s.R ← A.
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Retrieve Interfaces: The RETRIEVE-related interfaces allow U ′ to retrieve the key from
t + 1 servers S′ if S′ ⊆ S and U ′ furnishes the correct password; it also models the
planting attack described earlier.

4. A (RETRIEVE, sid , rsid , p′) message from a user U ′ instructs F to initiate a re-
trieval for username uid = sid with password p′ from the set S′ = S1, . . . ,St+1

of t+1 servers included in the sub-session identifier rsid . F then creates a retrieve
record r, where it stores r.rsid , r.p′, sets r.R ← U ′, and initially sets r.ssid ← ⊥
and r.K ← ⊥. If there was a setup sub-session ssid that all honest servers in S′

have joined and where all servers in S′ also occur in S, then F links this retrieve to
ssid by setting r.ssid ← ssid . F notifies the adversary and (with an adversarially
determined delay) the honest servers in S′ that a new retrieval is taking place. Note
that the password attempt p′ is not leaked to the adversary, even if all servers in S′

are corrupt.
5. A (PLANT, sid , rsid , p∗,K ∗) message from the adversary A allows him to perform

the planting attack described earlier. Namely, if all t+1 servers in the retrieval are
corrupt, A can submit a password p∗ and a key K ∗ to be planted. The functionality
F tells A whether p∗ matches the password attempt p′. If so, F also sets the key
r.K that will eventually be returned in this session to the to-be-planted key K ∗

provided by the adversary. Note that the adversary can perform only one planting
attack per retrieval. So even if all t + 1 servers are corrupt, the adversary only
obtains a single guess for the retrieval password p′.

6. A (STEAL, sid , rsid , p̂) message from A allows the adversary to “steal” the sub-
session identifier rsid , replacing the original password attempt r.p′ with p̂ of his
choice. Servers do not notice this attack taking place, but the originating user will
conclude that the protocol failed, or not receive any output at all. This is modeled
again by setting r.R ← A.

7. A (PROCEED, sid , rsid , a) message with a ∈ {allow, deny} coming from an hon-
est server Si (after having been notified that a retrieval is taking place) indicates its
(un)willingness to participate in the retrieval. This models the opportunity for an
external throttling mechanism to refuse this retrieval attempt. Only when all honest
servers have agreed to participate, the retrieval continues and the adversary learns
whether the passwords matched (i.e., whether r.p′ = s.p with s being the setup
record for ssid ). If they matched, F also sets the key to be returned r.K to the key
shared during setup s.K .

8. A (DELIVER, sid , rsid ,P , a) message from A where a = allow instructs F to
output the final result of this retrieval to party P , which can either be an honest
server Si or the user specified in r.R. If P = r.R, the user will obtain the value
r.K , where the result will signal a successful retrieval only if r.K �= ⊥, i.e., a
key was assigned after the passwords matched. When P = Si, the server will
receive either a success or failure notification, indicating whether the passwords
matched. Note that, in both cases, A can still turn a successful result into a failed
one by passing a = deny as input. This is because in the real world, the adversary
can always make a party believe that a protocol ended unsuccessfully by simply
dropping or invalidating correct messages. However, the inverse is not possible,
i.e., the adversary can not make a mismatch of the passwords look like a match.
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Session Identifiers. Our choice of (sub-)session identifiers merits some further explana-
tion. In the UC framework, all machine instances participating in a protocol execution,
including ideal functionalities, share a globally unique session identifier sid . Obviously,
our SETUP and RETRIEVE interfaces must be called with the same sid to provide the
expected functionality, because otherwise the instance cannot keep state between setup
and retrieval. However, we insisted that a user can only be expected to remember a
username and a password between setup and retrieve, but no further information such
as public keys or random nonces. The sid therefore consists only of the username uid
and thus cannot be used to uniquely identify different setup or retrieval sub-sessions for
this username. To allow the functionality to refer to multiple simultaneous setup and re-
trieve sub-sessions, the participants of each sub-session establish a unique sub-session
identifier ssid or rsid using the standard techniques mentioned earlier [4]. Therein, a
unique identifier is created by simply concatenating the identities of the communicating
parties and random nonces sent by all parties.

3 Preliminaries

In this section we introduce the building blocks for our protocols. These are three kinds
of public-key encryption schemes, a signature scheme, and zero-knowledge proof pro-
tocols. We require two of the encryption schemes to be compatible, i.e., the message
space to be the same algebraic group. To this end we make use of a probabilistic
polynomial-time algorithm GGen that on input the security parameter 1τ outputs the
description of a multiplicative cyclic group G, its prime order q, and a generator g, and
require the key generation algorithms of the compatible encryption schemes to take G
as input instead of the security parameter.

CPA-Secure Public-Key Encryption Scheme. Such a scheme consists of three algo-
rithms (KGen,Enc,Dec). The key generation algorithm KGen on input (G, q, g) out-
puts a key pair (epk, esk). The encryption algorithm Enc, on input a public key epk
and a message m ∈ G, outputs a ciphertext C, i.e., C ← Encepk(m). The decryp-
tion algorithm Dec, on input the secret key esk and a ciphertext C, outputs a message
m ← Decesk(C). We require this scheme to satisfy the standard CPA-security proper-
ties, with key generation defined as KGen(GGen(1τ )).

CCA2-Secure Labeled Public-Key Encryption Scheme. Any standard CCA2-secure
scheme (KGen2,Enc2,Dec2) that supports labels [14] is sufficient fir our protocols.
Therein, (epk, esk) ← KGen2(1τ ) denotes the key generation algorithm. The encryp-
tion algorithm takes as input the public key epk, a message m, a label l ∈ {0, 1}∗ and
outputs a ciphertextC ← Enc2epk(m, l). The decryptionDec2esk(C, l) of C will either
output a message m or a failure symbol ⊥. The label l can be seen as context informa-
tion which is non-malleably attached to a ciphertext C and restricts the decryption of C
to that context, i.e., decryption with a label different from the one used for encryption
will fail.

Semantically Secure (t, n)-Threshold Homomorphic Cryptosystem. Such a scheme
consists of five algorithms (TKGen,TEnc,PDec,VfDec,TDec). The key generation
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algorithm TKGen, on input (G, q, g, t, n), outputs a public key tpk and n partial key
pairs (tpk1, tsk1), . . . , (tpkn, tskn).

The encryption algorithm TEnc, on input a public key tpk and a message m ∈ G,
outputs a ciphertext C. The partial decryption algorithm PDec, on input (tski, C), out-
puts a decryption share di and a proof πdi . The decryption share verification algo-
rithm VfDec, on input (tpki, C, di, πdi), verifies that di is correct w.r.t. C and tpki.
The threshold decryption algorithm TDec, on input C and k ≥ t+ 1 decryption shares
di1 , . . . , dik , outputs a plaintext m or ⊥.

Our protocol will require that the threshold scheme has an appropriate homomorphic
property, namely that there is an efficient operation + on ciphertexts such that, if C1 ∈
TEnctpk(m1) and C2 ∈ TEnctpk(m2), then C1 + C2 ∈ TEnctpk(m1 · m2). We will
also use exponents to denote the repeated application of +, e.g., C2

1 to denote C1 +C1.
Further, the scheme needs to be sound and semantically secure. In a nutshell, the

former means that for a certain set of public keys tpk, tpk1, . . . , tpkn a ciphertext C
can be opened only in an unambiguous way. The latter property of semantic security
can be seen as an adaptation of the normal semantic security definition to the threshold
context, where the adversary can now have up to t of the partial secret keys. In our full
paper [12], we provide a detailed description of those properties, which are an adaption
of the definitions by Cramer, Damgård, and Nielsen [20] for semantically secure thresh-
old homomorphic encryption. The full paper further contains a construction based on
the ElGamal cryptosystem that achieves our security notion.

Existentially Unforgeable Signature Scheme. By (SKGen, Sign,Vf) we denote such
schemes, with (spk, ssk) ← SKGen(1τ ) being the key generation algorithm. For sign-
ing of a message m ∈ {0, 1}∗, we write σ ← Signssk(m), and for verification we write
b ← Vfspk(m,σ), where the output b will be either 1 or 0, indicating success or failure.

Simulation-Sound Zero-Knowledge Proof System. We require a non-interactive zero-
knowledge (NIZK) proof system to prove relations among different ciphertexts. We use
an informal notation for this proof system, e.g., π ← NIZK{(m) : C1 = TEnctpk(m)∧
C2 = Encepk(m)} (ctxt) denotes the generation of a non-interactive zero-knowledge
proof that is bound to a certain context ctxt and proves that C1 and C2 are both proper
encryptions of the same message m under the public key tpk and epk for the encryption
scheme TEnc and Enc, respectively. We require the proof system to be simulation-
sound [45] and zero-knowledge. In the full paper [12], we give concrete realizations of
the NIZK proofs that we require in our protocols assuming specific instantiations of the
encryption schemes.

4 Our TPASS Protocol

The core of our construction bears a lot in common with that of Bagherzandi et al. [3],
which however does rely on trusted user storage and is not proven to be UC secure.
We first summarize the idea of their construction and then explain the changes and
extensions we made to remove the trusted storage assumption and achieve UC security
according to our TPASS functionality.

The high-level idea of Bagherzandi et al. [3] is depicted in Figure 1 and works as fol-
lows: In the setup protocol, the user generates keys for a threshold encryption scheme,
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Setup : U(p,K ,S) with public parameters G, q, g, t, n
User generates threshold keys (tpk, (tpki, tski)i=1,...,n) ← TKGen(G, q, g, t, n),
encrypts p and K : Cp ← TEnctpk(p) , CK ← TEnctpk(K ), and
sends (Cp, CK , tpk, tski) to each server Si in S.

Retrieve : U(p′,S, tpk) � (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : Cp′ ← TEnctpk(p
′), send Cp′ to each server in S

Server Si: compute Ctest,i ← (Cp � (Cp′)−1)ri for random ri, send Ctest,i to U
User U : compute Ctest ←

⊙n
i=1 Ctest,i, send Ctest to each server in S

Server Si: compute di ← PDectski(Ctest � CK), send di to U
User U : output K′ ← TDec(Ctest �CK , d1, . . . , dn)

Fig. 1. Construction outline of the Bagherzandi et al. protocol. For the sake of simplicity, we
slightly deviate from the notation introduced in Section 3 and omit the additional output of πdi

of PDec.

encrypts both the password p and the key K using the generated public key, and sends
these encryptions and generated decryption key shares to all n servers in S. In addition
to his username and password, the user here needs to remember the main public key tpk
of the threshold scheme and the servers he ran the setup with. In the retrieve protocol,
the user encrypts his password attempt p′ under tpk and sends the ciphertext to all the
servers in S. The servers now compute an encryption of the password quotient p/p′

and combine it with the encryption of the key K . With their help, the user decrypts this
combined encryption. If p = p′, this will decrypt to 1 the original key K , otherwise it
will decrypt to a random value.

It is easy to see that the user must correctly remember tpk and the exact set of servers,
as he sends out an encryption of his password attempt p′ under tpk. If tpk can be tam-
pered with and changed so that the adversary knows the decryption key, then the adver-
sary can decrypt p′. (Bagherzandi et al. [3] actually encrypt gp

′
, so that the malicious

servers must still perform an offline attack to obtain p′ itself. However, given the typical
low entropy of passwords, the password p′ can be considered as leaked.)

Retrieve : U(p′,S′) � (S1(Cp, CK , tpk, tsk1), . . . ,Sn(Cp, CK , tpk, tskn))

User U : request ciphertexts and threshold public key from all servers in S′

Server Si: send (Cp, CK , tpk)i to U
User U : if all servers sent the same (Cp, CK , tpk), compute Ctest ← (Cp � TEnctpk(1/p

′))r

for random r and send Ctest to each server in S′

Server Si: compute Ctest,i ← (Ctest)
ri for random ri, send Ctest,i to U

User U : compute C′
test ←

⊙n
i=1 Ctest,i, send C′

test to each server in S′

Server Si: compute di ← PDectski(C
′
test), send di to U

User U : if TDec(C′
test, d1, . . . , dn) = 1, send d1, . . . , dn to each server in S′

Server Si: if TDec(C′
test, d1, . . . , dn) = 1, compute d′i ← PDectski(CK), send d′i to U

User U : output K′ ← TDec(CK , d′1, . . . , d
′
n)

Fig. 2. Construction outline of our retrieval protocol (setup idea as in Figure 1).
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Removing the Trusted User-Storage Requirement. Roughly, we change the retrieval
protocol such that the user never sends out an encryption of his password attempt p′,
but instead sends an encryption of the randomized quotient p/p′. Thus, if the user
mistakenly talks to adversarial servers instead of his true friends, these servers can try
a guess at p′, but will not be able to learn anything more. Our retrieval protocol begins
with the user requesting the servers in S′ (which may or may not be a subset of S)
to send him the ciphertexts and threshold public key he allegedly used in setup. If all
servers respond with the same information, the user takes the received encryption of p
and uses the homomorphism to generate a randomized encryption of p/p′. The servers
then jointly decrypt this ciphertext. If it decrypts to 1, i.e., the two passwords match,
then the servers send the user their decryption shares for the ciphertext encrypting the
key K . By separating the password check and the decryption of K , the user can actually
double-check whether his password was correct and whether he reconstructed his real
key K .

Making the Protocol UC-Secure. The second main difference of our protocol is its UC
security, which requires further mechanisms and steps added to the construction out-
lined in Figure 2. We briefly summarize the additional changes, the detailed description
of our protocol follows later. First, in the security proof we need to extract p, p′, and
K from the protocol messages. This is achieved through a common reference string
(CRS) that contains the public key PK of a semantically secure encryption scheme and
the parameters for a non-interactive zero-knowledge (NIZK) proof system. Values that
need be extractable are encrypted under PK and NIZK proofs are added to ensure that
the correct value is encrypted. Further, all t+ 1 servers explicitly express their consent
with previous steps by signing all messages. The user collects, verifies, and forwards
these signatures, so that all servers can verify the consent of all other servers. Some of
these ideas were discussed by Bagherzandi et al., but only for a specific instantiation
of ElGamal encryption and without aiming for full-blown UC security. Our protocol,
on the other hand, is based on generic building blocks and securely implements the UC
functionality presented in Section 2.

How to Remember the Servers. For the retrieve protocol, we assume that the input of
the user contains t+1 server names. In practice, however, the user might not remember
these names. This is an orthogonal issue and there are a number of ways to deal with it.
For instance, if the user remembers a single server name, he can contact that server and
ask to be reminded of the names of all n servers. The user can then decide with which
t+ 1 of these servers to run the retrieve protocol. The user could even query more than
one server and see whether they agree on the full server list. Again, the crucial point is
that the security of our protocol does not rely on remembering the t + 1 server names
correctly, as the security of the password p′ is not harmed, even when the user runs the
retrieve protocol with t+ 1 malicious servers.

A Note on Robustness. As discussed in Section 2, the restriction to run the retrieve
protocol with exactly t + 1 servers rather stems from the complexity that robustness
would add to our ideal functionality, than from an actual protocol limitation. With asyn-
chronous communication channels, one can achieve only a very limited form of robust-
ness where the protocol succeeds if there are enough honest players and the adversary,
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who controls the network, lets the honest players communicate. Conceptually, one could
add such limited robustness by running the retrieve protocol with all n servers and in
each step continue the protocol only with the first k servers that sent valid response,
where t + 1 ≤ k ≤ n. Bagherzandi et al. [3] handle robustness similarly by running
the protocol with all n servers, mark servers that cause the protocol to fail as corrupt,
and restart the protocol with at least t + 1 servers that appear to be good. To obtain
better robustness guarantees, one must impose stronger requirements on the network
such as assuming synchronous and broadcast channels, as is often done in the thresh-
old cryptography literature [1,2,20]. With synchronous channels, protocols can achieve
a more meaningful version of robustness, where it is ensured that inputs of all honest
parties will be included in the computation and termination of the protocol is guaran-
teed when sufficient honest parties are present [39]. However, in practice, networks are
rarely synchronous, and it is known that the properties guaranteed in a synchronous
world cannot simultaneously be ensured in an asynchronous environment [21,6]. Thus,
given the practical setting of our protocol, we prefer the more realistic assumptions over
modeling stronger (but unrealistic) robustness properties.

4.1 Detailed Description of Our TPASS Protocol

In our protocol description, when we say that a party sends a message m as part of the
setup or retrieve protocol, the party actually sends a message (SETUP, sid , ssid , i,m) or
(RETRIEVE, sid , rsid , i,m), respectively, where i is a sequence number corresponding
to the step number in the respective part of the protocol. Each party will only accept the
first message that it receives for a specific (sub-)session identifier and sequence number.
All subsequent messages from the same party for the same step of the protocol will be
ignored.

Each party locally maintains state information throughout the different steps of one
protocol execution; servers Si additionally maintain a persistent state variable sti[sid ]
associated with the username sid = uid that is common to all executions. Before start-
ing a new execution of the setup or retrieve protocol, we assume that the parties use
standard techniques [16,4] to agree on a fresh and unique sub-session identifier ssid ′

and rsid ′, respectively, that is given as an input to the protocol. Each party then only
accepts messages that include a previously established sub-session identifier, messages
with unknown identifiers will be ignored. We also assume that the sub-session identi-
fiers ssid and rsid explicitly contain the identities of the communicating servers S and
S′, respectively. Using the techniques described in [4], the sub-session identifier would
actually also contain the identifier of the user. However, as we do not assume that users
have persistent public keys, we could not verify whether a certain user indeed belongs
to a claimed identifier, and thus we discard that part of the output.

Setup Protocol. We assume that the system parameters contain a group G = 〈g〉 of
order q that is a τ -bit prime, and that the password p and the key K can be mapped
into G. In the following we assume that p and K are indeed elements of G. We further
assume that each server Si has a public key (epki, spki), where epki is a public en-
cryption key for the CCA2-secure encryption scheme generated by KGen2 and spki is
a signature verification key generated by SKGen. We also assume a public-key infras-
tructure where servers can register their public keys, modeled by the ideal functionality
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FCA by Canetti [17]. Moreover, we require a common reference string, retrievable via
functionality FCRS , containing a public key PK ∈ G of the CPA-secure public-key en-
cryption scheme, distributed as if generated throughKGen, but to which no party knows
the corresponding secret key.

The user U , on input (SETUP, sid , ssid , p,K ) with ssid = (ssid ′,S), runs the fol-
lowing protocol with all servers in S. Whenever a check fails for a party (either the user
or one of the servers), the party aborts the protocol without any output.

Step S1. The user U sets up secret key shares and note
(a) Query functionality FCRS to obtain PK and, for each Si occurring in S, query FCA

to obtain Si’s public keys (epki, spki).
(b) Run (tpk, tpk1, . . . , tpkn, tsk1, . . . , tskn) ← TKGen(G, q, g, t, n) and encrypt the

password p and the key K under both tpk and PK , i.e., compute

Cp ← TEnctpk(p) , CK ← TEnctpk(K ) , C̃p ← EncPK (p) , C̃K ← EncPK (K ).

(c) Generate a non-interactive zero-knowledge proof π0 that the ciphertexts encrypt the
same password and key, bound to ctxt = (sid , ssid , tpk, tpk, Cp, CK , C̃p, C̃K),
where tpk = (tpk1, . . . , tpkn):

π0 ← NIZK{(p,K ) : Cp = TEnctpk(p) ∧ CK = TEnctpk(K ) ∧
C̃p = EncPK (p) ∧ C̃K = EncPK (K ) } (ctxt) .

(d) Set note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0).
(e) Compute CS,i ← Enc2epki (tski, (sid , note)) and send a message (note, CS,i) to

server Si for i = 1, . . . , n.

Step S2. Each server Si checks & confirms user message
(a) Receive (note, CS,i) with note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0). Check

that the variable sti[sid ] has not been initiated yet. Check that the note is valid, i.e.,
that the proof π0 is correct and that the sets tpk and S have the same cardinality
(recall that S is included in ssid ). Further, check that Dec2eski(CS,i, (sid , note))
decrypts to a valid threshold decryption key tski w.r.t. the received public keys.

(b) Sign sid and note as σ1,i ← Signsski
(sid , note) and send the signature σ1,i to U .

Step S3. The user U verifies & forwards server signatures
(a) When valid signatures (σ1,1, . . . , σ1,n) are received from all servers Si in S, for-

ward them to all servers in S.

Step S4. Each server Si verifies & confirms server consent
(a) Upon receiving a message (σ1,1, . . . , σ1,n) from U , check that all signatures σ1,i

for i = 1, . . . , n are valid w.r.t. the local note.
(b) Store necessary information in the state sti[sid ] ← (note, tski).
(c) Compute σ2,i ← Signsski

((sid , note), success), send σ2,i to U , and output the
tuple (SETUP, sid , ssid).

Step S5. The user U outputs the servers’ acknowledgments
(a) Whenever receiving a valid signature σ2,i from a server Si in S, output (SETUP, sid ,

ssid ,Si).
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Retrieval Protocol. The user U ′ on input (RETRIEVE, sid , rsid , p′) where rsid =
(rsid ′,S′) runs the following retrieval protocol with the list of t+1 servers specified in
S′. Whenever a check fails for a party, the party sends a message (RETRIEVE, sid , rsid ,
fail) to all other parties and aborts with output (DELIVER2S, sid , rsid , fail) if the
party is a server, or with output (DELIVER2U, sid , rsid ,⊥) if it is the user. Further,
whenever a party receives a message (RETRIEVE, sid , rsid , fail), it aborts with the
same respective outputs.

Step R1. The user U ′ creates ephemeral encryption key & requests notes

(a) Query FCRS to obtain PK and, for each Si in S′, query FCA to obtain Si’s public
keys (epki, spki).

(b) Generate a key pair (epkU , eskU ) ← KGen2(1τ ) for the CCA2-secure encryption
scheme that will be used to securely obtain the shares of the key K from the servers.

(c) Encrypt the password attempt p′ under the CRS as C̃p′ ← EncPK (p′).

(d) Request the note from each server by sending (epkU , C̃p′) to each server Si ∈ S′.

Step R2. Each server Si retrieves & sends signed note

(a) Upon receiving a retrieve request (epkU , C̃p′), check if a record sti[sid ] = (note,

tski) exists. Parse note = (ssid , tpk, tpk, Cp, CK , C̃p, C̃K , π0) and check that all
servers in S′ also occur in S. (Recall, that sid and rsid are contained in the header
of the message, S′ is included in rsid and S in ssid .)

(b) Query FCA to obtain the public keys (epkj, spkj) of all the other servers Sj in S′.
(c) Compute σ4,i ← Signsski

(sid , rsid , epkU , C̃p′ , note) and send (note, σ4,i) back
to the user.

Step R3. The user U ′ verifies & distributes signatures

(a) Upon receiving the first message (notei, σ4,i) from a server Si ∈ S′, verify the
validity of σ4,i w.r.t. the previously sent values, and parse notei as (ssid , tpk, tpk,
Cp, CK , C̃p, C̃K , π0). Check that all servers in S′ occur in S, that the lists tpk and
S are of equal length, and that the proof π0 is valid w.r.t. sid . If all checks succeed,
set note ← notei.

(b) Upon receiving any subsequent message (notej , σ4,j) from Sj in S′, check that σ4,j

is valid for the same note the first server had sent, i.e., verify notej = note. Proceed
only after (notej , σ4,j) messages from all servers Sj ∈ S′ have been received and
processed.

(c) Send (σ4,j)Sj∈S′ to all servers in S′.

Step R4. Each server Si proceeds or halt

(a) Upon receiving a message (σ4,j)Sj∈S′ from the user, verify the validity of every
signature σ4,j w.r.t. to the locally stored note. Output (RETRIEVE, sid , rsid) to the
environment.

(b) Upon input (PROCEED, sid , rsid , a) from the environment, check that a = allow,
otherwise abort the protocol.

(c) Compute a signature σ5,i ← Signsski
(rsid , allow) and send σ5,i to U ′.



Memento: How to Reconstruct Your Secrets from a Single Password 271

Step R5. The user U ′ computes the encrypted password quotient

(a) Upon receiving a message σ5,i from a server Si in S′, check that σ5,i is a valid sig-
nature on (rsid , allow). Proceed only after a valid signature σ5,i has been received
from all servers Si ∈ S′.

(b) Use the homomorphic encryption scheme to encrypt p′ and entangle it with the
ciphertextCp from note, which supposedly encrypts the password p. That is, select
a random r ←R Zq and compute Ctest ← (Cp + TEnctpk(1/p

′))r.

(c) Generate a proof that Ctest and C̃p′ are based on the same password attempt p′.
To prevent man-in-the-middle attacks, the proof is bound to ctxt = (sid , rsid ,

note, epkU , Ctest, C̃p′) which in particular includes the values epkU , Ctest, and C̃p′

provided by the user so far:

π1 ← NIZK{(p′, r) : Ctest = (Cp +TEnctpk(1/p
′))r ∧ C̃p′ = EncPK (p′)}(ctxt)

(d) Send a message (Ctest, π1, (σ5,j)Sj∈S′) to all servers in S′.

Step R6. Each server Si re-randomizes the quotient encryption

(a) Upon receiving a message (Ctest, π1, (σ5,j)Sj∈S′), verify the proof π1 and validate
all signatures σ5,j .

(b) Choose ri ←R Zq , compute the re-randomized ciphertext C′
test,i ← (Ctest)

ri and
the proof of correctness π2,i ← NIZK{(ri) : C′

test,i = (Ctest)
ri}. Sign the cipher-

text together with the session information as σ6,i ← Signsski
(sid , rsid , Ctest, C̃p′ ,

C′
test,i). Send the message (C′

test,i, π2,i, σ6,i) to U ′.

Step R7. The user U ′ verifies & distributes the re-randomized quotient encryptions

(a) Upon receiving (C′
test,j , π2,j , σ6,j) from all servers Sj in S′, where the proof π2,i

and the signature σ6,i are valid w.r.t. the previously sent Ctest, send (C′
test,j , π2,j ,

σ6,j)Sj∈S′ to all servers in S′.

Step R8. Each server Si computes combined quotient encryption & sends its de-
cryption share

(a) Upon receiving t+1 tuples (C′
test,j , π2,j , σ6,j)Sj∈S′ from the user, verify all proofs

π2,j and all signatures σ6,j .
(b) Derive C′

test ←
⊙

Sj∈S′ C′
test,j and compute the verifiable decryption share of C′

test

as (di, πdi) ← PDectski(C
′
test).

(c) Sign the share as σ7,i ← Signsski
(rsid , C′

test, di) and send (di, πdi , σ7,i) to U ′.

Step R9. The user U ′ checks if p = p′ & distributes shares

(a) When receiving a tuple (di, πdi , σ7,i) from a server Si in S′, verify that the signature
σ7,i and the proof πdi for the decryption share are valid w.r.t. the locally computed
C′

test ←
⊙

Sj∈S′ C′
test,j .

(b) After having received correct decryption shares from all t + 1 servers in S′, check
whether the passwords match by verifying that TDec(C′

test, {dj}Sj∈S′) = 1.
(c) Send all decryption shares, proofs, and signatures, (dj , πdj , σ7,j)Sj∈S′ to all servers

Si in S′.
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Step R10. Each servers Si checks if p = p′ & sends decryption share for K

(a) Upon receiving t + 1 tuples (dj , πdj , σ7,j)Sj∈S′ , verify that all proofs πdj and
signatures σ7,j are valid w.r.t. the locally computed C′

test.
(b) Check whether TDec(C′

test, {dj}Sj∈S′) = 1.
(c) Compute the decryption share for the key K as (d′i, πd′

i
) ← PDectski(CK).

(d) Compute the ciphertextCR,i ← Enc2epkU ((d
′
i, πd′

i
), (epkU , spki)) using the user’s

public key and the own signature public key as label, generate σ8,i ← Signsski
(rsid ,

CR,i), and send (CR,i, σ8,i) to the user. Output (DELIVER2S, sid , rsid , success).

Step R11. The user U ′ reconstructs K

(a) Upon receiving a pair (CR,i, σ8,i) from a server Si in S′, check that σ8,i is valid
and, if so, decrypt CR,i to (d′i, πd′

i
) ← Dec2eskU (CR,i, (epkU , spki)). Verify the

validity of d′i by verifying the proof πd′
i

w.r.t. CK taken from note.
(b) Once all t + 1 valid shares have been received, restore the key K ′ ← TDec(CK ,

{d′j}Sj∈S′) and output (DELIVER2U, sid , rsid ,K ′).

4.2 Security and Efficiency

We now provide the results of our security analysis. The proof of Theorem 1 is given in
the full paper [12].

Theorem 1. If (TKGen,TEnc,PDec,VfDec,TDec) is a semantically secure (t, n)-
threshold homomorphic cryptosystem, (KGen,Enc,Dec) is a CPA-secure encryption
scheme, (KGen2,Enc2,Dec2) is a CCA2-secure labeled encryption scheme, the sig-
nature scheme (SKGen, Sign,Vf) is existentially unforgeable, and a simulation-sound
concurrent zero-knowledge proof system is deployed, then our Setup and Retrieve pro-
tocols described in Section 4 securely realize F in the FCA and FCRS -hybrid model.

When instantiated with the ElGamal based encryption scheme for (TKGen,TEnc,
PDec,VfDec,TDec) and (KGen,Enc,Dec) (as described in the full version [12]), with
the ElGamal encryption scheme with Fujisaki-Okamoto padding [27,30] for (KGen2,
Enc2,Dec2), with Schnorr signatures [46,42] for (SKGen, Sign,Vf), and with the Σ-
protocols described in the full paper [12], then by the UC composition theorem and the
security of the underlying building blocks we have the following corollary:

Corollary 1. The Setup and Retrieve protocols described in Section 4 and instanti-
ated as described above, securely realize F under the DDH-assumption for the group
generated by GGen in the random-oracle and the FCA,FCRS -hybrid model.

Efficiency Analysis: With the primitives instantiated as for Corollary 1, the user has to
do 5n + 15 exponentiations in G for the Setup protocol and 14t+ 24 exponentiations
in the Retrieve protocol. The respective figures for each server are n+ 18 and 7t+ 28.
Counting hash values as half a group element, setup requires four rounds of communi-
cation with n(2.5n + 18.5) total transmitted group elements, while retrieval takes ten
rounds with (t+ 1)(36.5 + 2.5n+ 10.5(t+ 1)) elements.
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Abstract. Non-interactive zero-knowledge proofs of knowledge for general NP
statements are a powerful cryptographic primitive, both in theory and in practi-
cal applications. Recently, much research has focused on achieving an additional
property, succinctness, requiring the proof to be very short and easy to verify.
Such proof systems are known as zero-knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARKs), and are desired when communication is
expensive, or the verifier is computationally weak.

Existing zk-SNARK implementations have severe scalability limitations, in
terms of space complexity as a function of the size of the computation being
proved (e.g., running time of the NP statement’s decision program). First, the
size of the proving key is quasilinear in the upper bound on the computation size.
Second, producing a proof requires “writing down” all intermediate values of the
entire computation, and then conducting global operations such as FFTs.

The bootstrapping technique of Bitansky et al. (STOC ’13), following Valiant
(TCC ’08), offers an approach to scalability, by recursively composing proofs:
proving statements about acceptance of the proof system’s own verifier (and cor-
rectness of the program’s latest step). Alas, recursive composition of known zk-
SNARKs has never been realized in practice, due to enormous computational
cost.

Using new elliptic-curve cryptographic techniques, and methods for
exploiting the proof systems’ field structure and nondeterminism, we achieve the
first zk-SNARK implementation that practically achieves recursive proof compo-
sition. Our zk-SNARK implementation runs random-access machine programs
and produces proofs of their correct execution, on today’s hardware, for any pro-
gram running time. It takes constant time to generate the keys that support all
computation sizes. Subsequently, the proving process only incurs a constant mul-
tiplicative overhead compared to the original computation’s time, and an
essentially-constant additive overhead in memory. Thus, our zk-SNARK imple-
mentation is the first to have a well-defined, albeit low, clock rate of “verified
instructions per second”.
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1 Introduction

Non-interactive zero-knowledge proofs of knowledge [BFM88, NY90, BDSMP91] are
a powerful tool, studied extensively both in theoretical and applied cryptography. Re-
cently, much research has focused on achieving an additional property, succinctness,
that requires the proof to be very short and easy to verify. A proof system with this
additional property is called a zero-knowledge Succinct Non-interactive ARgument of
Knowledge (zk-SNARK). Because succinctness is a desirable, sometimes critical, prop-
erty in numerous security applications, prior work has investigated zk-SNARK imple-
mentations. Unfortunately, all implementations to date suffer from severe scalability
limitations, due to high space complexity, as we now explain.

1.1 Scalability Limitations of Prior zk-SNARK Implementations

Expensive Preprocessing. As in any non-interactive zero-knowledge proof, a
zk-SNARK requires a one-time trusted setup of public parameters: a key generator
samples a proving key (used to generate proofs) and a verification key (used to check
proofs); the key pair is then published as the proof system’s parameters.

Most zk-SNARK constructions [Gro10, Lip12, BCI+13, GGPR13, PGHR13,
BCG+13a, Lip13, BCTV14b], including all published implementations [PGHR13,
BCG+13a, BCTV14b], require expensive preprocessing during key generation.
Namely, the key generator takes as input an upper bound on the computation size, e.g.,
in the form of an explicit NP decision circuit C output by a circuit generator; then, the
key generator’s space complexity, as well as the size of the output proving key, depends
at least linearly on this upper bound. Essentially, the circuit C is explicitly laid out and
encoded so as to produce the proof system’s parameters.

One way to mitigate the costs of expensive preprocessing is to make C universal, i.e.,
design C so that it can handle more than one choice of program [BCTV14b]. Yet, C still
depends on upper bounds on the program size and number of execution steps. Moreover,
even if key generation is carried out only once per circuit C, the resulting large proving
key must be stored, and accessed, each time a proof is generated. Prior implementations
of zk-SNARKs quickly become space-bound already for modest computation sizes,
e.g., with proving keys of over 4GB for circuits of only 16 million gates [BCTV14b].1

Thus, expensive preprocessing severely limits scalability of a zk-SNARK.

Space-Intensive Proof Generation. Related in part to the aforementioned expensive
preprocessing, the prover in all published zk-SNARK implementations has large space
complexity. Essentially, the proving process requires writing down the entire compu-
tation (e.g., the evaluation of the circuit C) all at once, and then conduct a global
computation (such as Fast Fourier transforms, or multi-exponentiations) based on it.
In particular, if C expresses the execution of a program, then proving requires writing
down the full trace of intermediate states throughout the program execution.

1 Even worse, the reported numbers are for “data at rest”: the proving key consists of a list
of elliptic-curve points, which are compressed when not in use. However, when the prover
uses the proving key to produce a proof, the points are uncompressed (and represented via
projective or Jacobian coordinates), and take about three times as much space in memory.
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Tradeoffs are possible, using block-wise versions of the global algorithms, and re-
peating the computation to reproduce segments of the trace. These decrease the prover’s
space complexity but significantly increase its time complexity, and thus do not ade-
quately address scalability.

Remark 1. Even when relaxing the goal (by allowing interaction, “theorem batching”,
or non-zero-knowledge proofs), all published implementations of proof systems for
outsourcing NP computations [SBW11, SMBW12, SVP+12, SBV+13, BFR+13] also
suffer from both of the above scalability limitations.2

1.2 What We Know from Theory

Ideally, we would like to implement a zk-SNARK that does not suffer from either of
the scalability limitations mentioned in the previous section, i.e., a zk-SNARK where:

– Key generation is cheap (i.e., its running time only depends on the security param-
eter) and suffices for all computations (of polynomial size). Such a zk-SNARK is
called fully succinct.

– Proof generation is carried out incrementally, alongside the original computation,
by updating, at each step, a proof of correctness of the computation so far. Such a
zk-SNARK is called incrementally computable.

Work in cryptography tells us that the above properties can be achieved in theoretical
zk-SNARK constructions. Namely, building on the work of Valiant on incrementally-
verifiable computation [Val08] and the work of Chiesa and Tromer on proof-carrying
data [CT10, CT12], Bitansky et al. [BCCT13] showed how to construct zk-SNARKs
that are fully-succinct and incrementally-computable.

Concretely, the approach of [BCCT13] consists of a transformation that takes
as input a preprocessing zk-SNARK (such as one from existing implementations),
and bootstraps it, via recursive proof composition, into a new zk-SNARK that is
fully-succinct and incrementally-computable. In recursive proof composition, a prover
produces a proof about an NP statement that, among other checks, also ensures the ac-
cepting computation of the proof system’s own verifier. In a zk-SNARK, proof verifica-
tion is asymptotically cheaper than merely verifying the corresponding NP statement;
so recursive proof composition is viable, in theory. In practice, however, this step intro-
duces concretely enormous costs: even if zk-SNARK verifiers can be executed in just
a few milliseconds on a modern desktop [PGHR13, BCTV14b], zk-SNARK verifiers
still take millions of machine cycles to execute. Hence, known zk-SNARK implemen-
tations cannot achieve even one step of recursive proof composition in practical time.
Thus, whether recursive proof composition can be realized in practice, with any reason-
able efficiency, has so far remained an intriguing open question.

Remark 2 (PCPs). Suitably instantiating Micali’s “computationally-sound proofs”
[Mic00] yields fully-succinct zk-SNARKs. However, it is not known how to also

2 In contrast, when outsourcing P computations, there are implementations without expensive
preprocessing: [CMT12, TRMP12, Tha13] consider low-depth circuits, and [CRR11] consider
outsourcing to multiple provers at least one of which is honest.
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achieve incremental computation with this approach (without also invoking the
aforementioned approach of Bitansky et al. [BCCT13]). Indeed, [Mic00] requires
probabilistically-checkable proofs (PCPs) [BFLS91], where one can achieve a prover
that runs in quasilinear-time [BCGT13b], but only by requiring space-intensive compu-
tations — again due to the need to write down the entire computation and conducting
global operations on it.

1.3 Contributions

We present the first prototype implementation that practically achieves recursive com-
position of zk-SNARKs. This enables us to achieve the following results:

(i) Scalable zk-SNARKs. We present the first implementation of a zk-SNARK that is
fully succinct and incrementally computable. Our implementation follows the approach
of Bitansky et al. [BCCT13].

Our zk-SNARK works for proving/verifying computations on a general notion of
random-access machine. The key generator takes as input a machine specification, con-
sisting of settings for random-access memory (number of addresses and number of
bits at each address) and a CPU circuit, defining the machine’s behavior. The keys
sampled by the key generator support proving/verifying computations, of any polyno-
mial length, on this machine. Thus, our zk-SNARK implementation directly supports
many architectures (e.g., floating-point processors, SIMD-based processors, etc.) —
one only needs to specify memory settings and a CPU circuit.

Compared to the original machine computation, our zk-SNARK only imposes a con-
stant multiplicative overhead in time and an essentially-constant additive overhead in
space. Indeed, the proving process steps through the machine’s computation, each time
producing a new proof that the computation is correct so far, by relying on the prior
proof; each proof asserts the satisfiability of a constant-size circuit, and requires few
resources in time and space to produce. Our zk-SNARK scales, on today’s hardware,
to any computation size.

(ii) Proof-Carrying Data. The main tool in [BCCT13]’s approach is proof-carrying
data (PCD) [CT10, CT12], a cryptographic primitive that encapsulates the security
guarantees provided by recursive proof composition. Thus, as a stepping stone towards
the aforementioned zk-SNARK implementation, we also achieve the first implementa-
tion of PCD, for arithmetic circuits.

(iii) Evaluation on vnTinyRAM. We evaluate our zk-SNARK on a specific choice of
random-access machine: vnTinyRAM, a simple RISC von Neumann architecture that
is supported by the most recent preprocessing zk-SNARK implementation [BCTV14b].
The evaluation confirms our expectations that our approach is slower for small compu-
tations but achieves scalability to large computations.

We evaluated our prototype on 16-bit and 32-bit vnTinyRAM with 16 registers
(as in [BCTV14b]). For instance, for 32-bit vnTinyRAM, our prototype incrementally
proves correct program execution at the cost of 35.5 seconds per program step, using
a 64.4MB proving key and 1,008MB of additional memory. In contrast, for a T -step
program, the system of [BCTV14b] requires roughly 0.05 · T seconds, provided that
roughly 3.1 ·T MB of main memory is available. Thus for T > 326 our system is more
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space-efficient, and the savings in space continue to grow as T increases. (These num-
bers are for an 80-bit security level.)

The Road Ahead. Obtaining scalable zk-SNARKs is but one application of PCD.
More generally, PCD enables efficient “distributed theorem proving”, which has appli-
cations ranging from securing the IT supply chain, to information flow control, and to
distributed programming-language semantics [CT10, CT12, CTV13]. Now that a first
prototype of PCD has been achieved, these applications are waiting to be explored in
practice.

1.4 Summary of Challenges and Techniques

As we recall in Section 2, bootstrapping zk-SNARKs involves two main ingredients: a
collision-resistant hash function and a preprocessing zk-SNARK. Practical implemen-
tations of both ingredients exist. So one may conclude that “practical bootstrapping” is
merely a matter of stitching together implementations of these two ingredients. As we
now explain, this conclusion is mistaken, because bootstrapping a zk-SNARK in practice
poses several challenges that must be tackled in order to obtain any reasonable efficiency.

Common Theme: Leverage Field Structure. The techniques that we employ to over-
come efficiency barriers leverage the fact that the “native”NP language whose member-
ship is proved/verified by the zk-SNARK is the satisfiability of F-arithmetic circuits, for
a certain finite field F. While any NP statement can be reduced to F-arithmetic circuits,
the proof system is most efficient for statements expressible as F-arithmetic circuits of
small size. Prior work only partially leveraged this fact, by using circuits that conduct
large-integer arithmetic or “pack” bits into field elements for non-bitwise checks (e.g.,
equality) [PGHR13, BCG+13a, BFR+13, BCTV14b]. In this paper, we go further and,
for improved efficiency, use circuits that conduct field operations.

Challenge: How to Efficiently “Close the Loop”? By far the most prominent chal-
lenge is efficiently “closing the loop”. In the bootstrapping approach, each step requires
proving a statement that (i) verifies the validity of previous zk-SNARK proofs; and
(ii) checks another execution step. For recursive composition, this statement needs to
be expressed as an F-arithmetic circuit Cpcd, so that it can be proved using the very
same zk-SNARK. In particular, we need to implement the verifier V as an F-arithmetic
circuit CV (a subcircuit of Cpcd).

In principle, constructing CV is possible, because circuits are a universal model of
computation. In fact, not just in principle: much research has been devoted to improve
the efficiency and functionality of circuit generators in practice [SVP+12, BCGT13a,
SBV+13, PGHR13, BCG+13a, BCTV14b]. Hence, a reasonable approach to construct
CV is to apply a suitable circuit generator to a suitable software implementation of V .

However, such an approach is likely to be inefficient. Circuit generators strive to
support complex program computations, by providing ways to efficiently handle data-
dependent control flow, memory accesses, and so on. Instead, verifiers in preprocessing
zk-SNARK constructions are “circuit-like” programs, consisting of few pairing-based
arithmetic checks that do not use complex data-dependent control flow or memory
accesses.
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Thus, we want to avoid circuit generators, and somehow directly constructCV so that
its size is not huge. As we shall explain (see Section 3), this is not merely a program-
matic difficulty, but there are mathematical obstructions to constructing CV efficiently.

Main Technique: PCD-Friendly Cycles of Elliptic Curves. In our underlying pre-
processing zk-SNARK, the verifier V consists mainly of operations in an elliptic curve
over a field F′, and is thus expressed, most efficiently, as a F′-arithmetic circuit. We
observe that if this field F′ is the same as the aforementioned native field F of the
zk-SNARK’s statement, then recursive composition can be orders of magnitude more
efficient than otherwise. Unfortunately, as we shall explain, the “field matching”F = F′

is mathematically impossible.
In contrast, we show how to circumvent this obstruction by using multiple, suitably-

chosen elliptic curves, that lie on a PCD-friendly cycle. For example, a PCD-friendly
2-cycle consists of two curves such that the (prime) size of the base field of one curve
equals the group order of the other curve, and vice versa. Our implementation uses a
PCD-friendly cycle of elliptic curves (found at a great computational expense) to attain
zk-SNARKs that are tailored for recursive proof composition.

Additional Technique: Nondeterministic Verification of Pairings. The zk-SNARK
verifier involves, more specifically, several pairing-based checks over its elliptic curve.
Yet, each pairing evaluation is very expensive, if not carefully performed. To further
improve efficiency, we exploit the fact that the zk-SNARK supports NP statements,
and provide a hand-optimized circuit implementation of the zk-SNARK verifier that
leverages nondeterminism for improved efficiency. For instance, in our construction, we
make heavy use of affine coordinates for both curve arithmetic and divisor evaluations
[LMN10], because these are particularly efficient to verify (as opposed to computing,
for which projective or Jacobian coordinates are known to be faster).

Challenge: How to Efficiently Verify Collision-Resistant Hashing? Bootstrapping
zk-SNARKs uses, at multiple places, a collision-resistant hash function H and an arith-
metic circuit CH for verifying computations of H . If not performed efficiently, this
would be another bottleneck.

For instance, the aforementioned circuit Cpcd, besides verifying prior zk-SNARK
proofs, is also tasked with verifying one step of machine execution. This involves
not only checking the CPU execution but also the validity of loads and stores to
random-access memory, done via memory-checking techniques based on Merkle trees
[BEG+91, BCGT13a]. Thus Cpcd also needs to have a subcircuit to check Merkle-
tree authentication paths. Constructing such circuits is straightforward, given a circuit
CH for verifying computations of H . But the main question here is how to pick H so
that CH can be small. Indeed, if random-access memory consists of A addresses, then
checking an authentication path requires at least �logA�·|CH | gates. If CH is large, this
subcircuit dwarfs the CPU, and “wastes” most of the size of Cpcd for a single load/store.

Merely picking some standard choice of hash function H (e.g., SHA-256 or Keccak)
yields CH with tens of thousands of gates [PGHR13, BCG+14], making hash verifica-
tions very expensive. Is this inherent?

Additional Technique: Field-Specific Hashes. We select a hash H that is tailored to
efficient verification in the field F. In our setting, F has prime order p, so its additive
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group is isomorphic to Zp. Thus, a natural approach is to let H be a modular subset-sum
function over Zp. For suitable parameter choices and for random coefficients, subset-
sum functions are collision-resistant [Ajt96, GGH96]. In this paper we base all of our
collision-resistant hashing on suitable subset sums, and thereby greatly reduce the bur-
den of hashing.3

1.5 Roadmap

The rest of this paper is organized as follows. In Section 2 we recall the main ideas
of [BCCT13]’s approach. In Section 3, we discuss our construction of preprocessing
zk-SNARKs that are tailored for efficient recursive composition of proofs; due to space
constraints, we leave the other discussions (construction of proof-carrying data and
scalable zk-SNARK) to the full version of this paper [BCTV14a]. In Section 4, we
evaluate our system on the random-access machine vnTinyRAM.

2 Preliminaries

2.1 Preprocessing zk-SNARKs for Arithmetic Circuits

Given a field F, the circuit satisfaction problem of an F-arithmetic circuitC : Fn×Fh →
Fl is defined by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}; its language is
LC = {x ∈ Fn : ∃ a ∈ Fh, C(x, a) = 0l}.

A preprocessing zk-SNARK for F-arithmetic circuit satisfiability (see, e.g.,
[BCI+13]) is a triple of polynomial-time algorithms (G,P, V ), called key generator,
prover, and verifier. The key generator G, given a security parameter λ and an F-
arithmetic circuit C : Fn × Fh → Fl, samples a proving key pk and a verification key
vk; these are the proof system’s public parameters, which need to be generated only
once per circuit. After that, anyone can use pk to generate non-interactive proofs for
the language LC , and anyone can use the vk to check these proofs. Namely, given pk
and any (x, a) ∈ RC , the honest prover P (pk, x, a) produces a proof π attesting that
x ∈ LC ; the verifier V (vk, x, π) checks that π is a valid proof for x ∈ LC . A proof π is
a proof of knowledge, as well as a (statistical) zero-knowledge proof. The succinctness
property requires that π has length Oλ(1) and V runs in time Oλ(|x|), where Oλ hides
a (fixed) polynomial in λ.

See the full version of this paper for details [BCTV14a].

2.2 Proof-Carrying Data

Proof-carrying data (PCD) [CT10, CT12] is a cryptographic primitive that en-
capsulates the security guarantees obtainable via recursive composition of proofs.
Since recursive proof composition naturally involves multiple (physical or vir-
tual) parties, PCD is phrased in the language of a dynamically-evolving dis-
tributed computation among mutually-untrusting computing nodes, who perform local

3 We note that subset-sum functions were also used in [BFR+13], but, crucially, they were not
tailored to the field. This is a key difference in usage and efficiency. (E.g., our hash function
can be verified in ≤ 300 gates, while [BFR+13] report 13,000.)
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computations, based on local data and previous messages, and then produce output mes-
sages. Given a compliance predicate Π to express local checks, the goal of PCD is to
ensure that any given message z in the distributed computation is Π-compliant, i.e.,
is consistent with a history in which each node’s local computation satisfies Π . This
formulation includes as special cases incrementally-verifiable computation [Val08] and
targeted malleability [BSW12].

Concretely, a proof-carrying data (PCD) system is a triple of polynomial-time al-
gorithms (G,P,V), called key generator, prover, and verifier. The key generator G is
given as input a predicate Π (specified as an arithmetic circuit), and outputs a proving
key pk and a verification key vk; these keys allow anyone to prove/verify that a piece of
data z is Π-compliant. This is achieved by attaching a short and easy-to-verify proof to
each piece of data. Namely, given pk, received messages zin with proofs πin, local data
zloc, and a claimed outgoing message z, P computes a new proof π to attach to z, which
attests that z is Π-compliant; the verifier V(vk, z, π) verifies that z is Π-compliant. A
proof π is a proof of knowledge, as well as a (statistical) zero-knowledge proof; suc-
cinctness requires that π has length Oλ(1) and V runs in time Oλ(|z|).

Finally, note that since Π is expressed as an F-arithmetic circuit for a given field F,
the size of messages and local data are fixed; we denote these sizes by nmsg, nloc ∈ N.
Similarly, the number of input messages is also fixed; we call this the arity, and denote
it by s ∈ N. Moreover, for convenience, Π also takes as input a flag bbase ∈ {0,1}
denoting whether the node has no predecessors (i.e., bbase is a “base-case” flag). Overall,
Π takes an input (z, zloc, zin, bbase) ∈ Fnmsg × Fnloc × Fs·nmsg × F.

See the full version of this paper for details [BCTV14a].

2.3 The Bootstrapping Approach

Our implementation follows [BCCT13], which we now review. The approach con-
sists of a transformation that, on input a preprocessing zk-SNARK and a collision-
resistant hash function, outputs a scalable zk-SNARK. Thus, the input zk-SNARK is
bootstrapped into one with improved scalability properties.

So fix a preprocessing zk-SNARK (G,P, V ) and collision-resistant function H . The
goal is to construct a fully-succinct incrementally-computable zk-SNARK (G, P ,
V ) for proving/verifying the correct execution on a given random-access machine M.
Informally, we describe the transformation in four steps.

Step 1: from zk-SNARKs to PCD. The first step, independent of M, is to construct a
PCD system (G,P,V), by using the zk-SNARK (G,P, V ). This step involves recursive
composition of zk-SNARK proofs.

Step 2: Delegate the Machine’s Memory. The second step is to reduce the footprint
of the machine M, by delegating its random-access memory to an untrusted storage, via
standard memory-checking techniques based on Merkle trees [BEG+91, BCGT13a].
We thus modify M so that its “CPU” receives values loaded from memory as nonde-
terministic guesses, along with corresponding authentication paths that are checked
against the root of a Merkle tree based on the hash function H . Thus, M’s state only
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consists of a (short) CPU state, and a (short) root of the Merkle tree that “summarizes”
memory.4

Step 3: Design a Predicate ΠM,H for Step-Wise Verification. The third step is to
design a compliance predicate ΠM,H that ensures that the only ΠM,H-compliant mes-
sages z are the ones that result from the correct execution of the (modified) machine M,
one step at a time; this is analogous to the notion of incremental computation [Val08].
Crucially, because ΠM,H is only asked to verify one step of execution at a time, we can
implement ΠM,H’s requisite checks with a circuit of merely constant size.

Step 4: Construct New Proof System. The new zk-SNARK (G, P , V ) is con-
structed as follows. The new key generator G is set to the PCD generator G invoked
on ΠM,H . The new prover P  uses the PCD prover P to prove correct execution of
M, one step at a time and conducting the incremental distributed computation “in his
head”. The new verifier V  simply uses the PCD verifierV to verifyΠM,H -compliance.
In sum, since ΠM,H is small and suffices for all computations, the new zk-SNARK is
scalable: it is fully succinct; moreover, because the new prover computes a proof for
each new step based on the previous one, it is also incrementally computable. (See the
full version of this paper for definitions of these properties [BCTV14a].)

Our goal is to realize the above approach in a practical implementation.

Security of Recursive Proof Composition. Security in [BCCT13] is proved by us-
ing the proof-of-knowledge property of zk-SNARKs; we refer the interested reader
to [BCCT13] for details. One aspect that must be addressed from a theoretical stand-
point is the depth of composition. Depending on assumption strength, one may have to
recursively compose proofs in “proof trees above the message chain”, rather than along
the chain. From a practical perspective we make the heuristic assumption that depth of
composition does not affect security of the zk-SNARK, because no evidence suggests
otherwise for the constructions that we use.

3 PCD-Friendly Preprocessing zk-SNARKs

We first construct preprocessing zk-SNARKs that are tailored for efficient recursive
composition of proofs.

3.1 PCD-Friendly Cycles of Elliptic Curves

Let F be a finite field, and (G,P, V ) a preprocessing zk-SNARK for F-arithmetic sat-
isfiability. The idea of recursive proof composition is to prove/verify satisfiability of
an F-arithmetic circuit Cpcd that checks the validity of previous proofs (among other
things). Thus, we need to implement the verifier V as an F-arithmetic circuit CV , to be
used as a sub-circuit of Cpcd.

4 Similarly to [BCCT13] and our realization thereof, Braun et al. [BFR+13] leverage memory-
checking techniques based on Merkle trees [BEG+91] for enabling a circuit to “securely” load
from and store to an untrusted storage. However, the systems’ goals (batched verification of
MapReduce computations in a 2-move protocol) and techniques are different (cf. Footnote 3).
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How to write CV depends on the algorithm of V , which in turn depends on which
elliptic curve is used to instantiate the pairing-based zk-SNARK. For prime r, in order
to prove statements about Fr-arithmetic circuit satisfiability, one instantiates (G,P, V )
using an elliptic curve E defined over some finite field Fq, where the group E(Fq)
of Fq-rational points has order r = #E(Fq) (or, more generally, r divides #E(Fq)).
Then, all of V ’s arithmetic computations are over Fq, or extensions of Fq up to degree
k, where k is the embedding degree of E with respect to r (i.e., the smallest integer k
such that r divides qk − 1). We motivate our approach by first describing two “failed
attempts”.

Attempt #1: Pick Curve with q = r. Ideally, we would like to select a curve E with
q = r, so that V ’s arithmetic is over the same field for which V ’s native NP language is
defined. Unfortunately, this cannot happen: the condition that E has embedding degree
k with respect to r implies that r divides qk − 1, which implies that q �= r. The same
implication holds even if E(Fq) has a non-prime order n and the prime r (with respect
to which k is defined) only divides n. So, while appealing, this idea cannot even be
instantiated.

Attempt #2: Long Arithmetic. Since we are stuck with q �= r, we may consider do-
ing “long arithmetic”: simulating Fq operations via Fr operations, by working with bit
chunks to perform integer arithmetic, and modding out by q when needed. Alas, having
to work at the “bit level” implies a blowup on the order of log q compared to native
arithmetic. So, while this approach can at least be instantiated, it is very expensive.

Our Approach: Cycle through Multiple Curves. We formulate, and instantiate, a
new property for elliptic curves that enables us to completely circumvent long arith-
metic, even with q �= r. In short, our idea is to base recursive proof composition, not
on a single zk-SNARK, but on multiple zk-SNARKs, each instantiated on a different
elliptic curve, that jointly satisfy a special property.

For the simplest case, suppose we have two primes qα and qβ , and elliptic curves
Eα/Fqα and Eβ/Fqβ such that qα = #Eβ(Fqβ ) and qβ = #Eα(Fqα), i.e., the size of
the base field of one curve equals the group order of the other curve, and vice versa. We
then construct two preprocessing zk-SNARKs (Gα, Pα, Vα) and (Gβ , Pβ , Vβ), respec-
tively instantiated on the two curves Eα/Fqα and Eβ/Fqβ .

Now note that (Gα, Pα, Vα) works for Fqβ -arithmetic circuit satisfiability, but all of
Vα’s arithmetic computations are over Fqα (or extensions thereof); while (Gβ , Pβ , Vβ)
works for Fqα -arithmetic circuits, but Vβ’s arithmetic computations are over Fqβ (or
extensions thereof). Instead of having each zk-SNARK handle statements about its own
verifier, as in the prior attempts (i.e., writing Vα as a Fqβ -arithmetic circuit, or Vβ as
a Fqα -arithmetic circuit), we instead let each zk-SNARK handle statements about the
verifier of the other zk-SNARK. That is, we write Vα as a Fqα -arithmetic circuit CVα ,
and Vβ as a Fqβ -arithmetic circuit CVβ

.
We can then perform recursive proof composition by alternating between the two

proof systems. Roughly, one can use Pα to prove successful verification of a proof by
CVβ

and, conversely, Pβ to prove successful verification of a proof by CVα . Doing so
in alternation ensures that fields “match up”, and no long arithmetic is needed. (This
sketch omits key technical details; see the full version of this paper [BCTV14a].)
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Since Eα and Eβ facilitate constructing PCD, we say that (Eα, Eβ) is a PCD-
friendly 2-cycle of elliptic curves. More generally, the idea extends to cycling through �
curves satisfying this definition:

Definition 1. Let E0, . . . , E�−1 be elliptic curves, respectively defined over finite fields
Fq0 , . . . ,Fq�−1

, with each qi a prime. We say that (E0, . . . , E�−1) is a PCD-friendly
cycle of length � if each Ei is pairing friendly and, moreover, ∀ i ∈ {0, . . . , �−1}, qi =
#Ei+1 mod �(Fqi+1 mod �

) .

To our knowledge this notion has not been explicitly sought before. Though, fortunately,
a family that satisfies this notion is already known, as discussed in the next subsection.

3.2 Two-Cycles Based on MNT Curves

We construct pairs of elliptic curves, E4 and E6, that form PCD-friendly 2-cycles
(E4, E6). These are MNT curves [MNT01] of embedding degrees 4 and 6. Our con-
struction also ensures that E4 and E6 are sufficiently 2-adic (see below), a desirable
property for efficient implementations of preprocessing zk-SNARKs.

MNT Curves and the KT Correspondence. Miyaji, Nakabayashi, and Takano
[MNT01] characterized prime-order elliptic curves with embedding degrees k = 3,4,6;
such curves are now known as MNT curves. Given an elliptic curve E defined over a
prime field Fq , they gave necessary and sufficient conditions on the pair (q, t), where t
is the trace of E over Fq , for E to have embedding degree k = 3,4,6. We refer to an
MNT curve with embedding degree k as an MNTk curve. Karabina and Teske [KT08]
proved an explicit 1-to-1 correspondence between MNT4 and MNT6 curves:

Theorem 1 ([KT08]). Let n, q > 64 be primes. Then the following two conditions are
equivalent: (i) n and q represent an elliptic curve E4/Fq with embedding degree k = 4
and n = #E(Fq); (ii) n and q represent an elliptic curve E6/Fn with embedding
degree k = 6 and q = #E(Fn).

PCD-Friendly 2-Cycles on MNT Curves. The above theorem implies that:

Each MNT6 curve lies on a PCD-friendly 2-cycle with the corresponding MNT4
curve (and vice versa).

Thus, a PCD-friendly 2-cycle can be obtained by constructing an MNT4 curve and its
corresponding MNT6 curve. Next, we explain at high level how this can be done.

Constructing PCD-Friendly 2-Cycles. First, we recall the only known method to
construct MNTk curves [MNT01]. It consists of two steps:
– Step I: curve discovery. Find suitable (q, t) ∈ N2 such that there exists an ordinary

elliptic curve E/Fq of prime order n := q + 1− t and embedding degree k.
– Step II: curve construction. Starting from (q, t), use the Complex-Multiplication

method (CM method) [AM93] to compute the equation of E over Fq.
The complexity of Step II depends on the discriminant D of E, which is the square-free
part of 4q − t2. At present, the CM method is feasible for discriminants D up to size
1016 [Sut12]. Thus, Step I is conducted in a way that results in candidate parameters
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(q, t) inducing relatively-small discriminants, to aid Step II. (Instead, “most” (q, t) in-
duce a discriminant D of size

√
q, which is too large to handle.) Concretely, [MNT01]

derived, for k ∈ {3,4,6} and discriminant D, Pell-type equations whose solutions yield
candidate parameters (q, t) for MNTk curves E/Fq of trace t and discriminant D. So
Step I can be performed by iteratively solving the MNTk Pell-type equation, for increas-
ing discriminant size, until a suitable (q, t) is found.

The above strategy can be extended, in a straightforward way, to construct PCD-
friendly 2-cycles. First perform Step I to obtain suitable parameters (q4, t4) for an
MNT4 curve E4/Fq4 ; the parameters (q6, t6) for the corresponding MNT6 curve
E6/Fq6 are q6 := q4 + 1 − t4 and t6 := 2 − t4. Then perform Step II for (q4, t4)
to compute the equation of E4, and then also for (q6, t6) to compute that of E6. The
complexity in both cases is the same: one can verify that E4 and E6 have the same
discriminant. The two curves E4 and E6 form a PCD-friendly 2-cycle (E4, E6).

Suitable Cycle Parameters. We now explain what “suitable (q4, t4)” means in our
context, by specifying a list of additional properties that we wish a PCD-friendly cycle
to satisfy.

– Bit lengths. In a 2-cycle (E4, E6), the curve E4 is “less secure” than E6, because
E4 has embedding degree 4 while E6 has embedding degree 6. Thus, we use E4

to set lower bounds on bit lengths. Since we aim at a security level of 80 bits, we
need r4 ≥ 2160 and q4 ≥ 2240 (so that

√
r4 ≥ 280 and q44 ≥ 2960 [FST10]). Since

log r4 ≈ log q4 for MNT4 curves, we only need to ensure that q4 has 240 bits.5

– Towering friendliness. We restrict our focus to moduli q4 and q6 that are towering
friendly (i.e., congruent to 1 modulo 6) [BS10]; this improves the efficiency of arith-
metic in F4

q4 and F6
q6 (and their subfields).

– 2-adicity. As discussed in [BCG+13a, BCTV14b], if a pairing-based preprocessing
zk-SNARK (G,P, V ) is instantiated with an elliptic curve E/Fq of prime order r
(or with #E(Fq) divisible by a prime r), it is important, for efficiency reasons, that
r− 1 is divisible by a large power of 2, i.e., ν2(r− 1) is large. (Recall that ν2(n), the
2-adic order of n, is the largest power of 2 dividing n.) Concretely, if G is invoked
on an Fr-arithmetic circuit C, it is important that ν2(r − 1) ≥ �log |C|�. We call
ν2(r − 1) the 2-adic order of E, or the 2-adicity of E.
So let �4 and �6 be the target values for ν2(r4 − 1) and ν2(r6 − 1). One can verify
that, for any MNT-based PCD-friendly 2-cycle (E4, E6), it holds that ν2(r4 − 1) =
2 · ν2(r6 − 1); in other words, E4 is always “twice as 2-adic” as E6. Thus, to achieve
the target 2-adic orders, it suffices to ensure that ν2(r4 − 1) ≥ max{�4,2�6} (where,
as before, r4 := q4 + 1− t4). As we shall see it will suffice to take ν2(r4 − 1) ≥ 34.

Of the above properties, the most restrictive one is 2-adicity, because it requires seeing
enough curves until, “by sheer statistics”, one finds (q4, t4) with a high-enough value for
ν2(r4−1). Collecting enough samples is costly because, as discriminant size increases,
the density of MNT curves decreases: empirically, one finds that the number MNT
curves with discriminant D ≤ N is (approximately) less than

√
N [KT08].

5 Alas, since E4 has a low embedding degree, the ECDLP in E(Fq4) and DLP in F4
q4 are “un-

balanced”: the former provides 120 bits of security, while the latter only 80. Moreover, the
same is true for E6: the ECDLP in E(Fq6) provides 120 bits of security, while the DLP in F6

q4

only 80. Finding PCD-friendly cycles without these inefficiencies is an open problem.
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An Extensive Computation for a Suitable Cycle. Overall, finding and constructing
a suitable cycle required a substantial computational effort.

– Cycle discovery. In order to find suitable parameters for a cycle, we explored a large
space: all discriminants up to 1.1 · 1015, requiring about 610,000 core-hours on a
large cluster of modern x86 servers. Our search algorithm is a modification of [KT08,
Algorithm 3]. Among all the 2-cycles that we found, we selected parameters (q4, t4)
and (q6, t6) for a 2-cycle (E4, E6) of curves such that: (i) q4, q6 each have 298 bits;
(ii) q4, q6 are towering friendly; and (iii) ν2(r4 − 1) = 34 and ν2(r6 − 1) = 17. The
bit length of q4, q6 is higher than the lower bound of 240; we entail this cost so to
pick a rare cycle with high 2-adicity, which helps the zk-SNARK’s efficiency more
than the slowdown incurred by the higher bit length.

– Cycle construction. Both E4 and E6 have discriminant 614144978799019, whose
size requires state-of-the-art techniques in the CM method [Sut11, ES10, Sut12] in
order to explicitly construct the curves.6

Below, we report the parameters and equations for the 2-cycle (E4, E6) that we
selected.

E4/Fq4 : y2 = x3 +A4x+B4 where
A4 = 2,

B4 = 423894536526684178289416011533888240029318103673896002803341544124054745019340795360841685,

q4 = 475922286169261325753349249653048451545124879242694725395555128576210262817955800483758081.

E6/Fq6 : y2 = x3 +A6x+B6 where
A6 = 11,

B6 = 106700080510851735677967319632585352256454251201367587890185989362936000262606668469523074,

q6 = 475922286169261325753349249653048451545124878552823515553267735739164647307408490559963137.

Security. One may wonder if curves lying on PCD-friendly cycles are weak (e.g.,
in terms of DL hardness). Yet, MNT4 and MNT6 curves of suitable parameters are
widely believed to be secure, and they all fall in PCD-friendly 2-cycles. The additional
requirement of high 2-adicity is not known to cause weakness either.

3.3 A Matched Pair of Preprocessing zk-SNARKs

Based on the cycle (E4, E6), we designed and constructed two preprocessing
zk-SNARKs for arithmetic circuit satisfiability: (G4, P4, V4) based on the curve E4,
and (G6, P6, V6) on E6. The software implementation follows [BCTV14b], the fastest
preprocessing zk-SNARK implementation for circuits at the time of writing. We thus
adapt the techniques in [BCTV14b] to our algebraic setting, which consists of the two
MNT curves E4 and E6, and achieve efficient implementations of (G4, P4, V4) and
(G6, P6, V6).

The implementation itself entails many algorithmic and engineering details, and we
refer the reader to [BCTV14b] for a discussion of these techniques. We only provide a

6 The authors are grateful to Andrew V. Sutherland for generous help in running the CM method
on such a large discriminant.
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high-level efficiency comparison between the preprocessing zk-SNARK of [BCTV14b]
based on Edwards curves (also at 80-bit security), and our implementations of (G4, P4,
V4) and (G6, P6, V6); see the full version of this paper. Our implementation is slower,
because of two main reasons: (i) MNT curves do not enjoy advantageous properties that
Edwards curves do; and (ii) the modulus sizes are larger (298 bits in our case vs. 180
bits in [BCTV14b]). On the other hand, the fact that MNT curves lie on a PCD-friendly
2-cycle is crucial for the PCD construction described next.

4 Evaluation on vnTinyRAM

We evaluate our scalable zk-SNARK when the given random-access machine M equals
vnTinyRAM, a simple RISC von Neumann architecture [BCTV14b, BCG+13b]. For
comparison, we also compare [BCTV14b]’s preprocessing zk-SNARK (which also sup-
ports vnTinyRAM) with our scalable zk-SNARK.

We ran our experiments on a desktop PC with a 3.40 GHz Intel Core i7-4770 CPU
and 16 GB of RAM available. Unless otherwise specified, all times are in single-thread
mode; as for our multi-core experiments, we enabled one thread for each of the CPU’s
4 cores (for a total of 4 threads).

Recalling vnTinyRAM. The architecture vnTinyRAM is parametrized by the word
size, denoted w, and the number of registers, denoted k. In terms of instructions,
vnTinyRAM includes load and store instructions for accessing random-access mem-
ory (in byte or word blocks), as well as simple integer, shift, logical, compare,
move, and jump instructions. Thus, vnTinyRAM can efficiently implement control
flow, loops, subroutines, recursion, and so on. Complex instructions (e.g., floating-
point arithmetic) are not directly supported and can be implemented “in software”.
See the full version of this paper for how vnTinyRAM can be expressed in our
random-access machine formalism (i.e., given w, k, how to construct M to express
w-bit vnTinyRAM with k registers).

Costs on vnTinyRAM. The performance of our zk-SNARK (G, P , V ) on
vnTinyRAM is easy to characterize, because it is determined by few quantities. For
the key generator G, the relevant quantities are:
– the constant time and space complexity of G, when given as input a description of

vnTinyRAM; and
– the constant sizes of the generated proving key pk and verification key vk.
For the proving algorithm P , which proceeds step by step alongside the original com-
putation, they are:
– the constant time necessary to incrementally compute the new (constant-size) proof

at each step; and
– the constant space needed to compute the new proof (on top of the space needed by

the original program).7

7 The prover also needs to store the Merkle tree’s intermediate hashes, which incurs a linear
overhead in the program’s space complexity. Since this overhead is small, and can even be
reduced by saving only the high levels of the Merkle tree (and recomputing, “on demand”, the
local neighborhood of accessed leaves), we focus on the additive overhead needed for proving.
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Finally, the verifier V  takes as input a program P and a time bound T , and runs in time
O(|P| + logT ); in our implementation, we fix T ≤ 2300 (plenty enough), so that V 

runs in time O(|P|).
In Figure 1, we report our measurements for two settings of vnTinyRAM: (w, k) =

(16,16) and (w, k) = (32,16), i.e., 16-bit and 32-bit vnTinyRAM with 16 registers.
(The same settings as in [BCTV14b].)

16-bit vnTinyRAM 32-bit vnTinyRAM

(w,k) = (16,16) (w,k) = (32,16)

key generator G�

TIME
1 thread 4 threads 1 thread 4 threads

total 44.5 s 15.9 s 53.8 s 19.4 s

SPACE
memory 1.0GB 1.2GB 1.1GB 1.4GB
pk size 51.5MB 64.4MB
vk size 1.3 kB 1.3 kB

prover P�

TIME
1 thread 4 threads 1 thread 4 threads

per step 33.1 s 11.5 s 35.5 s 12.1 s
SPACE

memory 0.9GB 1.2GB 1.1GB 1.3GB
proof 374 B 374 B

verifier V �

TIME
|P| = 10 23.6ms 24.3ms
|P| = 102 24.1ms 24.9ms
|P| = 103 30.1ms 31.1ms
|P| = 104 91.0ms 94.1ms
in general ≈ (23.48 + 0.00674|P|) ms ≈ (24.17 + 0.00698|P|) ms

Fig. 1. Performance of our scalable zk-SNARK on 16-bit and 32-bit vnTinyRAM

Comparison with [BCTV14b]. In Figure 2, we compare the efficiency of
[BCTV14b]’s preprocessing zk-SNARK and our scalable zk-SNARK, for a (random)
program P of 104 instructions, as a function of T (the number of vnTinyRAM compu-
tation steps).

key generator key sizes prover verifier

TIME SPACE |pk| |vk| TIME SPACE TIME

16-bit vnTinyRAM [BCTV14b] 0.09 · T s 1.8 · T MB 0.3 · T MB 40.4 kB 0.04 · T s 1.9 · T MB 24.2ms

(w,k) = (16,16) this work 44.5 s 933 MB 51.5 MB 1.3 kB 33.1 · T s 873MB 91.0ms

32-bit vnTinyRAM [BCTV14b] 0.14 · T s 3.0 · T MB 0.4 · T MB 80.3 kB 0.05 · T s 3.1 · T MB 41.0ms

(w,k) = (32,16) this work 53.8 s 1,082 MB 64.4 MB 1.3 kB 35.5 · T s 1,008MB 94.1ms

Fig. 2. Comparison between [BCTV14b]’s preprocessing zk-SNARK and our scalable
zk-SNARK
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The (approximate) asymptotic efficiency for [BCTV14b] was obtained by linearly
interpolating [BCTV14b]’s measurements (which were collected on a machine with
similar characteristics as our benchmarking machine). As for our measurements, we
use the relevant numbers from Figure 1.

Conclusion. Our experiments demonstrate that, as expected, our approach is slower
for small computations but, on the other hand, offers scalability to large computations
by avoiding any space-intensive computations.

Indeed, [BCTV14b] (as well as other preprocessing zk-SNARK implementations
[PGHR13, BCG+13a]) require space-intensive computations to maintain their effi-
ciency. As T grows, such approaches simply run out of memory, and must resort to
“computing in blocks”, sacrificing time complexity.

In contrast, our zk-SNARK, while requiring more time per execution step, merely
requires a constant amount of memory to prove any number of execution steps. In par-
ticular, our zk-SNARK becomes more space-efficient than [BCTV14b]’s zk-SNARK
when T > 460 for 16-bit vnTinyRAM, and when T > 326 for 32-bit vnTinyRAM;
moreover, these savings in space grow unbounded as T increases.

Finally, being scalable, our zk-SNARK implementation is the first to achieve a
well-defined clock rate of verified instructions per second (VIPS). Concretely, for
vnTinyRAM, we obtain the following VIPS values:

16-bit vnTinyRAM 32-bit vnTinyRAM
(w, k) = (16,16) (w, k) = (32,16)

1 thread VIPS = 1
33.1

Hz VIPS = 1
35.5

Hz

4 threads VIPS = 1
11.5

Hz VIPS = 1
12.1

Hz

While perhaps too slow for most applications, our prototype empirically demon-
strates the feasibility of the bootstrapping approach as a way to achieve scalability of
zk-SNARKs and, more generally, to achieve the rich functionality of proof-carrying
data.
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Abstract. We state a switching lemma for tests on adversarial responses
involving bilinear pairings in hard groups, where the tester can effectively
switch the randomness used in the test from being given to the adversary
at the outset to being chosen after the adversary commits its response.
The switching lemma can be based on any k-linear hardness assumptions
on one of the groups. In particular, this enables convenient information
theoretic arguments in the construction of sequence of games proving
security of cryptographic schemes, mimicking proofs and constructions
in the random oracle model.

As an immediate application, we show that the computationally-sound
quasi-adaptive NIZK proofs for linear subspaces that were recently in-
troduced [JR13b] can be further shortened to constant-size proofs, inde-
pendent of the number of witnesses and equations. In particular, under
the XDH assumption, a length n vector of group elements can be proven
to belong to a subspace of rank t with a quasi-adaptive NIZK proof
consisting of just a single group element. Similar quasi-adaptive aggre-
gation of proofs is also shown for Groth-Sahai NIZK proofs of linear
multi-scalar multiplication equations, as well as linear pairing-product
equations (equations without any quadratic terms).

Keywords: NIZK, bilinear pairings, quasi-adaptive, Groth-Sahai, Ran-
dom Oracle, IBE, CCA2.

1 Introduction

Testing pairing equations in bilinear groups is a fundamental component of nu-
merous cryptographic schemes spanning public key encryption schemes, signa-
tures, zero knowledge proofs and so on. We state and prove a switching lemma
for testing pairing equations in bilinear groups, where an adversary is given some
random group elements from one of the groups, and the pairing test (of equality
and/or inequality) is performed on adversary’s output and the same random
group elements. We show that the tester can replace the random group elements
in the test with a new set of fresh random group elements, effectively mimick-
ing the behavior of a random oracle. This switching lemma can be based on
any k-linear hardness assumptions on one of the groups. This not only enables
convenient information theoretic arguments in the construction of sequence of

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 295–312, 2014.
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games proving security of cryptographic schemes, but also allows more efficient
protocols reminiscent of the Fiat-Shamir paradigm using random oracles [FS86].

Fiat-Shamir paradigm is best illustrated by the conversion of 3-round sigma
protocol [Dam] for proof of knowledge (PoK) of discrete logarithms to a random
oracle based NIZK. Consider an example where the prover is trying to prove
possession of the discrete logarithm x of a public value gx. In the first round
the prover commits to a random value r by sending gr. In response, the verifier
generates a fresh random value c and sends to the prover. The prover then
responds with r+cx. This constitutes an honest verifier zero-knowledge PoK. In
transforming this to a NIZK, a public random oracle H is used and the prover
just transmits (gr, r +H(gr, gx) · x). Essentially the random oracle induces the
effect of a ‘fresh’ randomness that can be used for verification and is not under
any effective control of the prover. In this paper we create an analogous effect
in the standard model using the hardness of k-linear problems (such as DDH
and DLIN) in bilinear groups. We show that even if the random testing values
are public and hence known to the prover, during verification one can switch
to freshly generated testing values with negligible change in the probability of
success of the verification.

As an immediate application, we show that the computationally-sound quasi-
adaptive NIZK (QA-NIZK) proofs for linear subspaces that we recently intro-
duced in [JR13b] can be further shortened to constant -size proofs, independent
of the number of variables and equations. In [JR13b], it was shown that for lan-
guages that are linear subspaces of vector spaces of the bilinear groups, one can
obtain more efficient computationally-sound NIZK proofs compared to [GS08] in
a slightly different quasi-adaptive setting, which suffices for many cryptographic
applications. In the quasi-adaptive setting, a class of parametrized languages
{Lρ} is considered, parametrized by ρ, and the CRS generator is allowed to gen-
erate the CRS based on the language parameter ρ. However, the CRS simulator
in the zero-knowledge setting is required to be a single efficient algorithm that
works for the whole parametrized class or probability distributions of languages,
by taking the parameter as input. This property was referred to as uniform
simulation.

The main idea underlying the construction in [JR13b] can be summarized as
follows. Consider the language Lρ (over a cyclic group G of order q, in additive
notation) defined as

Lρ =
{
〈l1, l2, l3〉 ∈ G3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h

}

where ρ
def
= (g, f , h) is the parameter defining the language. Suppose that the

CRS can be set to be a basis for the null-space L⊥
ρ of the language Lρ. Then,

just pairing a potential language candidate with L⊥
ρ and testing for all-zero

suffices to prove that the candidate is in Lρ, as the null-space of L⊥
ρ is just Lρ.

However, efficiently computing null-spaces in hard bilinear groups is itself hard.
Thus, an efficient CRS simulator cannot generate L⊥

ρ . However, it was shown
that it suffices to give as CRS a (hiding) commitment that is computationally
indistinguishable from a binding commitment to L⊥

ρ .
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Ourcontributions. Utilizing the switching lemma, forn equations in tvariables, our
computationally-sound quasi-adaptive NIZK proofs for linear subspaces require
only k group elements under the k-linear decisional assumption [HK07, Sha07].
Thus, under the XDH1 assumption for bilinear groups, our proofs require only one
group element. In contrast, the Groth-Sahai system requires (n + 2t) group ele-
ments and our previous system required (n − t) group elements. Similarly, under
the decisional linear assumption (DLIN), our proofs require only 2 group elements,
whereas the Groth-Sahai system requires (2n+ 3t) group elements and our previ-
ous system required (2n− 2t) group elements. These parameters are summarized
in Table 1. While our CRS size grows linearly with n, the number of pairing opera-
tions is competitive and could be significantly less compared to earlier schemes for
appropriate n and t.

Table 1. Comparison with Groth-Sahai, Jutla-Roy (2013) and Schnorr-NIZKs for Lin-
ear Subspaces. Parameter t is the number of unknowns and n is the dimension of the
vector space, i.e. the number of equations. See text for recent independent work.

XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n + 2t 4 2n(t + 2) 2n + 3t 9 3n(t + 3)
Jutla-Roy ’13 n − t 2t(n − t) + 2 (n − t)(t + 2) 2n − 2t 4t(n − t) + 3 2(n − t)(t + 2)
Schnorr (RO) t + 2 − − − − −
This paper 1 n + t + 1 n + 1 2 2(n + t + 2) 2(n + 2)

Note that Schnorr proofs of multiple equations in the random oracle model
can also be combined into a proof consisting of only two group elements (by
taking random linear combinations employing the random oracle), but it still
requires commitments to all the variables. Thus, our proofs are even shorter
than Schnorr proofs. On the other hand, Schnorr proofs are proof of knowledge
(as opposed to ours or Groth-Sahai), and can be somewhat faster to verify as they
only use exponentiation instead of pairings. We also show that proofs of multiple
linear scalar-multiplication equations, as well as multiple linear pairing product
equations (i.e. without any quadratic terms) can be aggregated into a single proof
in the Groth-Sahai system. This can lead to significant shortening of proofs of
multiple linear pairing product equations. The comparisons are tabulated in
Table 2. We remark that this is in contrast to the batching of Groth-Sahai
proof verification [BFI+10], where the proofs were not aggregated, but multiple
pairing equations were batched together during the verification step. We can
use similar batching techniques to improve the verification step; therefore, we
skip taking these optimizations into consideration. A recent work [LPJY14] has
also obtained constant-size QA-NIZK proofs under DLIN (but not under XDH).
While our proofs are marginally shorter (2 against 3 in DLIN), they additionally
show constant-size unbounded simulation-sound QA-NIZK proofs.

1 XDH is the assumption that DDH is hard in one of the pairing groups. Also note that
DDH is same as the k-linear assumption for k = 1.
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Table 2. Comparison with (1) Groth-Sahai for n number of linear Scalar Multiplication

Equations: �y · �aj + �bj · �x = uj , with j ∈ [1, n], �y ∈ Zq
s, �x ∈ Gt and uj ∈ G. and (2)

Groth-Sahai for n number of linear Pairing Product Equations: e(�y,�aj)+e(�bj , �x) = uj ,
with j ∈ [1, n], �y ∈ Gs, �x ∈ Gt and uj ∈ GT .

DLIN Linear Multi-Scalar and Linear Pairing-Product
Proof CRS #Pairings

Groth-Sahai 3(s+ t) + 9n 9 9n(s + t+ 3) + n

This paper 3(s+ t) + 18 9 + 4n 18(s + t+ 3) + n

While the cryptographic literature is replete with applications using NIZK
proofs of algebraic languages over bilinear groups, and many examples were
given in [JR13b] involving NIZK proofs of linear subspaces, we focus on two
particular cases where aggregation of proofs of linear subspaces lead to inter-
esting results. We consider a construction of [CCS09] to convert key-dependent
message (KDM) CPA secure encryption scheme [BHHO08] into a KDM-CCA2
secure scheme which involved proving O(N) linear equations, where N is the
security parameter. With our aggregation of proofs, the size of this proof (in
the quasi-adaptive setting) is reduced to just 2 group elements (under the DLIN
assumption) from the earlier O(N) sized quasi-adaptive proofs and Groth-Sahai
proofs. It is also easy to see that the quasi-adaptive setting for proving the NIZK
suffices, as is the case for most applications. As another application we reduce the
size of the publicly-verifiable CCA2-IBE scheme obtained in [JR13b] by another
group element to just five group elements plus a tag. This makes it shorter than
the highly-optimized CCA2-IBE scheme obtained using the [CHK04] paradigm
from hierarchical-IBE (HIBE) and in addition is publicly-verifiable.

Organization of the paper. We begin the rest of the paper with the switching
lemma for bilinear tests in hard groups in Section 2. We recall the quasi-adaptive
NIZK definitions in Section 3 and develop constant-size quasi-adaptive NIZKs
for linear subspaces in Section 4. In Section 5, we apply our switching lemma to
aggregate Groth-Sahai NIZKs. Finally, we provide application examples in Sec-
tion 6. We defer detailed proofs, formal descriptions and a summary of standard
hardness assumptions that we use to the full paper [JR13a].

2 Switching Lemma for Bilinear Tests in Hard Groups

Notations. Consider bilinear groups G1 and G2 with pairing e to a target group
GT , all of prime order q, and random generators g1 ∈ G1 and g2 ∈ G2. Let 01, 02

and 0T be the identity elements in the three groups G1,G2 and GT respectively.
We will use additive notation for group operations, with G1,G2 and GT viewed
as Zq-vector spaces. The scalar product by Zq elements naturally extends to
vectors and matrices of group elements. The pairing operation also naturally
extends to vectors of elements (by summation) and correspondingly to matrices
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of elements. Column vectors will be denoted by an arrow over the letter, e.g. �r
for (column) vector of Zq elements, and �d as (column) vector of group elements.

Thus, e(�f
�
, �h) =

∑
i e(fi,hi).

Switching Lemma Usage Example. We demonstrate the usage of the Switching
Lemma by way of a toy example. Suppose we are given three elements g, f (=
a · g),h(= b · g) in the group G1 and we need a proof system, not necessarily
ZK, for tuples of the form (x · g, x · f , x · h). Towards that end, suppose the
following CRS is published: ((ar1 + br2) · g2,−r1 · g2,−r2 · g2). So the pairing
test e(x · g, (ar1 + br2) · g2) + e(x · f ,−r1 · g2) + e(x · h,−r2 · g2) = 0T , satisfies
completeness, i.e., it holds for valid tuples.

However, how do we know that it is sound? A look at the pairing equation
shows that there is a fair degree of freedom to satisfy it, without being a valid
tuple. So we definitely have to resort to a computational hardness assumption to
argue soundness. This is where we invoke the switching lemma, which is based
on a hardness assumption. Thus even though we publish a CRS that uses r1, r2,
during verification we can switch them with fresh r′1, r

′
2 chosen randomly and

independently.
This means if a candidate tuple (l1, l2, l3) satisfies the original test with a

certain probability, then it also satisfies the switched test: e(l1, (ar
′
1 + br′2) ·

g2) + e(l2,−r′1 · g2) + e(l3,−r′2 · g2) = 0T with almost the same probability.
Rearranging, we get: r′1 ·e(a · l1− l2,g2)+r′2 ·e(b · l1− l3,g2) = 0T . Now, observe
that the r′1, r

′
2 were chosen after the tuple was given. So with high probability,

both of e(a · l1 − l2,g2) and e(b · l1 − l3,g2) must be 0T . Therefore, l2 = a · l1
and l3 = b · l1, thus proving soundness.

Another way to look at this is that we produced a single CRS by random linear
combination of CRS’es to prove the individual languages {(x · g, x · f ) | x ∈ Zq}
and {(x · g, x · h) | x ∈ Zq}. Since the combined CRS is given to the adversary,
we cannot resort to information-theoretic arguments to separate the individual
equations. However with the switching lemma in play, the separation follows.

Switching Lemma Intuition. First consider the asymmetric bilinear group setting,
where DDH holds in each individual group, and there is no easy isomorphism from
G1 to G2 and vice-versa. If an Adversary A is given two random group elements,
say r1, r2, from G2, then one would like to claim that it is highly improbable for
A to produce non-zero f1, f2 in G1 such that e(f1, r1)+ e(f2, r2) = 0T . First, note
that if the groups were symmetric, then this is easy to achieve by setting f1 = r2
and f2 = −r1. But, since we are in the asymmetric setting, the improbability is
proven under DDH holding for G2 as follows: We will show that an adversary A
that can produce a non-zero f1, f2 satisfying the above pairing equation can be
used to produce an adversary B that can break DDH. So, given a DDH challenge,
g2, x ·g2, y ·g2 and h which is either xy ·g2 or z ·g2, adversary B passes g2, x · g2

to A (note they are random and independent). Since A produces non-zero f1, f2
such that e(f1,g2)+e(f2, x ·g2) = 0T , it follows that f1 = −x ·f2. Then comparing
e(f1, y · g2) with −e(f2,h) allows B to distinguish the two versions of h.
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Surprisingly, a similar claim holds when the adversary A is given an arbitrary
long, say length n vector �r of random group elements from G2, and A is required

to produce a length n vector�f (from G1) such that e(�f
�
,�r) = 0T . This is proven

using a hybrid argument, and for that purpose it is useful to restate the above
claim of improbability as a switching lemma: Given r1, r2, if an adversary has
probability Δ success in producing non-zero f1, f2 such that e(f1, r1)+ e(f2, r2) =
0T , then the probability of e(f1, r

′
1)+e(f2, r

′
2) = 0T holding is also negligibly close

to Δ, where r′1, r
′
2 are chosen after A commits f1, f2.

Moving on to the symmetric bilinear groups, and assuming that the k-linear
(commonly called DLIN for 2-linear) assumption holds for the groups, one can
show that ifA is now given k independent pairs of random group elements, then it
is highly improbable for A to produce non-zero f1, f2 such that the above pairing
test holds for all k pairs (with the same f1, f2). Again, a switching lemma variant
is more useful for proving the general lemma for n-vectors. Further, the reduction
to the k-linear assumption is achieved by embedding the k-linear challenge in a
single pairing test which is a random linear combination of the k pairing tests.

We now state the switching lemma in its full generality and later remark on
interesting special cases.

Lemma 1 (Switching Lemma). Let D be an arbitrary efficiently samplable
distribution over n×m matrices from Zq. For any PPT adversary A producing
a vector of n elements from group G1, let ΔA be the following probability

Pr

⎡⎣R
$←− Gm×k

2 , Cn×m ← D, �f
n×1

← A(g1,g2,R,C) :

�f �= �0
n×1

1 and e
(
�f
�
,C · R

)
= �0

1×k

T

⎤⎦
Then, under the k-linear assumption for group G2, the following probability is
negligibly close to ΔA.

Pr

⎡⎣R
$←− Gm×k

2 , Cn×m ← D, �f
n×1

← A(g1,g2,R,C), R′ $←− Gm×k
2 :

�f �= �0
n×1

1 and e
(
�f
�
,C · R′

)
= �0

1×k

T

⎤⎦
The absolute value of the difference in the probabilities is bounded by m ·
adv(klin).

Remarks. If we assume that the distribution D overwhelmingly produces full
ranked matrices, then observe that the later probability is information theoreti-
cally close to 0. Hence we can state:

Pr

⎡⎣R
$←− Gm×k

2 , Cn×m ← D, �f
n×1

← A(g1,g2,R,C) :

�f �= �0
n×1

1 and e
(
�f
�
,C · R

)
= �0

1×k

T

⎤⎦ ≈k−linear 0

If, however, D produces singular matrices non-negligibly often, then there is

an efficient adversary that can induce the event �f �= �01 and e(�f
�
,C · R) = �0T .
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The switching lemma still stands since the same adversary can induce the event

�f �= �01 and e
(
�f
�
,C · R′

)
= �0T just as easily.

Although the presence of the C matrix is not strictly essential for the settings
that we consider in this paper, we leave it in this form for generalizations to
groups where the scalar field or ring is not easily invertible.

Instead of using the k-linear assumption directly, we use a related assump-
tion which we call the k-lifted linear assumption and is implied by the k-linear
assumption with a perfect reduction (see [JR13a] for a proof).

Definition 1 (k-lifted linear assumption). For a constant k ≥ 1, assuming
a generation algorithm G that outputs a tuple (q,G) such that G is of prime order
q, the k-lifted linear assumption asserts that it is computationally infeasible to
distinguish between

Tuple0 = (b1 · g, · · · , bk · g, r1 · g, · · · , rk · g, b1s1 · g, · · · , bksk · g, σ · g)
and

Tuple1 = (b1 · g, · · · , bk · g, r1 · g, · · · , rk · g, b1s1 · g, · · · , bksk · g, sk+1 · g)

where g is chosen randomly from G, bi, ri and si are chosen randomly from Zq,
and σ =

∑n
i=1 risi.

Note that the k-linear assumption is a variant of the k-lifted linear assumption
with all r1, ..., rk equal to one. Now we prove the switching lemma under this
weaker assumption.

Proof. (of Lemma 1) When m ≤ k, the lemma follows information-theoretically
(although the proof for m > k also works for this case) by noting that in this
case R will have rank m with high probability. Now we focus on the case that
m > k. Consider the following inductive hypothesis (over j):

Pr

⎡⎣R
$←− Gm×k

2 , Cn×m ← D, �f
n×1

← A(g1,g2,R,C), R′ $←− Gm×k
2 :

�f �= �0
n×1

and e
(
�f
�
,C · R′′

)
= �0

1×k

T

⎤⎦
differs from ΔA by at most j · adv(klin), where R′′ has the first (m − j) rows
same as first (m− j) rows of R and the last j rows same as the last j rows of R′.
In the base case, i.e., when j = 0, this is same as the hypothesis (antecedent)
in the lemma, and when j = m, this induction hypothesis is same as the claim
(consequent) in the lemma. Thus, we just need to prove the induction step.

For an adversary A, suppose the difference in the two probabilities corre-
sponding to (induction hypothesis for) j = t and j = t+ 1 be δ. More precisely,
denote the probability for adversary A corresponding to j = t by Δt. Thus, we
are supposing that |Δt−Δt+1| ≥ δ. Using A as a black box we wlll demonstrate
an adversary S that will have advantage at least (negligibly close to) δ to break
the k-lifted linear assumption.

So, let a k-lifted linear challenger produce: (b1 ·g2, · · · , bk ·g2, r1 ·g2,..., rk ·g2,
b1s1 · g2,..., bksk · g2, χ) in the group G2, where χ is either (

∑n
i=1 risi) · g2 or
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random. Note that bi, ri and si are chosen randomly and independently by the
challenger.

Let vectors �r and �s be defined component-wise as (�r)i = ri · g2 and (�s)i = si,
respectively. Define the k by k matrix B as the diagonal matrix with the i-th
diagonal element set to bi. Further, let B = B · g2.

S samples Cn×m ← D, and chooses g1 at random. It next samples an (m −
t− 1) by k matrix R1 at random from Zq (i.e. all elements of the matrix chosen
randomly and independently from Zq). It sets R1 = R1 · B. It further samples
a t by k matrix R2 at random from G2 (i.e. all elements chosen randomly and

independently from G2). Finally S sets R to be the rows of R1, the row �r� and
the rows of R2 combined (in that order) to form an m by k matrix. Observe
that all of R’s entries are independently random. The adversary A is then given
g1, g2, R and C. The adversary A in response produces �f. Now, S first checks

that �f is non-zero. It then chooses another t by k matrix R2 at random from
Zq and sets R2 = R2 · B. Noting that S has access to B ·�s · g2, S (efficiently)
performs the following bilinear test

e

⎛⎝�f�,C ·

⎡⎣R1 · B ·�s · g2

χ
R2 · B ·�s · g2

⎤⎦⎞⎠ ?
= 0T (1)

S outputs 1 if the test succeeds, and otherwise outpus 0.
Note that the above experiment has two games, one corresponding to real

k-lifted linear challenge Tuple0 choice, and one corresponding to fake k-lifted
linear Tuple1 challenge choice. We will call these games G0 (the real game) and
G0

′ (the fake game). Our aim is to show that the probability of S outputting 1
in the real game G0 differs from the probability of its outputting 1 in the fake
game G0

′ by (negligibly close to) δ. To prove this, we first modify the above
two games. In the modified games G1 and G1

′, S itself chooses the k-lifted
linear challenges according to the same distribution as in G0 and G0

′. However,
it defers the choice of �s to after A has responded (noting that A is not given
anything related to �s). After A responds, S chooses �s at random, and also sets

χ as �r� · �s in G1 and as �r′� · �s in G1
′, where �r′ is another random k-tuple

independent of �r. Adversary S then performs the same test (1) as above, and
outputs 1 if the test succeeds, and otherwise it outputs 0. Since the distributions
in games G1 and G1

′ are identical to the distributions in G0 and G0
′ (resp.),

the probabilities of S outputting 1 remains the same in the respective games.
Now, note that in the (real) gameG1 the above test (1) is equivalent to testing

e

⎛⎝�f�,C ·

⎡⎣R1

�r�

R2

⎤⎦ ·�s

⎞⎠ ?
= 0T (2)

and in the (fake) game G1
′ the test (1) is equivalent to testing (2) but with �r

replaced by �r′. Now define games G2 and G2
′ which are identical to games G1

and G1
′ (resp.) except that instead of (1) the final test performed by S in G2 is
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e

⎛⎝�f�,C ·

⎡⎣R1

�r�

R2

⎤⎦⎞⎠ ?
= �0

1×k

T (3)

and the final test performed by S in G2
′ is same but with �r replaced by �r′.

Going through the details of games G2 and G2
′, it is clear that probability

of S outputting 1 in G2 (G2
′) is exactly Δt (resp. Δt+1). Moreover, since the

distributions in G1 and G2 are identical, Δt is also the probability of (3) holding
in G1. Thus, the probability of (2) holding in G1 is at least Δt, and no more
except for the probability of (3) not holding and yet (2) holding. Since in game
G1, �s is chosen after A responds, this additional probability is at most the
probability (over random choice of �s) of (2) holding for any fixed choice of rest
of the coins in the game for which (3) does not hold. This probability is at most
1/q. It follows that the probability of S outputting 1 in G1 (and hence in G0)
differs from Δt by at most 1/q. A similar argument shows that the probability
of S outputting 1 in G1

′ (and hence in game G0
′) differs from Δt+1 by at most

1/q. Since, by hypothesis |Δt+1 −Δt| ≥ δ, this completes the proof.

3 Quasi-Adaptive NIZK Proofs

We recall here the definitions from [JR13b] and provide a summary. Instead
of considering NIZK proofs for a (witness-) relation R, the authors consider
Quasi-Adaptive NIZK proofs for a probability distribution D on a collection of
(witness-) relations R = {Rρ}. The quasi-adaptiveness allows for the common
reference string (CRS) to be set based on Rρ after the latter has been chosen
according to D. However the simulator generating the CRS (in the simulation
world) is required to be a single probabilistic polynomial time algorithm that
works for the whole collection of relations R.

To be more precise, they consider ensemble {Dλ} of distributions on collection
of relations Rλ, where each Dλ specifies a probability distribution on Rλ =
{Rλ,ρ}. When λ is clear from context it can be dropped. Since in the quasi-
adaptive setting the CRS could depend on the relation, an associated parameter
language Lpar is considered such that a member of this language is enough to
characterize a particular relation, and this language member is provided to the
CRS generator.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for
witness-relations Rλ = {Rρ} with parameters sampled from a distribution D
over associated parameter language Lpar, if there exists a probabilistic poly-
nomial time simulator (S1, S2), such that for all non-uniform PPT adversaries
A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ ← K0(1
m); ρ ← Dλ;ψ ← K1(λ, ρ); (x,w) ← A1(λ, ρ, ψ);

π ← P(ψ, x, w) : V(ψ, x, π) = 1 if Rρ(x,w)] = 1
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Quasi-Adaptive Soundness:

Pr[λ ← K0(1
m); ρ ← Dλ;ψ ← K1(λ, ρ);

(x, π) ← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ ← K0(1
m); ρ ← Dλ;ψ ← K1(λ, ρ) : AP(ψ,·,·)

3 (λ, ρ, ψ) = 1] ≈

Pr[λ ← K0(1
m); ρ ← Dλ; (ψ, τ) ← S1(λ, ρ) : AS(ψ,τ,·,·)

3 (λ, ρ, ψ) = 1],

where S(ψ, τ, x, w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and
S) output failure if (x,w) �∈ Rρ.

Note that ψ is the CRS in the above definitions.

4 Aggregating Quasi-Adaptive Proofs of Linear
Subspaces

We summarize the linear-subspace QA-NIZK setting of [JR13b] here and refer
the reader to that paper for details.

Linear Subspace Languages. We consider languages that are linear subspaces of
vectors of G1 elements. In other words, the languages we are interested in can
be characterized as languages parametrized by A as below:

LA = {�x� ·A ∈ Gn
1 | �x ∈ Zq

t}, where A is a t× n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all
t × n matrices of G1 elements. The parameter language Lpar also has a corre-
sponding witness relation Rpar, where the witness is a matrix of Zq elements :
Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix A be chosen according to a distribution D on Lpar. The distribu-
tion D is called robust if with probability close to one the left-most t columns of
A are full-ranked. A distribution D on Lpar is called efficiently witness-samplable
if there is a probabilistic polynomial time algorithm such that it outputs a pair
of matrices (A,A) that satisfy the relation Rpar (i.e., Rpar(A,A) holds), and
further the resulting distribution of the output A is same as D. For example, the
uniform distribution on Lpar is efficiently witness-samplable, by first picking A
at random, and then computing A.

QA-NIZK Construction. We now describe a computationally sound quasi-ad-
aptive NIZK (K0,K1,P,V) for linear subspace languages {LA} with parameters
sampled from a robust and efficiently witness-samplable distribution D over
the associated parameter language Lpar. As a conceptual starting point, we
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first develop a construction which has k2 element proofs, demonstrating a single
application of the Switching Lemma. Later, we give a k element construction
which linearly combines the first construction proofs and uses an additional
layer of Switching Lemma application. Our description here is self sufficient and
relates to the scheme in [JR13b] in that we linearly combine proofs of multiple
elements yielding constant-size proofs.

Algorithm K1: The algorithm K1 generates the CRS as follows. Let At×n be

the parameter supplied to K1. Let s
def
= n − t: this is the number of equations

in excess of the unknowns. It generates a matrix Dt×k2

with all elements chosen
randomly from Zq and k elements {bv}v∈[1,k] and sk elements {riu}i∈[1,s],u∈[1,k]

all chosen randomly from Zq. Define matrices Rs×k2

and Bk2×k2

component-wise
as follows:

(R)i,k(u−1)+v = riu, with i ∈ [1, s], u, v ∈ [1, k].

(B)ij =

{
bv if i = j = k(u− 1) + v, with u, v ∈ [1, k]

0 if i �= j, with i, j ∈ [1, k2]

Intuitively, the matrix R is a k times column-wise repetition of the rij ’s, and

if we denote {bv}v∈[1,k] by �b, then the diagonal matrix B is just the vector �b
repeated k times along the diagonal (i.e. Bk(u−1)+v,k(u−1)+v is bv and not bu).

The common reference string (CRS) has two parts CRSp and CRSv which are
to be used by the prover and the verifier respectively.

CRSt×k2

p := A ·
[

D
R B−1

]
CRS(n+k2)×k2

v =

⎡⎣D B
R
−B

⎤⎦ · g2

Prover P: Given candidate �l
1×n

= �x� · A with witness vector �xt×1, the prover

generates the following proof consisting of k2 elements in G1: �p1×k2

:=
�x� · CRSp

Verifier V: Given candidate �l
1×n

, and proof �p1×k2

, the verifier checks the fol-
lowing (k2 equations) :

e
([

�l
1×n

�p1×k2
]
,CRSv

)
?
= �0

1×k2

T

Theorem 1. The above algorithms (K0,K1,P,V) constitute a computationally
sound quasi-adaptive NIZK proof system for linear subspace languages {LA} with
parameters A sampled from a robust and efficiently witness-samplable distribu-
tion D over the associated parameter language Lpar, given any group generation
algorithm for which the k-linear assumption holds for group G2.

Proof Intuition. We now give a proof sketch for soundness and defer the full
proof, including completeness and zero knowledge, to the full paper [JR13a].
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Soundness: We prove soundness by transforming the system over a sequence of
games. Consider an adversary A that wins if it can produce a “proof” �p for a

candidate �l that is not in LA and yet the pairing test e
([

�l
1×n

�p1×k2
]
,CRSv

)
?
= �0

1×k2

T holds. Game G0 just replicates the soundness security definition. In
Game G1 the CRS is generated using parameter witness A and its null-space,
and this can be done efficiently by the challenger as the parameter distribution is
efficiently witness samplable. After this transformation, we show that in the case
of a certain event, a verifying proof of a non-language member implies breaking
the k-linear assumption in group G2, while in the case of the event not occurring
we can apply the Switching Lemma to bound the probability of the adversary
winning.

In Game G1, the challenger efficiently samples A according to distribution D,
along with witness A (since D is an efficiently witness samplable distribution).
Since A is a t × (t + s) dimensional rank t matrix, there is a rank s matrix[
Wt×s

Is×s

]
of dimension (t + s) × s whose columns form a complete basis for the

null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s. In this game, the NIZK CRS

is computed as follows: Generate matrix D′ t×k2

with elements randomly chosen

from Zq and the matrices Rs×k2

and Bk2×k2

as in the real CRS. Implicitly set:
D = D′ +W R B−1. Therefore we have,

CRSt×k2

p = A ·
[

D

R B−1

]
= A ·

([
D′

0s×k2

]
+

[
W
Is×s

]
· R B−1

)
= A ·

[
D′

0s×k2

]

CRS(n+k2)×k2

v =

⎡⎣D B
R
−B

⎤⎦ · g2 =

⎡⎣D′ B+W R
R
−B

⎤⎦ · g2

Suppose thatA winsG1. Now, let us partition the Zq matrix A as
[
At×t
0 At×s

1

]
and the candidate vector �l as

[
�l
1×t

0
�l
1×s

1

]
. Note that, since A0 has rank t, the

elements of �l0 are ‘free’ elements and �l0 can be extended to a unique n element
vector �l ′, which is a member of LA. This member vector �l ′ can be computed

as �l ′1×n :=
[
�l0 −�l0 ·W

]
, where W = −A−1

0 A1. The proof of �l ′ is computed as

�p ′1×k2

:= �l0 · D′. Since A wins G1, then (�l , �p) passes the verification test, and

further by design (�l
′
, �p′) passes the verification test. Thus, we obtain: (�l

′
1 −�l1) ·

R = (�p′ − �p) · B, where �l
′1×s

1 = −�l0 ·W. This gives us a set of equalities, for all
u ∈ [1, k]:

s∑
i=1

(l ′1i−l1i)·riu = (p′
k(u−1)+1−pk(u−1)+1)·b1 = · · · = (p′

k(u−1)+k−pk(u−1)+k)·bk

(4)
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Note that since �l is not in the language, there exists an i ∈ [1, s], such that
�l
′
1i −�l1i �= 0. Now consider the event E defined as follows:

Event E ≡ For some u ∈ [1, k] :
s∑

i=1

(l ′1i − l1i) · riu �= 01 (5)

Our strategy now is to show that the probability of A winning in both the events
E and ¬E is negligible. Under the event ¬E, we apply the Switching Lemma to
switch the riu’s to a fresh set of random values r′iu’s while verifying. After that,
we argue information theoretically that the probability of winning the switched
game is negligible. Under the event E, we show that one can build a k-linear
challenge adversary using A, such that if A wins then this new adversary can
efficiently compute the (least) u in Event E, and using the multiple equalities in
Equation 4 it can break the k-linear challenge. #$

We now show that the proof system described above with k2 group elements
can be further shortened to just k group elements. The main idea is to observe
that Equation 4 is again several sets of equations, and we can carefully set up
the system so that the prover only shows random linear combinations of Equa-
tion 4. Then resorting to Switching Lemma we conclude that the individual
equations must be true. We now describe this optimized Quasi-Adaptive NIZK
proof system in detail.

QA-NIZK construction with k elements. In this construction the Algorithm K1

generates the CRS as follows. It generates a matrix Dt×k with all elements chosen
randomly from Zq and k elements {bv}v∈[1,k] and k3 elements {tuvw}u,v,w∈[1,k]

and sk elements {riu}i∈[1,s],u∈[1,k] all chosen randomly from Zq. Define matrices

Rs×k and Bk×k component-wise as follows:

(R)iw =

k∑
u=1

k∑
v=1

riutuvw, with i ∈ [1, s], w ∈ [1, k].

(B)vw =

k∑
u=1

bvtuvw, with v, w ∈ [1, k].

The construction of CRSp and CRSv remain algebraically the same, although
now they use lesser elements. The prover and verifier also retain the same al-
gebraic form. The set of equalities for this construction corresponding to the

equation (�l
′
1 −�l1) · R = (�p′ − �p) · B, is for all w ∈ [1, k]:

s∑
i=1

[
(l ′1i − l1i) ·

(
k∑

u=1

k∑
v=1

riutuvw

)]
−

k∑
v=1

[
(p′

v − pv) ·
(

k∑
u=1

bvtuvw

)]
= 01

(6)
Rearranging, we get for all w ∈ [1, k]:

k∑
u=1

k∑
v=1

[
tuvw

(
s∑

i=1

[
(l ′1i − l1i) · riu

]
− (p′

v − pv) · bv

)]
= 01 (7)
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Now, using the Switching Lemma and after applying information theoretic
arguments, we transition to a game where the adversary wins if it wins the
original game and the following event occurs:

For all u ∈ [1, k] :
s∑

i=1

(l ′1i − l1i) · riu = (p′
1 − p1) · b1 = · · · = (p′

k − pk) · bk (8)

After this point, the proof is analogous to the previous QA-NIZK construction.
Detailed proof is given in [JR13a]. We also give a more optimized construction
in [JR13a] which uses less randomness and enjoys a better security reduction.

5 Aggregating Groth-Sahai Proofs

We show that proofs of multiple linear scalar-multiplication equations, as well
as multiple linear pairing product equations can be aggregated into a single
proof in the Groth-Sahai system. We will focus on describing the aggregation for
the scalar-multiplication equations, as the results for the linear pairing product
equations are obtained in almost an identical manner.

Consider bilinear groups G1 and G2 with pairing e into a third group GT .
Consider equations of the type

n∑
i=1

yi · ai +

m∑
i=1

bi · xi = t1 (9)

where the variables yi are to take values in Zq, the variables xi are to take values
in G1. The constants ai are in G1, and scalar constants bi are in Zq. Moreover,
t1 is in G1.

When the bilinear group is symmetric, i.e. G1 = G2, and under the DLIN
assumption, the Groth-Sahai NIZK proof of the above equation requires com-
mitments to the variables, each commitment being of size three group elements
(for both yi or xi). In addition it requires a proof of nine group elements. When
there are multiple equations of the above kind in the same variables, the commit-
ments to the variables remain the same, but each equation requires nine group
elements. In other words, if there are m + n variables and k equations, the full
proof of the k equations has size 3 · (m+ n) + 9k group elements.

We will now show that in the quasi-adaptive setting, the full proof of the
k equations can be obtained with size 3 · (m + n) + 9 group elements. We first
describe how the proof is done in the Groth-Sahai system, and then we will point
out the relevant changes. The proofs and commitments actually belong to the
Zq-module G3 (where G = G1 = G2).

We will write these groups in additive notation, and the bilinear pairing op-
eration e(A,B) written in infix notation as A ⊗ B, with the pairing operation
defining a tensor product G⊗G over Zq. Without loss of generality (see e.g. A2.2
in [Eis95]), we can assume that GT = G ⊗ G. Further, this naturally extends
to a tensor product G3⊗G3. One can also define a tensor product Zq ⊗ G, but
since G is a Zq-module, this tensor product is just G.



Switching Lemma for Bilinear Tests and Constant-Size NIZK Proofs 309

Let ι1 : Zq → G3, ι2 : G → G3, p1 : G3 → Zq, p2 : G3 → G be group
homomorphisms s.t. ι1 ◦p1, and ι2 ◦p2 are identity maps in Zq and G resp. Note
that the maps ι1 and ι2 naturally define a group homomorphism ιT from Zq ⊗G
(= G) to G3⊗G3, and similarly p1 and p2 define a group homomorphism pT
from G3⊗G3 to Zq ⊗G (= G).

The NIZK common reference string (CRS) consists of three elements from
G3, i.e. u1,u2,u3 ∈ G3. They are chosen as follows: u1 = (α · g,O,g), and
u2 = (O, β · g,g), and u3 = ru1 + su2, for random α, β, r, s ∈ Zq, and random
g ∈ G\O. This real-world CRS �u is sometimes also referred to as the binding
CRS.

The map ι2(Z) is just (O,O,Z), and p2(Z1,Z2,Z3) = Z3−α−1Z1−β−1Z2,
which shows that ι2◦p2 is an identity map. It also shows that p2(u1) = p2(u2) =
p2(u3) = O. Now, the commitments to elements Z in G are made by picking
r1, r2, r3 at random from Zq, and setting c2(Z) = ι2(Z) + r1u1 + r2u2 + r3u3.
Thus, p2(c2(Z)) = Z, and hence the name binding CRS.

The map ι1(z) is ι2(z ·g), and hence commitment to z ∈ Zq is c1(z) = c2(z ·g).
For equations of the form (9) , i.e. �y · �a + �b · �x = t1, a proof �π (along with

commitments to variables) is obtained by setting �π = S�ι2(�a) + R�ι1(�b) + �θ,
where R is the matrix of rows (r1, r2, r3), coming from c2(xi), one for each
committed variable xi, and S is the matrix of rows (r1, r2, r3), coming from
c1(yi), one for each committed variable yi. Note, �π is vector of three G3 elements.

The vector �θ is set to be a random linear combination of Hi�u , where Hi are
finitely many matrices, and form a basis for the solutions to �u • H�u = 0. It
turns out that these matrices Hi are independent of the ZK simulator trapdoors
α and β.

Let “•” denote the dot product of vectors of elements from G3 and G3 w.r.t.
product ⊗ . The commitments �c1, �c2 and the proof are verified by the following
equation:

ι1(�b) • �c2 + �c1 • ι2(�a) = ι1(1) • ι2(t1) + �u • �π.

Quasi-Adaptive Aggregation. In the quasi-adaptive setting [JR13b], the NIZK
CRS is allowed to depend on the language parameters, but with the further
requirement that the ZK simulation be uniform. In the above context, the lan-
guage parameters are �a and �b. Note t1 is not a language parameter, as it is a
quantity produced by the prover.

So, let there be k equations in the same variables, with the j-th equation
being

�y · �aj + �bj · �x = tj1 (10)

In the above setting the prover produces k proofs, �πj . We would like the prover to
give a random linear combination of these proofs, where the randomness is fixed
in the CRS setup. In the DLIN setting, we need two different linear combinations.
Thus, let the CRS generator choose two random Zq-vectors �ρ and �ψ. The prover

is required to produce �πρ =
∑

j∈[1,k] ρj · �πj and �πψ =
∑

j∈[1,k] ψj · �πj . To be

able to do so, the prover needs
∑

j ρj · ι2(�aj),
∑

j ρj · ι1(�bj) (and similar terms
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using ψj). The �θ terms in the proofs need not be linearly combined, and the
prover can just add one such term to each of �πρ and �πψ, as its purpose is only
to allow zero-knowledge simulation (i.e. witness hiding). The CRS generator can
certainly produce these elements and give them as part of the CRS. The CRS
generator also needs to give as part of the verification CRS the terms 〈ι1(ρj)〉j
and 〈ι1(ψj)〉j . In order to apply the switching lemma, we show in the proof of

the theorem below that if �aj are efficiently witness samplable, then the CRS
generator can also simulate this verification CRS given ρj · g and ψj · g.

The verification is now done as follows:

(
∑
j

ρj · ι1(�bj)) • �c2 + �c1 • (
∑
j

ρj · ι2(�aj)) =
∑
j

(ι1(ρj) • ι2(tj1)) + �u • �πρ (11)

(
∑
j

ψj · ι1(�bj)) • �c2 + �c1 • (
∑
j

ψj · ι2(�aj)) =
∑
j

(ι1(ψj) • ι2(tj1)) + �u • �πψ

(12)

Theorem 2. The above system constitutes a computationally-sound quasi-adap-
tive NIZK proof system for equations (10) with parameters 〈�aj〉j , 〈�bj〉j, whenever
〈�aj〉j are chosen according to an efficiently witness-samplable distribution, and
given any group generation algorithm for which the DLIN assumption holds.

Proof of the theorem can be found in [JR13a]. Since Groth-Sahai proofs of
more general equations (involving quadratic terms) require pairing of adversari-
ally supplied commitments with each other, the switching lemma is not directly
applicable. It remains an open problem to aggregate such NIZK proofs.

6 Extensions and Applications

Tags. We extend the system of Section 4 to include tags mirroring [JR13b]. The
tags are elements of Zq, are included as part of the proof and are used as part
of the defining equations of the language. We still get k element proofs based on
the k-linear assumption. Details are in [JR13a].

KDM-CCA2 Encryption [CCS09]. In the paper [CCS09], the authors construct
a public key encryption scheme simultaneously secure against key dependent
chosen plaintext (KDM) and adaptive chosen ciphertext attacks (CCA2). They
apply a Naor-Yung “double encryption” paradigm to combine any KDM-CPA
secure scheme with any IND-CCA2 secure scheme along with an appropriate
NIZK proof, to obtain a KDM-CCA2 secure scheme. In a particular construc-
tion, they obtain short ciphertexts by combining the KDM-CPA secure scheme
of [BHHO08] with the IND-CCA2 scheme of [CS98], along with a Groth-Sahai
NIZK proof. We show that the NIZK proof required in this construction can be
considerably shortened. We defer the reader to [CCS09] for details of the scheme,
and just describe the equations to be proved here. Consider bilinear groups G1

and G2 in which the K-linear and L-linear assumptions hold, respectively.
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Let �g1, · · · , �gK ,h1, · · · ,hK be part of the public key of the KDM-CPA secure

encryption scheme and let�f1, · · · ,�fK , c1, · · · , cK ,d1, · · · ,dK , e1, · · · , eK be part
of the public key of the IND-CCA2 secure encryption scheme. Let (�g,h) ∈
GN

1 × G1 be a ciphertext from the KDM-CPA secure encryption scheme and

(�f, a,b) ∈ GK+1
1 ×G1×G1 be a ciphertext from the IND-CCA2 secure encryption

scheme, with label l. Let t = H(�f, a, l), where H is a collision resistant hash. The
purpose of the NIZK proof is to establish that they encrypt the same plaintext.
This translates to the following statement:

∃r1, · · · , rK , w1, · · · , wK :

⎛⎜⎝�g =
∑K

i=1 ri · �gi ∧ �f =
∑K

i=1 wi ·�fi ∧
b =

∑K
i=1 wi · (di + t · ei) ∧

h− a =
∑K

i=1 ri · hi −
∑K

i=1 wi · ci

⎞⎟⎠
This translates into N +K + 3 equations in 2K variables. Using the Groth-

Sahai NIZK scheme, this requires (2K)(L+1) elements of G2 and (N +K+3)L
elements of G1. In our scheme this requires L elements of G1 in the proof - 1
under DDH and 2 under DLIN assumptions in G2.

CCA2-IBE Scheme [JR13b]. The definition of CCA2-secure encryp-
tion [BDPR98] naturally extends to the Identity-Based Encryption set-
ting [CHK04]. In [JR13b], the authors construct a fully adaptive CCA2-secure
IBE, which also allows public verification of the assertion that a ciphertext is
valid for the particular claimed identity. The IBE scheme has four group elements
(and a tag), where one group element serves as one-time pad for encrypting the
plaintext. The remaining three group elements form a linear subspace with one
variable as witness and three integer tags corresponding to: (a) the identity, (b)
the tag needed in the IBE scheme, and (c) a 1-1 (or universal one-way) hash of
some of the elements. It was shown that if these three group elements can be
QA-NIZK proven to be consistent, and given the unique proof property of the
QA-NIZKs, then the IBE scheme can be made CCA2-secure. Since, there are
three components, and one variable the QA-NIZK required only two group ele-
ments under SXDH. We slightly shorten the proof to one element under SXDH.
We defer the reader to [JR13b] for details of the original system, and just describe
the Key Generation and Encryption steps in [JR13a].
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Abstract. Is it possible to prove that two DNA-fingerprints match,
or that they do not match, without revealing any further information
about the fingerprints? Is it possible to prove that two objects have
the same design without revealing the design itself? In the digital do-
main, zero-knowledge is an established concept where a prover convinces
a verifier of a statement without revealing any information beyond the
statement’s validity. However, zero-knowledge is not as well-developed
in the context of problems that are inherently physical. In this paper,
we are interested in protocols that prove physical properties of physi-
cal objects without revealing further information. The literature lacks a
unified formal framework for designing and analyzing such protocols. We
suggest the first paradigm for formally defining, modeling, and analyz-
ing physical zero-knowledge (PhysicalZK) protocols, using the Universal
Composability framework. We also demonstrate applications of physical
zero-knowledge to DNA profiling and neutron radiography. Finally, we
explore public observation proofs, an analog of public-coin proofs in the
context of PhysicalZK.

1 Introduction

Zero-knowledge proofs are protocols that prove an assertion without revealing
any information beyond that assertion’s validity. Zero-knowledge proofs were
first introduced by Goldwasser, Micali, and Rackoff in 1985 [16]. The power of
zero-knowledge proofs is quite remarkable: anything that can be proved effi-
ciently can be proved with a zero-knowledge protocol, under the cryptographic
assumption that one-way functions exist (see Goldreich [9]).

Zero-knowledge proofs have also been considered in a physical setting. A num-
ber of works have explored constructions of zero-knowledge protocols that can
be physically implemented [26,19,24,23]. One goal of those works was to design
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protocols with simple procedures and security arguments that the participating
parties could easily understand. An added advantage of simple physical proto-
cols is that humans can implement them without the aid of computers. Moran
and Naor [24] give methods for polling people on sensitive issues using physical
envelopes as an alternative to electronic polling, where humans might not trust
computers to behave honestly. Many works have also addressed the incorpora-
tion of physical hardware into broader cryptographic schemes. In some cases,
these hybrid protocols achieve efficiency or security gains that are unachievable
in a standard computation model. Examples of physically realizable functionali-
ties that have been suggested for aiding general cryptographic protocols include
tamper-evidence [23], tamper-proof tokens [12,7,21,22,25,20,18], one-time pro-
grams [15], and physically uncloneable functions [3].

Previous literature on zero-knowledge in a physical setting addressed physical
protocols for tasks that could otherwise be solved digitally. There is compara-
tively little formal work on protocols for inherently physical tasks that cannot
be solved digitally. One example that has been studied rigorously is distance
bounding protocols, introduced by Brands and Chaum in 1993 [2], in which a
verifier party determines or verifies an upper bound on its physical distance to
a prover party. In 2012, Glaser, Barak, and Goldston [8] suggested applying
zero-knowledge concepts to the task of proving that a nuclear weapon is authen-
tic without revealing sensitive information about its actual design, a problem
that arises in the context of nuclear disengagement treaties. They presented an
ε-knowledge protocol for this task, but did not have a rigorous framework for
formally defining and analyzing the protocol’s ε-knowledge security.

Our Contributions. We present the first formal treatment of physical zero-
knowledge (PhysicalZK) proofs for inherently physical claims. In our setting, a
prover convinces a verifier that an input object satisfies a given physical property.
Our framework for designing and analyzing PhysicalZK protocols uses the Uni-
versally Composable (UC) security framework [4], popularly applied in analysis
of hybrid protocols involving physical hardware.

Expanding on Glaser et al., we present the first PhysicalZK protocols for
the nuclear verification problem, or the general task of verifying object neutron
radiograph equality. We also demonstrate an application of PhysicalZK proofs
to DNA profiling in which a prover (e.g. a suspect) convinces a verifier (e.g. the
police) that its DNA profile does not match a target profile (e.g. obtained from
a crime scene) without revealing to the verifier any further information about
the profiles, and discuss a protocol for parental testing.

A further goal of our work is to initiate a rigorous study into the foundations of
physical zero-knowledge. We point out both differences and similarities between
physical and standard ZK where they arise. In particular, Section 3 compares
the UC properties of physical vs. digital ZK, and Section 6 explores a physical
analog of public coin proofs.
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2 What Is Physical Zero-Knowledge (PhysicalZK)?

A standard zero-knowledge proof involves a binary relation R and an input x. A
prover convinces a verifier that there exists a witness w such that (x,w) ∈ R. The
verifier “learns nothing” from the protocol except the existence of w, and possibly
the fact that the prover “knows” w. (See Goldreich [9] for formal definitions,
classical theorems, and variants of zero-knowledge).

Previously, the term physical zero-knowledge was used for physically imple-
mented ZK protocols, involving physical tools such as scissors, playing cards,
envelopes, or pez dispensers. However, the underlying tasks in those protocols
were still logical in nature (e.g. solving a Sudoku puzzle [19], finding Waldo [26]).

In our definition of physical zero-knowledge (PhysicalZK), a prover convinces
a verifier that a physical input object has a physical property Π . The verifier
should “learn nothing” except the validity of the statement “X satisfies Π .”
A physical measurement M verifies Π , possibly requiring the assistance of a
measurement device D. Asymmetry between the prover and the verifier arises
not from secret knowledge or computational power, but from access permissions
to the object and measurement device. Since a verifier might forcefully break its
restricted access, the threat model we consider only addresses adversaries that
avoid being caught (similar to the covert adversary model [1]). Before proceeding,
we give a few simple examples.

1. Coke vs. Pepsi “blind test”: Alice demonstrates to Bob her ability to distin-
guish between the tastes of Coke and Pepsi using the classic blind test. However,
the simplest test is not zero-knowledge. Bob might give Alice a cup of Sprite, and
gain information from her response. One fix is to use indistinguishable coffee lids.
Alice observes that Bob prepares cups of Coke and Pepsi. Bob then supplies Alice
with the lids, Alice marks the inside of each lid with her secret signature, and cov-
ers the cups. After the blind test, Alice commits her response on a piece of paper.
But before handing the paper to Bob, she will remove the lid, and check for her
signature.

2. Bins and Balls Equality: Alice proves to Bob that two bins X and Y (of ca-
pacity n) contain the same number of balls. The following ε-knowledge protocol
was given in [8]. Alice chooses N > n, and prepares two new pairs of bins, each of
capacity N + n, labelled B0 and B1 respectively. Alice chooses two independent
random values r0 and r1 uniformly distributed in [0, N). Concealing the bins from
Bob, she adds r0 balls to each bin in B0, and r1 to each bin in B1. Bob randomly
selects i ∈ {0, 1}, Alice hands Bob the pair Bi, and Bob checks that both bins in
the pair have equal numbers of balls. Alice then pours the contents of X into one
bin in the remaining pair, and the contents of Y into the other. Finally, Bob checks
the final contents of the bins to verify that they contain equal numbers of balls.
Alice’s success of cheating is at most 1/2. (Appendix A contains a full analysis).

3. Litmus Test: Alice proves to Bob that her solution is basic/acidic without reveal-
ing the actual pH. Blue litmus paper turns red in acidic solution, and red litmus
paper turns blue in basic solution. First, Bob tests Alice’s litmus paper in known
basic/acidic solutions to check that it operates correctly. After the protocol is
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complete, the litmus paper must be completely destroyed (to prevent Bob from
later examining traces of the solution remaining on the paper).

3 PhysicalZK in the UC Security Framework

The UC Framework. The Universally Composable security framework (UC)
of Canetti [4] defines two worlds: the “real” world in which the real protocol is
executed, and the “ideal” world in which an ideal process is implemented with
the help of a trusted third party. A protocol environment machine Z interacts
with the protocols in both worlds, setting each party’s inputs, and reading their
outputs. Although Z does not see internal communication between parties, it
communicates freely with an adversary A. When A corrupts a party, it assumes
the party’s identity, and takes control of its communication. A real protocol UC-
emulates an ideal process if for every real adversaryA there exists an ideal world
adversary S such that no environment Z can distinguish between its interactions
with A in the real protocol and S in the ideal process. The universal composition
theorem states that if π is a protocol involving sub-protocol calls to an ideal
functionality F , ρ is a protocol that UC-emulates F , and πρ/F is the hybrid
protocol obtained by replacing calls to F in π with calls to ρ, then πρ/F UC-
emulates π.

Modeling Physical Protocols. We separate physical protocols into a logical
layer and a physical layer. All the physical operations of the protocol belong to
the physical layer. Every physical operation serves an ideal function, and can
be modeled by an ideal process in an abstract computation model with interac-
tive turing machines (ITMs). This translation is based on physical assumptions.
The logical layer is the hybrid world protocol obtained by replacing all physical
operations with oracle calls to their ideal functionalities.

For example, consider the operation of pouring x balls into a bin and sealing
the bin. We can define an ideal functionality T and an ideal process for this
operation as follows. T stores tuples of the form (value, id, creator, holder, state).
Upon receiving the two commands Create(x, id) and Seal(id) from party Pi,
T stores the tuple (x, id, Pi, Pi, sealed), and will deny requests to view the value
x that come from any party other than Pi. However, any party Pj may send
a special command Force(id) to T , and T will respond by sending the entire
tuple to Pj and broadcasting to all other participating parties that Pj issued
the Force command. This emulates the real behavior of a party who forcefully
breaks open the sealed bin without permission, and is labeled a cheater.

Rigorous analysis can be applied to the hybrid world logical layer. We can then
interpret the universal composition property of our model as formally reducing
security to the most basic physical assumptions necessary: if the hybrid world
logical layer UC-emulates F , then any real world physical protocol emulating
the hybrid protocol also realizes F .
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UC Physical Commitments. Bit-commitment is impossible to UC-realize in
the standard computation model without trusted setup assumptions [5]. How-
ever, physical assumptions change matters. Consider the following trivial proto-
col in which the parties continuously observe each other. Alice commits to her
bit by placing it in a sealed container, and de-commits by opening the container.
To prevent Bob from forcibly cheating, Alice could run the protocol behind a
secure glass screen (see Section 6 on public observation protocols). There is also
a more sophisticated UC secure bit-commitment protocol using tamper-evident
envelopes [23], which does not require continuous observation.

Likewise, ZK is not UC-realizable without setup assumptions, but there are
UC-secure ZK proofs for any NP relation given UC bit-commitment [5,6]. There-
fore, it is possible to implement UC-secure ZK protocols for any NP relation
using UC physical commitments.

Ideal Functionality FΠ
ZK . The ideal functionality FΠ

ZK is described in Fig-
ure 1, running with parties Prover, Verifier, and an oracle FC that compiles the
ideal functionalities for a collection C of physical operations in the real world.

Functionality FΠ
ZK

Π is a unary predicate representing a physical propertyΠ . If idX uniquely identifies
a physical set X, the statement idX ∈ Π translates the physical world statement
“X satisfies property Π .” FC includes an ideal functionality FMΠ for the physical
measurement operation Mπ required to verify Π , which outputs Π(idX) ∈ {0, 1}.
The parameter leak(idX) represents information that is leaked when Verifier force-
fully cheats.

– Upon receiving (idX , pidC,Prover,Verifier) from the party Prover, FΠ
ZK queries

the FC specified by the process identifier pidC to compute Π(idX), and sends
(Π(idX), idX ,Π) to Verifier.

– Upon receiving the instruction cheat from Verifier, send (idX , leak(idX)) to
Verifier, and send (Cheater,Verifier) to Prover. If Prover sends cheat, send
(Cheater,Prover) to Verifier. Upon receiving the instruction fail from either
party, send Failed to both parties.

Fig. 1. Ideal world PhysicalZK

Let ρFC/C denote the FC-hybrid model translation of a physical protocol ρ
with physical operation collection C. A proof that ρFC/C UC-emulates FΠ

ZK cap-
tures (up to physical assumptions) that ρ is secure against any adversary in the
real physical world whose behavior is restricted to operations in C.1 A generic

1 Ideally, C should define a sufficient set of operations such that any action outside
this set will either be recognized as malicious or irrelevant to the protocol. This is
not a formal mathematical notion, but a physical assumption.
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procedure for this analysis is outlined in Figure 2. Appendix A includes a full UC
modeling and security proof for the Bins and Balls Equality protocol of [8]. Let
hybridρ,FC,A,Z and idealFΠ

ZK ,FC,S,Z respectively denote the random variables

describing the output of environment Z after interacting with A in ρFC/C and
S in the ideal process for FΠ

ZK .

Definition 1. 2A physical protocol ρ is a physical zero-knowledge protocol for
property Π with respect to the physical operation set C if for any A there exists
S such that for all environments Z outputting a single bit:

hybridρ,FC,A,Z ≈ idealFΠ
ZK ,FC,S,Z

Main Differences from Standard FR
ZK . One difference is to allow the verifier

to obtain leakage by overtly cheating; however, FR
ZK could be extended similarly.

A more fundamental difference is the way FΠ
ZK verifies Π . FR

ZK requires the
prover to submit a witness w along with the input x so that FR

ZK may efficiently
verify (x,w) ∈ R. FR

ZK cannot find a witness w on its own since UC requires the
trusted party to be computationally efficient. In contrast, FΠ

ZK verifies idX ∈ Π
on its own, as it only needs the prover to transfer access permissions, not secret
knowledge.

This difference has significant consequences. FR
ZK cannot be realized in UC

without trusted setup because the simulator must straight-line extract a witness
from its interaction with the real prover, implying that the real verifier could
do so as well. UC-emulation of FΠ

ZK does not require extraction. Standard ZK
proofs in UC are zero-knowledge proofs-of-knowledge (ZKPoK), whereas FΠ

ZK is
not. Thus, although UC protocols for FΠ

ZK may rely on physical assumptions,
they do not fundamentally require trusted setup assumptions.

4 Neutron Radiography

Glaser, Barak, and Goldston [8] were the first to suggest applying zero-knowledge
proofs to the problem of authenticating nuclear warheads without revealing
sensitive information about their design. One approach to authentication is
“template-matching.” The inspecting party possesses a template warhead, pre-
sumably confirmed to be authentic. The opposing party must prove that each
warhead brought to the dismantlement queue is identical (in design) to the
template.

Neutron radiography can be used to compare objects. An object is bombarded
with neutrons, and the intensity of neutron scattering is measured over a range
of angles. Glaser et al. suggested using passive bubble detectors3 to physically

2 To differentiate statistical, computational, and perfect PhysicalZK, we can eas-
ily extend the definition to depend on the type of indistinguishability (statisti-
cal/computational/perfect) that the relation ≈ describes.

3 A passive bubble detector contains droplets of superheated liquid dispersed through-
out a clear gel. When a neutron hits a droplet, it vaporizes the droplet producing a
visible air bubble trapped in the gel.
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FC-hybrid protocol UC-emulation of FΠ
ZK

We can assume that A acts as a proxy for the environment Z [4].

– When A corrupts Verifier, Z either sees a successful run of ρFC/C , or receives
(0, idX ,Π). Since S only receives a receipt (Π(idX), idX ,Π), it must simulate
the hybrid world proof, invoking an instance of FC , and dummy parties P and
V . S plays the role of prover (P), and uses Z’s messages to play the verifier
(V), whose messages S forwards to Z. If failure occurs or cheating is detected
in the simulation, S sends either fail or cheat to FΠ

ZK .
– S ’s simulation must be straight-line (it cannot rewind Z), but S can extract

any hybrid world “physical commitments” that the dummy party V makes
with FC. (S omits from its messages to Z any notification of the command
Force it internally uses with FC to force open the commitments).

– When A corrupts Prover, S simulates the hybrid world protocol with Z, but
now playing the verifier’s role (no secret input needed). If the simulation suc-
ceeds, S forwards Z’s input to FΠ

ZK . If failure or cheating occurs, S sends
either fail or cheat to FΠ

ZK .

Fig. 2. The FC-hybrid model security proof

record the neutron counts at randomly selected angles. The task of comparing
the physically recorded counts essentially reduces to Bins and Balls Equality.
The GBG protocol for Bins and Balls Equality (see Section 2) only achieves ε-
knowledge with ε = n/N (security is broken with O(N) repetitions). We present
a modified protocol that achieves perfect PhysicalZK.

Protocol 4.1 guarantees that the number of balls the verifier eventually counts
is uniformly distributed in [N, 2N). Instead of preparing bin pair j containing
rj ∈ [0, N) balls, the prover prepares a quadruple j of bins: one pair of bins with
rj ∈ [0, N) balls each, and a second with N + rj balls each. If the number of
balls in the prover’s original bins is x < N , then exactly one of N + rj + x and
rj + x lies in the interval [N, 2N). Only this bin pair is retained and displayed.

Soundness: The soundness error is at most 1
2k . The verifier would accept

a false claim (when x �= y) only if it selects a quadruple j ∈ [k] and labeling
of the bins in the final pair so that x + rj = y + r′j , where rj and r′j are the
initializations of the bins labelled binx and biny respectively. If more than one
quadruple contains an incorrect initialization such that rj �= r′j , then the verifier
catches the prover. If one labeling results in x + rj = y + r′j , then the opposite

labeling does not. Therefore, this event occurs with probability at most 1
2k .

Perfect Zero-Knowledge: We show that the distribution of balls in the
final pair of bins (binx and biny) is the uniform distribution over [N, 2N). Fix
an arbitrary input value 0 ≤ a < N for the number of balls that bins X and Y
each hold. Let Z denote the number of balls in binx and biny at the end of the
protocol. Z = rj + a when rj + a ≥ N , and Z = rj + a+N when rj + a < N .
Consider t ∈ [N, 2N). If t ∈ [N,N + a), then Pr[Z = t] = Pr[rj = t− a] = 1/N .
Otherwise, if t ∈ [N + a, 2N), then Pr[Z = t] = Pr[rj = t− a−N ] = 1/N .
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Protocol 4.1: Bins and Balls Quadruples

Input : Two bins X and Y, which both contain x and y balls respectively. The
maximum capacity of each bin is N.

1. Prover prepares and seals k “quadruples” of bins Q1, ..., Qk, where each
“quadruple” Qi consists of two pairs of bins, pairi,0 and pairi,1. Each bin
has capacity at least 2N . For all 1 ≤ i ≤ k, Prover randomly selects uniformly
distributed values ri ∈ [0, N), and prepares each Qi such that each bin in
pairi,0 contains ri balls, and each bin in pairi,1 contains ri +N balls.

2. Verifier randomly selects j uniformly distributed in [1, k], and requests to view
all Qi�=j. Prover reveals all quadruples Qi�=j, and Verifier checks that these
quadruples were initialized correctly.

3. Prover selects a final pair out of Qj : if x+rj ≥ N , then Prover chooses pairj,0,
and if x+ rj < N , then Prover chooses pairj,1. Prover destroys the other pair.

4. Verifier labels the bins in the remaining pair as “binx” and “biny” (he can do
this randomly to add a 1/2 factor to the soundness error).

5. Prover pours the contents of X into binx, and the contents of Y into biny .
Prover reveals the contents of binx and biny , and Verifier accepts the proof if
and only if the two bins contain the same number of balls.

The complete formal proof is very similar to the proof in Appendix A.2.
Roughly, since the distribution in the final pair is uniform and independent of
the input, the simulator can run the protocol on an empty input.

4.1 From Bins and Balls to Neutron Bombardment

We adapt Protocol 4.1 to the problem of proving object radiograph equivalence.
Neutron detectors are placed at a finite number of angles around each object,
and a neutron source is fired at both objects for the same duration of time. A
measurement device is used to measure the counts of neutrons that each detector
has physically recorded.

Measurement Devices. The parties mutually possess a neutron source with
a known flow rate, and physical neutron detectors. Each party has its own mea-
surement device D for obtaining the physically recorded neutron count of any
neutron detector. In the hybrid world, D is modeled as an ideal functionality
FD. When given the input idX corresponding to an object X , FD records a
measurement value, and outputs a function of the measured value.

Operation Init(d, r). This initializes the given neutron detector d to the
integer value r. We assume that the prover and verifier can perform this operation
without the other party knowing the value r.4

4 The appropriate time to run the neutron source at a detector during initialization is
calculated from the flow rate of the source. However, the initialization value should
be hidden from the other party. The initialization can be done privately, or using a
concealed on/off switch on the neutron source.
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Prover Types. We consider two types of provers. Prover Type I has prior
knowledge of the exact neutron counts xθ and yθ at any angle θ that the verifier
chooses to examine, and Prover Type II does not possess this knowledge.

Drawbacks. A Type I prover is required to know the values of x and y for any
angle θ. A Type II prover is allowed to re-handle the detectors after the neutron
collection, possibly giving her the opportunity to dishonestly meddle with the
results. In Appendix B we include a different zero-knowledge protocol for ORE
that avoids both of these issues. The protocol uses a measurement device that
outputs neutron counts modulo N.

Protocol 4.2: Perfect PhysicalZK protocol for Object Radiograph
Equivalence (ORE)

Input : Two objects X and Y with equal ORE’s, denoted X ∼ Y .

1. Prover: Prepare k “quadruples” Q1, ..., Qk of neutron detectors (as in Protocol
4.1), selecting random values ri ∈ [0, N) for 1 ≤ i ≤ k, and using the Init(d,ri)
operation on each.

2. Verifier: For each Qi, 1 ≤ i ≤ k, randomly select bi ← {0, 1}.
– If bi = 0: examine the detectors in Qi, and check that the neutron count

initialization is valid. Fail if invalid.
– If bi = 1: run collection test on Qi.

Collection Test on Qi:

1. Verifier: For each pair of the quadruple Qi, randomly choose one detector to
label dix, and label the other diy. Select a random angle θ, and send this to the
prover.

2. Prover: Run the neutron source on X and Y , collecting at the angle θ, using
detectors labeled dix for X and diy for Y .
– Type I Prover : Choose the unique detector pair that has a count in the

range [N, 2N), and discard the other pair. Hand this pair to the verifier.
– Type II Prover : Examine the contents of both detector pairs, and proceed

as a Type I prover.
3. Verifier: Check that the detectors received from the prover have equal neutron

counts. Fail if the counts are not equal.

Tolerance δ. The verifier could accept if and only if |xθ − yθ| < δ. Two
changes are necessary. First, the prover should choose which pair to discard
based on the lower of the two values x and y. Unfortunately, the difference |x−y|
is still revealed. Second, the verifier must ensure that N ≥ maxθ{|xθ − yθ|+ δ}.
Otherwise the prover could fool the verifier into accepting that |xθ − yθ| < δ
when |xθ − yθ| > N − δ. Verifier can incorporate checking the size of N into the
cut-and-choose protocol, but needs to know some loose upper bound on xθ − yθ.

Soundness and Completeness: Protocol 4.2 has perfect completeness and
soundness error at most (1+β

2 )k, where β < 1 is the probability that xθ = yθ
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at a uniformly distributed angle θ (when X �∼ Y ). Suppose Prover cheats on c
out of k detector quadruples. The probability that Verifier doesn’t check any of
the c bad quadruples is 2−c. The probability Prover passes on all the k− c good
quadruples is 1

2 + 1
2 · β because it passes always if Verifier chooses to check and

with probability β if Verifier chooses to run a collection test. By independence,
the soundness error is thus (12 )

c · (12 +
β
2 )

k−c. Since β ≥ 0, an optimal (cheating)

strategy is to set c = 0, giving error at most (12 + β
2 )

k.
Perfect Zero-Knowledge: Follows from the analysis of Protocol 4.1.

5 DNA Profiling

In recent years, genetic privacy in DNA profiling has become the subject of wide
debate. Privacy issues obstruct criminal investigations, deterring non-guilty sus-
pects from otherwise providing DNA samples, and giving guilty suspects legit-
imate excuses to refuse testing. We present a zero-knowledge protocol through
which a suspect can prove to the police that his DNA profile does not match
a crime scene profile. We also sketch an adaptation of the BBQ (Protocol 4.1)
primitive to DNA testing. One potential application is a zero-knowledge protocol
for parental testing.

STR Analysis. DNA profiling uses STR analysis. STR stands for “Short
Tandem Repeats,” which are short nucleotide sequences that repeat in tandem.
In certain locations of the human genome, although all humans posses the same
repeating sequence, the exact number of repeat units is highly variable from per-
son to person. The variations of a gene or genetic locus in the human population
are called alleles. Every individual has two alleles of each gene, one from each
parent.

CODIS Profiles. In the United States, all forensic laboratories share CODIS
(the Combined DNA Index System), which uses 13 specific STR loci to identify
individuals. A CODIS DNA profile vector consists of 13 pairs of STR sequence
lengths, one pair for each loci.

DNA Primers. A genetic profile is generated through STR analysis. PCR
(the polymerase chain reaction) is run with oligonucleotide primers to isolate and
amplify each STR repeat sequence. Primers determine the specific start and end
nucleotides of the sequence to be amplified, and thus control the lengths of the
flanking regions that are cut out along with the STR sequences (see Figure 3).
We will use the notation Pi,j to denote a primer pair that isolates the ith locus
STR sequence, and produces a pair of fragments of sizes mi,1 + j and mi,2 + j,
when mi,1 and mi,2 are the sizes of the ith locus alleles.

Electrophoresis. In capillary electrophoresis, the most popular technique
for DNA profiling, DNA fragments are fluorescently labelled during PCR, and
passed through a capillary tube. Smaller fragments pass faster than larger ones.
A laser detects the fragments as they pass by. The length of a fragment is deduced
from the time the fragment takes to reach the laser.
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δ-CE device. We imagine a slightly modified capillary electrophoresis ap-
paratus in which the laser can only be operated for a limited time window δ,
effectively limiting the range of DNA fragment sizes that will be detected.5

STR sequence
mPrimer A Primer B

a b

Fig. 3. STR sequence of length m cut out with flanking region a+ b

5.1 DNA Inequality

At a basic level, the police (POL) will give the defender (DEF) one of the two
DNA samples at random, and DEF must correctly identify the sample received.
In general, DEF is not the suspect, but a public defender forensic team represent-
ing the suspect. There are two main challenges in proving zero-knowledge. First,
the protocol simulator needs to extract the verifier’s challenges without rewind-
ing. Second, we must prevent POL from substituting a third auxiliary DNA
sample mid-protocol. (Similarly, in the ZK protocol for graph non-isomorphism
(GNI), the verifier proves it knows an isomorphism between its challenge graph
and one of the two input graphs [11]). Additionally, we rely on the physical
assumption that two DNA samples from the same person are always indistin-
guishable, whereas samples from individuals with distinct profiles are always
distinguishable.

Random Seals. We require non-forgeable tamper-evident seals. We imagine
that tamper-evident seals could be manufactured with a “random” pattern that
is uniformly and independently distributed in a sufficiently large domain. A
similar random pattern trick was suggested in [26].

Seal Covers. Our protocol also requires seal covers that function as physical
commitments. The covers should be designed to hide any identifiable markings
on the tamper-evident seals, and it should be possible to open the seals without
removing their covers.

Completeness and Soundness. As DEF is able to differentiate between
two distinct DNA samples, the protocol has perfect completeness. If the DNA
samples are the same, DEF guesses the challenge sample correctly with proba-
bility 1/2. (The error is exponentially reduced by repetition).

Hybrid Model. The compiler holds tuples for each DNA sample input. The
value attribute of each tuple is the DNA profile vector. The random seal oper-
ations queries an RO for a value r, tags r to the tuple, locks read/write access,

5 Only the owner of the δ-CE can trust its operations. The party operating the δ-
CE can ensure the limited-laser functionality by using a charged capacitor to power
the laser so that the laser retains power for at most time δ. The operation can be
repeated by recharging the capacitor.
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Protocol 5.1: Zero-knowledge proof for DNA inequality

Preparation: Two test tubes are jointly prepared, one with DNA sample C, and
one with S. DEF places identifiable tamper-evident seals on each test tube: one
identifies S, and the other identifies C. POL covers the seals.

1. POL conceals the two test tubes, selects one randomly, and hands it back to
DEF.

2. DEF checks that the seal has not yet been opened, and then opens the seal
without removing its cover. DEF determines the profile of the sample in the
test tube, and physically commits to the identity of the sample in the test
tube.

3. POL “de-commits” to the challenge test tube by removing the cover on its
seal.

4. DEF checks and identifies the uncovered seal to see that it wasn’t replaced. If
it is not the original seal, then DEF terminates the protocol. Otherwise, DEF
opens its commitment from Step 2.

5. POL checks that DEF committed to the correct identity of the challenge sam-
ple.

and outputs r to the calling party. The scramble functionality swaps the id at-
tributes of two tuples with probability 1/2. The environment machine initializes
and locks tuples for each DNA input sample. This emulates the “joint prepara-
tion” for the physical reason that no information is revealed to either party until
they use analysis tools, such as electrophoresis, to examine the products of the
PCR preparation.

Zero-Knowledge. The ideal functionality DNA Inequality is denoted FDI
ZK .

The job of the simulator S in the case that A corrupts the hybrid world prover
(DEF) was handled generically in Section 3, Figure 2. The case that A corrupts
the hybrid world verifier (POL) is more interesting. First, S learns from FDI

ZK

if DEF passes or fails the ideal execution on the environment Z’s input. Next,
S simulates the hybrid model protocol, playing the role of DEF while Z uses A
to control POL. Recall that S can straight-line extract physical commitments
in the hybrid world (see Figure 2). Thus, S always knows the identity of POL’s
challenge sample, or that POL is cheating. S sets DEF’s commitment in Step 2
to the correct identity of the challenge if DEF should pass, and the incorrect if
DEF should fail. S only de-commits in Step 4 if POL did not cheat. If POL did
not cheat, both S and the hybrid world DEF supply identical responses to Z,
namely the identity of POL’s challenge. If POL did cheat on its challenge, then
S terminates its simulation. The hybrid world DEF will also terminate unless it
fails to catch POL cheating, which only occurs with negligible probability (POL
must guess the secret RO tag in order to fool DEF).

Testing a Village. There are cases where entire villages have been tested to
see if the DNA profile of anyone in the population matches the crime scene DNA
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profile. Protocol 5.1 can be naturally extended for proving that a DNA profile
does not exist in a population. Consider a population of 400 people. The verifier
DEF receives 401 DNA samples, one from every individual in the population,
plus a crime scene sample, all delivered in a set of 401 identical, covered, sealed,
and randomly permuted test-tubes. DEF is required to find the crime scene
sample C and hand it back to POL. If another individual has the same profile
as C, then DEF fails with probability at least 1

2 .

5.2 Parental Testing

To prove a parent-child relationship using DNA profiling, it is necessary to show
that DNA samples from the parent and child share at least one allele in each STR
locus. We construct a zero-knowledge protocol for this task using an analogous
technique to the Bins and Balls Quadruples (BBQ) scheme from Section 4.

Recall that a primer Pi,j is used to cut out the ith locus STR alleles with
flanking regions of total length j. Performing STR analysis with randomized
primers Pi,ri for ri uniformly distributed in [0, N) is analogous to adding a
random number of balls to a bin. The quadruples of bins in BBQ translate to
quadruples of test tubes running reactions with randomized primers. However, a
technical caveat arises: each ith locus actually contains a pair of alleles that will
be amplified with the same Pi,ri , producing a pair of fragment lengths whose
joint distribution is not necessarily uniform!

In the special case of paternity testing, this issue can be easily avoided by
choosing to compare STR regions on the Y chromosome, which is uniquely passed
from father to son. In more general circumstances, the prover can choose to reveal
only one allele from each locus (using δ-CE), which is sufficient for showing that
the two DNA samples share at least one allele in each STR locus.

6 Public Coin and Public Observation Proofs

A private coin protocol is one in which the verifier’s random bits (“coin flips”)
must be kept private during the protocol. In contrast, the verifier’s messages in
a public coin protocol only consist of the outcomes of its coin flips. Public-coin
physical protocols are publicly observable in the sense that the verifier can sit
behind a glass screen throughout the protocol’s execution, sending messages to
the prover, and observing the prover’s physical operations. Thus, unlike general
physical zero-knowledge protocols, public observation physical zero-knowledge
protocols do not rely on tamper-evident functionalities or (as heavily) on a covert
threat model. While all public-coin protocols are publicly observable, not all
publicly observable protocols need to be public-coin. For instance, the protocol
may involve private-coin computational subprotocols.

In this section, we present an example of a public observation protocol for a
special case of DNA Inequality in which the suspect’s DNA S should pass if in
at least one of the 13 CODIS loci it has an allele that is not present in the crime
scene DNA C (notated S �⊂ C). The protocol becomes a perfectly complete test
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for DNA Inequality when only homozygotic gene regions are compared (e.g. X or
Y chromosomes in males). The construction of the protocol involves a reduction
to standard cryptography, using bit-commitment and generic ZK proofs for NP
statements. Our protocol takes advantage of the fact that when S �⊂ C, the total
number of distinct gene alleles in S ∪C increases. Our protocol is closely related
to the well-known public-coin protocol for GNI, making use of a classical set
lower-bound protocol [17,10].

In the digital setting, public-coin ZK equals private-coin ZK [27,13,14,28].
In contrast, we don’t know of a general method for converting any physical
zero-knowledge protocol into a public observation zero-knowledge protocol. The
known constructions of public-coin ZK proofs from private-coin ZK proofs in-
volve simulating the private-coin verifier and applying universal hash functions
to its messages. We do not know of any general analogous method for hashing
physical messages. Furthermore, the public-coin verifier must be able to check
set containment in the private-coin verifier’s messages. In the physical setting, it
is unclear whether the public-coin verifier can always assess the physical content
of the private-coin verifier’s messages, particularly when they involve physical
concealment.f

Protocol 6.1: Public Observation ZK Protocol for DNA Inequality

– Allele vector sets. V (C) is the set of distinct vectors of length 13 that can
be formed by choosing one allele from each STR locus of C. 1 ≤ |V (C)| ≤ 213.
Similarly, we define V (S ∪ C), where each allele can be chosen from either
S or C. If S introduces a new allele in at least one locus, then |V (S ∪C)| ≥
3
2 |V (C)|, and otherwise, |V (S ∪ C)| = |V (C)|.

– Equipment. DEF has a mod δ-CE device, which is a δ-CE device that
displays the lengths of DNA fragments modulo N , where N is a power of 2
greater than the longest possible fragment that will be measured. DEF also
has access to a collection of DNA primers {Pi,j}.

– Parameters � and m. Choose the smallest integers � and m that satisfy
the following conditions: (32 )

� ≥ 2m and 2m− 1
2 ≤ (32 )

� · |V (C)|� ≤ 2m.6

– Allele length vector set Z. Z ⊂ (ZN )13 is the set of possible vectors whose
ith component is the length mod N of an allele taken from the ith locus of
either S or C. It is the set of vectors of allele lengths mod N corresponding
to V (S ∪ C).

– Randomized allele length vector set r(Z�). Let r be a random uniformly
distributed vector in (ZN )13�. Define r(Z�) = {r+z | z ∈ Z�} where addition
is over (ZN )13�.

6 Let K = |V (C)|. Note that K = 2r for r ≤ 13. Choose the smallest integer x such
that ( 3

2
)x ≥ 2x · log( 3

2
K) + 1. One can verify that x ≤ 15. Now find the smallest

� ≥ x such that the fractional part of � · log( 3
2
K) is in [ 1

2
, 1) ∪ {0}. This will hold

for either x, x + 1, or x + 2. Finally, set m to be the unique integer such that
m − 1

2
≤ � · log( 3

2
K) ≤ m. Now � and m satisfy ( 3

2
)� ≥ 2� · log( 3

2
K) + 1 ≥ 2m and

2m− 1
2 ≤ ( 3

2
K)� ≤ 2m.
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– Hash function family. Set k = log(N) ·13�, and choose a canonical encod-
ing of (ZN )13� in GF (2k). We will use a family Hk,m := {ha,b} of universal
hash functions from GF (2k) → GF (2m) where a, b ∈ GF (2k), a �= 0, and
ha,b maps x �→ ax+ b and truncates the last k −m bits.

– Hash function shift. For any vector r ∈ (ZN )13� and h ∈ Hk,m, define
r(h) = ha,b−r·a, where r is the encoding of r in GF (2k). Note that r(h)(r+
z) = h(z).

– Preparing r(Z�). DEF prepares � sets of test tubes T1, ..., T�. Each Ti con-
sists of test tubes {Ci,j}j∈[13] containing C and {Si,j}j∈[13] containing S.
For all (i, j), DEF selects an independent random value ri,j uniformly dis-
tributed in [0, N), and then runs PCR on Ci,j and Si,j with the primer pair
Pj,ri,j .

7 To display a vector z ∈ r(Z�) to POL, DEF chooses from every
Ti the appropriate set of 13 test tubes containing the target fragments con-
tained in z, and then chooses time windows ti,1, ..., ti,13 to run the mod δ-CE
device on each test tube in order to only detect the target fragments.

Protocol 6.1 - Public observation ZK for DNA Inequality

POL observes DEF throughout the rounds. We assume that DEF cannot change
the behavior of the mod δ-CE device while under observation. Let (com, dec) denote
a commitment scheme.

1. DEF: Choose a random uniformly distributed r ∈ (ZN)13� and prepare r(Z�).
Find a set of m hash functions H = {hi}mi=1 ⊂ H so that

⋃m
i=1 hi(Z

�) =
{0, 1}m. Compute commitments to the hash functions r(hi) for each i, denoted
ComH = {com(r(h1)), ..., com(r(hm))}. Send ComH to POL.

2. POL: Pick a uniformly distributed y ∈ {0, 1}m.
3. DEF: Find an hi ∈ H and z ∈ Z� such that hi(z) = y. Display the allele

vector v = z+ r from the set r(Z�).
4. DEF and POL: Execute a UC-secure ZK proof of the NP statement “there

exists x ∈ ComH such that dec(x) = h and h(v) = y.”

Perfect Completeness: We use the fact that for any set A ⊆ {0, 1}m of

size |A| ≥ 2m− 1
2 , there there exists an (expected polynomial time computable)

set of m hash functions h1, ..., hm ∈ Hk,m such that ∪ihi(A) = {0, 1}m. (We
include a proof of this fact using the Probabilistic Method in the full version of
this paper).When S has at least one distinct allele from C, then |Z�| = |V (S ∪
C)�| ≥ (32 )

� · |V (C)�| ≥ 2m− 1
2 . Given any z there is at least one hi among the

m preselected functions that satisfies hi(z) = y. Since r(hi)(z + r) = hi(z) = y,
there exists h ∈ ComH such that h(v) = y.

Soundness error 1/2: When S does not contain any distinct alleles from
C, then |Z| = |V (C)|. For any set of m hash functions {hi}mi=1, the size of

7 POL observes that the same primer is applied to Ci,j and Si,j .
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∪m
i=1hi(Z

�) is at most m · |V (C)|� ≤ m · (32 )−� · 2m ≤ m
2m · 2m = 2m−1. Thus,

the probability that a uniformly selected target y ∈ {0, 1}m is in the image
∪ihi(Z

�) is at most 1
2 . Note that this soundness error bound is independent of the

prover’s mod δ-CE device behavior, whether randomized or deterministic. The
device output ensemble consists of at most 2m−1/m distinct random variables
over {0, 1}m, i.e. one variable Xz for each input configuration z ∈ Z�. Given the
uniformly selected target y, the probability that hi(Xz) = y for some i and z is
(by a union bound) at most 1/2.

Zero-Knowledge: We separately analyze the physical (DEF reveals v to
POL) and computational (DEF proves there exists x ∈ ComH such that dec(x) =
h and h(v) = y) stages of the protocol. In the physical stage, POL only sees the
indices of v = z+ r, and since r is uniformly distributed independent of z, v is
also uniformly distributed. In the computational stage, DEF and POL execute
a ZK protocol that is UC-secure under either physical assumptions or computa-
tional setup assumptions. The composed protocol securely realizes PhysicalZK
by the universal composition theorem.

7 Conclusion and Future Directions

The need for privacy pervades not only the world of digital information, but
physical information as well. Privacy in nuclear disengagement treaties and DNA
profiling are just two examples of pertinent real world problems requiring inher-
ently physical rather than digital solutions, and motivate the importance of
developing a better theoretical foundation for physical cryptography.

A starting point is the rigorous analysis of protocols. The approach presented
in this work separates the logical and physical components of a protocol using
the language of modern cryptography, formally reducing mathematical claims of
security and correctness to the underlying physical assumptions theory cannot
address. Beyond that, there are structural questions: are there ZK proofs for
every physical property, or secure computation protocols for every physical task?
We noted parallels between public observation physical ZK protocols and public
coin digital ZK protocols. Can any physical ZK protocol be made into a publicly
observable one?

In the physical world, opposite to the digital, general theories and impossibil-
ity results seem difficult or impossible to achieve with only the tools of mathe-
matics. Nonetheless, investigating general theories is an interesting direction for
future work, perhaps beginning with restricted classes of physical operations. An
orthogonal direction is to explore other models. In subsequent work, we show
several techniques for solving generic physical tasks using a disposable circuits
model in which digital information can be destroyed.
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A Full Security Proof Example: GBG ε-Knowledge

The basic Bins and Balls Equality (BBE) protocol of [8] is described in Sec-
tion 2. The protocol does not actually achieve PhysicalZK, but it does achieve
the closely related notion of ε-knowledge. Here ε = n/N , where n is the capacity
of the input bins, and N is the range of the random number of balls added.

Definition 2. A protocol ρ UC ε-emulates an ideal functionality T if for any A
there exists S such that for all environments Z outputting a single bit:
Δ(realρ,A,Z , idealT ,S,Z) ≤ ε, where Δ denotes statistical variation distance.
Equivalently, |Pr[realρ,A,Z = 1]− Pr[idealT ,S,Z = 1]| ≤ ε

A physical protocol π is a physical ε-knowledge protocol for property Π with re-
spect to the physical operation set C if its FC-hybrid translation ρ UC ε-emulates
FΠ

ZK .

Hybrid World Modeling of the GBG Protocol. The operations of the
hybrid model compiler FBB are listed in Figure 4. A bin in the hybrid world is
represented by a tuple of the form (id, value, holder, state) stored by FBB. Every
operation listed models a real world operation used in the GBG protocol. In the
real world protocol, parties can monitor each other by seeing who is holding or
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operating on a bin. To model this in the hybrid world, FBB allows any party to
request the (id, holder, state) of any tuple. Additionally, FBB notifies all parties
of any operation executed, and its status (accept or reject). The hybrid world
GBG protocol is described in Figure 5.

Hybrid model compiler FBB

For the following descriptions, each command is sent from party Pi to FBB.

– Create (value): Initializes a new bin with value number of balls. Generate
a unique id for the bin, store the tuple (id, value, Pi, “open”), and send the
receipt (id, value, Pi, “open”) to Pi.

– Seal (id): Seals a bin. Check in the tuple (id, value, holder, state) that
holder = Pi and state = “open”. If yes, updates the tuple to
(id, value, Pi, “sealed”). Otherwise reject.

– Break (id): Unseals a bin. Check in the tuple (id, value, holder, state) that
holder = Pi. If yes, updates the tuple to (id, value, Pi, “open”). Otherwise
reject.

– Combine (id1, id2): Combines the contents of two bins. Check that holder1 =
holder2 = Pi, state1 = state2 = “open”. If yes, then update the tuples to
(id1, 0, Pi, “open”) and (id2, value1 + value2, Pi, “open”). Otherwise reject.

– Open (id): Opens and returns the bin contents count. Check in
(id, value, holder, state) that state = “open” and holder = Pi. If yes, send
(id, value) to Pi. Otherwise reject.

– Send (m,Pj): Relays message to Pj . Relay the message m to Pj . In the phys-
ical setting this could be implemented using a number of equivalent forms of
communication (speech, writing, etc.)

– Transfer (id, Pj): Transfers bin possession to Pj . Check in
(id, value, holder, state) that holder = Pi. If yes, update the tuple to
(id, value, Pj , state).

– Force (id): Forcefully opens a bin. Send the entire tuple
(id, value, holder, state) to Pi.

Fig. 4. The FBB-hybrid model ideal functionalities for BB

Ideal Functionality Modeling for BBE. Recall the definition of the general
PhysicalZK ideal functionality FΠ

ZK in Figure 1 of Section 3. The corresponding
ideal functionality of a PhysicalZK protocol for BBE is FBBE

ZK , where BBE de-
notes the physical property of bins containing equal numbers of balls. The GBG
protocol, however, has a non-negligible soundness error of 1/2. While normally
the error would be exponentially reduced by repetition, this protocol cannot be
repeated on the same physical input. The input is consumed when new balls are
added to the input bins. Thus, we will use a modified functionality FBBE

ZK,δ that
allows the prover to cheat with probability at most δ (Figure 6).

FBBE
ZK,δ runs with a partyProver, a partyVerifier, and an instance ofFBB specified

by a process identifier pidBB. If (idX , x, holder, state) and (idY , y, holder, state)
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FBB-hybrid protocol π

Input: FBB has the input stored as (idX , x,Prover, “sealed”) and
(idY , y,Prover, “sealed”) where 0 ≤ x, y ≤ n.

If x �= y, Prover sends (Reject, (idX , idY ),BBE) to Verifier. If x = y:

1. Prover: Randomly select r0, r1 in [0,N). Create (r0) twice and Create (r1)
twice, receiving receipts from FBB with four unique id values B0,0, B0,1, B1,0,
and B1,1. For each Bi,j , Seal(Bi,j) and Send(Bi,j ,Verifier).

2. Verifier: Select a random choice bit σ ∈ {0, 1}. Send (σ, Prover).
3. Prover: Break(B1−σ,0), and Break(B1−σ,1). Transfer (B1−σ,0,Verifier) and

Transfer (B1−σ,1,Verifier).
4. Verifier: Open (B1−σ,0) and Open (B1−σ,1), receiving from FBB two re-

ceipts (B1−σ,0, v) and (B1−σ,1, v
′). Check that v = v′. If v �= v′, output

(Cheater,Prover).
5. Prover: Combine (idX , Bσ,0), and Combine(idY , Bσ,1). Transfer

(Bσ,0,Verifier) and Transfer (Bσ,1,Verifier).
6. Verifier: Open (Bσ,0) and Open (Bσ,1), receiving (Bσ,0, v) and (Bσ,1, v

′) from
FBB. Check that v = v′. If yes, output (Accept, (idX , idY ),BBE). Otherwise,
output (Reject, (idX , idY ),BBE).

If the protocol prematurely fails due to an invalid message or operation, both
parties output Failed. If Prover ever receives a receipt (Force,Verifier, accept)
from FBB , it outputs (Cheater,Verifier).

Fig. 5. The FBB-hybrid model protocol for BBE

are two tuples stored by FBB, the relation (idX , idY ) ∈ BBE holds if and only if
x = y.

Hybrid Protocol Experiment. Z activates FBB and sets the input to π,
the FBB-hybrid protocol, by initializing the tuples (idX , x,Prover, “sealed”) and
(idY , y,Prover, “sealed”). Next, Z activates Prover and Verifier, sending them
the process identifier pidBB for FBB. Prover and Verifier execute π as described
in Figure 5. A corrupts one, both, or none of the parties. A controls the com-
munication of any party it corrupts, but only acts as a proxy for Z. After π has
completed, each party sends its output to Z, who’s final view of the experiment
consists of its communication tape with A and the outputs of Prover and Verifier.
Finally, Z outputs a single decision bit hybridπ,FBB,A,Z .

Ideal Process Experiment. Z activates FBB with process identifier pidBB and
initializes the tuples (idX , x,Prover, “sealed”) and (idY , y,Prover, “sealed”). Z
sends (idX , idY , pidBB) to both Prover and Verifier. Prover will activate FBBE

ZK,δ,

whose PID we denote as ⊥. First, Prover transfers input tuple access to FBBE
ZK,δ,

executing Transfer(idX ,⊥) and Transfer(idY ,⊥). Next, it sends pidBB and the
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Functionality FBBE
ZK,δ

– Upon receiving (idX , idY , pid,Prover,Verifier) from the party Prover, query the
instance of FBB specified by pid to obtain the tuples (idX , x,⊥, “sealed”) and
(idY , y,⊥, “sealed”). If x = y, send (Accept, (idX , idY ),BBE) to the party
Verifier. If x �= y, send (Reject, (idX , idY ),BBE).

– Upon receiving the instruction (Cheat, μ) from Prover for 0 ≤ μ ≤ δ, with
probability μ send (Accept, (idX , idY ),BBE) to Verifier, and otherwise send
(Cheater,Prover). Upon receiving the instruction Cheat from Verifier, send
(Cheater,Verifier) to Prover, and (Cheater, x, y) to Verifier.

– If the queries to FBB are unsuccessful, the initial input is invalid, or upon
receiving the instruction Fail from either party, send Failed to both parties.

Fig. 6. Ideal functionality for a ZK proof of BBE with soundness error δ

input (idX , idY , pidBB,Prover,Verifier) to FBBE
ZK,δ, which in turn proceeds accord-

ing to Figure 6. As in [4], FBBE
ZK,δ will also mediate the ideal adversary corruption

mechanism. S corrupts a party P by sending the command (corrupt P ) to
FBBE

ZK,δ. Since S cannot corrupt P before FBBE
ZK,δ is activated, S cannot modify

the environment’s input before FBBE
ZK,δ receives it. Thus, while S may modify out-

puts to its corrupted parties, it cannot compromise the ideal process’s output to
an uncorrupted party. Prover and Verifier both forward the outputs they receive
to Z, and Z outputs a single decision bit idealFBBE

ZK ,FBB,S,Z .

Lemma 1. The FBB-hybrid protocol π of Figure 5 UC ε-emulates the ideal func-
tionality FBBE

ZK,δ with δ = 1/2 and ε = n/N . In other words, for any A there exists
S such that for any Z:

|Pr[hybridπ,FBB,A,Z = 1]− Pr[idealFBBE
ZK,δ,FBB,S,Z = 1]| ≤ ε

Proof. We use the following simple fact. Given any distinguisher algorithm D
and random variables X and Y with finite range Ω:

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ Δ(X,Y )

We will show that for all A there exists S such that for any environment Z,
the environment’s respective views in the hybrid protocol experiment with A
and the ideal process experiment with S are ε-close in statistical distance. We
consider separately the four cases in which A corrupts the Prover, the Verifier,
both parties, or neither parties. (We continue to write FBBE

ZK,δ, but it should be
understood that δ = 1/2).

A corrupts Prover. S obtains (idX , idY , pidBB) from FBBE
ZK,δ. S runs a sep-

arate instance of FBB, and simulates the hybrid protocol π using empty entries
for idX and idY , and two dummy parties P (for Prover) and V (for Verifier). S
plays P using the messages coming from Z. S sends back to Z any receipts that
P receives from FBB. However, S does not send P’s output from the simulation
Z. Instead, it sends one of the following messages to FBBE

ZK,δ:
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– If either P or V output Failed, then S sends Fail.
– If P cheated in the initialization of only one pair, then S sends (Cheat, 1/2).
– If P cheated in the initialization of both pairs, then S sends (Cheat, 0).
– If none of the above apply, then S sends (idX , idY , pidBB,Prover,Verifier).

Verifier writes the output received from FBBE
ZK,δ to its local output tape. S

receives Prover’s output from FBBE
ZK,δ, and writes it to Prover’s output tape. Z’s

view is identical to its view in the hybrid protocol experiment with A corrupting
Prover.

A corrupts Verifier. S obtains Z’s input (idX , idY , pidBB), and receives
output from FBBE

ZK,δ: either (Accept, (idX , idY ),BBE) in the case that x = y, or
(Reject, (idX , idY ),BBE) in the case that x �= y. If Reject, then S writes the
output to Verifier’s output tape. If Accept, then S must simulate A’s view of
the hybrid protocol π.

S runs a separate instance of FBB, creating empty entries for idX and idY ,
and dummy parties P and V . S uses messages coming from Z to play V , and
forwards any receipts that V receives to Z. The only possible receipts V receives
that could be statistically different in this simulated π and the hybrid experiment
π are the receipts (Bσ,0, vπ) and (Bσ,1, v

′
π) obtained in Step 6. Since the output

is Accept, we know that vπ = v′π. vπ is uniformly distributed in [x, x + N),
and the simulation output vsim is uniformly distributed in [0, N). The statistical
difference is Δ(vπ , vsim) = x/N ≤ n/N = ε.

Next, S determines what message to send FBBE
ZK,δ. If P outputs Cheater, it

sends Cheat to FBBE
ZK,δ, receives (Cheater, x, y) as output, and writes to Ver-

ifier’s output tape whatever A would. If P outputs Failed, S sends Fail, and
writes Failed to Verifier’s output tape. Otherwise, S does not send anything,
and simply writes (Accept, (idX , idY ),BBE) to Verifier’s output tape.

The outputs are identical to the outputs in the hybrid protocol experiment
given the same inputs. Therefore, the statistical difference between Z’s views of
the hybrid protocol experiment and ideal process experiment on the same inputs
is precisely the statistical difference in its communication with A and S during
π and the simulated π, which is at most ε = n/N .

A Corrupts Both or Neither Parties. If both, then S also corrupts both.
Since there are no secrets kept from S, it can run the hybrid world experiment
without help. If neither, S does nothing. For the same inputs, the outputs of
Prover and Verifier are identical in the hybrid protocol experiment and the ideal
process experiment when there is no corruption.

By Lemma 1, the GBG protocol is a physical ε-knowledge protocol for BBE
with respect to the operation set BB.

B ORE with a Mod-Counter

We present an alternative zero-knowledge protocol for ORE using a mod-counter,
a measurement device that outputs neutron counts modulo N. WhenN is greater
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than the maximum possible neutron count, the neutron counts are equal if and
only if they are congruent modulo N.

Who brings the mod-counter M? The verifier cannot trust a prover’s device
to output correct values. Likewise, the prover cannot trust the verifier, who
might program the device to secretly store actual integer count values. Thus,
our solution is to have the verifier program check the prover’s mod-counter. We
model M as an adaptive program computing a sequence of functions {fi} on a
sequence of inputs di, where each fi is a function of d1, ..., di, and each di is a
physical neutron detector. We assume that the prover cannot remotely change
the device’s state once the verifier takes possession of it.

1. Prover’s preparation: The prover prepares and labels m detector pairs.
In each pair 1 ≤ i ≤ m, the prover initializes the count of both detectors, d1i
and d2i , to a random ri ∈ [0, N). (Only a dishonest prover may set d1i to r1i
and d2i to r2i such that r1i �= r2i ).

2. Verifier’s tests: We assume the verifier has a device to obtain the neu-
tron count of any detector. For each ith detector pair, the verifier performs
RandomCompute with probability 1/5, and otherwise runs RandomTest :
– RandomCompute. Choose random values y1i , y

2
i ∈ [0, N). Increase the

count of d1i by y1i to r1i + y1i , and increase the count of d2i to r2i + y2i .
Select random θi, and run the neutron source, recording the scattering
at θi from X using d1i and from X ′ using d2i . Query M with d1i and d2i .
The test passes if and only if M(d1i )− y1i = M(d2i )− y2i .

– RandomTest. Measure the detectors to uncover r1i and r2i , and reject the
protocol if r1i �= r2i . Select random t1i , t

2
i ∈ [0, 2N). Increase the count of

d1i to r1i + t1i , and increase the count of d2i to r2i + t2i . Query M with
d1i and d2i . The test passes if and only if M(d1i ) ≡ r1i + t1i (mod N) and
M(d2i ) ≡ r2i + t2i (mod N).

Completeness: When xθi = x′
θi

for all i, then an honest prover will pass all
rounds. Since M behaves correctly, it will pass every RandomTest. For all i, the
prover sets r1i = r2i = ri so that in RandomCompute M(xθi + ri + y1i ) − y1i =
M(x′

θi
+ ri + y2i )− y2i ≡ xθi + ri (mod N).

Zero-Knowledge: If the prover is honest, then on every round the initialization
values are r1i = r2i = ri and the neutron counts collected from X and X ′ and
angle θi are xθi = x′

θi
= xi. Since ri is uniformly distributed in [0, N), xi +

ri (mod N) is also uniformly distributed in [0, N), independent of xi.

Soundness: The success probability of a cheating prover is bounded by (4+β
5 )m

where β < 1 is an upper bound on the probability that xθ = x′
θ at a uniformly

distributed angle θ when X �∼ X ′.
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Proof: To simplify, assume M’s input on each round is the pair of detectors.
In reality, M is actually weaker, since it cannot examine the second detector
before outputting a response for the first. We’ll work with the hybrid model
M, which is an oracle taking integer pair inputs. Denote the output M(a, b) =
(M1(a, b),M2(a, b)). Further, assume that the prover knows the values of xθ

and x′
θ at every angle θ, and can predict the sequence of angles {θi}2mi=1 that the

verifier selects. (Soundness with a stronger prover holds against a weaker one). In
calculating our upper bound we only consider deterministic M strategies since
the verifier’s strategy is independent and for any fixed protocol input there is a
deterministic strategy for M that maximizes the soundness error.

Case 1: xθi = x′
θi
, occurs with probability β. The prover doesn’t benefit from

cheating. Case 2: xθi �= x′
θi
, the prover’s strategies are to either cheat on the

initializations so that xθi + r1i = x′
θi

+ r2i , or instead to keep r1i = r2i , and
program M to cheat. In the latter case, the prover preselects the ki ≤ N2 pairs
for which M should pass RandomCompute. Setting M(a, b) = (a mod N, b +
xθi − x′

θi
mod N) results in ki = N2.

If γi is the conditional probability that the prover passes RandomCompute on
the ith round given that xθi �= x′

θi
, then Lemma 2 implies the prover succeeds in

round i with probability at most: β+(1−β)
(
1
5γi +

4
5 (1− γi

4 )
)
= β+(1−β)45 =

4+β
5 .

Lemma 2. The prover’s probability of passing RandomTest on the ith round
given that xθi �= x′

θi
is at most 1−γi/4, and the optimal prover strategy achieves

this probability exactly.

Proof. Consider first the case where r1i = r2i = ri. In this case, γi =
ki

N2 , where ki
is the number of pairs (y1i , y

2
i ) in [0, N)×[0, N) for which M1(xθi+r1i +y1i )−y1i =

M2(x
′
θi
+r2i+y2i )−y2i . For each of these ki pairs, let t

1
i = xθi+y1i and t2i = x′

θi
+y2i .

Either M1(t
1
i +ri) �= t1i (mod N) or M2(t

2
i +ri) �= t2i (mod N), and so M would

fail RandomTest if the verifier chooses the pair (t1i , t
2
i ). Thus, there are at least

ki distinct pairs in [0, 2N) × [0, 2N), that cause M to fail RandomTest, and
the prover’s conditional probability of passing RandomTest is at most 1− ki

(2N)2

= 1 − γi

4 . The prover can program M to pass (i.e. behave normally) on all
other 4N2 − ki pairs, so there is a prover strategy that passes RandomTest
with probability exactly 1 − γi

4 . We will show that this strategy is optimal.
Consider the second case where the prover cheats by setting r1i and r2i so that
xθi + r1i = x′

θi
+ r2i . With this strategy, γi = 1, but since r1i �= r2i , the prover

always fails RandomTest, failing the overall round with probability 1/2. This
strategy is suboptimal because the previous strategy passes with probability 3/4
when setting ki = N2 so that γi = 1.
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Abstract. The traditional setting for concurrent zero knowledge consid-
ers a server that proves a statement in zero-knowledge to multiple clients
in multiple concurrent sessions, where the server’s actions in a session
are independent of all other sessions. Persiano and Visconti [ICALP 05]
show how keeping a limited amount of global state across sessions allows
the server to significantly reduce the overall complexity while retaining
the ability to interact concurrently with an unbounded number of clients.
Specifically, they show a protocol that has only slightly super-constant
number of rounds; however the communication complexity in each ses-
sion of their protocol depends on the number of other sessions and has
no a-priori bound. This has the drawback that the client has no way
to know in advance the amount of resources required for completing a
session of the protocol up to the moment where the session is completed.

We show a protocol that does not have this drawback. Specifically, in
our protocol the client obtains a bound on the communication complex-
ity of each session at the start of the session. Additionally the protocol
is constant-rounds. Our protocols is fully concurrent, and assumes only
collision-resistant hash functions. The proof requires considerably differ-
ent techniques than those of Persiano and Visconti. Our main technical
tool is an adaptation of the “committed-simulator” technique of Deng
et. al [FOCS 09].

1 Introduction

Concurrent security of a protocol means that security is preserved even when
many copies of the protocol may be executed concurrently with each other and
with other, potentially unknown protocols. Concurrent security is essential for

� This paper is supported by the NSF EAGER grant, and NSF Algorithmic Foun-
dations grant no. 1218461.

�� Supported by the Check Point Institute for Information Security.
��� Supported by the Simons award for graduate students in theoretical computer

science.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 337–350, 2014.
c© International Association for Cryptologic Research 2014



338 R. Canetti, A. Jain, and O. Paneth

protocols designed for modern networks, such as the Internet. However, it often
imposes a cost on the complexity of the protocol. For example, stand-alone
zero-knowledge protocols can be implemented in a constant number of rounds
based on any one way function, while constant-round concurrent zero-knowledge
protocols are not known without relying on non-standard assumptions or trusted
setup.

Concurrent Zero Knowledge. The concurrent zero knowledge task [8] con-
siders a natural and special case of concurrent security. Here there is a server
that wants to prove theorems in zero-knowledge [9] to multiple clients (verifiers).
For that purpose, the server runs an instance (i.e., a session) of a protocol with
each client. There may be an unbounded (albeit polynomial) number of sessions,
and sessions may execute concurrently with adversarially controlled delay and
ordering of messages. Furthermore, the prover side of each session should exe-
cute without knowledge of any other session. This simplifies the design for the
server and allows the prover side to be executed on separate machines with-
out coordination. Still, for security we only consider two cases: one where all or
some provers are corrupted, and one where all or some of the verifiers are cor-
rupted. While the concurrent zero-knowledge setting is a substantial restriction
of general composition it distills an important aspect of the general challenge
of concurrent security. Indeed, this setting was extensively studied, with special
attention to minimizing the number of rounds [18,13,17,3,12,6,14]. Furthermore,
techniques developed for concurrent zero knowledge have been found useful in
the study of more general concurrent systems (see e.g., [5]).

The state of the art for protocols based on standard assumptions is Ω(log n)
rounds, where n is the security parameter. Furthermore, for protocols with black-
box simulation we know that Ω̃(log n) is the best possible.

Correlated Provers. Persiano and Visconti [16] consider a relaxed variant
of the classic concurrent zero knowledge model, where the server is allowed to
somewhat correlate its strategies in the different sessions. Here one has to make
sure that the correlation is on the one hand effectively implementable by the
server, and on the other hand preserves the overall efficiency and performance
from the point of view of the client. Specifically, they present a zero-knowledge
protocol where the server keeps track of the number of currently open sessions at
any time. It then starts off each session to have a constant number of messages
whose length depends polynomially on the number of currently open sessions. If
the number of sessions increases beyond some threshold before the session is over,
the session has to be “re-done” with longer messages. Overall, it is guaranteed
that if nc sessions are executed concurrently to a session, then the protocols of
[16] requires O(c) rounds and nO(c) communication for that session.

The global state to be kept by the server in this protocol is indeed mini-
mal and reasonable. Additionally, the number of rounds in every session grows
very slowly with the number of sessions, significantly improving the best known
“pure” concurrent zero-knowledge protocols (as long as the total number of ses-
sions is polynomial). However, this protocol has the strong disadvantage that a
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client has no way of knowing, at any point during the protocol execution, how
much communication it will need in order to complete the session.

This Work. We present a new concurrent zero-knowledge protocol where, like
the [16] protocol, the server keeps track of the number of sessions currently open.
Our protocol improves upon the protocol of [16] in two ways:

– Constant rounds. Our protocol takes six messages, regardless of the num-
ber of concurrent sessions.

– Guaranteed complexity. In our protocol, the server announces in the be-
ginning of every session the communication complexity of the session. The
server cannot dynamically increase the communication complexity of a ses-
sion to accommodate new clients that arrive during the session’s execution.

The Importance of Guaranteed Complexity. The advantage of having
guaranteed complexity is best explained by an analogy: Consider a customer
that is placing a call to a call center and is being put on hold. The customer’s
waiting is likely to become more endurable and efficient if the call center com-
mits to (or estimates) the required waiting time at the beginning of the call.
In our setting, the client’s resource is communication rather than waiting time.
Clearly, clients benefit from knowing ahead of time how much communication
is required from them to participate in the protocol. For example, a client with
limited communication resources would prefer to learn ahead of time that its re-
sources are insufficient to complete the protocol, rather than during the session
after all its resources have already been spent.

The Protocol of [16]. The protocol of [16] is based on the bounded concurrent
protocol of Barak [1]. Barak’s protocol is secure as long the number of concur-
rent sessions does not exceed some bound that depends on the communication
complexity of the protocol. Very roughly, Persiano and Visconti show that it is
possible to add rounds to the protocol and increase its communication “on-the-
fly” as new occurrent sessions start. However, as a result, the round complexity
of their protocol must depend on the number of sessions, and the server cannot
guarantee the complexity of any session ahead of time.

It may seem that bounded concurrency is of no use for designing protocols with
guaranteed complexity. Indeed, when the server commits the communication
complexity of, say, the first session, it has no bound on the number of sessions
that will be started concurrently to the first session.

Our Protocol. Counter to the above intuition, our protocol does leverage
bounded concurrency techniques of Barak. However, our approach departs from
[16] in the following manner: we set the communication complexity of every ses-
sion only based on the order in which the sessions start. The first n sessions to
start execute a bounded concurrent protocol that is secure for n concurrent ses-
sion. The following n2−n sessions execute a bounded concurrent protocol that is
secure for n2 session, and so on. Importantly, the communication complexity of
a session is not affected by sessions that start after it. This in particular means
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that the [1,16] simulation technique is inadequate in our setting. Indeed, our
security proof differs significantly from that in [1,16].

1.1 Our Techniques

We start by recalling Barak’s zero-knowledge protocol and its simulation. Barak’s
protocol starts with a preamble phase where the prover sends a commitment
c and the verifier responds with a random challenge r. Any prover that can
commit to a program that predicts r can obtain a “trapdoor” and cheat in the
proof phase. The zero-knowledge simulator will be able to obtain a trapdoor by
committing to the code of the verifier itself. Next we discuss two approaches for
extending Barak’s protocol to the concurrent setting.

Bounded Concurrency. In the concurrent setting, the simulator cannot simply
commit to the code of the verifier. Indeed, the verifier’s code eventually predicts
r, but might only do so after receiving convincing proofs in other sessions. Fur-
thermore, when the simulator sends the commitment c in some session, it did not
yet compute the proofs in upcoming sessions (in fact, these proofs might depend
on c); therefore it cannot commit to such proof together with the verifier’s code.

The approach in [1] is to change the protocol as follows: to obtain a trapdoor,
the simulator must commit to a program that predicts r given some auxiliary
information z (that may be chosen after r is sent). To maintain soundness, z
must be much shorter then r. The simulator can now encode the simulated
proofs in a bounded number of other sessions into z. This results in a bounded
concurrent protocol. As argued above, this technique, on its own, is inadequate
for our setting.

Committed Simulator. A different approach, that we will refer to as the
“committed simulator” approach, is as follows: even if the number of concurrent
sessions is unbounded, the simulated proofs in all these sessions still have a short
description, which is the code of the simulator itself. Concretely, in every session,
the simulator will commit to a version of itself that simulates the interaction with
the verifier in all other sessions until the verifier sends the challenge r in that
session.

The problem with this approach is bounding the running time of the simula-
tor. If the simulator commits to itself in the preamble phase, then in the proof
phase the simulator will prove a statement on its own execution. This execution
might contain the proof phase of in some other sessions where the simulator also
proved a statement on its own execution. For some adversarial schedules, such
recursive construction of proof becomes too expensive. Nonetheless, variants of
the committed simulator approach were successfully applied in many different
settings [7,4,11,15,10,6].

Our Approach. Our simulation combines these two approaches to obtain a pro-
tocol with constant rounds and guaranteed complexity, assuming only collision
resistant hashing. In a nutshell, we leverage the bounded concurrent simulation
technique to “flatten” the recursion tree, avoiding the blowup in the simulator’s
running time. A more detailed description follows.
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We start by assigning a level to each session. All sessions that execute a
bounded concurrent protocol for ni sessions, are assigned level i. Our protocol
is defined such that for every i, the total number of sessions at all levels ≤ i is
at most ni. It follows that in every session at level i, the verifier’s challenge is
long enough to account for all the messages received by the verifier in sessions
at levels at most i.

To deal with the messages sent in sessions at levels larger than i, we turn
to the committed simulator approach. The main idea is that we can avoid the
exponential blowup in the running time of the simulator by committing only to
specific parts of the simulator that are in charge of simulating the sessions at
levels larger than i rather than the entire code of the simulator.

The Simulator. The simulator Sim is divided into multiple components {Simi}
where the i’th component Simi is in charge of simulating sessions at level i. To
simulate a session at level i, Simi will commit to a program Πi that contains
the verifier’s code together with the code of all the simulator’s components Simj

for j > i. We can think of the program Πi as a new verifier that simulates all
sessions at levels > i internally and forwards externally the messages in sessions
at level ≤ i. Since sessions at level i execute a bounded concurrent protocol for
ni sessions, and the total number of sessions at levels < i is at most ni, we have
that Simi can encode all the messages sent to Πi as auxiliary input.

Finally, we argue that the running time of the simulator is polynomial. Using
the analysis of the bounded concurrent protocol, we have that the running time
of the component Simi is polynomial in the running time of the program Πi.
Since Πi simply emulates all the simulator components Simj for j > i, we have
that the running time of Simi is only polynomially larger than the total running
time of all the components Simj for j > i. Since the total number of concurrent
sessions started by an efficient adversary is bounded by some polynomial nc, we
get that the total number of levels is constant and therefore the running time of
all the simulator’s components is bounded by a polynomial.

Avoiding Circular Use of Randomness. We note that by using the above
leveled simulation strategy we do not only avoid the blowup in the simulator’s
running time, but also avoid some of the technical complications that arise when
the simulator commits to its own code. For example, in [4,10,6], the simulator
needs to commit to its own code together with the randomness that it will use to
simulate the rest of the protocol. The aforementioned works develop additional
techniques to deal with this problem. In our setting, since every component only
commits to the randomness used by the higher level component, such circular
use of randomness is avoided, resulting in simpler protocol and analysis.

Taking Advantage of Terminating Sessions. It is natural to require that,
as existing sessions terminate and the load on the server decreases, the complex-
ity of the protocol in new sessions decreases as well. We note that extending
our simulation strategy to satisfy this requirement is not straight-forward. The
problem is that our simulation strategy assumes that for every session at level i,
the total number of concurrent sessions at levels ≤ i is bounded by ni. However,
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consider the scheduling where all sessions at levels ≤ i terminate and a new ses-
sion starts. If we choose to decrease the protocol complexity in the new session,
then the total number of sessions at levels ≤ i may exceed ni. We demonstrate a
slightly more complicated server strategy where the complexity of new sessions
does decrease as old sessions terminate (while preserving overall simulatability).

1.2 Related Work

Concurrent Zero-Knowledge in the Plain Model. Improving the round-
complexity of concurrent zero-knowledge proofs in the plain model has been
an active area of research. The round complexity of concurrent zero-knowledge
with black-box simulation was studied in [18,13,17], resulting in protocols with
logarithmic round-complexity (which is essentially optimal [3]). Constant-round
protocols with non-black-box simulation where constructed based on different
non-standard assumption such as interactive knowledge assumptions [12], sta-
tistically sound P-certificates [6] and differing input (or extractable) obfuscation
[14].

Optimistic Concurrent Zero-Knowledge. The work of Rosen and Shelat
[19] also studies the round complexity of concurrent zero-knowledge proofs with
a correlated prover in the client-server setting. Their focus is on improving the
round complexity of concurrent zero-knowledge with respect to “optimistic” ad-
versarial schedules. That is, the round complexity of their protocol significantly
decreases when the scheduling of messages does not include too many nested
sessions. However, for a worst-case adversarial schedules, [19] give no improve-
ment over logarithmic round-complexity of [17] while our protocol has constant
rounds in the worst cast. However, unlike in our protocol, the communication
complexity in [19] has a fixed upper bound that is independent of the adversary.

2 The Guaranteed Complexity Model

In this section we formally define a protocol in the guaranteed complexity model.
We start by describing the general syntax and the model of communication. We
then consider the specific case of zero-knowledge proof systems in the guaranteed
complexity model and present a security definition for the same.

Let Server be interactive PPT machine that interacts with multiple clients in
concurrent sessions and let {〈S�, C�〉}�∈N

be a family of protocols parameterized
by a load parameter � where for every � ∈ N, S� and C� are PPT machines.
A protocol in the guaranteed complexity model is defined by the tuple Π =
(Server, {〈S�, C�〉}).
(Honest) Protocol Execution. The execution of a protocol Π = (Server,
{〈S�, C�〉}) consists of a single server executing the algorithm Server while inter-
acting with multiple clients concurrently. To initiate a new session a client sends
a special session initiation message to the server. In response to the session ini-
tiation message, the server chooses a load parameter � for the session and sends
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it to the client. In the rest of the session we require that the algorithm Server
follows the strategy S� while the client follows the strategy C�.

An execution of the protocolΠ with p(n) sessions is defined by the randomness
of all the clients and the schedule of messages across all the sessions. Even
though for every fixed load parameter �, the strategies S�, C� are efficient, the
server algorithm may choose � to be very large, increasing the running time
of the concurrent execution. Therefore we explicitly require the efficiency of a
concurrent execution.

Definition 1. A protocol (Server, {〈S�, C�〉}) in the guaranteed complexity model
is efficient if for every polynomial p there exists another polynomial q such that
the running time of Server in every execution with p(n) sessions is bounded by
q(n).

Zero Knowledge in the Guaranteed Complexity Model. Let Π = (Server,
{〈S�, C�〉}) be a protocol in the guaranteed complexity model and let L be an
NP language with witness relation RL. We say that Π is an interactive proof
system for L if for every � ∈ N, the protocol 〈S�, C�〉 is an interactive proof for
L. Next we define the zero-knowledge property.

Let Π be an interactive proof for language L in the guaranteed complexity
model. Let n be the security parameter. Consider a concurrent adversary V ∗

that start m(n) concurrent session with the server for some polynomial m. Let
x ∈ Lm be the vector of instances used in the different session and let w be a
vector of the corresponding witnesses used by the server. We allow V ∗ to control
the scheduling of the messages across all the sessions. Let ViewV ∗(x,w, z) be
the random variable describing the output of V ∗ in the above experiment when
executed with auxiliary input z.

Definition 2 (Concurrent Zero-Knowledge in the Guaranteed Com-
plexity Model). Let Π = (Server, {〈S�, C�〉}) be an interactive proof system for
language L in the guaranteed complexity model. We say that Π is zero knowl-
edge if for every polynomial m, and for every PPT concurrent adversary V ∗

starting m(n) sessions there exists a PPT algorithm S, such that for every in-
stances vector x ∈ Lm(n), every witnesses vector w such that (xi, wi) ∈ RL
for all i ∈ [m(n)], and for every auxiliary input z ∈ {0, 1}poly(n) the following
ensembles are computationally indistinguishable,

{ViewV ∗(x,w, z)}n∈N
≈c {S(x, z)}n∈N

.

3 Constant-Round Zero-Knowledge in the Guaranteed
Complexity Model

In this section we describe a constant-round ZK protocolΠzk=(Server, {〈P�, V�〉})
in the guaranteed complexity model. We start by defining a family of protocols
{〈P�, V�〉}�∈N

where, roughly speaking, the protocol 〈P�, V�〉 is simply Barak’s

bounded-concurrent ZK protocol [1] with n� as the a priori bound on the number



344 R. Canetti, A. Jain, and O. Paneth

of sessions. We then define the server algorithm Server to complete the descrip-
tion of Πzk.

The Protocol 〈P�, V�〉. The protocol will make use of the following prim-
itives: a statistically binding commitment Com, a family H = {Hn}n∈N

of
collision-resistant hash functions such that h ∈ Hn maps strings in {0, 1}∗ to
strings in {0, 1}n, and a witness-indistinguishable universal argument UA for
an NTIME(T (n))-complete language where T : N → N is a “slightly” super-
polynomial function, for example T (n) = nlog logn [2]. In the description of the
protocol, the length of the verifier’s messages will depend on a parameter m that
denotes the total length of the prover’s messages in the protocol.

Common Input: x ∈ L.
Auxiliary Input to P : A witness w for x ∈ L.

Initiation Stage:
V� samples h ← Hn and sends h to P�.

Preamble Stage:
1. P� sends c = Com(h(0n)) to V�.

2. V� samples r ← {0, 1}n�·m+n and sends r to P�.
Proof Stage:
P� and V� execute the protocol UA where P� proves that x ∈ L∨(h, c, r) ∈ LU .

The language LU is defines as follows: (h, c, r) ∈ LU iff there exist a program
Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗, and randomness s for Com such that:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) outputs r within T (n) steps.

Fig. 1. Protocol Family 〈P�, V�〉 for ZK in the Guaranteed Complexity Model (Proto-
col 1)

Remark 1. The relation LU presented in Protocol 1 is slightly oversimplified. For
this relation, we can prove the security of Protocol 1 when H is collision-resistant
against “slightly” super-polynomial sized circuits. For simplicity of exposition,
in this manuscript, we will work with this assumption. We stress, however, that
as discussed in several prior works (see e.g., [2]), this assumption can be removed
by using an appropriate error-correcting code.

The Server Algorithm Server. We start by describing a simple server algo-
rithm that only assigns monotonically increasing values of the load parameter to
new sessions. In Section 3.2, we describe a better server algorithm that decreases
the load parameter when some of the concurrent sessions terminate.
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The algorithm Server maintains a variable SessionCount that counts the num-
ber of concurrent sessions started so far. Whenever a client initiates a new ses-
sion, Server increases the value of SessionCount. When a new clients sends a
session initiation message to the server, Server sets the load parameter � for that
session such that n�−1 ≤ SessionCount ≤ n�.

In the next section we prove the following theorem:

Theorem 1. Assuming h is a hash function ensemble that is collision-resistent
against circuits of size nlogn, Com is a statistically binding commitment, and
UA is a witness-indistinguishable universal argument for NTIME(nlog log n), the
protocol Πzk = (Server, {〈P�, V�〉}) is concurrent zero-knowledge in the guaranteed
complexity model.

3.1 Proof of Theorem 1

The proof that for every � ∈ N, the protocol 〈P�, V�〉 is complete and sound,
follows directly from the analysis of the bounded-concurrent ZK protocol in [1].
In this section we first show that for every � ∈ N, Protocol 1 is efficient according
to Definition 1. We then show that Πzk is ZK in the guaranteed complexity
model.

Protocol 1 Is Efficient. Let p be a polynomial and let �max be such that for
large enough values of n, p(n) < n�max . By the definition of the server algorithm
Server, in an execution with p(n) sessions, the load parameter of every session
is at most �max. Since the running time of P� only grows with �, we have that
the running time of Server in every session is at most the running time of P�max

and therefore the total running time of Server is bounded by a polynomial that
depends only on p.

Protocol Πzk Is ZK in the Guaranteed Complexity Model. Let V ∗ be
a malicious verifier that starts at most n�max sessions for some constant �max.
By the definition of the server algorithm Server, the load parameter of every
session in an honest execution is at most �max. We construct a simulator Sim =
(Simload, {Sim�}) consisting of Simload and �max other components {Sim�}�∈[�max].
Roughly speaking, the component Simload simulates the servers responses to the
clients session initiation message in all sessions. The component Sim� simulates
all the executions of 〈P�, V�〉 in sessions with load parameter �. We now give
more details.

The Component Simload. This component simulates the server’s responses to
the clients session initiation message in all sessions. This simulation involves
assigning a load parameter for every session started by V ∗. Since the honest
server Server selects the load parameter in each session based only on the (pub-
lic) adversarial scheduling, Simload can use the exact same algorithm as Server,
resulting in a perfect simulation of these messages.

The Component Sim�. This component simulates the interaction of 〈P�, V�〉
in all the sessions with load parameter �. At a high-level, the simulation will
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follow the simulation strategy of Barak’s bounded-concurrent ZK protocol [1].
According to this strategy, the simulator sends a commitment c to the code of
the verifier and then uses this code as a trapdoor witness, proving that c is
commitment to a code Π that outputs the random string r sent by the verifier.
All the messages simulated in concurrent sessions are given to Π as auxiliary
input. The main problem is that in order to guarantee that the protocol is sound,
the program Π is only allowed to get an auxiliary input of bounded length;
however, the number of concurrent sessions in our setting are not bounded.

We fix this problem in the following manner. Instead of simply committing to
the code of V ∗, Sim� will commit to a program V ∗

� that includes the code of V ∗

as well as the code of the simulation components Simload and Sim�+1, . . . , Sim�max .
Roughly speaking, the program V ∗

� will simulate all the sessions with load pa-
rameter �′ > � internally, and therefore Sim� will need to provide as auxiliary
input only the messages of concurrent sessions where the load parameter is at
most �. It follows from the description of Server that the number of concurrent
sessions where the load parameter is at most � is bounded by some polynomial
(that depends on �). Therefore, it is possible to include all of these messages as
an auxiliary input to V ∗

� .
Next we formally describe the simulator component Sim�, starting with the

definition of the program V ∗
� .

The Program V ∗
� . V

∗
� is an interactive algorithm that includes the code of V ∗ to-

gether with the code of the simulation components Simload and Sim�+1, . . . , Sim�max .
V ∗
� uses the same randomness as Sim to execute V ∗ and all the other simulation

components. V ∗
� will emulate the execution of V ∗, and will use the mentioned sim-

ulator components to internally simulate the responses to the session initiation
messages in all sessions as well the prover messages of the protocols 〈P�′ , V�′〉 exe-
cuted in the sessions with load parameter �′ > �. In the sessions with load param-
eter �′ ≤ �, V ∗

� will forward the messages of the protocol 〈P�′ , V�′〉 externally.
In every session with load parameter �, Sim� will simulate the execution of

〈P�, V�〉 as follows:

1. Sim� receives the description of a hash function h from V ∗.
2. Sim� sends a commitment c to the hash of the code of a program Π that

given auxiliary input y = (m1, . . . ,mt), emulates an execution of V ∗
� when

receiving the messages m1, . . . ,mt, and outputs V ∗
� ’s next message.

3. Sim� receives the the random string r from V ∗.
4. Sim� sends a UA proof using a trapdoor witness that contains the code of

the program Π and an appropriate auxiliary input string y. The string y is
a list of all the prover messages that were simulated by Sim in all sessions
with load parameter at most � and sent before V ∗ sent the random string r
in the present session.

This completes the description of the simulator. Next, we turn to its analysis.
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Analysis of Sim. We start by showing that Sim� constructs a valid witness for
the statement (h, c, r) ∈ LU . This amounts to proving that Π(y) outputs r and
that |y| ≤ |r| − n. We also need to show that the running time of Π(y) is at
most T (n). We will show that the last statement is correct when we analyze the
running time of the simulation. Finally, we will prove the indistinguishability of
the adversary’s view in the real and ideal world.

Proof That Π(y) Outputs r. The program Π(y) outputs the next message of
V ∗
� given the external messages in y. V ∗

� emulates V ∗ using the same randomness
as Sim. It is left to show that the messages sent to V ∗ emulated by V ∗

� and by
Sim are identical. Recall that the messages sent to V ∗ in the execution emulated
by V ∗

� are as follows: in sessions with load parameter larger than �, the mes-
sages are generated by the internal simulation of V ∗

� , and the messages sent in
sessions with load parameter at most � are specified in y. For sessions with load
parameter larger than �, the messages sent to V ∗ in the emulation of V ∗

� and of
Sim are identical since they are generated using the same simulation algorithm
and using the same randomness (by the construction of V ∗

� ). For sessions with
load parameter at most �, the messages sent to V ∗ in the emulation of V ∗

� and
of Sim are identical by the way the auxiliary input string y is constructed.

Proof That |y| ≤ |r| − n. The auxiliary input string y constructed by Sim�

contains only prover messages in sessions with load parameter at most �. By the
definition of the server algorithm Server there could be at most n� such sessions,
and the total length of all the prover messages in every session is bounded by the

parameter m. Therefore we have |y| ≤ n� ·m. Since V� samples r ∈ {0, 1}n�·m+n

we have that |y| ≤ |r| − n.

Proof That the Simulation Is Polynomial Time. It is enough to show
that all components of Sim are polynomial time. Since Simload just follows the
honest server algorithm, the efficiency of Simload follows from the efficiency of the
protocol. For every � ∈ [�max] we show that the running time of Sim� is bounded
by a polynomial in the security parameter (that depends on � and on V ∗). Since
Sim� constructs the program V ∗

� , commits to its code, and provides a UA proof
of its execution, the running time of Sim� is polynomial in the size and running
time of V ∗

� . Additionally, since Sim� reads the entire transcript of the execution
and uses it to construct the auxiliary input y in every session it simulates, the
running time of Sim� is polynomial in the total length of the transcript. Note
that the total length of the transcript is always bounded by the running time of
V ∗ which is polynomial in the security parameter.

We start by bounding the running time of Sim�max . The program V ∗
�max

only
consists of the code of V ∗ and the code of Simload and therefore, the running
time of V ∗

�max
is a polynomial. It follows that the running time of Sim�max is also a

polynomial. Now, for every � ∈ [�max], the program V ∗
� only consists of the code

of V ∗, the code of Simload, and the code of Sim�′ for every � ≤ �′ < �max. Since �max

is a constant depending only on V ∗, and assuming that for all � ≤ �′ < �max the
running time of every Sim�′ is polynomial, the running time of V ∗

� and therefore
also of Sim� must be polynomial. By induction we have that for every � ∈ [�max]
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the running time of Sim� is bounded by a polynomial, and therefore the entire
simulation is polynomial time.

Using the above proof, we complete the proof that Sim� constructs a valid
trapdoor witness. Sim� constructs a program Π and auxiliary input y, and we
need to show that the running time ofΠ(y) is bounded by some super-polynomial
function T (n). The running time analysis above implies that for every � ∈ [�max],
the running time of V ∗

� and the size of the auxiliary input y constructed by Sim�

are polynomial. The simulator component Sim� constructs a program Π that
simulates V ∗

� sending it messages from y. It follows that the running time of
Π(y) is polynomial and therefore bounded by T (n).

Proof That the Simulated View and the Real View Are Indistinguish-
able. For 0 ≤ � ≤ �max, let Hi be the hybrid experiment that is identical to the
execution of Sim except that every session executing the the protocol 〈P�′ , V�′〉
for �′ ≤ � follow the honest prover strategy using the valid witness wj for the
statement xj ∈ L in that session. of that session. Since Simload simulates the
responses to the sessions initiation messages perfectly we have that:

H�max = ViewV ∗(x,w, z), H0 = S(x, z) .

It is therefore sufficient to prove that for every 0 ≤ � < �max, H� ≈c H�+1. By
the definition of the server algorithm Server, the number of sessions with load
parameter � is at most n�. For 0 ≤ i ≤ n�, let H�,i be the hybrid experiment
that is identical to H� except that the first i sessions executing of the protocol
〈P�, V�〉 follow the honest prover strategy using a the valid witness wj for the
statement xj ∈ L in that session. It follows that:

H�,n� = H�+1, H�,0 = H� .

It is therefore sufficient to prove that for every 0 ≤ i < n�, H�,i ≈c H�,i+1.
Let H ′

�,i be the hybrid experiment that is identical to the H�,i except that the
execution of the witness-indistinguishable universal argument UA in the proof
stage of the ith execution of the protocol 〈P�, V�〉 uses a valid witness wj for
the session’s statement xj ∈ L instead of the trapdoor witness. Note that in
an execution of Sim, the randomness of the component Sim� used for the UA
prover executed in the proof stage of the protocol 〈P�, V�〉 is also used by the
components Sim�′ for �

′ < � in the construction of the program V ∗
�′ . However, in

the experiment H�,i, all the simulator components Sim�′ for �
′ < � are replaced

by executions of the honest prover. Since the randomness of the component Sim�

used for the simulation of the UA prover in the protocol 〈P�, V�〉 is not used in
any other part of the simulation, it follows from the indistinguishability property
of UA that H�,i ≈c H

′
�,i.

Note that the experiment H�,i+1 is identical to the experiment H ′
�,i except

that in the experiment H�,i+1, the prover commitment c given in the preamble
stage of the i’th execution of the protocol 〈P�, V�〉 is a commitment to the all
zero string, following the honest prover strategy. As before, the randomness of
the component Sim� used for the simulation of c sent in the protocol 〈P�, V�〉 is
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not used in any other part of the simulation and therefore it follows from the
computational-hiding property of Com that H�,i+1 ≈c H

′
�,i.

Overall we have that for every 0 ≤ � ≤ �max, 0 ≤ i ≤ n�, H�,i ≈c H�,i+1. Since
� ≤ �max is a constant, n� is a polynomial and therefore we have that for every
0 ≤ � ≤ �max, H�+1 ≈c H� and also that H�max ≈c H0 as required.

3.2 Decreasing the Load Parameter

In this section, we describe a different server algorithm that takes into account
the termination of sessions and decreases the load parameter for new sessions
accordingly. We start by describing the new server algorithm Server′, and then
describe the required changes to the simulation.

We identify the technical condition required for the simulation to work, and
design a server algorithm Server′ that always gives new sessions the lowest pos-
sible load parameter such that the technical condition still satisfies. The validity
of our simulation relies on the validity of the following technical condition: for
a session with load parameter �i, the number of sessions concurrent to it with
load parameters at most �i is bounded by ni. Before describing the algorithm
Server′ let us first introduce some notation. Let t be the number of open sessions
at the moment a new client sends its session initiation message. For i ∈ [t], let
�i be the load parameter for the i’th open session. For i ∈ [t], let ti be the total
number of sessions with load parameters at most i that are concurrent to session
i. First note that if we set the load parameter of the new session to � then for
every session i such that �i ≥ �, the value ti increases by 1. This will contradict
the technical condition only if the value of ti was already at its maximal allowed
value n�i .

Using the above notation, the algorithm Server′ is easy to describe: Server′

will set the load parameter of a new session to be the minimal value � such that
for every session i with �i ≥ � we have ti < n�i . While the behavior of the server
algorithm Server′ is not obvious, we can prove that it satisfies some natural
conditions. For example we can show that if no sessions with load parameter
� are currently active, then the load parameter assigned to the next session to
start cannot exceed �.

Modifying the Simulator. Next we discuss the necessary changes to the sim-
ulator. In the current description of the simulator, every program V ∗

� that Sim
commits to, internally emulates V ∗ starting from its initial state. As a result,
we must give V ∗

� auxiliary input z that consists of the messages in all concur-
rent sessions with load parameter at most � starting from the beginning of the
concurrent execution. The problem is that the definition of the server algorithm
Server′ does not guarantee that such auxiliary input z is sufficiently short. In-
stead it only gives a bound on the number sessions with load parameter at most �
that are executed concurrently to the current session. In particular, Server′ does
not guarantee anything about the number of sessions that terminated before
the current session had started. The solution is based on the observation that
providing V ∗

� auxiliary input z that contains messages sent before the current
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session had started is wasteful. Instead, Sim can commit the a program Ṽ ∗
� that

already contains these messages hardwired into it.
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Abstract. We present a round-efficient black-box construction of a gen-
eral MPC protocol that satisfies composability in the plain model. The
security of our protocol is proven in angel-based UC framework un-
der the minimal assumption of the existence of semi-honest oblivious
transfer protocols. When the round complexity of the underlying obliv-
ious transfer protocol is rot(n), the round complexity of our protocol is

max(Õ(log2 n), O(rot(n))). Since constant-round semi-honest oblivious
transfer protocols can be constructed under standard assumptions (such
as the existence of enhanced trapdoor permutations), our result gives

Õ(log2 n)-round protocol under these assumptions. Previously, only an
O(max(nε, rot(n)))-round protocol was shown, where ε > 0 is an arbi-
trary constant.

We obtain our MPC protocol by constructing a Õ(log2 n)-round CCA-
secure commitment scheme in a black-box way under the assumption of
the existence of one-way functions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful
parties to compute a functionality without compromising the correctness of the
outputs and the privacy of their inputs. In the seminal work of Goldreich et
al. [11], a general MPC protocol was constructed in a model with malicious
adversaries and a dishonest majority.1 (By “a general MPC protocol,” we mean
a protocol that can be used to securely compute any functionality.)

In this paper, we consider a black-box construction of a general MPC protocol
that guarantees composable security. Before stating our result, we explain black-
box constructions and composable security.

Black-Box Constructions. A construction of a protocol is black-box if it uses
the underlying cryptographic primitives only in a black-box way (that is, only
through their input/output interfaces). In contrast, if a construction uses the
codes of the underlying primitives, it is non-black-box.

As argued in [17], constructing black-box constructions is important for both
theoretical and practical reasons. Theoretically, it is important because under-
standing whether non-black-box use of cryptographic primitives is necessary for a

1 In the following, we consider only such a model.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 351–368, 2014.
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cryptographic task is of great interest. Practically, it is important because black-
box constructions are typically more efficient than non-black-box ones in terms
of both communication complexity and computational complexity. In fact, since
known non-black-box constructions of general MPC protocols compute general
NP reductions to execute zero-knowledge proofs (this is where the codes of the
primitives are used), they are highly inefficient and hard to implement. Thus,
constructing black-box constructions of general MPC protocols is an important
step toward practical general MPC protocols.

Recently, a series of works studied black-box constructions of general MPC
protocols. Ishai et al. [17] showed the first construction of a general MPC pro-
tocol that uses the underlying low-level primitives (such as enhanced trapdoor
permutations and homomorphic public-key encryption schemes) in a black-box
way. Combined with the subsequent work of Haitner [15], which showed a black-
box construction of a (malicious) oblivious transfer protocol based on a semi-
honest oblivious transfer protocol, their work gives a black-box construction of
a general MPC protocol based on a semi-honest oblivious transfer protocol [16].
Subsequently, Wee [30] reduced the round complexity of [17] to O(log∗ n), and
Goyal [12] further reduced the round complexity to O(1).

These black-box protocols are proven to be secure in the stand-alone set-
ting. That is, the protocols of [17,30,12] are secure in the setting where a single
instance of the protocol is executed at a time.

Composable Security. Compared with the stand-alone setting, the concurrent
setting is more general and realistic. In the concurrent setting, many instances
of many different protocols are concurrently executed in an arbitrary schedule.
Thus, in the concurrent setting, adversaries can perform a coordinated attack
in which they choose messages in each instance based on the executions of the
other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [2]
proposed universally composable (UC) security. The main advantage of UC secu-
rity is composability, which guarantees that when we compose many UC-secure
protocols, we can prove the security of the resultant protocol from the security
of its components. Thus, UC security enables us to construct secure protocols
in a modular way. Composability also guarantees that a protocol remains secure
even when it is concurrently executed with any other protocols in any schedule.
Thus, UC-secure protocols are secure in the concurrent setting. Canetti et al. [6]
constructed a UC-secure general MPC protocol in the common reference string
(CRS) model (i.e., in a model in which all parties are given a common public
string that is chosen by a trusted third party). Black-box constructions of UC-
secure general MPC protocols were shown in the FOT-hybrid model [18] and
in the FCOM-hybrid model [8] (i.e., in a model with the ideal oblivious transfer
functionality and in a model with the ideal commitment functionality).

UC security, however, turned out to be too strong to achieve in the plain
model. That is, even with non-black-box use of cryptographic primitives, we
cannot construct UC-secure general MPC protocols in a model with no trusted
setup [3,4].
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To achieve composable security in the plain model, Prabhakaran and Sahai
[29] proposed a variant of UC security called angel-based UC security. Roughly
speaking, angel-based UC security is the same as UC security except that the ad-
versary and the simulator have access to an additional entity—the angel—that
allows some judicious use of super-polynomial-time resources. Although angel-
basedUC security is weaker than UC security, angel-basedUC security guarantees
meaningful security in many cases. (For example, angel-based UC security implies
super-polynomial-time simulation (SPS) security [26,1,10,27]. In SPS security, we
allow the simulator to run in super-polynomial time; thus SPS security guarantees
that whatever an adversary can do in the real world can also be done in the ideal
world in super-polynomial time.) Furthermore, it was proven that, like UC secu-
rity, angel-based UC security guarantees composability. Prabhakaran and Sahai
[29] presented a general MPC protocol that satisfies angel-based UC security in
the plain model based on new assumptions. Subsequently, Malkin et al. [24] con-
structed another general MPC protocol that satisfies angel-based UC security in
the plain model based on a new number-theoretic assumption.

Recently, several works constructed general MPC protocols with angel-based
UC security under standard assumptions. Canetti et al. [5] constructed a
polynomial-round general MPC protocol in angel-based UC security assuming
the existence of enhanced trapdoor permutations. Subsequently, Lin [20] and

Goyal et al. [14] reduced the round complexity to Õ(log n) under the same as-
sumption. They also showed that with enhanced trapdoor permutations that are
secure against quasi-polynomial-time adversaries, the round complexity of their
protocols can be reduced to O(1).

The construction of these MPC protocols are, however, non-black-box. That
is, in the protocols of [5,20,14], the underlying primitives are used in a non-black-
box way.

Black-Box Constructions of Composable Protocols. Lin and Pass [22]
showed the first black-box construction of a general MPC protocol that guar-
antees composable security in the plain model. The security of their protocol
is proven under angel-based UC security and based on the minimal assumption
of the existence of semi-honest oblivious transfer (OT) protocols. The round
complexity of their protocol is O(max(nε, rot(n))), where ε > 0 is an arbitrary
constant and rot(n) is the round complexity of the underlying semi-honest OT
protocols. Thus, with enhanced trapdoor permutations (from which we can con-
struct constant-round semi-honest OT protocols), their result gives an O(nε)-
round protocol. Subsequently, Kiyoshima et al. [19] constructed a constant-round
protocol from constant-round semi-honest OT protocols that are secure against
quasi-polynomial-time adversaries and one-way functions that are secure against
subexponential-time adversaries.

Summarizing the state-of-the-art, for composable protocols in the plain model,
we have

– logarithmic-round non-black-box constructions under a standard polynomial-
time hardness assumption [20,14],
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– a polynomial-round black-box construction under a standard polynomial-
time hardness assumption [22], and

– constant-round black-box or non-black-box constructions under standard
super-polynomial-time hardness assumptions [20,14,19].

Thus, for composable protocols based on standard polynomial-time hardness
assumptions, there exists a gap between the round complexity of the non-black-
box protocols (logarithmic rounds [20,14]) and that of the black-box protocols
(polynomial rounds [22]). The following is therefore an important open question.

Does there exist a round-efficient black-box construction of a general
MPC protocol that guarantees composability in the plain model under
polynomial-time hardness assumptions?

1.1 Our Result

In this paper, we greatly narrow the gap between the round complexity of black-
box composable general MPC protocols and the round complexity of non-black-
box ones.

Main Theorem (Informal). Assume the existence of rot(n)-round semi-honest

oblivious transfer protocols. Then, there exists amax(Õ(log2 n), O(rot(n)))-round
black-box construction of a general MPC protocol satisfying angel-based UC secu-
rity in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have
a constant-round semi-honest OT protocol. Thus, under this assumption, our
main theorem gives a Õ(log2 n)-round protocol.

We prove our main theorem by constructing a Õ(log2 n)-round black-box
construction of a CCA-secure commitment scheme [5,20,22,14,19] from one-way
functions.

Theorem (Informal). Assume the existence of one-way functions. Then, there

exists a Õ(log2 n)-round black-box construction of a CCA-secure commitment
scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commit-
ment scheme (i.e., a commitment scheme that takes an n-bit string—a tag—as
an additional input) such that the hiding property holds even against adver-
saries that interact with the committed-value oracle during the interaction with
the challenger. The committed-value oracle interacts with the adversary as an
honest receiver in many concurrent sessions of the commit phase. At the end of
each session, if the commitment of this session is invalid or has multiple commit-
ted values, the oracle returns ⊥ to the adversary. Otherwise, the oracle returns
the unique committed value to the adversary.

Lin and Pass [22] showed that in angel-based UC security, an O(max(rcca(n),
rot(n)))-round general MPC protocol can be obtained in a black-box way from a
rcca(n)-round CCA-secure commitment scheme and a rot(n)-round semi-honest
OT protocol. Thus, we can prove our main theorem by combining the above
theorem with the result of [22].
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1.2 Outline

In Section 2, we give an overview of our CCA secure commitment scheme. Due
to lack of space, we defer formal proofs to the full version.

2 Overview of Our CCA-Secure Commitment Scheme

Key elements for obtaining CCA-secure commitment schemes are concurrent
extractability and non-malleability. With these elements, we can show that
the committed-value oracle is useless for breaking the hiding property. Non-
malleability is used to show that the sessions between the adversary and the
oracle are independent of the session between the adversary and the challenger.
Then, concurrent extractability is used to show that the committed-value oracle
can be emulated in polynomial time by extracting the committed values from
the adversary.

Before constructing our CCA-secure commitment scheme, we first construct
two building blocks: (i) a commitment scheme CECom′ that is concurrently ex-
tractable without over-extraction and (ii) a one-one CCA-secure commitment
scheme CCACom1:1. The former guarantees concurrent extractability and the
latter guarantees (slightly strong) non-malleability.

2.1 Building Block 1: Concurrently Extractable Commitment
Scheme without Over-Extraction

A commitment scheme is concurrently extractable if a rewinding extractor can
extract the committed values from any committer even in the concurrent setting,
and a concurrently extractable commitment scheme is concurrently extractable
without over-extraction if the extractor outputs ⊥ whenever the commitment
is invalid.2 (Basic extractability, in contrast, allows the extractor to output an
arbitrary value when the commitment is invalid.) There exists a commitment
scheme CECom that is concurrently extractable with over-extraction based on
the existence of one-way functions [25].

To construct a commitment scheme that is concurrently extractable without
over-extraction, we start from the following scheme (in which the cut-and-choose
technique is used in the same way as in the previous works of black-box protocols
[7,8,30,22,19]).

1. Let v be the value to be committed. Then, the committer computes an
(n+ 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v and
commits to each sj in parallel by using CECom.

2. Then, the receiver sends a random subset Γ ⊂ [10n] of size n.
3. The committer reveals sj for every j ∈ Γ and decommits the corresponding

commitments.

2 A commitment is valid if there exists a valid decommitment of this commitment;
otherwise, it is invalid. A commitment is accepted if the receiver does not abort in
the commit phase; otherwise, it is rejected.
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4. The receiver accepts the commitment if and only if the decommitments are
valid for every j ∈ Γ .

For j ∈ [10n], let the j-th column be the j-th CECom commitment. The use
of the cut-and-choose technique guarantees that when the receiver accepts a
commitment, the CECom commitments are valid in “most” columns. Then, since
we can extract the committed value of CECom whenever the CECom commitment
is valid, we can extract sj in most columns on an accepted commitment. We can
therefore recover v from the extracted values of the CECom commitments by
using the error-correcting property of Shamir’s secret sharing scheme.3

Unfortunately, although the above scheme is concurrently extractable without
over-extraction, we cannot prove its hiding property. This is because the receiver
requests the committer to open adaptively-chosenCECom commitments (in other
words, the receiver performs a selective opening attack).

We therefore modify the scheme in the following way. At the beginning of
the scheme, we let the receiver commit to Γ by using a statistically binding
commitment scheme Com. Now, since the receiver no longer choose the subset
adaptively, we can prove the hiding property by a standard technique. Further-
more, at first sight, the hiding property of Com seems to guarantee that the
scheme remains to be concurrently extractable without over-extraction.

In the modified scheme, however, we cannot prove that the scheme is con-
currently extractable without over-extraction. This is because we can no longer
show that most of the CECom commitments are valid in an accepted commit-
ment. Consider, for example, that there exists a cheating committer C∗ such
that receiving a Com commitment to Γ at the beginning, C∗ somehow generates
an invalid CECom commitment in the j-th column for every j �∈ Γ and commits
to 0 in the j-th column for every j ∈ Γ . Then, although C∗ seems to break the
hiding property of Com, we do not know how to use C∗ to break the hiding prop-
erty of Com. To see this, observe the following. Recall that since CECom is an
extractable commitment scheme with over-extraction, the extractor of CECom
may output an arbitrary value when the CECom commitment is invalid. Thus,
when we extract the committed values of CECom from C∗, the extracted value
may be 0 in every column. Hence, although C∗ behaves differently in CECom
based on the value of Γ , we cannot detect it.

To overcome this problem, we use the commitment scheme wExtCom that
was introduced by Goyal et al. [13]. The commit phase of wExtCom consists of
three stages: commit, challenge, and reply. In the commit stage, the committer
commits to random a0, a1 ∈ {0, 1}n such that a0 ⊕ a1 = v; in the challenge

stage, the receiver sends a random bit ch ∈ {0, 1}; in the reply stage, the
committer reveals ach and decommits the corresponding commitment. We note
that wExtCom is extractable only in a weak sense—extractions may fail with
probability at most 1/2—but wExtCom is extractable without over-extraction.
That is, the extractor may output ⊥ with probability at most 1/2, but when the
extractor outputs v �= ⊥, the commitment is valid and its committed value is v.
We also note that wExtCom satisfies the following property: After the commit

3 Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.
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stage, if the committer returns a valid reply with probability 1/poly(n) for both
ch = 0 and ch = 1, then the committed value can be extracted with probability
1 in expected polynomial time.

With wExtCom, we modify our scheme as follows: After committing to s with
CECom, the committer commits to (sj , dj) for each j ∈ [10n] in parallel with
wExtCom, where (sj , dj) is a decommitment of the j-th CECom commitment.
Then, we show that in most columns on an accepted commitment, the wExtCom
commitment is valid and its committed value is a valid decommitment of the
corresponding CECom commitment. Toward this end, we observe the following.

– If a cheating committer generates an accepting commitment with non-
negligible probability, then in wExtCom of more than 9n columns, the cheat-
ing committer returns a valid reply with non-negligible probability for both
ch = 0 and ch = 1. (If the cheating committer returns a valid reply with
non-negligible probability for both ch = 0 and ch = 1 in wExtCom of at most
9n columns, then there are n columns in which the wExtCom commitment
is accepted with probability at most 1/2 + negl(n). Thus, the probability
that all wExtCom commitments are accepted is negligible, and therefore the
commitment is accepted with at most negligible probability. )

– Thus, from the property of wExtCom, we can extract the committed values
of wExtCom without over-extraction in most columns.

– Then, from the property of the cut-and-choose technique, we can show that
in most columns of an accepted commitment, the wExtCom commitment is
valid and its committed value is a valid decommitment of the correspond-
ing CECom commitment. Note that since the committed values of wExtCom
commitments can be extracted without over-extraction, we can show that
the cheating committer cannot give invalid wExtCom commitments in many
columns.

Then, since this implies that most of the CECom commitments are valid whenever
the commitment is accepted, we can extract the committed value of the scheme
without over-extraction as before, i.e., by extracting the committed values of
CECom commitments and using the error-collecting property of Shamir’s secret
sharing scheme.

A formal description of our concurrently extractable commitment scheme
CECom′ is shown in Fig. 1. (For technical reasons, we set the number of columns
to 40n.) In Appendix A, we give a formal proof for the fact that in most columns
on an accepted commitment, the wExtCom commitment is valid and its com-
mitted value is a valid decommitment of the CECom commitment. The formal
proof is more complicated than the above proof sketch because we execute the
wExtCom commitments in parallel and thus the columns are not independent of
each other. The proof of this fact is the most complicated part of the analysis
of CECom′: Given this fact, we can show the concurrent extractability by using
the technique used in the previous works [7,8,30,22,19].
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To commit to v ∈ {0, 1}n, the committer C does the following with the
receiver R.

Step 1. R commits to a random sublet Γ ⊂ [40n] of size n by using Com.
Step 2. C computes an (n + 1)-out-of-40n Shamir’s secret sharing s =

(s1, . . . , s40n) of value v. Then, for each j ∈ [40n] in parallel, C commits
to sj by using CECom. Let (sj , dj) be the decommitment of the j-th
commitment.

Step 3. For each j ∈ [40n] in parallel, C commits to (sj , dj) by using
wExtCom.

Step 4. R decommits the Step 1 commitment to Γ .
Step 5. For each j ∈ Γ , C decommits the j-th Step 3 commitment to

(sj , dj). Then, for each j ∈ Γ , R checks whether the decommitment is
valid and whether the decommitted value (sj , dj) is a valid decommit-
ment of the j-th Step 2 commitment.

Fig. 1. A concurrently commitment scheme CECom′

2.2 Building Block 2: One-One CCA-Secure Commitment Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-
malleable commitment scheme, is one that is CCA secure w.r.t. a restricted class
of adversaries that execute only a single session with the committed-value oracle
and immediately receive the answer from the oracle at the end of the session.4

We construct a black-box O(log n)-round one-one CCA-secure commitment
scheme by simplifying the CCA-secure commitment scheme of [22] and using the
DDN logn trick [9,23], which transforms a concurrent non-malleable commit-
ment scheme for tags of length O(log n) to a non-malleable commitment scheme
for tags of length O(n) without increasing the round complexity. In the following,
we assume the familiarity to the scheme of [22]. Roughly speaking, the scheme of
[22] consists of polynomially-many rows—each row is a parallel execution of (a
part of) the trapdoor commitment scheme of [28]—and a cut-and-choose phase,
which forces the committer to give valid and consistent trapdoor commitments
in every row. If we reduce the number of rows from poly(n) to �(n) in the scheme
of [22], where �(n) is the length of the tags, the resultant scheme is no longer
CCA secure. It is easy to verify, however, that the scheme is parallel CCA secure,
i.e., it is CCA secure w.r.t. a restricted class of adversaries that give a single par-
allel query to the oracle and receive the answers immediately. (This is because
when the adversaries give only a single parallel query, the recursive rewinding
does not occur in the extraction and thus we require only a single rewinding
opportunity.) Then, we set �(n) := O(log n) and apply the DDN logn trick to

4 In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a
restricted class of adversaries that execute a single session with the oracle and receive
the answer after completing the interactions with the challenger and the oracle.
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the above parallel CCA-secure commitment scheme. It is not hard to see that
the resultant scheme is one-one CCA secure.

2.3 CCA-Secure Commitment Scheme from the Building Blocks

Given CECom′ and CCACom1:1, we construct a CCA-secure commitment scheme
CCACom roughly as follows, where the committer commits to a value v with tag
tag.

1. The receiver commits to a random subset Γ ⊂ [10n] of size n by using
CCACom1:1 with tag tag.

2. The committer computes an (n+ 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v and commits to each sj in parallel by using a normal
statistically binding commitment scheme Com.

3. For η(n) := rcec(n) + 1 times in sequence (where rcec(n) is the round com-
plexity of CECom′), the committer does the following: the committer com-
mits to sj for every j ∈ [10n] by using CECom′ in parallel. Each parallel
commitment is called a row.

4. The receiver decommits the commitment of the first step and reveals Γ .
5. For every j ∈ Γ , the committer decommits all of the η(n) commitments

whose committed values are sj .

Our scheme differs from the previous CCA-secure commitment schemes
[5,22,20,14] in that it uses a one-one CCA-secure commitment scheme instead
of a non-malleable commitment scheme; furthermore, our scheme uses a one-one
CCA-secure commitment scheme in the reverse order. That is, whereas the pre-
vious schemes (implicitly or explicitly) use non-malleable commitment schemes
from the committer to the receiver, our scheme uses a one-one CCA secure com-
mitment scheme from the receiver to the committer. (Very recently, the same
strategy is used in [19].)

Using a one-one CCA-secure commitment scheme in the reverse order is cru-
cial in showing the simulation-soundness of the cut-and-choose phase. We say
that the adversary (or the challenger) cheats if in an accepted commitment there
exists a row whose committed shares disagree with s in more than n indexes.
Using the one-one CCA security of CCACom1:1, we can show that the adversary
cannot cheat in every session of the right interaction (i.e., the interaction between
the adversary and the oracle) even when the adversary receives a commitment in
which the challenger cheats in the left interaction (i.e., the interaction between
the adversary and the challenger). Roughly speaking, this is because the adver-
sary can emulate the cheating challenger in polynomial time by making a single
query to the committed-value oracle of CCACom1:1 and receiving Γ ; therefore,
from one-one CCA security of CCACom1:1, the commitment that the adversary
receives on the left is useless for breaking the hiding property of CCACom1:1 on
the right, and thus the adversary cannot cheat on the right from the property of
the cut-and-choose technique. Note that non-malleability is insufficient for this
argument since the hiding property of CCACom1:1 need to hold even when the
adversary receives the answer from the oracle immediately after completing the
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query to the oracle. We also note that CECom′ must be concurrently extractable
without over-extraction since otherwise the adversary may give invalid commit-
ments in more than n indexes without being detected in the cut-and-choose
phase. (As explained in Section 2.1, the existence of such an adversary does not
contradict the one-one CCA security of CCACom1:1 if over-extraction can occur.)

Given the simulation-soundness of the cut-and-choose phase, we can show the
CCA security of CCACom by, as in the analysis of previous CCA-secure commit-
ment schemes [5,22,20], rewinding the adversary and emulating the committed-
value oracle in polynomial time. Toward this end, we consider a series of hybrid
experiments in which the commitment that the adversary receives on the left
is gradually changed as follows: In the i-th hybrid experiment (i ∈ [η(n)]), we
switch the committed value from sj to 0 for every j �∈ Γ in the i-th row, where
Γ is extracted by brute force. Note that the (i − 1)-st hybrid and the i-th hy-
brid differ only in the i-th row. The problem is that the adversary accesses the
committed-value oracle, which runs in super-polynomial time. Then, to show the
indistinguishability between the (i−1)-st hybrid and the i-th hybrid, we observe
the following. Since there are rcec + 1 rows (in particular, the number of rows
is bigger than the number of rounds in CECom′), we can extract the committed
shares in a row on every right session without disturbing the hiding property
of CECom′ in the i-th row on the left. (Here, we use a technique used in [21].
Roughly speaking, we extract the committed shares from a row that contains no
message of the CECom′ commitment of the i-th row on the left.) Recall that, since
CECom′ is concurrently extractable without over-extraction, we can extract the
committed shares without over-extraction. Then, since the simulation-soundness
guarantees that these shares agree with s in at least 9n indexes, we can compute
v from these shares by using the error-correcting property of Shamir’s secret
sharing. Therefore we can emulate the oracle in polynomial time by rewinding
the adversary (without disturbing the hiding property of CECom′ in the i-th
row) and computing v as above. Thus, the indistinguishability of the (i − 1)-st
hybrid and the i-th hybrid follows from the hiding property of CECom′. Then, we
consider another hybrid experiment: This experiment is the same as the η(n)-th
hybrid except that the committed value of the j-th Com commitment in Step
2 is switched from sj to 0 for every j �∈ Γ . From the same argument as above,
this hybrid is indistinguishable from the η(n)-th hybrid. Then, since in this hy-
brid the adversary does not receive any information about v, the CCA security
follows.

We note that the actual argument is more complicated. For example, we
need to show the simulation-soundness even for the adversary accessing the
committed-value oracle. To solve this problem, we increase the number of rows
(i.e., η(n)) and emulate the oracle in polynomial time without disturbing the
one-one CCA security of CCACom1:1. To show that the oracle can be emulated,
we require the simulation soundness; thus, there seems to be a circular argument,
i.e., we require the simulation soundness to show the simulation soundness. In
the formal analysis, we show that this issue can be avoided. For details, see the
full version.
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Comparison with the CCA-secure commitment scheme of [19]. The above CCA-
secure commitment scheme is based on the CCA-secure commitment scheme
of [19], which is constructed from one-way functions that are secure against
subexponential-time adversaries. The scheme of [19] is the same as the above
scheme except for the following.

– There is only a single row, and CECom is used instead of CECom′ (i.e., a
concurrently extractable scheme with over-extraction is used).

– The underlying commitment schemes Com, CECom, and CCACom1:1 are se-
cure against subexponential-time adversaries. In particular, Com is hiding
against T1-time adversaries but is completely broken in time o(T2), CECom
is hiding against T2-time adversaries but is completely broken in time o(T3),
and CCACom1:1 is one-one CCA secure against T3-time adversaries, where
(T1, T2, T3) is a hierarchy of running times such that T3 � T2 � T1 � nω(1).
This is where subexponentially hard one-way functions are required.

The high-level strategy for proving CCA security is the same, i.e., showing the
simulation soundness from one-one CCA security of CCACom1:1 and then con-
sidering hybrid experiments in which committed values of CECom and Com are
gradually switched. The proof of [19] is, however, different from ours in the
following.

– In the proof of the simulation soundness, the issue of over-extraction is solved
by extracting the committed values of CECom by brute force. (Note that
even when the committed values of CECom are extracted by brute force,
the one-one CCA security of CCACom1:1 still holds since the committed
values of CECom are extractable in time o(T3) and one-one CCA security of
CCACom1:1 holds against T3-time adversaries.)

– When the committed values of CECom are switched, the indistinguishability
follows immediately from the fact that CECom is hiding against T2-time
adversaries and the running time of the committed-value oracle is o(T2). (The
committed-value oracle computes its output by extracting the committed
values of Com by brute force. Thus, its running-time is o(T2).)

Thus, the proof of [19] heavily depends on the subexponentially hard security
of the underlying commitment schemes. Roughly speaking, we weaken the as-
sumption of [19] by doing the following.

– To show the simulation soundness without subexponentially hard security,
we replace CECom with CECom′, which is concurrently extractable without
over-extraction.

– To show the indistinguishability when we switch the committed values of
CECom′, we increase the number of rows so that the committed-value ora-
cle can be emulated in polynomial time by rewinding the adversary while
preserving the hiding property of CECom′.

Overall, despite of the similarity of the high-level structure between the scheme
of [19] and ours, the details of the security proofs have a lot of difference.
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A Formal Proof

In this section, we give a formal proof for the fact that in most columns on
an accepted commitment of CECom′, the wExtCom commitment is valid and its
committed value is a valid decommitment of the CECom commitment. This is
the most complicated part of the analysis of CECom′: Given this fact, we can
show the concurrent extractability by using the technique used in the previous
works [7,8,30,22,19].

Lemma 1. Let C∗ be any cheating committer that concurrently executes many
sessions of the commit phase of CECom′. Then, the following holds except with
negligible probability: In more than 38n columns on every accepted session, the
wExtCom commitment is valid and its committed value is a valid decommitment
of the CECom commitment.

Proof. First, we give some definitions. In each session, for j ∈ [40n], the j-th col-
umn is the pair of the j-th CECom commitment in Step 2 and the j-th wExtCom
commitment in Step 3. We say that a column is consistent if in the column
the committed value of the wExtCom commitment is a valid decommitment of
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the CECom commitment; otherwise, the column is inconsistent. We say that C∗

cheats in a session if (i) every wExtCom commitment is accepted, (ii) the j-th
column is consistent for every j ∈ Γ , and (iii) there exist at least 2n inconsistent
columns.

To prove the lemma, it suffices to show that in every session the probability
that C∗ cheats is negligible.

Assume for contradiction that for infinitely many n, there is a session in which
C∗ cheats with probability at least 1/poly(n). In the following, we fix any such n.
Then, since the number of sessions is at most poly(n), there is an i∗ ∈ [poly(n)]
such that in the i∗-th session, C∗ cheats with probability at least 1/nc for a
constant c.

Then, let us consider an adversary B against the hiding property of Com. For
random subsets Γ0, Γ1 ⊂ [40n] of size n, B tries to distinguish a Com commitment
to Γ0 from a Com commitment to Γ1 as follows. B internally invokes C∗ and
honestly emulates the interaction between C∗ and honest receivers except that
in the i∗-th session, B does the following.

– In Step 1, B receives a Com commitment from the external committer (the
committed value is either Γ0 or Γ1) and forwards the commitment to C∗ as
the Step 1 commitment.

– When Step 3 is accepted (i.e., all the wExtCom commitments are accepted),
B does the following repeatedly: B rewinds C∗ to the point that the next-
message is the challenge bits of wExtCom in the i∗-th session; then B sends
new random challenge bits and honestly interacts with C∗ until the end of
Step 3 (i.e., until receiving the replies in wExtCom). After collecting other
nc+3 accepted transcripts of Step 3, B outputs 1 if the following hold:
(i) from these nc+3+1 accepted transcript (the first one and the subsequent

nc+3 ones), B can extract the committed values of wExtCom in at least
39n columns,

(ii) in at least n columns of these columns, the extracted values are not valid
decommitments of the corresponding CECom commitments, and

(iii) for every j ∈ Γ1, either the extraction of the j-th column fails or the
extracted value of the j-th column is a valid decommitment of the cor-
responding CECom commitment.

Otherwise, B outputs 0. In the following, the first transcript that B generates
in Step 3 is called the main thread and other nc+3 accepted transcripts are
called the look-ahead threads.

If B rewinds C∗ more than n3c+4 times, B terminates and outputs fail.
First, we show that an expected polynomial-time adversary B′ successfully

distinguishes Com commitments, where B′ is the same as B except that B′ does
not terminate after B′ rewinds C∗ more than n3c+4 times. When B′ receives a
commitment to Γ0, since the internal C

∗ receives no information of Γ1, the prob-
ability that B′ outputs 1 is exponentially small. (This is because when Condition
(i) and Condition (ii) hold, the probability that Condition (iii) holds is expo-
nentially small.) Thus, it remains to show that when B′ receives a commitment
to Γ1, the probability that B′ outputs 1 is at least 1/poly(n). Let extract be the
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event that B′ extracts the committed values of wExtCom commitments from at
least 39n columns, and let cheat be the event that C∗ cheats in the i∗-th session
on the main thread. Then, to show that B′ outputs 1 with probability at least
1/poly(n), it suffices to show that

Pr [cheat ∧ extract] ≥ 1

poly(n)
. (1)

(Recall the we can extract the committed values of wExtCom without over-
extraction.) Let ρ be a prefix of a transcript between C∗ and honest receivers
such that after ρ, a honest receiver sends challenge bits of wExtCom in the
i∗-th session. Let prefixρ be the event that a prefix of the main thread is ρ.
Then, since the probability that C∗ cheats in the i∗-th session is at least 1/nc,
from an average argument, we have Pr

[
cheat | prefixρ

]
≥ 1/2nc with probability

at least 1/2nc over the choice of ρ (i.e., when we obtain ρ by emulating the
interaction between C∗ and honest receivers). Let Δ be the set of prefixes such
that Pr

[
cheat | prefixρ

]
≥ 1/2nc holds. Then, since we have

∑
ρ∈Δ Pr

[
prefixρ

]
≥

1/2nc, we have

Pr [cheat ∧ extract] ≥
∑
ρ∈Δ

Pr
[
cheat ∧ extract | prefixρ

]
· Pr

[
prefixρ

]
≥ min

ρ∈Δ

(
Pr
[
cheat ∧ extract | prefixρ

])
·
∑
ρ∈Δ

Pr
[
prefixρ

]
≥ 1

2nc
min
ρ∈Δ

(
Pr
[
cheat ∧ extract | prefixρ

])
. (2)

Thus, to show Equation (1), it suffices to show that for any ρ ∈ Δ, we have

Pr
[
cheat ∧ extract | prefixρ

]
≥ 1

poly(n)
. (3)

In the following, we fix any ρ∗ ∈ Δ. Then, we have

Pr
[
cheat | prefixρ∗

]
≥ 1

2nc
. (4)

Thus, from Equation (4), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
= Pr

[
cheat | prefixρ∗

]
· Pr

[
extract | prefixρ∗ ∧ cheat

]
≥ 1

2nc
Pr
[
extract | prefixρ∗ ∧ cheat

]
(5)

Thus, to show Equation (3), it suffices to show that

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1

poly(n)
. (6)

Recall that when cheat occurs, Step 3 of the i∗-th session is accepted on the
main thread. Thus, for any j ∈ [40n], when cheat occurs and the challenge bit
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of wExtCom in the j-th column is b ∈ {0, 1} on the main thread, we can extract
the committed value of the the j-th column if in the nc+3 look-ahead threads
there is an accepted transcript of wExtCom such that the challenge bit of the
j-th column is 1− b. Then, to show Equation (6), we show that when Step 3 of
the i∗-th session is accepted on the main thread with prefix ρ∗, the probability
that the challenge bit of wExtCom is b is “high” for any b ∈ {0, 1} in “most”
columns. Let chj be a random variable for the challenge bit of wExtCom in the
j-th column of the i∗-th session on the main thread, and let accept be the event
that every wExtCom commitment is accepted in the i∗-th session on the main
thread. (We have Pr [accept] ≥ Pr [cheat] from the definitions.) Then, for any
j ∈ [40n] and b ∈ {0, 1},

Pr
[
chj = b | accept ∧ prefixρ∗

]
=

Pr
[
chj = b ∧ accept ∧ prefixρ∗

]
Pr
[
accept ∧ prefixρ∗

]
≥

Pr
[
chj = b ∧ cheat ∧ prefixρ∗

]
Pr
[
prefixρ∗

]
=

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗
]
Pr
[
chj = b ∧ prefixρ∗

]
Pr
[
prefixρ∗

]
= Pr

[
cheat

∣∣ chj = b ∧ prefixρ∗
]
Pr [chj = b] . (7)

(Here, we use Pr
[
chj = b ∧ prefixρ∗

]
= Pr [chj = b] · Pr

[
prefixρ∗

]
.) Below, we

show that in at least 39n columns of the i∗-th session, for any b ∈ {0, 1} we have

Pr
[
cheat

∣∣ chj = b ∧ prefixρ∗
]
≥ 1

160nc+1
. (8)

Let

A :=

{
j ∈ [40n]

∣∣∣ ∃bj ∈ {0, 1} s.t. Pr
[
cheat | chj=bj ∧ prefixρ∗

]
<

1

160nc+1

}
.

Then we have

Pr
[
cheat

∣
∣
∣ prefixρ∗

]
≤ Pr

[
∧

j∈A

chj = 1− bj

]

+ Pr

[

cheat
∧

(
∨

j∈A

chj = bj

) ∣
∣
∣
∣∣
prefixρ∗

]

≤ 2−|A| +
∑

j∈A

Pr
[
cheat ∧ chj = bj | prefixρ∗

]

= 2−|A| +
∑

j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]
Pr [chj = bj ]

≤ 2−|A| +
∑

j∈A

Pr
[
cheat | chj = bj ∧ prefixρ∗

]

< 2−|A| + 40n · 1

160nc+1

≤ 2−|A| +
1

4nc
. (9)
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Then, from Equations (4) and (9), we have |A| = O(log n) and therefore |A| ≤ n.
Thus, in at least 39n columns, for any b ∈ {0, 1} we have Equation (8). Then,
from Equations (7) and (8) and from Pr [chj = b] = 1/2, for any j ∈ [40n] \ A
and any b ∈ {0, 1}, we have

Pr
[
chj = b | accept ∧ prefixρ∗

]
≥ 1

320nc+1
.

Then, since the distributions of the look-ahead threads are the same as that
of the main thread, we have that under the condition that prefixρ∗ and cheat
occur, for any j ∈ [40n] \A, the adversary B′ requires another 320nc+1 accepted
transcripts on average to extract the committed value of wExtCom in the j-th
columns. Since B′ collects nc+3 accepted transcripts, for any j ∈ [40n] \ A the
adversary B′ extracts the committed value of wExtCom in the j-th column except
with probability 320nc+1/nc+3 = 320/n2 under the condition that prefixρ∗ and
cheat occur. (Here, we use Markov’s inequality.) Then, from the union bound,
except with probability 39n · 320/n2 = 12480/n, for every j ∈ [40n] \ A the
adversary B′ extracts the committed value of wExtCom in the j-th column.
Thus, we have

Pr
[
extract | prefixρ∗ ∧ cheat

]
≥ 1− 12480

n
. (10)

Then, from Equations (5) and (10), we have

Pr
[
cheat ∧ extract | prefixρ∗

]
≥ 1

2nc
·
(
1− 12480

n

)
≥ 1

4nc
. (11)

Then, since ρ∗ is any prefix in Δ, from Equations (2) and (11) we have

Pr [cheat ∧ extract] ≥ 1

2nc
· 1

4nc
=

1

8n2c
.

Thus, we have Equation (1). We therefore conclude that B′ outputs 1 with
probability at least 1/8n2c when B′ receives a commitment to Γ1. Thus, B′

successfully distinguishes a commitment to Γ1 from a commitment to Γ0.
Now, we are ready to show that B breaks the hiding property of Com. Clearly,

the running time of B is at most poly(n). Note that, to show that B can distin-
guish Com commitments, it suffices to show that the output of B is the same as
that of B′ except with probability 1/n2c+1. (This is because B′ outputs 1 with
negligible probability when B′ receives a commitment to Γ0 whereas B′ outputs
1 with with probability 1/8n2c when B′ receives a commitment to Γ1.) Recall
that the output of B differs from that of B′ if and only if B′ rewinds C∗ more
than n3c+4 times. Let ρ be any prefix of a transcript between C∗ and honest
receivers such that after ρ, the next message is the challenge bits of wExtCom in
the i∗-th session. Let T (n) be a random variable for the number of rewinding in
B′. Then, we have

E
[
T (n) | prefixρ

]
≤ Pr

[
accept | prefixρ

]
· nc+3

Pr
[
accept | prefixρ

] = nc+3 .
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Thus, we have

E [T (n)] =
∑
ρ

Pr
[
prefixρ

]
E
[
T (n) | prefixρ

]
≤ nc+3

∑
ρ

Pr
[
prefixρ

]
≤ nc+3 .

Then, from Markov’s inequality, B′ rewinds C∗ more than n3c+4 times with
probability at most nc+3/n3c+4 = 1/n2c+1. Thus, the output of B is the same
as that of B′ except with probability 1/n2c+1, and therefore B distinguishes a
commitment to Γ1 from a commitment to Γ0.

#$
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1 Introduction

Recent advances in secure multiparty computation have led to protocols that
compute large circuits in a matter of seconds. Most of these protocols, how-
ever, are restricted to provide security against semi-honest adversaries, or alter-
natively assume an honest majority. A notable exception is the SPDZ line of
work [3,16,14,15,34] which tolerates a majority of malicious parties. SPDZ is op-
timized for the pre-processing model and demonstrates a remarkably fast on-line
phase, largely due to the fact that it uses information-theoretic techniques and,
thus, avoids costly cryptographic operations. Unfortunately, all these efficient
MPC protocols for the case of a dishonest majority are susceptible to the fol-
lowing denial-of-service (DoS) attack: even a single malicious party can force an
abort without any consequences (i.e., without even being accused of cheating).
Although classical impossibility results for MPC prove that abort-free compu-
tation is impossible against dishonest majorities, vulnerability to DoS attacks is
an issue that should be accounted for in any practical application.

Summary of Known Results. The seminal works on MPC [47,21,2,9,42] es-
tablish tight feasibility bounds on the tolerable number of corruptions for per-
fect, statistical (aka information-theoretic or unconditional), and computational
(aka cryptographic) security. For semi-honest adversaries, unconditionally secure
protocols exist if there is an honest majority, or if the parties have access to a
complete functionality oracle or other types of setup. An arguably minimal setup
is giving the parties (appropriately) correlated random strings before the inputs
are known. We refer to this as the correlated randomness model.

When there is no honest majority and the adversary is malicious, full security
that includes fairness cannot be achieved [12]. Instead, one usually settles for
the relaxed notion of security with abort: Either the protocol succeeds, in which
case every party receives its output, or the protocol aborts, in which case all
honest parties learn that the protocol aborted. (Because of the lack of fairness,
the adversary can learn its outputs even when the protocol aborts.) The GMW
protocol [21,19] realizes this notion of security under standard cryptographic
assumptions. Interestingly, this protocol also satisfies the following useful identi-
fiability property: upon abort every party learns the identity of some corrupted
party. This property is in the focus of our work.

To the best of our knowledge, all protocols achieving this notion of security
(e.g., [21,7]) are based on the same paradigm of using public zero-knowledge
proofs to detect deviation from the protocol. While elegant and conceptually
simple, this approach leads to inefficient protocols that make a non-black-box
use of the underlying cryptographic primitives.1 The situation is even worse in
the information-theoretic setting, where an impossibility result from [31] (see

1 Alternatively, protocols such as the CDN protocol [13] make a use of ad-hoc zero-
knowledge proofs based on specific number theoretic intractability assumptions. The
disadvantage of these protocols is that they require public-key operations for each
gate of the circuit being evaluated, and cannot get around this by using optimization
techniques such as efficient OT extension [28].
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also [44, Section 3.7]) proves that information-theoretic MPC with identifiable
abort is impossible even in the OT-hybrid model, i.e., where parties can make
ideal calls to an oblivious transfer (OT) functionality [41].

Our Contributions. We initiate a systematic study of this more robust and
desirable notion of secure MPC with identifiable abort (ID-MPC). An ID-MPC
protocol leverages the effect of an abort by forcing, upon abort, at least one
malicious party to reveal its identity. This feature discourages cheaters from
aborting, and in many applications allows for full recovery by excluding the iden-
tified cheater and restarting the protocol. We provide formal security definitions
both in the setting of Universal Composition (UC) [5] and in the stand-alone
setting [21,19,4]. Furthermore, we study feasibility and efficiency of ID-MPC in
both the information-theoretic and the computational security models.

For the information-theoretic model, we present a general compiler that trans-
forms any MPC protocol which uses correlated randomness to achieve secu-
rity against semi-honest adversaries into a similar protocol which is secure with
identifiable abort against malicious adversaries. As a corollary, we get the first
information-theoretic ID-MPC protocol in the correlated randomness model.
This protocol complements an impossibility result from [31], which rules out
information-theoretic ID-MPC in the OT-hybrid model. Indeed, the insuffi-
ciency of OT implies that pairwise correlated randomness is not sufficient for
information-theoretic ID-MPC, but leaves open the question of whether or not
n-wise correlations are, which is answered affirmatively here.

In the computational security model, we present an ID-MPC protocol for real-
izing sampling functionalities, namely ones that sample and distribute correlated
random strings, which only makes a black-box use of an (adaptively secure) OT
protocol and ideal calls to a commitment functionality.2 Using this protocol for
realizing the setup required by the information-theoretic protocol yields the first
ID-MPC protocol which makes a black-box use of standard cryptographic prim-
itives. This holds both in the UC framework [5], under standard UC-setups, and
in the plain stand-alone model [21,19,4]. Combined with the abovementioned
impossibility result from [31], this provides an interesting example for a natu-
ral cryptographic task that can be realized using a black-box access to an OT
protocol but cannot be unconditionally realized using an ideal OT oracle.

Our results demonstrate that ID-MPC is not only the most desirable notion
from a practical point of view, but it also has the potential to be efficiently
implemented. To this end, one can instantiate our construction with efficient
OT protocols from the literature [39,10,36,17].3 Furthermore, pre-computing the

2 The ideal commitments can be replaced by a black-box use of a commitment pro-
tocol, or alternatively realized by making a black-box use of OT [27,38]. The OT
protocol can be secure against either semi-honest or malicious adversaries, as these
two flavors are equivalent under black-box reductions [24,11].

3 Our analysis requires the underlying OT to be adaptively secure. Proving the same
statement for a static OT protocol is a theoretically interesting open problem. From
a practical point of view, however, many instances of adaptively secure OT can
be efficiently implemented from few such instances in the (programmable) random
oracle model [28,36].
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randomness in an off-line phase yields a protocol in the pre-processing model
which, similarly to SPDZ-style protocols, has an information-theoretic online
phase. Investigating how our methodology can be fine-tuned towards practice
remains an interesting direction for future work. Finally, our protocols can be
used to improve the efficiency of a number of protocols in the fairness-related
literature, e.g., [29,18,26,37,48,22,1], as these works implicitly use ID-MPC (typ-
ically instantiated by GMW) to realize a sampling functionality.

Comparison to Existing Work. Our information-theoretic protocol can be
seen as a new feasibility result, since the current literature contains no (efficient
or inefficient) information-theoretic ID-MPC protocol from correlated random-
ness. Similarly, our computational protocol can also be seen as a “second-order”
feasibility result, since this is the first ID-MPC protocol making black-box use of
a standard cryptographic primitive. Notwithstanding, much of the motivation
for considering black-box constructions in cryptography is derived from the goal
of practical efficiency, and indeed the most practical protocols today (whether
Yao-based or GMW-based) are black-box protocols that do not need to know
the “code” of the underlying cryptographic primitives.

2 The Model

We prove our security statements in the universal composition (UC) framework
of Canetti [5]: in a nutshell, a protocol π (securely) UC realizes a functional-
ity F if for any adversary A attacking π there exists an ideal adversary, the
simulator S, that makes an ideal evaluation of F indistinguishable from a pro-
tocol execution with A in the eyes any environment Z. When Z, A, and S are
polynomially bounded we say that the protocol realizes F (with computational
security); otherwise, when Z, A, and S are unbounded, we say that the protocol
unconditionally realizes F (with information-theoretic security).

For simplicity we restrict our description to computation of non-reactive func-
tionalities, also known as secure function evaluation (SFE). (The general case
can be reduced to this case by using a suitable form of secret sharing [31] for
maintaining the secret state of the reactive functionality.) Moreover, we describe
our protocols as synchronous protocols, i.e., round-based protocols where mes-
sages sent in some round are delivered by the beginning of the next round; such
protocols can be executed in UC as demonstrated in [33,35]. The advantage of
such a “synchronous” description is dual: first, it yields simpler descriptions of
functionalities and protocols; indeed, because the parties are aware of the round
in which each message should be sent/received, we can avoid always explicitly
writing all the message/protocol IDs in the descriptions. Second, it is compati-
ble with the protocol description in the stand-alone model of computation [20,4],
which allows us to directly translate our results into that model.

Our protocols assume n parties from the set P = {p1, . . . , pn}. We prove our
results for a non-adaptive adversary who actively corrupts parties at the be-
ginning of the protocol execution, but our results can be extended to the adaptive
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case.4 Our results are with respect to an (often implicit) security parameter k,
where we use the standard definition of negligible and overwhelming from [19].

Correlated Randomness as a Sampling Functionality. Our protocols are
in the correlated randomness model, i.e., they assume that the parties initially,
before receiving their inputs, receive appropriately correlated random strings. In
particular, the parties jointly hold a vectorR = (R1, . . . , Rn) ∈ ({0, 1}∗)n, where
pi holds Ri, drawn from a given efficiently samplable distribution D. This is, as
usual, captured by giving the parties initial access to an ideal functionality FD

Corr,
known as a sampling functionality, which, upon receiving a default input from
any party, samples R from D and distributes it to the parties. Hence, a protocol
in the correlated randomness model is formally an FD

Corr-hybrid protocol.

Information-Theoretic Signatures. Our protocols use information-theoretic
(i.t.) signatures [45,43,46] to commit a party to messages it sends. Roughly
speaking, these are information-theoretic analogues to standard digital signa-
tures, i.e., they allow some party pi, the signer, to send a message m to a party
pj , the receiver, along with a string σ that we refer to as the signature, such
that the receiver can at a later point publicly open σ and prove to every party
that the message m was indeed sent from pi. Note that in order to achieve i.t.
security the verification key cannot be publicly known. Rather, in i.t. signatures,
the signer has a signing key sk and every party pi ∈ P holds a different private
verification key vki corresponding to sk.

In our protocols different (independent) signing keys are used for each signa-
ture. In this case, i.t. signatures provide the following guarantees with overwhelm-
ing probability (against an unbounded adversary): (completeness) A signature
with the correct singing key will be accepted by any honest verifier in P ; (un-
forgeability) the adversary cannot come up with a signature that will be accepted
by some (honest) verifier without knowing the signing key; (consistency) an ad-
versarial signer cannot come up with a signature that will be accepted by some
honest verifier and rejected by another.

3 Security with Identifiable Abort

We put forward the notion of secure multi-party computation with identifiable
abort, also referred to as Identifiable MPC (ID-MPC) which allows the compu-
tation to fail (abort), but ensures that when this happens every party is informed
about it, and they also agree on the index i of some corrupted party pi ∈ P (we
say then that the parties abort with pi). More concretely, for an arbitrary func-
tionality F, we define [F]ID⊥ to be the corresponding functionality with identifiable
abort, which behaves as F with the following modification: upon receiving from
the simulator a special command (abort, pi), where pi ∈ P is a corrupted party
(if pi is not corrupted then [F]ID⊥ ignores the message), [F]ID⊥ sets the output of
all (honest) parties to (abort, pi).

4 In fact, some of our protocols use optimizations tailored to proving adaptive security.
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Definition 1. Let F be a functionality and [F]ID⊥ be the corresponding function-
ality with identifiable abort. We say that a protocol π securely realizes F with
identifiable abort if π securely realizes the functionality [F]ID⊥ .

The UC composition theorem extends in a straightforward manner to security
with identifiable abort. The concrete composition statement can be found in the
full version.

4 Unconditional ID-MPC from Correlated Randomness

In this section we describe our unconditionally secure identifiable MPC protocol
in the correlated randomness model. In fact, our result is more general, as we
provide a compiler that transforms any given unconditionally secure protocol
in the semi-honest correlated randomness model into an unconditionally secure
ID-MPC protocol in the (malicious) correlated randomness model. Although
the correlated randomness provided by the setup in the malicious protocol is
different than the semi-honest, the latter can be obtained from the former by an
efficient transformation. Informally, our statement can be phrased as follows:

Let πsh be an FD
Corr-hybrid protocol (for an efficiently computable dis-

tribution D), which unconditionally UC realizes a functionality F in
the presence of a semi-honest adversary. Then there exists a compiler
turning πsh into an FD′

Corr-hybrid protocol (for an appropriate efficiently
computable distribution D ′), which unconditionally UC realizes F with
identifiable abort (in the malicious model).

Overview of the Compiler. We start by providing a high-level overview of
our compiler. As is typical, the semi-honest protocol πsh which we compile works
over standard point-to-point (insecure) channels. Furthermore, without loss of
generality (see Section 4.3) we assume that πsh is deterministic.

Let Rsh = (Rsh
1 , . . . , Rsh

n ) denote the setup used by the semi-honest protocol
πsh (i.e., each pi holds string Rsh

i ). The setup for the compiled protocol dis-
tributes Rsh to the parties, and commits every party to its received string. Sub-
sequently, the parties proceed by, first, committing to their inputs and, then,
executing their πsh-instructions in a publicly verifiable manner: whenever, pi
would send a message m in πsh, in the compiled protocol pi broadcasts m and
publicly proves, in zero-knowledge, that the broadcasted message is consistent
with his committed input and setup string Rsh

i . For the above approach to work
for unbounded adversaries and allow for identifiability, we need the commitment
scheme and the associated zero-knowledge proofs to be unconditionally secure
and failures to be publicly detectable. We construct such primitives relying on
appropriately correlated randomness in Sections 4.1 and 4.2, respectively.

4.1 Commitments with Identifiable Abort

In this section we provide a protocol which unconditionally UC realizes the stan-
dard (one-to-many) multi-party commitment functionality Fcom with identifiable
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abort. Fcom allows party pi ∈ P , the committer, to commit to a message m and
later on publicly open m while guaranteeing the following properties: (hiding)
no party in P \ {pi} receives any information on m during the commit phase;
(binding) at the end of the commit phase a message m′ is fixed (where m′ = m
if the committer is honest), such that only m′ might be accepted in the reveal
phase (and m′ is always accepted when the committer is honest).

Our protocol Πcom which i.t. securely realizes Fcom with identifiable abort
assumes the following correlated-randomness setup: for pi to commit to a value
m ∈ {0, 1}∗, pi needs to hold a uniformly random string r ∈ {0, 1}|m| along
with an information-theoretic signature σ on r, where every party in P holds his
corresponding verification key (but no party, not even pi, gets to learn the signing
key). Given the above setup, pi can commit to m by broadcasting y = m ⊕ r.
To, later on, open the commitment y, pi broadcasts r along with the signature
σ, where every party verifies the signature and outputs m = y ⊕ r if it is valid,
otherwise aborts with pi (i.e., outputs (abort, pi)).

The hiding property of Πcom follows from the fact that r is uniformly random.
Moreover, the unforgeability of the signature scheme ensures that the commit-
ment is binding and publicly verifiable. Finally, the completeness of the scheme
ensures that the protocol aborts only when the committer pi is corrupted. Ad-
ditionally, same as all UC commitments, the above scheme is extractable, i.e.,
the simulator of a corrupted committer can learn, already in the commit phase,
which message will be opened so that he can input it to the functionality, and
equivocal, i.e., the simulator of a corrupted receiver can open a commitment to
any message of his choice.5 Taking a glimpse at the proof both properties follow
from the fact that the simulator controls the setup: knowing r allows the simu-
lator to extract m from the broadcasted message, whereas knowing the signing
key sk allows him to generate a valid signature/opening to any message.

Theorem 1. The protocol Πcom unconditionally UC realizes the functionality
Fcom with identifiable abort.

4.2 Setup-Commit-Then-Proof

Next we present a protocol which allows the parties receiving random strings
(drawn from some joint distribution D) to publicly prove, in zero-knowledge,
that they use these strings in a protocol. Our protocol implements the Setup-
Commit-then-Prove functionality Fscp which can be viewed as a modification
of the Commit-then-Prove functionality from [7] restricting the committed wit-
nesses to be distributed by the setup instead of being chosen by the provers. More
concretely Fscp works in two phases: in a first phase, it provides a string/witness
Ri to each pi ∈ P , where R = (R1, . . . , Rn) is drawn from D; in a second
phase, Fscp allows every party pi to prove q-many NP statements of the type

5 In [31] a primitive called unanimously identifiable commitments (UIC) was intro-
duced for this purpose, but the definition of UIC does not guarantee all the proper-
ties we need for UC secure commitments.
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R(x,Ri) = 1 for the same publicly known NP relation Ri and the witness Ri

received from the setup, but for potentially different (public) strings x.
In the remainder of this section we describe a protocol which unconditionally

securely realizes the setup-commit-then-proof functionality Fscp in the correlated
randomness model. To this direction, we first show how to realize the sigle-use
version of Fscp, denoted as F1scp, and then use the UC composition with joint
state theorem (JUC) [8] to derive a protocol for Fscp. The functionality F1scp

works exactly as Fscp with the restriction that it allows a prover p ∈ P to do a
single (instead of q-many) proofs for a witness w of a given NP relation R.

Our protocol for realizing the functionality F1scp with identifiable abort uses
the idea of “MPC in the head” [25,30,32]. In particular, let FD denote the (n+1)-
party (reactive) functionality among the players in P and a special player pD,
the dealer, which works as follows: In a first phase, FD receives a message w ∈
{0, 1}poly(k) from pD and forwards w to p ∈ P . In a second phase, p sends x to
FD, which computes b := R(x,w) and outputs (b, x) to every pj ∈ P \ {pD}.
Clearly, any protocol in the plain model which unconditionally realizes FD with
an honest dealer pD, where pD does not participate in the second phase, can be
turned into a protocol which securely realizes F1scp(P ,D,R, p) in the correlated
randomness model. Indeed, one needs to simply have the corresponding sampling
functionality play the role of pD (where w is drawn from D). In the following we
show how to design such a protocol using the idea of player-simulation [25].

Let Π(n+1,m),t be a protocol which perfectly securely (and robustly) realizes
FD in the client-server model [25,30,32], among the clients P ∪ {pD} and an
additional m servers. Such a protocol exists assuming t < m/3 servers are cor-
rupted [2]. For simplicity, assume that Π(n+1,m),t has the following properties,
which are consistent to how protocols from the literature, e.g., [2], would realize
functionality FD in the client-server setting: (i) for computing the first phase
of FD, Π(n+1,m),t has pD share his input w among the m servers with a secret
sharing scheme that is perfectly t-private (the shares of any t servers leak no
information on w) and perfectly t-robust (the sharing can be reconstructed even
when up to t cheaters modify their shares), and, also pD hands all the shares to
p (ii) pD does not participate in the second phase of Π(n+1,m),t (this is wlog as
pD is a client with no input or output in this second phase), and (iii) the output
(R(x,w), x) is publicly announced (i.e., is in the view of every server at the end
of the protocol).

Assuming pD is honest, a protocol Πn+1 for unconditionally realizing FD with
identifiable abort (among only the players in P∪{pD}) can be built based on the
above protocol Π(n+1,m),t as follows: for the first phase, pD generates shares of a
t-robust and t-private sharing of w as he would do in Π(n+1,m),t and sends them
to p. In addition to sending the shares, pD commits p to each share by sending
him an i.t. signature on it and distributing the corresponding verification keys
to the players in P . For the second phase, p emulates in his head the second
phase of the execution of Π(n+1,m),t among m virtual servers p̂1, . . . , p̂m where
each server has private input his share, as received from pD in the first phase,
and a public input x (the same for all clients); p publicly commits to the view of
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each server. Finally, the parties in P \ {p} challenge p to open a random subset
J ⊆ [m] of size t of the committed views and announce the corresponding input-
signatures which p received from pD. If the opened views are inconsistent with
an accepting execution of Π(n+1,m),t on input x and the committed shares—i.e.,
some output is 0, or some opening fails, or some signature does not verify for
the corresponding (opened) private input, or for some pair of views the incoming
messages do not match the outgoing messages—then the parties abort with p.

The security of the protocol Πn+1 is argued similarly to [30, Theorem 4.1]: on
the one hand, when p is honest then we can use the simulator for Π(n+1,m),t to
simulate that views of the parties in J . The perfect t-security of Π(n+1,m),t and
the t-privacy of the sharing ensures that this simulation is indistinguishable from
the real execution. On the other hand, when p is corrupted, then we only need
to worry about correctness. Roughly, correctness is argued as follows: if there
are at most t < m/3 incorrect views, then the t-robustness of Π(n+1,m),t and of
the sharing ensures that the output in any of the other views will be correct; by
a standard counting argument we can show that the probability that some of
these views is opened is overwhelming when m = O(k). Otherwise, (i.e., if there
are more than t-incorrect views) then with high probability a pair of such views
will be opened and the inconsistency will be exposed.

To derive, from Πn+1, a protocol for F1scp(P ,D,R, p) in the correlated ran-
domness model, we have the sampling functionality, F1scp

Corr play the role of the
dealer pD. In addition to the committed shares, F1scp

Corr generates the necessary
setup enabling any prover p ∈ P to commit to the m (virtual) servers’ views in
the second phase of the protocol Πn+1. Furthermore, to simplify the description,
we also have F1scp

Corr create a “coin-tossing setup” which players in P can use to
sample the random subset J ∈ [m] of views to be opened: F1scp

Corr hands to each
pj ∈ P a random string cj and commits pj to it; the coin sequence c for choos-
ing J is then computed by every pj opening cj and taking c = ⊕n

j=1cj . In the
following we give a detailed description of the protocol Π1scp for implementing
F1scp, where we denote by 〈w〉 = (〈w〉1, . . . , 〈w〉m) a perfectly t-private and t-
robust secret sharing of a given value w among players in some P̂ = (p̂1, . . . , p̂m)
(e.g., the sharing from [2] which is based on bivariate polynomials), where 〈w〉i
denotes the ith share of 〈w〉, i.e., the state of the (virtual) server p̂i after the
sharing is done.

Theorem 2. Let Π(n+1,m),t be a protocol as described above among n + 1
clients and m = O(k) servers which perfectly securely (and robustly) real-
izes the functionality FD in the presence of t < m/3 corrupted servers. The
(F1scp

Corr (P ,D,m, t,R)-hybrid) protocol Π1scp(P ,D,R,m, t, p) unconditionally se-
curely realizes the functionality F1scp(P ,D,R, p) with identifiable abort.

TheMultiple-Proof Extension of F1scp. In order to realize functionality Fscp

we need to extend F1scp to distribute a vector R = (R1, . . . , Rn) of witnesses,
one for each party, (instead of only one witness) sampled from some efficient
distribution D, and allow every pi ∈ P to prove up to q statements of the type
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Protocol Π1scp(P ,D,m, t,R, p)

Setup-Commit Phase: To obtain the appropriate setup, prover p sends
(CorrRand, p) to the sampling functionality F1scp

Corr (P ,D, m, t,R), which distributes
the following random strings and signatures (where every pj ∈ P receives the corre-
sponding verification keys):

The prover p receives a sharing 〈w〉 = (〈w〉1, . . . , 〈w〉m) of w along with corre-
sponding signatures σ(〈w〉1), . . . , σ(〈w〉m) and (privately) outputs (witness, w).

Every pi ∈ P receives the challenge-string ci along with a corresponding signature
σ(ci).

The prover also receives random strings v1, . . . , vm along with correspond-
ing signatures σ(v1), . . . , σ(vm) to use for committing to the server’s views in
Π(n+1,m),t.

Prove Phase: Upon p receiving his input (ZK-prover, x) the following steps are
executed:

1. If R(x,w) = 0 then p broadcasts (not-verified, p) and every party halts with
output (not-verified, p). Otherwise, p broadcasts (R, x).

2. p emulates in his head the second phase of protocol Π(n+1,m),t where each server

p̂j ∈ P̂ = {p̂1, . . . , p̂m} has private input 〈w〉j and public input x.

3. For each p̂j ∈ P̂ , p commits, by invocation of protocol Πcom(P), to the view
Viewj ∈ {0, 1}Vj of p̂j in the above emulated execution using vj from his setup.

4. For each pi ∈ P : pi announces the random string ci and the corresponding
signature σ(ci) and every pj ∈ P verifies, using his corresponding verification
keys, validity of the signatures and aborts with pi in case the check fails.

5. The parties compute c =
∑n

i=1 ci and use it as random coins to sample a
random t-size set J ⊆ [m].

6. For each j ∈ J : p opens the commitment to Viewj and announces the signature
σ(〈w〉j). If any of the openings fails or any of the announced signatures is not
valid for the input-share appearing in the corresponding view, then the protocol
aborts with pi.

7. Otherwise, the parties check that the announced views are consistent with an ex-
ecution of protocol Π(n+1,m),t with the announced inputs in which the (global)
output is 1, i.e., they check that in all the announced views the output equals
1 and all signatures are valid, and that for all pairs (j, k) ∈ J 2: the incoming
messages in p̂j ’s view match the outgoing messages in p̂k’s view. If any of these
checks fails then the protocol aborts with pi, otherwise, every party outputs
(verified, x, p).

R(Ri, x) for potentially different public inputs x. The corresponding sampling
functionality is derived as follows: it first samples R and subsequently it emu-
lates, for each pi ∈ P , q independent setups for Π1scp (for the same random value
Ri and relation Ri). Given such a sampling functionality the protocol Πscp for
unconditionally securely realizingFscp with identifiable abort is straight-forward:
The parties receive the random strings R1, . . . , Rn along with q proof setups for
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each party. Then, for each invocation of the prove phase, party pi executes the
prove phase of protocol Π1scp using the corresponding proof setup.6

Theorem 3. Protocol Πscp(P ,D,R, q) unconditionally securely realizes the
functionality Fscp(P ,D,R, q) with identifiable abort.

The proof follows from the security of Π1scp by a direct application of the
universal composition with joint state (JUC) theorem [8].

4.3 The “Semi-honest to Malicious with Abort” Compiler

We are now ready to describe our main compiler, denoted as C(·) which compiles
any given protocol πsh secure in the semi-honest model using (only) correlated
randomness into a protocol C(πsh) which is secure with abort in the (malicious)
correlated randomness model.7

We make the following simplifying assumptions on the semi-honest protocol
πsh which are without loss of generality, since all existing semi-honest protocols
in the correlated randomness model can be trivially turned to satisfy them:

We assume that πsh has a known (polynomial) upper bound Rndπsh
on the

number of rounds, where in each round every party sends a single message.

We assume that πsh is deterministic. Any πsh can be turned into such by
having the setup include for each pi ∈ P a uniformly random and indepen-
dent string ri that pi uses as his coins.

Finally, we assume that πsh starts off by having every party send to all
parties a one-time pad encryption of his input xi using as key the first |xi|
bits from ri (those bits are not reused). Clearly, this modification does not
affect the security of πsh as the simulator can easily simulate this step by
broadcasting a random string. Looking ahead in the proof, this will allow
the simulator to extract the corrupted parties’ inputs.

The compiler C(πsh) uses the protocol Πscp as follows: Denote by Rsh =
(Rsh

1 , . . . , Rsh
n ) the setup used by πsh and by Dsh the corresponding distribution.

Let also Rπsh,i denote the relation corresponding to pi’s next message function.
More concretely, if hπsh,i ∈ {0, 1}∗ denotes the history of messages seen by pi and
m is a message, then Rπsh,i((hπsh,i,m), Ri) = 1 if m is the next message of pi in
an execution with history hπsh, and setup Ri, otherwise Rπsh,i((hπsh,i,m), Ri) =
0. The compiled protocol C(πsh) starts by executing the setup-commit phase
of protocol Πscp(P ,Dsh,R = (Rπsh,1, . . . ,Rπsh,n), Rndπsh

). Subsequently, every
pi ∈ P executes his πsh instructions, where in each round instead of sending its
messagem over the point-to-point channel, pi broadcastsm and proves, using the
proof phase of protocolΠscp, that Rπsh,n((hπsh,,m), Ri) = 1. If Πscp aborts with
some pi then our compiler also aborts with pi. Otherwise, the security of Πscp

ensures that every pi followed πsh for the given setup; therefore, security of our

6 Recall that we implicitly assume that all messages generated from the setup have
unique identifiers so that the parties know which ones to use for which proof.

7 Note that C(πsh) uses broadcast which can be trivially realized by a protocol as-
suming appropriate correlated randomness, e.g., [40].



380 Y. Ishai, R. Ostrovsky, and V. Zikas

compiler follows from the security of πsh. Note that the corresponding sampling
functionality for C(πsh) is computable in time polynomial in the running time

of the sampling functionality FDsh

Corr for protocol πsh.

Theorem 4. Let πsh be a protocol as above which unconditionally UC realizes
a functionality F in the presence of a semi-honest adversary in the FDsh

Corr-hybrid
(correlated randomness) model. Then the compiled protocol C(πsh) uncondition-
ally UC realizes the functionality F with identifiable abort in the presence of a
malicious adversary in the F scp

Corr-hybrid (correlated randomness) model.

Note that any (semi-honest) OT-hybrid protocol can be cast as a protocol in
the correlated randomness model by precomputing the OT. Hence, by instan-
tiating πsh with any semi-honest OT hybrid protocol. e.g., [20], we obtain the
following corollary.

Corollary 1. There exists a protocol which unconditionally UC realizes any
well-formed [7] multi-party functionality with identifiable abort.

The question of feasibility of unconditional security with identifiable abort
from correlated randomness has been open even in the simpler standalone
model [21,19,4]. As a corollary of Theorem 4 one can derive a positive state-
ment also for that model.

Corollary 2 (Stand-alone security with identifiable abort). There exists
a protocol which unconditionally securely evaluates any given function f with
identifiable abort in the stand alone correlated randomness model.

5 SFE Using Black-Box OT

In this section, we provide a generic MPC protocol which is (computationally)
secure with identifiable abort making black-box use of an (adaptively) secure
UC protocol for one-out-of two oblivious transfer FOT (see [39] for a formal
description) in the Common Reference String (CRS) model.

The high-level idea of our construction is the following: as we have already
provided an unconditional implementation of ID-MPC based (only) on correlated
randomness, it suffices to provide a protocol Πcsp

Corr with the above properties for
implementing the corresponding sampling functionality F scp

Corr. Indeed, given such
a protocol Πcsp

Corr, we can first use it to compute the setup needed for C(πsh) (for
any appropriate semi-honest protocol πsh, e.g., the one from [21]) and then use
πsh to evaluate any given functionality; if either the setup generation or πsh

aborts with some pi then the construction also aborts with pi.

In the remainder of this section we describe Π
F scp

Corr
Corr . In fact, we provide a proto-

col ΠD
Corr which allows to implement any sampling functionality FD

Corr for a given
efficiently computable distribution D. The key idea behind our construction in
the following: as the functionality FD

Corr receives no (private) inputs from the
parties, we can have every party commit to its random tape, and then attempt
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to realize FD
Corr by a protocol which is secure with (non-identifiable) abort; if the

evaluation aborts then the parties open the commitments to their random tapes
and use these tapes to detect which party cheated. Note that, as the parties
have no private inputs, announcing their views does not violate privacy of the
computation.

For the above idea to work we need to ensure that deviation from the honest
protocol can be consistently detected by every party (upon opening the commit-
ted random coins). Therefore, we define the following P-verifiability property.
For any given execution of a protocol Π , we say that a party pi correctly exe-
cuted Π with respect to (xi, ri) (up to round ρ) in the CRS model if pi sent all
his messages as instructed by Π on this input xi, random coins ri and the com-
mon reference string C. Let Π be a protocol in the CRS model which starts by
having every party commit to its random tape. Π is P-verifiable if there exists
a deterministic polynomial algorithm D, called the detector, with the following
property: given the CRS, the inputs of the parties, their committed randomness,
and the view of any honest pj , D outputs the identity of a party pi ∈ P who did
not correctly execute Π (if such a party exists).

In the remainder of this section we provide the details of our protocol. As
our protocols makes black-box use of a UC secure 12OT protocol in the CRS
model, for it to be P-verifiable the underlying 12OT protocol needs to also be
P-verifiable. Therefore, in the following, first, we show how to obtain from any
given OT protocol ΠOT a P-verifiable OT protocol ΠVOT (making black-box use
of ΠOT), and, subsequently, we show how to use ΠVOT to transform an OT-hybrid
SFE protocol into a P-verifiable SFE protocol in the CRS model. Finally, at the
end of the current section, we show how to use our P-verifiable SFE protocol
to implement any sampling functionality FD

Corr with identifiable abort making
black-box use of ΠOT.

P-Verifiable OT. Let ΠOT be a (two-party) protocol which adaptively UC
securely realizes FOT, among parties p1 and p2 in the CRS model (e.g., [10,39]).
For i ∈ {1, 2} denote by f i

ΠOT
the next message function of pi defined as follows: let

Viewi be the view of party pi at the beginning of round ρ in an execution ofΠOT;
8

then f i
ΠOT

(Viewi) = m is the message which pi sends in round ρ of protocol ΠOT,
given that his current view is Viewi (if ρ is the last round, then, by default, m =
(out, y), where y is pi’s output). Observe that fΠOT

is a deterministic function.
Without loss of generality, assume that protocol ΠOT has a known number of
rounds RndΠOT

, where in each round only one of the parties p1 and p2 sends a
message (from {0, 1}k). Let, also, FP

OT denote the multi-party extension of FOT,
in which parties other than p1 and p2 provide a default input and receive a default
output, i.e., FP

OT corresponds to the function fP
ot
((x0, x1), b, λ, . . . , λ) = (⊥, xb,⊥

,⊥). We describe a multi-party P-verifiable protocolΠVOT which securely realizes
the functionalityFP

OT.
The protocol ΠVOT works as follows: initially, every party commits to its ran-

dom tape. Subsequently, the parties execute their ΠOT instructions with the

8 Recall that Viewi consists of the inputs and randomness of pi along with all mes-
sages received up to round r.
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following modification: whenever, for i, j ∈ {1, 2}, pi is to send a message
m ∈ {0, 1}k to pj , he chooses the first k unused bits from his random tape
(denote by K the string resulting by concatenating these bits), broadcast a one-
time pad encryption c = m ⊕ K of m with key K, and privately opens the
corresponding commitments towards pj . If the opening fails then pj publicly
complains and pi replies by broadcasting K; pj recovers m by decrypting c.
Clearly, the above modification does not affect the security of ΠOT (as all keys
are chosen using fresh and independent randomness), therefore ΠVOT securely re-
alizes FP

OT. Additionally, the above protocol is P-verifiable: indeed, because the
entire transcript is broadcasted, the view of any party contains all information
needed to check whether or not the transcript is consistent with any given set of
inputs and committed randomness. For simplicity, in the following we state the
security in the {CRS, F̂com}-hybrid model i.e., where, in addition to the CRS
the protocol can make ideal calls to a (one-to-many) commitment functionality
F̂com which behaves exactly as Fcom but allows both public and private opening
of the committed value. 9 We point out that all security statements in the lemma
are with respect to an adaptive adversary.

Lemma 1. Assuming ΠOT UC securely realizes the two-party 12OT functional-
ity FOT in the CRS model, the protocol ΠVOT (defined above) satisfies the fol-
lowing properties: (security) ΠVOT UC securely realizes the multi-party extension

FP
OT of FOT (defined above) in the {CRS, F̂com}-hybrid model; (P-verifiability)

ΠVOT is P-verifiable. Furthermore, ΠVOT makes black-box use of (the next-message
function of) ΠOT.

P-Verifiable MPC with (Non-identifiable) Abort. The next step is to add
verifiability to a given adaptively UC secure OT-hybrid MPC protocol ΠFOT .
Wlog, we assume that ΠFOT only makes calls to FOT and to a broadcast channel.
(Indeed, FOT can be used to also implement secure bilateral communication as
follows: to send message x, the sender inputs (x, x) and the receiver input b = 1.)

Denote by ΠΠVOT the version of ΠFOT which starts off by having every party
publicly commit to its random tape and has all calls to FOT replaced by invo-
cations of protocol ΠVOT instantiated with fresh/independent randomness. More
precisely, ΠΠVOT is derived from ΠFOT as follows:

Initially every party commits to its random tape using one-to-many com-
mitments.

All calls to FOT (including the ones used as above to implement bilateral
communication) are replaced by invocations of protocol ΠVOT. (The random
coing do not need to be committed again; the above commitments are used
in the invocations of ΠVOT.)

For each party pi a specific part of pi’s random tape is associated with each
invocation of ΠVOT. This part is used only in this invocation and nowhere
else in the protocol.

9 We can use any of the CRS-based commitment protocols [6,7] to instantiate F̂com.
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The following lemma states the achieved security, where as in Lemma 1 all
security statements are with respect to an adaptive adversary. The proof follows
from the security of ΠFOT and the security/P-verifiability of ΠVOT.

Lemma 2. Let F be a UC functionality and ΠFOT be a protocol which uncondi-
tionally UC securely realizes F in the FOT-hybrid model with (non-identifiable)
abort, and for a protocol ΠOT which UC securely realizes FOT in the CRS model,
let ΠVOT be the corresponding P-verifiable protocol (as in Lemma 1). Then pro-
tocol ΠΠVOT , defined above, satisfies the following properties: (security) ΠΠVOT

UC securely realizes F with (non-identifiable) abort in the {CRS, F̂com}-hybrid
model; (P-verifiability) Protocol ΠΠVOT is P-verifiable. Furthermore, ΠΠVOT makes
black-box use of (the next-message function of) ΠOT.

The Setup Compiler. We next describe the protocol ΠD
Corr which securely

realizes any given sampling functionality FD
Corr (for an efficiently computable

distribution D), while making black-box use of a UC secure OT-protocol in the
CRS model and ideal calls to F̂com. The idea is to, first, have every party commits
to its random coins and then invoke ΠΠVOT to securely realize functionality FD

Corr

using these coins; if the evaluation aborts, then the parties open their committed
randomness and use the detector D to figure out which party cheated. Because
the parties have no inputs, opening their randomness does not violate privacy.

Unfortunately, the above over-simplistic protocol is not simulatable. Intu-
itively, the reason is that ΠΠVOT might abort after the adversary has seen his
outputs of FD

Corr, in which case the simulator needs to come up with random
coins for the simulated honest parties which are consistent with the adversary’s
view. We resolve this by the following technical trick, which ensures that S needs
to invoke FD

Corr only if the computation of ΠΠVOT was successful: instead of di-
rectly computing FD

Corr, we use ΠΠVOT to realize the functionality 〈FD
Corr〉 which

computes an authenticated (by means of i.t. signatures) n-out-of-n secret shar-
ing of the output of FD

Corr. This sharing is then reconstructed by having every
party announce its share. The authenticity of the output sharing ensures that ei-
ther the reconstruction will succeed or a party that did not announce a properly
signed share will be caught, in which case the protocol identifies this party.

Theorem 5. Assuming ΠOT, ΠVOT, and ΠΠVOT as in Lemma 2, the protocol ΠD
Corr

securely realizes FD
Corr with identifiable abort in the CRS model while making

black-box use of ΠOT and ideal calls to the commitment functionality F̂com.

By combining Theorems 4 and 5 with the universal composition theorem, and
instantiating ΠΠVOT with the IPS protocol [32] we obtain the following corollary.

Corollary 3. There exists a protocol which UC realizes any given functionality
with identifiable abort, while making black-box use of a protocol for UC realizing
FOT and a protocol for UC realizing F̂com in the CRS model.

The Stand-alone Model. The proof of Theorem 5 does not use the equivo-
cality of the commitments. Therefore, assuming an adaptive 12OT protocol and
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extractable commitments, it can be carried over to the stand-alone setting. Such
extractable commitments can be constructed by making a black-box use of a
one-way function [38], which in turns can be obtained via a black-box use of
OT [27]. Thus, we get the following result for the stand-alone model (see full
version for proof).

Lemma 3 (Stand-alone). There exists a protocol which securely realizes any
given functionality with identifiable abort in the plain model making black-box
use of an adaptively secure OT protocol in the plain model.
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Abstract. We introduce and study the notion of non-interactive se-
cure multiparty computation (NIMPC). An NIMPC protocol for a func-
tion f(x1, . . . , xn) is specified by a joint probability distribution R =
(R1, . . . , Rn) and local encoding functions Enci(xi, ri), 1 ≤ i ≤ n. Given
correlated randomness (r1, . . . , rn) ∈R R, each party Pi, using its in-
put xi and its randomness ri, computes the message mi = Enci(xi, ri).
The messages m1, . . . , mn can be used to decode f(x1, . . . , xn). For a
set T ⊆ [n], the protocol is said to be T -robust if revealing the messages
(Enci(xi, ri))i�∈T together with the randomness (ri)i∈T gives the same in-
formation about (xi)i�∈T as an oracle access to the function f restricted
to these input values. Namely, a coalition T can learn no more than the
restriction of f fixing the inputs of uncorrupted parties, which, in this
non-interactive setting, one cannot hope to hide. For 0 ≤ t ≤ n, the
protocol is t-robust if it is T -robust for every T of size at most t and it is
fully robust if it is n-robust. A 0-robust NIMPC protocol for f coincides
with a protocol in the private simultaneous messages model of Feige et
al. (STOC 1994).

In the setting of computational (indistinguishability-based) security,
fully robust NIMPC is implied by multi-input functional encryption, a
notion that was recently introduced by Goldwasser et al. (Eurocrypt
2014) and realized using indistinguishability obfuscation. We consider
NIMPC in the information-theoretic setting and obtain unconditional
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– Group products. For every (possibly non-abelian) finite group G,
the iterated group product function f(x1, . . . , xn) = x1x2 . . . xn ad-
mits an efficient, fully robust NIMPC protocol.

– Small functions. Every function f admits a fully robust NIMPC
protocol whose complexity is polynomial in the size of the input
domain (i.e., exponential in the total bit-length of the inputs).

– Symmetric functions. Every symmetric function f : Xn → Y ,
where X is an input domain of constant size, admits a t-robust
NIMPC protocol of complexity nO(t). For the case where f is a w-
out-of-n threshold function, we get a fully robust protocol of com-
plexity nO(w).

On the negative side, we show that natural attempts to realize NIMPC
using private simultaneous messages protocols and garbling schemes from
the literature fail to achieve even 1-robustness.

Keywords: secure multiparty computation, obfuscation, private simul-
taneous messages protocols, randomized encoding of functions, garbling
schemes, multi-input functional encryption.

1 Introduction

We introduce and study the notion of non-interactive secure multiparty com-
putation (NIMPC). This notion can be viewed as a common generalization of
several previous notions from the literature, including obfuscation, private si-
multaneous messages protocols, and garbling schemes. It can also be viewed as
a simpler and weaker variant of the recently introduced notion of multi-input
functional encryption. Before we define the new notion and discuss its relations
with these previous notions, we start with a motivating example.

Consider the following non-interactive scenario for secure multiparty com-
putation. Suppose that each of n “honest but curious” parties holds an input
xi ∈ {0, 1}, and the parties wish to conduct a vote by computing the major-
ity value of their inputs. Moreover, the parties want to minimize interaction by
each independently sending only a single message to each other party.1 It is clear
that in this scenario, without any setup, no meaningful notion of security can be
achieved: each party can efficiently extract the input xi from the message of the
corresponding party by just simulating incoming messages from all other parties
on inputs xj such that

∑
j �=i xj =  n/2!.

The question we ask is whether it is possible to get better security by allowing
a correlated randomness setup. That is, the parties get correlated random strings
(r1, . . . , rn) that are drawn from some predetermined distribution. Such a setup
is motivated by the possibility of securely realizing it during an offline prepro-
cessing phase, which takes place before the inputs are known (see, e.g. [24], for
further motivation). The above attack fails in this model, since a party can no

1 Alternative motivating scenarios include each party broadcasting a single message,
posting it on a public bulletin board such as a Facebook account, or sending a single
message to an external referee who should learn the output.
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longer simulate messages coming from the other parties without knowing their
randomness. On the other hand, it is still impossible to prevent the following
generic attack: any set of parties T can simulate the messages that originate from
parties in T on any given inputs. This allows the parties of T to learn the output
on any set of inputs that is consistent with the other parties’ inputs. In the case
of computing majority, this effectively means that the parties in T must learn
the sum of the other inputs whenever it is in the interval [ n/2!−|T |,  n/2+1!].
When T is small, this would still leave other parties with a good level of security.
Hence, our goal is to obtain protocols that realize this “best possible” security
while completely avoiding interaction.

The above discussion motivates the following notion of non-interactive secure
multiparty computation (NIMPC).AnNIMPCprotocol for a functionf(x1, . . . , xn)
is defined by a joint probability distribution R = (R1, . . . , Rn) and local encoding
functions Enci(xi, ri), where 1 ≤ i ≤ n. For a set T ⊆ [n], the protocol is said to
be T -robust (with respect to f) if revealing themessages (Enci(xi, ri))i�∈T together
with the randomness (ri)i∈T , where (r1, . . . , rn) is sampled fromR, gives the same
information about (xi)i�∈T as an oracle access to the function f restricted to these
input values. For 0 ≤ t ≤ n, the protocol is said to be t-robust if it is T -robust for
every T of size at most t, and it is said to be fully robust if it is n-robust.

Recent work on multi-input functional encryption [13] implies that the
existence of a fully robust NIMPC protocol for general functions, with indis-
tinguishability based security, is equivalent to indistinguishability obfuscation
(assuming the existence of one-way functions). Combined with the recent break-
through on the latter problem [11], this gives candidate NIMPC protocols for
arbitrary polynomial-time computable functions. (See Section 1.2 for discussion
of these and other related works.) The above positive result leaves much to be
desired in terms of the underlying intractability assumptions and the poten-
tial for being efficient enough for practical use. Motivated by these limitations,
we consider the goal of realizing NIMPC protocols with information-theoretic
security for special cases of interest.

1.1 Our Results

We obtain the following unconditional positive results on NIMPC.

Group products. For every (possibly non-abelian) finite group G, the iter-
ated group product function fG(x1, . . . , xn) = x1x2 . . . xn admits an efficient,
fully robust NIMPC protocol. The construction makes a simple use of Kilian’s
randomization technique for iterated group products [26]. While the security
analysis in the case of abelian groups is straightforward (see Example 6), the
analysis for the general case turns out to be more involved and is deferred to
the full version of this paper. We note that this result cannot be combined with
Barrington’s Theorem [4] to yield NIMPC for NC1. For this, one would need to
assign multiple group elements to each party and enforce nontrivial restrictions
on the choice of these elements. In fact, efficient information-theoretic NIMPC
for NC1 is impossible, even with indistinguishability-based security, unless the
polynomial-time hierarchy collapses [15] (see Section 1.2).
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Small functions.We show that every function f admits a fully robust NIMPC
protocol whose complexity is polynomial in the size of the input domain (i.e.,
exponential in the total bit-length of the inputs). This result can provide a light-
weight solution for functions defined over an input domain of a feasible size. This
result is described in Section 3. The technique used for obtaining this result also
yields efficient protocols for computing OR of n bits and, more generally, w-out-
of-n threshold functions where either w or n− w are constant.

Symmetric functions. Finally, we show that every symmetric function h :
Xn → Y , whereX is an input domain of constant size, admits a t-robust NIMPC
of complexity nO(t). Thus, we get a polynomial-time protocol for any constant t.
More generally, our solution applies to any branching program over an abelian
group G, that is, a function h : X1 × · · · ×Xn → Y of the form h(x1, . . . , xn) =
f(
∑n

i=1 xi) for an arbitrary function f : G → Y (the complexity in this case is
|G|O(t)). Useful special cases include the above voting example, its generalization
to multi-candidate voting (where the output is a partially ordered list such as
“A > B = C > D”), as well as natural bidding mechanisms. We note that while
this construction is only t-robust, larger adversarial sets T can only learn the
sum

∑
i�∈T xi (e.g., the sum of all honest votes in the majority voting example) as

opposed to all the inputs of honest parties. This construction is more technically
involved than the previous constructions. A high level overview of a special case
of the construction is given in Section 4, and a formal treatment of the general
case appears in the full version of this paper. In the full version we also describe
a more efficient variant of the construction for the case t = 1.

Inadequacy of Existing Techniques. On the negative side, in the full version
we show that natural attempts to realize NIMPC using PSM protocols or gar-
bling schemes from the literature fail to achieve even 1-robustness. This holds
even for simple function classes such as symmetric functions.

Applications. Our main motivating application is for scenarios involving secure
computations without interaction, such as the one described above. While in the
motivating discussion we assumed the parties to be honest-but-curious, offering
protection against malicious parties in the above model is in some sense easier
than in the standard MPC model. Indeed, malicious parties pose no additional
risk to the privacy of the honest parties because of the non-interactive nature of
the protocol. Moreover, a reasonable level of correctness against malicious parties
can be achieved via the use of pairwise authentication (e.g., in the case of binary
inputs, the correlated randomness setup may give each party MAC-signatures
on each of its two possible messages with respect to the verification key of each
other party). In the case where multiple parties receive an output, adversarial
parties can use their rushing capabilities to make their inputs depend on the
information learned on other inputs, unless some simultaneous broadcast mech-
anism is employed. For many natural functions (such as the majority function)
this type of rushing capability in the ideal model is typically quite harmless,
especially when T is small. Moreover, this issue does not arise at all in the case
where only one party (such as an external server) receives an output.
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The goal of eliminating simultaneous interaction in secure MPC protocols
was put forward by Halevi, Lindell, and Pinkas (HLP) [20,17]. In contrast to the
HLP model, which requires the parties to sequentially interact with a central
server, our protocols are completely non-interactive and may be applied with
or without a central server. While HLP assume a standard PKI and settle for
computational security, we allow general correlated randomness which, in turn,
also allows for information-theoretic security.

The NIMPC primitive can also be motivated by the goal of obtaining garbling
schemes [30,5] or randomized encodings of functions [22,1] that are robust to
leakage of secret randomness. Indeed, in Yao’s garbled circuit construction, the
secrecy of the input completely breaks down if a pair of input keys is revealed.
In the full version of this paper, we show that this is also the case for other
garbling schemes and randomized encoding techniques from the literature. The
use of t-robust NIMPC can give implementations of garbled circuits and related
primitives that are resilient to up to t fully compromised pairs of input keys.

While we did not attempt to optimize the concrete efficiency of our con-
structions, they seem to be reasonably practical for some natural application
scenarios. To give a rough idea of practical feasibility, consider a setting of non-
interactive MPC where there are n clients, each holding a single input bit, who
send messages to a central server that computes the output. For n = 20, our
fully robust solution for small functions requires each client to send roughly 6MB
of data and store a comparable amount of correlated randomness. In the case of
computing a symmetric function, such as the majority function from the above
motivating example, one can use an optimized protocol, which appears in the
full version of this paper, to get a 1-robust solution with the same message size
for n ≈ 1400 clients (offering full protection against the server and single client
and partial protection against larger collusions).

In contrast to the above, solutions that rely on general obfuscation techniques
are currently quite far from being efficient enough for practical use. We leave
open the question of obtaining broader or stronger positive results for NIMPC,
either in the information-theoretic setting or in the computational setting with-
out resorting to general-purpose obfuscation techniques.

1.2 Related Work

In the following, we discuss connections between NIMPC and several related
notions from the literature.

Relation with Obfuscation. As was recently observed in the related context
of multi-input functional encryption (see below), NIMPC generalizes the notion
of obfuscation. The goal of obfuscation is to provide an efficient randomized
mapping that converts a circuit (or “program”) from a given class into a func-
tionally equivalent circuit that hides all information about the original circuit
except its input-output relation. An obfuscation for a given circuit class C re-
duces to a fully robust NIMPC for a universal function UC for C. Concretely, UC
takes two types of inputs: input bits specifying a circuit C ∈ C, and input bits
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specifying an input to this circuit. An NIMPC protocol for UC, in which each bit
is assigned to a different party, gives rise to the following obfuscation scheme.
The obfuscation of a circuit C consists of the message of each party holding a
bit of C, together with the randomness of the parties holding the input bits for
C. By extending the notion of NIMPC to apply to a class of functions (more
accurately, function representations), as we do in the technical sections, it pro-
vides a more direct generalization of obfuscation that supports an independent
local restriction of each input bit.

In contrast to obfuscation, NIMPC is meaningful and nontrivial to realize even
when applied to a single function f (rather than a class of circuits), and even
when applied to efficiently learnable functions (in particular, finite functions).
Indeed, the requirement of hiding the inputs of uncorrupted parties is hard to
satisfy even in such cases.

The relation with obfuscation implies limitations on the type of results on
NIMPC one can hope to achieve, as it rules out fully robust protocols with
simulation-based security for sufficiently expressive circuit classes [3]. Moreover,
it follows from the results of [15] that some functions in NC1 (in fact, even some
families of CNF formulas) do not admit an efficient and fully robust information-
theoretic NIMPC protocol, even under an indistinguishability-based definition,
unless the polynomial-time hierarchy collapses. However, these negative results
on obfuscation do not rule out general solutions with indistinguishability-based
security or with a small robustness threshold t, nor do they rule out fully robust
solutions with simulation-based security for simple but useful function classes.

Multi-input Functional Encryption. NIMPC can be viewed as a simplified
and restricted form ofmulti-input functional encryption, a generalization of func-
tional encryption [29,18,28,6] that was very recently studied in [13] Multi-input
functional encryption is stronger than NIMPC in several ways, the most impor-
tant of which is that it requires the correlated randomness to be reusable for
polynomially many function evaluations. It was shown in [13] that multi-input
functional encryption for general circuits can be obtained from indistinguishabi-
lity obfuscation and a one-way function. Combined with the recent breakthrough
on obfuscation [11], this gives plausible candidates for indistinguishability-based
multi-input functional encryption, and hence also fully robust NIMPC, for gen-
eral circuits. This general positive result can only achieve computational security
under strong assumptions. In contrast, by only requiring a one-time use of the
correlated randomness, the notion of NIMPC becomes meaningful even in the
information-theoretic setting considered in this work.

Private Simultaneous Messages Protocols. A 0-robust NIMPC protocol for
f coincides with a protocol for f in the private simultaneous messages (PSM)
model of Feige, Kilian, and Naor [10,21]. In this model for non-interactive se-
cure computation, the n parties share a common source of randomness that is
unknown to an external referee, and they wish to communicate f(x1, . . . , xn)
to the referee by sending simultaneous messages depending on their inputs and
common randomness. From the messages it received, the referee should be able
to recover the correct output but learn no additional information about the
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inputs. (PSM protocols in which each party has a single input bit are also referred
to as decomposable randomized encodings [25] or projective garbling schemes [5].)
While standard PSM protocols are inherently insecure when the referee colludes
with even a single party, allowing general correlated randomness (rather than
common randomness) gets around this limitation. A natural approach for obtain-
ing NIMPC protocols from PSM protocols is to let the correlated randomness
of each party include only the valid messages on its possible inputs. In the full
version of this paper, we show that applying this methodology to different PSM
protocols and garbling schemes from the literature typically fails to offer even
1-robustness. We also show a case where this methodology does work – using
Kilian’s PSM protocol for computing the iterated group product [26] yields a
fully robust protocol.

Bounded-Collusion Functional Encryption. In the related context of
(single-input) functional encryption, Gorbunov et al. [16] have shown how to
achieve security against bounded collusions by combining MPC protocols and
randomized encoding techniques. Similarly, bounded-collusion identity-based en-
cryption is easier to construct than full-fledged identify-based encryption [9,14].
We do not know how to apply similar techniques for realizing t-robust NIMPC.
The difference is likely to be inherent: while the positive results in [16,9,14] apply
even for collusion bounds t that are bigger than the security parameter, a similar
general result for NIMPC would suffice to imply general (indistinguishability)
obfuscation.

2 Preliminaries

Notation 1. For a set X = X1× · · ·×Xn and T ⊆ [n] we denote XT �
∏

i∈T Xi.
For x ∈ X , we denote by xT the restriction of x to XT , and for a function
h : X → Ω, a subset T ⊆ [n], and xT ∈ XT , we denote by h|T ,xT

: XT → Ω the

function h where the inputs in XT are fixed to xT .

An NIMPC protocol for a family of functions H is defined by three algo-
rithms: (1) a randomness generation algorithm Gen, which given a description
of a function h ∈ H generates n correlated random inputs r1, . . . , rn, (2) a local
encoding function Enci (1 ≤ i ≤ n), which takes an input xi and a random input
ri and outputs a message, and (3) a decoding algorithm Dec that reconstructs
h(x1, . . . , xn) from the n messages. Formally:

Definition 2 (NIMPC: Syntax and Correctness). Let X1, . . . ,
Xn,R1, . . . ,Rn, M1, . . . ,Mn and Ω be finite domains. Let X � X1 × · · · × Xn

and let H be a family of functions h : X → Ω. A non-interactive secure multi-
party computation (NIMPC) protocol for H is a triplet Π = (Gen,Enc,Dec)
where

– Gen : H → R1 × · · · × Rn is a randomized function,
– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :

Xi × Ri → Mi,
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– Dec : M1×· · ·×Mn → Ω is a deterministic function satisfying the following
correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr[r = (r1, . . . , rn) ← Gen(h) : Dec(Enc(x, r)) = h(x)] = 1,

where Enc(x, r) � (Enc1(x1, r1), . . . ,Encn(xn, rn)).

The communication complexity of Π is the maximum of log |R1|, . . . , log |Rn|,
log |M1|, . . . , log |Mn|.

We next define the notion of t-robustness for NIMPC, which informally states
that every t parties can only learn the information they should. Note that in our
setting, a coalition T of size t can compute many outputs from the messages of
T , namely, they can repeatedly encode any inputs for the coalition T and decode
h with the new encoded inputs and the original encoded inputs of T . In other
words, they have oracle access to h|T ,xT

(as defined in Notation 1). Robustness

requires that they learn no other information.

Definition 3 (NIMPC: Robustness). For a subset T ⊆ [n], we say that
an NIMPC protocol Π for H is T -robust if there exists a randomized func-
tion SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT , we have
SimT (h|T ,xT

) ≡ (MT , RT ), where R and M are the joint randomness and mes-

sages defined by R ← Gen(h) and Mi ← Enci(xi, Ri).
For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every

T ⊆ [n] of size |T | ≤ t. We say that Π is fully robust (or simply refer to Π as an
NIMPC for H) if Π is n-robust. Finally, given a concrete function h : X → Ω,
we say that Π is a (t-robust) NIMPC protocol for h if it is a (t-robust) NIMPC
for H = {h}.

As the same simulator SimT is used for every h ∈ H and the simulator has
only access to h|T ,xT

, NIMPC hides both h and the inputs of T (to the extent

possible).

Remark 4. An NIMPC protocol Π is 0-robust if it is ∅-robust. In this case, the
only requirement is that the messages (M1, . . . ,Mn) reveal h(x) and nothing
else. A 0-robust NIMPC for h corresponds to a private simultaneous messages
(PSM) protocol in the model of [10,21]. Note that in a 0-robust NIMPC one
can assume, without loss of generality, that the n outputs of Gen are identical.
In contrast, it is easy to see that in a 1-robust NIMPC of a nontrivial h more
general correlations are required.

While the above definitions treat functions h as finite objects and do not refer
to computational complexity, our constructions are computationally efficient in
the sense that the total computational complexity is polynomial in the com-
munication complexity. Furthermore, with the exception of the protocol from
Lemma 9, the same holds for the efficiency of the simulator SimT (viewing the
latter as an algorithm having oracle access to h|T ,xT

). When taking computa-

tional complexity into account, the function Gen should be allowed to depend
not only on h itself but also on its specific representation (such as a branching
program computing h).
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Remark 5. (Statistical and computational variants.) In this work, we con-
sider NIMPC protocols with perfect security, as captured by Definition 3. How-
ever, one could easily adapt the above definitions to capture statistical security
and computational security. In the statistical case, we let Gen receive a secu-
rity parameter κ as an additional input, and require that the two distributions
in Definition 3 be (2−κ)-close in statistical distance, rather than identical. In
the computational case, we have two main variants corresponding to the two
main notions of obfuscation from the literature. In both cases, we require that
the two distributions in Definition 3 be computationally indistinguishable. The
difference is in the power of the simulator. If the simulator is unbounded, we
get an indistinguishability-based NIMPC for which a general construction is im-
plied by indistinguishability obfuscation [11,13]. If the simulator is restricted
to probabilistic polynomial time, we get the stronger “virtual black-box” vari-
ant to which the impossibility results from [3] apply and one can only hope to
get general positive results in a generic model [7,2] or using tamper-proof hard-
ware [19]. We note, however, that the latter impossibility results only apply to
function classes that are rich enough to implement pseudo-random functions. In
particular, they do not apply to efficiently learnable classes for which obfuscation
is trivial. NIMPC is meaningful and nontrivial even in the latter case.

As a simple example, we present an NIMPC protocol for summation in an
abelian group.

Example 6. Let G be an abelian group, and define h : Gn → G by
h(x1, . . . , xn) = x1+ · · ·+xn (where the sum is in G). We next define a fully ro-
bust NIMPC for h. Algorithm Gen chooses n−1 random elements r1, . . . , rn−1 in
G, where each element is chosen independently with uniform distribution, and
computes rn = −

∑n−1
i=1 ri. The output of Gen is (r1, . . . , rn). Algorithm Enc

computes Enci(xi, ri) = xi+ ri � mi. Algorithm Dec simply sums the n outputs
of Enc, that is, computes

∑n
i=1 mi.

As
∑n

i=1 mi =
∑n

i=1 xi +
∑n

i=1 ri, and
∑n

i=1 ri = 0, correctness follows. We
next show that this construction is fully robust. Fix a set T ⊆ [n] and define
the simulator SimT for T . On inputs xT , it queries h|T ,xT

(0|T |) and gets sum =∑
i∈T xi. The simulator then chooses n− 1 random elements ρ1, . . . , ρn−1 in G,

each element is chosen independently with uniform distribution, and computes
ρn = sum−

∑n−1
i=1 ρi. The output of the simulator is ((ρi)i∈T , (ρi)i∈T ).

The following easily verifiable claim states that for functions outputting more
than one bit, we can compute each output bit separately. Thus, from now on we
will mainly focus on boolean functions.

Claim 7. Let X � X1 × · · · × Xn, where X1, . . . ,Xn are some finite domains.
Fix an integer m > 1. Suppose H is a family of boolean functions h : X →
{0, 1} admitting an NIMPC protocol with communication complexity S. Then,
the family of functions Hm = {h : X → {0, 1}m |h = h1 ◦ . . . ◦ hm, hi ∈ H}
admits an NIMPC protocol with communication complexity S ·m.
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2.1 NIMPC with an Output Server

While an NIMPC protocol Π as defined above can be viewed as an abstract
primitive, in the following it will be convenient to describe our constructions in
the language of protocols. Such a protocol involves n players P1, . . . , Pn, each
holding an input xi ∈ Xi, and an external “output server,” a player P0 with no
input. The protocol may have an additional input, a function h ∈ H. We will
let P(Π) denote a protocol that proceeds as follows.

Protocol P(Π)(h)

– Offline preprocessing: Each player Pi, 1 ≤ i ≤ n, receives the random
input Ri � Gen(h)i ∈ Ri.

– Online messages: On input Ri, each player Pi, 1 ≤ i ≤ n, sends the
message Mi � Enci(xi, Ri) ∈ Mi to P0.

– Output: P0 computes and outputs Dec(M1, . . . ,Mn).

We informally note the relevant properties of protocol P(Π):

– For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1,
the value h(x1, . . . , xn).

– Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi}i∈T ∪{P0}
can simulate their view of the protocol (i.e., the random inputs {Ri}i∈T and
the messages {Mi}i∈T ) given oracle access to the function h restricted by
the other inputs (i.e., h|T ,xT

).

– Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but
h(x1, . . . , xn).

In Appendix A we give a more general treatment of non-interactive MPC,
including security definitions and extensions to the case where multiple parties
may have different outputs and to the case of security against malicious parties.

3 An Inefficient NIMPC for Arbitrary Functions

The main purpose of this section is to present an NIMPC protocol for the set
of all functions (though with exponential communication complexity). It will be
useful to first present such a protocol for indicator functions. For reasons to be
clarified later on, it will be convenient to include the zero-function.

Definition 8. Let X be a finite domain. For n-tuple a = (a1, . . . , an) ∈ X , let
ha : X → {0, 1} be the function defined by ha(a) = 1, and ha(x) = 0 for all
a �= x ∈ X . Let h0 : X → {0, 1} be the function that is identically zero on X . Let
Hind � {ha}a∈X ∪ {h0} be the set of all indicator functions together with h0.

Note that every function h : X ← {0, 1} can be expressed as the sum of
indicator functions, namely, h =

∑
a∈X ,h(a)=1 ha.

Lemma 9. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X � X1 × · · · × Xn. Then, there is an NIMPC protocol Πind for Hind

with communication complexity at most d2 · n.
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Proof. For i ∈ [n], denote |Xi| = di. Let s =
∑n

i=1 di. We describe a non-
interactive protocol, in the output-server model. Fix a function h ∈ H that we
want to compute. The protocol P(Πind)(h) is as follows.

Preprocessing: If h = h0, then choose s linearly independent random vectors
{mi,b}i∈[n],b∈Xi

in Fs
2. If h = ha for some a = (a1, . . . , an) ∈ X , choose s ran-

dom vectors {mi,b}i∈[n],b∈Xi
in Fs

2 under the constraint that
∑n

i=1 mi,ai = 0,
and that there are no other linear relations between them (that is, choose all
the vectors mi,b, except mn,an , as random linear independent vectors and set

mn,an = −
∑n−1

i=1 mi,ai). For i ∈ [n], we send the vectors {mi,b}b∈Xi to Pi as the
correlated randomness.

Sending messages: For i ∈ [n], player Pi (on input xi) sends to P0 the message
Mi � mi,xi .

Computing h(x1, . . . , xn): P0 outputs 1 if
∑n

i=1 Mi = 0 and 0 otherwise.

For the correctness, note that
∑n

i=1 Mi =
∑n

i=1 mi,xi . If h = ha, for a ∈ X ,
this sum equals 0 if and only if x = a. If h = h0, this sum is never zero, as all
vectors were chosen to be linearly independent in this case.

To prove robustness, fix a subset T � [n] and xT ∈ XT . The messages MT of
T consist of the vectors {mi,xi}i∈T . The randomness RT consists of the vectors
{mi,b}i∈T,b∈Xi . If h|T ,xT

≡ 0, then these vectors are uniformly distributed in

Fs
2 under the constraint that they are linearly independent. If h|T ,xT

(xT ) = 1,

for some xT ∈ XT , then
∑n

i=1 mi,xi = 0 and there are no other linear relations
between them. Formally, to prove robustness, we describe a simulator SimT :
the simulator queries h|T ,xT

on all possible inputs in XT . If all answers are

zero, the simulator generates random independent vectors. Otherwise, there is
an xT ∈ XT such that h|T ,xT

(xT ) = 1, and the simulator outputs random vectors

under the constrains described above, that is, all vectors are independent with
the exception that

∑n
i=1 mi,xi = 0.

As for communication complexity, each party Pi receives di ≤ d binary vectors
of length s ≤ dn in the preprocessing stage and sends one of them as a message.
Hence, at most d2n bits. #$

We next present an NIMPC for all boolean functions with domain X = X1 ×
· · · × Xn. The idea is to express any h : X → {0, 1} as a sum of indicator
functions, that is, h =

∑
a∈X ,h(a)=1 ha, and construct an NIMPC for h by using

the NIMPC protocols for each ha. A naive implementation of this idea has two
problems. First, it will disclose information on how many 1’s the function h has.
To overcome this problem, we define h′

a = ha if h(a) = 1 and h′
a = h0 otherwise

(this was the motivation of including h0 in Hind). Thus, h =
∑

a∈X h′
a. The

second problem is that if, for example, h(x) = 1 and a coalition learns that
h′
a(x) = 1, then the coalition learns that x = a. To overcome this problem, in

the preprocessing stage, we permute the domain X .

Theorem 10. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X � X1×· · ·×Xn. Let H be the set of all functions h : X → {0, 1}m. There
exists an NIMPC protocol Π for H with communication complexity |X |·m ·d2 ·n.
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Proof. Let Πind = (Gen,Enc,Dec) be the NIMPC for Hind, described in
Lemma 9. Fix h ∈ H. Assume for simplicity that m = 1 (see Claim 7). Pro-
tocol P(Π)(h) is as follows.

Preprocessing:

– Let I ⊆ X be the set of ones of h (i.e., I = h−1(1)). For each a ∈ I, let
ra = (ra1 , . . . , r

a
n) ← Gen(ha). For a ∈ X \ I, let ra ← Gen(h0).

– Choose a random permutation π of X and define a matrix R, where Ri,b �
r
π(b)
i for i ∈ [n] and b ∈ X . Send to Pi the random strings (Ri,b)b∈X (that
is, the ith row of R).

Sending Messages: Define a matrix M , where Mi,b � Enci(xi, Ri,b) for every

i ∈ [n] and b ∈ X . Each Pi sends to P0 the message Mi � (Mi,b)b∈X .

Computing h: Server P0 outputs 1 if for some b ∈ X , Dec(M1,b, . . . ,Mn,b) = 1.
Otherwise, it outputs 0.

Correctness: Fix x = (x1, . . . , xn) ∈ X . The server returns 1 if and
only if Dec(M1,b, . . . ,Mn,b) = 1 for some b ∈ X , namely, if and only if
Dec(Enc1(x1, R1,b), . . . ,Encn(xn, Rn,b)) = 1. This happens if and only if
Dec(Enc1(x1, R

a
1), . . . , Encn(xn, R

a
n)) = 1 for a = π(b). By the correct-

ness of Πind and the protocol description, the above happens if and only if
ha(x1, . . . , xn) = 1 for some a ∈ I, that is, if and only if h(x1, . . . , xn) = 1.
Communication Complexity is obtained by applying Πind for |X | times.

Robustness: Fix T ⊆ [n] and xT ∈ XT . We wish to simulate the distribution
(MT , RT ) given h|T ,xT

. We can think of this distribution as being composed of

rows, where each row b is of the form (Ma
T
, raT ) for a = π(b) for some b ∈ X ,

where the permutation π is random.

Observation 11. If aT = xT and h(a) = 1 then this row was generated for the
function ha, and if aT = xT and h(a) = 0 then this row was generated for h0.
Finally, if aT �= xT , then this row is distributed as if it was generated for h0.

We next construct a simulator SimT for the protocol P(Π) on function h.
Simulator SimT uses the simulator SimΠind

T – the simulator for set T from proto-
col P(Πind) of Lemma 9. The simulator SimT first queries h|T ,xT

(xT ) for every

xT ∈ XT . Let I ′ ⊆ XT be the set of ones of h|T ,xT
. For every xT ∈ I ′, the

simulator SimT computes SxT = SimΠind

T (hxT ) (where hxT : XT → {0, 1} is

such that hxT (x) = 1 if and only if x = xT ). Finally, SimT samples SimΠind

T (h0)
for |X | − |I ′| times (where h0 : XT → {0, 1} such that h0(x) = 0 for every
x ∈ XT ). Altogether, it obtains |X | outputs of the simulator SimΠind

T . It ran-
domly permutes the order of these outputs, and returns the permuted outputs.
The T -robustness of SimT follows from the T -robustness of SimΠind

T and Obser-
vation 11. #$

Remark 12. In the above proof, instead of looking at the set of all functions,
we could have looked at the set of functions that are OR’s of a fixed subset
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H′ ⊂ Hind of indicator functions. For this set of functions, we would get an
NIMPC with communication complexity |H′| · m · poly(d, n) (rather than the
|X | · m · poly(d, n) communication complexity above). We could also look at a
particular function of this form. Take, for example, X = {0, 1}n and H′ to be
the set of indicator functions of vectors of weight w. Then, we get an NIMPC
for the w-out-of-n threshold function with communication complexity nO(w).

4 A t-Robust NIMPC for Abelian Programs

In this section, we present an NIMPC protocol for symmetric functions. In fact,
this result is a corollary of a more general result on NIMPC for abelian group
programs. We next define abelian programs and symmetric functions and for-
mally state our results. The proofs of these results appear in the full version of
this paper.

Definition 13. Let G be an abelian group, S1, . . . , Sn be subsets of G, and
HG

S1,...,Sn
be the set of functions h : S1 × · · · × Sn → {0, 1} of the form

h(x1, . . . , xn) = f(
∑n

i=1 xi), for some f : G → {0, 1}.

Definition 14. A function h : [d]n → {0, 1} is symmetric if for every
(x1, . . . , xn) ∈ [d]n and every permutation π : [n] → [n] the following equal-
ity holds h(x1, . . . , xn) = h(xπ(1), . . . , xπ(n)).

The main positive result in this section is an efficient t-robust NIMPC for
HG

S1,...,Sn
whenever G is abelian of poly(n)-size and t is constant.

Theorem 15. Let t be a positive integer and G an abelian group of size m.
Let S1, . . . , Sn be subsets of G. Let d � maxi∈[n] |Si|. Then, there is a t-robust
NIMPC protocol for HG

S1,...,Sn
with communication complexity O(dt+2 ·nt+2 ·m3).

Corollary 16. Let d, t and n be positive integers. Let H be the set of symmetric
functions h : [d]n → {0, 1}. There is a t-robust NIMPC protocol for H with
communication complexity O(dt+2 · nt+3d−1). In particular, for the case of a
boolean h : {0, 1}n → {0, 1}, the communication complexity is O(2t · nt+5).

In the rest of this section, we give a high level overview of the construction,
focusing for simplicity on the case t = 1.

4.1 Group Extension

Recall that a boolean function h : {0, 1}n → {0, 1} is symmetric if and only
if there exists a function f : {0, . . . , n} → {0, 1} such that h(x1, . . . , xn) =
f(
∑n

i=1 xi). We start by considering a relaxation of the problem where the play-
ers are allowed to choose their inputs from a larger domain, which is a group:
namely, instead of having an input xi ∈ {0, 1}, we allow each player Pi to
have an input xi ∈ {0, . . . , n}, which can be thought of as an element of the
group G � Zn+1. Given a boolean symmetric function h : {0, 1}n → {0, 1},
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where h(x1, . . . , xn) = f(
∑n

i=1 xi), we extend h in the natural way to a function
h : Gn → {0, 1}, that is, h(x1, . . . , xn) = f(

∑n
i=1 xi), where the sum is of ele-

ments of G. The first step of our construction is a fully robust NIMPC protocol
for the set H of all functions h as above, namely the group extensions of all
symmetric functions. Note that here it is crucial to hide both the function h and
the inputs xi to the extent possible.

To obtain the NIMPC protocol for H, we would like to use the PSM proto-
col from [21] which provides an efficient solution for symmetric functions. This
protocol is defined using a branching program representation of h. While this
protocol is secure when only P0 is corrupted, it fails miserably when even a sin-
gle other party is corrupted. Luckily, there is a simple characterization of the
information available to an adversary corrupting P0 and a set T of other parties
Pi: these players learn no more than the graph of the branching program re-
stricted to the inputs xT̄ . That is, the adversary can learn the labels of all edges
it owns (e.g., that such an edge is labeled by the literal x̄i or the constant 1), as
well as the values of edges it does not own (e.g., that such an edge evaluates to 1)
but not their labels. If we apply the protocol to a standard branching program
for h, this information will typically reveal to the adversary both the function h
and the inputs xT̄ .

The key idea for realizing H is to randomize the branching program before
applying the protocol from [21]. That is, we start with a standard layered branch-
ing program for the symmetric function h, and then (during preprocessing) we
randomize it by applying a random cyclic shift to the nodes in each layer. The
protocol from [21] is applied to the randomized branching program. With this
randomization in place, revealing the branching program restricted by xT̄ leaks
nothing about (h, xT̄ ) except what must be learned.

4.2 Limiting the Inputs of One Player

The previous subsection gives an NIMPC for the class of (extended) symmetric
functions h, with the caveat that the players may use any input in G = Zn+1,
rather than just {0, 1}. Let us call this protocol Π0(h).

2

As mentioned, we need to limit the parties to inputs from {0, 1}. Note that for
NIMPC this is relevant also in the honest-but-curious model since the robustness
requirement for the extended function allows an adversary, controlling a set T ,
to compute h|T ,xT

on the domain G|T |, while for the original function we only

allow the adversary to compute h|T ,xT
on the domain {0, 1}|T |. In this section,

as an intermediate step, we construct a protocol where a specific player, say
P1, is limited to inputs in {0, 1}. The other players, P2, . . . , Pn, can still choose
any inputs in G. Let h0 and h1 denote the function h where the first input is
fixed to 0 and 1, respectively, that is, hi(X2, . . . , Xn) � h(i,X2, . . . , Xn), for
i ∈ {0, 1}. Consider the following protocol: P2, . . . , Pn run the protocols Π0(h0)
and Π0(h1). At the end of this protocol, the coalition {P0, P1} – seeing the

2 An important point is that only the preprocessing stage of protocol Π0 actually
depends on h, but we ignore these subtleties here.
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messages of Π0(h0) and Π0(h1) – knows exactly what it is supposed to know:
the values h(0, x2, . . . , xn) and h(1, x2, . . . , xn). However, there are two evident
problems.

1. On one hand, P0 alone knows “too much”: the same two values
h(0, x2, . . . , xn) and h(1, x2, . . . , xn).

2. On the other hand, P0 does not know which of these two values is the correct
one, i.e., h(x1, . . . , xn).

A possible “solution” to the second problem is for P1 to send its input x1 to
P0. This is, of course, insecure. Instead, we run Π0(h0) and Π0(h1) in a random
order, known only to P1 and given to it in the preprocessing stage (note that
P2, . . . , Pn need not know which of the two protocols is running to participate).
Party P1 will then send a message stating which one corresponds to its input.

A solution to the first problem is as follows: The (symmetric) functions h0

and h1 (which can be though of as (n + 1)-bit strings representing their truth
tables) are “masked” by ((n + 1)-bit) random functions α0 and α1 (where
αb : G → {0, 1}). Let us call these masked versions g0 and g1. Specifically,
gj(X2, . . . , Xn) � hj(X2, . . . , Xn) ⊕ αj(

∑n
i=2 Xi), for j ∈ {0, 1}. In the prepro-

cessing stage, we give the masking functions α0 and α1 to P1. Now P0, P2, . . . , Pn

run Π0(g0) andΠ0(g1) (in a random order). Then, P1 sends to P0 only the mask-
ing αi corresponding to its input. In terms of security, the problem has been
solved: the protocol not corresponding to P1’s input, i.e. Π0(g1−x1), does not re-
veal any information to P0, as g1−x1 is a masked version of h, where the mask has
not been revealed. However, can P0 now compute h(x1, . . . , xn)? From seeing the
messages of Π0(gx1), it knows gx1(x2, . . . , xn) = h(x1, . . . , xn) ⊕ αx1(

∑n
i=2 xi).

It also knows αx1 , which was sent by P1. So now, to “unmask” h(x1, . . . , xn)
using αx1 it needs the value

∑n
i=2 xi, which is more information than we want

to give it. Further randomization techniques are needed to solve this problem,
and combine the solutions to the two problems above.

4.3 A Secret Sharing Composition

The previous section described a protocol where, for a certain fixed j ∈ [n],
the coalition {P0, Pj} does not learn “too much” – specifically, it could evaluate
the function h only on inputs in {0, 1} (while a coalition of P0 with one of
the other players is still not restricted to inputs in {0, 1}). Call this protocol
Π1. Note that h is of the form h(X1, . . . , Xn) = f(

∑n
i=1 Xi) for a function

f : G → {0, 1}. It is easy to see thatΠ1 can work for any function h′(X1, . . . , Xn)
of this form. We now bootstrap the protocolΠ1 to create one in which all players
can evaluate h only on inputs in {0, 1}. For this, we use an additive secret sharing
of f . Namely, we choose n random functions f1, . . . , fn : G → {0, 1}, such that∑n

i=1 fi = f , where the sum is a xor of |G|-bit vectors. For 1 ≤ i ≤ n, define

hi(X1, . . . , Xn) � fi(
∑n

j=1 Xj). Note that for any x1, . . . , xn ∈ G, we have

h(x1, . . . , xn) =
∑n

i=1 hi(x1, . . . , xn). For 1 ≤ i ≤ n, we run Π1 on the function
hi with Pi chosen to be the player that can only use inputs in {0, 1}. After these
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protocols are run we have that, on the one hand, P0 knows h1(x1, . . . , xn), . . . ,
hn(x1, . . . , xn) and can compute h(x1, . . . , xn) =

∑n
i=1 hi(x1, . . . , xn). On the

other hand, for any i ∈ [n] and a ∈ G \ {0, 1}, parties P0 and Pi have no
information on hi(x1, . . . , xi−1, a, xi+1, . . . , xn) and hence no information on
h(x1, . . . , xi−1, a, xi+1, . . . , xn).
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A General Non-Interactive MPC

In this section we extend the treatment of NIMPC to functionalities that may
deliver different outputs to different parties as well as to the case of security
against malicious parties.

We consider protocols involving n parties, P1, . . . , Pn, with a correlated ran-
domness setup. That is, we assume an offline preprocessing phase that provides
each party Pi with a random input ri. (This preprocessing can be implemented
either using a trusted dealer, by an interactive offline protocol involving the par-
ties themselves, or by an interactive MPC protocol involving a smaller number
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of specialized servers.) In the online phase, each party Pi, on input (xi, ri), may
send a single message mi,j to each party Pj . (There is no need to assume secure
or authenticated channels, as these can be easily implemented using a correlated
randomness setup.)

Let f be a deterministic functionality mapping inputs (x1, . . . , xn) to outputs
(y1, . . . , yn). We define security of an NIMPC protocol for such f using the
standard “real vs. ideal” paradigm (cf. [8,12]), except that the ideal model is
relaxed to capture the best achievable security in the non-interactive setting.

Concretely, for NIMPC in the semi-honest security model we relax the stan-
dard ideal model for evaluating f by first requiring all parties to send their
inputs to the functionality f , then having f deliver the outputs to the honest
parties, and finally allowing the adversary to make repeated oracle queries to f
with the same fixed honest inputs. (Similar relaxations of the ideal model were
previously considered in other contexts, such as fairness and concurrent or re-
settable security.) In the malicious security model, one should further relax the
ideal model in order to additionally take into account the adversary’s capability
of rushing3 (namely, correlating its messages with the messages obtained from
honest parties). In the relaxed ideal model, first the honest parties send their
inputs to f , then the adversary can repeatedly make oracle calls as above, and
finally the adversary can decide on the actual inputs to f that determine the
outputs of honest parties.

Given a t-robust NIMPC protocol (according to Definition 2) for each of the
n outputs of f , a t-secure protocol for f can be obtained in a straightforward
way. In the honest-but-curious model, it suffices to run n independent instances
of the protocol described in Section 2.1, where in the i-th instance Pi acts both
as a standard party and as the external server P0. In the malicious model, the
correlated randomness setup uses an unconditional one-time MAC to authen-
ticate each of the possible messages sent from Pi to Pj . This is feasible when
the input domain of each party is small. In the general case, we can make use
of an NIMPC protocol for a functionality f ′ with a bigger number of parties
which is identical to f except for taking a single input bit from each party. Such
a functionality f ′ can be securely realized by a protocol Π ′ as described above,
and then f can be realized by a protocol Π in which each party emulates the
corresponding parties in Π ′.

3 If some mechanism is available for ensuring that the adversary’s messages are inde-
pendent of the honest parties’ messages, this relaxation is not needed.
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Abstract. A recent line of work has explored the use of physically un-
cloneable functions (PUFs) for secure computation, with the goals of
(1) achieving universal composability without (additional) setup, and/or
(2) obtaining unconditional security (i.e., avoiding complexity-theoretic
assumptions). Initial work assumed that all PUFs, even those created by
an attacker, are honestly generated. Subsequently, researchers have inves-
tigated models in which an adversary can create malicious PUFs with
arbitrary behavior. Researchers have considered both malicious PUFs
that might be stateful, as well as malicious PUFs that can have arbi-
trary behavior but are guaranteed to be stateless.

We settle the main open questions regarding secure computation in
the malicious-PUF model:

– We prove that unconditionally secure oblivious transfer is impossi-
ble, even in the stand-alone setting, if the adversary can construct
(malicious) stateful PUFs.

– We show that universally composable two-party computation is pos-
sible if the attacker is limited to creating (malicious) stateless PUFs.
Our protocols are simple and efficient, and do not require any cryp-
tographic assumptions.

1 Introduction

A physically uncloneable function (PUF) [19,20,17,1,15] is a physical object gen-
erated via a process that is intended to create “unique” objects with “random”
(or at least random-looking) behavior. PUFs can be probed and their response
measured, and a PUF thus defines a function. (We ignore here the possibility of
slight variability in the response, which can be corrected using standard tech-
niques.) At an abstract level, this function has two important properties: it is
random, and it cannot be copied even by the entity who created the PUF.

Since their introduction, several cryptographic applications of PUFs have been
suggested, in particular in the area of secure computation. PUFs are especially
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interesting in this setting because they can potentially be used (1) to obtain
universally composable (UC) protocols [6] without additional setup, thus by-
passing known impossibility results that hold for universal composition in the
“plain” model [7,8], and (2) to construct protocols with unconditional security,
i.e., without relying on any cryptographic assumptions.

Initial results in this setting [21,22] showed constructions of oblivious trans-
fer with stand-alone security based on PUFs. Brzuska et al. [5] later formalized
PUFs within the UC framework, and showed UC constructions of bit commit-
ment, key agreement, and oblivious transfer (and hence secure computation of
arbitrary functionalities) with unconditional security. The basic feasibility ques-
tions related to PUFs thus seemed to have been resolved.

Ostrovsky et al. [18], however, observe that the previous results implicitly
assume that all PUFs, including those created by the attacker, are honestly gen-
erated. They point out, correctly, that this may not be a reasonable assumption:
nothing forces the attacker to use the recommended process for manufacturing
PUFs and it is not clear, in general, how to “test” whether a PUF sent by some
party was generated correctly or not. (Assuming a trusted entity who creates
the PUFs is not a panacea, as one of the goals of using PUFs is to avoid reliance
on trusted parties.) Addressing this limitation, Ostrovsky et al. define a model
in which an attacker can create malicious PUFs having arbitrary, adversary-
specified behavior. The previous protocols can be easily attacked in this new
adversarial setting, but Ostrovsky et al. show that it is possible to construct
universally composable protocols for secure computation in the malicious-PUF
model under additional, number-theoretic assumptions. They explicitly leave
open the question of whether unconditional security is possible in the malicious-
PUF model. Recently, Damg̊ard and Scafuro [9] have made partial progress on
this question by presenting a commitment scheme with unconditional security
in the malicious-PUF model.

Stateful vs. Stateless (malicious) PUFs. Honestly generated PUFs are
stateless; that is, the output of an honestly generated PUF is independent of
its computation history. Ostrovsky et al. note that maliciously generated PUFs
might be stateful or stateless. Allowing the adversary to create stateful PUFs
is obviously more general. (The positive results mentioned earlier remain secure
even against an attacker who can create malicious, stateful PUFs.) Neverthe-
less, the assumption that the adversary is limited to producing stateless PUFs
is meaningful; indeed, depending on the physical technology used to implement
the PUFs, incorporating dynamic state in the PUF may simply be infeasible.

1.1 Our Results

Spurred by the work of Ostrovsky et al. and Damg̊ard and Scafuro, we reconsider
the possibility of unconditionally secure computation based on malicious PUFs
and resolve the main open questions in this setting. Specifically, we show:

1. Unconditionally secure oblivious transfer (and thus unconditionally secure
computation of general functions) is impossible when the attacker can create
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malicious stateful PUFs. Our result holds even with regard to stand-alone
security, and even for indistinguishability-based (as opposed to simulation-
based) security notions.

2. If the attacker is limited to creating malicious, but stateless, PUFs, then
universally composable oblivious transfer (OT) and two-party computation
of general functionalities are possible. Our oblivious-transfer protocol is ef-
ficient and requires each party to create only a single PUF for polynomially
many OT executions. The protocol is also conceptually simple, which we
view as positive in light of the heavy machinery used in [18].

1.2 Other Related Work

Hardware tokens have also been proposed as a physical assumption on which
to base secure computation [14]. PUFs are incomparable to hardware tokens
since they are more powerful in one respect and less powerful in another. PUFs
have the property that a party cannot query an honestly generated PUF when
it is out of that party’s possession, whereas in the token model parties place
known functionality in the token and can simulate the behavior of the token at
any point. On the other hand, tokens can implement arbitrary code, whereas
honestly generated PUFs just provide a random function. In any case, known
results (such as the fact that UC oblivious transfer is impossible with stateless
tokens [11]) do not directly translate from one model to the other.

Impossibility results for (malicious) PUFs are also not implied by impossibility
results in the random-oracle model (e.g., [3]). A random oracle can be queried
by any party at any time, whereas (as noted above) an honestly generated PUF
can only be queried by the party who currently holds it. Indeed, we show that
oblivious transfer is possible when malicious PUFs are assumed to be stateless;
in contrast, oblivious transfer is impossible in the random-oracle model [12].

Ostrovsky et al. [18] consider a second malicious model where the attacker
can query honestly generated PUFs in a non-prescribed manner. They show
that secure computation is impossible if both this and maliciously generated
PUFs are allowed. We do not consider the possibility of malicious queries in this
work.

In other work, van Dijk and Rührmair [23] show impossibility results in a
malicious-PUF model very different from the one considered in [18,9] and here.
It is not clear to us how their model corresponds to attacks that could feasibly
be carried out in the real world.

2 Physically Uncloneable Functions

A physically uncloneable function (PUF) is a physical device with “random” be-
havior introduced through uncontrollable manufacturing variations during their
fabrication. When a PUF is queried with a stimulus (i.e., a challenge), it pro-
duces a physical output (the response). The output of a PUF can be noisy; i.e.,
querying the PUF twice with the same challenge may yield distinct, but close,
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responses. Moreover, the response need not be uniform; it may instead only have
high min-entropy. Prior work has shown that, by using fuzzy extractors, one can
eliminate the noisiness of a PUF and make its output effectively uniform. For
simplicity, we assume this in the definition that follows.

Formally, a PUF family is defined by two algorithms S and E. The index-
sampling algorithm S, which corresponds to the PUF-fabrication process, takes
as input the security parameter 1λ and returns as output an index id. The eval-
uation algorithm E takes as input an index id and a challenge1 c, and generates
as output the corresponding response r.

We do not require that S or E can be evaluated efficiently. In fact, these
are meant to represent physical processes that generate a physical object and
measure this object’s behavior under various conditions. The index id is simply
a formal placeholder that refers to a well-defined physical object; it does not in
itself represent any meaningful information about how this object works.

Following [5], we define the two main security properties of PUFs: unpre-
dictability and uncloneability. As noted earlier, for simplicity we consider only a
strong form of unpredictability where the output of the PUF is uniform. Intu-
itively, uncloneability means that only one party can evaluate a PUF at a time.
This is formally modeled using an ideal functionality, FPUF, that enforces this.
Details of this ideal functionality are given in the full version of this work.

Finally, we also allow for the possibility of a maliciously generated PUF whose
behavior does not necessarily correspond to (S,E) as described above. We con-
sider two possibilities here: The first possibility is a malicious-but-stateless PUF
that may use an Emal procedure of the adversary’s choice in place of the honest
algorithm E. Whenever a party in possession of this PUF evaluates it, it receives
Emal(c) instead of Eid(c). (As noted in prior work, care must be taken to en-
sure that the adversary cannot use Emal to perform arbitrary exponential-time
computation; formally, we restrict Emal to be a polynomial-time algorithm with
oracle access to E.) The second possibility is a malicious-and-stateful PUF that
may use a stateful Emal procedure of the adversary’s choice in place of E. Again,
Emal is limited to polynomial-time computation with oracle access to E.

To simplify notation throughout the rest of the paper, we write PUF ← S(1λ)
to denote the fabrication of a PUF, and then write r := PUF(c).

3 Impossibility Result for Malicious, Stateful PUFs

We prove that any PUF-based oblivious-transfer (OT) protocol is insecure when
the attacker has the ability to generate malicious, stateful PUFs. Formally:

Theorem 1. Let Π be a PUF-based OT-protocol where the sender S and re-
ceiver R each make at most m = poly(λ) PUF queries. Then at least one of the
following holds:

1 We assume the challenge space is just a set strings of a certain length. For some
classes of PUFs, this is naturally satisfied (see [17]). For others, this can be achieved
using appropriate encoding.
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1. There is an unbounded adversary S∗ that uses malicious, stateful PUFs and
makes only poly(λ) queries to honestly generated PUFs, and computes the
choice bit of R (when R’s input is uniform) with probability 1/2+1/ poly(λ).

2. There is an unbounded adversary R∗ that uses malicious, stateful PUFs and
makes only poly(λ) queries to honestly generated PUFs, and correctly guess
both secrets of S (when S’s inputs are uniform) with probability at least 2/3.

3.1 Overview

The starting point for our impossibility result is the impossibility of constructing
oblivious transfer in the random-oracle model. The fact that OT is impossible in
the random-oracle model follows from the fact that key agreement is impossible
in the random-oracle model [12,3,2], and the observation that OT implies key
agreement. However, a direct proof ruling out OT in the random-oracle model
is also possible, and we sketch such a proof here.

Consider an OT protocol in the random-oracle model between a sender S
and receiver R, where S’s two input bits are uniform and R’s selection bit is
uniform. We show that either S or R can attack the protocol. Consider the
case where both parties run the protocol honestly, and then at the end of the
protocol they each run a variant of the Eve algorithm from [3,2] to obtain a
set Q of queries/answers to/from the random oracle. This set Q contains all
“intersection queries” between S and R, which are queries made by both parties
to the random oracle. However, note that the setting here is different from the
key-agreement setting in which a third party (the eavesdropper) runs the Eve
algorithm. In fact, in our setting, finding intersection queries is trivial for S and
R: all intersection queries are, by definition, already contained in the view of
either of the parties. Thus, the point of running the Eve algorithm is for both
parties to reconstruct the same set of queries Q that contains all intersection
queries. As in [3,2], conditioned on the transcript of the protocol and this set Q,
the views of S and R are independent. The property of the Eve algorithm we use
is that with high probability over random coins of the protocol and the choice
of random oracle, the distribution over R’s view conditioned on S’s view and Q
is statistically close to the distribution over R’s view conditioned on only the
transcript and Q.

To use the above to obtain an attack, we first consider the distribution over
R’s view conditioned on S’s view and Q. We argue that with roughly 1/2 proba-
bility over this distribution, R’s view must be consistent with selection bit 0, and
with 1/2 probability is must be consistent with selection bit 1. (If not, then S
can compromise R’s security by guessing that R’s selection bit is the one which
is more lilkely.) Next, we consider the distribution over R’s view conditioned on
only the transcript and Q. Note that R can sample from this distribution, since
R knows the transcript and can compute the same set Q. Since this distribution
is statistically close to the distribution overR’s view conditioned on S’s view and
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Eve queries, we have that R can with high probability sample a view consistent
with selection bit 0 and S’s view and a view consistent with selection bit 1 and
S’s view. But correctness of the protocol then implies that R can with high
probability discover both of S’s input bits.

From Random Oracles to PUFs. The problem with extending the above to
the PUF model is that, unlike a random oracle, a PUF can only be queried by
the party who currently holds the PUF. This mean that the above attack, as
described, will not work. In fact, this property is what allows us to construct an
OT protocol in the case where malicious PUFs are assumed to be stateless! To
overcome this difficulty, we will need to use the fact that malicious parties can
create stateful PUFs.

To illustrate the main ideas, consider a protocol in which four PUFs are
used. PUFS and PUF′

S are created by S, with PUFS held by S at the end of the
protocol and PUF′

S held by R at the end of the protocol. Similarly, PUFR,PUF′
R

are created by R, with PUFR held by R at the end of the protocol and PUF′
R

held by S at the end of the protocol. We now want to provide a way for both
parties to be able to obtain a set of queries/answers Q for all the PUFs that
contains the following “intersection queries”:

1. Any query that both parties made to PUF′
S or PUF′

R (as in [3,2]).
2. All queries that R made to PUFS .
3. All queries that S made to PUFR.

The first of these can be achieved by having S (resp., R) construct PUF′
S (resp.,

PUF ′
R) with known code, such that S (resp., R) can effectively query PUF′

S
(resp., PUF ′

R) at any time. Formally, we have each party embed a randomly
chosen t-wise independent function in the PUF they create, where t is large
enough so that the behavior of the PUF is indistinguishable from a random
function as far as execution of the protocol (and the attack) is concerned. At the
end of the protocol, both parties can then run the Eve algorithm with access to
PUF′

S : R has access because it holds PUF′
S , and S has access because it knows

the code in PUF′
S . An analogous statement holds for PUF′

R.
To handle the second set of queries, above, we rely on the ability of S to

create stateful PUFs. Specifically, we have S create PUFS in such a way that
it records (in an undetectable fashion) all the queries that R makes to PUFS ,
in such a way that S can later recover these queries once PUFS is back in its
possession. (This is easy to do by hardcoding in the PUF a secret challenge,
chosen in advance by S, to which the PUF responds with the set of all queries
made to the PUF.) So, at the end of the protocol, it is trivial for S to learn all
the queries that R made to PUFS . Of course, R knows exactly the set of queries
it made to PUFS throughout the course of the protocol. Queries that S makes
to PUFR are handled in a similar fashion.
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To complete the proof, we then show that the set of intersection queries as
defined above is enough for the analysis from [3,2] to go through.2

3.2 Proof Details

Oblivious Transfer. Oblivious transfer (OT) is a protocol between a sender S
with input bits (s0, s1) and a receiver R with input bit b. Informally, the receiver
wishes to retrieve sb from S in such a way that (1) S does not “learn” anything
about R’s choice and (2) R learns nothing about s1−b.

We note that our impossibility holds even for protocols that do not enjoy
perfect correctness, i.e., it holds for protocols where correctness holds (over choice
of inputs, randomness, and PUFs) with probability 1− 1/ poly(λ).

Protocols Based on PUFs. We consider a candidate PUF-based OT proto-
col Π with � rounds that has 2� passes and where in each pass a party sends
a message. We assume w.l.o.g. that S sends the first message of the protocol
and R sends the final message. Let z = z(λ) be the total number of PUFs
used in protocol Π with security parameter λ. We model the set of all PUFs
{PUF1, . . . ,PUFz} utilized by Π as a single random oracle. W.l.o.g. we assume
that each query q to a PUF has the form q = (j, q′), where j denotes the identity
of the PUF being queried, and q′ denotes the actual query to this PUF. Note
that responses to unique queries q = (j, q′) are independent and uniform. We
further assume w.l.o.g. that a party can only send a PUF back and forth along
with some message mi of the protocol Π . In particular, we denote by Si

back the
set of indices j ∈ [z] such that PUFj is sent by S (resp. R) to R (resp. S) im-
mediately after message mi of Π is sent, and PUFj was created by R (resp. S).
We define Si

PUF to be the set of indices j such that either:

– PUFj is held by S immediately after messagemi is sent and PUFj was created
by R.

– PUFj is held by R immediately after message mi is sent and PUFj was
created by S.

Augmented Transcripts. A full (augmented) transcript of protocol Π =

〈S,R〉 is denoted by M̃. The “augmented transcript” consists of the transcript
M = m1, . . . ,m2� of protocol Π with a set ψi appended after each message mi.
If message mi is sent by S (resp. R), then ψi contains all queries made by S
(resp. R) up to this point in the protocol to all PUFj , j ∈ Si

back. Specifically,

2 In order for our proof to go through, it is crucial to find intersection queries im-
mediately after each message is sent, as opposed to waiting until the end of the
protocol. This is necessary in order to ensure the independence of the views of S and
R. Therefore, we define a variant of the Eve algorithm which, after each protocol
message is sent, makes queries to a particular set of PUFs, determined by the sets
of PUFs currently held by each party. For example, if immediately after message i is
sent S holds {PUFS ,PUF′

R} and R holds {PUFR,PUF′
S}, then our Eve variant will

make queries only to PUF′
R and PUF′

S .
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M = {m1, . . . ,m2�} and M̃ = {m1||ψ1, . . . ,m2�||ψ2�}. Note that M̃ can be com-
puted by both a malicious S and a malicious R participating in Π . Intuitively,
this is because both malicious S and R can program each of their PUFs to record
all queries made to it. The following claim formalizes the fact that malicious,
stateful PUFs can be used to extract sets of queries made by the opposite party:

Claim 2. Consider a PUF-based �-round OT protocol, Π. By participating in
an execution of Π while using maliciously constructed PUFs, we have that, for
all odd i ∈ [2�], both a malicious S and a malicious R can find the set of queries
ψi made by S up to this point in the protocol to all PUFj, j ∈ Si

back. The same
claim holds for even i ∈ [2�], with the roles of S,R reversed.

Proof. The malicious R will create stateful PUFs which record all queries made
to them and such that this record can later be retrieved by the creator of the
PUF. Since at the end of the i-th pass, for odd i ∈ [2�], R holds PUFj , j ∈ Si

back,
we have that the malicious R can recover the ordered set of queries made to that
PUF, and can therefore deduce the set of queries made by S to that PUF thus
far. On the other hand, S knows the queries it made itself to PUFj , j ∈ Si

back.
An analogous argument holds for even i ∈ [2�].

We also define the set Ψ i which is the union of the ψj sets for j ≤ i. Specifically,
Ψ i = ψ1 ∪ · · · ∪ ψi.

Queries and Views. By Vi
S (resp. Vi

R) we denote the view of S (resp. R)
until the end of round i. This includes S’s (resp. R’s) randomness rS (resp. rR),
exchanged messages Mi as well as oracle query-answer pairs known to S (resp.
R) so far. We use Q(·) as an operator that extracts the set of queries from a set
of query-answer pairs or views.

Executions and Distributions. A (full) execution of S, R, Eve in protocol
Π can be described by a tuple (rS , rR, H) where H is a random function. We
denote by E the distribution over (full) executions that is obtained by running
the algorithms for S,R,Eve with uniformly chosen random tapes and a sampled
oracle H . For a sequence of i (augmented) messages M̃i = [m̃1, . . . , m̃i] and a

set of query-answer pairs P, by V(M̃i,P) we denote the joint distribution over
the views (Vi

S ,V
i
R) of S and R in their (partial) execution of Π up to the point

in the system in which the i-th message is sent (by S or R) conditioned on:

The transcript of messages in the first i passes equals M̃i and H(j, q′) = a for
all ((j, q′), a) ∈ P made to H (recall that a query (j, q′) to H corresponds to a

query q′ made to PUFj). For (M̃
i,P) such that PrE(M̃

i,P) > 0, the distribution

V(M̃i,P) can be sampled by first sampling (rS , rR, H) uniformly at random

conditioned on being consistent with (M̃i,P) and then deriving S and R views
Vi

S ,V
i
R from the sampled (rS , rR, H).

For (M̃i,P) such that PrE(M̃
i,P) > 0, the event Good(M̃i,P) is defined over

the distribution V(M̃i,P) and holds if and only if Q(Vi
S) ∩Q(Vi

R) ⊆ P+, where

P+ = P∪ Ψ i. For PrE(M̃
i,P) > 0 we define the distribution GV(M̃i,P) to be the

distribution V(M̃i,P) conditioned on Good(M̃i,P).
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For complete transcripts M̃, the distributions V(M̃,P) and Good(M̃,P) are
defined similarly.

Transforming the Protocol. We begin by transforming the OT protocol Π
into one that has the following properties:

Semi-normal form: We define a semi-normal form for OT protocols, follow-
ing [3,2]. A protocol is in semi-normal form if it fulfills the following two
properties: (1) S and R ask at most one query in each protocol round, and
(2) the receiver of the last message uses this message to compute its output
and it does not query the oracle. We start by converting our OT protocol Π
into its semi-normal version. Note that any attack on the semi-normal ver-
sion of Π can be translated into an attack on the original Π that makes the
same number of queries [3,2]. Thus, in the following we present our attacks
and analysis w.r.t. the semi-normal version of Π .

Using t-wise independent functions: Instead of creating honestly generated
PUFs, amaliciousR (resp.S) will create stateful PUFswhich behave as t-wise

independent hash functions. We define the distribution Vt(M̃,P) exactly like

V(M̃,P) except some subset of PUFs are instantiated with t-wise independent
hash functions for some t = poly(m/ε), instead of with random oracles. Since
we choose t such that the malicious sender and honest receiver (resp., mali-
cious receiver and honest sender) make a total of at most t queries to all

PUFs then: For every setting of random variables (M̃i,Pi), the distributions

V(M̃i,Pi) and Vt(M̃i,Pi) are identical. Thus, from now on, even when R or
S are malicious (and create t-wise independent PUFs), we consider only the

distribution V(M̃,P).
Random inputs: In the last step we change the protocol such that both sender

and receiver choose their input(s) uniformly at random. Thus, in the follow-
ing, we consider execution of Π = 〈S(1λ),R(1λ)〉 where the parties use their
random tapes to choose their inputs.

The Eve Algorithm. Recall that we have converted the protocol Π into semi-
normal form. We now present the attacking algorithm, Eve, which will be run
by both the malicious sender (S ′) and malicious receiver (R′) defined later:

Construction 1. Let ε < 1/100 be an input parameter. After each message mi

is sent, Eve generates the augmented transcript M̃i (note that by Claim 2, M̃i

can always be reconstructed by Eve, since Eve is launched by either the malicious
S or R). Given M̃i, Eve attacks the �-round two-party protocol Π = 〈S,R〉 as
follows. During the attack Eve updates a set P of oracle query-answer pairs as
follows: Suppose S (alternatively R) sends the i-th message in M̃i which is equal
to m̃i = mi||ψi. For i ∈ [2�], Eve does the following: As long as the total number
of queries made by Eve is less than t− 2m and there is a query q = (j, q′) /∈ P+,
where P+ := Ψ i ∪ P, such that one of the following holds:
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Pr
(Vi

S ,Vi
R)←GV(M̃i,P)

[q′ ∈ Q(Vi
S) ∧ j ∈ Si

back] ≥
ε2

100m

or Pr
(Vi

S ,Vi
R)←GV(M̃i,P)

[q′ ∈ Q(Vi
R) ∧ j ∈ Si

back] ≥
ε2

100m
.

Eve queries the lexicographically first such q = (j, q′) to H, adds (q,H(q)) to P.

Properties of the Eve Algorithm. We summarize some properties of the Eve
algorithm that can be verified by inspection:

Symmetry of Eve: Both S and R can run the Eve algorithm, making the same
set of queries P to the PUFs. In particular, at the point where message mi

is sent, a party requires only the augmented transcript M̃i and oracle access
to PUFj for j ∈ Si

PUF. Note that for each j ∈ Si
PUF a party either holds PUFj

(and so can query it directly) or created PUFj dishonestly and thus knows
the code of PUFj (and so can simulate responses to queries to PUFj).

Determinism of Eve: The Eve algorithm is deterministic and so for a fixed
transcript M̃ and a fixed set of PUFs, both parties will recover the same set
of queries when running Eve.

Number of queries: The number of queries made by Eve is at most t − 2m.
Thus, since S and R each make at most m number of PUF queries, the total
number of queries made by S, R and Eve is at most (t− 2m) + 2m = t.

Breaking Oblivious Transfer. Recall that we assume that the honest S
chooses its inputs (s0, s1) at random and that the honest R chooses its in-
put bit at random. Thus, we may consider an execution of OT protocol Π =
〈S(1λ),R(1λ)〉 where the parties use their random tapes to choose their inputs.

We now state an alternative version of Theorem 1:

Theorem 3. Let Π = 〈S(1λ),R(1λ)〉 be a PUF-based OT-protocol in which the
sender and receiver each ask at most m queries total to the set of z = poly(λ)
PUFs, {PUF1, . . . ,PUFz}. Then, at least one of the following must hold:

1. There exists an adversarial S that uses malicious, stateful PUFs to compute
the choice bit of R with advantage 1/ poly(λ) and makes poly(λ) queries to
the PUFs.

2. For ε < 1/100, there exists an adversarial R that uses malicious, stateful
PUFs to correctly guess both secrets of S with probability 1 − O(

√
ε) and

makes poly(λ) queries to the PUFs.

By choosing constant ε sufficiently small, we may obtain the parameters of
Theorem 1.

Proof. We begin with some notation. For a view VR (resp. VS), we denote by
In(VR) (resp. In(VS)) the input of the corresponding party implicitly contained
in its view. We denote by Out(VR) the output of R implicitly contained in
its view. For a distribution D and random variables X1, . . . , Xn, we denote by
D(X1, . . . , Xn) the distribution D conditioned on X1, . . . , Xn.

Let p(·) be some sufficiently large polynomial. We consider two cases.
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Case 1: With probability 1/p(λ) over (M̃,P,VS) generated by a run of Π̃ we
have that either

Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0] ≤ 1/2− ε

or Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1] ≤ 1/2− ε

holds, where (s0, s1) = In(VS).

Case 2: With probability 1 − 1/p(λ) over (M̃,P,VS) generated by a run of Π̃
we have that both

Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0] ≥ 1/2− ε

and Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1] ≥ 1/2− ε

hold, where (s0, s1) = In(VS).

Clearly, for any PUF-based OT protocol, either Case 1 or Case 2 must hold.
We show that if Case 1 holds then a malicious sender may attack receiver privacy
making poly(m/ε) queries and succeeding with advantage ε/4p(λ), and if Case 2
holds then a malicious receiver may attack sender privacy making poly(m/ε)
queries and succeeding with probability 1 − O(

√
ε). This is sufficient to prove

the theorem.
We next present the attacks on Receiver and Sender privacy. We defer the

analysis of the attacks to the full version.

Sender’s attack (denoted S ′) on receiver privacy:

1. Participate in protocol Π where the PUFs constructed by S are instantiated
with t-wise independent hash functions and maliciously constructed to record
R queries.

2. Convert the resulting transcript M to the augmented transcript M̃.

3. Run the Eve algorithm on augmented transcript M̃ to generate the set P.

4. Compute the probabilities

P0 = Pr
VVR (M̃,P,VS)

[In(VR) = 0 ∧Out(VR) = s0]

and P1 = Pr
VVR (M̃,P,VS)

[In(VR) = 1 ∧Out(VR) = s1].

5. If P0 ≥ 1/2 + ε/2, output 0, if P1 ≥ 1/2 + ε/2, output 1. Otherwise, output
0 or 1 with probability 1/2.
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Receiver’s attack (denoted R′) on sender privacy:

1. Participate in protocol Π where the PUFs constructed by R are instantiated
with t-wise independent hash functions and are maliciously constructed to
record S queries.

2. Convert the resulting transcript M to the augmented transcript M̃.
3. Run the Eve algorithm on augmented transcript M̃ to generate the set P.
4. Compute the probabilities

P0 = Pr
VVR (M̃,P)

[In(VR) = 0] and P1 = Pr
VVR (M̃,P)

[In(VR) = 1].

5. If P0 = 0 or P1 = 0 then abort.
6. Otherwise, draw two views VR(0) and VR(1) from VVR(M̃,P, In(VR) = 0)

and VVR(M̃,P, In(VR) = 1), respectively.
7. Output s′0 = Out(VR(0)), s

′
1 = Out(VR(1)).

4 Feasibility Result for Malicious, Stateless PUFs

We show that universally composable two-party computation is possible if the
adversary is limited to creating stateless malicious PUFs. The core of our result
is a construction of an unconditionally secure, universally composable, oblivious-
transfer protocol in this model; we describe the protocol here, and defer its proof
of security to the full version. In Section 4.2 we briefly discuss how the oblivious-
transfer protocol can be used to obtain the claimed result.

4.1 Universally Composable Oblivious Transfer

Our OT protocol adapts the protocol of Brzuska et al. [5], which is secure against
attackers limited to honestly generated PUFs. Roughly, we replace the single
PUF—generated by one of the parties—in their protocol with a “combined PUF”
generated by both parties. Specifically, this “combined PUF” PUF is constructed
by having each party generate their own PUFs PUFS , PUFR, and then defining

PUF(c)
def
= PUFS(c)⊕PUFR(c). Intuitively, as long as one of the parties generates

their PUF honestly, the combined PUF is still unpredictable (the output is
random) and uncloneable (without physical access to both PUFS and PUFR, it
is impossible to evaluate PUF).

In our description of the protocol in Figure 1, we have the parties exchange
PUFs once, after which they can subsequently execute any pre-determined num-
ber N of oblivious-transfer executions. We remark that it is necessary to prevent
a malicious R from substituting a PUF of its own for PUFS ; this can be done
by having S probe a random point before sending PUFS and then checking it
again later. We omit this check from the figure.

Theorem 4. The protocol in Figure 1 securely realizes FOT in the (FPUF,Fauth)-
hybrid model, where malicious parties are limited to generated stateless PUFs
(with arbitrary behavior).
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Sender S session sid Receiver R
PUFS ← S PUFR ← S

PUFS−−−−−−−−−→
i = 1, ..., N :

ci←{0, 1}λ

ri := PUF(i‖ci)
store (c1, r1), . . . , (cN , rN)

PUFS ,PUFR←−−−−−−−−−
For i = 1, . . . , N do:

Input: s0, s1 ∈ {0, 1}λ Input: b ∈ {0, 1}
x0, x1 ← {0, 1}λ x0, x1−−−−−−−−−−−→

v := ci ⊕ xb

v←−−−−−−−−−−−
r̂0 := PUF (i‖(v ⊕ x0))

r̂1 := PUF (i‖(v ⊕ x1))

S0 := s0 ⊕ r̂0

S1 := s1 ⊕ r̂1
S0, S1−−−−−−−−−−−→

Output: sb := Sb ⊕ ri

Fig. 1. Oblivious transfer protocol. We define PUF(c)
def
= PUFS(c)⊕ PUFR(c).

Security holds against an unbounded cheating S, and an unbounded cheating R
limited to making polynomially-many queries to PUFS . We provide a proof of
Theorem 4 in the full version.

4.2 From UC Oblivious Transfer to UC Two-Party Computation

We observe that our UC oblivious-transfer protocol can be used to obtain UC
two-party computation of any functionality. The main idea is to first construct a
semi-honest secure two-party computation protocol using Yao’s garbled-circuit
protocol, and to then apply the compiler of Ishai, Prabhakaran, and Sahai [13].

Semi-honest Secure Two-Party Computation. Lindell and Pinkas pre-
sented a proof for Yao’s two-party secure-computation protocol [16]. They show
how to instantiate the garbling part of the protocol with a private-key encryp-
tion scheme having certain properties. In addition, the authors show that any
pseudorandom function is sufficient to instantiate such a private-key encryption
scheme. Our main observation is that we can replace the pseudorandom function
with a PUF.3 This has already been observed before by Brzuska et al. [5] in a

3 Note also that if the circuit generator is malicious, then he cannot violate the circuit
evaluator’s privacy by generating a malicious PUF.
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different context. With this observation, we can apply the result of [16] to obtain
a protocol for semi-honest secure two-party computation based on PUFs only
(and no computational assumptions).

Theorem 5. Let f be any functionality. Then there is a (constant-round) pro-
tocol that securely computes f for semi-honest adversaries in the (FPUF,FOT)-
hybrid model.

We omit the proof since it follows easily from prior work.

Universally Composable Two-Party Computation. In the next step we
apply the IPS compiler [13], a black-box compiler that takes

– An “outer” MPC protocol Π with security against a constant fraction of
malicious parties.

– An “inner” two-party protocol ρ, in the FOT-hybrid model, where the secu-
rity of ρ only needs to hold against semi-honest parties.

and transforms them into a two-party protocol ΦΠ,ρ which is secure in the FOT-
hybrid model against malicious corruptions.

In our setting, we must be careful to give information-theoretic instantiations
of the “outer” and “inner” protocols so that our final protocol ΦΠ,ρ will be un-
conditionally secure in the FOT-hybrid model. Fortunately, we may instantiate
the “outer” protocol,Π , with the seminal BGW protocol [4] and may instantiate
the “inner” protocol, ρ, with the protocol from the previous section. Alterna-
tively, the “inner” protocol can be instantiated with the semi-honest version of
the two-party GMW protocol [10] in the FOT-hybrid model.

Let ψ denote the OT-protocol described in Figure 1 and let Φψ
Π,ρ(f) denote

the IPS-compiled protocol which makes subroutine calls to ψ instead of FOT

and computes the functionality f . Using Theorems 4 and 5, along with the UC
composition theorem, we obtain the following result:

Theorem 6. For any functionality f , protocol Φψ
Π,ρ(f) securely computes f in

the (FPUF,Fauth)-hybrid model.
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Abstract. We study a model of fairness in secure computation in which
an adversarial party that aborts on receiving output is forced to pay a
mutually predefined monetary penalty. We then show how the Bitcoin
network can be used to achieve the above notion of fairness in the two-
party as well as the multiparty setting (with a dishonest majority). In
particular, we propose new ideal functionalities and protocols for fair
secure computation and fair lottery in this model.

One of our main contributions is the definition of an ideal primitive,
which we call F�

CR (CR stands for “claim-or-refund”), that formalizes
and abstracts the exact properties we require from the Bitcoin network
to achieve our goals. Naturally, this abstraction allows us to design fair
protocols in a hybrid model in which parties have access to the F�

CR

functionality, and is otherwise independent of the Bitcoin ecosystem. We
also show an efficient realization of F�

CR that requires only two Bitcoin
transactions to be made on the network.

Our constructions also enjoy high efficiency. In a multiparty setting,
our protocols only require a constant number of calls to F�

CR per party on
top of a standard multiparty secure computation protocol. Our fair mul-
tiparty lottery protocol improves over previous solutions which required
a quadratic number of Bitcoin transactions.

Keywords: Fair exchange, Secure computation, Bitcoin.

1 Introduction

Secure computation enables a set of mutually distrusting parties to carry out
a distributed computation without compromising on privacy of inputs or correct-
ness of the end result. Indeed, secure computation is widely applicable to vari-
ety of everyday tasks ranging from electronic auctions to privacy-preserving data
mining. Showing feasibility [50,30,12,19] of this seemingly impossible-to-achieve
notion has been one of the most striking contributions of modern cryptography.
However, definitions of secure computation [29] do vary across models, in part
owing to general impossibility results for fair coin-tossing [22]. In settings where
the majority of the participating parties are dishonest (including the two party
setting), a protocol for secure computation protocols is not required to guarantee
important properties such as guaranteed output delivery or fairness.1 Addressing

1 Fairness guarantees that if one party receives output then all parties receive output.
Guaranteed output delivery ensures that an adversary cannot prevent the honest par-
ties from computing the function.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 421–439, 2014.
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this deficiency is critical if secure computation is to be widely adopted in practice,
especially given the current interest in practical secure computation. Needless to
say, it is not very appealing for an honest party to invest time and money to carry
out a secure computation protocol until the very end, only to find out that its
adversarial partner has aborted the protocol after learning the output.

Fair exchange of digital commodities is a well-motivated and well-studied prob-
lem. Loosely speaking, in the problem of fair exchange, there are two (or more)
parties that wish to exchange digital commodities (e.g., signed contracts) in
a fair manner, i.e., either both parties complete the exchange, or none do. A
moment’s thought reveals that fair exchange is indeed a special subcase of fair
secure computation. Unfortunately, as is the case with fair secure computation,
it is known that fair exchange in the standard model cannot be achieved [14,22].
However, solutions for fair exchange were investigated and proposed in a vari-
ety of weaker models, most notably in the optimistic model mentioned below.
Typically such solutions require cryptosystems with some tailor-made proper-
ties, and employ tools of generic secure computation only sparingly (see [15,40])
in part owing to the assumed inefficiency of secure computation protocols. Re-
cent years, however, have witnessed a tremendous momentum shift in practical
secure computation (see [36,43] and references therein). Given the zeitgeist, it
may seem that solving the problem of fair exchange as a subcase of fair secure
computation is perhaps the right approach to take.2 Unfortunately as described
earlier, fair secure computation is impossible.

Workarounds. Indeed, several workarounds have been proposed in the liter-
ature to counter adversaries that may decide to abort possibly depending on
the outcome of the protocol. The most prominent lines of work include gradual
release mechanisms, optimistic models, and partially fair secure computation.
Gradual release mechanisms ensure that at any stage of the protocol, the adver-
sary has not learned much more about the output than honest parties. Optimistic
models allow parties to pay a subscription fee to a trusted server that can be
contacted to restore fairness whenever fairness is breached. Partially fair secure
computation provides a solution for secure computation where fairness may be
breached but only with some parameterizable (inverse polynomial) probability.
In all of the above solutions, one of two things hold: either (1) parties have to
run a secure computation protocol that could potentially be much more expen-
sive (especially in the number of rounds) than a standard secure computation
protocol, or (2) an external party must be trusted to not collude with the ad-
versary. Further, when an adversary aborts, the honest parties have to expend
extra effort to restore fairness, e.g., the trusted server in the optimistic model
needs to contacted each time fairness is breached. In summary, in all these works,

2 A similar parallel may be drawn to the practicality of secure computation itself.
Special purpose protocols for secure computation were exclusively in vogue until
very recently. However, a number of recent works have shown that generic secure
computation can be much more practical [44,35].
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(1) the honest party has to expend extra effort, and (2) the adversary essentially
gets away with cheating.3

Ideally, rather than asking an honest party to invest additional time and
money whenever fairness is (expected to be) breached by the adversary, one
would expect “fair” mechanisms to compensate an honest party in such situ-
ations. Indeed, this point-of-view was taken by several works [42,41,10]. These
works ensure that an honest party would be monetarily compensated whenever
a dishonest party aborts. In practice, such mechanisms would be effective if the
compensation amount is rightly defined. Note that in contrast to the optimistic
model, here the honest party is not guaranteed to get output, but still these
works provide a reasonable and practical notion of fairness. Perhaps the main
drawback of such works is their dependance on e-cash systems (which unfortu-
nately are not widely adopted yet) or central bank systems which need to be
completely trusted.

Bitcoin [47] is a peer-to-peer network that uses the power of cryptography to
emulate (among other things) a trusted bank. Its claim to fame is that it is the
first practical decentralized digital currency system (which also provides some
level of anonymity for its users). A wide variety of electronic transactions take
place on the Bitcoin network. As an illustrative example, consider the case of
(multiparty) lotteries which are typically conducted by gambling websites (e.g.,
SatoshiDice). Note that such a lottery requires the participants to trust the
gambling website to properly conduct the lottery which may be unreasonable in
some cases (and further necessitates paying a house edge). One might wonder
if secure computation would provide a natural solution for multiparty lotteries
over Bitcoin. Unfortunately, our understanding of Bitcoin is diminished by a lack
of abstraction of what the Bitcoin network provides. Consequently there exist
relatively very few works that provide any constructive uses of Bitcoin [21,2,6].

Our Contributions. Conceptually, our work provides the missing piece that
simultaneously allows (1) designing protocols of fair secure computation that
rely on Bitcoin (and not a trusted central bank), and (2) designing protocols for
fair lottery on Bitcoin that use secure computation (and not a trusted gambling
website). Our model of fairness is essentially the same as in [2,42,41,1] in that we
wish to monetarily penalize an adversary that aborts the protocol after learn-
ing the output. We distinguish ourselves from most prior work by providing a
formal treatment, namely specifying formal security models and definitions, and
proving security of our constructions. In addition, we extensively consider the
multiparty setting, and construct protocols that are both more efficient as well
as provably secure (in our new model). Our clear abstraction of the functionality
that we require from Bitcoin network enables us to not only design modular pro-
tocols, but also allow easy adaptations of our solutions to settings other than the

3 This is especially true in today’s world where cheap digital pseudonyms [23] are
available.
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Bitcoin network (e.g., Litecoin, PayPal, or a central trusted bank).4 Our main
contributions include providing formal definitions and efficient realizations for:

Claim-or-refund functionality F
CR. A simple yet powerful two-party

primitive that accepts deposits from a “sender” and conditionally trans-
fers the deposit to a “receiver.” If the receiver defaults, then the deposit is
returned to the sender after a prespecified time. In the full version of our
paper [13], we describe a Bitcoin protocol for realizing this functionality that
requires parties to make only two transactions on the Bitcoin network. We
note that variants of F

CR have been constructed and used in [45,7,6].

Secure computation with penalties F
f . In a n-party setting, a protocol

for secure computation with penalties guarantees that if an adversary aborts
after learning the output but before delivering output to honest parties, then
each honest party is compensated by a prespecified amount. We show how
to construct such a protocol in the (FOT,F

CR)-hybrid model that requires
only O(n) rounds5 and O(n) calls to F

CR.

Secure lottery with penalties F
lot. In a multiparty setting, a protocol

for secure lottery with penalties guarantees that if an adversary aborts after
learning the outcome of the lottery but before revealing the outcome to
honest parties, then each honest party is compensated by a prespecified
amount equal to the lottery prize. We show how to construct such a protocol
in the (FOT,F

CR)-hybrid model that requires only O(n) rounds and O(n)
calls to F

CR.

Potential Impact. We hope that our work will encourage researchers to under-
take similar attempts at formalizing other important properties of the Bitcoin
network, and perhaps even develop a fully rigorous framework for secure com-
putations that involve financial transactions. Also, we design our protocols in a
hybrid model, thus enabling us to take advantage of advances in practical secure
computation. One reason to do this was because we are somewhat optimistic that
our protocols will have a practical impact on the way electronic transactions are
conducted over the internet and the Bitcoin network.

Related Work. Most related to our work are the works of Back and Bentov [6]
and Andrychowicz et al. [2,1]. Indeed, our work is heavily inspired by [6,2] who,
to the best of our knowledge, were the first to propose fair two-party (resp.
multiparty) lottery protocols over the Bitcoin network. We point out that the
n-party lottery protocols of [2] require quadratic number of transactions to be
made on the Bitcoin network. In contrast our protocols require only a linear
number of Bitcoin transactions. (See full version for a more detailed comparison
with [2].) In a followup work [1] that is concurrent to and independent of ours,
the authors of [2] propose solutions for fair two-party secure computation over
the Bitcoin network. In contrast, in this work, we propose formal security mod-
els for fair computations, and construct fair secure computation and lottery in

4 Indeed, we can readily adapt our constructions to obtain the first multiparty solu-
tions enjoying “legally enforceable” fairness [42].

5 Contrast this with the gradual release mechanism which require security parameter
number of rounds even when n = 2.
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the multiparty setting. As far as fair two-party secure computation is concerned,
although the goal of [1] and ours is the same, the means to achieve the goal are
significantly different. Specifically, the protocols of [2,1] directly works by build-
ing particular Bitcoin transactions (i.e., with no formal definitions of relevant
functionalities). In the following, we provide a summary of other related works.

Fairness in standard secure computation. Fair two party coin tossing was
shown to be impossible in [22]. Completely fair secure computation for re-
stricted classes of functions was shown in [32,3], while partially fair secure
computation for all functions were constructed in [34,9]. Complete primitives
for fairness were extensively studied in [33].

Gradual release mechanisms. Starting from early works [8,31], gradual re-
lease mechanism have been employed to solve the problem of fair exchange
in several settings [14,24,28]. A good survey of this area can be found in [49].
A formal treatment of gradual release mechanisms can also be found in [27].

Optimistic model. There has been a huge body of work starting from [5,4,11]
that deals with optimistic models for fair exchange (e.g., [41,46,25]). Opti-
mistic models for secure computation was considered in [15]. [41] consider
a model similar to ours where receiving payment in the event of breach of
fairness is also considered fair.

Legally enforceable fairness. Chen, Kudla, and Paterson [20] designed proto-
cols for fair exchange of signatures in a model where signatures are validated
only in a court-of-law. Following this, Lindell [42] showed how to construct
legally enforceable fairness in the two party secure computation where par-
ties have access to a trusted bank (or a court of law).

2 Models and Definitions

Before we begin, we note that our formalization is heavily inspired by prior
formalizations in settings similar to ours [42,27]. Let n denote the number of
parties and t (resp. h) denote the number of corrupted (resp. honest) parties.
We consider settings where t < n.6 In our setting we are interested in dealing
with non-standard commodities which we call “coins,” that cannot be directly
incorporated in standard definitions of secure computation.

Coins. In this paper, we define coins as atomic entities that are fungible and
cannot be duplicated. In particular, we assume coins have the following properties:
(1) the owner of a coin is simply the party that possesses it, and further it is
guaranteed that no other party can possess that coin simultaneously, and (2)
coins can be freely transferred from a sender to a receiver (i.e, the sender is no
longer the owner of the item while the receiver becomes the new owner of the
item), and further, the validity of a received coin can be immediately checked
and confirmed. Note we assume that each coin is perfectly indistinguishable from

6 Note that even when t < n/2, it is not clear how to design a “fair” lottery simply
because standard models do not deal with coins.
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one another. Further we assume that each party has its own wallet and safe.7

All its coins are distributed between its wallet and its safe.

Our definition of coin is intended to capture physical/cryptographic curren-
cies contained in (individual) physical/cryptographic wallets. As such the above
description of a coin does not capture digital cheques or financial contracts (i.e.,
those that need external parties such as banks or a court-of-law to validate
them). However, we chose this definition to keep things simple, and more tech-
nically speaking, such a formalization would enable us to consider concurrent
composition of protocols that deal with coins (in contrast with the formalization
in [42]).

Notation. We use coins(x) to denote an item whose value is described by x ∈ N.
Suppose a party possesses coins(x1) and receives coins(x2) from another party,
then we say it now possesses coins(x1 + x2). Suppose a party possesses coins(x1)
and sends coins(x2) to another party, then we say it now possesses coins(x1−x2).

Model. We will prove security of our protocols using the simulation paradigm.
To keep things simple:

Our protocols are designed in a hybrid model where parties have access to
two types of ideal functionalities which we describe below. In the relevant
hybrid model, our protocols will have straightline simulators, and thus we
can hope for achieving standalone as well as universally composable (UC)
security. We chose to provide UC-style definitions [17] of our ideal function-
alities.

The first type of ideal functionalities are standard ideal functionalities
used in secure computation literature These functionalities only provide
security with agreement on abort [29]. In particular, they do not provide
the notion of fairness that we are interested in.

The second type of ideal functionalities are special ideal functionalities
that deal with coins. These are the ideal functionalities that we will be
interested in realizing. Note that only special ideal functionalities deal
with coins.

Special ideal functionalities are denoted by F
xxx (i.e., with superscript !) to

distinguish them notationally from standard ideal functionalities. We will
be interested in secure realization of these functionalities.

We work in the standard model of secure computation where parties are
assumed to be connected with pairwise secure channels over a synchronous
network (i.e., the computation proceeds in “rounds”). See [27,38] on how to
make the relevant modifications about synchrony assumptions in the UC-
framework [17].

Our special ideal functionality F
CR that idealizes Bitcoin transactions, is

assumed to be aware of the round structure of the protocol. This choice is
inspired by similar assumptions about the “wrapped functionalities” consid-
ered in [27].

7 The distinction between wallet and safe will become clear in the description of the
ideal/real processes.
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On the choice of UC-style definitions. In practice, we expect parties to run va-
riety of electronic transactions concurrently. A natural requirement for proving
security would be to consider universally composable (UC) security which would
in turn also enable modular design of protocols. Perhaps, the main drawback
in considering UC security is the fact that to UC realize most (standard) func-
tionalities one typically needs to assume the existence of a trusted setup [18].
To avoid this, one may design concurrently secure protocols based only on pure
complexity-theoretic assumptions. Despite this, we chose to work in a UC-like
framework (which we describe below) because we believe it enables simpler and
cleaner abstraction and description of our ideal functionalities and our proto-
cols. Also we argue that the trusted setup in UC is typically a one-time setup
(as opposed to say the optimistic model where trusted help needs to be online).8

Further, the standalone variant of our protocols require no such setup.

Preliminaries. A function μ(·) is negligible in λ if for every positive polyno-
mial p(·) and all sufficiently large λ’s it holds that μ(λ) < 1/p(λ). A probability
ensemble X = {X(a, λ)}a∈{0,1}∗,n∈N is an infinite sequence of random vari-
ables indexed by a and λ ∈ N. Two distribution ensembles X = {X(a, λ)}λ∈N

and Y = {Y (a, λ)}λ∈N are said to be computationally indistinguishable, denoted

X
c≡ Y if for every non-uniform polynomial-time algorithm D there exists a

negligible function μ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ μ(λ).

All parties are assumed to run in time polynomial in the security parameter
λ. We follow standard definitions of secure computation [29]. Our main mod-
ification is now each party has its own wallet and safe, and further, the view
of Z contains the distribution of coins. We provide a succinct description of
our model, which we call “security computation with coins” (SCC), highlighting
the differences from standard secure computation. Before that we describe the
distinction between wallets and safes.

Wallets vs. safes. Recall that in standard models each party is modeled as an
interactive Turing machine. For our purposes, we need to augment the model by
providing each party with its own wallet and safe. We allow each party’s wallet
to be arbitrarily modified by the distinguisher Z (aka environment). However,
parties’ safes are out of Z’s control. This is meant to reflect honest behavior
in situations where the party has no coins left to participate in a protocol. We
require honest parties to simply not participate in such situations. In other words,
in order to participate in a protocol, an honest party first locks the required
number of coins (specified by the protocol) in its safe. During the course of a
protocol, the honest party may gain coins (e.g., by receiving a penalty), or may
lose coins (e.g., in a lottery). These gains and losses affect the content of the safes
and not the wallets. Finally, at the end of the protocol, the honest party releases
the coins associated with that protocol (including new gains) into the wallet.

8 Also note, in practice, one may obtain heuristic UC security in the programmable
random oracle model.
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Note on the other hand, we give the real/ideal adversary complete control over
a corrupt party’s wallet and safe.

Secure Computation with Coins (SCC security). We now describe the
ideal/real processes for SCC. The order of activations is the same as in UC, and
in particular, Z is activated first. In each activation of Z, in addition to choosing
(both honest and corrupt) parties’ inputs (as in standard UC), Z also initializes
each party’s wallet with some number of coins and may activate the hybrid (resp.
ideal) adversary A (resp. S). In every subsequent activation, Z may read and/or
modify (i.e., add coins to or retrieve coins from)9 the contents of the wallet (but
not the safe) of each honest party. Further, Z may also read each honest party’s
local output tapes, and may write information on its input tape. In the hybrid
(resp. ideal) process, the adversary A (resp. S) has complete access to all tapes,
wallets, and safes of a corrupt party. Note that, as in UC, the environment Z
will be an interactive distinguisher.

Let idealf,S,Z(λ, z) denote the output of environment Z initialized with in-
put z after interacting in the ideal process with ideal process adversary S and
(standard or special) ideal functionality Gf on security parameter λ. Recall that
our protocols will be run in a hybrid model where parties will have access to
a (standard or special) ideal functionality Gg. We denote the output of Z after
interacting in an execution of π in such a model with A by hybrid

g
π,A,Z(λ, z),

where z denotes Z’s input. We are now ready to define what it means for a
protocol to SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-time n-party pro-
tocol and let Gf be a probabilistic polynomial-time n-party (standard or special)
ideal functionality. We say that π SCC realizes Gf with abort in the Gg-hybrid
model (where Gg is a standard or a special ideal functionality) if for every non-
uniform probabilistic polynomial-time adversary A attacking π there exists a
non-uniform probabilistic polynomial-time adversary S for the ideal model such
that for every non-uniform probabilistic polynomial-time adversary Z,

{idealf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡ {hybridg

π,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

♦

We have not proven a composition theorem for our definition (although we
believe our model should in principle allow composition analogous to the UC
composition theorem [17]). For the results in this paper, we only need to assume
that the Bitcoin protocol realizing F

CR is concurrently composable. Other than
this, we require only standard sequential composition [16]. We stress that our
protocols enjoy straightline simulation (both in the way coins and cryptographic
primitives are handled), and thus they may be adaptable to a concurrent setting.
Finally, we note that we consider only static corruptions.

Next, we define the security notion we wish to realize for fair secure computation
and for fair lottery.

9 I.e., we implicitly give Z the power to create new coins.
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Definition 2. Let π be a protocol and f be a multiparty functionality. We say
that π securely computes f with penalties if π SCC realizes the functionality F

f

according to Definition 1.

Definition 3. Let π be a protocol. We say that π is a secure lottery with penalties
if π SCC realizes the functionality F

lot according to Definition 1.

2.1 Special Ideal Functionalities

Ideal Functionality F
CR. This is our main special ideal functionality and

will serve as a building block for securely realizing more complex special func-
tionalities. (See Figure 1 for a formal description.) At a very basic level, F

CR

allows a sender Ps to conditionally send coins(x) to a receiver Pr. The condi-
tion is formalized as the revelation of a satisfying assignment (i.e., witness) for
a sender-specified circuit φs,r (i.e., relation). Further, there is a “time” bound,
formalized as a round number τ , within which Pr has to act in order to claim
the coins. An important property that we wish to stress is that the satisfying
witness is made public by F

CR.
The importance of the above functionality is a highly efficient realization via

Bitcoin that requires only two transactions to be made on the network. See full
version [13] for more details. In the Bitcoin realizations of the ideal functionali-
ties, sending a message with coins(x) corresponds to broadcasting a transaction
to the Bitcoin network, and waiting according to some time parameter until
there is enough confidence that the transaction will not be reversed.

F�
CR with session identifier sid, running with parties P1, . . . , Pn, a parameter 1λ,

and an ideal adversary S proceeds as follows:

– Deposit phase. Upon receiving the tuple (deposit, sid, ssid, s, r, φs,r, τ, coins(x))
from Ps, record the message (deposit, sid, ssid, s, r, φs,r, τ, x) and send it to all
parties. Ignore any future deposit messages with the same ssid from Ps to Pr.

– Claim phase. In round τ , upon receiving (claim, sid, ssid, s, r, φs,r, τ, x, w) from
Pr, check if (1) a tuple (deposit, sid, ssid, s, r, φs,r, τ, x) was recorded, and (2)
if φs,r(w) = 1. If both checks pass, send (claim, sid, ssid, s, r, φs,r, τ, x,w) to all
parties, send (claim, sid, ssid, s, r, φs,r, τ, coins(x)) to Pr, and delete the record
(deposit, sid, ssid, s, r, φs,r, τ, x).

– Refund phase: In round τ + 1, if the record (deposit, sid, ssid, s, r, φs,r, τ, x)
was not deleted, then send (refund, sid, ssid, s, r, φs,r, τ, coins(x)) to Ps, and
delete the record (deposit, sid, ssid, s, r, φs,r, τ, x).

Fig. 1. The special ideal functionality F�
CR

Secure Computation with Penalties. Loosely speaking, our notion of fair
secure computation guarantees:



430 I. Bentov and R. Kumaresan

F�
f with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ,

and an ideal adversary S that corrupts parties {Ps}s∈C proceeds as follows: Let
H = [n] \ C and h = |H |. Let d be a parameter representing the safety deposit,
and let q denote the penalty amount.

– Input phase: Wait to receive a message (input, sid, ssid, r, yr, coins(d)) from
Pr for all r ∈ H . Then wait to receive a message (input, sid, ssid, {ys}s∈C ,
H ′, coins(h′q)) from S where h′ = |H ′|.

– Output phase:

Send (return, sid, ssid, coins(d)) to each Pr for r ∈ H .

Compute (z1, . . . , zn) ← f(y1, . . . , yn).

If h′ = 0, then send message (output, sid, ssid, zr) to Pr for r ∈ [n],
and terminate.

If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each
r ∈ H ′, and terminate.

If h′ = h, then send message (output, sid, ssid, {zs}s∈C) to S .
If S returns (continue, sid, ssid,H ′′), then send (output, sid, ssid, zr) to Pr

for all r ∈ H , and send (payback, sid, ssid, coins((h − h′′)q)) to S where
h′′ = |H ′′|, and send (extrapay, sid, ssid, coins(q)) to Pr for each r ∈ H ′′.
Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to Pr

for all r ∈ H .

Fig. 2. The special ideal functionality F�
f for secure computation with penalties

An honest party never has to pay any penalty.

If a party aborts after learning the output and does not deliver output to
honest parties, then every honest party is compensated.

These guarantees are exactly captured in our description of the ideal function-
ality F

f for secure computation with penalties in Figure 2. We elaborate more
on the definition of the ideal functionality F

f below.

Ideal Functionality F
f . In the first phase, the functionality F

f receives inputs
for f from all parties. In addition, F

f allows the ideal world adverary S to deposit
some coins which may be used to compensate honest parties if S aborts after
receiving the outputs. Note that an honest party makes a fixed deposit coins(d)
in the input phase.10,11 Then, in the output phase, F

f returns the deposit made
by honest parties back to them. If insufficient number of coins are deposited,
then S does not obtain the output, yet may potentially pay penalty to some
subset H ′ of the honest parties. If S deposited sufficient number of coins, then

10 Ideally, we wouldn’t want an honest party to deposit any coins, but we impose this
requirement for technical reasons.

11 To keep the definitions simple (here and in the following), we omitted details involv-
ing obvious checks that will be performed to ensure parties provide correct inputs
to the ideal functionality, including (1) checks that the provided coins are valid, and
(2) deposit amounts are consistent across all parties. If checks fail, then the ideal
functionality simply informs all parties and terminates the session.
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it gets a chance to look at the output and then decide to continue delivering
output to all parties (and further pay an additional “penalty” to some subset
H ′′), or just abort, in which case all honest parties are compensated using the
penalty deposited by S.

F�
lot with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ,

and an ideal adversary S that corrupts parties {Ps}s∈C proceeds as follows: Let
H = [n]\C and h = |H | and t = |C|. Let d be a parameter representing the safety
deposit, and let q be the value of the lottery prize (note: q is also the penalty
amount). We assume d ≥ q/n.

– Input phase: Wait to receive a message (input, sid, ssid, r, coins(d)) from Pr

for all r ∈ H . Then wait to receive a message (input, sid, ssid, {ys}s∈C ,
H ′, coins(h′q + (tq/n))) from S where h′ = |H ′|.

– Output phase: Choose r∗ ←R {1, . . . , n}.
If h′ = 0, then send message (output, sid, ssid, r∗) to Pr for r ∈ [n],
and message (return, sid, ssid, coins(d − q/n)) to each Pr for r ∈ H . and
message (prize, sid, ssid, coins(q)) to Pr∗ , and terminate.

If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each r ∈ H ′,
and message (return, sid, ssid, coins(d)) to each Pr for r ∈ H , and send
(sendback, sid, ssid, coins(tq/n)) to S , and terminate.

If h′ = h, then send message (output, sid, ssid, r∗) to S .
If S returns (continue, sid, ssid, H̃ ′,H ′′), then send message (output, sid,
ssid, r∗) to Pr for r ∈ [n], and message (return, sid, ssid, coins(d − q/n))
to each Pr for r ∈ H , and message (prize, sid, ssid, coins(q)) to Pr∗ , and

message (extrapay1, sid, ssid, coins(q)) to Pr for r ∈ H̃ ′, and message
(extrapay2, sid, ssid, coins(q/n)) to Pr for r ∈ H ′′, and message (payback,

sid, ssid, coins((h− h̃′)q − h′′q/n)) to S where h̃′ = |H̃ ′| and h′′ = |H ′′|,
and terminate.

Else if S returns (abort, sid, ssid), send messages
(return, sid, ssid, coins(d)) and (penalty, sid, ssid, coins(q)) to Pr for
all r ∈ H , and messages (sendback, sid, ssid, coins(tq/n)) to S , and
terminate.

Fig. 3. The ideal functionality F�
lot for secure lottery with penalties

Secure Lottery with Penalties. Loosely speaking, our notion of fair lottery
guarantees the following:

An honest party never has to pay any penalty.

The lottery winner has to be chosen uniformly at random.

If a party aborts after learning whether or not it won the lottery without
disclosing this information to honest parties, then every honest party is
compensated.
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These guarantees are exactly captured in our description of the ideal functional-
ity F

lot for secure lottery with penalties in Figure 3. We elaborate more on the
definition of the ideal functionality F

lot below.

Ideal Functionality F
lot. The high level idea behind the design of F

lot is the
same as that for F

f . The main distinction is that now the functionality has to
ensure that the lottery is conducted properly, in the sense that all parties pay
their fair share of the lottery prize (i.e., coins(q/n)). Thus we require that each
honest party makes a fixed lottery deposit coins(d) with d ≥ q/n. Then, in the
second phase, as was the case with F

f , the ideal functionality F
lot allows S

to learn the outcome of the lottery only if it made a sufficient penalty deposit
(i.e., coins(hq+(tq/n))). As before, if S decides to abort, then all honest parties
are compensated using the penalty deposited by S in addition to getting their
lottery deposits back. (I.e., effectively, every honest party wins the lottery!)

Remarks. At first glance, it may appear that the sets H ′, H ′′ (resp. H ′, H̃ ′, H ′′)
in the definition of F

f (resp. F
lot) are somewhat unnatural. We stress that we re-

quire specification of these sets in the ideal functionalities in order to ensure that
we can prove that our protocols securely realize these functionalities. We also
stress that it is plausible that a different security definition (cf. Definitions 2, 3)
or a different protocol construction may satisfy more “natural” formulations of
F

f and F
lot. We leave this for future work.

3 Secure Multiparty Computation with Penalties

We design protocols for secure computation with penalties in a hybrid model
with (1) a standard ideal functionality realizing an augmented version of the
unfair underlying function we are interested in computing, and (2) the special
ideal functionality F

CR that will enable us to provide fairness. In the following,
we assume, without loss of generality, that f delivers the same output to all
parties. For a function f , the corresponding augmented function f̂ performs
secret sharing of the output of f using a variant of non-malleable secret sharing
scheme that is both publicly verifiable and publicly reconstructible (in short,
pubNMSS). Secure computation with penalties is then achieved via carrying out
“fair reconstruction” for the pubNMSS scheme.12

First, we provide a high level description of the semantics of the pubNMSS
scheme. The Share algorithm takes as input a secret u, and generates “tag-token”
pairs {(Tagi,Tokeni)}i∈[n]. Finally it outputs to each party Pi the i-th token
Tokeni and AllTags = (Tag1, . . . ,Tagn). Loosely speaking, the properties that we

12 Our strategy is similar to the use of non-malleable secret sharing in [33] to construct
complete primitives for fair secure computation in the standard model. In addition
to working in a different model, the main difference is that here we explicitly require
public verification and public reconstruction for the non-malleable secret sharing
scheme. This requirement is in part motivated by the final Bitcoin realizations where
validity of the shares need to be publicly verifiable (e.g., by miners) in order to
successfully complete the transactions.
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require from pubNMSS are (1) an adversary corrupting t < n parties does not
learn any information about the secret unless all shares held by honest parties
are disclosed (i.e., in particular, AllTags does not reveal any further information),
and (2) for any j ∈ [n], the adversary cannot reveal Token′j �= Tokenj such that

(Tagj ,Token
′
j) is a valid tag-token pair. Since Share is evaluated inside a secure

protocol, we are guaranteed honest generation of tags and tokens. Given this, a
natural candidate for a pubNMSS scheme can be obtained via commitments that
are binding for honest sender (exactly as in [26]) and are equivocal. Instantiat-
ing a variant of the Naor commitment scheme [48] as done in [26], we obtain a
construction of a pubNMSS scheme using only one-way functions. (See full ver-
sion [13] for more details.) We do not attempt to provide a formal definition of
pubNMSS schemes. Rather, our approach here is to sketch a specific construction
which essentially satisfies all our requirements outlined above. Given a secret u,
we generate tag-token pairs in the following way:

Perform an n-out-of-n secret sharing of u to obtain u1, . . . , un.

To generate the i-th “tag-token” pair, apply the sender algorithm for a
honest-binding commitment using randomness ωi to secret share ui to obtain
comi, and set Tagi = comi and Tokeni = (ui, ωi).

The reconstruction algorithm Rec takes as inputs (AllTags′, {Token′i}i∈[n]) and
proceeds in the natural way. First, it checks if (Tag′i,Token

′
i = (u′

i, ω
′
i)) is a valid

tag-token pair (i.e., if Token′i is a valid decommitment for Tag′i) for every i ∈ [n].
Next, if the check passes, then it outputs u′ = ⊕�∈[n]u

′
�, else it outputs ⊥.

Next we show how to perform “fair reconstruction” for this scheme.

3.1 Fair Reconstruction

Loosely speaking, our notion of fair reconstruction guarantees the following:

An honest party never has to pay any penalty.

If the adversary reconstructs the secret, but an honest party cannot, then
the honest party is compensated.

In this section, we show how to design a protocol for fair reconstruction in the
F

CR-hybrid model. For lack of space, we refer to the full version for intuition,
detailed description, and a proof of security of our protocol.

Notation. As discussed before, we assume that the secret has been shared using
pubNMSS, i.e., each party Pi now has AllTags and its own token Tokeni. Once
a party learns all the tokens, then it can reconstruct the secret. On the other
hand, even if one token is not revealed, then the secret is hidden. We use Ti as
shorthand to denote Tokeni. A sender Ps may use (a set of) tags to specify a
F

CR transaction with the guarantee that (except with negligible probability) its
deposit can be claimed by a receiver Pr only if it produces the corresponding (set
of) tokens. (More precisely, this is captured via the relation φs,r specified by Ps).

In the following, we use P1
T−−−−→
q,τ

P2 to represent a F
CR deposit transaction

made by P1 with coins(q) which can be claimed by P2 in round τ only if it
produces token T , and if P2 does not claim the transaction, then P1 gets coins(q)
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refunded back after round τ . We use τ1, . . . , τn to denote round numbers. In order
to keep the presentation simple and easy to follow, we avoid specifying the exact
round numbers, and instead only specify constraints, e.g., τ1 < τ2.

Multiparty Fair Reconstruction via the “Ladder” Construction. We
will ask parties to make deposits in two phases. In the first phase, parties
P1, . . . , Pn simultaneously make a deposit of coins(q) to recipient Pn that can be
claimed only if tokens T1, . . . , Tn are produced by Pn. We call these deposits roof
deposits. Then, in the second phase, each Ps+1 makes a deposit of coins(s · q)
to recipient Ps that can be claimed only if tokens T1, . . . , Ts are produced by
Ps. These deposits are called the ladder deposits. We also force Ps+1 to make its
ladder deposit only if for all r > s+1, party Pr already made its ladder deposit.
We present a pictorial description of the deposit phase of the n-party protocol
in Figure 4.

Roof Deposits.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

...

Pn−2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Ladder Deposits.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...

P3
T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Fig. 4. Roof and Ladder deposit phases for fair reconstruction

We deal with aborts in the deposit phase in the following way. If a corrupt
party does not make the roof deposit it is supposed to make, then all parties get
their roof deposits refunded following which they terminate the protocol. On the
other hand, if a corrupt party Pr fails to make the ladder deposit it is supposed
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to make, then for all s < r, party Ps does not make its ladder deposit at all,
while for all s > r, party Ps continues to wait until a designated round to see
whether its ladder deposit is claimed (and in particular, does not terminate the
protocol immediately).

The deposits are then claimed in the reverse direction. Note that the tokens
required to claim the i-th ladder deposit consist of tokens possessed by the re-
cipient of the i-th ladder deposit plus the tokens required to claim the (i+1)-th
ladder deposit (for i+1 < n). Therefore, if the (i+1)-th ladder deposit is claimed,
then the i-th ladder deposit can always be claimed. In particular, the above holds
even if for some j > i+ 1, (1) the j-th ladder deposit was not claimed by a pos-
sibly corrupt party, or (2) the j-th ladder deposit was not even made (which
indeed is the reason why we require parties that have made their ladder deposit
to wait even if a subsequent ladder deposit was not made). Further, it can be
verified that if all parties behave honestly, then across all roof and ladder de-
posits, the amount deposited equals the amount claimed. See full version for a
formal description of the protocol in the F

CR-hybrid model. Since FOT, the ideal
functionality for oblivious transfer, is sufficient [37,39] to compute any standard
ideal functionality we have the following theorem:

Theorem 1. Assuming the existence of one-way functions, for every n-party
functionality f there exists a protocol that securely computes f with penalties in
the (FOT,F

CR)-hybrid model. Further, the protocol requires O(n) rounds, a total
of O(n) calls to F

CR, and each party deposits O(n) times the penalty amount.

Somewhat surprisingly, minor modifications to the above protocol leads us to
a construction for secure lotteries with penalties.

4 Secure Lottery with Penalties

Recall that our notion of fair lottery guarantees the following:

An honest party never has to pay any penalty.

The lottery winner has to be chosen uniformly at random.

If a party aborts after learning whether or not it won the lottery without
disclosing this information to honest parties, then every honest party is
compensated.

For a formal specification of the ideal functionality see Figure 3. Our protocol
proceeds in a similar way to our protocol for secure computation with penalties.
Specifically, the parties first engage in a standard secure computation protocol
that computes the identity of the lottery winner (i.e., by uniformly selecting an
integer from [n]), and secret shares this result using pubNMSS (scheme described
in Section 3). Now parties need to reconstruct this secret in a fair manner. Note
that a malicious party may abort upon learning the outcome of the lottery (say,
on learning that it did not win). This is where the fair reconstruction helps,
in the sense that parties that did not learn the outcome of the protocol (i.e.,
the identity of the lottery winner) now receive a penalty payment equal to the
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lottery prize. However, this alone is not sufficient. One needs to ensure that the
lottery winner actually receives the lottery prize too.

Fortunately, by making a minor modification to the “ladder” protocol, we
are able to ensure that the lottery winner receives its lottery prize when the
reconstruction is completed. Specifically, our modifed ladder protocol now has 3
phases: ridge, roof, and ladder phases. The ladder phase is identical to the ladder
phase in the fair reconstruction protocol. We now describe at a high level how
this modification works.

First recall that if parties follow the protocol, then at the end of the ladder
claims, Pn has lost (n − 1)q coins and every other party has gained q coins
(assuming it can get its roof deposits refunded). That is, effectively party Pn

has “paid” (n− 1)q coins to learn the outcome of the lottery. Now suppose our
roof deposit phase was made w.r.t relations φj

rf by party Pj such that it pays q
coins to Pn only if Pj did not win the lottery.13 Then, at the end of this phase,
it is guaranteed that the lottery winner Pj , if j �= n, has won q coins, and (only)
Pn has completely paid for the lottery prize. Further even when j = n (i.e., Pn

won the lottery) then at the end of the roof deposit phase, party Pn has only
“evened out” and in particular has not won the lottery prize. Effectively, Pn has
paid the lottery prize to the lottery winner.

Of course, such a situation is highly unsatisfactory. We remedy the situation
by introducing “ridge” deposits made by each party Pj except Pn where Pj

promises to pay its lottery share q/n to Pn as long as Pn reveals all the tokens.
This simple fix allows us to prove the following theorem:

Theorem 2. Assuming the existence of one-way functions, there exists a n-
party protocol for secure lottery with penalties in the (FOT,F

CR)-hybrid model.
Further, the protocol requires O(n) rounds, a total of O(n) calls to F

CR, and
each party is required to deposit O(n) times the penalty amount.
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Abstract. Most implementations of Yao’s garbled circuit approach for
2-party secure computation use the free-XOR optimization of Kolesnikov
& Schneider (ICALP 2008). We introduce an alternative technique called
flexible-XOR (fleXOR) that generalizes free-XOR and offers several ad-
vantages. First, fleXOR can be instantiated under a weaker hardness
assumption on the underlying cipher/hash function (related-key security
only, compared to related-key and circular security required for free-
XOR) while maintaining most of the performance improvements that
free-XOR offers. Alternatively, even though XOR gates are not always
“free” in our approach, we show that the other (non-XOR) gates can be
optimized more heavily than what is possible when using free-XOR. For
many circuits of cryptographic interest, this can yield a significantly (over
30%) smaller garbled circuit than any other known techniques (including
free-XOR) or their combinations.

1 Introduction

This work proposes efficiency improvements of two-party Secure Function Evalu-
ation (SFE). SFE allows two parties to evaluate any function on their respective
inputs x and y, while maintaining privacy of both x and y. SFE of some useful
functions today is borderline practical, and first uses of secure computation begin
to crop up in industry. The main obstacle in SFE’s wider adoption is the cost.
Indeed, SFE of most of today’s functions of interest is either completely out of
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reach of practicality, or carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.

Our results and motivation. We improve both the required assumptions and
efficiency, albeit not both simultaneously, of a commonly used SFE tool, Garbled
Circuit (GC).

On the practical side, our construction results in savings of GC size of over
30% (in garbled circuits typically analyzed in the literature) as compared to
the state-of-the-art GC variant using the free-XOR technique of Kolesnikov &
Schneider [15]. For a fundamental protocol, which has been studied and opti-
mized for over three decades, this is a significant improvement. We emphasize
that the fleXOR approach is more general than the specific instantiations we
show, and we expect better optimizations to be discovered later on. At the same
time, we prove that computing optimal instantiations (i.e. those minimizing the
GC size) is NP-complete.

On the theoretical side, we aim to remove the Random Oracle (RO) require-
ment of the free-XOR technique without sacrificing efficiency. We weaken the
RO assumption to that of correlation-robustness (CR) while retaining most of
the performance improvements associated with free-XOR (only 10 − 20% loss
for analyzed circuits).1 This choice is natural, motivated by several pragmatic
considerations:

(1) Perhaps most importantly, today an efficient GC protocol will almost
certainly use the OT extension of Ishai et al. [11]. Indeed, the orders of magnitude
efficiency improvement brought by the IKNP OT extension transformed the field
of secure computation. The OT extension, as well as its follow-up constructions,
requires CR hash functions. Thus, our choice allows to avoid the introduction of
any additional assumptions in most cases.

(2) Another important factor is the degree of analysis of the candidate imple-
mentations of the employed function. Cryptanalysts study at length related-key
attacks for real-world block ciphers/primitives, but, to our knowledge, key cir-
cularity attacks are less researched.

Further, the question of understanding and reducing/eliminating the RO as-
sumption associated with free-XOR is motivated by recent work. Choi et al. [5]
shows that circular-correlation robustness is a sufficient condition for free-XOR.
It also presents a black-box separation which demonstrates that CR is strictly
weaker than circular-correlation robustness (which, in turn, is weaker than RO).
Choi et al. [5] explicitly leave open the question: “is there a garbled-circuit vari-
ant where certain gates can be evaluated for free, without relying on assump-
tions beyond CPA-secure encryption?” Addressing this question, Applebaum [1]
showed that free-XOR can be realized in the standard model under the learning

1 In fact, there is no penalty at all for formulas (circuits with fan-out 1). That is, our
approach matches the performance of free-XOR on formulas, but under the weaker
correlation-robustness assumption.



442 V. Kolesnikov, P. Mohassel, and M. Rosulek

parity with noise (LPN) assumption. While novel at the fundamental level, the
efficiency of the protocol of [1] is far from practical.

Our work raises and addresses related questions: Can the efficiency improve-
ment of free XOR be extended? Can it be achieved under weaker assumptions?

Our metric: computation vs communication. In this work we focus on measuring
performance by the size of the GC, a very clean and expressive metric. Since
the associated computations are fast, we believe that in many (but not all, of
course) practical scenarios communication complexity of our constructions will
correlate with their total execution time. Indeed, in this work, we use aggressive
(2-row) garbled row reduction (GRR2) due to Pinkas et al. [19], which involves
computing polynomial interpolation. While more expensive than the standard
PRF or hash function garbling, GRR2 nevertheless is a very efficient technique
as evidenced by the performance experiments in [19]. GRR2 approach (denoted
PRF-SS in the performance tables in [19]) is about 1x-3x times slower than the
fastest experiment. However, note that a very fast 1Gbps network and a slow
2-core computer was used in [19]. Today, 1Gbps channel is still state-of-the-art,
but computational power of a typical machine grew by factor of 4-6, mainly due
to increased number of cores. Thus, we expect that today, the bottleneck of the
[19] experiments would be in the network traffic, and not in the CPU load. This
is even more likely to be so in the future, as historical hardware trends indicate
faster advances in computational power than in network speeds.

At the same time, of course, specific use cases may dictate an extremely low-
power CPU with an available fast network, which would imply different cost
structure of our protocols. However, as argued above, today and in the expected
future, communication performance is a good metric for our protocols.

1.1 Overview of Our Approach

In a garbled circuit, each wire receives a pair (A,B) of (bitstring) labels which
conceptually encode true and false. Let us call A⊕ B the offset of the wire.
The idea behind the free XOR technique is to ensure that all wires have the
same (secret) offset. Then the garbled gate can be evaluated by simply XOR-ing
the wire labels.

FleXOR. With the idea of “wire offsets” in mind, consider the case where an
XOR gate’s input wires do not have the same wire offset. Intuitively, the free-
XOR approach can be applied if we “translate” the incoming wire labels to
bring them to the desired output offset. Namely, let the two input wires have
wire labels (A,A⊕Δ1) and (B,B ⊕Δ2), and suppose we would like the output
wire labels to have offset Δ3. We then select random “translated” wire values
Ã, B̃. Let E be gate encryption function. Then we can garble this XOR gate
with the following ciphertexts:

EA(Ã); EA⊕Δ1(Ã⊕Δ3); EB(B̃); EB⊕Δ2 (B̃ ⊕Δ3);
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Now, the first two ciphertexts allow the evaluator to translate wire labels (A,A⊕
Δ1) with offset Δ1 into new ones (Ã, Ã ⊕ Δ3) of the desired offset Δ3. Simi-

larly the last two ciphertexts permit (B,B ⊕ Δ2) 	 (B̃, B̃ ⊕ Δ3). Now, these
“translated“ wire labels share the same offset Δ3 and so the output labels
(Ã⊕ B̃, Ã⊕ B̃⊕Δ3) can be obtained simply by XORing the “translated” labels.

So far we did not save anything: this method requires 4 ciphertexts to garble
an XOR gate. However, we can reduce this cost with two simple observations:

– If we can arrange the wire label assignments so that Δ1 = Δ3, then the
first two ciphertexts are not needed at all (the labels on this wire already
have the correct offset). If Δ2 = Δ3, then the second two ciphertexts are not
needed. Indeed, Δ1 = Δ2 = Δ3, corresponds to the free-XOR case.

– Next, we can apply a standard garbled row-reduction technique (GRR)
of [19]. The idea is that ciphertexts 1 & 3 above can always be set to the

string 0λ, implicitly setting Ã = DA(0
λ) and B̃ = DB(0

λ), where D is the
gate decryption function. Hence, ciphertexts 1 & 3 never need to be sent.

As a result, we obtain a method to garble XOR gates that requires 0, 1, or at
most 2 ciphertexts total, depending on how many of {Δ1, Δ2, Δ3} are unique.2

We call this method flexible-XOR, or fleXOR for short.

FleXOR application. We show how the fleXOR tool can be used to achieve the
two goals motivating this work.

Consider grouping circuit wires into equivalence classes, where wires in the
same equivalence class have the same offset. Since the arrangement of equiva-
lence classes affects the cost of garbling each XOR gate, we are interested in
assignments that minimize the total cost for all XOR gates.

If minimizing cost of XOR gates was the only constraint, then we could sim-
ply place all wires into a single equivalence class, and our construction in fact
collapses to standard free-XOR. However, we consider additional constraints in
class assignment, which result in the following improvements over the state-of-
the-art GC (with free-XOR + GRR):

– Performance improvement. Recall, row reduction [19] is a technique for
“compressing” a standard garbled gate from a size of 4 ciphertexts down to
either 3 or 2. Free-XOR is compatible with the milder 3-ciphertext row re-
duction (which we call GRR3), but not with the more aggressive 2-ciphertext
variant (GRR2). The problem is that gates garbled under GRR2 will have
output wire labels with an unpredictable offset — it is not possible to force
them to use the global wire offset Δ used by free-XOR. In contrast, our

2 Our high-level description does not indicate how to garble an XOR gate using just
one ciphertext in the case that Δ1 = Δ2 �= Δ3. This is indeed possible using similar
techniques (perform free XOR on the input wires, since they share a common offset,
and then, with one ciphertext, adjust the result to Δ3). However, our wire-ordering
heuristics never produce XOR gates with this property, hence we do not consider
this case throughout the writeup.
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fleXOR generalization does not force any specific wires to share the same
offset hence there is no inherent incompatibility with using GRR2. Never-
theless it is necessary to put some constraints on the class assignment (a
“safety” property that we define). We propose a heuristic algorithm for ob-
taining a safe assignment, and use it to obtain significant reduction in the
GC size, in the experiments we run.

– Weakened assumptions. In the free-XOR world, the non-XOR gates are
garbled by encrypting plaintexts X,X⊕Δ using combinations of keys Y, Y ⊕
Δ. The appearance of a secret value Δ as both a key and plaintext requires
a circularity assumption on the gate-level cipher [5]. With an appropriate
constraint (i.e. monotonicity property) on wire equivalence classes, we can
ensure that wire labels from the class indexed i are used as keys to encrypt
wire labels only from a class indexed j > i. Under this additional constraint,
our construction can be instantiated under a significantly weaker (related-key
only, not circular) hardness assumption than free-XOR. At the same time,
our experiments show only mild performance loss as compared to state-of-
the-art algorithms needing circularity assumption.

Recall that fleXOR easily collapses to free-XOR when grouping all wires in
the same class. We view this as an important feature of our scheme. In terms
of size of garbled circuits, free-XOR performs better in some settings while the
new fleXOR method performs better in others. By adopting and implementing
fleXOR, one can always have available both options, and seamlessly choose the
best method via appropriate choice of wire equivalence classes.

1.2 Organization of Paper

After discussing related work (Section 1.3) and preliminaries (Section 2), we
set up the required technical details. In Section 3, we formalize the notion of
gate cipher and show that it can be instantiated with RO and correlation-robust
(CR) functions. In Section 4, we explicitly write our circuit garbling scheme in
the recent “garbling schemes” convention [3], and provide a proof of security with
a concrete reduction to the security of the underlying gate cipher. In Section 5 we
explicitly integrate garbled row reductions from [19] into the garbling protocols
and prove security via concrete reductions.

Once this set up is in place, in Section 6 we present two algorithms for as-
signing wire classes. One, achieving what we call monotone ordering, allows us
to avoid circularity in key applications. The second, more performance-oriented,
achieving what we call safe ordering, allows our garbling protocols to generate
GC up to and over 30% smaller than currently best known.

In Section 7, we provide detailed performance comparison of both of our
heuristic algorithms.

1.3 Related work

Garbled circuit is a general and an extremely efficient technique of secure com-
putation, requiring only one round of interaction in the semi-honest model. Due
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to this generality and practicality, GC and related protocols have been receiving
a lot of attention in the literature.

The basic GC is so simple and minimal that it has proven hard to improve.
Most of the GC research considers its application to solving problems at hand,
such as set intersection, auction design, etc. A much smaller number of papers
deal with technical improvements to GC-based two-party SFE, such as OT ex-
tension [11,14] or cut-and-choose improvements for malicious case [10,16,17].

Our work belongs to a third category, aiming to improve and understand
the garbling scheme itself. Since the original paper of Yao over 30 years ago,
only a few works fit into this category. Beaver et al. [2] introduced the point-
and-permute idea, which allows the evaluator to decrypt just a single ciphertext
in the garbled gate. Naor et al. [18] introduced 3-row garbled row reduction
optimization. Kolesnikov and Schneider [15] introduced the popular free-XOR
technique allowing XOR gates to be evaluated without cost. Pinkas et al. [19]
introduced 2-row GRR and observed that GRR3 is compatible with free-XOR.
Choi et al. and Appelbaum helped clarify the underlying assumptions for free-
XOR, now seen as a natural part of GC. Choi et al. [5] weakened the free-
XOR assumption, by defining a sufficient gate cipher property, circular security.
Applebaum [1] showed how to implement free-XOR in the standard model (using
the LPN assumption, and hence not competitive with today’s standard GC).

In related but incomparable work, Kolesnikov and Kumaresan [13] obtained
approximately 3x factor performance improvement over state-of-the-art GC by
evaluating slices of information-theoretic GC of Kolesnikov [12]. Their protocol
has linear number of rounds and is not secure against malicious evaluator. We
also mention, but do not discuss in detail multi-party SFE such as [9,8,6].

Bellare et al. [3] introduced the garbling schemes abstraction, which we use
here.

2 Preliminaries

2.1 Code-Based Games

We use the convention of code-based games [4]: A game G starts by executing
the Initialize procedure. Then the adversary A is invoked and allowed to query
the procedures that comprise the game. When the adversary halts, the Finalize
procedure is called with the output of the adversary. The output of the Finalize
procedure is taken to be the outcome of the game, whose random variable we
denote by GA(λ), where λ is the global security parameter.

2.2 Garbling Schemes

Bellare, Hoang, and Rogaway [3] introduce the notion of a garbling scheme as
a cryptographic primitive. We refer the reader to their work for a complete
treatment and give a brief summary here.3 A garbling scheme consists of the

3 Their definitions apply to any kind of garbling, but we specify the notation for circuit
garbling.
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following algorithms: Garble takes a circuit f as input and outputs (F, e, d) where
F is a garbled circuit, e is encoding information, and d is decoding information.
Encode takes an input x and encoding information e and outputs a garbled input
X . Eval takes a garbled circuit F and garbled input X and outputs a garbled
output Y . Finally, Decode takes a garbled output Y and decoding information
d and outputs a plain circuit-output (or an error ⊥).

Our work uses the prv.sim (privacy), obv.sim (obliviousness), and aut (au-
thenticity) security definitions from [3], which we state below. In the prv.sim and
obv.sim games, the Initialize procedure chooses β ← {0, 1}, and the Finalize(β′)

procedure returns β
?
= β′. In all three games, the adversary can make a single

call to the Garble procedure, which is defined below. Additionally, the function
Φ denotes the information about the circuit that is allowed to be leaked by the
garbling scheme; the function S is a simulator, and G denotes a garbling scheme.

prv.simG,Φ,S :

Garble(f, x):

if β = 0

(F, e, d) ← Garble(1λ, f)
X ← Encode(e, x)

else (F,X, d) ← S(1λ, f(x), Φ(f))
return (F,X, d)

obv.simG,Φ,S :

Garble(f, x):

if β = 0

(F, e, d) ← Garble(1λ, f)
X ← Encode(e, x)

else (F,X) ← S(1λ, Φ(f))
return (F,X)

autG:
Garble(f, x):

(F, e, d) ← Garble(1λ, f)
X ← Encode(e, x)
return (F,X)

Finalize(Y ):

return Decode(d, Y ) �∈ {⊥, f(x)}

We then define the advantage of the adversary in the three security games:

Advprv.simG,Φ,S (A, λ) :=

∣∣∣∣Pr[prv.simA
G,Φ,S(λ) = 1]− 1

2

∣∣∣∣ ;
Advobv.simG,Φ,S (A, λ) :=

∣∣∣∣Pr[obv.simA
G,Φ,S(λ) = 1]− 1

2

∣∣∣∣ .
AdvautG (A, λ) := Pr[autAG(λ) = 1];

3 Our Gate-Level Cipher Abstraction

Yao’s technique conceptually garbles each gate with “boxes locked via two keys.”
We adopt the approach used by [19] and elsewhere, in which gates are gar-
bled as H(wi‖wj‖T ) ⊕ wk, where wi, wj are wire labels on input wires, T is a
tweak/nonce, wk is a wire label of an output wire, and H is a key-derivation
function. We now describe more specifically what property is needed of H .
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3.1 Definitions

We define two security games formally. They are parameterized by a KDF

H : {0, 1}∗ → {0, 1}λ+1. Game kdf.rkH,n includes the boxed statement, and
kdf.circH,n excludes the boxed statement.

Initialize:
Δ1, . . . , Δn ← {0, 1}λ
Δ0 := Δ∞ := 0λ

β ← {0, 1}

Finalize(β′):

return β′ ?
= β

Fn(X,Y, a, b, c, T ):

return ⊥ if T previously used in any Fn query

or {a, b} ⊆ {0,∞} or c ≤ max{a, b}
if β = 0 then Z := H(X ⊕Δa, Y ⊕Δb, T )⊕ (Δc‖0)

else Z ← {0, 1}λ+1

return Z

Briefly, the games proceed as follows. The challenger generates n random
(secret) wire offsets {Δi}i, where n is a parameter of the game. The values
Δ0 := Δ∞ := 0λ are set as a convenience.

The adversary can then make queries of the form H(X⊕Δa, Y ⊕Δb, T )⊕Δc,
provided that at least one of {Δa, Δb} is unknown (i.e., a, b �∈ {0,∞}), and
the tweak values T are never reused. The result of this expression should be
indistinguishable from random.

In the kdf.rk variant of the game, there is an additional “monotonicity” re-
striction, that c > max{a, b}, which prevents the adversary from invoking “key
cycles” among the secret Δi values. It is in this setting that having two values
Δ0 and Δ∞ is convenient. A query of the form H(X,Y ⊕ Δi, T ) can be made
via a = 0, b = i, c = ∞, so that the monotonicity condition is satisfied (c = 0,
for example, would break monotonicity).

Definition 1. Let H : {0, 1}∗ → {0, 1}λ+1 be a KDF, A be a PPT adversary,
and the games kdf.rkH,n, kdf.circH,n be defined as above. We then define the
advantage of the adversary in these games as:

Advkdf.rkH,n (A, λ) :=

∣∣∣∣Pr[kdf.rkAH,n(λ) = 1]− 1

2

∣∣∣∣ ;
Advkdf.circH,n (A, λ) :=

∣∣∣∣Pr[kdf.circAH,n(λ) = 1]− 1

2

∣∣∣∣
Single-key vs. Dual-key. In our main construction, we garble XOR gates using
only one key (wire label) and non-XOR gates using two keys (wire labels). We
let H2 be a synonym for H , and define shorthand:

H1(K,T )
def
= H2(K,K, T )[1..λ]

We take only the first λ bits of the output for H1 because we do not need the
1 extra bit in our construction when using H1 (the extra bit is used for the
permute bit, which is easier to handle for XOR gates).
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Since H1 takes a shorter input than H2, it is conceivable that H1 could be
implemented more efficiently than H2 in practice (e.g., invoking a hash func-
tion with a smaller input and hence fewer iterations). However, this kind of
optimization not the focus of our work.

3.2 Instantiation from a Random Oracle

Lemma 1. Let H : {0, 1}∗ → {0, 1}λ+1 be a random oracle. Then for all A,
we have Advkdf.circH,n (A, λ) ≤ 16n(qA + qC)

2/2λ, where qA, qC are the number of
queries made to the random oracle (locally) and to the Fn procedure, respectively,
by A (and n is the parameter of the security game).

3.3 Instantiation from Correlation-Robustness

The free-XOR approach was formally proven secure in the RO model, and be-
lieved secure under some (unspecified) variant of correlation-robustness [11].
Choi et al [5] showed that the most natural variant of correlation-robustness
(called 2-correlation-robust) was in fact insufficient for free-XOR. Below we have
translated their definition to the framework of code-based games. We then show
that 2-correlation-robustness is sufficient for kdf.rk security.

Definition 2 (adapted from [5]). Let H : {0, 1}∗ → {0, 1}λ+1 be a hash
function.4 Define Adv2corrH (A, λ) := |Pr[2corrAH(λ) = 1]− 1

2 |, where 2corrH is the
game defined as follows:

Initialize:
Δ ← {0, 1}λ
β ← {0, 1}

Finalize(β′):

return β
?
= β′

Fn(X,Y, T ):

return ⊥ if this query previously made
if β = 0 then Z1 := H(X ⊕Δ, Y ⊕Δ, T )

Z2 := H(X ⊕Δ, Y, T )
Z3 := H(X, Y ⊕Δ, T )

else Z1, Z2, Z3 ← {0, 1}λ
return Z1, Z2, Z3

Lemma 2. For all probabilistic polynomial-time A, we have Advkdf.rkΣ,n (A, λ) ≤
n · Adv2corrR (A′, λ), where A′ has comparable runtime to A.

4 Baseline Construction

We now present our “basic” fleXOR garbling scheme. It requires some auxiliary
information about the circuit, defined below:

Definition 3. A wire ordering for a boolean circuit C is a function L that
assigns an integer to each wire in C. Without loss of generality, we assume that
im(L) = {1, . . . , L} for some integer L, and we denote |L| = L. We say that L
is monotone if:

4 H may be drawn from a family of hash functions, but for simplicity we refer to H
as a single function.
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Garble(1λ, C,L) :

for � = 1 to |L|: Δ� ← {0, 1}λ
for each input bit i corresponding to wire j of C:

bj ← {0, 1}
w0

j ← {0, 1}λ; w1
j := w0

j ⊕ΔL(j)

for v ∈ {0, 1}: e[i, v] := w
v⊕bj
j ‖bj

for each gate g in C, in topological order:
let i, j denote g’s input wires
let k denote g’s output wire
if g is an XOR gate:

if L(i) �= L(k):

w̃0
i ← {0, 1}λ; w̃1

i := w̃0
i ⊕ΔL(k)

for b ∈ {0, 1}: c0,b := H1(wb
i , g‖0‖b) ⊕ w̃b

i

else for b ∈ {0, 1}: w̃b
i := wb

i ; c0,b := ⊥
if L(j) �= L(k):

w̃0
j ← {0, 1}λ; w̃1

j := w̃0
j ⊕ΔL(k)

for b ∈ {0, 1}: c1,b := H1(wb
j , g‖1‖b) ⊕ w̃b

j

else for b ∈ {0, 1}: w̃b
j := wb

j ; c1,b := ⊥
w0

k := w̃0
i ⊕ w̃0

j ; w1
k := w̃1

i ⊕ w̃0
j ;

bk := bi ⊕ bj
else g computes logic G : {0, 1}2 → {0, 1}:

bk ← {0, 1}
w0

k ← {0, 1}λ; w1
k := w0

k ⊕ΔL(k)

for a, b ∈ {0, 1}2:
v := bk ⊕G(a⊕ bi, b⊕ bj)
ca,b = H2(wa

i , w
b
j , g‖a‖b)⊕wv

k‖v
F [g] := (c00, c01, c10, c11)

for each output bit i corresponding to wire j of C:

for v ∈ {0, 1}: d[i, v] := H1(w
v⊕bj
j , out‖j‖v)

return (F, e, d)

Encode(e, x) :

for i = 1 to |x|: X[i] := e[i, xi]
return X

Eval(F,X) :

for each input wire i in C:
w∗

i ‖b∗i ← X[i]
for each gate g in C, in topological order:

let i, j denote g’s input wires
let k denote g’s output wire
parse F [g] as (c00, c01, c10, c11)
if g is an XOR gate:

if c01 = ⊥ then w̃∗
i := w∗

i

else w̃∗
i := H1(w∗

i , g‖0‖b∗i )⊕ c0,b∗i
if c11 = ⊥ then w̃∗

j := w∗
j

else w̃∗
j := H1(w∗

j , g‖1‖b∗j )⊕ c1,b∗j
w∗

k := w∗
i ⊕ w∗

j ; b∗k := b∗i ⊕ b∗j
else:

w∗
k‖b∗k := H2(w∗

i , w
∗
j , g‖b∗i ‖b∗j )⊕ cb∗i ,b

∗
j

for each output bit i in C:
let j be the corresponding wire
Y [i] := H1(w∗

j , out‖j‖b∗j )
return Y

Decode(Y, d) :

for i = 1 to Y.len:
if Y [i] = d[i, 0] then yi = 0
elsif Y [i] = d[i, 1] then yi = 1
else return ⊥

return y

Fig. 1. Our baseline garbling scheme

1. for each XOR gate, with input wires i & j and output wire k: L(k) ≥
max{L(i),L(j)}, and

2. for each non-XOR gate, with input wires i & j and output wire k: L(k) >
max{L(i),L(j)}.

We now give the complete description of our garbling scheme. Following [3],
the scheme consists of 4 algorithms: Garble, Encode, Eval, Decode. We make one
syntactic change, and allow Garble to accept as input auxiliary information L,
which is a wire ordering of the given circuit.

The scheme is described formally in Figure 1. It follows the typical Yao ap-
proach for garbling a circuit. Briefly, for each wire i, the garbler chooses two
wire labels w0

i , w
1
i such that w0

i ⊕ w1
i = ΔL(i). We use the point-and-permute

bit optimization of [18], where a permute bit bi is chosen so that wbi
i encodes

false on wire i, and w1⊕bi
i encodes true. Non-XOR gates are garbled in the

usual way.
XOR gates use the approach described in the introduction. Namely, suppose

an XOR gate has input wires i, j and output wire k. If L(i) = L(k), then no
action is required for wire i in this gate (and no ciphertexts are included in the
garbled circuit). Otherwise, we choose “adjusted” wire labels w̃0

i , w̃
1
i whose offset
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is the target value ΔL(k) and provide two ciphertexts that allow the evaluator

to obtain w̃b
i from wb

i . The same logic applies for input wire j, and finally a “free
XOR” is performed on these adjusted wire labels.

Theorem 1. Let G[H ] denote our garbling scheme (Figure 1), where H is a
KDF. Let Φ denote the side information function that leaks the circuit topology,
distinction between XOR vs non-XOR gates (but not distinctions among non-
XOR gates), and the wire ordering function L used. Then, for all probabilistic
polynomial-time A, there exists a polynomial-time simulator S such that:

Advprv.simG[H],Φ,S(A, λ) ≤ Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG[H],Φ,S(A, λ) ≤ Advkdf.rkH,|L|(A′, λ)

5 Incorporating Row Reductions

Row-reduction optimizations were introduced by Naor et al. [18] and later for-
malized and extended by Pinkas et al. [19]. They describe two flavors of row
reduction, which we discuss and adapt to our fleXOR technique.

5.1 Optimization 1: Mild Row Reduction

In the first variant of row reduction, Naor et al. describe how to reduce standard
4-ciphertext garbled gates to 3 ciphertexts. Conceptually, this is done by fixing
one of the ciphertexts to be the all-zeroes string. The idea is that if, say, c00
is known to always consist of all zeroes, then it does not actually need to be
included in the garbled output.

For example, when garbling a non-XOR gate we see that ciphertext c00 will
be zero if the appopriate output wire label (concatenated with its permute bit)
is chosen to be H2(w0

i , w
0
j , g‖00), which is the value that would be used to mask

that wire label.
Hence, instead of choosing wire labels and permute bits uniformly, we choose

one wire label to be an output of the KDF H and set the other label so that
the two labels have the desired offset. We can use this idea with our XOR gates
as well, following the ideas described in the introduction. Recall that to garble
an XOR gate, we choose random “adjusted” wire labels for each input wire
(whose offset requires adjusting). Instead of choosing these adjusted wire labels
uniformly, we choose them to be the appropriate output of the KDF.

The formal description of this optimization is given in the full version. When
garbling XOR gates, the ciphertexts c00, c10 are always empty (implicitly set to
all zeroes). Hence, XOR gates require 0, 1, or 2 ciphertexts. For non-XOR gates,
the ciphertext c00 is always empty (implicitly set to all zeroes), so these gates
require 3 ciphertexts.

That this optimization requires no additional properties of the wire ordering,
and it achieves essentially identical security to our baseline construction:
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Theorem 2. Let G1[H ] denote our “optimization #1” garbling scheme de-
scribed above. Let Φ be as in Theorem 1. Then, for all probabilistic polynomial-
time A, there exists a polynomial-time simulator S such that:

Advprv.simG1[H],Φ,S(A, λ) ≤ Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG1[H],Φ,S(A, λ) ≤ Advkdf.rkH,|L|(A′, λ)

5.2 Optimization 2: Aggressive Row Reduction

The second variant of row reduction reduces each garbled gate from 4 to 2
ciphertexts. Here we consider applying this optimization to the non-XOR gates
in our scheme. This optimization has the effect of setting both output wire
labels (and hence, their offset) implicitly. Superficially, this seems at odds with
our approach, in which we always choose wire labels to have some desired offset.

However, suppose that g is a non-XOR gate with output wire k. If we process
this gate before any other wire i with L(i) = L(k), then we can indeed set the
offset ΔL(k) implicitly based on the result of the row-reduction applied to this
gate. If we process the gates in a topological order, one can capture this property
by requiring that L(k) > L(j) for every wire j that influences k (i.e. j has to
be processed before k). We will also require that no other non-XOR gate in the
circuit has output wire k′ with L(k) = L(k′), though XOR gates can safely have
this property.

The necessary properties on the wire ordering are summarized in the following
definition:

Definition 4. We say that L is safe if:

1. for each non-XOR gate g with output wire k, and each wire j that influences5

g, we have L(k) > L(j).
2. for each value �, there is at most one non-XOR gate whose output wire k

satisfies L(k) = �.

Note that a wire ordering may be any combination of safe/non-safe, monotone/
non-monotone.

We say that a topological ordering of gates in a circuit C is safety-respecting
of L if for every non-XOR gate g with output wire k, g appears earlier in the or-
dering than any other gate g′ with output wire k′ satisfying L(k) = L(k′).

Assuming that L is safe, we can garble all non-XOR gates using only two
ciphertexts, plus 4 additional bits. XOR gates still require 0, 1, or 2 ciphertexts
as in the previous section.

5 A wire j influences a wire k if there is a directed path in the circuit that contains
wire j before wire k.
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Our approach for row-reduction is the same as [19], but we give a short
overview here in the interest of completeness. For simplicity, we assume that
all non-XOR gates compute boolean-AND logic. Briefly, for each (a, b), we com-
pute Vab = H2(wa

i , w
b
j , g‖a‖b). Hence, only one Vab value is accessible to the

evaluator. If the evaluator obtains Vab with (a, b) = (bi, bj), then the evaluator
has true on both input wires and hence this Vab should allow the evaluator to
obtain the “true” output wire label w1⊕bk

k . All other Vab values should allow

the evaluator to obtain the “false” label wbk
k .

To make this work, let P be the degree-2 polynomial that passes through
the 3 points of the form (2a+ b, Vab), for the (a, b) pairs which are supposed to
yield wbk

k . Then let Q be the degree-2 polynomial that passes through the points
(4, P (4)), (5, P (5)), and the point (2a + b, Vab) for the “other” pair (a, b). The
idea is that we can give the evaluator the values P (4) and P (5). When combined
with his unique Vab value, he can interpolate to obtain either the polynomial P
or Q, depending on the output logic of the gate. Hence, we can set the two wire
labels to be points on P and Q respectively, say, P (−1) and Q(−1).

The formal description of this optimization is given in the full version. We
must also account for the permute bits, which require 4 extra bits. Overall, each
AND-gate requires 2λ+4 bits, while XOR-gates still require 0, λ, or 2λ bits. We
require the garbling procedure to process gates in a safety-respecting topological
order, which ensures that Δ� gets set (while garbling an AND-gate) before it is
used when later garbling an XOR gate.

Theorem 3. Let G2[H ] denote our “optimization #2” garbling scheme de-
scribed above. Let Φ be as in Theorem 1. Then, for all probabilistic polynomial-
time A, there exists a polynomial-time simulator S such that:

Advprv.simG2[H],Φ,S(A, λ) ≤ (n+ 1) · Advkdf.circH,|L| (A′, λ)

where A′ has runtime essentially the same as A. Furthermore, when the wire
ordering function L is monotone, we have:

Advprv.simG2[H],Φ,S(A, λ) ≤ (n+ 1) · Advkdf.rkH,|L|(A′, λ)

5.3 GRR2-Salvaging

In general, it is not possible to combine fleXOR garbling with aggressive row
reduction if the wire ordering is non-safe. Nevertheless, we observe that it is
possible to garble one non-XOR gate in each L-equivalence class using aggressive
row reduction. Roughly speaking, for each value �, we identify the topologically
first non-XOR gates g whose output wire i satisfies L(i) = �. We ensure that g is
processed before any other such gates, garble it with GRR2, and use the result
to implicitly set Δ�. The remaining gates in g’s equivalence class can then be
garbled using GRR3.

This approach slightly generalizes our construction in the previous section. It
provides a modest reduction in size, which we discuss in Section 7.
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6 Optimizing the Choice of Wire Orderings

We have identified two types of wire orderings for use with our fleXOR construc-
tion: monotone and safe ordering. In this section, we consider the problem of
optimizing the choice of wire ordering: i.e., a safe/monotone wire ordering that
minimizes the size of the fleXOR-garbled circuit. In particular, we need only con-
sider the total size of garbled XOR gates. An XOR gate with input wires i and
j and output wire k, requires two ciphertexts if L(i) �= L(k) and L(j) �= L(k),
requires one ciphertext if only one of the inequalities holds, and is “free” (no
ciphertexts) if L(i) = L(j) = L(k).

6.1 Monotone Orderings

We start by showing that the problem of finding an optimal monotone ordering
of a circuit is NP-complete. In particular, we prove the following theorem in the
full version, via a simple reduction to 3SAT.

Theorem 4. The following problem is NP-complete: Given a circuit C and in-
teger N , determine whether there is a monotone wire ordering of C for which
garbling the XOR gates using the fleXOR scheme requires at most N ciphertexts.

It is, however, easy to find at least some monotone wire ordering, using an
elementary linear-time algorithm. First, assign each input wire i to L(i) = 1.
Then process the gates in topological order and assign to each output wire the
minimum L allowed by the monotonicity condition. We mention this simple
approach only because it can be computed on the fly at basically no expense, in
the same pass that garbles the circuit. This may be important in memory-critical
applications where circuits are processed via streaming.

In Figure 2, we propose a better heuristic for monotone orderings, inspired
by the following observation. Note that it is only the non-XOR gates which
necessarily increase the wire ordering number between input and output wires
of a gate. Define the non-XOR-depth of a wire i in a circuit C as the maximum
number of non-XOR gates among all directed paths from i to an output wire.
The non-XOR-depth of every gate in a circuit can be computed via a simple
dynamic programming approach. Then, we define a wire-ordering function L so
that L(i) + non-XOR-depth(i) is constant for all wires i. Hence, wires closer to
the outputs receive higher wire-ordering. This heuristic is in fact optimal, and
results in all XOR gates free, when the circuit has fan-out 1 (i.e., the circuit
encodes a formula). It is also not hard to prove that it minimizes the size of the
range of the wire-ordering function hence (intuitively) increasing the likelihood
of the input and output wires of an XOR gate being in the same class.

We further refine this heuristic by revisiting each XOR gate one more time,
in topological order, and reducing the order of each output wire to maximum of
orders of its input wires (if this is not already the case). If done in topological
order, this does not affect the monotonicity of the ordering.

Proposition 5. The algorithm of Figure 2 computes a monotone wire ordering
in linear time.
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for every wire i:
compute non-XOR-depth[i]

set Λ = 1 + num wires in circuit
for each wire i:

set L[i] := Λ− non-XOR-depth[i]
for each XOR gate g in topo. order:

denote g’s inputs wires by i, j
denote g’s output wire by k
if L[k] > max{L[i],L[j]}

set L[k] := max{L[i],L[j]}

Fig. 2. Monotone wire ordering heuristic

for each input wire i:
set L[i] := 1

set count := 2
for each gate g, in topo. order:

denote g’s output wire by k
if g is an XOR gate:

set L[k] := 1
else:

set L[k] := count
count := count + 1

Fig. 3. Safe wire ordering heuristic

We implemented both heuristic algorithms for monotone orderings, and tested
them on a wide range of circuits. In general, our second heuristic algorithm
outperforms the elementary one by 20-40% (in terms of average cost per XOR
gate).

6.2 Safe Orderings

The constraints for safe wire ordering are fairly strict, making it challenging to
devise good heuristic algorithms that minimize the number ciphertexts needed
to garble XOR gates. Nevertheless, we introduce a simple and intuitive algorithm
that performs well in practice as demonstrated in our analysis in the following
section.

Since the output wires of non-XOR gates must have distinct L-values in a safe
ordering, our idea is to assign such wires values incrementally, and in topological
order, starting from 2. Then, for each XOR gate, we let the L-value of its output
wire be 1 (see Figure 3). The resulting ordering will always satisfy the definition
of a safe ordering. In particular, if wire i influences a non-XOR gate with output
wire j, then L(i) < L(j), either by the topological constraint (when wire i
emanates from a non-XOR gate), or because L(i) = 1 < L(j) (when i emanates
from an XOR gate).

Proposition 6. The algorithm of Figure 3 computes a safe wire ordering in
linear time.

6.3 Other Constraints for Wire Orderings

Here we considered safe and monotone orderings separately, but we note that
it is possible (and interesting) to consider their combination i.e. optimization
problems for orderings that are both safe and monotone. We leave open the
problem of designing good heuristics for this problem.

As mentioned earlier, using a trivial wire ordering (all wires assigned the same
index) causes fleXOR construction to collapse to free-XOR.

Most 2PC protocols based on garbled circuits require only what is provided
by the “garbling schemes” abstraction of [3] which we use here. The fleXOR
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fleXOR
circuit GRR2 free-XOR monotone safe best

DES 2.0 (2.0) 2.79 (0.0) 2.84 (0.93) 1.89 (0.38) 1.89

AES 2.0 (2.0) 0.64 (0.0) 0.76 (0.15) 0.72 (0.37) 0.64

SHA-1 2.0 (2.0) 1.82 (0.0) 2.02 (0.75) 1.39 (0.45) 1.39

SHA-256 2.0 (2.0) 2.05 (0.0) 2.26 (0.76) 1.56 (0.60) 1.56

Hamming distance 2.0 (2.0) 0.50 (0.0) 0.67 (0.20) 0.50 (0.20) 0.50

minimum in set 2.0 (2.0) 0.87 (0.0) 1.01 (0.41) 0.87 (0.41) 0.87

32 × 32 fast mult 2.0 (2.0) 0.90 (0.0) 1.15 (0.36) 0.94 (0.49) 0.90

1024-bit millionaires 2.0 (2.0) 1.00 (0.0) 1.08 (0.25) 1.00 (0.50) 1.00

Fig. 4. Comparison of standard garbling (with GRR2 row reduction), free-XOR, and
fleXOR instantiations. The main number in each cell shows average number of cipher-
texts per gate; the number in the parentheses shows average number of ciphertexts per
XOR gate only.

construction is thus automatically compatible with these protocols. However,
some protocols [20,16] “break the abstraction boundary” of garbling schemes
and include optimizations that take advantage of specific properties of free-XOR.
In particular, they only require that either the input wires or output wires all
share a common offset (sometimes across several garbled circuits); they do not
require anything of the internal wires. It is easy to include such a constraint on
input/output wires in a fleXOR wire ordering, allowing fleXOR to be compatible
with these protocols as well.

7 Performance Comparison

In this section we empirically evaluate the performance of our fleXOR approach
against free-XOR and standard (GRR2) garbling. We obtained several circuits
of interest [21,7] and evaluated the performance of our garbling schemes on
them. As outlined in the introduction, our primary metric is the size (number of
ciphertexts) needed to garble a circuit. The results are summarized in Figure 4.

Eliminating the circularity assumption. As discussed earlier, fleXOR avoids the
strong circular-security assumption of free-XOR, when instantiated with a mono-
tone wire ordering. Weakening the assumption does come at a cost, since not all
XOR gates are free as a result. Comparing the 2nd and 3rd colums in Figure 4
illustrates the cost savings of circularity. In general, we show that the circularity
assumption can be eliminated with a typical increase in garbled circuit size of
around 10% (and never more than 20% in our analysis).

We used the heuristic method of Figure 2 for finding good monotone wire
orderings (it performed better than the elementary method, on all circuits we
tried). The numbers for free-XOR and for fleXOR+monotone both reflect mild
(GRR3) row reduction for the non-XOR gates, except that we apply GRR2-
salvaging (Section 5.3) for fleXOR. The gain from GRR2-salvaging varies con-
siderably, but is sometimes noticeable. For example, the numbers in Figure 4
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reflect a savings from GRR2-salvaging of 3976 ciphertexts for SHA256, but only
40 for the AES circuit.

Beating (and matching) free-XOR efficiency. As discussed earlier, fleXOR is
compatible with aggressive (GRR2) row reduction when it is instantiated with
a safe wire ordering. We used the heuristic of Figure 3 to compute good safe
orderings for all circuits. The last column of Figure 4 shows the size of the
resulting garbled circuits. We point out that the fleXOR-garbled circuit was
larger than the free-XOR garbled circuit in only two cases: For the AES circuit
(which contained a significantly higher proportion of XOR gates than any other
circuit we obtained), the fleXOR garbling was 12% larger than free-XOR; for
the fast multiplication circuit, fleXOR was 5% larger. Our best performance
was from the DES circuit, whose fleXOR-garbled circuit was 32% smaller than
free-XOR.

Again we emphasize that any implementation of fleXOR matches the perfor-
mance of free-XOR when assigning all wires the same index in the wire order-
ing. Hence, any implementation of fleXOR would easily be able to be provide
whichever of the two wire orderings — safe fleXOR or free-XOR — was prefer-
able, on a per-circuit basis, to realize the column labeled “best” in Figure 4.

(Sub)Optimality. Finally, we emphasize that we did not attempt to find optimal
orderings for any circuit (which is NP-hard in general), only “good enough”
wire orderings found by our simple heuristics. Hence, fleXOR has potential to
produce garbled circuits even smaller than the ones reflected in our empirical
results here. It is also possible that the circuits themselves could be optimized
for fleXOR, similar to how some circuits are currently optimized for free-XOR
(i.e., to minimize the number of non-XOR gates).
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Abstract. We consider secure two-party computation in a multiple-
execution setting, where two parties wish to securely evaluate the same
circuit multiple times. We design efficient garbled-circuit-based two-party
protocols secure against malicious adversaries. Recent works by Lindell
(Crypto 2013) and Huang-Katz-Evans (Crypto 2013) have obtained op-
timal complexity for cut-and-choose performed over garbled circuits in
the single execution setting. We show that it is possible to obtain much
lower amortized overhead for cut-and-choose in the multiple-execution
setting.

Our efficiency improvements result from a novel way to combine a
recent technique of Lindell (Crypto 2013) with LEGO-based cut-and-
choose techniques (TCC 2009, Eurocrypt 2013). In concrete terms, for
40-bit statistical security we obtain a 2× improvement (per execution) in
communication and computation for as few as 7 executions, and require
only 8 garbled circuits (i.e., a 5× improvement) per execution for as
low as 3500 executions. Our results suggest the exciting possibility that
secure two-party computation in the malicious setting can be less than
an order of magnitude more expensive than in the semi-honest setting.

1 Introduction

Two-party secure computation (2PC) is a rapidly developing area of cryp-
tography. While the basic approach for semi-honest security, garbled circuits
(GC) [27], is extensively studied and is largely settled, security against mali-
cious players has seen recent significant improvements. The classical technique
for lifting the GC approach to work in the malicious setting is cut-and-choose
(C&C), formalized and proven secure by Lindell and Pinkas [15]. Until recently,
this approach required significant overhead: to guarantee probability of cheating
< 2−s, approximately 3s garbled circuits needed to be generated and sent. How-
ever, in Crypto 2013 two works reduced the number of garbled circuits required
in cut-and-choose to s+O(log s) [9] and to s [14].

Our Contribution. We further significantly reduce the replication factor for
C&C-based protocols in the multiple execution setting, where the same function

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 458–475, 2014.
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(possibly with different inputs) is evaluated multiple times either in parallel
or sequentially. To achieve this, we combine in a novel way the “fast C&C”
technique of Lindell [14] with the “LEGO C&C” technique [6,22].

Our Setting and Motivation. We consider the multiple execution setting,
where two parties compute the same function on possibly different inputs either
in parallel or sequentially. Here we argue that multiple evaluations of the same
function is indeed a natural and frequently-occurring important scenario.

Today, 2PC is only beginning to enter practical deployment. However, we can
reasonably speculate on likely future use cases. In the commercial setting, 2PC is
natural in both business-to-business and business-to-customer interactions. For
example, a bank customer could perform financial transactions (e.g., payments
or transfers), a cell phone customer could perform private location-based queries,
two businesses or government agencies might query their joint databases of cus-
tomers, etc. In all of these scenarios, many of the securely evaluated functions
are the same, only differing on their inputs. In fact, we conjecture that single-
execution functions may be less likely to be used in commercial settings. This is
because, as a rule-of-thumb of security, externally-accessible interfaces need to
be clean and standardized. Allowing a small number of predetermined customer
actions allows for more manageable overall security.

Additionally, many complex protocols from the research literature include
multiple executions of the same function evaluated on different inputs. For exam-
ple, Gordon et al. [8] propose sublinear 2PC based on oblivious RAM (ORAM).
In their protocol, each ORAM step is executed by evaluating the same function
using 2PC. Another frequently used subroutine is oblivious PRF, used, e.g., in
the previously mentioned sublinear 2PC work [8] as well as in private database
searches [4,12]. A recent such work [23] traverses the database search tree by
evaluating the same match function at each tree node. Finally, any two univer-
sal circuits (of the same size) are implementing the same function.

1.1 Preliminaries

Let s denote the statistical security parameter; namely, an adversary can suc-
ceed in cheating with probability up to 2−s. Let n denote the computational
security parameter. We let t denote the total number of times the parties wish
to evaluate a given circuit, and let ρ = ρ(s, t) represent the number of circuits,
per evaluation, that need to be generated to achieve an error probability of 2−s.
Before discussing our specific technical contribution, we recall the main ideas of
our building blocks.

Fast Cut-and-Choose Using Cheating Punishment [14]. Cut-and-choose
(C&C) protocols for GCs work by letting circuit constructor P1 generate and
send a number of GCs to the evaluator P2, who then chooses a subset of circuits
to open and check for correctness. If the checks pass, the remaining circuits are
evaluated as in Yao’s protocol [27], and the final output is obtained by taking
majority over the individual outputs. In concrete terms, prior works [15,25] re-
quired at least 125 circuits to be sent by P1 to guarantee security 2−40. Lindell’s
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improved technique [14] achieves 2−s security while requiring P1 to send only s
circuits (i.e., 40 circuits for 2−40 security).

Lindell’s protocol (which we call the “fast C&C” protocol) has two phases. In
the first phase, P1 with input x and P2 with input y run a modified C&C which
ensures that P2 obtains a proof of cheating φ if it receives two inconsistent output
values in any two evaluation circuits. Now, if all evaluation circuits produce the
same output z, P2 locally stores z as its output. Both parties always continue
to the second cheating-punishment phase. In it, P1 and P2 securely evaluate a
smaller circuit C′, which takes as inputs P1’s input x and P2’s proof φ. (P2

inputs random values if he does not have φ.) P1 proves in zero-knowledge the
consistency of its input x between the two phases. C′ outputs x to P2 if φ is a valid
proof of cheating; otherwise P2 receives nothing. The efficiency improvement is
due to the fact that cheating is punished if there is any inconsistency in outputs.

LEGO Cut-and-Choose [6,22]. These works take a different approach by
implementing a two-stage C&C at the gate level. The evaluation circuit is then
constructed from the unopened garbled gates. In the first stage, P1 sends multiple
garbled gates and P2 performs a standard C&C with replication factor ρ(s) =
O(s/ log |C|). P2 aborts if any opened gate is garbled incorrectly. In the next
stage, P2 partitions the ρ(s)|C| garbled gates into buckets such that each bucket
contains O(ρ(s)) garbled gates. This two-stage C&C ensures that, except with
probability 2−s, each bucket contains a majority of correctly constructed garbled
gates.

To connect gates with one another, Nielsen and Orlandi [22] use homomor-
phic Pedersen commitments. The resulting computational efficiency is relatively
poor as they perform several expensive public-key operations per gate. This is
addressed in the miniLEGO work [6], where the authors (among other things)
construct homomorphic commitments from oblivious transfer (OT), whose cost
can be amortized by OT extension [10]. However, the overall efficiency of this
construction is still lacking in concrete terms due to large constants inside the
big-O notation. In particular, the communication efficiency is adversely affected
by the use of asymptotically constant-rate codes that are concretely inefficient.

1.2 Overview of Our Approach

Our main idea for the multiple execution setting is to run two-stage LEGO C&C
at the circuit level, and then use fast C&C in the second stage (thereby requiring
only a single correctly constructed circuit from each bucket). In particular, now
the size of C′ used in each execution depends only on the input and output
lengths of C, and is no longer proportional to |C|. In this section, we focus only
on the cut-and-choose aspect of the protocol; namely, on preventing P1’s cheating
by submitting incorrect garbled circuits. More detailed protocol descriptions for
both the parallel and sequential settings can be found in Section 2 and Section 3.

In the first-stage cut-and-choose, P1 constructs and sends to P2 a total of ρt
GCs. Next, P2 requests that P1 open a random ρt/2-sized subset of the garbled
circuits. If P2 discovers that any opened garbled circuit is incorrectly constructed,
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Table 1. The number of garbled circuits required per execution in order to guarantee
a security loss of < 2−40. For comparison, the last two columns show the number of
circuits required by the fast C&C protocol [14] in the parallel and sequential settings.
Note that when using the fast C&C protocol for sequential executions we need to
increase the replication factor from s to s+ log t.

# of Executions Replication Replication for Fast C&C
parallel/sequential parallel sequential

2 32 40 41
4 24 40 42
7 20 40 42
20 16 40 44
100 12 40 46
3500 8 40 51

it aborts. Otherwise, P2 proceeds to the second stage cut-and-choose, where it
randomly assigns unopened circuits to t buckets such that each bucket contains
ρ/2 circuits. Now, as in the fast C&C protocol [14], each of the t evaluations
are executed in two phases. In the first phase of the kth execution, party P2

evaluates the ρ/2 evaluation circuits contained in the kth bucket. The circuits
are designed such that if P2 obtains different outputs from evaluating circuits
in the kth bucket, then it obtains a proof of cheating φk. Next, both parties
continue to the cheating-punishment phase, where P1 and P2 securely evaluate
a smaller circuit that outputs P1’s input xk if P2 provides a valid proof φk.

Clearly, P1 succeeds in cheating only if (1) it constructedm ≥ ρ/2 bad circuits,
(2) none of these m bad circuits were caught in the first cut-and-choose stage
(i.e., m ≤ ρt/2), and (3) in the second stage, there exists a bucket that contains
all bad circuits. It is easy to see that the probability with which m bad circuits
escape detection in the first stage cut-and-choose is

(
ρt−m
ρt/2

)
/
(

ρt
ρt/2

)
. Conditioned

on this event happening, the probability that a particular bucket contains all
bad circuits is

(
m
ρ/2

)
/
(ρt/2
ρ/2

)
. Applying the union bound, we conclude that the

probability that P1 succeeds in cheating is bounded by

t

(
ρt−m

ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2

ρ/2

)
.

For any given t and s, the smallest ρ, hinging on the maximal probability of P1’s
successful attack, can be determined by enumerating over all possible values of
m (i.e., {ρ/2, ρ/2+ 1, . . . , ρt/2}).

As an example, for t = 20 in a parallel execution setting with s = 40, using
our protocol the circuit generator needs to construct 16 ·t = 320 garbled circuits,
whereas using a näıve application of Lindell’s protocol [14] requires 40 · t = 800
garbled circuits.

Parallel vs. Sequential Executions. As will be evident, it is important to
distinguish between the settings where multiple evaluations are carried out in
parallel (e.g., when all inputs are available at the start of the protocol) and
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where these evaluations are carried out sequentially (e.g., when not all inputs
are available as they, for example, depend on the outputs of previous executions).
Below, we provide an overview of the main challenges of each setting, and an
outline of our solutions.

Parallel executions. Under the DDH assumption, we apply our C&C technique in
the parallel execution setting by modifying Lindell’s protocol [14] as follows. We
construct a generalized cut-and-choose oblivious transfer (C&C OT) functional-
ity that supports multi-stage cut-and-choose. We call this functionality Fmcot.
Asymptotically, we can realize Fmcot using general secure computation, since
the circuit for Fmcot depends only on the length of P2’s input and is otherwise
independent of the circuit. However, such a realization is extremely inefficient in
practice (the size of the circuit for realizing Fmcot needs to accept inputs of length
at least nρt�, where n is the computational security parameter and � is the input
length). Instead, we show an efficient realization that is only a factor ρt2/s less
efficient (per execution) than the modified C&C OT realization of Lindell [14].
We elaborate more on this, and other important details, in Section 2.

Sequential executions. To prevent a malicious evaluator from choosing its inputs
based on the garbled circuit, GC-based 2PC protocols perform OT before the
constructor sends its GCs to the evaluator (i.e., before the cut-and-choose phase).
This forces the parties, and in particular the evaluator, to “commit” to their
inputs before performing the cut-and-choose. This, however, does not work in
the sequential setting, where the parties may not know all their inputs at the
beginning of the protocol. Standard solutions used in previous works [1,7,20]
include assuming the garbled-circuit construction is adaptively secure or using
adaptively-secure garbling [3] explicitly, assuming the programmable random-
oracle model. Another issue is that since now we perform OTs for each execution
separately, we can no longer use C&C OT or its variants; instead we rely on the
“XOR-tree” approach of Lindell and Pinkas [15] to avoid selective failure attacks.
We elaborate more on this, and other details, in Section 3.

Our solution for the sequential setting readily carries over to the parallel
setting. In particular, adapting our protocol from the sequential to the paral-
lel setting may address situations where the cost incurred by the use of Fmcot

outweighs the cost of using both the XOR-tree approach and adaptively secure
garbled circuits.

1.3 Related Work

Lindell and Pinkas [15] gave the first1 rigorous 2PC protocol based on cut-and-
choose. For s = 40, their protocol required at least 17s = 680 garbled circuits.
Subsequent work by the same authors [16] reduced the number of circuits to
128. This was later improved by shelat and Shen [25] to 125 using a more precise
analysis of the C&C approach. In Crypto 2013, two works [9,14] proposed (among
other things) dramatic improvements to the number of garbled circuits that need

1 C&C mechanisms were previously employed in works by Pinkas [24] and Malkhi et
al. [18] but these approaches were later shown to be flawed [13,19].
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to be sent. In more detail, for achieving statistical security 2−s, Huang et al.’s
protocol [9] requires 2s + O(log s) circuits, where each party generates half of
them, and Lindell’s protocol [14] requires exactly s circuits.

While all of the above works perform cut-and-choose over circuits, applying
cut-and-choose at the gate-level has also been considered [5,6,21,22]. As discussed
above, this approach naturally extends to the multiple execution setting, and
furthermore is not inherently limited to considering settings where the same
function is evaluated multiple times. Nielsen et al. [21] indeed show concrete
efficiency improvements using gate-level cut-and-choose techniques. However,
the number of rounds grows linearly with the depth of the evaluated circuit.

Finally, in independent and concurrent work, Lindell and Riva [17] also in-
vestigate the multiple execution setting, and obtain performance improvements
similar to ours. An interesting difference between our works is that while we al-
ways let the evaluator pick half the circuits to check, they show that varying the
number of check circuits can lead to an additional performance improvement.

2 The Parallel Execution Setting

Consider a setting where two parties wish to securely evaluate the same function
multiple times in parallel. Let f denote the function of interest, and let t denote
the number of times the parties wish to evaluate f . Let P1’s (resp., P2’s) input in
the kth execution be xk (resp., yk), and let x = (x1, . . . , xt) and y = (y1, . . . , yt).
We define f (t)(x, y) = (f(x1, y1), . . . , f(xt, yt)).

We adapt Lindell’s protocol [14] to support our cut-and-choose technique in
the parallel execution setting. The main difficulty is the design and construction
of a generalization of cut-and-choose oblivious transfer [16] which we use to
avoid the “selective failure attack” where a malicious P1 constructs invalid keys
for P2’s input wires to try and deduce P2’s inputs based on if P2 aborts execution
or not. We discuss this more in Section 2.1. We note that the näıve idea of using
the XOR-tree approach [15] in our setting does not appear to work without
using adaptively secure garbled circuits. Specifically, it is no longer clear how
P1, without any knowledge of which circuits will end up as evaluation circuits,
can batch P2’s input keys together in a way that lets P2 learn different sets
of input keys corresponding to different evaluation circuits and yet within each
evaluation bucket guaranteeing that P2 can learn only input keys corresponding
to the same set of inputs.

We give details of our protocol construction for the parallel executions setting
in Section 2.2.

2.1 Generalizing Cut-and-Choose Oblivious Transfer

Cut-and-choose oblivious transfer (C&C OT) [16] is an extension of standard
one-out-of-two oblivious transfer (OT). The sender inputs L pairs of strings,
and the receiver inputs L selection bits to select one string out of each pair of
sender strings. The receiver also inputs a set J of size L/2 that consists of indices
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Inputs:

– P1 inputs � vectors xi, each containing s pairs of values xi,j
0 , xi,j

1 ∈ {0, 1}n×n,
i ∈ [�], j ∈ [s]. In addition, P1 inputs s “check values” χ1, . . . , χs ∈ ({0, 1}n)s.

– P2 inputs σ1, . . . , σ� ∈ {0, 1} and a set of indices J ⊆ [s].

Outputs: P1 receives no output. P2 receives the following:

– For every i ∈ [�] and j ∈ J , P2 receives (xi,j
0 , xi,j

1 ).
– For every i ∈ [�], P2 receives 〈xi,1

σi
, . . . , xi,s

σi
〉.

– For every k �∈ J , P2 receives χk.

In other words, P2 receives {χj}j∈[s]\J and {{xi,j
σi
}j∈[s]\J , {(xi,j

0 , xi,j
1 )}j∈J}i∈[�].

Fig. 1. Modified batch single-choice cut-and-choose OT functionality Fccot [14]

where it wants both the sender’s inputs to be revealed. Note that for indices not
contained in J , only those sender inputs that correspond to the receiver’s selec-
tion bits are revealed. In applications to secure computation, and in particular
when transferring input keys corresponding to a particular input wire across
all evaluation circuits, one needs single-choice cut-and-choose oblivious transfer,
where the receiver is restricted to inputting the same selection bit in all the L/2
instances where it receives exactly one out of two sender strings. Furthermore,
when transferring input keys for multiple input wires, it is crucial that the sub-
set J input by the receiver is the same across each instance of single-choice C&C
OT executed for all input wires. This variant, called batch single-choice C&C
OT, can be realized from the decisional Diffie-Hellman problem [16].

Lindell [14] presented a variant of batch single-choice C&C OT [16] in order to
address settings where the check set J input by the receiver may be of arbitrary
size. We denote this variant by Fccot; see Figure 1 for the formal description.
In this variant, in addition to obtaining one of the two sender inputs for pairs
whose indices are not in J , the receiver also obtains a “check value” for each
index not in J . These check values are used to confirm whether or not a circuit
is an evaluation circuit.

For our purposes, we introduce a new variant of Fccot, which we call batch
single-choice multi-stage C&C OT. We denote this primitive by Fmcot and
present its formal description in Figure 2. At a high level, our variant differs
from Fccot in that receiver P2 can now input multiple sets J1, . . . , Jt (where J
is now implicitly defined as [ρt] \ ∪k∈[t]Jk) and make independent selections for
each of J1, . . . , Jt. Unlike in Lindell’s scheme [14], we only need to consider sets
J1, . . . , Jt whose sizes are pre-specified in order to provide the desired security
guarantees. However, as in the Fccot functionality, Fmcot (1) does not require sets
J1, . . . , Jt to be of a particular size, and (2) delivers “check values” for indices
contained in each of J1, . . . , Jt. These check values are used to confirm whether
a circuit is an evaluation circuit in the kth bucket for some k ∈ [t].
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Inputs:

– P1 inputs � vectors xi, each containing ρt2 pairs xi,j
0 , xi,j

1 ∈ {0, 1}n. In addi-
tion, P1 inputs ρt2 “check values” χ1

1, . . . , χ
1
ρt; . . . ;χ

t
1, . . . , χ

t
ρt ∈ {0, 1}n.

– P2 inputs σ1 = (σ1,1, . . . , σ1,�), . . . ,σt = (σt,1, . . . , σt,�) ∈ {0, 1}� and sets
J1, . . . , Jt that are pairwise non-intersecting subsets of [ρt].

Outputs: Party P1 receives no output. Party P2 receives the following:

– For every k ∈ [t] and for every j ∈ Jk, party P2 receives χk
j .

– Let J = [ρt] \ ∪k∈[t]Jk. For every i ∈ [�] and j ∈ [ρt]:

• If j ∈ J , then P2 receives (xi,j
0 , xi,j

1 ).
• Otherwise, if there exists a (unique) k ∈ [t] such that j ∈ Jk, then P2

receives xi,j
σk,i

.

In other words, P2 receives sets {χ1
j}j∈J1 , . . . , {χt

j}j∈Jt and {{xi,j
σ1,i

}j∈J1 , . . . ,

{xi,j
σt,i

}j∈Jt , {(xi,j
0 , xi,j

1 )}j∈J}i∈[�].

Fig. 2. Batch single-choice multi-stage cut-and-choose OT functionality Fmcot

Designing the Fmcot Functionality. As in Fccot, the sender P1 inputs � vectors
x1, . . . ,x� each of length ρt, where each element in the vector is a pair of values
(corresponding to the 0-key and the 1-key of a given garbled wire). In addition, P1

inputs ρt2 “check values”. Receiver P2 inputs t vectors σ1, . . . ,σt each of length
� and pairwise non-intersecting sets J1, . . . , Jt. Upon receiving these inputs from
P1 and P2, the functionality computes J = [ρt] \ ∪k∈[t]Ik, and delivers, for each
j ∈ J , the jth element (i.e., both values in the jth pair) in each of the � vectors.
Next, for every k ∈ [t] and for each j ∈ Jk, the functionality delivers to P2 the
σk,i value in the jth pair of vector xi for every i ∈ [�] along with the check value
χk
j .

Realizing Fmcot in the Fccot-hybrid model. We now proceed to construct a pro-
tocol for Fmcot. Our goal is to provide an information-theoretic reduction from
Fmcot to Fccot. We first consider a näıve approach which serves as a warm-up to
our final construction and provides intuition behind our definition of Fmcot.

The näıve approach. We propose the following natural approach to realizing
Fmcot from Fccot: P1 first performs a t-out-of-t additive secret sharing of all
input keys corresponding to P2’s inputs. In addition, P1 chooses ρt

2 check values.
Next, P1 and P2 interact with the Fccot functionality t times in parallel. In the
kth interaction, P1 provides the kth additive share of its input plus ρt check
values χk

1 , . . . , χ
k
ρt (i.e., a check value for each circuit that could potentially be

an evaluation circuit in the kth execution), while P2 provides its inputs for the
kth execution along with a set [ρt] \ Jk, where Jk indicates the indices of the
evaluation circuits to be used in the kth execution. Let J = [ρt] \ ∪k∈[t]Jk. At
the end of the interaction, P2 obtains (1) all t additive shares of input keys,
and therefore all input keys, for circuits GCj with j ∈ J , and (2) all t additive
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shares of input keys that correspond to its actual input in the kth execution, and
therefore its input keys, along with check values for circuits GCj with j �∈ J .

Note, in particular, that for the check circuits, P2 does not obtain the check
values, and for the evaluation circuits, P2 does not obtain both input keys. Thus,
the above protocol seems to successfully fulfill our requirements from the Fmcot

functionality. However, note that there is no mechanism in place to enforce that
P2 supplies non-intersecting sets J1, . . . , Jk. In the following we show that this
prevents the above protocol from realizing Fmcot.

Suppose t = 2. A malicious P2 may input overlapping sets J1, J2 to Fccot.
The consequence of this is that P2 now possesses check values χ1

j and χ2
j for

j ∈ J1 ∩ J2. Clearly, the functionality Fmcot does not allow this. On the other
hand, recall that the input keys are all additively shared, and as a result P2

does not possess input keys corresponding to its input in circuit GCj unless
its input in both executions are identical. At the surface, there does not seem
to be any attack due to this malicious strategy. Sure, P2 can now equivocate
on assigning GCj to either the first evaluation bucket or the second evaluation.
However, as observed earlier, it either has no corresponding keys, or it is going to
evaluate both circuits on the same input, say y (in which case it seems immaterial
whether j is revealed as part of J1 or J2). Unfortunately, we show that the above
strategy for malicious P2 is not simulatable. In particular, at the end of the
interaction with Fccot, the simulator successfully extracts P2’s input in the first
and second execution, but is now unable to decide on how to fake the garbled
circuit GCj . On the one hand, if j ∈ J1, then the fake garbled circuit has to
output z1 = f(x1, y). On the other hand, if j ∈ J2, then the fake garbled circuit
has to output z2 = f(x2, y). Therefore, the simulator has to choose on how to
fake GCj in the dark. Note that a simulation strategy for this specific case that
decides to fake GCj to output z1 with probability 1/2, and to output z2 with
probability 1/2, does indeed succeed with probability 1/2. However, this strategy
does not extend well to the case when t is large.

The discussion above motivates our definition of Fmcot; in particular, it re-
inforces why Fmcot must deliver at most one check value per circuit. In the
following, we explain how to modify the näıve construction to enforce this.

Our approach. The high level idea behind our protocol is to let P1 perform
independent additive sharings of both the input values as well as the check
values. Then P1 and P2 query the Fccot functionality t times to transfer the
values as required by Fmcot. We detail this below, explaining it in the context
of our secure computation protocol.

Let (xi,j
0 , xi,j

1 ) be the input keys corresponding to P2’s ith input wire in
GCj . First, P1 performs a t-out-of-t additive secret sharing of all input val-
ues corresponding to P2’s inputs; i.e., for each i ∈ [�], j ∈ [ρt], P1 secret

shares xi,j
0 (resp., xi,j

1 ) into {xi,j,k
0 }k∈[t] (resp., {xi,j,k

1 }k∈[t]). P1 then chooses

ρt2 check values {χk
1 , . . . , χ

k
ρt}k∈[t]. It then performs a (2�(t − 1) + 1)-out-of-

(2�(t − 1) + 1) additive sharing of each value χk
j to obtain shares denoted χ̃k

j ,

{χi,j,k′
0,k , χi,j,k′

1,k }k′∈[t]\{k},i∈[�]. Then, instead of creating inputs to Fccot using xi,j,k
c
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shares alone, P1 instead creates a “share block”X i,j,k
c = (xi,j,k

c , χi,j,k
c,1 , . . . , χi,j,k

c,t ).

That is, a share block X i,j,k
c contains, in addition to a share of the input key, a

share of all check values corresponding to circuit GCj .
Next, P1 and P2 run t instances of Fccot in parallel. In the kth interaction,

in addition to the ρt check value shares χ̃k
1 , . . . , χ̃

k
ρt, P1 provides its kth share

block while P2 provides its inputs for the kth execution along with a set [ρt]\Jk,
where Jk indicates the indices of the evaluation circuits to be used in the kth
execution. Let J = [ρt] \ ∪k∈[t]Jk. At the end of the interaction, P2 obtains (1)
all t share blocks of input keys, and therefore all input keys, for circuits GCj

with j ∈ J , and (2) all t share blocks of input keys that correspond to its actual
input in the kth execution, and therefore its input keys, along with a check value
χ̃k
j for circuits GCj with j ∈ Jk.
Note, in particular, that for each check circuit GCj , P2 does not obtain the

check value χk
j for any k, because it always misses the check value share χ̃k

j .
For each evaluation circuit GCj with j ∈ Jk, P2 does not obtain both input
keys, and more importantly can obtain at most one check value (which is χk

j ).
This is because share blocks contain shares of input keys as well as shares of
check values. For an evaluation circuit, party P2 always misses a share block,
and consequently shares of all values χk′

j with k′ �= k. Furthermore, if P2 wants

to ensure it receives χk
j , then it should never input Jk′′ such that k′′ �= k and

yet j ∈ Jk′′ . This is because for j ∈ Jk′′ , P2 is guaranteed to miss a share block
that contains an additive share of χk

j . Note that the above observations suffice
to deal with a malicious P2 that inputs overlapping sets since in this case P2

fails to obtain any check values corresponding to indices in the intersection.
The formal description of the protocol in the Fccot-hybrid model can be found

in Figure 3. We prove the following in the full version.

Theorem 1. There exists a protocol perfectly realizing Fmcot in the Fccot-hybrid
model.

2.2 Using Fmcot in the Parallel Execution Setting

The input vectors xi, for i ∈ [�], contain the key pairs associated with the ith
input wire for P2 in each of the ρt circuits. The vector σk corresponds to the
inputs used by P2 in the kth execution. An honest P2 chooses sets J1, . . . , Jt such
that they are pairwise non-intersecting and each set is of size exactly ρ/2. The
main observation is that, for a given execution k ∈ [t], P2 obtains check values
χk
j from Fmcot only for j ∈ Jk. Therefore, once the parties complete the inter-

action with Fmcot and P1 sends all the garbled circuits, we let P1 determine the
evaluation circuits in each bucket based on whether P2 sends the corresponding
check values. At this point, P1 checks that each bucket of evaluation circuits is
well-defined and that these buckets are of equal size, i.e., ρ/2. If not, P1 aborts.
To overcome technical difficulties, we also require P2 to provide “check values”
for the check circuits as well. A check value for check circuit GCj , denoted χj ,
may simply be the set of all input keys (i.e., both the 0-key and the 1-key) on
all wires in circuit GCj .
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Inputs:

– P1 inputs � vectors of pairs xi = 〈(xi,1
0 , xi,1

1 ), . . . , (xi,ρt
0 , xi,ρt

1 )〉 for i ∈ [�].
In addition, P1 inputs ρt2 “check values” (χ1

1, . . . , χ
1
ρt), . . . , (χ

t
1, . . . , χ

t
ρt). All

values are in {0, 1}n.
– P2 inputs σ1 = (σ1,1, . . . , σ1,�), . . . ,σt = (σt,1, . . . , σt,�) ∈ {0, 1}� and sets

J1, . . . , Jt.

Protocol:

– For all i ∈ [�], P1 performs a t-out-of-t additive secret sharing of xi to obtain
shares xi,1, . . . ,xi,t. For k ∈ [t], let xi,k = 〈(xi,1,k

0 , xi,1,k
1 ), . . . , (xi,ρt,k

0 , xi,ρt,k
1 )〉.

Let Xi,j,k
0 = (xi,j,k

0 , χi,j,k
0,1 , . . . , χi,j,k

0,t ) and Xi,j,k
1 = (xi,j,k

1 , χi,j,k
1,1 , . . . , χi,j,k

1,t ),

where χi,j,k
0,1 , . . . , χi,j,k

0,t and χi,j,k
1,1 , . . . , χi,j,k

1,t are random independent values in

{0, 1}n. Let Xi,k = 〈(Xi,1,k
0 , Xi,1,k

1 ), . . . , (Xi,ρt,k
0 , Xi,ρt,k

1 )〉.
– For all k ∈ [t] and j ∈ [ρt], set χ̃k

j = χk
j ⊕

⊕
k′∈[t]\{k},i∈[�](χ

i,j,k′
0,k ⊕ χi,j,k′

1,k ).
– P1 and P2 run t instances of Fccot in parallel as follows. In the kth instance:

• P1 inputs � vectors of pairs Xi,k of length ρt for i ∈ [�] and ρt “check
values” χ̃k

1 , . . . , χ̃
k
ρt. P2 inputs σk,1, . . . , σk,� ∈ {0, 1} and the set [ρt] \ Jk.

• P2 receives {χ̃k
j }j∈Jk and {{Xi,j,k

σk,i
}j∈Jk ∪ {(Xi,j,k

0 , Xi,j,k
1 )}j∈[ρt]\Jk

}i∈[�].

– For all k ∈ [t] and j ∈ Jk, P2 reconstructs χk
j = χ̃k

j ⊕
⊕

k′∈[t]\{k},i∈[�](χ
i,j,k′
0,k

⊕ χi,j,k′
1,k ).

– Let J = [ρt] \ ∪k∈[t]Jk. For all i ∈ [�] and j ∈ [ρt], P2 does the following:

• If j ∈ J : set xi,j
0 =

⊕
k∈[t] x

i,j,k
0 , and xi,j

1 =
⊕

k∈[t] x
i,j,k
1 .

• If there exists (unique) k ∈ [t] such that j ∈ Jk: set x
i,j
σk,i

=
⊕

k∈[t] x
i,j,k
σk,i

.

– P2 outputs sets {χ1
j}j∈J1 , . . . , {χt

j}j∈Jt and {{(xi,j
0 , xi,j

1 )}j∈J , {xi,j
σ1,i

}j∈J1 , . . . ,

{xi,j
σt,i

}j∈Jt}i∈[�].

Fig. 3. Realizing Fmcot in the Fccot-hybrid model

Applying the Cheating-Punishment Technique. Inspired by Lindell’s pro-
tocol [14], we use the knowledge of two different garbled values for a single output
wire as a “proof” that P2 received inconsistent outputs in a given execution. P2

can use this proof to obtain P1’s input in a cheating-punishment phase. This
cheating-punishment phase is implemented via a secure computation protocol,
and thus it is important that the second phase functionality has a small circuit.
We employ several optimizations proposed by Lindell [14] to keep the size of this
circuit small. One important difference in our setting is that, unlike in Lindell’s
protocol [14], we cannot have, for a given output wire w, the same output keys
b0w, b

1
w across all garbled circuits. This is because in our setting garbled circuits

are assigned to different evaluation buckets, and the circuits in each bucket can
be evaluated with different input values, and thus can produce different outputs.
Thus (even an honest) P2 could potentially learn, say, output key b0w in one ex-
ecution and output key b1w in another. We address this by simply removing the



Amortizing Garbled Circuits 469

requirement that the set of output keys across different garbled circuits are the
same. Thus, the circuit for the cheating-punishment phase for the kth execution
must now take as input from P1 all of the output keys in all of the evaluation
circuits in the kth bucket, and from P2 a pair of output keys that serve as proof
of cheating. Somewhat surprisingly, we show that the size of the circuit (mea-
sured as the number of non-XOR gates) for the cheating-punishment phase is
essentially the same as the circuit in Lindell’s protocol [14].2

Another detail we wish to point out is that in our protocol we need to run
separate cheating-punishment phases for each execution. This is a restriction
imposed by the way in which P1 proves consistency of its inputs [14,16]. How-
ever, we can run all of the t cheating-punishment phases in parallel. For this
reason we use the universally composable variant of Lindell and Pinkas’s pro-
tocol [16] (which is essentially obtained by replacing oblivious transfers and
zero-knowledge subprotocols with their universally composable variants) to im-
plement each cheating-punishment phase.

Other Details. We now describe other important details of our protocol.

– Input consistency across multiple executions. It is important to guarantee
that P1 provides consistent inputs across all circuits in the kth execution.
Fortunately, existing mechanisms [14,16] for ensuring input consistency in
the single execution setting can be readily extended to the multiple execution
setting as well.

– Encoded translation tables for garbled circuits. As in Lindell’s protocol [14],
we modify the output translation tables used in the garbled circuits. Specif-
ically, for keys k0i , k

1
i on output wire i, we create an encoded output table

[h(k0i ), h(k
1
i )], where h is some one-way function. We require that the out-

put keys (or more precisely, the output of h applied to the output keys)
corresponding to 0 and 1 are distinct. This encoding gives us the following
two properties: (1) P2 after evaluating a garbled circuit can use the encoded
translation tables to determine whether the output is 0 or 1, and (2) the
encoded translation table does not reveal the other output key (since this is
equivalent to inverting the one-way function) to P2.

– Optimizing the cheating-punishment circuit. We can apply similar techniques
as shown by Lindell [14] to optimize the size of the cheating-punishment
circuit to contain only � non-XOR gates. We leave the details to the full
version.

Formal Description. We proceed to the formal description of our protocol.

Inputs: P1 has input x = (x1, . . . , xt), where xk ∈ {0, 1}�, and P2 has input
y = (y1, . . . , yt), where yk ∈ {0, 1}�.

2 Of course, the cost of realizing our cheating-punishment phase is more than the
corresponding cost in Lindell’s protocol [14], mainly due to P1’s input being larger
(but only by a factor of ρ/2).
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Auxiliary Inputs: A statistical security parameter s, a computational security
parameter n, the description of a circuit C where C(x, y) = f(x, y), the number
of evaluations t of the function f , and (G, q, g) where G is a cyclic group with
generator g and prime order q, where q is of length n. Let Ext : G → {0, 1}n
be a function mapping group elements to bitstrings. In the following, ρ = ρ(s, t)
is the replication factor defined as being the smallest u ∈ N such that for all
m ∈ {u/2, . . . , ut/2} it holds that t ·

(
ut−m
ut/2

)(
m
u/2

)
/
(

ut
ut/2

)(
ut/2
u/2

)
≤ 2−s. If no such u

exists or if ρ ≥ s, then parties abort this protocol, and instead run the fast C&C
protocol [14] for the function f (t).

Outputs: P2 receives f (t)(x, y) and P1 receives no output. Let �′ denote the length
of the output of f(x, y).

Protocol:

1. Input key choice and circuit preparation:
– P1 chooses random values a0

1, a
1
1, . . . , a

0
� , a

1
� ∈R Zq, r1, . . . , rρt ∈R Zq

and (b01,1, b
1
1,1, . . . , b

0
1,�′ , b

1
1,�′), . . . , (b

0
ρt,1, b

1
ρt,1, . . . , b

0
ρt,�′ , b

1
ρt,�′) ∈R {0, 1}n�′

such that for every c1, c2 ∈ {0, 1}, j1, j2 ∈ [ρt], i1, i2 ∈ [�′] it holds that
bc1j1,i1 = bc2j2,i2 iff i1 = i2 and j1 = j2 and c1 = c2.

– Let w1, . . . , w� denote the input wires corresponding to P1’s input, let wi,j

denote the ith input wire in the jth garbled circuit, and let kb
i,j denote

the key associated with bit b on wire wi,j . P1 sets kb
i,j as follows:

k0
i,j = Ext(ga

0
i ·rj ) and k1

i,j = Ext(ga
1
i ·rj ).

– Let w′
1, . . . , w

′
�′ denote the output wires. The keys for wire w′

i in the jth
garbled circuit are set to b0j,i and b1j,i.

– P1 constructs ρt independent garblings, GC1, . . . , GCρt, of circuit C, using
random keys except for wires w1, . . . , w� and w′

1, . . . , w
′
m, where the keys

are set as above.
2. Oblivious transfers: P1 and P2 run Fmcot as follows:

– For i ∈ [�], let zi denote a vector containing the ρt pairs of keys associated
with P2’s ith input bit in all the garbled circuits. P1 inputs z1, . . . ,z�, as
well as random values χ1

1, . . . , χ
1
ρt; . . . ;χ

t
1, . . . , χ

t
ρt.

– P2 inputs random sets J1, . . . , Jt which are pairwise non-intersecting sub-
sets of [ρt] such that for all k ∈ [t] it holds that |Jk| = ρ/2. Let
J = [ρt]\∪k∈[t]Jk. P2 also inputs bits (σ1,1, . . . , σ1,�), . . . , (σt,1, . . . , σt,�) ∈
{0, 1}�, where σk,i = yk,i for every i ∈ [�] and k ∈ [t].

– For j ∈ J , P2 receives both input keys associated with its input wires in
garbled circuit GCj , and for each k ∈ [t] and j ∈ Jk, P2 receives the keys
associated with its input yk on its input wires in garbled circuit GCj .
Also, for every k ∈ [t] and j ∈ Jk, P2 receives χk

j .
3. Send circuits and commitments: P1 sends P2 the garbled circuits

GC1, . . . , GCρt, the “seed” for the randomness extractor Ext, the following
commitment to the garbled values associated with P1’s input wires:

{(i, 0, ga
0
i ), (i, 1, ga

1
i )}i∈[�] and {(j, grj )}ρtj=1

and the encoded output translation tables:

{[(h(b0j,1), h(b1j,1)), . . . , (h(b0j,�′), h(b1j,�′))]}j∈[ρt].

If h(b0j,i) = h(b1j,i) for any 1 ≤ i ≤ �′, 1 ≤ j ≤ ρt, then P2 aborts.
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4. Send cut-and-choose challenge: P2 sends P1 the sets J, J1, . . . , Jt along
with values {χ1

j}j∈J1 , . . . , {χt
j}j∈Jt , and all the keys associated with its input

wires in all circuits GCj for j ∈ J . If the values received by P1 are (1) incorrect,
or (2) the sets J1, . . . , Jt are not pairwise non-intersecting, or (3) the input
keys associated with P2’s input wires in circuits GCj are revealed incorrectly,
or (4) there exists some k ∈ [t] such that |Jk| �= ρ/2, then it outputs ⊥ and
aborts. Circuits GCj for j ∈ J are called check circuits and circuits GCj for
j ∈ Jk are called evaluation circuits in the kth bucket.

5. Send garbled input values in the evaluation circuits: For each k ∈ [t]:
P1 sends the input keys associated with input xk for the evaluation circuits
in the kth bucket: For each j ∈ Jk and every wire i ∈ [�], P1 sends the value

k′
i,j = ga

xk,i
i ·rj and P2 sets ki,j = Ext(k′

i,j).
6. Circuit evaluation: For each k ∈ [t], P2 does the following:

– For each j ∈ Jk and every wire i ∈ [�′], P2 computes b′j,i by evaluating
GCj . If P2 receives exactly one valid output value per output wire, then
let zk denote this output. In this case, it chooses random values bk0 , b

k
1 ∈R

{0, 1}n. If P2 receives two valid outputs on any output wire then it sets
bk0 = b′j1,i and bk1 = b′j2,i, where j1, j2 ∈ Jk denote the conflicting circuit
indices. If P2 receives no valid output values on any output wire, then P2

aborts.
7. Run secure computation to detect cheating: For each k ∈ [t], P1 and

P2 do the following in parallel :
P1 defines a circuit with the values {b0j,1, b1j,1, . . . , b0j,�′ , b1j,�′}j∈Jk hardcoded.
The circuit computes the following function:
– P1 inputs xk ∈ {0, 1}� and has no output.
– P2 inputs a pair of values bk0 , b

k
1 .

– If there exists values i ∈ [�′] and j1, j2 ∈ Jk such that bk0 = b0j1,i and
bk1 = b1j2,i, then P2’s output is xk; otherwise it receives no output.

P1 and P2 run the UC-secure protocol of Lindell and Pinkas [16] on this circuit
(except for the proof of P1’s input values), as follows:
– P1 inputs xk; P2 inputs bk0 and bk1 as computed in Step 6.
– The garbled circuits constructed by P1 use the same a0

i , a
1
i values as were

chosen in Step 1, and the parties use 3(s+ log t) copies of the circuit for
the cut-and-choose.

If this computation results in an abort, then both parties halt.
8. Check circuits for computing f (t)(x, y):

– For j ∈ J , P1 sends rj to P2, and P2 checks that these values are consistent
with the pairs {(j, grj )}j∈J received in Step 3. If not, P2 aborts.

– For every j ∈ J , P2 uses the ga
0
i , ga

1
i values received in Step 3 and the rj

values received above to compute the keys for P1’s input wires as k0
i,j =

Ext(ga
0
i ·rj ), k1

i,j = Ext(ga
1
i ·rj ). In addition, P2 uses the keys obtained from

Fmcot in Step 2 for its own input wires. P2 verifies that GCj is a correct
garbling of C. If there exists a circuit for which this does not hold, then
P2 aborts.

9. Verify consistency of P1’s input: For each k ∈ [t]: Let Ĵk be the set of
check circuits used in the 2PC computation in Step 7 for the kth bucket, let
r̂j,k be the value used in that computation, and let k̂i,j be the analogous value
of k′

i,j in Step 5 received by P2 in the computation in Step 7. For each k ∈ [t],
P1 and P2 do the following in parallel :
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– For every input wire i ∈ [�′], P1 proves a zero-knowledge proof-of-
knowledge that there exist some σk,i ∈ {0, 1} such that for every j ∈ Jk

and every j′ �∈ Ĵk, it holds that k′
i,j = ga

σk,i
i ·rj and k̂i,j = ga

σk,i
i ·r̂j′,k . If

any of the t proofs fail, then P2 aborts.
10. Output evaluation: For each k ∈ [t], P2 does the following:

– If P2 received no inconsistent outputs in Step 6, then it uses the encoded
translation tables to decode the outputs it received, and sets zk to that
value. If P2 received inconsistent output, then let xk be the output that
P2 received from the circuit in Step 7. Let zk = f(xk, yk) be the output
in this case.

P2 outputs z = (z1, . . . , zt) and terminates.

We prove the following theorem in the full version.

Theorem 2. Let s (resp., n) be the statistical (resp., computational) security
parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), h is a
one-way function, and the underlying circuit garbling procedure is secure, then
for all t = poly(n), the protocol described above securely computes f (t) in the
presence of a malicious adversary with error at most 2−s + μ(n) for some neg-
ligible function μ(·).

3 The Sequential Execution Setting

We now consider the setting where the parties securely evaluate the same func-
tion f multiple times sequentially. Let t denote the number of times the parties
wish to evaluate f . Let P1’s (resp., P2’s) input in the kth execution be denoted
by xk (resp., yk). Let f [t] denote the reactive functionality that computes f a
total of t times sequentially.

The main difference between this setting and the parallel setting discussed in
Section 2 is that in the sequential setting the parties may not know their inputs
to all executions at the start of the protocol. In particular, inputs may depend on
outputs from previous executions. Thus, the parallel execution protocol does not
immediately carry over to the sequential setting. To see why, observe for instance
that Fmcot requires P2 to submit all of its inputs at once3. This is not possible
since in the sequential setting we cannot assume that P2 has all its inputs at the
beginning of the protocol. Instead, we take a different route; namely, we use the
“XOR-tree” approach [15,26] to protect against the so-called “selective failure
attack” [13,19,25]. (In the parallel execution setting, this attack was implicitly
avoided due to the use of Fmcot.) In this approach, the circuit C to be evaluated
is first modified into an equivalent circuit CXT (to include an “XOR-tree” for

3 Standard oblivious transfer precomputation/“correction” techniques [2] still apply
to Fmcot as well; however, it is not clear how to “correct” Fmcot correlations in a
way suitable for the sequential setting.



Amortizing Garbled Circuits 473

P2’s inputs). Then, P1 sends commitments to input keys corresponding to P2’s
input wires in CXT. The corresponding decommitments are revealed to P2 via
a standard one-out-of-two oblivious transfer. In order to prevent P2 from using
different inputs across evaluation circuits within the same bucket, P1 batches
together the decommitments corresponding to a particular input wire across all
evaluation circuits in a given bucket. Note that herein lies an opportunity for
a malicious P1 to force P2 to abort the protocol depending on its input. (This
can be done for instance by sending incorrect decommitments for say only the
0-key on a particular wire.) However, the modified circuit CXT is such that the
success of any such selective OT attack is statistically independent of P2’s actual
input value. Therefore, if an honest P2 receives an invalid decommitment and
is unable to decrypt the evaluation circuit, then it simply aborts knowing that
its privacy is not compromised. Finally, we note that since we use one-out-of-
two oblivious transfer (as opposed to Fmcot), we can leverage oblivious transfer
extension techniques [10,11,21] to obtain better efficiency.

We stress that the oblivious transfer step happens after P1 sends all the
GCs to P2. This is because P2’s inputs to all t executions are not available
at the beginning of the protocol. Further, P2’s inputs may depend on previous
outputs, which can be obtained only by decrypting evaluation circuits, i.e., after
the evaluation bucket for the current execution is fully determined. Note that our
cut-and-choose technique guarantees that there is at least one good evaluation
circuit in every bucket under the assumption that P1 has already committed to
all its (good and bad) garbled circuits before the check sets and the evaluation
sets are determined. Unfortunately, the above ordering of the oblivious transfer
step and the garbled circuit sending step now allows a malicious P2 to choose
its input as a function of the garbled circuits it receives. To counter this, we
need to use adaptively secure garbling schemes [3] instead of standard garbled
circuits; adaptively secure garbling schemes can be constructed efficiently in the
programmable random oracle model [3]. Note that we do not need the use of
adaptively secure garbling schemes for implementing the cheating-punishment
phase. Indeed, all the inputs for that subprotocol are known before the phase
begins, and therefore, the oblivious transfer step can be carried out before P1

sends its garbled circuits for that phase.
Due to lack of space, we leave both the formal description and the proof of

the following theorem to the full version.

Theorem 3. Let s (resp., n) be the statistical (resp., computational) security
parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), h is a
one-way function, and the circuit is garbled using an adaptively secure garbling
scheme, then for all polynomial values of t, the protocol described above securely
computes f [t] in the presence of a malicious adversary with error at most 2−s +
μ(n) for some negligible function μ(·).
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Abstract. Protocols for secure two-party computation enable a pair of
mistrusting parties to compute a joint function of their private inputs
without revealing anything but the output. One of the fundamental tech-
niques for obtaining secure computation is that of Yao’s garbled circuits.
In the setting of malicious adversaries, where the corrupted party can
follow any arbitrary (polynomial-time) strategy in an attempt to breach
security, the cut-and-choose technique is used to ensure that the garbled
circuit is constructed correctly. The cost of this technique is the construc-
tion and transmission of multiple circuits; specifically, s garbled circuits
are used in order to obtain a maximum cheating probability of 2−s.

In this paper, we show how to reduce the amortized cost of cut-and-
choose based secure two-party computation in the batch and online/offline

settings to O
(

s
logN

)
garbled circuits when N secure computations are

run. Although O( s
logN

) may seem to be a mild efficiency improvement
asymptotically, it is a dramatic improvement for concrete parameters since
s is a statistical security parameter and so is typically small. Specifically,
instead of 40 circuits to obtain an error of 2−40, when running 210 execu-
tions we need only 7.06 circuits on average per secure computation, and
when running 220 executions this is reduces to an average of just 4.08. In
addition, in the online/offline setting, the online phase per secure com-
putation consists of evaluating only 6 garbled circuits for 210 executions
and 4 garbled circuits for 220 executions (plus some small additional over-
head). In practice, when using fast implementations (like the JustGarble
framework of Bellare et al.), the resulting protocol is remarkably fast.

We present a number of variants of our protocols with different assump-
tions and efficiency levels. Our basic protocols rely on theDDHassumption
alone, while our most efficient variants are proven secure in the random-
oracle model. Interestingly, the variant in the random-oracle model of our
protocol for the online/offline setting has online communication that is in-
dependent of the size of the circuit in use. None of the previous protocols
in the online/offline setting achieves this property, which is very significant
since communication is usually a dominant cost in practice.
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1 Introduction

1.1 Background

In the setting of secure two-party computation, a pair of parties with private
inputs wish to compute a joint function of their inputs. The computation should
maintain privacy (meaning that the legitimate output but nothing else is re-
vealed), correctness (meaning that the output is correctly computed), and more.
These properties should be maintained even if one of the parties is corrupted.
The feasibility of secure computation was demonstrated in the 1980s, where it
was shown that any probabilistic polynomial-time functionality can be securely
computed [Yao86, GMW87].

The two main adversary models that have been considered in the literature are
semi-honest and malicious. A semi-honest adversary follows the protocol specifi-
cation but attempts to learn more than allowed by inspecting the transcript. In
contrast, amalicious adversary can follow any arbitrary (probabilistic polynomial-
time) strategy in an attempt to break the security guarantees of the protocol. On
the one hand, the security guarantees in the semi-honest case are rather weak, but
there exist extraordinarily efficient protocols [HEKM11, BHR12b, ALSZ13]. On
the other hand, the security guarantees in the malicious case are very strong, but
they come at a significant computational cost.

The goal of constructing efficient secure two-party (2PC) computation proto-
cols in the presence of malicious adversaries has been an active area of research
in the recent years. [JS07, NO09] construct 2PC protocols with a small number
of exponentiations per gate of the circuit, which is quite inefficient in prac-
tice. [IPS08, IKO+11] construct 2PC protocols based on the MPC-in-the-head
approach which (asymptotically) requires only a small number of symmetric-
key operations per gate of the circuit, though no implementation has been
presented yet to clarify the concrete complexity of this approach in practice.
[NNOB12, FJN+13] construct 2PC protocols in the random-oracle model with
(amortized) O(s/ log(|C|)) symmetric-key operations per gate of the circuit,
where s is a security parameter and C(·) is a boolean circuit that computes
the function of interest. [DPSZ12, DKL+143] construct secure multi-party com-
putation protocols with security against all-but-one corrupted parties, and thus,
could be used in the two-party setting as well. These protocols use somewhat
homomorphic encryption. The protocols of [NNOB12, DPSZ12, DKL+143] all
require a number of rounds of communication that is in the order of the depth
of the circuit being computed.1 Thus, their performance is limited in the case
of deep circuits, and when parties are geographically far and so communication
latency is significant.

A different approach that has received a lot of attention is based on applying
the cut-and-choose technique to Yao’s garbled-circuit protocol. In this technique,
one of the parties prepares many garbled circuits, and the other asks to open
a random subset of them in order to verify that they are correct; the parties

1 The protocol of [FJN+13] is constant round. However, its concrete efficiency has not
been established.
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then evaluate the remaining, unchecked circuits. This forces the party gener-
ating the garbled circuits to make most of them correct, or it will be caught
cheating (solving perhaps the biggest problem in applying Yao’s protocol to
the malicious setting, which is that an incorrect garbled circuit that computes
the wrong function cannot be distinguished from a correct garbled circuit).
[MF06, LP07, LP11, SS11, Lin13, MR13, SS13] present different 2PC proto-
cols based on this approach, and several implementations have been presented to
study the concrete efficiency of it in practice (e.g.[PSSW09, SS11, KSS12, SS13]).
In this work we focus on the cut-and-choose approach.

Is It Possible to Go Below s Garbled Circuits with 2−s Error? Until the
recent work of [Lin13], protocols that use the cut-and-choose technique required
approximately 3s garbled circuits to obtain a bound of 2−s on the cheating prob-
ability by the adversary. Recently, [Lin13] showed that by executing another light
2PC, the number of garbled circuits can be reduced to s, which seems optimal
given that 2−s is the probability that a “cut” is as bad as possible (meaning that
all the checked circuits are good and all the unchecked circuits are bad). The
number of garbled circuits affects both computation time and communication.
In most applications, when |C| is large, sending s garbled circuits becomes the
dominant overhead. (For example, [HMSG13] showed a prototype for garbling
a circuit on GPUs, which generates more than 30 million gates per second. The
communication size of this number of gates is about 15GB, and transferring
15GB of data most likely takes much more than a second.) Thus, further reduc-
ing the number of circuits is an important goal. This goal is the focus of this
paper.

2PC with Offline and Online Stages. In the online/offline setting, the parties
try to push as much work as possible to an offline stage in which they do not
know their inputs. Later, in the online stage, when they have their inputs, they
use the results of the offline stage to run a very efficient online phase, possibly
with much lower latency than their standard counterparts.

The protocols of [NNOB12, DPSZ12, DKL+143] are especially well suited
to the online/offline setting, and have extremely efficient online stages.2 How-
ever, these protocols require many rounds of interaction in the online stage (i.e.,
O(depth(C)) rounds). They therefore become considerably slower for deep cir-
cuits and over high-latency networks.

Previous cut-and-choose based protocols work only in the regular setting, in
which both parties run the protocol from beginning to its end. Note that
cut-and-choose based 2PC protocols are constant-round, which is another reason
for trying to apply them in the online/offline setting.

2 In fact, the protocols of [NNOB12, DPSZ12, DKL+143] allow the parties to choose
the function also in the online stage. In this work we assume that the function is
known in the offline stage, and it is only the inputs that are obtained later.
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1.2 Our Contributions

As we have mentioned, the goal of this paper is to reduce the number of circuits
in cut-and-choose on Yao’s garbled circuits. We achieve this goal in the multiple-
execution setting, where a pair of parties run many executions of the protocol.
As we will see, this enables the parties to amortize the cost of the check-circuits
over many executions.

Amortizing Checks over Multiple Executions. In the single-execution set-
ting, party P1 constructs s circuits and party P2 asks to open a random subset of
them. If P1 makes some of them incorrect and some correct, then it can always
succeed in cheating if P2 opens all of the good circuits and the remaining are
all bad. Since this bad event can happen with probability 2−s, this approach to
cut-and-choose seems to have a limitation of s circuits for 2−s error. However,
consider now the case that the parties wish to run N executions. One possibil-
ity is to simply prepare N · s circuits and work as in the single execution case.
Alternatively, P1 can prepare c · N circuits (for some constant c); then P1 can
ask to open a subset of the circuits; finally, P2 randomly assigns the remaining
circuits to N small buckets of size B (where one bucket is used for every execu-
tion). The protocol that we use, which is based on [Lin13], has the property that
P1 can cheat only if there is a bucket in which all of the circuits are bad. The
probability of this happening when not too many bad circuits are constructed
by P1 is very small, but if P1 does construct many bad circuits then it will be
caught even if a relatively small subset of circuits is checked.

This idea is very powerful and it enables us to obtain an extraordinary speedup
over the single-execution case. Asymptotically, only O( s

logN ) garbled circuits

are needed per execution (on average). Concretely, if the parties wish to run
N = 1024 executions and maintain an error of 2−40, then it suffices to construct
7229 circuits, check 15% of them, and randomly map the remaining into buckets
of size 6. The number of circuits per execution is thus reduced from 40 to 7.06,
which is a considerable improvement. As the number of executions grows, the
improvement is more significant. Specifically, for N = 1, 048, 576 and an error of
2−40, it suffices to construct 4,279,903 circuits, check 2% of them, and randomly
map the remaining into buckets of size 4. The number of circuits per execution
is thus reduced to just 4.08, which is almost a tenfold improvement! Finally,
we note that improvements are obtained even for small numbers of N ; e.g., for
N = 10 the number of circuits per execution is reduced to 20, which is half the
cost.

The Batch Setting – Parallel Executions. In this setting, the parties run
N executions in parallel. Formally, they compute the functionality F (x,y) =
(f(x1, y1), . . . , f(xN , yN)) where x = (x1, . . . , xN ) and y = (y1, . . . , yN). We
start with the protocol of [Lin13] and apply our amortized checking technique in

order to use only O
(

s
logN

)
garbled circuits per execution. However, the protocol



480 Y. Lindell and B. Riva

of [Lin13] does not work in a setting where the circuits are constructed without
knowing which circuits will be placed together in a single bucket. In Section 2.2
we describe the problems that arise and how we overcome them.

The Online/Offline Setting. Next, we turn to the online/offline setting, with
the aim of constructing an efficient 2PC protocol with a constant-round online
stage and low latency. In order to achieve this, we show how to adapt the proto-
col of [Lin13] to the online/offline setting, and then use the amortized checking
technique described above to significantly reduce the number of circuits needed.
There are many issues that arise when trying to run cut-and-choose based pro-
tocols in the online/offline setting, mainly due to the fact that many of the
techniques used to prevent cheating when cut-and-choose is used assume that
the parties inputs are fixed even before the cut-and-choose takes place. In Sec-
tion 2.3 we present a high-level description of our protocol, and our solutions to
the problems that arise in this setting with cut-and-choose.

Our protocol achieves very high efficiency. First, the overall time (offline and
online) is much lower than running a separate execution for every computation.
Thus, we do not obtain a very fast online time at the expense of a very slow offline
time. Rather, the overall protocol is highly efficient, and most of the work can
be carried out in the offline phase. Second, our online phase requires very little
communication, the evaluation of a small number of circuits, and little overhead.
Concretely, when 1,000 executions are prepared in the offline phase, then the
online phase requires evaluating only 5 circuits; in modern implementations like
[BHR12b] and [HMSG13], this is extremely fast (with more executions, this is
even further reduced).

Our basic protocol for the online/offline setting is the first (efficient) 2PC
protocol in that setting with a constant-round online phase and security in the
standard model (with security under the DDH assumption). In the full version,
we show how to further reduce the complexity of the online stage, including a
method for significantly reducing the communication of the online stage to be
independent of |C|, in the random-oracle model. We stress that the most efficient
protocols of [NNOB12, DPSZ12, DKL+143], which also work in the random-
oracle model, require at least O(|C|) communication in the online stage, and at
least depth(C) rounds.

Concurrent Work. In independent concurrent work, [HKK+13] show how to
amortize the number of garbled circuits for multiple-executions of secure com-
putation in a similar fashion to ours. However, here, we additionally focus on
reducing the overhead of the cheating-recovery step (e.g. by amortizing its num-
ber of garbled circuits as well, and by moving most of its cost to the offline stage)
and on minimizing the number of exponentiations in the online stage. We note
that in the cut-and-choose of [HKK+13], P2 always checks half of the circuits. In
contrast, we show that better results can be obtained using different parameters;
we believe that our analysis can be used in their protocol in a straightforward
way.
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1.3 Organization

Due to the lack of space in this abstract, we provide only an outline and high-
level description of our techniques. A full description of our protocols, proofs
of security, and a full combinatorial analysis of the number of circuits needed
appears in the full version.

2 High Level Description of Our Techniques

We describe the main ideas behind our protocols. For simplicity, we focus here
on specific parameters, though in Section 3 and in the full version we give a more
general analysis of the possible parameters.

We begin by describing how cut-and-choose on Yao’s protocol can be made
more efficient (with low amortized cost) in batch settings where many compu-
tations take place. Then, we show how to achieve security in the online/offline
setting where parties’ inputs are fixed in the online phase. The low amortized
cost for the batch setting is relevant both to the online/offline setting and to a
setting where many computations take place in parallel.

2.1 Amortized Cut-and-Choose in Multiple Executions

We now describe how the number of circuits in cut-and-choose can be dramat-
ically reduced in the case that many secure computation executions are run
between two parties (either in parallel or in an online/offline setting). Assume
that P1 and P2 would like to execute N protocols with maximum error proba-
bility of 2−s, where s is a statistical security parameter. The naive approach of
running the protocol of [Lin13] N times would require them to use a total num-
ber of garbled circuits of N·s. As discussed earlier, our main goal in this paper is
to reduce the number of garbled circuits by amortizing the overhead when many
invocations of 2PC are executed.3 The ideas described here will be used in both
the batch protocol (Section 2.2) and the online/offline protocol (Section 2.3).

Recall that in cut-and-choose based two-party computation, P1 prepares s
garbled circuits, P2 asks P1 to open a random subset of them which are then
checked by P2, and then P2 evaluates the remaining circuits. The main idea
behind our technique is to run the cut-and-choose on many circuits, and then
randomly combine the remaining ones into N sets (or “buckets”), where each
set will be used for a single evaluation. The intuition behind this idea is as
follows. The cheating recovery method of [Lin13] (described below in Section 2.2)

3 We remark that it is possible to increase the number of check circuits and reduce the
number of evaluated circuits in an online/offline version of the protocol of [Lin13],
in order to improve the online time. For example, in order to maintain error of 2−40,
one can construct 80 circuits overall, and can check 70 and evaluate only 10. This will
reduce the online time from approximately 20 to 10 (since in [Lin13] approximately
half the circuits are evaluated). However, as we can see from this example, the total
number of circuits grows very fast, rendering this approach ineffective.
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ensures that security is preserved unless all evaluation circuits in a single set are
incorrect. Now, by checking many circuits together and randomly combining
them, the probability that one set will have all incorrect circuits (but yet no
incorrect circuits were checked) is very small.

In more detail, in our technique P1 prepares 2N ·B garbled circuits and sends
them to P2, where B is a parameter we define later. For each circuit, P2 chooses
with probability 1/2 whether to check it or to use it later for evaluation. (This
means that on average, P2 checks N ·B circuits. In our actual protocol we make
sure that exactly N · B circuits remain. In addition, as we discuss below, we
will typically not check half of the circuits and lower probabilities give better
results.) Then, P2 chooses a random mapping function π : [N · B] → [N ] that
maps each of the remaining circuits in a “bucket” of B circuits, which will
later be used as the evaluation-circuits of a single two-party protocol execution.
Clearly, a malicious P1 could prepare a small number of incorrect garbled circuits
(say O(β)), and not be caught in the checks with good probability (here β < s
and so 2−β probability is too high). However, since π is chosen at random by
P2, we show that unless there are many incorrect circuits, the probability that
any one of the buckets contains only incorrectly constructed garbled circuits
is smaller than 2−s. We prove that when B ≥ s

1+logN + 1, the probability

that any bucket contains B incorrect circuits (and so all are incorrect) is at
most 2−s. Thus, the total number of circuits is 2N · B = 2Ns

1+logN + 2N . When

logN > 2s
s−2 − 1 we have that 2N · B < N · s and so a concrete improvement is

obtained from just using [Lin13] even for just a few executions. Asymptotically,
the number of circuits per execution is O( s

logN ), which shows that when N
gets larger, the amortized number of circuits becomes small. When plugging in
concrete numbers that are relevant in practice, the improvement is striking. For
example, consider s = 40 and N = 512 executions (observe that logN = 9 and
2s
s−2 − 1 = 1.10 and so the condition is fulfilled). Now, for these parameters we
have B = � s

1+logN + 1� = 5, and so only 512 × 10 garbled circuits are needed
overall, with just 5 circuits evaluated in each execution. This is better by a
factor of 4 compared to the Ns option. When many executions are run, even
better numbers are obtained. For example, with N = 524288 we obtain that
only 524288 × 6 circuits are needed overall (better by a factor of 6 2

3 than the
naive option).

We remark that the probability of checking or evaluating a circuit greatly
influences the number of circuits. Above, we have assumed that this probability
is 1

2 . In Section 3 we analyse the above parameters in the general case. As we will
see, better parameters are typically achieved with lower probabilities of checking
a circuit. In addition, when working in the online/offline setting, this flexibility
actually provides a tradeoff between the number of circuits in the online and
in the offline phases. This is due to the fact that checking more circuits in the
offline stage reduces the number of circuits to be evaluated in the online stage
but increases the number of circuits checked in the offline phase.

In the protocol of [Lin13] secure computation is also used for the cheating
recovery mechanism (described below in Section 2.2). This mechanism works as



Cut-and-Choose Yao-Based Secure Computation 483

long as a majority of the circuits in a bucket are good. In the multiple-execution
setting, we use a similar method for bucketizing these circuits, while guaranteeing
that a majority of the circuits in any bucket be good (rather than just ensuring at
least one good circuit). Using this method we significantly reduce the number of
circuits needed for the cheating recovery. E.g., for N = 1024 protocol executions
we need only buckets of size B = 12, and a total number of circuits of 24576 (i.e,,
24 circuits per execution). The protocol of [Lin13] requires about 125 circuits
per execution, and thus we obtain an improvement of a factor of 5 in this part
of the protocol (for these parameters).

More Concrete Examples. In Section 3 we provide a full analysis of the cheat-
ing probability for different choices of parameters. We describe some concrete
examples here with s = 40, in order to provide more of an understanding of the
efficiency gains obtained; in the full version of this paper, we show the cost for
many different choice of parameters. When considering 210 and 220 executions,
the best choices and the resulting cost is summarized in the following table (the
bucket size is the number of circuits evaluated in the online phase):

Table 1. Best parameters for s = 40 (p is the probability that a circuit is not checked)

Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (�B ·N/p�) per execution

210 0.1 4 40,960 40.00
210 0.65 5 7,877 7.69
210 0.85 6 7,229 7.06

220 0.65 3 4,839,582 4.62
220 0.98 4 4,279,903 4.08

Observe that in the case of p = 0.1, the average number of circuits is the same
as in a single execution. However, it has the lowest online time. In contrast, at
the price of just a single additional circuit in the online time, the offline time is
reduced by a factor of over 5. In general, the bigger p is, the smaller the total
number of balls is (up to a certain limit). However, the number of balls in each
bucket grows proportionally with p. This means that using p it is possible to
obtain a tradeoff between online and offline time. Specifically, a higher p means
less circuits overall but more circuits in the online stage (where each bucket is
evaluated), thereby reducing the offline time at the expense of increasing the
online time. Conversely, a lower p means more circuits in the offline stage and
smaller bucket and so less computation in the online stage.

We remark that improvements are not only obtained for large values of N . In
the case of N = 32, with p = 0.75 we obtain buckets of size 10 (so 10 evaluations
in the online phase) and an average of 13.34 circuits overall per execution. This is
a considerable improvement over 40 circuits as required in [Lin13]. Of course, as
N becomes smaller, the improvement is less significant. Nevertheless, forN = 10,
with p = 0.55 we obtain an average of 20 circuits per execution, which is half the
cost of [Lin13]. Going to the other extreme, with a huge number of executions
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the amortized cost becomes very small. Taking N = 230 (which isn’t practical
today but may be in the future), we can take p = 0.99 and obtain buckets of size
3 and an overall overage of just 3.03 circuits per execution. In the full version of
the paper we also present graphs of the dependence of B and the total number
of circuits in p, and how the average number of balls per bucket decreases as the
number of buckets grows.

Regarding the number of circuits required for the cheating-recovery mecha-
nism, for N = 210 we get that B = 12, and that the total number of circuits is
12× 1024× 2 = 24576 (i.e,, 24 circuits per execution). For N = 220 we get that
B = 6, and that the total number of circuits is 6 × 1048576× 2 = 12, 582, 912
(i.e,, 12 circuits per execution). This is in contrast to 125 circuits, as required
in [Lin13].

2.2 Batch Two-Party Computation

The protocol of [Lin13] requires s garbled circuits per 2PC execution for achiev-
ing soundness of 2−s. Here we would like to reduce this overhead when multiple
executions of 2PC are executed in a batch setting; i.e., run in parallel. In this
section, we assume that the reader is familiar with the protocol of [Lin13].

If we try to use the protocol of [Lin13] as-is in the batch setting, and take
advantage of the ideas presented in Section 2.1, two problematic issues arise. We
now describe these issues and how we solve them.

First, in the cut-and-choose oblivious transfer of [Lin13], the receiver uses
only one input to all OTs, whereas in the batch setting, P2 should be able to
input many different inputs, and they have to be consistent in each bucket. This
consistency of P2’s input is enforced by having P2 prove in zero knowledge that
its OT queries are for the same input in all circuits. In order to enable P2 to
use separate inputs in each bucket, we modify the protocol as follows. First, P2

privately selects which circuits to use and how to bucket them before the OTs
are executed. Then, the parties run the cut-and-choose OT, where P2 inputs its
j-th input in the circuits that it chose to be in the j-th bucket. However, P2 does
not prove consistency of its input at this point (since the buckets are not yet
known to P1), but rather postpones this proof until after it sends the cut and
random mapping to buckets to P1. After the mapping to buckets has been given
to P1, it is possible for P2 to separately prove in zero knowledge for every bucket
that its OT queries in the j-th bucket are for the same input. Observe also that
since this proof is given before P2 can evaluate any circuit, no information can
be gained if P2 tries to cheat.

A second issue that arises when trying to use the protocol of [Lin13] in the
batch setting is what P2 does in the case that it gets different outputs in some of
the evaluated circuits. We call this mechanism of [Lin13] cheating recovery since
it enables P2 to obtain correct output when P1 has tried to cheat. In order for
this mechanism to work, [Lin13] uses the same output labels in all circuits, and
in case P2 gets different labels for the same wire (meaning different outputs), the
two labels allow it to recover P1’s input. Unfortunately, this technique cannot
work in the batch setting, since there, naturally, P2 would get different outputs
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from different buckets, and thus will always learn two labels of some output wire.
This would enable a cheating P2 to learn P1’s input.

Our solution to this problem is as follows. For simplicity, assume that there is
only one output wire, and assume that D is a special constant that is revealed
to P2 in the case that it receives different output values on the wire in different
circuits (we later describe how this “magic” happens). Recall that in [Lin13],
a second, lighter, two-party computation is executed with a boolean circuit C′,
where P1 inputs (x,D) (with x being the value used in computing the actual
circuit), P2 inputs d, and C′(x,D, d) = x if d = D, and 0 otherwise. Thus, if P2

obtained D due to receiving different outputs in different circuits, then in the
second two-party computation it inputs d = D and learns x, thereby enabling it
to locally compute the correct output f(x, y). Otherwise, if learns nothing about
x; in addition, P1 does not know if P2 learned x or not.

Instead of using the same output labels in all garbled circuits, P1 uses random
ones (as in the standard Yao’s circuit). After P2 announces the “cut” in the
offline stage and the mapping to the buckets, P1 opens the checked circuits
and P2 verifies them as described before. Then in the online stage the parties
follow the next steps. For every bucket (separately), P1 chooses a random D.
Concretely, consider the j-th bucket; then P1 chooses random values Dj and Rj .
Denote the garbled circuits in the j-th bucket by gc1, gc2, . . . gcB . Furthermore,
denote the output-wire labels of circuit gci by W 0

i ,W
1
i . P1 sends the encryptions

{ EncW 0
i
(Rj), EncW 1

i
(Rj ⊕ Dj) }i=1,...,B. P1 also sends P2 the hash Hash(Dj).

The purpose of these encryptions and hash is that in case P2 learns two output
labels that correspond to different outputs, P2 can learn both Rj and Rj⊕Dj and
can use it to recover Dj . It then verifies that it has the right Dj using Hash(Dj).
(In the case of many output wires, each output wire in a bucket encrypts in
the above way using a different Rj . Thus, Dj can be obtained from any pair of
output wire labels in the j-th bucket.)

After P2 evaluates the circuits of C, it learns a set of labelsW ′={W ′
1, . . . ,W

′
B}.

P2 uses the values of W ′ to decrypt the corresponding c0i = EncW 0
i
(Rj) or

c1i = EncW 1
i
(Rj ⊕ Dj). In case P2 learns both W 0

i and W 1
i , it can recover

dj = DecW 0
i
(c0i ) ⊕ DecW 1

i
(c1i ) (which should equal Dj = Rj ⊕ (Rj ⊕ Dj)). In

case P2 gets many “potential” D’s (which can happen if P1 does not construct
the values honestly), it can identify the correct one using the value Hash(Dj).
Next, the parties execute the 2PC protocol with the circuit C′(x,D, d), and P2

learns x in case it learned the correct Dj earlier. Finally, P2 verifies that P1 con-
structed all of the values for the cheating recovery correctly. This check is carried
out after the 2PC protocol for C′ has concluded, since at this point revealing Dj

to P2 can cause no damage. For this check, P1 reveals all of the pairs W 0
i ,W

1
i ,

allowing P2 to check that the encryptions {EncW 0
i
(Rj),EncW 1

i
(Rj ⊕Dj)}i=1,...,B

and Hash(Dj) are consistent. Since P1 can cheat regarding the output labels
W 0

i ,W
1
i , we require that when it sends a garbled circuit (before the cut is re-

vealed), it also sends commitments on all the output wire labels of that circuit.
These commitments are checked if the circuit is chosen to be checked in the
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cut-and-choose. Thus, any good circuit has the property that the output labels
encrypt Rj and Rj ⊕Dj .

Unfortunately, the above does not suffice to ensure that P2 learns Dj in the
case that there are two different outputs. This is due to the fact that it is
only guaranteed that one circuit in the bucket is good. Now, if P2 receives two
different outputs in two different circuits, then the second circuit may not be
good and so P2 may obtain the correct Rj from the good circuit but some value
Sj �= Rj ⊕Dj from the other.

Nevertheless, in the case that P2 received different outputs, but did not obtain
Dj that is consistent with the hashed value Hash(Dj) sent by P1, party P2

simply outputs the output of the garbled circuit for which the output labels it
received from the evaluation are all consistent with the output labels that were
decommitted. To see why this suffices, observe that P2 receives two different
outputs, and one of them is from a good circuit. Denote the two circuits from
which P2 receives different outputs by gc1, gc2, and denote by gc1 the circuit
that was correctly garbled. Then, there are two possibilities: (1) P2 obtained the
correctDj , and thus recovers x using the second 2PC (and can output the correct
f(x, y) by just computing the function f with P1’s input x); (2) P2 did not
recover the correct Dj, meaning that the output labels it received do not decrypt
Rj and Rj ⊕ Dj . However, since gc1 is correct, including the commitments on
its output labels, and since EncW 0

i
(Rj) and EncW 1

i
(Rj ⊕ Dj) are checked, gc1

gives P2 the correct value (either Rj or Rj ⊕Dj, depending on the output bit in
question). Now, if the output label that P2 received from gc2 also decrypts its
corresponding Rj or Rj ⊕Dj , then P2 should have learnt the correct Dj . This
means that the label that P2 received in gc2 does not match the label that P1

revealed from the decommitment on gc2’s output labels. Thus, P2 knows that gc1
is the correct circuit and not gc2, and can take the output of the computation to
be the output of gc1. (Note that by what we have explained, if P2 does not obtain
Dj and the checks on the commitments and encryptions passed, then there is
only one circuit in which the output labels obtained by P2 are consistent with
the commitments. Thus, there is no ambiguity regarding the output.)

Although the above issues are the main parts of the cheating-recovery process
of our protocols, there are other small steps that are needed in order to make
sure that the protocol is secure. For example, P2 should verify that P1 inputs
the correct D to C′. Also, efficiency-wise, recall that 3s garbled circuits of C′

are used in the protocol of [Lin13]; here, we amortize their cut-and-choose as
well, as described above. These issues are dealt with in the detailed description
of the protocol in the full version.

2.3 Two-Party Computation with Online/Offline Stages

Protocols for secure computation in the presence of malicious adversaries via cut-
and-choose on garbled circuits employ a number of methods to prevent cheating.
First, many circuits are sent and a fraction checked, in order to ensure that some
of the garbled circuits are correct (this is the basic cut-and-choose). Second,
since many circuits are evaluated in the evaluation phase, it is necessary to force
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P1 and P2 to use the same input in every circuit in an evaluation. Third, so-
called selective OT attacks must be thwarted (where a cheating P1 provides
correct circuits but partially incorrect values in the oblivious transfer phase
where P2 receives keys to decrypt the circuits, based on its input). Finally, the
cheating recovery technique described in Section 2.2 is used to enable P2 to
complete the computation correctly in case some of the evaluation circuits are
correct and some are incorrect. In all existing protocols, some (if not all) of
the aforementioned checks utilize the fact that the parties’ inputs are given and
fixed before the checks are carried out (in fact, in [Lin13] even the basic cut-and-
choose on circuits is intertwined with the selective OT attack prevention and so
requires the inputs to already be fixed). Thus, these protocols do not work in
the online/offline setting.

In this section, we describe how to deploy these methods in an online/offline
setting where the checks are carried out in the offline setting, and the online
setting should be very fast.4 Ideally, the online setting should have no exponen-
tiations, and should involve some minimal communication (that is independent
of the circuit size) and the evaluation of the circuits in the bucket only. Our
protocol achieves this goal, with some small additional work in the online stage.
We note that in the standard model we do require some exponentiations in the
online phase, but just two per circuit which in practice is insignificant. In addi-
tion, P1 needs to transmit B garbled circuits to P2 for evaluation in the online
phase, where B is the bucket size (in practice, a small constant of between 4 and
6). We also present a variant of our protocol in the random oracle model that
requires no exponentiations whatsoever in the online phase, and has very little
communication; in particular, the communication is independent of the circuit
size. The use of a random oracle is due to problems that arise when adaptively-
secure garbled circuits [BHR12a] are needed. This issue is discussed separately
in Section 2.4.

Ensuring Correctness of the Garbled Circuit. Intuitively, the aim of the
cut-and-choose process is to verify that the garbled circuits are correct. Thus,
it is possible to run this process (send all circuits and then open and check a
fraction of them) in an offline stage even before the parties have inputs. Then,
in the online stage, when the parties have inputs and would like to compute the
output of the computation as fast as possible, they only need to evaluate the
remaining “evaluation” circuits, which results in a much lower latency.

Enforcing P1’s Input Consistency. We start with the approach taken in
[MF06, LP11, SS11]. Let wire j be an input-wire of P1. In a standard garbling
process, two random strings are chosen as the labels of wire j. However, here,
the two labels are chosen to be commitments to the actual value they represent,
e.g., the label that corresponds to the bit 0 is actually a commitment to 0 (more
exactly, the label is the output of a hash function, which is also a randomness

4 Our aim here is to reduce the work of the online stage as much as possible, in order
to achieve very fast computation in the online stage. Tradeoffs between the offline
and online stages are of course possible, and we leave this for future work.
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extractor, on the appropriate commitment). In addition, the commitments used
have the property that one can prove equality of multiple committed messages
with high efficiency, without revealing the actual messages.

This solution can be used in the online/offline setting in a straightforward way.
Namely, when a circuit is checked, these commitments are checked as well. In
contrast, when a set of circuits is used for evaluation, P1 sends the commitments
that correspond to its input, along with a proof that they are all commitments
to the same bit 0 or 1. However, the disadvantage of this method is that it
requires a few exponentiations per bit of P1’s input, and we would like to move
all exponentiations possible to the offline stage. In order to achieve this, instead
of directly computing f(x, y), we modify the garbled circuit to compute the
function f ′(x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
, where x(1) and x(2) are P1’s inputs

and are chosen randomly by P1 under the constraint that x(1) ⊕ x(2) = x. In
the garbling process, the garbled labels of the wires of x(1) are constructed using
the commitment method of [MF06, LP11, SS11], while the labels of the wires
of x(2) are standard (i.e., random strings). In addition, for each wire of x(2), P2

sends commitments on the two input-wire labels (i.e., if the labels are W 0,W 1,
P1 sends Com(0‖W 0),Com(1‖W 1)). Now, in the offline stage, when a circuit is
checked, P2 verifies that all of the above was followed correctly. Furthermore, in
the circuits that are to be evaluated, P1 chooses a random x(1) and sends the
commitments that correspond to x(1) along with the proof of message equality.
This proves to P2 that P1’s input x(1) is the same in all evaluated circuits (of
course, at least in the properly constructed circuits). All this is carried out
in the offline phase.

In the online stage, when P1 knows x, it sends P2 the actual value of x(2) =
x(1) ⊕ x, along with the decommitments of the labels that correspond to x(2)

(the decommitments prove that the same x(2) is sent in all circuits). We stress
that x(2) is sent in the clear, and is the same for all evaluated circuits (this
reveals nothing about x since x(1) is random and not revealed). As a result, the
same x(1) and x(2) is used in all circuits (the consistency of x(1) is enforced in the
offline phase, and the consistency of x(2) is immediate since it is sent in the clear)
and so the same x is used in all evaluated circuits. Note that no exponentiations
are needed in the online stage, and only a small number of decommitments and
decryptions are computed.

In summary, online/offline consistency of P1’s input is obtained by randomly
splitting P1’s input into a secret part x(1) (which is dealt with in the offline
stage), and a public part x(2) which can be revealed in the online stage. Since
x(2) can be chosen to equal x ⊕ x(1) in the online phase, after x is known, the
correct result is obtained and consistency is preserved at very little online cost.

Protecting against Selective-OT Attacks. We use a variant of the cut-and-
choose oblivious transfer protocols of [LP11, Lin13], and modify it to work in the
online/offline setting. The modification is similar to the method used for P1’s in-
put; i.e., instead of computing the function f ′(x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
as

above, the parties compute f ′′(x(1), x(2), y(1), y(2)
)
= f

(
x(1) ⊕ x(2), y(1) ⊕ y(2)

)
,

where P2 uses a random value for y(1) in the offline stage, and later uses y(2) =
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y(1)⊕y once it knows its input y in the online stage. The cut-and-choose oblivious
transfer protocol is used for protecting against selective OT attacks on the OTs
that are used for P2 to learn the garbled labels of y(1). In contrast, the labels of
y(2) are obtained by having P2 send y(2) in the clear and having P1 send the as-
sociated garbled labels (these labels are committed in the offline phase and thus
the labels are sent to P2 as decommitments, which prevents P1 from changing
them). As before, all exponentiations are carried out in the offline stage alone.

Cheating Recovery. The protocol of [Lin13] uses a cheating recovery process
for allowing P2 to learn x in case P2 obtains different outputs from the evaluated
circuits. This method allows for only s circuits to be used in order to obtain 2−s

cheating probability, since an adversary can only cheat if all checked circuits are
correct and all evaluated circuits are incorrect. However, the protocol of [Lin13]
requires the parties to run the cheating recovery process before the checked
circuits are opened, which obviously is unsatisfactory in the online/offline setting
since now P2 does all the expensive checking in the online stage again.

Our solution for this problem is the same solution as described above for
the batch setting; see Section 2.2. Namely, assume that D is a special constant
that is revealed to P2 in the case that it receives different output values on the
wire in different circuits, and for simplicity assume that there is only one output
wire. We would like to securely compute the boolean circuit C′(x(1), D, d

)
, where

(x(1), D) are P1’s input, d is P2’s input, and C′(x(1), D, d
)
= x(1) if d = D, and

0 otherwise. We note that only P2 receives output (since the method requires
that P1 not know if P2 learned D or not). Recall that x(1) is the secret part of
P1’s input, and so if x(1) is obtained by P2 then it can compute x = x(1) ⊕ x(2)

and obtain P1’s real input. Everything else in this solution is identical to the
solution described in Section 2.2; the use of x(1) instead of x enables us to check
the circuits used in the cheating-recovery mechanism in the offline phase.

There are several other subtle issues to take care of regarding the secure
computation of C′. First, we require P1 to use the same x(1) in C and C′. This
is solved by using commitments for the input-wire labels for x(1) as described
above. Second, we need to protect the OTs for P2 to learn the labels of d from
selective-OT attacks. This is solved using the variant of cut-and-choose OT we
use for the OTs for C. Third, in order to push all the expensive exponentiations
to the offline stage, we split the parties inputs in the cheating-recovery circuit
C′ into random inputs in the offline stage and public inputs in the online stage
as we did with the inputs of C. Note that the above issues are only part of the
cheating-recovery process of our protocols, and additional steps are needed in
order to make sure that the protocol secure.

2.4 On Adaptively Secure Garbled Circuits in the Online/Offline
Setting

The standard security notion of garbled circuits considers a static adversary who
chooses its input before seeing the garbled circuit. While this notion suffices for
standard 2PC protocols (e.g., [LP07, LP11, SS11] where the oblivious transfers
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that determine P2’s input can be run before the garbled circuits are sent), it
causes a problem in the online/offline setting. This is due to the fact that we
would like to send all the garbled circuits in the offline stage in order to reduce
the online stage communication. However, this means that the circuits are sent
before the parties (and in particular the adversary) have chosen their inputs.

Recently, [BHR12a, AIKW13] introduced an adaptive variant of garbled cir-
cuits, in which the adversary is allowed to choose its input after seeing the
garbled circuit. Indeed, adaptively secure garbling scheme would allow us to
send all the garbled circuits in the offline stage before the parties have chosen
their inputs. However, the only known efficient constructions of adaptively secure
garbled circuit are in the random-oracle model [BHR12a, AIKW13].5

We do not try to present new solutions to the adaptively-secure garbled-
circuit problem in this work. Rather, we present two options based on current
constructions. Our first solution is in the standard model and works by having
P1 send only the checked garbled circuits in the offline stage. In contrast, the
evaluation garbled circuits are sent in the online stage. These latter circuits
are committed (using a trapdoor commitment) in the offline stage, and this
enables the simulator to actually construct the garbled circuit after the input
is given, solving the adaptive problem. The drawback of this solution is that
significant communication is needed in the online stage, incurring considerable
cost. Our second solution is to use the random-oracle construction of [PSSW09,
BHR12a]. In this case, all of the garbled circuits are sent in the offline stage, and
the communication of the online stage depends only on the number of inputs
and outputs of the circuits (and the security parameters). Thus, we obtain a
clear tradeoff between the security model and efficiency. We believe that any
future construction of efficient adaptively secure garbled circuits in the standard
model may be plugged into the second construction in order to maintain its low
communication and remove the random-oracle.

3 Combinatorics of Multiple Cut-and-Choose: Balls and
Buckets

In this section we deal with balls and buckets. A ball can be either normal or
cracked. Similarly to cut-and-choose, we describe a game in which party P1

prepares a bunch of balls, P2 checks a subset of them and aborts if some of them
are cracked, and otherwise randomly places the remaining ones in buckets. Our
goal is to bound the probabilities that (a) one of the buckets consists of only
cracked balls (i.e., a fully-cracked bucket), and (b) there is a bucket in which
the majority of the balls are cracked (i.e., a majority-cracked bucket). We follow

5 [BHR12a] also present a construction in the standard model which requires the
online stage communication to be the same size as the garbled circuit, but this does
not help us to reduce the online communication. In addition, [BHK13] presents a
construction in the standard model based on UCE-hash functions. However, the only
known proven construction of UCE-hash is in the ROM.
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the analysis of [Nor13, Theorem 4.4] and [Nor13, Theorem 6.2], while handling
different and slightly more general parameters.

3.1 The Fully-Cracked Bucket Game

Let Game 1 be the following game. P2 chooses three parameters p,N and B,

and sets M =
⌈
NB
p

⌉
and m = NB. A potentially adversarial P1 (who we will

denote by A) prepares M balls and sends them to P2. Then, party P2 chooses
at random a subset of the balls of size M −m; these balls are checked by P2 and
if one of them is cracked then P2 aborts. Index the balls that are not checked
by 1, . . . ,m. P2 chooses a random mapping function π : [m] → [N ] that places
the unchecked balls in buckets of size B. We define that Game1(A, N,B, p) = 1
if and only if P2 does not abort and there is a fully cracked bucket (note that

M =
⌈
NB
p

⌉
and m = NB and so are not separate parameters in the game). The

proof of the following theorem can be found in the full version of this paper:

Theorem 1. Let s be a statistical security parameter, and let B, N ∈ N and
p ∈ (0, 1) be as above. If

B ≥ s+ logN − log p

log(N −Np)− log p
1−p

, (1)

then for every adversary A it holds that Pr [Game1(A, N,B, p) = 1 ] < 2−s.

We remark that in the proof of Theorem 1 we show that the probability that
the adversary wins in the game is at most(

M−t
m−t

)(
M
m

) ·N ·
(
t

B

)(
m

B

)−1

(2)

and then proceed to show that this is less than 2−s as long as Eq. (1) holds, for
general parameters. However, for concrete sets of parameters we can compute
slightly tighter bounds or more optimized parameters. For example, Theorem 1
states that for s = 40, N = 1024 and p = 0.7, B should be 6. However, by
analytic calculation, for this set of parameters we actually have that the maximal
cheating probability is at most 2−51.07. If we take B = 5 we have that the
maximal cheating probability is at most 2−40.85. This means that instead of
using 1024×6

0.7 = 8778 balls, we can use only 1024×5
0.7 = 7315 balls for the same p

and N ! This “gap” is significant even for smaller values of N . For parameters
s = 40, N = 32 and p = 0.75, Theorem 1 requires B to be 10. The maximum
of Eq. (2) for these parameters is at most 2−44, which, again, is much smaller
than the 2−40 bound given by Theorem 1. In fact, if we take N = 32, p = 0.8
and B = 10, we get that the maximum of Eq. (2) is at most 2−40.1, without
increasing B as required if we had used Theorem 1 with p = 0.8. This reduces
the expected number of balls per bucket from 13.34 (for p = 0.75) to only 12.5
(for p = 0.8).
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We leave further optimizations and analysis of the above bounds for future
work, and recommend computing analytically the exact bounds based on the
above analysis whenever performance is critical. More examples of the parame-
ters obtained and discussion on recommended values appears in the full version
of the paper.

3.2 The Majority-Cracked Bucket Game

Let Game 2 be the same game as Game 1, but where A wins if P2 is left with a
bucket that consists of at least B

2 cracked balls. Define that Game2(A, N,B, p) =
1 if and only if P2 does not abort the game and there is a majority-cracked bucket.
(Recall that Game1(A, N,B, p) = 1 only if all of the balls in some bucket are
cracked.)

In the full version of this paper, we prove the following theorem:

Theorem 2. Let s be a security parameter, and let B, N ∈ N p ∈ (0, 1) be as
above. If

B ≥ 2s+ 2 logN − log(−1.25 logp)− 1

logN + log(−1.25 logp)− 2
,

then for every adversary A it holds that Pr [Game2(A, N,B, p) = 1 ] < 2−s.

In the full version, we discuss in depth what parameters this yields with
s = 40. Briefly, we can see that the effect of p on B and the total number of
balls is similar to those dependences in Game 1, although the concrete numbers
are different. For N = 1024 and p = 0.7, only 20 garbled circuits are needed
on average per execution (as opposed to 125 in the cut-and-choose of [Lin13])
and only 14 circuits are used in the online stage. For larger values of N , these
numbers decrease significantly, e.g. for N = 1048576 and p = 0.9 only 8.89
circuits are needed on average per execution, where only 8 are used in the online
stage. In addition, we obtain a significant improvement over the cut-and-choose
of [Lin13] also for small values of N , e.g., for N = 32 and p = 0.6, only 51.69
circuits are needed on average per execution (which is less than half than needed
in [Lin13]).
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Abstract. We extend the Tiny-OT two party protocol of Nielsen et
al (CRYPTO 2012) to the case of n parties in the dishonest majority
setting. This is done by presenting a novel way of transferring pairwise
authentications into global authentications. As a by product we obtain a
more efficient manner of producing globally authenticated shares, in the
random oracle model, which in turn leads to a more efficient two party
protocol than that of Nielsen et al.

1 Introduction

In recent years actively secure MPC has moved from a theoretical subject into
one which is becoming more practical. In the variants of multi-party computa-
tion which are based on secret sharing the major performance improvement has
come from the technique of authenticating the shared data and/or the shares
themselves using information theoretic message authentication codes (MACs).
This idea has been used in a number of works: In the case of two-party MPC for
binary circuits in [14], for n-party dishonest majority MPC for arithmetic cir-
cuits over a “largish” finite field [4,7], and for n-party dishonest majority MPC
over binary circuits [8]. All of these protocols are in the pre-processing model,
in which the parties first engage in a function and input independent offline
phase. The offline phase produces various pieces of data, often Beaver style [3]
“multiplication triples”, which are then consumed in the online phase when the
function is determined and evaluated.

In the case of the protocol of [14], called Tiny-OT in what follows, the authors
use the technique of applying information theoretic MACs to the oblivious trans-
fer (OT) based GMW protocol [10] in the two party setting. In this protocol the
offline phase consists of producing a set of pre-processed random OTs which have
been authenticated. The offline phase is then executed efficiently using a variant
of the OT extension protocol of [12]. For a detailed discussion on OT extension
see [2,12,14]. In this work we shall take OT extension as a given sub-procedure.

One can think of the Tiny-OT protocol as applying the authentication tech-
nique of [4] to the two party, binary circuit case, with a pre-processing which
is based on OT as opposed to semi-homomorphic encryption. For two party
protocols over binary circuits practical experiments show that Tiny-OT far out-
performs other protocols, such as those based on Yao’s garbled circuit technique.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 495–512, 2014.
c© International Association for Cryptologic Research 2014
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This is because of the performance of the offline phase of the Tiny-OT protocol.
Thus a natural question is to ask, whether one can extend the Tiny-OT protocol
to the n-party setting for binary circuits.

Results and Techniques. In this paper we mainly address ourselves to the
above question, i.e. how can we generalize the two-party protocol from [14] to
the n-party setting?

We first describe what are the key technical difficulties we need to overcome.
The Tiny-OT protocol at its heart has a method for authenticating random
bits via pairwise MACs, which itself is based on an efficient protocol for OT-
extension. In [14] this protocol is called aBit. Our aim is to use this efficient two-
party process as a black-box. Unfortunately, if we extend this procedure naively
to the three party case, we would obtain (for example) that parties P1 and P2

could execute the protocol so that P1 obtains a random bit and a MAC, whilst
P2 obtains a key for the MAC used to authenticate the random bit. However,
party P3 obtains no authentication on the random bit obtained by P1, nor does
it obtain any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown
global random key and where each party holds a share of this key. Then by
executing the pairwise aBit protocol, we are able to obtain a secret shared value,
as well as a shared MAC, by all n-parties. This resulting MAC is identical to the
MAC used in the SPDZ protocol from [6]. This allows us to obtain authenticated
random shares, and in addition to permit parties to enter their inputs into the
MPC protocol.

The online phase will then follow similarly to [6], if we can realize a protocol
to produce “multiplication triples”. In [14] one can obtain such triples by utiliz-
ing a complex method to produce authenticated random OTs and authenticated
random ANDs (called aOTs and aANDs)1. We notice that our method for ob-
taining authenticated bits also enables us to obtain a form of authenticated OTs
in a relatively trivial manner, and such authenticated OTs can be used directly
to implement a multiplication gate in the online phase.

Our contribution is twofold. First, we generalize the two-party Tiny-OT pro-
tocol to the n-party setting, using a novel technique for authentication of secret
shared bits, and completely new offline and online phases. Thus we are able to
dispense with the protocols to generate aOTs and aANDs from [14], obtaining
a simple and efficient online protocol. Second, and as a by product, we obtain
a more efficient protocol than the original Tiny-OT protocol, in the two party
setting when one measures efficiency in terms of the number of aBit’s needed
per multiplication gate. The security of our protocols are proven in the stan-
dard universal composability (UC) framework [5] against a malicious adversary
and static corruption of parties. The definitional properties of an MPC protocol
are implicit in this framework: output indistinguishability of the ideal and the

1 In fact the paper [14] does not produce such multiplication triples, but they follow
immediately from the presentation in the paper and would result in a more efficient
online phase than that described in [14].
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real process gives correctness, and the fact that any information gathered by a
real adversary is obtainable by an ideal adversary gives privacy. Although not
explicitely stated, we work with the random oracle model, as we need to im-
plement commitments to check the correctness of the MACs, more precisely, we
work with programmable random oracles. See the Appendix of [6] for details.

Related Work. For the case of n party protocols, where n > 2, there are
three main techniques using such MACs. In [4] each share of a given secret is
authenticated by pairwise MACs, i.e. if party Pi holds a share ai, then it will
also hold a MAC Mi,j for every j �= i, and party Pj will hold a key Ki,j . Then,
when the value ai is made public, party Pi also reveals the n − 1 MAC values,
that are then checked by other parties using their private keys Ki,j . Note that
each pair of parties holds a separate key/MAC for each share value. In [7] the
authors obtain a more efficient online protocol by replacing the MACs from [4]
with global MACs which authenticate the shared values a, as opposed to the
shares themselves. The authentication is also done with respect to a fixed global
MAC key (and not pairwise and data dependent). This method was improved
in [6], where it is shown how to verify these global MACs without revealing the
secret global key. In [8] the authors adapt the technique from [7] for the case
of small finite fields, in a way which allows one to authenticate multiple field
elements at the same time, without requiring multiple MACs. This is performed
using a novel application of ideas from coding theory, and results in a reduced
overhead for the online phase.

Future Directions. We end this introduction by describing two possible ex-
tensions to our work. Firstly, each bit in our protocol is authenticated by an
element in a finite field F2κ . Whilst such values are never transmitted in our
online phase due to our MACCheck protocol, they do provide an overhead in the
computation. In [8] the authors show how to reduce this overhead using coding
theory techniques. It would be interesting to see how such techniques could be
applied to our protocol, and what advantage if any they would bring.

Secondly, our protocol requires n · (n − 1)/2 executions of the aBit protocol
from [14]. Each pairwise invocation requires the execution of an OT-extension
protocol, and hence we require O(n2) such OT-channels. In [11], in the context
of traditional MPC protocols, the authors present techniques and situations in
which the number of OT-channels can be reduced toO(n). It would be interesting
to see how such techniques could be applied in practice to the protocol described
in this paper.

2 Notation

In this section we settle the notation used throughout the paper. We use κ to
denote the security parameter. We let negl(κ) denote some unspecified function
f(κ), such that f = o(κ−c) for every fixed constant c, saying that such a function
is negligible in κ. We say that a probability is overwhelming in κ if it is 1−negl(κ).
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We consider the sets {0, 1} and Fκ
2 endowed with the structure of the fields

F2 and F2κ , respectively. Let F = F2κ , we will denote elements in F with greek
letters and elements in F2 with roman letters.

We will additively secret share bits and elements in F, among a set of par-
ties P = {P1, . . . , Pn}, and sometimes abuse notation identifying subsets I ⊆
{1, . . . , n} with the subset of parties indexed by i ∈ I. We write 〈a〉I if a is
shared amongst the set I = {i1, . . . , it} with party Pij holding a value aij , such
that

∑
ij∈I aij = a. Also, if an element x ∈ F2 (resp. β ∈ F) is additively shared

among all parties we write 〈x〉 (resp. 〈β〉). We adopt the convention that if
a ∈ F2 (resp. β ∈ F) then the shares ai ∈ F2 (resp. βi ∈ F).

(Linear) arithmetic on the 〈·〉I sharings can be performed as follows. Given
two sharings 〈x〉Ix = {xij}ij∈Ix and 〈y〉Iy = {yij}ij∈Iy we can compute the
following linear operations

a · 〈x〉Ix = {a · xij }ij∈Ix ,

a+ 〈x〉Ix = {a+ xi1} ∪ {xij}ij∈Ix\{i1},

〈x〉Ix + 〈y〉Iy = 〈x+ y〉Ix∪Iy

= {xij}ij∈Ix\Iy
∪ {yij}ij∈Iy\Ix

∪ {xij + yij}ij∈Ix∩Iy .

Our protocols will make use of pseudo-random functions, which we will denote
by PRFX,t

s (·) where for a key s and inputm ∈ {0, 1}∗ the pseudo-random function
is defined by PRFX,t

s (m) ∈ Xt, where X is some set and t is a non-negative
integer.

Authentication of Secret Shared Values. As described in the introduction
the literature gives two ways to authenticate a secret globally held by a system
of parties, one is to authenticate the shares of each party, as in [4], the other
is to authenticate the secret itself, as in [7]. In addition we can also have au-
thentication in a pairwise manner, as in [4,14], or in a global manner, as in [7].
Both combinations of these variants can be applied, but each implies important
practical differences, e.g., the total amount of data each party needs to store and
how checking of the MACs is performed. In this work we will use a combination
of different techniques, indeed the main technical trick is a method to pass from
the technique used in [14] to the technique used in [7].

Our main technique for authentication of secret shared bits is applied by plac-
ing an information theoretic tag (MAC) on the shared bit x. The authenticating
key is a random line in F, and the MAC on x is its corresponding line point,
thus, the linear equation μδ(x) = νδ(x)+x ·δ holds, for some μδ(x), νδ(x), δ ∈ F.
We will use these lines in various operations2, for various values of δ. In partic-
ular, there will be a special value of δ, which we denote by α and assume to be
〈α〉P shared, which represents the global key for our online MPC protocol. This
will be the same key for every bit that needs to be authenticated. It will turn

2 For example, we will also use lines to generate OT-tuples, i.e. quadruples of authen-
ticated bits which satisfy the algebraic equation for a random OT.
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out that for the key α we always have να(x) = 0. By abuse of notation we will
sometimes refer to a general δ also as a global key, and then the corresponding
νδ(x), is called the local key.

Distinguishing between parties, say I, that can reconstruct bits (together with
the line point), and those parties, say J , that can reconstruct the line gives a
natural generalization of both ways to authenticate, and it also allows to move
easily from one to another. We write [x]Iδ,J if there exist μδ(x), νδ(x) ∈ F such
that:

μδ(x) = νδ(x) + x · δ,
where we have that x and μδ(x) are 〈·〉I shared, and νδ(x) and δ are 〈·〉J shared,
i.e. there are values xi, μi, and νj, δj , such that

x =
∑
i∈I

xi, μδ(x) =
∑
i∈I

μi, νδ(x) =
∑
j∈J

νj , δ =
∑
j∈J

δj .

Notice that μδ(x) and νδ(x) depend on δ and x: we can fix δ and so obtain
key-consistent representations of bits, or we can fix x and obtain different key-
dependant representations for the same bit x. To ease the reading, we drop the
sub-index J if J = P , and, also, the dependence on δ and x when it is clear from
the context. We note that in the case of Ix = Jx then we can assume νj = 0.

When we take the fixed global key α and we have Ix = Jx = P , we simplify
notation and write �x� = [x]Pα,P . By our comment above we can, in this situation,

set νj = 0 3, this means that a �x� sharing is given by two sharings
(
〈x〉P , 〈μ〉P

)
.

Notice that the �·�-representation of a bit x implies that x is authenticated with
the global key α and that it is 〈·〉-shared, i.e. its value is actually unknown to
the parties.

This notation does not quite align with the previous secret sharing schemes
used in the literature, but it is useful for our purposes. For example, with this
notation the MAC scheme of [4] is one where each data element x is shared via
[xi]

i
αj ,j

sharings. Thus the data is shared via a 〈x〉 sharing and the authenti-

cation is performed via [xi]
i
αj ,j sharings, i.e. we are using two sharing schemes

simultaneously. In [7] the data is shared via our �x� notation, except that the
MAC key value ν is set equal to ν = ν′/α, where ν′ being a public value, as
opposed to a shared value. Our �x� sharing is however identical to that used in
[6], bar the differences in the underlying finite fields.

Looking ahead we say that a bit �x� is partially opened if 〈x〉 is opened, i.e.
the parties reveal the shares of x, but not the shares of the MAC value μα(x).

Arithmetic on �x� Shared Values. Given two representations [x]Ix

δ,Jx
=(

〈x〉Ix , 〈μδ(x)〉Ix , 〈νδ(x)〉Jx
)

and [y]
Iy

δ,Jy
=
(
〈y〉Iy , 〈μδ(y)〉Iy , 〈νδ(y)〉Jy

)
, under

same the δ, the parties can locally compute [x + y]
Ix∪Iy

δ,Jx∪Jy
as

(
〈x〉Ix + 〈y〉Iy ,

〈μδ(x)〉Ix + 〈μδ(y)〉Iy , 〈νδ(x)〉Jx + 〈νδ(y)〉Jy
)
using the arithmetic on 〈·〉I shar-

ings above.

3 Otherwise one can subtract νj from μj , before setting νj to zero.
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Let �x� =
(
〈x〉, 〈μ(x)〉

)
and �y� =

(
〈y〉, 〈μ(y)〉

)
be two different authenticated

bits. Since our sharings are linear, as well as the MACs, it is easy to see that the
parties can locally perform linear operations:

�x� + �y� =
(
〈x〉+ 〈y〉, 〈μ(x)〉 + 〈μ(y)〉

)
= �x+ y�

a · �x� =
(
a · 〈x〉, a · 〈μ(x)〉

)
= �a · x�,

a+ �x� =
(
a+ 〈x〉, 〈μ(a + x)〉

)
= �a+ x�.

where 〈μ(a+ x)〉 is the sharing obtained by each party i ∈ P holding the value
αi · a+ μi(x).

This means that the only remaining question to enable MPC on �·�-shared
values is how to perform multiplication and how to generate the �·�-shared values
in the first place. Note, that a party Pi that wishes to enter a value into the MPC
computation is wanting to obtain a [x]iα,P sharing of its input value x, and that
this is a �x�-representation if we set xi = x and xj = 0 for j �= i.

3 MPC Protocol for Binary Circuit

We start presenting a high level view of the protocols that allow us to perform
multi-party computation for binary circuits. We assume synchronous communica-
tion and authentic point-to-point channels. Our protocol is in the pre-processing
model in which we allow a function (and input) independent pre-processing, or
offline, phase which produces correlated randomness. This enables a lightweight
online phase, that does not need public-key machinery.

Online Eval.
Sec. 5

Preprocess
Sec 6

Thm. 1

Bootstrap
Sec. 4

Thm. 2

FaBit
Lemma 1 FOT

[14]

FComm , PRFX,t
s

Fig. 1. Overview of Protocols Enabling
MPC

In the following sections we will de-
scribe a protocol, ΠOnline, implement-
ing the actual function evaluation in
the (FComm,FPrep)-hybrid model; a
protocol, ΠPrep, implementing the of-
fline phase in the (FComm,FBootstrap)-
hybrid model; and a novel way to au-
thenticate bits to more than two par-
ties, which takes as starting point the
aBit command of [14], and which we
model with the FBootstrap functional-
ity.

The online phase implements the
standard functionality FOnline

It is based on the �·�-representation
of bits described in Section 2, and it
is very similar to the online phase of
other MPC protocols [6,7,8,14]. We
compute a function represented as a
binary circuit, where private inputs are additively shared among the parties, and
correctness is guaranteed by using additive secret sharings of linear MACs with
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Functionality FOnline

Initialize: On input (init) the functionality activates and waits for an input from the environ-
ment. Then it does the following: if it receives Abort, it waits for the environment to input
a set of corrupted parties, outputs it to the parties, and aborts; otherwise it continues.

Input: On input (input , Pi, varid, x) from Pi and (input , Pi, varid , ?) from all other parties,
with varid a fresh identifier, the functionality stores (varid , x).

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present
in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores
(varid3, x+ y).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y)
and stores (varid3, x · y).

Output: On input (output, varid) from all honest parties (if varid is present in memory), the
functionality retrieves (varid , y) and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then y is output to all players.
Otherwise it outputs ∅ is output to all players.

Fig. 2. Secure Function Evaluation

Protocol ΠMACCheck

Usage: The parties have a set of �ai�, sharings and public bits bi, for i = 1, . . . , t, and they
wish to check that ai = bi, i.e. they want to check whether the public values are consistent
with the shared MACs held by the parties.
As input the system has sharings

(
〈α〉, {bi, 〈ai〉, 〈μ(ai)〉}t

i=1

)
. If the MAC values are correct

then we have that μ(ai) = bi · α, for all i.
MACCheck({b1, . . . , bt}):

1. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j.
3. Set s = s1 + · · · + sn.
4. Parties sample a random vector χ = PRFF,t

s (0) ∈ F
t; note all parties obtain the same

vector as they have agreed on the seed s.
5. Each party computes the public value b =

∑t
i=1 χi · bi ∈ F.

6. The parties locally compute the sharings 〈μ(a)〉 = χ1 · 〈μ(a1)〉+ · · ·+χt · 〈μ(at)〉 and
〈σ〉 = 〈μ(a)〉 − b · 〈α〉.

7. Party i asks FComm to broadcast his share τ ′
i = Comm(σi).

8. Every party calls FComm with Open(τ ′
i), and all parties obtain σj for all j.

9. If σ1 + · · · + σn �= 0, the parties output ∅ and abort, otherwise they accept all bi as
valid authenticated bits.

Protocol 3. Method to Check MACs on Partially Opened Values

global secret key α. For simplicity we assume one single input for each party and
one public output. The online protocol, presented in Section 5, uses the linearity
of the �·�-sharings to perform additions and scalar multiplications locally. For
general multiplications we need utilize data produced during the offline phase,
in particular the output of the GaOT (Global authenticated OT) command of
Section 6. Refer to Figure 4 for a complete description of the functionality for
preprocessing data. The aforementioned command GaOT builds upon ΠBootstrap

protocol, described in Section 4, to generate random authenticated OTs and, as
we noted above, we skip the less efficient procedures of [14].
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The Functionality FPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality samples random αi for each
i �∈ A. It waits for the environment to input corrupt shares {αj}j∈A If any j ∈ A outputs
abort, then the functionality aborts and returns the set of j ∈ A which returned abort.
Otherwise the functionality sets α = α1 + · · · + αn, and outputs αk to honest Pk.

Share: On input (i, x, Share) from party Pi, and (i, Share) from all other parties. The function-
ality produces an authentication �x� = (〈x〉, 〈μ〉). It sets xj = 0 if j �= i. Also, the MAC
might be shifted by a value ΔH , i.e. μ = x ·α+ΔH , where ΔH is an F2-linear combination
of {αk}k/∈A not known to the environment. It proceeds as follows:

- Set μ = x · α. If i ∈ A, the environment specifies x.
- Wait for the environment to specify MAC shares {μj}j∈A, and generate 〈μ〉 where

the portion of honest shares is consistent with the adversarial shares, but otherwise
random.

- Set xk = 0 if k �= i, k �∈ A. If the environment inputs shift-Pk set μk = μk + αk.
- Output {xk, μk} to honest Pk

GaOT: On input (GaOT) from the parties, the functionality waits for the environment to input
“Abort” or “Continue”. If it is told to abort, it outputs the special symbol ∅ to all parties.
Otherwise it samples three random bits e, x0, x1, and sets z = xe. Then, for every bit
y ∈ {e, z, x0, x1} the functionality produces an authentication �y� = (〈y〉, 〈μ(y)〉), but let
the environment to specify shares for corrupt Pj . It proceeds as follows:

- Set μ(y) = y · α.
- Wait for the environment to input bit shares {yj}j∈A, and MAC shares {μj}j∈A,

and creates sharings 〈y〉, 〈μ〉 where the portion of honest shares is consistent with
adversarial shares.

- Output {yk, μk} to honest Pk.

Fig. 4. Ideal Preprocessing

Notice that, as in [6,7,8,14], during the online computation of the circuit we
do not know if we are working with the correct values, since we do not check
the MACs of partially opened values during the computation. This check is
postponed to the end of the protocol, where we call the MACCheck procedure as
in [6] (see Protocol 3). Note this procedure enables the checking of multiple sets
of values partially opened during the computation without revealing the global
secret key α, thus our MPC protocol can implement reactive functionalities.

The MAC checking protocol is called in both the offline and the online phases,
it requires access to an ideal functionality for commitments FComm in the random
oracle model (see full version), and it is not intended to implement any func-
tionality. Also, note that the algebraic correctness of the output of the GaOT
command in the offline phase is checked in the offline phase and not in the online
phase.

4 From Tiny-OT aBit’s to �·�-Sharings
At the heart of our MPC protocol is a method to translate from the two party
aBits produced by the offline phase of the Tiny-OT protocol in [14], to the
�·�-sharings under some global shared key α from Section 2. We note that the
protocol to produce aBit’s is the only sub-protocol from [14] which we use in
this paper, and thus the more complex protocols in [14] for producing aOT’s and
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The Functionality FaBit

Authenticated Bit(Pi, Pj): This functionality selects a random δj ∈ F and a random bit r,

and returns a sharing [r]iδj ,j .

- On input (aBit, i, j) from honest Pi and Pj , the functionality samples a random δj and

a random sharing [r]iδj,j
= (r, μi, νj), such that μi = νj +r ·δj. It then outputs {r, μi}

to Pi and {δj , νj} to Pj .
- If Pi is corrupted, the functionality waits for the environment to input the pair {r, μi}

and it sets νj = μi + r · δj for some randomly chosen δj , and {δj , νj} is returned to
party Pj .

- If Pj is corrupted, the functionality waits for the environment to input the pair {δj , νj},
r is selected at random and μi is set to be νj − r · δj . The pair {r, μi} is returned to
party Pi.

Fig. 5. Two-party Bit Authentication [14]

aAND’s we discard. We first deal with the underlying two party sub-protocols,
and then we use these to define our multi-party protocols.

4.1 Two-Party [·]-Representations

Thus throughout we assume access to an ideal functionality FaBit, given in Fig-
ure 5, that produces a substantially unbounded number of (oblivious) authenti-
cated random bits for two parties, under some randomly chosen key δj known by
one of the parties. This functionality can be implemented assuming a function-
ality FOT and using OT-extension techniques as in [14]. For ease of exposition
we present the functionality as returning single bits for single requests. In prac-
tice the functionality is implemented via OT-extension and so one is able to
obtain many aBits on each invocation of the functionality, for a given value of
δj . Adapting our protocols to deal with multiple aBit production for a single
random fixed δj chosen by the functionality is left to the reader4.

Using the protocol Π2-Share, described in Protocol 6, we can obtain a “two-
party” representation [r]iδj ,j of a random bit known to Pi, under the key chosen
by Pj . This extension is needed because we need to adapt the aBit command
to the multi-party case. For example, if two parties, Pi and Pj , run the com-
mand (aBit, i, j), they obtain a random [r]iδ′j ,j

, with respect to δ′j ; when Pj calls

(aBit, k, j) with a different party Pk, k �= j, then they obtain a random [s]k
δ̃j ,j

,

with a different δ̃j . Thus allowing the parties to select their own values of δj
means that we can obtain key-consistent [·]-representations, in which each party
Pj uses the same fixed δj . The security of the protocol Π2-Share follows from the
security of the original aBit in [14]: intuitively the changes required to obtain a

4 Note, that in this situation we (say) produce 1, 000, 000 aBits per invocation with a
fixed random value of δj , then on the next invocation we obtain another 1, 000, 000
aBits but with a new random δj value. This is not explicit in the ideal functionality
description of aBit presented in [14], but is implied by their protocol.
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The Subprotocol Π2-Share

2Share(i, j; δj): On input (2-Share, i, j, δj), where Pj has δj ∈ F as input, this command

produces a [r]iδj,j sharing of a random bit r.

1. Pi and Pj call FaBit on input (aBit, i, j): The box samples a random δ′j and then
produces

[r]iδ′
j
,j = (r, μ′

i, νj),

such that μ′
i = νj + r · δ′j , and outputs {r, μ′

i} to Pi and {δ′j , νj} to Pj .

2. Pj computes σj = δj + δ′j and sends σj to party Pi.

3. Pi sets μi = μ′
i + r · σj = νj + r · δj .

Protocol 6. Switching to Fixed δ-shares

The Functionality FBootstrap

Let A be the indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality activates and waits for the
environment to input a set of shares {δj}j∈A. It samples random δ ∈ F and prepares
sharing 〈δ〉, where the portions of honest shares are consistent with the adversarial shares,
but otherwise random. If any j ∈ A outputs abort, then the functionality aborts and returns
the set of j ∈ A which returned abort, otherwise it continues.

Share: On input (i, x, Share) from party Pi, and (i, Share) from all other parties. The function-

ality produces a representation [x]iδ = (〈x〉i, 〈μ〉i, 〈ν〉P), except that ν might be shifted by
a value ΔH , i.e. μ = x · δ + ν + ΔH , where ΔH is an F2-linear combination of {δk}k/∈A,
which is not known to the environment. It proceeds as follows:

- It samples random μ ∈ F. If i ∈ A waits for the environment to input {μ, x}.
- The functionality sets ν = x · δ + μ.
- The functionality waits for the environment to input shares {νj}j∈A , and prepares

sharing 〈ν〉P consistent with the adversarial shares. The portion of honest shares are
otherwise random.

- If the environment inputs shift-Pk, the functionality sets νk = νk + δk, k �∈ A.
- It outputs {νk, δk} to honest Pk.

Fig. 7. Ideal Generation of [·]iδ,P -representations

consistent [·]-representation do not compromise security, because δj is one-time-
padded with the random δ′j produced by FaBit. See [13] for details. Notice that
the command 2-Share takes δj as the input of Pj . In particular the value δj may
not be used to authenticate bits. Thus we could use the protocol Π2-Share to ob-
tain a sharing of the scalar product r ·δj , where Pi obtains the random bit r, and
the other party decides what field element δj ∈ F gets multiplied in. Then party
Pi obtains the result μi masked by a one-time pad value νj known only to Pj .
This application of the subprotocol Π2-Share is going to be crucial in our method
to obtain authenticated OT’s in our pre-processing phase. As a consequence we
do not always see δj as an authentication key.

4.2 Multiparty [·]-Representation

Here we show how to generalize the Π2-Share protocol in order to obtain an n-
party representation [x]iδ of a bit x chosen by Pi. This is what the functionality
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The Protocol ΠBootstrap

Initialize: Each party Pi samples a random δi. Define δ = δ1 + · · · + δn.
Share: On input (i, x, Share) from Pi and (i, Share) from all other parties, do:

1. For each j �= i, call Π2-Share with (2-Share, i, j, δj). Party Pi obtains {ri,j , μi,j}j �=i

whilst party Pj obtains νi,j , such that μi,j = νi,j + ri,j · δj .
2. Party Pi samples ε at random and sets μi = ε +

∑
j �=i μi,j and νi = ε + x · δi.

3. Party Pi sends dj = x+ ri,j to party Pj for all j �= i.
4. For j �= i, Pj sets νj = νi,j + dj · δj .
5. Output {μi, νi} to Pi and {νj} to party Pj , for j �= i. The system now has [x]iδ.

Protocol 8. Transforming Two-party Representations onto [·]iδ,P -representations

FBootstrap models in Figure 7. It bootstraps from a two party authentication to
a multi-party authentication of the shared bit. As before for Π2-Share, we can see
the outputs of FBootstrap as the shares of scalar products x ·δ, where one party Pi

chooses the scalar (bit) x, but now the field element δ is unknown and additively
shared among all the parties. An interesting feature of this functionality is that
the adversary can only influence honest outputs in a small way, that we model
with the shift-Pk flag. Additionally, we can not prevent corrupt parties from out-
putting what they wish, this is reflected on the fact that the functionality leaves
their outputs undefined. The main difference between this functionality and the
equivalent in the SPDZ protocol [7], is that in [7] the functionality takes as in-
put an offset known to the adversary who adjusts his shares to obtain an invalid
MAC value by this linear amount. We do not model this in our functionality,
instead we allow the adversary to choose his shares arbitrarily (which obtains
the same effect). However, in our protocol the adversary can also introduce an
unknown (to the adversary) error into the MAC values. In particular the adver-
sary can decide whether to shift honest shares, but he cannot choose the shifting,
namely, an element on the F2-span of secrets δk of honest parties Pk. Later, we
manage to determine whether there are any errors (both adversarially known
and unknown ones) using an information-theoretic MACCheck procedure that
we borrow from [6]. See full version for details.

The protocolΠBootstrap, described in Protocol 8, realizes the ideal functionality
FBootstrap in a hybrid model in which we are given access to FaBit. It permits to
obtain [x]iδ and it is implemented by sending to each Pj , j �= i, a mask of x using
the random bits given by 2-Share(i, j; δj) as paddings, and then allowing Pj to
adjust his share to the right value. In total the protocol needs to execute n− 1
aBit per scalar product.

Lemma 1. In theFaBit-hybrid model, the protocolΠBootstrap implementsFBootstrap

with perfect security against any static adversary corrupting up to n− 1 parties.

Proof. See full version.

5 The Online Phase

In this section we present the protocol ΠOnline, described in Protocol 9, which
implements the online functionality in the (FComm,FPrep)-hybrid model. The
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Protocol ΠOnline

Initialize: The parties call Init on the FPrep functionality to get the shares αi of the global
MAC key α. If FPrep aborts outputting a set of corrupted parties, then the protocol returns
this subset of A. Otherwise the operations specified below are performed according to the
circuit.

Input: To share his input bit x, Pi calls FPrep with input (i, x, Share) and party Pj for i �= j
calls FPrep with input (i, Share). The parties obtain �x� where the x-share of Pj is set to
zero if j �= i.

Add: On input (�a�, �b�), the parties locally compute �a + b� = �a� + �b�.
Multiply: On input (�a�, �b�), the parties call FPrep on input (GaOT), obtaining a random

GaOT tuple {�e�, �z�, �x0�, �x1�}. The parties then perform:
1. The parties locally compute �f� = �b� + �e� and �g� = �x0� + �x1� + �a�.
2. The shares �f� and �g� are partially opened.
3. The parties locally compute

�c� = �x0� + f · �a� + g · �e� + �z�.

Output: This procedure is entered once the parties have finished the circuit evaluation, but
still the final output �y� has not been opened.
1. The parties call the protocol ΠMACCheck on input of all the partially opened values so far.

If it fails, they output ∅ and abort. ∅ represents the fact that the corrupted parties
remain undetected in this case.

2. The parties partially open �y� and call ΠMACCheck on input y to verify its MAC. If the
check fails, they output ∅ and abort, otherwise they accept y as a valid output.

Protocol 9. Secure Function Evaluation in the FComm,FPrep-hybrid Model

basic idea behind our online phase is to use the set of GaOTs output in the offline
phase to evaluate each multiplication gate. To see how this is done, consider that
we want to multiply two authenticated bits �a�, �b�. The parties take a GaOT
tuple {�e�, �z�, �x0�, �x1�} off the pre-computed list. Recall we have for such
tuples z = xe. It is then relatively straightforward to compute authenticated
shares of �c�, where c = a · b, as follows: First, the parties partially open �f� =
�b�+�e� and �g� = �x0�+�x1�+�a�, and then set �c� = �x0�+f ·�a�+g ·�e�+�z�.
To see why this is correct, note that since, xe + x0 + e · (x0 + x1) = 0, we have
c = x0 + (b+ e) · a+ (x0 + x1 + a) · e+ z = a · b.

Theorem 1. In the (FComm,FPrep)-hybrid model, the protocol ΠOnline securely
implements FOnline against any static adversary corrupting up to n − 1 parties,
assuming protocol MACCheck utilizes a secure pseudo-random function PRFF,t

s (·).

Proof. See full version.

6 The Offline Phase

Here we present our offline protocol ΠPrep (Protocol 10). The key part of this
protocol is the GaOT command. In [14] the authors give a two-party protocol
to enable one party, say A, to obtain two authenticated bits e, z, and the other
party, say B, to obtain two authenticated secret bits x0, x1, such that z = xe

and e, x0 and x1 are chosen at random. We generalize such a procedure to many
parties and we obtain sharings �e�, �z�, �x0�, �x1�, subject to z = xe. Notice that
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the values e, z, x0, x1 are not known so they can be used in the online phase to
implement multiplication gates.

The idea behind the GaOT command it is to exploit the relation between
“affine functions” and “selector functions”, in which a bit e selects one of two
elements (χ0, χ1) in F. This connection was already noted in [1] on the context
of garbling arithmetic circuits via randomized encodings. Thus, on one hand we
have authentications, that are essentially evaluations of affine functions, and on
the other we have OT quadruples, that can be seen as selectors. Seeing both as
the same object means that a way to authenticate bits also gives us a way to
generate OTs, and the other way around. The procedure is broken into three
steps, Share OT, Authenticate OT and Sacrifice OT. We examine these
three stages in turn. To produce bit quadruples (e, z, x0, x1), such that z = xe,
the parties will use a (secret) affine line in F parametrized by (ϑ, η). Note that
with our functionality FBootstrap we get [ei]

i
η, where ei is known to Pi, and an

additive sharing 〈η〉 is held by the system. We denote this concrete execution of
the functionality as FBootstrap(η), since we shall use fresh copies of FBootstrap to
generate more OT quadruples and also for authentication purposes. Note, that
η is not an input to the functionality but a shared random value produced when
initialising the functionality. Now, performing n independent queries of Share
command on this copy FBootstrap(η), the parties can generate

[e]Pη = [e1]
1
η + · · ·+ [en]

n
η . (1)

Thus, the system obtains two (secret) elements 〈e〉, 〈ζ〉, such that ζ = ϑ+e·η, for
line (〈ϑ〉, 〈η〉). Define χ0 = ϑ and χ1 = ϑ+ η, so it holds ζ = χe. The quadruple
(e, z, x0, x1) is then given by the least significant bits of the corresponding field
elements (e, ζ, χ0, χ1). This conclude the Share OT step.

To add MACs to each bit of the quadruple that the parties just generated,
the protocol uses the FBootstrap(α) instance to obtain a sharing 〈α〉 of the global
key. Each party can now authenticate his shares of (e, z, x0, x1) querying Share
command and obtaining �e�, �z�, �x0�, �x1�. We emphasize that the same α is
used to authenticate all OT quadruples, thus FBootstrap(α) is fixed once and for
all.

After theAuthenticate OT step the parties have sharings �e�, �z�, �x0�, �x1�,
which could suffer from two possible errors induced by the corrupted parties:
Firstly the algebraic equation z = xe may not hold, and second the MAC val-
ues may be inconsistent. For the latter problem we will check all the partially
opened values using the MACCheck procedure at the end of the offline phase. For
the former case we use the Sacrifice OT step. We use the same methodology
as in [4,7,6], i.e. one quadruple is checked by “sacrificing” another quadruple.
The idea involving sacrificing can be seen as follows: We associate to each pair of
quadruples a polynomial S(t) over the field of secrets (F2 in our case), which is
the zero polynomial only if both quadruples are correct. Thus, proving correct-
ness of quadruples is equivalent to proving that S(t) is the zero polynomial. This
is done by securely evaluating S(t) on a random public challenge bit t via a com-
bination of addition gates and two openings (plus one extra opening to check the
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The Protocol ΠPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties and adversary, the system runs a copy of FBootstrap

which is denoted FBootstrap(α). Then it calls Init on FBootstrap(α). If FBootstrap(α) aborts, out-
putting a set of corrupted parties, then the protocol returns this subset of A and aborts.
Otherwise, the values δi returned by FBootstrap(α) are labelled as αi. Set α = α1 + · · ·+αn,
and output αi to honest parties Pi.

Share: On input (i, x, Share) from party i and (j, Share) from all parties j �= i. The protocol

calls Share command of FBootstrap(α) to obtain [x]iα, given by {〈μ〉i, 〈ν〉P}. Then, for j �= i,
party Pj sets his share of x to be zero, and μj(x) = νj . Party Pi sets μi(x) = μ+ νi. Thus,
the parties obtain �x�.

GaOT: On input (GaOT) from all Pi, execute the following sub-procedures:
Share OT. This generates sharings (〈e〉, 〈z〉, 〈x0〉, 〈x1〉) such that x0, x1 and e are random

bits. If all parties are honest then it holds z = xe.
1. The system runs a fresh copy of FBootstrap on Init command getting an additive

sharing 〈η〉 for some random η ∈ F. Denote this copy as FBootstrap(η).
2. Each party samples a random bit ei. Define e = e1 + · · · + en.
3. For each i = 1, . . . , n, the system calls FBootstrap(η) on input (i, ei, Share) from

party Pi and input (i, Share) from any other Pj , to obtain [ei]
i
η . That is, (in

an honest execution) Pi gets ζi ∈ F, and the parties gets an additive sharing
〈ϑi〉 of some unknown ϑi ∈ F, such that ζi = ϑi + ei · η. The parties compute

[e]Pη = [e1]
1
η + · · ·+ [en]nη .

4. At this point of the protocol, the system holds sharings 〈e〉, 〈ζ〉, 〈ϑ〉, 〈η〉, so it
can derive 〈χ0〉 = 〈ϑ〉, and 〈χ1〉 = 〈ϑ〉+ 〈η〉. Note that (for an honest execution)
ζ = ϑ + e · η, or in other words ζ = χe.

5. Each party Pi sets zi, x0,i, x1,i to be the least significant bits of ζi, χ0,i, χ1,i

respectively, so as to obtain sharings 〈z〉, 〈x0〉 and 〈x1〉.
Authenticate OT. This step produces authentications on the bits previously computed.

For every bit y ∈ {e, z, x0, x1} it does the following:

6. Call FBootstrap(α) on input (i, yi, Share) from Pi and (j, Share) for party Pj to obtain

[yi]
i
α.

7. Compute �y� by forming
∑

i∈P [yi]
i
α, and then computing μ(y) − ν(y).

Sacrifice OT. This step checks that the authenticated OT-quadruples are correct. Let
�e�, �z�, �x0�, �x1� be the quadruple to check, and κ a security parameter:
8. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
9. Every Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s =

s1 + · · · + sn.
10. Parties sample a random vector t = PRFF2,κ

s (0) ∈ F
κ
2 . Note all parties obtain the

same vector as they have agreed on the seed s.
11. For i = 1, . . . , κ, repeat the following:

- Take one fresh quadruple �ei�, �zi�, �x0,i�, �x1,i�, and partially open the val-
ues pi = ti · (�x0� + �x1�) + �x0,i� + �x1,i� and qi = �e� + �ei�.

- Locally evaluate ci such that �ci� = ti · (�z� + �x0�) + �zi� + �x0,i� + pi ·
�e�+ qi · (�x0,i�+ �x1,i�), and check it partially opens to zero. If it does not,
then abort.

12. The parties call ΠMACCheck on the values partially opened in step 11.
13. If no abort occurs, output �e�, �z�, �x0�, �x1� as a valid quadruple.

Protocol 10. Preprocessing: Input Sharing and Creation of OT Quadruples in the
FBootstrap-hybrid Model

evaluation), and then checking that the result of the evaluation partially opens
to zero. In this way we would waste κ quadruples to check one quadruple, to
get security of 2−κ; we refer the reader to Section 7 for a more efficient sacrifice
procedure.

Theorem 2. Let κ be the security parameter and t ∈ N. In the (FComm,FBootstrap)-
hybrid model, the protocol ΠPrep securely implements FPrep with statistical security
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on κ against any static adversary corrupting up to n − 1 parties, assuming the
existence of PRFX,m

s (·) with domain X = F (resp. F2) and m = t (resp. κ).

Proof. See full version.

7 Batching the Sacrifice Step

This technique (an adaptation of a technique to be found originally in [15,6,9])
permits to check a batch of OT quadruples for algebraic correctness using a
smaller number of “sacrificed” quadruples than the basic version we described
in Section 6. Recall, the idea is to check that an authenticated OT-quadruple
GaOTi = (�ei�, �zi�, �xi�, �yi�) verifies the “multiplicative” relation mi = zi +
xi + ei · (xi + yi) = 0.

At a high level, Protocol 11 essentially consists of two different phases. Let
(GaOT1, . . . ,GaOTN ) be a set of OT quadruples, in the first phase a fixed portion
of these GaOTs are partially opened as in a classical cut-and-choose step. If any
of the opened OT quadruples does not satisfy the multiplicative relation the
protocol aborts. Otherwise it runs the second phase: the remaining GaOTs are
permuted and uniformly distributed into t buckets of size T . Then, for each of
the buckets, the protocol selects a BucketHead, i.e. the first (in the lex order)
GaOT in the bucket (as in [9]), and uses the remaining GaOTs in the same bucket
to check that BucketHead correctly satisfies the multiplicative relation.

We call CheckGaOTs the GaOTs used to check the BucketHead, and we denote
them by CheckGaOT = (�e�, �z�, �h�, �g�), with z = h+ e(h + g).

If any BucketHead does not pass the test, then we know that some parties
are corrupted and the protocol aborts. If all the checks pass then we obtain
t algebraically correct BucketHeads, i.e. t OT quadruples, with overwhelming
probability.

Theorem 3. For T ≥ κ+log2(t)
log2(t)

the previous protocol provide t correct GaOTs

with error probability 2−κ.

Proof. See full version.

We can replace the Sacrifice OT step in ΠPrep with the above Bucket-Cut-
and-Choose Protocol and, for an appropriate choice of the parameters, Theorem
2 (and relative proof) still holds.

Notice, how the value h has little effect on the final probability (we suppressed
the effect in the statement of the Theorem since it is so low). This means we
can take h = 1 to obtain the most efficient protocol, which means the amount
of cut-and-choose performed is relatively low.

To measure the efficiency of this protocol we can consider the ratio r =
(T+h)· t

t = T +h: it measures the number of GaOTs that we need to produce one
actively secure OT quadruple. Setting h = 1 and an error probability of 2−40,
we obtain Table 1 for different values of t = 210, 214, 220 .
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Bucket Cut-and-Choose Protocol

Input : Let N = (T + h) · t be the number of input GaOTs and T the size of the buckets,
with T ≥ 2. We let 1 ≤ h ≤ T denote an additional parameter controlling how much
cut-and-choose we perform.

Phase-I Cut-And-Choose :
1. Every Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s =

s1 + · · · + sn.
3. Using a PRFF2,N

s , parties sample a random vector v ∈ F
N
2 , such that the number of its

non-zero entries is h · t (i.e. the Hamming weight of v is h · t).
4. Let J be the set of indices j such that vj �= 0, and, ∀j ∈ J , the parties partially open

GaOTj and check that it satisfies the algebraic relation zj +xj = ej · (xj +yj). If there
exists an algebraically incorrect GaOTj quadruple, then the protocol aborts.

Phase-II Bucket-Sacrifice :
5. Permute the unopened GaOTs according to a random permutation π on T · t indices,

again using a PRFs. Then renumber the permuted unopened GaOTj , such that j =

1, . . . , T · t, and, for i = 1, . . . , t, create the ith bucket as {GaOTj}iT
j=iT−T+1.

6. Parties compute a BucketHead(i) for each i = 1, . . . , t, i.e. return the first (in the lex
order) element in the ith bucket.

7. For i = 1, . . . , t, parties check that BucketHead(i) = GaOTi = (�ei�, �zi�, �xi�, �yi�) is
correct using the other GaOTs in the bucket: For j = iT − T + 2, . . . , iT do

– Set CheckGaOTj = GaOTj = (�ej�, �zj�, �hj�, �gj�).
– Parties open 〈ei + ej〉 and 〈xi + yi + hj + gj〉.
– Parties locally compute

�ci,j� = �zi + xi� + �zj + hj� + (ei + ej)�hj + gj� + (xi + yi + hj + gj)�ei�,

and check it partially opens to zero.
– If all checks go through output GaOTi as valid quadruples; otherwise abort.

8. The parties execute the protocol ΠMACCheck to check all partially opened values.

Protocol 11. Bucket Cut-and-Choose Protocol

Table 1. Number of GaOTs we need to check t quadruples

r T = r − h t 40+log2(t)
log2(t)

4 3 220 3
5 4 214 3.85
6 5 210 5

8 Efficiency Analysis

Here we briefly examine the cost of a multiplication in terms of the number of
aBits required in the case of two parties. We use the Bucket-Cut-and-Choose
Protocol described in Section 7. We notice that each GaOT requires us to con-
sume ten aBits; we need to execute the Share OT step to determine e, z, x0, x1

(which requires one aBit consumption per player, i.e. two in total when n = 2);
in addition each of these four bits needs to be authenticated in Authenticate
OT in Protocol 10 (which again requires one aBit consumption per player, i.e.
eight in total when n = 2). Since we need one checked GaOT to perform a secure
multiplication, and we sacrifice r− 1 GaOT to obtain a checked one; this means
we require r ·10 aBits per secure multiplication in the two party case. Depending
on the parameters we use for our sacrifice step in Appendix 7, this equates to
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40, 50 or 60 aBits per secure multiplication, setting t = 220, 214, 210, respectively,
and an error probability of 2−40.

We now compare this to the number of aBits needed in the Tiny-OT protocol
[14]. In this protocol each secure multiplication requires two aBits, two aANDs
and two aOTs. Assuming a bucket size T in the protocols to generate aANDs
and aOTs; each aAND (resp. aOT) requires four LaANDs (resp LaOTs). Each
LaAND requires four aBits and each LaOT requires three aBits. Thus the total
number of aBits per secure multiplication is 2 · (1+T · 4+T · 3) = 14 · T +2. To
achieve the same error probability of 2−40, with same values of t = 220, 214, 210,
they need 44, 58 and 72 aBits, respectively. We see therefore that we can make
our protocol (in the two party case) more efficient than the Tiny-OT protocol,
when we measure efficiency in terms of the number of aBits consumed.
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Abstract. With relatively few exceptions, the literature on efficient
(practical) secure computation has focused on secure two-party com-
putation (2PC). It is, in general, unclear whether the techniques used
to construct practical 2PC protocols—in particular, the cut-and-choose
approach—can be adapted to the multi-party setting.

In this work we explore the possibility of using cut-and-choose for
practical secure three-party computation. The three-party case has been
studied in prior work in the semi-honest setting, and is motivated by
the observation that real-world deployments of multi-party computation
are likely to involve few parties. We propose a constant-round protocol
for three-party computation tolerating any number of malicious parties,
whose computational cost is only a small constant worse than that of
state-of-the-art two-party protocols.

1 Introduction

The past few years have seen a tremendous amount of attention devoted to mak-
ing secure computation truly practical (e.g., [19, 23, 24]). With only a few ex-
ceptions [13, 14, 23], however, this work has tended to focus on secure two-party
computation (2PC). In the semi-honest setting, a series of papers [3, 17–19]
showed that Yao’s garbled circuit technique [38] can yield very efficient proto-
cols for the computation of boolean circuits. In the malicious setting, Lindell and
Pinkas [27] initiated use of the cut-and-choose technique, also based on Yao’s
garbled circuits, for constructing efficient, constant-round protocols. This tech-
nique was developed further in several subsequent works [20, 24, 25, 28, 29, 31,
33, 34, 36, 37], and yields the fastest known protocols for (malicious) secure
two-party computation (2PC) of boolean circuits.

2PC protocols with malicious security can also be based on the GMW proto-
col [15] (e.g., the TinyOT protocol [32]). Although this approach yields protocols

� Portions of this work were done while at the University of Maryland.
�� Portions of this work were done at the University of Maryland and UCLA.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 513–530, 2014.
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with round complexity linear in the (multiplicative) depth of the circuit, it of-
fers the advantage that much of the computation can be pushed to an offline,
pre-processing phase that is executed before the parties receive their inputs.
The subsequent online computation is very fast and uses mainly information-
theoretic techniques.

In the setting of multi-party computation (MPC) with security against an ar-
bitrary number of corruptions, the situation is somewhat different. While there
has been much recent work on optimizing MPC for semi-honest adversaries [3, 5–
8, 10], less work has focused on security against malicious corruptions. The work
of Ishai, Prabhakaran, and Sahai [22] gives protocols with good asymptotic effi-
ciency; however, despite some promising optimizations [26], it has not yet pro-
duced practical instantiations. The SPDZ protocol [4, 12–14, 23], which handles
arithmetic circuits, has extremely fast online running time at the cost of a very
slow offline phase. However, unlike protocols based on garbled circuits, SPDZ
runs for a linear (instead of constant) number of (online) rounds, and in each
such round every party needs to utilize a broadcast channel. To our knowledge,
SPDZ’s implementation experiments [12–14] were run on a local-area network
where physical broadcast is available, and thus the delay due to accounting for
round-timeouts and/or running a multi-party broadcasting protocol when oper-
ating in a wide-area network environment has not been taken into account. This
delay may be non-trivial depending on circumstances: Schneider and Zohner [35]
have shown that as the latency between machines increases, the cost of each
round becomes more and more significant.

Finally, the work of Goyal, Mohassel, and Smith [16] uses the cut-and-choose
technique to construct a multi-party protocol secure in the covert setting.

Multi-party Computation for a Small Number of Parties. Research on
secure computation has traditionally been divided into two classes: work focus-
ing on two-party computation, and work focusing on multi-party computation
for an arbitrary number of parties.1 Yet, in practice, it seems that the most
likely scenarios for secure MPC would involve a small number of parties [5]. In
general, as the number of parties increases, the cost of communication amongst
the parties increases as well. In a wide-area network setting, this may have a
huge impact on the running time of the protocol.

In addition, the three-party setting is interesting in its own right. For example,
suppose the government would like to run some privacy preserving computation
on a company’s dataset, such as flight manifests. Now, suppose the public does
not trust that these parties are not colluding. Thus, we could add a third party,
trusted by the public, into the computation to enforce that the two main parties
are not simply sharing all their information.

Our Contributions. We construct the first practical, constant-round protocol
for secure three-party computation of boolean circuits. Our protocol uses player-
simulation techniques in order to compile existing (cut-and-choose-based) 2PC

1 Here we are interested in protocols tolerating an arbitrary number of corruptions.
One could further distinguish work on MPC that assumes an honest majority.
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protocols into three-party protocols. We instantiate our compiler with state-of-
the-art 2PC constructions and show that the addition of a third party comes at
the cost of roughly a factor eight overhead over the underlying 2PC protocol in
terms of computation, and a factor sixteen overhead in terms of communication.
This running time appears to be superior to the state-of-the-art MPC protocols
in terms of start-to-finish running time. Of course, computing the exact overhead
requires implementations of both our protocol and the underlying 2PC protocol
and is a subject of future research. As a further optimization point, our protocol
makes only three calls overall to a broadcast channel (one with each party as
sender), as opposed to existing practical MPC solutions (for more than two
parties) which use broadcast for communicating all protocol messages. This may
be important in certain wide-area network settings where communication (and
broadcast specifically) is very expensive. The most efficient instantiation of our
protocol requires the random oracle model.

Overview of Our Protocol. Denote the three parties by P1, P2, and P3. The
high-level idea of our construction is to execute a two-party protocol π̂, where
one of the two parties (say P̂1) is emulated by P1 and P2 via a two-party protocol
π, and the other party is played by P3.

Näıvely applying the above idea yields an inefficient construction even when
state-of-the-art 2PC protocols are used for π and π̂. Assume, for example, that
the most efficient 2PC protocol is used for both π and π̂, where π simply com-
putes the circuit of P̂1 among P1 and P2. The security of the resulting construc-
tion follows trivially from the composition theorem. However, unless the size of
the circuit is very small, this approach results in a huge blowup on the overall
runtime; in particular, if t is the time π needs to compute the circuit of P̂1 and
t̂ is the time that π̂ needs to compute the three-party circuit, then the runtime
of the above näıve construction is t · t̂, yielding at least a quadratic blowup.

Emulating the Sender vs. Emulating the Receiver. In most cut-and-
choose-based 2PC protocols, the parties have distinct roles: one is the sender,
or circuit generator, and the other is the receiver, or circuit verifier. One might
be tempted to think that, because the role of the verifier in the protocol is more
“passive” (in the sense that the computation is less complicated), the most nat-
ural approach would be to emulate the verifier among P1 and P2 (and have P3

locally do the heavier work doing circuit generation and opening over broadcast).
This seemingly direct approach fails as one needs a mechanism for P1 and P2

to include their inputs into the garbled circuits. Clearly, doing so by having P1

first receive his input-keys via OT (as in the original Yao-based constructions)
and then handing them to P2 yields an insecure protocol; indeed, an adversary
corrupting P2 and P3 can then trivially learn P1’s inputs.

Instead, in this work we have P1 and P2 emulate the sender, and we have P3

play the role of the receiver. More precisely, we adapt the distributed circuit-
garbling technique [1, 11] to the two-party setting, allowing P1 and P2 to compute
a sharing of a garbled circuit which they then reconstruct for P3. By appropriate
optimizations, we ensure that distributed garbling requires P1 and P2 to compute
and communicate roughly as much as the sender in an execution of the Yao



516 S.G. Choi et al.

protocol (plus some OT calls per gate); P3 needs to do nothing during the circuit
garbling. Most interestingly, our construction features a mechanism which allows
P3 to receive the keys corresponding to his input bits for evaluating the garbled
circuit by only one invocation of OT per input-bit with each of P1 and P2.

Our distributed garbling scheme is secure against malicious adversaries, which
ensures that an adversary corrupting only one of the parties P1 or P2 cannot
produce a maliciously constructed garbled circuit. In order to protect against an
adversary who corrupts both P1 and P2, we rely on the cut-and-choose technique.
We give concrete instantiations (in the random oracle model) of our protocol
using a combination of two 2PC protocols by Lindell and Pinkas [27, 28]. In the
full version [9], we present a construction based on the more recent protocol by
Lindell [25] which drastically reduces the number of circuit garblings required
for cut-and-choose.

Interestingly, the cut-and-choose technique does not only protect against cor-
rupting both P1 and P2, but allows a considerable efficiency improvement. More
precisely, it allows us to avoid using costly authenticated shares (towards P3) for
the computed (shared) garbled circuit. Instead, our distributed garbling scheme
outputs, even in the malicious setting, a plain two-out-of-two sum sharing of the
garbled circuit.

2 Preliminaries

We let k denote the computational security parameter and let s denote the

statistical security parameter. We use x
$← S to denote choosing a value x

uniformly at random from the set S, and use ‖ to denote concatenation.

Circuit Notation. We follow the circuit notation of Bellare, Hoang, and Rog-
away [2]. A circuit C is defined by parameters (n,m, q, L,R,G), where n is the
number of input wires, m is the number of output wires, and q is the number
of gates, where each gate is indexed by its output wire. Thus, the total num-
ber of wires in the circuit is n + q. The numbering of wires starts with the
inputs and ends with the outputs; i.e., we have inputs {1, . . . , n} and outputs
{n+q−m+1, . . . , n+q}. The function L (resp., R) takes as input a gate index and
returns the left (resp., right) input wire to the gate. We require L(γ) < R(γ) < γ
for any gate index γ. The function G encodes the functionality of a given gate,
e.g., Gγ(0, 1) = 0 if the gate with index γ is an AND gate. Because we consider
circuits with inputs from multiple parties, let {ni−1+1, . . . , ni} denote the input
wires “controlled” by party Pi, with n0 = 0.

We denote input gates as those gates with one or more input wires, inner
gates as those gates with no input or output wires, and output gates as those
gates with an output wire.

Secret Sharing. Our constructions use two-out-of-two secret sharing. In the
semi-honest setting, we use a standard (linear) sharing of strings: the secret x ∈
{0, 1}∗ is split into two random summands x1 and x2 such that x1⊕x2 = x, with

Pi holding the summand xi. We denote the sharing of x by [x] = ([x]
(1)

, [x]
(2)

),
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where we refer to each [x]
(i)

= xi as Pi’s share of x. This sharing is linear: If [x]
and [y] are sharings of x and y respectively, then [x]⊕[y] is a sharing of x⊕y; that

is, [x⊕ y] = [x] ⊕ [y] and thus Pi can locally compute his share as [x⊕ y]
(i)

=

[x]
(i) ⊕ [y]

(i)
. It is straight-forward to verify that the above secret-sharing is

private provided that the summands x1 and x2 are uniformly chosen (restricted

only on x1 ⊕ x2 = x); i.e., any single share [x]
(i)

contains no information about
the secret x. Reconstructing a sharing [x] is done by having each party announce

his share [x]
(i)

and taking x to be the exclusive-or of the announced shares.
Our protocols use shares of two types of secrets: k-bit strings x ∈ {0, 1}k

and bits b ∈ {0, 1}. For clarity in the presentation, we use the bracket notation
introduced above for sharings of x ∈ {0, 1}k, and use the notation 〈·〉 for sharings
of bits; i.e., if b ∈ {0, 1} then a sharing of b is denoted as 〈b〉 = (〈b〉(1), 〈b〉(2)).

In the malicious setting we need the sharings of bits to be authenticated ; i.e.,
in addition to his summand bi, each party Pi holds an authentication tag ti for
a message authentication code (MAC), with another party Pj holding the cor-
responding verification key kj . More precisely, in a sharing 〈b〉 = (〈b〉(1), 〈b〉(2))
of b, each party’s share is now a tuple 〈b〉(i) := (bi, ti, kj), where b1 ⊕ b2 = b,
and ti is a valid MAC on bi with key kj . This ensures that the adversary cannot
make the reconstruction output any value other than the secret b. In particular,
to reconstruct some sharing 〈b〉 = (〈b〉(1), 〈b〉(2)), each party Pi first announces
his summand bi and the corresponding authentication tag ti; subsequently, each
party Pi checks that the other party Pj announced a validly authenticated sum-
mand matching his own verification key and if this is not the case he rejects.
The inability of an adversarial Pi to announce a summand other than bi follows
from the unforgeability of the MAC, as Pi does not know the key kj matching
his authentication tag.

We also assume this authentication is linear in the following sense: Given
〈b〉 and 〈b′〉, the parties can compute 〈b〉 ⊕ 〈b′〉 locally. Namely, 〈b〉 ⊕ 〈b′〉 =
(〈b ⊕ b′〉(1), 〈b⊕ b′〉(2)), where 〈b⊕ b′〉(i) = (bi ⊕ b′i, ti ⊕ t′i, kj ⊕ k′j) is a valid
authentication. We can construct such authenticated sharings using the TinyOT
protocol [32]; see the full version [9] for details.

3 Two-Party Distributed Garbling Scheme

In this section we describe our construction of a two-party distributed garbling
scheme. Our protocol combines the standard Yao garbling circuit technique with
the distributed garbling ideas from Damg̊ard and Ishai [11]. The main idea is
the following: The players jointly compute a garbled circuit, where the gates
are garbled by use of a distributed encryption scheme which takes, for each
encryption, one key from each party.

We describe our construction in several steps. In Section 3.1 we give a descrip-
tion of our garbling scheme; i.e., the code of the sender in our version of Yao’s
protocol. This section gives the reader familiarity with our notation and is used
as a reference in the distributed protocol. Next, in Section 3.2 we describe an
efficient (semi-honest) protocol that allows parties P1 and P2 to securely emulate
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Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) ← C.

1. Generate masks:
– For w ∈ {1, . . . , n+ q−m}: set λw

$← {0, 1}.
– For w ∈ {n+ q−m+ 1, . . . , n+ q}: set λw ← 0.

2. Generate sub-keys:

– For w ∈ {1, . . . , n+ q} and b ∈ {0, 1}: set s1w,b, s
2
w,b

$← {0, 1}k.
3. Construct garbled circuit:

– For γ ∈ {n + 1, . . . , n + q}: Let α ← L(γ) and β ← R(γ) be the index
of the left and right input wires, respectively, of the gate indexed by γ.
Letting Kw,b = (s1w,b, s

2
w,b), for i, j ∈ {0, 1}2, compute the following:

P [γ, i, j] ← EncKα,i,Kβ,j

(
Kγ,Gγ (λα⊕i,λβ⊕j)⊕λγ‖Gγ(λα, λβ)⊕ λγ

)

4. Output circuit:
– Set GC ← (n,m, q, L,R, P ), and output:

(
GC,

{
(s1w,b⊕λw

, s2w,b⊕λw
, b⊕ λw) : w ∈ {1, . . . , n}, b ∈ {0, 1}

})
.

Fig. 1. Circuit garbling scheme

the circuit-garbling procedure from Section 3.1. Finally, in Section 3.3, we show
how to make the garbling procedure maliciously secure.

3.1 Single-Party Garbling Scheme

Our garbling scheme is a slight variant of the Damg̊ard and Ishai protocol [11]
adapted to two parties. This should be regarded as an initial step towards our
ultimate goal of a distributed garbling scheme. Here, we describe the high-level
construction; see Figure 1 for the detailed protocol.

We associate two random keys Kw,0,Kw,1 with each wire w in the circuit; key
Kw,0 corresponds to the value ‘0’ and Kw,1 corresponds to the value ‘1’. Each
key Kw,b consists of two sub-keys s1w,b and s2w,b; that is, Kw,b = (s1w,b, s

2
w,b). In

addition, for each wire w we choose a random mask bit λw. Each key has an
associated tag, derived from the mask bit, which acts as a blinding of the true
value the key represents.

Now, consider gate Gγ in the circuit with input wires α and β. The garbled
gate of Gγ consists of an array of four encryptions: for each (bα, bβ) ∈ {0, 1} ×
{0, 1}, the row (bα, bβ) consists of an encryption of Kγ,Gγ(bα⊕λα,bβ⊕λβ)⊕λγ

and
its corresponding tag Gγ(bα ⊕ λα, bβ ⊕ λβ) ⊕ λγ under keys Kα,bα and Kβ,bβ .
Let P denote a table that stores all the garbled gates; in particular, the entry
P [γ, bα, bβ ] contains an encryption corresponding to row (bα, bβ) of the garbled
gate for Gγ .

Evaluation proceeds as follows. Let α and β be input wires connected to gateG
with index γ. The evaluator is given (Kα,bα⊕λα , bα⊕λα) and (Kβ,bβ⊕λβ

, bβ⊕λβ),
along with P . He takes the row P [γ, bα ⊕ λα, bβ ⊕ λβ ] and decrypts it using the
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keys Kα,bα⊕λα and Kβ,bβ⊕λβ
, resulting in (Kγ,G(bα,bβ)⊕λγ

, G(bα, bβ)⊕ λγ). It is
straightforward to verify that by continuing this evaluation, the output of each
gate will be revealed masked by its corresponding mask. By picking masks of
the output wires to be ‘0’ we ensure that the evaluator receives the (unmasked)
output of the circuit.

3.2 Distributing the Garbling Scheme between Two Parties

We now show how to emulate the above garbling scheme between two parties
in the semi-honest setting. We assume the parties have access to the following
two-party ideal functionalities:

– Gate computation FG
gate(〈a〉, 〈b〉): The functionality takes as input sharings

〈a〉 and 〈b〉 of bits a and b, respectively, and is parameterized by a binary
gate G; it outputs a sharing 〈G(a, b)〉 of the output of G on input (a, b).

– One-out-of-two oblivious secret sharing F i
oshare(〈b〉,m0,m1): The function-

ality takes as input a sharing 〈b〉 of a bit b (i.e., each party inputs his share),
along with two messages m0, m1 from Pi, and outputs a random two-out-
of-two sharing [mb] of mb.

– Constant bit sharing Fb
const(): The functionality is parameterized by a bit

b ∈ {0, 1}, and outputs a random sharing 〈b〉 of b.
– Random bit sharing Frand(): The functionality chooses a random bit r

$←
{0, 1} and computes and outputs a random sharing 〈r〉 of r.

– Bit secret sharing F i
ss(b): The functionality takes input bit b ∈ {0, 1} from

Pi and outputs a random two-out-of-two sharing 〈b〉 of b.
Each of these can be instantiated efficiently in the semi-honest setting; see the
full version [9] for details.

Distributed Encryption Scheme.We utilize Damg̊ard and Ishai’s distributed
encryption scheme [11]. Suppose the message and the key for the encryption
scheme are distributed as follows:

– The message m is secret-shared; i.e., P1 holds [m]
(1)

and P2 holds [m]
(2)

.
– The encryption key K = (s1, s2) is distributed such that P1 holds s1 and P2

holds s2.

The encryption of the secret-shared message m with tweak T under key K =
(s1, s2) is:

EncTK(m) = (Enc1s1,T (m),Enc2s2,T (m)) =
(
[m]

(1) ⊕ F 1
s1 (T ), [m]

(2) ⊕ F 1
s2(T )

)
,

where F 1
k is a PRF keyed by key k. To decrypt a ciphertext c := EncTK(m), each

party Pi sends his sub-key si to the decrypter, who uses them to recover the
shares of m and reconstruct m.

Double encryption is defined analogously. For keys Kα = (s1α, s
2
α) and Kβ =

(s1β , s
2
β), where Pi holds (s

i
α, s

i
β), encryption with tweak T works as follows:

EncTKα,Kβ
(m) =

(
[m]

(1) ⊕ F 1
s1α
(T )⊕ F 2

s1β
(T ), [m]

(2) ⊕ F 1
s2α
(T )⊕ F 2

s2β
(T )

)
.
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Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) ← C.

P1 and P2 compute 〈1〉 ← F1
const, which they use throughout.

1. Generate mask bits:
– For w ∈ {1, . . . , n1}: P1 sets λw

$← {0, 1} and 〈λw〉 ← F1
ss(λw).

– For w ∈ {n1 + 1, . . . , n}: P2 sets λw
$← {0, 1} and 〈λw〉 ← F2

ss(λw).
– For w ∈ {n+ 1, . . . , n+ q−m}: set 〈λw〉 ← Frand.
– For w ∈ {n+ q−m+ 1, . . . , n+ q}: set 〈λw〉 ← F0

const.
2. Generate sub-keys:

– For w ∈ {1, . . . , n+ q} and b ∈ {0, 1}: Pi sets s
i
w,b

$← {0, 1}k.
3. Construct garbled circuit:

– For γ ∈ {n+ 1, . . . , n+ q}: Let α ← L(γ) and β ← R(γ) be the indices of
the left and right input wires, respectively, of the gate indexed by γ. For
i, j ∈ {0, 1}2, compute the following selector bits:

〈σγ,i,j〉 ← FGγ

gate(〈λα〉 ⊕ 〈i〉, 〈λβ〉 ⊕ 〈j〉) ⊕ 〈λγ〉.

Next, for i, j ∈ {0, 1}2, compute sharings of the appropriate sub-keys to
use for each row:

[
ŝ1γ,i,j

]
← F1

oshare(〈σγ,i,j〉, s1γ,0, s1γ,1),[
ŝ2γ,i,j

]
← F2

oshare(〈σγ,i,j〉, s2γ,0, s2γ,1).

Finally, for i, j ∈ {0, 1}2, compute the distributed encryptions of the (per-
muted) sub-keys and selector bits. That is, letting Kw,b = (s1w,b, s

2
w,b),

compute:

(P 1[γ, i, j], P 2[γ, i, j]) ← Enc
γ‖i‖j
Kα,i,Kβ,j

(
[
ŝ1γ,i,j

]
‖
[
ŝ2γ,i,j

]
‖〈σγ,i,j〉).

4. Output circuit:
– Let Ci ← (n,m, q, L, R,P i), Si ←

{
(siw,0, s

i
w,1) : w ∈ {1, . . . , n}

}
.

– P1 outputs
(
C1, S1,

{
(〈bw〉(1), 〈λw〉(1), bw, λw) : w ∈ {1, . . . , n1}

})
.

– P2 outputs
(
C2, S2,

{
(〈bw〉(2), 〈λw〉(2), bw, λw) : w ∈ {n1 + 1, . . . , n}

})
.

Fig. 2. Two-party distributed circuit-garbling protocol ΠGC(P1, P2). For semi-honest
security, use standard secret sharing; for malicious security use authenticated secret
sharing.

Distributed Garbling Scheme. We now give a high-level description of our
two-party distributed garbling scheme ΠGC(P1, P2); see Figure 2 for details. As
before, for each wire w in the circuit we associate keys Kw,0 = (s1w,0, s

2
w,0) and

Kw,1 = (s1w,1, s
2
w,1) corresponding to bits ‘0’ and ‘1’, respectively. However, in

the distributed setting, each sub-key is only known to one of the two parties;
i.e., Pi only knows (siw,0, s

i
w,1). Each wire is also associated with a mask bit λw

which is secret shared between the two parties such that no party knows λw.
Consider gate Gγ in the circuit with input wires indexed by α and β. As in the

non-distributed case, we construct an array containing four rows corresponding
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to a random permutation of the four possible outcomes of gate Gγ applied to bits
bα and bβ. However, in the distributed case neither party should know what is be-
ing encrypted. Recall that in the non-distributed setting, the circuit generator can
easily compute Gγ(λα ⊕ bα, λβ ⊕ bβ) to construct the array. However, in the dis-
tributed setting, neither party knows (and should not know) λα or λβ . Thus, the
parties utilize the Fgate functionality, which takes as input the shares 〈λα〉⊕ 〈bα〉
and 〈λβ〉⊕〈bβ〉, and computes a sharing ofGγ(λα⊕ bα, λβ ⊕ bβ). Let 〈σγ,bα,bβ 〉 =
FG

gate(〈bα〉 ⊕ 〈λα〉, 〈bβ〉 ⊕ 〈λβ〉) ⊕ 〈λγ〉. The value σγ,bα,bβ denotes which key to
encrypt; that is, in row (bα, bβ) we encrypt key Kγ,σγ,bα,bβ

. However, we must

still enforce that neither party knows what key Kγ,σγ,bα,bβ
represents. We han-

dle this by utilizing another functionality, Foshare. For each of the four σγ,bα,bβ

values, and for each party Pi, the parties compute F i
oshare(〈σγ,bα,bβ 〉, siγ,0, siγ,1).

This produces a share of the appropriate sub-key for party Pi, with the crucial
fact that Pi does not know which of his sub-keys was shared. The results of
Foshare are used as the shares to be encrypted.

Note that we can use this two-party distributed garbling scheme as a build-
ing block for a somewhat efficient semi-honest two-party secure computation
protocol. See the full version [9] for the detailed construction. We do not claim
that this scheme is superior to existing 2PC protocols; however, it serves as an
important building-block to our end goal of an efficient 3PC protocol.

Also note that this distributed garbling scheme can scale to more than two par-
ties, given access to multi-party variants of the necessary functionalities. Thus,
we can also achieve (semi-honest) multi-party secure computation using this
approach; we leave the development of efficient instantiations of these function-
alities as future work.

3.3 Achieving Malicious Security

The semi-honest distributed garbling scheme described in Section 3.2 can be
directly adapted to work against a malicious adversary by modifying the hybrid
functionalities to work in an authenticated manner; namely, we use authenticated
sharings in place of standard secret sharings:

– F1
const() and Frand(): The output share is authenticated.

– FG
gate(〈a〉, 〈b〉): The inputs and outputs are all authenticated sharings.

– F i
oshare(〈b〉,m0,m1): The selection bit b is an authenticated sharing.

– F i
ss(b): The output is an authenticated sharing of b.

Observe that we only authenticate sharings of bits and not sharings of the sub-
keys siw,b. This complicates the proof, as the sharing does not provide means of
protecting against a malicious party sending inconsistent key-shares, but yields
a more efficient construction; see the full version [9] for details.

We also need a notion of encrypting authenticated shares. Recall that for an
authenticated share 〈b〉 = (〈b〉(1), 〈b〉(2)), we have 〈b〉(i) = (bi, ti, kj), where party
Pi holds bi and ti, and party Pj holds kj . Thus, letting K = (s1, s2), we define

EncTK(〈b〉) = (Enc1s1,T (b1‖t1‖k1),Enc2s2,T (b2‖t2‖k2)).
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On decryption, each party’s ciphertext is decrypted and the authenticity of b1
and b2 are verified using the (encrypted) tags and keys. Thus, when evaluating a
garbled circuit, the party checks the authenticity of the share from the decrypted
row of each garbled gate; if the check fails, the party aborts.

Again, we can convert this garbling scheme into a (now maliciously-secure)
2PC scheme; see the full version [9] for the details. Likewise, we could also con-
struct an MPC variant with efficient multi-party instantiations of the underlying
functionalities which we leave as future work.

4 Three-Party Computation from Cut-and-Choose

As mentioned above, we can directly adapt the distributed garbling scheme to
work over multiple parties, and thus construct a 3PC scheme; however, in this
case the underlying functionalities need to support multiple parties rather than
just two parties and are thus unlikely to be more efficient in practice. Thus, in
this section we show how to utilize the maliciously secure two-party distributed
garbling scheme from Section 3 to construct a maliciously secure three-party
secure computation protocol, using almost entirely two-party constructs (the
only three-party functionality needed is that of coin-tossing).

We first cover preliminary notions, such as the ideal functionalities we need,
in Section 4.1. Then, in Section 4.2 we show how to adapt a combination of
two existing cut-and-choose protocols [27, 28] to the three-party setting. In the
full version [9] we use this “generic” protocol to show how to adapt Lindell’s
protocol [25] (the current state-of-the-art garbled-circuit-based protocol at the
time of writing) to the three-party setting. The cost of each of these three-party
protocols is roughly eight times the computational cost of the underlying two-
party protocol they are based on, and roughly sixteen times the communication
cost (plus the cost of a small number of OTs per gate, which can be efficiently
amortized using OT extension [21, 32]), and thus we show that we can achieve
efficient secure three-party computation at only a small factor of the cost of the
most efficient Yao-based two-party protocol.

4.1 Preliminaries

Ideal Functionalities. In addition to the ideal functionalities used in the two-
party distributed garbling scheme, we need the following additional (maliciously
secure) functionalities:

– Three-party coin-flipping Fcf (): The functionality outputs a random bit-

string ρ
$← {0, 1}s to each party.

– One-out-of-two oblivious transfer F i,j
ot (b,m0,m1): The functionality takes as

input a choice bit b from party Pi and messagesm0, m1 from Pj , and outputs
mb to party Pi.

– ZKPoK of extended Diffie-Hellman tuple F i,j
zkpok(a, (g, h0, h1, {ui, vi}i)): The

functionality takes as input a from party Pi, and tuple (g, h0, h1, {ui, vi}i)
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from party Pj , and outputs 1 to party Pj if either all tuples in {(g, h0, ui, vi)}i
are Diffie-Hellman tuples with h0 = ga or all tuples in {(g, h1, ui, vi)}i are
Diffie-Hellman tuples with h1 = ga, and 0 otherwise.

These can all be efficiently instantiated in a standard fashion; see the full ver-
sion [9] for the details.

Distributed Garbled Circuits for Three Parties. Note that the garbling
protocol ΠGC in Figure 2 only garbles a circuit containing inputs from two
parties. We can easily adapt this to support input from a third (external) party
as follows. Let Π ′

GC(P1, P2) be the same asΠGC(P1, P2) except for the following
modifications:

– All operations over P2’s input now operate over wires w ∈ {n1 + 1, . . . , n2}.
– In Step 1, we add the following for generating shares for P3’s input wires:

For w ∈ {n2 + 1, . . . , n}: generate 〈λw〉 ← Frand.
– In Step 4, party Pi outputs

{
〈λw〉(i) : w ∈ {n2 + 1, . . . , n}

}
in addition to his

normal outputs.

4.2 Achieving Malicious Security for Three Parties

Note that our two-party distributed garbling scheme has the property that if at
most one of the two parties is corrupt, the garbling of circuit C either correctly
evaluates C on P1’s and P2’s inputs, or causes the evaluator to abort. That is, a
malicious party cannot “alter” the garbling to evaluate some circuit other than
C. Now, if both P1 and P2 are corrupt, they can of course garble an arbitrary
circuit. This suggests the following approach to three-party computation: If ei-
ther P1 or P2 are honest, we need only construct a single garbled circuit, which is
sent to P3 to be evaluated. To cover the case where both P1 and P2 are corrupt,
we use cut-and-choose to prevent P3 from evaluating a maliciously constructed
circuit. In what follows, we utilize existing cut-and-choose protocols from the
literature [27, 28] and “plug in” our distributed garbling scheme as necessary.
Thus, security mostly follows from the security proofs of the underlying cut-and-
choose protocols. In the full version [9] we show how we can use this protocol in
an adaptation of Lindell’s protocol [25] to the three-party setting.

The basic intuition for security is as follows. Cut-and-choose is used to prevent
P3 from evaluating maliciously constructed circuits when both P1 and P2 are
malicious. For the case where either P1 or P2 is honest, Π ′

GC(P1, P2) assures
us that the garbled circuit constructed between P1 and P2 is either correctly
constructed or causes P3 to abort (independent of any party’s input).

Protocol Description. We assume the reader is familiar with the cut-and-
choose technique; here we briefly discuss the main technical challenges that result
from a näıve application of cut-and-choose and how we address them.

– Input inconsistency. The use of cut-and-choose produces multiple garbled
circuits to be evaluated by P3. The idea with this attack is that a given
party (either P1 or P2 in the three-party case) can give inconsistent sub-keys
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in each of these circuits such that P3 ends up evaluating different inputs
for P1/P2 instead of consistent inputs across all garbled circuits. This is a
well-known attack, and there are multiple solutions in the two-party setting.
Here, we use the Diffie-Hellman pseudorandom synthesizer trick [30, 28] and
adapt it in a straightforward manner to the three-party setting.

– Selective failure. This attack arises when the parties execute OT to send
the sub-keys for P3’s input. Note that if the sender in the OT inputs one
valid label and one invalid label, he can learn a bit of P3’s input by learn-
ing whether the garbled-circuit evaluation fails or not. We circumvent this
problem by directly applying the “XOR-tree” approach [27].

We now give a high-level description of our protocol.

1. The parties first replace the input circuit C0 with a circuit C, where the only
difference is each of P3’s input wires is replaced by an XOR of s new input
wires, preventing either party P1 or P2 from launching a selective failure
attack on P3’s input choices.

2. P1 and P2 generate the required commitments needed for input consistency,
as is done in the protocol of Lindell and Pinkas [28].

3. P1 and P2 construct s garbled circuits using Π ′
GC and the input sub-keys

generated as in the protocol of Lindell and Pinkas [28].

4. P1 and P2 compute authenticated sharings (between each other; P3 is not
involved here) of their input bits.

5. P1 and P2 both run (separately) an OT protocol with P3 for each of P3’s
input wires, where P1/P2 input their sub-keys and P3 chooses based on his
input. (Note that any cheating by P1/P2 here will be caught with high-
probability by the cut-and-choose step below.) Thus, P3 now has keys for
each of his input bits.

6. P1 and P2 send the (distributed) garbled circuits, along with the input con-
sistency commitments, to P3.

7. All three parties run a coin-tossing protocol to determine which circuits for
P3 to open and which to evaluate.

8. For the evaluation circuits, P1 and P2 send the sub-keys and selector bits for
their inputs to P3. Note that we need to be careful in this step, as we need
to enforce that, for example, P1 uses the same input as was shared in Step 2
above. This is accomplished as follows. Recall that P1 and P2 have sharings
of each other’s inputs and mask bits, all of which are authenticated. Thus,
P1 can send the (authenticated) share of her masked input to P2, who can
verify its authenticity, and thus reconstruct the masked input bit using his
own share (and likewise for P2). This allows an honest P2 to send the correct
sub-key (correct in the sense that it corresponds to P1’s input shared in Step
2) to P3, even with a malicious P1.

9. For the check circuits, P1 and P2 send the required information for P3 to
decrypt the check circuits and verify correctness. If any of these check circuits
are incorrectly constructed, P3 aborts; otherwise, he has high confidence that
the majority of the evaluation circuits are correctly constructed.
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10. For the evaluation circuits, P3 checks for input consistency against the sub-
keys sent by P1 and P2 in Step 8 using a zero-knowledge proof-of-knowledge
protocol [28], aborting on any inconsistency.

11. Finally, P3 evaluates the evaluation circuits, outputting the majority over
the circuits’ output.

See below for the full protocol description.

Protocol Πm
3PC(P1, P2, P3)

Auxiliary Inputs: Security parameter k, statistical security parameter s, cir-
cuit C0, cyclic group G with (prime) order q and generator g, and randomness
extractor H .

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P1 has
inputs bw; for w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is
replaced by an exclusive-or of s new input wires. We let (n,m, q, L,R,G) ← C,
and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 sets a1
w,0, a

1
w,1

$← Zq and constructs{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)

}
.

For w ∈ {n1 + 1, . . . , n2}: P2 sets a2
w,0, a

2
w,1

$← Zq and constructs{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)

}
.

For j ∈ {1, . . . , s}: Pi, for i ∈ {1, 2}, sets rij
$← Zq and constructs

{
(j, gr

i
j )
}
.

For j ∈ {1, . . . , s}: P1 and P2 run up to Step 2 (“Generate sub-keys”) of
Π3

GC(P1, P2), where the parties do the following in the jth iteration:

– For w ∈ {1, . . . , n1}: P1 sets s1w,b⊕λw,j ,j
← H(ga

1
w,b·r1j ) for b ∈ {0, 1}.

– For w ∈ {n1 +1, . . . , n2}: P2 sets s2w,b⊕λw,j ,j
← H(ga

2
w,b·r2j ) for b ∈ {0, 1}.

– All other sub-keys are generated in the normal fashion.
3. For j ∈ {1, . . . , s}: P1 and P2 continue their executions of Π3

GC(P1, P2), pro-
ducing garbled circuit GCj .

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , s} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with
each other, reconstructing λw,j locally. Both P1 and P2 send λw,j to P3.
For w ∈ {n2+1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender

inputting

({
siw,λw,j ,j

}

j∈{1,...,s}
,
{
siw,λw,j⊕1,j

}

j∈{1,...,s}

)
and P3 as the re-

ceiver inputting b̂w.
6. Pi, for i ∈ {1, 2}, sends the sets from Step 2, along with

{
GCi

j

}s

i=1
, to P3.

7. The parties set ρ ← Fcf . Let CC = {i : ρi = 1}, and EC = {1, . . . , s} \ CC.
8. For j ∈ EC:

– For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs
bw ⊕ λw,j locally. P1 sends (s1w,bw⊕λw,j ,j

, bw ⊕ λw,j) to P3, and P2 sends

(s2w,bw⊕λw,j ,j
, bw ⊕ λw,j) to P3.
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– For w ∈ {n1+1, . . . , n}: P2 sends 〈bw〉(2)⊕〈λw,j〉(2) to P1, who reconstructs
bw ⊕ λw,j locally. P1 sends (s1w,bw⊕λw,j ,j

, bw ⊕ λw,j) to P3, and P2 sends

(s2w,bw⊕λw,j ,j
, bw ⊕ λw,j) to P3.

9. For j ∈ CC:
– Pi, for i ∈ {1, 2}, does the following:

• Sends rij to P3, and P3 checks that these values are consistent with

the pairs
{
(j, gr

i
j )
}

sent before.

• For w ∈ {1, . . . , n}: Sends sub-keys siw,0,j and siw,1,j , mask bit share

λ
(i)
w,j , and the keys to the authenticated bits to P3.

– Given the above information, P3 reconstructs all input labels and verifies
they match with those labels sent previously. Also, using said labels, P3

verifies that the garbled circuit is correctly constructed.
10. For j ∈ EC:

– For w ∈ {1, . . . , n1}: P1 sends ga
1
w,bw

·r1j to P3, who sets s1w,bw⊕λw,j ,j
←

H(ga
1
w,bw

·r1j ).

– For w ∈ {n1+1, . . . , n2}: P2 sends g
a2
w,bw

·r2j to P3, who sets s2w,bw⊕λw,j ,j
←

H(ga
2
w,bw

·r2j ).
For w ∈ {1, . . . , n1}: P1 and P3 run Fzkpok, with P1 acting as
the prover inputting a1

w,bw and P3 acting as the verifier inputting(
g, ga

1
w,0 , ga

1
w,1 ,

{
(gr

1
j , ga

1
w,bw

·r1j )
}

j∈EC

)
.

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run Fzkpok, with P2 acting
as the prover inputting a2

w,bw and P3 acting as the verifier inputting(
g, ga

2
w,0 , ga

2
w,1 ,

{
(gr

2
j , ga

2
w,bw

·r2j )
}

j∈EC

)
.

11. For j ∈ EC:
– P3 evaluatesGCj using

{
(s1w,bw⊕λw,j ,j

, s2w,bw⊕λw,j,j
, bw ⊕ λw,j)

}

w∈{1,...,n}
as inputs.

P3 outputs the majority output over the evaluated circuits.

In the full version [9] we prove the following.

Theorem 1. Let C be an arbitrary polynomial-size circuit and let G be a cyclic
group with prime order. Given access to ideal functionalities Fconst, Fgate,
Foshare, Fot, Frand, and Fss, and assuming that the decisional Diffie-Hellman
problem is hard in G, then Πm

3PC(P1, P2, P3) securely computes the circuit C in
the presence of an adversary corrupting an arbitrary number of parties.

4.3 Efficiency

We now argue why our 3PC protocol is roughly eight times as expensive in terms
of computation as the underlying 2PC protocol we utilize, and roughly sixteen
times as expensive in terms of communication. Both protocols are very similar
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to the underlying 2PC protocol they are based on; the major changes in terms of
computational cost are that (1) the cost of encrypting a single row increases due
to the use of the distributed encryption scheme, and (2) P3 needs to do twice the
work (due to communicating with both P1 and P2) as compared to the evaluator
in the underlying 2PC protocol. Indeed, it takes about eight PRF calls (where
one PRF call equals outputting k bits) to encrypt a single row of the garbled
circuit, and thus the cost and size of a garbled circuit increases by a factor of
eight. The cost for P1 and P2 to distributively garble a circuit is a small number
of OTs per gate, and this can be amortized using OT extension techniques [21].

In terms of communication cost, both P1 and P2 need to send their half of the
distributed garbled circuit to P3, and the communication cost of actually con-
structing a distributed garbled circuit is roughly the cost of a standard garbled
circuit. Since each garbled circuit is eight times larger than in the underlying
2PC protocol, we find that the overall communication size increases my approx-
imately sixteen.

Comparison with SPDZ. We compare our three-party protocol with the
SPDZ protocol [4, 12–14, 23], an efficient protocol over arithmetic circuits
that works for n parties and arbitrary corruptions, and uses the preprocess-
ing paradigm. SPDZ represents the state-of-the-art in terms of efficiency in the
multi-party setting. Here we focus on the differences between both SPDZ and
our protocol, and discuss their strengths and weaknesses. Due to the different
characteristics of each protocol (e.g., arithmetic versus boolean, linear versus
constant round, etc.), these protocols are somewhat “incomparable”. However,
we hope to give a general idea of the efficiency trade-offs of both protocols.

There are several key differences between the SPDZ protocol and our own.
For one, SPDZ works over arithmetic circuits, whereas our protocol works over
boolean circuits. In terms of communication, the SPDZ protocol requires rounds
linear in the depth of the circuit, whereas our protocol is constant-round. While
it is difficult to compare the impact of this without an implementation and ex-
periments, it seems intuitive that as the latency between machines increases, the
cost of each additional communication round increases as well; this intuition has
been backed up by experiments in the semi-honest setting [35]. And while SPDZ
works in the standard model, the most efficient instantiation of our protocol
requires the random oracle model.

Finally, we consider the start-to-finish execution time (i.e., including the cost
of preprocessing) for running an AES circuit. The preprocessing in our protocol
is basically that found in the TinyOT protocol [32], and, using the numbers
presented there, is fairly efficient (around 1 minute [32, Figure 21]). Efficiency
comes from the fact that the preprocessing is only between two parties, namely,
the circuit generators. The on-line running time is conjectured to be around
that of maliciously secure two-party protocols using cut-and-choose. The SPDZ
protocol, on the other hand, has a very efficient (information-theoretic) online
phase but a much costlier offline phase (around 17 minutes for three parties [12,
Table 2]). In addition, it has a one-time setup phase which is very costly: the
parties need to execute an MPC protocol for a circuit which generates a key pair
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with the secret key secret-shared among the parties. Executing this on its own
would likely eclipse the running time of our protocol.2 Thus, given preprocessing,
it seems likely that SPDZ would out-perform our protocol; however, in the setting
of executing the protocol from start to finish, we conjecture that our protocol
would be more efficient.
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