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Abstract. We define a notion of semantic security of multilinear (a.k.a.
graded) encoding schemes, which stipulates security of a class of alge-
braic “decisional” assumptions: roughly speaking, we require that for ev-
ery nuPPT distribution D over two constant-length sequences m0,m1

and auxiliary elements z such that all arithmetic circuits (respecting
the multilinear restrictions and ending with a zero-test) are constant
with overwhelming probability over (mb,z), b ∈ {0, 1}, we have that
encodings of m0,z are computationally indistinguishable from encod-
ings of m1,z. Assuming the existence of semantically secure multilinear
encodings and the LWE assumption, we demonstrate the existence of
indistinguishability obfuscators for all polynomial-size circuits.

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its
implementation details (making it hard to “reverse-engineer”), while preserving
the functionality (i.e, input/output behavior) of the program. Precisely defining
what it means to “scramble” a program is non-trivial: on the one hand, we want a
definition that can be plausibly satisfied, on the other hand, we want a definition
that is useful for applications.

Hada [Had00] and Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan,
and Yang [BGI+01] show that simulation-based notion such as virtual black-box
obfuscation (VBB) [BGI+01]—which, roughly speaking, require that everything
that can be learn from the code of the obfuscated program can be simulated
using just black-box access to the functionality—run into strong impossibility
results.

We here focus on the notion of indistinguishability obfuscation, first defined
by Barak et al. [BGI+01] and explored by Garg, Gentry, Halevi, Raykova, Sahai,
and Waters [GGH+13b]. Roughly speaking, this notion requires that obfusca-
tions O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose
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outputs agree on all inputs) from some class C are computationally indistin-
guishable. In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova,
Sahai, and Waters [GGH+13b] provided the first candidate constructions of in-
distinguishability obfuscators for all polynomial-size circuits, based on so-called
multilinear (a.k.a. graded) encodings [BS03, Rot13, GGH13a]—for which candi-
date constructions were recently discovered in the seminal work of Garg, Gentry
and Halevi [GGH13a], and more recently, alternative constructions were pro-
vided by Coron, Lepoint and Tibouchi [CLT13].

The obfuscator construction of Garg et al proceeds in two steps. They first
provide a candidate construction of an indistinguishability obfuscator for NC1

(this construction is essentially assumed to be secure); next, they demonstrate
a “bootstrapping” theorem showing how to use fully homomorphic encryption
(FHE) schemes [Gen09] and indistinguishability obfuscators for NC1 to obtain
indistinguishability obfuscators for all polynomial-size circuits. Further construc-
tions of obfuscators for NC1 were subsequently provided by Brakerski and Roth-
blum [BR14] and Barak, Garg, Kalai, Paneth and Sahai [BGK+13]—in fact,
these constructions achieve the even stronger notion of virtual-black-box obfus-
cation in idealized “generic” multilinear encoding models.

In parallel with the development of candidate obfuscation constructions, several
surprising applications of indistinguishability have emerged (see e.g.,
[[GGH+13b, SW14, HSW14, BZ14, GGHR14, BCP14, BCPR14, GGG+14],
[KNY14,KMN+14]]).Furthermore, as shownbyGoldwasser andRothblum[GR07],
indistinguishability obfuscators provide a very nice “best-possible” obfuscation
guarantee: if a functionality can be VBB obfuscated (even non-efficiently!), then
any indistinguishability obfuscator for this functionality is VBB secure.

1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains open:

Can the security of general-purpose indistinguishability obfuscators be
reduced to some “natural” intractability assumption?

The principal goal of the current paper is to make progress toward addressing
this question.

Note that while the construction of indistinguishability obfuscation of Garg
et al is based on some intractability assumption, the assumption is very tightly
tied to their scheme—in essence, the assumption stipulates that their scheme is
a secure indistinguishability obfuscator.

The VBB constructions of Brakerski and Rothblum [BR14] and Barak et al
[BGK+13] give us more confidence in the plausible security of their obfuscators,
in that they show that at least “generic” attacks—that treat multilinear encod-
ing as if they were “physical envelopes” on which multilinear operations can
be performed—cannot be used to break security of the obfuscators. But at the
same time, non-generic attacks against their scheme are known—since general-
purpose VBB obfuscation is impossible. Thus, it is not clear to what extent
security arguments in the generic multilinear encoding model should make us
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more confident that these constructions satisfy e.g., a notion of indistinguisha-
bility obfuscation.1 In particular, the question of to what extent one can capture
“real-world” security properties from security proofs in the generic model through
a “meta-assumption” (regarding multilinear encoding) was raised (but not inves-
tigated) in [BGK+13]; see Remark 1 there. In this work, we initiate a study of
this question.

1.2 Security of Multilinear (Graded) Encodings

Towards explaining the assumptions we consider, let us start by briefly recalling
multilinear (a.k.a. graded) encoding schemes [GGH13a, GGH+13b]. Roughly
speaking, such schemes enable anyone that has access to a public parameter pp
and encodings Ex

S = Enc(x, S), Ey
S = Enc(y, S′) of ring elements x, y under the

sets S, S′ ⊂ [k] to efficiently:2

– compute an encoding Ex·y
S∪S′ of x·y under the set S∪S′, as long as S∩S′ = ∅;

– compute an encoding Ex+y
S of x+ y under the set S as long as S = S′;

– compute an encoding Ex−y
S of x− y under the set S as long as S = S′.

(Given just access to the public-parameter pp, generating an encoding to a par-
ticular element x may not be efficient; however, it can be efficiently done given
access to the secret parameter sp.) Additionally, given an encoding Ex

S where
the set S is the whole universe [k]—called the “target set”—we can efficiently
check whether x = 0 (i.e., we can “zero-test” encodings under the target set [k].)
In essence, multilinear encodings enable computations of certain restricted set
of arithmetic circuits (determined by the sets S under which the elements are
encoded) and finally determine whether the output of the circuit is 0; we refer
to these as the legal arithmetic circuits.

Semantical Security of Multilinear (Graded) Encodings. The above de-
scription only explains the functionality of multlinear encodings, but does not
discuss security. As far as we are aware, there have been two approaches to defin-
ing security of multilinear encodings. The first approach, initiated in [GGH13a],
stipulates specific hardness assumptions closely related to the DDH assumption.
The second approach instead focuses on generic attackers and assumes that the
1 In fact, mirroring ideas from [GGSW13], assuming the existence of indistinguisha-

bility obfuscation and one-way functions it is easy to come up with a method to
sample C1, C2, z such that with high probability C1(z) �= C2(z) (and thus, given z,
we can easily distinguish obfuscations of them), yet the pair of circuits (C1, C2) are
indistinguishable from a pair of functionally equivalent circuits. Thus, there are "fake
attacks" on indistinguishability obfuscation that cannot be efficiently distinguished
from a real attack.

2 Just as [BR14, BGK+13], we here rely on “set-based” graded encoding; these
were originally called “generalized” graded encodings in [GGH13a]. Following
[GGH+13b, BGK+13] (and in particular the notion of a “multilinear jigsaw puz-
zles” in [GGH+13b]), we additionally enable anyone with the secret parameter to
encode any elements (as opposed to just random elements as in [GGH13a]).
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attacker does not get to see the actual encodings but instead can only access
them through legal arithmetic circuits.

In this work, we consider the first approach, but attempt to capture a general
class of algebraic “decisional” assumptions (such as the the graded DDH assump-
tion of [GGH13a]) which holds against generic attackers (and as such, it can be
viewed as a merge of the two approaches). In essence, our notion of (single-
message) semantical security attempts to capture the intuition that encodings
of elements m0 and m1 (under the set S) are indistinguishable in the presence of
encodings of “auxiliary” elements z (under sets T ), as long as m0,m1, z are sam-
pled from any “nice” distribution D; in the context of a graded DDH assumption,
think of z as a vector of independent uniform elements, m0 as the product of
the elements in z and m1 as an independent uniform element. We analogously
consider stronger notions of constant-message and multi-message semantical se-
curity, where m0,m1 (and S) are replaced by either constant-length or arbitrary
polynomial-length vectors m0,m1 of elements (and sets S).

Defining what makes a distribution D “nice” turns out to be quite non-trivial:
A first (and minimal) approach—similar to e.g., the uber assumption of [BBG05]
in the context of bilinear maps—would be to simply require that D samples ele-
ments m0,m1, z such that no generic attacker can distinguish m0, z and m0, z.
As we discuss in Section 1.3, the most natural formalization of this approach can
be attacked assuming standard cryptographic hardness assumptions. The distri-
bution D considered in the attack, however, is “unnatural” in the sense that
encodings of mb, z actually leak information about mb even to generic attackers
(in fact, this information fully determines the bit b, it is just that it cannot be
computed in polynomial time).

Our notion of a valid message distribution disallows such information leakage
w.r.t. generic attacks. More precisely, we require that every (even unbounded-
size) legal arithmetic circuit C is constant over (mb, z), b ∈ {0, 1} with
overwhelming probability; that is, there exists some bit c such that with over-
whelming probability over m0,m1, z ← D, C(mb, z) = c for b ∈ {0, 1} (recall
that a legal arithmetic circuit needs to end with a zero-test and thus the output
of the circuit will be either 0 or 1). We refer to any distribution D satisfying
this property as being valid, and our formal definition of semantical security now
only quantifies over such valid message distributions.

Obfuscation from Semantically-Secure Multilinear Encodings. As a
starting point, we observe that slight variants of the constructions of [BR14,
BGK+13] can be shown to satisfy indistinguishability obfuscation for NC1 assum-
ing multi-message semantically-secure multilinear encodings. In fact, any VBB
secure obfuscation in the generic model where the construction only releases
encodings of elements (as the constructions of [BR14, BGK+13] do) satisfies in-
distinguishability obfuscation assuming a slight strengthening of multi-message
semantical security where validity only consider polynomial-size (as opposed to
arbitrary-size) legal arithmetic circuits:3 let m0 denote the elements correspond-
ing to an obfuscation of some program Π0, and m1 the elements corresponding
3 We thank Sanjam Garg for this observation.
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to an obfuscation of some functionally equivalent program Π1. VBB security
implies that all polynomial-size legal arithmetic circuits are constant with over-
whelming probability over both m0 and m1 (as any such query can be simulated
given black-box access to the functionality of the program), and thus encodings
of m0 and m1 (i.e., obfuscations of Π0 and Π1) are indistinguishable. By slightly
tweaking the construction of [BGK+13] and the analysis4, we can extend this to
hold against all (arbitrary-size) legal arithmetic circuits, and thus indistinguisha-
bility of the encodings (which implies indistinguishability of the obfuscations)
follows as a direct consequence of the multi-message security assumption.

While this observation does takes us a step closer towards basing the security
of obfuscation on a simple, natural, assumption, it is unappealing in that the as-
sumption itself directly implies the security of the scheme (without any security
reduction).

Our central result shows how to construct indistinguishability obfuscators for
NC1 based on the existence of constant-message semantically-secure multilinear
encodings; in the sequel, we simply refer to such schemes as being semanti-
cally secure (dropping “constant-message” from the notation). Note that the
constant-message restriction not only simplifes (and reduces the complexity)
of the assumption, it also takes us a step closer to the more standard GDDH
assumption. (As far as we know, essentially all “DDH-type” assumptions in “stan-
dard”/bilinear or multilinear settings consider a constant-message setting, stipu-
lating indistinguishability of either a single or a constant number of elements in
the presence of polynomially many auxiliary elements. It is thus safe to say that
such constant-message indistinguishability assumptions are significantly better
understood than their multi-message counterpart.)

Theorem 1 (Informally stated). Assume the existence of semantically secure
multilinear encodings. Then there exists an indistinguishability obfuscator forNC1.

As far as we know, this is the first result presenting indistinguishability obfus-
cators for NC1 based on any type of assumption with a “non-trivial” security
reduction w.r.t. arbitrary nuPPT attackers.

The core of our result is a general technique for transforming any obfuscator
for matrix branching programs that satisfies a weak notion of neighboring-matrix
indistinguishability obfuscation—which roughly speaking only requires indistin-
guishability of obfuscations of branching programs that differ only in a con-
stant number of matrices—into a “full-fledged” indistinguishability obfuscator.
We next show how to adapt the construction of [BGK+13] and its analysis to
satisfy neighboring-matrix indistinguishability obfuscation based on semantical
secure multilinear encodings; on a high-level, the security analysis in the generic
model is useful for proving that the particular message distribution we consider
is “valid”.5

4 Briefly, we need to tweak the construction to ensure a “perfect” simulation property.
5 As we explain in more details later, to use our transformation, we need to deal with

branching programs that satisfy a slightly more liberal definition of a branching
program than what is used in earlier works. This is key reason why we need to
modify the construction and analysis from [BGK+13].
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If additionally assuming the existence of a leveled FHE [RAD78, Gen09]
with decryption in NC1—implied, for instance, by the LWE assumption [BV11,
BGV12]—our construction can be bootstrapped up to obtain indistinguishabil-
ity obfuscators for all polynomial-size circuits by relying on the technique from
[GGH+13b].

Theorem 2 (Informally stated). Assume the existence of semantically secure
multilinear encodings and a leveled FHE with decryption in NC1. Then there
exists indistinguishability obfuscators for P/poly.

Semantical Security w.r.t. Restricted Classes of Distributions. Our
most basic notion of semantical security requires indistinguishability to hold
w.r.t. to any “valid” message distribution. This may seem like a strong assump-
tion. Firstly, such a notion can clearly not be satisfied by a deterministic encoding
schemes (as envisioned in the original work of [BS03])—we can never expect en-
codings of 0 and 1 (under a non target set, and without any auxiliary inputs) to
be indistinguishable. Secondly, even if we have a randomized encoding scheme in
mind (such as the candidates of [GGH13a, CLT13]), giving the attacker access to
encodings of arbitrary elements may be dangerous: As mentioned in [GGH13a],
attacks (referred to as “weak discrete logarithm attacks”) on their scheme are
known in settings where the attacker can get access to “non-trivial” encodings
of 0 under any non-target set S ⊂ [k]. (We mention that, as far as we know, no
such attacks are currently known on the candidate construction of [CLT13].)

For the purposes of the results in our paper, however, it suffices to consider
a notion of semantical security w.r.t. restricted classes of distributions D. In
particular, to deal with both of the above issues, we consider “high-entropy”
distributions D that sample elements m0,m1, z such that 1) each individual
element has high-entropy, and 2) any element, associated with a non-target set
S ⊂ [k], that can be obtained by applying “legal” algebraic operations to (mb, z)
(for b ∈ {0, 1}) has high-entropy (and thus is non-zero with overwhelming prob-
ability).6 We refer to such message distributions as being entropically valid.

Basing Security on “Single-Distribution” Semantical Security. The as-
sumption that a scheme satisfies semantical security may be viewed as an
(exponential-size) class of algebraic “decisional” assumptions (or as a “meta”-
assumption, just like the “uber assumption” of [BBG05]): we have one assump-
tion for each valid message distributions D. Indeed, to prove indistinguishability
of obfuscations of two circuits C0, C1, we rely on an instance in this class which is
a function of the circuits C0, C1—in the language of [GGSW13, GLW14], security
is thus based on an “instance-dependent” assumption.

This view-point also clarifies that semantical security is not an efficiently fal-
sifiable assumption [Nao03]: the problem is that there may not exist an efficient
way of checking whether a distribution D is valid (as this requires checking that
6 Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−
O(log log |R|) where R is the ring associated with the encodings; that is, the min-
entropy is “almost” optimal (i.e., log |R|).
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all legal arithmetic circuits are constant with overwhelming probability, which
in our particular case would require checking whether C0 and C1 are functionally
equivalent).

We finally observe that both of these issues can be overcome if we make
subexponential hardness assumptions: there exists a single (uniform PPT sam-
plable) distribution Sam over (nuPPT message distributions D) that are provably
entropically valid such that it suffices to assume the existence of an encoding
scheme that is entropic semantically secure w.r.t., this particular distribution
with subexponentially small indistinguishability gap.7 Note that this is a single,
non-interactive and efficiently falsifiable, decisional assumption.

1.3 Alternative Notions of Semantical Security

We finally investigate various ways of defining a “super” (or uber) assumption
for multilinear encodings. As mentioned above, a natural way of defining se-
curity of multilinear encodings would be to require that for specific classes of
problems, generic attacks cannot be beaten (this is the approach alluded to in
[BGK+13]). Perhaps the most natural instantiation of this in the context of
a multilinear DDH assumption would be to require that for any distribution
D over m0,m1, z (where m0,m1 are constant-length sequences), if encodings
of m0, z and and m0, z are indistinguishable w.r.t. to generic attackers, then
they are also indistinguishable w.r.t. arbitrary nuPPT attackers; in essence, “if
an algerbraic decisional assumption holds w.r.t. to generic attacks, then it also
holds with respect to nuPPT attackers”. We refer to this notion of security as
extractable uber security.8

Our second main result shows that, assuming the existence of a leveled FHE
with decryption in NC1, there do not exist extractable uber-secure multilinear
encodings (even if we only require security to hold w.r.t high-entropy distribu-
tions D).

Theorem 3 (Informally stated). Assume the existence of a leveled FHE with
decryption in NC1. Then no multilinear encodings can satisfy extractable (en-
tropic) uber security.

The high-level idea behind this result is to rely on the “conflict” between the
feasibility of VBB obfuscation in the generic model of [BGK+13] and the im-
possibility of VBB obfuscation in the “standard” model [BGI+01]: we let mb, z
contain a generically-secure VBB obfuscation of a program Πb that hides b given
just black-box access to Πb, yet b can be recovered given the code of Πb. By
generic security of the obfuscation, it follows that efficient generic attackers
7 These results were added to our e-Print report April 25, 2014, motivated in part by

[GLW14] (which bases witness encryption on an instant-independent assumption)
and a conversation with Amit Sahai.

8 We use the adjective “extractable” as this security notion implies that if an nuPPT
attacker can distinguish encodings, then the arithmetic circuits needed to distinguish
the elements can be efficiently extracted out.



Semantically-Secure Multilinear Encodings 507

cannot distinguish m0, z and m1, z yet, “non-generic” (i.e., standard PPT) at-
tackers can. In our formal treatment, to rule out constant-message (as opposed
to multi-message) security, we rely on a variant of the obfuscator presented in
this paper, enhanced using techniques from [BGK+13].

We emphasize that in the above attack it is cruicial that we restrict to ef-
ficient (nuPPT) generic attacks. In the full version of the paper we consider
several plausible ways of defining uber security for multilinear encodings, which
circumvent the above impossibility results by requiring indistinguishability of
encodings only if the encodings are statistically close w.r.t. unbounded generic
attackers (that are restricted to making polynomially many zero-test queries).
We highlight that none of these assumptions are needed for our construction
of an indistinguishability obfuscation and are stronger than semantical security,
but they may find other applications.

2 Definition of Semantically Secure Graded Encodings

2.1 Graded Encoding Schemes

Graded (multilinear) encoding schemes were originally introduced in the work
of Garg, Gentry and Halevi [GGH13a]. Just as [BR14, BGK+13], we here rely
on “set-based” (or “asymmetric”) graded encoding; these were originally called
“generalized” graded encodings in [GGH13a]. Following [GGH+13b, BGK+13]
and the notion of “multilinear jigsaw puzzles” from [GGH+13b], we additionally
enable anyone with the secret parameter to encode any elements (as opposed to
just random elements as in [GGH13a]).

Definition 1 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding
scheme for k ∈ N and ring R is a collection of sets {Eα

S : α ∈ R,S ⊆ [k]} with
the following properties

– For every S ⊆ [k] the sets {Eα
S : a ∈ R} are disjoint.

– There are associative binary operations ⊕ and 
 such that for every α1, α2 ∈
R, S ⊆ [k], u1 ∈ Eα1

S and u2 ∈ Eα2

S it holds that u1⊕u2 ∈ Eα1+α2

S and u1

u2 ∈ Eα1−α2

S where ‘+′ and ‘−′ are the addition and subtraction operations
in R.

– There is an associative binary operation ⊗ such that for every α1, α2 ∈ R,
S1, S2 ⊆ [k] such that S1 ∩ S2 = ∅, u1 ∈ Eα1

S1
and u2 ∈ Eα2

S2
it holds that

u1 ⊗ u2 ∈ Eα1·α2

S1∪S2
where ‘·’ is multiplication in R.

Definition 2 (Graded Encoded Scheme). A graded encoding scheme E is
associated with a tuple of PPT algorithms, (InstGenE ,EncE ,AddE , SubE ,MultE ,
isZeroE) which behave as follows:

– Instance Generation: InstGenE takes as input the security parameter 1n and
multilinearity parameter 1k, and outputs secret parameters sp and public
parameters pp which describe a (k,R)-graded encoding scheme {Eα

S : α ∈
R,S ⊆ [k]}. We refer to Eα

S as the set of encodings of the pair (α, S). We re-
strict to graded encoding schemes where R is Zp and p is a prime exponential
in n and k.
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– Encoding: EncE takes as input the secret parameters sp, an element α ∈ R
and set S ⊆ [k], and outputs a random encoding of the pair (α, S).

– Addition: AddE takes as input the public parameters pp and encodings u1 ∈
Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1+α2, S) if S1 = S2 =

S and outputs ⊥ otherwise.
– Negation: SubE takes as input the public parameters pp and encodings u1 ∈

Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1−α2, S) if S1 = S2 =

S and outputs ⊥ otherwise.
– Multiplication: MultE takes as input the the public parameters pp and encod-

ings u1 ∈ Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1 ·α2, S1∪S2)

if S1 ∩ S2 = ∅ and outputs ⊥ otherwise.
– Zero testing: isZeroE takes as input the public parameters pp and an encoding

u ∈ ES(α), and outputs 1 if and only if α = 0 and S is the universe set [k].9

Whenever it is clear from the context, to simplify notation we drop the subscript
E when we refer to the above procedures (and simply call them InstGen,Enc, . . .).

In known candidate constructions [GGH13a, CLT13], encodings are “noisy”
and the noise level increases with each operation; the parameters, however, are
set so that any poly(n, k) operations can be performed without running into
trouble. For convenience of notation (and just like all other works in the area),
we ignore this noise issue.10

Note that the above procedures allow algebraic operations on the encodings in
a restricted way. Given the public parameters and encodings made under the sets
S, one can only perform algebraic operations that are allowed by the structure
of the sets in S. We call such operations S-respecting and formalize this notion
as follows:

Definition 3 (Set Respecting Arithmetic Circuits). For any sequence S
of subsets of [k], we say that an arithmetic circuit C (i.e. gates perform only
ring operations {+,−, ·}) is S-respecting if it holds that

– Eevery input wire of C is tagged with some set in S.
– For every + and − gate in C, if the tags of the two input wires are the same

set S then the output wire of the gate is tagged with S. Otherwise the output
wire is tagged with ⊥.

9 In the candidate scheme given by [GGH13a], isZero may not have perfect correct-
ness: the generated instances (pp, sp) can be “bad” with some negligible probability,
so that there could exist an encoding u of a nonzero element where isZero(pp, u) = 1.
However, these “bad” parameters can be efficiently detected during the execution of
InstGen. We can thus modify the encoding scheme to simply set Enc(pp, e) = e when-
ever the parameters are “bad” (and appropriately modify Add,Sub,Mult and isZero
so that the operate on “unencoded” elements. This change ensures that, for every
pp, including “bad” ones, the zero test procedure isZero works with perfect correct-
ness. We note that since bad parameters occur only with negligible probability, this
change does not affect the security of the encodings.

10 The above definition can be easily generalized to deal with the candidates by only re-
quiring that the above conditions hold when u1, u2 have been obtained by poly(n, k)
operations.
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– For every · gate in C, if the tags of the two input wires are sets S1 and S2

and S1 ∩ S2 = ∅ then the output wire of the gate is tagged with S1 ∪ S2.
Otherwise the output wire is tagged with ⊥.

– It holds that the output wire is tagged with the universe set [k].11

2.2 Semantical Security

We now turn to defining semantical security of graded encoding schemes. As
outlined in the introduction, we start by defining the notion of a respecting
(or valid) message sampler w.r.t. to sets S,T . Such a message sampler samples
elements m0,m1, z such that for every (S,T )-respecting circuit C, isZero(C(·))
is constant over (mb, z), b ∈ {0, 1} with overwhelming probability.

Definition 4 (Respecting Message Sampler). Let E be a graded encoding
scheme, and {(Sn,Tn)}n∈N be an ensemble of pairs of sequences of sets over
[kn]. We say that a nuPPT M is a {(Sn,T n)}n∈N-respecting message sampler
(or valid w.r.t. {(Sn,T n)}n∈N) if

– M on input 1n and a public parameter pp computes the ring R associated with
pp and next based on only 1n and R generates and outputs a pair (m0,m1)
of sequences of |Sn| ring elements and a sequence z of |Tn| ring elements;

– There exists a polynomial Q(·, ·) such that for every n ∈ N, every (sp, pp) in
the support of InstGen(1n, 1kn), every (S,T )-respecting arithmetic circuit C,
there exists a constant c ∈ {0, 1} such that for any b ∈ {0, 1},
Pr[(m0,m1, z) ← M(1n, pp) : isZero(C(mb, z)) = c] ≥ 1−Q(n, kn)/|R|.

Let us comment that Definition 4 allows the message sampler M to select
m0,m1, z based on the ring R = Zp (or else we could not pick a uniform element
in the ring). On the other hand, to make the notion of valid message samplers
as restrictive as possible, we prevent the message selection from depending on
pp in any other way.

We can now define what it means for a graded encoding scheme to be se-
mantically secure. Roughly speaking, we require that encodings of (m0, z) and
(m1, z) under the sets (S,T ) are indistinguishable as long as (m0,m1, z) is
sampled by a message sampler that is valid w.r.t. (S,T ).

Definition 5 (Semantic Security). Let E be a graded encoding scheme and
q(·) and c(·) be polynomials. We say a graded encoding scheme E is (c, q)-
semantically secure if for every polynomial k(·), every ensemble {(Sn,Tn)}n∈N

where Sn and T n are sequences of subsets of [k(n)] of length c(k(n))) and q(k(n))
respectively, for every {(Sn,T n)}n∈N-respecting message sampler M and every
nuPPT adversary A, there exists a negligible function ε such that for every se-
curity parameter n ∈ N,

|Pr[Output0(1
n) = 1]− Pr[Output1(1

n) = 1]| ≤ ε(n)

11 For ease of notation, we assume that the description of a set S also contains a
description of the universe set [k].
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where Outputb(1n) is A’s output in the following game:

– Let (sp, pp) ← InstGen(1n, 1k(n)).
– Let m0,m1, z ← M(1n, pp).
– Let ub ← {Enc(sp,m0[i],Sn[i])}c(kn)

i=1 , {Enc(sp, z[i],Tn[i])}q(k(n))i=1 .
– Finally, run A(1n, pp,ub).

We say that E is (constant-message) semantically secure if it is (O(1), O(k))-
semantically secure; we say that E multi-message semantically secure if it is
(O(k), O(k))-semantically secure. We additionally say that E is subexponentially-
hard semantically secure if there exists some exists some constant α > 0 such
that for every nuPPT A the above indistinguishability gap is bounded by ε(n) =
2−O(nα).

In analogy with the GDDH assumption [GGH13a], our notion of semantical se-
curity restricts to the case when the number of elements encoded is O(k).12
Let us end this section by remarking that (sub-exponentially hard) semantical
security trivially holds against polynomial-time “generic” attackers that are re-
stricted to “legally” operating on the encodings—in fact, it holds even against
unbounded generic attackers that are restricted to only making polynomially
(or even subexponentially) many zero-test queries: recall that each legal zero-
test query is constant with overwhelming probability (whether we operate on
m0, z or m1, z) and thus by a Union Bound, the output of any generic at-
tacker restricted to polynomially many zero-test queries is also constant with
overwhelming probability.

Semantical Security w.r.t. Restricted Classes of Message Samplers. For
our specific construction of indistinguishability obfuscators it suffices to assume
the existence of semantically secure encodings w.r.t. restricted classes of message
samplers M , where the {(Sn,T n)}n∈N-respecting condition on M is replaced by
some stronger restriction on M . It particular, it suffices to restrict to message
samplers M that induce a high-entropy13 distribution over m0,m1, z—not only
the individual elements have high min-entropy but also any element computed
by applying a “non-terminal” sequence of legal arithmetic operations to mb, z
(for b ∈ {0, 1}); we refer to schemes satisfying this weaker notion of semantical
security entropic semantically secure (and refer the reader to the full version for
a formal definition).

12 This restriction was suggested in [BCKP14] and independently by Hoeteck Wee;
our original formulation of semantical security considered an unbounded polynomial
number of elements in z (but our proof of security only relied on security for O(k)
elements). We now refer to the unbounded notion as unbounded semantical security,
but it will not be needed for any of our results.

13 Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−
O(log log |R|) where R is the ring associated with the encodings; that is, the min-
entropy is “almost” optimal (i.e., log |R|).
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3 Proof Overview

We here provide an overview of our obfuscator and its proof of security, and refer
the reader to the full version [PST13] for further details.

The Basic Obfuscator. We start by providing a construction of a “basic” ob-
fuscator; our final construction will then rely on the basic obfuscator as a black-
box. The construction of this obfuscator closely follows the design principles laid
out in the original work by Garg et al [GGH+13b] and follow-up constructions
[BR14, BGK+13] (in fact, the basic obfuscator may be viewed as a simplified
version of the obfuscator from [BGK+13]). As these works, we proceeds in three
steps:

– We view the NC1 circuit to be obfuscated as a branching program BP (us-
ing Barrington’s Theorem [Bar86])—that is, the program is described by m
pairs of matrices (Bi,0, Bi,1), each one labelled with an input bit inp(i). The
program is evaluated as follows: for each i ∈ [m], we choose one of the two
matrices (Bi,0, Bi,1), based on the input. Next, we compute the product of
the chosen matrices, and based on the product determine the output—there
is a unique “accept” (i.e., output 1) matrix, and a unique “reject” (i.e., output
0) matrix.

– The branching program BP is randomized using Kilian’s technique [Kil88]
(roughly, each pair of matrices is appropriately multiplied with the same
random matrix R while ensuring that the output is the same), and then
“randomized” some more—each individual matrix is multiplied by a random
scalar α. Let us refer to this step as Rand.

– Finally the randomized matrices are encoded using multilinear encodings
with the sets selected appropriately. We here rely on a (simple version) of
the straddling set idea of [BGK+13] to determine the sets. We refer to this
step as Encode.

(The original construction as well as the subsequent works also consisted of sev-
eral other steps, but for our purposes these will not be needed.) The obfuscated
program is now evaluated by using the multilinear operations to evaluate the
branching program and finally appropriately use the zero-test to determine the
output of the program.

Roughly speaking, the idea behind the basic obfuscator is that the multilinear
encodings intuitively ensure that any attacker getting the encoding needs to
multiply matrices along paths that corresponds to some input to the branching
program (the straddling sets are used to ensure that the input is used consistently
in the evaluation)14; the scalars α, roughly speaking, ensure that a potential
attacker without loss of generality can use a single “multiplication-path” and still
succeed with roughly the same probability, and finally, Kilian’s randomization
steps ensures that if an attacker only operates on matrices along a single path
that corresponds to some input x (in a consistent way), then its output can

14 The encodings, however, still permit an attacker to add elements within matrices.
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be perfectly simulated given just the output of the circuit on input x. (The
final step relies on the fact that the output of the circuit uniquely determines
product of the branching program along the path, and Kilian’s randomization
then ensures that the matrices along the path are random conditioned on the
product being this unique value.) Thus, if an attacker can tell apart obfuscations
of two programs BP0, BP1, there must exist some input on which they produce
different outputs. The above intuitions can indeed be formalized w.r.t. generic
attackers (that only operate on the encodings in a legal way, respecting the set
restrictions), relying on arguments from [BR14, BGK+13]. This already suffices
to prove that the basic obfuscator is an indistinguishability obfuscator assuming
the encodings are multi-message semantically secure.15

The Merge Procedure. Tobase security on theweaker assumption of (constant-
message) semantical security, we will add an additional program transformation
steps before the Rand and Encode steps. Roughly speaking, we would like to have
a method Merge(BP0, BP1, b) that “merges” BP0 and BP1 into a single branching
programthat evaluatesBPb; additionally, we require thatMerge(BP0, BP1, 0) and
Merge(BP0, BP1, 1) only differ in a constant number of matrices. We achieve this
merge procedure by connecting together BP0, BP1 into a branching program of
double width and adding two “switch” matrices in the beginning and the end, deter-
mining ifwe should go “up” or “down”.Thus, to switchbetweenMerge(BP0, BP1, 0)
(which is functionally equivalent to BP0) and Merge(BP0, BP1, 1) (which is func-
tionally equivalent toBP1) we just need to switch the “switch matrices”. More pre-
cisely, given branching programs BP0 and BP1 described respectively by pairs of
matrices {(B0

i,0, B
0
i,1), (B1

i,0, B
1
i,1)}i∈[m], we construct a merged program

Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m+2] such that

B̂0
i,b = B̂1

i,b=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) differ only in the first and the last matrices (i.e., the
“switch” matrices). Furthermore, it is not hard to see that Merge(BP0, BP1, b)
is functionally equivalent to BPb.
15 As mentioned above, there are still some minor subtleties involved in doing this: the

analyses of [BR14, BGK+13] implicitly show that all polynomial-size legal arithmetic
circuits are constant with overwhelming probability, but by slightly tweaking the
constructions and the analyses to ensure a “perfect” simulation property, we can
extend these arguments to hold against all (arbitrary-size) legal arithmetic circuits
and thus base security on multi-message semantical security.
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Our candidate obfuscator is now defined as iO(B) = Encode(Rand(Merge(BP,
I, 0))), where I is simply a “dummy" program of the same size as BP .16

The idea behind the merge procedure is that to prove that obfuscations of
two programs BP0, BP1 are indistinguishable, we can come up with a sequence
of hybrid experiments that start with iO(BP0) and end with iO(BP1), but be-
tween any two hybrids only changes a constant number of encodings, and thus
we may rely on semantic security of multilinear encodings to formalize the above
intuitions. At a high level, our strategy will be to matrix-by-matrix, replace the
dummy branching program in the obfuscation of BP0 with the branching pro-
gram for BP1. Once the entire dummy branching program has been replaced
by BP1, we flip the “switch" so that the composite branching program now
computes the branching program for BP1. We then replace the branching pro-
gram for BP0 with BP1, matrix by matrix, so that we have two copies of the
branching program for BP1. We now flip the “switch" again, and finally restore
the dummy branching program, so that we end up with one copy of BP1 and
one copy of the dummy, which is now a valid obfuscation of BP1. In this way,
we transition from an obfuscation of BP0 to an obfuscation of BP1, while only
changing a small piece of the obfuscation in each step. (On a very high-level,
this approach is somewhat reminiscient of the Naor-Yung “two-key” approach
in the context of CCA security [NY90] and the “two-key” bootstrapping result
for indistinguishability obfuscation due to Garg et al [GGH+13b]—in all these
approaches the length of the scheme is artificially doubled to facilitate a hybrid
argument. It is perhaps even more reminiscient of the Feige-Shamir “trapdoor
witness” approach for constructing zero-knowledge arguments [FS90], whereby
an additional “dummy” trapdoor witness is introduced in the construction to
enable the security proof.)

More precisely, consider the following sequence of hybrids.

– We start off with iO(BP0) = Enc(Rand(Merge(BP0, I, 0)))
– We consider a sequence of hybrids where we gradually change the dummy

program I to become BP1; that is, we consider Encode(Rand(Merge(BP0,
BP ′, 0))), where BP ′ is “step-wise” being populated with elements from BP1.

– We reach Encode(Rand(Merge(BP0, BP1, 0))).
– We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).
– We consider a sequence of hybrids where we gradually change the BP0 to

become BP1; that is, we consider Encode(Rand(Merge(BP ′, BP1, 1))), where
BP ′ is “step-wise” being populated with elements from BP1.

– We reach Encode(Rand(Merge(BP1, BP1, 1))).
– We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).
– We consider a sequence of hybrids where we gradually change the second

BP1 to become I; that is, we consider Encode(Rand(Merge(BP1, BP ′, 0))),
where BP ′ is “step-wise” being populated with elements from I.

– We reach Encode(Rand(Merge(BP1, I, 0))) = iO(BP1).
16 This description oversimplifies a bit. Formally, the Rand step needs to depends on

the field size used in the Encode steps, and thus in our formal treatment we combine
these two steps together.



514 R. Pass and K. Seth, and S. Telang

By construction we have that if BP0 and BP1 are functionally equivalent, then
so will all the hybrid programs–the key point is that we only “morph” between
two branching programs on the “inactive” part of the merged branching program.
Furthermore, by construction, between any two hybrids we only change a con-
stant number of elements. Thus, if some distinguisher can tell apart iO(BP0)
and iO(BP1), it must be able to tell apart two consecutive hybrids. But, by
semantic security it then follows that some “legal” arithmetic circuit can tell
apart the encodings in the two hybrids. Roughly speaking, we can now rely on
simulation security of the basic obfuscator w.r.t. to just legal arithmetic circuits
to complete the argument. A bit more precisely, based on BP0, BP1 and the
hybrid index i, we can define a message sampler Mi,BP0,BP1 that is valid (by the
simulation arguments in [BGK+13]) as long as BP0 is functionally equivalent
to BP1, yet our distinguisher manages to distinguish messages sampled from
Mi,BP0,BP1 , contradicting semantical security.

Dealing with Branching Programs with Non-unique Outputs. There
is a catch with the final step though. Recall that to rely on Kilian’s simulation
argument it was crucial that there are unique accept and reject matrices. For our
“merged” programs, this is no longer the case (the output matrix is also a function
of the second “dummy” program), and thus it is no longer clear how to prove that
the message distribution above is valid. We overcome this issue by noting that
the first column of the output matrix actually is unique, and this is all we need
to determine the output of the branching program; we refer to such branching
programs as fixed output-column branching programs. Consequently it suffices to
release encodings of the just first column (as opposed to the whole matrices) of
the last matrix pair in the branching program, and we can still determine the
output of the branching program. As we show, for such a modified scheme, we
can also simulate the (randomized) matrices along an “input-path” given just
the first column of the output matrix.

A Modular Analysis: Neighboring-Matrix iO. In the actual proof, we
provide a modular analysis of the above two steps (that may be interesting in
its own right).

– We define a notion of neighboring-matrix indistinguishability obfuscation,
which relaxes indistinguishability obfuscation by only requiring security to
hold w.r.t. any two functionally equivalent branching programs that differ
in at most a constant number of matrices.

– We then use the above merge procedure (and the above hybrid argument)
to show that the existence of a neighboring-matrix iO for all “fixed output
column” branching programs implies the existence of a “full-fledged” iO.

– We finally use the “basic obfuscator” construction to show how to construct
a neighboring-matrix iO for all fixed output column branching programs
based on (constant-message) semantical security.

Basing Security on a (Single) Falsifiable Assumption. To base security
on a falsifiable assumption, we rely on a different merge procedure from the
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work of Boyle, Chung and Pass [BCP14]: Given two NC1 circuits C0, C1 taking
(at most) n-bit inputs, and a string z, let M̂erge(C0, C1, z) be a circuit that on
input x runs C0(x) if x ≥ z and C1(x) otherwise; in essence, this procedure lets
us “traverse” between C0 and C1 while provably only changing the functionality
on at most one input. ([BCP14] use this type of merged circuits to perform a
binary search and prove that indistinguishability obfuscation implies differing-
input obfuscation for circuits that differ in only polynomially many inputs.) We
now define a notion of neighboring-input iO, which relaxes iO by only requiring
that security holds with respect to “neigboring-input” programs M̂erge(C0, C1, z),
M̂erge(C0, C1, z+1) that are functionally equivalent. Note that checking whether
M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) are functionally equivalent is easy: they
are equivalent iff C0(z) = C1(z). (As such, the assumption that a scheme sat-
isfies neighboring-input iO is already an efficiently falsfiable assumption.) Fur-
thermore, by a simple hybrid argument over z ∈ {0, 1}n, exponentially-secure
neighboring-input iO implies “full” iO—exponential security is needed since we
have 2n hybrids. (We mention a very recent work by Gentry, Lewko and Waters
[GLW14] in the context of witness encryption [GGSW13] that similarly defines a
falsifiable primitive “positional witness encryption” that implies the full-fledged
notion with an exponential security loss.)

Additionally, note that to show that our construction satisfies exponentially-
secure neighboring-input iO, we only need to rely on exponentially-secure seman-
tical security w.r.t. classes of message distributions corresponding to programs
of the form M̂erge(C0, C1, z), M̂erge(C0, C1, z+1). Equivalently, it suffices to rely
on exponentially-secure semantical security w.r.t. a single distribution over sets
and message samplers corresponding to uniformly selected z and programsC0, C1

(again, this only results in an exponential security loss). Finally, by padding the
security parameter of the multilinear encodings in the construction, it actually
suffices to rely on subexponential security.
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