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Abstract. We provide a generic transformation from any affine mes-
sage authentication code (MAC) to an identity-based encryption (IBE)
scheme over pairing groups of prime order. If the MAC satisfies a security
notion related to unforgeability against chosen-message attacks and, for
example, the k-Linear assumption holds, then the resulting IBE scheme
is adaptively secure. Our security reduction is tightness preserving, i.e.,
if the MAC has a tight security reduction so has the IBE scheme. Fur-
thermore, the transformation also extends to hierarchical identity-based
encryption (HIBE). We also show how to construct affine MACs with
a tight security reduction to standard assumptions. This, among other
things, provides the first tightly secure HIBE in the standard model.

Keywords: IBE, HIBE, standard model, tight reduction.

1 Introduction

Identity-based encryption (IBE) [24] enables a user to encrypt to a recipient’s
identity id (e.g., an email or phone number); decryption can be done using a
user secret key for id, obtained from a trusted authority. The first instantiations
of an IBE scheme were given in 2001 [7,4,23]. Whereas earlier constructions
relied on the random oracle model, the first adaptively secure construction in
the standard model was proposed in [26]. Here adaptive security means that
an adversary may select the challenge identity id∗ after seeing the public key
and arbitrarily many user secret keys for identities of his choice. The concept
of IBE generalizes naturally to hierarchical IBE (HIBE). In an L-level HIBE,
hierarchical identities are vectors of identities of maximal length L and user
secret keys for a hierarchical identity can be delegated. An IBE is simply a
L-level HIBE with L = 1.

In this work we focus on adaptively secure (H)IBE schemes in the standard
model. The construction from [26] has the disadvantage of a non-tight security
reduction, i.e., the security reduction reducing security of the L-level HIBE to
the hardness of the underlying assumption loses at least a factor of QL, where
Q is the maximal number of user secret key queries. Modern HIBE schemes
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[25,6] only lose a factor Q, independent of L. The first tightly secure IBE was
recently proposed by Chen and Wee [6] but designing a L-level HIBE for L > 1
and a tight (i.e., independent of Q) security reduction to a standard assumption
remains an open problem.

Until now, all known constructions of (H)IBE schemes are specific, i.e., they
are custom-made to a specific hardness assumption. This is in contrast to other
basic cryptographic primitives such as signatures and public-key encryption, for
which efficient generic transformations have been known for a long time. We
would like to highlight the concept of smooth projective hash proof systems for
chosen-ciphertext secure encryption [9] and an old construction by Bellare and
Goldwasser [1] that transforms any pseudorandom function (PRF) plus a non-
interactive zero-knowledge (NIZK) proof into a signature scheme. Until today
no generic construction of a (H)IBE from any “simple” low-level cryptographic
primitive is known. However, the recent IBE scheme by Chen and Wee [6] uses
a specific randomized PRF at the core of their construction, but its usage is
non-modular.

1.1 This Work

Affine MACs. In this work we put forward the notion of affine message au-
thentication codes (affine MACs). An affine MAC over Zn

q is a randomized MAC
with a special algebraic structure over some group G = 〈g〉 of prime-order q. For
a vector a ∈ Z

n
q , define [a] := ga = (ga1 , . . . , gan)� ∈ G

n as the implicit repre-
sentation of a over G. Roughly speaking, the MAC tag τm = ([t], [u]) of an affine
MAC over Z

n
q on message m ∈ M is split into a random message-independent

part [t] ∈ G
n plus a message-depending affine part [u] ∈ G satisfying

u =
∑

fi(m)x�
i · t+

∑
f ′
i(m)x′

i ∈ Zq, (1)

where fi, f
′
i : M → Zq are public functions and xi ∈ Z

n
q , x′

i ∈ Zq are from the
secret key skMAC. Almost all group-based MACs recently considered in [10], as
well as the MAC derived from the randomized Naor-Reingold PRF [21] implicitly
given in [6] are affine.

From Affine MACs to IBE. Let us fix (possibly symmetric) pairing groups
G1,G2,GT equipped with a bilinear map e : G1 ×G2 → GT . Let Dk-MDDH be
any Matrix Diffie-Hellman Assumption [11]1 that holds in G1, e.g., k-Linear or
DDH.

Our main result is a generic transformation IBE[MACn,Dk] from any affine
message authentication code MACn over Z

n
q into an IBE scheme. If MACn (de-

fined over G2) is PR-CMA-secure (pseudorandom against chosen message attacks,

1 The Dk-MDDH assumption over G1 captures naturally all subspace decisional as-
sumptions over prime order groups. Concretely, it states that given [A]1 ∈ G

(k+1)×k,
the value [A ·w]1 ∈ G

k+1
1 is pseudorandom, where A ∈ Z

(k+1)×k
q gets chosen accord-

ing to distribution Dk and w ∈ Z
k
q . Examples include k-Linear and DDH (k = 1).
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a decisional variant of the standard UF-CMA security for MACs) and the Dk-
MDDH assumption holds in G1, then IBE[MACn,Dk] is an adaptively secure (and
anonymous) IBE scheme. Furthermore, the security reduction of IBE[MACn,Dk]
is as tight as the one of MACn. The size of the public IBE parameters depends
on the size of the MAC secret key skMAC, whereas the IBE ciphertexts and user
secret keys always contain n + k + 1 group elements. We stress that our trans-
formation works with any k ≥ 1 and any Dk-MDDH Assumption, hence Dk can
be chosen to match the security assumption of MACn.

We also extend our generic transformation to HIBE schemes. In particular,
we have two generic HIBE constructions depending on different properties of
the underlying affine MACs. If the affine MAC is delegatable (to be defined in
Section 5.1), we obtain an adaptively secure L-level HIBE HIBE[MACn,Dk]. If
the affine MAC is furthermore anonymity-preserving, we obtain an anonymous
and adaptively secure L-level HIBE AHIBE[MACn,Dk]. Both of the construc-
tions have the same tightness properties as the MAC, and their ciphertexts
sizes are the same as in the IBE case. Due to different delegation methods,
AHIBE[MACn,Dk] has slightly shorter public parameters, but larger user secret
keys than HIBE[MACn,Dk]. Due to space restrictions, the anonymity-preserving
transformation AHIBE[MACn,Dk] is only given in the full version [3].

Let us highlight again the fact that the underlying object is a symmetric prim-
itive (a MAC) that we transform to an asymmetric primitive (an IBE scheme).
Furthermore, as a MAC is a very simple and well-understood object, we hope
that our transformation can contribute to understanding the more complex ob-
ject of an IBE scheme.

Two Delegatable Affine MACs. To instantiate our transformations, we con-
sider two specific delegatable affine MACs. Our first construction, MACNR[Dk], is
a generalization of the MAC derived from the randomized Naor-Reingold PRF
[6] to any Dk-MDDH Assumption. (Unfortunately, the MAC based on the origi-
nal deterministic Naor-Reingold PRF is not affine.) We show that it is affine over
Z
n
q with n = k and delegatable. We prove PR-CMA-security with an (almost) tight

security reduction to Dk-MDDH. (Almost tight, as the security reduction loses a
factor O(m), where m is the length of the message space.) This leads to the first
HIBE with a tight security reduction to a standard assumption. Ciphertexts and
user secret keys ofHIBE[MACNR[Dk],Dk] only contain 2k+1 group elements which
is 3 in case we use k = 1 and the SXDH Assumption (i.e., DDH in G1 and G2).
Interestingly, our SXDH-based IBE scheme can be seen as a “two-copy version” of
Waters’ IBE [26] which does not have a tight security reduction. The disadvantage
of MACNR[Dk] is that the public parameters of IBE[MACNR[Dk],Dk] are linear in
the bit-size of the identity space.

Our second construction, MACHPS[Dk], is based on a hash proof system given
in [11] for any Dk-MDDH problem. A hash proof system is known to imply a
UF-CMA-secure MAC [10]. We extend this result to PR-CMA-security, where
the reduction loses a factor of Q, the number of MAC queries. Furthermore,
MACHPS[Dk] is affine over Z

k+1
q (i.e., n = k + 1) and delegatable. Whereas

public parameters of the L-level HIBE HIBE[MACHPS[Dk],Dk] only depend on



(H)IBE from Affine Message Authentication 411

L, ciphertexts and user secret keys contain 2k + 2 group elements which is 4
in case of the SXDH assumption (k = 1). We remark that the efficiency of
HIBE[MACHPS[Dk],Dk] is roughly the same as a HIBE proposed in [6]. Addi-
tionally, we show MACHPS[Dk] is also anonymity-preserving, which implies an
anonymous (but non-tight) HIBE, AHIBE[MACHPS[Dk],Dk], while the delegat-
able MACNR[Dk] is unlikely to be anonymity-preserving.

Table 1 summarizes all known (H)IBE scheme and their parameters.

Extensions. In fact, our generic transformation even gives (hierarchical) ID-
based hash proof system from any (delegatable) affine MAC and the Dk-MDDH
assumption. From an (H)ID-based hash proof system one readily obtains a
chosen-ciphertext secure (H)IBE [16]. Furthermore, any (H)IBE directly implies
a (Hierarchical ID-based) signature scheme [12]. The signature obtained from
IBE[MACNR[Dk],Dk] has a tight security reduction. Even though it is not entirely
structure preserving, it can still be used to obtain a constant-size IND-CCA-secure
public-key encryption scheme with a tight security reduction in the multi-user
and multi-challenge setting [14,2].

1.2 Technical Details

Our Transformation. The high level idea behind our generic transformation
IBE[MAC,Dk] from any affine MAC over Z

n
q to an IBE scheme is the transfor-

Table 1. Comparison between known adaptively secure IBEs with identity-space
ID = {0, 1}λ and L-level HIBEs with identity-space ID = ({0, 1}λ)L in prime or-
der groups from standard assumptions. For |pk| (public-key size), |usk| (user secret-key
size), and |C| (ciphertext size), we count the sum of all elements in G1,G2, GT , and Zq.
Q is the number of user secret key queries by the adversary. Schemes from this paper
are: IBEHPS := IBE[MACHPS[Dk], k-LIN], IBENR := IBE[MACNR[Dk], k-LIN], HIBEHPS :=
HIBE[MACHPS[Dk], k-LIN], HIBENR := HIBE[MACNR[Dk], k-LIN] and AHIBEHPS :=
AHIBE[MACHPS[Dk], k-LIN].

Scheme |pk| |usk| |C| Anonymity? Loss Assumption

IB
E

Wat05 [26] 4 + λ 2 2 – O(λQ) DBDH
Wat09 [25] 13 9 10 – O(Q) 2-LIN
Lew12 [17] 25 6 6

√
O(Q) 2-LIN

CLL+12 [5] 9 4 4 – O(Q) SXDH
JR13 [15] 7 5 4 – O(Q) SXDH
CW13 [6] 2k2(2λ+ 1) + k 4k 4k – O(λ) k-LIN
IBEHPS 3k2 + 4k 2k + 2 2k + 2

√
O(Q) k-LIN

IBENR 2λk2 + 2k 2k + 1 2k + 1
√

O(λ) k-LIN

H
IB

E

Wat05 [26] O(λL) O(λL) 1 + L – O(λQ)L DBDH
Wat09 [25] O(L) O(L) O(L) – O(Q) 2-LIN
CW13 [6] O(Lk2) O(Lk) 2k + 2 – O(Q) k-LIN
HIBEHPS O(Lk2) O(Lk) 2k + 2 – O(Q) k-LIN
HIBENR O(Lλk2) O(Lλk) 2k + 1 – O(Lλ) k-LIN
AHIBEHPS O(Lk2) O(Lk2) 2k + 2

√
O(Q) k-LIN
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mation from Bellare and Goldwasser [1] from a MAC (originally, a PRF) and
a NIZK to a signature scheme. We use the same approach but define the user
secret keys to be Bellare-Goldwasser signatures. The (H)IBE encryption func-
tionality makes use of the special properties of the algebraic MAC and (tuned)
Groth-Sahai proofs.

Concretely, the public key pk of the IBE scheme contains special perfectly
hiding commitments [Z]1 to the MAC secret keys skMAC, which also depend on
the Dk-MDDH assumption. The user secret key usk[id] of an identity id contains
the MAC tag τid = ([t]2, [u]2) ∈ G

n+1
2 on id, plus a tuned Groth-Sahai [13] non-

interactive zero-knowledge (NIZK) proof π that τid was computed correctly with
respect to the commitments [Z]1 containing skMAC. Since the MAC is affine, the
NIZK proof π ∈ G

k is very compact. The next observation is that the NIZK
verification equation for π is a linear equation in the (committed) MAC secret
keys and hence a randomized version of it gives rise to the IBE ciphertext and
a decryption algorithm.

Security Proof. The security proof can also be sketched easily at a high level.
We first apply a Cramer-Shoup argument [8], where we decrypt the IBE chal-
lenge ciphertext using the MAC secret key skMAC. Next, we make the challenge
ciphertext inconsistent which involves one application of the Dk-MDDH assump-
tion. Now we can use the NIZK simulation routine to simulate the NIZK proof
π from the user secret key usk[id] = (τid, π). At this point, as the commitments
perfectly hide the MAC secret keys skMAC, the only part of the security exper-
iment still depending on skMAC is τid from usk[id] plus the computation of the
challenge ciphertext. Now we are in the position to make the reduction to the
symmetric primitive. We can use the PR-CMA symmetric security of MAC to
argue directly about the pseudorandomness of the IBE challenge ciphertext. An
IBE with pseudorandom ciphertexts is both IND-CPA secure and anonymous.

1.3 Other Related Work

Recently, Wee [27] proposed an information-theoretic primitive called predicate
encodings that characterize the underlying algebraic structure of a number of
predicate encoding schemes, including known IBE [19] and attribute-based en-
cryption (ABE) [18] schemes. The main conceptual difference to affine MACs is
that predicate encodings is a purely information-theoretic object. Furthermore,
the framework by Wee is inherently limited to composite order groups.

Waters introduced the dual system framework [25] in order to facility tighter
proofs for (H)IBE systems and beyond. The basic idea is that there exists func-
tional and semi-functional ciphertexts and user secret keys, that are compu-
tationally indistinguishable. Decrypting a ciphertext with a user secret key is
successful unless both are semi-functional. The Dk-MDDH assumptions are specif-
ically tailored to the dual system framework as they provide natural subspace
assumptions over G

k+1. Previous dual system constructions [25,19,6] usually
first construct a scheme over composite-order groups and then transform it into
prime-order groups. As the transformation uses a subspace assumption overGk+1
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for each component of the composite-order group, ciphertexts and user secret
keys contain at least 2(k + 1) group elements. An exception is a recent direct
construction in prime-order groups by Jutla and Roy [15]. Their scheme is based
on the SXDH assumption (i.e., k = 1) and achieves slightly better ciphertext
size of 3 group elements plus one element from Zq. Even though our construc-
tion and proof strategy is inspired by the Bellare-Goldwasser NIZK approach
and Cramer-Shoup’s hash proof systems, we still roughly follow the dual system
framework. However, as we give a direct construction in prime-order groups,
our IBE scheme IBE[MACNR[Dk],Dk] has ciphertexts and user secret keys of size
2k + 1, breaking the “2(k + 1) barrier”.

Lewko and Waters [20] consider the difficulty of a security proof for L-level
HIBEs that does not proving exponentially in L. Essentially, they prove that any
scheme with rerandomizable user secret keys (over the space of all “functional"
user secret keys) will suffer an exponential degradation in security. While some
of our tightly-secure HIBEs are rerandomizable, they are only rerandomizable
over the space of all user secret keys generated by the user secret key genera-
tion algorithm. Hence, our tightly-secure HIBE does not contradict the negative
results of [20].

1.4 Open Problems

We leave finding a PR-CMA-secure algebraic MAC with a tight security reduc-
tion and constant-size secret keys as an open problem. Given our main result this
would directly imply a tightly-secure (H)IBE with constant-size public param-
eters. Furthermore, we leave finding a tightly-secure and anonymity-preserving
delegatable affine MAC as an open problem, which would imply a tightly-secure
anonymous HIBE.

Finally, we think that the concept of algebraic MACs can be extended such
that our transformation also covers more general predicate encoding schemes,
including attribute-based encryption.

2 Definitions

2.1 Notation

If x ∈ Bn, then |x| denotes the length n of the vector. Further, x ←$ B denotes
the process of sampling an element x from set B uniformly at random.

Games. We use games for our security reductions. A game G is defined by pro-
cedures Initialize and Finalize, plus some optional procedures P1, . . . ,Pn.
All procedures are given using pseudo-code, where initially all variables are un-
defined. An adversary A is executed in game G if it first calls Initialize, ob-
taining its output. Next, it may make arbitrary queries to Pi (according to their
specification), again obtaining their output. Finally, it makes one single call to
Finalize(·) and stops. We define GA as the output of A’s call to Finalize.
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2.2 Pairing Groups and Matrix Diffie-Hellman Assumption

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and g2
are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerated) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [11]. For
s ∈ {1, 2, T } and a ∈ Zq define [a]s = gas ∈ Gs as the implicit representation of
a in Gs. More generally, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the

implicit representation of A in Gs:

[A]s :=

⎛

⎝
ga11
s ... ga1m

s

gan1
s ... ganm

s

⎞

⎠ ∈ G
n×m
s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs

be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute
the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T using the
pairing e. For a,b ∈ Z

k
q define e([a]1, [b]2) := [a�b]T ∈ GT .

We recall the definition of the matrix Diffie-Hellman (MDDH) assumption
[11].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z

(k+1)×k
q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A ←$ Dk form an
invertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←$ Dk, w ←$ Z

k
q and

u ←$ Z
k+1
q .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk

be a matrix distribution and s ∈ {1, 2, T }. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where G ← GGen(1λ), A ←$ Dk,w ←$ Z
k
q ,u ←$ Z

k+1
q .

For each k ≥ 1, [11] specifies distributions Lk, Ck, SCk, ILk such that
the corresponding Dk-MDDH assumption is the k-Linear assumption, the k-
Cascade, the k-Symmetric Cascade, and the Incremental k-Linear Assumption,
respectively. All assumptions are generically secure in bilinear groups and form a
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hierarchy of increasingly weaker assumptions. The distributions of A are exem-
plified for k = 2, where a1, . . . , a6 ←$ Zq.

C2 :

⎛

⎝
a1 0
1 a2
0 1

⎞

⎠ , SC2 :

⎛

⎝
a1 0
1 a1
0 1

⎞

⎠ , L2 :

⎛

⎝
a1 0
0 a2
1 1

⎞

⎠ , U2 :

⎛

⎝
a1 a2
a3 a4
a5 a6

⎞

⎠ .

It was also shown in [11] that Uk-MDDH is implied by all other Dk-MDDH
assumptions. If A is chosen from SCk, then [A]s can be represented with 1
group element; if A is chosen from Lk or Ck, then [A]s can be represented with
k group elements; If A is chosen from Uk, then [A]s can be represented with
(k+1)k group elements. Hence, SCk-MDDH offers the same security guarantees
as k-Linear, while having the advantage of a more compact representation.

3 Message Authentication Codes

We use the standard definition of a (randomized) message authentication code
MAC = (GenMAC,Tag,Ver), where skMAC ←$ GenMAC(par) returns a secret key,
τ ←$ Tag(skMAC,m) returns a tag τ on message m from some message space M,
and Ver(skMAC,m, τ) ∈ {0, 1} returns a verification bit.

3.1 Affine MACs

Affine MACs over Zn
q are group-based MACs with a specific algebraic structure.

Definition 3. Let par be system parameters containing a group G = (G2, q, g2)
of prime-order q and let n ∈ N. We say that MAC = (GenMAC,Tag,Ver) is affine
over Z

n
q if the following conditions hold:

1. GenMAC(par) returns skMAC containing (B,x0, . . . ,x�, x
′
0, . . . , x

′
�′), where B ∈

Z
n×n′
q , xi ∈ Z

n
q , x′

j ∈ Zq, for some n′, �, �′ ∈ N.
2. Tag(skMAC,m ∈ B�) returns a tag τ = ([t]2, [u]2) ∈ G

n
2 ×G2, computed as

t = Bs ∈ Z
n
q for s ←$ Z

n′
q (2)

u =

�∑

i=0

fi(m)x�
i t+

�′∑

i=0

f ′
i(m)x′

i ∈ Zq (3)

for some public defining functions fi : M → Zq and f ′
i : M → Zq. Vector t

is the randomness and u is the (deterministic) message-depending part.
3. Ver(skMAC,m, τ = ([t]2, [u]2)) verifies if (3) holds.

The standard security notion for probabilistic MACs is unforgeability against
chosen-message attacks UF-CMA [10]. In this work we require pseudorandom
against chosen-message attacks (PR-CMA), which is slightly stronger than
UF-CMA. Essentially, we require that the values used for one single verification
equation (3) on message m∗ are pseudorandom over G1 and GT .
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Initialize:
skMAC ←$ GenMAC(par)
Return ε

Eval(m):
QM = QM ∪ {m}
Return ([t]2, [u]2) ←$ Tag(skMAC,m)

Chal(m∗): //one query
h ←$ Z

∗
q

h0 =
∑

fi(m
∗)xi · h ∈ Z

n
q ;

h1 =
∑

f ′
i(m

∗)x′
i · h ∈ Zq

h0 ←$ Z
n
q ; h1 ←$ Zq

Return ([h]1, [h0]1, [h1]T )

Finalize(d ∈ {0, 1}):
Return d ∧ (m∗ /∈ QM)

Fig. 1. Games PR-CMAreal and PR-CMArand for defining PR-CMA security. In all
procedures, the boxed statements redefining (h0, h1) are only executed in game
PR-CMArand.

Let G = (G1,G2,GT , q, g1, g2, e) be an asymmetric pairing group such
that (G2, g2, q) is contained in par. We define the PR-CMA security via
games PR-CMAreal and PR-CMArand from Figure 1. Note that the output
([h]1, [h0]1, [h1]T ) of Chal(m∗) in game PR-CMAreal can be viewed as a “token”
for message m∗ to check verification equation (3) for arbitrary tags ([t]2, [u]2) via
equation e([h]1, [u]2)

?
= e([t]1, [h0]1) · [h1]T . Intuitively, the pseudorandomness of

[h1]T is responsible for indistinguishabilty and of [h0]1 to prove anonymity of
the IBE scheme.

Definition 4. An affine MAC over Z
n
q is PR-CMA-secure if for all PPT A,

Advpr-cma
MAC (A) := Pr[PR-CMAA

real ⇒ 1]− Pr[PR-CMAA
rand ⇒ 1] is negligible, where

the experiments are defined in Figure 1.

3.2 An Affine MAC from the Naor-Reingold PRF

Unfortunately, the (deterministic) Naor-Reingold pseudorandom function is not
affine. We use the following randomized version MACNR[Dk] = (GenMAC,Tag,Ver)
of it based on any matrix assumption Dk. For the special case Dk = Lk, it was
implicitly given in [6]. For a matrix A ∈ Z

(k+1)×k
q we denote the upper k rows

by A ∈ Z
k×k
q and the last row by A ∈ Z

1×k
q .

GenMAC(par):
A ←$ Dk; B := A ∈ Z

k×k
q

x1,0, . . . ,xm,1 ←$ Z
k
q

x′
0 ←$ Zq

Ret skMAC =
(B,x1,0, . . . ,xm,1, x

′
0)

Tag(skMAC,m):
s ←$ Z

k
q ; t = Bs

u = (
∑|m|

i=1 x
�
i,mi

)t+ x′
0

Ret τ = ([t]2, [u]2)
∈ G

k
2 ×G2

Ver(skMAC, τ,m):

If u = (
∑|m|

i=1 x
�
i,mi

)t+x′
0

then ret 1
Else ret 0

Note that MACNR[Dk] is n-affine over Z
n
q with message space M = {0, 1}m.

Writing xi,b = x2i+b we have n = n′ = k, �′ = 0, � = 2m + 1 and functions
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f0(m) = f1(m) = 0, f ′
0(m) = 1, and f2i+b(m) = (mi = b) for 1 ≤ i ≤ m, where

mi is the i-th bit of m. (To perfectly fit our definition, xi,b should be renamed
to x2i+b, but we conserve the other notations for better readability.)

Theorem 1. MACNR[Dk] is tightly PR-CMA-secure under the Dk-MDDH as-
sumption. In particular, for all adversaries A there exists an adversary D with
T(A) ≈ T(D) and Advpr-cma

MACNR[Dk]
(A) ≤ 4m(AdvDk,GGen(D)− 1/(q − 1)).

Note that the security bound is (almost) tight, as m is the bit-length of message
space M. The proof follows the ideas from [6,22]. We use m hybrids, where
in hybrid i all the (maximal Q) values x�

i,1−m∗
i
· t in the response to an Eval

query are replaced by uniform randomness. Here m∗ is the message from the
challenge query. We use the Q-fold Dk-MDDH assumption [11] (which gives
Q-many real-or-random Dk-MDDH tuples) to interpolate between the hybrids,
where the reductions guesses m∗

i correctly with probability 1/2. As the Q-fold Dk-
MDDH assumption is tightly implied by the standard Dk-MDDH assumption [11],
the proof follows. A formal proof can be found in the full version [3].

We remark, that one can define an alternative version of MACNR[Dk] by setting
x0 :=

∑
xi,0, xi := xi,1 −xi,0 and u = (x�

0 +
∑|m|

i=1 mix
�
i )t+ x′

0. This MAC has
a shorter secret key and can also be shown to be PR-CMA. (However, it does not
satisfy the stronger security notion of HPR-CMA needed in Sect. 5.)

3.3 An Affine MAC from Hash Proof System

Let Dk be a matrix distribution. We now combine the hash proof system for
the subset membership problem induced by the Dk-MDDH assumption from
[11] with the generic MAC construction from [10] and obtain the following
MACHPS[Dk] for M = Z

�
q. Algorithm GenMAC(par) picks B ←$ Dk, x0, . . . ,x� ←$

Z
k+1
q , and x′

0 ←$ Zq. The MAC secret-key is skMAC = (B,x0, . . . ,x�, x
′
0).

Tag(skMAC,m):
Parse skMAC = (B,x0, . . . ,x�, x

′
0)

s ←$ Z
k
q ; t = Bs ∈ Z

k+1
q

u = (x�
0 +

∑|m|
i=1 mi · x�

i )t+ x′
0

Return τ = ([t]2, [u]2) ∈ G
k+1
2 ×G2

Ver(skMAC, τ,m):
Parse skMAC = (B,x0, . . . ,x�, x

′
0)

If u = (x�
0 +

∑|m|
i=1 mi · x�

i )t+ x′
0

then return 1
Else return 0

Note that MACHPS[Dk] is n-affine over Z
n
q with n = k + 1, n′ = k, �′ = 0, and

defining functions f0(m) = 1, fi(m) = mi, and f ′
0(m) = 1, where mi is the i-th

component of m. For the moment we use � = 1 which already gives a MAC with
exponential message space M = Zq.

Combining [11,10] we obtain that MACHPS[Dk] is UF-CMA under the Dk-
MDDH assumption. The proof extends to show even PR-CMA security. Com-
pared to MACNR[Dk], we lose the tight reduction, but gain much shorter public
parameters. A formal proof can be found in the full version [3].

Theorem 2. MACHPS[Dk] is PR-CMA-secure under the Dk-MDDH assumption.
In particular, for all adversaries A there exists an adversary D with T(A) ≈
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T(D) and Advpr-cma
MACHPS[Dk]

(A) ≤ 2Q(AdvDk,GGen(D) + 1/q), where Q is the maxi-
mal number of queries to Eval(·).

4 Identity-Based Encryption from Affine MACs

In this section, we will present our transformation IBE[MAC,Dk] from affine
MACs to IBE based on the Dk-MDDH assumption.

4.1 Identity-Based Key Encapsulation

We now recall syntax and security of IBE in terms of an ID-based key encapsu-
lation mechanism IBKEM. Every IBKEM can be transformed into an ID-based
encryption scheme IBE using a (one-time secure) symmetric cipher.

Definition 5 (Identity-Based Key Encapsulation Scheme). An identity-
based key encapsulation (IBKEM) scheme IBKEM consists of four PPT algo-
rithms IBKEM = (Gen,USKGen,Enc,Dec) with the following properties.
– The probabilistic key generation algorithm Gen(1λ) returns the (master) pub-

lic/secret key (pk, sk). We assume that pk implicitly defines a message space
M, an identity space ID, a key space K, and ciphertext space C.

– The probabilistic user secret key generation algorithm USKGen(sk, id) returns
the user secret-key usk[id] for identity id ∈ ID.

– The probabilistic encapsulation algorithm Enc(pk, id) returns the symmetric
key K ∈ K together with a ciphertext C ∈ C with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the de-
capsulated key K ∈ K or the reject symbol ⊥.

For perfect correctness we require that for all λ ∈ N, all pairs (pk, sk) generated
by Gen(1λ), all identities id ∈ ID, all usk[id] generated by USKGen(sk, id) and all
(K,C) output by Enc(pk, id):

Pr[Dec(usk[id], id,C) = K] = 1.

The security requirements for an IBKEM we consider here are indistinguisha-
bility and anonymity against chosen plaintext and identity attacks (IND-ID-CPA
and ANON-ID-CPA). Instead of defining both security notions separately, we
define pseudorandom ciphertexts against chosen plaintext and identity attacks
(PR-ID-CPA) which means that challenge key and ciphertext are both pseudo-
random. Note that PR-ID-CPA trivially implies IND-ID-CPA and ANON-ID-CPA.

We define PR-ID-CPA-security of IBKEM formally via the games given in Fig-
ure 2.

Definition 6 (PR-ID-CPA Security). An identity-based key encapsulation
scheme IBKEM is PR-ID-CPA-secure if for all PPT A, Advpr-id-cpaIBKEM (A) :=

|Pr[PR-ID-CPAA
real ⇒ 1]− Pr[PR-ID-CPAA

rand ⇒ 1]| is negligible.
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Procedure Initialize:
(pk, sk) ←$ Gen(1λ)
Return pk

Procedure USKGen(id):
QID ← QID ∪ {id}
Return usk[id] ←$ USKGen(sk, id)

Procedure Enc(id∗): //one query
(K∗,C∗) ←$ Enc(pk, id∗)

K∗ ←$ K;C∗ ←$ C
Return (K∗,C∗)

Procedure Finalize(β):
Return (id∗ �∈ QID) ∧ β

Fig. 2. Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-
security

4.2 The Transformation

Let Dk be a matrix distribution that outputs matrices A ∈ Z
(k+1)×k
q . Let MAC be

an affine MAC over Zn
q with message space ID. Our IBKEM IBKEM[MAC,Dk] =

(Gen,USKGen,Enc,Dec) for key-space K = GT and identity space ID is defined
in Figure 3.

Gen(par):
A ←$ Dk

skMAC ←$ GenMAC(par)
Parse skMAC = (B,x0, . . . ,x�, x

′
0, . . . , x

′
�′)

For i = 0, . . . , �:
Yi ←$ Z

k×n
q ;Zi = (Y�

i | xi) ·A ∈ Z
n×k
q

For i = 0, . . . , �′:
y′
i ←$ Z

k
q ; z

′
i = (y′

i
� | x′

i) ·A ∈ Z
1×k
q

pk := (G, [A]1, ([Zi]1)0≤i≤�, ([z
′
i]1)0≤i≤�′)

sk := (skMAC, (Yi)0≤i≤�, (y
′
i)0≤i≤�′)

Return (pk, sk).

USKGen(sk, id):
([t]2, [u]2) ←$ Tag(skMAC, id)

v =
∑�

i=0 fi(id)Yit+
∑�′

i=0 f
′
i(id)y

′
i ∈ Z

k
q

Return usk[id] := ([t]2, [u]2, [v]2) ∈ G
n+1+k
2

Enc(pk, id):
r ←$ Z

k
q

c0 = Ar ∈ Z
k+1
q

c1 = (
∑�

i=0 fi(id)Zi) · r ∈ Z
n
q

C = ([c0]1, [c1]1)

K = (
∑�′

i=0 f
′
i(id)z

′
i) · r ∈ Zq

Return (K = [K]T ,C)

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [u]2, [v]2)
Parse C = ([c0]1, [c1]1)

K = e([c0]1,

[
v
u

]

2

) · e([c1]1, [t]2)−1

Return K ∈ GT .

Fig. 3. Definition of the transformation IBKEM[MAC,Dk]

The intuition behind our construction is that the values [Zi]1, [z
′
i]1 from pk

can be viewed as perfectly hiding commitments to the secrets keys skMAC =
(x1, . . . ,x�, x

′
1, . . . , x

′
�′) of MAC. User secret key generation computes the MAC

tag τ = ([t]2, [u]2) ←$ Tag(skMAC) plus a “non-interactive zero-knowledge proof”
[v]2 proving that τ was computed correctly with respect to the commitments.
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As the MAC is affine, the NIZK proof has a very simple structure. The encryp-
tion algorithm is derived from a randomized version of the NIZK verification
equation. Here we again make use of the affine structure of MAC.

To show correctness of IBKEM[MAC,Dk], let (K,C) be the output of Enc(pk, id)
and let usk[id] be the output of USKGen(sk, id). By Equation (3) in Section 3, we
have

e([c0]1,

[
v
u

]

2

) =

[
(Ar)� ·

(∑�
i=0 fi(id)Yit+

∑�′

i=0 f
′
i(id)y

′
i∑�

i=0 fi(id)x
�
i t+

∑�′

i=0 f
′
i(id)x

′
i

)]

T

,

e([c1]1, [t]2) =

[
(Ar)�

(∑
fi(id)Yi∑
fi(id)x

�
i

)
· t
]

T

,

and the quotient of the two elements yields K = [(
∑�′

i=0 f
′
i(id)z

′
i) · r]T .

Theorem 3. Under the Dk-MDDH assumption relative to GGen in G1 and the
PR-CMA-security ofMAC, IBKEM[MAC,Dk] is aPR-ID-CPA-secure IBKEM. Par-
ticularly, for all adversaries A there exist adversaries B1 and B2 with T(B1) ≈
T(A) ≈ T(B2) and Advpr-id-cpaIBKEM[MAC,Dk]

(A) ≤ AdvDk,GGen(B1) + Advpr-cma
MAC (B2).

The proof can be found in the full version [3].

5 Hierarchical Identity-Based Encryption from
Delegatable Affine MACs

In this section, we will define syntax and security requirements of delegatable
affine MACs and describe our transformation HIBE[MAC,Dk] from delegatable
affine MACs to HIBE based on any Dk-MDDH assumption. In the full version
[3] we recall syntax and IND-HID-CPA security of a hierarchical ID-based key
encapsulation mechanism (HIBKEM).

5.1 Delegatable Affine MACs

Definition 7. An affine MAC over Z
n
q (Definition 3) is delegatable, if the mes-

sage space is M = B≤m for some finite base set B, �′ = 0 with f ′
0(m) = 1, and

there exists a public function l : M → {0, . . . , �} such that for all m′ ∈ M with
m′ = (m1, . . . ,mp+1) ∈ Bp+1 and length p prefix m = (m1, . . . ,mp) of m, we have
l(m) ≤ l(m′) and

fi(m
′) =

{
fi(m) 0 ≤ i ≤ l(m)

0 l(m′) < i ≤ �
.

Note that for a delegatable MAC, equation (3) simplifies to

u =

⎛

⎝
l(m)∑

i=0

fi(m)x�
i +

l(m′)∑

i=l(m)+1

fi(m
′)x�

i

⎞

⎠ t+ f ′
0(m)x′

0.
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Intuitively, this property will be used for HIBE user secret key delegation.

Security requirements. Let MAC be a delegatable affine MAC over Zn
q with

message space M = B≤m :=
⋃m

i=1 Bi. To build a HIBE, we require a new
notion denoted as HPR0-CMA security. It differs from PR-CMA security in two
ways. Firstly, additional values needed for HIBE delegation are provided to the
adversary through the call to Initialize and Eval. Secondly, Chal always
returns a real h0 which is the reason why our HIBE is not anonymous. (In
fact, the additional values actually allow the adversary to distinguish real from
random h0.)

Let G = (G1,G2,GT , q, g1, g2, e) be an asymmetric pairing group such that
(G2, g2, q) is contained in par. Consider the games from Figure 4.

Initialize:
skMAC = (B, (xi)0≤i≤�, x

′
0) ←$ GenMAC(par)

Return ([B]2, ([x
�
i B]2)0≤i≤�)

Eval(m):
QM = QM ∪ {m}
([t]2, [u]2) ←$ Tag(skMAC,m)
For i = (m) + 1, . . . , �:

di = x�
i t ∈ Zq; d′i = x�

i t
′ ∈ Zq

Return ([t]2, [u]2, [t
′]2, [u′]2, ([di]2)(m)+1≤i≤�)

Chal(m∗): // one query
h ←$ Zq

h0 =
∑

fi(m
∗
i )xi · h ∈ Z

n
q

h1 = x′
0 · h ∈ Zq

h1 ←$ Zq

Return ([h]1, [h0]1, [h1]T )

Finalize(β ∈ {0, 1}):
Return β ∧ (Prefix(m∗) ∩QM = ∅)

Fig. 4. Games HPR-CMAreal, and HPR0-CMArand for defining HPR0-CMA security

Definition 8. A delegatable affine MAC over Z
n
q is HPR0-CMA-secure if for all

PPT A, Adv
hpr0-cma
MAC (A) := Pr[HPR-CMAA

real ⇒ 1] − Pr[HPR0-CMAA
rand ⇒ 1] is

negligible.

5.2 Examples of Delegatable Affine MACs

We first note that MACNR[Dk] from Section 3 with message space M = {0, 1}≤m

is delegatable.

Theorem 4. Under theDk-MDDH assumption,MACNR[Dk] is tightlyHPR0-CMA
secure. In particular, for all adversariesA there exists an adversaryD withT(A) ≈
T(D) and Adv

hpr0-cma
MACNR[Dk]

(A) ≤ 6m(AdvDk,GGen(D)− 1/(q − 1)).

The proof is similar to that of Theorem 1, with the difference that the reduction
between games Gi and Gi−1 now has to guess m∗

i ∈ {0, 1,⊥}, where ⊥ means
that |m∗| < i. Furthermore, h0 from Chal(m∗) is not pseudorandom in the
delegatable case, since ([B]2, ([x

�
i B]2)0≤i≤m) are disclosed from Initialize and
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then it is easy to check if h0 is well-formed under m∗ by using the pairing. A
formal proof of Theorem 4 is given in [3].

We now turn to MACHPS[Dk] from Section 3 with message space M = B≤m =
(Z∗

q)
≤m. Again, it can be verified to be delegatable. One should remark the

change on B, where we now define B = Z
∗
q to avoid having a collision between

the MAC of m and the MAC of m‖0.
Theorem 5. Under the Dk-MDDH assumption, MACHPS[Dk] is HPR0-CMA-
secure. In particular, for all adversaries A there exists an adversary D with
T(A) ≈ T(D) and Adv

hpr0-cma
MACHPS[Dk]

(A) ≤ 2Q(AdvDk,GGen(D) + 1/q), where Q is
the maximal number of queries to Eval(·).
A formal proof can be found in the full version [3].

5.3 The Transformation

Let Dk be a matrix distribution that outputs matrices A ∈ Z
(k+1)×k
q . Let MAC

be a delegatable affine MAC over Z
n
q with message space M = B≤m. Our

HIBKEM[MAC,Dk] = (Gen,USKGen,USKDel,Enc,Dec) for key-space K = GT

and hierarchical identity space ID = M = B≤m is defined as in Figure 5. Com-
pared to the IBE construction from Section 4, the main difference is that Gen
also returns a delegation key dk which allows re-randomization of every usk[id].
Further, USKGen also outputs user delegation keys udk[id] allowing USKDel to
delegate.

To show correctness of HIBKEM[MAC,Dk], first note that (û, v̂) computed
in USKDel is a correct user secret key for id′, û =

∑l(id′)
i=0 fi(id

′)x�
i t + x′

0 and
v̂ =

∑l(id′)
i=0 fi(id

′)Yit + y′
0. In the next step they get rerandmozied as u′ =

∑l(id′)
i=0 fi(id

′)x�
i (t+Bs′) and v′ =

∑l(id′)
i=0 fi(id

′)Yi(t+Bs′)+y′
0. Consequently,

usk[id′] from USKDel has the same distribution as the one output by USKGen. By
applying the similar correctness argument from HIBKEM[MAC,Dk], we can show
that a correctly generated ciphertext can be correctly decapsulated by using a
correct user secret key.

The next theorem shows our construction is a IND-HID-CPA-secure HIBKEM.
Its proof can be found in [3]. We remark that HIBKEM[MAC,Dk] can never be
anonymous as one can always check whether c0 ·

∑
fi(id)(E

�
i ‖di) = c1 ·B using

the pairing.

Theorem 6. If MAC is HPR0-CMA-secure and the Dk-MDDH assumption holds
in G1 then HIBKEM[MAC,Dk] is IND-HID-CPA secure. For all adversaries A
there exist adversaries B1 and B2 with T(B1) ≈ T(A) ≈ T(B2) and

Advind-hid-cpaHIBKEM[MAC,Dk]
(A) ≤ AdvDk,GGen(B1) + Adv

hpr0-cma
MAC (B2).
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Gen(par):
A ←$ Dk; skMAC ←$ GenMAC(par)
Parse skMAC = (B,x0, . . . ,x�, x

′
0, . . . , x

′
�′)

For i = 0, . . . , � :
Yi ←$ Z

k×n
q ;Zi = (Y�

i | xi) ·A ∈ Z
n×k
q

di = x�
i ·B ∈ Z

n′
q ;Ei = Yi ·B ∈ Z

k×n′
q

y′
0 ←$ Z

k
q ; z

′
0 = (y′

0
� | x′

0) ·A ∈ Z
1×k
q

pk := (G, [A]1, ([Zi]1)0≤i≤�, [z
′
0]1)

dk := ([B]2, ([di]2, [Ei]2)0≤i≤�)
sk := (skMAC, (Yi)0≤i≤�,y

′
0)

Return (pk, dk, sk)

USKGen(sk, id ∈ ID):
([t]2, [u]2) ←$ Tag(skMAC, id)
// t ∈ Z

n
q ;u =

∑
fi(id)x

�
i t+ x′

0 ∈ Zq

v =
∑l(id)

i=0 fi(id)Yit+ y′
0 ∈ Z

k
q

For i = l(id) + 1, . . . , �:
di = x�

i t ∈ Zq; ei = Yit ∈ Z
k
q

usk[id] := ([t]2, [u]2, [v]2)
udk[id] := ([di]2, [ei]2)l(id)<i≤�

Return (usk[id], udk[id])

Enc(pk, id):
r ←$ Z

k
q ; c0 = Ar ∈ Z

k+1
q

c1 = (
∑l(id)

i=0 fi(id)Zi) · r ∈ Z
n
q

K = z′0 · r ∈ Zq.
Return K = [K]T and C = ([c0]1, [c1]1)

USKDel(usk[id], udk[id], id, idp+1):
Parse id ∈ Bp, idp+1 ∈ B
id′ := (id1, . . . , idp, idp+1) ∈ Bp+1

If p ≥ m, then return ⊥
//Delegation of u and v:
û = u+

∑l(id′)
i=l(id)+1 fi(id

′)di ∈ Zq

v̂ = v +
∑l(id′)

i=l(id)+1 fi(id
′)ei ∈ Z

k
q

//Rerandomization of û and v̂:
s′ ←$ Z

n′
q

t′ = t+Bs′ ∈ Z
n
q

u′ = û+
∑l(id′)

i=0 fi(id
′)dis

′ ∈ Zq

v′ = v̂ +
∑l(id′)

i=0 fi(id
′)Eis

′ ∈ Z
k
q

//Rerandomization of d′i and ei:
For i = l(id′) + 1, . . . , �:

d′i = di + dis
′ ∈ Zq

e′
i = ei +Eis

′ ∈ Z
k
q

usk[id′] := ([t′]2, [u]2, [v′]2)
udk[id′] := ([d′i]2, [e

′
i]2)l(id′)<i≤�

Return (usk[id′], udk[id′])

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [u]2, [v]2)
Parse C = ([c0]1, [c1]1)

K = e([c0]1,

[
v
u

]

2

) · e([c1]1, [t]2)−1

Return K ∈ GT

Fig. 5. Definition of the transformation HIBKEM[MAC,Dk]

5.4 Anonymity-Preserving Transformation

In this section, we sketch an alternative (but less efficient) transformation, which
is anonymity-preserving. Due to space limitations, we only give the idea behind
our construction and refer to the full version for details.

Our transformation is based on the notion of APR-CMA-security (anonymity-
preserving pseudorandomness against chosen-message attacks) for a delegatable
affine MAC MAC over Z

n
q with message space M = B≤m :=

⋃m
i=1 Bi. It dif-

fers from HPR-CMA-security (Section 5.1) in the sense that Eval(m) will out-
put the terms for usk rerandomization, not Initialize and that in the random
game, Chal returns uniform (h0, h1). Unfortunately, MACNR[Dk] is unlikely to
be APR-CMA-secure, but MACHPS[Dk] with message space M = B≤m = (Z∗

q)
≤m

is provably APR-CMA-secure.
Compared to the HIBE construction from Section 5.3, the new transforma-

tion AHIBKEM[MAC,Dk] uses a different rerandomization method for usk :=
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([t]2, [u]2, [v]2): USKGen outputs a random basis T which allows rerandomiza-
tion of t; similarly, u and V are generated for rerandomizing u and v. In the
full version we prove that if MAC is an APR-CMA-secure and the Dk-MDDH
assumption holds in G1, then AHIBKEM[MAC,Dk] is PR-HID-CPA-secure, i.e.,
IND-HID-CPA-secure and anonymous.
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