
Juan A. Garay
Rosario Gennaro (Eds.)

 123

LN
CS

 8
61

6

34th Annual Cryptology Conference
Santa Barbara, CA, USA, August 17–21, 2014
Proceedings, Part I

Advances in Cryptology –
CRYPTO 2014

Lecture Notes in Computer Science 8616
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Juan A. Garay Rosario Gennaro (Eds.)

Advances in Cryptology –
CRYPTO 2014

34th Annual Cryptology Conference
Santa Barbara, CA, USA, August 17-21, 2014
Proceedings, Part I

13

Volume Editors

Juan A. Garay
Yahoo Labs
701 First Avenue
Sunnyvale, CA 94089, USA
E-mail: garay@yahoo-inc.com

Rosario Gennaro
The City College of New York
160 Convent Avenue
New York, NY 10031, USA
E-mail: rosario@cs.ccny.cuny.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44370-5 e-ISBN 978-3-662-44371-2
DOI 10.1007/978-3-662-44371-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014944726

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

CRYPTO 2014, the 34rd Annual International Cryptology Conference, was held
August 17–21, 2014, on the campus of the University of California, Santa Bar-
bara. The event was sponsored by the International Association for Cryptologic
Research (IACR) in cooperation with the UCSB Computer Science Department.

The program represents the recent significant advances and trends in all areas
of cryptology. Out of 227 submissions, 60 were included in the program; these
two-volume proceedings contains the revised versions of all the papers. Two of
the papers shared a single presentation slot in the program. The program also
included two invited talks. On Monday, Mihir Bellare from UCSD delivered the
IACR Distinguished Lecture, entitled “Caught in Between Theory and Practice.”
OnWednesday, Yael Tauman Kalai from Microsoft Research New England spoke
about “How to Delegate Computations: The Power of No-Signalling Proofs.” As
usual, the rump session took place on Tuesday evening, and was chaired by Dan
Bernstein and Tanja Lange.

This year’s program continued the trend started last year of trying to accom-
modate as many high-quality submissions as possible, yielding a high number of
accepted papers. As a result, sessions were also held on Tuesday and Thursday
afternoons, and presentations were kept short (20 minutes per paper, including
questions and answers). The option of having parallel sessions, which would al-
low for longer presentations and an early adjournment on Thursday, was also
discussed and decided against, since we assessed that our research field is still
sufficiently homogeneous and the community would benefit from the option of
attending all the talks. However, we believe that future Program Committees
should continue to explore possible options to implement some form of parallel
sessions.

The submissions were reviewed by a Program Committee (PC) consisting of
38 leading researchers in the field, in addition to the two co-chairs. Each PC
member was allowed to submit one paper, plus an additional one if co-authored
with a junior researcher (a student or a postdoc). PC-authored submissions were
held to higher standards during the review process. Papers were reviewed in a
double-blind fashion. Initially, each paper was assigned to three reviewers (four
for PC-authored papers); during the discussion phase, when necessary, extra re-
views were solicited. The process also included a rebuttal phase after preliminary
reviews were finalized, where authors received them and were given the option
to comment on the reviews within a window of several days. The authors’ com-
ments were then taken into account in the discussions within the PC and the final
reviews. Despite being labor-intensive, we feel the rebuttal phase was a worth-
while process as it resulted in the significantly better understanding of many
submissions. As part of the discussion phase, the PC held a 1.5-day in-person
meeting on May 15 and 16 in Copenhagen, Denmark, right after Eurocrypt.

VI Preface

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our deep
appreciation also goes out to the PC members, who invested an extraordinaty
amount of time in reviewing papers, interacting with the authors via the re-
buttal mechanism, and participating in so many discussions on papers, their
contribution, and the state of the art in their areas of expertise. We also sym-
pathize with the occasional frustration from seeing decisions go against personal
recommendations and preferences, in spite of all the hard work.

We are also indebted to the many external reviewers who significantly con-
tributed to the comprehensive evaluation of the submissions. A list of PC mem-
bers and external reviewers appears after this note. Despite all our efforts, the
list of external reviewers may contain errors or omissions; we apologize for that
in advance.

We would like to thank Sasha Boldyreva, the general chair, for working closely
with us throughout the whole process and providing the much needed support
at every step, including artfully creating and maintaining the website and tak-
ing care of all aspects of the conference’s logistics—especially the in-person PC
meeting arrangements.

As always, special thanks are due to Shai Halevi for his tireless support
regarding the websubrev software, which we used for the whole conference plan-
ning and operation, including paper submission and evaluation and interaction
among PC members and with the authors. Alfred Hofmann and his colleagues
at Springer provided a meticulous service for the timely production of these
proceedings.

Finally, we would like to thank Google, Microsoft Research, and the National
Science Foundation for their generous support.

August 2014 Juan A. Garay
Rosario Gennaro

CRYPTO 2014

The 34rd International Cryptology Conference

Sponsored by the International Association for Cryptologic Research

General Chair

Alexandra Boldyreva Georgia Institute of Technology, USA

Program Co-Chairs

Juan A. Garay Yahoo Labs, USA
Rosario Gennaro The City College of New York – CUNY, USA

Program Committee

Yevgeniy Dodis New York University, USA
Orr Dunkelman University of Haifa, Israel
Serge Fehr CWI, The Netherlands
Pierre-Alain Fouque Université Rennes I, France
Craig Gentry IBM Research, USA
Vipul Goyal MSR India
Nadia Heninger University of Pennsylvania, USA
Thomas Holenstein ETH, Switzerland
Yuval Ishai Technion, Israel
Dimitar Jetchev EPFL, Switzerland
Aggelos Kiayias University of Athens, Greece
Kaoru Kurosawa Ibaraki University, Japan
Alexander May Ruhr-Universität Bochum, Germany
Ilya Mironov MSR, USA
Payman Mohassel University of Calgary, Canada
Jörn Müller-Quade Karlruhe Institute of Technology, Germany
Maŕıa Naya-Plasencia Inria Paris-Rocquencourt, France
Claudio Orlandi Aarhus University, Denmark
Rafael Pass Cornell University, USA
Christopher Peikert Georgia Institute of Technology, USA
Krzysztof Pietrzak Institute of Science and Technology, Austria
Leonid Reyzin Boston University, USA
Ron Rivest MIT, USA

VIII CRYPTO 2014

Amit Sahai UCLA, USA
Gil Segev Hebrew University, USA
Elaine Shi University of Maryland, USA
Tom Shrimpton Portland State University, USA
Alice Silverberg UC Irvine, USA
Marc Stevens CWI, The Netherlands
Katsuyuki Takashima Mitsubishi Electric, Japan
Stefano Tessaro UC Santa Barbara, USA
Vinod Vaikuntanathan MIT, USA
Gilles Van Assche STMicroelectronics, Belgium
Muthu Venkitasubramanian University of Rochester, USA
Ivan Visconti University of Salerno, Italy
Bogdan Warinschi University of Bristol, UK
Brent Waters UT Austin, USA
Vassilis Zikas ETH, Switzerland

External Reviewers

Michel Abdalla
Masayuki Abe
Arash Afshar
Divesh Aggarwal
Martin Albrecht
Joel Alwen
Scott Ames
Prabhanjan Ananth
Daniel Apon
George Argyros
Gilad Asharov
Nuttapong Attrapadung
Christian Badertscher
Abhishek Banerjee
Carsten Baum
Amos Beimel
Mihir Bellare
David Bernhard
Dan Bernstein
Guido Bertoni
Raghav Bhaskar
Joppe Bos
Elette Boyle
Brandon Broadnax
Christina Brzuska
Ran Canetti

Anne Canteaut
Ignacio Cascudo
David Cash
Dario Catalano
Andr Chailloux
Nishanth Chandran
Jie Chen
Cheng Chen
Céline Chevalier
Kai-Min Chung
Aloni Cohen
Henry Cohn
Sandro Coretti
Jean-Sebastien Coron
Craig Costello
Dana Dachman-Soled
Joan Daemen
Ivan Damg̊ard
Bernardo David
Gregory Demay
Yi Deng
Itai Dinur
Nico Doettling
Rafael Dowsley
Chandan Dubey
Alexandre Duc

Leo Ducas
Alina Dudeanu
Markus Duermuth
Frédéric Dupuis
Aner Ben Efraim
Xiong Fan
Antonio Faonio
Sebastian Faust
Dario Fiore
Marc Fischlin
Georg Fuchsbauer
Benjamin Fuller
Jun Furukawa
Steven Galbraith
Nicolas Gama
Chaya Ganesh
Peter Gaži
Ran Gelles
Essam Ghadafi
Sasha Golovnev
Sergey Gorbunov
Dov Gordon
Robert Granger
Jens Groth
Divya Gupta
Tim Gneysu

CRYPTO 2014 IX

Shai Halevi
Sean Hallgren
Moritz Hardt
Brett Hemenway
Yan Huang
Jan Hazla
William Skeith III
Vincenzo Iovino
Takashi Ito
Ioana Ivan
Tibor Jager
Abhishek Jain
David Jao
Stanislaw Jarecki
Mahavir Jhawar
Antoine Joux
Marc Joye
Yael Kalai
Seny Kamara
Jean-Gabriel Kammerer
Pierre Karpman
Jonathan Katz
Yutaka Kawai
Nathan Keller
Dakshita Khurana
Eike Kiltz
Thorsten Kleinjung
Vlad Kolesnikov
Venkata Koppula
Daniel Kraschewski
Hugo Krawczyk
Sara Krehbiel
Abishek

Kumarasubramaniam
Ranjit Kumaresan
Robin Künzler
Tanja Lange
Gregor Leander
Nikos Leonardos
Anthony Leverrier
Kevin Lewi
Allison Bishop Lewko
Benoit Libert
Huijia (Rachel) Lin
Yehuda Lindell

Feng-Hao Liu
Adriana Lopez-Alt
Steve Lu
Stefan Lucks
Atul Luykx
Vadim Lyubashevsky
Mohammad Mahmoody
Hemanta Maji
Alex Malozemoff
Mohammad Mammody
Christian Matt
Daniele Micciancio
Andrea Miele
Eric Miles
Andrew Miller
Brice Minaud
Toru Nakanishi
Jesper Buus Nielsen
Valeria Nikolaenko
Tobias Nilges
Ryo Nishimaki
Adam O’Neill
Wakaha Ogata
Cristina Onete
Pascal Paillier
Omkant Pandey
Omer Paneth
Dimitris Papadopoulos
Charalampos

Papamanthou
Sunoo Park
Anat

Paskin-Cherniavsky
Valerio Pastro
Kenny Paterson
Michal Peeters
Ludovic Perret
Christophe Petit
Le Trieu Phong
Stefano Pironio
Manoj Prabhakaran
Ananth Raghunathan
Kim Ramchen
Vanishree Rao
Pavel Raykov

Mariana Raykova
Christian Rechberger
Oded Regev
Thomas Ristenpart
Ben Riva
Mike Rosulek
Aaron Roth
Yannis Rouselakis
saeed Sadeghian
Yusuke Sakai
Katerina Samari
Alessandra Scafuro
Christian Schaffner
Thomas Schneider
Lior Seeman
Nicolas Sendrier
Karn Seth
Yannick Seurin
Barak Shani
Nigel Smart
Ben Smith
Florian Speelman
François-Xavier

Standaert
Damien Stehlé
John Steinberger
Noah

Stephens-Davidowitz
Mario Strefler
Takeshi Sugawara
Koutarou Suzuki
Björn Tackmann
Qiang Tang
Sidharth Telang
Aris Tentes
Isamu Teranishi
R. Seth Terashima
Abhradeep Guha

Thakurta
Justin Thaler
Emmanuel Thom
Mehdi Tibouchi
Jean-Pierre Tillich
Joana Treger
Roberto Trifiletti

X CRYPTO 2014

Eran Tromer
Yiannis Tselekounis
Hoang Viet Tung
Dominique Unruh
Berkant Ustaoglu
Prashant Vasudevan
Thomas Vidick

Dhinakaran
Vinayagamurthy

Akshay Wadia
Gaven Watson
Hoeteck Wee
Daniel Wichs
Shota Yamada

Kazuki Yoneyama
Thomas Zacharias
Hila Zarosim
Mark Zhandry
Bingsheng Zhang
Hong-Sheng Zhou
Jens Zumbrägel

Table of Contents – Part I

Symmetric Encryption and PRFs

Security of Symmetric Encryption against Mass Surveillance 1
Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway

The Security of Multiple Encryption in the Ideal Cipher Model 20
Yuanxi Dai, Jooyoung Lee, Bart Mennink, and John Steinberger

Minimizing the Two-Round Even-Mansour Cipher 39
Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and
John Steinberger

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 57
Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun,
Gregor Leander, Christof Paar, and Tolga Yalçın

Related-Key Security for Pseudorandom Functions Beyond the Linear
Barrier . 77

Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and
Kenneth G. Paterson

Formal Methods

Automated Analysis of Cryptographic Assumptions in Generic Group
Models . 95

Gilles Barthe, Edvard Fagerholm, Dario Fiore, John Mitchell,
Andre Scedrov, and Benedikt Schmidt

Hash Functions

The Exact PRF-Security of NMAC and HMAC . 113
Peter Gaži, Krzysztof Pietrzak, and Michal Rybár

Updates on Generic Attacks against HMAC and NMAC 131
Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang

Improved Generic Attacks against Hash-Based MACs and HAIFA 149
Itai Dinur and Gaëtan Leurent

Cryptography from Compression Functions: The UCE Bridge to the
ROM . 169

Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi

XII Table of Contents – Part I

Indistinguishability Obfuscation and UCEs:
The Case of Computationally Unpredictable Sources 188

Christina Brzuska, Pooya Farshim, and Arno Mittelbach

Groups and Maps

Low Overhead Broadcast Encryption from Multilinear Maps 206
Dan Boneh, Brent Waters, and Mark Zhandry

Security Analysis of Multilinear Maps over the Integers 224
Hyung Tae Lee and Jae Hong Seo

Converting Cryptographic Schemes from Symmetric to Asymmetric
Bilinear Groups . 241

Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango

Polynomial Spaces: A New Framework for Composite-to-Prime-Order
Transformations . 261

Gottfried Herold, Julia Hesse, Dennis Hofheinz, Carla Ràfols, and
Andy Rupp

Lattices

Revisiting the Gentry-Szydlo Algorithm . 280
H.W. Lenstra and A. Silverberg

Faster Bootstrapping with Polynomial Error . 297
Jacob Alperin-Sheriff and Chris Peikert

Hardness of k -LWE and Applications in Traitor Tracing 315
San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld

Improved Short Lattice Signatures in the Standard Model 335
Léo Ducas and Daniele Micciancio

New and Improved Key-Homomorphic Pseudorandom Functions 353
Abhishek Banerjee and Chris Peikert

Asymmetric Encryption and Signatures

Homomorphic Signatures with Efficient Verification for Polynomial
Functions . 371

Dario Catalano, Dario Fiore, and Bogdan Warinschi

Structure-Preserving Signatures from Type II Pairings 390
Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi

Table of Contents – Part I XIII

(Hierarchical) Identity-Based Encryption from Affine Message
Authentication . 408

Olivier Blazy, Eike Kiltz, and Jiaxin Pan

Witness Encryption from Instance Independent Assumptions 426
Craig Gentry, Allison Lewko, and Brent Waters

Side Channels and Leakage Resilience I

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 444
Daniel Genkin, Adi Shamir, and Eran Tromer

On the Impossibility of Cryptography with Tamperable Randomness . . . 462
Per Austrin, Kai-Min Chung, Mohammad Mahmoody,
Rafael Pass, and Karn Seth

Obfuscation I

Multiparty Key Exchange, Efficient Traitor Tracing, and More from
Indistinguishability Obfuscation . 480

Dan Boneh and Mark Zhandry

Indistinguishability Obfuscation from Semantically-Secure Multilinear
Encodings . 500

Rafael Pass, Karn Seth, and Sidharth Telang

On the Implausibility of Differing-Inputs Obfuscation and Extractable
Witness Encryption with Auxiliary Input . 518

Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs

FHE

Maliciously Circuit-Private FHE . 536
Rafail Ostrovsky, Anat Paskin-Cherniavsky, and
Beni Paskin-Cherniavsky

Algorithms in HElib . 554
Shai Halevi and Victor Shoup

Author Index . 573

Table of Contents – Part II

Quantum Cryptography

Quantum Position Verification in the Random Oracle Model 1
Dominique Unruh

Single-Shot Security for One-Time Memories in the Isolated Qubits
Model . 19

Yi-Kai Liu

Foundations of Hardness

How to Eat Your Entropy and Have It Too – Optimal Recovery
Strategies for Compromised RNGs . 37

Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and
Daniel Wichs

Cryptography with Streaming Algorithms . 55
Periklis A. Papakonstantinou and Guang Yang

Obfuscation II

The Impossibility of Obfuscation with Auxiliary Input or a Universal
Simulator . 71

Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser,
Yael Tauman Kalai, Omer Paneth, and Alon Rosen

Self-bilinear Map on Unknown Order Groups from Indistinguishability
Obfuscation and Its Applications . 90

Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and
Noboru Kunihiro

On Virtual Grey Box Obfuscation for General Circuits 108
Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth

Number-Theoretic Hardness

Breaking ‘128-bit Secure’ Supersingular Binary Curves (Or How to
Solve Discrete Logarithms in F24·1223 and F212·367) . 126

Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel

XVI Table of Contents – Part II

Side Channels and Leakage Resilience II

Leakage-Tolerant Computation with Input-Independent
Preprocessing . 146

Nir Bitansky, Dana Dachman-Soled, and Huijia Lin

Interactive Proofs under Continual Memory Leakage 164
Prabhanjan Ananth, Vipul Goyal, and Omkant Pandey

Information-Theoretic Security

Amplifying Privacy in Privacy Amplification . 183
Divesh Aggarwal, Yevgeniy Dodis, Zahra Jafargholi, Eric Miles, and
Leonid Reyzin

On the Communication Complexity of Secure Computation 199
Deepesh Data, Manoj M. Prabhakaran, and Vinod M. Prabhakaran

Optimal Non-perfect Uniform Secret Sharing Schemes 217
Oriol Farràs, Torben Hansen, Tarik Kaced, and Carles Padró

Key Exchange and Secure Communication

Proving the TLS Handshake Secure (As It Is) . 235
Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella-Béguelin

Memento: How to Reconstruct Your Secrets from a Single Password in
a Hostile Environment . 256

Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and
Gregory Neven

Zero Knowledge

Scalable Zero Knowledge via Cycles of Elliptic Curves 276
Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza

Switching Lemma for Bilinear Tests and Constant-Size NIZK Proofs
for Linear Subspaces . 295

Charanjit S. Jutla and Arnab Roy

Physical Zero-Knowledge Proofs of Physical Properties 313
Ben Fisch, Daniel Freund, and Moni Naor

Table of Contents – Part II XVII

Composable Security

Client-Server Concurrent Zero Knowledge with Constant Rounds and
Guaranteed Complexity . 337

Ran Canetti, Abhishek Jain, and Omer Paneth

Round-Efficient Black-Box Construction of Composable Multi-Party
Computation . 351

Susumu Kiyoshima

Secure Computation – Foundations

Secure Multi-Party Computation with Identifiable Abort 369
Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas

Non-Interactive Secure Multiparty Computation . 387
Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz,
Sigurd Meldgaard, and Anat Paskin-Cherniavsky

Feasibility and Infeasibility of Secure Computation with Malicious
PUFs . 405

Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz,
Anna Lysyanskaya, and Dominique Schröder

How to Use Bitcoin to Design Fair Protocols . 421
Iddo Bentov and Ranjit Kumaresan

Secure Computation – Implementations

FleXOR: Flexible Garbling for XOR Gates That Beats Free-XOR 440
Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek

Amortizing Garbled Circuits . 458
Yan Huang, Jonathan Katz, Vladimir Kolesnikov,
Ranjit Kumaresan, and Alex J. Malozemoff

Cut-and-Choose Yao-Based Secure Computation in the Online/Offline
and Batch Settings . 476

Yehuda Lindell and Ben Riva

Dishonest Majority Multi-Party Computation for Binary Circuits 495
Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart

Efficient Three-Party Computation from Cut-and-Choose 513
Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and
Vassilis Zikas

Author Index . 531

Security of Symmetric Encryption

against Mass Surveillance

Mihir Bellare1, Kenneth G. Paterson2, and Phillip Rogaway3

1 Dept. of Computer Science and Engineering,
University of California San Diego, USA

cseweb.ucsd.edu/~mihir
2 Information Security Group, Royal Holloway, University of London, UK

www.isg.rhul.ac.uk/~kp
3 Dept. of Computer Science, University of California Davis, USA

www.cs.ucdavis.edu/~rogaway

Abstract. Motivated by revelations concerning population-wide surveil-
lance of encrypted communications, we formalize and investigate the resis-
tance of symmetric encryption schemes to mass surveillance. The focus is
on algorithm-substitution attacks (ASAs), where a subverted encryption
algorithm replaces the real one. We assume that the goal of “big brother”
is undetectable subversion, meaning that ciphertexts produced by the sub-
verted encryption algorithm should reveal plaintexts to big brother yet
be indistinguishable to users from those produced by the real encryption
scheme. We formalize security notions to capture this goal and then offer
both attacks and defenses. In the first category we show that successful
(from the point of view of big brother) ASAs may be mounted on a large
class of common symmetric encryption schemes. In the second category we
show how to design symmetric encryption schemes that avoid such attacks
and meet our notion of security. The lesson that emerges is the danger of
choice: randomized, stateless schemes are subject to attack while deter-
ministic, stateful ones are not.

1 Introduction

Overview. This paper is about the troubling possibility of mass surveillance
by algorithm-substitution attack (ASA). Suppose that encryption scheme Π =
(K, E ,D) is to be implemented in closed-source software—think, for example, of
implementing the CBC-AES encryption underlying the TLS record layer within
Microsoft’s Internet Explorer or Apple’s Safari browsers, or in corresponding
server-side code. An ASA replaces the executable code for the desired encryption
algorithm E with, for example, the code of an NSA-authored alternative Ẽ .

ASAs have been discussed before, under various names, in particular falling
under the banner of kleptography. This prescient idea was developed by Young
and Yung starting in the 1990s [27,28]. While some cryptographers seem to have
dismissed kleptography as far-fetched, recent revelations suggest this attitude to

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 1–19, 2014.
c© International Association for Cryptologic Research 2014

cseweb.ucsd.edu/~mihir
www.isg.rhul.ac.uk/~kp
www.cs.ucdavis.edu/~rogaway

2 M. Bellare, K.G. Paterson, and P. Rogaway

be näıve [1]. ASAs may well be going on today, possibly on a massive scale. In this
light we aim to provide a formal and practical treatment of ASAs, with a focus
on symmetric encryption, an attractive target for real-world attacks. Building
on, yet going further than, prior work, we fully and formally define security goals.
We then come at ASAs from both ends, showing on the one hand how successful
(from the point of view of big brother) ASAs may be mounted on standard
schemes, and showing on the other hand how to design schemes that provably
resist them. Our findings surface what we call the danger of choice: the trend
towards flexibility and open-ended choices in protocols, often present for vendor
flexibility or political compromise, works against us with regard to protection
against ASAs, which are best defeated by stateful, deterministic encryption that
curtails randomness and choice.

Model and definitions. The real encryption algorithm E takes, as usual,
user key K, message M , and associated data A. It returns a ciphertext C. The
subverted algorithm Ẽ that substitutes for E takes the same inputs but also an
additional, big-brother key, K̃. It also returns a ciphertext.

With no restrictions on Ẽ , there would appear to be no hope of security,
for Ẽ can fold K into the ciphertext, say encrypted under K̃, and big brother
can use K̃ to recover K. However, such an attack would be detected by users,
who would see that ciphertexts fail to decrypt normally. Big brother aims to
achieve compromise without detection: subverted ciphertexts should look like
real ones, yet enable recovery of K or M . ASAs, in this view, live in a tension
between detectability and success, the former working to curtail the latter. We
will formally define metrics of both detectability and success.

We will require that ciphertexts produced by Ẽ decrypt normally under the
decryption algorithm D of the base scheme. This decryptability condition is the
most basic form of undetectability. But we expect that big brother will aim to
evade more sophisticated forms of detection. We formalize detection security as
requiring that real and subverted ciphertexts are indistinguishable even to a test
that knows some users’ keys but does not know K̃.

Success refers to big brother’s ability to obtain knowledge about user data
from subverted ciphertexts. Certainly an ASA allowing big brother to recover the
user key K from any ciphertext is successful, but for positive results (defeating
big brother) we want more. We formalize surveillance security as the requirement

that big brother, even with its key K̃, cannot differentiate real ciphertexts from
subverted ones.

The duality between detection and surveillance security is reflected in our
formalizations. Both require indistinguishability of real and subverted cipher-
texts to an adversary, the difference being that in detection the adversary knows
the user keys but not the big-brother key, and in surveillance it’s the other
way around. We remark that, in both cases, our formalizations are multi-user,
meaning there are many users (but a single subverter).

Mounting ASAs. We show that most symmetric encryption schemes suc-
cumb to damaging ASAs. Our attacks recover the user key K from subverted

Security of Symmetric Encryption against Mass Surveillance 3

ciphertexts while remaining undetectable. These attacks apply to base schemes
that are randomized and stateless. Building on [9], we first describe what we call
IV-replacement attacks, where the initial vector in a blockcipher mode of oper-
ation is used to communicate to big brother an encryption under K̃ of the user
key K. Then we describe a more general ASA that we call the biased-ciphertext
attack. This makes few assumptions on the structure of the base scheme and
succeeds by creating ciphertexts that are not distributed quite like real ones.
They are biased in a way that reveals bits of the user key to a holder of K̃, but
we show that the bias is undetectable without knowledge of K̃. The difficulty
here is showing undetectability even for tests that know the user key K, and for
the analysis we prove an information-theoretic lemma about biased functions.
Beyond presenting generic attacks [4], we discuss how encryption in SSL/TLS,
IPsec, and SSH can be subverted by these means. The conclusion is that random-
ized, stateless schemes, including deployed ones, invariably fall to even generic
ASAs.

Defeating ASAs. We aim to build symmetric encryption schemes that re-
sist ASAs, meaning achieve surveillance security in the formal sense we define.
Given the above, such schemes need to be stateful and deterministic. But not
every such scheme works. The difficulty with provably achieving surveillance
security is that standard security properties of the base scheme, such as its pri-
vacy or authenticity, are of no particular use towards the new goal. The reason
is that these properties rely on the adversary not knowing the key K. But in
the surveillance setting, the subverted ciphertexts are being created by an al-
gorithm, Ẽ , that knows K, and can thus compromise privacy or authenticity
to make subverted ciphertexts look different from real ones, and in a way use-
ful to big brother. Nonetheless, we show that security is achievable by relying
on combinatorial properties of the scheme. We define what it means for a base
symmetric encryption scheme to have unique ciphertexts and then show that
every unique-ciphertext scheme meeting the decryptability condition is secure
against ASAs. This provides a strong anti-surveillance guarantee: no ASA will
succeed in differentiating real from subverted ciphertexts, let alone recovering the
message or a user’s key. We show this assuming only minimal undetectability—
decryptability, meaning that subverted ciphertexts must remain decryptable by
the decryption algorithm of the base scheme.

To realize concrete benefits from this general result, we need to find unique-
ciphertext symmetric encryption schemes.Herewegivea simple constructionbased
onavariable-input-lengthPRP. In [4], we present a more practical result, showing
how any nonce-based symmetric encryption scheme [22,23] may be transformed
into a unique ciphertext stateful deterministic scheme while preserving efficiency.
Using existing nonce-based encryption schemes like CCM, GCM, or OCB, this
yields practical designs of surveillance-resistant symmetric encryption.

Asymmetric ASAs. For simplicity, our main definitions only capture the case
in which big brother embeds a symmetric key K̃ into subverted software. It is
obviously useful to replace this with a public key, the corresponding secret key
being held by big brother, so that reverse engineering of a subverted encryption

4 M. Bellare, K.G. Paterson, and P. Rogaway

algorithm will not confer the capabilities that big brother aims to keep to itself.
The necessary definitional extensions, which are small, are described in [4].

Scope. Our paper is deliberately of restricted scope: we consider ASAs only for
symmetric encryption schemes. In reality, encryption schemes are deployed as
part of larger cryptographic protocols and these protocols will afford additional
opportunities for algorithmic subversion. To pick one example, a protocol might
involve the transmission of a nonce for authentication purposes during a key-
exchange phase. This nonce could be chosen so as to directly leak an ensuing
session key. Or it could be chosen to leak the internal state of a back-doored
PRNG, indirectly revealing future session keys. This technique has been posited
as a subversion method for SSL/TLS [7].

Our scope also means that we exclude subversion attempts that exploit side-
channels in implementations. For example, our model does not capture timing
information, so attacks in which the encryption key is leaked through fine-
grained timing behaviour of the encryption algorithm fall outside our notions.
Big brother’s subverted Ẽ could stutter the times at which ciphertexts or their
blocks are produced; this might be sufficient to build a covert channel with ad-
equate bandwidth to convey the session key. Such timing approaches have been
used to infer information about user keystrokes over SSH connections [25].

The limitations on scope imply that our positive security results are certainly
not definitive in terms of eliminating all subversion possibilities for a symmet-
ric encryption scheme deployed within a real-world system. Still, a limited scope
has merit. First, symmetric encryption is fundamental to secure communications,
so it’s important to study this primitive’s susceptibility to subversion. Second,
our model fits well within the scenario where an agency subverts encryption
software, like a crypto library, rather than a particular protocol built on that
library. Third, the positive results we provide, showing that ASAs on certain
schemes are impossible, confine big brother to other avenues of attack, which
may be less attractive. Finally, we aim to lay foundational results, in the mod-
ern, provable-security style, that can be built upon by succeeding researchers
to broaden the scope of surveillance-resistant protocols to include tasks such as
authenticated key exchange. It should eventually be possible to have a corpus of
protocols, and even system-level code analysis, to provide strong guarantees on
the ineffectiveness ASAs.

The danger of choice. The characteristic of modern encryption schemes that
makes ASAs possible is the freedom-of-choice routinely provided by protocols,
as well as the unverifiability of mandated randomness. Consider a symmetric
encryption scheme that requires a user to select a 128-bit IV. The specification
might say that the IV should be chosen uniformly at random, or it might even
say that it must be so chosen. But, either way, the black-box behavior of the
encryption scheme will never reveal if uniform random bits were used. Because
of this, there is no way to ensure that the IV is not selected in a manner that will
covertly communicate a session key to an agency engaged in mass surveillance—
which we exploit in our IV-replacement attack. Similarly, if a scheme permits

Security of Symmetric Encryption against Mass Surveillance 5

variable-length padding there will be no way to ensure that the amount of
padding is not used as a covert channel to transmit a user’s key.

The ultimate conclusion of this paper is that unverifiable algorithmic choice
can be a significant liability. We have in some sense come full-circle. In their
classical paper on probabilistic encryption [10], Goldwasser and Micali explained
the danger of deterministic public-key encryption: leaking that one ciphertext
is the repetition of another, or allowing a ciphertext to be decrypted by trial-
encryption. But these threats can be eliminated without the use of probabilism—
namely, through the use of state. For the most conventional setting in symmetric
encryption—realizing a reliable, encrypted channel—ASAs provide one motiva-
tion for deterministic, stateful schemes, for sender and receiver both. We believe
that there are further benefits to such schemes, including improved utility for
software testing and the elimination of any need, post key-generation, to harvest
unpredictable random bits.

Related work. Young and Yung have developed an extensive body of work on
what they call kleptography, beginning with [27,28]. This concerns the deliberate
subversion of cryptosystems to provide backdoor capabilities; our work is a spe-
cial case. While much of their work has focused on the public-key setting, Young
and Yung have also considered attacks on protocols like Kerberos, and developed
blockciphers containing backdoors for the black-box setting (ie, where the code
of the blockcipher is not made available for inspection) [29,31,30]. In the light of
recent revelations, we contend that kleptography deserves to play a larger role
in the future development of our field. Additional work on back-doored blockci-
phers can be found in [21,19,20]. This entire line of work has focused on building
schemes with deliberately-inserted and hard-to-detect backdoors. By contrast,
we also provide positive results, constructing schemes that are provably hard to
subvert.

Goh, Boneh, Pinkas and Golle [9] consider the problem of adding key recovery
to the SSL/TLS and SSH protocols. Some passages of this 2003 paper now sound
prophetic: The government can convince major software vendors to distribute
SSL/TLS or SSH2 implementations with hidden and unfilterable key recovery. . . .
Users will not notice the key recovery mechanism because the scheme is hidden.
[9, Section 2.2]. Goh et al. suggest that when the server needs a random nonce,
it can use in its place an encryption of the session key computed under the
escrow key. We build on this idea to consider more general classes of attack on
symmetric encryption schemes.

The problem of inserting backdoors and key-recovery defects into crypto-
graphic schemes is closely related to the topic of subliminal channels, whose ex-
tensive literature begins with [24] and the study of covert channels [17]. There is
a similarly extensive body of work on the exploitation, measurement, and elim-
ination of timing side channels, both in cryptographic and non-cryptographic
settings, with representative examples including [6,15].

Further remarks. We posed our initial question in the context of closed-
source software. However the sheer complexity of cryptographic libraries like
OpenSSL, and the small number of experts who review such code, makes it

6 M. Bellare, K.G. Paterson, and P. Rogaway

plausible that ASAs might be carried out against open-source software. Note
too that even when code appears to be “clean,” there’s always the possibility
of code being subverted at compilation or run time, by subverting the com-
piler or interpreter [26]. And there’s certainly the possibility of performing
ASAs on hardware-based cryptography, a prospect rendered all the easier by
the widespread use of countermeasures intended to shield algorithmic internals
from inspection.

We do not know if ASAs are among the techniques used to make TLS-
encrypted traffic available under warrantless surveillance [1]. We offer no em-
pirical evidence in this direction. We hope that other researchers are seeking it
out, which is necessary for understanding the actual nature of our communica-
tion infrastructure.

2 Preliminaries

Notation. A string means a member of {0, 1}∗, and ⊥ �∈ {0, 1}∗ denotes a
special symbol standing for “invalid” or “reject.” If S is a set then x�S denotes
sampling x uniformly at random from S.

Syntax. Our syntax for symmetric encryption encompasses encryption that is
probabilistic, deterministic, or stateful; and decryption that is deterministic or
stateful. We allow associated data (AD), in order that our basic syntax encom-
pass this practically-important component of authenticated encryption.

A scheme for symmetric encryption is a triple Π = (K, E ,D). The key space K
is a finite nonempty set. The encryption algorithm E is a possibly random-
ized algorithm that maps a four-tuple of strings K,M,A, σ to a pair of strings
(C, σ′)� E(K,M,A, σ). The arguments to E represent the key, message (plain-
text), associated data and current state. The output consists of the cipher-
text C and revised state σ′. The decryption algorithm D is a deterministic
algorithm that maps a four-tuple of strings (K,C,A, σ) to a pair of strings
(M,σ′)← D(K,C,A, σ).

Algorithms E andD are said to reject if they return a pair with first component
of ⊥, and to accept otherwise. We may write EK(M,A, σ) and DK(C,A, σ) for
E(K,M,A, σ) and D(K,C,A, σ), respectively. We adopt the convention that E
and D return (⊥,⊥) if any argument is ⊥. In addition, whether or not Ci = ⊥
is allowed to depend only on |M1|, |A1|, . . ., |Mi−1|, and |Ai−1|. This eliminates
pointless degeneracies.

We say that E is stateless if the second component of any output of E on
any inputs is ε, and likewise for D. We say that Π is stateless if both E and
D are stateless. In this case, we drop the second component of the output of
both algorithms, so that E now returns just a ciphertext and D just a message.
We also drop the last (state) input to D and, for E , think of it as the coins of
the algorithm, dropping which is regarded as having the coins being chosen at
random. In this way, when Π is stateless, we recover the conventional syntax.

It is well understood that encryption must be stateful or probabilistic to
achieve IND-CPA privacy and decryption must be stateful to avoid replay

Security of Symmetric Encryption against Mass Surveillance 7

attacks. Our work will show that decryption must be stateful to avoid algorithm-
substitution attacks.

Correctness. We say that Π = (K, E ,D) is correct, or meets the correctness
condition, if, when the sender encrypts a sequence of messages and the receiver
decrypts the resulting sequence of ciphertexts in order, the receiver will get
back what the sender started with. To be clear what this means in our current
stateful context, we now proceed more formally. Saying that encryption scheme
Π = (K, E ,D) is correct means that for all q, all M1, . . . ,Mq ∈ {0, 1}∗ and all
A1, . . . , Aq ∈ {0, 1}∗, the following game returns true with probability zero:

σ0, τ0 ← ε
For i = 1, . . . , q do (Ci, σi)� E(K,Mi, Ai, σi−1); (M

′
i , τi)← D(K,Ci, Ai, τi−1)

Return ((∀i : Ci �= ⊥) and (∃i : Mi �= M ′
i))

We will only consider schemes that are correct in this sense.

Security notions. We recall a standard notion of privacy for symmetric
encryption [2,3,22]. Let Π = (K, E ,D) be a symmetric encryption scheme and
let A be an adversary. Consider the following game:

Game PRIVA
Π

K�K; σ ← ε; b� {0, 1}
b′ ← A Enc; Return (b = b′)

Enc(M,A)

If b = 1 then (C, σ)� E(K,M,A, σ)

Else (C, σ)� E(K, 0|M|, A, σ)
Return C

Let Advpriv
Π (A) = 2Pr[PRIVA

Π ⇒ true] − 1 be the privacy advantage of ad-
versary A . Positive results will provide schemes secure in this sense and also
resistant to surveillance as we will define in Section 3.

3 Subverting Encryption

We now ask what it would mean for a symmetric encryption scheme Π =
(K, E ,D) to fall to an algorithm substitution attack (ASA). An attacker B (for
“big brother”) wants to subvert an encryption scheme en masse. We assume it

is able to arrange that subverted encryption code ẼK̃ is used in place of E . (The
subscript indicates that a key K̃ chosen by B may be embedded in the code.)
B wants its subversion to be successful and yet undetected. The former means
that from observing only ciphertexts computed under the subverted algorithm,
B can compromise privacy. (For example, it can, using K̃, efficiently recover the
plaintexts underlying the ciphertexts.) This captures the relevant attack scenario
where B is able, through mass surveillance of network traffic, to intercept bulk
ciphertexts at will. The latter means that the subverted encryption algorithm
should produce ciphertexts that look alright. The most basic form of the latter
requirement is that they correctly decrypt under the decryption algorithm D
of the base scheme, but we expect that big brother would prefer to evade even
more sophisticated attempts at detection.

8 M. Bellare, K.G. Paterson, and P. Rogaway

One can consider subverting an encryption scheme’s privacy, authenticity,
or both. One can also consider subversion for public-key schemes or for other
cryptographic goals, like key exchange. There are possibilities for algorithm-
substitution attacks (ASAs) in all these settings. Here we limit the scope to sub-
version aimed at compromising the privacy of a symmetric encryption scheme.
The extensions to cover additional schemes is an obvious and important target
for future research.

Subversions. Let Π = (K, E ,D) be a symmetric encryption scheme. A subver-

sion of Π is a triple Π̃ = (K̃, Ẽ , D̃). The master-key space K̃ is a finite nonempty

set. The subverted encryption algorithm Ẽ is a (possibly randomized) algorithm

that maps a six-tuple of strings (K̃,K,M,A, σ, i) to a pair of strings (C, σ′).
Here σ and σ′ are the current and updated states, respectively, indicating that
Ẽ may be stateful. The input i represents some public information identifying a
user encrypting under K and is assumed different for all keys. Such information
is usually available in a system, perhaps a MAC address or an IP address, and
we allow Ẽ to take it as input because we cannot realistically disallow a subverter
from having or using such information.

The plaintext-recovery algorithm D̃ takes K̃,C,A, i where C is a vector of
ciphertexts, A is a vector of associated data and i is again the identity asso-
ciated to the key K whose usage is being subverted. The algorithm attempts
to produce a vector of corresponding plaintexts M . How effectively it does this
will vary. For example, the plaintext-recovery algorithm D̃ may always find the
plaintext, for every ciphertext in the list, regardless of the length of the list. Or
it may effectively perform a key recovery attack first, then simply decrypt the
ciphertexts, but require many ciphertexts. In describing the severity of a prac-
tical ASA, we will explicitly specify D̃ and quantify how good a job it does—a
break that always finds the plaintext, or something else. For defining our secu-
rity notion, however, we will ignore D̃, for the very strong notion we shall give
implies the inexistence of any practical plaintext-recovery algorithm D̃.
Decryptability. We say that Π̃ = (K̃, Ẽ , D̃) satisfies the decryptability con-

dition relative to Π = (K, E ,D) if (K̃ × K, Ẽ ,D′) is a correct encryption scheme

where D′ is defined by D′((K̃,K), C,A, σ) = D(K,C,A, σ). Thus, although al-

gorithm Ẽ operates on a key (K̃,K) different from the key K of the base scheme

Π , a party possessing only K can decrypt Ẽ-encrypted plaintexts using the legit-
imate decryption algorithm D. This represents the most basic form of resistance
to detection, and we will assume any subversion must meet it.

Detection advantage. By detectability, we refer to the ability of ordinary
users—they know their secret keys, but not the master key—to tell, from the
ciphertexts, if encryption is happening by the real or subverted algorithm. In
the absence of any detectability condition, subversion is always possible. The
decryptability condition we gave above embodies a particularly basic form of
detection, in that failure to meet this condition is likely to lead to detection.
However, we expect that big brother wants to evade not just this, but more

Security of Symmetric Encryption against Mass Surveillance 9

Game DETECTU
Π,Π̃

b� {0, 1}; K̃� K̃; b′ �U Key,Enc

Return (b = b′)

Key(i)

If (Ki = ⊥) then Ki �K; σi ← ε

Return Ki

Enc (M,A, i)

If (Ki = ⊥) then return ⊥
If (b = 1) then (C,σi)� E(Ki,M,A, σi)

Else (C, σi)� Ẽ(K̃,Ki,M,A, σi, i)

Return C

Game SURVB
Π,Π̃

b� {0, 1}; K̃ � K̃; b′ �BKey,Enc(K̃)

Return (b = b′)

Key(i)

If (Ki = ⊥) then Ki �K; σi ← ε

Return ε

Enc (M,A, i)

If (Ki = ⊥) then return ⊥
If (b=1) then (C,σi)� E(Ki,M,A, σi)

Else (C, σi)� Ẽ(K̃,Ki,M,A, σi, i)

Return C

Fig. 1. Games used to define detection and surveillance security of subversion Π̃ =
(K̃, Ẽ , D̃) of encryption scheme Π = (K, E ,D)

sophisticated forms of detection. We now define what it means to do so. Let
Π = (K, E ,D) be an encryption scheme and let Π̃ = (K̃, Ẽ , D̃) be a subversion
of it. Let U be an algorithm representing a detection test being run by users.
Let

Advdet
Π,Π̃

(U) = 2Pr[DETECTU
Π,Π̃

⇒ true]− 1

where game DETECT is shown on the left of Fig. 1. This measures the ability
of test U to detect an ASA. In this game, U must detect whether it receives
ciphertexts produced by E or by Ẽ . Via oracle Key the test U can obtain keys,
reflecting that users may use their own keys in detection. The test of course does
not have access to the subversion key K̃. A subversion Π̃ in which this advantage
is negligible for all practical tests U is said to be undetectable and would be one
that evades detection in a powerful way. If such a subversion permitted plaintext
recovery, big brother would consider it a very successful one. Attacks we will
present in Section 4 show that such subversion is possible for a broad class of
schemes Π .

We emphasize that the above definition captures the users ’ inability to know
which encryption scheme is being used, the real one or the subverted one, even if
it knows the private underlying keys. The adversary U in this setting might be
regarded as the good guys—the population of users intent on seeing if they are
all being surveilled based on the input/output behavior of the encryption code.
We note that even if the detection advantage above is large, it is not clear that
users would actually be able to detect subversion: for one thing, they probably
wouldn’t know what to look for. Thus detection advantage is only interesting
when, for a scheme, it is demonstrably small. In that case big-brother has ef-
fectively forced detection to work by way of reverse-engineering the subverted
code, not by looking at its black-box behavior.

10 M. Bellare, K.G. Paterson, and P. Rogaway

Surveillance advantage. Now we want to define what it means for a scheme
Π to resist, meaning be secure against, ASAs. The first thought is to ask that
big brother, even given its subversion key K̃, cannot recover the plaintexts
underlying subverted ciphertexts. We ask for something stronger, namely that
big brother, even given K̃, cannot tell whether ciphertexts are being produced
by the real encryption algorithm E or by the subverted algorithm Ẽ . Formally let
Π = (K, E ,D) be an encryption scheme and let Π̃ = (K̃, Ẽ , D̃) be a subversion
of it. Let B be an adversary representing big brother. Let

Advsrv
Π,Π̃

(B) = 2Pr[SURVB
Π,Π̃

⇒ true]− 1

where game SURV is shown on the right of Fig. 1. In the game, adversary
B is given the subversion key K̃, but is not given user keys K1,K2, (We
remark that the SURV and DETECT games are very similar, effectively duals
of each other, the Enc oracle in particular being the same. The difference is
that in the former the adversary gets K̃ but not K1,K2, . . . while in the latter
it is the other way around.) For Π to be secure against surveillance requires

that this advantage is small for all subversions Π̃ of Π and all B. This is the
desired notion for positive results, and we will present schemes secure in this
sense in Section 5. (We will assume minimal detection security in the form of
the decryptability condition. Without some resistance to detection, surveillance
security is not possible.) In offering a scheme secure in this sense we are asserting
that big-brother can’t come close to achieving surveillance en masse.

We have formulated surveillance security with multiple users, but a hybrid
argument shows that the advantage relative to the one-user game can grow by
at most a factor of the number of users. We will use this result to simplify proofs,
which will restrict attention to the game with a single user. We remark that a
similar claim is not true for detection security.

4 Mounting ASAs

This section shows that typical randomized, stateless encryption schemes are
subvertible. We first describe an attack on modes of operation that surface their
IV. Then we describe what we call a universal attack, so named because it applies
regardless of the specifics of the scheme being attacked. In [4] we explain to what
extent such attacks are applicable to the most important secure communications
protocols for the Internet, namely SSL/TLS, IPsec, and SSH.

4.1 IV-Replacement Attacks

Following Young and Yung [28], Goh, Boneh, Pinkas and Golle [9] consider the
problem of adding a hidden key recovery to protocols. They suggest that when
the server needs a random nonce, it can use in its place an encryption of the
session key computed under the escrow key. We expand on this idea, letting the
escrow key be the subversion key. We show how to subvert stateleless encryption
schemes that put a random nonce into the ciphertext.

Security of Symmetric Encryption against Mass Surveillance 11

We consider randomized, stateless schemes Π = (K, E ,D), writing C ←
E(K,M,A; IV), where we now surface the randomness input IV (for initial
vector, IV) to the encryption algorithm and suppress the state input. Such a
scheme is said to surface its IV if there is an efficient algorithm X such that
X (E(K,M,A; IV)) = IV for all K,M,A, IV . The condition says that X can
recover the IV from the ciphertext. A simple example of a scheme that surfaces
its IV is CBC$, namely CBC mode with random IV. Another example is CTR$,
counter mode with random starting point.

The first requirement of a subversion attack is undetectability, but other at-
tributes are relevant too. We will describe two attacks.

Stateful attack. This is the simplest attack, in which the IV is simply
replaced by an encipherment, under the subversion key K̃, of the encryption
key K. For simplicity of presentation, we assume that the IV length and key
length are the same. (The attack extends easily to accommodate cases where
the key length is greater than the IV length.) In order to prevent repeated
IVs being seen across ciphertexts, we must limit the IV substitution to one
ciphertext. This necessitates the use of a stateful subversion scheme. To avoid
this repetition, one might consider replacing the IV by the encryption ofK under
a randomized symmetric encryption scheme that is IND$-CPA secure, but, since
this encryption will usually be longer than the IV and thus cannot replace the IV
in a single ciphertext, we would need to adopt a stateful approach to implement
it too.

In more detail, let the bit length of the IV and key be n and assume we have
a blockcipher E : K̃ × {0, 1}n → {0, 1}n with block length n. The subversion of

Π is the triple Π̃ = (K̃, Ẽ , D̃) where:

Ẽ(K̃,K,M,A, σ, i)

If σ = 0 then IV ← E(K̃,K)
Else IV � {0, 1}n
C ← E(K,M,A, IV)
σ ← σ + 1; Return C

D̃(K̃,C,A, i)

IV ← X (C[1])

K ← E−1(K̃, IV)
M [1]← D(K,C[1],A[1])
Return M

The state σ maintained by Ẽ is an integer initialized at 0. When the state has
this initial value, Ẽ sets the IV to an encryption of the key K, and otherwise
performs no subversion, picking the IV at random. Now assume user i has re-
quested an encryption of a messageM [1] under associated data A[1] with σ = 0,

resulting in ciphertext C[1] = Ẽ(K̃,K,M [1],A[1], 0, i). The subverter’s decryp-

tion algorithm gets input K̃ together with i and the length-one vectors C,A,
and recovers the key K as shown. Once obtained, the key can be used to decrypt
not only the current but any future ciphertexts.

This subversion Π̃ meets the decryptability condition. Furthermore, as long
as E is a PRP/PRF, the subverted IV is indistinguishable from a random one,

even to an observer that knows K (the observer does not know K̃), making the
subversion undetectable. Formally:

12 M. Bellare, K.G. Paterson, and P. Rogaway

Theorem 1. Let Π = ({0, 1}n, E ,D) be a randomized, stateless symmetric en-

cryption scheme that surfaces an IV of length n. Let E : K̃ × {0, 1}n → {0, 1}n
be a blockcipher. Let the subversion Π̃ = (K̃, Ẽ , D̃) of Π be defined as above. Let
U be a test that makes q queries to its Key oracle. Then we can construct an
adversary A such that Advdet

Π,Π̃
(U) ≤ q2/2n+Advprf

E (A). Adversary A makes

q oracle queries and its running time is that of U .

The q2/2n term corresponds to the chance that two users have the same key, in
which case their subverted IVs will be the same while the real ones would be
random and independent.

Suppose, however, that a user system, and hence the state of Ẽ , is reset.
Then the subverted IV will be recreated and the observer detects a repeated
IV, something not likely to happen in the absence of the subversion (though
plausibly explainable as a randomness failure). This reduces the effectiveness of
this simple attack. One solution to this problem is to adopt the above-mentioned
idea of replacing the IV by the encryption of K under a randomized symmetric
encryption scheme. This would result in a subversion (K̃, Ẽ , D̃) that is both
randomized and stateful. This subversion would have the practical advantage of
being able to continuously leak the key K, rather than relying on big brother
to intercept ciphertext C[1]. In our next attack, we present a subversion that
preserves this property and only requires randomisation.

Stateless attack. We present an attack where Ẽ is stateless. In this attack
the subversion is undetectable even under resets of the encryptor system, making
the attack harder to detect in practice. Let k be the key length of Π and let
v = �log2(k)�. (For example if k = 128 as for AES then v = 7.) Let E : K̃ ×
{0, 1}n → {0, 1}n be a blockcipher where n is the length of the IV of Π as before.

The subversion of Π is the triple Π̃ = (K̃, Ẽ , D̃) where:

Ẽ(K̃,K,M,A, i)

�� [1..k]
R� {0, 1}n−v−1

IV ← E(K̃,K[�]‖�‖R)
C ← E(K,M,A, IV)
Return C

D̃(K̃,C,A, i)

For j = 1, . . . , |C| do
b‖�‖R← E−1(K̃,X (C[j])); K ′[�]← b

For j = 1, . . . , |C| do
M [j]← D(K ′,C[j],A[j])

Return M

In computing E(K̃,K[�]‖�‖R) the integer � is encoded as a v-bit string. After
around k ln(k) encryptions, we expect that every � ∈ [1..k] has been chosen at

least once, so that if a vector of this many ciphertexts is passed to D̃, the latter
will succeed. Undetectability again follows if E is a PRP/PRF, exploiting the

fact that the observer does not know K̃:

Theorem 2. Let Π = ({0, 1}k, E ,D) be a randomized, stateless symmetric en-

cryption scheme that surfaces an IV of length n. Let E : K̃ × {0, 1}n → {0, 1}n
be a blockcipher. Let v = �log2(k)�. Let the subversion Π̃ = (K̃, Ẽ , D̃) of Π
be defined as above. Let U be a test that makes q queries to its Enc oracle.

Security of Symmetric Encryption against Mass Surveillance 13

Then we can construct an adversary A such that Advdet
Π,Π̃

(U) ≤ q2/2n−v−1 +

Advprf
E (A). It makes q oracle queries and its running time is that of U .

This subversion achieves an even stronger form of undetectability than Theo-
rem 2 captures. Since the subversion is stateless, reset of the system does not
lead to detection. (It is assumed that the subvertor has access to fresh coins at
every invocation. If a reset results in re-use of coins, our claim would no longer
be true.) The subversion obviously extends to one leaking more than bit of K
per ciphertext, at the cost of a weaker bound on detection advantage.

4.2 The Biased-Ciphertext Attack

The above IV-replacement attacks apply to several common modes in their “text-
book” form and to some of their deployments in Internet protocols, but there
are many encryption schemes to which they do not apply. These include schemes
that do not surface the IV, for example encrypted-IV schemes like CBC2 [23],
IACBC [14] and XCBC$ [8].

In this section we present a more general attack that we call the biased ci-
phertext attack. This attack is “universal” in that it applies to any randomized
and stateless encryption scheme Π = (K, E ,D) that uses a minimal amount of
randomness, say 7 bits. Undetectability holds in a strong form, namely even
under reset of the state of the subverter.

Suppose the user asks its system to use this scheme to encrypt a message M
with key K and associated data A, which means that the system is expected to
pick coins δ at random from the space D of coins for E and return ciphertext
C ← E(K,M,A; δ) (where we now replace IV by δ to emphasise the fact that
δ may not be surfaced). Our subverted encryption algorithm will compute C
the same way, except that δ will not be chosen quite at random. Instead, it will
be chosen to ensure that F (K̃, C) = K[j] is the j-bit of the key, where F is a
PRF. The subverter decryption algorithm, on receiving C, will recompute K[j]

as F (K̃, C). The counter j will be maintained by the subverter algorithms in
their state, so that over |K| encryptions, the entire key is leaked. The challenge
here is showing that the bias created in the distribution of C is not detectable,
even given the key K. Exploiting PRF security, we can move to a setting where
F (K̃, ·) is replaced by a random function. Then we use an information-theoretic
argument to show that the statistical distance between the real and subverted
ciphertexts is small even given K. In terms of our formal definitions, big brother
is undetectable.

We highlight the following features of the attack. First, big brother does not
pick, or care, what messages or associated data is encrypted – this is no chosen-
message attack. Big brother will succeed no matter what the user chooses to
encrypt, as long as it encrypts |K| or more messages. Second, the attack does
not merely distinguish between real and subverted ciphertexts; rather, it recovers
the encryption key. Although presented as a key recovery attack, it is not hard to
see that, in terms of our formal definitions, big brother has surveillance advantage
close to 1.

14 M. Bellare, K.G. Paterson, and P. Rogaway

Let us say that Π is coin injective if the mapping of coins to ciphertext,
for each fixed key, message and associated data, is injective. The analysis in
our current proof of undetectability requires that Π have this property. The
assumption is not particularly restrictive. Schemes that surface their IV are coin
injective, not just the ones to which the IV-replacement attack applies, but also
ones like OCB with random nonce that, as we indicated, were harder to handle.
Schemes that encrypt the IV are also coin injective and thus covered. More
generally, our analysis applies when the mapping is not injective but is regular.

Proceeding, suppose g : D → R where D ⊆ {0, 1}∗, and f : {0, 1}∗ → {0, 1}.
For b ∈ {0, 1} we let Sf,g(b,D) = {δ ∈ D : f(g(δ)) = b}. Here think of g as
taking coins δ and returning an encryption under them, the key, message, and
associated data being fixed as part of g. Let F : K̃ × {0, 1}∗ → {0, 1} be a PRF

that returns a bit. The subversion of Π is the triple Π̃ = (K̃, Ẽ , D̃) where:

Ẽ(K̃,K,M,A, σ, i)

j ← σ mod |K|; j ← j + 1
g(·)← E(K,M,A; ·)‖σ‖i
δ�SF (K̃,·),g(·)(K[j], D)
C ← E(K,M,A; δ)
σ ← σ + 1; Return C

D̃(K̃,C,A, i)

For j = 1, . . . , |C| do
K ′[j]← F (K̃,C[j]‖j − 1‖i)

For j = 1, . . . , |C| do
M [j]← D(K ′,C[j],A[j])

Return M

The state σ maintained by Ẽ is an integer, initially zero. Encryption lets g be
the function that has K,M,A, j, σ, i hardwired and on input coins δ in the space
D of coins of E , returns E(K,M,A; δ)‖σ‖i, the last two components ensuring
no collisions in output values of the function across different users and states.
Picking δ at random from the indicated set means that the ciphertext C =
E(K,M,A; δ) will satisfy F (K̃, C‖j− 1‖i) = K[j], except with some probability
of error when the set is empty.

Let k = |K|. Now assume that user i has requested encryptions of messages
M [1], . . . ,M [k] under associated data A[1], . . . ,A[k], respectively, to result in

ciphertextsC[1], . . . ,C[k], created viaC[j] = Ẽ(K̃,K,M [j],A[j], j−1, i) for j =
1, . . . , k. The big-brother decryption algorithm gets input K̃,C,A, i and recovers
the key K ′ as shown. It then decrypts under the true decryption algorithm to
return the corresponding vector of messages. Except in the case of an error, the
event K �= K ′ whose probability we will bound below, not only does decryption
succeed, but the process does more, recovering the key, and once this is done the
key can be stored and further ciphertexts decrypted directly.

The error probability of the key recovery attack is at most e1+ · · ·+ ek where

ej = Pr[K ′[j] �= K[j]] = Pr[SF (K̃,·),g(·)(K[j], D) = ∅]. Assuming F is a good
PRF, our estimate can be made with a random function f in its place. Due to
the inclusion of σ‖i in the argument to f , the applications of f are independent.
Assuming g is injective, each time, the set has chance 2−d to be empty where
d = |D|, so the error probability is at most k2−d. This is small as long as the
scheme uses a minimal amount of randomness, for example 7 bits, resulting in
d = 27 = 128. (A randomized mode will typically use 96–128 bits of randomness,

Security of Symmetric Encryption against Mass Surveillance 15

in which case the error probability is entirely negligible.) A similar analysis can
be carried out for the formal surveillance attack.

We claim that the subversion is undetectable. Our analysis first uses the PRF
security of F to replace F (K̃, ·) with a random function f . The key claim is then
the following information theoretic lemma. The proof is in [4].

Lemma 1. Suppose g : D → R. Let b ∈ {0, 1} and δ ∈ D. Let d = |D|. Let
p = Pr[δ = δ] where we first draw f : g(D)→ {0, 1} at random and then draw δ
at random from Sf,g(b,D) = {δ ∈ D : f(g(δ)) = b}.
(1) If g is injective then p = (1− 2−d)/d.

(2) More generally, if g is k-regular, then p = (1− 2−d/k)/d.

We use this lemma to estimate the undetectability of the subversion:

Theorem 3. Let Π = (K, E ,D) be a randomized, stateless, coin-injective sym-
metric encryption scheme with randomness-length r, and let d = 2r. Let F :
K̃ × {0, 1}∗ → {0, 1} be a PRF. Let the subversion Π̃ = (K̃, Ẽ , D̃) of Π be de-
fined as above. Let U be a test that makes q queries to its Enc oracle. Then
we can construct an adversary A such that Advdet

Π,Π̃
(U) ≤ q/2d +Advprf

F (A).

Adversary A makes q oracle queries and its running time is that of U .

So again as long as the scheme uses a non-trivial amount of randomness, for
example r ≥ 7 bits resulting in d ≥ 128, Theorem 3 implies that the subversion
is undetectable. The proof makes crucial use of Lemma 1, which, letting D =
{0, 1}r be the space of coins of E , implies that the statistical distance between the
real and subverted ciphertexts is 2−d. A reset of the state will lead to increased
detection ability for an observer, but if Π draws its coins from a reasonably large
space, this increase does not appear to be enough to lead to actual detection.
However the attack continues to be randomized, so if a system reset results in
re-use of entropy, detection becomes possible.

5 Defeating ASAs

We turn to finding schemes that resist ASAs. Given the results of Section 4, such
schemes must be deterministic and stateful. But not any such scheme works. The
challenge here is that security properties of a scheme, such as privacy and authen-
ticity, are of no evident use in showing resistance to ASAs, for these properties
hold relative to adversaries that do not know the key K, while in the surveillance
game, the subverted encryption algorithm has the key K. Thus surveillance se-
curity will rely on combinatorial properties of the scheme. We pinpoint one such
property, defining what it means for a symmetric encryption scheme to have
unique ciphertexts. We then show that any such scheme is surveillance-resistant.
We then present some designs of unique-ciphertext, and thus surveillance-secure,
schemes.

Unique ciphertexts. Let Π = (K, E ,D) be a symmetric encryption scheme.
For any possible state τ ofD with respect to keyK, any messageM ∈ {0, 1}∗ and

16 M. Bellare, K.G. Paterson, and P. Rogaway

any associated data A ∈ {0, 1}∗, let CΠ(K,M,A, τ) be the set of all ciphertexts
C such that D(K,C,A, τ) accepts with messageM , meaning its output is (M, τ ′)
for some τ ′. We say that Π has unique ciphertexts if the set CΠ(K,M,A, τ) has
size at most one for all K,M,A, τ . This means that, for any given key, message,
associated data and state, there exists at most one ciphertext that the decryptor
will decrypt to the message in question.

Due to the correctness condition, any unique-ciphertext scheme is determinis-
tic. The converse is not true, meaning Π being deterministic does not necessarily
mean it has unique ciphertexts. If Π is deterministic there is only one ciphertext
an honest encryptor will produce given a particular key, message, associated
data and state, but determinism does not ensure that there is not some other
ciphertext that the decryptor will decrypt to the same message. As an anal-
ogy, the difference is the same as between deterministic and unique signature
schemes [11,16].

Surveillance-security. The following says that a unique-ciphertext scheme
cannot be subverted without violating the decryptability condition. The proof
is in [4].

Theorem 4. Let Π = (K, E ,D) be a unique ciphertext symmetric encryption

scheme. Let Π̃ = (K̃, Ẽ , D̃) be a subversion of Π that obeys the decryptability
condition relative to Π. Let B be an adversary. Then Advsrv

Π,Π̃
(B) = 0.

A unique-ciphertext scheme. We give an example of a symmetric encryption
scheme that has unique ciphertexts and hence, by Theorem 4, is not subvertible.
Our scheme is based on the encode-then-encipher paradigm of [5] which we
extend to allow associated data. Let P : {0, 1}k × {0, 1}∗ → {0, 1}∗ be a family
of permutations. By P−1 we denote the inverse of P , satisfying P−1

K (PK(x)) = x
for all x ∈ {0, 1}∗. We also let F : {0, 1}k × {0, 1}∗ → {0, 1}t be a family
of functions. (It will be used as a MAC.) The state σ in our scheme will be a
counter, and we denote by 〈σ〉 its representation as a �-bit string. Our symmetric
encryption schemeΠ = (K, E ,D) has key space K = {0, 1}2k and encryption and
decryption algorithms defined as follows:

E(K,M,A, σ)

If (σ = 2�) then return (⊥, σ)
K1‖K2 ← K
W ← P (K1, 〈σ〉‖M)
T ← F (K2,W‖A)
C ← (W,T)
σ ← σ + 1
Return (C, σ)

D(K,C,A, τ)

If (τ = 2�) then return (⊥, τ)
K1‖K2 ← K; (W,T)← C; x← P−1(K1,W)
If (|x| < �) then return (⊥, τ)
〈σ〉‖M ← x
If (T �= F (K2,W‖A)) then return (⊥, τ)
If (σ �= τ) then return (⊥, τ)
τ ← τ + 1; Return (M, τ)

In the 4th line of the code of D, we are interpreting the first � bits of x as the
binary encoding of an integer denoted σ, and letting M be the rest of the bits
of x. If P is a PRP and F is a PRF then Π is a secure authenticated encryption
scheme. This is a standard claim that can be proved following [5]. Of interest in

Security of Symmetric Encryption against Mass Surveillance 17

our context is instead the following, which says that Π has unique ciphertexts.
This makes no security assumptions on P or F . The proof is in [4].

Theorem 5. Let P : {0, 1}k × {0, 1}∗ → {0, 1}∗ be a family of permutations
and F : {0, 1}k × {0, 1}∗ → {0, 1}t a family of functions. Let Π = (K, E ,D) be
the symmetric encryption scheme associated to them as above. Then Π satisfies
the correctness condition and has unique ciphertexts.

Surveillance-resistance from nonce-based schemes. Above we gave
a simple scheme to illustrate that surveillance-resistance is possible. However,
likely candidates to instantiate the PRP are two pass [12,13], making the scheme
potentially slower than standard, deployed ones. In [4] we describe a better solu-
tion. We show that any nonce-based scheme meeting a natural non-degeneracy
condition, called “tidiness” in [18], can be turned into a stateful symmetric en-
cryption scheme (by using the nonce as a counter) that has unique ciphertexts.
Most existing and practical nonce-based schemes meet our condition, so this
results in a number of surveillance-secure schemes that may be easily deployed.

Acknowledgments. Bellare was supported in part by NSF grants CNS-1228890
and CNS-1116800, Paterson by EPSRC Leadership Fellowship EP/H005455/1,
and Rogaway by NSF grants CNS-1228828 and CNS-1314885.

References

1. Ball, J., Borger, J., Greenwald, G.: Revealed: How US and UK Spy Agencies Defeat
Internet Security and Privacy. The Guardian (September 5, 2013)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: 38th FOCS. IEEE (1997)

3. Bellare, M., Kohno, T., Namprempre, C.: Authenticated Encryption in SSH: Prov-
ably Fixing the SSH Binary Packet Protocol. In: ACM CCS 2002. ACM (2002)

4. Bellare, M., Paterson, K., Rogaway, P.: Security of Symmetric Encryption against
Mass Surveillance. Full version of this paper. Cryptology ePrint Archive, Report
2014/438 (2014)

5. Bellare, M., Rogaway, P.: Encode-then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

6. Cabuk, S., Brodley, C., Shields, C.: IP Covert Channel Detection. ACM Trans. Inf.
Syst. Secur. 12(4) (2009)

7. Checkoway, S., Fredrikson, M., Niederhagen, R., Everspaugh, A., Green, M., Lange,
T., Ristenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H.: On the Practical
Exploitability of Dual EC in TLS Implementations. In: USENIX Security Sympo-
sium (2014)

8. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

18 M. Bellare, K.G. Paterson, and P. Rogaway

9. Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.: The Design and Implementation of
Protocol-Based Hidden Key Recovery. In: Boyd, C., Mao, W. (eds.) ISC 2003.
LNCS, vol. 2851, pp. 165–179. Springer, Heidelberg (2003)

10. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

11. Goldwasser, S., Ostrovsky, R.: Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs are Equivalent (Extended Abstract). In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)

12. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

13. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

14. Jutla, C.: Encryption Modes with Almost Free Message Integrity. Journal of Cryp-
tology 21(4), 547–578 (2008)

15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

16. Lysyanskaya, A.: Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
597–612. Springer, Heidelberg (2002)

17. Millen, J.: 20 years of Covert Channel Modeling and Analysis. In: IEEE Symposium
on Security and Privacy (1999)

18. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–
274. Springer, Heidelberg (2014)

19. Patarin, J., Goubin, L.: Asymmetric Cryptography with S-Boxes. In: Han, Y.,
Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 369–380. Springer, Heidelberg
(1997)

20. Paterson, K.G.: Imprimitive Permutation Groups and Trapdoors in Iterated Block
Ciphers. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 201–214. Springer,
Heidelberg (1999)

21. Rijmen, V., Preneel, B.: A Family of Trapdoor Ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997)

22. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM CCS 2002.
ACM (2002)

23. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

24. Simmons, G.: The Prisoners’ Problem and the Subliminal Channel. In: CRYPTO
1983. Springer (1983)

25. Song, D., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing Attacks
on SSH. In: USENIX Security Symposium (2001)

26. Thompson, K.: Reflections on Trusting Trust. Commun. ACM 27(8), 761–763
(1984)

27. Young, A., Yung, M.: The Dark Side of “Black-Box” Cryptography, or: Should
We Trust Capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
89–103. Springer, Heidelberg (1996)

Security of Symmetric Encryption against Mass Surveillance 19

28. Young, A., Yung, M.: Kleptography: Using cryptography against Cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

29. Young, A., Yung, M.: Monkey: Black-Box Symmetric Ciphers Designed for
MONopolizing KEYs. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, p. 122.
Springer, Heidelberg (1998)

30. Young, A., Yung, M.: A Subliminal Channel in Secret Block Ciphers. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 198–211. Springer,
Heidelberg (2004)

31. Young, A., Yung, M.: Backdoor Attacks on Black-Box Ciphers Exploiting Low-
Entropy Plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 297–311. Springer, Heidelberg (2003)

The Security of Multiple Encryption

in the Ideal Cipher Model

Yuanxi Dai1, Jooyoung Lee2, Bart Mennink3, and John Steinberger1

1 Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, P.R. China

{shustdc,jpsteinb}@gmail.com
2 Faculty of Mathematics and Statistics, Sejong University, Seoul, Korea

jlee05@sejong.ac.kr
3 Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium

bart.mennink@esat.kuleuven.be

Abstract. Multiple encryption—the practice of composing a blockci-
pher several times with itself under independent keys—has received con-
siderable attention of late from the standpoint of provable security.
Despite these efforts proving definitive security bounds (i.e., with match-
ing attacks) has remained elusive even for the special case of triple en-
cryption. In this paper we close the gap by improving both the best
known attacks and best known provable security, so that both bounds
match. Our results apply for arbitrary number of rounds and show that
the security of �-round multiple encryption is precisely exp(κ+min{κ(�′−
2)/2), n(�′−2)/�′}) where exp(t) = 2t and where �′ = 2��/2� is the small-
est even integer greater than or equal to �, for all � ≥ 1. Our technique
is based on Patarin’s H-coefficient method and relies on a combinato-
rial result of Chen and Steinberger originally required in the context of
key-alternating ciphers.1

1 Introduction

Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a blockcipher with key space {0, 1}κ and
message/ciphertext space {0, 1}n. The �-cascade of E, denoted E(�), is the block-
cipher of key space {0, 1}�κ and of message space {0, 1}n obtained by composing
E � times with itself under independent keys. Thus

E
(�)
k (x) = Ek�

(Ek�−1
(. . . (Ek1 (x)) . . .)) (1)

where k = k1‖ . . . ‖k� ∈ {0, 1}�κ. (The inverse of E(�) is computed the obvious
way.) In particular E(1) = E.

Since E(�) has longer keys than E for � ≥ 2, the �-cascade can be viewed as a
natural mechanism for increasing the key space of a blockcipher and, hence, po-
tentially, enhancing the security level. Security does not necessarily increase lin-
early with the key length, however. For example there exist meet-in-the-middle

1 This paper is an independently initiated merge of preprints [9, 23, 30], that were
separately submitted to CRYPTO 2014.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 20–38, 2014.
c© International Association for Cryptologic Research 2014

The Security of Multiple Encryption in the Ideal Cipher Model 21

(key-recovery) attacks against cascades of length 2 that cost no more2 than
generic (key-recovery) attacks against cascades of length 1 [11]. Indeed, when a
variant of DES with longer keys was needed, designers eschewed double encryp-
tion (cascades of length 2) in favor of triple encryption [11, 31]. The standard
which eventually resulted, so-called Triple DES [2,15,35], is still widely deployed.

Even while generic attacks have guided the considerations of designers since
the beginning, finding nontrivial provable security results for multiple encryption
in idealized models remained an open problem for a very long time. In the ideal
model which we and most previous authors envisage [1,4,16,17,22] the security
of the �-cascade is quantified by the information-theoretic indistinguishability
of two worlds, “real” and “ideal”. In the “real” world the adversary A is given
oracle access to an ideal3 cipher E, to its inverse E−1, and to a randomly keyed

�-cascade instance E
(�)
k of E (for hidden k) as well as to the inverse (E

(�)
k)−1 of

the �-cascade; in the “ideal” world the �-cascade instance E
(�)
k is replaced by a

random independent permutation π and its inverse π−1. The adversary knows
the value � in question.

The case � = 1, while quite simple, is already instructive to analyze. In that

case the adversary must distinguish between E
(1)
k = Ek and a random permuta-

tion π, while being given oracle access to E. Since E is ideal, it is easy to argue
that the adversary has no advantage as long as it has not queried its oracle E on
key k. With k being uniform at random, and with other queries to E/π/Ek giv-
ing no clue as to the value of k, the adversary’s distinguishing advantage is thus
upper bounded by—and in fact basically equal to—q/2κ, where q is the number
of queries made. (We note this bound holds even if n is very small compared to
κ, e.g., n = 1, 2. For the sake of completeness, we formalize the argument just
sketched in Appendix C of our full version [10].) An easy reduction4 argument,
moreover, shows that E(�) is at least as secure as E(r) for all r ≤ �. Hence E(�)

achieves at least κ bits of security for all � ≥ 1, and the basic question is to
determine how security grows with �.

The first nontrivial results obtained pertaining to this question were by Aiello

et al. [1] who show that E
(2)
k is slightly harder to distinguish from a random

π than E
(1)
k = Ek. More precisely, Aiello et al. show that A’s distinguishing

advantage for E(2) is upper bounded by an expression of the form q2/22κ, as
opposed to q/2κ for E(1), where q is the number of queries made by A. In either
event, thus, E(1) and E(2) both essentially offer κ bits of security, given the
meet-in-the-middle attack for length two cascades of cost q = 2κ [11]. (See also
the full version of this paper [10], which revisits Aiello et al.’s result.)

Subsequently we will write exp(κ) for 2κ, somewhat in line with the computer
science convention of writing log(t) for log2(t). We thus say, e.g., that E(1) and
E(2) “achieve security exp(κ)”, in the sense that it requires about exp(κ) = 2κ

2 This should be qualified: the memory costs are much larger and the query complexity
is slightly greater [1].

3 I.e., E(k, ·) : {0, 1}n → {0, 1}n is a random permutation for each key k ∈ {0, 1}κ.
4 Since the adversaries considered are information-theoretic, we note that we don’t
even have to consider the reduction’s running time lossiness.

22 Y. Dai et al.

Table 1. Security lower and upper bounds for cascaded encryption (in log). Here,
�′ = 2��/2�. All results in bold are derived in this work.

E(�) security tight

� = 1, 2 κ [1, 11] ✓

� = 3, 4
κ+min{κ/2, n/2} [4, 17] ✗

κ + min{κ, n/2} ✓

� ≥ 5
κ+min{κ(�′ − 2)/�′, n/2} [17]� ✗

κ + min{κ(�′ − 2)/2, n(�′ − 2)/�′} ✓

�Starting from � ≥ 16, Lee [22] proved an improved security bound of exp(κ +
min{κ, n} − 8n/�).

queries to achieve constant distinguishing advantage between the real and ideal
worlds for those cascade lengths.

After Aiello et al. a complicated history of improved security bounds ensues,
including work by Bellare and Rogaway [4] for length 3 cascades, by Gaži and
Maurer [17] (who corrected some errors in Bellare-Rogaway and who generalized
their approach to larger numbers of rounds), and by Lee [22]. For reasons of
space, however, we eschew a detailed discussion of these prior results in this
proceedings version, and refer the reader to the synopsis in Table 1.

On the attack side Lucks [26] found an attack of cost κ + n/2 for length 3
cascades (thus matching the Bellare-Rogaway security bound for length 3 cas-
cades in the regime κ ≥ n). Gaži found an attack of cost κ + n(�′ − 2)/�′ for
arbitrary � generalizing Lucks’s attack. (Moreover Gaži was the first to give a
mathematically rigorous analysis of Lucks’s attack.)

Despite this series of results obtaining matching upper and lower bounds on
security has remained elusive for all � ≥ 3. In the case � = 3, for example, all we
know is that the security of E(3) lies somewhere in the interval

[exp(κ+min{κ/2, n/2}), exp(κ+ n/2)]

which leaves open the question of the true security for κ < n. For � ≥ 5, moreover,
exact security remained open regardless of the ratio between � and κ.

Our results. In this paper we close the remaining gaps between upper and
lower bounds for all �, up to customary lower-order terms. More precisely, we
show that E(�) has security

exp(κ+min{κ(�′ − 2)/2, n(�′ − 2)/�′}) (2)

by exhibiting matching attacks and security proofs, for all � ≥ 1. (Note by the
form of (2) that new attacks are only needed when κ(�′ − 2)/2 < n(�′ − 2)/�′;
otherwise the attacks of Gaži suffice.) One can observe from (2) that � = 2r
rounds buy the same amount of security as � = 2r− 1 rounds. In fact, we expect

The Security of Multiple Encryption in the Ideal Cipher Model 23

the curve describing the adversary’s advantage to be slightly more advantageous
for 2r − 1 rounds than for 2r rounds, as observed by Aiello et al. for r = 1, but
our analysis is not fine-grained enough to verify this.

Techniques. Tightening the security bounds for triple encryption is already
an interesting problem in itself. Besides devising a new rather easy attack of
cost exp(2κ), it turns out that the bound directly follows from tightening a key
combinatorial lemma in Bellare and Rogaway’s original proof (Lemma 10 in [5]).

We found the case of larger number of rounds (in particular, � ≥ 5) to be more
challenging. While we copied the basic approach of Bellare and Rogaway [4] and
of Gaži and Maurer [17] some significant structural changes were required in
order to achieve tightness. In particular, we had to rebundle a key two-step
game transition from [17] into a single-step transition. Moreover we found that
the best way to handle this (now rather delicate) single-step transition was by
Patarin’s H-coefficient technique [37]. Here we drew inspiration from Chen and
Steinberger [8] and, indeed, reused the key combinatorial lemma of that paper.
Roughly speaking, this lemma gives an explicit expression for the probability
that

(P� ◦ · · · ◦ P1)(a) = b

where each Pi is a partially defined random permutation of {0, 1}n, where ◦
denotes function composition, where a, b ∈ {0, 1}n are two values such that
P1(a) and P−1

� (b) are undefined. Here the probability is expressed (in particular,
lower-bounded) as a function of the number of edges5 already defined in the Pi’s
as well as of the number of “chains” of various lengths6 formed by those edges in
the composition P1 ◦ · · · ◦ P�. (In our case Pi = Eki where k = k1‖ . . . ‖k� is the
secret key.) It is noteworthy that the security proofs for three different classes of
composed ciphers (key-alternating ciphers [8], cascade ciphers (this paper), and
XOR-cascade ciphers [8, 16, 18]) now rely on this lemma.

In order to successfully apply the H-coefficient technique and Chen and Stein-
berger’s lemma a crucial step is to upper bound the probability of the adversary
obtaining (too many) long chains in P� ◦ · · · ◦ P1 = Ek�

◦ · · · ◦ Ek1 . Like Bellare
and Rogaway [4] and like Gaži and Maurer [17] before us, we do this by upper
bounding the total number of query chains of a given length formed by all of the
adversary’s queries to E, regardless of the underlying key, and then by apply-
ing a Markov inequality—but in our case we strive for tight bounds on the total
number of query chains. At first glance the combinatorial question is nonobvious
(especially given the presence of an adaptive adversary) but we observe that on
any path of queries at least half the queries are “backwards” (meaning contrary
to the path’s direction, in this instance) for at least one of the two possible ways
of orienting the path (as a given path can be traversed right-to-left or left-to-

5 If x ∈ {0, 1}n is a value such that y = Pi(x) is defined, then the pair (x, y) is also
called an edge of Pi, equating Pi with a bipartite graph (more precisely, a partial
matching) from {0, 1}n to {0, 1}n. The composition P� ◦ · · · ◦ P1 is visualized by
“gluing” these bipartite graphs sequentially next to one another.

6 See the previous footnote.

24 Y. Dai et al.

right). Together with some classical balls-in-bins occupancy results, this simple
symmetry-breaking observation gives an easy means of upper bounding the total
number of query chains formed, and the bounds obtained are also tight. We refer
to Proposition 1 for more details.

Other related work. We have already briefly mentioned related work on
key-alternating ciphers [7,8,14,21,38] as well as on XOR cascades [16,18,22], to
which the beautiful work of Rogaway and Kilian on DESX (a special case of an
XOR-cascade) should be added [19].

Coming back to cascade ciphers, Merkle and Hellman [31] show an attack on
two-key triple encryption, which attack is revisited by Oorschot and Wiener [34].
(See also [33].) Even and Goldreich [13] present a medley of observations on
multiple encryption in various models, including some conclusions which are
disputed by Maurer and Massey [27]. The best paper award at CRYPTO 2012, by
Dinur et al. [12], concerns, in large part, non-information-theoretic key-recovery
attacks on cascade ciphers.

We finally point that similar questions (though using very different techniques)
have been pursued in the computational setting, in which one seeks to amplify
the computational indistinguishability of a PRP by composing it with itself [25,
28, 29, 32]. See in particular [39] which culminates this line of work.

Open questions. As will be seen, our results actually hold even if the adversary

is always allowed to make 2n queries to its permutation oracle (which is E
(�)
k

or π) for free, i.e., to entirely learn its permutation oracle for free. It would be
interesting to know if better bounds can be achieved by restricting the number of
permutation queries. This is all the more relevant given that many applications
will impose limitations on the number of encryptions/decryptions available to
the adversary.

2 Definitions

Blockciphers and Cascades. A blockcipher is a function E : {0, 1}κ ×
{0, 1}n → {0, 1}n such that E(k, ·) : {0, 1}n → {0, 1}n is a permutation for
each key k ∈ {0, 1}κ. We also write Ek(x) for E(k, x). By the “inverse” E−1 of
E we mean the blockcipher E−1 : {0, 1}κ × {0, 1}n → {0, 1}n such that E−1

k is
the inverse permutation of Ek for each k ∈ {0, 1}κ.

For a blockcipher E and an integer � ≥ 1 we define the �-cascade of E, written
E(�), by equation (1). We note that E(�) is a blockcipher of key space {0, 1}�κ
and of message space {0, 1}n.
Ideal Ciphers. A blockcipher E : {0, 1}κ×{0, 1}n → {0, 1}n which is sampled
uniformly at random from the space of all blockciphers of key space {0, 1}κ and
of message space {0, 1}n is called an ideal cipher. In this case Ek is a random
independent permutation of {0, 1}n for each k ∈ {0, 1}κ.
Security Game. Let �, κ and n be given. Let A be an information-theoretic ad-
versary (or “distinguisher”) with oracle access to, among others, an ideal cipher

The Security of Multiple Encryption in the Ideal Cipher Model 25

E : {0, 1}κ × {0, 1}n → {0, 1}n, which we write AE but by which we mean that
A can query both E and E−1. (Along the same lines writing Aπ indicates that A
has access to both π and π−1 when π is a permutation.) Then A’s distinguishing
advantage against �-cascades, written Advcasc

�,κ,n(A) is defined as

Advcasc
�,κ,n(A) = Pr[k∗ $← {0, 1}�κ;AE,E

(�)

k∗ = 1]− Pr[π
$← P ;AE,π = 1]

where the notation
k∗ $← {0, 1}�κ;AE,E

(�)

k∗ = 1

indicates the event that A outputs 1 after interacting with oracles E/E−1 and

E
(�)
k∗ /(E

(�)
k∗)−1 where k∗ is sampled uniformly at random from the key space of

E(�), and hidden from A; whereas the notation

π
$← P ;AE,π = 1

indicates the event that A outputs 1 after interacting with oracles E/E−1 and
π/π−1 where π is a permutation of {0, 1}n sampled uniformly at random from
the set of all permutations of {0, 1}n, here denoted P ; and where in either case
the sampling of the ideal cipher E at the start of the experiment is kept implicit
for the sake of succinctness.

We write
Advcasc

�,κ,n(q)

for the supremum of Advcasc
�,κ,n(A) taken over all q-query information-theoretic

adversaries A. (The notation Advcasc
�,κ,n is thus overloaded.)

3 Statement of Results

Lower bounds. Our paper’s main result is the following theorem (as always,
�′ = 2��/2�; we also write (� + 1)′ for 2�(�+ 1)/2�, etc):

Theorem 1. (a) If q ≥ 2n then, for every real number C ≥ 1,

Advcasc
�,κ,n(q) ≤

�2

2κ+1
+

4

2n
+

α

C
+ 2n�C(�+1)′/2

(
8q

2κ+n

)�′/2

where α = �22�(7n)�
′/2. Furthermore if q ≥ n2n we can improve α to α′ =

�22�14�
′/2 ≤ �28�

′
.

(b) If q ≤ 2n then, for every C ≥ 1 such that Cq < 2κ+n−2,

Advcasc
�,κ,n(q) ≤

�2

2κ+1
+

4

2n
+

β

C
+

q2�

2n
C(�+1)′/2

(
8

2κ

)�′/2

+
qβ

�2κ�′/2

where β = �22�(3 log q + 2)�
′/2.

Moreover (a) and (b) also hold if the adversary is allowed to ask, for free, all
possible 2n queries to its second oracle.

26 Y. Dai et al.

The presence of the adjustable constant C is typical of security proofs involving
a threshold-based “bad event”. For given parameters q, n, κ and � there some
optimal C that minimizes the bound.

Theorem 1 is, unfortunately and evidently, hard to parse. By analytically
optimizing C and making a few other simplifications, however, Theorem 1 yields
the following, slightly more digestible corollary:

Corollary 1. (a) If q ≥ 2n then

Advcasc
�,κ,n(q) ≤

�2

2κ+1
+

4

2n
+ α(�/2 + 2)�1/2

(
8q

2κ+n(�′−2)/�′

)�′/(�+3)′

where α = �22�(7n)�
′/2. Furthermore if q ≥ n2n we can improve α to α′ =

�22�14�
′/2 ≤ �28�

′
.

(b) If q ≤ 2n and 2�(3n+ 2)�
′/2 ≤ 2n then

Advcasc
�,κ,n(q) ≤

�2

2κ+1
+

4

2n
+ β(�/2 + 2)

(
�3�

′
q2

2κ�′/2+n

)2/(�+3)′

+
qβ

�2κ�′/2

where β = �22�(3 log q + 2)�
′/2.

Moreover (a) and (b) also hold if the adversary is allowed to ask, for free, all
possible 2n queries to its second oracle.

The proof of Corollary 1 from Theorem 1 can be found in the full version [10].
We note the constraint 2�(3n + 2)�

′/2 ≤ 2n that appears in the second part
of Corollary 1 is almost always satisfied by practical parameters and is always
asymptotically verified as n→∞. (Indeed, we imagine � as fixed whereas n, κ→
∞ according to some fixed ratio.)

It directly follows from Corollary 1 that Advcasc
�,κ,n(q) is small if

q � exp(κ+min{κ(�′ − 2)/2, n(�′ − 2)/�′})

(note κ + κ(�′ − 2)/2 = κ�′/2 and q2/2κ�
′/2+n ≤ q/2κ�

′/2 when q ≤ 2n) or, a
little more precisely, if

q � (2−�/2(7n)−�′/4�−2)(�+3)′

· exp(κ+min{κ(�′ − 2)/2− 2�, n(�′ − 2)/�′ − 3}). (3)

We emphasize that the above threshold is a coarse estimate, which takes into
account the factors of all three non-negligible expressions in Corollary 1. (Note
that log q ≤ n in the second part of Corollary 1, so β ≤ α.) Indeed, if q is a
factor r smaller than the expression on the right of (3), then it is easy to see from
Corollary 1 that the adversary’s advantage is upper bounded by either r�

′/(�+3)′

or r4/(�+3)′ + r, disregarding the negligible terms �2/2κ+1 and 4/2n.

Upper bounds. In Section 4 we present a simple attack of query complexity

� · exp(κ�′/2)

The Security of Multiple Encryption in the Ideal Cipher Model 27

that succeeds in distinguishing (E,E
(�)
k) from (E, π) with overwhelming advan-

tage. This complements the previously quoted attack by Gaži, of query complex-
ity

� · exp(κ+ n(�′ − 2)/�′)

and which also succeeds with overwhelming advantage. Hence the gap left be-
tween lower and upper bounds is essentially the gap left between

min{� · exp(κ�′/2), � · exp(κ+ n(�′ − 2)/�′)}

and the right-hand side of (3).

4 An Attack of Cost exp(κ�′/2)

In this section we describe a new “meet-in-the-middle-attack” on E(�) of com-
plexity exp(κ�′/2), which complements Gaži’s attack of query complexity exp(κ+
n(�′ − 2)/�′). A precise statement is given by the following theorem.

Theorem 2. For any integer ρ, 1 ≤ ρ ≤ 2n−1, there exists an adversary A

making at most ρ�2κ�
′/2 queries to E and at most ρ queries to E

(�)
k /π, such that

Advcasc
�,κ,n(A) ≥ 1− 2κ�−ρ(n−1).

Proof. The adversary A, which implements a meet-in-the-middle attack, is given
by the pseudocode of Fig. 1. A starts by querying ρ messages m1, . . . ,mρ to

E
(�)
k /π, thus obtaining their corresponding ciphertexts c1, . . ., cρ. Then for each

of these message/ciphertext pairs (mi, ci) it evaluates the first ��/2� block ciphers
for all possible keys starting from mi and the last ��/2� block ciphers in inverse
direction starting from ci. One possible key k = (k1‖ . . . ‖k�) must “stand out”
unless A is in the ideal world. Thus A returns 1 if and only if there is a key
compatible with all ρ message-ciphertext pairs (mi, ci). It is easy to see that A

makes ρ queries to E
(�)
k /π and

ρ(��/2�2κ��/2� + ��/2�2κ��/2�) ≤ ρ�2κ�
′/2

queries to E, as claimed.

Clearly, in the real world (E
(�)
k , E), for (k∗L, k

∗
R) = k we have ai,k∗

L
= bi,k∗

R
for

all i = 1, . . . , ρ, so A returns 1. We consider the probability that A returns 1 in
the ideal world (π,E). For each key k = (k1‖ . . . ‖k�), Ek�

◦ · · · ◦ Ek1 becomes a
truly random permutation, independent of π. For this key, the probability that
Ek�

◦ · · · ◦ Ek1(mi) = ci for every i = 1, . . . , ρ is upper bounded by

(2n − ρ)!

(2n)!
≤
(

1

2n − ρ+ 1

)ρ

≤ 1

2ρ(n−1)
.

The theorem follows by a union bound over all possible keys. ��

28 Y. Dai et al.

fix distinct m1, . . . ,mρ ∈ {0, 1}n
for r = 1 to ρ do

query ci ← R(mi)
forall k∗

L = (k∗
1‖ . . . ‖k∗

��/2�) ∈ {0, 1}κ��/2�
query ai,k∗

L
← Ek∗

��/2� ◦ · · · ◦Ek∗
1
(mi)

forall k∗
R = (k∗

��/2�+1‖ . . . ‖k∗
�) ∈ {0, 1}κ��/2�

query bi,k∗
R
← E−1

k∗
��/2�+1

◦ · · · ◦ E−1
k∗
�
(ci)

forall (k∗
L, k

∗
R) ∈ {0, 1}κ��/2� × {0, 1}κ��/2�

if ai,k∗
L
= bi,k∗

R
for all i = 1, . . . , ρ

return 1
return 0

Fig. 1. The adversary A for Theorem 2. The oracle to E
(�)
k /π is denoted R.

5 Preliminary Reductions and Proof Overview

Modifications of Bellare and Rogaway [4]. In view of proving Theorem
1, we start by modifying the distinguishability game in the following way. At the
very start of the experiment we send a symbol ∈ {⊥,�} to the adversary. In
the ideal world we send = �, and in the real world we also send = � unless
k∗� = k∗i for some i < �, where k∗ = k∗1‖ . . . ‖k∗� is the secret key, in which case
we send = ⊥. Since the adversary is free to disregard , this modification is
without loss of generality.

Next, we make a second modification, namely that if = ⊥ then we forbid
the adversary from making any queries. Since can only be ⊥ in the real world
this is without loss of generality either (as the adversary already knows which
world it is in anyway).

Now we make yet another modification to the real world, by generating a
random permutation π like in the ideal world at the beginning of the experiment.

If = � we answer queries to E
(�)
k∗ by π instead and, to compensate, we define

Ek∗
�
= π ◦ E−1

k∗
1
◦ · · · ◦ E−1

k∗
�−1

(thus “overwriting” Ek∗
�
). Since this simply trades

the randomness of Ek∗
�
for the randomness in π, it is easy to see that this is an

equivalent way of defining the real world.
Note that both worlds now involve an independent7 random permutation π.

For each fixed permutation S one can also consider the distinguishing experiment
where π is set to S in each world. A simple averaging argument over π shows,
moreover, that there must exist some S for which the adversary’s distinguishing
advantage is at least as great when π is fixed to S as when π is random. We can
thus assume without loss of generality that π is not sampled at random, but set

7 The real world now has three “random tapes”: one for k∗, one for π, and one for the
ideal cipher E. Every query made by the adversary is deterministically answered as
a function of these three random tapes, and these random tapes are independently
sampled. This is the sense in which π is “independent” from other randomness in
the real world.

The Security of Multiple Encryption in the Ideal Cipher Model 29

to the same fixed permutation S in both worlds. Since S is fixed, now, and since
we are quantifying over all information-theoretic adversaries A, we can assume
that A knows S and, hence, makes no queries to its second oracle.

To summarize, modifications so far amount to this: in the real world, we abort
the experiment if k∗� = k∗i for some i < �, whereas in the contrary (generic) case
there is some fixed permutation S, known to the adversary, such that Ek∗

�
=

S ◦ E−1
k∗
1
◦ · · · ◦ E−1

k∗
�−1

. The ideal world never aborts.

Further Normalizations. Since A is information-theoretic we can assume
without loss of generality that A is deterministic.

As in [8] we will also modify the experiment by giving the secret key to A after
it has finished making all its queries. More precisely, in the real world we give

the “real” key k∗ used to key the second oracle E
(�)
k∗ whereas in the ideal world

(where no such key exists) we sample a “dummy” key k∗ ∈ {0, 1}κ� uniformly
at random and give this dummy key to A. Since A is free to disregard this extra
information this is also without loss of generality.

Transcripts. The interaction of A with its oracles is encoded by a transcript
which, basically, is a list of questions asked and answers received, together also
with the key value received at the end of the experiment.

More precisely, a transcript can be encoded by a triple of the form (,QE , k
∗)

where ∈ {⊥,�}, where k∗ ∈ {0, 1}κ� is the final key value received, and where
QE is an unordered set of triples of the form (k, x, y) ∈ {0, 1}κ×{0, 1}n×{0, 1}n
with each such tuple indicating that either E(k, x) was queried with answer y or
that E−1(k, y) was queried with answer x. Indeed, A’s interaction with its oracles
can be unambiguously reconstructed from such an “unordered and undirected”
set QE by using the fact that A is deterministic, cf. [8].

We write T for the set of all possible transcripts.

Probability space of Oracles. Let P be the set of all permutations from
{0, 1}n to {0, 1}n. Then a blockcipher of key space {0, 1}κ and message space
{0, 1}n can be viewed as an element of Pexp(κ) (2κ-fold direct product). Thus,
an ordered pair

(E′, k∗) ∈ Pexp(κ) × {0, 1}κ�

uniquely determines a real-world environment for A. More precisely, unless = ⊥
in which case A receives no further information except for k∗, A’s ideal cipher
oracle E is defined by

Ek =

{
E′

k if k �= k∗�
S ◦ E′−1

k∗
1
◦ · · · ◦ E′−1

k∗
�−1

if k = k∗�

where k∗ = k∗1‖ . . . ‖k∗� . We thus identify elements of

ΩX := Pexp(κ) × {0, 1}κ�

with real-world oracles. We view ΩX as a probability space with uniform measure
(indeed, the definition of the real-world experiment induces uniform measure on
ΩX).

30 Y. Dai et al.

We similarly define

ΩY := Pexp(κ) × {0, 1}κ�

to be identified with the set of all ideal-world oracles, and which we also view as
a probability space with uniform measure. Here the last coordinate corresponds
to the “dummy key” given to the adversary at the end of the experiment. We
emphasize that, for (E, k∗) ∈ ΩY , the ideal cipher oracle to which A has access
is precisely E, i.e., with no key being overwritten as a function of k∗ and S; this
is precisely the difference between the real and ideal worlds in the (generic) case
when k∗� /∈ {k∗1 , . . . , k∗�−1}.

We can view the transcript produced by A in the real world as a random
variable defined over ΩX . Formally, let X : ΩX → T be the function defined by
letting X(ω) be the transcript obtained by running A on oracle ω. Thus X is a
random variable of range T , and the distribution of X is exactly the distribution
of transcripts in the real world. We similarly define Y : ΩY → T , so that Y is
the transcript distribution in the ideal world.

The H-coefficient technique [36,37], in its simplest form, states that if we can
divide T into a set of (so-called) “good” transcripts T1 and (so-called) “bad”
transcripts T2, such that8

Pr[X = τ]

Pr[Y = τ]
≥ 1− ε1 (4)

for some ε1 > 0 and for all τ ∈ T1, then the adversary’s distinguishing advantage
is upper bounded by

Pr[Y ∈ T2] + ε1.

We refer to [8] for more details.

Computingtranscriptprobabilities.Another key insight of theH-coefficient
technique is that the probability of obtaining a transcript in either world can be
computed via the formulas

Pr[X = τ] =
|compX(τ)|
|ΩX |

, Pr[Y = τ] =
|compY (τ)|
|ΩY |

(5)

as long as Pr[Y = τ] > 0, and where compX(τ) ⊆ ΩX (resp. compY (τ) ⊆ ΩY)
is the set of real-world (resp. ideal-world) oracles that are compatible with a
transcript τ , where “compatibility” is defined the obvious9 way: an oracle ω is
compatible with a transcript τ if each individual query in τ is compatible with ω
(in particular, τ ’s key value should match ω’s key value). See [8] and Appendix
D of our full version [10] for further discussion of these identities.

8 By convention, the ratio Pr[X = τ]/Pr[Y = τ] is considered to be ∞ if
Pr[Y = τ] = 0.

9 Slightly more formally—but less intuitively—an oracle (or “environment”) ω is com-
patible with a transcript τ if there exists some (wlog, deterministic) adversary A′

that produces τ as transcript when given ω as oracle.

The Security of Multiple Encryption in the Ideal Cipher Model 31

Terminology:Chains. Let τ = (,QE , k
∗) be a transcript, where k∗ = k∗1‖ . . . ‖

k∗� . Loosely following [17], a tuple (h, xh, kh+1, xh+1, kh+2, . . . , kh+r, xh+r) where
0 ≤ h ≤ �− 1 is an integer, where 1 ≤ r ≤ �, and where{

(ki, xi−1, xi) ∈ QE if i− 1 �= �

(ki, S
−1(xi−1), xi) ∈ QE if i− 1 = �

for h+1 ≤ i ≤ h+ r (in particular, xi ∈ {0, 1}n and ki ∈ {0, 1}κ for each xi, ki)
is called an r-chain of τ starting at index h or simply an r-chain of τ . Moreover,
an r-chain is said to fit τ if kh+i = k∗h+i for 1 ≤ i ≤ r, indices taken mod �
and in the range {1, . . . , �}. We sometimes commit a slight abuse of language by
saying that a chain “fits k∗” instead of “fits τ” when it is clear which transcript
τ is intended.

By means of emphasis, a chain which doesn’t (necessarily) fit the key of τ is
said to be generic; thus all r-chains of τ are by definition generic.

The rest of the proof in a nutshell. Broadly, our “bad transcripts” are
transcripts that either have a bad key (i.e., k∗i = k∗j for some i �= j) or transcripts
with too many (long) fitting chains, where “too many” depends geometrically
on the chain length r, as might be expected. When there are not too many long
chains that fit the transcript’s key, indeed, we are in a position to apply the
lemma of Chen and Steinberger [8] to show that the probability of obtaining the
given transcript in the real world is not far off from the probability of obtaining
the same transcript in the ideal world, as required by (4).

The main technical challenge that arises is that of upper bounding the prob-
ability of obtaining too many length r chains that fit the key. Here one must
emphasize that this probability (which is the probability of obtaining a “bad”
transcript) is being computed in the ideal world. In the ideal world, the key
value k∗ ∈ {0, 1}κ� is chosen at random after all queries are completed. Hence,
by a Markov bound, it suffices to show that, with high probability, not too many
generic r-chains are created by the adversary’s queries. We deliver a tight bound
on the number of generic chains by using a fairly simple argument, as already
discussed in the paper’s introduction (see in particular Proposition 1 in Section
6). See further details in Section 6.

6 Proof of Theorem 1

For the remainder of the proof of Theorem 1 we will assume that n ≥ 2 and
also, if q ≥ 2n, that

4Cq ≤ 2κ+n and C2n
(q

2κ+n

)��/2�
< 1. (6)

These assumptions are without loss of generality because the first part of The-
orem 1 is void otherwise, as can easily be checked. We also let N = 2n.

We start by making a few more definitions that will be useful for the definition
of bad transcripts and thereafter. Firstly, for a transcript τ = (,QE, k

∗) we let

32 Y. Dai et al.

Q+
E , Q

−
E be the sets of queries in QE obtained respectively by forward and back-

ward queries to E by the adversary. (To wit, a query to E is forward, a query
to E−1 is backward.) We note that while QE does not explicitly encode for-
ward/backward information by design, such information can be uniquely recon-
structed from QE given the fact that A is deterministic; hence, this information
is implicitly contained in QE .

The maximum forward query occupancy of τ , denoted fwd(τ), is given by

fwd(τ) := max
y0∈{0,1}n

|{(k, x, y) ∈ Q+
E : y = y0}| (7)

and bwd(τ), the maximum backward query occupancy, is similarly given by

bwd(τ) = max
x0∈{0,1}n

|{(k, x, y) ∈ Q−
E : x = x0}|.

We also define
fitkey(τ, r, h)

as the number of r-chains in τ that fit k∗ and that start at position h.
Note that back-of-the-envelope computations suggest that fwd(τ) and bwd(τ)

should be around q/N for q ≥ N = 2n and should be around log(q) ≤ n for
q ≤ N . This motivates the definition of the following threshold ζ(q):

ζ(q) :=

⎧⎪⎨⎪⎩
3 log(q) + 2 if q ≤ N,

7nq/N if N ≤ q ≤ nN,

14q/N if nN ≤ q.

For now, the factors 3 log(q) + 2, 7n and 14 that appear in the definition of
ζ(q) should be more or less ignored; these coefficients are necessary to make
bad transcripts, as defined next, unlikely. (We distinguish between the cases
N ≤ q ≤ nN and nN ≤ q only so that we can give a slightly sharper bound
in the latter case. Also we allow cases to overlap for the sake of typographical
and conceptual convenience.) In fact, we find it convenient to factor ζ(q) into
“essential” an “non-essential” parts ζ ′(q) and ζ′′(q):

ζ′′(q) =

⎧⎪⎨⎪⎩
3 log(q) + 2 if q ≤ N,

7n if N ≤ q ≤ nN,

14 if nN ≤ q.

ζ′(q) =

{
1 if q ≤ N,

q/N if q ≥ N.
(8)

Thus ζ(q) = ζ′′(q)ζ′(q). Note also that ζ(q) ≤ 2κ by the wlog assumptions made
in (6).

Bad transcripts. We say that a transcript τ = (,QE, k
∗) is bad if either (i)

k∗i = k∗j for some i �= j, or (ii) fwd(τ) ≥ ζ(q) or bwd(τ) ≥ ζ(q), or (iii) there
exists some h, 0 ≤ h ≤ �− 1 such that

fitkey(τ, �, h) ≥ 1,

The Security of Multiple Encryption in the Ideal Cipher Model 33

or (iv) there exists some r, 1 ≤ r ≤ � and some h, 0 ≤ h ≤ �− 1 such that

fitkey(τ, r, h) ≥ Czr.

where

zr := min{q,N} ·
(
ζ′(q)
2κ

)�r/2�
. (9)

We let T2 be the set of bad transcripts, and let T1 = T \T2. One can note that every
transcript with = ⊥ is a bad transcript, since in that case k∗� = k∗i for some i �= �.

Bounding the probability of bad transcripts. Here we attach ourselves
to upper bounding Pr[Y ∈ T2], as required by the H-coefficient technique. This
is the probability of obtaining a bad transcript in the ideal world.

The probability that two subkeys of k∗ are equal is obviously at most
(
�
2

)
2−κ ≤

�2/2κ+1. For the other two events we need the help of the following lemmas:

Lemma 1. One has

Pr
τ∼Y

[fwd(τ) ≥ ζ(q)] ≤ 2

N
and Pr

τ∼Y
[bwd(τ) ≥ ζ(q)] ≤ 2

N

for all q, n.

(Here Prτ∼Y indicates that τ is sampled according to the ideal world distribution
on transcripts. The same probabilities could equivalently be written Pr[fwd(Y) ≥
ζ(q)], Pr[bwd(Y) ≥ ζ(q)].)

Lemma 2. One has

Pr
τ∼Y

[fitkey(τ, �, h) ≥ 1 ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2�ζ′′(q)��/2�z�

for each 0 ≤ h ≤ �− 1, and

Pr
τ∼Y

[fitkey(τ, r, h) ≥ Czr ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2rζ′′(q)�r/2�

C

for each 1 ≤ r ≤ �, 0 ≤ h ≤ �− 1 with zr as defined in (9).

We can combine Lemmas 1 and 2 by a union bound. When q ≥ N condition (iii)
is implied by condition (iv) since

Cz� = CN ·
(q

2κ+n

)��/2�
is less than 1 by (6). In this case, therefore, we don’t need to incorporate the
first part of Lemma 2 into the union bound. Using the fact that r ≤ � and that
ζ′′(q) ≥ 1 we can upper bound ζ′′(q)�r/2� by ζ′′(q)��/2�, thus obtaining

Pr[Y ∈ T2] ≤

⎧⎨⎩
�2

2κ+1 + 4
N + 2�ζ′′(q)��/2� · (�2/C) if q ≥ N,

�2

2κ+1 + 4
N + 2�ζ′′(q)��/2� · (�z� + �2/C) if q ≤ N

(10)

since there are � choices for h and �2 choices for the pair (r, h).

34 Y. Dai et al.

The proof of Lemma 1 (which involves a few subtleties because permutations
“lose randomness” after ≈ 2n queries) can be found in the paper’s full version
[10].

For Lemma 2, a key component is given by the following proposition, which
happens to be a key part of our proof and which sharpens similar bounds found
in [4, 17]:

Proposition 1. Assume τ = (,QE , k
∗) is a q-query transcript such that fwd(τ)

≤ ζ(q), bwd(τ) ≤ ζ(q). Then the total number of r-chains of τ starting at position
h is at most

2r ·min{q,N} · ζ(q)�r/2�2κ�r/2�.

Proof. Let ν = (h, xh, kh+1, xh+1, . . . , kh+r, xh+r) be an r-chain of τ . Thus either
(ki, xi−1, xi) ∈ Q+

E or (ki, xi−1, xi) ∈ Q−
E for h+1 ≤ i ≤ h+ r. Let ν’s signature

be the string sigν ∈ {+,−}r such that (ki, xi−1, xi) ∈ Q
sigν

i

E for h+1 ≤ i ≤ h+r.
We start by fixing a signature sig0 ∈ {+,−}r and by upper bounding the

number of r-chains ν of τ starting at position h such that sigν = sig0. We can
assume without loss of generality that sig0 contains at least as many −’s as +’s,
i.e., that the number of −’s is at least �r/2�.

If ν = (h, xh, kh+1, xh+1, . . . , kh+r, xh+r) is a ν-chain with signature sig0 then
there are, firstly, at most

min{q,N}

choices for xh given that (kh+1, xh, xh+1) ∈ QE. Then, presuming xh fixed, there
are at most 2κ choices for xh+1 if sig01 = + and at most ζ(q) choices for xh+1 if
sig01 = −, given that τ is a transcript such that bwd(τ) ≤ ζ(q). Similarly, each
subsequent step introduces a factor of either 2κ or ζ(q) depending on the sign
of that step in sig0. Hence (and since 2κ ≥ ζ(q)) the total number of choices for
xh, kh+1, . . . , xh+r is at most

min{q,N} · ζ(q)�r/2�2κ�r/2�.

Multiplying by 2r to account for all possible signatures concludes the proof. ��

Proof of Lemma 2. Since Pr[A ∧B] ≤ Pr[A|B] we have

Pr
τ∼Y

[fitkey(τ, r, h) ≥ T ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)]

≤ Pr
τ∼Y

[fitkey(τ, r, h) ≥ T | fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)]

where T ∈ {Czr, 1} is the bound we want to prove. When we condition on
fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q), however, k∗ is still independent uniformly at
random (being entirely independent from QE in the ideal world), and so the
expected number of r-chains that fit τ at position h is upper bounded by

2r ·min{q,N} · ζ(q)�r/2�2κ�r/2� 1

2κr
(11)

The Security of Multiple Encryption in the Ideal Cipher Model 35

by Proposition 1. (Each r-chain of QE , indeed, has probability of exactly 1/2κr

of being “hit” by k∗.) Since r − �r/2� = �r/2�, (11) can be written

2rζ′′(q)�r/2� min{q,N}
(
ζ′(q)
2κ

)�r/2�
= 2rζ′′(q)�r/2�zr

with zr as defined in (9). It thus follows by Markov’s inequality that

Pr
τ∼Y

[fitkey(τ, �, h) ≥ 1 ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2�ζ′′(q)��/2�z�

and

Pr
τ∼Y

[fitkey(τ, r, h) ≥ Czr | fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2rζ′′(q)�r/2�

C

which proves Lemma 2 and inequality (10). �

Remaining Steps. Having upper bounded the probability of bad transcripts,
the rest of the proof concerns itself with lower bounding the ratio

Pr[X = τ]

Pr[Y = τ]

for good transcripts τ , and more precisely of showing this ratio is at least 1− ε
for

ε =

{
�C�(�+1)/2�N

(
8q

2κ+n

)��/2�
if q ≤ N,

q2�
N C�(�+1)/2� (8

2κ

)��/2�
if q ≥ N.

For reasons of space we leave this part of the proof to the full version [10].
The overall approach, however, is quite similar to that espoused by Chen and
Steinberger [8], and the main technical tool required for this part of the proof is
indeed their own “path-completion lemma”.

Acknowledgments. Yuanxi Dai was supported by the National Basic Re-
search Program of China Grant 2011CBA00300, 2011CBA00301 and the Na-
tional Natural Science Foundation of China Grant 61033001, 61361136003.
Jooyoung Lee was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Ed-
ucation (NRF-2013R1A1A2007488). Bart Mennink was supported by the Re-
search Fund KU Leuven, OT/13/071 and the Research Council KU Leuven:
GOA TENSE (GOA/11/007). John Steinberger was supported by the National
Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the
National Natural Science Foundation of China Grant 61033001, 61361136003,
and by the China Ministry of Education grant number 20121088050.

36 Y. Dai et al.

References

1. Aiello, W., Bellare, M., Di Crescenzo, G., Venkatesan, R.: Security amplification
by composition: the case of doubly-iterated, ideal ciphers. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 390–407. Springer, Heidelberg (1998)

2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation, withdrawn
(1998)

3. Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.:
The preimage security of double-block length compression functions. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Hei-
delberg (2011)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. IACR eprint report, http://eprint.iacr.org/2004/331

6. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using a
Small Number of Public Permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

8. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

9. Dai, Y., Steinberger, J.: Tight security bounds for multiple encryption. IACR Cryp-
tology ePrint Archive, 2014/096, http://eprint.iacr.org/2014/096.pdf

10. Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple encryption
in the ideal cipher model (Full version of this paper.) IACR Cryptology ePrint
Archive

11. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1997)

12. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

13. Even, S., Goldreich, O.: On the power of cascade ciphers. ACM Transactions on
Computer Systems 3(2), 108–116 (1985)

14. Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom
Permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

15. FIPS46-3: Data Encryption Standard. National Institute of Standards and Tech-
nology, withdrawn (1999)

16. Gaži, P.: Plain versus Randomized Cascading-Based Key-Length Extension for
Block Ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 551–570. Springer, Heidelberg (2013)

17. Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg (2009)

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2014/096.pdf

The Security of Multiple Encryption in the Ideal Cipher Model 37

18. Gaži, P., Tessaro, S.: Efficient and Optimally Secure Key-Length Extension for
Block Ciphers via Randomized Cascading. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 63–80. Springer, Heidelberg (2012)

19. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology 14(1), 17–35 (2001)

20. Krause, M., Armknecht, F., Fleischmann, E.: Preimage resistance beyond
the birthday bound: Double-length hashing revisited. IACR eprint report,
http://eprint.iacr.org/2010/519.pdf

21. Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of
the Iterated Even-Mansour Cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

22. Lee, J.: Towards Key-Length Extension with Optimal Security: Cascade Encryp-
tion and Xor-cascade Encryption. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 405–425. Springer, Heidelberg (2013)

23. Lee, J.: Tight Security for Triple Encryption. IACR Cryptology ePrint Archive,
2014/015, http://eprint.iacr.org/2014/015.pdf

24. Lee, J., Steinberger, J., Stam, M.: The preimage security of double-block-length
compression functions. IACR eprint report,
http://eprint.iacr.org/2011/210.pdf

25. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic
composition. In: STOC 1986: Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, pp. 356–363 (1986)

26. Lucks, S.: Attacking triple encryption. In: Vaudenay, S. (ed.) FSE 1998. LNCS,
vol. 1372, pp. 239–253. Springer, Heidelberg (1998)

27. Maurer, U., Massey, J.L.: Cascade ciphers: The importance of being first. Journal
of Cryptology 6(1), 55–61 (1993)

28. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

29. Maurer, U., Tessaro, S.: Computational indistinguishability amplification: Tight
product theorems for system composition. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 355–373. Springer, Heidelberg (2009)

30. Mennink, B., Preneel, B.: Triple and Quadruple Encryption: Bridging the Gap.
IACR Cryptology ePrint Archive, 2014/016,
http://eprint.iacr.org/2014/016.pdf

31. Merkle, R., Hellman, M.: On the Security of Multiple Encryption. Communications
of the ACM 24(7), 465–467 (1981); See also: Communications of the ACM 24(11),
776 (1981)

32. Myers, S.: On the development of block-ciphers and pseudo-random function gen-
erators using the composition and XOR operators. Master’s thesis, University of
Toronto (1999)

33. van Oorschot, P.C., Wiener, M.: Improving implementable meet-in-the-middle at-
tacks by orders of magnitude. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 229–236. Springer, Heidelberg (1996)

34. van Oorschot, P.C., Wiener, M.: A Known-Plaintext Attack on Two-Key Triple
Encryption. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 318–
325. Springer, Heidelberg (1991)

35. NIST SP 800-67, Revision 1: Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher. National Institute of Standards and Technology
(2012)

http://eprint.iacr.org/2010/519.pdf
http://eprint.iacr.org/2014/015.pdf
http://eprint.iacr.org/2011/210.pdf
http://eprint.iacr.org/2014/016.pdf

38 Y. Dai et al.

36. Patarin, J.: Etude de Génerateurs de Permutations Bases sur les Schemas du DES.
In Ph.D. Thesis. Inria, Domaine de Voluceau, France (1991)

37. Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

38. Steinberger, J.: Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance, http://eprint.iacr.org/2012/481.pdf

39. Tessaro, S.: Security Amplification for the Cascade of Arbitrarily Weak PRPs:
Tight Bounds via the Interactive Hardcore Lemma. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 37–54. Springer, Heidelberg (2011)

http://eprint.iacr.org/2012/481.pdf

Minimizing the Two-Round
Even-Mansour Cipher

Shan Chen1, Rodolphe Lampe2, Jooyoung Lee3,
Yannick Seurin4, and John Steinberger5

1 Tsinghua University, P.R. China
dragoncs16@gmail.com

2 University of Versailles, France
rodolphe.lampe@gmail.com

3 Sejong University, Seoul, Korea
jlee05@sejong.ac.kr
4 ANSSI, Paris, France

yannick.seurin@m4x.org
5 Tsinghua University, P.R. China

jpsteinb@gmail.com

Abstract. The r-round (iterated) Even-Mansour cipher (also known
as key-alternating cipher) defines a block cipher from r fixed public n-
bit permutations P1, . . . , Pr as follows: given a sequence of n-bit round
keys k0, . . . , kr, an n-bit plaintext x is encrypted by xoring round key k0,
applying permutation P1, xoring round key k1, etc. The (strong) pseudo-
randomness of this construction in the random permutation model (i.e.,
when the permutations P1, . . . , Pr are public random permutation oracles
that the adversary can query in a black-box way) was studied in a num-
ber of recent papers, culminating with the work of Chen and Steinberger
(EUROCRYPT 2014), who proved that the r-round Even-Mansour ci-
pher is indistinguishable from a truly random permutation up to O(2

rn
r+1)

queries of any adaptive adversary (which is an optimal security bound
since it matches a simple distinguishing attack). All results in this en-
tire line of work share the common restriction that they only hold un-
der the assumption that the round keys k0, . . . , kr and the permutations
P1, . . . , Pr are independent. In particular, for two rounds, the current
state of knowledge is that the block cipher E(x) = k2⊕P2(k1⊕P1(k0⊕x))
is provably secure up to O(22n/3) queries of the adversary, when k0, k1,
and k2 are three independent n-bit keys, and P1 and P2 are two indepen-
dent random n-bit permutations. In this paper, we ask whether one can
obtain a similar bound for the two-round Even-Mansour cipher from just
one n-bit key and one n-bit permutation. Our answer is positive: when
the three n-bit round keys k0, k1, and k2 are adequately derived from an
n-bit master key k, and the same permutation P is used in place of P1
and P2, we prove a qualitatively similar Õ(22n/3) security bound (in the
random permutation model). To the best of our knowledge, this is the
first “beyond the birthday bound” security result for AES-like ciphers
that does not assume independent round keys.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 39–56, 2014.
c© International Association for Cryptologic Research 2014

40 S. Chen et al.

Keywords: generalized Even-Mansour cipher, key-alternating cipher,
indistinguishability, pseudorandom permutation, random permutation
model, sum-capture problem.

1 Introduction

Background. An elementary way to construct a block cipher with message
space {0, 1}n from r fixed and public n-bit permutations P1, . . . Pr is to encrypt
a plaintext x by computing

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · ·)),

where (k0, . . . , kr) is a sequence of n-bit round keys which are usually derived
from some master key K. This construction, which captures the high-level struc-
ture of (most) block cipher designs known as Substitution-Permutation Networks
(SPNs), such as AES [12], PRESENT [7], or LED [20] to name a few, was coined
a key-alternating cipher by Daemen and Rijmen [13].

In the random permutation model (i.e., when permutations P1, . . . , Pr are
modeled as public random permutation oracles), provable security results for
this construction were first obtained for r = 1 round by Even and Mansour [16],
who showed that the block cipher encrypting x into k1⊕P1(k0⊕x), where k0 and
k1 are independent n-bit keys, and P1 is a random permutation oracle, is secure
up to O(2n/2) queries of the adversary.1 For this reason, this construction is often
referred to as the Even-Mansour cipher. Curiously, the general construction with
r > 1 remained unstudied for a long while until a paper by Bogdanov et al. [8],
who showed that for r ≥ 2, security is guaranteed up to O(22n/3) queries of the
adversary. They also conjectured that the security should be O(2

rn
r+1) for general

r, which matches a simple distinguishing attack. Progress towards solving this
conjecture was rather quick: Steinberger [32] proved security up to O(23n/4)
queries for r ≥ 3, Lampe et al. [26] proved security up to O(2

rn
r+2) queries for any

even r, and finally Chen and Steinberger [9] resolved the conjecture and proved
the O(2

rn
r+1)-security bound for any r. We stress that all these results only hold

assuming that the r + 1 round keys and the r permutations are independent.2

Our Problem. Let us quickly recapitulate existing provable security results on
the Even-Mansour cipher for a low number of rounds. For r = 1, we know that
the single-key Even-Mansour cipher x �→ k ⊕ P (k ⊕ x) ensures security up to
O(2n/2) queries of the adversary. As pointed out by Dunkelman et al. [15], this
construction is “minimal” in the sense that if one removes any component (either
1 Actually it is not very hard to prove that a similar result holds when using k0 = k1.
2 Actually, this is not perfectly accurate: one only needs the r + 1 round keys

(k0, . . . , kr) to be r-wise independent [9], which can be obtained from only an
rn-bit long master key, the most simple example being round keys of the form
(k′

1, k′
1 ⊕ k′

2, k′
2 ⊕ k′

3, . . . , k′
r−1 ⊕ k′

r, k′
r), in which case the resulting iterated Even-

Mansour cipher is exactly the cascade of r single-key one-round Even-Mansour ci-
phers x �→ k′

i ⊕ Pi(k′
i ⊕ x).

Minimizing the Two-Round Even-Mansour Cipher 41

x

k

P P

π

y x P1

k

P2

k

y

k

Fig. 1. Two constructions of “minimal” two-round Even-Mansour ciphers provably
secure up to Õ(2

2n
3) queries of any (adaptive) adversary. Left: π is a (fixed) linear

orthomorphism of Fn
2 , and P is a public random permutation oracle. Right: P1 and P2

are two independent public random permutation oracles.

the addition of one of the keys, or the permutation P), the construction becomes
trivially breakable. For the two-round Even-Mansour cipher, the best provable
security result we have so far requires two independent n-bit permutations P1
and P2, and two independent n-bit keys (k, k′) to construct three pairwise in-
dependent round keys, for example (k, k′ ⊕ k, k′). Concretely, the block cipher
x �→ k′ ⊕ P2((k′ ⊕ k) ⊕ P1(k ⊕ x)) ensures security up to O(22n/3) queries of the
adversary. In this paper, we tackle the following question:

Can we obtain a O(22n/3)-security bound similar to the one proven for
the two-round Even-Mansour cipher with (pairwise) independent round
keys and independent permutations, from just one n-bit key k and one
n-bit random permutation P ?

This question is natural since in most (if not all) SPN block ciphers, round keys
are derived from an n-bit master key (or more generally an �-bit master key,
where � ∈ [n, 2n] is small compared with the total length of the round keys),
and the same permutation, or very similar ones, are used at each round. It is
therefore fundamental to determine whether security can actually benefit from
the iterative structure and increase beyond the birthday bound, even though one
does not use more key material nor more permutations than in the single-key
one-round Even-Mansour cipher.

Our Results. We answer positively to the question above. Our main theorem
states sufficient conditions on the way to derive three n-bit round keys (k0, k1, k2)
from one n-bit master key k so that the two-round Even-Mansour cipher defined
from a single permutation x �→ k2 ⊕ P (k1 ⊕ P (k0 ⊕ x)) is secure up to Õ(22n/3)
queries of the adversary, where the Õ(·) notation hides logarithmic (in N =
2n) factors. In particular, such a good key-schedule k �→ (k0, k1, k2) can be
constructed from any (fixed) linear orthomorphism of Fn

2 . A permutation π of
{0, 1}n is called an orthomorphism if x �→ x ⊕ π(x) is also a permutation. The
good cryptographic properties of orthomorphisms have already been noticed in a
number of papers [29, 19], and are in particular used in Lai-Massey schemes [25,
34] such as the block ciphers IDEA [25] and FOX [22]. Our main theorem is as
follows.

42 S. Chen et al.

Theorem (Informal). Let π be any (fixed) linear orthomorphism of Fn
2 , and

let P be a public random n-bit permutation oracle. Then the block cipher with
message space and key space {0, 1}n defined as (see Figure 1, left)

EMP
k (x) = k ⊕ P (π(k) ⊕ P (k ⊕ x)) (�)

is secure against any adversary making up to Õ(2 2n
3) queries to EMP

k and P .
(Queries can be adaptive and are allowed in both directions for EMP

k and P).

We remark that if one omits π in construction (�), i.e., if one adds the same
round key k each time, security drops back to O(2n/2) queries. More generally,
if round keys are all equal and the same permutation P is used at each round
of the iterated Even-Mansour cipher, security caps at O(2n/2) queries of the
adversary, independently of the number r of rounds. This seems to be known as
a folklore result about slide attacks [5, 6], but since we could not find a detailed
exposition in the literature, we precisely describe and analyze this attack (as
well as a simple extension for two rounds when the key-schedule simply consists
in xoring constants to the master key) in this paper. Hence, construction (�) can
be regarded as a “minimal” two-round Even-Mansour cipher delivering security
beyond the birthday bound, since removing any component causes security to
drop back to O(2n/2) queries at best (for π this follows from the slide attack
just mentioned, while removing any instance of permutation P brings us back to
a one-round Even-Mansour cipher). Additionally, we show that when using two
independent public random permutations P1 and P2, the trivial key-schedule is
sufficient: adding the same round key k at each round (see Figure 1, right) also
yields a Õ(22n/3)-security bound.

To the best of our knowledge, these are the first results proving “beyond the
birthday bound” security for key-alternating ciphers such as AES that do not rely
on the assumption that round keys are independent. This sheds some light on which
exact properties are required from the key-schedule in order to lift the round keys
independence assumption in provable security results. In particular, this seems to
point out that a pseudorandom key-schedule is not needed (we remind the reader
that our results come with the usual caveat that they are only proved in the very
strong Random Permutation Model, and hence can only be taken as a heuristic
security insurance once the inner permutation(s) are instantiated).

Overview of Our Techniques. In order to prove our results, we use the
indistinguishability framework, namely we consider a distinguisher which must
tell apart two worlds: the “real” world where it interacts with (EMP

k , P), where
EMP

k is the Even-Mansour cipher instantiated with permutation P and a ran-
dom key k, and the “ideal” world where it interacts with (E, P) where E is a
random permutation independent from P . The distinguisher can make at most
qe queries to EMP

k /E and at most qp queries to P (all queries are adaptive and
can be forward or backward, and we work in the information-theoretic setting,
i.e., the adversary is computationally unbounded). In order to upper bound the
distinguishing advantage of this attacker, we use, as already done in [9], the

Minimizing the Two-Round Even-Mansour Cipher 43

H-coefficient method of Patarin [31]. In a nutshell, this technique consists in
partitioning the set of all possible transcripts of the interaction between the dis-
tinguisher and the tuple of permutations into a set T1 of “good” transcripts and
a set T2 of “bad” transcripts. Good transcripts τ ∈ T1 have the property that
the ratio of the probabilities to obtain τ in the real and in the ideal world is
greater that 1 − ε1 for some small ε1 > 0, while the probability to obtain any
bad transcript τ ∈ T2 (in the ideal world) is less than some small ε2 > 0. Then
the advantage of the distinguisher can be upper bounded by ε1 + ε2.

In order to get intuition about what hides behind good and bad transcripts,
it helps to first look at an example of how an adversary might “get lucky”
during an attack. Specifically, we focus on the following attack scenario (we
assume that qe = qp = q for simplicity). The distinguisher (adversary) D starts
by making q arbitrary queries to EMP

k /E, resulting in a set of q pairs QE =
{(x1, y1), . . . , (xq, yq)}; then D determines the pair of sets (U, V) with |U | =
|V | = q and U, V ⊆ {0, 1}n, that maximizes the size of the set

K(QE , U, V) def= {k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V }, (1)

and D queries P (u), P −1(v) for all u ∈ U , v ∈ V . (This makes 2q queries to
P instead of q, but this small constant factor is unimportant for the sake of
intuition.) Note that if D is in the real world and if the real key k is in the
set K(QE , U, V) defined in (1), then D can see that one of its EMP

k /E-queries is
compatible with two of its P -queries with respect to k (in more detail, there exists
a value i and queries (u, v), (u′, v′) to P such that xi ⊕ k = u, v ⊕ π(k) = u′, and
v′ ⊕k = yi). Elementary probabilistic considerations show that such a “complete
cycle” will occur for at most a handful of keys in K(QE , U, V), so that “false
alerts” can be quickly weeded out and the correct key k validated in a few
extra queries, all assuming k ∈ K(QE , U, V). Moreover, heuristic considerations
indicate that k will be in K(QE , U, V) with probability |K(QE , U, V)|/2n. In
particular, thus, it becomes necessary to show that |K(QE , U, V)| is significantly
smaller than 2n with high probability over QE, i.e., that

max
U,V ⊆{0,1}n

|U|=|V |=q

|{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V }| (2)

is significantly smaller than 2n with high probability over QE , in order to show
that D has small advantage at q queries. One of the criteria that can make a
transcript “bad” in our proof happens to be, precisely, if the set of queries QE to
EMP

k /E contained within the transcript is such that (2) is larger than desirable.
(Jumping ahead, K(QE , U, V) will be re-baptized BadK1 in Definition 1 of a bad
transcript.)

To elaborate a little more on this, note that

|K(QE , U, V)| ≤ |{(k′, u, v) ∈ {0, 1}n × U × V :
k′ ⊕ u = xi, k′ ⊕ v = yi for some 1 ≤ i ≤ q}|

= |{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ yi = u ⊕ v}|.

44 S. Chen et al.

Also note that the set of values {xi ⊕ yi : (xi, yi) ∈ QE} is essentially a random
set since if the i-th query to EMP

k /E is forward then yi comes at random from
a large set, whereas otherwise xi comes at random from a large set. Moreover,
as a matter of fact, the problem of upper bounding

μ(A) def= max
U,V ⊆{0,1}n

|U|=|V |=q

|{(a, u, v) ∈ A × U × V : a = u ⊕ v}

for a truly random set A ⊆ {0, 1}n of size q has already been studied before [3, 21,
1, 24, 33], being dubbed3 the sum-capture problem in [33]. One of the main known
results [3, 33] on the sum-capture problem is that μ(A) is upper bounded by
roughly q3/2 for q ≤ 22n/3. Surprisingly enough, this bound is exactly sufficient
for our application, since q3/2
 2n for q
 22n/3. (Implying, thus, that (2) is
far from 2n as long as q remains beneath 22n/3, as desired.) Our own setting is,
of course, slightly different, since the set {xi ⊕ yi : (xi, yi) ∈ QE} isn’t, unlike A,
a purely random set of size q. Other complications also arise: in the general case
where the three round keys (k0, k1, k2) are derived from the n-bit master key k
using non-trivial (bijective) key derivation functions γi : k �→ ki, K(QE , U, V)
takes the more complicated form

{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ γ0(k′) ∈ U, yi ⊕ γ2(k′) ∈ V },

so that we have to upper bound

|{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ u = γ0 ◦ γ−1
2 (yi ⊕ v)}|.

All this means that we have to carefully adapt (and to some degree significantly
extend) the Fourier-analytic techniques used in [3, 33].

Once the probability to obtain a bad transcript has been upper bounded, the
second part of the proof is to show that the ratio between the probabilities to
obtain any good transcript in the real and the ideal world is close to 1. This part
is in essence a permutation counting argument. When the two permutations are
independent (Figure 1, right), the counting argument is not overly complicated.
While we could, in principle, re-use the general results of [9], we expose it in the
full version of this paper [10] since it constitutes a good warm-up for the reader
before the more complicated counting in the subsequent section. For the single-
permutation case, things become much more involved: first, we need to consider
more conditions defining bad transcripts; and second, the permutation counting
itself becomes much more intricate. Interestingly, this part is related to the
following simple to state (yet to the best of our knowledge unexplored) problem:
how many queries are needed to distinguish a random squared permutation P ◦P
(where P is uniformly random) from a uniformly random permutation E?

Related Work. Two recent papers analyzed a stronger security property of
the iterated Even-Mansour cipher than mere pseudorandomness, namely indif-
ferentiability from an ideal cipher [2, 27]. Aside with provable security results
3 The terminology is attributed to Mario Szegedy.

Minimizing the Two-Round Even-Mansour Cipher 45

already mentioned, a number of papers explored attacks on the (iterated) Even-
Mansour cipher for one round [11, 6, 15], two rounds [30], three rounds [14], and
four rounds [4].

Gazi and Tessaro [18] considered a construction they named 2XOR, which
is a variant of the DESX [23] and “Xor-Cascade” [17, 28] key-length extension
methods. Given a block cipher E with message space {0, 1}n and key space
{0, 1}κ, the 2XOR construction defines a new block cipher with message space
{0, 1}n and key space {0, 1}κ+n as

2XORE
z,k(x) = Ez2(k ⊕ Ez1(k ⊕ x)),

where (z1, z2) are pairwise distinct sub-keys derived from z ∈ {0, 1}κ. They
showed that, when the underlying block cipher E is modeled as an ideal cipher,
this construction is secure up to O(2κ+n/2) queries to E, even when the ad-
versary can make all possible 2n queries to the permutation oracle (which, in
the indistinguishability experiment, is either 2XORE

z,k or an independent random
permutation). Considering a block cipher E with key-length κ = 1, one obtains a
construction which is similar to the two-round Even-Mansour cipher of Figure 1,
right, where the last key addition would be omitted.4 Hence, the Gazi-Tessaro
result says that this construction is secure for qe = 2n and qp = O(2n/2).5 Our
own results are incomparable with the one of [18]. First, the third key addition
is omitted in the 2XOR construction. Second, our bounds are more general: they
hold for any value of qe and qp as long as qe < 22n/3 and qp < 22n/3. Though
our bounds become meaningless for qe = 2n, they show that when qe < 22n/3

(an interesting case in practice since an attacker will not always have access to
the entire codebook), security is ensured up to Õ(22n/3) queries to the internal
permutations (something that cannot be derived from the result of [18]).

Open Questions. Currently, our results only apply when the key derivation
functions mapping the master key to the round keys are linear bijective functions
of Fn

2 . This is due to the fact that the proof of our sum-capture theorem in
Section 3 requires linear mappings. It is an open question whether this theorem
can be extended to nonlinear (bijective) mappings as well. A second tantalizing
yet challenging open problem is of course to generalize our results to larger
4 There is a slight subtlety here: in the 2XOR construction used with a block cipher

with key-length κ = 1, i.e., a pair of permutations (P1, P2), there is an additional key
bit z (hidden to the distinguisher) which tells in which order the two permutations
are called.

5 This is in fact very closely related to the security result for the single-key one-round
Even-Mansour cipher up to O(2n/2) queries to the inner and outer permutations [15].
In the Gazi-Tessaro case with κ = 1, the adversary is given an arbitrary permutation
E, and must distinguish, given access to (P1, P2), whether P1 and P2 are independent,
or whether P2(k ⊕ P1(k ⊕ x)) = E(x) for some random key k. In the single-key one-
round Even-Mansour case, the adversary must distinguish, given access to (P1, P2),
whether P1 and P2 are independent, or whether k ⊕P1(k ⊕x) = P2(x), i.e., P −1

2 (k ⊕
P1(k ⊕ x)) = x. These are very similar problems, the latter being (up to changing
P2 into P −1

2) a special case of the former with E the identity.

46 S. Chen et al.

numbers of rounds. Namely, for r > 2, can we find sufficient conditions on
the key-schedule such that the r-round single-permutation Even-Mansour cipher
ensures security up to Õ(2

rn
r+1) queries of the adversary? We stress that even the

simpler case where permutations are independent and round keys are identical
seems hard to tackle for r > 2: we currently have no idea of how to extend our
sum-capture result in order to upper bound the probability of bad transcripts
even in the case r = 3.

It would also be interesting to reduce the time complexity of attacks against
the two-round Even-Mansour cipher (potentially down to O(22n/3)). Currently,
the best known attack (for the case of independent permutations and identical
round keys) has time complexity O(2n−log2 n) [15]. Since our focus in this paper
is on query complexity, we have not investigated whether this attack applies to
the single-permutation variant (�) as well.

Organization. We start in Section 2 by setting the notation, giving the neces-
sary background on the H-coefficient technique, and proving some helpful lem-
mas. In Section 3, which is self-contained, we prove our new sum-capture result,
which might be of independent interest. Section 4 contains our main provable
security result for the “minimized” variant of the single-permutation two-round
Even-Mansour cipher (Figure 1, left). The case where the two permutations are
independent and the three round keys are identical (Figure 1, right) is treated
in the full version of the paper [10]. The permutation counting argument in
that case serves as a good exercise before reading the corresponding one for the
single-permutation case (Lemma 3). In the full version of the paper [10], we also
detail slide attacks against the iterated Even-Mansour cipher.

2 Preliminaries

Notation. In all the following, we fix an integer n ≥ 1, and we write N = 2n.
The set of all permutations on {0, 1}n will be denoted Pn. For integers 1 ≤ s ≤ t,
we will write (t)s = t(t − 1) · · · (t − s + 1) and (t)0 = 1 by convention. Given
Q = ((x1, y1), . . . , (xq , yq)), where the xi’s are pairwise distinct n-bit strings and
the yi’s are pairwise distinct n-bit strings, and a permutation P ∈ Pn, we say
that P extends Q, denoted P � Q, if P (xi) = yi for i = 1, . . . , q. When two sets A
and B are disjoint, we denote AB their (disjoint) union. We denote F2 � {0, 1}
the field with two elements, and Fn

2 the vector space of dimension n over F2. The
general linear group of degree n over F2, i.e., the set of all automorphisms (linear
bijective mappings) of Fn

2 , will be denoted GL(n).

The Generalized Even-Mansour Cipher. Fix integers n, r, m, � ≥ 1. Let φ :
{1, . . . , r} → {1, . . . , m} be an arbitrary function, and γ = (γ0, . . . , γr) be a (r+1)-
tuple of functions from {0, 1}� to {0, 1}n. The r-round Generalized Even-Mansour
construction EM[n, r, m, �, φ, γ] specifies, from any m-tuple P = (P1, . . . , Pm) of
permutations on {0, 1}n, a block cipher with message space {0, 1}n and key space

Minimizing the Two-Round Even-Mansour Cipher 47

{0, 1}�, simply denoted EMP in the following (parameters [n, r, m, �, φ, γ] are im-
plicit and will always be clear from the context), which maps a plaintext x ∈ {0, 1}n

and a key K ∈ {0, 1}� to the ciphertext defined by (see Figure 2):

EMP (K, x) = γr(K) ⊕ Pφ(r)(γr−1(K) ⊕ Pφ(r−1)(· · · Pφ(1)(γ0(K) ⊕ x) · · ·)).

We denote EMP
K : x �→ EMP (K, x) the Even-Mansour cipher instantiated with

key K (hence, syntactically, EMP
K is a permutation on {0, 1}n).

x

K

Pφ(1)

γ0

Pφ(2)

γ1

Pφ(r) y

γr

Fig. 2. The r-round Generalized Even-Mansour cipher

All previous work about the indistinguishability of the Even-Mansour ci-
pher [8, 26, 32, 9] considered the case where all permutations and all round
keys are independent, namely m = r, φ is the identity function, � = (r + 1)n,
and γi simply selects the i-th n-bit string of K = (k0, . . . , kr).

In the following, we will focus in particular on two special cases:

– the case where permutations are independent and the same n-bit key k
is used at each round, namely m = r, φ is the identity function, � = n,
and all γi’s are the identity function, in which case we will simply denote
EMIP[n, r] the resulting construction. Hence, for an r-tuple of permutations
P = (P1, . . . , Pr), the block cipher EMIPP maps a plaintext x ∈ {0, 1}n and
a key k ∈ {0, 1}n to the ciphertext defined by:

EMIPP (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · · P2(k ⊕ P1(k ⊕ x)) · · ·)).

– the case where a single permutation P is used at each round, namely m = 1
and φ(i) = 1 for i = 1, . . . , r, in which case the resulting construction will
simply be denoted EMSP[n, r, �, γ] . Hence, for a permutation P , the block
cipher EMSPP maps a plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}� to the
ciphertext defined by:

EMSPP (K, x) = γr(K)⊕P (γr−1(K)⊕P (· · · P (γ1(K)⊕P (γ0(K)⊕x)) · · ·)).

When additionally � = n (namely the master key length is equal to the
block length), we overload the notation and simply denote EMSP[n, r, γ] the
resulting construction.

Security Definition. To study the indistinguishability of the Generalized
Even-Mansour cipher (in the Random Permutation Model), we consider a dis-
tinguisher D which interacts with a set of m + 1 permutation oracles on n bits

48 S. Chen et al.

that we denote generically (P0, P1 . . . , Pm) = (P0, P). The goal of D is to dis-
tinguish whether it is interacting with (EMP

K , P), where P = (P1, . . . , Pm) are
random and independent permutations and K is randomly chosen from {0, 1}�

(we will informally refer to this case as the “real” world), or with (E, P), where
E is a random n-bit permutation independent from P (the “ideal” world). Note
that in the latter case the distinguisher is simply interacting with m+1 indepen-
dent random permutations. We sometimes refer to the first permutation P0 as
the outer permutation, and to permutations P1, . . . , Pm as the inner permuta-
tions. The distinguisher is adaptive, and can make both forward and backward
queries to each permutation oracle, which corresponds to the notion of adaptive
chosen-plaintext and ciphertext security (CCA). We consider computationally
unbounded distinguishers, and we assume wlog that the distinguisher is deter-
ministic and never makes useless queries (which means that it never repeats a
query, nor makes a query P −1

i (y) if it received y as the answer to a previous
query Pi(x), or vice-versa).

The distinguishing advantage of D is defined as

Adv(D) =
∣∣∣Pr
[
DEMP

K ,P = 1
]

− Pr
[
DE,P = 1

]∣∣∣ ,
where the first probability is taken over the random choice of K and P , and the
second probability is taken over the random choice of E and P . We recall that,
even though this is not apparent from the notation, the distinguisher can make
both forward and backward queries to each permutation oracle.

For qe, qp non-negative integers, we define the insecurity of the ideal6 Gener-
alized Even-Mansour cipher with parameters (n, r, m, �, φ, γ) as:

Advcca
EM[n,r,m,�,φ,γ](qe, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers D making exactly qe queries
to the outer permutation and exactly qp queries to each inner permutation. The
notation is adapted naturally for the two special cases EMIP and EMSP defined
above.

The H-Coefficient Technique. We give here all the necessary background
on the H-coefficient technique [31, 9] that we will use throughout this paper.
All the information gathered by the distinguisher when interacting with the
system of m + 1 permutations can be summarized in what we call the transcript
of the interaction, which is the ordered list of queries and answers received
from the system (i, b, z, z′), where i ∈ {0, . . . , m} names the permutation being
queried, b is a bit indicating whether this is a forward or backward query, z ∈
{0, 1}n is the actual value queried and z′ the answer. We say that a transcript
is attainable (with respect to some fixed distinguisher D) if there exists a tuple
of permutations (P0, . . . , Pm) ∈ (Pn)m+1 such that the interaction of D with
6 By ideal, we mean that this insecurity measure is defined in the Random Permutation

Model for P1, . . . , Pm.

Minimizing the Two-Round Even-Mansour Cipher 49

(P0, . . . , Pm) yields this transcript (said otherwise, the probability to obtain this
transcript in the “ideal” world is non-zero). In fact, an attainable transcript can
be represented in a more convenient way that we will use in all the following.
Namely, from the transcript we can build m + 1 lists of directionless queries
QE = ((x1, y1), . . . , (xqe , yqe)), QP1 = ((u1,1, v1,1), . . . , (u1,qp , v1,qp)), . . . ,QPm =
((um,1, vm,1), . . . , (um,qp , vm,qp)) as follows. For j = 1, . . . , qe, let (0, b, z, z′) be
the j-th query to P0 in the transcript: if this was a forward query then we
set xj = z and yj = z′, otherwise we set xj = z′ and yj = z. Similarly, for
each i = 1, . . . , m, and j = 1, . . . , qp, let (i, b, z, z′) be the j-th query to Pi in
the transcript: if this was a forward query then we set ui,j = z and vi,j = z′,
otherwise we set ui,j = z′ and vi,j = z. A moment of thinking should make it
clear that for attainable transcripts there is a one-to-one mapping between these
two representations. (Essentially this follows from the fact that the distinguisher
is deterministic). Moreover, though we defined QE , QP1 , . . . , QPm as ordered
lists, the order is unimportant (our formalization keeps the natural order induced
by the distinguisher).

For convenience, and following [9], we will be generous with the distinguisher
by providing it, at the end of its interaction, with the actual key K when it
is interacting with (EMP

K , P), or with a dummy key K selected uniformly at
random when it is interacting with (E, P). This is without loss of generality since
the distinguisher is free to ignore this additional information. Hence, all in all a
transcript τ is a tuple (QE , QP1 , . . . , QPm , K). We refer to (QE , QP1 , . . . , QPm)
(without the key) as the permutation transcript, and we say that a transcript
τ is attainable if the corresponding permutation transcript is attainable. We
denote T the set of attainable transcripts. (Thus T depends on D, as the notion
of attainability depends on D.) In all the following, we denote Tre, resp. Tid,
the probability distribution of the transcript τ induced by the real world, resp.
the ideal world (note that these two probability distributions depend on the
distinguisher). By extension, we use the same notation to denote a random
variable distributed according to each distribution.

In order to upper bound the advantage of the distinguisher, we will repeatedly
use the following strategy: we will partition the set of attainable transcripts T
into a set of “good” transcripts T1 such that the probabilities to obtain some
transcript τ ∈ T1 are close in the real and in the ideal world, and a set T2 of
“bad” transcripts such that the probability to obtain any τ ∈ T2 is small in the
ideal world. More precisely, we will use the following result, which is proved in
the full version of the paper [10].

Lemma 1. Fix a distinguisher D. Let T = T1 T2 be a partition of the set of
attainable transcripts. Assume that there exists ε1 such that for any τ ∈ T1, one
has7

Pr[Tre = τ]
Pr[Tid = τ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ T2] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.
7 Recall that for an attainable transcript, one has Pr[Tid = τ] > 0.

50 S. Chen et al.

3 A Sum-Capture Theorem

In this section, we prove a variant of previous “sum-capture” results [3, 24, 33].
Informally, such results typically state that when choosing a random subset A
of Zn

2 (or more generally any abelian group) of size q, the value

μ(A) = max
U,V ⊆Zn

2
|U|=|V |=q

|{(a, u, v) ∈ A × U × V : a = u ⊕ v}|

is close to its expected value q3/N (if A, U, V were chosen at random), except
with negligible probability. Here, we prove a result of this type for the setting
where A arises from the interaction of an adversary with a random permutation
P , namely A = {x ⊕ y : (x, y) ∈ Q}, where Q is the transcript of the interaction
between the adversary and P . In fact our result is even more general, the special
case just mentioned corresponding to Γ being the identity in the theorem below.

Theorem 1. Fix an automorphism Γ ∈ GL(n). Let P be a uniformly random
permutation of {0, 1}n, and let A be some probabilistic algorithm making exactly
q (two-sided) adaptive queries to P . Let Q = ((x1, y1), . . . , (xq, yq)) denote the
transcript of the interaction of A with P . For any two subsets U and V of {0, 1}n,
let

μ(Q, U, V) = |{((x, y), u, v) ∈ Q × U × V : x ⊕ u = Γ (y ⊕ v)}|.
Then, assuming 9n ≤ q ≤ N/2, one has

Pr
P,ω

[
∃U, V ⊆ {0, 1}n : μ(Q, U, V) ≥ q|U ||V |

N
+

2q2
√

|U ||V |
N

+ 3
√

nq|U ||V |
]

≤ 2
N

,

where the probability is taken over the random choice of P and the random coins
ω of A.

Proof. Deferred to the full version [10] for reasons of space. �

4 Security Proof for the Single Permutation Case

In this section, we study the security of the two-round Even-Mansour construc-
tion where a single permutation P is used instead of two independent permuta-
tions, namely EMSP[n, r, �, γ] (depicted on Figure 3). Because of the slide attack
described in the full version of the paper [10], we know that we cannot simply
use the same n-bit key k at each round if we aim at proving security beyond
the birthday bound, so that some non-trivial key-schedule γ = (γ0, γ1, γ2), with
γi : {0, 1}� → {0, 1}n, is needed (we remain as general as possible in a first
phase, and will only specify the key-schedule later on). Given a key K ∈ {0, 1}�,
we denote k0 = γ0(K), k1 = γ1(K), and k2 = γ2(K), so that:

EMSPP
K(x) = P (P (x ⊕ k0) ⊕ k1) ⊕ k2.

Minimizing the Two-Round Even-Mansour Cipher 51

x

K

P

γ0

k0

P

γ1

k1

y

γ2

k2

Fig. 3. The two-round Even-Mansour cipher with a single permutation and an arbitrary
key-schedule

Let τ = (QE , QP , K), with |QE | = qe, |QP | = qp, and K ∈ {0, 1}� be an at-
tainable transcript. As previously, we start by defining the set of bad transcripts.
In all the following, we let

M = qe

N
1
3

.

Definition 1 (Bad transcript, single-permutation case). We say that a
transcript τ = (QE , QP , K) ∈ T is bad if

K ∈ BadK =
⋃

1≤i≤10

BadKi

where

K ∈ BadK1 ⇔ ∃(x, y) ∈ QE , ∃(u, v), (u′, v′) ∈ QP : k0 = x ⊕ u and k2 = v′ ⊕ y

K ∈ BadK2 ⇔ ∃(x, y) ∈ QE , ∃(u, v), (u′, v′) ∈ QP : k0 = x ⊕ u and k1 = v ⊕ u′

K ∈ BadK3 ⇔ ∃(x, y) ∈ QE , ∃(u, v), (u′, v′) ∈ QP : k1 = v ⊕ u′ and k2 = v′ ⊕ y

K ∈ BadK4 ⇔ ∃(x, y), (x′, y′) ∈ QE , ∃(u, v) ∈ QP :
k0 = x ⊕ u and k0 ⊕ k1 = v ⊕ x′

K ∈ BadK5 ⇔ ∃(x, y), (x′, y′) ∈ QE , ∃(u, v) ∈ QP :
k1 ⊕ k2 = y′ ⊕ u and k2 = v ⊕ y

K ∈ BadK6 ⇔ |{((x, y), (u, v)) ∈ QE × QP : x ⊕ u = k0}| >
M

3

K ∈ BadK7 ⇔ |{((x, y), (u, v)) ∈ QE × QP : v ⊕ y = k2}| >
M

3

K ∈ BadK8 ⇔ |{((x, y), (u, v)) ∈ QE × QP : x ⊕ v = k0 ⊕ k1}| >
M

3

K ∈ BadK9 ⇔ |{((x, y), (u, v)) ∈ QE × QP : u ⊕ y = k1 ⊕ k2}| >
M

3
K ∈ BadK10 ⇔ |{((x, y), (x′, y′)) ∈ QE × QE : x ⊕ y′ = k0 ⊕ k1 ⊕ k2}| > M.

Otherwise τ is said good. We denote T2 the set of bad transcripts, and T1 = T \T2
the set of good transcripts.

52 S. Chen et al.

In this section, we focus on the case where � = n, namely the master key
length is equal to the block length (and hence to the round keys length). We
treat the (simpler) cases where the three round keys are independent, or derived
from two independent n-bit keys, in the full version of the paper [10]. First, we
specify conditions on the key-schedule that will allow us to upper bound the
probability to obtain a bad transcript (in the ideal world).

Definition 2 (Good key-schedule). We say that a key-schedule γ = (γ0, γ1,
γ2), where γi : {0, 1}n → {0, 1}n, is good if it satisfies the following conditions:

(i) γ0, γ1, γ2 ∈ GL(n) (i.e., each γi is a linear bijective map of Fn
2);

(ii) γ0 ⊕ γ1 ∈ GL(n) and γ1 ⊕ γ2 ∈ GL(n);
(iii) γ0 ⊕γ1 ⊕γ2 is a permutation over {0, 1}n (non-necessarily linear over Fn

2).

A simple way to build a good key-schedule is to take for γ0 and γ2 the identity,
and γ1 = π, where π is a linear orthomorphism of Fn

2 (recall that a permutation
π of {0, 1}n is an orthomorphism if x �→ x ⊕ π(x) is also a permutation), so that
the sequence of round keys is (k, π(k), k). We give two simple examples of linear
orthomorphisms which are attractive from an implementation point of view:

– When n is even, and k = (kL, kR) where kL and kR are respectively the left
and right halves of k, then

π : (kL, kR) �→ (kR, kL ⊕ kR)

is a linear orthomorphism.
– Fix an irreducible polynomial p of degree n over F2 and identify Fn

2 and
the extension field F2n defined by p in the canonical way. Then, for any
c ∈ F2n\{0, 1}, k �→ c�k (where � denotes the extension field multiplication)
is a linear orthomorphism.

Lemma 2. Let γ = (γ0, γ1, γ2) be a good key-schedule. Assume that 9n ≤
qe, qp ≤ N/2. Then

Pr[Tid ∈ T2] ≤ 10
N

+
4q2eqp + 7qeq2p + 4q2p

√
qeqp

N2

+
9qp

√
nqe + 6qe

√
nqp

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations
E and P , and not on the key k, which is drawn uniformly at random at the end
of the interaction of the distinguisher with (E, P). Moreover, the size of BadKi

for i = 6 to 10 can be upper bounded independently of E, P . Indeed, since γ0,
γ2, γ0 ⊕ γ1, γ1 ⊕ γ2, and γ0 ⊕ γ1 ⊕ γ2 are all permutations of {0, 1}n, one has,
for any permutation transcript (QE , QP),

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤ 3qeqp

M
and |BadK10| ≤ q2e

M
,

Minimizing the Two-Round Even-Mansour Cipher 53

so that

Pr

[
k ←$ {0, 1}n : k ∈

10⋃
i=6

BadKi

]
≤ 12qeqp

NM
+ q2e

NM
≤ qe + 12qp

N
2
3

.

On the other hand, in order to upper bound |BadKi| for i = 1 to 5, we need to
appeal to the sum-capture theorem of Section 3. For a permutation transcript
(QE , QP), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE}, Y = {y ∈ {0, 1}n : (x, y) ∈ QE},

U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then one has

|BadK1| ≤ μ(QE , U, V)
def= |{((x, y), u, v) ∈ QE × U × V : x ⊕ u = γ0 ◦ γ−1

2 (y ⊕ v)}|
|BadK2| ≤ μ(QP , X, U)

def= |{((u, v), x, u′) ∈ QP × X × U : x ⊕ u = γ0 ◦ γ−1
1 (v ⊕ u′)}|

|BadK3| ≤ μ(QP , V, Y)
def= |{((u′, v′), v, y) ∈ QP × V × Y : v ⊕ u′ = γ1 ◦ γ−1

2 (v′ ⊕ y)}|
|BadK4| ≤ μ(QP , X, X)

def= |{((u, v), x, x′) ∈ QP × X × X : x ⊕ u = γ0 ◦ (γ0 ⊕ γ1)−1(v ⊕ x′)}|
|BadK5| ≤ μ(QP , Y, Y)

def= |{((u, v), y, y′) ∈ QP × Y × Y : y′ ⊕ u = (γ1 ⊕ γ2) ◦ γ−1
2 (v ⊕ y)}|.

By our assumption that the key-schedule is good, we have that γ0◦γ−1
2 , γ0◦γ−1

1 ,
γ1 ◦ γ−1

2 , γ0 ◦ (γ0 ⊕ γ1)−1, and γ0 ◦ (γ0 ⊕ γ1)−1 are all automorphisms of Fn
2 .

Hence, we can apply Theorem 1 (note that in order to apply this theorem to
upper bound, say, |BadK1|, we consider the combination of the distinguisher D
and permutation P as a probabilistic adversary A interacting with permutation
E, resulting in transcript QE). Thus, if we set

C1 =
qeq2p
N

+ 2q2eqp

N
+ 3qp

√
nqe

C2 = C3 =
qeq2p
N

+
2q2p

√
qeqp

N
+ 3qp

√
nqe

C4 = C5 = q2eqp

N
+

2qeq2p
N

+ 3qe
√

nqp,

one has Pr[E, P ←$ Pn : |BadKi| ≥ Ci] ≤ 2/N for each i = 1 to 5. Since

Pr[Tid ∈ T2] ≤
5∑

i=1
Pr[E, P ←$ Pn : |BadKi| ≥ Ci] +

∑5
i=1 Ci

N
+ qe + 12qp

N
2
3

,

we get the final result. �

54 S. Chen et al.

In the second stage of the proof, it remains to show that for any good tran-
script τ , the ratio between the probabilities to obtain τ in the ideal world and
the real world is close to 1. We have the following lemma, proved in the full
version of the paper [10].

Lemma 3. Assume that N ≥ 73 and 4qe + 2qp ≤ N . Let τ = (QE , QP , K) ∈ T1
be a good transcript. Then

Pr[Tre = τ]
Pr[Tid = τ]

≥ 1 − ε1,

where
ε1 = 4qe(qe + qp)2

N2 + 2q2e
N

4
3

+ 20qe

N
2
3

.

Combining Lemmas 1, 2, and 3, we obtain the main theorem of this paper.

Theorem 2 (Single permutation and non-independent round keys).
Consider the single-permutation two-round Even-Mansour cipher EMSP[n, 2, γ]
with a good key-schedule γ (see Definition 2). Assume that N ≥ 73, 9n ≤ qe, qp ≤
N/2, and 4qe + 2qp ≤ N . Then

Advcca
EMSP[n,2,γ](qe, qp) ≤ 10

N
+

4q3e + 12q2eqp + 11qeq2p + 4q2p
√

qeqp

N2 + 2q2e

N
4
3

+
9qp

√
nqe + 6qe

√
nqp

N
+ 21qe + 12qp

N
2
3

.

Letting q = max(qe, qp), and assuming q ≤ N
2
3 , the upper bound of Theorem 2

simplifies into

10
N

+ 31q3

N2 + 2q2

N
4
3

+ 15
√

nq
3
2

N
+ 33q

N
2
3

≤ 10
N

+ 81
√

nq

N
2
3

= 10
2n

+ 81q

2 2n
3 − 1

2 log2 n
.

Hence, security is ensured up to O(2 2n
3 − 1

2 log2 n) = Õ(2 2n
3) queries of the adver-

sary.

Acknowledgments. Shan and John were supported by National Basic Re-
search Program of China Grant 2011CBA00300, 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61361136003, and by the
China Ministry of Education grant number 20121088050. Rodolphe was sup-
ported by the French Direction Générale de l’Armement and the French National
Agency of Research through the PRINCE project (contract ANR-10-SEGI-015).
Jooyoung was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Educa-
tion (NRF-2013R1A1A2007488). Yannick was partially supported by the French
National Agency of Research through the BLOC project (contract ANR-11-INS-
011).

Minimizing the Two-Round Even-Mansour Cipher 55

References

[1] Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing Triangle-Freeness in
General Graphs. SIAM J. Discrete Math. 22(2), 786–819 (2008)

[2] Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013),
http://eprint.iacr.org/2013/061

[3] Babai, L.: The Fourier Transform and Equations over Finite Abelian Groups:
An introduction to the method of trigonometric sums. Lecture notes (December
1989), http://people.cs.uchicago.edu/~laci/reu02/fourier.pdf

[4] Biham, E., Carmeli, Y., Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Crypt-
analysis of Iterated Even-Mansour Schemes with Two Keys. IACR Cryptology
ePrint Archive, Report 2013/674 (2013), http://eprint.iacr.org/2013/674

[5] Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

[6] Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

[7] Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

[8] Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using a
Small Number of Public Permutations - (Extended Abstract). In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer,
Heidelberg (2012)

[9] Chen, S., Steinberger, J.: Tight Security Bounds for Key-Alternating Ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
327–350. Springer, Heidelberg (2014)

[10] Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the Two-
Round Even-Mansour Cipher. Full version of this paper,
http://eprint.iacr.org/2014/443

[11] Daemen, J.: Limitations of the Even-Mansour Construction. In: Matsumoto, T.,
Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993)

[12] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

[13] Daemen, J., Rijmen, V.: Probability Distributions of Correlations and Differentials
in Block Ciphers. ePrint Archive, Report 2005/212 (2005),
http://eprint.iacr.org/2005/212.pdf

[14] Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key Recovery Attacks on 3-
round Even-Mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Hei-
delberg (2013), http://eprint.iacr.org/2013/391

[15] Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

[16] Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. Journal of Cryptology 10(3), 151–162 (1997)

http://eprint.iacr.org/2013/061
http://people.cs.uchicago.edu/~laci/reu02/fourier.pdf
http://eprint.iacr.org/2013/674
http://eprint.iacr.org/2014/443
http://eprint.iacr.org/2005/212.pdf
http://eprint.iacr.org/2013/391

56 S. Chen et al.

[17] Gaži, P.: Plain versus Randomized Cascading-Based Key-Length Extension for
Block Ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 551–570. Springer, Heidelberg (2013)

[18] Gaži, P., Tessaro, S.: Efficient and Optimally Secure Key-Length Extension for
Block Ciphers via Randomized Cascading. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 63–80. Springer, Heidelberg
(2012)

[19] Golomb, S.W., Gong, G., Mittenthal, L.: Constructions of Orthomorphisms of
Z2

n. In: Proceedings of The Fifth International Conference on Finite Fields and
Applications, pp. 178–195. Springer (1999)

[20] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

[21] Hayes, T.P.: A Large-Deviation Inequality for Vector-Valued Martingales.
Manuscript (2005), http://www.cs.unm.edu/~hayes/papers/VectorAzuma

[22] Junod, P., Vaudenay, S.: FOX: A New Family of Block Ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

[23] Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). Journal of Cryptology 14(1), 17–35 (2001)

[24] Kiltz, E., Pietrzak, K., Szegedy, M.: Digital Signatures with Minimal Overhead
from Indifferentiable Random Invertible Functions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 571–588. Springer, Heidelberg
(2013)

[25] Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

[26] Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of
the Iterated Even-Mansour Cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

[27] Lampe, R., Seurin, Y.: How to Construct an Ideal Cipher from a Small Set of
Public Permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I.
LNCS, vol. 8269, pp. 444–463. Springer, Heidelberg (2013),
http://eprint.iacr.org/2013/255

[28] Lee, J.: Towards Key-Length Extension with Optimal Security: Cascade Encryp-
tion and Xor-cascade Encryption. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 405–425. Springer, Heidelberg (2013)

[29] Mittenthal, L.: Block Substitutions Using Orthomorphic Mappings. Advances in
Applied Mathematics 16(1), 59–71 (1995)

[30] Nikolica, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: Fast
Software Encryption, FSE 2013 (2013) (to appear)

[31] Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

[32] Steinberger, J.: Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance. IACR Cryptology ePrint Archive, Report 2012/481 (2012),
http://eprint.iacr.org/2012/481

[33] Steinberger, J.: Counting solutions to additive equations in random sets. arXiv
Report 1309.5582 (2013), http://arxiv.org/abs/1309.5582

[34] Vaudenay, S.: On the Lai-Massey Scheme. In: Lam, K.-Y., Okamoto, E., Xing, C.
(eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 8–19. Springer, Heidelberg (1999)

http://www.cs.unm.edu/~hayes/papers/VectorAzuma
http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2012/481
http://arxiv.org/abs/1309.5582

Block Ciphers – Focus on the Linear Layer

(feat. PRIDE)�

Martin R. Albrecht1,		, Benedikt Driessen2,	 	 	, Elif Bilge Kavun3,†,
Gregor Leander3,‡, Christof Paar3, and Tolga Yalçın4,	 	 	

1 Information Security Group, Royal Holloway, University of London, UK
2 Infineon AG, Neubiberg, Germany

3 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
4 University of Information Science and Technology, Ohrid, Macedonia

Abstract. The linear layer is a core component in any substitution-
permutation network block cipher. Its design significantly influences both
the security and the efficiency of the resulting block cipher. Surprisingly,
not many general constructions are known that allow to choose trade-offs
between security and efficiency. Especially, when compared to Sboxes, it
seems that the linear layer is crucially understudied. In this paper, we
propose a general methodology to construct good, sometimes optimal,
linear layers allowing for a large variety of trade-offs. We give several
instances of our construction and on top underline its value by presenting
a new block cipher. PRIDE is optimized for 8-bit micro-controllers and
significantly outperforms all academic solutions both in terms of code
size and cycle count.

Keywords: block cipher, linear layer, wide-trail, embedded processors.

1 Introduction

Block ciphers are one of the most prominently used cryptographic primitives
and probably account for the largest portion of data encrypted today. This was
facilitated by the introduction of Rijndael as the Advanced Encryption Standard
(AES) [1], which was a major step forward in the field of block cipher design. Not
only does AES offer strong security, but its structure also inspired many cipher
designs ever since. One of the merits of AES (and its predecessor SQUARE [20])
was demonstrating that a well-chosen linear layer is not only crucial for the

� Due to page limitations, several details are omitted in this proceedings version. A
full version is available at [2].

�� Most of this work was done while the author was at the Technical University of
Denmark

� � � Most of this work was done while the authors were at Ruhr-Universität Bochum.
† The research was supported in part by the DFG Research Training Group GRK
1817/1.

‡ The research was supported in part by the BMBF Project UNIKOPS (01BY1040).

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 57–76, 2014.
c© International Association for Cryptologic Research 2014

58 M.R. Albrecht et al.

security (and efficiency) of a block cipher, but also allows to argue in a simple
and thereby convincing way about its security.

There are two main design strategies that can be identified for block ciphers:
Sbox-based constructions and constructions without Sboxes, most prominently
those using addition, rotation, and XORs (ARX designs). Furthermore, Sbox-
based designs can be split into Feistel-ciphers and substitution-permutation net-
works (SPN). Both concepts have been successfully used in practice, the most
prominent example of an SPN cipher being AES and the most prominent Feistel-
cipher being the former Data Encryption Standard (DES) [22].

It is also worth mentioning that the concept of SPN has not only been used
in the design of block ciphers but also for designing cryptographic permutations,
most prominently for the design of several sponge-based hash functions including
SHA-3 [11]. In SP networks, the round function consists of a non-linear layer
composed of small Sboxes working in parallel on small chunks of the state and
a linear layer that mixes those chunks. Thus, designing an SPN block cipher
essentially reduces to choosing one (or several) Sboxes and a linear layer.

A lot of research has been devoted to the study of Sboxes. All Sboxes of
size up to 4 bits have been classified (indeed, more than once – cf. [14,36,46]).
Moreover, Sboxes with optimal resistance against differential and linear attacks
have been classified up to dimension 5 [17]. In general, several constructions are
known for good and optimal Sboxes in arbitrary dimensions. Starting with the
work of Nyberg [43], this has evolved into its own field of research in which those
functions are studied in great detail. A nice survey of the main results of this
line of study is provided by Carlet [18].

The situation for the other main design part, the linear layer, is less clear.

1.1 The Linear Layer

For the design of the linear layer, two general approaches can be identified.
One still widely-used method is to design the linear layer in a rather ad-hoc
fashion, without following general design guidelines. While this might lead to
very secure and efficient algorithms (cf. Serpent [3] and SHA-3 as prominent
examples), it is not very satisfactory from a scientific point-of-view. The second
general design strategy is the wide-trail strategy introduced by Daemen in [19]
(see also [21]). Especially for the security against linear [41] and differential [12]
attacks, the wide-trail strategy usually results in simple and strong security
arguments. It is therefore not surprising that this concept has found its way in
many recent designs (e.g. Khazad [9], Anubis [8], Grøstl [25], PHOTON [29],
LED [30], PRINCE [16], mCrypton [39] to name but a few). In a nutshell, the
main idea of the wide-trail strategy is to link the number of active Sboxes for
linear and differential cryptanalysis to the minimal distance of a certain linear
code associated with the linear layer of the cipher. In turn, choosing a good code
(with some additional constraints) results in a large number of active Sboxes.

While the wide-trail strategy does provide a powerful tool for arguing about
the security of a cipher, it does not help in actually designing an efficient linear
layer (or the corresponding linear code) with a suitable number of active Sboxes.

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 59

Here, with the exception of early designs in [19] and later PRINCE and mCryp-
ton, most ciphers following the wide-trail strategy simply choose an MDS matrix
as the core component. This might guarantee an (partially) optimal number of
active Sboxes, but usually comes at the price of a less efficient implementation.
The only exception here is that, in the case of MDS matrices, the authors of
PHOTON and LED made the observation that implementing such matrices in a
serialized fashion improves hardware-efficiency. This idea was further generalized
in [47,53], and more recently in [5].

It is our belief that, in many cases, it is advantageous to use a near-MDS
matrix (or in general a matrix with a sub-optimal branch number) for the over-
all design. Furthermore, it is, in our opinion, utmost surprising that there are
virtually no general constructions or guidelines that would allow an SPN design
to benefit from security vs. efficiency trade-offs. This is in particular important
when it comes to ciphers where specific performance characteristics are crucial,
e.g. in lightweight cryptography.

1.2 The Current State of Lightweight Cryptography

In recent years, the field of lightweight cryptography has attracted a lot of at-
tention from the cryptographic community. In particular, designing lightweight
block ciphers has been a very active field for several years now. The dominant
metric according to which the vast majority of lightweight ciphers have been op-
timized was and still is the chip area. While this is certainly a valid optimization
objective, its relevance to real-world applications is limited. Nowadays, there are
several interesting and strong proposals available that feature a very small area
but simultaneously neglect other, important real-world constraints. Moreover,
recent proposals achieve the goal of a small chip area by sacrificing execution
speed to such an extent that even in applications where speed is supposedly
uncritical, the ciphers are getting too slow1.

Note that software solutions, i.e. low-end embedded processors, actually dom-
inate the world of embedded systems and dedicated hardware is a compara-
bly small fraction. Considering this fact, it is quite puzzling that efficiency on
low-cost processors was disregarded for so long. Certainly, there were a few ex-
ceptions: Several theoretical and practical studies have already been done in
this field. Practical examples include several proposals for instruction set ex-
tensions [38,42,48,37]. Among these, the Intel AES instruction set [31] is the
most well-known and practically relevant one. There have also been attempts
to come up with ciphers that are (partially) tailored for low-cost processors
[51,50,54,26,10,32]. Of these, execution times of both SEA and ITUbee are rather
high, mostly due to the high number of rounds. Furthermore, ITUbee uses 8-bit
Sboxes, which occupy a vast amount of program memory storage. SPECK, on
the other hand, seems to be an excellent lightweight software cipher in terms of
both speed and program memory.

1 See also [35] asking “Is lightweight = light + wait?”.

60 M.R. Albrecht et al.

It is obvious that there are quite some challenges to be overcome in this
relatively untouched area of lightweight software cryptography. The software
cipher for embedded devices of the future should not only be compact in terms
of programmemory, but also be relatively fast in execution time. It should clearly
be secure and, preferably, its security should be easily analysed and verified. The
latter can possibly be achieved by building on conservative structures, which are
conventionally costly in software implementation, thereby posing even harder
challenges.

One major component influencing all or at least most of those criteria outlined
above is the linear layer. Thus, it is important to have general constructions for
linear layers that allow to explore and make optimal use of the possible trade-offs.

1.3 Our Contribution

In this paper, we take steps towards a better understanding of possible trade-offs
for linear layers. After introducing necessary concepts and notation in Section 2,
we give a general construction that allows to combine several strong linear map-
pings on a few number of bits into a strong linear layer for a larger number of
bits (cf. Section 3). From a coding theory perspective, this construction corre-
sponds to a construction known as block-interleaving (see [40], pages 131-132).
While this idea is rather simple, its applicability is powerful. Implicitly, a spe-
cific instance of our construction is already implemented in AES. Furthermore,
special instances of this construction are recently used in [7] and [28].

We illustrate our approach by providing several linear layers with an optimal
or almost optimal trade-off between hardware-efficiency and number of active
Sboxes in Section 4. Along similar lines, we present a classification of all linear
layers fulfilling the criteria of the block cipher PRINCE in [2], Appendix C. Those
examples show in particular that the construction given in Section 3 allows
the construction of non-equivalent codes even when starting from equivalent
ones. Secondly, we show that our construction also leads to very strong linear
layers with respect to efficiency on embedded 8-bit micro-controllers. For this, we
adopt a search strategy from [52] to find the most efficient linear layer possible
within our constraints. We implemented this search on an FPGA platform to
overcome the big computational effort involved and to have the advantage of
reconfigurability. Details are described in Section 5.1.

With this, and as a second main contribution of our paper, we make use of
our construction to design a new block cipher named PRIDE that significantly
outperforms all existing block ciphers of similar key-sizes, with the exception of
SIMON and SPECK [10]. One of the key-points here is that our construction of
strong linear layers is nicely in line with a bit-sliced implementation of the Sbox
layer. Our cipher is comparable, both in speed and memory size, to the new
NSA block ciphers SIMON and SPECK, dedicated for the same platform. We
conclude the paper in Section 6 with some open problems and pressing topics for
further investigation. Finally, we note that while in this paper we focus on SPN
ciphers, most of the results translate to the design of Feistel ciphers as well.

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 61

2 Notation and Preliminaries

In this section, we fix the basic notation and furthermore recall the ideas of the
wide-trail strategy.

We deal with SPN block ciphers where the Sbox layer consist of n Sboxes of
size b each. Thus the block size of the cipher is n × b. The linear layer will be
implemented by applying k binary matrices in parallel.

We denote by F2 the field with two elements and by Fn
2 the n-dimensional

vector space over F2. Note that any finite extension field F2b over F2 can be
viewed as the vector space Fb

2 of dimension b. Along these lines, the vector space
(F2b)

n can be viewed as the (nested) vector space
(
Fb
2

)n
.

Given a vector x = (x1, . . . , xn) ∈
(
Fb
2

)n
where each xi ∈ Fb

2 we define its
weight2 as

wtb(x) = |{1 ≤ i ≤ n | xi �= 0}|.
Following [21], given a linear mapping L : (Fb

2)
n → (Fb

2)
n its differential branch

number is defined as

Bd(L) := min{wtb(x) + wtb(L(x)) | x ∈
(
Fb
2

)n
, x �= 0}.

The cryptographic significance of the branch number is that the branch number
corresponds to the minimal number of active Sboxes in any two consecutive
rounds. Here an Sbox is called active if it gets a non-zero input difference in its
input.

Given an upper bound p on the differential probability for a single Sbox along
with a lower bound of active Sboxes immediately allows to deduce an upper
bound for any differential characteristic3 using

average probability for any non-trivial characteristic ≤ p#active Sboxes.

For linear cryptanalysis, the linear branch number is defined as

Bl(L) := min{wtb(x) + wtb(L
∗(x)) | x ∈

(
Fb
2

)n
, x �= 0}

where L∗ is the adjoint linear mapping. That is, with respect to the standard
inner product, L∗ corresponds to the transposed matrix of L.

In terms of correlation (cf., for example, [19]), an upper bound c on the ab-
solute value of the correlation for a single Sbox results in a bound for any linear
trail (or linear characteristic, linear path) via

absolute correlation for a trail ≤ c#active Sboxes.

The differential branch number corresponds to the minimal distance of the
F2-linear code C over Fb

2 with generator matrix

G = [I | LT]

2 Of course
(
Fb
2

)n
is isomorphic to Fnb

2 , but the weight is defined differently on each.
3 Averaging over all keys, assuming independent round keys.

62 M.R. Albrecht et al.

where I is the n×n identity matrix. The length of the code is 2n and its dimension
is n (here dimension corresponds to log2b(|C|) as it is not necessarily a linear code).
Thus, C is a (2n, 2n) additive code over Fb

2 with minimal distance d = Bd(L).
The linear branch number corresponds in the same way to the minimal dis-

tance of the F2-linear code C⊥ with generator matrix

G∗ = [L | I].
Note that C⊥ is the dual code of C and in general the minimal distances of C⊥

and C do not need to be identical.
Finally, given linear maps L1 and L2, we denote by L1 × L2 the direct sum

of the mappings, i.e.

(L1 × L2)(x, y) := (L1(x), L2(y)).

3 The Interleaving Construction

Following the wide-trail strategy, we construct linear layers by constructing a
(2n, 2n) additive codes with minimal distance d over Fb

2. The code needs to have
a generator matrix G in standard form, i.e.

G = [I | LT]

where the submatrixL is invertible, andcorresponds to the linear layerweareusing.
Hence, the main question is how to construct “efficient” matrices L with a

given branch number. Our construction allows to combine small matrices into
bigger ones. We hereby drastically reduce the search-space of possible linear
layers. This in turn makes it possible to construct efficient linear layers for various
trade-offs, as demonstrated in the following sections.

As mentioned above, the construction described in [21] can be seen as a special
case of our construction. The main difference (except the generalization) is that
we shift the focus of the construction in [21] from the 4 round super-box view to a
2 round-view. While Daemen and Rijmen focused on the bounds for 4 rounds, we
make use of their ideas to actually construct linear layers. Moreover, a particular
instance of the general construction we elaborate on here, was already used in
the linear layer of the hash function Whirlwind [7]. There, several small MDS
matrices are used to construct a larger one.

We give a simple illustrative example of our approach in [2], Appendix A.

3.1 The General Construction

We are now ready to give a formal description of our approach. First define the
following isomorphism

Pn
b1,...bk

:
(
Fb1
2 × Fb2

2 × · · · × Fbk
2

)n
→
(
Fb1
2

)n
×
(
Fb2
2

)n
× · · · ×

(
Fbk
2

)n
(x1, . . . , xn) �→

((
x
(1)
1 , . . . , x(1)

n

)
, . . . ,

(
x
(k)
1 , . . . , x(k)

n

))
where xi =

(
x
(1)
i , . . . , x

(k)
i

)
with x

(j)
i ∈ Fbj

2 .

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 63

This isomorphism performs the transformation of mapping Sbox outputs to our
small linear layers Li. For example, in Appendix A of [2], we considered individ-
ual bits (i.e. b1, . . . , bk = 1) from 4 (i.e., k = 4) 4-bit Sboxes (i.e n = 4).

Note that, for our purpose, there are in fact many possible choices for P . In
particular, we may permute the entries within (Fbi

2)
n. Given this isomorphism

we can now state our main theorem. The construction of P follows the idea of a
diffusion-optimal mapping as defined in [21, Definition 5].

Theorem 1. Let Gi = [I | LT
i] be the generator matrix for an F2-linear (2n, 2

n)
code with minimal distance di over Fbi

2 for 0 ≤ i < k. Then the matrix G =
[I | LT] with

L =
(
Pn
b1,...bk

)−1 ◦ (L0 × L1 × · · · × Lk−1) ◦ Pn
b1,...bk

is the generator matrix of an F2-linear (2n, 2n) code with minimal distance d
over Fb

2 where

d = min
i

di and b =
∑
i

bi.

Proof. Since Pn
b1,...bk

and
(
Pn
b1,...bk

)−1

are permutation matrices, by construction

L has full rank. To see that wtb(w) + wtb(v) ≥ mini di for any v ∈ Fb
2 \ {0} and

w = L · v, observe that wtb(w)+wtb(v) is minimal when all entries in v are zero
except those mapped to the positions acted on by Lj where Lj is the matrix
with the minimal branch number. ��

Remark 1. The interleaving construction allows to construct non-equivalent codes
even when starting with equivalent Li’s. This is shown in a particular case in Ap-
pendix C of [2], where different choices of (equivalent) Li’s lead to different num-
bers of minimum-weight codewords.

A special case of the construction above is implicitly already used in AES. In
the case of AES, it is used to construct a [8, 4, 5] code over F32

2 from 4 copies
of the [8, 4, 5] code over F8

2 given by the MixColumn operation. In the Superbox
view on AES, the ShiftRows operation plays the role of the mapping P (and its
inverse) and MixColumns corresponds to the mappings Li.

4

In the following, we use this construction to design efficient linear layers.
Besides the differential and linear branch number, we hereby focus mainly on
three criteria:

– Maximize the diffusion (cf. Section 3.3)

– Minimize the density of the matrix (cf. Section 4)

– Software-efficiency (cf. Section 5)

4 Note that the cipher PRINCE implicitly uses the construction twice. Once for gen-
erating the matrix M as in Appendix A of [2] and second for the improved bound on
4 rounds, just like in AES.

64 M.R. Albrecht et al.

The strategy we employ is as follows. We first find candidates for L0, i.e.,
(2n, 2n) additive codes with minimal distance d0 over F2b0 . In this stage, we
ensure that the branch number is d0 and our efficiency constraints are satisfied.
We then apply permutations to L0 to produce Li for i > 0. This stage maximizes
diffusion.

3.2 Searching for L0

The following lemma (which is a rather straightforward generalization of Theo-
rem 4 in [53]) gives a necessary and sufficient condition that a given matrix L
has branch number d over Fb

2.

Lemma 1. Let L be a bn× bn binary matrix, decomposed into b× b submatrices
Li,j.

L =

⎛⎜⎜⎜⎝
L0,0 L0,1 . . . L0,n−1

L1,0 L1,1 . . . L1,n−1

...
...

. . .
...

Ln−1,0 Ln−1,1 . . . Ln−1,n−1

⎞⎟⎟⎟⎠ (1)

Then, L has differential branch number d over Fb
2 if and only if all i×(n−d+i+1)

block submatrices of L have full rank for 1 ≤ i < d − 1. Moreover, L has linear
branch number d if and only if all (n− d+ i+1)× i block submatrices of L have
full rank for 1 ≤ i < d− 1.

Based on Lemma 1 we may instantiate various search algorithms which we
will describe in Section 4 and Section 5. In our search we focus on cyclic ma-
trices, i.e. matrices where row i > 0 is constructed by cyclic shifting row 0 by
i indices. These matrices have the advantage of being efficient both in software
and hardware. Furthermore, since these matrices are symmetric, considering the
dual code C⊥ to C = [I | LT] is straightforward.

3.3 Ensuring High Dependency

In this section, we assume we are given a matrix L0 and wish to construct

L1, . . . , Lk−1 that maximize the diffusion of the map L =
(
Pn
b1,...bk

)−1

◦ (L0 ×
L1 × · · · × Lk−1) ◦ Pn

b1,...bk
.

Given an bn × bn binary matrix L decomposed as in Eq. (1), we define its
support as the n× n binary matrix Supp(L) where

Supp(L)i,j =

{
1 if Li,j �= 0
0 else

Now assume that Supp(L0) has a zero entry at index i′, j′. If we apply the same
Li in all k positions this means that the outputs from the i′th Sbox have no
impact on the inputs of the j′th Sbox after the linear layer. In other words, a

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 65

linear-layer following the construction of Theorem 1 ensure full dependency if
and only if ⎛⎝ ∨

0≤i<k

Supp(Li)

⎞⎠
i′,j′

= 1 ∀ 0 ≤ i′, j′ < n.

Hence, we want to apply different matrices Li in each of the k positions, such
that in at least one Supp(Li) has a non-zero entry at index i′, j′ for all 0 ≤
i′, j′ < n. In order to construct matrices Li for i > 0 from a matrix L0 we may
apply block-permutation matrices from the left and right to L0 as these clearly
neither impact the density nor the branch number. Hence, we focus on finding
permutation matrices Pi, Qi such that the density of

∨
0≤i<b Supp(Pi ·L0 ·Qi) is

maximized. In Appendix F of [2], we give two strategies for finding such Pi,Qi,
one is heuristic but computationally cheap, the other is guaranteed to return
an optimal solution – based on Constraint Integer Programming – but can be
computationally intensive.

We note that the difficulty of the problem depends on the size of the Sbox
and the density of Li. As MDS matrices always have density 1, the problem
of full dependency does not occur when combining such matrices. Finally, if
the construction ensures full dependency for a given k, it is always possible to
achieve full dependency for any k′ ≥ k.

In contrast with the branch number, if a linear layer ensures high dependency,
its inverse does not necessarily achieve the same dependency. Thus, it is in
general necessary to check the dependency of the inverse separately.

4 Optimizing for Hardware

In this section, we give examples of [2n, n, d] codes over Fb
2 and give algorithms

for finding such instances. First, the following lemma gives a lower bound on
the density of a matrix with branch number d. Our aim here is to find linear
layers that are efficiently implementable in hardware. More precisely, we aim
for an implementation in one cycle. PHOTON and LED demonstrated that
there is a trade-off between clock cycles and number of gate equivalence for the
linear layer. The trade-off we consider here is, complementary to PHOTON and
LED, between efficient implementation in one clock cycle and the (linear and
differential) branch number. Note that in our setting, the cost of implementation
is directly connected to the number of ones in the matrix representation of the
linear layer.

Lemma 2. Let matrix G = [I | LT] be the generator matrix for an F2-linear
(2n, 2n) code with minimal distance d such that the dual code has minimum
distance d as well. Then L has at least d− 1 ones per row and per column.

66 M.R. Albrecht et al.

Proof. Computing w = L · v where v is a vector with one non-zero entry 1, we
have that w must be a vector with d−1 non-zero entries if the minimum distance
of [I | LT] is d. Hence, there must be at least d− 1 ones per row. Applying the
same argument to w = LT ·v = v ·L shows that at least d−1 entries per column
must be non-zero. ��

The main merit of the above lemma is that it allows to determine the opti-
mal solutions in terms of efficiency. This is in contrast to the case for software
implementation, where the optimal solution is unknown.

Lemmas 1 and 2 give rise to various search strategies for finding (2n, 2n)
additive codes with minimal distance d over Fb

2. We discuss those strategies in
Appendix B of [2] and present results of those strategies next.

4.1 Hardware-Optimal Examples

Below we give some examples for our construction. We hereby focus on [2n, n, d]
codes over F2, i.e. we use bi = 1.5 Note that this naturally limits the achievable
branch number. For binary linear codes the optimal minimal distance is known
for small length (cf. [27] for more information). We give a small abridgement of
the known bounds on the minimal distance for linear [2n, n] codes over F2,F4,
and F8 in Appendix E of [2]. As can be seen in this table, in order to achieve a
high branch number, it might be necessary to consider linear codes over F2m , or
(more general) additive codes over Fm

2 for some small m > 1.
The examples in Figure 1 are optimal in the sense that they achieve the best

possible branch number (both linear and differential) for the given length (with
the exception of n = 11, 13, and 14) with the least possible number of ones in
the matrix (cf. Lemma 2). The number D corresponds to the average number of
ones per row/column and Dinv to the average number of ones per row/column
of the inverse matrix. The only candidate which does not satisfy D = d − 1 is
n = 8. This candidate was found using the approach from Appendix B.3 of [2],
which guarantees to return the optimal solution. Hence, we conclude that 4 1

8 is
indeed the lowest density possible. That is, there is no 8× 8 binary matrix with
branch number 5 with only 32 ones, but the best we can do is 33 ones.

For each example we list the dimension (i.e the number of Sboxes), the
achieved branch number and the minimal k such that it is possible to achieve full
dependency with two Sbox layers interleaved with one linear layer. These values
were found using the CIP approach in Section 3.3. Note that in this case (i.e.
bi = 1) the value k actually corresponds to the minimal Sbox size that allows
full dependency. Finally, kinv is the minimum Sbox size to achieve full diffusion
for the inverse matrix. Note that for all these examples, the corresponding code
is actually equivalent to its dual. In particular this implies that the linear and
differential branch number are equal.

5 We refer to Appendix C of [2] for an exemplary comparison of the set of linear layers
constructed by Theorem 1 and the entire space with the same criteria for [8, 4, 4]
codes over F4

2.

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 67

nmax(d)d DDinv k kinvTechnique Matrix

2 2 2 1 1 2 2 [2], App. B.1cyclic shift (10) to the left.

3 2 2 1 1 3 3 [2], App. B.1cyclic shift (100) to the left.

4 4 4 3 3 2 2 [2], App. B.1cyclic shift (1110) to the left.

5 4 4 3 3 2 2 [2], App. B.1cyclic shift (11100) to the left.

6 4 4 3 3 2 2 [2], App. B.1cyclic shift (110100) to the left.

7 4 4 3 4 3
7

3 2 [2], App. B.3in Figure 2

8 5 5 4 1
8

4 7
8

3 2 [2], App. B.3in [2], Appendix F.3

9 6 6 5 5 6
9

2 2 [2], App. B.3in Figure 2

10 6 6 5 5 2 2 [2], App. B.1cyclic shift (1111010000) to the left.

11 7 6 5 5 3 3 [2], App. B.1cyclic shift (11110100000) to the left.

12 8 8 7 7 2 2 [2], App. B.1cyclic shift (110111101000) to the left.

13 7 6 5 5 ≤ 4≤ 4 [2], App. B.1cyclic shift (1110110000000) to the left.

14 8 6 5 5 ≤ 4≤ 4 [2], App. B.1cyclic shift (11101010000000) to the left.

15 8 8 7 7 3 3 [2], App. B.1cyclic shift (101101110010000) to the left.

16 8 8 7 7 3 3 [2], App. B.1cyclic shift (1111011010000000) to the left.

Fig. 1. Examples of hardware efficient linear layers over F2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0110001

1000011

0100011

0001110

1001100

0110100

1011000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

001110110

100101110

010010111

111101000

100110101

001111001

111010010

011001011

110001101

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Examples of [14, 7, 4] and [18, 9, 6] codes over F2

5 Software-Friendly Examples and the Cipher PRIDE

In this section, we describe our new lightweight software-cipher PRIDE, a 64-bit
block cipher that uses a 128-bit key. We refer to Appendix D of [2] for a sketch
of the security analysis and to the full version for more details.

We chose to design an SPN block cipher because it seems that this structure
is better understood than e.g. ARX designs. We are, unsurprisingly, making
use of the construction given in Theorem 1. We here decided on a linear layer
with high dependency and a linear & differential branch number of 4. One key-
observation is that the construction of Theorem 1 fits naturally with a bit-sliced
implementation of the cipher, in particular with the Sbox layer. As a bit-sliced
implementation of the Sbox layer is advantageous on 8-bit micro-controllers, in
any case this is a nice match.

68 M.R. Albrecht et al.

The target platform of PRIDE is Atmel’s AVR micro-controller [4], as it
is dominating the market along with PIC [44] (see [45]). Furthermore, many
implementations in literature are also implemented in AVR, we therefore opt for
this platform to provide a better comparison to other ciphers (including SIMON
and SPECK [10]). However, the reconfigurable nature of our search architecture
(cf. Section 5.1) to find the basic layers of the cipher allows us to extend the
search to various platforms in the future.

5.1 The Search for the Linear Layer

A natural choice in terms of Theorem 1 is to choose k = 4 and b1 = b2 = b3 =
b4 = 1. Thus, the task reduces to find four 16× 16 matrices forming one 64× 64
matrix (to permute the whole state) of the following form:⎛⎜⎜⎝

L0 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L3

⎞⎟⎟⎠
Each of these four 16×16 matrices should provide branch number 4 and together
achieve high dependency with the least possible number of instructions. Instead
of searching for an efficient implementation for a given matrix, we decided to
search for the most efficient solution fulfilling our criteria.

To find such matrices (Li) that could be implemented very efficiently given
the AVR instruction set, we performed an extensive and hardware-aided tree
search. Our search engine was optimized to look for AVR assembly code seg-
ments utilizing a limited set of instructions that would result in linear behaviour
at matrix level. These are namely CLC, EOR, MOV, MOVW, CLR, SWAP,
ASR, ROR, ROL, LSR, and LSL instructions. As we are looking for 16 × 16
matrices, the state to be multiplied with each Li is stored in two 8-bit registers,
which we call X and Y . We also allowed utilization of four temporary regis-
ters, namely T 0, T 1, T 2, and T 3. We designed and optimized our search engine
according to these registers. Our search engine checks the resulting matrix Li

after N instructions to see if it provides the desired characteristics. While trying
to reach instruction N , we try all possible instruction-register combinations in
each step. This of course comes with an impractical time complexity, especially
when N is increased further. To deal with this time complexity, we came up
with several optimizations. As a first step, we limited the utilization of certain
instruction-register combinations. For example, we excluded CLC and CLR in-
structions from the combinations for the first and last instructions. Also, EOR
is not considered in the first instruction. Again, for the first and last instruc-
tions, SWAP, ASR, ROR, ROL, LSR, and LSL instructions are only used with
X and Y . Furthermore, we did not allow temporary registers as the destination
while trying MOV and MOVW instructions in the last instruction and X − Y
registers as the destination while trying MOV and MOVW instructions in the
first instruction.

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 69

However, such optimizations were not enough to reduce the time complexity.
We therefore applied further optimizations, i.e., when the matrices of all registers
do not give full rank, we stop the search as we know that we cannot find an
invertible linear layer any more.

In the end, we found matrices that fulfil all of our criteria starting from 7
instructions.

We implemented our search architecture on a Xilinx ML605 (Virtex-6 FPGA)
evaluation board. The reconfigurable nature of the FPGA allowed us to change
easily between different parameters, i.e. the number of instructions. The details
of this search engine can be found in [33].

5.2 An Extremely Efficient Linear Layer

As a result of the search explained in Section 5.1, we achieved an extremely effi-
cient linear layer. The cheapest solution provided by our search needed 36 cycles
for the complete linear layer, which is what we opted for. The optimal matrices
forming the linear layer are given in the Appendix G of [2]. Of these four ma-
trices, L0 and L3 are involutions with the cost of 7 instructions (in turn, clock
cycles), while L1 and L2 require 11 and 13 instructions for true and inverse ma-
trices, respectively. The assembly codes are given in Appendix H of [2] to show
the claimed number of instructions.

Comparing to linear layers of other SPN-based ciphers clearly demonstrated
the benefit of our approach. Note however, that these comparisons have to be
taken with care as not all linear layers operate on the same state size and do not
offer the same security level. The linear layer of the ISO-standard lightweight
cipher PRESENT [15] costs 144 cycles (derived from the total cycle count given
in [24]). MixColumns operation of NIST-standard AES6 costs 117 instructions
(but 149 cycles because of 3-cycle data load instruction utilizations, as Mix-
Columns constants are implemented as look-up table – which means additional
256 bytes of memory, too) [6]. Note that ShiftRows operation was merged with
the look-up table of Sbox in this implementation, so we take only MixColumns
cost as the linear layer cost. The linear layer of another ISO-standard lightweight
cipher CLEFIA [49] (again 128-bit cipher) costs 146 instructions and 668 cycles.
Bit-sliced oriented design Serpent (AES finalist, 128-bit cipher) linear layer costs
155 instructions and 158 cycles. Other lightweight proposals, KLEIN [26] and
mCrypton linear layers cost 104 instructions (100 cycles) and 116 instructions
(342 cycles), respectively [23]. Finally, the linear layer cost of PRINCE is 357 in-
structions and 524 cycles7, which is even worse than AES. One of the reasons for
this high cost is the non-cyclic 4×4 matrices forming the linear layer. The other
reason is the ShiftRows operation applied on 4-bit state words, which makes
coding much more complex than that of AES on an 8-bit micro-controller.

6 It is of course not fair to compare a 128-bit cipher with a 64-bit cipher. However, we
provide AES numbers as a reference due to the fact that it is a widely-used standard
cipher and its cost is much better compared to many lightweight ciphers.

7 We implemented this cipher on AVR, as we could not find any AVR implementations
in the literature.

70 M.R. Albrecht et al.

5.3 Sbox Selection

For our bit-sliced design, we decided to use a very simple (in terms of software-
efficiency – the formulation is given in Appendix I of [2]) 10-instruction Sbox
(which makes 10 × 2 = 20 clock cycles in total for the whole state). It is at
the same time an involution Sbox, which prevents the encryption/decryption
overhead. Besides being very efficient in terms of cycle count, this Sbox is also
optimal with respect to linear and differential attacks. The maximal probability
of a differential is 1/4 and the best correlation of any linear approximation is
1/2. The PRIDE Sbox is given below.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

S(x) 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

The assembly codes are given in Appendix H of [2] to show the claimed number
of instructions.

5.4 Description of PRIDE

Similar to PRINCE, the cipher makes use of the FX construction [34,13]. A
pre-whitening key k0 and post-whitening key k2 are derived from one half of k,
while the second half serves as basis k1 for the round keys, i.e.,

k = k0||k1 with k2 = k0.

Moreover, in order to allow an efficient bit-sliced implementation, the cipher
starts and ends with a bit-permutation. This clearly does not influence the se-
curity of PRIDE in any way. Note that in a bit-sliced implementation, none of
the permutations P nor P−1 used in PRIDE has to be actually implemented
explicitly. The cipher has 20 rounds, of which the first 19 are identical. Subkeys
are different for each round, i.e., the subkey for round i is given by fi(k1). We
define

fi(k1) = k10 ||g
(0)
i (k11)||k12 ||g

(1)
i (k13)||k14 ||g

(2)
i (k15)||k16 ||g

(3)
i (k17)

as the subkey derivation function with four byte-local modifiers of the key as

g
(0)
i (x) = (x+ 193i) mod 256, g

(1)
i (x) = (x+ 165i) mod 256,

g
(2)
i (x) = (x+ 81i) mod 256, g

(3)
i (x) = (x + 197i) mod 256,

which simply add one of four constants to every other byte of k1. The overall
structure of the cipher is depicted here:

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 71

The round functionR of the cipher shows a classical substitution-permutation
network: The state is XORed with the round key, fed into 16 parallel 4-bit Sboxes
and then permuted and processed by the linear layer.

The difference between R and R′ is that in the latter no more diffusion is
necessary, therefore the last round ends after the substitution layer. With the
software-friendly matrices we have found as described above, the linear layer is
defined as follows (cf. Theorem 1 and Appendix G of [2]):

L := P−1 ◦ (L0 × L1 × L2 × L3) ◦ P where P := P 16
1,1,1,1.

The test vectors for the cipher are provided in the Appendix J of [2].

5.5 Performance Analysis

As depicted above, one round of our proposed cipher PRIDE consists of a linear
layer, a substitution layer, a key addition, and a round constant addition (key
update). In a software implementation of PRIDE on a micro-controller, we also
perform branching in each round of the cipher in addition to the previously listed
layers. Adding up all these costs gives us the total implementation cost for one
round of the cipher. The total cost can roughly be calculated by multiplying the
number of rounds with the cost of each round. Note that we should subtract
the cost of one linear layer from the overall cost, as PRIDE has no linear layer
in the last round. The software implementation cost of the round function of
PRIDE on Atmel AVR ATmega8 8-bit micro-controller [4] is presented in the
following:

K
ey

u
p
d
a
te

K
ey

a
d
d
it
io
n

S
b
ox

L
ay
er

L
in
ea
r
L
ay
er

T
o
ta
l

Time (cycles) 4 8 20 36 68

Size (bytes) 8 16 40 72 136

72 M.R. Albrecht et al.

Comparing PRIDE to existing ciphers in literature, we can see that it out-
performs many of them significantly both in terms of cycle count and code size.
Note that we are not using any look-up tables in our implementation, in turn
no RAMs8. The comparison with existing implementations is given below:

A
E
S
-1
2
8
[2
4]

S
E
R
P
E
N
T
-1
2
8
[2
4]

P
R
E
S
E
N
T
-1
2
8
[2
4]

C
L
E
F
IA

-1
2
8
[2
4]

S
E
A
-9
6
[5
0]

N
O
E
K
E
O
N
-1
2
8
[2
3]

P
R
IN

C
E
-1
2
8

IT
U
b
ee
-8
0
[3
2]

S
IM

O
N
-6
4
/
1
2
8
[1
0]

S
P
E
C
K
-6
4
/
9
6
[1
0]

S
P
E
C
K
-6
4
/
1
2
8
[1
0]

P
R
I
D
E

t(cyc) 3159 49314 10792 28648 17745 23517 3614 2607 2000 1152 1200 1514

bytes 1570 7220 660 3046 386 364 1108 716 282 182 186 266

eq.r. 5/10 1/32 4/31 1/18 8/92 1/16 5/12 12/20 33/44 34/26 34/27

In the table, the first row is the time (performance) in clock cycles, the second
row is the code size in bytes, and the third row is the equivalent rounds. The
third row expresses the number of rounds for the given ciphers that would result
in a total running time similar to PRIDE.

Note that, as we did not come across to any reference implementations in the
literature, we implemented PRINCE in AVR for comparison. We also do not list
the RAM utilization for the ciphers under comparison in the table.

In the implementation of PRIDE, our target was to be fast and at the same
time compact. Note that we do not exclude data & key read and data write
back as well as the whitening steps in our results (these are omitted in SIMON
and SPECK numbers). Although the given numbers are just for encryption, de-
cryption overhead is also acceptable: It costs 1570 clock cycles and 282 bytes.
A cautionary note is indicated for the above comparison for several reasons. AES,
SERPENT, CLEFIA, and NOEKOEN are working on 128-bit blocks; so, for a cy-
cle per byte comparison, their cycle count has to be divided by a factor of two.
Moreover, the ciphers differ in the claimed security level and key-size.PRIDEdoes
not claim any resistance against related-key attacks (and actually can be distin-
guished trivially in this setting) and also generic time-memory trade-offs are pos-
sible againstPRIDE in contrast to most other ciphers. Besides those restrictions,
the security margin in PRIDE in terms of the number of rounds is (in our belief)
sufficient.

One can see that PRIDE is comparable to SPECK-64/96 and SPECK-64/128
(members of NSA’s software-cipher family), which are based on a Feistel struc-
ture and use modular additions as the main source of non-linearity.

In addition to the above table, the recent work of Grosso et al. [28] presents LS-
Designs. This is a family of block ciphers that can systematically take advantage

8 Which has the additional advantage of increased resistance against cache-timing
attacks.

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 73

of bit-slicing in a principled manner. In this paper, the authors make use of
look-up tables. Therefore, a direct comparison with PRIDE is not fair as the
use of look-up tables does not minimize the linear layer cost. However, to have
an idea, we can try to estimate the cost of the 64-bit case of this family. They
suggest two options: The first uses 4-bit Sbox with 16-bit Lbox, and the second
uses 8-bit Sbox with 8-bit Lbox. The first option has 8 rounds, which results in
64 non-linear operations, 128 XORs, and 128 table look-ups in total. The second
one has 6 rounds, which takes 72 non-linear operations, 144 XORs, and 48 table
look-ups. For linear layer cost, we consider the XOR cost together with table
look-ups. Unfortunately, it is not easy to estimate the overall cost of the given
two options on AVR platform as the table look-ups take more than one cycle
compared to the non-linear and linear operations. Another important point here
to mention is that the use of look-up tables result in a huge memory utilization.

Finally, we note that, despite its target being software implementations,
PRIDE is also efficient in hardware. It can be considered a hardware-friendly
design, due to its cheap linear and Sbox layers.

6 Conclusion

In this work, we have presented a framework for constructing linear layers for block
ciphers which allows to trade security against efficiency. For a given security level,
in our case we focused on the branch number, we demonstrated techniques to find
very efficient linear layers satisfying this security level. Using this framework, we
presented a family of linear layers that are efficient in hardware. Furthermore, we
presented a new cipher PRIDE dedicated for 8-bit micro-controllers that offers
competitive performance due to our new techniques for finding linear layers.

One important question is on the optimality of a given construction for a linear
layer. In particular, in the case of our construction, the natural question is if the
reduction of the search space excludes optimal solutions and only sub-optimal
solutions remain. For the hardware-friendly examples presented in Section 4 and
Appendix C of [2], it is easy to argue that those constructions are optimal. Thus,
in this case the reduction of the search space clearly did not have a negative in-
fluence on the results. In general, and for the linear layer constructed in Section 5
in particular, the situation is less clear. The main reason is that, again, the con-
struction of linear layers is understudied and hence we do not have enough prior
work to answer this question satisfactorily at the moment. Instead we view the
PRIDE linear layer as a strong benchmark for efficient linear layers with the
given parameters and encourage researchers to try to beat its performance.

Along these lines, we see this work as a step towards a more rigorous design
process for linear layers. Our hope is that this framework will be extended in
future. In particular, we would like to mention the following topic for further
investigations. It seems that using an Sbox with a non-trivial branch number
has the potential to significantly increase the number of active Sboxes when
combined with a linear layer based on Theorem 1. Finding ways to easily prove
such a result is worth investigating.

Finally, regarding PRIDE, we obviously encourage further cryptanalysis.

74 M.R. Albrecht et al.

References

1. AES. Advanced Encryption Standard. FIPS PUB 197, Federal Information Pro-
cessing Standards Publication (2001)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
Ciphers – Focus On The Linear Layer (feat. PRIDE): Full Version. IACR Cryp-
tology ePrint Archive, 2014:453 (2014)

3. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard (1998)

4. Atmel AVR. ATmega8 Datasheet, http://www.atmel.com/images/doc8159.pdf

5. Augot, D., Finiasz, M.: Direct Construction of Recursive MDS Diffusion Layers
using Shortened BCH Codes. In: Fast Software Encryption (FSE). LNCS. Springer
(to appear, 2014)

6. AVRAES: The AES block cipher on AVR controllers,
http://point-at-infinity.org/avraes/

7. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
A New Cryptographic Hash Function. Des. Codes Cryptography 56(2-3), 141–162
(2010)

8. Barreto, P.S.L.M., Rijmen, V.: The Anubis Block Cipher. Submission to the
NESSIE project (2001)

9. Barreto, P.S.L.M., Rijmen, V.: The Khazad Legacy-level Block Cipher. Submission
to the NESSIE project (2001)

10. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive, 2013:414 (2013)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Specifications (2009)

12. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

13. Biryukov, A.: DES-X (or DESX). In: Encyclopedia of Cryptography and Security,
2nd edn., p. 331. Springer (2011)

14. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanal-
ysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsø, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

16. Borghoff, J., et al.: PRINCE – A Low-Latency Block Cipher for Pervasive Comput-
ing Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

17. Brinkmann, M., Leander, G.: On the Classification of APN Functions Up to Di-
mension Five. Des. Codes Cryptography 49(1-3), 273–288 (2008)

18. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Boolean Methods
and Models. Cambridge University Press (2010)

19. Daemen, J.: Cipher and Hash Function Design, Strategies Based On Linear and
Differential Cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (1995)

20. Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

http://www.atmel.com/images/doc8159.pdf
http://point-at-infinity.org/avraes/

Block Ciphers – Focus on the Linear Layer (feat. PRIDE) 75

21. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidel-
berg (2001)

22. DES: Data Encryption Standard. FIPS PUB 46, Federal Information Processing
Standards Publication (1977)

23. Eisenbarth, T., et al.: Compact Implementation and Performance Evaluation
of Block Ciphers in ATtiny Devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

24. Engels, S., Kavun, E.B., Mihajloska, H., Paar, C., Yalçın, T.: A Non-Linear/Linear
Instruction Set Extension for Lightweight Block Ciphers. In: ARITH’21: 21st IEEE
Symposium on Computer Arithmetics. IEEE Computer Society (2013)

25. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläer, M., Thomsen, S.: Grøstl. SHA-3 Final-round Candidate (2009)

26. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

27. Grassl, M.: Bounds On the Minimum Distance of Linear Codes and Quantum
Codes (2007), http://www.codetables.de

28. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-Designs: Bitslice Encryp-
tion for Efficient Masked Software Implementations. In: Fast Software Encryption
(FSE). LNCS. Springer (to appear, 2014)

29. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

30. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

31. Intel. Advanced Encryption Standard Instructions, Intel AES-NI (2008)

32. Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: A Software Oriented
Lightweight Block Cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS,
vol. 8162, pp. 16–27. Springer, Heidelberg (2013)

33. Kavun, E.B., Leander, G., Yalçın, T.: A Reconfigurable Architecture for Searching
Optimal Software Code to Implement Block Cipher Permutation Matrices. In:
International Conference on ReConFigurable Computing and FPGAs (ReConFig).
IEEE Computer Society (2013)

34. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (An
Analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

35. Knežević, M., Nikov, V., Rombouts, P.: Low-Latency Encryption – Is “Lightweight
= Light +Wait”? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 426–446. Springer, Heidelberg (2012)

36. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

37. Lee, R.B., Fışkıran, M., Wang, M., Hilewitz, Y., Chen, Y.-Y.: PAX: A Crypto-
graphic Processor with Parallel Table Lookup and Wordsize Scalability. Princeton
University Department of Electrical Engineering Technical Report CE-L2007-010
(2007)

38. Lee, R.B., Shi, Z., Yang, X.: Efficient Permutation Instructions for Fast Software
Cryptography. IEEE Micro 21(6), 56–69 (2001)

http://www.codetables.de

76 M.R. Albrecht et al.

39. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

40. Lin, S., Costello, D.J. (eds.): Error Control Coding, 2nd edn. Prentice Hall (2004)
41. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
42. McGregor, J.P., Lee, R.B.: Architectural Enhancements for Fast Subword Per-

mutations with Repetitions in Cryptographic Applications. In: 19th International
Conference on Computer Design (ICCD 2001), pp. 453–461 (2001)

43. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

44. PIC. 12-Bit Core Instruction Set
45. PIC vs. AVR, http://www.ladyada.net/library/picvsavr.html
46. Saarinen, M.-J.O.: Cryptographic Analysis of All 4 × 4-Bit S-Boxes. In: Miri, A.,

Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012)

47. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive Diffusion Layers
for Block Ciphers and Hash Functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012)

48. Shi, Z.J., Yang, X., Lee, R.B.: Alternative Application-Specific Processor Archi-
tectures for Fast Arbitrary Bit Permutations. IJES 3(4), 219–228 (2008)

49. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

50. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

51. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

52. Ullrich, M., De Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding Optimal Bitsliced Implementations of 4 × 4-Bit S-boxes. In: Symmetric
Key Encryption Workshop (2011)

53. Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block
Ciphers and Hash Functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013)

54. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://www.ladyada.net/library/picvsavr.html

Related-Key Security for Pseudorandom
Functions Beyond the Linear Barrier

Michel Abdalla1, Fabrice Benhamouda1,
Alain Passelègue1, and Kenneth G. Paterson2

1 Département d’Informatique, École normale supérieure, Paris, France
{michel.abdalla,fabrice.ben.hamouda,alain.passelegue}@ens.fr

http://www.di.ens.fr/users/{mabdalla,fbenhamo,passeleg}
2 Information Security Group, Royal Holloway, University of London, Surrey, UK

kenny.paterson@rhul.ac.uk
http://www.isg.rhul.ac.uk/˜kp/

Abstract. Related-key attacks (RKAs) concern the security of crypto-
graphic primitives in the situation where the key can be manipulated
by the adversary. In the RKA setting, the adversary’s power is ex-
pressed through the class of related-key deriving (RKD) functions which
the adversary is restricted to using when modifying keys. Bellare and
Kohno (Eurocrypt 2003) first formalised RKAs and pin-pointed the foun-
dational problem of constructing RKA-secure pseudorandom functions
(RKA-PRFs). To date there are few constructions for RKA-PRFs under
standard assumptions, and it is a major open problem to construct RKA-
PRFs for larger classes of RKD functions. We make significant progress
on this problem. We first show how to repair the Bellare-Cash framework
for constructing RKA-PRFs and extend it to handle the more challeng-
ing case of classes of RKD functions that contain claws. We apply this
extension to show that a variant of the Naor-Reingold function already
considered by Bellare and Cash is an RKA-PRF for a class of affine RKD
functions under the DDH assumption, albeit with an exponential-time se-
curity reduction. We then develop a second extension of the Bellare-Cash
framework, and use it to show that the same Naor-Reingold variant is
actually an RKA-PRF for a class of degree d polynomial RKD functions
under the stronger decisional d-Diffie-Hellman inversion assumption. As
a significant technical contribution, our proof of this result avoids the
exponential-time security reduction that was inherent in the work of
Bellare and Cash and in our first result.

Keywords: Related-Key Security, Pseudorandom Functions.

1 Introduction

Background and Context. A common approach to prove the security of a
cryptographic scheme, known as provable security, is to relate its security to one
of its underlying primitives or to an accepted hard computational problem. While
this approach is now standard and widely accepted, there is still a significant gap

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 77–94, 2014.
c© International Association for Cryptologic Research 2014

78 M. Abdalla et al.

between the existing models used in security proofs and the actual environment
in which these cryptosystems are deployed. For example, most of the existing
security models assume that the adversary has no information about the user’s
secret key. However, it is well known that this is not always true in practice:
the adversary may be able to learn partial information about the secrets using
different types of side-channel attacks, such as the study of energy consumption,
fault injection, or timing analysis. In the particular case of fault injection, for
instance, an adversary can learn not only partial information about the secret
key, but he may also be able to force a cryptosystem to work with different but
related secret keys. Then, if he can observe the outcome of this cryptosystem, he
may be able to break it. This is what is known in the literature as a related-key
attack (RKA).

Most primitives are designed without taking related-key attacks into consider-
ation so their security proofs do not provide any guarantee against such attacks.
Hence, a cryptographic scheme that is perfectly safe in theory may be com-
pletely vulnerable in practice. Indeed, many such attacks were found during the
last decade, especially against practical blockciphers [10–14, 18]. Inspired by this
cryptanalytic work, some years ago, theoreticians started to develop appropriate
security models and search for cryptographic primitives which can be proven
RKA secure.

Formal Foundations of RKA Security. Though RKAs were first introduced
by Biham and Knudsen [9, 19] in the early 1990s, it was only in 2003 that
Bellare and Kohno [6] began the formalisation of the theoretical foundations
for RKA security. We recall their security definition for RKA security of PRFs
here. Let F : K × D → R be a family of functions for a security parameter k,
and let Φ = {φ: K → K} be a set of functions on the key space K, called a
related-key deriving (RKD) function set. We say that F is a Φ-RKA-PRF if for
any polynomial-time adversary, its advantage in the following game is negligible.
The game starts by picking a random challenge bit b, a random target key K ∈ K
and a random function G: K×D → R. The adversary can repeatedly query an
oracle that, given a pair (φ, x) ∈ Φ × D, returns either F (φ(K), x), if b = 1, or
G(φ(K), x), if b = 0. Finally, the adversary outputs a bit b′, and its advantage is
defined by 2Pr [b = b′]− 1. Note that if the class Φ of RKD functions contains
only the identity function, then this notion matches standard PRF security.

Bellare and Cash [3] designed the first RKA-PRFs secure under standard
assumptions, by adapting the Naor-Reingold PRF [21]. Their RKA-PRFs are
secure for RKA function classes consisting of certain multiplicative and addi-
tive classes. To explain their results, let us begin by recalling the definition
of the Naor-Reingold PRF. Let G = 〈g〉 be a group of prime order p. Let
NR: (Z∗

p)
n+1 × {0, 1}n → G denote the Naor-Reingold PRF that given a key

a = (a[0], . . . , a[n]) ∈ (Z∗
p)

n+1 and input x = x[1] . . . x[n] ∈ {0, 1}n returns

NR(a, x) = ga[0]
∏n

i=1 a[i]x[i]

.

The keyspace of the Naor-Reingold PRF is K = (Z∗
p)

n+1, which has a group
structure under the operation of component-wise multiplication modulo p,

Related-Key Security for PRFs Beyond the Linear Barrier 79

denoted ∗. Now let Φ∗ denote the class of component-wise multiplicative func-
tions on (Z∗

p)
n+1, that is Φ∗ = {φ: a ∈ (Z∗

p)
n+1 �→ b ∗ a | b ∈ (Z∗

p)
n+1}. It is

easy to see that NR is not itself a Φ∗-RKA-PRF, since it suffers from simple alge-
braic attacks, but using a collision-resistant hash function h: {0, 1}n×Gn+1 →
{0, 1}n−2, Bellare and Cash were able to show that a simple modification of
the Naor-Reingold PRF does yield a Φ∗-RKA-PRF under the DDH assumption.
Specifically, they defined F : (Z∗

p)
n+1 × {0, 1}n → G by:

F (a, x) = NR(a, 11‖h(x, (ga[0], ga[0]a[1], . . . , ga[0]a[n])))

and showed that this F is indeed a Φ∗-RKA-PRF under the DDH assumption.
A second construction in [3] uses similar techniques to build an RKA-PRF under
the DLIN assumption.

In the original version of their paper, Bellare and Cash also used a variant of
the Naor-Reingold PRF, NR∗: (Zp)

n × {0, 1}n\{0n} → G, defined by:

NR∗(a, x) = g
∏n

i=1 a[i]x[i]

,

to obtain a third RKA-PRF, this one for additive RKD functions. In more de-
tail, the keyspace K = (Zp)

n of NR∗, has a natural group structure under the
operation of component-wise addition modulo p. We define Φ+ to be the class of
functions, Φ+ = {φ: a ∈ (Zp)

n �→ a + b | b ∈ (Zp)
n}. Then, Bellare and Cash

claimed that the function F : (Zp)
n × ({0, 1}n \ 0n)→ G with

F (a, x) = NR∗(a, 11‖h(x, (ga[1], ga[2], . . . , ga[n])))

is a Φ+-RKA-PRF under the DDH assumption, when the function h: {0, 1}n×
Gn → {0, 1}n−2 is a collision-resistant hash function. The running time of their
security reduction in this case was exponential in the input size.

These foundational results of [3] were obtained by applying a single, elegant,
general framework to the Naor-Reingold PRFs. The framework hinges on two
main tools, key-malleability and key-fingerprints for PRFs and associated RKD
function classes Φ. The former property means that there is an efficient deter-
ministic algorithm, called a key-transformer, that enables one to transform an
oracle for computing F (K,x) into one for computing F (φ(K), x) for any φ ∈ Φ
and any input x (the technical requirements are in fact somewhat more involved
than these). The latter provides a means to ensure that, in the Bellare-Cash
construction for an RKA-PRF from a (normal) PRF F , all adversarial queries
to the putative Φ-RKA-PRF get appropriately separated before being processed
by F . In combination, these two features enable a reduction to be made to the
PRF security of the underlying function F .

Unfortunately, it was recently discovered that the original framework of [3] has a
bug, in that a technical requirement on the key-transformer, called hash function
compatibility, was too weak to enable the original security proof of the Bellare-
Cash construction to go through. When hash function compatibility is appropri-
ately strengthened to enable a proof, it still holds for the key-transformers used

80 M. Abdalla et al.

in the analysis of their two main constructions, the multiplicative DDH and DLIN-
based RKA-PRF constructions. However, the new compatibility definition no
longer holds for the key-transformer used in their additive, DDH-based RKA-PRF
construction. With respect to their framework and, specifically, their additive,
DDH-based RKA-PRF construction, Bellare and Cash note in the latest version
of their paper [4]: We see no easy way to fill the gap within our current framework
and accordingly are retracting our claims about this construction and omitting it
from the current version.

Main Question. A natural question that arises from the work of Bellare-Cash
is whether it is possible to go further, to obtain RKA-PRFs for larger classes
of RKD function than Φ∗ and Φ+. This is important in understanding whether
there are yet to be discovered fundamental barriers in achieving RKA security
for PRFs, as well as bringing the current state of the art for RKA security closer
to practical application. This question becomes even more relevant in the light
of the results of Bellare, Cash and Miller [5], who showed that RKA-security can
be transferred from PRFs to several other primitives, including identity-based
encryption (IBE), signatures, as well as symmetric (SE) and public-key encryp-
tion (PKE) secure against chosen-ciphertext attacks. Their results illustrate the
central role that RKA-PRFs play in related-key security more generally: any ad-
vance in constructing RKA-PRFs for broader classes would immediately transfer
to these other primitives via the results of [5]. A subsidiary question is whether
it is possible to repair the Bellare-Cash framework without requiring stronger
hash compatibility conditions on the key-transformer. This, if achievable, would
reinstate their Φ+-RKA-PRF.

A partial answer to the first question was provided by Goyal, O’Neill and Rao
[17], who proposed RKA-secure weak-PRF and symmetric encryption schemes
for polynomial functions using the Decisional Truncated q-ADHE problem.
RKA-secure weak-PRFs, however, are significantly weaker than standard RKA-
PRFs since their security only holds with respect to random inputs. Wee [22]
provided RKA-secure PKE for linear functions, while Bellare, Paterson, and
Thomson [7] proposed a framework for obtaining RKA-secure IBE for affine and
polynomial RKD function sets, from which RKA security for signatures, PKE
(and more) for the same RKD function sets follows using the results of [5] and
extensions thereof. However, in respect of these works, it should be noted that
achieving RKA security for randomised primitives appears to be substantially
easier than for PRFs which are deterministic objects. An extended discussion on
this point can be found in [3, Section 1].

In parallel work to ours, Lewi et al. [20] showed that the key homomorphic
PRFs from Boneh et al. [15] (and slight extensions of them) are RKA-secure.
Specifically, they show RKA-security for a strict subset of Φ+ for the PRF of [15]
that is based on the Learning with Error (LWE) problem, and against a claw-
free class of affine functions for the PRF of [15] that is based on multilinear
maps. They also showed that, if the adversary’s queries are restricted to unique
inputs, these two PRFs are RKA-secure for larger classes, namely a class of
affine RKD functions (with a low-norm for the “linear” part) for the LWE-based

Related-Key Security for PRFs Beyond the Linear Barrier 81

PRF and a class of polynomial RKD functions for the PRF based on multilinear
maps. These classes are not really comparable to our classes Φaff and Φd of affine
and polynomial functions defined below, because the secret-key structures are
slightly different. However, we remark that Lewi et al. [20] do not deal with
claw-free classes and do not show ways to leverage unique-input RKA security
to full RKA security. We handle both of these issues in our paper, and it may be
possible to extend our solutions to their setting. It should also be remarked that
the construction of Barnahee and Peikert [2] may also yield another RKA-secure
PRF based on LWE.

Our Contributions. In this paper, we make substantial progress on the main
question above, obtaining RKA-PRFs for substantially larger classes of RKD
functions than were previously known. Along the way, we recover the original
Bellare-Cash framework, showing that their original technical conditions on the
key-transformer are in fact already sufficient to enable a (different) proof of
RKA security to go through. Let us first introduce our main results on specific
RKA-PRFs, and then explain the technical means by which they are obtained.

For p prime and n, d ≥ 1, let Φd denote the class of functions from Zn
p to Zn

p

each of whose component functions is a non-constant polynomial in one variable
of degree at most d. That is, we have:

Φd =

{
φ: Zn

p → Zn
p

∣∣∣∣ φ = (φ1, . . . , φn);φi : Ai �→
∑d

j=0 αi,j · Aj
i ,

∀i = 1, . . . , n, (αi,1, . . . , αi,d) �= 0d

}
.

For the special case d = 1, we denote Φ1 by Φaff (aff for affine functions). Note
that Φ+ ⊂ Φaff .

We will construct RKA-PRFs for the RKD-function classes Φaff and Φd for
each d. To this end, let G = 〈g〉 be a group of prime order p, let D = {0, 1}n×Gn

and let h: D → {0, 1}n−2 be a hash function. Let w[i] = 0i−1‖1‖0n−i, for
i = 1, . . . , n. Define F : Zn

p × ({0, 1}n \ 0n)→ G by:

F (a, x) = NR∗(a, 11‖h(x,NR∗(a,w)))

for all a ∈ Zn
p and x ∈ {0, 1}n. This is the same F as in the withdrawn construc-

tion of [3]. Theorems 7 and 13 show that this function is an RKA-PRF for both
the RKD-function classes Φaff and Φd (for each d), under reasonable hardness
assumptions.

For our first result on the Φaff-RKA-PRF security of F , we recover and extend
the withdrawn result of Bellare and Cash [3], under the same hardness assump-
tion that they required, namely the standard DDH assumption. Here our proof,
like that in [3], requires an exponential-time reduction. We then develop a fur-
ther extension of the Bellare-Cash framework enabling us to circumvent their use
of key-transformers having a key malleability property. We use this framework
to modularise our proof that F is also a Φd-RKA-PRF. As part of this proof,
we require the decisional d-Diffie-Hellman Inversion (d-DDHI) assumption, in-
troduced in [17]. Informally, the d-DDHI problem in a group G of prime order
p consists of deciding, given inputs (g, ga, . . . , ga

d

) and z, where g is a generator

82 M. Abdalla et al.

of G, whether z is equal to g
1
a or to a random group element. Notably, in our

analysis of the Φd-RKA-PRF security of F , we are able to avoid an exponential-
time reduction. This puts the RKA-PRF F on the same footing as the surviving
constructions in [3].

Let us now expand on the technical aspects of our contributions.

Proof Barriers and Techniques. We first show how the Bellare-Cash frame-
work can be modified to deal with RKD functions that are not claw-free, meaning
that there exist pairs of different RKD functions φ1 and φ2 and a key K ∈ K,
such that φ1(K) = φ2(K). Up to now, only claw-free classes have been consid-
ered for RKA-PRFs. But classes Φ underlying practical attacks such as fault
injections have no reason to be claw-free, so dealing with non-claw-free classes
of RKD functions is important in advancing RKA security towards practice.
Moreover, both our RKD function classes of interest, Φaff and Φd, do contain
claws. The lack of claw-freeness poses a problem in security proofs because, if an
adversary is able to find two RKD functions which lead to the same derived key,
he can detect this via his queries, and then the equation φ1(K) = φ2(K) may
leak information on K sufficient to enable the adversary to break RKA-PRF
security in a particular construction.

We overcome the lack of claw-freeness in our adaptation of the Bellare-Cash
framework by introducing two new concepts, Φ-Key-Collision Security for PRFs
and Φ-Statistical-Key-Collision Security. The former is a property similar to the
identity-collision-resistance property defined in [5] in the context of pseudoran-
dom generators and refers to the non-existence of an adversary who can find a
colliding key (i.e. φ1(K) = φ2(K) for φ1, φ2 ∈ Φ), when given oracle access to
the PRF under related keys φ(K). The latter concept is essentially the same,
but now oracle access to the PRF is replaced by oracle access to a random func-
tion. These properties are just the right ingredients necessary to generalise the
Bellare-Cash framework to the non-claw-free case.

At the same time as dealing with claws, we are able to repair the gap in the
proof for the original Bellare-Cash framework, showing that their original hash
function compatibility condition required of the key-transformer is already strong
enough to enable an alternative proof of RKA security. Our new proof introduces
a slightly different sequence of game hops in order to avoid the apparent impasse
in the original proof. Our main theorem establishing the RKA-PRF security
of functions arising from this framework is Theorem 1. It repairs and extends
the corresponding main theorem in [3]. Our theorem is then combined with an
analysis of the specific function NR∗ to obtain Theorem 7 concerning the Φaff-
RKA-PRF security of F .

To show thatF is also anRKA-PRF forΦd, we still have a secondmajor difficulty
to overcome. While Φd-Key-Collision Security and Φd-Statistical-Key-Collision
Security can still be proven for F , we no longer have the key-transformer com-
ponent that is critical to the Bellare-Cash framework. Instead, in Section 5, we
introduce a further extension of their framework, replacing the key-transformer
with a stronger pseudorandomness condition on the base PRF M used in the con-
struction,which we call (S,Φ)-unique-input-prf-rka security.The new requirement

Related-Key Security for PRFs Beyond the Linear Barrier 83

essentially states that M should already act as a Φ-RKA-PRF on a restricted do-
main S, provided the queries (φ1, x1), . . . , (φk, xk) made by the Φ-RKA-PRF ad-
versary to its oracle with xi ∈ S are all for distinct xi. Under this condition, we are
able to prove Theorem 8 establishing the security of RKA-PRFs arising from our
further extension of the Bellare-Cash framework. This theorem then enables us to
prove in a modular fashion that F is also an RKA-PRF for Φd.

The final technical challenge is in proving that NR∗, playing the role of M ,
satisfies the relevant (S,Φ)-unique-input-prf-rka security property so as to allow
the application of Theorem 8. This is done in a crucial lemma, Lemma 12, whose
proof involves a delicate series of hybrids in which we gradually replace the or-
acle responses to queries (φi, xi) for xi in a suitable set S with random values.
We exploit the algebraic nature of the function NR∗ to ensure that the hybrids
are close under a particular pair of hardness assumptions the (N, d)-Polynomial
DDH and (N, d)-EDDH assumptions). We also make use of an efficient, approx-
imate (but close to perfect) procedure to detect linear dependencies arising in
the simulation from the adversary’s oracle queries. This procedure is key to mak-
ing the entire proof efficient (rather than exponential-time). Finally, we provide
a series of reductions relating our pair of hardness assumptions to the d-DDHI
assumption. Examining the details of the proof shows that we can recover our re-
sult concerning Φaff-RKA-PRF security of F under DDH (rather than 1-DDHI),
but now without an exponential-time reduction.

2 Definitions

Notations and Conventions. Let Fun(K × D,R) be the set of all families of
functions F : K × D → R. A family of functions F : K × D → R takes a key
K ∈ K and an input x ∈ D and returns an output F (K,x) ∈ R. If x is a
vector then |x| denotes its length, and x = (x[1], . . . ,x[|x|]). A binary string x
is identified with a vector over {0, 1} so that |x| denotes its length, x[i] its i-th
bit and, for i, j ∈ {1, . . . , n}, i ≤ j, x[i, . . . , j] the binary string x[i]‖ . . . ‖x[j].
For a binary string x ∈ {0, 1}n and an integer d, we denote by d · x the string
y = y[1]‖ . . .‖y[n] ∈ {0, d}n defined by y[i] = d · x[i] for i = 1, . . . , n. For two
strings x, y ∈ {0, . . . , d}n, we denote by y x the fact that y[i] ≤ x[i], ∀i =
1, . . . , n and we denote by S(x) the set {i | x[i] �= 0}. If φ is a vector of functions
from S1 to S2 with |φ| = n and a ∈ Sn

1 then we denote by φ(a) the vector
(φ[1](a[1]), . . . , φ[n](a[n])) ∈ Sn

2 . If F : K×D → R is a family of functions and x
is a vector over D then F (K,x) denotes the vector (F (K,x[1]), . . . , F (K,x[|x|])).
If S is a set, then |S| denotes its size. We denote by s

$← S the operation of picking
at random s in S. If A is a randomized algorithm, we denote by y

$← A(x1, x2, . . .)
the operation of running A on inputs (x1, x2, . . .) with fresh coins and letting y
denote the output.

Games. Some of our definitions and proofs use code-based game-playing [8].
Recall that a game has an Initialize procedure, procedures to respond to ad-
versary’s oracle queries, and a Finalize procedure. A game G is executed with
an adversary A as follows. First, Initialize executes and its outputs are the

84 M. Abdalla et al.

inputs to A. Then A executes, its oracle queries being answered by the corre-
sponding procedures of G. When A terminates, its outputs become the input
to the Finalize procedure. The output of the latter, denoted GA is called the
output of the game, and we let “GA ⇒ 1”, abbreviated W in the proofs, denote
the event that this game output takes the value 1. Boolean flags are assumed
initialized to false. Games Gi, Gj are identical until flag if their code differs only
in statements that follow the setting of flag to true. The running time of an ad-
versary by convention is the worst case time for the execution of the adversary
with any of the games defining its security, so that the time of the called game
procedures is included.

PRFs. PRFs were introduced by [16]. A PRF is a family of functions F : K×D →
R which is efficiently computable and so that it is hard to distinguish a function
chosen randomly from the PRF family from a random function, which is formally
defined as the fact that the advantage of any efficient adversary in attacking the
standard prf security of F is negligible. The advantage of an adversary A in
attacking the standard prf security of a family of functions F : K × D → R is
defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandAF ⇒ 1

]
.

Game PRFRealF begins by picking K
$← K and responds to query Fn(x) via

F (K,x). Game PRFRandF begins by picking f
$← Fun(D,R) and responds to

oracle query Fn(x) via f(x).

RKA-PRFs. We recall the definitions from [6]. Let F : K×D → R be a family
of functions and Φ ⊆ Fun(K,K). The members of Φ are called RKD (Related-
Key Deriving) functions. An adversary is said to be Φ-restricted if its oracle
queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted adversary A in
attacking the prf-rka security of F is defined via

Advprf-rka
Φ,F (A) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandAF ⇒ 1

]
.

Game RKPRFRealF begins by picking K
$← K and then responds to oracle

query RKFn(φ, x) via F (φ(K), x). Game RKPRFRandF begins by picking G
$←

Fun(K×D,R) and responds to oracle query RKFn(φ, x) via G(φ(K), x). We say
that F is a Φ-RKA-secure PRF if for any Φ-restricted, efficient adversary, its
advantage in attacking the prf-rka security is negligible.

Strong Key Fingerprint. A strong key fingerprint is a tool used in proofs
to detect whether a key arises more than once in a simulation, even if we do
not have any information about the key itself. We recall the definition from [3].
Suppose F : K ×D → R is a family of functions. Let w be a vector over D and
let n = |w|. We say that w is a strong key fingerprint for F if

(F (K,w[1]), . . . , F (K,w[n])) �= (F (K ′,w[1]), . . . , F (K ′,w[n]))

for all distinct K,K ′ ∈ K.

Related-Key Security for PRFs Beyond the Linear Barrier 85

Key-Malleability. As defined in [3], let F : K×D → R be a family of functions
and Φ be a class of RKD functions. Suppose T is a deterministic algorithm that,
given an oracle f : D → R and inputs (φ, x) ∈ Φ×D, returns a point Tf (φ, x) ∈
R. T is said to be a key-transformer for (F,Φ) if it satisfies the correctness
and uniformity conditions. Correctness asks that TF (K,·)(φ, x) = F (φ(K), x) for
every (φ,K, x) ∈ Φ×K×D. Let us say that a Φ-restricted adversary is unique-
input if, in its oracle queries (φ1, x1), . . . , (φq , xq), the points x1, . . . , xq are always
distinct. Uniformity requires that for any (even inefficient) Φ-restricted, unique-
input adversary U ,

Pr
[
KTRealUT ⇒ 1

]
= Pr

[
KTRandUT ⇒ 1

]
,

where game KTRealT is initialized by picking f
$← Fun(D,R) and responds

to query KTFn(φ, x) via Tf (φ, x), while KTRandT has no initialization and
responds to oracle query KTFn(φ, x) by returning a value y

$← R chosen uni-
formly at random in R. If such a key-transformer exists, we say that F is a
Φ-key-malleable PRF.

Compatible Hash Function. Let F : K×D → R be a family of functions and
Φ be a class of RKD functions, such that there is a key-transformer T for (F,Φ).
Let w ∈ Dm and let D = D × Rm. We denote by Qrs(T, F,Φ,w) the set of all
w ∈ D such that there exists (f, φ, i) ∈ Fun(D,R) × Φ× {1, . . . ,m} such that
the computation of Tf(φ,w[i]) makes oracle query w. Then, we say that a hash
function H : D → S is compatible with (T, F,Φ,w), if S = D\Qrs(T, F,Φ,w).
Note that this definition is the same as that given in the original Bellare-Cash
framework [3] rather than the stronger one used in the authors’ repaired version
[4].

CR hash functions. The advantage of C in attacking the collision-resistance
security of H : D → R is

Advcr
H(C) = Pr [x �= x′ and H(x) = H(x′)]

where the probability is over (x, x′) $← C.

Hardness Assumptions. Our proofs make use of the d-Strong Discrete Log-
arithm (d -SDL) and Decisional d-Diffie-Hellman Inversion (d -DDHI) problems
given in [17] and described in Fig. 1. We define the advantage of an adversary
D against the d -SDL problem in G as

Advd-sdl
G (D) = Pr

[
d -SDLD

G ⇒ true
]

where the probability is over the choices of a ∈ Zp, g ∈ G, and the random coins
used by the adversary. The advantage of an adversary D against the d -DDHI
problem in G is defined to be

Advd-ddhi
G (D) = Pr

[
d -DDHI-RealDG ⇒ 1

]
− Pr

[
d -DDHI-RandDG ⇒ 1

]

86 M. Abdalla et al.

proc Initialize // d -SDL

g
$← G ; a

$← Z∗
p

Return (g, ga, . . . , ga
d

)

proc Finalize(a’) // d -SDL

Return (ga = ga
′
)

proc Initialize // d -DDHI-Real

g
$← G ; a

$← Z∗
p

Return (g, ga, . . . , ga
d

, g1/a)

proc Finalize(b) // d -DDHI-Real

Return b

proc Initialize // d -DDHI-Rand

g
$← G ; a

$← Z∗
p ; z

$← Z∗
p

Return (g, ga, . . . , ga
d

, gz)

proc Finalize(b) // d -DDHI-Rand

Return b

Fig. 1. Games defining the d -SDL and d -DDHI problems in G

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random
coins used by the adversary. We have two assumptions corresponding to the
hardness of these problems, the d-SDL assumption and the d-DDHI assumption.
Setting d = 1 in the d-SDL problem, we recover the usual definition of the DL
problem in G.

3 Repairing and Extending the Bellare-Cash Framework

Here, we give a method to deal with classes of RKD functions that are not claw-
free, such as affine classes, by repairing and extending the general framework of
Bellare and Cash from [3]. Our approach still relies on key-malleability, meaning
that it is not generally applicable since almost all the known PRFs are not key-
malleable for interesting classes of functions. However, as we shall see, it does
provide an easy way to obtain a Φaff-RKA-secure PRF, using the variant NR∗

of the Naor-Reingold PRF. In Section 5, we will present a further extension
of the Bellare-Cash approach that enables us to deal with PRFs that are not
key-malleable.

To deal with non-claw-freeness, we first introduce two new notions. The first
one is called Φ-Key-Collision Security and captures the likelihood that an ad-
versary finds two RKD functions which lead to the same derived key in a given
PRF construction. The second one, called Φ-Statistical-Key-Collision Security,
is similar, but replaces the oracle access to the PRF with an oracle access to a
random function.

Φ-Key-Collision (Φ-kc) Security. Let Φ be a class of RKD functions. We
define the advantage of an adversary A against the Φ-key-collision security of a
PRF M : K×D → R, denoted by Advkc

Φ,M (A), to be the probability of success
in the game on the left side of Fig. 2, where the functions φ appearing in A’s
queries are restricted to lie in Φ.

Φ-Statistical-Key-Collision (Φ-skc) Security. Let Φ be a class of RKD func-
tions. We define the advantage of an adversary A against the Φ-statistical-key-
collision security for Fun(K×D,R), denoted by Advskc

Φ (A), to be the probability
of success in the game on the right side of Fig. 2. Here the functions φ appearing
in A’s queries are again restricted to lie in Φ.

Related-Key Security for PRFs Beyond the Linear Barrier 87

proc Initialize

K
$← K

proc RKFn(φ, x)
y ← M(φ(K), x)
Return y

proc Finalize(φ1, φ2)
Return (φ1 = φ2 and φ1(K) = φ2(K))

proc Initialize

K
$← K ; D ← ∅ ; E ← ∅

F
$← Fun(K ×D,R) ; b′ ← 0

proc RKFn(φ, x)
If φ(K) ∈ E and φ /∈ D then b′ ← 1
D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
y ← F (φ(K), x)
Return y

proc Finalize
Return (b′ = 1)

Fig. 2. Game defining the Φ-key-collision security of a PRF M on the left and Φ-
statistical-key-collision security for Fun(K×D,R) on the right

Using these notions, we can now prove the following theorem, which both
repairs and extends the main result of [3].

Theorem 1. Let M : K × D → R be a family of functions and Φ be a class of
RKD functions that contains the identity function id. Let T be a key-transformer
for (M,Φ) making QT oracle queries, and let w ∈ Dm be a strong key fingerprint
for M . Let D = D×Rm and let H : D → S be a hash function that is compatible
with (T,M,Φ,w). Define F : K ×D → R by

F (K,x) = M(K,H(x,M(K,w)))

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the prf-rka
security of F that makes QA ≤ |S| oracle queries. Then we can construct an
adversary B against the standard prf security of M , an adversary C against
the cr security of H, an adversary D against the Φ-kc security of M and an
adversary E against Φ-skc security for Fun(K ×D,R) such that

Advprf-rka
Φ,F (A) ≤ Advprf

M (B) +Advcr
H(C) +Advkc

Φ,M (D) +Advskc
Φ (E) . (1)

Adversaries C, D and E have the same running time as A. Adversary B has
the same running time as A plus the time required for QA · (m + 1) executions
of the key-transformer T.

Note that if the class Φ is claw-free, then the advantage of any adversary in
breaking Φ-kc security of M or Φ-skc security for Fun(K×D,R) is zero. In this
case Theorem 1 matches exactly the main theorem of [3], under the original and
weaker definition of hash function compatibility from [3]. This justifies our claim
of repairing the Bellare-Cash framework.

Overview of the Proof. The proof of the above theorem is detailed in the
full version [1]. Here we provide a brief overview. Since the RKD functions that
we consider in our case may have claws, we start by dealing with possible colli-
sions on the related-keys in the RKPRFReal case, using the key-collision notion.
Then, we deal with possible collisions on hash values in order to ensure that the

88 M. Abdalla et al.

hash values h used to compute the output y are pairwise distinct so the attacker
is unique-input. Then, using the properties of the key-transformer and the com-
patibility condition, we show that it is hard to distinguish the output from a
uniformly random output based on the standard prf security of M . Finally, we
use the statistical-key-collision security notion to deal with possible key collisions
in the RKPRFRand case so that the last game matches the description of the
RKPRFRand game.

Remark 2. It is worth noting that we deviate from the original proof of [3] in
games G5−G7, filling the gap in their original proof, but under the same technical
conditions on compatibility. Unlike in their proof, we are able to show that the
output of F is already indistinguishable from a uniformly random output as
soon as one replaces the underlying PRF M with a random function f due to
the uniformity condition of the transformer. In order to build a unique-input
adversary against the uniformity condition, the main trick is to precompute the
values of f(w) for all w ∈ Qrs(T,M,Φ,w) and use these values to compute
Tf(φ,w[i]), for i = 1, . . . , |w| and φ ∈ Φ, whenever needed. This avoids the
need to query the oracle in the uniformity game twice on the same input when
computing the fingerprint.

4 Related-Key Security for Affine RKD Functions

In this section, we apply the above framework to the variant NR∗ of the Naor-
Reingold PRF. Recall that NR∗: (Zp)

n × {0, 1}n\{0n} → G was defined in [3]
by:

NR∗(a, x) = g
∏n

i=1 a[i]x[i]

for all a ∈ Zn
p and x ∈ {0, 1}n\{0n}. We recall the definition of Φaff (= Φ1) from

the introduction. Using the above theorem, we prove that NR∗ can be used to
build a Φaff-RKA-secure PRF under the DDH assumption, thereby recovering
and strengthening the withdrawn result from [3]. We first recall the following
lemma from [3].

Lemma 3. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined
via NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n \ {0n}. Let A be an

adversary against the standard prf security of NR∗ that makes QA oracle queries.
Then we can construct an adversary B against the DDH problem such that

Advprf
NR∗(A) ≤ n ·Advddh

G (B) .

The running time of B is equal to the running time of A, plus the time required
to compute O(QA) exponentiations in G.

In what follows, we prove the properties needed to apply Theorem 1 to NR∗.
The proofs of the above lemmas are detailed in the full version [1].

Strong Key Fingerprint. Let w[i] = 0i−1‖1‖0n−i, for i = 1, . . . , n. Then w is a
strong key fingerprint for NR∗. Indeed, we have (NR∗(a,w[1]), . . . ,NR∗(a,w[n]))

Related-Key Security for PRFs Beyond the Linear Barrier 89

= (ga[1], . . . , ga[n]), so if a �= a′ are two distinct keys in K = Zn
p , then there exists

i ∈ {1, . . . , n} such that a[i] �= a′[i], so ga[i] �= ga
′[i].

Compatible Hash Function. We have Qrs(Taff ,NR
∗,Φaff ,w) = {w[1], . . . ,

w[n]}, so let D = {0, 1}n×Gn and let h: D → {0, 1}n−2 be a collision resistant
hash function. Then the hash function defined by H(x, z) = 11‖h(x, z) is a
collision resistant hash function that is compatible with (Taff ,NR

∗,Φaff ,w) since
every element of Qrs(Taff ,NR

∗,Φaff ,w) has at most one 1 bit and every output
of H has at least two 1 bits. Note that in particular the output of H is never 0n,
so it is always in the domain of NR∗.

Lemma 4. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via
NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n \ {0n}. Let D be an

adversary against the Φaff-key-collision security of NR∗ that makes QD oracle
queries. Then we can construct an adversary C against the DL problem in G
with the same running time as that of D such that

Advkc
Φaff ,NR∗(D) ≤ n ·Advdl

G(C).

Since the hardness of DDH implies the hardness of DL, the above lemma does
not introduce any additional hardness assumptions beyond DDH.

Lemma 5. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined
via NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n \ {0n}. Let Taff be

defined via

Tf
aff(φ, x) = g

∏
i∈S(x) c[i] ·

∏
yx,y �=0n

f(y)
∏

j∈S(y) b[j]
∏

k∈S(x)\S(y) c[k]

where φ = (φ1, . . . , φn) ∈ Φaff , with φi: a → b[i]a + c[i], b[i] �= 0, for i =
1, . . . , n. Then Taff is a key-transformer for (NR∗,Φaff). Moreover, the worst-
case running time of this key-transformer is the time required to compute O(2n)
exponentiations in G.

Lemma 6. Let G = 〈g〉 be a group of prime order p. Let A be an adversary
against the Φaff-statistical-key-collision security for Fun(Zn

p ×{0, 1}n,G) making
QA queries. Then we have

Advskc
Φaff

(A) ≤ Q2
A

2p
.

We now have everything we need to apply Theorem 1 to NR∗. Combining Theo-
rem 1, Lemmas 3–6 and the above properties, we obtain the following theorem.

Theorem 7. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via
NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n\{0n}. Let D = {0, 1}n×

Gn and let h: D → {0, 1}n−2 be a hash function. Let w[i] = 0i−1‖1‖0n−i, for
i = 1, . . . , n. Define F : Zn

p × {0, 1}n → G by

F (a, x) = NR∗(a, 11‖h(x,NR∗(a,w)))

90 M. Abdalla et al.

for all a ∈ Zn
p and x ∈ {0, 1}n. Let A be a Φaff-restricted adversary against

the prf-rka security of F that makes QA oracle queries. Then we can construct
an adversary B against the DDH problem in G, an adversary C against the cr
security of h, and an adversary D against the DL problem in G, such that

Advprf-rka
Φaff ,F

(A) ≤ n ·Advddh
G (B) +Advcr

h (C) + n ·Advdl
G(D) +

Q2
A

2p
.

The running time of B is that of A plus the time required to compute O(QA ·
(n+ 1) · 2n) exponentiations in G. The running times of C and D are the same
as that of A.

5 Further Generalisation of the Bellare-Cash Framework

We introduce a new type of PRF, called an (S,Φ)-Unique-Input-RKA-PRF.
We then use this notion as a tool in a further extension of the Bellare-Cash
framework that can be applied to non-key-malleable PRFs and non-claw-free
classes of RKD functions. This new framework provides in particular a route to
proving that the variant of the Naor-Reingold PRF introduced in Section 3 is
actually Φd-RKA-secure.

(S,Φ)-Unique-Input-RKA-PRF. Let M : K × D → R be a family of func-
tions. Let S be a subset of D and Φ be a class of RKD functions. We consider
the class of adversaries A in Fig. 3 such that all queries (φ, x) with x ∈ S made
by A to its oracle are for distinct values of x. That is, for any sequence of A’s
queries (φ1, x1), . . . , (φk, xk) with xi ∈ S for all i = 1, . . . , k, we require all the
xi to be distinct (no such restriction is made for queries (φi, xi) with xi /∈ S).
We denote the advantage of such an adversary A by Advui-prf-rka

Φ,S,M (B). We then
say that M is an (S,Φ)-unique-input-RKA-secure PRF if the advantage of any
such Φ-restricted, efficient adversary A in attacking (S,Φ)-unique-input-prf-rka
security is negligible.

proc Initialize

K
$← K ; b $← {0, 1}

proc Finalize(b′)
Return b′ = b

proc RKFn(φ, x)
If x ∈ S then

If b = 0 then y ← M(φ(K), x)

Else y
$← R

Else y ← M(φ(K), x)
Return y

Fig. 3. Game defining the (S,Φ)-unique-input-prf-rka security of a PRF M

The following theorem is an analogue of Theorem 1 in which the roles of key
malleability and hash function compatibility are replaced by our new notion,
(S,Φ)-unique-input-prf-rka security.

Theorem 8. Let M : K × D → R be a family of functions and Φ be a class of
RKD functions. Let w ∈ Dm be a strong key fingerprint for M . Let D = D×Rm

Related-Key Security for PRFs Beyond the Linear Barrier 91

and let H : D → S be a hash function, where S ⊆ D\{w[1], . . . ,w[m]}. Define
F : K ×D → R by

F (K,x) = M(K,H(x,M(K,w)))

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the prf-rka
security of F that makes QA ≤ |S| oracle queries. Then we can construct an
adversary B against the (S,Φ)-unique-input-prf-rka security of M , an adversary
C against the cr security of H, an adversary D against the Φ-kc security of M
and an adversary E against Φ-skc security for Fun(K ×D,R) such that

Advprf-rka
Φ,F (A) ≤ Advui-prf-rka

Φ,S,M (B)+Advcr
H(C)+Advkc

Φ,M (D)+Advskc
Φ (E) . (2)

Adversaries C, D and E have the same running time as A. Adversary B makes
(m+ 1) ·QA oracle queries and has the same running time as A.

Overview of the Proof. The proof of the above theorem is detailed in the full
version [1]. Here we provide a brief overview. Since the RKD functions that we
consider in our case may have claws, we start by dealing with possible collisions
on the related-keys in the RKPRFReal case, using the key-collision notion. Then,
we deal with possible collisions on hash values in order to ensure that the hash
values h used to compute the output y are distinct. Then, in contrast to the
proof of Theorem 1, we use the new (S,Φ)-Unique-Input-RKA-PRF notion and
the compatibility condition to show that it is hard to distinguish the output of
F from a uniformly random output. Finally, we use the statistical-key-collision
security notion to deal with possible key collisions in the RKPRFRand case so
that the last game matches the description of the RKPRFRand Game.

Remark 9. In the full version [1], we explore the relationship between key-malle-
able PRFs and unique-input-RKA-secure PRFs. Specifically, we show that the
(S,Φ)-unique-input-prf-rka security of a Φ-key-malleable PRF M is implied by
its regular prf security if the key-transformer T associated with M satisfies a
new condition that we call S-uniformity. This condition demands that the usual
uniformity condition for T should hold on the subset S of D rather than on all of
D. Whether S-uniformity is implied by (regular) uniformity is an open question.

6 Related-Key Security for Polynomial RKD Functions

We apply Theorem 8 to the variant NR∗ of the Naor-Reingold PRF for the class
of RKD functions Φd = {φ: K → K|φ = (φ1, . . . , φn);φi : A �→

∑d
j=0 αi,j · Aj ,

(αi,1, . . . , αi,d) �= 0d; ∀i = 1, . . . , n}. Specifically, we prove that NR∗ can be used
to build a Φd-RKA-secure PRF, under the d-DDHI assumption. Remarkably,
our proof provides an efficient reduction, avoiding an exponential running time
like that seen in Theorem 7. The key step in establishing our result is Lemma 12.
Its proof involves at its core the construction of a bespoke key-transformer to
handle Φd and a delicate analysis of it using sequences of hybrid games.

92 M. Abdalla et al.

In what follows, we prove the various properties needed to apply Theorem 8
to NR∗. The proofs of Lemmas 10–12 can be found in the full version [1].

Strong Key Fingerprint. Let w[i] = 0i−1‖1‖0n−i, for i = 1, . . . , n. Then, as
before, w is a strong key fingerprint for NR∗.

Hash Function. Let D = {0, 1}n × Gn and let h: D → {0, 1}n−2 be a colli-
sion resistant hash function. Then, as previously, the hash function defined by
H(x, z) = 11‖h(x, z) is a collision resistant hash function with range S satisfying
the relation S ⊆ {0, 1}n\({w[1], . . . ,w[n]} ∪ {0n}).

Lemma 10. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined
via NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n \ {0n}. Let D be

an adversary against the Φd-key-collision security of NR∗ that makes QD oracle
queries. Then we can construct an adversary C against the d-SDL problem in G
such that

Advkc
Φd,NR∗(D) ≤ n ·Advd-sdl

G (C) .

The running time of C is that of D plus the time required to factorize a poly-
nomial of degree at most d in Fp (sub-quadratic in d and logarithmic in p) plus
O(QD · d) exponentiations in G.

Lemma 11. Let G be a group of prime order p. Let Fun(Zn
p × {0, 1}n,G) be

the set of functions from which the random function in the Φd-statistical-key-
collision security game is taken. Let A be an adversary against the Φd-statistical-
key-collision security that makes QA queries. Then we have

Advskc
Φd

(A) ≤ d ·Q2
A

2p
.

Lemma 12. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined
via NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n \ {0n}. Let S de-

note the set {0, 1}n\({0n} ∪ {w[1], . . . ,w[n]}). Let A be an adversary against
the (S,Φd)-unique-input-prf-rka security of NR∗ that makes QA oracle queries.
Then, assuming nd ≤ √p, we can design an adversary B against the d-DDHI
problem in G such that

Advui-prf-rka
Φd,S,NR∗(B) ≤

(
n · d ·

(
p

p− 1

)2

+ n · (d− 1)

)
·Advd-ddhi

G (A) +
2n ·QA

p
.

The running time of B is that of A plus the time required to compute O(d · (n+
QA)) exponentiations in G and O(Q3

A · (nd+QA)) operations in Zp.

Finally, by combining the results in Lemmas 10–12 with Theorem 8, we can
prove the following theorem.

Theorem 13. Let G = 〈g〉 be a group of prime order p and let NR∗ be defined via
NR∗(a, x) = g

∏n
i=1 a[i]x[i]

, where a ∈ Zn
p and x ∈ {0, 1}n\{0n}. Let D = {0, 1}n×

Related-Key Security for PRFs Beyond the Linear Barrier 93

Gn and let h: D → {0, 1}n−2 be a hash function. Let w[i] = 0i−1‖1‖0n−i, for
i = 1, . . . , n. Define F : Zn

p × {0, 1}n → G by

F (a, x) = NR∗(a, 11‖h(x,NR∗(a,w)))

for all a ∈ Zn
p and x ∈ {0, 1}n. Let A be a Φd-restricted adversary against the prf-

rka security of F that makes QA ≤ |{0, 1}n−2| oracle queries. Then, assuming
nd ≤ √p, we can construct an adversary B against the d-DDHI problem in G,
an adversary C against the cr security of h, and an adversary D against the
d -SDL problem in G such that

Advprf-rka
Φd,F

(A) ≤
(
n · d · (1− 1/p)2 + n · (d− 1)

)
·Advd-ddhi

G (B)

+Advcr
h (C) + n ·Advd-sdl

G (D) +
(
d ·Q2

A + 4n ·QA

)
/(2p) . (3)

The running time of B is that of A plus O(d · (n + QA)) exponentiations in G
and O(Q3

A ·(nd+QA)) operations in Zp. C has the same running time as A. The
running time of D is that of A plus the time required to factorize a polynomial
of degree at most d in Fp, which is sub-quadratic in d, logarithmic in p.

Acknowledgements. We thank Susan Thomson for bringing the issues in the
original Bellare-Cash framework to our attention, and for useful comments on
the paper. Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue were
supported by the French ANR-10-SEGI-015 PRINCE Project, the Direction
Générale de l’Armement (DGA), the CFM Foundation, the European Com-
mission through the FP7-ICT-2011-EU-Brazil Program under Contract 288349
SecFuNet, and the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement 339563 –
CryptoCloud). Kenneth G. Paterson was supported by an EPSRC Leadership
Fellowship, EP/H005455/1.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier, full version of this paper
available at Cryptology ePrint Archive, http://eprint.iacr.org/

2. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 353–370. Springer, Heidelberg (2014)

3. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010)

4. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. Cryptology ePrint Archive, Report 2010/397 (2010),
http://eprint.iacr.org/ (last updated October 27, 2013)

5. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 486–503. Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

94 M. Abdalla et al.

6. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

7. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

9. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

10. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

11. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

12. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key re-
covery attacks of practical complexity on AES-256 variants with up to 10 rounds.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010)

13. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

14. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key at-
tack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 231–249. Springer, Heidelberg (2009)

15. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013)

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
25th FOCS, pp. 464–479. IEEE Computer Society (October 1984)

17. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

18. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192
and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

19. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

20. Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014)

21. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society (October 1997)

22. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer,
Heidelberg (2012)

Automated Analysis of Cryptographic

Assumptions in Generic Group Models

Gilles Barthe1, Edvard Fagerholm1,2, Dario Fiore1, John Mitchell3,
Andre Scedrov2, and Benedikt Schmidt1

1 IMDEA Software Institute, Madrid, Spain
{gilles.barthe,dario.fiore,benedikt.schmidt}@imdea.org

2 University of Pennsylvania, USA
{edvardf,scedrov}@math.upenn.edu

3 Stanford University, USA
mitchell@cs.stanford.edu

Abstract. We initiate the study of principled, automated, methods for
analyzing hardness assumptions in generic group models, following the
approach of symbolic cryptography. We start by defining a broad class of
generic and symbolic group models for different settings—symmetric or
asymmetric (leveled) k-linear groups—and by proving “computational
soundness” theorems for the symbolic models. Based on this result, we
formulate a very general master theorem that formally relates the hard-
ness of a (possibly interactive) assumption in these models to solving
problems in polynomial algebra. Then, we systematically analyze these
problems. We identify different classes of assumptions and obtain de-
cidability and undecidability results. Then, we develop and implement
automated procedures for verifying the conditions of master theorems,
and thus the validity of hardness assumptions in generic group models.
The concrete outcome of this work is an automated tool which takes as
input the statement of an assumption, and outputs either a proof of its
generic hardness or shows an algebraic attack against the assumption.

1 Introduction

Sophisticated abstractions have often been instrumental in recent breakthroughs
in the design of cryptographic schemes. Bilinear maps are perhaps the most strik-
ing instance of such an abstraction; over the last fifteen years, they have been
used for building advanced and previously unknown cryptographic schemes. Now
it is believed that multilinear maps will lead to similar breakthroughs. Com-
pared to the “classical” algebraic settings based on the purported hardness of
the Factoring/RSA or Discrete-log/Diffie-Hellman problems, bilinear and mul-
tilinear maps indeed provide richer and more versatile algebraic structures that
are particularly suitable for new constructions. At the same time, one unsettling
consequence of using such sophisticated abstractions is a significant growth in
the number of hardness assumptions used in security proofs. Moreover, these
assumptions are not as well studied as their classical and standard counterparts.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 95–112, 2014.
c© International Association for Cryptologic Research 2014

96 G. Barthe et al.

While it is widely acknowledged that this situation is far from ideal, relying on
non-standard assumptions is sometimes the only known way to construct some
new (or some efficient) cryptographic scheme, and hence it cannot be completely
disregarded. A common view to resolving this dilemma is to develop princi-
pled, rigorous approaches for analyzing and comparing non-standard hardness
assumptions.

This question has been previously considered in the literature, in which we
identify at least two approaches. One approach is to devise assumptions that
are general enough to be reused and allow for simple security proofs, and at the
same time are shown to hold under more classical assumptions (e.g., [15,32]).
A second approach is to develop idealized models, such as the Generic Group
[31,33,28] and the Generic Bilinear Group [10] models, and to provide (in the
form of so-called master theorems) necessary and sufficient conditions for the
security of an assumption in these models. Proving the hardness of an assump-
tion in these models is essentially a way to rule out the possibility of algebraic
attacks against the underlying algorithmic problem, and it can be considered
the minimal level of guarantee we need to gain confidence in an assumption.
Two prominent examples along this direction are the “Uber assumption” (aka
“Master theorem”) of Boneh, Boyen and Goh [10,14] and the Matrix Decisional
Diffie-Hellman assumption family recently proposed by Escala et al. [17].

However, although these results are quite general, they can be quite difficult
to apply. Indeed, in order to argue the hardness of an assumption using the
Uber assumption in [10,14] (resp. the Matrix-DDH assumption in [17]) one has
to show the independence (resp. irreducibility) of certain polynomials contained
in the statement of the assumption. A similar problem arises in the context of
interactive assumptions such as [27,2], in which the hardness crucially relies on
the restrictions posed on the queries performed by the adversary. In summary,
applying these general results to verify the validity of a given assumption is far
from being a trivial task, and may be error-prone, as witnessed by unfortunate
failures [35,23].

In this paper, we initiate the study of principled, automated methods for an-
alyzing hardness assumptions in generic group models. Our main contribution
is essentially threefold. First, we reformulate master theorems in the style of the
celebrated “computational soundness” theorem of Abadi and Rogaway [1], and
formally show that the problem of analyzing assumptions in the generic group
reduces to solving problems in polynomial algebra. Second, we systematically
analyze these problems: while we show that the most general problem is un-
decidable, we distill a set of properties (capturing most interesting cases) for
which the problem is decidable. Finally, by applying tools from linear algebra,
we develop and implement automated procedures for verifying the conditions of
master theorems, and thus the validity of hardness assumptions in generic group
models. The concrete outcome of this work is an automated tool1 which takes
as input an assumption and outputs either a proof of its generic hardness (along
with concrete bounds) or shows an algebraic attack against the assumption.

1 The tool is available at http://www.easycrypt.info/GGA

http://www.easycrypt.info/GGA

Automated Analysis of Assumptions in Generic Models 97

1.1 An Overview of Our Contribution

The key contribution of our work is the development of automated decision
procedures for testing the validity of hardness assumptions in generic group
models. Towards this goal, we first settle a rigorous framework for carrying out
this analysis. Basically, this framework consists of formalizing a class of generic
group models and then stating a general master theorem. Finally, our decision
procedures will be aimed at verifying the side conditions of our master theorem.

Generic Group Models. We formalize a broad class of generic group models
capturing many interesting cases used in cryptography: symmetric and asym-
metric k-linear groups, with both leveled and non-leveled maps, and with the
possibility of modeling efficiently computable isomorphisms between the groups.
For any experiment stated in these generic models, we generalize the commonly-
used step of applying the Schwartz-Zippel Lemma, and obtain a generic transfor-
mation (cf. Theorem 1) for switching from the generic group model experiment,
in which variables are uniformly sampled in the underlying field, to a completely
deterministic experiment that works in a corresponding symbolic group model.

A General Master Theorem. We give a general version of the Master the-
orem in [10] which can be stated in any of the generic group models mentioned
above. As in [10], we formulate an assumption as a list L of polynomials in
Fp[X1, . . . , Xn] where X1, . . . , Xn is a set of random variables. In particular,
a decisional (aka left-or-right) assumption is defined by two lists of polynomi-
als L and L′ (one for the “left” and one for the “right” distribution), and the
assumption is said to hold if the adversary cannot distinguish whether it re-
ceives polynomials from L or L′. Very informally, our Master theorem states
that viewing L and L′ as the generating sets of two vector spaces2, then the
linear dependencies within L and within L′ are the same. Previous master the-
orems [10,17] considered only decisional assumptions with the real-or-random
formulation in which the adversary is given a list of polynomials L and either a
“challenge” polynomial f or a fresh random variable Z.

Beyond obtaining a theorem that works in (leveled) k-linear groups, our gen-
eral formulation allows us to capture virtually all decisional assumptions, based
on k-linear groups (for any k ≥ 1), that are used in cryptography. To mention
some examples, assumptions captured by our theorem include the Matrix-DDH
assumption [17], the k-BDH assumption [5], and recently proposed assumptions
such as (n, k)-MMDHE [22].

Automated Methods. Once we have settled the above framework, our goal is
to develop a collection of automated methods to verify the side condition of the
Master theorem for any given assumption stated in the framework. While the
statement of the above side condition already suggests how to use linear algebra
to make these checks, a crucial challenge is that in many important cases (e.g.,
�-BDHI, k-Lin, etc.) the size of the lists L and L′ is a variable parameter. That

2 We are oversimplifying. More precisely, one has to consider lists C and C′ containing
all polynomials computable by doing multiplications over L and L′ respectively, and
then look at linear dependencies in C and C′.

98 G. Barthe et al.

Assumption Type Algorithm Examples

Non-parametric D, C
DBDH [12], 2-lin, 3-lin,
Freeman assm. 3&4 [18]

Parametric (real-or-random, monomials inputs)
Fixed #vars, Par. linear degree and Par. arity U, I (�, k)-MMDHE [22]
Fixed #vars, Par. linear degree, Fixed arity D, C �-DHI [9], �-DHE [13]
Parametric #vars, Par. arity, Fixed degree I (k)-BDH [5], k-Lin in k-linear groups

Interactive bounded I,C
LRSW [27], CDDH 1&2 [2],
M-LRSW [7], IBSAS-CDH [8]

Interactive unbounded I
LRSW [27], Strong-LRSW [3],
s-LRSW [20]

Fig. 1. Summary of our automated analysis methods. U=undecidable problem,
D=decision procedure, I = incomplete procedure, C=find counterexample for invalid
assumptions.

is, to check that the side condition holds, one would have to do computations
on a vector space of variable dimension: a challenging problem for automation.

We study this problem for three main categories of hardness assumptions: (1)
non-parametric, (2) parametric, and (3) interactive. Non-parametric assump-
tions are non-interactive assumptions in which the number of inputs is fixed, no
input is quantified over a variable and the number of levels is fixed (examples
include DDH, DBDH [12], as well as assumptions in k-linear groups for fixed k,
e.g., 3-Lin in 3-linear groups). Conversely, an assumption is parametric if one
or more of the above restrictions do not hold. Finally, interactive assumptions
are those ones where the adversary is granted access to additional oracles (in
addition to the oracles for the algebraic operations). By carefully analyzing each
of these categories, we obtain the following results summarized in Fig. 1.

For non-parametric assumptions, we show how to reduce the check on the side
condition to computing the kernels of certain matrices (of fixed dimension) that
are derived from the lists of polynomials in the assumption’s definition. Using
computer algebra tools (SAGE [34]), we implement a decision procedure that
shows a concrete hardness bound in the corresponding generic group model in
the positive case, and an algebraic attack if the assumption does not hold.

Our methods for non-parametric assumptions offer a complete decision pro-
cedure to verify arbitrary instances of parametric assumptions where all the
parameters have been fixed. This might be sufficient to test quickly a new as-
sumption (and find attacks if any), but it is often desirable to obtain stronger
guarantees that hold for all parameters. We show that, contrary to the non-
parametric case, the side condition becomes undecidable in general. However, we
identify classes of assumptions for which we develop automated methods. Inter-
estingly, these classes still contain most cryptographic assumptions. Considering
the class of real-or-random assumptions, we develop two different methods. The
first method focuses on the case in which the number of random variables is fixed,
and the input elements are monomials. Our method shows how to reduce the
check of the side condition to an integer programming problem. Interestingly, we
can show the following: if the degree of the monomials is not a linear polynomial,
or the arity of the map is variable, then the problem is undecidable; otherwise (if
the monomials have linear degree and the arity of the map is fixed) the problem

Automated Analysis of Assumptions in Generic Models 99

is decidable. We implemented the translation procedure to integer programming
problems and use SMT solvers to check satisfiability. For the decidable fragment
of assumptions mentioned above, we obtain a complete decision procedure that
also shows an attack if the assumption is invalid. For the undecidable fragment,
our procedure successfully analyzes all significant examples from the literature.

Our second method focuses on the case where the number of random variables
is parametric. As in the previous case, our method provides a way to reduce
the side condition to a system of equations. However, the same idea as before
does not work since a parametric number of variables would lead to an infinite
number of equations. Therefore, we focus on a restricted, but significant, class
of assumptions (one restriction is that inputs are expressed as monomials). Our
method is incomplete but successfully analyzes all relevant examples in this class.

Finally, we study interactive assumptions such as LRSW [27]. To analyze in-
teractive assumptions, we first formulate an interactive version of our master
theorem. Interestingly, once applying our general “computational soundness”
theorem and switching to the symbolic model, our interactive master theorem
essentially becomes a variant of the non-interactive master theorem for para-
metric computational assumptions. This allow us to apply similar techniques as
for parametric assumptions. More specifically, we use SMT solvers and Gröbner
bases computations as an incomplete method to show the validity of such as-
sumptions and find attacks. For instance, our tool automatically proves the va-
lidity of LRSW [27] and exhibits attacks for m-LRSW [7] and CDDH [2].

Extensions and Additional Material. We extend our results to composite-
order groups. Precisely, we formulate the generic group model and our master
theorem in a general way that captures also composite-order groups, and we
show how to extend our decision procedures for non-parametric assumptions to
this setting. Another extension of our results is handling assumptions in which
the adversary receives rational values in the exponent. These extensions, full
detailed proofs and some running examples appear only in the full version [4].

Limitations.While our master theorem is very general, our automated methods
require to specify the assumptions in a concrete language, essentially to describe
the distribution of the polynomials defining the assumption. Such language can-
not support the expression of very abstract properties, and thus rules out a
few examples. For instance, the definition of the Decision Multilinear No-Exact-
Cover Assumption [19] is parametrized by an instance (with no solution) of the
Exact-Cover NP-complete problem. Although fixing a specific Exact-Cover in-
stance yields lists of polynomials which can be analyzed using our methods, a
definition for any instance is too general. For a similar reason, our tool can-
not handle the Matrix-DDH assumption in its full generality, unless one fixes a
specific distribution for the matrix (e.g., k-Lin).

Discussion. Although well-studied standard assumptions should always be pre-
ferred when designing cryptographic schemes, the use of non-standard ones is not
likely to stop. In this sense, we believe the study and development of rigorous
methods for analyzing cryptographic assumptions is relevant, and that auto-
mated analysis tools can support cryptographers in multiple directions. Mainly,

100 G. Barthe et al.

they provide a rigorous, fast way to test the validity of candidate assumptions in
generic models by delegating this task to a machine. This is especially relevant
in the recent setting of leveled multilinear maps, that have a rich algebraic struc-
ture and for which even simple assumptions may become difficult to analyze. We
believe that the importance of such tools is motivated by the fact that proofs
validating the hardness of an assumption in the generic group model fall exactly
in the so-called “mundane part”3 of cryptographic proofs mentioned by Halevi
[21], and constitute a perfect candidate of a proof to be delegated to a machine.

Our work shows the feasibility and relevance of developing automated methods
to analyze assumptions in generic group models. It can also be seen as the first
step towards analyzing cryptographic protocols directly in the generic model; we
expect that such analyses would allow to discover subtle flaws in protocols and
supplant existing methods based on symbolic cryptography.

1.2 Related Work

The problem of analyzing and comparing hardness assumptions has been ear-
lier considered in the literature, e.g., [30]. In particular, we identify two main
approaches in previous work. The first approach aims to define generalized as-
sumptions that reduce to standard ones. Examples of works in this direction
include: the Square Diffie-Hellman assumption, shown to be equivalent to CDH
by Maurer and Wolf [29]; the (P,Q)-Decisional Diffie-Hellman assumption of
Bresson et al. [15] which is shown to reduce to DDH; and the decisional sub-
space problems of Okamoto-Takashima [32] that are reduced to DLin.

The other approach aims at directly analyzing assumptions by means of ide-
alized models, such as the generic group model. This model was introduced by
Nechaev [31] and further refined and generalized by Shoup [33], and Maurer [28].
Our work follows closely Maurer’s model, in which the main difference compared
to previous proposals is to model the adversary’s access to group elements via
handles instead of random bitstrings as in [31,33]. These two models have been
proven equivalent in [25]. Worth mentioning in this context is the semi-generic
group model of Jager and Rupp [24]. This is a weaker version of the bilinear
generic group model, and its basic idea is to model the base groups of pairings
as generic groups, whereas the target group is given in the standard model.

Two works that address the problem of devising general assumptions in the
generic group are the Master theorem of Boneh, Boyen and Goh [10] (generalized
by Boyen [14]), and the Matrix DDH assumption of Escala et al. [17]. Roughly
speaking, the former provides a framework for arguing about the validity of sev-
eral pairing-based assumptions in the generic group model, and it captures a
significant fraction of assumptions in the literature. The latter is an assump-
tion that subsumes classical problems like DDH or DLin and also introduces

3 In [21], Halevi informally divides proofs in two categories (quoting): “Most (or all)
cryptographic proofs have a creative part (e.g., describing the simulator or the reduc-
tion) and a mundane part (e.g., checking that the reduction actually goes through).
It often happens that the mundane parts are much harder to write and verify, and it
is with these parts that we can hope to have automated help.”

Automated Analysis of Assumptions in Generic Models 101

assumptions, such as k-Casc, that are proven hard in the generic k-linear group
model. Also worth mentioning is the work of Freeman [18] which extends the
BBG Master theorem to challenges in the source group and uses the computer
algebra system Magma to verify the side conditions required to prove two of
the assumptions. Our work is also close to the line of work on automation of
cryptographic proofs in both the computational and symbolic models, see [6] for
an overview.

1.3 Preliminaries

In our work, we denote by λ the security parameter. We useGi to denote additive
cyclic groups of prime order and Pi to denote a generator of Gi. For any element
Q = xPi, we denote with x = dlog(Q) its discrete logarithm. We use a or v
to denote vectors, a‖b for the concatenation of two vectors, and a · b to denote
their inner product. We denote the power set of S with P(S), the i-th element
of a list with L[i], the range {n, . . . , n+ l} with [n, n+ l], and [1, n] with [n].

A symmetric k-linear group is a pair of groups G1 and G2 together with
an admissible k-linear map e : Gk

1 → G2. An asymmetric k-linear group is a
sequence of groups G1, . . . ,Gk,Gk+1 together with an admissible k-linear map
e : G1 × · · · × Gk → Gk+1. For a k-linear map e : G1 × · · · × Gk → Gk+1, we
call Gk+1 the target group and other groups Gi source groups. We can further
assume existence of isomorphisms Gi → Gj between source groups.

A symmetric leveled k-linear group is a sequence of groupsG1, . . . ,Gk together
with bilinear maps e : Gi × Gj → Gi+j for i, j ∈ [1, k] and i + j ≤ k. We say
that Gn is the group at level n and call Gk the target group. An asymmetric
leveled k-linear group is a collection of groups {GS} for S ∈ P([k]) together with
bilinear maps eS,T : GS × GT → GS∪T for all S ∩ T = ∅.

2 Generic Group Models and Symbolic Group Models

In this section, we define a class of generic group models that captures the
previously described group settings. Afterwards, we define a symbolic group
model where instead of computing with (randomly sampled) group elements,
the challenger computes with (fixed) polynomials. We prove that this model is
equivalent to the generic group model up to some usually small error.

Generic Group Models. A generic group model for a concrete group setting
captures all operations that an adversary with black-box access can perform.

Definition 1. A group setting is a tuple GS = (p,G, Φ, E) where G = {Gi}i∈I
is a set of cyclic groups of prime order p indexed by a totally ordered set I, Φ is
a set of isomorphisms φ : Gi → Gj, and E is a set of maps, where for each e ∈ E,
there is a k s.t. e : Gi1 × . . .×Gik → Gik+1

is an admissible k-linear map.
The generic model for a group setting (p,G, Φ, E) and a distribution D on in-

dexed sets {Li}i∈I of lists of elements of Gi is defined as follows. The challenger
maintains lists L = {Li}i∈I where each list Li contains elements from Gi. The

102 G. Barthe et al.

lists are initialized by sampling from D and the adversary can apply the group
operations, isomorphisms, and k-linear maps to list elements by providing the
indices of elements as handles. For an operation o : Gi1 × . . .×Gik → Gik+1

, the
corresponding oracle takes handles h1, . . . , hk, computes a = o(a1, . . . , ak) for
aj = Lij [hj], appends a to Lik+1

and returns a’s handle h = |Lik+1
|. Note that

handles are not unique, but the challenger provides an equality oracle to check
if two handles refer to the same group element. A formal definition of the game
appears in the full version.

Remark 1. As mentioned in Section 1.2, our generic group model closely follows
Maurer’s model [28]. We provide the adversary with access to the internal state
variables of the challenger via handles, and we assume that the equality queries
are “free”, in the sense that they do not count when measuring the computational
complexity of the adversary.

Example 1. To model a asymmetric leveled k-linear map, we use the index set
I = P([k]), Φ = ∅, and E = {eT,R : GT ×GR → GT∪R | T,R ∈ I ∧ T ∩R = ∅}.

Definition 2. For a list of listsL = L1, . . . , Lk of polynomials over Fp[X1, .., Xn],
we define the distribution DL by the following procedure. Uniformly sample a point
x ∈ Fn

p and return the list of lists L′ = L′
1, . . . , L

′
k where L′

i = [f1(x)Pi, . . . ,
f|Li|(x)Pi] for fj = Li[j]. A distribution D is polynomially induced if D = DL for
some L.

Most hardness assumptions in generic group models belong to the following
classes of decisional, computational, or generalized extraction problems stated
with respect to a group setting GS:
– Decisional problem for DL and DL′ :

Return b ∈ {0, 1} to distinguish the corresponding generic group models.
– Computational problem for DL, polynomial f , and group index i:

Return handle to f(x)Pi, where x is the random point sampled by DL.
– Generalized extraction problem for DL, n,m, i1, . . . , im, H :

Return a ∈ Fn
p and handles h1, . . . , hm such that the random point x sampled

by DL satisfies H(x,a, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) = 0.

The above classification generalizes the one proposed by Maurer [28]. Precisely,
in addition to decisional and computational assumptions, Maurer considered
“straight” extraction problems (such as discrete logarithm) in which the adver-
sary has to extract the random value x of a handle. Our class of generalized
extraction problems captures extraction problems like discrete logarithm, but
also captures problems like the Strong Diffie-Hellman Problem [9].4 Moreover,
note that our class of generalized extraction problems contains the class of com-
putational problems.

From Generic to Symbolic Group Models. The symbolic group model for
a group setting (p,G, Φ, E) and a distribution DL provides the same adversary

4 Set n = 1, m = 0, H(X, a1) = X − a1 for DLOG and n = m = 1,H(X, a1, Y) =
(X − a1)Y − 1 for SDH.

Automated Analysis of Assumptions in Generic Models 103

interface as the corresponding generic group model. The difference is that, in-
ternally, the challenger now stores lists of polynomials in Fp[X1, . . . , Xn] where
X1, . . . , Xn are the variables occurring in L. The oracles perform addition, nega-
tion, and equality checks in the polynomial ring. To define the polynomial oper-
ations corresponding to applications of isomorphisms and n-linear maps, observe
that for all isomorphisms φ there is an a ∈ F×

p such that φ(gi) = gaj . We therefore
define the oracle isomφ(h) such that it computes a · Li[h]. Similarly, we define
the oracle mape(h1, . . . , hk) such that it computes a · (Li1 [h1] · · ·Lik [hk]). We
also define a symbolic version S(E) of a generic winning condition E. For de-
cisional problems and computational problems, the symbolic event is equal to
the generic event, i.e., S(E) = E. For generalized extraction problems, the event
E is translated to checking whether H(X1, . . . , Xn,a, Li1 [h1], . . . , Lim [hm]) = 0
holds in the polynomial ring. We denote the symbolic group model for a group
setting GS and a distribution DL with SymDL

GS and the corresponding generic

group model with GenDL

GS .

Theorem 1. Let (p,G, Φ, E) denote a group setting, DL a distribution, A an
adversary performing at most q queries, and E the winning event of a decisional,
computational, or generalized extraction assumption. If d is an upper bound on
the degrees of the polynomials occurring in the internal state of SymDL

GS (A) and
S(E), s is the sum of the sizes of the lists in L, and the event S(E) contains at
most e equality tests, then

|Pr[GenDL

GS (A) : E]− Pr[SymDL

GS (A) : S(E)]| ≤ (s+ q)2 ∗ d/2p+ ed/p

where the probability is taken over the coins of GenDL

GS and A.

By applying this theorem, we can therefore analyze the hardness of assump-
tions in the simpler symbolic model. We note that existing master theorems
usually include a similar step in their proofs. Here we explicitly prove the equiv-
alence of the Gen and Sym experiments. This stronger result is required for our
decidability results.

3 Master Theorem for Non-interactive Assumptions

In this section we state our master theorem for decisional, non-interactive prob-
lems. In Section 5, we give a master theorem for interactive assumptions which
cover generalized extraction problems (and computational ones per Section 2).

To state our theorem, we first define the completion C(L) of a list L with
respect to the group setting (p,G, Φ, E). This notion will be instrumental to
define the side condition of our master theorem. Intuitively speaking, given a
list L, its completion C(L) is the list of all polynomials that can be computed
by the adversary by applying isomorphisms and maps to polynomials in L.

We compute the completion C(L) of L in two steps. In the first step, we com-
pute the recipe lists {Ri}i∈I using the algorithm given in Figure 2. The elements
of the recipe lists are monomials over the variables Wi,j for (i, j) ∈ I × [|Li|].

104 G. Barthe et al.

foreach i ∈ I : S′
i = ∅ ; Si = {Wi,1, . . . ,Wi,|Li|}

while S = S′ :

S′ := S
foreach e : Gj1 × . . .×Gjn → Gjn+1 ∈ E :

Sjn+1 := Sjn+1 ∪ {f1 · · · fn | fi ∈ Sji , i ∈ [n]}
foreach φ : Gi → Gj ∈ Φ : Sj := Sj ∪ Si

foreach i ∈ I : Ri := setToList(Si)

Fig. 2. Computation of lists of recipes Ri for input lists Li.

The monomials characterize which products of elements in L the adversary can
compute by applying isomorpisms and maps. The result of the first step is in-
dependent of the elements in the lists L and only depends on the lengths of the
lists. In the second step, we compute the actual polynomials from the recipes as

C(L)i = [m1(L), . . . ,m|Ri|(L)] for [m1, . . . ,m|Ri|] = Ri

where every mi is a monomial over the variables Wi,j and mi(L) denotes the
result of evaluating the monomial mi for the values Li[ji].

To ensure that the computation of the recipes terminates, we restrict ourselves
to group settings without cycles. We also assume that the group setting contains
a target group. Formally, for a group setting (p,G, Φ, E), we define the weighted
directed graph G = (V,E) with V = G and E defined as follows. For each
isomorphism Gi → Gj ∈ Φ, there is an edge from Gi to Gj of weight 0. Similarly,
given any Gi1 × · · · × Gin → Gin+1 ∈ E , there are edges from Gij to Gin+1 of
weight 1 for j ∈ [n]. We assume that the graph G contains no loops of positive
weight. Furthermore, we assume there is a unique Gt ∈ V called the target
group, such that from any Gi ∈ V there is a path to Gt and Gt does not have
any outgoing edges.

Theorem 2. Let GS = (p, {Gi}i∈I , Φ, E) denote a group setting, and DL,DL′

be polynomially-induced distributions such that |Li| = |L′
i| for all i ∈ I. Let t

denote the index of the target group, s =
∑

i∈I |Li|, r = |C(L)t|, and let d denote
an upper bound for the total degrees of the polynomials in the completions of the
lists. If

{a ∈ Fr
p | a · C(L)t = 0} = {a ∈ Fr

p | a · C(L′)t = 0},

then

|Pr[GenGS
DL

(A) = 1]− Pr[GenGS
DL′ (A) = 1]| ≤ (s+ q)2 ∗ d/p

for all adversaries A that perform at most q operations.

Note that deciding the side condition is sufficient for deciding the hardness of
the corresponding decisional problem for a fixed group setting and fixed distri-
butions. Either the side condition is satisfied or there exists an a ∈ Fr

p that is

Automated Analysis of Assumptions in Generic Models 105

included in one of the sets, but not in the other one. In the first case, the distin-
guishing advantage is upper-bounded by the ε given above. In the second case,
we can construct an adversary that distinguishes the two symbolic models with
probability 1, which implies that it distinguishes the corresponding generic mod-
els with probability 1 − ε. Note that for real-or-random assumptions where the
adversary is given L̂ and must distinguish f from a fresh variable Z in the target
group Gt, our side condition simplifies to

∑r
j=1 ajC(L̂)t[j] �= f for all a ∈ Fr

p.
This is similar to the independence condition in the BBG master theorem [11].

4 Automated Analysis of Non-interactive Assumptions

In this section, we present methods to automatically verify or falsify the hardness
of decisional assumptions. As mentioned earlier, our master theorem is stated
with respect to a fixed group setting and fixed distributions. To consider multiple
group settings or distributions at once, we define a decisional assumption A as a
possibly infinite set of triples (GS,DL,DL′). A is generically hard if the disting-
uishing probability is upper-bounded by ε in Theorem 2 for all triples in A.

We distinguish between non-parametric assumptions and parametric assump-
tions. An assumption is non-parametric if only the concrete groups, isomor-
phisms, and n-linear maps vary, but the structure of the group setting and the
lists L and L′ defining the distributions remain fixed. This captures assumptions
such as “3-lin is hard in all groups with a symmetric 3-linear map”. Conversely,
an assumption is parametric if one or more of these restrictions do not hold.

4.1 Non-parametric Assumptions

We perform the following computations over Z to decide the hardness of a de-
cisional assumption defined by lists L and L′ for all group settings GS with a
given index set and types of isomorphisms and n-linear maps.

1. Initialize the set T of distinguishing tests and the set E of exceptional primes
to the empty set ∅.

2. Compute the completions C(L) and C(L′) and set Lt := C(L)t, L′
t := C(L′)t

3. Compute a generating set K of the Z-module {a ∈ Z|Lt| | a · Lt = 0} as
follows:
(a) Represent all polynomials g ∈ Lt as vectors v1, . . . ,vn and denote by M

the matrix, where row i is vi with respect to the basis monomials(Lt).
(b) Compute the Hermite Normal Form N of M and read off a generating

set K of the left kernel from N and the transformation matrix. Set
E := E ∪ F where F is the set of factors of pivots of N .

Perform the same steps for L′
t to obtain M ′ and K ′.

4. Check for every k ∈ K if kM ′ = 0. If kM ′ = c �= 0, then set T := T ∪k and
E := E ∪ F where F denotes the set of common factors of c. Perform the
same steps for K ′ and M .

5. Compute distinguishing probability ε from degrees in Lt and L
′
t.

106 G. Barthe et al.

6. If T is empty, return that distinguishing probability is upper-bounded by
ε except (possibly) for primes in E. If T is nonempty, return that using
the tests in T , an adversary can distinguish with probability 1 − ε except
(possibly) for primes in E.

Note that performing division-free computations over Z allows us to track the
set of exceptional primes, which we return. We have implemented this algorithm
in a tool that takes a group setting and two sequences of group elements as input
and decides if the corresponding decisional assumption is hard returning ε, E,
and the distinguishing tests T (if nonempty).

4.2 Parametric Assumptions

For parametric decisional assumptions, we restrict ourselves to the real-or-random
case. The approach can also be adapted to handle computational assumptions.We
distinguish parametricity in two dimensions. First, an assumption may be param-
eterized by range limits l1, . . . , lm (ranging over N) that determine the size of the
adversary input. We use range expressions ∀r ∈ [α, β]. hr , where α and β are poly-
nomials over range limits, to express such assumptions. The polynomials hr can
use the range index r in the exponent or as the index of an indexed variable Xr.
We will denote range expressions with capital letters R. Second, the group setting
of an assumption may be parameterized by an arity k that captures the maximum
number of multiplications that can be performed.

Parametricity in the input size allows us to analyze assumptions such as “l-
DHE is hard for all l”. Parametricity in the arity allows us to analyze assump-
tions such “2-BDH is hard for all k-linear groups”. Combining both types of
parametricity allows us to analyze assumptions such as “k-lin is hard in k-linear
groups” or “(l, k)-MMDHE is hard for all l and k ≥ 3”. In the following, we will
present two methods that deal with both parametricity in the input size and
parametricity in the arity. The first method assumes a fixed number of random
variables. The second method allows for indexed random variables, but assumes
that the degree of adversary input and challenge is fixed.

Fixed Number of Variables. We assume a real-or-random decisional assump-
tion in a (leveled) k-linear group where the challenge polynomial g is in the target
group, and the adversary input is expressed using range expressions R1, . . . , Rn

on the levels λ1, . . . , λn. Here λi is either of the form c or of the form k − c for
a constant c ∈ N. Furthermore, we assume that the assumption uses random
variables X and range limits l. To simplify the presentation, we will use the
notation Xf = Xf1

1 · · ·Xfm
m . Then the ranges are of the form

Ri = ∀ri,1 ∈ [αi,1, βi,1], . . . , ri,ti ∈ [αi,ti , βi,ti].X
fi

where every αi,j and βi,j is a polynomial over l and every f ∈ f i is a poly-
nomial over k, l, and ri,1, . . . , ri,ti . The challenge polynomial is of the form
g =
∑w

i=1 ciX
ui . Using the independence condition derived from Theorem 2, it

follows that real distribution and the random distribution are indistinguishable
iff there is a monomial Xui that is not an element of the completion of the Ri.

Automated Analysis of Assumptions in Generic Models 107

To check this condition, we proceed in two steps. In the first step, we compute
a single range expression R that denotes the completion of the Ri in the target
group. In the second step, we check for each Xui whether Xui ∈ R, by encoding
the required equalities of the exponent-polynomials into a set of diophantine
(in)equalities. We then show that satisfiability checking for such constraints is
undecidable in general. Nevertheless, we identify two decidable fragments and
demonstrate that SMT solvers can handle most instances derived from practical
cryptographic assumptions, even those that are not in the decidable fragments.

If R1, . . . , Rn denote the sets S1, . . . , Sn, then the completion R of R1, . . . , Rn

in the target group must denote the set⋃
δ∈Nn s.t.

∑
n
i=1 δi·λi=k

Sδ1
1 · · ·Sδn

n

where SS′ = {ss′ | s ∈ S∧s′ ∈ S′} and Sδ = {
∏δ

i=1 si|s1 ∈ S∧ . . .∧sδ ∈ S}. We
therefore define multiplication of range expressions with distinct range indices as

(∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt].X
f)(∀r′1 ∈ [α′

1, β
′
1], . . . , r

′
s ∈ [α′

t′ , β
′
t′].X

f ′
)

= ∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt], r
′
1 ∈ [α′

1, β
′
1], . . . , r

′
s ∈ [α′

t′ , β
′
t′].X

f+f ′
.

Todefine the δ-foldproduct of a range expression,we restrict ourselves to exponent-
polynomials that can be expressed as f̂+ f̃ such that f̂ =

∑t
j=1 rj φj(l, k) for poly-

nomials φj in Z[l, k] and such that f̃ is a polynomial in Z[l, k]. The δ-fold product
is then defined as

(∀r1 ∈ [α1, β1], . . . , rm ∈ [αt, βt].X
f̂+f̃)δ

= ∀r1 ∈ [δα1, δβ1], . . . , rm ∈ [δαt, δβt].X
f̂+δf̃ .

Given range expressions R1, . . . , Rn, we can now compute R by introducing fresh
variables δ1, . . . , δn, computing the range expressions Rδi

i , and then computing
the product of these range expressions.

The remaining task is now to check if

Xu ∈ (∀r1 ∈ [α1, β1], . . . , rt ∈ [αt, βt].X
f) = R

where u ∈ Z[l, k]m, αi, βi ∈ Z[δ, l], f ∈ Z[l, k, r1, . . . , rt]m, and
∑n

i=1 δi · λi = k.
To achieve this, we compute the following set of integer constraints that is sat-
isfiable iff Xu ∈ R: ⎧⎪⎪⎨⎪⎪⎩

0 ≤ δi for i ∈ [1, n]
αi ≤ ri ≤ βi for i ∈ [1, t]
ui = fi, for i ∈ [1,m]∑n

i=1 δiλi = k

If we allow for both types of parametricity, it is possible to reduce Hilbert’s
10th problem to the generic hardness of cryptographic assumptions expressed as
previously described. This yields the following theorem.

108 G. Barthe et al.

Theorem 3. Deciding hardness of parametric assumptions with a fixed number
of variables in the generic group model is undecidable, even if all exponent-
polynomials are linear in range limits, range indices, and the arity.

However, for a restricted class of assumptions, the problem is decidable.

Theorem 4. For all parametric assumptions with a fixed number of variables
such that all exponent-polynomials fi,j and range bounds αi,j and βi,j in the
input are linear, and either (1) the arity k is fixed or (2) the assumption does
not contain range limits li and the input exponent-polynomials do not use k,
deciding hardness in the generic group model is decidable.

Proof (Sketch). In both cases, we transform the constraint system into a sys-
tem of linear constraints. Note that the first type of constraint is already linear.
In the first case, the arity k is fixed and we can eliminate the variables δi by
performing a case distinction since there are only finitely many possible values.
Then, the constraints of the first and fourth type are constant and the con-
straints of the second and third type are linear. If there are no range limits,
then the range bounds are constants and we can eliminate the range indices
by expanding all range expressions into finite sets of monomials. Then the con-
straints of the second type are constant and we can linearize the constraints of
the last type since λi is either a constant c or of the form k − c. For constraints
of the third type, every ui is a linear polynomial in Z[k] and every fi is a linear
polynomial in Z[δ, k].

We have implemented this method in our tool and use Z3 [16] to check the
constraints. Our experiments confirm that Z3 can prove most assumptions taken
from the literature, even those outside the decidable fragment.

Indexed Random Variables. For the case of indexed random variables, we
have developed an (incomplete) constraint solving procedure that deals with as-
sumptions parametric in the arity k and a range limit l. Let M denote monomials
built from indexed variables and M ′ denote monomials built from non-indexed
variables. Our procedure supports all assumptions where the challenge is of the
form

∑
i∈[0,l] MM ′ and the input consist of ranges ∀i ∈ [0, l].MM ′ and non-

indexed monomials M ′.

5 Interactive Assumptions

In this section, we present our methods for the analysis of interactive assumptions
such as LRSW [27]. To simplify the presentation, we focus on assumptions where
exactly one additional oracle O is provided to the adversary and the problem
is a generalized extraction problem. In the remainder, we fix a group setting
GS = (p, {G}i∈I , Φ, E) and a distribution DL. We use X to denote the variables
occurring in L and x to denote the point sampled by DL.

Generalizing Gen and Sym. Our first step is generalizing the generic group
and symbolic group models to the interactive setting. Let q′, n,m, l denote posi-
tive integers, let i ∈ Il, and let F denote an l-dimensional vector of polynomials

Automated Analysis of Assumptions in Generic Models 109

in Fp[X, Y1, . . . , Ym, A1, . . . , An]. We say O is defined by (q′, n,m, l, i,F) if O
answers at most q′ queries and answers queries for parameter a ∈ Fn

p by sampling
a point y ∈ Fm

p and returning handles to the group elements Fj(x,y,a)Pij ∈ Gij

for j ∈ [l] where Pij is the generator of Gij . Similarly, the symbolic version of O
answers queries for a ∈ Fn

p by choosing m fresh variables Y , adding the polyno-
mials Fj(X,Y ,a) to the lists Lij for j ∈ [l], and returning their handles. To for-
malize winning conditions of interactive assumptions, we extend the previously
given definition of generalized extraction problem with inequalities. Concretely,
the winning condition is formalized by polynomials H1, . . . , Hd1 , G1, . . . , Gd2

that capture the required equalities and inequalities for the field elements b
and the handles h returned by the adversary. These polynomials are elements of
Fp[X, (Yi)i∈[q′], (Ai)i∈[q′],B,Z]. Intuitively, X and Yi model random variables
sampled initially and by O, Ai and B model parameters chosen by the adver-
sary, and Z models group elements referenced by the handles h. An adversary,
that queries the oracle with a1, . . . ,aq′ and returns b and h, wins if the following
conditions are satisfied for yj sampled in the j-th oracle call:

Hj(x,y1, . . . ,yq′ ,a1, . . . ,aq′ , b, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) = 0 , j ∈ [d1]

Gj(x,y1, . . . ,yq′ ,a1, . . . ,aq′ , b, dlog(Li1 [h1]), . . . , dlog(Lim [hm])) �= 0 , j ∈ [d2]

Since Theorem 1 captures generalized extraction problems (with inequalities)
in such an interactive setting, we can analyze such assumptions in the symbolic
group model. As mentioned earlier, the symbolic version of the winning event can
be obtained by plugging in the polynomials Lij [hj] for the variables Zj instead
of using the discrete logarithm.

Interactive Master Theorem. To define the interactive master theorem, we
introduce the notion of parametric completion. The parametric completion of L
with respect to a group setting GS and an oracle O defined by (q′, n,m, l, i,F)
is a family Li of lists of polynomials in Fp[X,Y ,A]. Here, the variables Yu,v

range over u ∈ [m] and v ∈ [q′] and the variables Au,v range over u ∈ [n] and
v ∈ [q′]. They model the random values sampled by O and the parameters given
to O. The parametric completion first extends the lists Lij with

{Fj(X , Y1,v, . . . , Ym,v, A1,v, . . . , An,v) | v ∈ [q′]}

for j ∈ [l]. Then, it performs the previously defined completion with respect to
the isomorphisms and n-linear maps in GS. We denote the result with CO(L).

To state our interactive master theorem, we exploit that in the symbolic
model, we can translate a generalized extraction problem to an equivalent gen-
eralized extraction problem where the adversary returns only elements in Fp and
no handles. Let CO(L) = Li1 , . . . , Lil denote the lists in the completion. Then,
we can translate H(X, (Yi)i∈[q′], (Ai)i∈[q′],B, Z1, . . . , Zl) to

H ′(X,
−→
Y ,
−→
A,B,C1, . . . ,Cl) = H(X,

−→
Y ,
−→
A,V ,C1 · Li1 , . . . ,Cl · Lil).

The two problems are equivalent since the adversary can return a handle to a
polynomial f in Lij if and only if f is in the span of Lij .

110 G. Barthe et al.

Theorem 5. Let GS denote a group setting and let DL denote a polynomially-
induced distribution. Consider the (n̂, m̂, j,H,G)-extraction problem in the
generic and symbolic group models for GS, DL, and the oracle defined by
(q′, n,m, l, i,F). Let H ′ and G′ denote the translations of H and G with respect
to this model that do not use handles. Then the problem is symbolically hard if
there exist no vectors a, b, and c in Fp such that(∧|H′|

j=1
H ′

j(X,Y ,a, b, c) = 0

)
∧
(∧|G′|

j=1
G′

j(X ,Y ,a, b, c) �= 0

)
.

In this case, the winning probability for the generic version is upper-bounded by
(s+ q+ q′ l)2 ∗ d/2p+ ed/p where p is the group order, s is the sum of the sizes
of the lists in L, q the number of queries to the group-oracles, q′ the number
of queries to O, d an upper bound on the degrees (in X and Y) stored by the
corresponding symbolic model and occuring in H ′ and G′, and e = |H ′|+ |G′|.

In the proof of this theorem, we use Theorem 1 to switch to the symbolic model.
In the symbolic model, the winning condition is equivalent to our side condition.

Automated Analysis. We have developed two methods for the automated
analysis of interactive assumptions. Our first method deals with the bounded
case, i.e., where the number of oracle queries q′ is fixed. Informally, we use
Gröbner basis techniques and SMT solvers to prove that there is (1) no solution
for all primes, (2) no solution for all primes except for some bad primes, (3) a
solution over the rationals which can be converted into an attack for almost all
primes, or (4) a solution over C. Even though we only encountered cases (1-3) in
practice, case (4) is the reason for the incompleteness of our algorithm since the
existence of a solution over C does not imply the existence of solutions over Fp.
In the unbounded case, we perform most steps symbolically to obtain results
that are valid for all possible values of q′. Concretely, we encode the hardness
of the assumption into a formula in the theory of non-linear arithmetic over C
with uninterpreted function symbols, which we use to encode parameters used in
queries and returned by the adversary. We use Z3 to prove the unsatisfiability of
these formulas exploiting the support for nonlinear arithmetic over the reals [26]
by encoding complex numbers as pairs of reals. In our experiments, Z3 can prove
the unsatisfiability of formulas obtained from most valid assumptions in seconds.

Acknowledgements. This work is supported in part by ONR grant N00014-
12-1-0914,Madrid regional project S2009TIC-1465 PROMETIDOS, and Spanish
projects TIN2009-14599 DESAFIOS 10 and TIN2012-39391-C04-01 Strongsoft.
Additional support for Mitchell, Scedrov, and Fagerholm is from the AFOSR
MURI “Science of Cyber Security: Modeling, Composition, and Measurement”
and from NSF Grants CNS-0831199 (Mitchell) and CNS-0830949 (Scedrov and
Fagerholm). The research of Fiore and Schmidt has received funds from the
European Commission’s Seventh Framework Programme Marie Curie Cofund
Action AMAROUT II (grant no. 291803).

Automated Analysis of Assumptions in Generic Models 111

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 20(3), 395 (2007)

2. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman assumptions with appli-
cations to password-based authentication. In: S. Patrick, A., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

3. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insub-
vertible encryption. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005,
pp. 92–101. ACM Press (November 2005)

4. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. Cryptology
ePrint Archive 2014 (2014)

5. Benson, K., Shacham, H., Waters, B.: The k-BDH assumption family: Bilinear
map cryptography from progressively weaker assumptions. In: Dawson, E. (ed.)
CT-RSA 2013. LNCS, vol. 7779, pp. 310–325. Springer, Heidelberg (2013)

6. Blanchet, B.: Security protocol verification: Symbolic and computational models.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 3–29.
Springer, Heidelberg (2012)

7. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 276–
285. ACM Press (October 2007)

8. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
Cryptology ePrint Archive, Report 2007/438 (2007) (revised February 21, 2010)

9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

11. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. Cryptology ePrint Archive, Report 2005/015 (2005)

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

13. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

14. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

15. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH
with applications to protocol analysis and computational soundness. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007)

16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

112 G. Barthe et al.

18. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press (ACM Press)

20. Gjøsteen, K., Thuen, Ø.: Password-based signatures. In: Petkova-Nikova, S., Pasha-
lidis, A., Pernul, G. (eds.) EuroPKI 2011. LNCS, vol. 7163, pp. 17–33. Springer,
Heidelberg (2012)

21. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint Archive, Report 2005/181 (2005)

22. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (Leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

23. Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based sequen-
tial aggregate signature scheme. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-
Naini, R., Varadharajan, V. (eds.) ASIACCS 2009, Mar. 2009, pp. 157–160. ACM
Press (March 2009)

24. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-
based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010)

25. Jager, T., Schwenk, J.: On the equivalence of generic group models. In: Baek, J.,
Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 200–209.
Springer, Heidelberg (2008)

26. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

27. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended
abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

28. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

29. Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

30. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

31. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

32. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

34. Stein, W., et al.: Sage Mathematics Software (Version 5.12). The Sage Development
Team (2013), http://www.sagemath.org

35. Szydlo, M.: A note on chosen-basis decisional diffie-hellman assumptions. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 166–170. Springer,
Heidelberg (2006)

http://www.sagemath.org

The Exact PRF-Security of NMAC and HMAC

Peter Gaži, Krzysztof Pietrzak, and Michal Rybár

IST Austria

Abstract. NMAC is a mode of operation which turns a fixed input-length
keyed hash function f into a variable input-length function. A practical
single-key variant of NMAC called HMAC is a very popular and widely de-
ployed message authentication code (MAC). Security proofs and attacks
for NMAC can typically be lifted to HMAC.

NMAC was introduced by Bellare, Canetti and Krawczyk [Crypto’96],
who proved it to be a secure pseudorandom function (PRF), and thus also
a MAC, assuming that (1) f is a PRF and (2) the function we get when
cascading f is weakly collision-resistant. Unfortunately,HMAC is typically
instantiated with cryptographic hash functions like MD5 or SHA-1 for
which (2) has been found to be wrong. To restore the provable guarantees
for NMAC, Bellare [Crypto’06] showed its security based solely on the as-
sumption that f is a PRF, albeit via a non-uniform reduction.
– Our first contribution is a simpler and uniform proof for this fact: If

f is an ε-secure PRF (against q queries) and a δ-non-adaptively se-
cure PRF (against q queries), then NMACf is an (ε+�qδ)-secure PRF
against q queries of length at most � blocks each.

– We then show that this ε+ �qδ bound is basically tight. For the most
interesting case where �qδ ≥ ε we prove this by constructing an f
for which an attack with advantage �qδ exists. This also violates the
bound O(�ε) on the PRF-security of NMAC recently claimed by
Koblitz and Menezes.

– Finally, we analyze the PRF-security of a modification of NMAC
called NI [An and Bellare, Crypto’99] that differs mainly by using
a compression function with an additional keying input. This avoids
the constant rekeying on multi-block messages in NMAC and allows
for a security proof starting by the standard switch from a PRF to a
random function, followed by an information-theoretic analysis. We
carry out such an analysis, obtaining a tight �q2/2c bound for this
step, improving over the trivial bound of �2q2/2c. The proof borrows
combinatorial techniques originally developed for proving the security
of CBC-MAC [Bellare et al., Crypto’05].

Keywords: Message authentication codes, pseudorandom functions,
NMAC, HMAC, NI.

1 Introduction

NMAC is a mode of operation which transforms a keyed fixed input-length func-
tion f : {0, 1}c×{0, 1}b → {0, 1}c (with b ≥ c) into a keyed variable input-length

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 113–130, 2014.
c© International Association for Cryptologic Research 2014

114 P. Gaži, K. Pietrzak, and M. Rybár

function NMACf : {0, 1}2c × {0, 1}b∗ → {0, 1}c (where {0, 1}b∗ denotes all bit
strings whose length is a multiple of b) as

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

where Cascf : {0, 1}c × {0, 1}b∗ → {0, 1}c is the cascade (also known as Merkle-
Damg̊ard) construction

Cascf(K1,m1‖ . . . ‖m�) := f(. . . f(f(K1,m1),m2) . . .m�) .

HMAC is a variant of NMAC (we postpone its exact definition to Section 2.2)
tweaked for applicability in practice. As security proofs for NMAC can typically
be lifted to HMAC, it is usually sufficient to analyse the security of the cleaner
NMAC construction, we will discuss this point further in Section 1.2.

NMAC and HMAC were introduced by Bellare, Canetti and Krawczyk in 1996
[4] and later standardized [18]. HMAC has also become very popular and widely
used, being implemented in SSL, SSH, IPsec and TLS amongst other places. Al-
though originally designed as a MAC, it is also often employed more broadly, as
a pseudorandom function (PRF). This is the case for example when used for key-
derivation in TLS and IKE (the Internet Key Exchange protocol of IPsec). This
proliferation into practice motivates the need for a good understanding of the ex-
act security guarantees provided by NMAC and HMAC when used as a PRF.

PRF-Security of NMAC.Bellare et al. [4] prove that NMAC is a secure PRF
if (1) f is a PRF and (2) Cascf is weakly collision-resistant (WCR). This is a
relaxed notion of collision resistance, where one requires that it is hard to find
a pair of messages M �= M ′ such that Cascf(K,M) = Cascf(K,M ′) under a
random key K, given oracle access to Cascf(K, .) (but not K, as in the standard
definition of collision resistance).

HMAC is typically instantiated with cryptographic hash functions like MD5
or SHA-1 playing the role of Cascf . However, both of these have been found not
to satisfy the WCR notion [26,27], which renders the security proof from [4]
irrelevant for this case. Despite that, no attacks (better than standard birthday
attacks) are known for NMAC or HMAC when instantiated with MD5 or SHA-1
(though attacks on reduced round versions exist [16]).

Security without Collision-Resistance. To restore the provable security
of NMAC, Bellare [3] investigates the security of NMAC dropping assumption (2),
that is, assuming only that f is a secure PRF. The exact security statement from
[3] is a bit technical, but it roughly states that if f is an ε-secure PRF (against an
adversary running in time t and asking q queries) and a γ-secure PRF (against
time O(�) and 2 queries), then NMACf is an (ε+ �q2γ)-secure PRF against time
t and q queries of length at most � (in b-bit blocks). The security reduction
is non-uniform, which means one has to be careful when deducing what this

The Exact PRF-Security of NMAC and HMAC 115

bound exactly means when instantiated in practice, we will discuss this further
in Section 1.2.1

1.1 Our Contributions

PRF-Security Proof for NMAC.Our first contribution is a simpler, uni-
form, and as we will show, basically tight proof for the PRF-security of NMACf

assuming only that f is a PRF: If f is an ε-secure PRF against q queries, then
NMACf is roughly �qε-secure against q queries of length at most � blocks each.

Our actual result is more fine-grained, and expresses the security in terms
of both the adaptive and non-adaptive security of f. Let δ denote the PRF-
security of f against q non-adaptive queries. Then our Theorem 1 states that
NMACf is roughly (ε + �qδ)-secure (against q queries, each at most � blocks).
As non-adaptive adversaries are a subset of adaptive ones we have δ ≤ ε, and if
δ � ε, then our fine-grained bound is much better than the simpler �qε bound.
The reduction works in the best running time one could hope for, its overhead
being Õ(�q).

The main technical part of our proof closely follows a proof by Bellare et
al. [5] who show that if f is a secure fixed input-length PRF, then Cascf is a
secure PRF if queried on prefix-free queries. We first observe that their proof
also holds in the non-adaptive setting. Then we reduce the security of NMACf

against arbitrary adaptive queries to the security of Cascf against non-adaptive
prefix-free queries.

Matching Attack for NMAC. In Section 3.2 we prove that the above lower
bound is basically tight. From any PRF, we construct another PRF f for which
NMACf can be broken with advantage Θ(�qδ). This shows that our bound is
tight for the practically most important case when �qδ is larger (or at least
comparable) to ε.

We also consider the case where ε $ �qδ, that is, when the PRF has much
better security against non-adaptive than adaptive distinguishers. We observe
that for any ε, we can use a result due to Pietrzak [23] who shows that cascading
non-adaptively secure PRFs does not give an adaptively secure PRF in general,
to construct an ε-secure f where NMACf can be broken with advantage Θ(ε2).
This only shows the ε term is necessary if ε is constant as then Θ(ε) = Θ(ε2) =
Θ(1). We conjecture that Θ(ε2) is the correct value, and the ε term in the lower
bound can be improved to Θ(ε2) using security amplification techniques along
the lines of [22,25].

PRF-Security Proof for NI. The main difficulty in security analyses of
NMACf and HMACf based on the PRF-security of the underlying compression
function f is that both these constructions are constantly rekeying f during the
evaluation of Cascf , using the output from the last invocation as the key for the

1 We note that in a very recent update of the ePrint version of [3], Bellare observes
that the proof in [3] can also give a uniform reduction, differing from the non-uniform
case only in the running time of the 2-query adversary which then becomes t. The
uniform bound given in this paper is better for most reasonable parameters.

116 P. Gaži, K. Pietrzak, and M. Rybár

next one. This prevents the proof approach typically applied to constructions
that use a PRF f under a fixed random secret key, where the analysis starts by
replacing the PRF with an ideal random function (introducing an error that is
upper-bounded by the PRF-security of f) and proceeds by a fully information-
theoretic argument.

To circumvent this issue, as our third contribution we investigate the PRF-
security of the nested iterated (NI) construction introduced in [2]. The construc-
tion NIh is very similar to NMACf , but is based on a compression function h that
(compared to f) takes an additional k-bit input which is used for keying instead
of the chaining input: NIh uses h under the same key throughout the whole cas-
cade. Additionally, it includes the length of the message in the input to the final,
outer h-call. The modified keying allows for the simple switching argument from
PRF to a random function. We focus on enhancing the information-theoretic
analysis that follows this switch and prove an essentially tight �q2/2c bound for
this step, improving significantly over the trivial bound of �2q2/2c. For complete-
ness, we also consider the modification of NI that does not include the message
length in the last h-call and show a security bound of �d′(�)q2/2c for this case,
where d′(�) ≈ �1/ ln ln � denotes the maximum number of divisors of any positive
integer not greater than �. Our proofs employ combinatorial techniques origi-
nally developed for proving the security of CBC-MAC [7], considerably adapted
for our setting.

1.2 More Related Work

Indifferentiability. In practice, the HMAC construction is sometimes used in
a setting where stronger guarantees than PRF-security are needed. Motivated
by this, recent work [12] investigates the indifferentiability [21,10] of HMAC from
a (keyed) random oracle. This result is incomparable to ours: While the stronger
notion of indifferentiability covers the settings where HMAC is not used as a PRF,
the bound achieved in [12] is understandably much weaker, being Θ(�2q2/2c).

Another look at [17].As already mentioned, Bellare [3] proved that NMACf

is an (ε+�q2γ)-secure PRF against q queries if f is ε-secure against q queries, and
γ-secure against 2 queries. In a recent paper [17], Koblitz and Menezes present
a criticism of the way [3] discusses the practical implications of this result. In a
nutshell, Bellare estimates that for a well-designed PRF the γ term is roughly
t/2c (for a 2-query adversary running in time t), but as this γ is derived in a
non-uniform way, it is in the order of 2−c/2 already for constant t.

At the time when [3] appeared, the fact that non-uniform attacks can
distinguish any pseudorandom object generated using a c-bit key with advan-
tage 2−c/2 in constant time was not widely known in the crypto community2 and
overoptimistic estimates for the exact security implied by non-uniform

2 Let us stress that this only holds for pseudorandom objects which do not require
additional public randomness, such as PRFs. This does not extend to weak PRFs,
which are defined like PRFs but the adversary only sees the output on random
inputs.

The Exact PRF-Security of NMAC and HMAC 117

reductions have appeared in numerous papers.3 This changed at the latest with
the Crypto 2010 paper [11], who discuss this issue in detail and attribute such
generic non-uniform attacks to the 1992 paper by Alon et al. [1].

The paper [17] also claimed that HMAC is an ε�-secure PRF, a bound that
is falsified by an attack given in this paper. In response, [17] was updated to
take account of this by employing a non-standard definition of a PRF for the
underlying compression function. We believe that the updated claim can be
obtained via a simpler proof from [5].

HMAC vs NMAC.The proofs in this paper considerNMAC. There is a standard
reduction of HMAC-to-NMAC PRF-security given by Bellare [3], albeit under
some additional requirements on the underlying compression function f. Infor-
mally, one needs to assume that f is a PRF even when keyed through the b-bit
data input, as opposed to being keyed by the c-bit chaining variable. Moreover,
security of the single-key version of HMAC requires the PRF to be secure under
a specific class of related-key attacks. Formally, the reductions are given in Lem-
mas 5.1 and 5.2 in the full version of [3] for the case of double- and single-keyed
HMAC, respectively. Since these reductions only relate to NMAC via its PRF-
security, they apply to our result in a blackbox way, thus giving clear statements
also for HMAC.

2 Preliminaries

Basic Definitions.We reserve the letter λ do denote the empty string. With
{0, 1}b∗ :=

⋃
z≥0{0, 1}bz we denote the set of all bitstrings whose length is a

multiple of b. F(b, c) (resp. F(b∗, c)) denotes the sets of all functions from {0, 1}b
to {0, 1}c (resp. from {0, 1}b∗ to {0, 1}c). We denote by Pow(S) the power set of
the set S. For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive
divisors and d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}| ≈ n1/ ln lnnis the maximum,
over all positive integers n′ ≤ n, of the number of positive divisors of n′. More
precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [13]. All logarithms
considered in the paper are base 2 unless indicated otherwise.

Random Variables and Experiments.Random variables and concrete values
they can take are usually denoted by upper-case letters X,Y, . . . and lower-
case letters x, y, . . ., respectively. If M is a distribution (respectively, a set),
then we denote by X ← M sampling the random variable X according to M
(respectively, choosing it uniformly at random from M). For events A and B
and random variables U and V with ranges U and V , respectively, we denote

3 This should not be confused with the (less trivial, but in the crypto community long
well-known) fact that non-uniform generic attacks beating simple brute-force key
search exist for “large” running times, as shown in a classical result by Hellman [14].
Hellman’s result for example implies that there almost certainly exist key-recovery
attacks against AES with a k bit key (k being 128, 192 or 256) which succeed with
probability at least 1/2 and run in time ≈ 22k/3, and in particular much less than
2k required for brute-force key search.

118 P. Gaži, K. Pietrzak, and M. Rybár

by PUA|V B the corresponding conditional probability distribution, seen as a
(partial) function U × V → [0, 1]. The value PUA|V B(u, v) = P[U = u ∧ A|V =
v ∧ B] is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and
undefined otherwise. Two probability distributions PU and PU ′ on the same set
U are equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional
probability distributions are equal if the equality holds for all arguments for
which both of them are defined. To emphasize the random experiment E in
consideration, we sometimes write it in the superscript, e.g. PE

U|V (u, v). If the
distribution of a random variable U is clear from the context, we also sometimes
write PU to refer to the random experiment where U is chosen according to its
distribution.

2.1 Random Systems

To present our results we make use of Maurer’s random systems framework [20],
which we now introduce in a self-contained exposition sufficient to follow the
rest of the paper. This choice is a matter of authors’ taste, we believe that the
results could also be obtained using the game-playing framework [8].

We start by observing that the input-output behavior of any kind of reactive
discrete system with inputs in X and outputs in Y can be described by an infinite
family of functions specifying, for each i ≥ 1, the probability distribution of the
system’s i-th output Yi ∈ Y, given the values of the first i inputs X i ∈ X i and
the previous i − 1 outputs Y i−1 ∈ Yi−1. Using this viewpoint, we say that an
(X ,Y)-(random) system F is an infinite sequence of functions pFYi|XiY i−1 : Y ×
X i × Yi−1 → [0, 1] such that

∑
yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1,

xi ∈ X i and yi−1 ∈ Yi−1. Note that pFYi|XiY i−1 by itself does not represent a

(conditional) probability distribution in any particular random experiment with
well-defined random variables Yi, X

i, Y i−1 until the system is connected to a
distinguisher (see below), in which case these random variables will exist and
take the role of the transcript. We shall typically define discrete systems by a high
level description, as long as the resulting conditional probability distributions
could be derived easily from this description. Two systems F and G are called
equivalent (denoted F ≡ G) if their input-output behaviors are the same, i.e.,
pFYi|XiY i−1 = pGYi|XiY i−1 for all i ≥ 1.

A system F might often be used as a component (subsystem) in a construction
C(·), resulting in the composed system CF. F�G denotes the serial composition
of systems: every input to F�G is fed to F, its output is fed to G and the output
of G is used as the output of F �G. In case G takes as inputs longer bitstrings
than F outputs (as will be the case in the definition of NMAC), the construction
F �G pads the outputs of F with trailing zeroes before passing them to G.

Examples.We denote by R a system that provides access to a function chosen
uniformly at random from the set of all functions with domain {0, 1}b∗ and range
{0, 1}c. (This unusual domain slightly deviates from the standard definition of R
in the random-systems literature, but will be advantageous for our exposition.)
Similarly, for a finite domain {0, 1}b we denote by r a system realizing a function

The Exact PRF-Security of NMAC and HMAC 119

chosen uniformly from F(b, c). Finally, we also consider a system f realizing a
function chosen uniformly from F(c+b, c). We refer to R, r and f as a uniformly
random function (URF), a fixed input-length URF, and an ideal compression
function, respectively. In each case the parameters b and c will be clear from the
context.

Distinguishers and Adversaries. A distinguisher D for an (X ,Y)-random
system asking q queries is a (Y,X)-random system which is “one query ahead:”
its input-output behavior is defined by the conditional probability distributions
of its queries pDXi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first query is determined by

pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D,
we denote by DF the random experiment where D interacts with F, with the
distributions of the transcript (Xq, Y q) and of the bit Wq being uniquely defined
by their conditional probability distributions. For two (X ,Y)-random systems
F and G, the distinguishing advantage of D in distinguishing systems F and G
by q queries is the quantity ΔD(F,G) = |PDF

Wq
(1) − PDG

Wq
(1)| and the maximal

distinguishing advantage over all distinguishers asking q queries is denoted by
Δq(F,G) = maxD ΔD(F,G) (with D ranging over all such distinguishers).

As opposed to the information-theoretic notion of a distinguisher, we often
need to consider an attacker with restricted computational resources. Although
such an attacker also participates in a distinguishing experiment, to emphasize
this restriction we call it an adversary and denote using a sans-serif symbol
(e.g. A). Note that a computationally restricted adversary implicitly defines a
random system by its input-output behavior and hence any notation defined for
information-theoretic distinguishers is also well-defined for such an adversary.
We often restrict the computational power of an adversary by its running time,
for this we assume some reasonable fixed model of computation.

Monotone Conditions. For a random system F, we often consider an in-
ternal monotone condition defined on it. Such a condition is initially satisfied
(true), but once it gets violated, it cannot become true again (hence the name
monotone). We use such conditions to capture whether the behavior of the sys-
tem meets some additional requirement (e.g. distinct outputs, consistent out-
puts) or this was already violated during the interaction that occurred so far.
A monotone condition is formalized by a sequence of events A = A0, A1, . . .
such that A0 always holds, and Ai holds if the condition holds after answering
the i-th query. The probability that a distinguisher D issuing q queries to F
makes a monotone condition A fail in the random experiment DF is denoted
by νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted
by ν(F, Aq) = maxD νD(F, Aq). We also define μ(F, Aq) = maxxq PF

Aq|Xq
(xq)

to be the maximal probability of violating the condition A by a sequence of q
non-adaptive queries.

For a random system F with a monotone condition A = A0, A1, . . . and a
random system G, we say that F conditioned on A is equivalent to G, denoted
F|A ≡ G, if pFYi|XiY i−1Ai

= pGYi|XiY i−1 for i ≥ 1, for all arguments for which

120 P. Gaži, K. Pietrzak, and M. Rybár

pFYi|XiY i−1Ai
is defined. Intuitively, this captures the fact that as long as the

condition A holds in F, it behaves the same as G. The following useful claims
were given in [20], see also [15] for the proof of claim (ii) and [19] for further
discussion.

Lemma 1. Let F and G be random systems, let A be a monotone condition
defined on F, let D be a distinguisher asking q queries. Then:

(i) [20, Lemma 7] If F|A ≡G then ΔD(F,G) ≤ νD(F, Aq).
(ii) [20, Theorem 2] If pFAi|XiY i−1Ai−1

= pFAi|XiAi−1
for all i ≥ 1, then ν(F, Aq) =

μ(F, Aq).

2.2 Message Authentication Codes and PRFs

The standard security requirement for a MAC is unforgeability under chosen-
message attack. However, it is well-known that any PRF attains this property [6],
hence in this paper we focus on PRF-security of the analyzed constructions.

If the first component of the input to a function f is to be seen as a key,
we sometimes call f a keyed function to emphasize this. For a keyed function
f : K × D → R under a key k ∈ K we often write fk(·) instead of f(k, ·). A
variable input-length keyed function G : {0, 1}c × {0, 1}b∗ → {0, 1}c is an:

– (ε, t, q, �)-secure PRF, if for any adversary A running in time t and mak-
ing at most q queries, each of length at most � (in b-bit blocks), a URF
R : {0, 1}b∗ → {0, 1}c and a uniformly random key K ← {0, 1}c, we have
ΔA(GK ,R) ≤ ε.

– (ε, t, q, �)-NA-secure PRF, if the above is true for all adversaries A that
choose their queries non-adaptively (i.e., A has to choose its q queries before
seeing any of the outputs).

– (ε, t, q, �)-PF-secure PRF, if the above is true for all adversaries A that choose
their queries to be prefix-free (i.e., no query is a prefix of another query).

– (ε, t, q, �)-NA-PF-secure PRF, if the above is true for all adversaries A that
choose queries both non-adaptively and prefix-free.

For fixed input-length functions, we define analogous notions by omitting the
parameter � and distinguishing from r instead of R. Moreover, we refer to an
adversary A as an (ε, t, q, �)-PRF adversary against G if it runs in time t, asks at
most q queries each consisting of at most � blocks, and achieves the advantage
ΔA(GK ,R) = ε. We refer analogously to adversaries for the other PRF-notions
defined above.

For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote with Cascf :
{0, 1}c × {0, 1}b∗ → {0, 1}c the cascade construction (also known as Merkle-
Damg̊ard) built from f as Cascf(K,m1‖ . . . ‖m�) := y� where y0 := K and for
i ≥ 1 we have yi := f(yi−1,mi), in particular Cascf(K,λ) := K.

The construction NMACf : ({0, 1}c)2×{0, 1}b∗ → {0, 1}c is derived from Cascf

by adding an additional, independently keyed application of f at the end. It

The Exact PRF-Security of NMAC and HMAC 121

assumes that the domain sizes of f satisfy b ≥ c and the output of the cascade
is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

or NMACf
K1,K2

:= CascfK1
� fK2 . Note that practical MD-based hash functions

take as input arbitrary-length bitstrings and then pad them to a multiple of the
block length, often including the message length in the so-called MD-strength-
ening. This padding then also appears in NMAC (and HMAC) but since it does
not affect any of our arguments, we take the customary shortcut and our def-
inition above actually corresponds to the generalized construction denoted as
GNMAC in [3] where this step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2)
are derived from a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit
strings ipad and opad. In addition, the keys are not given through the key-input
of the compression function f, but are prepended to the message instead. This
allows for the usage of existing implementations of hash functions that contain
a hard-coded initialization vector IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)
where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b− c)-bit padding not affecting the security analysis. (Tech-
nically, [18] allows for arbitrary length of the key K: a key shorter than b bits
is padded with zeroes before applying the xor transformations, a longer key is
first hashed.) As discussed in Section 1.2, we can focus on the PRF-security of
NMAC as it translates to analogous results for HMAC under the assumptions
stated in [3].

Finally, we also introduce the nested iterated (NI) construction defined in [2].
For this, we consider a keyed compression function h : {0, 1}k×{0, 1}c×{0, 1}b →
{0, 1}c. When such h is used in a cascading construction, its c-bit and b-bit in-
puts are used for the chaining value and the next block, respectively. In con-
trast to the function f considered above, h has an additional k-bit input that is
used for keying. Formally, for such h we define the nested iterated construction
NIh : ({0, 1}k)2 × {0, 1}b∗ → {0, 1}c as

NIhK1,K2
(m) := hK2(Casc

hK1

0 (m), |m|)
where 0 denotes the all zero bitstring 0c and |m| is the length of m encoded as
a b-bit string. Alternatively, for a function f : {0, 1}c × {0, 1}b → {0, 1}c and a
key K we will denote by LenCascfK a system that given a message m outputs the
pair (CascfK(m), |m|). This allows us to describe NI equivalently as NIhK1,K2

:=

LenCasc
hK1

0 � hK2 . For a detailed discussion of the relationship of NI to NMAC,
see [2].

3 PRF-Security of NMAC

In this section we analyze the PRF security of NMACf in terms of the PRF-
security of the underlying function f.

122 P. Gaži, K. Pietrzak, and M. Rybár

3.1 Security Lower Bound

Before moving to the NMACf construction, we start by stating a lower bound on
the security of the cascade Cascf when queried on prefix-free inputs. A similar
statement has already been proven in [5], and we follow their proof, modifying it
where necessary to obtain security against non-adaptive adversaries, assuming
only non-adaptive security of the underlying compression function f. The proof
of Proposition 1 is postponed to the full version due to space constraints.

Proposition 1 (Cascf as a NA-PF-PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c
be a compression function. There exists an explicit reduction T (described in the
proof) such that for any (ε′, t′, q, �)-NA-PF-PRF adversary A against Cascf , TA

is an (εna, t, q)-NA-PRF adversary against f such that

ε′ ≤ �qεna and t = t′ + Õ(�q) .

This allows us to present our main result in this section, which relates the adap-
tive PRF-security of the construction NMACf to both the adaptive and non-
adaptive PRF-security of f.

Theorem 1 (NMACf as a PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a com-
pression function. There exist explicit reductions T1 and T2 (described in the
proof) such that for any (ε′, t′, q, �)-PRF adversary A against NMACf ,

1. TA
1 is an (ε, t, q)-PRF adversary against f,

2. TA
2 is an (εna, t, q)-NA-PRF adversary against f,

and their parameters satisfy

ε′ ≤ ε+ (�+ 1)qεna +
q2

2c
and t = t′ + Õ(�q) .

Proof. Let A be a PRF-adversary running in time t′ and asking q queries, each
of length at most � blocks. Let r : {0, 1}b → {0, 1}c, R : {0, 1}b∗ → {0, 1}c and
K = (K1,K2)← {0, 1}c × {0, 1}c denote a fixed input-length URF, a URF and
a key pair chosen independently at random, respectively.

We turn A into an adversary TA
1 against the PRF-security of fK as follows:

Given access to g (which is either fK or r), sample some key K1 at random, and
then invoke A, answering its queries with CascfK1

�g. Finally, output the decision

bit of A. Clearly we have ΔA(CascfK1
� fK2 ,Casc

f
K1

� r) = ΔTA
1 (fK , r) and if we

denote ΔTA
1 (fK , r) by ε then using triangle inequality we get

ΔA(NMACf
K ,R) = ΔA(CascfK1

� fK2 ,R) ≤ ε+ΔA(CascfK1
� r,R) .

In the experiment where A interacts with CascfK1
� r, let Ci denote the event

that during the first i queries to CascfK1
� r, for any two distinct queries M and

M ′ the values CascfK1
(M) and CascfK1

(M ′) (inputs to the final r-call) are also
distinct. As long as the monotone condition C = C0, C1, . . . remains satisfied, the

The Exact PRF-Security of NMAC and HMAC 123

responses of CascfK1
�r to distinct queries are equivalent to outputs of r on distinct

inputs, and thus independent, uniformly random values, in particular (CascfK1
�

r)|C ≡ R. We can therefore apply Lemma 1(i) to conclude that distinguishing
Cascf � r from a URF R is at least as hard as making the condition C fail, i.e.,

ΔA(CascfK1
� r,R) ≤ νA(CascfK1

� r, Cq) .

Below we explain how to use the adversary A to construct4 a non-adaptive
adversary Ana such that

νA(CascfK1
� r, Cq) = νAna(CascfK1

� r, Cq) . (1)

Ana simply runs A and responds to all its fresh queries by fresh random values,
while answering repeated queries consistently. In the end, Ana (non-adaptively)
asks all the queries that A asked during this simulated interaction. The equa-
tion (1) follows from the fact that the simulation for A is perfect as long as its
queries do not violate C. Since C is defined on CascfK1

and Ana is non-adaptive,
we additionally have

νAna(CascfK1
� r, Cq) = νAna(CascfK1

, Cq) .

Next, for Ana we can construct another non-adaptive adversary Apf that vio-

lates the condition C (i.e., creates a collision in the outputs of CascfK1
) with the

same probability as Ana, but all its queries are prefix-free. This can be done, for
example, by simply appending an additional block to all queries asked by Ana,
such that this block does not appear in the original queries. Hence we have

νAna(CascfK1
, Cq) = νApf (CascfK1

, Cq)

for a non-adaptive adversary Apf asking prefix-free queries of length at most �+1.
Finally, consider the non-adaptive adversary A∗ that simply asks the same

prefix-free queries as Apf and then outputs 1 if and only if the responses to

these queries contain a collision. Then A∗ interacting with CascfK1
outputs 1

with probability νApf (CascfK1
, Cq), while in an interaction with R it outputs 1

with probability at most q2/2c via the well-known birthday bound. Hence, by
the definition of ΔA∗

(CascfK1
,R), we have

νApf (CascfK1
, Cq) ≤ ΔA∗

(CascfK1
,R) +

q2

2c
.

Since A∗ is non-adaptive and prefix-free, we can now employ the reduction T
guaranteed by Proposition 1 to obtain an NA-PRF adversary TA∗

against f such
that

ΔA∗
(CascfK1

,R) ≤ (� + 1)q ·ΔTA∗
(f, r) .

Putting TA
2 := TA∗

hence concludes the proof of Theorem 1. ��
4 One could use a lemma from the random system framework [20] in the spirit of
Lemma 1(ii) to switch to non-adaptivity. We prefer to spell out the actual construc-
tion to emphasize the uniformity of our reduction.

124 P. Gaži, K. Pietrzak, and M. Rybár

Corollary 1. If f : {0, 1}c × {0, 1}b → {0, 1}c is an (ε, t, q)-secure PRF and an
(εna, t, q)-NA-secure PRF, then NMACf is an (ε′, t′, q, �)-secure PRF with

ε′ = ε+ (�+ 1)qεna +
q2

2c
and t = t′ + Õ(�q) .

3.2 Matching Attacks

We now argue that the bound obtained in Theorem 1 is essentially tight. First, we
show that the term �qεna is unavoidable (up to a constant factor) by constructing
a particular compression function f, which is an (εna, t, q)-NA-secure PRF, yet
there is a simple attack against the PRF-security of NMACf achieving advantage
roughly �qεna.

Proposition 2. Let b, c, � be positive integers such that b ≥ c, let εna ∈ (0, 1),
and moreover, assume that pseudo-random functions exist. Then there exists a
function f : {0, 1}c × {0, 1}b → {0, 1}c and an adversary A against NMACf such
that for any q that satisfies εna = ω(q22−b, 2−c), we have:

– f is (εna, t, q)-NA-secure PRF;
– the adversary A, when asking q queries of length � blocks each, runs in time

Õ(�q) and achieves distinguishing advantage

ΔA(NMACf
K ,R) = Θ(�qεna) .

In particular, NMACf is not an (o(�qεna), Õ(�q), q, �)-secure PRF.

Proof (sketch). Here we only describe the high-level idea for constructing f and
A and defer the discussion of the technical obstacles in implementing this idea
to the full version.

Roughly speaking, we construct an (εna, t, q)-NA-secure PRF f that behaves
pseudo-randomly for all keys except for a small, εna/2-fraction of them. We
denote the set of these keys by K and refer to them as the weak keys. Under any
weak key k, the function f(k, ·) outputs some constant value w ∈ K irrespective
of its input.

To attack the NA-PRF security of NMACf
K=(K1,K2), consider a pair of mes-

sages M1,M2 chosen by sampling M ← {0, 1}b(�−1) at random and then set-
ting M1 = M‖x1 and M2 = M‖x2 for some distinct blocks x1, x2 ∈ {0, 1}b.
If some of the � − 1 intermediate values in the evaluation of the inner func-
tion Cascf(K1,M) is in K, then all following intermediate values are w, and
in particular we have Cascf(K1,Mi) = w for both i ∈ {1, 2}, and hence also
NMACf(K,M1) = NMACf(K,M2) = fK2(w). This implies that it is much more
likely to get a collision for a pair of messages as described above for NMACf

K than
for R. Our adversary A simply choses q/2 message pairs at random as above,
and it outputs 1 if it observes a collision for at least one of those pairs. As there
are q/2 message pairs, each of length �, we have a total of �q/2 possibilities to
“hit” a weak key, each having probability εna. By the union bound this gives us

The Exact PRF-Security of NMAC and HMAC 125

a total probability of Θ(�qεna) for observing a collision when querying NMACf
K .

On the other hand the probability of observing a colliding pair in R is only
O(q/2c). ��

We now consider the tightness of the bound in Theorem 1 when ε$ �qεna is
the dominating term. This is the case when the best adaptive attack against f
is by more than a factor �q better than any non-adaptive attack.

In [23] a pair g1, g2 of PRFs is constructed such that g1 and g2 are εna-secure
non-adaptive PRFs for some negligible εna, and the serial composition g1�g2 with
independent keys can be broken by an adaptive attack (in a constant number of
queries) with advantage almost 1.5 From such g1, g2 we can get a single PRF f
which is an εna-secure NA-PRF for a negligible εna, an ε-secure PRF for any ε of
our choice, and where f �f is not Θ(ε2)-secure, by setting f := g1 and f := g2 with
probability ε/2, respectively, and some strong standard PRF with probability
1 − ε (over the choice of the key). We now observe that NMACf

K computed on
single-block messages is simply a cascade of two f’s with independent keys. Thus,
when using the above ε-secure PRF f, we can break NMACf

K with advantage
Θ(ε2). This shows that the ε term in Theorem 1 is necessary if ε is constant
as then Θ(ε) = Θ(ε2) = Θ(1). We conjecture that Θ(ε2) is the correct value,
and the ε term in the lower bound can be improved to Θ(ε2) using security
amplification techniques along the lines of [22,25].

4 PRF-Security of the NI Construction

In this section we analyze the PRF-security of the NIh construction under the
assumption that the keyed compression function h is a PRF (when keyed via its
k-bit input).

Theorem 2. If h : {0, 1}k×{0, 1}c×{0, 1}b → {0, 1}c is an (ε1, t, q)-secure PRF
and an (ε2, t, �q)-secure PRF, then NIh is an (ε′, t′, q, �)-secure PRF with

ε′ = ε1 + ε2 +
q2

2c
·
(
�+

64�4

2c

)
and t = t′ + Õ(�q) .

Proof. We prove Theorem 2 in four consecutive steps. First, we use the PRF-
security of h to replace it by an ideal compression function, making the rest of
our analysis information-theoretic. Second, we observe that the resulting system
behaves identically toR as long as no non-trivial collision occurs in the outputs of
the initial cascade. Third, we reduce estimating the probability of such a collision
to a counting problem of upper-bounding the number of graphs satisfying certain
properties (modeling the computation of the cascade). Finally, we give a bound
on the number of these graphs, hence concluding the argument.

5 The NA-PRF security of this construction relies on the DDH assumption, [9] con-
struct such a PRF under the weaker assumption that “uniform transcript key-
agreement” exists, and this assumption is necessary [24].

126 P. Gaži, K. Pietrzak, and M. Rybár

From a PRF to a Random Function. Let A be a PRF-adversary against
NIh running in time t and asking q queries, each of length at most � blocks. To
simplify the notation let 0 := 0c. By a standard argument as in the proof of
Theorem 1, we have

ΔA(NIhK ,R) = ΔA
(
LenCasc

hK1
0 � hK2 ,R

)
≤ ε1 + ε2 +ΔA

(
LenCascf10 � f2,R

)
(2)

where K = (K1,K2) ← ({0, 1}k)2 is a uniformly random key and f1 and
f2 are two independent ideal compression functions. Interestingly, the system
LenCascf10 � f2 is very similar to NMAC with an ideal compression function and
(0, |m|) being used instead of the key pair.

Bound via Collision Probability.Let CColl(�) denote the probability that a
random choice of the compression function f1 results in a collision in Cascf10 , maxi-
mized over the choice of the two distinct, equal-length inputsm1,m2 consisting of
at most � blocks each. (Note that we require length equality |m1| = |m2| to obtain
a collision also for LenCascf10 .) Formally, for uniformly random f1 ← F(c + b, c)
we define

CColl(�) := max
m1 �=m2

|m1|=|m2|≤�b

Pf1
[
Cascf10 (m1) = Cascf10 (m2)

]
. (3)

In the experiment where A interacts with LenCascf10 � f2, let Ei denote the event
that during the first i queries to LenCascf10 � f2, for any two distinct queries
M and M ′ the values LenCascf10 (M) and LenCascf10 (M ′) (inputs to the final
f2-call) were also distinct. As long as the monotone condition E = E0, E1, . . .
remains satisfied, the responses of LenCascf10 � f2 to distinct queries are clearly
independent, uniformly random values thanks to f2. Hence, we have (LenCasc

f1
0 �

f2)|E ≡ R and p
LenCasc

f1
0 �f2

Ei|XiY i−1Ei−1
= p

LenCasc
f1
0 �f2

Ei|XiEi−1
and can therefore consecutively

apply Lemma 1(i), Lemma 1(ii), and finally the union bound to get

ΔA(LenCascf10 �f2,R) ≤ν(LenCascf10 �f2, Eq) ≤ μ(LenCascf10 �f2, Eq) ≤ q2·CColl(�) .
(4)

Graph-Based Representation of Casc.The probability CColl(�) could triv-
ially be upper-bounded by O(�2/2c) using a union-bound argument, achieving
a non-trivial and significantly better bound on CColl(�) is the central part of
our proof. To this end, we use an approach inspired by [7] and represent the
computation of Cascf10 on various inputs by directed graphs.

Let m1 and m2 be two distinct, equal-length messages that can be parsed
into b-bit blocks as mi = m1

i ‖ · · · ‖m�′
i for some �′ ≤ �, and let Λ := 2�′. For

convenience, we use the notation m(i) as a reference to the block mi
1 if i ≤ �′,

otherwise it denotes the block mi−�′
2 . For any fixed compression function f ∈

F(c + b, c) and a pair of such messages M = (m1,m2), we define the structure
graph GM

f to be the triple GM
f = (V , E ,L), such that:

The Exact PRF-Security of NMAC and HMAC 127

– (V , E) is a directed graph. To describe it, let

si :=

⎧⎪⎪⎨⎪⎪⎩
0 for i = 0
f(si−1,m

i
1) for 1 ≤ i ≤ �′

f(0,m1
2) for i = �′ + 1

f(si−1,m
i−�′
2) for �′ + 2 ≤ i ≤ Λ

(5)

and consider the mappings [·]G and [·]′G defined on {0, . . . , Λ} such that
[i]G := min{j : si = sj} (so [i]G = i if and only if si is “fresh”) and
[i]′G := [i]G for i �= �′, while [�′]′G := 0. Now we let

V := {[i]G : 0 ≤ i ≤ Λ} and E := {([i− 1]′G, [i]G) : 1 ≤ i ≤ Λ} .

– L : V2 → Pow({0, 1}b) is a labeling function that labels every edge (u, v) ∈ E
with the set {m(i) : [i − 1]′G = u ∧ [i]G = v} and every pair of vertices that
do not form an edge with the empty set ∅ (to simplify our notation later).

Intuitively, if all the values si are distinct, GM
f simply consists of two directed

paths starting in the root vertex 0, representing the evaluation of Cascf10 on the
messagesm1 and m2 (the edges are labeled by the corresponding blocks). If some
collisions among the values si occur, one can obtain the graph GM

f by collapsing
every pair of vertices i, j where si = sj into one vertex labeled min{i, j}, as well
as merging the edge labels in the natural way.

Let G(M) := {GM
f : f ∈ F(c + b, c)} denote the set of all structure graphs

associated with the message pairM. Note that the uniformly distributed random
variable F ← F(c+b, c) also induces a distribution on G(M), therefore we denote
by GM

F the resulting random variable (taking on structure graphs as values).
Similarly, F also induces a distribution on the values si defined above and we
denote the resulting random variables Si.

For a fixed structure graph G = GM
f we denote by Gi = (Vi, Ei,Li) the

graph that is obtained after processing only the first i out of Λ blocks of M.
More formally, Gi := GM′

f where M′ := (m1
1‖ · · · ‖mi

1, λ) if i ≤ �′ and M′ :=

(m1,m
1
2‖ · · · ‖mi−�′

2) otherwise. Building on this notion, we call fColl(G) the set
of f -collisions that occurred in G:

fColl(G) :=
{
(i, [i]G) : [i]G < i ∧m(i) �∈ Li−1([i − 1]′G, [i]G)

}
. (6)

Informally, imagine we reveal the structure graph G step by step, i.e., by a
sequence of transitions from Gi−1 to Gi, for i = 1, . . . , Λ. The pair (i, [i]G)
belongs to fColl(G) (and we say that the i-th step caused an f -collision), if
during this step, instead of adding a new vertex, we arrive at a vertex already
visited, while not following an existing edge already labeled with m(i) (i.e., not
repeating a step we have made before).

Properties of Structure Graphs.We first upper-bound the probability of
GM

F taking the form of any particular fixed structure graph g ∈ G(M). The
following result is inspired by Lemma 8 from [7]. Due to space constraints, we
postpone the proofs of all technical lemmas below to the full version of this
paper.

128 P. Gaži, K. Pietrzak, and M. Rybár

Lemma 2. Let F ← F(c + b, c) be chosen uniformly at random. For a fixed
graph g ∈ G(M) we have

PF
[
GM

F = g
]
≤ 2−c·|fColl(g)| .

Using Lemma 2, it is easy to see that the event that at least two f -collisions
occur in G is highly unlikely.

Lemma 3. Let F ← F(c+ b, c) be chosen uniformly at random. Then

PF
[∣∣fColl (GM

F

)∣∣ ≥ 2
]
≤ 4Λ4

22c
.

From Collision Probability to Counting Graphs.We can now proceed
to upper-bounding the value CColl(�). Let M := (m1,m2) be the two distinct,
equal-length messages of length at most � blocks that maximize the probability

CColl(�) := maxm1 �=m2 P
F
[
CascF0 (m1) = CascF0 (m2)

]
. For j ∈ {1, 2} let V i

j be

the random variable denoting the i-th vertex (counting from 0) in the path
corresponding to mj in GM

F (randomness taken over the uniform choice of F).
Formally, V i

1 := [i]G and V i
2 := [�′+ i]′G. Using this notation, we have CColl(�) =

P[V �′
1 = V �′

2]. Since m1 �= m2, V
�′
1 = V �′

2 cannot occur without any f -collision,
hence we can split CColl(�) into

P
[
V �′
1 = V �′

2 ∧ |fColl(GM
F)| = 1

]
+ P
[
V �′
1 = V �′

2 ∧ |fColl(GM
F)| ≥ 2

]
. (7)

The latter probability can be readily upper-bounded by 4Λ4/22c using Lemma 3.
As for the former, let us denote by H(M) the set of structure graphs forM that
contain exactly one f -collision and where the vertices V �′

1 and V �′
2 coincide. The

first term in (7) can then be upper-bounded by |H(M)|/2c using Lemma 2,
hence it remains to bound the size of the set H(M).

Counting the Structure Graphs.We give such a bound in the following
lemma, proven in the full version of this paper.

Lemma 4. For two distinct, equal-length messages M = {m1,m2} each of
length at most � blocks, we have |H(M)| ≤ �.

Finally, combining the equations (2), (4), (7), and the bounds obtained in
Lemma 3 and Lemma 4, we get

ΔA(NIhK ,R) ≤ ε1 + ε2 + q2 ·
(

�

2c
+

4Λ4

22c

)
≤ ε1 + ε2 +

q2

2c
·
(
�+

64�4

2c

)
and conclude the proof of Theorem 2. ��

In the full version we also show that Lemma 4 is tight, and discuss the im-
plications for the tightness of Theorem 2. Moreover, we show a generalization
of Lemma 4 that does not require the messages in M to have the same length,
in which case we prove |H(M)| ≤ �d′(�). This translates directly into a PRF-
security statement for a variant of NI that does not include the message length
in its last h-call, giving a bound that is equivalent to Theorem 2 except for the
term �q2/2c that is replaced by �d′(�)q2/2c.

The Exact PRF-Security of NMAC and HMAC 129

Acknowledgements. We thank the anonymous reviewers for useful comments
and suggestions. This work was partly funded by the European Research Council
under an ERC Starting Grant (259668-PSPC).

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

2. An, J.H., Bellare, M.: Constructing VIL-mACs from FIL-mACs: Message authen-
tication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

3. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th Annual Symposium on
Foundations of Computer Science, pp. 514–523. IEEE Computer Society Press
(1996)

6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362–399 (2000)

7. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Hei-
delberg (2005)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

9. Cho, C., Lee, C.-K., Ostrovsky, R.: Equivalence of uniform key agreement and
composition insecurity. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
447–464. Springer, Heidelberg (2010)

10. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

11. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-
way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
649–665. Springer, Heidelberg (2010)

12. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again
(In)Differentiability results for h2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012)

13. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn.
Oxford University Press, USA (2008)

14. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401–406 (1980)

15. Jetchev, D., Özen, O., Stam, M.: Understanding adaptivity: Random systems re-
visited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
313–330. Springer, Heidelberg (2012)

130 P. Gaži, K. Pietrzak, and M. Rybár

16. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

17. Koblitz, N., Menezes, A.: Another look at HMAC. Cryptology ePrint Archive,
Report 2012/074 (2012)

18. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. IETF Internet Request for Comments 2104 (February 1997)

19. Maurer, U.: Conditional equivalence of random systems and indistinguishability
proofs. In: 2013 IEEE International Symposium on Information Theory Proceed-
ings (ISIT), pp. 3150–3154 (July 2013)

20. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

22. Maurer, U., Tessaro, S.: Computational indistinguishability amplification: Tight
product theorems for system composition. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 355–373. Springer, Heidelberg (2009)

23. Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)

24. Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg
(2006)

25. Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs: Tight
bounds via the interactive hardcore lemma. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 37–54. Springer, Heidelberg (2011)

26. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

27. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

Updates on Generic Attacks

against HMAC and NMAC

Jian Guo1, Thomas Peyrin1, Yu Sasaki2, and Lei Wang1

1 Nanyang Technological University, Singapore
{guojian,thomas.peyrin,wang.lei}@ntu.edu.sg

2 NTT Secure Platform Laboratories, Japan
sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we present new generic attacks against HMAC

and other similar MACs when instantiated with an n-bit output hash
function maintaining a l-bit internal state. Firstly, we describe two types
of selective forgery attacks (a forgery for which the adversary commits
on the forged message beforehand). The first type is a tight attack which
requires O(2l/2) computations, while the second one requires O(22l/3)
computations, but offers much more freedom degrees in the choice of
the committed message. Secondly, we propose an improved universal
forgery attack which significantly reduces the complexity of the best
known attack from O(25l/6) to O(23l/4). Finally, we describe the very
first time-memory tradeoff for key recovery attack on HMAC. With O(2l)
precomputation, the internal key Kout is firstly recovered with O(22l/3)
computations by exploiting the Hellman’s time-memory tradeoff, and
then the other internal key Kin is recovered with O(23l/4) computations
by a novel approach. This tends to indicate an inefficiency in using long
keys for HMAC.

Keywords: HMAC, NMAC, selective forgery, universal forgery, key recovery.

1 Introduction

A message authentication code (MAC) ensures the integrity of messages trans-
ferred between two parties sharing a secret key K in advance. When the sender
would like to send a message M, he first generates the tag T computed by
T = MAC(K,M), and then sends the pair (M, T) to the other party. The re-
ceiver computes the tag value with the received message using his own key K
and checks if this value matches the received tag value T . If they do match, he
knows that the messageM received was indeed sent by the other party.

A classical method to build a MAC algorithm is to use a hash function, and
the well-known example is HMAC [1] designed by Bellare et al., which has been
standardized by ANSI, IETF, ISO and NIST, and is widely implemented in
various security protocols such as SSL/TLS and IPSec.

There are several security requirements one expects a secure MAC to verify.
Informally, it should resist key recovery attacks, any type of forgery attacks, as

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 131–148, 2014.
c© International Association for Cryptologic Research 2014

132 J. Guo et al.

well as any distinguishing attacks. We note that key recovery and forgeries are
arguably the most important as they have the greatest impact in practice. We
provide below definitions of the attacks which are related to this paper. It is
assumed that the adversary can interact with an oracle that outputs the valid
tag T = MAC(K,M) when queried with a messageM).

Key recovery: the adversary recovers the secret-key K used in the
MAC algorithm.

Selective forgery: the adversary first commits on a message M before
interacting with the oracle, and then builds a valid
pair (M, T), without having queried M.

Universal forgery: the adversary first receives a messageM sent as chal-
lenge, and then builds a valid pair (M, T), without
having queried M.

The security of a MAC construction is discussed in terms of lower-bound and
upper-bound on the complexity of the attack for each notion. Regarding the
lower-bound, many hash based MACs including HMAC are proven to be indistin-
guishable from a PRF (pseudo-random function) up to O(2l/2) queries, where l
is the internal state size of the underlying hash function with n-bit hash digests.

On the other hand, the upper-bound on the complexity is shown by demon-
strating a generic attack for each notion. Concerning the notions existential
forgery and the distinguishing-R, Preneel et al. proposed a tight generic attack,
i.e., the attack complexity matches the proven lower-bound [17]. Their method
is based on an internal collision generated with a birthday complexity of O(2l/2).
Following a similar collision-detection based approach, Naito et al. proposed a
distinguishing-H attack attack with a complexity of O(2l/l) [14]. Although this
approach is powerful, its direct application to other notions, particularly the
above three defined notions, seems difficult.

Recently, cryptographers have proposed new attack approaches by study-
ing the cycle property of functional graphs and by studying entropy loss of
sequential iterations, and applied them to find new generic attacks on hash
based MACs [15,4,12,16], as well as dedicated attacks on instances of specific de-
signs [8,7]. Interestingly, these approaches have even been used to analyze the
notions selective forgery and universal forgery. In [16], Peyrin and Wang showed
a universal forgery with a complexity of O(25l/6), which is based on cycle prop-
erty of functional graph. At the same time with our paper, in [3], Dinur and
Leurent found another universal forgery with a complexity of O(26l/7) but with
shorter queries and thus with wider applications (Peyrin and Wang’s attack in-
herently needs to use queries of O(2l/2) blocks long), which is based on collision
entropy loss of iterations. We note that selective forgery is a weaker security
notion than universal forgery (an attacker can use a universal forgery producing
oracle to generate selective forgeries), and hence these universal forgery attacks
can be directly used to obtain a selective forgery with the same complexity.

As we can see, the current best known universal forgery and selective forgery
attacks on hash-based MAC [16] are not tight and it remains an open problem

Updates on Generic Attacks against HMAC and NMAC 133

if attacks and/or proofs can be improved. Moreover, as of today, key recovery
remains the only security notion for which no generic attack was proposed on
hash-based MAC.

Our Contributions. In this article, we present improved selective forgery at-
tacks against HMAC, NMAC, and other similar MACs, as well as an improved universal
forgery attack and the very first time-memory tradeoff for key recovery attack.

More precisely, we first describe two types of selective forgery attacks. The
first type offers rather limited choice to the adversary regarding the committed
message and this message must consist of at least O(2l/2) blocks, but the overall
complexity is only O(2l/2) computations, which matches the proven lower-bound
for hash-based MAC algorithms. On the other hand, the second type permits a
much broader choice of committed message (the scenario is actually quite close
to a universal forgery attack), and its complexity depends on the block length
of the committed message. Particularly, the committed message must consist
of at least O(2l/3) blocks in order to obtain the optimal complexity of O(l ·
22l/3) computations. Giving an example with the specifications of widely used
hash functions, such as SHA-1 or SHA-256 [20], the adversary can freely choose
the committed message, except about 12.5% of it. The former type is a direct
application of the distinguishing-H attacks from [12], while the latter is obtained
by devising an expandable message technique in the keyed scenario, which was
originally proposed by Kelsey and Schneier for keyless hash functions [10]. The
obvious main difficulty in the keyed scenario is that the adversary cannot access
the internal state values anymore.

Secondly, we improve the complexity of the best known universal forgery at-
tack for hash-based MAC algorithms, which is reduced to O(max(2l−s, 23l/4, 2s))
for a challenge message composed of 2s blocks. Roughly, the complexity has
been significantly reduced from O(25l/6) to O(23l/4). Previous universal forgery
attacks [16] are based on the analysis of nodes’ height in the MAC functional
graph, the height of a node x being the number of nodes linking x to the cycle of
its own component in the functional graph. The basic principle of this attack is
that the adversary will first collect offline many values and their exact height in
the MAC functional graph, and then use this information to perform the forgery.
Unfortunately, the authors failed to estimate the height distributions for the
nodes collected offline, which essentially prevents the attack complexity to go
below 25l/6 computations. In order to overcome this, we performed experiments
in order to investigate these height distributions, and we finally observed a very
interesting property. This observation remains a conjecture as of today, but con-
fidence in its validity is backed up by our experiments. Based on this conjecture,
we managed to improve the universal forgery attack.

Lastly, we propose the first time-memory tradeoff for key recovery attack
against HMAC and NMAC. Before discussing our attacks, the key size of HMAC and
NMAC needs to be specified. For NMAC instantiated with a l-bit internal state
hash function, the key size is l bits for the first key and l bits for the second key,
for a total key size of 2l bits. HMAC is defined to accept a secret key of an arbitrary

134 J. Guo et al.

size. If the key size is longer than the block size, the key is first hashed by using
the underlying hash function, and then the corresponding digest is used as the
key. As later explained in Section 2, keys longer than n bits are quite common in
industry implementations. Our key recovery attack will target these keys that are
larger than n bits. We show that by performing a clever precomputation phase,
the second key in NMAC or the equivalent key Kout in HMAC can be recovered with
a time complexity of O(22l/3) computations and a memory to store O(22l/3)
states by applying the Hellman’s time-memory tradeoff. After that, the first
key in NMAC or the equivalent key Kin in HMAC can be recovered with a time
complexity of O(23l/4) computations and a memory to store O(23l/4) states.

Paper Outline. We recall the HMAC and NMAC specifications in Section 2 and
properties of functional graphs in Section 3. Then, we explain the two types of
selective forgery attacks in Section 4 and the improved universal forgery attack
in Section 5. Finally, we describe the generic key recovery attack in Section 6
and we conclude the paper in Section 7.

2 Description of NMAC and HMAC

A Hash Function. H maps arbitrarily long messages to an n-bit digest. It
is usually built by iterating a compression function f , which maps inputs of
l + b bits to outputs of l bits. In details, H first pads an input message M to
be a multiple of b bits, then splits it into blocks of b bits each, i.e. pad(M) =
M1‖M2‖ · · · ‖Ms, where ‖ denotes the concatenation operation. It then calls
the compression function f iteratively to process these blocks. Finally, H may
use a finalization function g that maps l bits to n bits to produce the hash
digest. Namely, set X0 ← IV , compute Xi ← f(Xi−1,Mi) for i = 1, 2, . . . , s,
and produce g(Xs) as the final digest, with some finalization function g. Each
internal state word Xi is l-bit long, and IV (initial value) is a public constant.

NMAC Algorithm [1] keys a hash function H by replacing the public IV with a
secret key K, which is denoted as HK . It then uses two l-bit secret keys Kin and
Kout referred to as the inner and the outer keys respectively, and makes two calls
to the hash function H . NMAC is simply defined to process an input message M

IV

K ipad K opad

f f f f f

b b b b b

n l l l l l l l

pad

Kin Kout

g g l n

Fig. 1. HMAC with a narrow-pipe hash function

Updates on Generic Attacks against HMAC and NMAC 135

as NMAC(Kout,Kin,M) = HKout(HKin(M)). Keyed functions HKin and HKout

are referred to as the inner and the outer (hash) functions respectively.

HMAC Algorithm [1] is a single-key variant of NMAC, depicted in Figure 1. It
derivesKin and Kout from the single secret key K as Kin = f(IV,K⊕ipad) and
Kout = f(IV,K⊕opad), where ipad and opad are two distinct public constants.
HMAC is then simply defined to process an input message M as HMAC(K,M) =
H(K ⊕ opad‖H(K ⊕ ipad‖M)). HMAC accepts any key size. If the key K is
shorter than b bits, then it is padded with 0 bits to reach the size b of an entire
compression function message block. Otherwise, if the key K is longer than b
bits, then it is hashed and padded with 0 bits: K ← H(K)‖0b−n.

Regarding the use of keys which are longer than the tag size (n bits), there are
both positive and negative decisions by standardization bodies. Indeed, RFC [11]
only specifies that n bits is the minimum recommended key size. Though it does
not specify the maximum key size, it explains that keys longer than n bits are
acceptable, but the extra length would not significantly increase the function
strength. However, it recommends longer key sizes when the randomness of the
key is considered weak. FIPS [21] specifies that the effective security strength of
the HMAC key is the minimum of the security strength of the key and the value of
2l, where l is the internal state size. Hence, it seems natural to use 2l-bit keys if
that is possible, so as to maximize the security of the construction. Finally, we
observe that in fact industry often implements HMAC with much longer key sizes
than n bits. This is the case for example in MonoCrypt, which is a cryptographic
library currently operated in commerce developed by SBI Net Systems [19].
MonoCrypt supports 80-bit, 128-bit, 512-bit, 576-bits, and 640-bit keys for HMAC-
SHA-1 and 160-bit, 192-bit, 512-bit, 576-bit, and 640-bit keys for HMAC-SHA-256.

For simplicity, hereafter we will describe the attacks based on HMAC. However,
we emphasize that our methods apply similarly to hash function based MACs such
as NMAC [1] and Sandwich-MAC [22].

3 Functional Graph

In this article and in previous works on HMAC cryptanalysis [15,12,16], the analysis
of properties of functional graphs for random functions is very important. We
recall a few results in this section.

The functional graph Gf of a function f : {0, 1}l → {0, 1}l is simply the
directed graph in which the vertices (or nodes) are all the values in {0, 1}l and
where the directed edges are the iterations of f (i.e. a directed edge from a
vertex a to a vertex b exists iff f(a) = b). The functional graph of a function is
composed of one or several components, each having its own internal cycle.

The following Theorems 1, 2 and 3 state several statistical properties of the
functional graph of a random function.

Theorem 1 ([5, Th. 2]). The expectations of the number of components, num-
ber of cyclic nodes (a node belonging to the cycle of its component), number of

136 J. Guo et al.

terminal nodes (a node without a preimage), and number of image nodes (a node
with a preimage) in a random mapping of size N have the asymptotic forms, as
N →∞:

(i) #Components: 1
2 logN

(ii) #Cyclic nodes:
√
πN/2

(iii) #Terminal nodes: e−1N

(iv) #Image nodes: (1− e−1)N

Starting from any node x, the iteration structure of f is described by a simple
path that connects to a cycle. The length of the path (measured by the number
of edges) is called the tail length of x (or the height of x) and is denoted by
λ(x). The length of the cycle is called the cycle length of x and is denoted μ(x).
Finally, the rho-length of x is denoted ρ(x) and represents the length of the non
repeating trajectory of x: ρ(x) = λ(x) + μ(x).

Theorem 2 ([5, Th. 3]). Seen from a random node in a random mapping of
size N , the expectations of the tail length, cycle length, rho length, tree size,
component size, and predecessors size have the following asymptotic forms:

(i) Tail length (λ):
√

πN/8

(ii) Cycle length (μ):
√
πN/8

(iii) Rho length (ρ = λ+μ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

Moreover, the asymptotic expectations of the giant component and its giant tree
have been provided in [6].

Theorem 3 ([6, VII.14]). In a random mapping of size N , the largest tree
and the largest component have expectations asymptotic, respectively, of 0.48∗N
and 0.7582 ∗N .

In this article, we will study the functional graph of a compression function
f , when a constant value M is used as message block input (i.e. the function f
is iterated with fixed messages block all equal to M). We will denote fM such a
function fM : {0, 1}l → {0, 1}l, and GfM its corresponding functional graph.

4 Selective Forgery Attacks

In this section, we show two types of generic selective forgery attacks against
HMAC. The attacker first commits on some message M, and then can interact
with the MAC oracle to output the valid tag T corresponding to M without
querying M. Note that the offline phase refers to the computations done be-
fore committing on M, while the online phase refers to the computations done
and the queries sent after committing on M. Moreover, we denote M (i) the i
successive concatenation of M .

Updates on Generic Attacks against HMAC and NMAC 137

4.1 Attack with a Very Constrained Target Message

The adversary will have to choose a long message, composed of O(2l/2) blocks.
Our method is a direct application of the distinguishing-H technique by [12].

Committing Phase (Offline)
1. As done in [12], draw the functional graph GfM of the underlying compression

function f where a fixed message blockM is used as the input message block,
and compute the size γ of the cycle of the largest component.

2. Select as target message for the selective forgery the message M = M (2l/2)‖
M ′‖M (2l/2+γ), where M ′ can be any message block such that M ′ �= M .

Challenging Phase (Online)

3. Query M (2l/2+γ)‖M ′‖M (2l/2) to obtain the tag T . Output the pair (M, T).

The complexity and success probability evaluation is exactly the same as
in [12] and we refer to the original article for more details. Informally, since a
least 2l/2 identical message blocks M are used as prefix and suffix, there is a
good chance that we enter in the main cycle of the functional graph GfM before
and after processing message block M ′. If this is true for M then it will be true

for the queried message M (2l/2+γ)‖M ′‖M (2l/2) as well, and both will be fully
synchronized inside the cycle, which means that they will end up to the same
tag value. The overall success probability is equal to 0.14, but if needed it can be
improved by iterating the fixed message block M a little bit more. The overall
attack complexity is O(2l/2) computations, which matches the proven lower-
bound of the HMAC construction. This attack is therefore tight and it closes the
discussions on the security gap of HMAC with regards to selective forgery notion.

Concerning the choice of the target message M by the adversary, we note
that he can freely choose the values of M and M ′, but he can also append any
prefix and suffix while preserving the validity of the attack. However, the target
message M eventually contains quite a long iteration of an identical message
block M , which constrains a lot the adversary’s freedom to choose it.

4.2 Attack with More Freedom Degrees on the Target Message

The padding scheme used in the underlying hash function is heavily related to
this analysis. Here, we suppose the MD-strengthening padding, which is widely
used in practice e.g. by SHA-1 or SHA-256 [20]. Its essence is appending the
message length information to the end of the message. See [20] for details.

In Section 4.2, we suppose that the underlying hash function is narrow-pipe,
i.e. l← n.

Our selective forgery attack uses a strategy similar to the previous generic
second-preimage attack for hash functions [2,10], which can generate a second-
preimage with a complexity of 2n−c for a target message of size 2c blocks. We
briefly recall previous second-preimage attacks on hash functions. The initial
idea is to try 2n−c random messages in order to find one that collides with one

138 J. Guo et al.

Fig. 2. (Top) Expandable mes-
sage ranging from d to d+2d−1
blocks. (Bottom) Simplified rep-
resentation

IV

pad(len)

f f n

Kin

Target message

K ipad

apply f
iteratively

Query 1:
Query 2:

f
Kout

K opad

f

IV
f n

Kin

K ipad

E
f f

Kout

K opad

f

find a match

make outer function
identical for all queries

length depending padding
must not exist here

Query :

Fig. 3. Strategy for computing a selective forgery
with more freedom degrees on the target message

value of the 2c internal chaining variables of the target message. However, the
pre-specified message length in the padding string prevents this naive attack.
Kelsey and Schneier showed that this issue can be solved with a multi-collision
consisting of messages with different block lengths [10]. The generated multi-
collision structure is called an expandable message. Informally, it generates a
collision between a 1-block message and a 1+20 = 2-block message, followed by
a collision between an 1-block message and a 1+21 = 3-block message. Similarly,
a collision between an 1-block message and a (1+2i)-block message is generated
for i = 0, 1, . . . , d−1. Then, any block length from d to d+2d−1 can be reached
by choosing the appropriate combination of the message blocks. An example is
shown in Figure 2.

Adapting the generic second-preimage attacks for hash functions to compute
selective forgery in the setting of MAC’s presents several main difficulties:

1. Due to the two equivalent secret keys in HMAC, the adversary cannot access
the internal state values after each message block is processed.

2. If the length of an input message changes, the MD-strengthening padding for
the inner function will be different and thus the result of the outer function
will change as well. This makes it difficult to cut an input message and
analyze only up to the exact middle (i-th) message block.

Attack Overview. Before going into details, we explain our strategy, which is
illustrated in Figure 3. To begin, we solve the first issue. In our attack, instead
of storing the internal state value after each message block (which is unknown
because of the secret key used in the MAC), the adversary queries the first i blocks

Updates on Generic Attacks against HMAC and NMAC 139

of the 2c-block target message for i = 1, 2, . . . , 2c−1, and stores the corresponding
tags. Namely, the first query is M0, the second query is M0‖M1, the third query
is M0‖M1‖M2, and so on. Let Xi be the unknown internal state value after
processing the i-th message block and Ti its corresponding tag value. This is
illustrated in top of Figure 3. The adversary later searches for a connection from
the target message to the 2n−c-block second message. Let X ′

j be the output of
the inner function (the internal state) and T ′

j its corresponding tag value for
the second message, where j = 1, 2, . . . , 2n−c. This is illustrated in bottom of
Figure 3. If we can make the function from Xi to Ti and the function from X ′

j

to T ′
j identical, a collision on the tag (i.e. Ti = T ′

j) suggests a collision of the
internal state (i.e. Xi = X ′

j) with a good probability. Therefore, a connection
from the second message to the target message can be found just by looking at
the tag outputs, without even knowing the internal state values.

We then explain our strategy to solve the second issue. As indicated in Fig-
ure 3, the function from Xi to Ti may process the padding block, which depends
on the input message length. This padding block issue can be avoided by selecting
the target message so that the padding string is embedded inside each message
block. Namely, message block Mi is chosen to be composed of Mi = mi‖pi
where mi can be any value, and where pi is the padding string corresponding to
a message of i+ 1 blocks plus |mi| bits.

With these few tricks, we can adapt the second-preimage attacks to the MAC

setting and the selective forgery attack can eventually be carried out successfully.

Attack Procedure. Our attack is divided into five steps: 1) selecting the target
message, 2) obtaining Ti, 3) building an expandable message, 4) obtaining T ′

j ,
and 5) forging the tag. Only the first step is done offline, the rest being online.

1. Selecting the Target Message. The attacker must commits on the tar-
get message M of length c + 2c + 1 blocks1, where c is a parameter for
the attack that we will determine later. More precisely, he will chooseM =
M−c‖ · · · ‖M−1‖M0‖ · · · ‖M2c−1‖M2c , where the first c blocksM−c‖ · · · ‖M−1

and the last block M2c can take any value of his choice. For the middle 2c

blocks from M0 to M2c−1, He will set each block as Mi ← mi‖pi, where
mi can be set to any value of his choice and where pi is the padding string
corresponding to 1+ c+ i blocks plus |mi| bits (here the “1+ c” corresponds
to the first 1 + c blocks (K ⊕ ipad)‖M−c‖ · · · ‖M−1 that will be handled by
the internal hash function).

2. Obtaining Ti. After committing on M, the online part can start:
1. Query M−c‖ · · · ‖M−1‖m0 and store the tag T1 in a list L.
2. Query M−c‖ · · · ‖M−1‖M0‖m1 and store the tag T2 in L.
i. Query M−c‖ · · · ‖M−1‖M0‖ · · · ‖Mi−2‖mi−1 and store the tag Ti in L for

i = 3, 4, . . . , 2c.

1 “c” comes from the minimum length of the expandable message and “+1” comes
from the last message block. The detailed reasoning for the “+1” is explained later.

140 J. Guo et al.

For the query at step i, due to the padding process the last message block
becomes mi−1‖pi−1 which is in fact Mi−1.

3. Building an Expandable Message. The adversary builds an expandable
message ranging from c blocks to c+2c− 1 blocks in order to later have the
possibility to freely adjust the length. Eprev will denote the shortest colliding
message discovered so far and is naturally initialized to a null string. Then,
the following procedure is iterated for i = 0, 1, . . . , c− 1:

3.1 Choose 2n/2 distinct 1-block messages Ei[u]. Query Eprev‖Ei[u] and
store the tags in a list Lu.

3.2 Choose 2n/2 distinct (2i + 1)-block messages E′
i[v]. Query Eprev‖E′

i[v]
and store the tags in a list Lv.

3.3 Find a match between Lu and Lv. Let û and v̂ be the matched indices.
3.4 To eliminate the false positives, find a collision by appending 2n/2 dis-

tinct single block messages after Eprev‖Ei[û]‖pû, where pû is the corre-
sponding padding bits. Let Ex and E′

x be two messages that lead to a
collision.

3.5 Query Eprev‖E′
i[v̂]‖pv̂‖Ex and Eprev‖E′

i[v̂]‖pv̂‖E′
x. If their tags collide,

Ei[û] and Ei[v̂] are internal collisions. Store Ei[û]‖pû and E′
i[v̂]‖pv̂ as the

i-th colliding pair of the expandable message. Otherwise, they are false
positive, and we continue the search.

3.6 Update Eprev ← Eprev‖Ei[û]‖pû.
The number of queries for Step 3.1 and Step 3.2 for the i-th block is (i+1) ·
2n/2 and (i + 1 + 2i) · 2n/2 respectively, which is unbalanced. For optimiza-
tion, we generate more shorter messages Eprev‖Ei[u] than longer messages
Eprev‖E′

i[v]. Let α and β be i + 1 and 2i + i + 1, respectively. We get bal-
ance between the two query costs by generating 2n/2+(log β−logα)/2 choices
of Eprev‖Ei[u] and 2n/2−(logβ−logα)/2 choices of Eprev‖E′

i[v]. The entire cost

is the sum of two costs over the c iterations,
∑c−1

i=0 2
(n/2+logβ+logα)/2+1,

which amounts to O(c · 2n/2+c/2) blocks of queries. The memory cost is
for storing tag values for Eprev‖E′

i[v] in which the number of generation
is smaller than the tag values for Eprev‖Ei[u]. Hence, the memory cost is

2n/2−(log(2i+i+1)−log(i+1))/2 When i ← c, the memory cost is O(2n/2−c/2).
The cost for eliminating false positives at Step 3.4 is (i + 1) · 2n/2, which is
smaller than Steps 3.1 and 3.2.

4. Obtaining T ′
j. The length of the expandable message is at minimum c blocks,

and we let M ′
E denote this shortest c-block instance of the expandable mes-

sage. Then, (Kin ⊕ ipad)‖M ′
E fits in 1 + c blocks. The adversary generates

2j distinct 1-block message M ′
j = m′

j‖p′ for j = 1, 2, . . . , 2n−c, where p′ is
the padding string for messages of 1 + c blocks plus |m′

j | bits long. Query
M ′

E‖m′
j for j = 1, 2, . . . , 2n−c, and store the received tag T ′

j in a list L′.
5. Forging the Tag. Because 2c Ti values are stored in L and 2n−c T ′

j values
are stored in L′, we expect to find a match between Ti and T ′

j. With a good
probability, the corresponding Xi and X ′

j are also colliding.
Then, the length of the expandable message is adjusted to be equal to

c+ i−1 blocks so that the length of the expandable message followed by the

Updates on Generic Attacks against HMAC and NMAC 141

block M ′
j can be the same as the length of M−c‖ · · · ‖M−1‖M0‖ · · · ‖Mi−1.

We denoteM ′ the message chunk build by concatenating the length-adjusted
expandable message and M ′

j .
These two messages have the same length and result in the same internal

state value. Thus, the adversary can append Mi‖Mi+1‖ · · · ‖M2c to the end
of M ′, and query to the oracle this newly formed message. The received tag
value T is also a valid tag for the selected target messageM.

Note that we need to ensure that the match is done before the last
message block ofM, so that we have at least 1 block appended to M ′. That
is the reason why we add the last block M2c .

Complexity Evaluation. We proceed the complexity evaluation of our attack.
First, one can see that Step 1 is negligible, while Step 2 requires to query c +
1, c + 2, . . . , c + 2c blocks, which amounts c · 2c + 2c · (2c + 1)/2 ≈ 22c blocks
in total. It also requires a memory sufficient to store 2c tags. In Step 3, the
cost is O(c · 2n/2+c/2) queries and O(2n/2−c/2) tags as explained previously, and
the memory cost is equivalent to O(2n/2−c/2). tags. Step 4 requires to query
(c+ 1) · 2n−c blocks and a memory to store 2n−c tags, while Step 5 is negligible
(one can combine Step 4 and Step 5 so that values generated at Step 4 are tested
immediately, which would render this part memoryless).

In total, the number of queries is about 22c + c · 2n/2+c/2 + (c + 1) · 2n−c

blocks, which is minimized to O(n · 22n/3) blocks when c = n/3. The memory
requirement is O(2c + 2n/2−c/2), which would become O(2n/3) when c = n/3.

5 Improved Universal Forgery Attacks

In this section, we show an improved generic universal forgery attack against
HMAC. We recall that for universal forgeries, the attacker is first challenged with
a messageM, and after interacting with the MAC oracle he must output the valid
tag T corresponding to M (without querying M to the oracle).

5.1 Revisiting Previous Universal Forgery Attacks on HMAC and NMAC

Recently, Peyrin and Wang published a universal forgery attack on iterative
hash function-based MACs [16]. Their attack use a special property: the height of
a node in a functional graph. We recall that in a functional graph each node x
has a unique path connecting it with a cycle node, and the length of this path is
called the height of x and is denoted as λ(x). A brief description of their attack
is provided below.

Let M = M1‖M2‖ · · · ‖M2s be the given challenge message (after padding)
for the universal forgery, and X = {X1, X2, . . ., X2s} be the successive internal
state values during the processing ofM in inner hash function, where Xi denotes
the internal state after M1‖ · · · ‖Mi has been processed.

The attacker computes the height in a functional graph of 2s1 (s1 < s) un-
known internal state values during the processing of the challenge message.

142 J. Guo et al.

Meanwhile he also collects 2l−s1 offline values with their heights in the same
functional graph. Note there is a good probability that one unknown internal
state value collides with one offline collected value, which of course have the
same height value. Then the attacker deduces the exact value of one of the un-
known internal state values by identifying such a collision pair. In details, the
attacker first matches the height values between the unknown internal state val-
ues and the offline collected values, which exponentially reduce the candidate
pairs, and then examines each remaining pair individually. Finally, Once an in-
ternal state value is recovered, a classical second-preimage-like attack trivially
allows to compute a universal forgery for the challenge.

However, Peyrin and Wang left an open problem, that is the height distribu-
tion in the set of the offline collected values. It is essential in order to obtain
tighter upper bound of the attack complexity, and thus deserves further inves-
tigation. Due to the limited space, we refer to [16] for detailed argument. Here
we mainly recall the procedure of collecting offline values and computing their
heights, and then illustrate why it is hard to analyze their height distribution.
Let GfM be the functional graph used in the attack, where V is a random message
block value chosen by the attacker. The procedure is described below.

1. Initialize a table Y to be empty.
2. Select a random node y1 such that y1 /∈ Y .
3. Iteratively compute yi = fV (yi−1) until either of two cases occur:

• yi collides with a previously stored nodes in Y ; or
• yi collides with a previous node yj (1 ≤ j ≤ i − 1) in the currently
computed chain, namely a new cycle is generated.

4. Compute the height values for all nodes y1, . . ., yi in the chain, and store
them in Y .

5. Repeat Steps 2− 4 until the number of nodes in Y becomes 2l−s1 .

As we see, it is quite a difficult task to analyze the height distribution in the
set Y because the nodes are not chosen uniformly (the process does not pick
each node individually and randomly, but it picks a node y1 and then picks all
the nodes in the chain from y1 to the cycle of y1’s component in the functional
graph GfM).

5.2 Our Observations

We have experimentally investigated the height distributions in the set Y , which
is generated by the procedure in Section 5.1. Denote by Yλ a subset of nodes
in Y that have the height value λ, and by |Yλ| the number of nodes in Yλ. In
our experiment, we mainly pay attention on finding the smallest height value
λ such that |Yλ| is asymptotically less than 2l/2−s, and observed an interesting
phenomenon. Although we did not manage to prove formally this observation,
we state this reasonable conjecture below.

Conjecture 1. If in total 2t distinct nodes, where l/2 ≤ t ≤ l holds, are collected
following the procedure in Section 5.1, then for any integer λ satisfying 1 ≤ λ ≤
2l/2/l, there are Θ(2t−l/2) nodes collected with the height value λ.

Updates on Generic Attacks against HMAC and NMAC 143

The extreme cases t = l/2 and t = l are easy to analyze. For the case t = l/2,
a randomly selected starting node has a height value Θ(2l/2) on average, and
then for each height value λ such that 1 ≤ λ ≤ 2l/2/l holds, Θ(1) nodes will
be collected. For the case t = l, researchers have already carried out extensive
studies on this topic. The set of all nodes with the same height λ is usually called
the λ-th stratum of the functional graph, and we denote it as Sλ. Particularly,
Mutafchiev [13] has proven the following theorem.

Theorem 4 ([13, Lemma 2]). If l → ∞ and λ = o(2l/2), the mean value of
the λ-th stratum Sλ is

√
π/2 ∗ 2l/2.

Since 2l/2/l = o(2l/2) indeed holds, we get that Conjecture 1 has actually already
been proven for the case t = l.

To further verify Conjecture 1, we performed experiments for small values of l
(namely we computed the smallest value of the subset size |Yi| for 1 ≤ i ≤ 2l/2/l),
which will be reported in full version of the paper.

5.3 Improved Universal Forgery Attacks

We present an improved universal forgery attack based on Conjecture 1. We
divide M into two parts: M1‖ · · · ‖M2s1 and M2s1+1‖ · · · ‖M2s with s1 ≤ s− 1.

1. (online) Recover the height value λ(Xi) of each Xi with 1 ≤ i ≤ 2s1 in the
functional graph GfM . For the interested reader, the exact procedure of this
step is referred to [16]. For each Xi the complexity of evaluating its height
is O(2l/2).

2. (online) Find a pair of 1-block message (m,m′) with a birthday-like collision
attack, such that M1‖ · · · ‖M2s1‖m and M1‖ · · · ‖M2s1‖m′ is a collision on
the inner hash function. The complexity is upper-bounded by O(2s1+l/2).
Moreover, it is important to notice that (m,m′) is a filter for all Xi with
1 ≤ i ≤ 2s1 as the relation below holds:

f(f(· · · f(Xi,Mi+1) · · · ,M2s1),m) = f(f(· · · f(Xi,Mi+1) · · · ,M2s1),m
′).

3. (offline) Use the same collection procedure with previous attacks [16] to
select 2l−s1 nodes and obtain their respective height in the functional graph
GfM . However, in contrary to the previous attack, we only store the nodes
with height λ satisfying 0 ≤ λ ≤ 2l/2/l. Moreover, for each such height λ, we
store exactly 2l/2−s1 nodes in Y in the end. According to Conjecture 1, we
just need to repeat the collection procedure by at most a constant number of
times. Thus, the complexity of this step is upper-bounded by O(2l−s1). It is
important to recall that we now know the height distribution for the selected
nodes in the set Y . More precisely, for each height λ such that 0 ≤ λ ≤ 2l/2/l
hold, there are 2l/2−s1 nodes in Y that have height λ.

4. (offline) Recover the value of some Xi by matching the elements between X
and Y . In details, for each Xi, if λ(Xi) ≤ 2l/2/l holds, then:

144 J. Guo et al.

4.1 Obtain the elements in Y that have the height value λ(Xi). Let them be
a subset of Y denoted as Yλ(Xi). We know that |Yλ(Xi)| = 2l/2−s1 holds.

4.2 For each node y in Y with height λ(Xi), check if the following holds

f(f(· · · f(y,Mi+1) · · · ,M2s1),m) = f(f(· · · f(y,Mi+1) · · · ,M2s1),m
′).

and if it does, then output the value of y as the value of Xi.

The complexity of this step for a single Xi is computed as (2s1−i)·|Yλ(Xi)| =
(2s1 − i) · 2l/2−s1 = 2l/2 − i · 2l/2−s1 and so the total complexity of this step
is given by

2s1∑
i=1

(2l/2 − i · 2l/2−s1) = O(2s1+l/2)

5. (offline) Based on the knowledge of some intermediate hash value Xi, con-
struct a second-preimage M′ of the challenge message M with respect to
the inner hash function. Note that once Xi is known, the following interme-
diate hash values Xj with i ≤ j ≤ 2s are also known. Then, previous generic
second-preimage attacks [10] can be applied to find M′ and the complexity
is known to be upper-bounded by O(2l−s).

6. (online) Query M′ to MAC and receive the tag T . Output T as the valid
tag for the challenge message M. The complexity of this step is obviously
upper-bounded by the block length of M′, that is O(2s).

Note that there are in total 2l−s1/l nodes in Y , and 2s1 intermediate hash
values in X . So a collision between an element in X and an element in Y occurs
with a probability around 1/l. Thus, we need to repeat the attack procedure
Θ(l) times in order to increase the success probability to a constant value.

Now, we can eventually summarize the complexity of the entire universal
forgery attack. We recall that s1 ≤ s− 1.

Step 1: O(2s1+l/2) Step 2: O(2s1+l/2) Step 3: O(2l−s1)

Step 4: O(2s1+l/2) Step 5: O(2l−s) Step 6: O(2s)

• For the case 0 < s < l/4, the complexity is dominated by Step 3. Set s1 = s−1
and then the total complexity is upper-bounded by O(l · 2l−s).

• For the case l/4 ≤ s ≤ 3l/4, set s1 = l/4 to make the complexities at Steps
1 and 3 equal, which optimizes the overall complexity. The complexity is
upper-bounded by O(l · 23l/4).

• For the case s > 3l/4, set s1 = l/4, and the complexity is dominated by Step
6, which is upper-bounded by O(l · 2s).

Overall, our attacks have significantly decreased the complexity of universal
forgery attack on iterated hash-based MACs from O(25l/6) (attack complexity
in [16]) to O(23l/4) by ignoring the polynomial factors.

Updates on Generic Attacks against HMAC and NMAC 145

6 Time-Memory Tradeoff for Key Recovery Attacks

In this section, we discuss time-memory tradeoff for key recovery attacks on NMAC

or for the equivalent key recovery attacks on HMAC. To start with, it has been
known that the complexity of the brute-force key recovery attack can be reduced
to 2l although the key size is 2l bits, by following a divide-and-conquer approach.
In short, the adversary firstly generates an inner collision, and then brute force
recovers the inner key by detecting if the collision can be reached for each key
candidate. After the inner key is recovered, the adversary moves to recover the
outer key by using the trivial brute-force attack based on the knowledge of the
inner key. While this attack does not use any precomputation, surprisingly it
is even more efficient than the straightforward application of Hellman’s time-
memory tradeoff [9], which uses 22l precomputation, and for key recovery phase
24l/3 computations and 24l/3 memory. This motivates us to investigate if there
are more efficient time-memory tradeoff for the key recovery attacks on HMAC

and NMAC with the usage of precomputation.
In the following, we will present our new time-memory tradeoff. Roughly

speaking, our tradeoff utilizes both the divide-and-conquer approach and the
Hellman’s time-memory tradeoff. With a precomputation, we firstly recover the
outer key Kout and then recover the inner key Kin. It is important to note that
both of the precomputation for Kout and Kin are performed before launching
any key recovery attacks for Kout and Kin.

6.1 Recovering Kout

Hellman’s tradeoff approach is not trivially applicable to recover Kout because
the input from the inner hash function is unknown due to the inner key. To
overcome this problem, we preset the output of the inner hash function to a
constant Xe. Thanks to the recent internal state recovery attack on hash-based
MAC [12] and the second preimage attack on hash function [10], we can always
successfully constructed a message which will produce an output of the inner
hash function, which is the fixed Xe.

The attack procedure is described as below.

Precomputation Phase
1. Randomly pick a chaining value X0 and iteratively compute Xi = fM (Xi−1)

for i = 1, . . . , O(2l/2) while storing all the Xi’s in a lookup table. Denote the
final internal state value as Xe.

2. Build Hellman’s precomputed lookup tables for the function fXe , i.e. the
compression function with Xe as the message block.

Key Recovery Phase
1. Recover the unknown internal state for a message m with O(2l/2) blocks

using the technique from [12] with 2l/2 time complexity and 2l/2 memory
requirement.

2. Append m with an expandable message ME of range [l/2, l/2 + 2l/2 − 1].

146 J. Guo et al.

3. Find a message block ML that links the expandable message to one of the
precomputed Xi’s.

4. Query the MAC oracle with message Mq = m‖ME‖ML‖M‖ · · · ‖M to obtain
the tag T , where ME’s length is chosen in the way that the overall length
of Mq becomes O(2l/2). Note that we shall choose the last block M so that
Mq is already a valid padded message, and this message Mq ensures that
the output of the inner layer will be Xe.

5. Use T as the input of Hellman’s key recovery phase to recover Kout.

In this attack, the first step of the precomputation phase and the second and
third steps of the key recovery phase are essentially performed to find a second-
preimage of the hash function for the given message M‖ · · · ‖M with prefix m,
with length 2l/3 and with the initial value changed to X0. The entire process
costs 22l/3 computation and 2l/3 memory. The second step of the precomputation
phase and the fifth step of the key recovery phase are exactly Hellman’s tradeoff
costing 2l precomputation, and 22l/3 online computations and memory. Overall,
Kout can be recovered with 22l/3 time and 22l/3 memory (both dominated by
the fifth step) with 2l precomputation.

6.2 Recovering Kin

Our time-memory tradeoff for recovering Kin is based on the height of nodes in
the functional graph. In short, during the precomputation phase, we collect a
set of nodes in a functional graph GfM with a certain pattern of heights. Then
during the key recovery phase, we first recover the height of Kin in GfM following
the procedure in [16], then derive a set of nodes, which have the same height
with Kin, from the collected nodes of the prcomputation phase, and checks if
Kin is inside these nodes or not. Moreover, we need to utilize more than one
functional graph in order to amplify the success probability to a constant value.

The attack procedure is described as below.

Precomputation Phase
1. Randomly pick an internal state value X0 and iteratively compute Xj =

fMi(Xj−1) until some Xj collides with a previous one. This allows to deduce
the height of X0 in the functional graph GfMi

. Store in table Ti the pair

(Xj , λ(Xj)) with λ(Xj) being a multiple of 2l/4 and λ(Xj) < 2l/2/l (omit if
the pair is already in Ti). Repeat the process for 2l/4 random X0 and sort
the table Ti according to the heights, and save the final Ti together with Mi.

2. Repeat the process for random Mi so as to obtain l × 2l/4 structures of
(Ti,Mi)’s.

Key Recovery Phase
1. Obtain the height of Kin using the technique from [16] using the functional

graph GfMi
. Let λ be the smallest multiple of 2l/4 greater than λ(Kin).

Retrieve all Xj ’s whose height in GfMi
is equal to λ. Test if fλ−λ(Kin)(Xj)

is the correct guess of Kin for all Xj in the collection of Ti. Repeat for all
Mi until Kin is recovered.

Updates on Generic Attacks against HMAC and NMAC 147

Following Conjecture 1, in the range that interests us (i.e. [1, 2l/2/l]), there
will be Θ(2l/4) nodes with the same height collected in each table. Since the
overall number of nodes at each height of interest is O(2l/2), the chance for
a collision to happen at each height is o(2−l/4 = 2l/4/2l/2), and we covered
1/l portion of all possible nodes, so the chance to find a match in one table
is o(l−1 · 2−l/4). Since there are l · 2l/4 independent tables, our key recovery
phase will be successful with a non-negligible probability. The time and memory
complexity for this attack is eventually 23l/4 with 2l precomputation.

7 Conclusion

In this paper, we presented selective forgery attacks, improved universal forgery
attacks, and time-memory tradeoff for key recovery attacks against the most
popular MAC constructions built upon iterative hash functions, such as HMAC

and NMAC. Our cryptanalysis methods are based on the extension of various
techniques including expandable messages, second-preimage attack, functional
graph-based forgery attacks, etc. Our work provides the community with a better
understanding of the security margin of iterative hash-based MACs.

Acknowledgments. The authors would like to thank the anonymous refer-
ees for their helpful comments, especially for suggesting the conversion from
the previous distinguishing-H attack into the selective forgery attack. Jian Guo,
Thomas Peyrin and Lei Wang were supported by the Singapore National Re-
search Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

2. Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D Dissertation, Princeton
University (January 1999)

3. Dinur, I., Leurent, G.: Improved Generic Attacks Against Hash-Based MACs and
HAIFA. In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 149–168. Springer, Heidelberg (2014)

4. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To Hash or Not to Hash
Again (In)Differentiability Results for H2 and HMAC. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg
(2012)

5. Flajolet, P., Odlyzko, A.M.: Random Mapping Statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

7. Guo, J., Sasaki, Y., Wang, L., Wang, M., Wen, L.: Equivalent Key Recovery Attacks
against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. In: Cid, C.,
Rechberger, C. (eds.) Fast Software Encryption. LNCS. Springer (to appear, 2014)

148 J. Guo et al.

8. Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool.
In: [18], pp. 21–40

9. Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on
Information Theory 26(4), 401–406 (1980)

10. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
Than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

11. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. Internet Engineering Task Force, IETF (1997),
http://www.rfc-editor.org/rfc/rfc2104.txt

12. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks against Hash-Based MACs.
In: [18], pp. 1–20

13. Mutafchiev, L.R.: The limit distribution of the number of nodes in low strata of a
random mapping. Statistics & Probability Letters 7(3), 247–251 (1988)

14. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery
Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M.
(eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013)

15. Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597.
Springer, Heidelberg (2012)

16. Peyrin, T., Wang, L.: Generic Universal Forgery Attack on Iterative Hash-Based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (2014)

17. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer,
Heidelberg (1996)

18. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 2013–
2019. Springer, Heidelberg (2013)

19. SBI Net Systems: MonoCrypt home page,
http://capg.sbins.co.jp/products/monocrypt/index.html.

20. U.S. Department of Commerce, National Institute of Standards and Technology:
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

21. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy: Recommendation for Applications Using Approved Hash Algorithms (Fed-
eral Information Processing Standards Publication 800-107) (2012), http://

csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf

22. Yasuda, K.: “Sandwich” Is Indeed Secure: How to Authenticate a Message with
Just One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

http://www.rfc-editor.org/rfc/rfc2104.txt
http://capg.sbins.co.jp/products/monocrypt/index.html
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf

Improved Generic Attacks

against Hash-Based MACs and HAIFA�

Itai Dinur1 and Gaëtan Leurent2

1 Département d’Informatique, École Normale Supérieure, Paris, France
Itai.Dinur@ens.fr

2 Inria, EPI SECRET, France
Gaetan.Leurent@inria.fr

Abstract. The security of HMAC (and more general hash-based MACs)
against state-recovery and universal forgery attacks was very recently
shown to be suboptimal, following a series of surprising results by Leurent
et al. and Peyrin et al.. These results have shown that such powerful at-
tacks require much less than 2� computations, contradicting the common
belief (where � denotes the internal state size). In this work, we revisit
and extend these results, with a focus on properties of concrete hash
functions such as a limited message length, and special iteration modes.

We begin by devising the first state-recovery attack on HMAC with a
HAIFA hash function (using a block counter in every compression func-
tion call), with complexity 24�/5. Then, we describe improved trade-offs
between the message length and the complexity of a state-recovery at-
tack on HMAC. Consequently, we obtain improved attacks on several
HMAC constructions used in practice, in which the hash functions limit
the maximal message length (e.g., SHA-1 and SHA-2). Finally, we present
the first universal forgery attacks, which can be applied with short mes-
sage queries to the MAC oracle. In particular, we devise the first universal
forgery attacks applicable to SHA-1 and SHA-2.

Keywords: Hash functions, MAC, HMAC, Merkle-Damg̊ard, HAIFA,
state-recovery attack, universal forgery attack, GOST, Streebog, SHA
family.

1 Introduction

MAC algorithms are an important symmetric cryptography primitive, used to
verify the integrity and authenticity of messages. First, the sender appends to
the message a tag, computed from the message and a key. The receiver can
recompute the tag using the key and reject the message when the computed tag
does not match the received one. The main security requirement of a MAC is
the resistance to existential forgery. Namely, after querying the MAC oracle to
obtain the tags of some carefully chosen messages, it should be hard to forge a
valid tag for a different message.

� Some of the work presented in this paper was done during Dagstuhl Seminar 14021.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 149–168, 2014.
c© International Association for Cryptologic Research 2014

150 I. Dinur and G. Leurent

One of the most widely used MAC algorithms in practice is HMAC, a MAC
construction using a hash function designed by Bellare, Canetti and Krawczyk in
1996 [4]. The algorithm has been standardized by ANSI, IETF, ISO and NIST,
and is widely deployed to secure internet communications (e.g. SSL, SSH, IPSec).
As these protocols are widely used, the security of HMAC has been extensively
studied, and several security proofs [3,4] show that it gives a secure MAC and a
secure PRF up to the birthday bound (assuming good properties of the underly-
ing compression function). At the same time, there is a simple existential forgery
attack on any iterative MAC with an �-bit state, with complexity 2�/2, matching
the security proof. Nevertheless, security beyond the birthday bound for stronger
attacks (such as state-recovery and universal forgery) is still an important topic.

Surprisingly, the security of HMAC beyond the birthday bound has not been
thoroughly studied until 2012, when Peyrin and Sasaki described an attack on
HMAC in the related-key setting [19]. Later work focused on single-key secu-
rity, and included a paper by Naito, Sasaki, Wang and Yasuda [17], which de-
scribed state-recovery attacks with complexity 2�/�. At Asiacrypt 2013, Leurent,
Peyrin and Wang [16] gave state-recovery attacks with complexity 2�/2, closing
the gap with the security proof. More recently, at Eurocrypt 2014, Peyrin and
Wang [20] described a universal forgery attack with complexity as low as 25�/6.
The complexity of the universal forgery attack was further improved to 23�/4

in [9], showing that even this very strong attack is possible with less than 2�

work.
These generic attacks have also been used as a first step to build specific

attacks against HMAC with the concrete hash function Whirlpool [11,10].
These very recent and surprising results show that more work is needed to

better understand the exact security provided by HMAC and hash-based MACs.

1.1 Our Results

In this paper, we provide several important contributions to the security analysis
of HMAC and similar hash-based MAC constructions. In particular, we devise
improved attacks when HMAC is used with many popular concrete hash func-
tions, and in several cases our attacks are the first to be applicable to HMAC
with the given hash function. Some results with concrete instantiations are sum-
marized in Table 1.

As a first contribution, we focus on the HAIFA [5] mode of operation, used in
many recent designs such as BLAKE [1,2], Skein [8], or Streebog [7]. The HAIFA
construction uses a block counter to tweak the compression functions, such that
they resemble independent random functions, in order to thwart some narrow-
pipe attacks (e.g. the second-preimage attack of Kelsey and Schneier [14]). In-
deed, the recent attacks against HMAC [16,20] use in a very strong way the
assumption that the same compression function is applied to all the message
blocks, and thus they cannot be applied to HAIFA. In this work, we present the
first state-recovery attack on HMAC using these hash functions, whose optimal
complexity is 24�/5.

Improved Generic Attacks against Hash-Based MACs and HAIFA 151

1 2�/4 2�/2
2�/2

23�/4

2�

Length of the messages

C
o
m
p
le
x
it
y

Merkle-Damg̊ard mode

Prev. [16]

New:

Attack 3

Attack 2

Section 6.2

1 2�/4 2�/2
2�/2

23�/4

2�

Length of the messages

HAIFA mode

New results:

Attack 1

Attack 4

Fig. 1. Trade-offs between the message length and the complexity

In an interesting application of our state-recovery attack on HAIFA (given in
the full version of this paper [6]), we show how to extend it into a key-recovery
attack on the new Russian standard Streebog, recovering the 512-bit key of
HMAC-Streebog with a complexity of 2410. This key recovery attack is similar
to the one of [16] for Merkle-Damg̊ard, and confirms its surprising observation:
adding an internal checksums in a hash function (such as Streebog) weakens
the design when used in HMAC, even for hash functions based on the HAIFA
mode.

As a second contribution of this paper, we revisit the results of [16], and give
a formal proof of the conjectures used in its short message attacks. Some of our
proofs are of broad interest, as they give insight into the behavior of classical
collision search algorithms for random functions. These proofs explain for the
first time an interesting phenomenon experimentally observed in several previous
works (such as [18]), namely, that the collisions found by such algorithms are
likely to belong to a restricted set of a surprisingly small size.

Then, based on our proofs, we describe several new algorithms with various
improved trade-offs between the message length and the complexity as shown in
Figure 1. As many concrete hash functions restrict the message size, we obtain
improved attacks in many cases: for instance, we reduce the complexity of a
state-recovery attack against HMAC-SHA-1 from 2120 to 2107 (see Table 1).

Finally, we focus on universal forgery attacks, and devise attacks using tech-
niques which are different from those of [20]. While the attack of [20] (and its
improvement in [9]) is much more efficient than exhaustive search, it requires, in
an inherent way, querying the MAC oracle with very long messages of about 2�/2

blocks, and thus has limited impact in practice. On the other hand, our attacks
can be efficiently applied with much shorter queries to the MAC oracle, and thus
have many more applications. In particular, we devise the first universal forgery
attack applicable to HMAC with SHA-1 and SHA-2 (see Table 1).

152 I. Dinur and G. Leurent

Table 1. Complexity of attacks on HMAC instantiated with some concrete hash func-
tions. The state size is denoted as �, and the maximum message length as 2s. For the
new results, we give a reference to the Attack number, or the full version of the paper.

State-recovery Universal forgery

Function Mode � s [16] New [20] New

SHA-1 MD 160 255 2120 2107 (2) N/A 2132 (6)
SHA-256 MD 256 255 2201 2152 (3) N/A 2228 (5,6)
SHA-512 MD 512 2118 2394 2282 (3) N/A 2453 (5,6)
HAVAL MD 256 254 2202 2154 (3) N/A 2229 (5,6)

BLAKE-256 HAIFA 256 255 N/A 2213 (4) N/A N/A
BLAKE-512 HAIFA 512 2118 N/A 2419 (4) N/A N/A
Skein-512 HAIFA 512 290 N/A 2419 (4) N/A N/A

Key recovery

[16] New[6]

Streebog HAIFA+σ 512 ∞ N/A 2419 (4) N/A 2419

1.2 Framework of the Attacks

In order to recover an internal state, computed by the MAC oracle during the pro-
cessing of some message, we use a framework which is similar to the framework of
[16]. Namely, we match states that are computed offline with (unknown) states
that are computed online (during the processing of messages by the MAC oracle).
However, as arbitrary states match with low probability (which does not lead to
efficient attacks), we only match special states, which have a higher probability
to be equal. These special states are the result of iterating random functions
using chains, computed by applying the compression function on a fixed mes-
sage from arbitrary initial states. In this paper, we exploit special states of two
types, which were also exploited in [16]: states on which two evaluated chains
collide, and states on which a single chain collides with itself to form a cycle.
Additionally, some of our attacks (and in particular our attacks on HAIFA) use
special states which are a result of the reduction of the image space that occurs
when applying a fixed sequence of random functions.

As described above, after we compute special states both online and offline,
we need to match them in order to recover an online state. However, since the
online states are unknown, the matching cannot be performed directly, and we
are forced to match the nodes indirectly using filters. A filter for a node (state)
is a property that identifies it with high probability, i.e., once the filters of
two nodes match, then the nodes themselves match with high probability. Since
the complexity of the matching steps in a state-recovery attack depend on the
complexity on building a filter for a node and testing a filter on a node, we are
interested in building filters efficiently. In this paper, we use two types of filters:
collision filters (which were also used in [16]) and diamond filters, which exploit
the diamond structure (proposed in [13]) in order to build filters for a large set

Improved Generic Attacks against Hash-Based MACs and HAIFA 153

of nodes with reduced average complexity. Furthermore, in this paper we use a
novel online construction of the diamond structure via the MAC oracle, whereas
such a structure is typically computed offline. In particular, we show that despite
the fact that the online diamond filter increases the complexity of building the
filter, the complexity of the actual matching phase is significantly reduced, and
gives improved attacks in many cases.

Outline. The paper is organized as follows: we begin with a description of
HMAC in Section 2. We then describe and analyze the algorithms we use to
compute special states in Section 3, and the filters we use in our attacks in
Section 4. Next, we present a simple attack against HMAC with a HAIFA hash
function in Section 5, and revisit the results of [16] in Section 6, presenting new
trade-offs for attacks on Merkle-Damg̊ard hash functions. In Section 7, we give
more complex attacks for shorter messages. Finally, in Section 8, we present our
universal forgery attacks with short queries, and conclude in Section 9.

2 HMAC and Hash-Based MACs

In this paper we study MAC algorithms based on a hash function, such as HMAC.
HMAC is defined using a hash function H as HMAC(K,M) = H(K⊕opad‖H(K⊕
ipad ‖M)). More generally, we consider a class of designs defined as:

x0 = IK xi+1 = hi(xi,mi) t = g(K,xp, |M |).

The message processing updates an internal state of size �, starting from a key-
dependant value IK , and the output is produced with a key-dependant finaliza-
tion function g. In particular, we note that the state update does not depend
on the key. Our description covers HMAC [4], Sandwich-MAC [23] and envelope-
MAC with any common hash function. The hash function can use the message
length in the finalization process, which is a common practice, and the rounds
function can depend on a block counter, as in the HAIFA mode. If the hash
function uses the plain Merkle-Damg̊ard mode, the round functions hi are all
identical (this is the model of previous attacks [16,20]).

In this work, we assume that the tag length n is larger than �, so that collision
in the tag result from collisions in the internal state with very high probability.
This greatly simplifies the description of the attacks, and does not restrict the
scope of our results. Indeed from a function MAC1(K,M) with an output of n bits,
we can build a function MAC2(K,M) with a 2n-bit output by appending message
blocks [0] and [1] to M , as MAC2(K,M) = MAC1(K,M ‖ [0]) ‖ MAC1(K,M ‖ [1]).
Our attacks applied to MAC2 can immediately be turned to attacks on MAC1.

3 Description and Analysis of Collision Search
Algorithms

In this section, we describe and analyze the collision search algorithms which are
used in our state-recovery attacks in order to compute special states. We then

154 I. Dinur and G. Leurent

analyze these algorithms and prove the conjectures of [16]. Lemma 1 proves
the first conjecture, while Lemma 3 proves the second conjecture. We also give
further results in the full version of the paper [6].

3.1 Collision Search Algorithms

We use standard collision search algorithms, which evaluate chains starting from
arbitrary points. Namely, a chain −→x starts from x0, and is constructed iteratively
by the equation xi = fi(xi−1) up to i = 2s for a fixed value of s ≤ �/2. We
consider two different types of collisions between two chains −→x and −→y : free-
offset collisions (xi = yj for any i, j, with all the fi’s being equal), and same-offset
collisions (xi = yi).

Free-Offset Collision Search. When searching offline for collisions in itera-
tions of a fixed random function f , we evaluate 2t chains starting from arbitrary
points, and extended to length 2s for s ≤ �/2.

Assuming that 2t · 2t+s ≤ 2� (i.e., 2t+ s ≤ �), then each of the chains is not
expected to collide with more than one other chain in the structure. This implies
that the structure contains a total of about 2t+s distinct points, and (according to
the birthday paradox) we expect it to contain a total of 2c = 22(t+s)−� collisions.
We can easily recover all of these collisions in O(2t+s) = O(2(c+�)/2) time by
storing all the evaluated points and checking for collisions in memory.

We note that we can reduce the memory requirements of the algorithm by
using the parallel collision search algorithm of van Oorschot and Wiener [18].
However, in this paper, we generally focus on time complexity and do not try to
optimize the memory complexity of our attacks.

Same-Offset Collision Search. While free-offset collisions are the most gen-
eral form of collisions, they cannot always be efficiently detected and exploited
by our attacks. In particular, they cannot be efficiently detected in queries to
the online oracle (as a collision between messages of different lengths would lead
to different values after the finalization function). Furthermore, if the hash func-
tion uses the HAIFA iteration mode, it is also not clear how to exploit free-offset
collisions offline, as the colliding chains do not merge after the collision (and
thus we do not have any easily detectable non-random property).

In the cases above, we are forced to only use collisions that occur at the same-
offset. When computing 2t chains of length 2s (for t not too large), a pair of
chains collide at a fixed offset i with probability 2−�, and thus a pair of chains
collide with probability 2s−�. As we have 22t pairs of chains, we expect to find
about 22t+s−� fixed-offset collisions.

Locating collisions online. Online collisions are detected by sorting and compar-
ing the tags obtained by querying the MAC oracle with chains of a fixed length 2s.
If we find two massages such that MAC(M) = MAC(M ′), we can easily compute
the message prefix that gives the (unknown) collision state, as described in [16].
Namely, if we denote by M|i the i-block prefix of M , then we find the smallest i
such that MAC(M|i) = MAC(M ′

|i) using binary search. This algorithm queries the

Improved Generic Attacks against Hash-Based MACs and HAIFA 155

MAC oracle with O(s) messages of length O(2s), and thus the time complexity of
locating a collision online is s · 2s = Õ(2s).

3.2 Analysis of the Collision Search Algorithms

In this section, we provide useful lemmas regarding the collision search algo-
rithms described above. These lemmas are used in order to estimate the colli-
sion probability of special states that are calculated by our attacks and thus to
bound their complexity. Lemmas 1 and 2 can generally be considered as com-
mon knowledge in the field, and their proofs are given in the full version of
this paper [6]. Perhaps, the most interesting results in this section are lemmas 3
and 4. These lemmas show that the probability that our collision search algo-
rithms reach the same collision twice from different arbitrary starting points, is
perhaps higher than one would expect. This phenomenon was already observed
in previous works such as [18], but to the best of our knowledge, this is the first
time that this lemma is formally proven. As the proof of lemma 4 is very similar
to that of lemma 3, it is given in the full version of this paper [6].

Lemma 1. Let s ≤ �/2 be a non-negative integer. Let f1, f2, . . . , f2s be a se-
quence of random functions over the set of 2� elements, and gi � fi ◦ . . . ◦ f2 ◦ f1
(with the fi being either all identical, or independently distributed). Then, the
images of two arbitrary inputs to g2s collide with probability of about 2s−�, i.e.
Prx,y [g2s(x) = g2s(y)] = Θ(2s−�).

Lemma 2. Let f1, f2, . . . , f2s be a sequence of random functions, then the image
of the function g2s � f2s ◦ . . . ◦ f2 ◦ f1 contains at most Õ(2�−s) points.

Lemma 3. Let x̂ and ŷ be two random collisions (same-offset or free-offset)
found by a collision search algorithm using chains of length 2s, with a fixed
�-bit function f such that s < �/2. Then Pr [x̂ = ŷ] = Θ(22s−�).

Proof. First, we note that we generally have 4 cases to analyze, according to
whether x̂ and ŷ were found using a free-offset, or a same-offset collision search
algorithm. However, the number of cases can be easily reduced to 3, as we have
2 symmetric cases, where one collision is free-offset, and the other is same-offset.
In this proof, we assume that x̂ is a same-offset collision and ŷ is a free-offset
collision (this is the configuration used in our attacks). However, the proof can
easily be adapted to the 2 other different settings.

We denote the starting points of the chains which collide on x̂ by (x0, x
′
0),

and the actual corresponding colliding points of the chains by (xi, x
′
i), and thus

f(xi) = f(x′
i) = x̂. In the following, we assume that 0.25·2s ≤ i ≤ 0.75·2s, which

occurs with probability about 1/2 since the offset of the collision x̂ is roughly
uniformly distributed in the interval [0, 2s].1 This can be shown using Lemma 1,
as increasing the length of the chains, increases the collision probability by the
same multiplicative factor.

1 The assumption simplifies the proof of the lower bound on the collision probability.

156 I. Dinur and G. Leurent

Fixing (x0, x
′
0), we now calculate the probability that 2 chains of length 2s,

starting from arbitrary points (y0, y
′
0), collide on x̂. This occurs if y0, y1, . . . , y2s−i

collides with x0, x1, . . . , xi, and y′0, y′1, . . . , y′2s−i collides with x′
0, x

′
1, . . . , x

′
i (or

vise-versa), which happens with probability Θ(22(2s−�)) (assuming 0.25 · 2s ≤
i ≤ 0.75 · 2s, all chains are of length Θ(2s)). This lower bounds the collision
probability on x̂ by Ω(22(2s−�)). At the same time, the collision on x̂ is also
upper bounded by O(22(2s−�)), as all 4 chains are of length O(2s). We conclude
that the collision probability on x̂ is Θ(22(2s−�)).

On the other hand, the probability that the chains starting from (y0, y
′
0) collide

on any point is Θ(22s−�). Assuming that the collision search algorithm evaluates
2t chains such that 2t+s ≤ �, then each evaluated chain is not expected to collide
with more than one different chain, and the pairs of chains can essentially be
analyzed independently.

We denote by A the event that the chains starting from (y0, y
′
0) collide on x̂,

and by B the event that the chains starting from (y0, y
′
0) collide. We are inter-

ested in calculating the conditional probability Pr[A|B], and we have Pr[A|B] =
Pr[A

⋂
B]/Pr[B] = Pr[A]/Pr[B] = Θ(22(2s−�)−(2s−�)) = Θ(22s−�), as required.

��

Lemma 4. Let x̂ and ŷ be two arbitrary same-offset collisions found, respec-
tively, at offsets i and j by a collision search algorithm using chains of fixed
length 2s, with independent �-bit functions fi, such that s < �/2. Then
Pr [(x̂, i) = (ŷ, j)] = Θ(2s−�). Furthermore, given that i = j, we have Pr [x̂ = ŷ] =
Θ(22s−�).

4 Filters

We describe the two types of filters that we use in our attacks in order to match
(known) states computed offline with unknown states computed online.

4.1 Collision Filters

A simple filter that we use in some of our attacks was also used in the previous
work of [16]. We build a collision filter ([b], [b′]) for a state x offline by finding
message blocks ([b], [b′]) such that the states, obtained after processing these
blocks from x, collide. In order to build this filter, we find a collision in the
underlying hash function by evaluating its compression function for about 2�/2

different messages blocks from the state x. In order to test this filter online on
the unknown node x′ obtained after processing a message m′, we simply check
whether the tags of m′ ‖ [b] and m′ ‖ [b′] collide. As the tags of m′ ‖ [b] and m′ ‖ [b′]
collide with probability 2−n < 2−� if the state obtained after processing m′ is
not x, we can conclude that the collision filter identifies the state x with high
probability.

The complexity of building a collision filter offline is O(2�/2). Testing the filter
online requires querying the MAC oracle with m′ ‖ [b] and m′ ‖ [b′], and assuming
that the length of m′ is 2s

′
, then it requires O(2s

′
) time.

Improved Generic Attacks against Hash-Based MACs and HAIFA 157

4.2 Diamond Filters

In order to build filters for 2t nodes, we can build a collision filter for each one of
them separately, requiring a total of O(2t+�/2) time. However, this process can
be optimized using the diamond structure, introduced by Kelsey and Kohno in
the herding attack [13]. We now recall the details of this construction.

The diamond structure is built from a set of 2t states xi, constructing a set of
messages mi of length O(t), such that iterating the compression function from
any state xi using messagemi leads to a fixed final state y. The structure is built
in O(t) iterations, where each iteration processes a layer of nodes, and outputs
a smaller layer to be processed by the next iteration. This process terminates
once the layer contains only one node, which is denoted by y.

Starting from the first layer with 2t points, we evaluate the compression func-
tion from each point xi with about 2(�−t)/2 random message blocks. This gives
a total of about 2(�+t)/2 random values, and we expect them to contain about
2t collisions. Each collision allows to match two different values xi, xj and to
send them to a common value in the next layer, such that its size is reduced to
about 1/2. The message mi for a state xi is constructed by concatenating the
O(t) message blocks on its path leading to y. According to the detailed analysis
of [15], the time complexity of building the structure is is Θ(2(�+t)/2).

Once we finish building the diamond structure, we construct a standard colli-
sion filter for the final node y, using some message blocks ([b], [b′]). Thus, building
a diamond filter offline for 2t states requires O(2(�+t)/2) time, which is faster than
the O(2t+�/2) time required to build a collision filter for each node separately.

In order to test the filter for a state xi (in the first layer of the diamond
structure), on the unknown node x′ obtained after processing a message m′

online, we simply check whether the tags of m′ ‖mi ‖ [b] and m′ ‖mi ‖ |[b′] collide.
Assuming that the length of m′ is 2s

′
, then the online test requires O(t + 2s

′
)

time.

Online Diamond Filter. A novel observation that we use in this paper, is
that in some attacks it is more efficient to build the diamond structure online
by calling the MAC oracle. Namely, we construct a diamond structure for the
set of 2t states xi, where (the unknown) xi is a result of querying the MAC

oracle with a message Mi. Note the online construction is indeed possible, as
the construction algorithm does not explicitly require the value of xi, but rather
builds the corresponding mi by testing for collisions between the states (which
can be detected according to collisions in the corresponding tags). However,
testing for collisions online requires that all the messages Mi, for which we build
the online diamond filter, are of the same length. Assuming that the messagesMi

are of length 2s, this construction requires O(2s+(t+�)/2) calls to the compression
function.

In order to test the filter for an unknown online state xi, on a known state x′,
we simply evaluate the compression function from x′ on mi‖ [b] and mi‖|[b′], and
check whether the resulting two states are equal. Thus, the offline test requires
O(t) time.

158 I. Dinur and G. Leurent

5 Internal State-Recovery for NMAC and HMAC with HAIFA

In this section, we describe the first internal state-recovery attack applicable to
HAIFA (which can also be used as a distinguishing-H attack). Our optimized
attack has a complexity of Õ(2�−s) using messages of length 2s, but this only
applies with s ≤ �/5; the lowest complexity we can reach is 24�/5. We note
that attacks against HAIFA can also be used to attack a Merkle-Damg̊ard hash
function; this gives more freedom in the queried messages by removing the need
for long series of identical blocks as in [16].

In this attack, we fix a long sequence of random functions in order to reduce
the entropy of the image states, based on Lemma 1. We then use an online
diamond structure to match the states computed online with states that are
compute offline. The detailed attack is as follows:

Attack 1: State-recovery attack against HMAC with HAIFA

Complexity Õ(2�−s), with s ≤ �/5 (min: 24�/5)

1. (online) Fix a messageC of length 2s. Query the oracle with 2u messages
Mi = [i]‖C. Build an online diamond filter for the set of unknown states
X, obtained after Mi.

2. (offline) Starting from 2t arbitrary starting points, iterate the compres-
sion function with the fixed message C.

3. (offline) Test each image point x′, obtained in Step 2, against each of
the unknown states ofX . If a match is found, then with high probability
the state reached after the corresponding Mi is x

′.

Ik
1 2s

2u

[i] C

Online structure

2s

2t $

C

Offline structure

We detect a match between the grey points () using the diamond test built online.

Complexity Analysis. In Step 3, we match the set X of size 2u (implicitly
computed during Step 1), and a set of size 2t (computed during Step 2). We
compare 2t+u pairs of points, and each pair collides with probability 2s−� ac-
cording to Lemma 1. Therefore, the attack is successful with high probability if
t + u ≥ � − s. We now assume that t = � − s − u, and evaluate the complexity
of each step of the attack:

Step 1: 2s+u/2+�/2 Step 2: 2s+t = 2�−u Step 3: 2t+u · u = 2�−s · u

The lowest complexity is reached when all the steps of the attack have the same
complexity, with s = �/5. More generally, we assume that s ≤ �/5 and we set

Improved Generic Attacks against Hash-Based MACs and HAIFA 159

u = s. This give an attack with complexity Õ(2�−s) since s + u/2 + �/2 =
3s/2 + �/2 ≤ 4�/5 ≤ �− s.

6 New Tradeoffs for Merkle-Damg̊ard

In this section, we revisit the results of [16], and give more flexible tradeoffs for
various message lengths.

6.1 Trade-Off Based on Iteration Chains

In this attack, we match special states obtained using collision, based on Lemma 3.
This attack extends the original tradeoff of [16] by using two improved techniques:
first, while [16] used a fixed-offset offline collision search, we use a more general,
free-offset offline collision search, which enables us to find collisions more effi-
ciently. Second, while [16] used collision filters, we use a more efficient diamond
filter.

Attack 2: Chain-based trade-off for HMAC with Merkle-Damg̊ard

Complexity O(2�−s), with s ≤ �/3 (min: 22�/3)

1. (offline) Use free-offset collision search from 2�−2s starting points with
chains of length 2s, and find 2c collisions (denoted by the set X̂).

2. (offline) Build a diamond filter for the points in X̂.
3. (online) Query the oracle with 2t messages Mi = [i] ‖ [0]2s . Sort the

tags, and locate 1 collision.
4. (online) Use a binary search to find the message prefix giving the un-

known online collision state ŷ.
5. (online) Match the unknown online state ŷ with each offline state in X̂

using the diamond filter. If a match with x̂ ∈ X̂ is found, then with
very high probability ŷ = x̂.

2s

2�−2s

{2c collisions}

$

[0]∗

Offline structure

Ik
2s1

2t

[i] {1 collision}[0]∗

Online structure

We generate collisions offline using free-offset collision search, build a diamond
filter for the collision points (), and recover the state of an online collision.

Complexity Analysis. In Step 1, we use free-offset collision search with 2�−2s

starting points and chains of length 2s, and thus according to Section 3.1, we
find 2�−2s collisions (i.e. c = �−2s). Furthermore, according to Lemma 3, ŷ ∈ X̂
with high probability, in which case the attack succeeds.

160 I. Dinur and G. Leurent

In Step 3, we use fixed-offset collision search with 2t starting points and chains
of length 2s, and thus according to Section 3.1, we find 22t+s−� collisions. As we
require one collision, we have t = (�− s)/2. We now compute the complexity of
each step of the attack:

Step 1: 2�/2+c/2 = 2�−s Step 2: 2�/2+c/2 = 2�−s

Step 3: 2t+s = 2(�+s)/2 Step 4: s · 2s

Step 5: 2c+s = 2(�+s)/2

With s ≤ �/3, we have (� + s)/2 ≤ 2/3 · � ≤ � − s, and the complexity of the
attack is O(2�−s).

6.2 Trade-Off Based on Cycles

We also generalize the cycle-based state-recovery attack of [16], which uses mes-
sages of length 2�/2 and has a complexity of 2�/2. Our attack uses (potentially)
shorter messages of length 2s for s ≤ �/2, and has a complexity of 22�−3s. The
full attack and its analysis is given in the full version of this paper [6].

7 Shorter Message Attacks

In this section, we describe more complex attacks that can reach a tradeoff of
2�−2s, for relatively small values of s. These attacks are useful in cases where
the message length of the underlying hash function is very restricted (e.g. the
SHA-2 family). In order to reach a complexity of 2�−2s, we combine the idea of
building filters in the online phase with lemmas 3 and 4.

In the case of Merkle-Damg̊ard with identical compression functions, we reach
a complexity of 2�−2s for s ≤ �/8, i.e. the optimal complexity of this attack is
23/4·�. With the HAIFA mode of operation, we reach a complexity of 2�−2s for
s ≤ �/10 i.e. the optimal complexity of 24/5·�, matching the optimal complexity
of the attack of Section 5.

7.1 Merkle-Damg̊ard

Attack 3: Short message attack for HMAC with Merkle-Damg̊ard

Complexity Õ(2�−2s), with s ≤ �/8 (min: 23�/4)

1. (online) Query the oracle with 2u messages Mi = [i] ‖ [0]2s , and locate
2c1 collisions.

2. (online) For each collision (i, j), use a binary search to find the distance
(offset) μij from the starting point to the collision, and denote the
(unknown) state reach after Mi (or Mj) by yij .
Denote the set of all yij (containing about 2c1 states) by Y . Build an
online diamond filter for all the states in Y .

Improved Generic Attacks against Hash-Based MACs and HAIFA 161

3. (offline) Run a free-offset collision search algorithm from 2t starting
points with chains of length 2s, and locate 2c2 collisions.

4. (offline) For each offline collision x̂, match its iterates with all points
yij ∈ Y : iterate the compression function with a zero message starting
from x̂ (up to 2s times), and match iterate 2s − μij (i.e., f2s−μij (x̂))
with yij using the diamond filter. If a match is found, then with high
probability yij = f2s−μij (x̂).

Ik
2s1

2u

[i]
{2c1 collisions}[0]∗

Online structure

2t

2s

{2c2 collisions}

$

[0]∗

Offline structure

We generate collisions and build a diamond filter online, and match them with
collisions found offline.

Complexity Analysis. Using similar analysis to Section 6.1, we have c1 =
2u + s − � (as a pair of chains collide at the same offset with probability 2s−�,
and we have 22u such pairs) and c2 = 2t + 2s − �. The attack succeeds if the
sets of collisions found online and offline intersect. According to Lemma 3, this
occurs with high probability if c1 + c2 ≥ � − 2s. In the following, we assume
c1 + c2 = �− 2s.

Step 1: 2u+s = 2s/2+c1/2+�/2 Step 2: 2s+c1/2+�/2 = 2�−c2/2

Step 3: 2t+s = 2�/2+c2/2 Step 4: 2c2+s + 2c1+c2 · c1 = 2c2+s + 2�−2s · c1

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = �/2.
This reduces the complexity to:

Step 1: 23�/4−s/2 Step 2: 23�/4

Step 3: 23�/4 Step 4: 2�/2+s + 2�−2s · �/2

With s ≤ �/8, we have �/2+s ≤ 5�/8 and 3�/4 ≤ �−2s; therefore the complexity
of the attack is Õ(2�−2s).

7.2 HAIFA

Since the attack is very similar to the previous attack on Merkle-Damg̊ard, we
only specify the differences between the attacks.

Attack 4: Short message attack for HMAC with HAIFA

Complexity Õ(2�−2s), with s ≤ �/10 (min: 24�/5)

162 I. Dinur and G. Leurent

• In Step 1 of Attack 3, we fix an arbitrary suffix C of length 2s, and use
Mi = [i] ‖ C.

• Correspondingly, in Step 3, we use a fixed-offset collision search by
iterating the compression function with C from 2t starting points.

• In Step 4, we match each offline collision x̂, only with online collisions
that occur at the same offset as x̂. Thus, for each x̂, we test only the
end point of its chain (at offset 2s) with the corresponding states in Y .
Note that each x̂ is matched with 2c1 · 2−s states in Y on average.

Ik
2s1

2u

[i]
{2c1 collisions}C

2t

2s

{2c2 collisions}

$

C

Offline structureOnline structure

We generate collisions and build an online diamond filter, and match them with
offline collisions using the collision offset as a first filter.

Analysis. The attack succeeds in case there is a match between the set of
collisions detected online and offline, that occurs at the same offset. According
to Lemma 4, this match occurs with high probability when c1 + c2 ≥ �− s, and
thus we assume that c1 + c2 = �− s.

Complexity Analysis. Similar to the analysis of the previous attacks, we have
c1 = 2u+ s− � and c2 = 2t+ s− �.

Step 1: 2u+s = 2s/2+c1/2+�/2 Step 2: 2s+c1/2+�/2 = 2�−c2/2+s/2

Step 3: 2s+t = 2s/2+c2/2+�/2 Step 4: 2c1+c2−s · u = 2�−2s · u

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = �/2.
This reduces the complexity to:

Step 1: 23�/4 Step 2: 23�/4+s/2 Step 3: 23�/4+s/2 Step 4: 2�−2s · 3�/4

With s ≤ �/10, we have 3�/4+ s/2 ≤ 4�/5 ≤ �− 2s; therefore the complexity of
the attack is Õ(2�−2s).

8 Universal Forgery Attacks with Short Queries

We now revisit the universal forgery attack of Peyrin and Wang [20]. In this
attack, the adversary receives a challenge message of length 2t at the beginning of
the game, and interacts with the oracle in order to predict the tag of the challenge.
The attack of [20] has two phases, where in the first phase, the adversary recovers
the internal state of the MAC at some step during the computation on the
challenge. In the second phase, the adversary uses a second-preimage attack on

Improved Generic Attacks against Hash-Based MACs and HAIFA 163

long messages in order to generate a different message with the same tag as the
challenge.

The main draw back of the attack of Peyrin and Wang (as well as its recent
improvement [9]) is that its first phase uses very long queries to the MAC oracle,
regardless of the length of the challenge. In this section, we use the tools de-
veloped in this paper to devise two universal forgery attacks which use shorter
queries to the MAC oracle. Our first universal forgery attack has a complexity of
2�−t for t ≤ �/7, using queries to the MAC oracle of length of at most 22t (which
is much smaller than 2�/2 for any t ≤ �/7). Thus, the optimal complexity of this
attack is 26�/7, obtained with a challenge of length at least 2�/7. Our second uni-
versal forgery attack has a complexity of only 2�−t/2. However, it is applicable
for any t ≤ 2�/5, using queries to the MAC oracle of length of at most 2t. Thus,
this attack has an improved optimal complexity of 24�/5, which is obtained with
a challenge of length at least 22�/5.

In order to devise our attacks, we construct different state-recovery algorithms
than the one used in [20], but reuse its second phase (i.e., the second-preimage
attack) in both of the attacks. Thus, in the following, we concentrate of the state-
recovery algorithms, and note that since the complexity of the second phase of
the attack is 2�−t for any value of t, it does not add a significant factor to the
time complexity.

8.1 A Universal Forgery Attack Based on the Reduction of the
Image-Set Size

Directly matching the 2t states of the challenge message with some states evalu-
ated offline is too expensive. Thus, we first reduce the number of nodes we match
by computing and matching the images of the states under iterations of a fixed
function. After matching the images, we can efficiently match and recover on the
states of the challenge message.

We denote the challenge message as C, and the first κ blocks of C as C|κ. The
details of the first phase of the attack are as follows.

Attack 5: Universal forgery attack based on the reduction of the
image-set size (first phase)
Complexity Õ(2�−t), with t ≤ �/7 (min: 26�/7)

1. (online) Build a collision filter for the last (unknown) state z obtained
during the computation of MAC(C).

2. (online) Query the oracle with 2t messages Mi = C|i ‖ [0]2
2t−i. Denote

the set of (unknown) final states of the chains by Y . Build a diamond
filter for all states in Y .

3. (offline) Compute a structure of chains containing a total of 2�−t points.
Each chain is extended to a maximal length of 22t+1, or until it collides
with a previous chain. Consider the set X of the 22t final states of all

164 I. Dinur and G. Leurent

the chains. According to Lemma 2, this set contains (no more than)

about 2�−2t distinct points, as all the points are in the image of f22t .
4. (offline) Match all the points x ∈ X with the 2t points in Y . For each

match between x ∈ X and an online state in Y (obtained using Mi),
restart the chains that merge into x, in order to locate all the points at
a (backward) distance of 22t − i from x. Denoted this set by Cand(x).

5. (offline) Test the candidates: for each x′ ∈ Cand(x), compute the state
obtained by following the last 2t − i blocks of the challenge message,
and match this state with z using the collision filter. When a match is
found, the state obtained after C|i is x′ with high probability.

Ik
2t 22t

2t
C

Online structure Offline structure

22t 22t

{2�−t points}
{2�−2t points}

We efficiently detect a match between the challenge points () and the first part
of the offline structure, by first matching X () and Y ().

Analysis. The structure of Step 3 contains 2�−t points, and thus according
to the birthday paradox, it covers one of the 2t points of the challenge with
high probability. In this case, the attack will successfully recover the state of the
covered point with high probability, as we essentially have in the offline set X
almost all 2�−2t images of f22t (including the image of the covered point).

As X contains almost all 2�−2t images of f22t , we expect a match for every
point in Y in Step 3 (a total of 2t matches). In order to calculate the expected size
of Cand(x) in Step 5, we first calculate the expected number of the endpoints of
the chains computed in Step 3 of the attack. As the chains are of length of 22t+1,
we expect that after evaluating the first 2�−4t chains, a constant fraction of the
chains will not collide with any other chain, and thus we have (at least) about
2�−4t endpoints. Since the structure contains a total of 2�−t points, each endpoint
is a root of a tree of average size of (at most) 2�−t−(�−4t) = 23t. This gives about
23t−2t = 2t candidates nodes Cand(x) at a fixed (backwards) distance (note that
each x′ ∈ Cand(x) is extended with a message of length about 2t, according to
the challenge).

Complexity.

Step 1: 2�/2+t Step 2: 22t+t/2+�/2 = 2�/2+5t/2

Step 3: 2�−t Step 4: t · 2�−t

Step 5: 23t

Improved Generic Attacks against Hash-Based MACs and HAIFA 165

With t ≤ �/7, we have �/2 + 5t/2 ≤ 6�/7 ≤ � − t; the complexity of the first
phase of the universal forgery attack is Õ(2�−t), and as the second phase has a
similar complexity, this is also the complexity of the full attack.

8.2 A Universal Forgery Attack Based on Collisions

In this attack, we devise a different algorithm which recovers one of the states
computed during the execution of the challenge message. The main idea here is
to find collisions between chains evaluated online, and directly match them with
collisions obtained offline. This is different from the previous algorithm, which
matched the endpoints of the chains, rather than nodes on which the collisions
occur. Once the collisions are matched, similarly to the previous algorithm, we
obtain a small set of candidate nodes, which we match with the actual challenge
nodes.

Attack 6: Universal forgery attack based on collisions (first phase)

Complexity O(2�−t/2), with t ≤ 2�/5 (min: 24�/5)

1. (online) Query the oracle with 2t messages Mi = C|i ‖ [0]2
t+1−i, and

sort the tags.
2. (online) Execute state-recovery Attack 2 using messages of length

min(2t, 2�/3), and denote by W a message of length 2t whose last com-
puted state is recovered.a

3. (online) Query the oracle with 2v messagesWj = W ‖ [j]‖02t−1, sort the
tags, and locate 2c collisions with the tags computed using the messages
Mi. For each collision of tags between Mi and Wj , find the first collision
point using binary search (note that the state of the collision is known,
as the state obtained after processingW is known). Store all the collision
states x̂ij in a sorted list, each one next to its distance dij from C|i.

4. (offline) Compute a structure of chains containing a total of 2�−c points.
Each chain is extended to a maximal length of 2t+1, or until it collides
with a previous chain.

5. (offline) For each offline point in the structure y which collides with an
online collision x̂ij (i.e., y = x̂ij), retrieve candidate points Cand(y) for
the state obtained after processing C|i. This is done by computing the
dij -preimage points of y in the structure (i.e., the points which are at
distance dij backwards from y). Assume that for each y = x̂ij , we have
an average of 2u candidate points, and thus we have a total of at most
2c+u candidate points to test in the set

⋃
ij(Cand(y = x̂ij)). Build a

diamond filter for all the 2c+u candidate points.
6. (online) For each (x̂ij , y), match the state obtained after C|i with all

the corresponding 2u candidate points in Cand(y) using the diamond
filter. If a match is found, then with high probability the state obtained
after processing C|i is equal to the tested candidate.

166 I. Dinur and G. Leurent

Ik
2t 2t

2t
C

[0]∗

Ik

2v

2t 1 2t−1

W

[i] [0]∗

Online structure

{2c collisions}

Offline structure

2t 2t

{2�−c points}
{2�−t points}

We match the known points in X () and Y () in order to detect a match between
the challenge points () and the first part of the offline structure.

a In case t > �/3, we first recover the last computed state of a message of size
2�/3, and then complement it arbitrarily to a length of 2t.

Analysis. In Step 3 of the attack, we find 2c collisions between pairs of chains,
where the prefix of one chain in each pair is some challenge prefix C|i. Thus, the
2c collisions cover 2c such challenge prefixes, and moreover, the offline structure,
computed in Step 4, contains 2�−c points. Thus, according to the birthday para-
dox, with high probability, the offline structure covers one of the states obtained
after the computation of a prefix C|i, such that the message Mi collides with
some Wj on a point x̂ij in Step 3. Since the state obtained after the computation
of C|i is covered by the offline structure, then x̂ij is also covered by the offline
structure, and thus the state corresponding to C|i will be matched as a candidate
and recovered in Step 6.

In order to calculate the value of c, note that the online structure, computed in
Step 1, contains 2t chains, each of length at least 2t, and thus another arbitrary
chain of length 2t collides with one of the chains in this structure at the same
offset with probability of about 22t−�. Since the structure computed in Step 3
contains 2v such chains, the expected number of detected collisions between the
structures is 2c = 22t+v−�, i.e., c = 2t+ v − �.

In order to calculate the value of u, we first calculate the expected number of
the endpoints of the chains computed in Step 3 of the attack. As the chains are
of length of 2t+1, after evaluating the first 2�−2t chains, a constant fraction of the
chains will not collide with any other chain, and thus we have (at least) about
2�−2t endpoints. Since the structure contains a total of 2�−c points, each endpoint
is a root of a tree of average size of (at most) 2�−c−(�−2t) = 22t−c. This gives
about 22t−c−t = 2t−c candidates nodes at a fixed depth, i.e., u = t−c = �− t−v.

We note that the last argument we use here is heuristic, as we assume that the
average number of preimages at a certain distance for the specific collision points
y is similar to the average for arbitrary points. However, steps 4 and 5 are not
bottlenecks of the attack (as described in the complexity analysis below), and
thus even if their complexity is somewhat higher, it will not effect the complexity

Improved Generic Attacks against Hash-Based MACs and HAIFA 167

of the full attack. Furthermore, we can perform a more complicated matching
phase, in which we iteratively build filters for the offline structure at depths
about 2t−1, 2t−2, . . ., and match them with the online structure. This guarantees
that the expected complexity of the attack is as claimed below.

Step 1: 22t Step 2: max(2�−t, 22�/3)

Step 3: 2v+t Step 4: 2�−c = 22�−2t−v

Step 5: (c+ u) · 2(c+u+l)/2 = t · 2�/2+t/2 Step 6: 2c+u+t = 22t

We balance steps 3 and 4 by setting v+ t = 2�− 2t− v, or v = �− 3t/2. This
gives a total complexity of O(2�−t/2) for any t ≤ 2�/5.

9 Conclusions and Open Problems

In this paper, we provided improved analysis of HMAC and similar hash-based
MAC constructions. More specifically, we devised the first state-recovery attacks
on HMAC built using hash functions based on the HAIFA mode, and provided
improved trade-offs between the message length and the complexity of state-
recovery attacks for HMAC built using Merkle-Damg̊ard hash functions. Finally,
we presented the first universal forgery attacks which can be applied with short
queries to the MAC oracle. Since it is widely deployed, our attacks have many
applications to HMAC constructions used in practice, built using GOST, the SHA
family, and other concrete hash functions.

Our results raise several interesting future work items such as devising effi-
cient universal forgery attacks on HMAC built using hash functions based on
the HAIFA mode, or proving that this mode provides resistance against such
attacks. At the same time, there is also a wide gap between the complexity of
the best known attacks and the security proofs for HMAC built using Merkle-
Damg̊ard hash functions. For example, the best universal forgery attacks on
these MACs are still significantly slower than the birthday bound, which is the
security guaranteed by the proofs.

References

1. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (2008/2010), http://131002.net/blake/blake.pdf

2. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013)

3. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

http://131002.net/blake/blake.pdf

168 I. Dinur and G. Leurent

5. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
IACR Cryptology ePrint Archive, Report 2007/278 (2007)

6. Dinur, I., Leurent, G.: Improved Generic Attacks Against Hash-based MACs and
HAIFA. IACR Cryptology ePrint Archive, Report 2014/441 (2014)

7. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function. RFC 6986 (In-
formational) (August 2013), http://www.ietf.org/rfc/rfc6986.txt

8. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (2008/2010),
http://skein-hash.info

9. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on Generic Attacks against
HMAC and NMAC. In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 131–148. Springer, Heidelberg (2014)

10. Guo, J., Sasaki, Y., Wang, L., Wang, M., Wen, L.: Equivalent Key Recovery Attacks
against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. In: FSE (2014)

11. Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool.
In: Sako, Sarkar (eds.) [21], pp. 21–40.

12. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

13. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

14. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005)

15. Kortelainen, T., Kortelainen, J.: On Diamond Structures and Trojan Message At-
tacks. In: Sako, Sarkar (eds.) [21], pp. 524–539

16. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks against Hash-Based MACs.
In: Sako, Sarkar (eds.) [21], pp. 1–20.

17. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery
Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M.
(eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013)

18. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology 12(1), 1–28 (1999)

19. Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597.
Springer, Heidelberg (2012)

20. Peyrin, T., Wang, L.: Generic Universal Forgery Attack on Iterative Hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (2014)

21. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013, Part II. LNCS, vol. 8270. Springer,
Heidelberg (2013)

22. Tsudik, G.: Message authentication with one-way hash functions. SIGCOMM Com-
put. Commun. Rev. 22(5), 29–38 (1992),
http://doi.acm.org/10.1145/141809.141812

23. Yasuda, K.: “Sandwich” Is Indeed Secure: How to Authenticate a Message with
Just One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

http://www.ietf.org/rfc/rfc6986.txt
http://skein-hash.info
http://doi.acm.org/10.1145/141809.141812

Cryptography from Compression Functions:

The UCE Bridge to the ROM

Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi

Dept. of Computer Science and Engineering, University of California San Diego, USA

Abstract. This paper suggests and explores the use of UCE security for
the task of turning VIL-ROM schemes into FIL-ROM ones. The benefits
we offer over indifferentiability, the current leading method for this task,
are the ability to handle multi-stage games and greater efficiency. The
paradigm consists of (1) Showing that a VIL UCE function can instan-
tiate the VIL RO in the scheme, and (2) Constructing the VIL UCE
function given a FIL random oracle. The main technical contributions
of the paper are domain extension transforms that implement the sec-
ond step. Leveraging known results for the first step we automatically
obtain FIL-ROM constructions for several primitives whose security no-
tions are underlain by multi-stage games.Our first domain extender ex-
ploits indifferentiability, showing that although the latter does not work
directly for multi-stage games it can be used indirectly, through UCE, as
a tool for this end. Our second domain extender targets performance. It is
parallelizable and shown through implementation to provide significant
performance gains over indifferentiable domain extenders.

1 Introduction

Two forms of the random oracle model (ROM) of BR [9] have emerged, namely
the VIL-ROM and FIL-ROM. In the VIL-ROM, the random oracle, denoted RO,
is variable input length (VIL), meaning takes inputs of arbitrary length. In the
FIL-ROM, the random oracle, denoted ro, is fixed input length (FIL), meaning
only takes inputs of one, particular length. The VIL-ROM is preferable for the
design and analysis of ROM schemes and reflects the original view of BR [9]
that random oracles would be instantiated by cryptographic hash functions that,
like SHA-256, take variable length inputs. However hash functions are built in
a very structured way from their underlying compression functions. This lead
researchers beginning with Coron, Dodis, Malinaud and Puniya [14] to suggest
that it should be the compression function, rather than the hash function, that
is treated as “ideal,” leading to the FIL-ROM. Indeed, SHA-256 is built from
its compression function sha-256 in a way that renders SHA-256 subject to the
extension attack, which can lead to attacks when SHA-256 is used to instantiate
a VIL random oracle. Treating the compression function (rather than the full
hash function) as the ideal object is more reflective of the design goals and
intuition of practitioners and leads to better security.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 169–187, 2014.
c© International Association for Cryptologic Research 2014

170 M. Bellare, V.T. Hoang, and S. Keelveedhi

The consensus then is that we should design schemes in the FIL-ROM. The
question is how best to do this. One option is to directly design and analyze
schemes in this model, but this is difficult and ad hoc. A better option is to
provide a construction Ero of a VIL function that can substitute a VIL RO,
meaning we would design schemes secure in the VIL-ROM as usual and then
automatically replace RO with Ero to obtain security in the FIL-ROM. We refer
to such an E as a domain extension construction or domain extender.

For this to work in some broad and useful way, we need a definition of some
property, call it X, that, if satisfied by Ero, allows the latter to securely replace
RO in the VIL-ROM and thus provide security in the FIL-ROM, for some useful
and hopefully large set of schemes that are proven secure in the VIL-ROM. The
leading proposal for X is “indifferentiability from a random oracle” as defined
by Maurer, Renner and Holenstein [19] and advocated by [14].

This paper suggests, and explores, an alternative X. We suggest that X be
the notion of UCE (Universal Computational Extractor) security defined by
BHK [6]. Our results will show both theoretical and practical benefits of X=
UCE over X= indifferentiability in this role. On the theoretical side, UCE allows
us to move from the VIL-ROM to the FIL-ROM for primitives whose security
is defined via multi-stage games, a setting where indifferentiability fails [23,15].
On the practical side, we exhibit UCE domain extenders E that are significantly
more efficient than known indifferentiability ones, in particular parallelizable to
take advantage of modern multi-core machines, our efficiency claims being not
just asymptotic but supported by implementations and experiments. Conceived
as a way to remove random oracles, UCE now becomes a bridge to better security
in the ROM.

Limitations of indifferentiability. While indifferentiability works well in
some settings, it has two major limitations. The first is that indifferentiable-
from-RO functions do not suffice to securely replace a VIL random oracle for
primitives whose security definition is underlain by multi-stage games [23,15].
This gap is more than academic, for we are seeing the emergence of numer-
ous primitives and security notions of practical importance whose definitions
are inherently multi-stage. Examples include Deterministic PKE (D-PKE) [5],
Message-Locked Encryption (MLE) [8], and proofs of storage. In each case there
are natural, efficient and canonical solutions in the VIL-ROM that we would like
to implement in the FIL-ROM, but indifferentiability offers no way to do this.

The second limitation of indifferentiability is performance. Typical indiffer-
entiable domain extenders iterate the compression function sequentially. This
means that instantiations are left unable to take advantage of modern multi-
core processors to provide performance gains. This reduces the potential for high
volume usage and deployment of cryptography based on compression functions.

Our perspective. We conceptualize the goal that motivated the use of in-
differentiability as aiming to design an X-secure domain extender —this being
a construction Ero that, given the FIL random oracle ro, computes a VIL, X-
secure function— for a “good” choice of X, meaning one that allows Ero to
securely replace RO in the VIL-ROM for some significant set of applications.

Cryptography from Compression Functions 171

Method Notions Performance Applications

Keyed-Indiff
UCE[Ssrs] About m/(m− n) times

All schemes in [6]
UCE[Scrs] the speed of M

AU-then-Hash UCE[Ssup]
Parallelizable MLE, key derivation,

∼ 0.4 cycles per byte storage auditing

Fig. 1. Our UCE domain extension constructions and their properties. The
second column gives the UCE notion that is achieved. M is the indifferentiable domain
extender used in the first construction. The numbers n and m are the key length of
the hash function and the input length of the ideal compression function, respectively.
Typically, n = 128 and m = 512.

While X=indifferentiability has been very successful in some domains, it also, as
discussed above, has important limitations. We ask if there are alternative defi-
nitions X that can overcome these limitations and complement indifferentiability
in its role.

The core limitation of indifferentiability is the inability to handle multi-
stage games. We suggest that a natural route around this is that X-security
itself be multi-stage. The particular candidate X we suggest is the UCE notion
of [6], which is indeed multi-stage. Our suggested UCE-based paradigm to move
schemes from the VIL-ROM to the FIL-ROM has two steps: (1) Show that
instantiating the VIL random oracle in the scheme with a VIL UCE function
preserves security, and (2) Implement the VIL UCE function as Ero to obtain
a FIL-ROM scheme. Prior work has already given us the first step for many
constructions: UCE-secure hash functions are shown in [6] to be able to securely
instantiate VIL random oracles for diverse multi-stage applications including the
important practical ones noted above and all examples of multi-stage schemes
listed in [23]. The missing element is UCE domain extenders E for the second
step. If we had those, we could immediately harvest the existing results to get
FIL-ROM constructions for many multi-stage primitives. The concrete quest
that emerges, then, is for UCE domain extenders.

Our results. Our core contribution is two new domain extenders for UCE
that together allow us to reach the above goals of security and speed. These
are constructions E that take a FIL random oracle ro and return a VIL, keyed
function Ero that meets UCE security notions of BHK in the FIL-ROM. (UCE
hash functions are keyed, whence the introduction of a key in this setting. Also,
UCE is not a monolithic or single security notion, but rather a framework in
which one parameterizes notions of security by classes of “sources.” Applica-
tions rely on different choices of the starting class. The framework is recalled in
Section 3. Here we will avoid the details beyond noting for which classes each of
our constructions is secure and what this entails for applications.) See Fig. 1 for
a summary of the two domain extenders and their properties.

Our first construction is generic, turning any indifferentiable domain extender
into a UCE domain extender. Given an indifferentiable domain extender M, we
show that the hash family Hhk = Mro(hk ‖ ·) is UCE-secure. The forms of UCE

172 M. Bellare, V.T. Hoang, and S. Keelveedhi

for which this works are enough to prove security for all schemes listed in [6],
for example the EwH D-PKE scheme of [5], or the storage-auditing scheme used
in [23] as a counterexample for the failure of the indifferentiability framework in
multi-stage settings.

This construction illustrates what we believe is an interesting relation between
UCE and indifferentiability. Indifferentiability cannot directly yield the applica-
tions we have obtained for multi-stage primitives. However, it can be used, in a
blackbox way, to create a domain extender that meets a particular multi-stage
notion of security, namely UCE. Then, exploiting known UCE results, we can
obtain FIL-ROM security for many multi-stage primitives. Thus our construc-
tion shows how to use UCE to leverage indifferentiability to solve a problem that
indifferentiability could not solve directly.

While our first construction delivers, we believe, important advances on the
theoretical front, its performance is that of the underlying indifferentiable con-
struction. Our second construction targets speed. It follows the Carter-Wegman
paradigm [13], first using an almost-universal hash to condense the input, and
then running ro(K ‖ ·) on the result, where K is the hash key. This gives us
highly efficiently, fully parallelizable hash constructions that are not achievable
if the target is indifferentiability. In more detail, we show that if F is almost-
universal, then the hash family Hhk(x) = ro(K ‖Ffk(x)), with hk = (fk,K), is
UCE-secure. The most important application here is the message-locked encryp-
tion (MLE) scheme CE of [8]. Due to the space constraint, we leave the proofs
of our theorems to the full version [7].

General domain extension. Above we presented the domain extension prob-
lem for notion X as being to design E such that Ero is a VIL X-secure function in
the FIL-ROM. More generally, the problem is to design E such that if H is a FIL

X-secure function then EH is a VIL X-secure function. Here H can be a FIL-ROM
function, and thus the prior formulation is the special case Hhk(·) = ro(hk‖·).
Our first construction discussed above generalizes to solve this problem, letting

Hhk = MH(hk ‖ ·) where M, as before, is an indifferentiable domain extender.
Setting Hhk(·) = ro(hk‖·) recovers the result stated above. The generalization
however yields something new, namely a standard model domain extender for
UCE. This follows by letting H be a standard model FIL UCE function. This
is interesting because it shows that indifferentiability, which so far has been a
ROM notion and tool, can be leveraged to get results purely in the standard
model.

Instantiation and experimental results. We give a very fast instantiation
of F based on reduced-round AES and polynomial-based evaluation. Our con-
struction makes use of the fact that four-round AES, with the four subkeys cho-
sen uniformly and independently, is an almost-xor-universal hash [18]. We stress
that our universal hashing construction is unconditional, making no assumption
on AES. This leads to a highly efficient, parallelizable UCE-secure hash FastHash.
Our experiments show that even in the sequential setting, FastHash is about 5.3
times faster than SHA-256. When parallelism is employed, FastHash achieves a

Cryptography from Compression Functions 173

much better speedup, about 24 times faster than SHA-256. Finally, we demon-
strate the utility of FastHash by giving an extremely fast MLE scheme.

Related work. Mittelbach [21] defines restrictions on a multi-stage game so
that the indifferentiability composition theorem still holds for a subclass of indif-
ferentiable domain extenders called iterative domain extenders, and is thereby
able to show that the latter suffice for applications like D-PKE and MLE. He
also shows that if M is an iterative domain extender then Mro is UCE-secure.
In comparison, our first construction is more general in the following ways: It
is able to use any indifferentiable domain extender, and as a result our applica-
tions are able to use a broader class of domain extenders; it turns any FIL UCE
function into a VIL one; it works both in the standard model and the ROM. On
the other hand, Mittelbach’s construction is about m/(m−n) times faster than
ours, where m is the input length of the compression function, and n is the key
length.

Dodis, Ristenpart, and Shrimpton [16] define preimage-awareness (PrA) as a
strengthening of collision resistance and show that the plain Merkle-Damg̊ard is a
PrA extender. PrA can also be used in multi-stage games: Ristenpart, Shacham,
and Shrimpton [23] show how to compose a PrA-secure hash with a FIL RO to
achieve D-PKE.

Some versions of UCE are shown by [12] to be unachievable in the standard
mode if indistinguishability obfuscation for all circuits exists, but most of the
applications in [6] only need weaker versions of UCE where our domain extenders
work but the attacks in [12] do not. All versions of UCE in [6] are shown by the
latter to be achievable in the VIL-ROM, so our domain extenders achieve all the
applications in the FIL-ROM.

2 Preliminaries

Concrete security bounds are important for applications. However, notions in the
current domain, involving simulators and multiple conditions and adversaries,
are complex. The result is that when theorems are stated purely concretely, it is
hard to understand the (much more simple) conceptual import. We will try to
achieve the “best of both worlds.” We formulate definitions asymptotically. The
first cut theorem statements are asymptotic so that one can quickly see the core
implication and result. This is followed by a concrete statement with bounds.

Notation. By λ ∈ N we denote the security parameter. If n ∈ N then 1n de-
notes its unary representation. We denote the size of a finite set X by |X |, the
number of coordinates of a vector x by |x|, and the length of a string x ∈ {0, 1}∗
by |x|. We let ε denote the empty string. If x is a string then x[i] is its i-th bit
and x[1, �] = x[1] . . . x[�]. By x‖y we denote the concatenation of strings x, y.
If X is a finite set, we let x←$ X denote picking an element of X uniformly
at random and assigning it to x. Algorithms may be randomized unless other-
wise indicated. Running time is worst case. “PT” stands for “polynomial-time,”
whether for randomized algorithms or deterministic ones. If A is an algorithm,

174 M. Bellare, V.T. Hoang, and S. Keelveedhi

we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y←$ A(x1, . . .) be the resulting of picking
r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, We say that f : N→ R
is negligible if for every positive polynomial p, there exists np ∈ N such that
f(n) < 1/p(n) for all n > np.

Games. We use the code based game playing framework of [10]. (See Fig. 3 for
an example.) By GA1,A2,...(λ) ⇒ y we denote the event that the execution of
game G with adversariesA1, A2, . . . and security parameter λ results in output y.
We abbreviate GA1,A2,...(λ)⇒ true by GA1,A2,...(λ), the occurrence of this event
meaning that A1, A2, . . . win the game.

For concrete security assessments, let the number of queries of A to an oracle
Proc be the function QProc

A that on input λ returns the maximum number of
queries that A makes to Proc when executed with security parameter λ, the
maximum over all coins and all possible replies to queries to all oracles of A.
Time assessments are simplified by the convention that running time is that
of the game rather than merely the adversary, and we let T(GA1,A2,...) denote
the function of λ that returns the maximum execution time of game G with
adversaries A1, A2, . . . and security parameter λ, the maximum over all coins,
and the time being all inclusive, meaning the time taken by game procedures to
compute replies is included.

Random oracles. A random oracle RO : U → {0, 1}n is a procedure that
maintains a table H , initially empty, and is defined by

RO(x)

If H [x] �= ⊥ then H [x]←$ {0, 1}n ; Return H [x]

We say that RO is variable-input length (VIL) if U = {0, 1}∗ and fixed-input
length (FIL) if there is m ∈ N such that U = {0, 1}m. Formally, any random
oracle referred to in a game should appear explicitly in the game as a procedure
defined as above, but for the same of brevity of game descriptions, we omit
writing it explicitly, instead only indicating the domain and range of each random
oracle. By convention, RO indicates a VIL random oracle, and ro a FIL random
oracle.

3 UCE Framework

The Universal Computational Extractor (UCE) framework of BHK [6] is in-
tended to define security notions for families of hash functions in the standard
model, but BHK also lift this to the ROM to show its achievability there. We use
the latter with the random oracle being FIL. We note that the standard-model
definition is the special case where parties and algorithms make no queries to
the random oracle.

BHK first give a single-key version of the definition and then extend it to a
multi-key one. We will work directly with the multi-key version, calling it UCE
rather than mUCE as in [6].

Cryptography from Compression Functions 175

Function families. Our syntax for function families follows [6], in particular
allowing variable output lengths. A family of functions H specifies the following.
On input the unary representation 1λ of the security parameter λ ∈ N, key
generation algorithm H.Kg returns a key hk ∈ {0, 1}H.kl(λ), where H.kl: N →
N is the keylength function associated to H. The deterministic, PT evaluation
algorithm H.Ev takes 1λ, a key hk ∈ [H.Kg(1λ)], an input x ∈ {0, 1}∗ with
|x| ∈ H.IL(λ), and a unary encoding 1� of an output length � ∈ H.OL(λ) to return
H.Ev(1λ, hk, x, 1�) ∈ {0, 1}�. Here H.IL is the input-length function associated to
H, so that H.IL(λ) ⊆ N is the set of allowed input lengths, and similarly H.OL
is the output-length function associated to H, so that H.OL(λ) ⊆ N is the set of
allowed output lengths. The latter allows us to cover functions of variable output
length. If H has fixed input length then let H.il denote the function such that
H.IL(λ) = {H.il(λ)} for every λ ∈ N. If H has fixed output length, define H.ol
likewise. In the ROM, we allow H.Ev access to a FIL random oracle denoted ro.
We write H.Evro to indicate explicitly that H.Ev needs access to a FIL random
oracle ro.

Framework. Let H be a family of functions. Let S be an adversary called the
source and D an adversary called the distinguisher. We associate to them and H
the game UCES,D

H (λ) in the left panel of Fig. 2. Initially, the source specifies a
unary-encoded integer n ≥ 1 to indicate the number of hash keys that it wants
to use. The game then chooses a secret vector hk of n uniformly random hash
keys and grants the source access to an oracle Hash. We require that any query
(x, 1�, i) made to this oracle satisfy |x| ∈ H.IL(λ), � ∈ H.OL(λ) and i ∈ {1, . . . , n}.
When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under
hk[i]. When b = 0 (the “random” case) it responds via the ith random-oracle
procedure. The source then leaks a string L to its accomplice distinguisher. The
latter does get the keys hk as input and must now return its guess b′ ∈ {0, 1}
for b. The game returns true iff b′ = b, and the uce-advantage of (S,D) is defined
for λ ∈ N via

AdvuceH,S,D(λ) = 2Pr[UCES,D
H (λ)]− 1 .

If S is a class (set) of sources, we say that H is UCE[S]-secure if AdvuceH,S,D(·)
is negligible for all sources S ∈ S and all PT distinguishers D. Trivial attacks
from [6] show that UCE[S]-security is not achievable if S is the class of all PT
sources. To obtain meaningful notions of security, BHK [6] impose restrictions
on the source. There are many ways to do this; below we’ll focus on what they
call unpredictable and reset-secure sources. To discuss the concrete security of
constructions it will be useful to say that S is a N -key source if we always have
n ≤ N(λ) when (1n, t)←$ S(1λ, ε).

Unpredictable sources. A source is unpredictable if it is hard to guess the
source’s Hash queries even given the leakage, in the random case of UCE game.
Formally, let S be a source and P an adversary called a predictor. Consider
game PredPS (λ) in the middle panel of Fig. 2 associated to S, P . Given 1n and

176 M. Bellare, V.T. Hoang, and S. Keelveedhi

Game UCES,D
H (λ)

(1n, t)←$ S(1λ, ε)

For i = 1, . . . , n do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SHash,ro(1λ, t)

b′ ←$ Dro(1λ,hk, L) ; Return (b′ = b)

Hash(x, 1�, i)

If T [x, �, i] = ⊥ then

If b = 0 then T [x, �, i]←$ {0, 1}�
Else T [x, �, i] ← H.Evro(1λ,hk[i], x, 1�)

Return T [x, �, i]

Game PredP
S (λ)

(1n, t)←$ S(1λ, ε)

Q ← ∅ ; L←$ SHash,ro(1n, t)

Q′ ←$ P ro(1λ, 1n, L)

Return (Q′ ∩Q = ∅)
Hash(x, 1�, i)

Q ← Q ∪ {x}
If T [x, �, i] = ⊥ then T [x, �, i]←$ {0, 1}�
Return T [x, �, i]

Game ResetRS (λ)

U ← ∅ ; (1n, t)←$ S(1λ, ε)

L←$ SHash,ro(1n, t) ; b←$ {0, 1}
If b = 0 then // reset the array T

For (x, �, i) ∈ U do T [x, �, i]←$ {0, 1}�
b′ ←$ RHash,ro(1λ, L) ; Return (b = b′)

Hash(x, 1�, i)

If T [x, �, i] = ⊥ then T [x, �, i]←$ {0, 1}�
U ← U ∪ {(x, �, i)} ; Return T [x, �, i]

Fig. 2. Games UCE (top), Pred (bottom left), and Reset (bottom right) to
define UCE security. Here ro : {0, 1}ro.il(λ) → {0, 1}ro.ol(λ) is a random oracle.

the leakage, the predictor outputs a set Q′. The predictor wins if Q′ contains a
Hash-query of the source. For λ ∈ N we let

AdvpredS,P (λ) = Pr[PredPS (λ)] .

We require that the size of Q′, as well as the number of queries that P makes to
ro, be bounded by a polynomial (allowed to depend on P) in λ. We say that S is

computationally (respectively, statistically) unpredictable if AdvpredS,P (·) is negligi-
ble for all PT (respectively, all, even computationally unbounded) predictors P .
We let Scup be the class of computationally unpredictable PT sources, and Ssup

the class of statistically unpredictable PT sources. The corresponding security
notions for H are UCE[Scup] and UCE[Ssup].

Reset-secure sources. We recall the second restriction on sources from [6],
called reset security. Let S be a source and R an adversary called a reset adver-
sary. The source again is executed with its Hash being a random oracle. The reset
adversary is either given access to the same random oracle or to an independent
one. The requirement is that it should not be able to tell which. Formally, con-
sider game ResetRS (λ) at the right panel of Fig. 2 associated to S,R. For λ ∈ N
we let

AdvresetS,R (λ) = 2Pr[ResetRS (λ)]− 1 .

We require that the number of queries that P makes to Hash and ro be bounded
by a polynomial (allowed to depend on R) in λ. We say S is computationally
(respectively, statistically) reset-secure if AdvresetS,R (·) is negligible for all PT (re-
spectively, all, even computationally unbounded) reset adversariesR. We let Scrs

be the class of all PT computationally reset-secure sources, and Ssrs the class of

Cryptography from Compression Functions 177

Game IndiffA
M,M

(λ)

b←$ {0, 1} ; st ← ε

b′ ←$ APrim,Func(1λ)

Return (b = b′)

Func(x)

If b = 1 then return Mro(1λ, x)

Else return RO(x)

Prim(x)

If b = 1 then return ro(x)

(y, st)←$ M
RO

(1λ, st, x)

Return y

Fig. 3. Game Indiff defining indifferentiability. Here RO : {0, 1}∗ → {0, 1}M.fol(λ)

and ro : {0, 1}M.pil(λ) → {0, 1}M.pol(λ) are random oracles.

all PT statistically reset-secure sources. The corresponding security notions for
H are UCE[Scrs] and UCE[Ssrs].

Relations and achievability. Reset security is a relaxation of unpredictabil-
ity. In particular BHK [6] show that UCE[Scrs]-security of H implies UCE[Scup]-
security of H and UCE[Ssrs]-security of H implies UCE[Ssup]-security of H. The
converses are not necessarily true. BFM [12] show that if indistinguishability
obfuscation for all circuits is possible then UCE[Scrs]-security is not achievable
in the standard model. In the ROM however BHK [6] show that both UCE[Scrs]-
security and UCE[Ssrs]-security are achievable.

4 UCE from Indifferentiability

We first review necessary definitions of the indifferentiability framework [19].

Indifferentiability. We consider an algorithm M that, given a FIL random
oracle ro, attempts to have input-output behavior approximating that of a VIL
random oracle. Indifferentiability provides one definition of what it means for M
to succeed at this task. Consider game IndiffA

M,M
(λ) of Fig. 3 associated to M, an

algorithm M called a simulator, and an adversary A. In the first world (b = 1),
oracle Prim implements the FIL random oracle ro while oracle Func implements
the construction, namely Mro, that aims to approximate a VIL random oracle.
In the second world (b = 0), oracle Func implements a true VIL random oracle
RO while replies to Prim queries are determined by the simulator that itself has
access to RO. The simulator is stateful, its state st being maintained by the game.
The input x to M has arbitrary length, the oracle provided to M maps M.pil(λ)-
bit inputs to M.pol(λ)-bit outputs, and M returns outputs of length M.fol(λ),
where M.pil,M.pol,M.fol : N→ N are functions associated to M called the input-
length of M’s primitive, output-length of M’s primitive, and output-length ofM’s
functionality, respectively. For λ ∈ N we let

Advindiff
M,M,A

(λ) = 2Pr[IndiffA
M,M

(λ)] − 1 .

We require that the number of queries that A makes to its oracles be bounded
by a polynomial (allowed to depend on A) in λ. Then we say that M is a pseu-
dorandom oracle (PRO) if there is a PT simulator M such that Advindiff

M,M,A
(·) is

negligible for every (even computationally unbounded) adversary A.
For concrete security assessments we let QM,q be the function that on input

λ returns the maximum, over all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total number of

178 M. Bellare, V.T. Hoang, and S. Keelveedhi

oracle queries that M makes when run sequentially on inputs x1, . . . , xq, starting
from state ε. Also let TM,q be the function that on input λ returns the maximum,

over all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total running time of M when run
sequentially on inputs x1, . . . , xq, starting from state ε, the time for an oracle
query being taken as linear in the length of the query and reply.

The Keyed-Indiff extender. Let H be a FIL function family that is UCE[Sxxx]-
secure for some xxx. We want to build a VIL family of functions H that is also
UCE[Sxxx]-secure. Our construction uses as a tool any PRO M with M.pil =
H.il and M.pol = H.ol. We associate to M and H the family of functions H =
Keyed-Indiff[M,H] defined as follows. We let H.IL = N, meaning H is VIL. The
output length of H is H.ol = M.fol. We let H.Kg = H.Kg, meaning keys for H
are the same as for H. Finally for any λ ∈ N, any hk ∈ [H.Kg(1λ)] and any
x ∈ {0, 1}∗ we let

H.Evro(1λ, hk, x, 1H.ol(λ)) = MH.Ev
ro
(1λ,hk,·,1H.ol(λ))(1λ, x) . (1)

This needs some explanation. Begin by ignoring ro, so that we are looking at a
standard-model construction. Recall thatM takes an oracle mapping {0, 1}M.pil(λ)

to {0, 1}M.pol(λ). In the indifferentiability setting, this is a random oracle. Our
construction however does something different. It implements M’s oracle via the
given UCE[Sxxx]-secure family H. The key hk is held fixed. Our claim will be that
H is itself UCE[Sxxx]-secure for xxx ∈ {crs, srs}. Something we consider interest-
ing is that this result is entirely standard model, yet uses ROM theory, in the
form of a PRO, for the construction and proof. Finally the ro in the construction
simply reflects that the result lifts to the ROM. In case H was a ROM family of
functions, H will be as well. This extension, together with known applications of
UCE[Sxxx]-security, allow us to implement in the FIL-ROM many constructions
given in the VIL-ROM.

Result. We view Keyed-Indiff[M, ·] as a domain extension transform taking a
FIL family H and returning a VIL family H = Keyed-Indiff[M,H]. The following
says that this transform preserves UCE[Sxxx]-security for xxx ∈ {crs, srs}.

Theorem 1. Let H be a hash function family. Let M be a PRO such that M.pil =
H.il and M.pol = H.ol. Let H = Keyed-Indiff[M,H]. Let xxx ∈ {crs, srs}.

Asymptotic result: If H is UCE[Sxxx]-secure then so is H.

Concrete result: Let M be a simulator for M. Let S be an N -key source, D a
distinguisher and R a reset adversary. Then we construct an N -key source S,
indifferentiability adversaries A,B and a reset adversary R such that

AdvuceH,S,D(λ) ≤ Advuce
H,S,D

(λ) +N(λ) · Advindiff
M,M,A

(λ) (2)

Advreset
S,R

(λ) ≤ AdvresetS,R (λ) + 3N(λ) · Advindiff
M,M,B

(λ) (3)

Cryptography from Compression Functions 179

for all λ ∈ N. Furthermore:

QPrim
A = 0; QFunc

A = QFunc
B = QHash

S ; QPrim
B = QHash

R

Qro
R = Qro

R
; QHash

R = QM,q where q = QHash
R

; Qro
S
= Qro

S

QHash
S

is the number of oracle queries of M in the execution of UCES,D
H

T(IndiffA
M,M

) = T(UCES,D
H); T(UCES,D

H
) = T(UCES,D

H)

T(ResetRS) = T(ResetR
S
) + TM,q where q = QHash

R

T(IndiffB
M,M

) = T(ResetRS) +T(ResetR
S
) ��

We emphasize that Keyed-Indiff works in both the standard and the random
oracle models. In particular if FIL family H is UCE[Sxxx]-secure in the standard
model, then so is Keyed-Indiff[M,H], for xxx ∈ {crs, srs}. This resolves an open
problem from [6] to construct UCE domain extenders in the standard model.

Instantiation. To obtain a concrete result that can be used in applications,
we now instantiate H above in a simple way, namely (1) H.Kg(1λ) returns

hk←$ {0, 1}λ, and (2) H.Evro(1λ, hk, x, 1H.ol(λ)) returns ro(hk ‖ x). This is shown
by BHK [6] to be UCE secure in the FIL-ROM for all forms of UCE they define.
From Theorem 1 we obtain the following.

Theorem 2. Let H be constructed as above. Let M be a PRO such that M.pil =
H.il and M.pol = H.ol. Let H = Keyed-Indiff[M,H]. Let xxx ∈ {crs, srs}.
Asymptotic result: H is UCE[Scrs]-secure.

Concrete result: Let M be a simulator for M. Let S be an N -key source and D
a distinguisher. We can construct a reset adversary R and an indifferentiability
adversary A such that

AdvuceH,S,D(λ) ≤ AdvresetS,R (λ) + 4N(λ) · Advindiff
M,M,A

(λ) +
2N(λ) · q(λ) +N2(λ)

2λ

for every λ ∈ N. Furthermore,

QPrim
A = QHash

S ; QFunc
A = Qro

R = Qro
D; and QHash

R = QM,q, where q = Qro
D

T(IndiffA
M,M

) = T(ResetRS) = T(UCES,D
H) + TM,q, where q = Qro

D ��

Theorem 2 is the one that can be used for the applications, namely to ob-
tain FIL-ROM constructions for (possibly multi-stage) primitives that have been
constructed using a VIL UCE function, such as those in BHK [6]. We simply
instantiate the VIL UCE function with H given by Theorem 2. The broader
paradigm to move from the VIL-ROM to the FIL-ROM is thus the following.
Take a primitive with a VIL-ROM proof, and show that the random oracle can
be UCE-instantiated. Then apply Theorem 2.

5 UCE from Universal Hashing

In this section, we show how almost universal hash functions can be used to
build a domain extender for UCE.

180 M. Bellare, V.T. Hoang, and S. Keelveedhi

H.Kg(1λ)

fk ←$ F.Kg(1λ) ; hk ←$ H.Kg(λ)

hk ← (hk, fk) ; Return hk

H.Evro(1λ,hk, x, 1�)

(hk, fk) ← hk ; u ← F.Ev(1λ, fk, x, 1F.ol(λ))

y ← H.Ev
ro
(1λ,hk, u, 1�) ; Return y

Fig. 4. The H = AU-then-Hash[F,H] construction, built from a AU hash F and
a FIL UCE-secure hash H.

AU hash families. For any function family F let

Coll1F(λ,m) = max
|y|=F.ol(λ),|x|≤m

{
Pr

fk ←$ F.Kg(1λ)
[y = F.Ev(1λ, fk, x, 1F.ol(λ))]

}
,

and define Coll2F(λ,m0,m1) as

max
{

Pr
fk ←$ F.Kg(1λ)

[F.Ev(1λ, fk, x0, 1
F.ol(λ)) = F.Ev(1λ, fk, x1, 1

F.ol(λ))]
}
;

the maximum is taken over distinct strings x0, x1 such that each |xi| ≤ mi. Let

CollF(λ,m0,m1) = max
{
Coll2F(λ,m0,m1),Coll1F(λ,min{m0,m1})

}
.

A hash family F is almost universal (AU) if f(λ) = CollF(λ,m0,m1) is negli-
gible for all polynomials m0,m1. This generalizes the Carter-Wegman notion of
universal hashing [13].

A similar definition is given in [11], which is very useful when one needs to
work with arbitrarily large input and short hash keys. In Section 6, we’ll show
how to concretely instantiate a very fast AU hash for λ = 128, from reduced-
round AES and a classic polynomial-based universal hash. Define

AdvcollF (λ, p, σ) = max
�≤p,�′≤p,m1+···+m�≤σ,m′

1+···+m′
�′≤σ

{ �∑
i=1

�′∑
j=1

CollF(λ,mi,m
′
j)
}

.

If F is AU then AdvcollF (λ, p, σ) is negligible for all polynomials p and σ: since
Coll(λ, ·, ·) is increasing in both arguments, it follows that AdvcollF (λ, p, σ) ≤
p2CollF(λ, σ, σ).

UCE extender from an AU hash. We now describe a UCE extender from
AU hash. Intuitively, one first uses the AU hash to condense the input, and then
applies the resulting string to the (keyed) compression function. Formally, let
H be a hash function family of fixed input length, and F be a universal hash
function family with F.ol = H.il and F.IL = N. Consider the hash function family
H = AU-then-Hash[F,H] as given in Fig. 4, with H.OL = H.OL and H.IL = N. The
construction essentially follows the widely used Carter-Wegman paradigm [24]
Below, we show that AU-then-Hash[F, ·] is also a domain extender for UCE[Ssup]
security.

Theorem 3. Let H be a function family of fixed input length, and F be an AU
hash function family with F.ol = H.il and F.IL = N. Let H = AU-then-Hash[F,H].

Cryptography from Compression Functions 181

Asymptotic result: If H is UCE[Ssup]-secure then so is H.

Concrete result: Let S be a N -key source, D a distinguisher, and P a predictor.
We can construct a source S, a distinguisher D, and a predictor P such that

AdvuceH,S,D(λ) ≤ Advuce
H,S,D

(λ) + AdvcollF (λ, p, σ) (4)

Advpred
S,P

(λ) ≤
√
2qAdvcollF (λ, p, σ) +

√
qAdvpredS,P (λ) (5)

where p = QHash
S , q is the maximum of the size of P ’s output in the execution of

PredP
S
, and σ is the maximum of the total length of Hash queries that S makes

in UCES,D
H . Furthermore,

Qro
S
= Qro

S ; Q
Hash
S

= QHash
S ; Qro

D
= Qro

D

T(UCES,D

H
) = T(UCES,D

H), and P outputs a set of size at most QHash
S ��

We emphasize that AU-then-Hash works in both the standard and the random-
oracle models. In particular If FIL family H is UCE[Ssup]-secure in the standard
model then so is AU-then-Hash[F,H].

The intended applications for the AU-then-Hash[F, ·] transform, as listed in
Fig. 1, use only a single hash key, that is, they only need UCE[Ssup∩Sone] security,
where Sone is the class of 1-key sources. AU-then-Hash[F, ·] is also a domain
extender for UCE[Ssup ∩ Sone] security because the value of N is preserved.

Instantiation. So far we have assumed the existence of a fixed-input-length
UCE-secure hash H. In the full version, we’ll construct hash family Hrom, of
variable output length, in the ROM, by using a pseudorandom permutation
(PRP) E, which will be instantiated by AES. We conclude the following.

Theorem 4. Let F be an AU hash function family with F.ol = Hrom.il and F.IL =
N. Let H = AU-then-Hash[F,Hrom].

Asymptotic result: H is UCE[Ssup]-secure.

Concrete result: Let S be an N -key source and D a distinguisher. We can con-
struct a predictor P and a PRP adversary A such that

AdvuceH,S,D(λ) ≤ 2

√
q(λ)AdvcollF (λ, p(λ), σ(λ)) +

√
q(λ)AdvpredS,P (λ) +

2p(λ) · AdvprpE,A(λ) +
2s2(λ) +N2(λ) + q2(λ)

2λ

for every λ ∈ N, where p = QHash
S ; q = Qro

S +Qro
D; σ and s are the maximum of

the total length of the first components and the total number of λ-bit blocks in
the second components, respectively, of Hash queries in the execution of UCES,D

H .
Furthermore

QLR
A is maximum of the number of λ-bit blocks in the second component of

a Hash query in UCES,D
H

T(PRPA
E) = T(UCES,D

H), and P outputs a set of size at most QHash
S ��

182 M. Bellare, V.T. Hoang, and S. Keelveedhi

6 Fast, Parallelizable AU Hash from Reduced-Round
AES

We now show how to construct a fast parallelizable AU hash, which we call Faes4.
In this section, let n = 128, C = 215, and let r be a small integer, say r = 5. All
function families in this section are concrete; the security parameter λ is hidden
in the formulas, but implicitly, it is λ = 128. For any integer m, let ‖m‖n denote
�m/n� + 1. We’ll first describe two building blocks: Fpoly, a polynomial-based
AU hash that operates on {0, 1}∗, and Ftree, a highly efficient AU hash based
on reduced-round AES that operates on {x ∈ ({0, 1}n)+ : |x| ≤ 2rn}. We then
show how to combine them to produce a highly efficient AU hash Faes4 whose
domain is {0, 1}∗.
The Fpoly construction. We now describe a variant of a classic polynomial-
based universal hash [13], which we call Fpoly. Let Fpoly.ol = n. As described in
the pseudocode below, the key fk is picked as a random element of GF(2n). To
hash, we parse the input string x ∈ {0, 1}∗ to a unique sequence (w0, . . . , wm),
where each wi ∈ GF(2n) and wm is not the zero element. This is performed by
(i) parse v0 ‖ · · · ‖ vm ← x ‖ 10s1, where s ∈ N is the smallest number such that
s+ |x| ≡ −2 (mod n) and each |wi| = n, and (ii) let each wi be the encoding of
vi in GF(2n). Then, the hash is computed as

∑m
i=0 wi · fki.

Fpoly .Kg()

fk ←$ GF(2n)

Return fk

Fpoly.Ev(fk, x, 1
n)

(w0, . . . , wm) ← x ; y ← w0

For i = 1 to m do y ← y +wi · fki

Return y

Proposition 5. (a) For any m ∈ N, we have Coll1Fpoly
(m) ≤ ‖m‖n/2n, and

(b) for any m0,m1 ∈ N, we have Coll2Fpoly
(m0,m1) ≤ max{‖m0‖n, ‖m1‖n}/2n.

The Ftree construction. Let E : {0, 1}4n×{0, 1}n → {0, 1}n denote a function
based on 4-round AES which works as follows. Parse the key K as the concate-
nation of n-bit substrings S0, S1, S2, S3, and let S4 = 0n. The input is initially
xored with S0, and each Si is used as the subkey of the i-th AES round, for
i ∈ {1, 2, 3, 4}. One can build from E a hash of domain {n, 2n, 3n, . . . , 2rn} as
follows. Let Halve denote the following operation. On input (K,x) ∈ {0, 1}4n ×
({0, 1}n)∗, we partition x into n-bit blocks x1 · · ·xm. For every two consecutive
blocks x2i−1 and x2i, we compute yi ← EK(x2i−1)⊕x2i. If m is odd then let
y�m/2� ← xm. Finally output y1 ‖ · · · ‖ y�m/2�. Consider the following tree-hash
construction Ftree, with Ftree.IL = {n, 2n, 3n, . . . , 2rn} and Ftree.ol = n.

Ftree.Kg()

For i = 1 to r do Ki ←$ {0, 1}4n
hk ← (K1, . . . ,Kr) ; Return fk

Ftree.Ev(fk, x, 1
n)

z0 ← x ; (K1, . . . ,Kr) ← fk

For i = 1 to r do zi ← Halve(Ki, zi−1)

Return zr

Cryptography from Compression Functions 183

Minematsu and Tsunoo [20] show that

Coll2Ftree(m0,m1) ≤
Cr

2n
(6)

for any m0,m1 ≤ 2r. We stress that the result in [20] makes no assumption on
AES. This is based on the fact that four-round AES, with the subkeys chosen
uniformly and independently, is an almost-xor-universal hash [18].

Combining Ftree and Fpoly. One can “cascade” Ftree and Fpoly to produce a hash
Ffast of domain {0, 1}∗ as follows.

Ffast.Kg()

fk1 ←$ Ftree.Kg()

fk2 ←$ Fpoly .Kg()

Return (fk1, fk2)

Ffast.Ev(fk, x, 1
n)

(fk1, fk2) ← fk

y ← Shrink(fk1, x)

z ← Fpoly.Ev(fk2, y, 1
n)

Return z

Shrink(fk1, x)

w1w2 · · ·wk ← x ; uk ← wk

For i = 1 to k − 1 do

ui ← Ftree.Ev(fk1, wi, 1
n)

y ← u1 ‖ · · · ‖uk ; Return y

In the procedure Shrink above, we parse a string x as the concatenation of
substrings w1, . . . , wk, where the length of each wi, with i ≤ k−2, is exactly 2rn,
and |wk−1| > 0 is a multiple of n but does not exceed 2rn, and 0 ≤ |wk| < n− 1.
Note that on a large input x, the hash F will make at most (1− 2−r)�x/n� calls
on E, and then run Fpoly on a string of length about |x|/2r.
Proposition 6. For any m0,m1 ∈ N, we have

CollFfast
(m0,m1) ≤

Cr +max{‖m0‖n, ‖m1‖n}
2n

Using with AU-then-Hash. The hash Ffast can’t be used directly with the
AU-then-Hash transform in Section 5, because the term (qAdvcollFfast

(p, σ))1/2 in

Theorem 3 is about (
√
qpσ + Crp

√
q)/2n/2, which is inferior. The reason for

this is that the output length of this hash is only n bits, which is too short. We
therefore need to “double” the output length. Formally, given a hash family F,
the family F = Double[F], with F.IL = F.IL and F.ol = 2F.ol, is constructed as
follows.

F.Kg()

fk1, fk2 ←$ F.Kg()

fk ← (fk1, fk2) ; Return fk

F.Ev(fk, x, 1F.ol)

(fk1, fk2) ← fk

For i = 1 to 2 do yi ← F.Ev(fki, x, 1
F.ol)

Return y1 ‖ y2
Let Faes4 denote Double[Ffast]. In Proposition 7 below, the term (qAdvcollFfast

(p, σ))1/2

in Theorem 3 is bounded by (Crp
√
2q + 2(‖σ‖n + p)

√
pq)/2n, which is good.

Proposition 7. For any p and σ, we have AdvcollFaes4
(p, σ) ≤ 2C2r2p2+4p(‖σ‖n+p)2

22n .

Key length. The key material of FastHash = AU-then-Hash[Faes4,Hrom] is rel-
atively large: 672B for r = 5. It’s slightly bigger than that of some widely used
schemes such as RSA [22] (256B). This is acceptable because the key is used as
a public parameter.

184 M. Bellare, V.T. Hoang, and S. Keelveedhi

Hash function Setting
Speed (cycles per byte)
1MB 16MB 128MB

SHA-256 [1] 11.5 12.0 12.0

FastHash
sequential 2.1 2.2 2.2

parallel - 12 threads 0.4 0.4 0.5

Fig. 5. Running time of the hash constructions. The first column lists the hash
names, the second column lists the setting, namely sequential or parallel, along with
the number of threads, and the last three columns list the running time on messages
of sizes 1MB, 16MB, and 128MB respectively.

7 Implementation

In this section, we’ll describe how to instantiate the AU hash Faes4 in Section 6,
and the FIL UCE-secure hash Hrom in Section 5. We then compare the speed of
FastHash, the resulting instantiation of AU-then-Hash[Faes4,Hrom], with a stan-
dard hash function, SHA-256. We first describe our choices for components and
parameters to instantiate the construction, and then provide an overview of the
implementation, before outlining the testing environment and test specifications.
We also compare the convergent encryption (CE) MLE scheme 1 from FastHash
and SHA-256. Our results indicate a speedup of 5.3x for our hash function over
SHA-256 and 6.3x for CE in the sequential setting, and 24x and 20x speedups,
respectively, once parallelism is enabled.

Instantiations. To instantiate Faes4, we use the standard irreducible polyno-
mial p(x) = x127+x7+x2+x+1 for multiplication over GF(2128). For Hrom, the
FIL RO is instantiated by the compression function of SHA-256, and the PRP
by AES128.

Implementation.We implemented FastHash in C with inline assembly. We used
Intel’s library for multiplication over GF(2128) [3], Intel’s optimized SHA256 im-
plementation [1], and Intel’s AES-NI library [2] for the code involving AES oper-
ations. We used the pthreads library for implementing threads for parallelization.

Setup. We performed experiments on an Intel Core i7-970 processor clocking at
3201 MHz with a 12288 KB L1 cache. The machine provides hardware support
for SSE4 vector instructions, AES operations (AES-NI), and multiplication in
GF(2128). Tests were compiled with gcc version 4.6 optimization level -O3, with
support for SSE4 via -msse4 flag, AES-NI instructions through the -maes flag,
GF(2128) multiplications via the -mpcmulqdq flag, and parallelization via the
-pthread flag. We ran the tests in isolation, after turning off processor frequency
scaling. We used the rdtsc instruction to count cycles.

1 In CE [8], one first hashes the message x to derive a key K, and then runs AES-CTR
on key K to encrypt x. To use FastHash on CE, one needs to use the CE variant
of [6], in which AES-CTR on message m is replaced by FastHash(hk,K, 1|x|)⊕x.
Note that this doesn’t give us any speed advantage over the standard version of CE,
as the masking via FastHash is essentially AES-CTR. The only thing we gain is the
abstraction of AES as part of the hash, so that one can apply UCE[Ssup].

Cryptography from Compression Functions 185

MLE Scheme Setting
Speed (cycles per byte)
1MB 16MB 128MB

CE implementation in [8] 22.1 22.3 22.6

CE[FastHash]
sequential 3.5 3.6 3.7

parallel - 12 threads 1.2 1.1 1.1

Fig. 6. Running time of CE instantiations. The first column lists the instantia-
tions, the second column lists the setting, namely sequential or parallel, along with the
number of threads, and the last three columns list the running time (key generation +
encryption) on messages of size 1MB, 16MB, and 128MB respectively.

Experiments. We measured the performance of instantiations of the hash func-
tions (i.e. FastHash and SHA-256) as well as CE schemes based on these hash
functions on messages of lengths 1MB, 16MB and 128MB. In each case, we
measured the median running times of the different hash functions over 100 it-
erations, repeated this process 100 times and obtained the mean of the medians.

In the case of parallelizable constructions, viz. FastHash and CE[FastHash],
we ran tests with multiple levels of parallelism, starting from single-threaded,
serial constructions, and increasing the number of threads until we reached a
point of thrashing where the performance starts to deteriorate because of other
bottlenecks in the system. We report both the single-thread sequential running
time, and the optimal parallel running time along with the optimal number of
threads. In the latter case, the reported time does not include the time to create
and destroy the threads.

In Fig. 5, we report the median running times of the hash function instantia-
tions, in cycles per byte. We compare these times with the best times reported
for SHA-256 on similar processors [1]. Our construction achieves substantially
better running times. On messages of 1MB, SHA runs at 11.5 cycles per byte,
but our instantiation runs more than 5.3 times faster, at a cost of 2.1 cycles per
byte. With parallelism, we achieve much better speeds, below one cycle per byte.

In Fig. 6, we demonstrate the benefits of having faster hash functions by com-
paring the speeds of CE implemented with FastHash with the implementation of
CE by SHA-256 and AES-CTR in [8]. Our experiments show that CE[FastHash],
even in the sequential setting, is about 6.3x faster than the speeds reported in [8].
When parallelism enabled, we achieve about 20x speedup.

Acknowledgments. Work done while Keelveedhi was a PhD student at UCSD.
The authors were supported in part by NSF grants CNS-1116800 and CNS-
1228890.

References

1. Fast SHA-256 Implementations on Intel Architecture Processors, goo.gl/Hh81eB.

2. Intel AESNI Library, goo.gl/l2czm1.

186 M. Bellare, V.T. Hoang, and S. Keelveedhi

3. Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM
Mode, http://goo.gl/qJLrF1

4. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu,
Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 1–20. Springer, Heidelberg (2011)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424 (2013); Preliminary version appeared
in Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 398–415. Springer, Heidelberg (2013)

7. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: The UCE bridge to the ROM. Cryptology ePrint Archive (2014)

8. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013)

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993. ACM (1993)

10. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

11. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. Journal of Cryptology 18(2), 111–131 (2005)

12. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. Cryptology ePrint
Archive, Report 2014/099. To appear in Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014)

13. Carter, L., Wegman, M.: Universal classes of hash functions. Journal of Computer
and System Sciences 18(2), 143–154 (1979)

14. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

15. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664–683. Springer, Heidelberg (2013)

16. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

18. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability
for two-round advanced encryption standard. IET Information Security 1(2), 53–57
(2007)

19. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

20. Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform
permutations and AES-based implementations. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006)

Cryptography from Compression Functions 187

21. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621.
Springer, Heidelberg (2014)

22. PKCS #1: RSA cryptography standard. RSA Data Security, Inc, Version 2.0.
(September 1998)

23. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

24. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

Indistinguishability Obfuscation and UCEs:

The Case of Computationally
Unpredictable Sources

Christina Brzuska1, Pooya Farshim2, and Arno Mittelbach3

1 Tel Aviv University, Israel
2 Royal Holloway, University of London, UK

3 Darmstadt University of Technology, Germany
brzuska@post.tau.ac.il, pooya.farshim@rhul.ac.uk,

arno.mittelbach@cased.de

Abstract. Random oracles are powerful cryptographic objects. They
facilitate the security proofs of an impressive number of practical cryp-
tosystems ranging from KDM-secure and deterministic encryption to
point-function obfuscation and many more. However, due to an uninstan-
tiability result of Canetti, Goldreich, and Halevi (STOC 1998) random
oracles have become somewhat controversial. Recently, Bellare, Hoang,
and Keelveedhi (BHK; CRYPTO 2013 and ePrint 2013/424, August
2013) introduced a new abstraction called Universal Computational Ex-
tractors (UCEs), and showed that they suffice to securely replace ran-
dom oracles in a number of prominent applications, including all those
mentioned above, without suffering from the aforementioned uninstan-
tiability result. This, however, leaves open the question of constructing
UCEs in the standard model.

We show that the existence of indistinguishability obfuscation (iO) im-
plies (non-black-box) attacks on all the definitions that BHK proposed
within their UCE framework in the original version of their paper, in
the sense that no concrete hash function can satisfy them. We also show
that this limitation can be overcome, to some extent, by restraining the
class of admissible adversaries via a statistical notion of unpredictability.
Following our attack, BHK (ePrint 2013/424, September 2013), indepen-
dently adopted this approach in their work.

In the updated version of their paper, BHK (ePrint 2013/424, Septem-
ber 2013) also introduce two other novel source classes, called bounded
parallel sources and split sources, which aim at recovering the compu-
tational applications of UCEs that fall outside the statistical fix. These
notions keep to a computational notion of unpredictability, but impose
structural restrictions on the adversary so that our original iO attack
no longer applies. We extend our attack to show that indistinguishabil-
ity obfuscation is sufficient to also break the UCE security of any hash
function against bounded parallel sources. Towards this goal, we use the
randomized encodings paradigm of Applebaum, Ishai, and Kushilevitz
(STOC 2004) to parallelize the obfuscated circuit used in our attack,
so that it can be computed by a bounded parallel source whose sec-
ond stage consists of constant-depth circuits. BHK, in the latest version
of their paper (ePrint 2013/424, May 2014), have subsequently replace

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 188–205, 2014.
c© International Association for Cryptologic Research 2014

Indistinguishability Obfuscation and UCEs 189

bounded parallel sources with new source classes. We conclude by dis-
cussing the composability and feasibility of hash functions secure against
split sources.

Keywords: Randomized encodings, obfuscation, UCE, random oracle.

1 Introduction

Since their formal introduction in the seminal paper of Bellare and Rogaway [13],
random oracles have found extensive use across a wide spectrum of cryptographic
protocols. Their versatility has lead researchers to seek for a unified formaliza-
tion of their useful properties, hoping that such a definition could be eventu-
ally realized. Canetti, Goldreich, and Halevi [20] proposed such a definition, but
somewhat disappointingly, also proved a negative result which ruled out instanti-
ations of random oracles in arbitrary (perhaps artificial) cryptographic protocols
by any keyed hash functions. This negative result was subsequently extended in
a number of works [35,25,22,32,7,21].

UCE security. Bellare, Hoang, and Keelvedhi (BHK) [8,9,10,12]1 revisited the
above question and formulated an attractive new security notion called Universal
Computational Extractor (UCE). They were able to apply their framework to
an interesting and diverse set of security goals, which included among other
things, security under key-dependent attacks, security under related-key attacks,
simultaneous hardcore bits, point-function obfuscation, garbling schemes, proofs
of storage, and deterministic encryption. Recently, Matsuda and Hanaoka [33]
used UCEs to also build CCA-secure public-key encryption schemes.

The UCE framework comes in two versions: a single-key version (UCE) and a
multi-key version (mUCE). For a keyed hash function H, single-key UCE security
is defined via a two-stage security game consisting of algorithms S and D, called
the source and the distinguisher, respectively. In the first stage, the source is
given access to an oracle Hash that, depending on a challenge bit b, implements
either a random oracle or the concrete hash function with a randomly chosen
key hk. The source terminates with some leakage L, which is then communicated
together with hk to the distinguisher D. The distinguisher’s goal is to guess the
bit b, i.e., guess whether the source interacted with the random oracle or the hash
function. The UCE advantage of the pair (S,D) is defined as the probability of
returning the correct answer scaled away from one-half. (The stronger multi-key
version is defined analogously by introducing Hash oracles for multiple keys and
providing the keys together with leakage to the distinguisher.) We summarize
this interaction schematically in Figure 1, and give the pseudocode in Figure 2.
We refer the reader to the original work for an excellent philosophical perspective
on this framework.
1 Citation [8] refers to the CRYPTO 2013 proceedings version, [9] refers to its full
version on Cryptology ePrint Archive from August 2013 prior to communicating
our basic iO attack (presented in this paper), and [10] refers to the version from
September/October 2013, and [12] refers to the latest version from May 2014.

190 C. Brzuska, P. Farshim, and A. Mittelbach

S Hash

D(hk) b′

L

x

y

1λ

Fig. 1. Schematic of the UCE
game

Main UCES,D
H (λ)

b←$ {0, 1}; hk←$ H.Kg(1λ)

L←$ SHash(1λ)

b′ ←$ D(1λ, hk, L)

return (b = b′)

Hash(x)

if T [x] = ⊥ then
if b = 1 then

T [x] ← H.Ev(1λ, hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Fig. 2. Pseudocode for the UCE game. Here H.ol(λ)
is a function which specifies the length of hash values.

Without any restrictions UCE security cannot be achieved: the source can
simply leak one of its oracle queries together with the corresponding answer to
the distinguisher, which then can locally compute the hash value on the queried
point (the distinguisher knows the hash key) and compare it to the leaked hash
value. Thus, the source needs to be somehow restricted, and this restriction forms
the actual UCE definition: for a source class S we denote the UCE assumption
with sources restricted to S by UCE[S]. Prior to our work, BHK proposed two
source classes via unpredictability and reset security conditions, which in turn
gave rise to two notions called UCE1 and UCE2, respectively.

The UCE1 notion [8,9] is defined using an unpredictability game which re-
quires that when the source is run with a random oracle, its leakage does not
computationally reveal any of its queries. This is formalized by requiring that the
probability that an efficient predictor P can guess a query of S when given L is
negligible. Such a source is then called unpredictable, and leads to the following
definition of UCE1 security: a hash function is UCE1 secure if the advantage
of all efficient, unpredictable sources S, and all efficient distinguishers D in the
UCE game is negligible. The stronger notion of UCE2 security is defined anal-
ogously by requiring that the source satisfies the weaker requirement of reset
security.

Following our obfuscation-based attack (that we describe next and that we
communicated to BHK in August 2013 [11]), the UCE1 and UCE2 notions were
revised in [10] and additional restrictions on sources were imposed. We will be
discussing these shortly, after presenting our first attack.

An obfuscation-based attack on UCE1. Our first attack, described in Section 3,
targets the original UCE notions UCE1 and UCE2, and is based on a recent
breakthrough in the construction of obfuscation schemes. Garg et al. [24] give
a candidate construction for the so-called notion of indistinguishability obfus-
cation [6] based on intractability assumptions related to multi-linear maps. Our
attack shows that any UCE1 construction would need to falsify one of these as-
sumptions. Put differently, if indistinguishability obfuscation exists, then UCE1
security (and hence also the stronger UCE2 security) cannot be achieved.

Roughly speaking, a secure indistinguishability obfuscation (iO) scheme as-
sures that the obfuscations of any two circuits that implement the same function
are computationally indistinguishable. Our attack uses this primitive as follows.
The source picks a random point x, and queries it to Hash to get y. It then

Indistinguishability Obfuscation and UCEs 191

prepares an iO of the Boolean circuit (H(·, x) = y), and leaks it to the distin-
guisher as L. The distinguisher now plugs the hash key hk into this obfuscated
circuit and returns whatever the circuit outputs. It is easy to see that the dis-
tinguisher recovers the challenge bit correctly with an overwhelming probability.
What is less clear, however, is whether or not the source is unpredictable. Recall
that the unpredictability game operates with respect to a random oracle. Let
us now assume, for simplicity, that |hk| < |y|/2 (we will not need to rely on
this assumption in our full attack). For any x, there are at most 2|hk| possible
values for H(hk, x), and a random y would be one of them with probability at
most 2|hk|/2|y| < 2−|y|/2, which is negligible. Consequently, the obfuscated cir-
cuit implements the constant zero function with overwhelming probability. This
allows us to apply the security of the obfuscator to conclude the attack: the
obfuscated circuit does not leak any more information about x than the zero
function would, and since x was chosen randomly, it remains hidden from the
view of any efficient predicator.

Salvaging UCE. Assuming the existence of indistinguishability obfuscation, we
ask to what extent UCE can be salvaged. That is, do there exist other UCE as-
sumptions that allow recovering (some of) the originally presented applications?
We partially salvage UCEs by modifying the unpredictability condition and let-
ting the predictor run in unbounded time. This statistical notion of unpredictabil-
ity restricts the class of admissible sources such that the source implementing
the iO attack falls outside it: an unbounded predictor can reverse-engineer the
computationally secure obfuscator. This modification is validated by the work
of Goldwasser and Rothblum [26] who show that a statistical analogue of iO is
impossible unless the polynomial hierarchy collapses to its second level. As we
discuss in Section 3.2, a large number of interesting applications (such as KDM
and RKA security) survives under this definition.

After communicating our attack, BHK independently suggested the statistical
patch [10]. In the revised version of their paper [10], they recast their proofs of
security to rely only on statistical unpredictability for all applications where
this is possible. We refer to [10] for details on the applications that can be
salvaged by statistical UCE1. As mentioned earlier, not all applications can be
salvaged by statistical unpredictability. Hence, BHK also present two additional
UCE notions based on computational unpredictability, which together with the
statistical patch allowed them to fully recover their original set of applications
in light of the aforementioned iO attack. We discuss these next.

Computational UCE. Some applications discussed in [8,9], specifically hardcore
functions, deterministic public-key encryption (D-PKE), message-locked encryp-
tion (MLE), and OAEP rely on computational unpredictability in an intrinsic
way; that is, the reduction only works if the predictor is bound to run in poly-
nomial time. For instance, the source presented in [8,9] for D-PKEs produces
leakage which contains encryptions of messages that have been sent to the Hash

oracle. An unbounded predictor can easily decipher the ciphertexts and predict
Hash queries of the source.

192 C. Brzuska, P. Farshim, and A. Mittelbach

Following the above attack, in the updated version of their paper, BHK [10]
propose two novel UCE notions by imposing additional restrictions on the way
the source operates, while keeping the original computational unpredictability
game. The goal here is that these restrictions are sufficiently strong to circum-
vent our attack, but weak enough so that successful security reductions can be
established.

To recover D-PKEs, MLEs, and OAEP, BHK propose a new UCE assumption
based on computational unpredictability restricted to so-called bounded parallel
sources. Such a source splits into two stages S0 and S1. In the first phase, algo-
rithm S0 prepares a vector of strings. In the second phase, independent instances
of S1 for each entry in the previously prepared vector are run in parallel. Each
instance gets access to the Hash oracle and their combined outputs make up the
final leakage. To circumvent our attack two restrictions on S1 are imposed: its
runtime and number of Hash queries (per instance). The idea here is that com-
puting the obfuscation of a hash function is “too costly,” and hence the attack
cannot be mounted.

In Section 4 we show that this refined notion still falls prey to a similar, but
somewhat more complex attack. The idea is to split the iO attack into two stages
consisting of a high-complexity first stage and a parallelizable second stage. To
this end, we use the powerful randomized encodings paradigm of Applebaum,
Ishai, and Kushilevitz [2] to bring down the complexity of the second stage

of the attack. The randomized encoding f̂(x; r) of f(x) is simply an encoding
of f(x) such that a decoder dec can retrieve the original value f(x) from it,

i.e., dec(f̂(x; r)) = f(x). In addition, a randomized encoding specifies an effi-

cient simulator Sim such that for all x the distributions f̂(x; r) over uniformly
chosen r and Sim(f(x)) are computationally indistinguishable. These properties
combined allow us to show that we can adapt our original attack such that the
source does not leak the obfuscated circuit but rather a randomized encoding of
it. This alone, however, is still not enough for an attack with the restrictions of
bounded parallel sources. Finally, we utilize a special form of decomposable ran-
domized encodings [31] to realize an attack. Such encodings have the property

that each output bit of f̂(x; r) depends on at most a single bit of x (but possi-
bly on the entire string r). The randomized encoding of Applebaum, Ishai, and
Kushilevitz [3] is decomposable and supports all functions in P/poly. We show
how to use such an encoding scheme to split the computation of the encoding
into two phases: a complex first preprocessing phase which does not depend on
the actual input and a very simple second stage which can be parallelized and
where each parallel instance essentially only has to drop one of two bits. We
show that this second stage (which will correspond to S1) can be implemented
by constant-depth circuits consisting only of very few gates. This application of
decomposable randomized encodings could be of interest also in other scenar-
ios where efficiently computing an encoding is important and preprocessing is
possible. In the latest version of their paper [12] BHK has removed bounded
parallel sources and replaced them by new source classes to recover the original
applications.

Indistinguishability Obfuscation and UCEs 193

Main UCES,D
H (λ)

b←$ {0, 1}; hk←$ H.Kg(λ)

L←$ SHash(1λ)

b
′ ←$ D(1

λ
, hk, L)

return (b = b′)

Hash(x)

if T [x] = ⊥ then
if b = 1 then

T [x] ← H.Ev(1
λ
, hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Main PredPS (λ)

done ← false; Q ← ∅
L←$ SHash(1λ); done ← true

Q′ ←$ PHash(1λ, L)

return (Q ∩ Q′ �= ∅)

Hash(x)

if done = false then
Q ← Q ∪ {x}

if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Main ResetRS (λ)

Dom ← ∅; L←$ SHash(1λ);
b←$ {0, 1}
if b = 0 then

for x ∈ Dom do

T [x]←$ {0, 1}H.ol(λ)

b′ ←$ RHash(1λ, L);

return (b′ = b)

Hash(x)

Dom ← Dom ∪ {x}
if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Fig. 3. The UCE security game together with the unpredictability and reset-security
games

While bounded parallel sources suffice to also recover simultaneous hard-
core functions, BHK propose a second, simpler UCE assumption based on split
sources. A split source consists of two parts S0 and S1, in which each part in-
dependently contributes to the leakage sent to the distinguisher. The idea is
that none of these sub-sources gets direct access to the Hash oracle. Rather,
algorithm S0 defines the queries (without access to any hash values) and algo-
rithm S1 gets to see the hash values but not the queries. As for our attack, note
that the associated source needs to know both the query x and its hash value
y ← Hash(x) in order to compute the circuit (H(·, x) = y). We discuss split
sources in a larger context and present necessary conditions for a hash function
to achieve split-source UCE security in the full version of this work [19]. For
example, we show that in order to prove the security of a hash function H, one
needs to show that the function that maps x to the obfuscation of the circuit
H(·, x) must not be one way. We also discuss intricacies regarding composition
of such functions with one-way permutations, and show that such a composition
does not harm standard notions such as collision resistance, pseudorandomness
(and indeed statistical UCE1 security) but provably fails for split-source security.
We present this discussion in the full version.

To conclude, although UCEs strengthen our confidence in the security of many
practical schemes in the random-oracle model, our attacks highlight the need for
a thorough assessment of definitional choices that can be made within the UCE
framework. This assessment, in addition to instantiability questions, should also
include studying concrete instantiations of UCEs such as the SHA family [34] in
HMAC mode, as suggested by BHK [8].

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter, which is implicitly given
to all algorithms (if not explicitly stated so) in the unary representation 1λ.

194 C. Brzuska, P. Farshim, and A. Mittelbach

By {0, 1}� we denote the set of all bit-strings of length �, and by {0, 1}∗ the set of
all bit-strings of finite length. For two strings x1, x2 ∈ {0, 1}∗ their concatenation
is written as x1‖x2. The length of x is denoted by |x| and x[i] is the i-th bit of x.
For a finite set X , we denote the action of sampling x uniformly at random from
X by x←$ X , and denote the cardinality of X by |X |. Algorithms are assumed
to be randomized, unless otherwise stated. We call an algorithm efficient or
PPT if it runs in time polynomial in the security parameter. By y ← A(x; r)
we denote that y was output by algorithm A on input x and randomness r.
If A is randomized and no randomness is specified, then we assume that A is
run with freshly sampled uniform random coins, and write this is as y←$ A(x).
We often refer to algorithms, or tuples of algorithms, as adversaries. We say a
function negl(λ) is negligible if |negl(λ)| ∈ λ−|ω(1)|. In this paper we deploy the
game-playing framework of Bellare and Rogaway [14] with the augmented game
procedures described in [36].

Syntax of hash functions. In line with [8], we consider the following formaliza-
tion of hash functions. A function family H is a five tuple of PPT algorithms
(H.Kg,H.Ev,H.kl,H.il,H.ol) as follows. The algorithms H.kl, H.il, and H.ol are
deterministic and on input 1λ define the key length, input length, and output
lengths, respectively. (We have adopted the simplified notion from [8] here.) The
key generation algorithm H.Kg gets the security parameter 1λ as input and out-
puts a key hk ∈ {0, 1}H.kl(λ). The deterministic evaluation algorithm H.Ev takes
as input the security parameter 1λ, a key hk, a message x ∈ {0, 1}H.il(λ) and
generates a hash value H.Ev(1λ, hk, x) ∈ {0, 1}H.ol(λ).

UCE game. Let H = (H.Kg,H.Ev,H.kl,H.il,H.ol) be a hash function and (S,D)
be a pair of PPT algorithms. We define the UCE advantage of (S,D) against H
through

AdvuceH,S,D(λ) := 2 · Pr
[
UCES,D

H (λ)
]
− 1 ,

where game UCES,D
H (λ) is shown in Figure 3 on the left.

Unpredictability. A source S is called computationally unpredictable if the ad-
vantage of any PPT predictor P defined by

AdvpredS,P (λ) := Pr
[
PredPS (λ)

]
is negligible, where game PredPS (λ) is shown in Figure 3 in the middle. We denote
the class of all computationally unpredictable sources by Scup.

UCE security. We say a hash function H is UCE1 secure if for all computation-
ally unpredictable PPT sources S and all PPT distinguishers D the advantage
AdvuceH,S,D(λ) is negligible. In the later version of their paper [10], BHK refer to
UCE1 as UCE[Scup]. BHK introduce a stronger version called UCE2 which is
based on the reset-security game ResetRS (1

λ) shown in Figure 3 on the right. We
refer the reader to [9] for the details, but note here that UCE2 security implies
UCE1 security and, thus, any attack on UCE1 also applies to UCE2.

Indistinguishability Obfuscation and UCEs 195

We discuss the revised UCE assumptions introduced in [10], namely those for
bounded parallel sources and split sources, in Section 4 and in the full version [19],
respectively.

Indistinguishability obfuscation. Roughly speaking, an indistinguishability ob-
fuscation (iO) scheme ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Indistinguishability
obfuscation was originally proposed by Barak et al. [6] as a potential weakening
of virtual-black-box obfuscation. We recall the definition from [24]. A PPT algo-
rithm iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if
the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for
all inputs x we have that

Pr
[
C′(x) = C(x) : C′←$ iO(1λ, C)

]
= 1 .

– Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) on all inputs x the following distinguishing
advantage is negligible:

AdvioiO,D,C0,C1
(λ) := Pr

[
D(iO(1λ, C1)) = 1

]
− Pr
[
D(iO(1λ, C0)) = 1

]
.

With their recent candidate construction for indistinguishability obfuscation,
Garg et al. [24] have revived interest in the study of obfuscation schemes (see, for
example, [37,16,28,17,18,23,5,15] and the references therein). Garg et al. prove
that under an intractability assumption related to multi-linear maps their con-
struction yields an indistinguishability obfuscator for all circuits in NC1. Addi-
tionally, assuming a perfectly correct fully homomorphic encryption scheme and
a perfectly sound non-interactive witness-indistinguishable proof system, they
also show how their obfuscation scheme can be bootstrapped to support any
polynomial-size circuit. In a recent work, Barak et al. [5] have further simplified
the construction and showed that it is secure against all generic multi-linear
attacks.

3 UCE1 and UCE2 Security

In this section we formalize our iO attack on the UCE1 (and hence the stronger
UCE2) security of any concrete hash function. We also propose a fix to these
notions which avoids the attack while still being applicable to a number of cryp-
tosystems.

3.1 The iO Attack

Our attack uses an indistinguishability obfuscation scheme in a black-box way,
but is non-black-box as it relies on the code of the hash function for obfusca-
tion. (Therefore, the attack does not contradict the positive feasibility of BHK

196 C. Brzuska, P. Farshim, and A. Mittelbach

in the random-oracle model.) We stress that the complexity of running our at-
tack, although high, is polynomial, and will benefit from future advances in the
construction of iO schemes.

Theorem 1 (UCE1 infeasibility). If indistinguishability obfuscation exists,
then UCE1 security cannot be achieved in the standard model.

We now present a sketch of the proof and defer the full proof to the full
version [19].

Proof (sketch). Let H be a UCE1-secure hash function family. Let us assume for
now that H.ol(λ) ≥ 2 ·H.kl(λ), that is, the output length of the hash function is
at least twice the size of a hash key. (We will be dropping this condition shortly.)
Define a source S which generates a random value x←$ {0, 1}H.il(λ) and computes
y ← Hash(x). It then constructs the Boolean circuit

Cλ,H,x,y(·) := (H.Ev(1λ, ·, x) = y) ,

that returns 1 on input hk if, and only if, H.Ev(1λ, hk, x) equals y. The source
S passes on an encoding of circuit Cλ,H,x,y(·) as leakage L to the distinguisher.
We will later use obfuscation to ensure that x is not leaked by the encoding
of Cλ,H,x,y(·) (this is needed for unpredictability). The distinguisher D recovers
circuit Cλ,H,x,y(·) from the leakage L, and computes b′ ← Cλ,H,x,y(hk) using the
given hash key hk, and returns b′. The UCE1 adversary (S,D) has advantage
1 − 2−H.ol(λ): when the source is run with oracle access to H.Ev(1λ, hk, ·), the
circuit always returns 1. When S interacts with a random oracle, y coincides
with H.Ev(1λ, hk, x) with probability 2−H.ol(λ).

Now let iO be an indistinguishability obfuscator. Instead of leaking circuit
Cλ,H,x,y(·), we let S compute an obfuscation of the circuit and output L←$ iO
(Cλ,H,x,y(·)). By the correctness property of the obfuscator, distinguisher D, as
before, has an overwhelming advantage in guessing the challenge bit correctly.
It remains to show that the adapted source S is unpredictable.

In the unpredictability game PredPS (λ) oracle Hash is always implemented
by a random oracle. Thus, with high probability the circuit Cλ,H,x,y(·) is the
constant zero circuit: for any x ∈ {0, 1}n, there are at most 2|H.kl((λ))| possible
values for H.Ev(hk, x), and a random y would be one of the image values with
probability at most 2|H.kl(λ)|2−� which by assumption is less than 2−H.ol(λ)/2.
Now, to see that the source S is unpredictable note that the zero function and
Cλ,H,x,y(·) are functionally equivalent. This means that an indistinguishability
obfuscation of Cλ,H,x,y will not leak any more information about x than the zero
function would. Since x was chosen randomly, it remains hidden from the view
of any PPT predicator P .

It remains to argue how we can drop the requirement on the size of hash keys.
For this note that we can simply choose a t such that t ≥ 2 · �H.kl(λ)/H.ol(λ)�
and let the source leak an obfuscation of the circuit (H.Ev(1λ, ·, x1) = y1 ∧ · · · ∧
H.Ev(1λ, ·, xt) = yt). ��

Indistinguishability Obfuscation and UCEs 197

In the above proof, we relied on the source being able to make multiple queries
to its hash oracle. Bellare, Hoang, and Keelveedhi [11] point out that the theorem
can be extended to a single-query source by applying a pseudorandom generator
to the output of the hash function. This result is noteworthy as several applica-
tions only require the source to make a single query.

3.2 Statistical Unpredictability

The iO attack immediately gives rise to the following question: can the UCE1
and/or UCE2 notions be somehow patched so that they avoid the attack while
maintaining (part of) their wide applicability? Fortunately, we show that this is
indeed the case. We start by observing that the security guarantee of the indis-
tinguishability obfuscator is only computational. Consequently, the attack can
be directly ruled out by demanding the source to be statistically unpredictable,
i.e., by letting a potential predictor run in unbounded time (but still impose
polynomial query complexity). More formally, we say a source S is statistically
unpredictable if the advantage of any (possibly unbounded) predictor P with
polynomial query complexity in the PredPS (λ) game shown in Figure 3 (middle)
is negligible. Statistical UCE2 security can be defined analogously, where we
let the reset distinguisher run in unbounded time and only place a polynomial
bound on the number of its queries.

The above definition, in turn, leads to the following two questions: (1) Is a
statistically secure variant of indistinguishability obfuscation possible? (2) Are
there any application scenarios which only rely on this weaker property? Gold-
wasser and Rothblum [26] provide a negative answer to the first question by
showing that the existence of a statistically secure iO scheme implies the col-
lapse of the polynomial hierarchy to its second level. This impossibility result
reinforces our confidence in the soundness of the above definition. For the second
question, recall that the unpredictability game is always defined with respect to
a random oracle, and hence statistical unpredictability may be (non-trivially)
achievable. Indeed, consider a source which samples a random point x, queries
it to its oracle, and leaks the result to the distinguisher. It is easy to see that
this source is statistically unpredictable as a random oracle is one-way against
unbounded adversaries. Indeed, many of the cryptosystems considered by BHK
admit security proofs with sources that essentially take this simple form [8,9].
We present a brief discussion of these in the full version of this work.

After we communicated our attack [11], BHK in the revised version of their
paper [10] also independently suggested the statistical notion of unpredictabil-
ity. They denote by Ssup the class of all statistically unpredictable sources and
recast their proofs of the above to use UCE[Ssup]. We refer to [10] for details
on the applications that can be salvaged with statistical UCE1 aka UCE[Ssup]
(resp. statistical UCE2 aka UCE[Ssrs]).

We end this section by noting that for the hardcore predicate, BR93 en-
cryption, D-PKE, MLE and OAEP application scenarios discussed in [8,9], the
leakage contains auxiliary information related to a query x that only computa-
tionally hides x (e.g., it might contain a one-way image f(x), or an encryption

198 C. Brzuska, P. Farshim, and A. Mittelbach

of x). Consequently, an unbounded predictor might well be able to guess the
point x, and in these cases our statistical patch is no longer useful. Despite this,
we observe that UCE-secure hash functions with regard to statistical unpre-
dictability are hardcore for highly non-injective one-way functions. (The proof
is essentially equivalent to that in [9] and relies on the fact that any (even an
unbounded) predictor cannot recover the exact query if the preimage space is
super-polynomially large.)

4 Bounded Parallel Sources

In version [10] of their paper, BHK introduce novel UCE-type security notions
to recover applications where statistical unpredictability is of no help. The main
idea behind these new UCE assumptions is that, in order to keep the unpre-
dictability condition computational, the source needs to operate in a restricted
way so that the iO attack cannot be mounted any longer.

A new restricted source class that BHK introduce to recover the deterministic
public-key encryption (D-PKE), message-locked encryption (MLE), and OAEP
applications is that of bounded parallel sources. In parallel sources the source
splits into two parts S0 and S1 as follows. The first part of the source S0 does
not get oracle access to Hash, and simply outputs some preliminary leakage L0

and a vector L′ of arbitrary bit strings. For each entry in L′ an independent
instance of the second part of the source S1 is run. This can be done in parallel
as the several invocations do not share any coins or state. Instance i of S1 is
given L′[i] as input which then produces leakage L[i]. As opposed to S0, the
second part S1 of parallel sources has oracle access to Hash. The final leakage
of the source S := Prl[S0, S1] is set to be L := (L0,L). The details of a parallel
source S = Prl[S0, S1] are given in Figure 4 on the left.

Without any further restrictions, parallel sources are as powerful as regular
sources: simply ignore S0 and let a single S1 generate the entire leakage. Thus,
in order to circumvent the iO attack, further restrictions are necessary. To this
end, BHK restrict the resources of S0 and S1 via polynomials τ , σ, and q as
follows: (1) the running time (circuit size) of each invocation of S1 is at most
τ(·); (2) each invocation of S1 makes at most q(·) oracle queries; and (3) the
length of initial leakage L0 output by S0 is at most σ(·). BHK then consider the
class Sprl

τ,σ,q consisting of all parallel sources satisfying these bounds, and define
UCE for computationally unpredictable, bounded parallel sources by considering
UCE[Scup ∩ Sprl

τ,σ,q].
For their results on D-PKE and MLE schemes, the parameters τ , σ, and q need

to be fine-tuned according to the underlying encryption scheme. More precisely,
BHK set q to 1 (each instance of S1 makes a single hash query), σ to the size
of a key-pair (0 in the case of MLEs), and τ to the runtime of the encryption
operation plus the input and key sizes of the encryption scheme. It is easily seen
that our basic attack does not fall into this class as long as the computation of
the obfuscated circuit takes longer than what is granted by τ .

Indistinguishability Obfuscation and UCEs 199

Prl Source SHash(1λ)

(L0,L
′)←$ S0(1

λ)
for i = 1, . . . ,

∣∣L′∣∣ do

L[i]←$ SHash

1 (1λ,L′[i])
L ← (L0,L)
return L

Splt Source SHash(1λ)

(L0,x)←$ S0(1
λ)

for i = 1, . . . , |x| do
y[i]←$ Hash(x[i])

L1 ←$ S1(1
λ,y);L ← (L0, L1)

return L

Fig. 4. The parallel source S = Prl[S0, S1] on the left and the split source S =
Splt[S0, S1] on the right as defined in the updated version of [10]. In both cases the
source consists of two parts S0 and S1 that jointly generate leakage L. For split sources
neither part gets direct oracle access to Hash. For parallel sources additional restric-
tions on the runtime and the number of queries of S1, and the length of leakage L0

are imposed. Note that the invocations of S1 are parallelizable and independent of one
another.

In choosing the parameters for bounded parallel sources, one has to strike a
delicate balance between the complexity of obfuscating a hash function and the
cost of encryption (resp. the application in question). Indeed, suppose that a
bounded parallel source assumption with parameters as above is used to prove
an MLE scheme secure in the standard model. Now if the complexity of the
encryption scheme is high (e.g., because it is implemented based on iO [37] or
because it includes (artificial) redundant code), then the assumption can be
broken by the iO attack, as described in the previous section. Similarly, if one
could reduce the complexity of obfuscating the hash function, an attack would
become feasible. However, considering the current state of research, obfuscation
is a very costly operation and thus, intuitively, computing the obfuscation of a
hash function should be harder than encrypting a message.

Interestingly, as we show in this section, it is the parallel complexity of ob-
fuscating a hash function (after a possibly complex preprocessing phase) that
matters for the attack, and we can show that the latter can lie in a complex-
ity class which is dramatically below that of computing the obfuscation of the
hash function. More precisely, we show how to combine our iO attack with the
randomized encodings of Applebaum, Ishai, and Kushilevitz [2] to split the at-
tack into two stages such that the second stage is highly parallelizable. Before
describing our attack, let us briefly recall the notion of randomized encodings.

4.1 Randomized Encodings

Randomized encodings allow one to substantially reduce the complexity of com-
puting a function f by instead computing an encoding of it. This technique was
first introduced by Ishai and Kushilevitz [29,30] in the context of multi-party
computation and has since found many applications [2,3,31,27,4,1]. The formal-
ization of randomized encodings that we use here is due to Applebaum, Ishai,
and Kushilevitz (AIK) [2] and is adapted to the setting of perfect correctness and

computational privacy. Informally, we say that f̂(x; r) is a randomized encoding

200 C. Brzuska, P. Farshim, and A. Mittelbach

of some function f(x) if (1) given f̂(x; r) one can efficiently recover function
value f(x), and (2) given f(x), one can efficiently sample from the distribution

f̂(x; r) induced by uniformly choosing r.
More precisely, a randomized encoding scheme RE consists of three efficient

algorithms (enc, dec, Sim) as follows: (1) a probabilistic encoding algorithm enc
which on input a security parameter 1λ, a circuit computing fλ : {0, 1}n(λ) →
{0, 1}�(λ) (of size polynomial in λ) and an x ∈ {0, 1}n(λ) outputs an encoding
z ∈ {0, 1}s(λ); (2) a deterministic decoder algorithm dec which on input the
security parameter 1λ and an encoding z ∈ {0, 1}s(λ) outputs an image point
y ∈ {0, 1}�(λ); and (3) a probabilistic simulation algorithm Sim which on input
1λ and an image point y ∈ {0, 1}�(λ) outputs an encoding z ∈ {0, 1}s(λ). To keep
our notation consistent with the previous literature on randomized encoding,
for a given circuit fλ, we will refer to the the mapping enc(1λ, fλ, ·; ·) by f̂λ :
{0, 1}n(λ)×{0, 1}m(λ) → {0, 1}s(λ), where {0, 1}m(λ) is the randomness space of
enc. We say scheme RE is a perfectly correct, computationally private randomized
encoding for a circuit class {Fλ}λ∈N if it satisfies the following two conditions.

– Correctness. For any fλ ∈ Fλ and any input x ∈ {0, 1}n(λ) we have that

Pr
[
dec(1λ, f̂λ(x; renc)) = fλ(x) : renc←$ {0, 1}m(λ)

]
= 1 .

– Privacy. For any PPT distinguisher D, any fλ ∈ Fλ, and any input x ∈
{0, 1}n(λ) the distinguishing advantage AdvreRE,D,x is negligible, where advan-
tage AdvreRE,D,x(λ) is defined as:

Pr[D(1λ, f̂λ(x; renc)) = 1 : renc←$ {0, 1}m(λ)]−Pr[D(1λ, Sim(1λ, fλ(x)) = 1] .

Functions n, �, s, and m are polynomials, however, we will be dropping the
explicit dependency on λ in order to simplify notation, and set n := n(λ), � :=
�(λ), s := s(λ), and m := m(λ).

AIK used randomized encodings to construct cryptography in NC0. For us,
the complexity of the encoding is not important. Rather, we will make use of
encodings with small locality, where each bit in the randomized encoding f̂(x; r)
only depends on at most a single bit of x (but possibly many bits of r). We will
return to the topic of locality in Section 4.3.

4.2 Composing iO with Randomized Encodings

To ease readability, we present our attack in two stages. First, we show that
our iO attack can be composed with any randomized encoding scheme in a
way which neither affects the adversary’s advantage nor the unpredictability of
its implicit source. Then, in the next subsection, we use a special type of RE
scheme known as decomposable randomized encodings [31] to split and parallelize
the adversary’s source in order to meet the (minimal) bounds of q(λ) = 1,
σ(λ) = 0, and τ(λ) ∈ O(λ). Consequently, our attack will rule out bounded
parallel sources for these parameters. Since the bounds that our attacks achieves

Indistinguishability Obfuscation and UCEs 201

are very stringent, and an encryption scheme has to at least run in time O(λ)
(and make a single Hash query), assuming indistinguishability obfuscation, it
is unlikely that bounded parallel sources can be used to instantiate ROs in any
meaningful application scenario.

Let H be a UCE[Scup ∩ Sprl
τ,σ,q]-secure hash function, iO be an indistinguisha-

bility obfuscator, and let us assume once again that H.ol(λ) ≥ 2 ·H.kl(λ). (As in
the proof of Theorem 1, this assumption will be without loss of generality.)

The attacker. Define Cλ,H,x,y(·) := (H.Ev(1λ, ·, x) = y), and compute a random-
ized encoding of the circuit

f : (x, y, rio) �→ iO(Cλ,H,x,y(·); rio),

where rio is the randomness used by the obfuscator. As in the proof of Theorem 1,
we consider the source S which chooses random values x, rio, and renc, queries
x to its oracle to obtain y ← Hash(x), and leaks the randomized encoding

L := f̂(x, y, rio; renc) .

The distinguisher D gets as input a hash key hk and an encoding f̂(x, y, rio; renc).
It uses the decoder dec of the randomized encoding scheme to recover

f(x, y, rio)← dec(f̂(x, y, rio; renc)) .

It then interprets the result as a circuit, runs it on on hk, and returns whatever
the circuit outputs.

By correctness of the randomized encoding, the advantage of the adversary is
identical to the one in our original iO-attack. Moreover, the source is computa-
tionally unpredictable which follows when combining the analysis of the previous
section with the privacy of the randomized encoding. We give the formal analysis
of advantage and success probability in the full version [19].

4.3 Splitting and Parallelizing S Using Decomposable REs

The attack described in the previous subsection works for any randomized encod-
ing scheme. In particular, now, we will use a decomposable randomized encoding
scheme to instantiate the attack; this allows us to recast the above source as a
bounded parallel source. Let us begin with the definition decomposable random-
ized encodings.

Decomposable encodings. In a decomposable randomized encoding (DRE)

scheme, every output bit of the encoding f̂(x; r) depends on at most a sin-
gle bit of x (but possibly on arbitrarily many bits of r). More precisely, a
decomposable randomized encoding scheme DRE consists of a four tuple of al-
gorithms (idx, enc, dec, Sim) as follows. Algorithm idx on input a circuit f and
an index i ∈ [s] outputs an index j ∈ [n] ∪ {0}. The decomposable encod-
ing algorithm enc operates based on a local encoding algorithm enc as fol-
lows. On input a circuit f , a point x, and random coins renc, for each i ∈ [s]

202 C. Brzuska, P. Farshim, and A. Mittelbach

compute zi ← enc(f, i, x[idx(f, i)]; renc), where we define x[0] :=⊥, and return
z ← (z1, . . . , zs). Algorithms dec and Sim play the same roles as those in a con-

ventional RE scheme. As before, we denote enc(f, i, b; renc) by f̂i(b; renc). Thus
we may write

f̂(x; renc) = f̂1(x[idx(1)]; renc)‖f̂2(x[idx(2)]; renc)‖ · · · ‖f̂s(x[idx(s)]; renc) .

As Ishai et al. [31] point out, several constructions of randomized encodings
are decomposable. For example, AIK’s construction based on garbled circuits [3]
is a decomposable, perfectly correct, and computationally private randomized
encoding for any function in P/poly. Their construction relies only on the exis-
tence of secure pseudorandom generators.

Using decomposable encodings, we show that our attack can be parallelized.
The idea is that each instance of S1 is responsible for computing a single bit of
f̂(x; renc). However, potentially, computing even a single bit of f̂(x; renc) can be
a computationally heavy task. We thus outsource pre-computation to S0 such
that for S1, computing a single bit of f̂(x; renc) becomes easy. For concreteness,

let us think about the instance of S1 that computes the first bit of f̂(x; renc). As

the encoding is decomposable, the first bit of f̂(x; renc) only depends on a single

bit xi of x. S0 now picks renc and computes the first bit of f̂(x; renc) simply for
both cases, xi = 0 and if xi = 1. It obtains two values and passes these two
values to S1. Now, as source S1 has access to Hash it can compute the actual
xi and its task is thus merely picking the right precomputed bit as output. We
give the full description of the attack in the full version [19].

Theorem 2 (Bounded parallel UCE infeasibility). If indistinguishability
obfuscation (and PRGs) exist, then UCE[Scup∩Sprl

τ,σ,q] security cannot be achieved
in the standard model for q �= 0, any σ ≥ 0, and τ ∈ Ω(λ).

Following the above attack, BHK [12] retracted bounded parallel sources and
replaced them by new source classes that are specifically designed according to
each application scenario.

5 Split Sources

In principle, bounded parallel sources would also suffice to recover the application
of UCEs to hardcore functions. However, for this purpose, BHK [10] introduce
a second, simpler UCE notion which is based on computational unpredictability
and so-called split sources. A split source S is composed of two algorithms S0 and
S1, where neither gets direct access to the Hash oracle. Algorithm S0 outputs L0

together with a vector of points x. For each entry of x, the corresponding Hash

value is computed, and the vector of hash values y is formed. Algorithm S1 is then
run on y produces leakage L1. The leakage of the split source S := Splt[S0, S1]
then equals L := (L0, L1). We give the pseudocode in Figure 4 on the right.

Indistinguishability Obfuscation and UCEs 203

Split sources avoid our original attack, as well as its generalized version, as
neither component of the source gets direct access to the Hash oracle. In the
full version of this work [19], we discuss the composition of split-source UCE-
secure functions with one-way permutations and also study the implications of
existence of certain forms of obfuscators on their feasibility.

For example, consider a hash function where its inputs are first run through
a one-way permutation before being hashed. Intuitively, this application of a
one-way permutation should not harm UCE security. Indeed, this can be easily
seen to be the case for the standard notions of one-wayness, collision resistance,
and pseudorandomness. We show that statistical UCE1 security also enjoys this
property. However, when composing a UCE[Scup ∩ Ssplt] hash functions with a
one-way permutation, the resulting function fails to be UCE[Scup∩Ssplt] secure.

We also show that certain levels of unobfuscatability are necessary for a hash
function to achieve UCE security with respect to split sources. For instance,
the function that maps x to an obfuscation of the circuit H(·, x) must not be
one way. Further, this must also be the case for obfuscators that are specially
designed to support H. For example, as a practical instantiation of UCEs, BHK
suggest to use the SHA family [34] in HMAC mode [8]. Our results imply that in
order to obtain confidence in the security of this construction, its extractability
properties in conjunction with, say, the candidate obfuscator of Garg et al. [24]
should be studied. We note that due to their simplicity, our results potentially
also apply to other UCE notions which rely on a computational unpredictability
notion. We refer to [19] for a more detailed discussion of split sources.

Acknowledgments. We thank Mihir Bellare, Viet Tung Hoang, and Sriram
Keelveedhi for their personal communication [11]. Christina Brzuska was sup-
ported by the Israel Science Foundation (grant 1076/11 and 1155/11), the Is-
rael Ministry of Science and Technology grant 3-9094), and the German-Israeli
Foundation for Scientific Research and Development (grant 1152/2011). Pooya
Farshim was supported by grant Fi 940/4-1 of the German Research Foundation
(DFG). Arno Mittelbach was supported by CASED (www.cased.de) and DFG
SPP 1736.

References

1. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. Cryp-
tology ePrint Archive, Report 2013/699 (2013),
http://eprint.iacr.org/2013/699

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press (October 2004)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

4. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013)

www.cased.de
http://eprint.iacr.org/2013/699

204 C. Brzuska, P. Farshim, and A. Mittelbach

5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

7. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via uCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 398–415. Springer, Heidelberg (2013)

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
Cryptology ePrint Archive, Report 2013/424 (August 1, 2013),
http://eprint.iacr.org/2013/424/20130801:043135 (Latest version prior to
our attack [11])

10. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via
UCEs. Cryptology ePrint Archive, Report 2013/424 (October 17, 2013),
http://eprint.iacr.org/2013/424/20131017:000316

11. Bellare, M., Hoang, V.T., Keelveedhi, S.: Personal communication (September
2013)

12. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles
via UCEs. Cryptology ePrint Archive, Report 2013/424 (May 20, 2014),
http://eprint.iacr.org/2013/424/20140520:182716 (Latest version at the time
of writing)

13. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(November 1993)

14. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

15. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

16. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Hei-
delberg (2013)

17. Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-CNFs. In: Naor, M.
(ed.) ITCS 2014, pp. 235–250. ACM (January 2014)

18. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014)

19. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. Cryptology ePrint
Archive, Report 2014/099 (2014), http://eprint.iacr.org/2014/099

20. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press (May 1998)

21. Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as ap-
plied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

http://eprint.iacr.org/2013/424/20130801:043135
http://eprint.iacr.org/2013/424/20131017:000316
http://eprint.iacr.org/2013/424/20140520:182716
http://eprint.iacr.org/2014/099

Indistinguishability Obfuscation and UCEs 205

22. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)

25. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press (October 2003)

26. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

27. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

28. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

29. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press (November 2000)

30. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 433–442. ACM Press (May 2008)

32. Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes – or
– why we cannot prove OAEP secure in the standard model. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)

33. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014)

34. National Institute of Standards and Technology: FIPS 180-4, Secure Hash Standard
(SHS). Tech. rep. (March 2012)

35. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

36. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. Cryptology ePrint Archive, Report 2013/454 (2013),
http://eprint.iacr.org/2013/454

http://eprint.iacr.org/2013/454

Low Overhead Broadcast Encryption
from Multilinear Maps

Dan Boneh1, Brent Waters2, and Mark Zhandry1

1 Stanford University, CA, USA
{dabo,zhandry}@cs.stanford.edu

2 University of Texas at Austin, TX, USA
bwaters@cs.utexas.edu

Abstract. We use multilinear maps to provide a solution to the long-
standing problem of public-key broadcast encryption where all parame-
ters in the system are small. In our constructions, ciphertext overhead,
private key size, and public key size are all poly-logarithmic in the total
number of users. The systems are fully collusion-resistant against any
number of colluders. All our systems are based on an O(log N)-way mul-
tilinear map to support a broadcast system for N users. We present three
constructions based on different types of multilinear maps and providing
different security guarantees. Our systems naturally give identity-based
broadcast systems with short parameters.

1 Introduction

Broadcast encryption [FN94] is an important generalization of public-key encryp-
tion to the multi-user setting. In a broadcast encryption scheme, a broadcaster
encrypts a message for a subset S of users who are listening on a broadcast
channel. The broadcaster can encrypt to any set S of its choice, and any user
in S can decrypt the broadcast using its secret key. The system is said to be
fully collusion resistant if even a coalition of all users outside of S learns noth-
ing about the plaintext. Broadcast systems are regularly used in TV and radio
subscription services where broadcasts are encrypted for currently active sub-
scribers. They are also used in encrypted file systems where a file is encrypted
so that only users who have access to the file can decrypt it.

The efficiency of a broadcast system is measured in the ciphertext overhead:
the number of bits in the ciphertext beyond what is needed for the description of
the recipient set S and the symmetric encryption of the plaintext payload. The
shorter the overhead, the better. We say that the system has low overhead if the
ciphertext overhead depends at most logarithmically on the number of users N
in the system.

Existing constructions with low ciphertext overhead. Several broadcast systems
are fully collusion resistant with low ciphertext overhead. The first such system
by Boneh, Gentry, and Waters [BGW05] is built from bilinear maps. It has

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 206–223, 2014.
c© International Association for Cryptologic Research 2014

Low Overhead Broadcast Encryption from Multilinear Maps 207

constant ciphertext overhead and short secret keys, but the public encryption key
size is linear in the number of users N . Other systems using bilinear-maps achieve
adaptive security [GW09, DPP07] and some are even identity-based [GW09,
Del07, SF07], but the public encryption key is always large.

Multilinear maps give secret-key broadcast systems with optimal ciphertext
overhead [BS03, GGH13a, FHPS13, CLT13, BW13]. However, in these systems
the broadcaster’s key must be kept secret, and they require an N -way multilin-
ear map to support N users. Current constructions of N -linear maps [GGH13a,
CLT13] have group elements of size O(N2) bits, resulting in large space require-
ments. While these broadcast systems can be made public-key by including a few
group elements in the ciphertext, their dependence on N -linear maps leads to an
O(N2) ciphertext overhead, which is worse than the trivial broadcast system. Un-
til this work, it has not been known how to use multilinear maps to construct low
overhead broadcast systems with a short public encryption key.

A third class of constructions employs the powerful candidates for indistin-
guishability obfuscation (iO) [BGI+01, GGH+13b]. Using iO it is possible to
build a public-key broadcast system with optimal ciphertext overhead and short
private keys, though public keys are large [BZ14]. The resulting systems have
several other remarkable properties. However, current iO candidates add con-
siderable complexity on top of multilinear maps. Our goal here is to construct
broadcast systems using only simple assumptions on multilinear maps, namely,
without relying on iO.

Our results. We describe three broadcast systems for N users that use an
O(log N)-way multilinear map. The systems have ciphertext overhead and de-
cryption key of only O(1) group elements which is O(log2 N) bits using the cur-
rent multilinear map candidates. The public encryption key contains O(log N)
group elements which is O(log3 N) bits. The first system uses an asymmetric mul-
tilinear map and follows the [BGW05] construction closely. It uses the O(log N)-
way multilinear map to compress the public key of that system from O(N)
group elements to O(log N) elements while keeping the ciphertext overhead and
secret key short. We prove static security under a multivariate equivalent of
the [BGW05] assumption.

The second system uses a general symmetric O(log N)-way multilinear map
to similarly compress the public key in [BGW05]. The added flexibility of a
symmetric map has both positive and negative consequences. On the negative
side, this flexibility allows the adversary to combine extra elements together.
To maintain security we must ensure that all user indexes u ∈ [N] are mapped
to integers û ∈ [O(N log N)] where all û have the same Hamming weight. This
mapping does not affect ciphertext or private key size. On the positive side, this
flexibility allows us to obtain slightly better parameters and base static security
on a slightly simpler, though similar, complexity assumption.

The third system is built from a symmetric O(log N)-way map, but we can
prove adaptive security of the scheme in generic multilinear groups. This system

208 D. Boneh, B. Waters, and M. Zhandry

has secret keys of length O(log3 N) bits, which is longer than the previous two
schemes, but has a tighter security proof in generic groups.

Because the parameters of these systems are logarithmic in N , we can let N
be exponential, and in particular be as large as the range of a collision resistant
hash function (e.g., N = 2256). This, in effect, turns all our broadcast systems
into efficient identity-based schemes. A user with identity id ∈ {0, 1}∗ is given
the secret key associated with index number H(id) ∈ [N] where H is a collision
resistant hash whose range is [N]. A broadcaster can then transmit to a set of
recipients simply by hashing their public identities. For this reason, we describe
all our broadcast systems as identity-based broadcast schemes.

Additional related work. Collusion resistant broadcast encryption has been widely
studied. Revocation systems (e.g., [NNL01, HS02, GST04, DF02, LSW10]) can
encrypt to N − r users with ciphertext size of O(r). Further combinatorial so-
lutions (e.g., [NP00, DF03]) achieve similar parameters. A broadcast encryption
system is said to be recipient-private if broadcast ciphertexts reveal nothing
about the intended set of recipients [BBW06, LPQ12, FP12]. Our broadcast
systems are not recipient private, and it is a long-standing open problem to
build a low-overhead recipient-private broadcast system. Such a system was re-
cently built using indistinguishability obfuscation [BZ14], but constructing such
systems under weaker assumptions remains open.

2 Preliminaries

2.1 Broadcast Encryption

We begin by defining broadcast encryption. A (public key) identity-based broad-
cast encryption scheme consists of three randomized algorithms:

Setup(ID): Sets up a broadcast scheme for identity space ID. It outputs public
parameters params as well as a master secret key msk

KeyGen(msk, u): Takes the master secret key and a user u ∈ ID and outputs a
secret key sku for user u.

Enc(params, S): The encryption algorithm takes the public parameters and a
polynomial sized set S ⊆ ID of recipients, and produces a pair (Hdr, K). We
refer to Hdr as the header, and K as the message encryption key.
The message is encrypted using a symmetric encryption scheme with the key
K to obtain a ciphertext c. The overall ciphertext is (Hdr, c).

Dec(params, u, sku, S,Hdr): The decryption algorithm takes the header Hdr and
the secret key for user u, and if u ∈ S, outputs the message encryption key
K. If u /∈ S, the decryption algorithm outputs ⊥.
To actually decrypt the overall ciphertext (Hdr, c), user u runs Dec to obtain
K, and then decryption c using K to obtain the message.

For correctness, we require that the decryption algorithm always succeeds
when it is supposed to. That is, for every (params,msk) output by Setup(ID),

Low Overhead Broadcast Encryption from Multilinear Maps 209

every set S ⊆ ID, every sku output by KeyGen(msk, u), and (Hdr, K) outputted
by Enc(params, S) where u ∈ S, that Dec(params, u, sku, S,Hdr) = K.

For security, several notions of security are possible. We start by defining
active chosen ciphertext security. For any adversary A, let EXP(b) denote the
following experiment on A:
Setup: The challenger runs (params,msk) ← Setup(ID), and gives A the public

key params.
Secret Key Queries: A may adaptively make secret key queries for user u. In

response, the challenger runs sku ← KeyGen(msk, u) and gives sku to A.
CCA Queries: A may make chosen ciphertext queries on tuples (u, S,Hdr).

The challenger responds with Dec(params, u, sku, S,Hdr) where
sku ← KeyGen(msk, u)1.

Challenge: A submits a set S∗ ⊂ ID, subject to the restriction that u /∈ S∗ for
any user u requested in a secret key query. The challenger lets (Hdr∗, K∗

0) ←
Enc(params, S∗). If b = 0, the challenger gives (Hdr∗, K∗

0) to the adversary.
If b = 1, the challenger computes a random key K∗

1 and gives (Hdr∗, K∗
1) to

the adversary.
More Secret Key Queries: A may continue making secret key queries for

users u /∈ S∗
More CCA Queries: A may continue making CCA queries on headers Hdr �=

Hdr∗2.
Guess: A produces a guess b′ for b.
Using a simple hybrid argument, we can assume the adversary makes only a
single challenge query. Let Wb be the event that A outputs 1 in EXP(b). We
define the adaptive CCA advantage of A, as

BE(adv)A = | Pr[W0] − Pr[W1]|
Definition 1. A broadcast encryption scheme is adaptively secure under a cho-
sen ciphertext attack (adaptively CCA-secure) if, for all polynomial time adver-
saries A, BE(adv)A is negligible.

We will also consider several weaker notions of security. For example, we get
static security if we require A to commit to the challenge set S∗ before seeing the
public parameters. We also get CPA security if we do not allow chosen ciphertext
queries. In this paper, we will be focusing on the following notion of static CPA
security, but will also discuss the other variants:
Definition 2. A broadcast encryption scheme is statically secure under a chosen
plaintext attack (statically CPA-secure) if, for all polynomial time adversaries
A that must commit to S∗ before seeing the public parameters and cannot make
CCA queries, BE(adv)A is negligible.
1 Another variation is to have the challenger maintain a table of (u, sku) pairs, and

only run KeyGen once for a particular user, using a single sku to answer multiple
secret key and CCA queries. Note that the correctness of a broadcast scheme implies
that this does not affect CCA queries.

2 Another potentially stronger variation is to require (S,Hdr) �= (S∗,Hdr∗)

210 D. Boneh, B. Waters, and M. Zhandry

2.2 Multilinear Maps

We now review multilinear maps [BS03, GGH13a, CLT13]. A multilinear map
consists of two algorithms:

Setup(n): Sets up an n-linear map. It outputs n groups G1, . . . ,Gn of prime
order p, along with generators gi ∈ Gi. We call G1 the source group, Gn the
target group, and G2, . . . ,Gn−1 intermediate groups.

ei,j(g, h): Takes in two elements g ∈ Gi and h ∈ Gj with i + j ≤ n, and outputs
an element of Gi+j such that

ei,j(ga
i , gb

j) = gab
i+j

We often omit the subscripts and just write e. We can also generalize e to
multiple inputs as e(h(1), . . . , h(k)) = e(h(1), e(h(2), . . . , h(k))).

We sometimes call ga
i as a level-i encoding of a. The scalar a itself could be

referred to as a level-0 encoding of a. Then the map e combines a level i encoding
and a level j encoding, and produces a level i + j encoding of the product.

We will make use of asymmetric multilinear maps. In such maps, groups are
indexed by integer vectors rather than integers. The pairing operations maps
Gv1 × Gv2 into Gv1+v2 . More precisely, we have the following algorithms:

Setup(n) Sets up an n-linear map, where n ∈ Z� is some positive integer vec-
tor. It outputs a description of groups Gv of prime order p where v are
non-negative integer vectors and v ≤ n (that is, the comparison must hold
component-wise). It also outputs a description of generators gv ∈ Gv

3. Let
ei be the ith standard basis vector, with a 1 at position i and a 0 elsewhere.
We call Gei the ith source group, Gn the target group, and the rest of the
Gv groups are intermediate groups.

ev1,v2(g, h) Takes in two elements g ∈ Gv1 and h ∈ Gv2 with v1 + v2 ≤ n, and
outputs an element of Gv1+v2 such that

ev1,v2(ga
v1 , gb

v2) = gab
v1+v2

We often omit the subscripts and just write e. We can also generalize e to
multiple inputs as e(h(1), . . . , h(k)) = e(h(1), e(h(2), . . . , h(k))).

We note that current candidates of multilinear maps [GGH13a, CLT13] depart
from the ideal notions of multilinear maps described above. In particular, in
these candidates, representations of group elements are not unique and contain
a noise term that can cause errors during group and multilinear operations.
While we present our constructions using ideal multilinear maps for simplicity,
we stress that our constructions can easily be instantiated using current non-
ideal candidates. We need multilinear maps with the following properties:
3 There may be an exponential number of groups and generators. The setup algorithm

outputs a set of parameters from which the groups Gv and generators gv can be
derived. In particular, each gv can be derived from the pairing operation and {gei},
where ei is the ith standard basis vector

Low Overhead Broadcast Encryption from Multilinear Maps 211

– A way to hide the group and multilinear operations that lead to a partic-
ular element. In current multilinear maps, this is obtained by performing a
re-randomization procedure which makes the representation of an element
statistically independent of the operations that lead to that element.

– A way, given any representation of an element in the target group, to “ex-
tract” a canonical representation of that element. This is handled by a “zero-
test parameter” in current maps.

– The ability for the person who sets up the map to compute elements of the
form gαx for exponentially-large x. In ideal multilinear maps, this would be
accomplished by computing z = αx in Zp, and then computing gz. However,
with current multilinear maps, it is not possible for normal users to compute
gz for a specific z of their choice4. However, the person who sets up the map
knows a trapdoor that does allow computing gz for any z ∈ Zp.

– The ability to generate asymmetric multilinear maps for any positive integer
vector n ∈ Z�. Section 4.3 of [GGH13a] shows how to do this.

– A way to make sure the noise growth does not cause any errors during normal
execution of our protocols. Since there is no circular dependence between
the parameters of the multilinear map and the number of operations our
protocols require, we can set the parameters so the noise stays small enough
to avoid errors.

3 Our Asymmetric Multilinear Map Construction

In this section, we give our first construction of identity-based broadcast encryp-
tion from multilinear maps. Our starting point is the scheme of Boneh, Gentry,
and Waters [BGW05], henceforth referred to as the BGW scheme. Recall in their
scheme, the public parameters consist of O(N) source group elements (where N
is the number of users), secret keys and headers are a constant number of source
group elements, and the message encryption key is a group element in the target
group. Our goal is to shrink the public key size to O(log N) group elements. We
accomplish this by embedding the BGW scheme in a multilinear map, where
the BGW parameters lie in an intermediate group. The BGW public parameters
can then be derived from a small number of elements in the source group of the
map — these few source group elements are the new public key.

In more detail, the significant component of the BGW public key are the
elements Z1 = gα

1 , Z2 = gα2

1 , . . . , ZN = gαN

1 , ZN+2 = gαN+2

1 , . . . , Z2N = gα2N

1 .
The rest of the BGW public keys, secret keys, and header components are also
element in G1, whereas the message encryption key is an element in the group G2.

Let N = 2n − 1 for some integer n, and let n = (
n+1 1s︷ ︸︸ ︷

1, . . . , 1) be the vector of
n + 1 1s. Our idea is to use an asymmetric multilinear map, where the target
group is G2n. We note that pairing two elements in Gn gives an element in G2n.
Thus, while the entire multilinear map is asymmetric, the pairing operation acts
symmetrically on the group Gn. Now we replace the groups G1 and G2 in the
4 Instead, users can compute gz for a random, but unknown, z.

212 D. Boneh, B. Waters, and M. Zhandry

BGW scheme with Gn and G2n. Thus Zu = gαu

n . Rather than explicitly include
the Zu in the public parameters, we give a few group elements in the groups Gei

where ei are the standard basis vectors. Specifically, we provide the parameters
Xi = gα(2i)

ei
for i = 0, . . . , n − 1. By pairing various subsets of these Xi together,

we can build all of the Zu for u ≤ 2n − 1 = N . In particular, if u =
∑n−1

i=0 ui2i

is the binary representation of u, then

Zu = e(Xu0
0 g1−u0

e0 , Xu1
1 g1−u1

e1 , . . . , X
un−1
n−1 g1−un−1

en−1 , gen)

where X0
i g1

ei
= gei and X1

i g0
ei

= Xi

To allow computation of Zu for u ≥ 2n+1 = N +2, we might decide to publish
gα(2n)

en
. However, this would allow computation of ZN+1, which will break the

security of the BGW scheme. Therefore, we instead publish Xn = gα(2n+1)

en
. Then,

for u ∈ [N + 2, 2N], let u′ = u − (2n + 1) =
∑n−1

i=0 u′
i2i. Then we can write

Zu = e(X
u′
0

0 g
1−u′

0e0 , X
u′
1

1 g
1−u′

1e1 , . . . , X
u′
n−1

n−1 g
1−u′

n−1
en−1 , Xn)

Now we make the observation that O(log N) graded encodings remain efficient
even up to exponential N . Therefore, we can actually make our scheme identity-
based, where identities are bit strings of length n with the caveat that the 0n is
not a valid identity. Now we give our entire construction:

Construction 1. Let Setup′ be the setup algorithm for a multilinear map, where
groups have order p. Our first identity-based broadcast scheme consists of the
following algorithms:

Setup(n): Takes as input the length n of identities. Let ID = {0, 1}n \ {0n} be
the identity space. Let n be the all-ones vector of length n + 1. Run Setup′

on 2n, obtaining the public parameters params′ for a multilinear map with
target group G2n.
Choose a random α ∈ Zp and let Xi = gα(2i)

ei
for i = 0, . . . , n − 1 and let

Xn = gα(2n+1)

en
. Also choose a random γ ∈ Zp and let Y = gγ

n. Lastly, let
W = gα(2n)

2n . The public key is

params = (params′, W, {Xi}i∈{0,...,n}, Y)

The master secret key is (α, γ).
KeyGen(params, α, γ, u): The secret key for identity u ∈ [1, 2n −1] is sku = gγαu

n .
Enc(params, S): Recall that we can compute Zj for j ∈ [1, 2n −1] from the public

parameters {Xi}i∈{0,...,n−1}. Pick a random t ∈ Zp and compute the key and
header as

K = W t = gtα(2n)

2n and

Hdr =

(
gt
n , (Y ·

∏
u∈S

Z2n−u)t

)
=
(

gt
n , g

t
(

γ+
∑

u∈S
α(2n−u)

)
n

)

Low Overhead Broadcast Encryption from Multilinear Maps 213

Dec(params, u, sku, S,Hdr): If u /∈ S, output ⊥. Otherwise, write Hdr as (C0, C1).
Recall that we can compute Zj for j ∈ [2n + 1, 2n+1]. Output

K = e(Zu , C1)

e
(

(sku ·
∏

j∈S,j �=u Z2n−j+u) , C0

)
If C0 and C1 are as above, then we can write K = gc

2n where

c = αut

⎛⎝γ +
∑
j∈S

α(2n−j)

⎞⎠−

⎛⎝γαu +
∑

j∈S,j �=u

α(2n−j+u)

⎞⎠ t

Most of the terms cancel, leaving c = tα2n as desired.

Implementation details. As mentioned in Section 2, there are some minor compli-
cations with implementing our scheme using current multilinear map construc-
tions [GGH13a, CLT13], but we stress that these complications do not affect the
semantics of our scheme. First, during normal operations, computing gα

1 for a
random α involves computing a “level-0” encoding of a random (unknown) α,
and then pairing with g1. In order to compute gα2

1 , we would pair g1 with the
level-0 encoding twice. However, the noise growth with repeated pairing opera-
tions would prevent us from computing gα(2i)

1 for sufficiently high powers of i.
Instead, the setup algorithm must choose an explicit (known) α ∈ Zp, compute
the various α2i , encode these powers as level-0 encodings, and only then pair
with g1. This requires knowing the secrets used to set up the multilinear map,
meaning the broadcaster must set up the map himself and cannot rely on maps
generated by trusted parties. Note, however, that this exponentiation is only
required during setup, and not encryption or decryption, meaning the secrets
can be discarded immediately after setup, and anyone can still broadcast using
the public parameters.

To make sure the header does not leak any important information, we also
need to re-randomize the header components. This means re-randomization pa-
rameters need to be included for the group Gn. No other re-randomization pa-
rameters are necessary.

Before discussing security, we must discuss our new security assumption,
which is closely related to the bilinear Diffe-Hellman Exponent assumption
(BDHE) as used in BGW.

3.1 The Hybrid Diffie-Hellman Exponent Assumption (HDHE)
Assumption

We define the (computational) n-Hybrid Diffie-Hellman Exponent problem as fol-
lows: Let params′ ← Setup′(2n) where n is the all-ones vector of length n + 1.
Choose α ∈ Zp at random, and let Xi = gα(2i)

ei
for i = 0, . . . , n − 1 and

214 D. Boneh, B. Waters, and M. Zhandry

Xn = gα(2n+1)

en
. Choose a random t ∈ Zp and let V = gt

n. Given ({Xi}i∈{0,...,n−1},

V), the goal is to compute K = gtα(2n)

2n .
We now define the decisional n-Hybrid Diffie-Hellman Expoent problem as,

given the tuple ({Xi}i∈{0,...,n−1}, V, K) where K is either gtα(2n)

2n or a random
element of G2n, to distinguish the two cases.

Definition 3. We say the decisional n-Hybrid Diffie-Hellman Exponent assump-
tion holds for Setup′ if, for any polynomial n and probabilistic polynomial time
algorithm A, A has negligible advantage in solving the n-Hybrid Diffie-Hellman
Exponent problem.

Given the Xi for i = 0, . . . , n − 1, it is straightforward to compute gαj

n for any
j ∈ [0, 2n − 1]. Moreover, including Xn, it is straightforward to extend this to
j ∈ [2n + 1, 2n+1]. However, computing K = gtα(2n)

2n from the Xi and V appears
difficult. The reason is that we only have one term that depends on t, namely V .
So to compute K, we would need to pair V with some combination of the Xi. In
other words, we need to be able to compute gα(2n)

n from the Xi. However, since
n has a one in each component, we can never pair any of the Xi with itself. This
means we can only compute products of terms of the form e(Xs0

0 , Xs1
1 , . . . , Xsn

n)
for si ∈ {0, 1}, where we take X0

i = ge1 . Notice that we can never include an
Xn, since then we would already exceed the desired degree of 2n. Put another
way, we can only compute products of terms of the form

g

∏
i∈S

α(2i)

n

where S ⊆ [0, n − 1]. However,
∏

i∈S α2i = α
∑

i∈S
2i , and

∑
i∈S 2i < 2n for all

subsets S ⊆ [0, n − 1]. This is the basis for our assumption that the n-HDHE
assumption is hard. In the full version [BWZ14], we discuss the difficulty of our
assumption in the generic multilinear map model.

3.2 Security of Our Construction

With our assumption defined, we can now state and prove the security of our
scheme:

Theorem 2. Let Setup′ be the setup algorithm for a multilinear map, and sup-
pose that the decisional n-Hybrid Diffie-Hellman Exponent assumption holds for
Setup′. Then the scheme in Construction 1 is a statically secure identity-based
broadcast encryption scheme.

Proof. Our proof closely follows the security proof for BGW [BGW05]. Suppose
we have an adversary A that breaks the security of the scheme. We use A to
build an adversary B that breaks the decisional n-HDHE problem for Setup′. B
works as follows:

Low Overhead Broadcast Encryption from Multilinear Maps 215

– B obtains a challenge tuple (params′, {Xi}i∈[0,n], V, K) where:
• params′ ← Setup′(2n) where n is the all-ones vector of length n + 1.
• Xi = gα2i

ei
for i = 0, . . . , n − 1 for a random α ∈ Zp.

• Xn = gα2n+1

en

• V = gt
n for a random t ∈ Zp

• K = gtα2n

2n or K is a random group element in G2n.
– B simulates A until A submits a subset S ⊆ [1, 2n − 1] of users that A will

challenge.
– B chooses a random r ∈ Zp. It sets

Y = gr
n∏

u∈S Z2n−u

where the Zj are calculated from the Xi as before. This amounts to setting

γ = r −
∑
u∈S

α2n−u

Since r is uniform in Zp and independent of α, so is γ. B also computes

W ′ = e(ge0 , ge1 , . . . , gen−2 , Xn−1, gen)

and
W = e(W ′, W ′)

Observe that W = gα2n

2n .
– B gives A the public parameters (W, {Xi}i∈[0,n], Y)
– Now A is allowed to ask for private keys for users u /∈ S. B computes

sku = Zr
u∏

j∈S Z2n−j+u

Observe that

sku = g
rαu−

∑
j∈S

α(2n−j+u)

n = g
γαu+

∑
j∈S

α(2n−j+u)−
∑

j∈S
α(2n−j+u)

n = gγαu

n

as desired.
– When A asks for the challenge, B lets Hdr = (V, V r) and responds with

(Hdr, K). Observe that

V r = grt
n = g

t
(

γ+
∑

u∈S
α(2n−u)

)
n

which means (V, V r) is a valid header for the set S. Also observe that if
K = gtα(2n)

2n , then K is the correct key for this header.
– When A returns a guess b for which K it is given, B returns b as its guess.

As shown above, B perfectly simulates the view of A in the broadcast en-
cryption security game. Therefore, B has the same advantage as A, which must
therefore be negligible, as desired.

216 D. Boneh, B. Waters, and M. Zhandry

4 Our Symmetric Multilinear Map Construction

In this section, we give our second construction of broadcast encryption, this time
from traditional symmetric multilinear maps. That is, we do not require the more
complicated asymmetric structure of Construction 1, but can use a basic mul-
tilinear map. The idea, however, is very similar. We implement BGW [BGW05]
in middle levels of the multilinear map, and use elements in the bottom level to
generate the BGW public parameters. Similar to the graded encoding scheme,
the BGW parameters will have the form Zu = gαu

n , which can be computed from
the public parameters Xi = gα(2i)

1 .
However, we run into a problem. With asymmetric maps, we could enforce

that Xi could not be paired itself. This was used to ensure that Z2n was not
computable given Xi for i = 0, . . . , n. However, in the symmetric multilinear
map setting, Xn−1 could be paired with itself, giving Z2n . Instead, we create a
hole by limiting the total number of Xi that can be paired together. If we allow
only n − 1 of them to be paired together, the first hole occurs at Z2n−1. We
therefore set N = 2n − 2 so that the hole is at N + 1 as in BGW.

Notice that a second hole occurs at Z2n+2n−1−1, and since 2n + 2n−1 − 1 <
2(2n − 2) = 2N , we can not yet compute all the Zu needed by BGW. One
possible fix is to include extra Xi that can be used to fill in the unwanted holes.
Instead, we opt to restrict the bit representations of all identities in the system
to having the same Hamming weight. We show that this allows the computation
of all the necessary Zu.

We now describe our scheme:
Construction 3. Let Setup′ be the setup algorithm for a multilinear map, where
groups have order p. Our second identity-based broadcast scheme consists of the
following algorithms:
Setup(n, �) Sets up a broadcast scheme for n-bit identities with Hamming weight

�. Run Setup′ on n + � − 1, obtaining the public parameters params′ for
a multilinear map with target group Gn+�−1. Let α, γ ∈ Zp be chosen at
random. Let W = gα(2n−1)

n+�−1 . Compute Xi = gα(2i)

1 for i = 0, . . . , n. Lastly, let
Y = gγ

n−1. Output

params = (params′, W, {Xi}i∈[0,n], Y)
KeyGen(params, α, γ, u) The secret key for an identity u ∈ {0, 1}n of Hamming

weight � is
sku = gγαu

n−1

Enc(params, S) Let Zj = gαj

n−1. We will show shortly that we can compute all of
the necessary Zj from the Xi. Pick a random t ∈ Zp and compute the key
and header as

K = W t = gtα(2n−1)

n+�−1 and

Hdr =

(
gt

� , (Y
∏
u∈S

Z2n−1−u)t

)
=
(

gt
� , g

t
(

γ+
∑

u∈S
α(2n−1−u)

)
n−1

)

Low Overhead Broadcast Encryption from Multilinear Maps 217

Dec(params, u, sku, S,Hdr) If u /∈ S, output ⊥. Otherwise, write Hdr = (C0, C1).
Also let Z ′

u = gαu

� . We will shortly show that Z ′
u can be computed from the

Xi. Compute

K =
e(Z ′

u, C1)
e(sku ·

∏
j∈S,j �=u Z2n−1−j+u , C0)

If C0, C1 are as above, notice that we can write K = gc
n+�−1 where

c = αut(γ +
∑
j∈S

α2n−1−j) − (γαu +
∑

j∈S,j �=u

α2n−1−j+u)t = tα2n−1

as desired.

We need to show how to compute Zj and Z ′
j .

Claim. Let Zj = gαj

n−1 and Z ′
j = gαj

� . Let Xi = gα(2i)

1 for i = 0, . . . , n. Then,
using group multiplications and paring operations on the Xi, it is possible to
compute:

– Z ′
j for j ∈ [1, 2n − 2] of weight exactly �.

– Z2n−1−j for j ∈ [1, 2n − 2] of weight exactly �.
– Z2n−1−j+u for j, u ∈ [1, 2n − 2], j �= u of weight exactly �.

Proof. Let h(j) denote the Hamming weight of j. First, observe that we can
easily compute gαj

h(j) for j ∈ [2n − 1] by paring together Xi where the ith bit of j

is 1. This allows us to compute the Z ′
j . We can also compute gα(2n−1−j)

n−� for any
j of weight exactly �. Thus, we can pair with g�−1 to get Z2n−1−j.

Now we show how to compute Z2n−1−j+u. 2n − 1 − j, written as a bit string,
has Hamming weight n − �. Therefore, write 2n − 1 − j =

∑
i∈T 2i for some

subset T ⊆ [0, n − 1] of size n − �. Similarly, write u =
∑

i∈U 2i for some subset
U ⊆ [0, n − 1] of size �. Notice that U and T are only disjoint if 2n − 1 − j + u =
2n − 1, in which case j = u. Since we do not allow this case, there must be some
î ∈ [0, n − 1] inside U and T . Then we can write

2n − 1 − j + u =

⎛⎝ ∑
i∈T \{î}

2i

⎞⎠+

⎛⎝ ∑
i∈U\{î}

2i

⎞⎠+ 2î+1

which is the sum of n + � − 1 powers of two. This means we can write

Z2n−1−j+u = e
(

{Xi}i∈T \{î} , {Xi}i∈U\{î} , Xî+1

)
which is the pairing of n + � − 1 of the Xi, as desired.

218 D. Boneh, B. Waters, and M. Zhandry

Setting n and �. Suppose we want to handle λ-bit identities. We would map
those identities to bit strings of length n and weight �. Therefore, we need

λ ≥ log2
(

n

�

)
A simple solution which minimizes n (and hence the number of elements in the
public parameters) is to set n = λ + �(log2 λ)/2� + 1 and � = �n/2�. How-
ever, for existing multilinear map constructions, the multilinearity itself is ex-
pensive, so we might try to minimize the total multilinearity n + � − 1. When
� = �n/2�, the total multilinear is roughly 1.5(λ + (log2 λ)/2). However, set-
ting n ≈ 1.042(λ + (log2 λ)/2) and � ≈ 0.398(λ + (log λ)/2) gives us roughly 2λ

identities with total multilinearity about 1.440(λ + (log λ)/2), slightly beating
the trivial construction. The following table gives the settings of n and � which
minimize the total multilinearity for common identity lengths:

Length of identities (λ) n � Total Multilinearity (n + � − 1)
128 138 52 189
160 175 62 236
256 272 103 374
512 545 200 744

Implementation. As with Construction 1, we must take advantage of the secrets
used to construct the multilinear map to compute the Xi. We also need to re-
randomize the header components. This time, however, there are two groups
that need re-randomization terms: G� and Gn−1. No other re-randomization
parameters are necessary.

4.1 The Multilinear Diffie-Hellman Exponent Assumption

We define the computational (n, �)-multilinear Diffie-Hellman Exponent ((n, �)-
MDHE) Problem as follows: Let params ← Setup′(n + � − 1). Choose random
α, t ∈ Zp, and let Xi = gα(2i)

1 for i = 0, . . . , n. Let V = gt
�. Given ({Xi}i∈[0,n], V),

the goal is to compute K = gtα(2n−1)

n+�−1 .
As before, we define the decisional version as the problem of distinguishing K

from a random element in Gn+�−1.

Definition 4. We say the decisional (n, �)-multilinear Diffie-Hellman Exponent
assumption holds for Setup′ if, for any polynomial n and probabilistic polynomial
time algorithm A, A has negligible advantage in solving the (n, �)-multilinear
Diffie-Hellman Exponent problem.

This problem appears difficult for the same reasons as the n-HDHE assump-
tion from Section 3. Computing K = gtα(2n−1)

n+�−1 requires pairing V = gt
� with a

term gα(2n−1)

n−1 , which must in turn be computed from the Xi. However, there is
no way to pair at most n − 1 of the Xi to create the desired exponent 2n − 1. In
the full version [BWZ14], we discuss the difficulty of the (n, �)-MDHE problem
in the generic multilinear map model.

Low Overhead Broadcast Encryption from Multilinear Maps 219

4.2 Security of Our Construction

With our assumption defined, we can now state the security of our scheme:

Theorem 4. Let Setup′ be the setup algorithm for a multilinear, and suppose
that the decisional (n, �)-multilinear Diffie-Hellman Exponent assumption holds
for Setup′. Then the scheme in Construction 3 is a secure identity-based broad-
cast encryption scheme.

Proof. Again, our proof follows BGW [BGW05]. Suppose we have an adversary
A that breaks the security of the scheme. We use A to build an adversary B that
breaks the decisional MDHE problem for Setup′. B works as follows:

– B obtains a challenge tuple (params′, {Xi}i∈[0,n+1], V, K) where:
• params′ ← Setup′(n + � − 1)
• Xi = gα(2i)

1 for i = 0, . . . , n for a random α ∈ Zp

• V = gt
� for a random t ∈ Zp

• K = gtα(2n−1)

n+�−1 or K is a random element in Gn+�−1.
– B simulates A until A submits a subset S ⊆ [1, 2n − 2] of users that all have

Hamming weight �.
– B chooses a random r ∈ Zp. It sets

Y = gr
n−1/

∏
u∈S

Z2n−1−s

where the Zj are calculated from the Xi as before. This amounts to setting

γ = r −
∑
u∈S

α2n−1−u

Since r is uniform in Zp and independent of α, so is γ. B computes

W = e(X0, X1, . . . , Xn−1, g�−1)

Observe that W = g2n−1
n+�−1.

– B gives α the public parameters (W, {Xi}i∈[0,n+1], Y)
– Now A is allowed to ask for private keys for users u /∈ S of Hamming weight

�. B computes
sku = Zr

u/
∏

j∈S,j �=u

Z2n−1−j+u

Observe that

sku = g
rαu−

∑
j∈S

α(2n−1−j+u)

n−1 = g

(
r−
∑

j∈S
α(2n−1−j)

)
αu

n−1 = gγαu

n−1

as desired.

220 D. Boneh, B. Waters, and M. Zhandry

– When A asks for the challenge, B lets Hdr = (V, e(V, gn−1−�)r) and responds
with (Hdr, K). Observe that

e(V, gn−1−�)r = grt
n−1 = g

t
(

γ+
∑

u∈S
α(2n−1−u)

)
n−1

which means (V, e(V, gn−1−�)r) is a valid header for the set S. Also, observe
that if K = gtα(2n−1)

n+�−1 , then K is the correct key for this header.
– When A returns a guess b for which K it is given, B returns b as its guess.

As shown above, B perfectly simulates the view of A in the broadcast en-
cryption security game. Therefore, B has the same advantage as A, which must
therefore be negligible, as desired.

5 Our Third Construction
In this section, we give our third and final broadcast scheme. This scheme is based
on the basic broadcast scheme of Gentry and Waters [GW09], henceforth called
the GW scheme. Like the BGW scheme, the GW scheme has public keys consist-
ing of O(N) elements, where N is the number of users. Our idea is to, similar to
Constructions 1 and 3, run the GW scheme in the higher levels of a multilinear
map, and derive the public key elements from O(log N) low-level elements.

However, unlike the BGW public parameters, which are all derived from a
single scalar α ∈ Zp, each of the GW public key elements are derived from
a separate random scalar. Therefore, we cannot possibly hope to simulate the
GW public key elements exactly. Instead, we we generate them using a Naor-
Reingold-style PRF [NR97].

Also, unlike the BGW scheme, the secret keys in the GW scheme have O(N)
group elements. To make our scheme more efficient, and more importantly to
make our scheme identity-based, we need to shrink the secret keys to O(log N)
elements. To accomplish this, we observe that the secret key components are
actually some of the outputs of another Naor-Reingold-style PRF, and we can
allow the secret key holder to compute just those outputs by puncturing the
PRF, similar to Boneh and Waters [BW13].

We now present out scheme:
Construction 5. Let Setup′ be the setup algorithm for a multilinear map, where
groups have order p. Our final identity-based broadcast scheme consists of the
following algorithms:
Setup(n) Takes as input the length n of identities. Run the setup algorithm for
a multilinear map, Setup′, to construct an n + 1-linear map with parameters
params′. Draw a random α ∈ Zp. For i = 0, . . . , n − 1 and b = 0, 1, draw random
βi,b ∈ Zp. The public key is

pk = (params′, {Xi,b = g
βi,b

1 }i∈[0,n−1],b∈{0,1}, W = gα
n+1)

For any user u ∈ {0, 1}n, note that we can compute

Zu ≡ g

∏
n

i=1
βi,ui

n = e(X1,u1 , X2,u2 , . . . , Xn,un)

Low Overhead Broadcast Encryption from Multilinear Maps 221

KeyGen(params, α, {βi,b}, u) Pick a random ru ∈ Zp. Let

U
(u)
0 = gru

1

U
(u)
i = Xru

i,1−ui
= g

ruβi,1−ui
1 for i = 1, . . . , n

U
(u)
n+1 = gα

nZru

u = g
α+ru·

∏n

i=1
βi,ui

n

The secret key for user u is sku = {U
(u)
i }i∈[0,n+1].

Observe that for v �= u, we can compute Zru

v by finding an i∗ where vi∗ =
1 − ui∗ , and computing

e(X1,v1 , . . . , Xi∗−1,vi∗−1 , U
(u)
i∗ , Xi∗+1,vi∗+1 , . . . , Xn,vn) = g

ruβi∗,vi∗ ·
∏

i�=i∗ βi,vi

n

= g
ru·
∏

n

i=1
βi,vi

n = Zru

v

Enc(params, S) Choose a random t ∈ Zp and compute the key and header as

K = W t = gtα
n+1 and Hdr =

⎛⎝gt
1 ,

(∏
u∈S

Zu

)t
⎞⎠ =

(
gt
1 , g

t
∑

u∈S

∏n

i=1
βi,ui

n

)

where Zu are computed as above.
Dec(params, u, sku, S,Hdr) If u /∈ S, output ⊥. Otherwise, write Hdr = (C0, C1).
Compute

k =
e(U (u)

n+1 ·
∏

v∈S,v �=u Zru

v , C0)

e(U (u)
0 , C1)

Observe that if (C0, C1) are as above, we can write k as gc
n+1 where

c = (α + ru
∏

βi,ui +
∑

v∈S,v �=u
ru
∏

βi,vi) · t − ru · (t
∑
v∈S

∏
βi,vi) = αt

as desired.

Correctness follows from the comments above.

Differences from GW. In the Gentry and Waters scheme [GW09], the Zu are gen-
erated independently and given explicitly in the public parameters (as elements
of the source group G1). In our scheme, the Zu are generated pseudorandomly
by means of a Naor-Reingold PRF. Similarly, in the GW scheme, the Zru

v for
v �= u are also given explicitly to user u. In our scheme, we note that the Zru

v
for fixed u actually form another Naor-Reignold PRF, which we puncture at the
point u to allow user u to compute the necessary values without learning Zru

u .
Our puncturing follows the puncturing used by Boneh and Waters [BW13].

Comparison to Constructions 1 and 3. Construction 5 has a couple advantages
and disadvantages over our previous schemes:

222 D. Boneh, B. Waters, and M. Zhandry

– Unlike the BGW-based schemes, there are no high-degree terms being gener-
ated. This means we do not need the secret parameters for the multilinear map
to setupour scheme.Therefore,wecanuseamapfromsometrustedthirdparty.
We do, however, need to make sure re-randomization parameters are available
in the groupsG1 andGn to re-randomize the header elements. If we are using a
map that we did not set up, we also need to re-randomize the user secret keys.

– To handle identities of length λ, the total multilinearity of Construction 5 is
λ + 1. Compare this to 2λ and 1.440(λ + (log2 λ)/2) from the previous con-
structions.

– On the negative side, secret keys in Construction 5 consist of O(log N) group
elements, compared to the single element secret keys of the previous schemes.

– For security, we unfortunately are unable to prove security relative to a
non-interactive assumption. In the original GW scheme, the security proof
involved manipulating the Zu for u /∈ S. Since each of the Zu are independent
in the GW scheme, this is achievable. For our scheme, however, the Zu
are generated from O(log N) parameters, meaning we cannot modify them
independently. Instead, in the full version [BWZ14], we opt to prove security
in the generic multilinear map model. We note, however, that we obtain a
better generic security theorem than is possible for Constructions 1 and 3.

Acknowledgments. This work is supported by NSF, DARPA, IARPA, and
others, as listed in the full version.

References

[BBW06] Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribu-
tion using private broadcast encryption. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324, 71–90 (2003)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BWZ14] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. Full version available at the Cryptology ePrint
Archives, Report 2014/195

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

Low Overhead Broadcast Encryption from Multilinear Maps 223

[Del07] Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size
Ciphertexts and Private Keys 2, 200–215 (2007)

[DF02] Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Re-
ceivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80.
Springer, Heidelberg (2003)

[DF03] Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against
adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys.
In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing
2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007)

[FHPS13] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable
Hash Functions in the Multilinear Setting. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg
(2013)

[FN94] Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[FP12] Fazio, N., Perera, I.M.: Outsider-Anonymous Broadcast Encryption with
Sublinear Ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: Proc. of FOCS 2013 (2013)

[GST04] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in
groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems
(with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

[HS02] Halevy, D., Shamir, A.: The lsd broadcast encryption scheme. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg
(2002)

[LPQ12] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryp-
tion: Adaptive security and efficient constructions in the standard model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 206–224. Springer, Heidelberg (2012)

[LSW10] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small pri-
vate keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001)

[NP00] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: FOCS, pp. 458–467 (1997)

[SF07] Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. IACR
Cryptology ePrint Archive (2007)

Security Analysis of Multilinear Maps

over the Integers

Hyung Tae Lee1 and Jae Hong Seo2

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

hyungtaelee@ntu.edu.sg
2 Myongji University, Korea

jaehongseo@mju.ac.kr

Abstract. At Crypto 2013, Coron, Lepoint, and Tibouchi (CLT) pro-
posed a practical Graded Encoding Scheme (GES) over the integers,
which has very similar cryptographic features to ideal multilinear maps.
In fact, the scheme of Coron et al. is the second proposal of a secure
GES, and has advantages over the first scheme of Garg, Gentry, and
Halevi (GGH). For example, unlike the GGH construction, the subgroup
decision assumption holds in the CLT construction. Immediately follow-
ing the elegant innovations of the GES, numerous GES-based crypto-
graphic applications were proposed. Although these applications rely on
the security of the underlying GES, the security of the GES has not been
analyzed in detail, aside from the original papers produced by Garg et al.
and Coron et al.

We present an attack algorithm against the system parameters of the
CLT GES. The proposed algorithm’s complexity Õ(2ρ/2) is exponentially
smaller than Õ(2ρ) of the previous best attack of Coron et al., where
ρ is a function of the security parameter. Furthermore, we identify a
flaw in the generation of the zero-testing parameter of the CLT GES,
which drastically reduces the running time of the proposed algorithm.
The experimental results demonstrate the practicality of our attack.

1 Introduction

In 2003, Boneh and Silverberg [2] introduced the concept of cryptographic multi-
linear maps by generalizing cryptographic bilinear maps. They proposed
interesting applications based on the concept, such as the multipartite Diffie-
Hellman key exchange and an efficient broadcast encryption. Until recently, it
was an important, yet hard-to-achieve open problem to construct multilinear
maps satisfying cryptographic requirements. At Eurocrypt 2013, Garg, Gentry,
and Halevi [18] proposed the first candidate multilinear maps, called Graded
Encoding Scheme (GES), having very similar cryptographic features to ideal
multilinear maps. At Crypto 2013, Coron, Lepoint, and Tibouchi [10] proposed
the second GES over the integers. The CLT construction has an advantage over
the GGH construction; specifically, it allows one to use a desirable assumption

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 224–240, 2014.
c© International Association for Cryptologic Research 2014

Security Analysis of Multilinear Maps over the Integers 225

such as the subgroup decision assumption, which does not hold with the GGH
construction. Thus, the CLT construction has broader applications. Very re-
cently, Langlois, Stehlé, and Steinfeld [24] improved the GGH construction in
terms of the bit size of the public parameters. Immediately following the elegant
inventions of the GES, they received significant attention from the cryptography
community, and numerous cryptography applications based on the GES inven-
tions were built; for example, programmable hash [17], full-domain hash [22],
functional encryption [19,20], witness encryption [21], and indistinguishability
obfuscation [5,19,6]. Although these applications rely on the security of the un-
derlying GES, the security of the GES itself has not been analyzed in detail,
aside from the original papers produced by Garg et al. and Coron et al.

1.1 Our Contributions

n-Masked Partial Approximate Common Divisors (n-MPACD). We
begin by introducing a new number theoretic problem, called n-Masked Par-
tial Approximate Common Divisors (n-MPACD), which is a generalization of
the system parameters (such as the zero-testing parameter [10] and the re-
randomization parameter [10,8]) from integer-based schemes such as multilinear
maps [10] and Fully Homomorphic Encryptions (FHE) [8]. Roughly speaking, a
problem instance is a product of η-bit primes x0 =

∏
i pi and polynomially-many

samples xj such that xj ≡ Q · rij (mod pi) where Q
$← Zx0 , rij

$← (−2ρ, 2ρ) and
ρ � η. Because of the unknown Q, it is unlikely to directly apply the meet-in-
the-middle attack of Chen and Nguyen [7]; therefore, it appears to be harder
than the Partial Approximate Common Divisors (PACD) problem [23]. In fact,
the attack algorithm of Coron, Lepoint, and Tibouchi (CLT) [10], which is the
most efficient currently known algorithm for n-MPACD, has Õ(2ρ) complexity,
although it employs the technique used in the Chen-Nguyen attack.

Exponentially Faster Attack for n-MPACD. We present an attack algo-
rithm for n-MPACD, which is exponentially faster than the CLT attack. The
proposed algorithm follows the basic flow of the strategy of the Chen-Nguyen
attack [7]. However, several tricks are required to manage the unknown Q and
several moduli. Our attack is based on the following observation for subset-
sums of integers in the same interval (−2ρ, 2ρ): given 2m integers, there are 22m

Table 1. Algorithms for n-MPACD

Algorithm Error Type Computation (Zx0 op.) Space

(Corrected) CLT [10] arbitrary errors† O(ρ22ρ) O(ρ22ρ)

This paper
arbitrary errors† O(

√
ρ log ρ · ρ22ρ/2) O(

√
ρ log ρ · ρ22ρ/2)

uniform errors O(
√

ρ log ρ
n

· ρ22ρ/2) O(
√

ρ log ρ
n

· ρ22ρ/2)
An instance of n-MPACD consists of x0 (product of n primes) and polynomially many samples

with errors chosen from (−2ρ, 2ρ).

†: Mild assumptions are necessary, which are specified in the paper.

226 H.T. Lee and J.H. Seo

different subset-sums (ignoring duplications), but such subset-sums range from
(−2m2ρ, 2m2ρ). That is, the number of subset-sums increases exponentially in
m; however, those ranges increase only polynomially in m. Therefore, by slightly
increasing m, we can find a collision among subset-sums. This observation is
essential to our exponentially faster algorithm, as compared to the CLT attack.
We summarize the comparison in Table 1.

A Flaw in the Generation of the Zero-Testing Parameter. We apply the
proposed attack algorithm to the system parameters of multilinear maps over the
integers; in particular, the zero-testing parameter [10]. The complexity of both
our attack algorithm and the CLT attack primarily depend on ρ, the size of errors
rij ; therefore, it is necessary to enlarge the size of errors. In the generation of the
zero-testing parameter, the matrix H = (hij) ∈ Zn×n plays the role of (rij) in
n-MPACD, indicating that the size of hij is very important for the security of the
CLT GES. For the functionality of the multilinear maps, the matrix H is defined

to be unimodular, and to satisfy two bounds ‖H�‖∞ ≤ 2β and ‖(H−1)
�‖∞ ≤

2β. In [10], the authors provided a method for generating H. However, we point
out that the given method does not provide sufficient randomness in H; that is,
the average size of each entry hij in H is much less than expected. Eventually,
this will weaken the security of multilinear maps over the integers.

Experimental Results. We provide several experimental results for our al-
gorithm. In particular, we apply our attack algorithm to the implementation
parameters on Small size for 52-bit security and Medium size for 62-bit security
in [10] with a slight modification; the implementation in [10] used only a single
zero-testing integer. However, we assume that a zero-testing vector is given, as
in the original CLT GES. Our experimental results demonstrate that our algo-
rithm requires less than 234.84 and 237.23 clock cycles on average for Small size
and Medium size, respectively.

We remark that a part of this paper was made public through [28] and the
missing details can be found in the full version of this paper [25].

1.2 Outline

In the following section, we provide some preliminary information that should
be helpful for reading this paper. In Section 3, we define our new problem,
and investigate a relation between it and the system parameters of multilinear
maps. Section 4 provides our attack algorithm along with a detailed analysis.
We describe how to speed our basic algorithm up and provide implementation
results of our algorithm on the parameters of multilinear maps over the integers
in Section 5. In Section 6, we discuss additional issues related to multilinear
maps and our attack algorithms.

2 Preliminaries

Notation. Throughout the paper, λ is the security parameter, and we con-
sider only discrete values; the interval notation [a, b] indicates all integers be-

Security Analysis of Multilinear Maps over the Integers 227

tween a and b, containing a and b. Similarly, (a, b) and (a, b] notations also
indicate respective sets of all integers contained in the corresponding continu-
ous intervals. For integers a and p, the reduction of a modulo p is denoted by
a (mod p) ∈ (−p/2, p/2]. Problem instances are defined by Chinese Remainder-
ing with respect to n co-prime integers p1, . . . , pn, making it convenient to use
the notation CRTp1,...,pn(r1, . . . , rn) (abbreviated as CRT(pi)(ri)) to denote the

unique integer x in (− 1
2

∏
i∈[1,n] pi,

1
2

∏
i∈[1,n] pi] with x ≡ ri (mod pi) for all

i ∈ [1, n].

2.1 Fast Polynomial Algorithms

We consider polynomials with integer coefficients modulo x0. There are classic
algorithms for fast polynomial arithmetic, which use the Fast Fourier Trans-
formation (FFT) [15,3,4] and have been used in various areas of cryptography,
in particular, cryptanalysis [9,7,16]. In this paper, we use two fast polynomial
arithmetic algorithms, each denoted by AlgFFT

Poly and AlgFFT
MPE , as subroutines; the

algorithm AlgFFT
Poly takes � points as inputs and outputs a monic degree-� poly-

nomial over Zx0 having � input points as roots. The algorithm AlgFFT
MPE takes

a degree-� polynomial f(x) over Zx0 and � points as inputs, and then it evalu-
ates f(x) at � input points and outputs the results. AlgFFT

Poly (AlgFFT
MPE , resp.) has

quasi-linear complexity in the number of the input points (the degree of the in-
put polynomial, resp.). We summarize the basic information regarding these fast
polynomial algorithms in Table 2. We omit details of these classical algorithms;
instead, we refer to [31,27].

Table 2. Fast polynomial algorithms using FFT

AlgFFT
Poly AlgFFT

MPE

Input x0 and {a0, . . . , a�−1} x0, f(X) of �-deg., and {pti}i∈[0,�−1]

Output f(X) =
∏�−1

i=0(X − ai) (mod x0) f(pt0), . . . , f(pt�−1) (mod x0)
Comp. cost O(� log2 �) operations modulo x0 O(� log2 �) operations modulo x0

Space cost O(� log2 �) polynomially many bits O(� log2 �) polynomially many bits

3 Masked Partial Approximate Common Divisors

Before providing our algorithm, we first generalize the problem instances for both
the re-randomization parameter and the zero-testing parameter in the CLT GES.
We believe that the following generalization will help readers to understand the
security of the multilinear maps; specifically, both the hardness and weakness of
the problem. We introduce a new number theoretic problem, which is a variant
of (Partial) Approximate Common Divisors [23]. First, we describe the new
hardness problem, then discuss its relationship with the system parameters of
CLT GES in the following subsection.

228 H.T. Lee and J.H. Seo

Definition 1 (n-Masked Partial Approximate CommonDivisors).Given
integers Q, q0, p1, . . . , pn, we state that xj is sampled from the distribution
DM

ρ (Q, q0, p1, . . . , pn) if

xj = Q · CRTq0,(pi)(qj , r1j , . . . , rnj)(mod q0
∏

i∈[1,n]

pi),

where qj ← [0, q0) and rij ← (−2ρ, 2ρ).
We define the (ρ, η, γ, n)-Masked Partial Approximate Common Divisors (ab-

breviated as n-MPACD) problem as follows. Choose η-bit random primes pi for
i ∈ [1, n] and let π be their product. Set x0 := q0 ·π, where q0 is a randomly chosen

2λ
2

-rough integer from [0, 2γ/π). Choose Q← [0, x0). Given x0 and polynomially
many samples xj from DM

ρ (Q, q0, p1, . . . , pn), find a non-trivial factor of (x0/q0).

Note that we do not restrict the distribution of rij ’s andQ in Definition 1 explicitly
to cover various variants; in addition, our attack algorithm provided in the follow-
ing section succeeds regardless of the distributions ofQ and rij ’s. We require only
mild restrictions satisfied by both the zero-parameters and the re-randomization
parameters of multilinear maps, which are the primary targets of our algorithm.

Hardness of n-MPACD:This paper mainly proposes attack algorithms against
n-MPACD; however, it would be interesting to precisely understand the hard-
ness of n-MPACD as well. To this end, we prove that n-MPACD is hard if PACD
[23,13,14,7] is also hard. The reduction is provided in the full version.

Asymptotic Parameters: When we consider algorithms for n-MPACD, we ba-
sically assume that parameters are set to thwart various lattice-based attacks and
factoring algorithms; that is, γ (x0’s bit size) must be large enough to prevent
lattice-based attacks, so that γ = ω(η2 logλ) [30,13,10] and η = ω(λ2), to pre-
vent an efficient factorization algorithm such as ECM fromhaving sub-exponential
complexity in the size of factors. In this paper, we focus on the size of errors rij ∈
(−2ρ, 2ρ) and the complexities of all algorithms associated with ρ.

3.1 Parameters as an Instance of the MPACD Problem

We demonstrate that the system parameters in the CLT GES can be considered
as instances of n-MPACD.

Zero-testing Parameter: The zero-testing parameters (x0, (pzt)j for j ∈ [1, n])
are of form

(pzt)j =
∑n

i=1 hij · (zκ · g−1
i mod pi) ·

∏
i′ �=i pi′ (mod x0)

= Q · CRT(pi)(hij) (mod x0)

whereQ = CRT(pi)(z
κ ·g−1

i ·
∏

i′ �=i pi′). Here, hij is distributed in a small bounded

set (−2β, 2β), where 2β � pi. Therefore, we can regard the zero-testing parame-
ters as an instance of n-MPACD.

Re-randomization Parameter: The re-randomization parameters are of form

Πj = CRT(pi)(
�ij ·gi

z) ≡ Q · CRT(pi)(�ij) mod x0,

where Q = CRT(pi)(
gi
z). Note that the �ij ’s of the errors are not chosen from

the same set, unlike those in n-MPACD; non-diagonal entries are chosen from

Security Analysis of Multilinear Maps over the Integers 229

(−2ρ, 2ρ), while the diagonal entries are chosen from (n2ρ, n2ρ + 2ρ). Although
errors are chosen from two different sets, the sizes of both sets are almost equal to
2ρ. This is sufficient for our attack algorithm provided in Section 4.

Remark 1. In fact, by excluding some parts that have entries chosen from
(n2ρ, n2ρ + 2ρ), the re-randomization parameters generated by n primes may be
considered as an instance of (n−k)-MPACD as well for k < n. That is, {Πj}j∈[1,k]

for k ∈ [1, n] can be re-written by

Πj ≡ CRT(pi)(
gi
z
) · CRT(pi)(�ij) ≡ CRTq0,(pi)i∈[k+1,n]

(q′,
�ij · gi

z
) mod x0,

where q0 =
∏k

i=1 pi and q′ = CRTp1,...,pk
(�1j , . . . , �kj). Subsequently, all errors

�ij for i ∈ [k+1, n] and j ∈ [1, k] are chosen from(−2ρ, 2ρ), so that (x0, {Πj}j∈[1,k])
is an instance of (n− k)-MPACD.

4 Our Algorithms for the n-MPACDProblem

We present an exponentially faster algorithm for solving n-MPACD problems; our
(basic) algorithm requiresO((log ρ)0.5ρ2.52ρ/2) Zx0 operations. In [10], the attack
algorithm for n-MPACD is roughly sketched and details are omitted. We present
the detailed description of the CLT attack based on our speculation in the full
version, which achieves the complexity Coron et al. claimed. Our analysis of the
CLT algorithm for n-MPACD requires two mild assumptions about the distribu-
tion of samples. Similarly, the proposed algorithm also requires two mild assump-
tions about samples satisfied by our main application, multilinear maps over the
integers.

4.1 Overview

We provide an overview of our algorithm for solving n-MPACD problems. Our
strategy follows the basic flow of the Chen-Nguyen attack; however, we require
several additional ideas to manage the unknown masking Q and several moduli
in the n-MPACD problem, in contrast to the Chen-Nguyen attack for the PACD
problem.

Consider an instance of an n-MPACD problem: x0 = q0
∏n

i=1 pi and xj ≡
rij mod pi where pi’s are η-bit primes, rij ∈ (−2ρ, 2ρ) for 1 ≤ j ≤ 2m, and
2ρ � pi. For randomly chosen bits b′j ’s, if m is sufficiently large, then for each
pi there is a high probability that

pi

∣∣∣ gcd(x0,
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)�=(b′1,...,b′2m)

(

2m∑
j=1

bjxj −
2m∑
j=1

b′jxj) (mod x0)
)
. (1)

For each pi, there are 2
2m possible sums

∑2m
j=1 bjxj such that

∑2m
j=1 bjxj (mod pi)

is contained in the relatively small range (−2m2ρ, 2m2ρ), which is contained in
(−pi/2, pi/2]. If the number of samples m satisfies an inequality 22m ≥ m2ρ+3

(e.g., 2m = ρ + log ρ + log log ρ for sufficiently large ρ), then there are many

230 H.T. Lee and J.H. Seo

collisions in the range. In fact, at least a half of all possible elements have a collision
in the range (−2m2ρ, 2m2ρ) according to the pigeonhole principle. Therefore, for

such anm, we have
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)�=(b′

1
,...,b′

2m
)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) ≡ 0 (mod pi)

with at least 1/2 probability, depending on the choice of b′j’s.
To solve an n-MPACD problem using the relation (1), two remaining issues

must be considered, in terms of efficiency and correctness. First, 22m > 2ρ mod-
ulus multiplications, which are quite large, are required for naive computation of
the above product. To reduce the complexity, we follow the concept of the meet-
in-the-middle approach, similar to the Chen-Nguyen attack. Second, it is likely
that the result of the gcd computation in (1) is not a non-trivial factor of x0, but
just x0. To overcome this obstacle, we additionally equip our algorithm with the
concept of the divide-and-conquer technique.

Let us address the efficiency issue first. We define the 2d-degree polynomial
fd,(b′j)(X) over Zx0 as follows:

fd,(b′j)(X) =
∏

(b1,...,bd)∈{0,1}d

((X +

d∑
j=1

bjxj)−
2m∑
j=1

b′jxj) (mod x0) (2)

Using this new notation, we can rewrite (1) as1

pi

∣∣∣ gcd(x0,
∏

(bm+1,...,b2m)∈{0,1}m

fm,(b′j)(
2m∑

k=m+1

bkxk) (mod x0)
)
. (3)

We can compute the 2m-degree polynomial fm,(b′j)(X) via AlgFFT
Poly and evaluate

fm,(b′j)(X) at 2m points {
∑2m

k=m+1 bkxk}(bm+1,...,b2m)∈{0,1}m via AlgFFT
MPE so that

we can solve the n-MPACD problem with O(2mm2) complexity. If we set 2m =
ρ+log ρ+log log ρ, then we determine that the complexity isO((log ρ)0.5ρ2.52ρ/2).

For the second issue regarding the gcd computation result, we can apply the
divide-and-conquer method. It is clear that the result should be x0 or its di-
visor. If the output of the gcd computation is x0, then we divide the product∏

(bm+1,...,b2m)∈{0,1}m fm,(b′j)(
∑2m

k=m+1 bkxk) (mod x0) into four factors and com-

pute all factors. If there is a non-trivial factor among four factors, then the algo-
rithm succeeds. Otherwise, we select a factor that is a multiple of x0, and repeat
the same process until a non-trivial factor is found. We can demonstrate that this
process will find a non-trivial factor with overwhelming probability, and the re-
cursive process’s asymptotic complexity is still O((log ρ)0.5ρ2.52ρ/2). We provide
a clear description and analysis of our algorithm in the following subsections.

If the errors rij ’s are distributed (almost) uniformly, then we can reduce the
complexity further by scrunching the domain of the product up; if the domain
size is decreasing, we cannot expect that (

∑2m
j=1 b

′
jxj) will have a collision in each

modulus pi with high probability; however, we can expect that it will have a col-
lision in at least one modulus pi, which is exactly what we want. In fact, we can

1 Strictly speaking, (3) is not equal to (1) because (3) contains the case (b1, . . . , b2m) =
(b′1, . . . , b

′
2m) therefore the product is trivially 0. We can easily change (3) to not con-

tain the case (b1, . . . , b2m) = (b′1, . . . , b
′
2m). Because such a modification is technical,

we omit it in this overview and relegate the details to the next subsection.

Security Analysis of Multilinear Maps over the Integers 231

reduce the
√
n factor further from the complexity. In Section 5, we discuss the

method we used to increase the speed of our basic algorithm.

4.2 Basic Algorithm for n-MPACD

Given 2m samples xj ’s when 2m ≤ n and m2ρ+2 ≤ 22m, we require two mild
assumptions regarding samples.

Assumption 1. 2m2ρ+1 ≤ pi for each pi.
Assumption 2. The rank of the integer matrix (rij) i∈[1,n]

j∈[1,2m]

∈ Zn×2m is 2m, where

xj ≡ rij (mod pi).
Note that both the zero-testing parameter and the re-randomization parameter

of multilinear maps over the integers satisfy both Assumption 1 & 2; Assumption
1 is trivial. In the zero-testing parameter, the matrix (hij) is invertible, so it can
satisfy Assumption 2. For the re-randomization parameter, rij ’s are distributed
uniformly and independently; thus, the rank(rij) will be equal to 2m with over-
whelming probability because rij ’s are chosen from the exponentially large set in
the security parameter.

Our n-MPACD Algorithm: We present our basic algorithm for n-MPACD in
Algorithm 1. Our algorithm consists of two steps. First, the algorithm computes
a product A that is a multiple of some prime factor of x0. Second, if A is not a
multiple of x0, then the algorithm stops and outputs it. Otherwise, the algorithm
runs the while loop to extract a non-trivial factor from the multiple of x0; that is,
we repeatedly split multiples of x0 into four factors, until a non-trivial factor is
found.

Because A is a product, we can compute A’s four factors denoted by
A00, A01, A10, and A11 via the same process used for computing A such that
A = A00A01A10A11, and then check if there is a non-trivial factor of x0 among
them. If not, repeat the same process until a non-trivial factor of x0 is found. To
optimize efficiency, we divide A into four factors evenly, that is, each Ai is also a
product with the same size domain. Furthermore, we should set each domain ofAi

to take full advantage ofAlgFFT
Poly andAlgFFT

MPE . To this end, we defineA00, A01, A10,
and A11 as follows: In the while loop, A ∈ Zx0 is of the form

∏
∀(bi1

,...,bm),∀(bi2
,...,b2m)

(b1 ,...,b2m)�=(b′
1
,...,b′

2m
)

(

m∑
j=i1

bjxj +

2m∑
j=i2

bjxj + C) (mod x0),

where b1, . . . , bi1−1, bm+1, . . . , bi2−1 are fixed for some 1 ≤ i1 ≤ m,m + 1 ≤ i2 ≤
2m, and so C =

∑i1−1
j=1 bjxj +

∑i2−1
j=m+1 bjxj −

∑2m
j=1 b

′
jxj is a constant. Then,

A00 :=
∏
(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C) (mod x0),

A01 :=
∏
(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi2) (mod x0),

A10 :=
∏
(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi1) (mod x0),

A11 :=
∏
(
∑m

j=i1+1 bjxj +
∑2m

j=i2+1 bjxj + C + xi1 + xi2) (mod x0),

232 H.T. Lee and J.H. Seo

Algorithm 1. n-MPACD algorithm: arbitrary distribution

Input: (x0, x1, . . . , x2m)
Output: a non-trivial factor of x0 or ⊥
1: Choose b′j

$← {0, 1} for 1 ≤ j ≤ 2m.

2: Compute A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)�=(b′

1
,...,b′

2m
)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (mod x0)

� by using Alg. 2
3: if A �≡ 0 (mod x0) then return gcd(x0, A).
4: else Set k ← 1.
5: while k ≤ m do
6: Compute gcd(x0, Ai) for i ∈ {00, 01, 10, 11}.

� by using (a variant of) Alg. 2
7: if gcd(x0, Ai) ∈ (1, x0) for some i then return gcd(x0, Ai).
8: else Choose an Ai s.t. Ai ≡ 0 (mod x0) and set A ← Ai, and k ←

k + 1.
9: end if
10: end while return ⊥.
11: end if

where C is defined as before and each product is defined over all bi1+1, . . . , bm,
bi2+1, . . . , b2m ∈ {0, 1} such that (b1, . . . , b2m) �= (b′1, . . . , b′2m). It is clear that
A = A00A01A10A11 and each Ai has the same form as A with a different domain
for the product.

Subroutine for Computing A and Its Factors: We describe how to compute
A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)�=(b′

1
,...,b′

2m
)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (mod x0).

Using the notation in (2), A can be rewritten as

∏
(bm+1,...,b2m)

∈{0,1}m,
(bm+1,...,b2m)

�=(b′
m+1

,...,b′2m)

fm,(b′j)(

2m∑
k=m+1

bkxk) ·
∏

(b1,...,bm)

∈{0,1}m,
(b1,...,bm)

�=(b′
1
,...,b′m)

(

m∑
j=1

(bj − b′j)xj) (4)

The left term is for the case (bm+1, . . . , b2m) �= (b′m+1, . . . , b
′
2m) and the right term

is for the case (bm+1, . . . , b2m) = (b′m+1, . . . , b
′
2m) with (b1, . . . , bm) �= (b′1, . . . ,

b′m). Therefore, (4) covers all (b1, . . . , b2m)’s except (b′1, . . . , b
′
2m), so that it is equal

to A. We describe an algorithm for (4) in Algorithm 2. Factors A00, A01, A10 and
A11 of A have approximately the same form as A, and hence we can compute it
similarly to Algorithm 2.

Security Analysis of Multilinear Maps over the Integers 233

Algorithm 2. Subroutine for solving n-MPACD

Input: (x0, x1, . . . , x2m) and (b′1, . . . , b
′
2m).

Output: A =
∏

(b1,...,b2m)∈{0,1}2m
(b1,...,b2m)�=(b′

1
,...,b′

2m
)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (mod x0)

1: Compute a polynomial fm,(b′j)(X) over Zx0 as follows.∏
(b1,...,bm)∈{0,1}m((X +

∑m
j=1 bjxj)−

∑2m
j=1 b

′
jxj) (mod x0).

� by AlgFFT
Poly with x0 and {(

∑2m
j=1 b

′
jxj −

∑m
j=1 bjxj)}(b1,...,bm)∈{0,1}m as

inputs.
2: Perform multi-points evaluation of fm,(b′j)(X) at {

∑2m
k=m+1 bkxk}∀bk∈{0,1} �

by AlgFFT
MPE .

3: return∏
(bm+1,...,b2m)

∈{0,1}m,
(bm+1,...,b2m)

�=(b′
m+1

,...,b′2m)

fm,(b′j)(

2m∑
k=m+1

bkxk) ·
∏

(b1,...,bm)

∈{0,1}m,
(b1,...,bm)

�=(b′
1
,...,b′m)

(

m∑
j=1

(bj − b′j)xj) (mod x0)

4.3 Analysis

Success Probability: We demonstrate that Algorithm 1 correctly finds a non-
trivial factor of x0 with at least 1/2 probability, where the probability goes over
only the algorithm’s random tape.2

Algorithm 1 begins by selecting b′j ∈ {0, 1} for 1 ≤ j ≤ 2m. Given an n-

MPACD instance x0 and xj ’s, we state that (b
′
1, . . . , b

′
2m) ∈ {0, 1}2m is ‘good for

pi’ if there exists (b1, . . . , b2m) ∈ {0, 1}2m such that (b1, . . . , b2m) �= (b′1, . . . , b
′
2m)

and
∑2m

j=1 bjxj =
∑2m

j=1 b
′
jxj (mod pi). We can prove that if we select b′j ’s uni-

formly and independently, then with high probability (b′1, . . . , b
′
2m) is ‘good for pi’

for each pi. See Lemma 1 for details.

Lemma 1. Given an n-MPACD instance x0 and xj’s, we have that for each i ∈
[1, n],

Pr
b′j

$←{0,1}
[(b′1, . . . , b

′
2m) is good for pi] > 1/2 under Assumption 1.

Once the algorithm has a good (b′1, . . . , b
′
2m) for p1, then we can demonstrate

that the algorithm eventually outputs a non-trivial factor of x0. If the while loop
arrives at the end before finding a non-trivial factor of x0 (that is, it is repeated

m times), then ultimately we should have an integer
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj ≡ 0

(mod x0) for some (b1, . . . , b2m) �= (b′1, . . . , b
′
2m); that is, we are not able to di-

vide A any further. Therefore, it is sufficient to demonstrate that such a tuple
(b1, . . . , b2m) cannot exist, and Lemma 2 guarantees it.

2 Because the success probability of our algorithm is constant, we can make that the
probability of success is overwhelming by running the algorithm linear in the security
parameter, with a fresh random tape.

234 H.T. Lee and J.H. Seo

Lemma 2. Under Assumption 1 and 2, if (b1, . . . , b2m) �= (b′1, . . . , b
′
2m), then

there is an index i′ ∈ [1, n] such that
2m∑
j=1

bjxj �=
2m∑
j=1

b′jxj (mod pi′)

so that
∑2m

j=1 bjxj �=
∑2m

j=1 b
′
jxj (mod x0).

Algorithm 1 uses the randomness only in the 1st and 8th steps. Because any
Ai with correct conditions will suffice in the 8th step, it does not affect the suc-
cess probability of the algorithm. Only a selection of (b′1, . . . , b

′
2m) will determine

the success of the algorithm, and we have a probability of greater than 1/2 for
a good (b′1, . . . , b′2m) for p1. Therefore, the proposed algorithm has at least a 1/2
probability for success.

Complexity: The complexity of Algorithm 1 is dominated by computing A and
its factors. The complexity of Algorithm 2 mainly depends on the domain size
in the product; we require O(m22m) operations modulo x0 (from AlgFFT

Poly and

AlgFFT
MPE ’s complexity). Similarly, for each of A’s four factors, we must perform

O((m− 1)22m−1) operations modulo x0 because each factor of A uses a half-size
degree polynomial and number of points in Algorithm 2 in comparison with A.
Similarly, we requireO((m−2)22m−2) operations modulo x0 for each ofAi’s four
factors, and so on. Overall, the computational complexity for A and all its fac-
tors is bounded by O(m22m)+4O((m−1)22m−1)+ · · ·+4Õ(21) = O(5m22m) =
O(m22m) operations modulo x0. Therefore, the overall computational cost is
O(m22m) +O(m2m) = O(m22m) Zx0 operations. Similarly, we can demonstrate
that the space complexity is bounded by O(m22m) polynomially many bits from
the storage complexity of AlgFFT

MPE and AlgFFT
Poly .

If we set m = ρ+log ρ+log log ρ
2 , then it asymptotically satisfies the requirement

2m ≤ n and 2m2ρ+1 < 22m, where ρ ≥ 4. Therefore, for m = ρ+log ρ+log log ρ
2 , the

computational cost isO((ρ+log ρ+log log ρ
2)2 2

ρ+log ρ+log log ρ
2) = O((log ρ)0.5ρ2.52ρ/2)

Zx0 operations and the space complexity is O((log ρ)0.5ρ2.52ρ/2) polynomially
many bits.

5 Attack on System Parameters of Multilinear Maps over
the Integers

5.1 Speed Increase for Multilinear Maps Parameters

We introduce several techniques to increase the speed of Algorithm 1, where all
of our techniques are applicable to the parameters of multilinear maps. If rij ’s
are uniformly distributed, we can increase the speed of the attack algorithm. For
example, �ij ’s in the re-randomization parameter are uniformly distributed in
the corresponding domains. Furthermore, we know the distribution of hij ’s in the
zero-testing parameter. Although it is not a uniform distribution, we can consider
it as a quasi-uniform distribution in an appropriate bound.

Security Analysis of Multilinear Maps over the Integers 235

Using Shorter m: To guarantee exponentially many good (b′1, . . . , b
′
2m) for each

pi, we selectm with 2m2ρ+1 ≤ 22m. The sum of uniform variables follows the bell-
shaped distribution, so that

∑2m
j=1 bjxj has a shorter image size than its range. Fur-

thermore, the bell-shaped distribution has more collisions around a center than
uniform distributions. This fact allows us to select a shorter m, and our experi-
mental results provided in Table 3 support our expectation.

Table 3. Shorter domains (Experimental results on average of 100 instances)

ρ 14 16 18 20

m 8 9 10 11

|domain|/|range| 0.25 0.22 0.20 0.18

|domain|/|image| 1.49 1.51 1.48 1.44

Shorter Domain in Products: Basically, Algorithm 1 becomes a brute-force
attack once we select a good (b′1, . . . , b

′
2m) for some pi at the beginning. It is likely

that (b′1, . . . , b
′
2m) is good for several moduli pi’s. (That is the exact reason why we

must have the while loop in Algorithm 1.) However, our goal is to select a vector

Algorithm 3. n-MPACD algorithm: speedup for the uniform distribution

Input: (x0, x1, . . . , x2m), d = 2δ for δ ≥ 1
Output: a non-trivial factor of x0 or ⊥
1: Choose (b′1, . . . , b′2m)

$← {0, 1}2m.

2: Choose b1, . . . , bδ, bm+1, . . . , bm+δ
$← {0, 1}.

3: Compute A =
∏

(bδ+1 ,...,bm)∈Z
m−δ
x0

(bm+δ+1,b2m)∈Z
m−δ
x0

(b1,...,b2m)�=(b′
1
,...,b′

2m
)

(
∑2m

j=1 bjxj −
∑2m

j=1 b
′
jxj) (modx0)

� by using Alg. 2
4: The remaining process is the same as Step 3− 11 of Algorithm 1.

Table 4. Speedup with shorter interval (Experimental results on average of 100
instances)

Instantiation λ n η ρ m d (Average) trials

Micro ≥ 34 64 1528 22 12 8 1.81 times

Parameters are set the average ratio between the domain and the image (modulus
pi) of

∑
1≤j≤2m bjxj for 100 problem instances to be 1.44 for each pi.

(b′1, . . . , b
′
2m) that is good for only one (or a few) pi and is not good for any others.

We compute a product A′ that is roughly 1/n of a random portion of the product
A in Algorithm 1. Then, we can expect the probability, Pri, that pi divides A

′ is
roughly equal to 1/2n. Furthermore, rij ’s are independent, and thus we can also
expect that the probabilities Pri’s are nearly independent. Therefore, the prob-
ability that A′ is a multiple of at least one of pi is significant, from the birthday

236 H.T. Lee and J.H. Seo

paradox; e.g., 1−1/
√
e. Applying this technique, we present an improved attack in

Algorithm 3. The analysis above is heuristic, and thus to support our expectations
and the heuristic analysis, we provide experimental results in Table 4.

Insufficient Entropy in Zero-testing Parameters: The matrix H = (hij) ∈
Zn×n in the zero-testing parameters is selected to satisfy ‖H�‖∞ ≤ 2β and

‖(H−1)
�‖∞ ≤ 2β where || · ||∞ is the operator norm of n × n matrices with re-

spect to the �∞ norm on Rn. In [10], Coron et al. proposed an algorithm to gen-
erate such a matrix H, with sufficient entropy. However, their approach does not
rapidly increase the entropy of H, though it satisfies the above two bounds. We
will demonstrate this by providing some experimental results in this section.

Table 5. Bit-size of entries of a matrix H (Experimental results on average of 100
matrices for Toy and Small and 10 matrices for Medium)

λ n ρ β Average Bit Size Maximum Bit Size β − log n

Toy 42 136 26

26 1.33 8 18.91
42(= λ) 4.66 16 34.91

80 11.80 25 72.91
84(= 2λ) 13.99 29 76.91
126(= 3λ) 23.73 41 118.91
168(= 4λ) 32.67 51 160.91

Small 52 540 41

41 2.84 14 31.92
52(= λ) 4.14 17 42.92

80 9.70 29 70.92
104(= 2λ) 16.17 34 94.92
156(= 3λ) 29.07 47 146.92
208(= 4λ) 41.69 66 198.92

Medium 62 2085 56
56 5.59 17 44.97

62(= λ) 5.63 17 50.97
80 11.73 27 68.97

Table 5 lists the average bit size of entries in H generated by the algorithm of
Coron et al. on various parameters β andn. From the last three columns of Table 5,
one can observe that average bit sizes are approximately 10 when β = 80 as in the
impelmentation parameters in [10]; moreover, the maximum bit sizes are lower
than 30, and they are much smaller than the best β − logn, which is obtained
from the bound ‖H�‖∞ ≤ 2β.

In [10, Section 3.1], the authors stated that “One can take β = λ”; however, our
analysis and experimental results indicate that β should be much larger than λ.
In Table 5, when β ≤ 3λ, the expected average bit-size of |hij | is still smaller than
ρ, and for Small security, when β ≈ 4λ, the expectation of the average bit-size of
|hij | is equal to ρ; thus, β ≥ 4λ would be safe for the security of the multilinear
maps. We investigate the reason why the H-generation in [10] could not increase
enough entropy in the full version.

Security Analysis of Multilinear Maps over the Integers 237

5.2 Implementation

We have implemented Algorithm 3 with various parameters in C++, using the
Gnu MP library [1] and NTL library [29], on an Intel(R) Core(TM) i7-2600 CPU
at 3.4 GHz with 16 GB RAM.

Attack on Zero-testing Parameter: We have implemented Algorithm 3 to at-
tack on the zero-testing parameters; we setn, η, and ρ as in the implementation pa-
rameters for Small (52-bit) andMedium (62-bit) security [10, Section 6.4] and gen-
erated the zero-testing parameter normally by using the method described in [11,
Appendix F].We summarize the result in Table 6, and it displays that Algorithm 3
finds a non-trivial factor very quickly on the parameters for Small and Medium
security levels.

Table 6. Attack on zero-testing parameter

Inst. λ n η β Exp(|hij |) m d Time� Security against Alg. 3

Small 52 540 1838 80 10 8 16 8.42 sec ≤ 234.84 clock cycles

Medium 62 2085 2043 80 12 9 32 47.28 sec ≤ 237.23 clock cycles
	 The average running time for solving 50 problem instances

Attack on Re-randomization Parameter: We first define Toy parameters for
42-bit security. To this end, we benchmark the parameter of FHEs in [12], which
is conservatively determined according to the complexity of the Chen-Nguyen at-
tack [7]. In Table 7, we provide the average running time to solve 50 problems
for Toy parameters, and the experimental result demonstrates that the expected
security level is tight.

Table 7. Attack on re-randomization parameter

Inst. λ n η ρ m d (Average) trials Running time Sec. ag. Alg 3†

Toy 42 136 1628 26 14 16 3.7 times 1979.55 sec 242.72

† This counts the number of clock cycles.

In fact, the complexity difference between Algorithm 3 and the Chen-Nguyen

attack is O(
√

ρ log ρ
n) and

√
ρ log ρ

n ≈ 1 for 42-bit security. For Large and Ex-

tra security level parameters,
√

ρ log ρ
n is less than 1; therefore, Algorithm 3 will

be slightly faster than the Chen-Nguyen attack algorithm. We extrapolate Algo-
rithm 3 to be at least 21.38 (22.12, resp.) times faster than the Chen-Nguyen attack
for Large security (Extra security, resp.), with a similar storage advantage. There-
fore, when one selects secure ρ size for large security level integer-basedmultilinear
maps, we suggest that the performance of Algorithm 3 should be considered.

238 H.T. Lee and J.H. Seo

6 Discussions

Encoding-Validity Test: Zero-testing Vector vs. Zero-testing Integer:
In [10], Coron et al. implemented a one-roundN -way Diffie-Hellman key exchange
protocol [2], based on their multilinear maps. They used heuristic optimizations
for implementation, in particular the zero-testing integer, instead of the
zero-testing vector as in the original construction. Note that both the CLT at-
tack algorithm and our attack algorithm for n-MPACD require more than one
sample; therefore, both are inapplicable to their optimized version of multilinear
maps over the integers.

Garg et al. [18] pointed out a plausible threat when using a single zero-testing
element. In applications that require resilience of the zero test, including against
invalid encodings, several zero-testing elements can be utilized to prevent the use
of invalid encodings. In cryptographic applications such as the Diffie-Hellman key
exchange, it is important to test whether a given encoding is a group element.
Because GES is a substitute for ideal multilinear groups, it is also important to
test whether a given encoding is valid, and has an appropriate level. In the full
version, we present a (polynomial-time) key recovery attack on the multipartite
Diffie-Hellman key exchange protocol, based on the CLT GES with a single inte-
ger zero-testing parameter. The basic idea of the attack is analogous to the Lim-
Lee [26] key recovery attack of using invalid encodings on two-partyDiffie-Hellman
key exchange based on group structures.

Applications Beyond MultilinearMaps: We note that Algorithm 3 is appli-
cable to the public parameters of a FHE scheme in [8]. Due to the space limitation,
we relegate the detail to the full version.

Acknowledgement. This work was supported by IT R&D program of MSIP/
KEIT [No. 10047212]. Hyung Tae Lee was also supported in part by the Singapore
Ministry of Education under Research Grant MOE2013-T2-1-041. Part of work
was done while Hyung Tae Lee was with Seoul National University, Korea. Jae
Hong Seo is the corresponding author for this paper. The authors also would like
to thank JungHee Cheon and the anonymous reviewers of CRYPTO 2014 for their
helpful comments.

References

1. GMP: The GNU multiple precision arithmetic library ver. 5.1.3 (2013),
http://gmplib.org

2. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temporary Mathematics 324(1), 71–90 (2003)

3. Bostan, A., Schost, É.: On the complexities of multipoint evaluation and interpola-
tion. Theoretical Computer Sciences 329(1-3), 223–235 (2004)

4. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of
points. Journal of Complexity 21(4), 420–446 (2005)

5. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Hei-
delberg (2013)

http://gmplib.org

Security Analysis of Multilinear Maps over the Integers 239

6. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–
25. Springer, Heidelberg (2014)

7. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: Break-
ing fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer,
Heidelberg (2012)

8. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg
(2013)

9. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis of the
RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer, Heidelberg
(2011)

10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–
493. Springer, Heidelberg (2013)

11. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers
(2013), http://eprint.iacr.org/2013/183 (Full version of [10])

12. Coron, J.-S., Lepoint, T., Tibouchi, M.: Batch fully homomorphic encryption over
the integers (2013), http://eprint.iacr.org/2013/036 (Full version of the second
part of [8])

13. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

14. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

15. Fiduccia, A.M.: Polynomial evaluation via the division algorithm: the fast Fourier
transform revisited. In: STOC 1972, pp. 88–93 (1972)

16. Fouque, P.-A., Tibouchi, M., Zapalowicz, J.-C.: Recovering private keys generated
with weak PRNGs. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 158–172.
Springer, Heidelberg (2013)

17. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

18. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17.
Springer, Heidelberg (2013)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE Computer Society (2013)

20. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

21. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC 2013, pp. 467–476. ACM (2013)

http://eprint.iacr.org/2013/183
http://eprint.iacr.org/2013/036

240 H.T. Lee and J.H. Seo

22. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

23. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

24. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014)

25. Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the integers. IACR
Cryptology ePrint Archive (2014), http://eprint.iacr.org

26. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

27. Mateer, T.: Fast Fourier transform algorithms with applications. PhD thesis, Clem-
son University (2008)

28. Seo, J.H.: Faster algorithms for variants of approximate common divisors problem:
Application to multilinear maps over the integers. In:Memoirs of the 7th Cryptology
Paper Contest, arranged by Korea government organization (2013)

29. Shoup, V.: NTL: A library for doing number theory ver. 6.0.0 (2013),
http://www.shoup.net/ntl/

30. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

31. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge
University Press (2003)

http://eprint.iacr.org
http://www.shoup.net/ntl/

Converting Cryptographic Schemes

from Symmetric to Asymmetric Bilinear Groups

Masayuki Abe1, Jens Groth2,	, Miyako Ohkubo3, and Takeya Tango4

1 NTT Secure Platform Laboratories, Japan
abe.masayuki@lab.ntt.co.jp

2 University College London, UK
j.groth@ucl.ac.uk

3 Security Fundamentals Lab, NSRI, NICT, Japan
m.ohkubo@nict.go.jp

4 Kyoto University, Japan
tkytango@ai.soc.i.kyoto-u.ac.jp

Abstract. We propose a method to convert schemes designed over sym-
metric bilinear groups into schemes over asymmetric bilinear groups. The
conversion assigns variables to one or both of the two source groups in
asymmetric bilinear groups so that all original computations in the sym-
metric bilinear groups go through over asymmetric groups without hav-
ing to compute isomorphisms between the source groups. Our approach
is to represent dependencies among variables using a directed graph, and
split it into two graphs so that variables associated to the nodes in each
graph are assigned to one of the source groups. Though searching for
the best split is cumbersome by hand, our graph-based approach allows
us to automate the task with a simple program. With the help of the
automated search, our conversion method is applied to several existing
schemes including one that has been considered hard to convert.

Keywords: Conversion, Symmetric Bilinear Groups, Asymmetric Bi-
linear Groups.

1 Introduction

It is often believed that once a scheme for a purpose is shown feasible over
symmetric bilinear groupsa scheme for the same purpose should be constructable
over asymmetric bilinear groups. One approach is to use different mechanisms
and stronger assumptions available only in the asymmetric setting. The other,
which we study in this paper, is to convert a scheme in the symmetric setting
into one in the asymmetric setting keeping the original design intact.

We will given a bilinear group setting with a pairing e : G×G̃→ GT follow [13]
in calling the symmetric setting where G = G̃ for Type-I and in the asymmetric

� The research leading to these results has received funding from the the Engineer-
ing and Physical Sciences Research Council grant EP/J009520/1 and the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 241–260, 2014.
c© International Association for Cryptologic Research 2014

242 M. Abe et al.

setting distinguish between Type-II, where there is an efficiently computable
isomorphism ψ : G̃→ G, and Type-III where there are no efficiently computable
isomorphisms between the source groups. In this paper, we focus on converting
schemes over Type-I groups to Type-III groups, i.e., converting to the fully
asymmetric setting, so we will in general be referring to the Type-III setting
when speaking of asymmetric bilinear groups.

We argue that the benefit of conversion is threefold. First, it allows designers
to focus on implementing their ideas using a simpler description in the symmet-
ric setting without being encumbered by the deployment of group elements over
two source groups. Second, it is an effective way to save schemes in the symmet-
ric setting from cryptanalytic advances. Recent progress in solving the discrete
logarithm problems over groups with small characteristics [15,16,14,3] has ne-
cessitated the use of larger parameters for a major class of symmetric bilinear
groups. A conversion method allows one to port these schemes to an asymmetric
setting. Finally, it yields potentially more secure schemes than those dedicated
to asymmetric groups because preserving the symmetric group assumptions they
may remain secure even if cryptanalysis were to discover techniques to efficiently
compute isomorphisms between the source groups.

There are two issues that makes conversion a non-trivial task. The first is
the potential presence of symmetric pairings e(X,X). A symmetric pairing can
occur indirectly like e(X,Z) for Z = X ·Y and it is not necessarily easy to see if
there are indirect symmetric pairings in intricate algorithms. It is in particular
problematic when a function that maps a string into a source group element is
used in the original scheme since it is only possible to either of the source groups
at a time. The second is the security proof and the underlying assumptions. Not
only should the scheme be executable, but the reduction algorithms used in the
security proof must also be executable in the asymmetric setting. Furthermore,
the assumptions need to be cast in the asymmetric setting as well. An instructive
example is given in [18] that demonstrates how conversion without a security
guarantee can yield a scheme that seems to work but is insecure.

Our Result. We propose a conversion method that turns schemes designed
over symmetric bilinear groups into schemes over asymmetric bilinear groups.
As our method converts not only the algorithms in a scheme but also the security
proofs by black-box reduction and the underpinning assumptions, the security is
preserved based on the converted assumptions. We then argue that, if the orig-
inal assumptions are justified in the generic Type-I group model, the converted
counterparts are justified in the generic Type-III group model. Our conversion
includes schemes in the random oracle model that hash a string onto a random
group element and hash group elements to a random string. We present a formal
model for the class of schemes our conversion method can handle.

Our conversion method takes as input a dependency graph that represents
computation among source group elements in the scheme to convert. This is a di-
rected graph whose nodes correspond to group elements in the scheme. Directed
edges in the graph represent dependency in such a way that the destination node
is computed from the source nodes through the group operation. By splitting the

Conversion from Symmetric to Asymmetric Groups 243

dependency graph into two graphs in such a way that no dependency is lost and
two nodes that represent group elements input to a pairing appear in different
graphs, we obtain two dependency graphs that represents computation in the
source groups of asymmetric bilinear groups. There may be nodes that appear
in both graphs. Their presence is necessary for consistent computation in each
source group. These nodes correspond to the symmetric group elements that
need to be duplicated in both source groups when converting to an asymmetric
bilinear group. The most cumbersome part of our conversion procedure is to find
a splitting of the dependency graph in a way that conforms to given constraints
and efficiency measures.

We present an algorithm to search for the best valid split. It is implemented
with Java and applied to dependency graphs for several known cryptographic
schemes originally built over symmetric bilinear groups:

– Waters’ Identity-based Encryption scheme [24]. We have chosen this scheme
since it has a small number of parameters so that one can manually verify the
result. An interesting observation is that conversion is not possible without
duplicating some group elements in the assumption.

– Boneh and Shacham’s verifier-local revocation group signature scheme [7].
This scheme involves hash-onto-point functions. In [23], Smart and Ver-
cauteren observed that converting to Type-III is not possible, and [10] in-
troduced the scheme as an typical example that cannot be converted due
to their use of hash-to-point functions and homomorphisms. We present a
conversion based on assumptions that duplicates elements in the original as-
sumptions. It does not contradict [23] as they limit themselves to the case
where no element duplicates in the assumption.

– Waters’ dual-system encryption scheme [25]. The purpose of converting this
scheme is to compare the converted result using our conversion technique
with existing manually built schemes[11,20]. Our conversion yields a slightly
less efficient scheme. An assumption that fully duplicates elements of the
decision linear assumption is inevitable for this conversion.

– Tagged one-time signature scheme from [1]. By converting the scheme, we
obtain the first tagged one-time signature scheme over asymmetric bilinear
groups with minimal tag size. It answers the open question positively in [1].

The search algorithm runs in exponential time in the number of pairings and
the number of bottom nodes that do not have outgoing edges as we will explain
later. It takes a standard PC (Windows 7, Intel(R) Core(TM) i7-3720QM CPU
@ 2.60GHz, 8.0GB RAM) 9 msec to convert the easiest case, Waters’ IBE, and
about 105 min to convert the most intricate case, Waters’ Dual Encryption
scheme. We summarize the result of our experimental conversions in Table 1.

It should be noted that our conversion is not tight, i.e., when our conversion
algorithm fails to find a scheme in Type-III, it does not mean anything more than
the fact that our conversion algorithm does not find a conversion for the scheme.
In particular, it does not imply general impossibility. It is an open problem to
show impossibility of conversion.

244 M. Abe et al.

Table 1. Size of public parameters (pp + pk) and ciphertext (ct) or signature (σ) in
the number of source group elements including a default generator. “conv’d(opt=xxx)“
denotes that the scheme is obtained by our conversion in terms of minimizing the size
of assumption or public-keys. Assumption coXXX+α denotes co-XXX assumption(s)
that involve α duplicated elements. For TOS, σ includes a tag.

Scheme Construction
Size and Delta

Assumptions
pp+ pk ct or σ

Waters’
IBE

original [24] 4 + λ 2 DBDH

conv’d(opt=pk) +2 +0 coDBDH+3

conv’d(opt=assm) +3 + λ +0 coDBDH+2

VLR
Group Sig

original [7] 2 2 DLIN, q-SDH

conv’d +1 +0 coDLIN+5, q-coSDH+q

Dual
System
Enc

original [25] 12 9 DLIN, DBDH

conv’d(opt=pk) +1 +0 coDLIN+4,+5, coDBDH+2

conv’d(opt=assm) +6 +0 coDLIN+3,+3, coDBDH+2

manually
conv’d [19]

−3 −2 DDH1, DLIN, DBDH

−6 −5 DDH1, DDH2v, DBDH

new design [11] −2 −5 SXDH

TOS
original [1] 2k + 6 4 SDP

conv’d +5 +0 coSDP+5

Due to space limitation, most of proofs for theorems and lemmas and all
details of experiments are dropped from this version of the paper.

Related Works. Chatterjee and Menezes [9,10] considered conversion from
schemes over Type-II groups to Type-III groups and discuss the role of the iso-
morphism in Type-II groups. Their conversion shares the basic idea with ours
– represent a group element by a pair of source group elements and drop one
of them if unnecessary. They proposed a heuristic guideline for when a scheme
allows or resists conversion. Chatterjee et al. [8] discussed relations among as-
sumptions over Type-II and Type-III groups that include ones with or without
duplicated elements in a problem instance. Smart and Vercauteren [23] explored
variations of Boneh and Franklin’s identity-based encryption scheme [5] and
Boneh, Lynn and Shacham’s signature scheme [6] based on a family of BDH
assumptions over Type-II groups. They investigated which variations suffice for
the security proofs and how efficient the corresponding schemes are. Chen et
al. [11] presented modifications of Waters’ dual-system encryption scheme over
Type-III groups. They obtained a more efficient scheme than the original by a
careful manual conversion.

A more general work by Akinyele, Green and Hohenberger [2] introduced a
powerful software system called AutoGroup whose purpose is the same as ours.

Conversion from Symmetric to Asymmetric Groups 245

It takes a specification of the target scheme written in a scheme description
language and uses a satisfiability modulo theory solver [12] to find a valid de-
ployment of elements over two source groups. AutoGroup is a powerful tool to
find optimized computation in the resulting scheme conforming to one’s design
demands. On the other hand, and contrary to our tool, it does not say anything
about the security of the resulting scheme; it is left as a subsequent task to
check whether the resulting scheme is secure, to identify sufficient assumptions,
and to provide convincing arguments that the assumptions are plausible. Our
procedure requires manual work as well but only to examine if the original proof
works over generic symmetric bilinear groups and to verify that the assumptions
are plausible in the generic Type-I group model. Once this has been confirmed,
the converted scheme retains its security under converted assumptions that also
retain plausibility arguments in the generic group model.

2 Preliminaries

We follow standard definition and notations of symmetric and asymmetric bi-
linear groups. Let G be a group generator that takes security parameter 1λ and
outputs (q,G, G̃,GT , e, G, G̃) where G, G̃, and GT are groups of prime order q,
e : G × G̃ → GT is an efficiently computable non-degenerate bilinear map, and
G, G̃ and Gt = e(G, G̃) are generators of G, G̃ and GT respectively. G and G̃
are called source groups and GT is called the target group. When G �= G̃ and
there are no efficiently computable isomorphisms between G and G̃ we call it
the Type-III bilinear group setting. When G = G̃ we let G = G̃ and call it a
symmetric bilinear group or Type-I group. For simplicity, we will often use the
shortened notation Gsym and (q,G,GT , e, G) for the symmetric case, and on the
other hand write Gasym when emphasizing a group generator outputs a Type-III
bilinear group. Hashing to G is doable in Type-I groups over supersingular ellip-
tic curves. In Type-III groups over elliptic curves, it is possible to hash to G and
G̃ independently with different costs. We focus on source group elements in the
paper and other data are mostly ignored as they are handled equally in Type-I
and III settings. Notes will be given otherwise.

Throughout the paper we will work with directed graphs using the notation
(X,Y) for an edge from node X to Y . For two directed graphs Γ = (V,E) and
Γ ′ = (V ′, E′) the merger operation Γ ⊕Γ ′ is defined by a graph (V ∪V ′, E∪E′).
For a graph Γ and a subgraph Γ ′, we define Γ (Γ ′ as a graph obtained by
removing nodes in Γ ′ and edges that involves nodes in Γ ′ from Γ . If a graph Γ ′

is a subgraph of Γ , we write Γ ′ ⊆ Γ . For a node X in Γ , we define Anc(Γ,X)
by the subgraph of Γ that consists of paths reaching X . Nodes in Anc(Γ,X)
are called ancestors of X , where we use the convention that X is an ancestor to
itself.

By (x, y) ← (A(a), B(b)), we denote a process where two interactive algo-
rithms A and B take inputs a and b and output x and y, respectively, as a result
of their interaction.

246 M. Abe et al.

3 Overview with Example

This section illustrates our conversion procedure for Waters’ IBE [24]. We mostly
use the original notation and description although the reader may want to refer
to the original paper for details.

The procedure starts by looking at the original description of Water’s IBE
scheme over symmetric bilinear groups. It builds a dependency graph, that de-
scribes how each group element appearing in the scheme depends on other group
elements. Later the dependency graph is used to decide which group element is
computed in which source group of the asymmetric bilinear groups. The type
assignment yields an instantiation of Waters IBE scheme over asymmetric bilin-
ear groups. As we convert the reduction algorithm in the security proof and the
underlying assumptions as well, the underlying security argument also translates
to the asymmetric setting.

Step 1. Building a dependency graph for each algorithm. Waters’ IBE
scheme consists of four algorithms: Setup, Key Generation, Encryption and
Decryption. The security proof consists of a reduction algorithm that uses
a purported adversary in a black-box manner to break an instance of the
decisional bilinear Diffie-Hellman (DBDH) problem. The first step is to build
a dependency graph for each algorithm as illustrated in Fig. 2.
– The setup algorithm takes a security parameter, and outputs default

generator g and random source group elements g1, g2, u
′, and u1, . . . , un

where g1 = gα for a random α ∈ Zq. The dependency graph includes
nodes g, g1, g2, u′ that correspond to g, g1, g2, and u′, respectively. Ele-
ments u1, . . . , un are represented by a single node ui in the graph. We
assume that the random source group elements are generated from the
default generator by using group operations. Thus the dependency graph
has edges from g to every other node. The algorithm also computes a
master secret key msk = g2

α. We thus add a node labeled by msk and
have an edge from g2 to msk. This results in graph (1) in Fig. 2.

– The key generation algorithm takes the master secret key and the public
key, and computes decryption key (d1, d2) for an identity v ∈ {0, 1}n.
Let V be the set of indices for which the bit-string v is set to 1.

d1 := msk · (u′∏
i∈V

ui)
r and d2 := gr. (1)

A corresponding dependency graph thus involves nodes d1, msk, u′, ui,
d2, g, and edges from msk, u′, ui to d1, and g to d2 as illustrated in graph
(2) in Fig. 2. Note that g1 is in the public key given to the algorithm
but not involved in computation. Such unused elements can be ignored
and do not appear in the graphs.

– The encryption algorithm involves both group operations and pairings. It
takes the public key and messageM from the target group, and computes
a ciphertext (C1, C2, C3) as follows:

C1 := e(g1, g2)
t ·M, C2 := gt and C3 := u′∏

i∈V
ut
i. (2)

Conversion from Symmetric to Asymmetric Groups 247

The pairing operation e(g1, g2) is represented in the graph by connecting
nodes g1, g2 to a pair of special nodes called pairing nodes, whose label
looks like p1[0] and p1[1]. The trunk name p1 is unique throughout the
system. A paring node indicates that its parent node corresponds to
an input to the pairing operation identified by the name. C2 and C3

are source group elements computed from g and u′, ui, respectively, and
represented in the graph in (3) in Fig. 2 accordingly. Since M and C1 are
in the target group, no corresponding nodes are included in the graph.

– The decryption algorithm computes

M := C1 e(d2, C3) e(d1, C2)
−1. (3)

The pairing e(d2, C3) yields nodes d2,C3 connected to pairing nodes
p2[0] and p2[1], respectively. Similarly, the pairing e(d1, C2) yields nodes
d1,C2 connected to p3[0] and p3[1], respectively. The resulting graph is
(4) in Fig. 2.

– Next we consider the instance generator of DBDH that generates default
generator g and random group elements A,B, and C. (Target group
element Z is irrelevant and ignored here.) The graph contains nodes g,
A, B, and C, and edges from g to every other node as illustrated in
(5) in Fig. 2. Graphs for associated verification and random guessing
algorithms are empty as they do not involve any group operations.

– Finally we consider a graph for the reduction algorithm. The whole al-
gorithm and its analysis is intricate but group operations are only used
in a few places. The reduction first takes group elements A and B from
the given instance of DBDH problem and sets them to public key g1
and g2, respectively. The remaining parts of the public key u′ and ui are
generated normally. It then simulates an individual key by

d1 := g1
−J(v)
F (v) (u′∏

i∈V
ui)

r and d2 := g1
−1

F (v) gr (4)

where we refer to [24] for J(v) and F (v). It is repeated for each key
query and there are many d1 and d2 computed in the same manner. In
the graph, these keys are represented by a single pair of nodes d1 and d2
directed from g1, u′, ui and g1, g, respectively. The reduction algorithm
also creates a challenge ciphertext that includes

C2 := C and C3 := CJ(v∗). (5)

They are represented by nodes C2,C3,C and edges directed from C to
C2 and C3. The resulting graph is (6) in Fig. 2.

Step 2. Merge. Merge the graphs from Step 1 into a single graph, Γ , as il-
lustrated in Fig. 3.

Step 3. Split. Split Γ into two graphs Γ0 and Γ1 such that

248 M. Abe et al.

[Waters’ IBE Scheme in Type-III]

Setup((q,G, G̃,GT , e, g, g̃)): Select g2 ← G, α ← Zq. Compute g1 := gα,
g̃1 := g̃α. u′ ← G and a random n-length vector U = (ui) ∈ Gn, those el-
ements are chosen at random from G. Publish the public parameters prm =
(g, g̃, g1, g̃1, g2, u

′, U) ∈ G4+n × G̃2. The master secret is msk = gα ∈ G.
KeyGeneration(prm): r ← Zq and a private key for identity v is

dv := (d1, d̃2) =

(
gα2

(
u′ ∏

i∈V
ui

)r

, g̃r
)
∈ G× G̃ (6)

Encryption(prm,M): Let a message M ∈ GT . t ← Zq. The ciphertext is

C = (C1, C̃2, C3) =

(
e(g2, g̃1)

tM, g̃t,

(
u′ ∏

i∈V
ui

)t)
∈ GT × G̃×G (7)

Decryption(prm, dv, C): Parse C = (C1, C̃2, C3) ∈ GT × G̃×G. Calculate

C1
e(C3, d̃2)

e(d1, C̃2)
=

(
e(g2, g̃1)

tM
) e((u′ ∏

i∈V ui)
t, g̃r)

e(gα2 (u
′ ∏

i∈V ui)r, g̃t)
= M

[Decisional Co-BDH roblem]

Given (g, g̃, A = ga, Ã = g̃a, B = gb, C = gc, C̃ = g̃c, Z) ∈ G4 × G̃3 × GT , where
Z = e(g, g̃)abc+βr, r ← Zq and β ← {0, 1}, guess β.

P

Fig. 1. Converted Waters’ IBE and underlying hard problem

– No nodes or edges are lost, i.e., merging Γ0 and Γ1 recovers Γ .

– For every pair of paring nodes, if one node is in Γ0, the other node is
exclusively in Γ1.

– For every node X in each split graph, the ancestor subgraph of X in Γ
is included in the same graph.

Given 3 pairs of pairing nodes in Γ , there exist 23 valid splits that satisfy
the above conditions. Select a valid split (Γ0, Γ1) according to a criterion
for ones purpose of conversion. In Fig. 4, we give a valid split that yields a
minimal public key size. As shown in Table 1, another valid split is possible
to minimize the assumptions. We give an algorithm that searches for the
best split according to an arbitrary criteria in Section 5.4.

Step 4. Derive the converted scheme. Nodes in Γ0 and Γ1 correspond to
elements in G and G̃, respectively. Based on the assignment, one can derive
the resulting Waters’ IBE scheme over Type-III groups and its underlying
assumption as illustrated in Fig. 1.

Conversion from Symmetric to Asymmetric Groups 249

Remark 1. To preserve the security, it is required that the security of the cryp-
tosystem is proven by a black-box reduction [21] and that the reduction algo-
rithms are abstract as defined in Section 4.2.

Remark 2. In the formal model, we consider correctness as part of scheme and
hence a dependency graph for correctness should be included. As nodes are given
consistent names in this example, the dependency graph for correctness becomes
trivial and is therefore omitted. In general, consistent names are given by object
identifiers as explained in Section 4.2.

Remark 3. It is important to check group membership for every input. For in-
stance, if an input X in the original scheme is converted into X and X̃, then the
group membership testing on X in the original scheme is translated to checking
the Diffie-Hellman relation e(X, G̃) = e(G, X̃) in the converted scheme. In the
above example, the relation between g1 and g̃1 in the common parameter should
be verified. Since the common parameters will be verified once for all in practice,
it is not explicitly shown in Fig. 1.

4 Formal Model

4.1 Cryptographic System

We consider secure cryptographic schemes whose correctness and security are de-
fined by game-like interactive algorithms, and the security is proven by black-box
reductions to hardness of computational or decisional problems. Formally, we for-
mulate a secure cryptosystem Π by sets of efficient algorithms Π = {F , C, I,R}
that represent the functionality, correctness, underlying problems and security
reductions. Properties of these algorithms are defined in the following.

The functionality F is a set of algorithms F = (F1, . . . ,Ft) where each Fi

implements some function for the cryptosystem such as “key generation”, “en-
cryption”, and so on. Correctness of F is defined by C that has black-box access
to the functionalities in F and outputs 1 if everything works as intended.

Definition 4 (Correctness). Π is correct if Pr[1← CF(1λ)] = 1 for all λ.

A problem I is a triple of algorithms I = (Igen , Iver , Iguess), where Igen is
an instance generator that generates a problem instance, Iver is a verification
algorithm that verifies a given answer, and Iguess is a guessing algorithm that
returns an answer by random guessing.

Definition 5 (Hardness of I). Problem I is hard if the advantage function

AdvIB(λ) := Pr
[
1← Iver (x, y) | (x, y)← (Igen(1λ),B(1λ))

]
− Iguess(1λ)

is negligible in λ for any probabilistic polynomial-time adversary B.

In this work, we consider cryptographic schemes where security is proven by an
efficient algorithm called a reduction, R, that is successful in solving problem I

250 M. Abe et al.

given black-box access to an adversary that successfully attacks the scheme. We
define security in the form of advantage functions AdvSA(λ) := Pr[1 ← SA(1λ)]
for algorithm S (which is often called a challenger), which should be negligible
for any probabilistic polynomial time adversary A.
Definition 6 (Security of Π). Cryptosystem Π is secure in the sense of S
under the hardness assumption on I with black-box reduction R if for any A
advantage AdvIRA(λ) is not negligible if AdvSA(λ) is not negligible.

Though C, R, I, and S are defined as single algorithms, they can be natu-
rally extended to sets of algorithms. In particular, security is often proven by
sequences of games and each game reduces to an individual hardness assumption.

4.2 Abstract Algorithms

Let ÃO denote an algorithm where Ã is called an abstract algorithm that com-
putes group operations through oracle O. Oracle O is called a group operation
oracle and given locally to host algorithm Ã. It is initialized with a description
of bilinear groups that is common for all algorithms in a cryptosystem. It per-
forms generic group operations over the bilinear groups like the generic group
oracle [22]. We follow the model by Maurer [17] for group operations. It forces
the host algorithm be explicit in checking equality. It is useful for our purpose
as we need to know which elements the host algorithm tests equality.

Oracle O also works as an interface for sending and receiving group elements.
When ÃO and B̃O interact, group elements are sent and received through the
oracles and all other data are exchanged directly between the host algorithms.
As mentioned above, a description of bilinear groups is common to the oracles.

We also consider O in the random oracle model [4] to capture functions
that map arbitrary input to a random source group element and that map
group elements attached by arbitrary string to a random string. O provides
these functions by interacting with random oracles HG : {0, 1}∗ → G and
Hstr : Gk × {0, 1}∗ → {0, 1}� for some k and �.

Every group element (more precisely a pointer to it) is associated with an ob-
ject identifier (oid for short). It is an arbitrarily prescribed string that identifies
the role of the element in a cryptosystem like “the third element of a cipher-
text” or “the first element of a secret-key.” The way oids are assigned to group
elements is a part of an algorithm and indeed as important as computations in
the algorithm. We restrict that only a constant number of distinct oids is used
in a cryptosystem so that a dependency graph can be described in a constant
size as we explain later. In general, oids can be arbitrarily specified. We con-
sider a conventional case where oids are named after variables used in describing
algorithms in F and I. It is indeed how we did for Waters’ IBE in Section 3.
When there are indexed variables that grows in the security parameter like the
public-key of Waters’ IBE, they are assigned the same oid if they are involved
in the computation in the same manner. For instance, the same oid ui is given
to all group elements u1, . . . , un in the example in Section 3. This convention for
oids applies to all schemes considered in this paper.

Conversion from Symmetric to Asymmetric Groups 251

Let (q,G,GT , e, G) be symmetric bilinear groups and let Gt = e(G,G). We
define an extended group operation oracle O for symmetric bilinear group of
prime order q. In the following, pointers are taken sequentially from 1, and
queries with unused pointers are rejected. We omit group operations and equality
checking in the target group in the following description.

[Extended Group Operation Oracle O]

– init: Initialize lists Ls and Lt with entries (pt , G) and (pt t, Gt) respectively
with fresh pointers pt and pt t. Return (q, pt , pt t).

– gop(pt1, a1, . . . , ptk, ak, oid): For every pt i, search Ls for (pt i, Xi). Compute
X :=

∏
Xi

ai ∈ G and store (pt , X) with fresh pt . Output pt .
– pair(pt1, pt2): SearchLs for (pt1, X1) and (pt2, X2). ComputeX := e(X1, X2)

and store (pt , X) to Lt with fresh pt . Output pt .
– equal(pt1, pt2): Search Ls for (pt1, X1) and (pt2, X2). If X1 ≡ X2 ∈ G then

return 1. Return 0, otherwise.
– hash2g(str, oid): (This query is accepted only when random oracle HG is

available.) If the same input has been queried before, return the same answer.
Otherwise send (str, oid) to HG and receive X ∈ G. Store (pt , X) to Ls with
fresh pt , and return pt .

– hash2str(pt1, . . . , ptk, str, oid): (This query is accepted only when random
oracle Hstr is available.) Search Ls for each Xi ∈ G that corresponds to
pt i. If (X1, . . . , Xk, str, oid) has been asked before, return the same value.
Otherwise, send it to Hstr and return the resulting string.

– send(pt , oid): Search Ls for (pt , X) and send (X, oid) to the implicitly spec-
ified destination.

– receive(oid): On receiving this query from the host algorithm, wait to receive
(X, oid ′) from implicitly specified entity. Reject if X �∈ G or oid �= oid ′ and
continue waiting. Otherwise, store (pt , X) to Ls with fresh pt , and send pt
to the host algorithm.

We make some remarks about object identifier oid given as input for most
queries. When calling gop and hash2g, the host algorithm assigns an object
identifier to the resulting group element by specifying it with oid . The oracle does
not use oid in handling gop query, but it is needed later to build a dependency
graph. It is important to see that oid is included in the input to the random
oracle in hash2g. It allows the host algorithm to virtually deal with several
independent random oracles indexed by oid . For hash2str, it is assumed that
every group element Xi is transformed to its canonical representation in G before
being sent to random oracle Hstr . In general, even if X ≡ Y ∈ G holds, hashing
X and Y may yield different values. This is an important issue as we simulate
a group element in Type-I groups with a pair of group elements in Type-III
allowing different representations. With oid specified in the input, we can control
the representation so that group elements having the same oid has the same
representation.

Let ΣGsym be the set of possible extended group operation oracles based on a
group generated by Gsym for all sufficiently large λ and all random coins/oracles.

252 M. Abe et al.

We say O is based on Gsym when we refer to an extended group operation oracle
O in ΣGsym . We now define a cryptosystem consisting of abstract algorithms.

Let Π̃O
Gsym

:= (F̃O, C̃O, R̃O, ĨO) be a cryptosystem obtained by giving oracle O
based on Gsym to (sets of) abstract algorithms F̃ , C̃, R̃, and Ĩ. Let also S̃ be an
abstract challenger algorithm. Let Δq denote all Gsym that outputs q with the
same probability distribution.

Definition 7 (Correct and Secure Abstract Cryptosystem). A set of
abstract algorithms Π̃ = (F̃ , C̃, R̃, Ĩ) is an abstract cryptosystem with respect to
Δq and it is correct and secure in the sense of S̃ if, for any Gsym ∈ Δq and

O ∈ ΣGsym , Π̃O
Gsym

:= (F̃O, C̃O, R̃O, ĨO) is a cryptosystem that is correct and

secure in the sense of S̃O.

5 Conversion Using Dependency Graph

5.1 Simulating Group Operation Oracle

Let (q,G, G̃,GT , e, G, G̃) be asymmetric bilinear groups generated by an asym-
metric group generator Gasym. Let φ : G → G̃ be an (inefficient) isomorphism

between the source groups. We use three representations, (G,−), (−, G̃), and
(G, G̃), for a source group element and say that they are of type left, right, and
both, respectively. By type we denote {left, right, both}. We say that type t is
covered by t ′ if t ′ = both or t ′ = t , and denote by t ⊆ t ′. If two types cover
at least in one way, we say that they are compatible. We design operations so
that they can be performed efficiently over two compatible elements. Let G′ de-
note (G ∪ {⊥}) × (G̃ ∪ {⊥}) \ (⊥,⊥) where ⊥ represents absence of data. Let
J : G′ → type be a function that takes an element of G′ as input and outputs
its type. Let matchtype : G′× type→ G′ be a subroutine that takes (X, X̃) ∈ G′

and t ∈ type as input, and remodeled (X, X̃) so that J (X, X̃) = t holds. It is
done by computing X̃ := φ(X) or X := φ−1(X̃) if necessary, and setting ⊥ to
X or X̃ if either is unnecessary.

Types are assigned by an algorithm D called a deployment. It is an algorithm
that takes an object identifier as input and outputs a type to assign to the iden-
tifier. Based on the asymmetric bilinear groups and deployment D, we construct
an oracle O∗ that simulates a symmetric group operation oracle.

[Simulated Group Operation Oracle O∗]

– init: Initialize lists Ls and Lt with entries (pt , G, G̃) and (pt t, Gt) respectively
with fresh pointers pt and pt t. Return (q, pt , pt t).

– gop(pt1, a1, . . . , ptk, ak, oid): For every pt i, searchLs for (pt i, Xi, X̃i). For ev-
ery i where J (Xi, X̃i) does not cover t := D(oid), call matchtype(Xi, X̃i, t).
Then compute X :=

∏
Xai

i for t = left, or X̃ :=
∏

X̃ai

i for t = right, or both
for t = both. Set ⊥ to X or X̃ if either is not computed. Store (pt , X, X̃) with
fresh pt , and return pt .

Conversion from Symmetric to Asymmetric Groups 253

– pair(pt1, pt2): SearchLs for (pt1, X1, X̃1) and (pt2, X2, X̃2). If bothJ (X1, X̃1)
andJ (X2, X̃2) are left or right, then use φ or φ−1 to compute an element on the
missing side. Then compute Z := e(X1, X̃2) or e(X2, X̃1) whichever possible.
Store (pt , Z) to Lt with fresh pointer pt , and output pt .

– equal(pt1, pt2): Search Ls for (pt1, X1, X̃1) and (pt2, X2, X̃2). If J (X1, X̃1)
and J (X2, X̃2) are incompatible, then compute either X̃2 := φ(X2) orX2 :=
φ−1(X̃2) whichever missing. Then if X1 ≡ X2 ∈ G or X̃1 ≡ X̃2 ∈ G̃, return
1. Return 0, otherwise.

– hash2g(str, oid): (This query is accepted only when random oracles HG :
{0, 1}∗ → G and HG̃ : {0, 1}∗ → G̃ are available.) Compute t ← D(oid)
and pick fresh pt . If (str, oid) has been queried before and answered with
(pt ′, X, X̃) ∈ Ls, store (pt , X, X̃) to Ls and return pt . Otherwise query
(str, oid) to random oracle HG for t = right or H

G̃
for t = left. If t = both,

query (str, oid) to HG and use φ to get the corresponding element in G̃. Store
the result with pt to Ls. Then return pt .

– hash2str(pt1, . . . , ptk, str, oid): (This query is accepted only when random
oracle Hstr : (G′)k × {0, 1}∗ → {0, 1}poly(λ) is available.) Search Ls for each
(pt i, Xi, X̃i). Let oid := (oid i, . . . , oidk). For every i where J (Xi, X̃i) does
not cover ti := D(oid i), perform matchtype(Xi, X̃i, ti). Then, if (X1, X̃1, . . . ,
Xk, X̃k, str, oid) has been queried before, return the same value. Otherwise,
send it to random oracle Hstr, and receive a string, str′. Then return str′.

– send(pt , oid): Search Ls for (pt , X, X̃). Compute t ← D(oid). If J (X, X̃) �=
t , call matchtype(X, X̃, t). Output ((X, X̃), oid).

– receive(oid): On receiving this query from the host algorithm, wait for re-
ceiving ((X, X̃), oid ′) from outside. Ignore if (X, X̃) �∈ G′ or oid ′ �= oid or
J (X, X̃) �= D(oid), and continue waiting. Otherwise, pick fresh pt , store
(pt , X, X̃) to Ls, and send pt to the host algorithm.

Observe that there are some cases where oracle O∗ performs inefficient com-
putations φ or φ−1. Nevertheless, it is not hard to inspect that O∗ perfectly
simulates the extended symmetric group operation oracle.

For abstract cryptosystem Π̃, let Π̃O∗
Gasym,D denote a cryptosystem where oracle

O∗ based on asymmetric groups generated by Gasym and deployment D. Let Δ′
q

denote the set of Gasym that outputs q with the same distribution as those in Δq.

We claim that if Π̃O
Gsym

is correct and secure, then so is Π̃O∗
Gasym,D for any Gsym ∈ Δq,

Gasym ∈ Δ′
q, and D that stops with an output for any input. Nevertheless, the

notion of secure Π requires algorithms to run efficiently. For a while, we assume
that φ and φ−1 can be computed efficiently and state the following.

Lemma 8. If Π̃ is a cryptosystem with respect to Δq, and it is correct and

secure in the sense of S̃, then for any Gasym ∈ Δ′
q and for any D, cryptosystem

Π̃O∗
Gasym,D is correct and secure in the sense of S̃O∗

if O∗ computes φ and φ−1

efficiently.

Proof. (sketch) Correctness can be assured by observing that views of abstract
algorithms with O∗ andO are identical. Regarding security, we show that if there

254 M. Abe et al.

exists Gsym ∈ Δq and A that successfully attacks Π̃O∗
Gasym,D in the sense of S̃O∗

,

then there exists adversary B that is successful in attacking Π̃O
Gsym

in the sense

of S̃O for Gsym. We construct Gsym using Gasym by representing a group element
with a pair of source group elements of asymmetric groups. We then construct
B by using A. On receiving a group element, B invokes D and run matchtype to
remodel the input for A. Outgoing group elements from A are also remodeled by
applying matchtype. Non-group elements are sent and received intact. We argue

that if AdvS̃
O∗

A (λ) is not negligible then so is AdvS̃
O

B (λ) since the view of S̃ is
identical. Since O∗ computes φ and φ−1 in matchtype efficiently by hypothesis,
all algorithms are efficient here. ��

In reality, however, φ and φ−1 are inefficient in Type-III groups and hence O∗

is inefficient in general. Nevertheless, there may exist Π̃ and D where Π̃O∗
Gasym,D

never performs the inefficient computation. For such Π̃ and D, Π̃O∗
Gasym,D is correct

and secure. Accordingly, the task of conversion is now reduced to find efficient
D that never have O∗ compute either φ or φ−1. It is the main issue we address
in the rest of this section.

We proceed to argue whether the assumption deduced from the converted
problem is plausible or not. Consider group operation oracle O based on Gsym.
Let Isym = (ĨOgen , ĨOver , ĨOguess) be a problem defined over symmetric bilinear
groups. Similarly, let O∗ be a group operation oracle based on Gasym and D.
Let Iasym = (ĨO∗

gen , ĨO
∗

ver , ĨO
∗

guess) be a problem defined over asymmetric bilinear
groups. Let {D} be a set of D that makes Iasym efficient. By {Iasym} we denote
the family of problems obtained by defining Iasym for each D ∈ {D}. We call
{Iasym} a family of co∗-problems.

Some restrictions apply to Isym. We only consider Isym that verifies mem-
bership of all incoming group elements, and do not use hash functions hash2g
and hash2str. Furthermore, the default generator is included in every problem
instance. Then the following holds.

Theorem 9 (Generic Hardness of co∗-Problem Family). If there exists
(qs, q̃s, qt, qp, ε, τ)-successful generic adversary for Iasym ∈ {Iasym}, then there
exists an (qs + q̃s, qt, qp, ε, τ

′)-successful generic adversary against Isym where τ ′

is τ +O(qs + q̃s).

5.2 Dependency Graphs

We begin by defining a dependency graph for an abstract algorithm. Let O be a
group operation oracle for some group order q. Let Ã be an abstract algorithm
and ÃO(in) be its execution on input in. (When Ã is interactive, in also repre-
sents inputs obtained through interaction.) We define a dependency graph for Ã
through the interaction between Ã and O as follows. It also defines a list NoDup
called a ban list that includes oids for group elements generated by hash2g.

Conversion from Symmetric to Asymmetric Groups 255

[Dependency Graph for Abstract Algorithm Ã]

1. Initialize Γ to an empty directed graph. Also initialize lists Lpair, Leq, and
NoDup to be empty.

2. Pick O for order q, and select in from appropriate domain. Initialize Lpt to

empty. Run Ã. For each query from Ã to O, do as follows.
– gop(pt1, a1, . . . , ptk, ak, oid)→ pt : Add a node labeled by oid to Γ and

record (pt , oid) to Lpt. Then, for every node oid i that corresponds to
pt i, add an edge (oid i, oid) to Γ .

– pair(pt1, pt2): Find (pt1, oid1) and (pt2, oid2) from Lpt. If (oid1, oid2) ∈
Lpair in any order, do nothing. Otherwise, pick two nodes with unique
labels, say p[0] and p[1], and add them to Γ . Add edges (oid 1, p[0]) and
(oid2, p[1]) to Γ as well. Add (oid1, oid2) to Lpair.

– equal(pt1, pt2): Let oid1 and oid2 be nodes for pt1 and pt2, respectively.
If oid1 = oid2, or (oid 1, oid2) ∈ Leq in any order, do nothing. Otherwise,
add a node with a unique label, say E, and edges (oid1, E) and (oid2, E)
to Γ . Add (oid1, oid2) to Leq.

– hash2g(str, oid) → pt : Add a node oid to Γ and add (pt , oid) to Lpt.
Store oid to NoDup if not yet stored.

– hash2str(pt1, . . . , ptk, str, oid): Let oid = (oid i, . . . , oidk). For every oid ′
i

stored with pt i in Lpt, if oid i �= oid ′
i, then add node oid i and edge

(oid ′
i, oid i) to Γ . (This means that the element identified by pt i was

originally associated to object identifier oid ′
i but now regarded as oid i

by the host algorithm.)
– send(pt , oid): For oid ′ stored with pt in Lpt, if oid �= oid ′, then add node

oid ′ and edge (oid ′, oid).
– receive(oid)→ pt : Add node oid to Γ . Then record (pt , oid) to Lpt.

In the above, adding nodes and edges are done if they do not exist in Γ .
Also skip adding self-directing edges.

3. Go back to step 2 and repeat the above for all q and in.

The above algorithm defines how to construct a dependency graph for Ã. In
fact, repeating for all q and in as instructed in the last step is infeasible in reality.
We nevertheless expect that Γ is finite size for certain Ã. It is particularity the
case when Ã behaves independently of the security parameter, or nodes related
to the security parameter are indexed and given the same object identifier as we
see for public key ui in the example in Section 3. In the real world, building a
dependency graph for algorithm Ã needs to look into Ã rather than treating Ã
as black-box as above.

The nodes added in pair are called pairing nodes. A node is called a regular
node if it is not either of the above.

Next we define a dependency graph for a cryptosystem, Π̃ = (F̃ , C̃, R̃, Ĩ).
Basically it is a graph obtained by merging dependency graphs for all algorithms
in Π̃. Yet we need to work on some details for formality as shown below.

256 M. Abe et al.

[Dependency Graph for Cryptosystem Π̃]

1. Build a dependency graph and list NoDup for every algorithm in Π̃ . It is
assumed that pairing nodes, equality nodes, and local nodes are given globally
unique names.

2. Merge all the graphs and NoDup obtained in the previous step.
3. If two nodes are connected to more than one pair of pairing nodes, remove

all but one pair of the pairing nodes. Do the same for equality nodes.
4. Output the resulting graph and NoDup.

Let Cconst be a class of abstract cryptosystems that has a constant-size de-
pendency graph in the security parameter. In the rest of the paper, we focus on
cryptosystems in Cconst.

5.3 Deployment Algorithm

Given a dependency graph Γ for Π̃ ∈ Cconst, we construct a deployment D. Recall
that if the target algorithm performs hash2g(str , oid), then the result should be
a group element in either G or G̃ but not both simultaneously. Thus D must not
return both for such oid . To deal with similar demand from practice that some
nodes should stay in either group, we use a ban list, NoDup, which specifies oids
that must not be assigned to both.

We consider splitting a dependency graph into two graphs so that each graph
represents nodes and computations in G or G̃. The split must meet the conditions
defined below.

Definition 10 (Valid Split). Let Γ = (V,E) be a dependency graph for Π̃ ∈
Cconst. Let P = (p1[0], . . . , pnp [1]) ⊂ V be pairing nodes. A pair of graphs Γ0 =
(V0, E0) and Γ1 = (V1, E1) is a valid split of Γ with respect to NoDup ⊆ V if:

1. merging Γ0 and Γ1 recovers Γ ,
2. for each i ∈ {0, 1} and every X ∈ Vi \ P the subgraph Anc(Γ,X) is in Γi,
3. for each i ∈ {1, . . . , np} paring nodes pi[0] and pi[1] are separately included

in V0 and V1.
4. No node in V0 ∩ V1 is included in NoDup.

We then construct a deployment D based on a valid split as follows:

[Deployment Algorithm D : oid→ type]
Given object identifier oid as input, return left or right or both if a node

labeled as oid is included in Γ0 or Γ1 or both, respectively.

Lemma 11. If there exists a valid split with respect to Π̃ ∈ Cconst and NoDup,
then, for oracle O∗ based on Gasym and D with a valid split, Π̃O∗

Gasym,D is efficient.

The above lemma can be proved by observing that for each case that Π̃O∗
Gasym,D

computes inefficient isomorphisms in gop, pair, equal, hash2g, and hash2str, the
split D is based on must be invalid.

Conversion from Symmetric to Asymmetric Groups 257

5.4 How to Find the Best Valid Split

Let Γ = (V,E) be a dependency graph for Π̃ where V consists of regular nodes
{X1, . . . , Xk} and pairing nodes P := {p1[0], . . . , pnp [1]}. We construct an algo-
rithm FindSplit that finds all valid splits.

[Algorithm: FindSplit(Γ , NoDup)]

1. Initialize L to empty.
2. Set B ⊆ R so that every Bi ∈ B has no outgoing edges. For each Xi ∈ R do:

– if Xi is not in Anc(Γ,Bi) for all Bi ∈ B ∪ P , then:
• For every Xj ∈ B that is in Anc(Γ,Xi), do B := B \ {Xj}.
• B := B ∪ {Xi}.

3. Repeat the following for � = 0, . . . , 2np+nb − 1 where nb := |B|.
(a) Set Γ0 = (V0, E0), Γ1 = (V1, E1) be empty graphs.
(b) For i = 1, . . . , np, do Γ0 ← Γ0 ⊕ Anc(Γ, pi[biti(�)]) and Γ1 ← Γ1 ⊕

Anc(Γ, pi[1− biti(�)]).
(c) For j = 1, . . . , nb and i = bitnp+j(�), do Γi ← Γi ⊕ Anc(Γ,Bj).
(d) Append (Γ0, Γ1) to L if V0 ∩ V1 ∩ NoDup.

4. Output L.

Lemma 12. List L includes all valid split of Γ .

Proof. (sketch) We verify that every (Γ0, Γ1) inL satisfies the conditions inDefini-
tion 10. Firstwe show thatΓ0⊕Γ1 = Γ . Observe thatFindSplit is deterministic and
only the order of elements in R may impact the result through construction of B.
ConsiderB obtained fromR, andB′ from permutation ofR. Suppose thatX ∈ B
andX �∈ B′ happens. Then there exits Y ∈ B′ that has path fromX to Y . We can
argue that such Y cannot exist in B without contradicting to the presence ofX in
B. Similarly, as Y is not in B, there exists node, say Z, in B that has path from Y
to Z. If Z is not identical to X , there exists path from X to Z that contradicts to
the presence ofX in B. Thus, we haveX = Z. This means thatX and Y are on a
circle and thus Anc(Γ,X) = Anc(Γ, Y). Thus procedures in further steps are not
affected whichever B or B′ are used. Then observe that, from step (b) and (c), we
haveΓ0⊕Γ1 = Anc(Γ, p1[1])⊕Anc(Γ, p1[0])⊕· · ·⊕Anc(Γ, pnp [0])⊕Anc(Γ,B1)⊕
· · · ⊕ Anc(Γ,Bnb

) = Γ . Next, the second condition is met since, in step 3-(b) and
(c), every node is included in Γi together with their ancestor subgraphs. By the
property of Anc(), the subgraph contains a subgraph of every node in it. The third
condition is assured since in step 3-(b) every pair of pairing nodes aremerged to Γ0

and Γ1 separately. Finally, the constraint by NoDup is met due to step 3-(d) which
forces the exactly the same constraint as in the fourth condition.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

2. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption and signature schemes. In: ACM CCS 2013, pp. 399–410 (2013)

258 M. Abe et al.

3. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive,
2013/400 (2013)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh,D., Lynn,B., Shacham,H.: Short signatures from theweil pairing. In:Boyd,C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
CCS 2004, pp. 168–177 (2004)

8. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. DCC 2010 55(2-3), 141–167 (2010)

9. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of psi revisited. IACR ePrint Archive, 2009/480 (2009)

10. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of revisited. Discrete Applied Math. 159(13), 1311–1322 (2011)

11. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (2013)

12. DeMoura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.)TACAS2008.LNCS, vol. 4963, pp. 337–340. Springer,Heidelberg (2008)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

14. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities: Application to discrete logarithms
in f

21971
. IACR ePrint Archive, 2013/074 (2013)

15. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

16. Joux, A.: A new index calculus algorithm with complexity l(1/4+o(1)) in very
small characteristic. IACR ePrint Archive, 2013/095 (2013)

17. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

18. Menezes, A.: Asymmetric pairings. Invited Talk in ECC 2009 (2009),
http://math.ucalgary.ca/sites/

ecc.math.ucalgary.ca/files/u5/Menezes ECC2009.pdf

19. Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual-system primi-
tives using asymmetric pairings. IACR ePrint Archive, 2012/024 (2012)

20. Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual system primi-
tives using asymmetric pairings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012)

21. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

22. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,W.
(ed.) EUROCRYPT1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

23. Smart, N.P., Vercauteren, F.: On computable isomorphisms in efficient asymmetric
pairing-based systems. Discrete Applied Mathematics 155(4), 538–547 (2007)

http://math.ucalgary.ca/sites/ecc.math.ucalgary.ca/files/u5/Menezes_ECC2009.pdf
http://math.ucalgary.ca/sites/ecc.math.ucalgary.ca/files/u5/Menezes_ECC2009.pdf

Conversion from Symmetric to Asymmetric Groups 259

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

25. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE un-
der simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

Appendix

A Dependency Graphs for Waters’ IBE

g

g1 g2 u’ ui

msk

(1) Setup

g

d2

u’

d1

ui msk

(2) KeyGen

p1[0] p1[1]

g1 g2 g

C2

u’

C3

ui

(3) Encryption

p2[0] p2[1] p3[0] p3[1]

C2 C3d2d1

(4) Decryption

g

A B C

(5) DBDH Instance Generator

g

d2

u’ ui

d1

A

g1

B

g2

C

C2 C3

(6) Reduction

Fig. 2. Dependency graph for each algorithm in Waters’ IBE scheme
.

260 M. Abe et al.

p1[0] p1[1] p2[0] p2[1]p3[0] p3[1]

g

A B C

g1 g2

C2d2

u’ui

C3d1

msk

Fig. 3. Dependency graph for Waters’ IBE scheme obtained by merging all graphs for
individual algorithms

.

p1[1] p2[0] p3[1]

g

A B C

g2

u’ ui

g1

C3

msk

d1

(1) Dependency in G

p1[0]p2[1] p3[0]

g

AC

g1C2

d2

(2) Dependency in G̃

Fig. 4. A valid split for minimum public key. Nodes in graph (1) and (2) represent
group elements in G and G̃, respectively

.

Polynomial Spaces: A New Framework

for Composite-to-Prime-Order Transformations

Gottfried Herold1, Julia Hesse2, Dennis Hofheinz2,
Carla Ràfols1, and Andy Rupp2

1 Horst Görtz Institute for IT Security and Faculty of Mathematics,
Ruhr University Bochum, Germany

{gottfried.herold,carla.rafols}@rub.de
2 Karlsruhe Institute of Technology, Germany

{julia.hesse,dennis.hofheinz,andy.rupp}@kit.edu

Abstract. At Eurocrypt 2010, Freeman presented a framework to con-
vert cryptosystems based on composite-order groups into ones that use
prime-order groups. Such a transformation is interesting not only from
a conceptual point of view, but also since for relevant parameters, oper-
ations in prime-order groups are faster than composite-order operations
by an order of magnitude. Since Freeman’s work, several other works
have shown improvements, but also lower bounds on the efficiency of
such conversions.

In this work, we present a new framework for composite-to-prime-
order conversions. Our framework is in the spirit of Freeman’s work;
however, we develop a different, “polynomial” view of his approach, and
revisit several of his design decisions. This eventually leads to signif-
icant efficiency improvements, and enables us to circumvent previous
lower bounds. Specifically, we show how to verify Groth-Sahai proofs in
a prime-order environment (with a symmetric pairing) almost twice as
efficiently as the state of the art.

We also show that our new conversions are optimal in a very broad
sense. Besides, our conversions also apply in settings with a multilinear
map, and can be instantiated from a variety of computational assump-
tions (including, e.g., the k-linear assumption).

Keywords: bilinear maps, composite-order groups, Groth-Sahai proofs.

1 Introduction

Motivation. Cyclic groups are a very popular platform for cryptographic con-
structions. Starting with Diffie and Hellman’s seminal work [4], there are count-
less examples of cryptographic schemes that work in any finite, cyclic group G,
and whose security can be reduced to a well-defined computational problem in
G. In many cases, the order of the group G should be prime (or is even irrel-
evant). However, some constructions (e.g., [2, 10, 17, 13]) explicitly require a
group G of composite order.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 261–279, 2014.
c© International Association for Cryptologic Research 2014

262 G. Herold et al.

In particular in combination with a pairing (i.e., a bilinear map) e, groups of
composite order exhibit several interesting properties. (For instance, e(g1, g2) = 1
for elements g1, g2 of coprime order. Or, somewhat more generally, the pairing op-
eration operates on the different prime-order components of G independently.)
This enables interesting technical applications (e.g., [17, 13]), but also comes
at a price. Namely, to accommodate suitably hard computational problems,
composite-order groups have to be chosen substantially larger than prime-order
groups. Specifically, it should be hard to factor the group order. This leads to
significantly slower operations in composite-order groups: [6] suggests that for
realistic parameters, Tate pairings in composite-order groups are by a factor of
about 50 less efficient than in prime-order groups.

Freeman’s Composite-Order-to-Prime-Order Transformation. It is thus
interesting to try to find substitutes for the technical features offered by compo-
site-order groups in prime-order settings. In fact, Freeman [6] has offered a frame-
work and tools to semi-generically convert cryptographic constructions from a
composite-order to a prime-order setting. Similar transformations have also been
implicit in previous works [8, 17]. The premise of Freeman’s approach is that
composite-order group elements “behave as” vectors over a prime field. In this
interpretation, subgroups correspond to linear subspaces.

Moreover, we can think of the vector components as exponents of prime-order
group elements; we can then associate, e.g., a composite-order subgroup indistin-
guishability problem with the problem of distinguishing vectors (chosen either
from a subspace or the whole space) “in the exponent.” More specifically, Free-
man showed that the composite-order subgroup indistinguishability assumption
can be implemented in a prime-order group with the Decisional Diffie-Hellman
(or with the k-linear) assumption. A pairing operation over the composite-order
group then translates into a suitable “multiplication of vectors,” which can mean
different things, depending on the desired properties. For instance, Freeman con-
siders both an inner product and a Kronecker product as “vector multiplication”
operations (of course with different effects).

Limitations of Freeman’s Approach. Freeman’s work has spawned a num-
ber of follow-up results that investigate more general or more efficient conversions
of this type [13, 15, 14, 11, 12]. We note that all of these works follow Freeman’s
interpretation of vectors, and even his possible interpretations of a vector mul-
tiplication. Unfortunately, during these investigations, certain lower bounds for
the efficiency of these transformations became apparent. For example, Seo [14]
proves lower bounds both for the computational cost and the dimension of the re-
sulting vector space of arbitrary transformations in Freeman’s framework. More
specifically, Seo reports a concrete bound on the number of required prime-order
pairing operations necessary to simulate a composite-order pairing.

However, of course, these lower bounds crucially use the vector-space inter-
pretation of Freeman’s framework. Specifically, it is conceivable that a (perhaps
completely different) more efficient composite-order-to-prime-order transforma-
tion exists outside of Freeman’s framework. Such a more efficient transformation

A New Framework for Composite-to-Prime-Order Transformations 263

could also provide a way to implement, e.g., the widely used Groth-Sahai proof
system [8] more efficiently.

Our Contribution: A Different View on Composite-Order-to-Prime-
Order Conversions. In this work, we take a step back and question several
assumptions that are implicitly made in Freeman’s framework. We exhibit a
different composite-order-to-prime-order conversion outside of his model, and
show that it circumvents previous lower bounds. In particular, our construction
leads to more efficient verification of Groth-Sahai proofs in the symmetric setting
(i.e., with a symmetric pairing). Moreover, our construction can be implemented
from any matrix assumption [5] (including the k-linear assumption) and scales
better to multilinear settings than previous approaches. In the following, we give
more details on our construction and its properties.

A Technical Perspective: A Polynomial Interpretation of Linear Sub-
spaces. To explain our approach, recall that Freeman identifies a composite-
order group with a vector space over a prime field. Moreover, in his work,
subgroups of the composite-order group always correspond to uniformly chosen
subspaces of a certain dimension. Of course, such “unstructured” subspaces only
allow for rather generic interpretations of composite-order pairings (as generic
“vector multiplications” as above).

Instead, we interpret the composite-order group as a very structured vec-
tor space. More concretely, we interpret a composite-order group element as
(the coefficient vector of) a polynomial f(X) over a prime field. In this view,
a composite-order subgroup corresponds to the set of all polynomials with a
common zero s (for a fixed and hidden s). Composite-order group operation and
pairing correspond to polynomial addition and multiplication. Moreover, the hid-
den common zero s can be used as a trapdoor to decide subgroup membership,
and thus to implement a “projection” in the sense of Freeman.

Specifically, our “vector multiplication” is very structured and natural, and
there are several ways to implement it efficiently. For instance, we can apply a
convolution on the coefficient vectors, or, more efficiently, we can represent f as
a vector of evaluations f(i) at sufficiently many fixed values i, and multiply these
evaluation vectors component-wise. In particular, we circumvent the mentioned
lower bound of Seo [14] by our different interpretation of composite-order group
elements as vectors.

Another interesting property of our construction is that it scales better to
the multilinear setting than previous approaches. For instance, while it seems
possible to generalize at least Freeman’s construction of a “projecting pairing”
to a setting with a k-linear map (instead of a pairing), the corresponding generic
vector multiplication would lead to exponentially (in k) large vectors in the
target group. In our case, a k-linear map corresponds to the multiplication of
k polynomials, and only requires a quadratic number of group elements in the
target group.1

1 We multiply k polynomials, and each polynomial should be of degree at least k, in
order to allow for suitable subgroup indistinguishability problems that are plausible
even in face of a k-linear map.

264 G. Herold et al.

In the description above, f is always a univariate polynomial. With this in-
terpretation, we can show that the SCasc assumption from Escala et al. [5]
implies subgroup indistinguishability. However, we also provide a “multivariate”
variant of our approach (with polynomials f in several variables) that can be
implemented with any matrix assumption (such as the k-linear and even weaker
assumptions). Furthermore, in the terminology of Freeman, we provide both a
“projecting” and a “projecting and canceling” pairing construction (although
the security of the “projecting and canceling” construction requires additional
complexity assumptions).

Applications. The performance improvements of our approach are perhaps
best demonstrated by the case of Groth-Sahai proofs. Compared to the most
efficient previous implementations of Groth-Sahai proofs in prime-order groups
with symmetric pairing [15, 5], we almost halve the number of required prime-
order pairing operations (cf. Table 1). As a bonus, we also improve on the number
of prime-order group elements in the target group, while retaining the small
common reference string from [5]. Additionally, in the full version [9] of our
paper, we show how to implement a variant of the Boneh-Goh-Nissim encryption
scheme [2] in prime-order groups with a k-linear map. As already sketched, this
is possible with Freeman’s approach only for logarithmically small k.

Structural Results. Of course, a natural question is whether our results are
optimal, and if so, in what sense exactly. We can settle this question in the
following sense: we show that the construction sketched above is optimal in our
generalized framework. We also prove a similar result for our construction from
general matrix assumptions.

Open Problems. In this work, we focus on settings with a symmetric pairing
(resp. multilinear map). It is an interesting open problem to extend our approach
to asymmetric settings. Furthermore, the conversion that leads to a canceling
and projecting map (in the terminology of Freeman) requires a nonstandard
complexity assumption (that however holds generically, as we prove). It would
be interesting to find constructions from more standard assumptions.

Outline. After recalling some preliminaries in Section 2, we describe our frame-
work in Section 3. Our conversions follow in Section 4. We discuss the optimality
of our conversions in Section 5, and compare them to previous conversions in
Section 6. Finally, we discuss in Section 7 how our results imply more efficient
Groth-Sahai proofs. We refer to the full version [9] for more detailed explanations
and proofs.

2 Preliminaries

Notation. Throughout the paper we will use additive notation for all groups G.
Nevertheless, we still talk about an exponentiation with exponent a considering
a scalar multiplication aP for P ∈ G and a ∈ �|G|. Let G be a cyclic group of
order p generated by P . Then by [a] := aP we denote the implicit representation
of a ∈ �p in G. To distinguish between implicit representations in the domain

A New Framework for Composite-to-Prime-Order Transformations 265

G and the target group GT of a multilinear map we use [·] and [·]T , respectively.
More generally, we also define such representations for vectors f ∈ �n

p by [f] :=
([fi])i ∈ Gn, for matrices A = (ai,j)i,j ∈ �n×m

p by [A] := ([ai,j])i,j ∈ Gn×m, and

for setsH ⊂ �n
p by [H] := {[a] | a ∈ H} ⊂ Gn. We will often identify f ∈ �n

p with
the coefficients of a polynomial f in some space V with respect to a (fixed) basis

q0, . . . , qn−1 of V , i.e., f =
∑n−1

i=0 fiqi (e.g., V = {f | f ∈ �p[X], deg(f) < n}
and qi = X i). In this case we may also write [f] := [f].

Symmetric Prime-Order k-linear Group Generators. We use the follow-
ing formal definition of a k-linear prime-order group generator as the foundation
for our constructions. In the scope of these constructions, we will refer to the
output of such a generator as a basic (or, prime-order) k-linear map.

Definition 1 (symmetric Prime-Order k-Linear Group Generator). A
symmetric prime-order k-linear group generator is a PPT algorithm Gk that on
input of a security parameter 1λ outputs a tuple of the form

MGk := (k,G,GT , e, p,P ,PT)← Gk(1λ)

where G,GT are descriptions of cyclic groups of prime order p, log p = Θ(λ),
P is a generator of G, and e : G × . . . × G → GT is a map which satisfies the
following properties:
– k-linearity: For all Q1, . . . , Qk ∈ G, α ∈ �p, and i ∈ {1, . . . , k} we have

e(Q1, . . . , αQi, . . . , Qk) = αe(Q1, . . . , Qk).
– Non-Degeneracy: PT = e(P , . . . ,P) generates GT .

In our paper, one should think of Gk as either a generator of a bilinear group
setting (for k = 2) defined over some group of points of an elliptic curve and the
multiplicative group of a finite field or, for k > 2, as generator of an abstract
ideal multilinear map, approximated by the recent candidate constructions [7, 3].

Matrix Assumptions. Our constructions are based on matrix assumptions as
introduced in [5].

Definition 2 (Matrix Distributions and Assumptions [5]). Let n, � ∈ �,
n > �. We call Dn,� a matrix distribution if it outputs (in probabilistic polynomial
time, with overwhelming probability) matrices A ∈ �n×�

p of full rank �. Dn,�

is called polynomially induced if it is defined by picking s ∈ �d
p uniformly at

random and setting ai,j := pi,j(s) for some polynomials pi,j ∈ �p[X1, . . . , Xd]
whose degrees do not depend on the security parameter. We define D� := D�+1,�.
Furthermore, we say that the Dn,�-Matrix Diffie-Hellman assumption or just
Dn,� assumption for short holds relative to the k-linear group generator Gk if
for all PPT adversaries D we have AdvDn,�,Gk

(D) = Pr[D(MGk, [A], [A w]) =
1]−Pr[D(MGk, [A], [u]) = 1] = negl(λ), where the probability is taken over the
output MGk = (k,G,GT , e, p,P ,PT) ← Gk(1λ), A ← Dn,�, w ← ��

p, u ← �n
p

and the coin tosses of the adversary D.

We note that all of the standard examples of matrix assumptions are polynomi-
ally induced and further, in all examples we consider in this paper, the degree

266 G. Herold et al.

of pi,j is 1. In particular, we will refer to the following examples of matrix dis-
tributions, all for n = �+ 1:

SC� : A =

⎛⎜⎜⎝
−s 0 ... 0 0
1 −s ... 0 0
0 1 0 0
.
.
.

.
.
.

.
.
.

0 0 ... 1 −s
0 0 ... 0 1

⎞⎟⎟⎠ , L� : A =

⎛⎜⎝
s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 0 ... s�
1 1 1 ... 1

⎞⎟⎠ , U� : A← �
(�+1)×�
p ,

where s, si ← �p. Up to sign, the SC� assumption, introduced in [5], is the �-
symmetric cascade assumption (�-SCasc). The L� assumption is actually the well-
known �-linear assumption (�-Lin, [1]) in matrix language (DDH equals 1-Lin),
and the U� assumption is the �-uniform assumption. More generally, we can also
define the Un,� assumption for arbitrary n > �. Note that the Un,� assumption
is the weakest matrix assumption (with the worst representation size) and im-
plied by any other Dn,� assumption [5]. In particular �-Lin implies the �-uniform
assumption as shown by Freeman. Moreover, �-SCasc, �-Lin, and the �-uniform
assumption hold in the generic group model [16] relative to a k-linear group
generator if k ≤ � [5].

Interpolating Sets. Let X = (X1, . . . , Xd) be a vector of variables. Let W ⊂
�p[X] be a subspace of polynomials of finite dimension m. Given a set of polyno-
mials {r0, . . . , rm−1} which are a basis of W , we say that x1, . . . , xm ∈ �d

p is an
interpolating set for W if the matrix whose (i, j)th entry is defined as rj−1(xi)
has full rank. It can be easily seen that the property of being an interpolating
set is independent of the basis. Further, when p is exponential (and m and the
degrees of ri are polynomial) in the security parameter, any m random vectors
 x1, . . . , xm form an interpolating set with overwhelming probability.

3 Our Framework

We now present our definitional framework for composite-to-prime-order trans-
formations. Basically, the definitions in this section will enable us to describe
how groups of prime order p with a multilinear map e can be converted into
groups of order pn for some n ∈ � with a multilinear map ẽ. These converted
groups will then “mimic” certain features of composite-order groups. Since ẽ is
just a composition of several instances of e, we will refer to e as the basic multi-
linear map. We start with an overview of the framework of Freeman, since this
is the established model for such transformations. Afterwards, we describe our
framework in terms of differences to the model of Freeman.

Freeman’s Model. Freeman identifies some abstract properties of bilinear
composite order groups which are essential to construct some cryptographic
protocols, namely subgroup indistinguishability, the projecting property and the
canceling property. For Freeman, a symmetric bilinear map generator takes a
bilinear group of prime order p with a pairing e and outputs some groups � ⊂
�,�T of order pn for some n ∈ � and a symmetric bilinear map ẽ : �×� →
�T , computed via the basic pairing e. Useful instances of such generators satisfy

A New Framework for Composite-to-Prime-Order Transformations 267

the subgroup indistinguishability assumption, which means that it should be
hard to decide membership in � ⊂ �. Further, the pairing is projecting if the
bilinear map generator also outputs some maps π, πT defined respectively on
�,�T which commute with the pairing and such that kerπ = �. The pairing
is canceling if ẽ(�,�′) = 0 for some decomposition � = �⊕�′.
Instantiations. Further, Freeman gives several concrete instantiations in which
the subgroups � output by the generator are sampled uniformly. More specifi-
cally, in the language of [5], the instantiations sample subgroups according to the
Un,� distribution. Although his model is not specifically restricted to this case,
follow-up work seems to identify “Freeman’s model” with this specific matrix
distribution. For instance, the results of [13] on the impossibility of achieving
the projecting and canceling property simultaneously or the impossibility result
of Seo [14], who proves a lower bound on the size of the image of a projecting
pairing, are also in this setting.

Our Model. Essentially, we recover Freeman’s original definitions for the sym-
metric setting, however with some additional precisions. First, we extend his
model to multilinear maps and, like Seo [14], distinguish between basic multilin-
ear map operations (e) and multilinear map operations (ẽ), since an important
efficiency measure is how many e-operations are required to compute ẽ. The
second and main block of differences is introduced with the goal of making the
model compatible with several families of matrix assumptions, yielding a useful
tool to prove optimality and impossibility results. For this, we extend Freeman’s
model to explicitly support different families of subgroup assumptions and state
clearly what the dependency relations between the different outputs of the mul-
tilinear group generator are. In Section 6, we explicitly discuss the advantages
of the refinement of the model.

Definition 3. Let k, �, n, r ∈ � with k > 1 and r ≥ n > �. A (k, (r, n, �)) sym-
metric multilinear map generator Gk,(r,n,�) takes as input a security parameter

1λ and a basic k-linear map generator Gk and outputs in probabilistic polynomial
time a tuple (MGk,�,�,�T , ẽ), where
– MGk := (k,G,GT , e, p,P ,PT) ← Gk(1λ) is a description of a prime order

symmetric k-linear group
– � ⊂ Gr is a subgroup of Gr with a minimal generating set of size n
– � ⊂ � is a subgroup of � with a minimal generating set of size �
– ẽ : �k → �T is a non-degenerate k-linear map.

We assume that elements in �,� are represented as vectors in Gr. With this
representation, it is natural to identify elements in these groups with vectors in
�r

p in the usual way, via the canonical basis. Via this identification, any subgroup

� ⊂ Gr spanned by [b1], . . . , [b�] corresponds to the subspace H of �r
p spanned

by b1, . . . , b�, and we write � = [H]. Further, we may assume that �T = Gm
T

and elements of �T are represented by m-tuples of GT , for some fixed m ∈ �,
although we do not include m as a parameter of the multilinear generator.

In most constructions n = r, in which case we drop the index r from the
definition, and we simply refer to such a generator as a (k, (n, �)) generator

268 G. Herold et al.

Gk,(n,�). We always assume that membership in � is easy to decide.2 In the case
where n = r and � = Gr this is obviously the case, but otherwise we assume
that the description of � includes some auxiliary information which allows to
test it (like in [15] or [12]).

Definition 4 (Properties of Multilinear Map Generators). Let Gk,(r,n,�)
be a (k, (r, n, �)) symmetric multilinear map generator as in Definition 3 with
output (MGk,H,G,�T , ẽ). We define the following properties:
– Subgroup indistinguishability. We say that Gk,(r,n,�) satisfies the sub-

group indistinguishability property if for all PPT adversaries D,

AdvGk,(r,n,�)
(D) = Pr[D(MGk,�,�,�T , ẽ, x) = 1]

− Pr[D(MGk,�,�,�T , ẽ, u) = 1] = negl(λ),

where the probability is taken over (MGk,�,�,�T , ẽ)← Gk,(r,n,�)(1λ), x←
�, u← � and the coin tosses of the adversary D.

– Projecting. We say that (MGk,H,G,�T , ẽ) is projecting if there exist two
non-zero homomorphisms π : � → �, πT : �T → �T such that kerπ = �
and πT (ẽ(x1, . . . , xk)) = ẽ(π(x1), . . . , π(xk)) for any (x1, . . . , xk) ∈ �k. For
the special case r = n = �+1, G := Gn, we can equivalently define the maps
π : Gn → G, πT : �T → GT such that kerπ = � and πT (ẽ(x1, . . . , xk)) =
e(π(x1), . . . , π(xk)) (matching the original definition of [8]). We say that
Gk,(r,n,�) is projecting if its output is projecting with overwhelming probability.

– Canceling. We say that (MGk,�1,�,�T , ẽ) is canceling if there exists
a decomposition � = �1⊕�2 such that for any x1 ∈ �j1 , . . . , xk ∈ �jk ,
ẽ(x1, . . . , xk) = 0 except for j1 = . . . = jk. We call Gk,(r,n,�) canceling if its
output is canceling with overwhelming probability.

So far, the given definitions match those of Freeman (extended to the k-linear
case) except that we explicitly define the basic k-linear group MGk which is
used in the construction. We will now introduce two aspects of our framework
that are new compared to Freeman’s model. First, we will define multilinear
generators that sample subgroups according to a specific matrix assumptions.
Then, we will define a property of the multilinear map ẽ that will be very useful
to establish impossibility results and lower bounds.

Definition 5. Let k, �, n, r ∈ � with k > 1, r ≥ n > � and Dn,� be a ma-
trix distribution. A (k, (r, n, �),Dn,�) multilinear map generator Gk,(r,n,�),Dn,�

is
a (k, (r, n, �)) multilinear map generator which outputs (MGk,�,�,�T , ẽ) such
that the distribution of the subspaces H such that � = [H] equals Dn,� for any
fixed choice of MGk.

As usual, in the case where r = n, we just drop r and refer to a (k,Dn,�)
multilinear map generator Gk,Dn,�

. We conclude our framework with a definition

2 We note that with the recent approximate multilinear maps from [7, 3], not even
group membership is efficiently recognizable. This will not affect our results, but of
course hinders certain applications (such as Groth-Sahai proofs).

A New Framework for Composite-to-Prime-Order Transformations 269

Table 1. Efficiency of different symmetric projecting k-linear maps. The size of the
domain (n) and codomain (m) of ẽ is given as number of group elements of G and GT ,
respectively. Costs are stated in terms of the number of applications of the basic map e,
group operations (gop) including inversion in G/GT , and �-fold multi-exponentiations
of the form e1[a1] + · · · + e�[a�] (�-mexp) in G/GT . Note that in this paper, for the
computation of ẽ, we use an evaluate-multiply-approach.

Construction Ass. Co-/Domain Cost ẽ Cost π Cost πT
Freeman, k = 2 [6] U2 9/3 9 e 3 3-mexp 9 9-mexp

Seo, k = 2 [14] U2 6/3 9 e + 3 gop 3 3-mexp 6 6-mexp

This paper, k = 2 SC2 5/3 5 e + 22 gop 1 2-mexp 1 5-mexp

This paper, k = 2 U2 6/3 6 e + 12 3-mexp1 1 3-mexp 1 6-mexp

Freeman, k > 2 Uk (k+1)k/k+1 (k+1)k+1 e k+1 (k+1)-mexp (k+1)k (k+1)k -mexp

This paper, k > 2 Uk

(
2k
k

)
/k+1

(
2k
k

)
e +

(
2k
k

)
k (k+1)-mexp1 1 (k+1)-mexp 1

(
2k
k

)
-mexp

This paper, k > 2 SCk k2+1/k+1 (k2+1) e + (k3+k) k-mexp1 1 k-mexp 1 k2+1-mexp

that enables us to distinguish generators where the multilinear map ẽ may or
may not depend on the choice of the subgroups.

Definition 6. We say that a (k, (r, n, �),Dn,�) multilinear map generator with
output (MGk,�,�,�T , ẽ) as in Definition 5 defines a fixed multilinear map
if the random variable H (s.t. � = [H]) conditioned on MGk and the random
variable (�,�T , ẽ) conditioned on MGk are independent.

4 Our Constructions

All of our constructions arise from the following polynomial point of view : The
key idea is to treat � = Gn as an implicit representation of some space of poly-
nomials. Polynomial multiplication will then give us a natural multilinear map.
For subspaces �(�s) that correspond to polynomials sharing a common root s,
this multilinear map will turn out to be projecting. We will first illustrate this
idea by means of a simple concrete example where subgroup decision for �(�s) is
equivalent to 2-SCasc (Section 4.1). Then we show that actually any polynomi-
ally induced matrix assumption gives rise to such a polynomial space and thus
allows for the construction of a k-linear projecting map (Section 4.2). Finally, by
considering � along with the multilinear map as an implicit representation of
a polynomial ring modulo some reducible polynomial, we are able to construct
a multilinear map which is both projecting and canceling (see Section 4.3 for a
summary). See Table 1 for an overview of the characteristics of our projecting
map constructions in comparison with previous work.

4.1 A Projecting Pairing Based on the 2-SCasc Assumption

Let (k = 2, G,GT , e, p,P ,PT) ← G2(1λ) be the output of a symmetric prime-

order bilinear group generator. We set � := G3 and �T := G5
T . For any [f] =

1 For the construction based on SCk, the involved exponents are relatively small,

namely the biggest one is (� k2+1
2

�)k. Also for Uk, the involved exponents can usually
be made small.

270 G. Herold et al.

([f0], [f1], [f2]) ∈ � = G3, we identify f with the polynomial f = f0 + f1X +

f2X
2 ∈ �p[X] of degree at most 2. Similarly, any [f]T ∈ �T corresponds to

a polynomial of degree at most 4. Then the canonical group operation for �
and �T corresponds to polynomial addition (in the exponent), i.e., [f] + [g] =

[f+ g] = [f+g] and [f]T+[g]T = [f+g]T . Furthermore, polynomial multiplication
(in the exponent) gives a map ẽ : �×�→ �T ,

ẽ([f], [g]) :=
([∑

i+j=0

figj

]
T
, . . . ,

[∑
i+j=4

figj

]
T

)
= [f · g]T

It is easy to see that (�,�T , ẽ) is again a bilinear group setting, where the group
operations and the pairing ẽ can be efficiently computed.

A Subgroup Decision Problem. For some fixed s ∈ �p let us consider the

subgroup �(s) ⊂ � formed by all elements [f] ∈ � such that f viewed as
polynomial f has root s, i.e., �(s) = {[f] ∈ � | f(s) = 0}. In other words, �(s)

consists of all [f] with f of the form

(X − s)(f ′
1X + f ′

0) , (1)

where f ′
1, f

′
0 ∈ �p. Thus, given [f] and [s], the subgroup decision problem for

�
(s) ⊂ � means to decide whether f is of this form or not. Viewing Eq. (1) as

matrix-vector multiplication, we see that this is equivalent to deciding whether
 f belongs to the image of the 3× 2 matrix

A(s) :=
(−s 0

1 −s
0 1

)
(2)

Hence, our subgroup decision problem corresponds to the 2-SCasc problem (cf.
Definition 2) which is hard in a generic bilinear group [5].

Projections. Given s, we can simply define projection maps π : � → G and
πT : �T → GT by polynomial evaluation at s (in the exponent), i.e., [f] is

mapped to [f(s)] and [f]T to [f(s)]T . Computing π, πT requires group oper-

ations only. Obviously, it holds that ker(π) = �(s) and e(π([f1]), π([f2])) =

πT (ẽ([f1], [f2])).

Sampling from �(s). Given [(−s, 1, 0)], [(0,−s, 1)] ∈ �, a uniform element
from �

(s) can be sampled by picking (f ′
0, f

′
1) ← �

2
p and, as with any matrix

assumption, computing the matrix-vector product[(−s 0
1 −s
0 1

)
·
(

f ′
0

f ′
1

)]
=
[
(−sf ′

0, f
′
0 − sf ′

1, f
′
1)

T
]

(3)

Again, this can be done using the group operation only.

Efficiency. Computing ẽ in our construction corresponds to polynomial mul-
tiplication. Although this multiplication happens in the exponent (and we are
“only” given implicit representations of the polynomials), we are not forced to
stick to schoolbook multiplication. Instead, we propose to follow an evaluation-
multiplication-interpolation approach (using small interpolation points) where
the actual interpolation step is postponed to the computation of πT .

A New Framework for Composite-to-Prime-Order Transformations 271

More precisely, so far we used coefficient representation for polynomials over�
and�T with respect to the standard basis. However, other (s-independent) bases
are also possible without affecting security. For efficiency, we propose to stick to
this representation for � but to use point-value representation for polynomials
over �T with respect to the fixed interpolating set M := {−2,−1, 0, 1, 2} (cf.
Definition 2). This means we now identify a polynomial g in the target space
with the vector (g(−2), g(−1), g(0), g(1), g(2)).

More concretely, to compute ẽ([f1], [f2]) = ([(f1f2)(x)]T)x∈M , we first eval-
uate f1 and f2 (in the exponent) with all x ∈ M , followed by a point-wise
multiplication ([f1(x)f2(x)]T)x∈M = (e([f1(x)], [f2(x)]))x∈M . This way, ẽ can be
computed more efficiently with only five pairings. Computing π is unchanged. To
apply πT , one first needs to obtain the coefficient representation by interpolation
and then evaluate the polynomial at s. However, this can be done simultaneously
and as the 1× 5 matrix describing this operation can be precomputed (given s)
it does not increase the computational cost much.

4.2 Projecting Multilinear Maps from any Matrix Assumption

In the following, we will first demonstrate that for any vector space of polyno-
mials, the natural pairing given by polynomial multiplication is projecting for
subspaces consisting of polynomials sharing a common root. We will then show
that any (polynomially induced) matrix assumption can equivalently be consid-
ered as a subspace assumption in a vector space of polynomials of this type.
This way, we obtain a natural projecting multilinear map for any polynomially
induced matrix assumption.

A Projecting Multilinear Map on Spaces of Polynomials. Let MGk :=
(k,G,GT , e, p,P ,PT) ← Gk(1λ) be the output of a prime-order k-linear group

generator. Let V ⊂ �p[X] be a vector space of polynomials of dimension n for

which we fix a basis q0, . . . , qn−1. Then for any [f] ∈ � := Gn we can identify

the vector f = (f0, . . . , fn−1) with a polynomial f =
∑

fiqi ∈ V . In the 2-SCasc
example above, V corresponds to univariate polynomials of degree at most 2 and
the basis is given by 1, X,X2. On V , we have a natural k-linear map given by
polynomial multiplication: multk : V k → �p[X],multk(f1, . . . , fk) = f1 · · · fk.
Let W ⊂ �p[X] be the span of the image of multk and m its dimension. Then
we can again fix a basis r0, . . . , rm−1 of W to identify polynomials with vectors.
In the 2-SCasc example above, W consists of polynomials of degree at most 4
and we chose the basis 1, X,X2, X3, X4 of W for our initial presentation. From
polynomial multiplication, we then obtain a non-degenerate k-linear map

ẽ : �k → Gm
T , ẽ([f1], . . . , [fk]) = [f1 · · · fk]T .

Now consider a subspace �(�s) ∈ � of the form �(�s) = {[f] ∈ � | f(s) =
0}. It is easy to see that ẽ is projecting for this subspace: A projection map

π : � → G with ker(π) = �(�s) is given by evaluation at s, i.e., π([f]) = [f(s)].
Similarly, πT : Gm

T → GT is defined by πT ([g]T) = [g(s)]T and by construc-

272 G. Herold et al.

tion we have e(π([f1]), . . . , π([fk])) = [f1(s) · · · fk(s)]T = [(f1 · · · fk)(s)]T =

πT (ẽ([f1], . . . , [fk])).

From a Polynomially Induced Matrix Distribution to a Space of Poly-
nomials. Now, let Dn−1 be any polynomially induced matrix distribution as

defined in Definition 2 and letA(X) ∈ (�p[X])n×(n−1) be the polynomial matrix
describing this distribution. Then we set � := Gn and consider the subspace
[ImA(s)] for some s. We now show that we can identify � with a vector space
V of polynomials, such that the subspace ImA(s) corresponds exactly to poly-

nomials having a root at s. To this end, consider the determinant of (A(X)|| F)

as a polynomial d in indeterminates X and F . Since we assume that A(s) has

generically3 full rank a given vector f ∈ �n
p belongs to the image of A(s) iff the

determinant of the extended matrix (A(s)|| f) is zero, i.e., d(s, f) = 0. To ob-
tain the desired vector space V with basis q0, . . . , qn−1, we consider the Laplace
expansion of this determinant to write d as

d(X, F) =

n−1∑
i=0

Fiqi(X) . (4)

for some polynomials qi(X) depending only on A. For SC2, we have qi = X i.
We note that in all cases of interest the qi are linearly independent (see [9]).

Thus, we may now identify [f] ∈ � with the implicit representation of the

polynomial f = d(X, f) =
∑

i fiqi. As f(s) =
∑

i fiqi(s) = 0 iff f ∈ ImA(s),
we have �(�s) = [ImA(s)] = {[f] ∈ � | f(s) = 0}. Hence, we may construct
a projecting k-linear map from polynomial multiplication as described in the
previous paragraph.

Working through the construction, one can obtain explicit coordinates as fol-
lows: let W be the span of {qi1 · · · qik | 0 ≤ ij < n} and fix a basis r0, . . . , rm−1

of W . This determines coefficients λ
(i1,...,ik)
t in qi1 · · · qik =

∑m−1
t=0 λ

(i1,...,ik)
t rt.

Recall that ẽ : (Gn)k → Gm
T is defined as ẽ([f1], . . . , [fk]) = [f1 · · · fk]T , ex-

pressed as an element of Gm
T via the basis r. In coordinates this reads

ẽ([f1], . . . , [fk]) =
(∑

j1≤...≤jk

λ
(j1,...,jk)
0 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1], . . . , [fk,ik]), . . . ,

∑
j1≤...≤jk

λ
(j1,...,jk)
m−1 ·

∑
(i1,...,ik)∈
τ(j1,...,jk)

e([f1,i1], . . . , [fk,ik])
) (5)

where [f1,i1 · · · fk,ik]T simply denotes (f1,i1 · · · fk,ik)PT and τ(j1, . . . , jk) de-
notes the set of permutations of (j1, . . . , jk). The last optimization can be done
as qi1 · · · qik = qj1 · · · qjk for (i1, . . . , ik) ∈ τ(j1, . . . , jk). For the same reason,

3 This means that A(�s) will be full rank with overwhelming probability and this is
indeed equivalent to d = 0. To simplify the exposition, we may assume that the
sampling algorithm is changed to exclude �s where A(�s) does not have full rank.

A New Framework for Composite-to-Prime-Order Transformations 273

we have m =
(
n+k−1

k

)
in the worst case. In this way, the target group in our

constructions is always smaller than the target group in Freeman’s construction
(generalized to k ≥ 2), which is of size nk.

The following theorem summarizes our construction and its properties:

Theorem 1. Let k > 1, n ∈ �, and Dn−1 be a polynomially induced matrix
distribution. Let Gk,Dn−1 be an algorithm that on input of a security parame-
ter 1λ and a symmetric prime-order k-multilinear map generator Gk outputs
(MGk,�

(�s),�,�T , ẽ), where

– MGk := (k,G,GT , e, p,P ,PT)← Gk(1λ),
– � := Gn, �(�s) := [ImA(s)], A(s)← Dn−1,
– �T := Gm

T , where m equals the dimension of

W :=

{ ∑
0≤i1,...,ik≤n−1

αi1,...,ikqi1 · · · qik
∣∣∣∣ αi1,...,ik ∈ �p

}
(as vector space), and q0(X), . . . , qn−1(X) ∈ �p[X] are polynomials s.t.

det(A(X)|| F) =

n−1∑
i=0

Fiqi(X)

for the matrix A(X) describing Dn−1, and
– ẽ : �k → �T is the map defined by Eq. (5) for a basis r0, . . . , rm−1 of W .

Then Gk,Dn−1 is a (k,Dn−1) multilinear map generator. It is projecting, where the

projection maps π : �→ G and πT : �T → GT defined by π(f) :=
∑n−1

i=0 qi(s)[fi]

and πT (g) :=
∑m−1

i=0 ri(s)[gi]T are efficiently computable given the trapdoor s.
Furthermore, if the Dn−1 assumption holds with respect to Gk, then subgroup
indistinguishability holds with respect to Gk,Dn−1 .

Example 1. We can construct a projecting k-linear map generator satisfying sub-
group indistinguishability under k-SCasc (which is hard in a k-linear generic
group model). For Gk,SCk

, we would get n = k + 1 and qi(X) = X i if k is even
and qi(X) = −X i when k is odd, where 0 ≤ i ≤ k. Using the basis rt(X) = Xt

for W if k is even and rt(X) = −Xt if k is odd for 0 ≤ t ≤ k2, we obtain

λ
(i1,...,ik)
t = 1 for t = i1 + · · · + ik and λ

(i1,...,ik)
t = 0 else. Note that we have

m = k2 + 1.

Example 2. We can also construct a k-linear map generator from k-Lin. For
Gk,Lk

, we would have n = k+1, and polynomials qk(X0, . . . , Xk−1) = X0 · · ·Xk−1

and qi(X0, . . . , Xk−1) = −
∏

j �=i Xj for 0 ≤ i ≤ k − 1. As a basis for W we can

simply take {qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k} yielding m =
(
n+k−1

k

)
.

Example 3. Like Freeman, we could also construct a k-linear map generator from
the Uk assumption. Although the polynomials qi(X1,1, . . . , Xk,k+1), 0 ≤ i ≤ k,
associated to Gk,Uk

have a much more complex description than in the k-Lin case,

the image size of the resulting map is the same, namely m =
(
n+k−1

k

)
, because

a basis of the image is also {qj1 · · · qjk | 0 ≤ j1 ≤ . . . ≤ jk ≤ k}.

274 G. Herold et al.

Efficiency. As in our setting any change of basis is efficiently computable, the
security of our construction only depends on the vector space V (which in turn
determines W), but not on the bases chosen. So we are free to choose bases that
improve efficiency. We propose to follow the same approach as in Section 4.1:
Select points x0, . . . , xm−1 that form an interpolating set for W and represent
f ∈ W via the vector f(x0), . . . , f(xm−1). This corresponds to choosing the
basis of W consisting of polynomials r0, . . . , rm−1 ∈ W such that ri(xj) = 1 for
i = j and 0 otherwise. For the domain V , the choice is less significant and we
might simply choose the qi’s that the determinant polynomial gives us. Then
we can compute ẽ([f1], . . . , [fk]) by an evaluate-multiply approach using only m
applications of e. Note that the evaluation step can also be done pretty efficiently
if the qi’s have small coefficients (which usually is the case). For details see [9].

4.3 Canceling and Projecting k-Linear Maps From Polynomial
Spaces

By considering polynomial multiplication modulo a polynomial h, which has a
root at the secret s, we are able to construct a (k, (n = � + 1, �)) symmetric
multilinear map generator with a non-fixed pairing that is both canceling and
projecting. Our first construction relies on a k′ := k + 1-linear prime-order map
e. The one additional multiplication in the exponent is used to perform the
reduction modulo h. Based on this construction, we propose another (k, (r =
2�, n = �+1, �)) symmetric multilinear map generator that requires only a k′ = k-
linear prime-order map. The security of our constructions is based on variants of
the �-SCasc assumption. We need to extend �-SCasc by additional given group
elements to allow for reduction in the exponent, e.g., in the simplest case hints
of the form [X i mod h] are given. In the full version of this paper we give details,
efficiency considerations, and show that our constructions are secure for � ≥ k′

in generic k′-linear groups. We note that, to the best of our knowledge, this is
the first construction of a projecting&canceling map that naturally generalizes
to k′ > 2.

5 Optimality and Impossibility Results

5.1 Optimality of Polynomial Multiplication

In this section we show that for any polynomially induced matrix assumption
D�+1,�, the projecting multilinear map resulting from the polynomial viewpoint
is optimal in terms of image size.

Theorem 2. Let k > 0, and let D�+1,� be a polynomially induced matrix as-
sumption and let q0, . . . , q� be the polynomials associated to D�+1,� as defined in

Eq. (4) in Section 4.2 and let W ⊂ �p[X] be the space of polynomials spanned by
{qi1 . . . qik | 0 ≤ ij ≤ �}. Let (MGk,�, G�+1, Gm

T , ẽ) be the output of any other
fixed (k,D�+1,�) projecting multilinear map generator. Then, m := dimW ≤ m.

A New Framework for Composite-to-Prime-Order Transformations 275

�
k Gm

T

Gk GT

ẽ

(
π(�s)

)k
π
(�s)
T

e

�
k × . . .×�k Gm

T × . . .×Gm
T

Gk × . . .×Gk GT × . . .×GT

(ẽ, . . . , ẽ)

((
π(�s1)

)k, . . . , (π(�sm)
)k) (

π
(�s1)

T , . . . , π
(�sm)

T

)
(e, . . . , e)

Fig. 1. Left: Projecting property. Right: The diagram repeated m times for an inter-
polating set �s1, . . . �sm for W

Proof Intuition. An intuition of the proof is given by Figure 1. The first part

of the proof shows that w.l.o.g. we can assume that π
(�s)
T ◦ ẽ is polynomial mul-

tiplication for all s, that is, for any [f1], . . . , [fk] ∈ G�+1, πT (ẽ([f1], . . . , [fk])) =
[(f1 . . . fk)(s)]T . This follows from the commutative diagram on the left, i.e., the
projecting property, together with the fact that, because � has codimension 1,
the map π(�s) must (up to scalar multiples) correspond to polynomial evaluation
at s. The intuition for the second part of the proof is given by the diagram on
the right-hand side of Figure 1. Here we show that if s1, . . . sm is an interpolat-

ing set for W , then the span of
{(

π
(�s1)
T (x), . . . , π

(�sm)
T (x)

)
| x ∈ ẽ(�k)

}
⊂ Gm

T is

of dimension m. This dimension can be at most the dimension of the span of
ẽ(�k), showing m ≤ m. A full proof is given in [9].

5.2 Optimality of our Projecting Multilinear Map from the
SCasc-Assumption

As a result of our general viewpoint, we can actually show that the projecting
multilinear map based on the SCasc-assumption is optimal among all polynomi-
ally induced matrix assumptions Dn,� that are not redundant. Non-redundancy
rules out the case where some components of z are no help (even information-
theoretically) in distinguishing z ∈ � from z ∈ �(s). See [9] for a formal defini-
tion.

Theorem 3. Let n = �+1 and Dn,� be a polynomially induced matrix distribu-
tion which is not redundant. Let (MGk,�, Gn, Gm

T , ẽ) be the output of some pro-
jecting (k,Dn,�) multilinear map generator with a fixed multilinear map. Then,
m ≥ �k + 1.

Note that the projecting pairing based on the polynomial viewpoint of the
�-SCasc-assumption reaches this bound and is hence optimal.

Proof. We may identify Gn with some subspace V ⊂ �p[X] of dimension n (see
[9] for details). By Theorem 2 above, we may assume w.l.o.g. that ẽ is polynomial
multiplication, as this only makesm smaller. Hence we can also identify Gm

T with

some subspace W ⊂ �p[X] of dimension m. Let > be any monomial ordering

on �p[X]. Let q0, . . . , q� be a basis of V in echelon form with respect to >.

276 G. Herold et al.

This implies that the leading monomials satisfy LM(q0) > . . . > LM(q�). Now
consider the elements

qk0 = r0 =q0 · · · q0q0
r1 =q0 · · · q1q0

...

r� =q0 · · · q0q�

r�+1 =q0 · · · q0q1q�
...

r2� =q0 · · · q0q�q�

. . .

. . .

r(k−1)�+1 =q0q� · · · q�
...

r�k =q�q� · · · q�

(the definition of ri+1 differs from that of ri in one single index being greater
by one). It holds that all ri ∈ W by construction and LM(r0) > LM(r1) >
. . . > LM(r�k) by the properties of a monomial order. Hence, the ri are linearly
independent, showing m = dimW ≥ �k + 1.

6 Review of Previous Results in Our Framework

Let us consider some previous results using the language introduced in Section 3.

Projecting Pairings. Implicitly, in [8], Groth and Sahai were using the fact
that the bilinear symmetric tensor product is a projecting map. Subsequently,
Seo [14] constructed an improved symmetric projecting pairing which he claimed
to be optimal in terms of image size and operations.

Theorem 4. ([14]) Let G2,U�
be any (symmetric) projecting (2,U�) bilinear map

generator with output (MG2,�,�, Gm
T , ẽ). Then (a) we have m ≥ (� + 1)(� +

2)/2, and (b) the map ẽ cannot be evaluated with less than (�+ 1)2 prime-order
pairing operations.

Using the polynomial point of view, we prove in [9] that polynomial multipli-
cation is optimal for any D� assumption, and thus cover Theorem 4 (a) as a
special case when D� = U�. On the other hand, the polynomial viewpoint imme-
diately suggests a method to evaluate Seo’s pairing with m (less than (� + 1)2)
prime-order pairing operations, refuting Theorem 4 (b).4 Further, our results
also answer in the affirmative an open question raised by Seo about the ex-
istence of more efficient pairings outside of the model. Our construction of a
k-linear map based on k-SCasc beats this lower bound and is much more effi-
cient asymptotically in k.

Cancelling and Projecting Pairings. In his original paper [6], Freeman gives
several constructions of bilinear pairings which are either projecting or canceling
— but not both. Subsequently, Meiklejohn et al. [13] give evidence that it might
be hard to obtain both features simultaneously:

4 In [9] we discuss in more detail Seo’s construction and the reason why Theorem 4
(b) is false.

A New Framework for Composite-to-Prime-Order Transformations 277

Theorem 5. ([13]) Any symmetric (2,U�) bilinear generator with a fixed pairing
cannot be simultaneously projecting and canceling, except with negligible proba-
bility (over the output of the generator).5

In [9] we show that this result can be extended to any (2,L�) and any (2,SC2)
bilinear generator. It remains an open question if the impossibility results extend
to (2,SC�), for � > 2.

With these impossibility results, it is not surprising that all canceling and
projecting constructions are for non-fixed pairings in the sense of Definition 6.
Indeed, in [15] Cheon and Seo construct a pairing which is both canceling and
projecting but not fixed since, implicitly, the group � depends on the hidden
subgroup �. In our language, the pairing of Seo and Cheon is a (2, (r = �2, n =

� + 1, �)) pairing, i.e., � ⊂ G�2 of dimension n = � + 1. Recently, Lewko and
Meiklejohn [12] simplified this construction, obtaining a (2, (r = 2�, n = �+1, �))
bilinear map generator. In [9] we also construct a (2, (r = 2�, n = �+1, �)) pairing
achieving both properties (and which generalizes to any (k, (r = 2�, n = �+1, �))
with � ≥ k) , but using completely different techniques. A direct comparison of
[15], [12] with our pairing is not straightforward, since in fact they use dual
vector spaces techniques and their pairing is not really symmetric.

7 A Direct Application: More Efficient Groth-Sahai
Proofs

Using our projecting pairing from Section 4.1, we can improve the performance
of Groth-Sahai proofs by almost halving the number of required prime-order
pairing operations for verification (cf. Table 1). Additionally, in [9], we show how
to implement a k-linear variant of the Boneh-Goh-Nissim encryption scheme [2]
using the projecting multilinear map generator Gk,SCk

.
Groth-Sahai proofs [8] are the most natural application of projecting bilinear

maps. They admit various instantiations in the prime-order setting. It follows
easily from the original formulation of Groth and Sahai that their proofs can
be instantiated based on any Dn,� assumption and any fixed projecting map.
Details are given in [5] but only for the projecting pairing corresponding to the
symmetric bilinear tensor product. The generalization to any projecting pairing
is straightforward.

The important parameters for efficiency of NIZK proofs are the size of the
common reference string, the proof size and the verification cost. The proof size
(for a given equation) depends only on the size of the matrix assumption, i.e., on
n, �, so it is omitted in our comparison. The size of the common reference string
depends essentially on the size of the commitment key, which is n+Re�(Dn,�),
where Re�(Dn,�) is the representation size of the matrix assumption Dn,�, which
is 1 for �-SCasc, � for �-Lin and (�+1)� for U�. Therefore, the �-SCasc instantiation
5 Their claim is that it is impossible to achieve both properties under what they call a
“natural use” of the �-Lin assumption, although, they are actually using the uniform
assumption.

278 G. Herold et al.

is the most advantageous from the point of view of the size of the common
reference string (regardless of the pairing used), as pointed out in [5].

On the other hand, the choice of the pairing affects only the cost of verifica-
tion6. Except for some restricted type of linear equations, verification involves
several evaluations of ẽ. In our most efficient construction, for each pairing evalu-
ation ẽ, we save, according to Table 1, at least 4 prime-order pairing evaluations.
For instance, this leads to a saving of 12 pairing evaluations for proving that a
committed value is a bit b ∈ {0, 1}.

Acknowledgements. We would like to thank the anonymous reviewers for very
helpful and constructive comments. This work has been supported in part by
DFG grant GZ HO 4534/4-1. Carla Ràfols was supported by a Sofja Kovalevskaja
Award of the Alexander von Humboldt Foundation and the German Federal
Ministry for Education and Research.

References

[1] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

[2] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

[3] Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

[4] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

[5] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

[6] Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

[7] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

[8] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

[9] Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: A
new framework for composite-to-prime-order transformations. Cryptology ePrint
Archive (2014), http://eprint.iacr.org/

[10] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

6 This is not exactly true, in fact, with the improved pairing for SCasc the prover
needs to compute an additional 4 group operations, see the discussion in [9].

http://eprint.iacr.org/

A New Framework for Composite-to-Prime-Order Transformations 279

[11] Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

[12] Lewko, A.B., Meiklejohn, S.: A profitable sub-prime loan: Obtaining the advan-
tages of composite-order in prime-order bilinear groups. IACR Cryptology ePrint
Archive 2013, 300 (2013)

[13] Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations
from composite-order to prime-order groups: The case of round-optimal blind
signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538.
Springer, Heidelberg (2010)

[14] Seo, J.H.: On the (im)possibility of projecting property in prime-order setting.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79.
Springer, Heidelberg (2012)

[15] Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and
round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 133–150. Springer, Heidelberg (2012)

[16] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

[17] Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE un-
der simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

Revisiting the Gentry-Szydlo Algorithm

H. W. Lenstra1 and A. Silverberg2,	

1 Mathematisch Instituut,
Universiteit Leiden,
The Netherlands

hwl@math.leidenuniv.nl

2 Department of Mathematics,
University of California, Irvine

Irvine, CA, USA
asilverb@uci.edu

Abstract. We put the Gentry-Szydlo algorithm into a mathematical
framework, and show that it is part of a general theory of “lattices with
symmetry”. For large ranks, there is no good algorithm that decides
whether a given lattice has an orthonormal basis. But when the lattice is
given with enough symmetry, we can construct a provably deterministic
polynomial time algorithm to accomplish this, based on the work of
Gentry and Szydlo. The techniques involve algorithmic algebraic number
theory, analytic number theory, commutative algebra, and lattice basis
reduction. This sheds new light on the Gentry-Szydlo algorithm, and the
ideas should be applicable to a range of questions in cryptography.

Keywords: lattices, Gentry-Szydlo algorithm, ideal lattices, lattice-
based cryptography.

1 Introduction

In §7 of [6], Gentry and Szydlo introduced some powerful new ideas that com-
bined in a clever way lattice basis reduction and number theory. They used these
ideas to cryptanalyze NTRU Signatures. The recent interest in Fully Homomor-
phic Encryption (FHE) and in the candidate multilinear maps of Garg-Gentry-
Halevi [2] bring the Gentry-Szydlo results once again to the fore. Gentry’s first
FHE scheme [3] used ideal lattices, as have a number of subsequent schemes.
Fully Homomorphic Encryption is performed more efficiently with ideal lattices

� This material is based on research sponsored by DARPA under agreement numbers
FA8750-11-1-0248 and FA8750-13-2-0054. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 280–296, 2014.
c© International Association for Cryptologic Research 2014

Revisiting the Gentry-Szydlo Algorithm 281

than with general lattices. However, ideal lattices are special, with much struc-
ture (“symmetries”) that has the potential to be exploited. In his thesis [4],
Gentry mentions that the Gentry-Szydlo attack on NTRU signatures can be
used to attack principal ideal lattices in the ring Z[X]/(Xn − 1), if the lattice
has an orthonormal basis.

As Gentry pointed out [5], the Gentry-Szydlo algorithm “seems to be a rather
crazy, unusual combination of LLL with more ‘algebraic’ techniques. It seems
like it should have more applications—e.g., perhaps to breaking or weakening
ideal lattices.” Generalizing or improving the Gentry-Szydlo algorithm would po-
tentially affect the security of all cryptography that is built from ideal lattices,
or whose security is based on hard problems for ideal lattices. Candidate mul-
tilinear maps were recently cryptanalyzed using the Gentry-Szydlo algorithm.
As remarked by Garg, Gentry, and Halevi in [2], their “new algebraic/lattice
attacks are extensions of an algorithm by Gentry and Szydlo, which combines
lattice reduction and Fermat’s Little Theorem in a clever way to solve a relative
norm equation in a cyclotomic field.”

The Gentry-Szydlo algorithm has been viewed by some as magic [11]. In this
paper we revisit the algorithm and put it in a mathematical framework, in order
to make it easier to understand, generalize, and improve on. That should help
make it more widely applicable in cryptographic applications. We embed the
algorithm in a wider theory that we refer to as “lattices with symmetry”.

The algorithm of Gentry and Szydlo can be viewed as a way to find an or-
thonormal basis (if one exists) for an ideal lattice. Determining whether a lattice
has an orthonormal basis is a difficult algorithmic problem that is easier when
the lattice has many symmetries. In this paper we solve this problem when the
lattice comes with a sufficiently large abelian group of automorphisms, and we
show how the Gentry-Szydlo algorithm is a special case of this result.

Our algorithm runs in deterministic polynomial time, whereas [6] relies on
a probabilistic algorithm. Also, our setting is more general (our theory applies
to arbitrary finite abelian groups, where [6] considers only cyclic groups of odd
prime order), thereby covering other cases of potential cryptographic interest.

Briefly, our main result is as follows (see §2 for background information). If G
is a finite abelian group and u ∈ G has order 2, define a G-lattice to be a lattice
L with a group homomorphism G→ Aut(L) that takes u to −1. The “standard”
G-lattice is the modified group ring Z〈G〉 = Z[G]/(u + 1). A G-isomorphism is
an isomorphism of lattices that respects the G-actions.

Theorem 1.1 There is a deterministic polynomial time algorithm that, given
a finite abelian group G, an element u ∈ G of order 2, and a G-lattice L,
decides whether L and Z〈G〉 are G-isomorphic, and if they are, exhibits a G-
isomorphism.

The ingredients include the technique invented by Gentry and Szydlo in [6],
lattice basis reduction, commutative algebra (finite rings and tensor algebras),
analytic number theory, and algorithmic algebraic number theory. The graded
tensor algebra Λ introduced in §3.4 is in a sense the hero of our story. It replaces
Gentry’s and Szydlo’s polynomial chains. In §7 of [6], taking powers of an ideal in

282 H.W. Lenstra and A. Silverberg

the ring R = Z[X]/(Xn − 1) required complicated bookkeeping, via polynomial
chains and lattice basis reduction to avoid coefficient blow-up. We do away with
this, by using the module structure of the ideal, rather than its ideal structure.
More precisely, an ideal in a commutative ring R is the same as an R-module
M along with an embedding M ↪→ R of R-modules. While Gentry and Szydlo
use the embedding, we observe that one can avoid coefficient blow-up by using
the module structure of M but not the actual embedding. We replace ideal
multiplication with tensor products of lattices.

In §2 we introduce the concept of a G-lattice, and in §2.3 we show that Theo-
rem 1.1 implies the result of Gentry and Szydlo. In §3–§4 we introduce invertible
G-lattices, of which the ideal lattices considered by Gentry and Szydlo are ex-
amples, and give the concepts and results that we use to state our new algorithm
and prove its correctness. We explicitly present the algorithm in §5.

2 G-Lattices and the Modified Group Ring

In this section we explain some notation and concepts that we use in our main
result.

2.1 Lattices and G-Lattices

We first give some background on lattices (see also [10]), and introduce G-
lattices.

Definition 2.1 A lattice or integral lattice is a finitely generated abelian
group L with a map 〈 · , · 〉 : L× L→ Z that is

– bilinear: 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 and 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for all
x, y, z ∈ L,

– symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ L, and
– positive definite: 〈x, x〉 > 0 if 0 �= x ∈ L.

As a group, L is isomorphic to Zn for some n, which is called the rank of L.
In algorithms, a lattice is specified by a Gram matrix (〈bi, bj〉)ni,j=1 associated
to a Z-basis {b1, . . . , bn}.

Definition 2.2 The standard lattice of rank n is L = Zn with 〈x, y〉 =∑n
i=1 xiyi. Its Gram matrix is the n× n identity matrix In.

Definition 2.3 A lattice L is unimodular if the map L → Hom(L,Z) that
takes each x ∈ L to the map y �→ 〈x, y〉 is bijective. Equivalently, L is unimodular
if its Gram matrix has determinant 1.

Definition 2.4 An isomorphism L
∼−→ M of lattices is a group isomorphism

ϕ : L
∼−→ M that respects the lattice structures, i.e., 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for

all x, y ∈ L. If such a map ϕ exists, then L and M are isomorphic lattices.
An automorphism of a lattice L is an isomorphism from L onto itself. The
set of automorphisms of L is a finite group Aut(L) whose center contains −1
(represented by −In).

Revisiting the Gentry-Szydlo Algorithm 283

In algorithms, isomorphisms are specified by their matrices on the given bases
of L and M .

Examples 2.5 (i) “Random” lattices have Aut(L) = {±1}.
(ii) Letting Sn denote the symmetric group on n letters and � denote semidirect

product, then Aut(Zn) ∼= {±1}n � Sn. (The standard basis vectors can be
permuted, and negatives taken.)

(iii) If L is the equilateral triangular lattice in the plane, then Aut(L) is the
symmetry group of the regular hexagon, which is a dihedral group of order
12.

From now on, suppose that G is a finite abelian group, and u ∈ G is a fixed
element of order 2.

Definition 2.6 A G-lattice is a lattice L together with a group homomorphism
f : G→ Aut(L) such that f(u) = −1. For each σ ∈ G and x ∈ L, define σx ∈ L
by σx = f(σ)(x).

The abelian group G is specified by a multiplication table. The G-lattice L
is specified as a lattice along with, for each σ ∈ G, the matrix describing the
action of σ on L.

Definition 2.7 If L and M are G-lattices, then a G-isomorphism is an iso-
morphism ϕ : L

∼−→M of lattices that respects the G-actions, i.e., ϕ(σx) = σϕ(x)
for all x ∈ L and σ ∈ G. If such an isomorphism exists, we say that L and M
are G-isomorphic, or isomorphic as G-lattices.

2.2 The Modified Group Ring Z〈G〉
We define a modified group ring A〈G〉 whenever A is a commutative ring. We
will usually take A = Z, but will also take A = Z/mZ. We consider A〈G〉 rather
than the standard group ring A[G], since G-lattices become Z〈G〉-modules. Also,

it allows us to include the cyclotomic rings Z[X]/(X2k + 1) in our theory.
The group ring A[G] is the set of formal sums

∑
σ∈G aσσ with aσ ∈ A, with

addition defined by ∑
σ∈G

aσσ +
∑
σ∈G

bσσ =
∑
σ∈G

(aσ + bσ)σ

and multiplication defined by

(
∑
σ∈G

aσσ)(
∑
τ∈G

bττ) =
∑
ρ∈G

(
∑
στ=ρ

aσbτ)ρ.

For example, if G is a cyclic group of order m and g is a generator, then as rings
Z[X]/(Xm − 1) ∼= Z[G] via the map

∑m−1
i=0 aiX

i �→
∑m−1

i=0 aig
i.

284 H.W. Lenstra and A. Silverberg

Definition 2.8 If A is a commutative ring, then writing 1 for the identity ele-
ment of the group G, we define the modified group ring

A〈G〉 = A[G]/(u+ 1).

Every G-lattice is a Z〈G〉-module, where one uses the G-action on L to define
ax whenever x ∈ L and a ∈ Z〈G〉.

Definition 2.9 Define the scaled trace function t : A〈G〉 → A by

t(
∑
σ∈G

aσσ) = a1 − au.

Then t is the (additive) group homomorphism satisfying t(1) = 1, t(u) = −1,
and t(σ) = 0 if σ ∈ G and σ �= 1, u.

Definition 2.10 For a =
∑

σ∈G aσσ ∈ A〈G〉, define a =
∑

σ∈G aσσ
−1.

The map a �→ a is a ring automorphism of A〈G〉. Since a = a, it is an
involution. (An involution is a map that is its own inverse.) In practice, this
map plays the role of complex conjugation.

Remark 2.11 If L is a G-lattice and x, y ∈ L, then 〈σx, σy〉 = 〈x, y〉 for all
σ ∈ G. It follows that 〈ax, y〉 = 〈x, ay〉 for all a ∈ Z〈G〉.

Definition 2.12 For x, y ∈ Z〈G〉 define 〈x, y〉Z〈G〉 = t(xy).

Let n = |G|/2 ∈ Z.

Definition 2.13 Let S be a set of coset representatives of G/〈u〉 (i.e., #S = n
and G = S � uS), and for simplicity take S so that 1 ∈ S.

The following result is straightforward.

Proposition 2.14 (i) The additive group of the ring Z〈G〉 is a G-lattice of
rank n, with lattice structure defined by 〈x, y〉Z〈G〉 and G-action defined by
σx = σx where the right-hand side is ring multiplication in Z〈G〉.

(ii) As lattices, Z〈G〉 ∼= Zn.
(iii) Z〈G〉 = {

∑
σ∈S aσσ : aσ ∈ Z} =

⊕
σ∈S Zσ and t(

∑
σ∈S aσσ) = a1.

Definition 2.15 We call Z〈G〉 the standard G-lattice.

Example 2.16 Suppose G = H × 〈u〉 with H ∼= Z/nZ. Then Z〈G〉 ∼= Z[H] ∼=
Z[X]/(Xn− 1) as rings and as lattices. When n is odd (so G is cyclic), then (by
sending X to −X) we have Z〈G〉 ∼= Z[X]/(Xn − 1) ∼= Z[X]/(Xn + 1).

Remark 2.17 The ring Z〈G〉 is an integral domain (i.e., no zero divisors) if
and only if G is cyclic and n is a power of 2. If G is cyclic of order 2r, then
Z〈G〉 ∼= Z[ζ2r].

Revisiting the Gentry-Szydlo Algorithm 285

2.3 Ideal Lattices

Example 2.18 Suppose I is an ideal in the ring Z〈G〉 and w ∈ Z〈G〉. Suppose
that II = Z〈G〉 ·w and ψ(w) ∈ R>0 for all ring homomorphisms ψ : Z〈G〉 → C.
It follows that the ideal I has finite index in Z〈G〉, that w = w, and that w is
not a zero divisor. Define the G-lattice L(I,w) to be I with G-action given by
multiplication in Z〈G〉, and with lattice structure defined by

〈x, y〉I,w = t

(
xy

w

)
with t as in Definition 2.9. (Note that xy

w ∈ Z〈G〉 since w generates the ideal

II.) In particular, L(Z〈G〉,1) = Z〈G〉.
The lattice L(I,w) is G-isomorphic to Z〈G〉 if and only if there exists v ∈

Z〈G〉 such that I = (v) and w = vv. Further, knowing such a G-isomorphism
is equivalent to knowing v. More precisely, v is the image of 1 under a G-
isomorphism Z〈G〉 ∼−→ L(I,w), and w = vv if and only if 〈av, bv〉I,w = t(ab) =
〈a, b〉Z〈G〉 for all a, b ∈ Z〈G〉. Thus, finding v from I and vv in polynomial time

is equivalent to finding a G-isomorphism Z〈G〉 ∼−→ L(I,w) in polynomial time.
The point of dividing by w in the definition of 〈x, y〉I,w is to make the lattice

L unimodular. It follows that when we take tensor powers of L over Z〈G〉, as we
will do in §3 below, there will be no coefficient blow-up.

We next show how to recover the Gentry-Szydlo result from Theorem 1.1.
The Gentry-Szydlo algorithm finds a generator v of an ideal I of finite index in
the ring R = Z[X]/(Xn − 1), given vv, a Z-basis for I, and a “promise” that

v exists. Here, n is an odd prime, and for v = v(X) =
∑n−1

i=0 aiX
i ∈ R, its

“reversal” is v = v(X−1) = a0 +
∑n−1

i=1 an−iX
i ∈ R. We take G to be a cyclic

group of order 2n. Then R ∼= Z〈G〉 as in Example 2.16, and we identify R with
Z〈G〉. Let w = vv ∈ Z〈G〉 and let L = L(I,w) as above. Then L is the “implicit
orthogonal lattice” in §7.2 of [6]. Once you know a Z-basis for I and w, you know
L. Theorem 1.1 produces a G-isomorphism Z〈G〉 ∼−→ L in polynomial time, and
thus gives a generator v in polynomial time.

3 Invertible G-Lattices, Short Vectors, and the Tensor
Algebra Λ

In this section we give some concepts that we will use to prove Theorem 1.1.

3.1 Invertible G-Lattices

Definition 3.1 If L is a G-lattice, then the G-lattice L is a lattice equipped with
a lattice isomorphism L

∼−→ L, x �→ x and a group homomorphism G→ Aut(L)
defined by σx = σ−1x = σx for all σ ∈ G and x ∈ L, i.e., σx = σ x.

286 H.W. Lenstra and A. Silverberg

Definition 3.2 If L is a G-lattice, define the lifted inner product

· : L× L→ Z〈G〉 by x · y =
∑
σ∈S

〈x, σy〉σ ∈ Z〈G〉.

Then
〈x, y〉 = t(x · y) (1)

and x·y = y · x. This lifted inner product is Z〈G〉-bilinear, i.e., (ax)·y = x·(ay) =
a(x · y) for all a ∈ Z〈G〉 and all x, y ∈ L.

Example 3.3 If L = Z〈G〉, then L = Z〈G〉 with having the same meaning as
in Definition 2.10 for A = Z, and with · being multiplication in Z〈G〉.

Definition 3.4 A G-lattice L is invertible if the following three conditions all
hold:

(i) rank(L) = n = |G|/2;
(ii) L is unimodular (see Definition 2.3);
(iii) for each m ∈ Z>0 there exists em ∈ L such that {σem + mL : σ ∈ G}

generates the abelian group L/mL.

Example 3.5 If a G-lattice L is G-isomorphic to the standard G-lattice then L
is invertible. For (iii), observe that the group Z〈G〉 is generated by {σ1 : σ ∈ G},
so the group L is generated by {σe : σ ∈ G} where e is the image of 1 under the
isomorphism. Now let em = e for all m.

Remark 3.6 In the full version of the paper we will show that a G-lattice L
is invertible if and only if there is a Z〈G〉-module M such that L ⊗Z〈G〉 M and
Z〈G〉 are isomorphic as Z〈G〉-modules and L is unimodular. (See Chapter XVI
of [8] for tensor products.) We will also show that this is equivalent to the map
ϕ : L ⊗Z〈G〉 L → Z〈G〉 defined by ϕ(x ⊗ y) = x · y being an isomorphism of
Z〈G〉-modules. Further, L is invertible if and only if L is G-isomorphic to L(I,w)

for some I and w as in Example 2.18.

Definition 3.4(iii) states that L/mL is a free (Z/mZ)〈G〉-module of rank one
for all m > 0. Given an ideal, it is a hard problem to decide if it is principal.
But checking (iii) of Definition 3.4 is easy algorithmically; see Proposition 4.4(ii)
below.

3.2 Short Vectors

Definition 3.7 We will say that a vector e in an integral lattice L is short if
〈e, e〉 = 1.

Example 3.8 The short vectors in the standard lattice of rank n are the 2n
signed standard basis vectors {(0, . . . , 0,±1, 0, . . . , 0)}. Thus, the set of short vec-
tors in Z〈G〉 is G.

Revisiting the Gentry-Szydlo Algorithm 287

Proposition 3.9 Suppose L is an invertible G-lattice. Then:

(i) if e is short, then {σ ∈ G : σe = e} = {1};
(ii) if e is short, then 〈e, σe〉 is 1 if σ = 1, is −1 if σ = u, and is 0 for all other

σ ∈ G;
(iii) e ∈ L is short if and only if e · e = 1, with inner product · defined in

Definition 3.2.

Proof. Suppose e ∈ L is short. Let H = {σ ∈ G : σe = e}. For all σ ∈ G, by the
Cauchy-Schwarz inequality we have |〈e, σe〉| ≤ (〈e, e〉〈σe, σe〉)1/2 = 〈e, e〉 = 1,
and |〈e, σe〉| = 1 if and only if e and σe lie on the same line through 0. Thus
〈e, σe〉 ∈ {1, 0,−1}. Then 〈e, σe〉 = 1 if and only if σ ∈ H . Also, 〈e, σe〉 = −1
if and only if σe = −e if and only if σ ∈ Hu. Otherwise, 〈e, σe〉 = 0. Thus for
(i,ii), it suffices to prove H = {1}.

Let T be a set of coset representatives for G mod H〈u〉 and let S = T · H ,
a set of coset representatives for G mod 〈u〉. If a =

∑
σ∈S aσσ ∈ (Z/mZ)〈G〉 is

fixed by H , then aτσ = aσ for all σ ∈ S and τ ∈ H , so a ∈ (
∑

τ∈H τ)(Z/mZ)〈G〉.
Let m = |H |. By Definition 3.4(iii), there is a Z[H]-module isomorphism

L/mL ∼= (Z/mZ)〈G〉. The latter is a free module over (Z/mZ)[H] with basis T .
Since e+mL ∈ (L/mL)H we have e = mε1+(

∑
τ∈H τ)ε2 with ε1, ε2 ∈ L. Since

〈e, τε2〉 = 〈τe, τε2〉 = 〈e, ε2〉 for all τ ∈ H , we have

1 = 〈e, e〉 = m〈e, ε1〉+
∑
τ∈H

〈e, τε2〉 = m〈e, ε1 + ε2〉 ≡ 0 mod m.

Thus, m = 1 as desired. Part (iii) follows directly from (ii) and Definition 3.2.

This enables us to prove the following result.

Proposition 3.10 Suppose L is a G-lattice. Then:

(i) if L is invertible, then the map

{G-isomorphisms Z〈G〉 → L} → {short vectors of L}

that sends f to f(1) is bijective;
(ii) if e ∈ L is short and L is invertible, then {σe : σ ∈ G} generates the abelian

group L;
(iii) L is G-isomorphic to Z〈G〉 if and only if L is invertible and has a short

vector;
(iv) if e ∈ L is short and L is invertible, then the map G→ {short vectors of L}

defined by σ �→ σe is bijective.

Proof. For (i), that f(1) is short is clear. Injectivity of the map f �→ f(1) follows
from Z〈G〉-linearity of G-isomorphisms. For surjectivity, suppose e ∈ L is short.
Proposition 3.9(ii) says that {σe}σ∈S is an orthonormal basis for L. Parts (ii) and
(i) now follow, where the G-isomorphism f is defined by x �→ xe for all x ∈ Z〈G〉.
Part (iii) follows from (i) and Example 3.5. For (iv), injectivity follows from
Proposition 3.9(i). For surjectivity, suppose e′ ∈ L is short. TakeG-isomorphisms
f and f ′ with f(1) = e and f ′(1) = e′ as in (i), and let σ = f−1 ◦ f ′(1). Then σ
is a short vector in Z〈G〉 such that σe = e′. By Example 3.8 we have σ ∈ G.

288 H.W. Lenstra and A. Silverberg

3.3 The Witt-Picard Group

If L and M are invertible G-lattices, then the Z〈G〉-module L ⊗Z〈G〉 M is a G-
lattice with lifted inner product (x⊗ v) · (y ⊗w) = (x · y)(v ·w), for all x, y ∈ L
and v, w ∈M , and with lattice structure 〈a, b〉 = t(a · b) for all a, b ∈ L⊗Z〈G〉M .
In the notation of Example 2.18 we have

L(I1,w1) ⊗Z〈G〉 L(I2,w2) = L(I1I2,w1w2),

where I1I2 is the product of ideals.

Definition 3.11 If L is an invertible G-lattice, let [L] denote its G-isomorphism
class, i.e., the class of all G-lattices that are G-isomorphic to L. We define the
Witt-Picard group of Z〈G〉 to be the set of all G-isomorphism classes of
invertible G-lattices, with group operation defined by [L] · [M] = [L ⊗Z〈G〉 M],

with identity element [Z〈G〉], and with [L]−1 = [L].

The Witt-Picard group is a finite abelian group. When computing in the
Witt-Picard group, one can apply a lattice basis reduction algorithm when-
ever the numbers get too large. More precisely, algorithmically we represent
an invertible G-lattice M by letting M = Zn as an abelian group, specify-
ing a group homomorphism G → GL(n,Z) giving the action of G on M , and
giving data describing the map · : M × M → Z〈G〉; the lattice structure is
then given by 〈a, b〉 = t(a · b) for all a, b ∈ M . If M1 and M2 are invertible
G-lattices, m1,m2 ∈ Z>0, and di ∈ Mi/miMi for i = 1, 2, one can compute
(M1 ⊗Z〈G〉 M2, d1 ⊗ d2) in polynomial time. Also, there is a deterministic poly-
nomial time algorithm that, given M and given d ∈ M/mM , produces a pair
(M ′, d′) and a G-isomorphism (M,d) → (M ′, d′) such that the standard basis
of M ′ = Zn is LLL-reduced (and thus each entry of the Gram matrix is at most
2n−1 in absolute value, by Lemma 3.12 below). This in fact proves the finiteness
of the Witt-Picard group.

If L = L(I,w) for some I and w as in Example 2.18, and j ∈ Z>0, then [L]j

is the G-isomorphism class of L(Ij,wj). One can compute [L]j in deterministic
polynomial time using an addition chain for j, and LLL-reducing intermediate
powers to prevent coefficient blow-up. This takes the place of the polynomial
chains in §7.4 of [6].

Lemma 3.12 If {b1, . . . , bn} is an LLL-reduced basis for an integral unimodular
lattice L and {b∗1, . . . , b∗n} is its Gram-Schmidt orthogonalization, then

21−i ≤ |b∗i |2 ≤ 2n−i

and |bi|2 ≤ 2n−1 for all i ∈ {1, . . . , n}.

Proof. Being LLL-reduced means that bi = b∗i +
∑i−1

j=1 μijb
∗
j with |μij | ≤ 1

2 for

all j < i ≤ n, and |b∗i |2 ≤ 2|b∗i+1|2 for all i < n. Thus for 1 ≤ j ≤ i ≤ n we have
|b∗i |2 ≤ 2j−i|b∗j |2, so for all i we have

21−i|b∗1|2 ≤ |b∗i |2 ≤ 2n−i|b∗n|2.

Revisiting the Gentry-Szydlo Algorithm 289

Since L is integral we have |b∗1|2 = |b1|2 = 〈b1, b1〉 ≥ 1, so |b∗i |2 ≥ 21−i.

Letting Li =
∑i

j=1 Zbj , then |b∗i | = det(Li)/det(Li−1). Since L is integral and

unimodular, |b∗n| = det(Ln)/det(Ln−1) = 1/det(Ln−1) ≤ 1, so |b∗i |2 ≤ 2n−i.
Since {b∗i } is orthogonal we have

|bi|2 = |b∗i |2 +
i−1∑
j=1

μ2
ij |b∗j |2 ≤ 2n−i +

1

4

i−1∑
j=1

2n−j

= 2n−i + (2n−2 − 2n−i−1) = 2n−2 + 2n−i−1 ≤ 2n−1.

3.4 The Extended Tensor Algebra Λ

We are now ready to introduce the extended tensor algebra Λ in which our
computations take place. Suppose L is an invertible G-lattice. Letting L⊗0 =

Z〈G〉 and letting L⊗m = L ⊗Z〈G〉 · · · ⊗Z〈G〉 L (m times) and L⊗(−m) = L
⊗m

=

L⊗Z〈G〉 · · · ⊗Z〈G〉 L for all m ∈ Z>0, define the extended tensor algebra

Λ =
⊕
i∈Z

L⊗i = . . .⊕ L
⊗3 ⊕ L

⊗2 ⊕ L⊕ Z〈G〉 ⊕ L⊕ L⊗2 ⊕ L⊗3 ⊕ . . .

(“extended” because we extend the usual notion to include negative exponents
L⊗(−m)). Each L⊗i is an invertible G-lattice, and represents [L]i. For simplicity,
we denote L⊗i by Li. The ring structure on Λ is defined as the ring structure on
the tensor algebra, supplemented with the lifted inner product ·. The following
result is straightforward.

Proposition 3.13 (i) Λ is a commutative ring containing Z〈G〉 as a subring;
(ii) the action of G on L becomes multiplication in Λ, and likewise for the

action of G on L;
(iii) Λ has an involution x �→ x extending both the involution of Z〈G〉 and the

map L
∼−→ L;

(iv) the lifted inner product · : L× L→ Z〈G〉 becomes multiplication in Λ;
(v) if e ∈ L is short, then e = e−1 in Λ and Λ = Z〈G〉[e, e−1].

All computations in Λ and in Λ/mΛ will be done with homogeneous elements
only, where the set of homogeneous elements of Λ is

⋃
i∈Z L

i.

4 The Main Ingredients

We give the main results that we will use to prove Theorem 1.1. Fix as before
a finite abelian group G of order 2n and u ∈ G of order 2. Let k denote the
exponent of G. (The exponent of a group H is the least positive integer k such
that σk = 1 for all σ ∈ H . The exponent of H divides |H | and has the same
prime factors as |H |.) For all m ∈ Z>1, denote by k(m) the exponent of the unit
group (Z〈G〉/(m))∗.

290 H.W. Lenstra and A. Silverberg

Remark 4.1 By Proposition 3.10, the G-isomorphisms Z〈G〉 ∼−→ L are in one-
to-one correspondence with the short vectors, and if a short e ∈ L exists, then the
short vectors of L are exactly the 2n vectors {σe : σ ∈ G}. If k is the exponent
of G, then (σe)k = σkek = ek in Λ. Hence for invertible L, all short vectors
in L have the same k-th power ek ∈ Λ. At least philosophically, it is easier to
find things that are uniquely determined. We look for ek first, and then recover
e from it.

Proposition 4.2 There is a deterministic polynomial time algorithm that, given
a finite commutative ring R and an R-module M , decides whether M is a free
R-module of rank one, and if it is, finds a generator.

Proof. We sketch a proof. A complete proof will be given in the full version of
the paper.

The inputs are given as follows. The ring R is given as an abelian group (say,
as a sum of cyclic groups) along with all the products of pairs of generators. The
finite R-module M is given as an abelian group (say, as a sum of cyclic groups),
and for all generators of the abelian group R and all generators of the abelian
group M , we are given the module products in M .

If #M �= #R, output “no” and stop.
Suppose that A and B are finite commutative rings, that R � A × B is a

surjective ring homomorphism with nilpotent kernel, and that yB ∈ M is such
that the map B →MB = B ⊗R M , b �→ b⊗ yB is an isomorphism. Let I denote
the kernel of the natural map R→ B and let N denote the image of IM under
the natural map M →MA.

Initially, take A = R, B = 0, and yB = 0. As long as A �= 0, do the following.
If N = 0, output “no” and stop. Otherwise, pick xA ∈ IM whose image x ∈ N
is nonzero. Compute a = AnnAx, where AnnA denotes the annihilator in A. Let
b = AnnAa.

If a = a2, then A
∼−→ A/a×A/b and MA

∼−→MA/a ×MA/b. The image of x
is of the form (x′, 0). If x′ does not generate MA/a, stop with “no”. Otherwise,
compute β ∈ R that maps to (0, 1) under the map R � A×B, and replace yB,
B, A by βyB + xA, (A/a) × B, A/b, respectively. If a �= a2, then a ∩ b is a
nonzero nilpotent ideal, and we replace A by A/(a∩b) and leave yB unchanged.

When A = 0, then I is nilpotent; say Ir = 0. Then By = MB = M/IM for
y = (yB mod IM). Thus,

M = RyB+IM = RyB+I(RyB+IM) = RyB+I2M = . . . = RyB+IrM = RyB,

so output “yes”.

Lemma 4.3 Suppose that L is a G-lattice, m ∈ Z>0, and e ∈ L. Then

{σe+mL : σ ∈ G}

generates L/mL as an abelian group if and only if L/(Z〈G〉 · e) is finite of order
coprime to m.

Revisiting the Gentry-Szydlo Algorithm 291

Proof. The set {σe + mL : σ ∈ G} generates L/mL as an abelian group if
and only multiplication by m is onto as a map from L/(Z〈G〉 · e) to itself.
Since L/(Z〈G〉 · e) is a finitely generated abelian group, this holds if and only if
L/(Z〈G〉 · e) is finite of order coprime to m.

Proposition 4.4 (i) There is a deterministic polynomial time algorithm that,
given G, a G-lattice L, and m ∈ Z>0, decides whether there exists em ∈ L
such that {σem +mL : σ ∈ G} generates L/mL as an abelian group, and if
so, finds one.

(ii) There is a deterministic polynomial time algorithm that, given G, u, and a
G-lattice L, decides whether L is invertible.

Proof. For (i), apply Proposition 4.2 with R = Z〈G〉/(m) and M = L/mL.
For (ii), it is easy to check whether rank(L) = n and whether L is unimodular

(check whether the Grammatrix has determinant 1). We need to check Definition
3.4(iii) for all m’s in polynomial time. We show that it suffices to check two
particular values of m. First take m = 2, and use (i) to determine if e2 exists. If
not, output “no”. If there is one, use (i) to compute e2 ∈ L. By Lemma 4.3, the
group L/(Z〈G〉 · e2) is finite of odd order. Let q denote its order. Now apply (i)
with m = q. If no eq exists, output “no”. If eq exists, then for all m ∈ Z>0 there
exists em ∈ L that generates L/mL as a Z〈G〉/(m)-module, as follows. We can
reduce to m being a prime power pt, since if gcd(m,m′) = 1 then L/mm′L is
free of rank one over Z〈G〉/(mm′) if and only if L/mL is free of rank one over
Z〈G〉/(m) and L/m′L is free of rank one over Z〈G〉/(m′). Lemma 4.3 now allows
us to reduce to the case m = p. If p � q, we can take ep = e2. If p | q, we can take
ep = eq.

Proposition 4.5 There is a deterministic polynomial time algorithm that, given
a finite abelian group G of order 2n and u ∈ G of order 2, determines prime
powers � and m such that �,m ≥ 2n/2 + 1 and gcd(k(�), k(m)) = k.

Proof. One can prove that if p is prime and p ≡ 1 mod k, then

k(pj) = (p− 1)pj−1,

using induction on j and the facts that (Z〈G〉/(pj))∗ ⊃ (Z/pjZ)∗ and the latter
group has exponent (p− 1)pj−1.

We next give an algorithm that, given n, k ∈ Z>0 with k even, computes
r, s ∈ Z>0 and primes p and q such that p ≡ q ≡ 1 mod k,

gcd((p− 1)pr−1, (q − 1)qs−1) = k,

pr ≥ 2n/2 + 1, and qs ≥ 2n/2 + 1. (We can then take � = pr and m = qs.) Try
p = k+1, 2k+1, 3k+1, . . . until the smallest prime p ≡ 1 mod k is found. Find
the least r such that pr ≥ 2n/2+1. Try q = p+k, p+2k, . . . until the least prime
q ≡ 1 mod k such that gcd((p − 1)p, q − 1) = k is found. Find the smallest s
such that qs ≥ 2n/2 + 1.

292 H.W. Lenstra and A. Silverberg

This algorithm terminates, with correct output, in time (n+ k)O(1). The key
ingredient for proving this is Heath-Brown’s version of Linnik’s theorem [7],
which implies that the prime p found by the algorithm satisfies p ≤ ck5.5 with
an effective constant c. If p−1 = k1k2 with every prime divisor of k1 also dividing
k and with gcd(k2, k) = 1, then to have gcd((p − 1)p, q − 1) = k it suffices to
have q ≡ 2 mod p and q ≡ 1 + k mod k1 and q ≡ 2 mod k2. This gives a
congruence q ≡ a mod p(p − 1) for some a. Heath-Brown’s version of Linnik’s
theorem implies that q ≤ c(p2)5.5 ≤ c12k60.5.

Our prime powers � and m play the roles that in the Gentry-Szydlo paper [6]
were played by auxiliary prime numbers P, P ′ > 2(n+1)/2 such that

gcd(P − 1, P ′ − 1) = 2n.

Our k(�) and k(m) replace their P−1 and P ′−1, respectively. While the Gentry-
Szydlo primes P and P ′ are found with at best a probabilistic algorithm, we
can find � and m in deterministic polynomial time. (Further, the ring elements
they work with were required to not be zero divisors modulo P , P ′ and other
small auxiliary primes; we require no analogous condition on � and m, since by
Definition 3.4(iii), when L is invertible then for all m, the (Z/mZ)〈G〉-module
L/mL is free of rank one.)

Proposition 4.6 (i) Suppose L is an integral lattice, 3 ≤ m ∈ Z, and C ∈
L/mL. Then C contains at most one element x with 〈x, x〉 = 1.

(ii) There is a deterministic polynomial time algorithm that, given a rank n
integral lattice L, m ∈ Z such that m ≥ 2n/2 + 1, and C ∈ L/mL, finds all
x ∈ C with 〈x, x〉 = 1 (and the number of them is 0 or 1).

Proof. For (i), suppose x, y ∈ C, 〈x, x〉 = 〈y, y〉 = 1, and x �= y. Since x−y ∈ mL
and L is an integral lattice, we have

m ≤ 〈x − y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 = 1 + 1 = 2

by the triangle inequality. This contradicts m ≥ 3, giving (i).
For (ii), using LLL to solve the closest vector problem, one can find (in poly-

nomial time) y ∈ C such that 〈y, y〉 < (2n − 1)〈x, x〉 for all x ∈ C. Suppose
x ∈ C with 〈x, x〉 = 1. Since x, y ∈ C, there exists w ∈ L such that x− y = mw.
Then

m〈w,w〉1/2 = 〈x− y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 < (1 + 2n/2)〈x, x〉1/2 ≤ m.

Therefore 1 > 〈w,w〉1/2 ∈ Z, so w = 0, and thus y = x. Compute 〈y, y〉. If
〈y, y〉 = 1, output y. If 〈y, y〉 �= 1, there is no x ∈ C with 〈x, x〉 = 1.

The n of [6] is an odd prime, so k = 2n and Z〈G〉 embeds in Q(ζn) × Q.
Since the latter is a product of only two number fields, the number of zeros of
X2n−v2n is at most (2n)2, and the Gentry-Szydlo method for finding v from v2n

is sufficiently efficient. If one wants to generalize [6] to the case where n is not

Revisiting the Gentry-Szydlo Algorithm 293

prime, then the smallest t such that Z〈G〉 embeds in F1 × . . .× Ft with number
fields Fi can be large. Given ν, the number of zeros of Xk − ν could be as large
as kt. Finding e such that ν = ek then requires a more efficient algorithm, which
we attain with Proposition 4.9 below.

An order is a commutative ring A whose additive group is isomorphic to
Zn for some n ∈ Z≥0. We specify an order by saying how to multiply any two
vectors in a given basis. Let μ(A) denote the group of roots of unity in A.

Proposition 4.7 There is a deterministic polynomial time algorithm that, given
an order A, determines a set of generators for μ(A).

Proof. The proof is a bit intricate, involving commutative algebra and algorith-
mic algebraic number theory. We give a sketch. See [1] for commutative algebra
background.

One starts by computing the nilradical N of the Q-algebra AQ = A ⊗Z Q
as well as the unique subalgebra E ⊂ AQ that maps isomorphically to AQ/N .
One has μ(A) ⊂ E, so replacing A by A ∩ E one reduces to the case in which
the nilradical of A is 0, which we now assume. Next one determines the set
Spec(E) of prime ideals m of E. For each m we compute E/m, which is an
algebraic number field, and we also compute its subring A/(m ∩ A). One has
E ∼=
∏

m∈Spec(E) E/m, and we identify A with a subring of finite additive index

in the product ring B =
∏

m∈Spec(E) A/(m ∩ A).

For each prime number p dividing |μ(A)| one has p ≤ 1 + dimQE, so it will
suffice to find, for each such p, a set of generators for the p-primary component
μ(A)p of μ(A). Fix now a prime number p ≤ 1 + dimQE.

Since each A/(m∩A) is contained in a number field, μ(A/(m ∩A))p is cyclic
and easy to determine. This leads to a set of generators for μ(B)p.

Compute C = {x ∈ B : pix ∈ A for some i ∈ Z≥0}; this is a subring of B
containing A. The group C/A is finite of p-power order, and the group B/C is
finite of order not divisible by p. We make Spec(E) into the set of vertices of a
graph by connecting m, n ∈ Spec(E) with an edge if and only if

(m ∩ C) + (n ∩ C) �= C.

For each connected component V of this graph, determine the image CV of C in
the product ring

∏
m∈V A/(m∩A). Then one can show that one has C ∼=

∏
V CV ,

with V ranging over the connected components, so that μ(C)p ∼=
∏

V μ(CV)p.
In addition, one can show that for each V and each m ∈ V the natural map
μ(CV)p → μ(A/(m ∩ A))p is injective, so that μ(CV)p is cyclic; the proof also
leads to an efficient algorithm for computing μ(CV)p. Thus, at this point one
knows a set of generators for μ(C)p.

To pass from μ(C)p to μ(A)p, one starts by computing the intersection r of all
maximal ideals of C that contain p, as well as s = r∩A. One has μ(C)p ⊂ 1+ r
and μ(A)p = μ(C)p ∩ (1+ s). To compute the latter intersection, one determines
t ∈ Z>0 with ptC ⊂ A as well as a presentation for the finite abelian p-group
1 + (r/ptC), which is a subgroup of the unit group (C/ptC)∗; to do this, one

294 H.W. Lenstra and A. Silverberg

uses that r/ptC is a nilpotent ideal of C/ptC. The group μ(A)p is now obtained
as the kernel of the natural map μ(C)p → (1 + (r/ptC))/(1 + (s/ptC)).

Proposition 4.8 Suppose L is an invertible G-lattice, r ∈ Z>0, and ν is a short
vector in the G-lattice Lr. Let A = Λ/(ν − 1). Identifying

⊕r−1
i=0 Li ⊂ Λ with its

image in A, we can view A =
⊕r−1

i=0 Li as a Z/rZ-graded ring. Then:

(i) G ⊆ μ(A) ⊆
⋃r−1

i=0 Li,
(ii) {e ∈ L : e · ē = 1} = μ(A) ∩ L,
(iii) |μ(A)| is divisible by 2n and divides 2nr, and
(iv) there exists e ∈ L for which e · ē = 1 if and only if |μ(A)| = 2nr.

Proof. Since the ideal (ν − 1) = (ν−1 − 1) = (1 − ν) = (ν − 1), the map a �→ a
induces an involution on A. Since the lattice’s inner product is symmetric and
positive definite, for all ring homomorphisms ψ : A → C we have ψ(a) = ψ(a)
for all a ∈ A, and

⋂
ψ kerψ = 0. Let E = {e ∈ A : ee = 1}, a subgroup of A∗.

Suppose e ∈ μ(A). Then for all ring homomorphisms ψ : A → C we have
1 = ψ(e)ψ(e) = ψ(e)ψ(e) = ψ(ee), so ee = 1. Thus, μ(A) ⊆ E.

Conversely, suppose e ∈ E. Write e =
∑r−1

i=0 εi with εi ∈ Li, so e =
∑r−1

i=0 εi
with εi ∈ L−i = Lr−i in A. We have 1 = ee =

∑r−1
i=0 εiεi (the degree 0 piece of

ee). Applying the map t of Definition 2.9 and using (1) we have 1 =
∑r−1

i=0 〈εi, εi〉.
It follows that there exists j such that 〈εj , εj〉 = 1, and εi = 0 if i �= j. Thus,

E ⊆
⋃r−1

i=0 {e ∈ Li : 〈e, e〉 = 1}, giving (i). By Proposition 3.9(iii) and Example
3.8 we have E ∩ Z〈G〉 = G, so μ(Z〈G〉) = G.

The degree map from E to Z/rZ that takes e ∈ E to j such that e ∈ Lj

is a group homomorphism with kernel E ∩ Z〈G〉 = G. Therefore, |E| divides
|G| · |Z/rZ| = 2nr. Thus, E ⊆ μ(A) ⊆ E, so E = μ(A) and we have (ii,iii). The
degree map is surjective if and only if |μ(A)| = 2nr, and if and only if 1 is in the
image, i.e., if and only if μ(A) ∩ L �= ∅. Part (iv) now follows from (ii).

Proposition 4.9 There is a deterministic polynomial time algorithm that, given
G of exponent k, an invertible G-lattice L, and ν ∈ Lk, determines whether there
exists e ∈ L such that ν = ek and e · ē = 1, and if so, finds one.

Proof. Check whether νν = 1. If so, let A = Λ/(ν − 1) and apply Proposition
4.7 to compute generators for μ(A). Using Proposition 4.8 with r = k, apply the
degree map μ(A)→ Z/kZ to the generators, check whether the images generate
Z/kZ, and if they do, compute an element e ∈ μ(A) whose image is 1. Then
e ∈ μ(A) ∩ L = {e ∈ L : e · ē = 1}. Check whether ν = ek. If any step fails,
no such e exists (by Remark 4.1). The algorithm runs in polynomial time since
2nk ≤ (2n)2.

5 The Algorithm

We present the main algorithm, followed by a fuller explanation. As before, k is
the exponent of the group G and k(j) is the exponent of (Z〈G〉/(j))∗ if j ∈ Z>1.

Revisiting the Gentry-Szydlo Algorithm 295

Algorithm 5.1 Input a finite abelian group G, an element u ∈ G of order 2,
and a G-lattice L. Output a G-isomorphism Z〈G〉 ∼−→ L, or a proof that none
exists.

(i) Apply Proposition 4.4(ii) to check whether L is invertible. If it is not,
terminate with “no”.

(ii) Find � and m as in Proposition 4.5.
(iii) Compute e�m as in Proposition 4.4(i).
(iv) Using an addition chain for k(m) and the algorithms mentioned in §3.3,

compute the pair (Lk(m), e
k(m)
�m +mLk(m)). Use Proposition 4.6(ii) to decide

whether the coset e
k(m)
�m +mLk(m) contains a short vector νm ∈ Lk(m), and

if so, compute it. Terminate with “no” if none exists.
(v) Compute s ∈ ((Z/�Z)〈G〉)∗ such that

νm = s(e
k(m)
�m + �Lk(m))

in Lk(m)/�Lk(m).
(vi) Use the extended Euclidean algorithm to find b ∈ Z such that

bk(m) ≡ k mod k(�).

(vii) Using an addition chain for k and the algorithms mentioned in §3.3, com-
pute the pair (Lk, ek�m + �Lk) and compute sb(ek�m + �Lk). Use Proposition
4.6(ii) to decide whether the latter coset contains a short vector ν ∈ Lk,
and if so, compute it. Terminate with “no” if none exists.

(viii) Apply Proposition 4.9 to find e ∈ L such that ν = ek and e · ē = 1 (or to
prove there is no G-isomorphism).

We explain the algorithm in more detail. By Proposition 3.10(iii), the G-lattice
L is G-isomorphic to Z〈G〉 if and only if L is invertible and has a short vector.
Run the algorithm in Proposition 4.4(ii) to check whether L is invertible. If it is
not, terminate with “no”. If it is, we look for an e ∈ L such that eē = 1. Lattice
basis reduction algorithms such as LLL can find fairly short vectors, but they are
not nearly short enough for our purpose. We supplement LLL with computations
modulo m. Any short e satisfies Z〈G〉e = L, which implies that for all m ∈ Z>0,
the coset e + mL generates L/mL as a Z〈G〉/(m)-module. Proposition 4.4(i)
gives another generator em. Thus, em = ye for some y ∈ (Z〈G〉/(m))∗. We have

e
k(m)
m mod m = ek(m) mod m in Λ/mΛ.
Apply Proposition 4.5 to find prime powers m, � ≥ 2n/2 + 1 such that

gcd(k(�), k(m)) = k.

Compute e�m (which works as both em and e�) as in Proposition 4.4(i). Propo-
sition 4.6(ii) applied to the coset e�m +mLk(m) ∈ Lk(m)/mLk(m) finds a short
vector νm (if it exists). If e ∈ L is short, then νm = ek(m) by Proposition 4.6(i).

Since e
k(m)
�m (by definition) and νm (by Proposition 3.10(ii)) each generate

the (Z/�Z)〈G〉-module Lk(m)/�Lk(m), we can find s ∈ ((Z/�Z)〈G〉)∗ such that

296 H.W. Lenstra and A. Silverberg

νm = s(e
k(m)
�m + �Lk(m)) in Lk(m)/�Lk(m). Since k = gcd(k(�), k(m)), we can use

the extended Euclidean algorithm to find a, b ∈ Z such that ak(�) + bk(m) = k.
Compute sb ∈ ((Z/�Z)〈G〉)∗ and sbek�m ∈ Lk/�Lk and use Proposition 4.6(ii)
to compute a short ν ∈ Lk in this coset or prove that none exists. If e ∈ L is

short, then ek(m) = νm ≡ se
k(m)
�m mod �Λ, so ek ≡ νbm(e

k(�)
�m)a ≡ sbek�m mod �Λ,

so sb(ek�m + �Lk) contains the short vector ek of Lk, and by Proposition 4.6(i)
we have ν = ek. Proposition 4.9 then finds a short vector e ∈ L, or proves none
exists. The map x �→ xe gives the desired G-isomorphism from Z〈G〉 to L. This
completes the proof of Theorem 1.1.

Remark 5.2 There is a version of the algorithm in which checking invertibility
in step (i) is skipped. In this case, the algorithm may misbehave at other points,
indicating that L is not invertible and thus not G-isomorphic to Z〈G〉. At the
end one would check whether 〈e, e〉 = 1 and 〈e, σe〉 = 0 for all σ �= 1, u. If
so, then {σe}σ∈S is an orthonormal basis for L, and x �→ xe gives the desired
isomorphism; if not, no such isomorphism exists.

Acknowledgments. We thank the participants of the August 2013 Workshop
on Lattices with Symmetry, in particular Craig Gentry, René Schoof, and Mike
Szydlo, and we thank the reviewers for helpful comments.

References

1. Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading (1969)

2. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st ACM Symposium on Theory of Computing—
STOC 2009, pp. 169–178. ACM, New York (2009)

4. Gentry, C.: A fully homomorphic encryption scheme, Stanford University PhD
thesis (2009), http://crypto.stanford.edu/craig/craig-thesis.pdf

5. Gentry, C.: email (May 9, 2012)
6. Gentry, C., Szydlo, M.: Cryptanalysis of the Revised NTRU Signature Scheme. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002), Full version at
http://www.szydlo.com/ntru-revised-full02.pdf

7. Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime
in an arithmetic progression. Proc. London Math. Soc. 64(3), 265–338 (1992)

8. Lang, S.: Algebra, Graduate Texts in Mathematics, 3rd edn., vol. 211. Springer-
Verlag, New York (2002)

9. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

10. Lenstra Jr., H.W.: Lattices, in Algorithmic number theory: lattices, number fields,
curves and cryptography. In: Buhler, J.P., Stevenhagen, P. (eds.) Math. Sci. Res.
Inst. Publ., vol. 44, pp. 127–181. Cambridge University Press, Cambridge (2008)

11. Smart, N.: personal communication

http://crypto.stanford.edu/craig/craig-thesis.pdf
http://www.szydlo.com/ntru-revised-full02.pdf

Faster Bootstrapping with Polynomial Error

Jacob Alperin-Sheriff and Chris Peikert	

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Abstract. Bootstrapping is a technique, originally due to Gentry
(STOC 2009), for “refreshing” ciphertexts of a somewhat homomorphic
encryption scheme so that they can support further homomorphic oper-
ations. To date, bootstrapping remains the only known way of obtaining
fully homomorphic encryption for arbitrary unbounded computations.

Over the past few years, several works have dramatically improved the
efficiency of bootstrapping and the hardness assumptions needed to imple-
ment it. Recently, Brakerski andVaikuntanathan (ITCS 2014) reached the
major milestone of a bootstrapping algorithm based on LearningWith Er-
rors for polynomial approximation factors. Their method uses the Gentry-
Sahai-Waters (GSW) cryptosystem (CRYPTO 2013) in conjunction with
Barrington’s “circuit sequentialization” theorem (STOC 1986). This ap-
proach, however, results in very large polynomial runtimes and approxi-
mation factors. (The approximation factors can be improved, but at even
greater costs in runtime and space.)

In this work we give a new bootstrapping algorithm whose runtime
and associated approximation factor are both small polynomials. Un-
like most previous methods, ours implements an elementary and efficient
arithmetic procedure, thereby avoiding the inefficiencies inherent to the
use of boolean circuits and Barrington’s Theorem. For 2λ security under
conventional lattice assumptions, our method requires only a quasi-linear
Õ(λ) number of homomorphic operations on GSW ciphertexts, which is
optimal (up to polylogarithmic factors) for schemes that encrypt just
one bit per ciphertext. As a contribution of independent interest, we
also give a technically simpler variant of the GSW system and a tighter
error analysis for its homomorphic operations.

1 Introduction

Gentry’s bootstrapping paradigm [11, 10] allows for converting a “somewhat
homomorphic” encryption scheme (which supports only a bounded number of ho-
momorphic operations) into a fully homomorphic encryption one (which has no

� This material is based upon work supported by the National Science Foundation un-
der CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation, and by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views expressed
are those of the authors and do not necessarily reflect the official policy or position
of the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Gov-
ernment.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 297–314, 2014.
c© International Association for Cryptologic Research 2014

298 J. Alperin-Sheriff and C. Peikert

such bound). The bounded nature of all known somewhat-homomorphic schemes
is an artifact of “error” terms in their ciphertexts, which are necessary for secu-
rity. The error grows as a result of performing homomorphic operations, and if
it grows too large, the ciphertext will no longer decrypt correctly.

Bootstrapping “refreshes” a ciphertext—i.e., reduces its error—so that it can
support more homomorphic operations. This is accomplished by homomorphi-
cally evaluating the decryption function on the ciphertext. The result is a cipher-
text that still encrypts the original encrypted message, and moreover, as long
as the error incurred in the homomorphic evaluation is smaller than the error in
the original ciphertext, the ciphertext is “refreshed.” To date, the bootstrapping
paradigm is the only known way of obtaining an unbounded FHE scheme, i.e.,
one that can homomorphically evaluate any efficient function using keys and
ciphertexts of a fixed size. (By contrast, leveled FHE schemes can evaluate func-
tions of any a priori bounded depth, and can be constructed without resorting
to bootstrapping [4].)

Bootstrapping has received intensive study, with progress often going hand-
in-hand with innovations in the design of homomorphic encryption schemes,
e.g., [12, 6, 4, 14, 13, 1, 15, 7]. Of particular interest is a recent major mile-
stone due to Brakerski and Vaikuntanathan (BV) [7], who gave a bootstrapping
method that incurs only polynomial error in the security parameter λ. This al-
lows security to be based on the learning with errors (LWE) problem [20] with
inverse-polynomial error rates, and hence on worst-case lattice problems with
polynomial approximation factors (via the reductions of [20, 19, 5]). The BV
method is centered around two main components:

1. the recent homomorphic cryptosystem of Gentry, Sahai, and Waters (GSW)
[15], specifically, the “quasi-additive” nature of its error growth under homo-
morphic multiplication; and

2. the “circuit sequentialization” property of Barrington’s Theorem [3], which
converts any depth-d circuit (of NAND gates) into a length-4d “branching
program,” which is essentially a fixed sequence of conditional multiplications.

Since decryption in homomorphic cryptosystems can be implemented in circuit
depth O(log λ), Barrington’s Theorem yields an equivalent branching program
of length 4d = poly(λ). Moreover, the quasi-additive error growth of GSW mul-
tiplication means that homomorphic evaluation of the branching program incurs
only poly(λ) error, as demonstrated in [7].

The polynomial error growth of the BV bootstrapping algorithm is a terrific
feature, but the method also has two significant drawbacks: it comes at a high
price in efficiency, and the error growth is a large polynomial. Both issues arise
from the fact that in this context, Barrington’s Theorem yields a branching
program of large polynomial length. Existing analyses (e.g., [6, Lemma 4.5]) of
decryption circuits (for cryptosystems with 2λ security) yield depths of c logλ
for some unspecified but moderately large constant c ≥ 3, which translates to a
branching program of length at least λ2c ≥ λ6. (Even if the depth were to be
improved, there is a fundamental barrier of c ≥ 1, which yields length Ω(λ2).)
The branching program length is of course a lower bound on the number of

Faster Bootstrapping with Polynomial Error 299

homomorphic operations required to bootstrap, and it also largely determines
the associated error growth and final lattice approximation factors.

Separately, Brakerski and Vaikuntanathan also show how to obtain better lat-
tice approximation factors through a kind of “dimension leveraging” technique,
but this comes at an even higher price in efficiency: if the original error growth
was λc for some constant c, then the technique involves running the bootstrap-
ping procedure with GSW ciphertexts of dimension n ≈ λc/ε, where the choice
of ε ∈ (0, 1) yields a final approximation factor of Õ(n3/2+ε). The high cost
of dimension leveraging underscores the importance of obtaining smaller error
growth and approximation factors via other means.

1.1 Our Results

Our main result is a new bootstrapping method having substantially smaller
runtime and (polynomial) error growth than the recent one from [7]. The im-
provements come as a result of treating decryption as an arithmetic function,
in contrast to most earlier works which treated decryption as a boolean circuit.
This avoids the circuitous and inefficient path of constructing a shallow circuit
and then transforming it via Barrington’s Theorem into a branching program
of (large) polynomial length. Instead, we show how to directly evaluate the de-
cryption function in an elementary and efficient arithmetic form, using just basic
facts about cyclic groups. See the next subsection for a detailed overview.

Our method requires only a quasi-linear Õ(λ) number of homomorphic oper-
ations on GSW ciphertexts, to bootstrap essentially any LWE-based encryption
scheme with 2λ security under conventional assumptions. This performance is
quasi-optimal (i.e., ignoring polylogarithmic factors) for a system with bitwise en-
cryption (like GSW), because the decryption function must depend on at least λ
secret key bits. When instantiated with a GSW scheme based on ring-LWE [17],
in which the cost of each homomorphic operation is only Õ(λ) bit operations,
the total runtime of our algorithm is a respectable Õ(λ2) bit operations.1

Regarding error growth, the security of our basic scheme can be based on LWE
with error rates as large as 1/Õ(λ · n), where n = Ω̃(λ) is the LWE dimension
used in the GSW scheme. Taking n = Õ(λ) to be asymptotically minimal, this
translates to lattice approximation factors of Õ(n3), which is quite close to the
Õ(n3/2) factors that plain public-key encryption can be based upon (and quite
a bit smaller than for many other applications of LWE!). We emphasize that
these small factors are obtained directly from our construction with small LWE
dimensions. To further improve the assumptions at a (high) cost in efficiency, we
can let n = λ1/ε to directly yield Õ(n2+ε) factors for any ε ∈ (0, 1), or we can
use the successive dimension/modulus-reduction technique from [7] to obtain
Õ(n3/2+ε) factors.

Simpler GSW variant. As a contribution of independent interest, we also give
a variant of the GSW cryptosystem that we believe is technically simpler, along

1 Homomorphic operations in standard-LWE-based GSW are quite a bit more expen-
sive, due to matrix multiplications of dimensions exceeding λ.

300 J. Alperin-Sheriff and C. Peikert

with a tighter analysis of error terms under its homomorphic operations (see
Section 3). The entire scheme, security proof, and error analysis fit into just a
few lines of standard linear algebra notation, and our variant enjoys additional
useful properties like full “re-randomization” of error terms as a natural side
effect. The error analysis is also very clean and tight, due to the use of subgaussian
random variables instead of coarser measures like the �2 or �∞ norms. One nice
consequence of this approach is that the error in a homomorphic product of d
ciphertexts grows with

√
d, rather than linearly as in prior analyses. This is

important for establishing the small error growth of our bootstrapping method.

1.2 Technical Overview

Here we give an overview of the main ideas behind our new bootstrapping
method. We start by recalling in more detail the main ideas behind the work of
Brakerski and Vaikuntanathan [7], which uses the Gentry-Sahai-Waters (GSW)
[15] homomorphic encryption scheme to obtain FHE from LWE with inverse-
polynomial error rates, and hence from lattice problems with polynomial ap-
proximation factors.

The starting point is a simple observation about the GSW encryption scheme:
for encryptions C1,C2 of messages μ1, μ2 ∈ Z, the error in the homomorphic
product C1 � C2 of μ1 · μ2 is “quasi-additive” and asymmetric in the cipher-
texts’ respective errors e1, e2, namely, it is e1 · poly(n) + μ1 · e2, where n is the
dimension of the ciphertexts. (The error in the homomorphic sum C1 � C2 is
simply the sum e1 + e2 of the individual errors.) This property has a number
of interesting consequences. For example, Brakerski and Vaikuntanathan use it
to show that the homomorphic product of many freshly encrypted 0-1 messages,
if evaluated sequentially in a right-associative manner, has error that grows at
most linearly in the number of ciphertexts. More generally, the homomorphic
product of many encrypted permutation matrices—i.e., 0-1 matrices in which
each row and column has exactly one nonzero entry—has similarly small error
growth.

The next main idea from [7] is to use Barrington’s Theorem to express the
boolean decryption circuit of depth d = O(log λ) as a branching program of
length 4d = poly(λ) over the symmetric group S5, or equivalently, the multi-
plicative group of 5-by-5 permutations matrices. Their bootstrapping algorithm
homomorphically (and sequentially) multiplies appropriate encrypted permuta-
tion matrices to evaluate this branching program on a given input ciphertext,
thereby homomorphically decrypting it. Since evaluation is just a homomorphic
product of poly(λ) permutation matrices, the error in the final output cipher-
text is only polynomial, and the LWE parameters can be set to yield security
assuming the hardness of lattice problems for polynomial approximation factors.

Our Approach. Our bootstrapping method retains the use of symmetric groups
and permutation matrices, but it works without the “magic” of Barrington’s
Theorem, by treating decryption more directly and efficiently as an arithmetic

Faster Bootstrapping with Polynomial Error 301

function, not a boolean circuit. In more detail, the decryption function for essen-
tially every LWE-based cryptosystem can without loss of generality (via standard
bit-decomposition techniques) be written as a “rounded inner product” between

the secret key s ∈ Zd
q and a binary ciphertext c ∈ {0, 1}d, as

Dec(s, c) = �〈s, c〉�2 ∈ {0, 1}.

Here the modular rounding function �·�2 : Zq → {0, 1} indicates whether its
argument is “far from” or “close to” 0 (modulo q), and the dimension d and
modulus q can both be made as small as quasi-linear Õ(λ) in the security pa-
rameter via dimension/modulus reduction [6], while still providing provable 2λ

security under conventional lattice assumptions. Note that the inner product
itself is just a subset-sum of the Zq-entries of s indicated by c, and uses only the
additive group structure of Zq.

Embedding Zq into Sq. As a warm up, we first observe that the additive group Zq

embeds (i.e., has an injective homomorphism) into the symmetric group Sq, the
multiplicative group of q-by-q permutation matrices. (This is just a special case
of Cayley’s Theorem, which says that any finite group G embeds into S|G|.)
The embedding is very simple: x ∈ Zq maps to the permutation that cyclically
rotates by x positions. Moreover, any such permutation can be represented by
an indicator vector in {0, 1}q with its 1 in the position specified by x, and
its permutation matrix is obtained from the cyclic rotations of this vector. In
this representation, a sum x + y can be computed in O(q2) bit operations by
expanding x’s indicator vector into its associated permutation matrix, and then
multiplying by y’s indicator vector. This representation also makes the rounding
function �·�2 : Zq → {0, 1} trivial to evaluate: one just sums the entries of the
indicator vector corresponding to those values in Zq that round to 1.

These ideas already yield a new and simple bootstrapping algorithm that
appears to have better runtime and error growth than can be obtained using
Barrington’s Theorem. The bootstrapping key is an encryption of each coordi-
nate of the secret key s ∈ Zd

q , represented as a dimension-q indicator vector, for

a total of d · q = Õ(λ2) GSW ciphertexts. To bootstrap a ciphertext c ∈ {0, 1}d,
the inner product 〈s, c〉 ∈ Zq is computed homomorphically as a subset-sum

using the addition method described above, in O(d · q2) = Õ(λ3) homomorphic
operations. The rounding function is then applied homomorphically, using just
O(q) = Õ(λ) additions.

Embedding Zq into smaller symmetric groups. While the above method yields
some improvements over prior work, it is still far from optimal. Our second main
idea is an efficient way of embedding Zq into a much smaller symmetric group Sr

for some r = Õ(1), such that the rounding function can still be efficiently eval-
uated (homomorphically). We do so by letting the modulus q =

∏
i ri be the

product of many small prime powers ri of distinct primes. (We can use such
a q by modulus switching, as long as it remains sufficiently large to preserve
correctness of decryption.) Using known bounds on the distribution of primes,

302 J. Alperin-Sheriff and C. Peikert

it suffices to let the ri be maximal prime powers bounded by O(log λ), of which
there are at most O(log λ/ log logλ).

By the Chinese Remainder Theorem, the additive group Zq is isomorphic (via
the natural homomorphism) to the product group

∏
i Zri , which then embeds

into
∏

i Sri as discussed above. Therefore, we can represent any x ∈ Zq as a tuple
of O(log λ) indicator vectors of length ri = O(logλ) representing x (mod ri), and
can perform addition by operating on the indicator vectors as described above.
In this representation, the rounding function is no longer just a sum, but it can
still be expressed relatively simply as

�x�2 =
∑

v∈Zq s.t. �v�2=1

[x = v],

where each equality test [x = v] returns 0 for false and 1 for true.2 In turn,
each equality test [x = v] is equivalent to the product of equality tests [x =
v (mod ri)], each of which can be implemented trivially in our representation
by selecting the appropriate entry of the indicator vector for x (mod ri). All of
these operations have natural homomorphic counterparts in our representation,
so we get a corresponding bootstrapping algorithm.

As a brief analysis, each coordinate of the secret key s ∈ Zd
q is encrypted as∑

i ri = Õ(1) GSW ciphertexts, for a total of Õ(d) = Õ(λ) ciphertexts in the

bootstrapping key. Similarly, each addition or equality test over Zq takes Õ(1)

homomorphic operations, for a total of Õ(d+ q) = Õ(λ). Both of these measures
are quasi-optimal when relying on a scheme that encrypts one bit per ciphertext
(like GSW). By contrast, bootstrapping using Barrington’s Theorem requires at
least 4c log λ = λ2c homomorphic operations to evaluate the branching program,
where c logλ is the depth of the decryption circuit using NAND gates (of fan-in
2). To our knowledge, upper bounds on the constant c have not been optimized
or even calculated explicitly, but existing analyses like [6, Lemma 4.5] yield
c $ 3, and the necessary dependence on λ inputs bits for 2λ security yields a
fundamental barrier of c ≥ 1.

Related Work on Branching Programs. Several works have extended and
improved Barrington’s Theorem for the simulation of general circuits and formu-
las via branching programs, e.g., [8, 9]. Of particular interest here is the thesis
of Sinha [22], which gave quasi-linear-size, log-width branching programs for
threshold functions (i.e., those which output 1 if at least some k of the n inputs
are 1) and “mod” functions (i.e., those which output 1 if the number of 1s in the
input is zero modulo some d). Similarly to our techniques, Sinha’s construction
uses the Chinese Remainder Theorem over many small primes in an essential
way.

Because decryption in LWE-based cryptosystems involves modular addition,
and can be implemented in constant depth (and polynomial size) by threshold

2 Note that we are not using any special property of the rounding function here; any
boolean function f : Zq → {0, 1} can be expressed similarly by summing over f−1(1).

Faster Bootstrapping with Polynomial Error 303

gates, it might be possible to bootstrap in a quasi-linear number of homomorphic
operations by using Sinha’s results in place of Barrington’s Theorem. However,
we have not seen a way to make this work concretely.

Organization. The rest of the paper is organized as follows. In Section 2 we
recall some mathematical preliminaries on subgaussian random variables and
symmetric groups. In Section 3 we present our simplified GSW variant and
analysis. In Section 4 we extend this to a homomorphic encryption scheme for
symmetric groups. In Section 5.2 we describe and analyze our new bootstrapping
algorithm.

Acknowledgments. We thank the anonymous CRYPTO reviewers for their help-
ful comments, and for pointers to the additional works on branching programs.

2 Preliminaries

For a nonnegative integer n, we let [n] = {1, . . . , n}. For an integer modulus q,
we let Zq = Z/qZ denote the quotient ring of integers modulo q, and (Zq,+) its
additive group.

2.1 Subgaussian Random Variables

In our constructions it is very convenient to analyze the behavior of “error”
terms using the standard notion of subgaussian random variables. (For further
details and full proofs, see [23].) A real random variable X (or its distribution) is
subgaussian with parameter r > 0 if for all t ∈ R, its (scaled) moment-generating
function satisfies E[exp(2πtX)] ≤ exp(πr2t2). By a Markov argument, X has
Gaussian tails, i.e., for all t ≥ 0, we have

Pr[|X | ≥ t] ≤ 2 exp(−πt2/r2). (1)

(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded
centered random variable X (i.e., E[X] = 0 and |X | ≤ B always) is subgaussian
with parameter B

√
2π.

Subgaussianity is homogeneous, i.e., X is subgaussian with parameter r, then
cX is subgaussian with parameter c · r for any constant c ≥ 0. Subgaussians also
satisfy Pythagorean additivity: if X1 is subgaussian with parameter r1, and X2 is
subgaussian with parameter r2 conditioned on any value ofX1 (e.g., ifX1 andX2

are independent), then X1 + X2 is subgaussian with parameter
√
r21 + r22 . By

induction this extends to the sum of any finite number of variables, each of which
is subgaussian conditioned on any values of the previous ones.

We extend the notion of subgaussianity to vectors: a random real vector x is
subgaussian with parameter r if for all fixed real unit vectors u, the marginal
〈u,x〉 ∈ R is subgaussian with parameter r. In particular, it follows directly from
the definition that the concatenation of variables or vectors, each of which is sub-
gaussian with common parameter r conditioned on any values of the prior ones,
is also subgaussian with parameter r. Homogeneity and Pythagorean additivity
clearly extend to subgaussian vectors as well, by linearity.

304 J. Alperin-Sheriff and C. Peikert

2.2 Symmetric Groups and Zq-Embeddings

Here we recall some basic facts about symmetric groups, which can be found in
most abstract algebra textbooks, e.g., [16]. Let Sr denote the symmetric group
of order r, i.e., the group of permutations (bijections) π : {1, . . . , r} → {1, . . . , r}
with function composition as the group operation. The group Sr is isomorphic
to the multiplicative group of r-by-r permutation matrices (i.e., 0-1 matrices
with exactly one nonzero element in each row and each column), via the map
that associates π ∈ Sr with the permutation matrix Pπ = [eπ(1) eπ(2) · · · eπ(r)],
where ei ∈ {0, 1}r is the ith standard basis vector. For the remainder of this
work we identify permutations with their associated permutation matrices.

The additive cyclic group (Zr,+) embeds into the symmetric group Sr via
the injective homomorphism that sends the generator 1 ∈ Zr to the “cyclic shift”
permutation π ∈ Sr, defined as π(i) = i+1 for 1 ≤ i < r and π(r) = 1.3 Clearly,
this embedding and its inverse can be computed efficiently. Notice also that the
permutation matrices in the image of this embedding can be represented more
compactly by just their first column, because the remaining columns are just
the successive cyclic shifts of this column. Similarly, such permutation matrices
can be multiplied in only O(r2) operations, since we only need to multiply one
matrix by the first column of the other.

For our efficient bootstrapping algorithm, we need to efficiently embed a group
(Zq,+), for some sufficiently large q of our choice, into a symmetric group of order
much smaller than q (e.g., polylogarithmic in q). This can be done as follows:
suppose that q = r1r2 · · · rt, where the ri are pairwise coprime. Then by the
Chinese Remainder Theorem, the ring Zq is isomorphic to the direct product of
rings Zr1 × Zr2 × · · · × Zrt , and hence their additive groups are isomorphic as
well. Combining this with the group embeddings of (Zri ,+) into Sri , we have an
(efficient) group embedding from (Zq,+) into Sr1 × Sr2 × · · · × Srt .

4

Importantly for our purposes, q can be exponentially large in terms of maxi ri
above. This can be shown using lower bounds on the second Chebyshev function

ψ(x) :=
∑
pk≤x

log p = log
(∏
p≤x

p�logp x�),
where the first summation is over all prime powers pk ≤ x, and the second is over
all primes p ≤ x; note that p�logp x� is the largest power of p not exceeding x.
Therefore, the product q of all maximal prime powers ri = p�logp x� ≤ x is
exp(ψ(x)). Asymptotically, it is known that ψ(x) = x±O(x/ log x), and we also
have the nonasymptotic bound ψ(x) ≥ 3x/4 for all x ≥ 7 [21, Theorem 11]. In
summary:

Lemma 2.1. For all x ≥ 7, the product of all maximal prime powers ri ≤ x is
at least exp(3x/4).

3 This is just a special case of Cayley’s theorem, which says that any group G embeds
into the symmetric group S|G|.

4 The latter group can be seen as a subgroup of Sr for r =
∑

i ri, but it will be more
efficient to retain the product structure.

Faster Bootstrapping with Polynomial Error 305

For any given lower bound q0 ≥ 191 > exp(21/4), we can therefore efficiently find
a q ≥ q0 whose maximal prime-power divisors are all at most x = 4

3 log q0 ≥ 7.

3 GSW Cryptosystem

Here we present a variant of the Gentry-Sahai-Waters homomorphic encryption
scheme [15] (hereafter called GSW), which we believe is simpler to understand
at a technical level. We also give a tighter analysis of its error growth under
homomorphic operations.

We first recall some standard background (see, e.g., [18] for further details).
For a modulus q, let � = �log2 q� and define the “gadget” (column) vector g =
(1, 2, 4, . . . , 2�−1) ∈ Z�

q. Note that the penultimate entry 2�−2 of g is in the
interval [q/4, q/2) mod q. It will be convenient to use the following randomized
“decomposition” function.

Claim (Adapted from [18]). There is a randomized, efficiently computable func-
tion g−1 : Zq → Z� such that x ← g−1(a) is subgaussian with parameter O(1),
and always satisfies 〈g,x〉 = a.

For vectors and matrices over Zq, define the randomized function G−1 : Zn×m
q

→ Zn�×m by applying g−1 independently to each entry. Notice that for any
A ∈ Zn×m

q , if X← G−1(A) then X has subgaussian parameter O(1) and

G ·X = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n�
q (2)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.

3.1 Cryptosystem and Homomorphic Operations

The GSW scheme is parameterized by a dimension n, a modulus q with � =
�log2 q�, and some error distribution χ over Z which we assume to be subgaussian.
Formally, the message space is the ring of integers Z, though for bootstrapping we
only work with ciphertexts encrypting messages in {0, 1} ⊂ Z. The ciphertext
space is C = Zn×n�

q . For simplicity we present just a symmetric-key scheme,
which is sufficient for our purposes (it can be converted to a public-key or even
attribute-based scheme, as described in [15]).

Our GSW variant differs from the original scheme described in [15] in two
main ways:

1. In [15], a ciphertext is a square binary matrix C ∈ {0, 1}n�, a secret key
is a “structured” mod-q vector s ∈ Zn�

q (having large entries), and s is an
“approximate mod-q eigenvector” of C, in the sense that stC ≈ μst (mod q),
where μ ∈ Z is the message.
In our variant, a ciphertext is a rectangular mod-q matrix C ∈ Zn×n�

q , a
secret key is some (unstructured, short) integer vector s ∈ Zn, and stC ≈ μ ·
stG (mod q), i.e., s and Gts are corresponding left- and right- “approximate
singular vectors” of C.

306 J. Alperin-Sheriff and C. Peikert

The difference between these two variants turns out to be purely syntactic,
in that we can efficiently and “losslessly” switch between them (without
needing the secret key). However, we believe that our variant leads to simpler
notation and easier-to-understand operations and analysis.

2. The second difference is more substantial: our homomorphic multiplication
procedure uses the randomized G−1(·) operation from Claim 3. This yields
a few important advantages, such as a very tight and simple error anal-
ysis using subgaussianity (see Lemma 3.3), and the ability to completely
re-randomize the error in a ciphertext (see Corollary 3.4).

We now describe the scheme formally.

GSW.Gen(): choose s̄← χn−1 and output secret key s = (s̄, 1) ∈ Zn.

GSW.Enc((s̄, 1), μ ∈ Z): choose C̄ ← Z(n−1)×n�
q and e ← χm, let bt = et −

s̄tC̄ (mod q), and output the ciphertext

C =

(
C̄
bt

)
+ μG ∈ C,

where G is as defined in Equation (2). Notice that stC = et+μ·stG (mod q).
GSW.Dec(s,C ∈ C): let c be the penultimate column of C, and output μ =

�〈s, c〉�2, where �·�2 : Zq → {0, 1} indicates whether its argument is closer
modulo q to 0 or to 2�−2 (the penultimate entry of g).5

Homomorphic addition is defined as C1 �C2 = C1 +C2.
Homomorphic multiplication is defined as C1�C2 ← C1 ·G−1(C2), and is

right associative. Notice that this is a randomized procedure, because G−1

is randomized.

The IND-CPA security of the scheme follows immediately from the assumed
hardness of LWEn−1,q,χ, where the entries of the secret are drawn from the
error distribution χ (which is no easier than for a uniformly random secret;
see [2, Lemma 2]). This is because a fresh ciphertext is just μG plus a matrix
of n� independent LWE samples under secret s̄, which are pseudorandom by
assumption and hence hide μG.

3.2 Analysis

Here we analyze the scheme’s correctness and homomorphic operations.

Definition 3.1. We say that a ciphertext C is designed to encrypt message
μ ∈ Z (under a secret key s) if it is a fresh encryption of μ, or if C = C1 �C2

where C1,C2 are respectively designed to encrypt μ1, μ2 ∈ Z and μ = μ1 + μ2,
or similarly for homomorphic multiplication.

5 Note that we can decrypt messages in Z ∩ [− q
2
, q
2
), or any other canonical set of

representatives of Zq, by “decoding” stC to the nearest multiple of stG. The above
decryption algorithm will be sufficient for our purposes.

Faster Bootstrapping with Polynomial Error 307

Definition 3.2. We say that a ciphertext C that is designed to encrypt μ ∈ Z
(under s) has error vector et ∈ Zn� if stC− μ · stG = et (mod q).

For convenience later on, we also say the matrix μG is designed to encrypt
μ, and has error 0. (This is essentially implied by the above definitions, since
μG is indeed a fresh encryption of μ, assuming that zero is in the support of χ.)
The next claim on the correctness of decryption follows immediately from the
fact that s = (s̄, 1) and the penultimate column of G is (0, . . . , 0, 2�−2), where
2�−2 ∈ [q/4, q/2) mod q.

Claim. If C is designed to encrypt some μ ∈ {0, 1} ⊂ Z, and has error vector et

whose penultimate coordinate has magnitude less than q/8, then GSW.Dec(s,C)
correctly outputs μ.

We now analyze the behavior of the error terms under homomorphic operations.

Lemma 3.3. Suppose C1,C2 are respectively designed to encrypt μ1, μ2 ∈ Z
and have error vectors et1, e

t
2. Then C1 � C2 has error vector et1 + et2, and

C1 �C2 has error vector et1X+ μ1e
t
2, where X← G−1(C2) is the matrix used

in the evaluation of �. In particular, for any values of Ci, ei, μi, the latter error
vector is of the form et + μ1e

t
2, where the entries of e are independent and

subgaussian with parameter O(‖e1‖).

Importantly, the error in C1 � C2 is quasi-additive and asymmetric with
respect to the errors in C1,C2: while the first error vector et1 is multiplied by a
short (subgaussian) matrix X, the second error vector et2 is only multiplied by
the (scalar) message μ1, which we will ensure remains in {0, 1}.

Proof. The first claim is immediate, by linearity. For the second claim, because
G ·X = C2 we have

st(C1 �C2) = stC1 ·X
= (et1 + μ1 · stG)X

= et1X+ μ1(e
t
2 + μ2 · stG)

= (et1X+ μ1e
t
2) + μ1μ2 · stG.

As observed in [7], the asymmetric noise growth allows for performing a long
chain of homomorphic multiplications while only incurring a polynomial-factor
error growth, because � is defined to be right associative. For convenience of
analysis, in such a chain we always include the fixed ciphertext G, which is
designed to encrypt μ = 1 and has zero error, as the rightmost ciphertext in the
chain. This ensures that the error vector of the output ciphertext is subgaussian
and essentially independent of the errors in the input ciphertexts (apart from
their lengths), which leads to a simpler and tighter analysis. (In [7] a weaker
independence guarantee was achieved by a separate “partial re-randomization”
procedure, which requires additional public key material.)

308 J. Alperin-Sheriff and C. Peikert

Corollary 3.4. Suppose that Ci for i ∈ [k] are respectively designed to encrypt
μi ∈ {0,±1} and have error vectors eti. Then for any fixed values of these vari-
ables,

C←
�

i∈[k]

Ci � G = C1 � (C2 � (· · · (Ck �G) · · ·))

has an error vector whose entries are mutually independent and subgaussian with
parameter O(‖e‖), where et = (et1, . . . , e

t
k) ∈ Zkn� is the concatenation of the

individual error vectors.

Proof. By Lemma 3.3, the error vector in C is
∑

i e
t
iXi, where each etiXi is

a fresh independent vector that has mutually independent coordinates and is
subgaussian with parameter O(‖ei‖). The claim then follows by Pythagorean
additivity.

4 Homomomorphic Encryption for Symmetric Groups

Brakerski and Vaikuntanathan [7] showed how to use the GSW encryption
scheme to homomorphically compose permutations of five elements (i.e., to ho-
momorphically compute the group operation in the symmetric group S5) with
small additive noise growth; the use of S5 comes from its essential role in Bar-
rington’s theorem [3]. In [7], the homomorphic composition of permutations is
intertwined with the evaluation of a branching program given by Barrington’s
theorem. Here we give, as a “first-class object,” a homomorphic cryptosystem
for any symmetric group Sr. The ability to use several different small values of r,
along with a homomorphic equality test that we design, will be central to our
bootstrapping algorithm.

4.1 Encryption Scheme

We now describe our (symmetric-key) homomorphic encryption scheme for sym-
metric groups, called HEPerm. Let C denote the ciphertext space for an appro-
priate instantiation of the GSW scheme, which we treat as a “black box.” A
secret key sk for HEPerm is simply a secret key for the GSW scheme.

– HEPerm.Enc(sk, π ∈ Sr): let P = (pi,j) ∈ {0, 1}r×r be the permutation
matrix associated with π. Output an entry-wise encryption of P, i.e., the
ciphertext

C = (ci,j) ∈ Cr×r, where ci,j ← Enc(sk, pi,j).

(Decryption follows in the obvious manner.) As with the GSW system, we say
that a ciphertext C ∈ Cr×r is designed to encrypt a permutation π ∈ Sr (or its
permutation matrixPπ) if its C-entries are designed to encrypt the corresponding
entries of Pπ. For convenience, we let J ∈ Cr×r denote the ciphertext that
encrypts the identity permutation with zero noise, which is built in the expected
way from the fixed zero-error GSW ciphertexts that encrypt 0 and 1.

We now show how to homomorphically compute two operations: the standard
composition operation for permutations, and an equality test.

Faster Bootstrapping with Polynomial Error 309

Homomorphic composition Cπ �Cσ: on ciphertextsCπ = (cπi,j),C
σ = (cσi,j)

∈ Cr×r encrypting permutations π, σ ∈ Sr respectively, we compute one en-
crypting the permutation π ◦ σ by homomorphically evaluating the näıve
matrix-multiplication algorithm.That is, outputC = (ci,j) ∈ Cr×r where

ci,j ←
�

�∈[r]

(cπi,� � cσ�,j) ∈ C. (3)

Just like �, we define � to be right associative.
Homomorphic equality test Eq?(Cπ = (cπi,j), σ ∈ Sr): given a ciphertext en-

crypting some permutation π ∈ Sr and a permutation σ ∈ Sr (in the clear),
output a ciphertext c ∈ C encrypting 1 if π = σ and 0 otherwise, as

c←
�

i∈[r]

cπσ(i),i � g,

where g ∈ C denotes the fixed zero-error encryption of 1. (Recall that � is
right associative.)

Observe that for the above two operations, the GSW ciphertext(s) in the
output are designed to encrypt the appropriate {0, 1}-message. For Compose
this is simply by correctness of the matrix-multiplication algorithm. For Eq?
this is because the output ciphertext is designed to encrypt 1 if and only if every
cσ(i),i is designed to encrypt 1, which is the case if and only if Cπ is in fact
designed to encrypt σ. All that remains is to analyze the behavior of the error
terms, which we do next.

4.2 Analysis

Recalling that the GSW scheme is parameterized by n and q, denote its space of
error vectors by E = Zm where m = n�log2 q�. The Euclidean norm on Er = Zmr

is defined in the expected way. In what follows it is often convenient to consider
vectors and matrices over E , i.e., each entry is itself a (row) vector in E = Zm,
and we switch between Eh×w and Zh×wm as is convenient.

The following lemma describes the behavior of errors under the homomorphic
composition operation �. Note that working with vectors and matrices over
E lets us write a statement that is syntactically very similar to the one from
Lemma 3.3, with a very similar proof.

Lemma 4.1. Let Cπ,Cσ ∈ Cr×r respectively be designed to encrypt permutation
matrices Pπ,Pσ ∈ {0, 1}r×r with error matrices Eπ,Eσ ∈ Er×r. Then for any
fixed values of these variables, Cπ � Cσ has error matrix E + Pπ · Eσ ∈ Er×r,
where the Z-entries of E are mutually independent, and those in its ith row are
subgaussian with parameter O(‖eπi ‖), where eπi is the ith row of Eπ.

Proof. Let C ← Cπ �Cσ. It suffices to show that for all i, j, its (i, j)th entry
ci,j ∈ C has error

ei,j + eσπ−1(i),j ∈ E = Zm,

310 J. Alperin-Sheriff and C. Peikert

where all the Z-entries of all the ei,j ∈ Zm are mutually independent and subgaus-
sian with parameter O(‖eπi ‖), and eσ�,j is the (�, j)th entry of Eσ. This follows
directly from Equation (3) and Lemma 3.3: the error in each ciphertext cπi,��cσ�,j
is pπi,� · eσ�,j plus a fresh vector whose entries are independent and subgaussian

with parameter O(‖eπi,�‖). Since pπi,� = 1 for � = π−1(i) and 0 otherwise, the
claim follows by Pythagorean additivity of independent subgaussians.

Similarly to a multiplication chain of GSW ciphertexts, we can perform a
(right-associative) chain of compositions while incurring only small error growth.
For convenience of analysis, we always include the fixed zero-error ciphertext
J ∈ Cr×r (which encrypts the identity permutation) as the rightmost ciphertext
in the chain. The following corollary follows directly from Lemma 4.1 in the same
way that Corollary 3.4 follows from Lemma 3.3.

Corollary 4.2. Suppose that Ci ∈ Cr×r for i ∈ [k] are respectively designed to
encrypt permutation matrices Pi ∈ {0, 1}r×r

and have error matrices Ei ∈ Er×r.
Then for any fixed values of these variables,

C←
�

i∈[k]

Ci � J = C1 � (C2 � (· · · (Ck � J) · · ·))

has an error matrix whose Z-entries are mutually independent, and those in its
ith row are subgaussian with parameter O(‖ei‖), where eti ∈ Ekr is the ith row
of the concatenated error matrices [E1 | · · · | Ek].

Finally, since the Eq? procedure simply performs a chain of (right-associative)
multiplications of GSW ciphertexts, Corollary 3.4 applies.

4.3 Optimizations for Zr Embeddings

For bootstrapping, we use the above scheme only to encrypt elements in the
cyclic subgroup Cr ⊆ Sr that embeds the additive group (Zr ,+). As described
in the preliminaries, an element π ∈ Cr can be represented more compactly as
an indicator (column) vector p ∈ {0, 1}r (rather than a matrix in {0, 1}r×r), and
its associated permutation matrix Pπ is made up of the r cyclic rotations of p.
In addition, the composition of two permutations represented in this way as p,q
is given by the matrix-vector product Pπ · q, which may be computed in O(r2)
operations, rather than O(r3) as in the general case. All of this translates directly
to encrypted permutations in the expected way, i.e., ciphertexts are entry-wise
encryptions in Cr of indicator vectors, etc.

Similarly, the equality test Eq? can be performed more efficiently when we
restrict to the subgroup Cr: given r ciphertexts encrypting the entries of an
indicator vector in {0, 1}r and an s ∈ Zr, just output the ciphertext in the
position corresponding to s.

Since our bootstrapping scheme uses Zr embeddings only for r = O(log λ),
these optimizations lead to polylogarithmic factor improvements in runtime and
error, but no more.

Faster Bootstrapping with Polynomial Error 311

5 Bootstrapping

We now describe our bootstrapping procedure.

5.1 Specification and Usage

We start by specifying the abstract preconditions and output guarantees of our
bootstrapping algorithm, and describe how to use it (with some additional pre-
and post-processing) to bootstrap known LWE-based encryption schemes.

The scheme to be bootstrapped must have binary ciphertexts in {0, 1}d and
secret keys in Zd

q for some dimension d and modulus q that should be made as

small as possible (q, d = Õ(λ) are possible), and a decryption function of the
form Decs(c) = f(〈s, c〉) ∈ {0, 1} for some arbitrary function f : Zq → {0, 1}.
We rely on an appropriate instantiation of the GSW cryptosystem, as described
in further detail in Section 5.2 below.

BootGen(s ∈ Zd
q , sk) takes as input a secret key vector s ∈ Zd

q from the scheme
to be bootstrapped, and a secret key sk for GSW. It outputs a bootstrapping
key bk, which appropriately encrypts s under sk.

Bootstrap(bk, c ∈ {0, 1}d) takes as input the bootstrapping key bk and a cipher-

text vector c ∈ {0, 1}d (which decrypts under the secret key s). It outputs a
GSW ciphertext which decrypts (under sk) to the same bit as c does (under
s), but with less error.

Pre- and post-processing. We can bootstrap all known LWE-based bit-encryption
schemes using the above algorithms as follows. In all LWE-based encryption
schemes, decryption can be expressed as a “rounded inner product” �〈s, c〉�2 for
some appropriate rounding function �·�2 : Zq → {0, 1}, as required. Note that a
GSW ciphertext can trivially be put in this form by just taking its penultimate
column (see GSW.Dec in Section 3.1). As for the other conditions we need (binary
ciphertexts and small d, q), LWE encryption schemes are not always presented
in a way that fulfills them, but fortunately there are standard transformations
that do so, as we now describe. (See [6, 5] for further details.)

First, since we do not need to perform any further homomorphic operations
on the ciphertext, we can use dimension- and modulus-reduction [6] to get a ci-
phertext c̄ (over Zq) of dimension Õ(λ) and modulus q = Õ(λ), while preserving
correct decryption. These steps can be implemented with 2λ security under con-
ventional lattice assumptions.6 Then, we can obtain a binary ciphertext c using
“bit decomposition:” let G be as defined in Section 3, and for the ciphertext c̄
over Zq under secret key s̄, let c be a {0, 1}-vector such that Gc = c̄, and let
s = Gts̄ so that 〈s, c〉 = 〈s̄, c̄〉 ∈ Zq. (The secret key s is therefore the one we
need to provide to BootGen.)

6 To make the modulus quasi-linear, we need to use randomized (subgaussian) round-
ing in the modulus-reduction step.

312 J. Alperin-Sheriff and C. Peikert

After bootstrapping, the output is a GSW ciphertext C encrypted under sk
(which is just an integer vector). If desired, we can convert this ciphertext back
to one for the original LWE cryptosystem, simply by taking the penultimate
column of C. We can also key-switch from sk back to the original secret key s.
(As usual in bootstrapping, going “full circle” in this way requires an appropriate
circular security assumption.)

5.2 Procedures

Our algorithms rely on instantiations of GSW and HEPerm with parameters
n,Q, χ. Importantly, the ciphertext modulus Q is not the modulus q of the
scheme we are bootstrapping, but rather some Q $ q that is sufficiently larger
than the error in Bootstrap’s output ciphertext. Let C denote the GSW ciphertext
space.

Our procedures need q to be of the form q =
∏

i∈[t] ri where the ri are small

and powers of distinct primes (and hence pairwise coprime). Specifically, using
Lemma 2.1 we can choose q = Õ(λ) to be large enough by letting it be the
product of all maximal prime-powers ri that are bounded by O(log λ), of which
there are t = O(log λ/ log logλ). Let φ be the group embedding of (Zq,+) ∼=
(Zr1 × · · · × Zrt ,+) into S = Sr1 × · · · × Srt described in Section 2.2, and let φi

denote the ith component of this embedding, i.e., the one from Zq into Sri .

BootGen(s ∈ Zd
q , sk): given secret key s ∈ Zd

q for the scheme to be bootstrapped
and a secret key sk for HEPerm, embed each coordinate sj ∈ Zq of s as
φ(sj) ∈ S and encrypt the components under HEPerm. That is, generate
and output the bootstrapping key

bk = {Ci,j ← HEPerm.Enc(sk, φi(sj)) : i ∈ [t], j ∈ [d]}.

Recalling that we are working with embeddings of Zri , eachCi,j ∈ Cri can be
represented as a tuple of ri GSW ciphertexts encrypting an indicator vector
(see Section 4.3). Because t, ri = O(log λ) and d = Õ(λ), the bootstrapping
key consists of Õ(λ) GSW ciphertexts.

Bootstrap(bk, c ∈ {0, 1}d): given a binary ciphertext c ∈ {0, 1}d, do the follow-
ing:
Inner Product: Homomorphically compute an encryption of

v = 〈s, c〉 =
∑

j : cj=1

sj ∈ Zq

using the encryptions of the sj ∈ Zq as embedded into the permutation
group S, via a chain of compositions. Formally, for each i ∈ [t] com-
pute (recalling that � is right associative, and J is the fixed HEPerm
encryption of the identity permutation)

Ci ←
�

j s.t. cj=1

Ci,j � J. (4)

Again, because we are working with embeddings of Zri , each Ci ∈ Cri .

Faster Bootstrapping with Polynomial Error 313

Round: Homomorphically map v ∈ Zq to f(v) ∈ Z2 = {0, 1}: for each

x ∈ Zq such that f(x) = 1, homomorphically test whether v
?
= x by

homomorphically multiplying the GSW ciphertexts resulting from all the

equality tests v
?
= x (mod ri). Then homomorphically sum the results of

all the v
?
= x tests.

Formally, compute and output the GSW ciphertext (recalling that � is
right associative, and G is the fixed GSW encryption of 1)

C←
�

x∈Zq s.t. f(x)=1

(�
i∈[t]

Eq?(Ci, φi(x)) � G
)
. (5)

Note that sincewe areworkingwith embeddings ofZri , eachEq?(Ci, φi(x))
is just some GSW ciphertext component ofCi ∈ Cri (see Section 4.3).

Because t, ri = O(log λ) and d = Õ(λ) and by Equations (4) and (5),
Bootstrap performs Õ(λ) homomorphic multiplications and additions on
GSW ciphertexts.

5.3 Analysis

The following is our main theorem. The proof is deferred to the full version due
to space limitations.

Theorem 5.1. The above bootstrapping scheme can be instantiated to be correct
(with overwhelming probability) and secure assuming that the decisional Shortest
Vector Problem (GapSVP) and Shortest Independent Vectors Problem (SIVP)
are (quantumly) hard to approximate in the worst case to within Õ(n2λ) factors
on n-dimensional lattices.

Because all known (quantum) algorithms for poly(n)-factor approximations
to GapSVP and SIVP on n-dimensional lattices take 2Ω(n) time, for 2λ hardness
we can take n = Θ(λ), yielding a final approximation factor of Õ(n3). This comes
quite close to the O(n3/2+ε) factors obtained in [7], but without any expensive
“dimension leveraging:” we use GSW ciphertexts of dimension only n = O(λ),
rather than some large polynomial in λ. Alternatively, at the cost of a larger
dimension n = λ1/ε, but without using the successive dimension-reduction pro-
cedure from [7], we can obtain factors as small as Õ(n2+ε) for any constant
ε > 0.

References

[1] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20.
Springer, Heidelberg (2013)

[2] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

314 J. Alperin-Sheriff and C. Peikert

[3] Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: STOC, pp. 1–5 (1986)

[4] Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

[5] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

[6] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

[7] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
p. 1 (2014)

[8] Cai, J.-Y., Lipton, R.J.: Subquadratic simulations of circuits by branching pro-
grams. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Sci-
ence, pp. 568–573 (1989)

[9] Cleve, R.: Towards optimal simulations of formulas by bounded-width programs.
Computational Complexity 1(1), 91–105 (1991)

[10] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009), http://crypto.stanford.edu/craig

[11] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[12] Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: FOCS, pp. 107–109 (2011)

[13] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

[14] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

[15] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

[16] Jacobson, N.: Basic Algebra I. Dover Publications (2012)
[17] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors

over rings. Journal of the ACM 60(6), 43:1–43:35 (2013); Preliminary version
in Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer,
Heidelberg (2010)

[18] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

[19] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC 2009, pp. 333–342 (2009)

[20] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009); Preliminary version in STOC 2005

[21] Schoenfeld, L.: Sharper bounds for the Chebyshev functions θ(x) and ψ(x). ii.
Mathematics of Computation 30(134), 337–360 (1976)

[22] Sinha, R.K.: Some topics in parallel computation and branching programs. PhD
thesis, University of Washington (1995)

[23] Vershynin, R.: Compressed Sensing, Theory and Applications, ch. 5, pp. 210–268.
Cambridge University Press (2012), http://www-personal.umich.edu/
~romanv/papers/non-asymptotic-rmt-plain.pdf

http://crypto.stanford.edu/craig
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

Hardness of k-LWE and Applications in Traitor Tracing

San Ling1, Duong Hieu Phan2, Damien Stehlé3, and Ron Steinfeld4

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

2 Laboratoire LAGA (CNRS, U. Paris 8, U. Paris 13), U. Paris 8, France
3 Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), ENS de Lyon, France

4 Faculty of Information Technology,
Monash University, Clayton, Australia

Abstract. We introduce the k-LWE problem, a Learning With Errors variant
of the k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS suffers
from an exponential loss in k. We improve and extend it to an LWE to k-LWE
reduction with a polynomial loss in k, by relying on a new technique involving
trapdoors for random integer kernel lattices. Based on this hardness result, we
present the first algebraic construction of a traitor tracing scheme whose secu-
rity relies on the worst-case hardness of standard lattice problems. The proposed
LWE traitor tracing is almost as efficient as the LWE encryption. Further, it
achieves public traceability, i.e., allows the authority to delegate the tracing ca-
pability to “untrusted” parties. To this aim, we introduce the notion of projective
sampling family in which each sampling function is keyed and, with a projection
of the key on a well chosen space, one can simulate the sampling function in
a computationally indistinguishable way. The construction of a projective sam-
pling family from k-LWE allows us to achieve public traceability, by publishing
the projected keys of the users. We believe that the new lattice tools and the pro-
jective sampling family are quite general that they may have applications in other
areas.

Keywords: Lattice-based cryptography, Traitor tracing, LWE.

1 Introduction

Since the pioneering work of Ajtai [3], there have been a number of proposals of crypto-
graphic schemes with security provably relying on the worst-case hardness of standard
lattice problems, such as the decision Gap Shortest Vector Problem with polynomial
gap (see the surveys [30,40]). These schemes enjoy unmatched security guarantees:
Security relies on worst-case hardness assumptions for problems expected to be expo-
nentially hard to solve (with respect to the lattice dimension n), even with quantum
computers. At the same time, they often enjoy great asymptotic efficiency, as the basic
operations are matrix-vector multiplications in dimension Õ(n) over a ring of cardinal-
ity ≤ Poly(n). A breakthrough result in that field was the introduction of the Learning
With Errors problem (LWE) by Regev [38,39], who showed it to be at least as hard as
worst-case lattice problems and exploited it to devise an elementary encryption scheme.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 315–334, 2014.
c© International Association for Cryptologic Research 2014

316 S. Ling et al.

Gentry et al. showed in [19] that Regev’s scheme may be adapted so that a master can
generate a large number of secret keys for the same public key. As a result, the latter
encryption scheme, called dual-Regev, can be naturally extended into a multi-receiver
encryption scheme. In the present work, we build traitor tracing schemes from this dual-
Regev LWE-based encryption scheme.

TRAITOR TRACING. A traitor tracing scheme is a multi-receiver encryption scheme
where malicious receiver coalitions aiming at building pirate decryption devices are
deterred by the existence of a tracing algorithm: Using the pirate decryption device,
the tracing algorithm can recover at least one member of the malicious coalition. Such
schemes are particularly well suited for fighting copyright infringement in the context of
commercial content distribution (e.g., Pay-TV, subscription news websites, etc). Since
their introduction by Chor et al. [15], much work has been devoted to devising efficient
and secure traitor tracing schemes. The most desirable schemes are fully collusion re-
sistant: they can deal with arbitrarily large malicious coalitions. But, unsurprisingly, the
most efficient schemes are in the bounded collusion model where the number of mali-
cious users is limited. The first non-trivial fully collusion resistant scheme was proposed
by Boneh et al. [11]. However, its ciphertext size is still large (Ω(

√
N), where N is the

total number of users) and it relies on pairing groups of composite order. Very recently,
Boneh and Zhandry [12] proposed a fully collusion resistant scheme with poly-log size
parameters. It relies on indistinguishability obfuscation [18], whose security foundation
remains to be studied, and whose practicality remains to be exhibited. In this paper, we
focus on the bounded collusion model. The Boneh-Franklin scheme [7] is one of the
earliest algebraic constructions but it can still be considered as the reference algebraic
transformation from the standard ElGamal public key encryption into traitor tracing.
This transformation induces a linear loss in efficiency, with respect to the maximum
number of traitors. The known transformations from encryption to traitor tracing in the
bounded collusion model present at least a linear loss in efficiency, either in the ci-
phertext size or in the private key size [7,31,23,41,6,10]. We refer to [21] for a detailed
introduction to this rich topic.

OUR CONTRIBUTIONS. We describe the first algebraic construction of a public-key
lattice-based traitor tracing scheme. It is semantically secure and enjoys public trace-
ability. The security relies on the hardness of LWE, which is known to be at least as
hard as standard worst-case lattice problems [39,33,13].

The scheme is the extension, described above, of the dual-Regev LWE-based en-
cryption scheme from [19] to a multi-receiver encryption scheme, where each user has
a different secret key. In the case of traitor tracing, several keys may be leaked to a
traitor coalition. To show that we can trace the traitors, we extend the LWE problem
and introduce the k-LWE problem, in which k hint vectors (the leaked keys) are given
out.

Intuitively, k-LWE asks to distinguish between a random vector t close to a given
lattice Λ and a random vector t close to the orthogonal subspace of the span of k given
short vectors belonging to the dual Λ∗ of that lattice. Even if we are given (b∗i)i≤k

small in Λ∗, computing the inner products 〈b∗i , t〉 will not help in solving this problem,
since they are small and distributed identically in both cases. The k-LWE problem can
be interpreted as a dual of the k-SIS problem introduced by Boneh and Freeman [8],

Hardness of k-LWE and Applications in Traitor Tracing 317

which intuitively requests to find a short vector in Λ∗ that is linearly independent with
the k given short vectors of Λ∗. Their reduction from SIS to k-SIS can be adapted to
the LWE setup, but the hardness loss incurred by the reduction is gigantic. We propose
a significantly sharper reduction from LWEα to k-LWEα. This improved reduction re-
quires a new lattice technique: the equivalent for kernel lattices of Ajtai’s simultaneous
sampling of a random q-ary lattice with a short basis [4] (see also Lemma 2). We adapt
the Micciancio-Peikert framework from [28] to sampling a Gaussian X ∈ Zm×n along
with a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}. Kernel lattices
also play an important role in the re-randomization analysis of the recent lattice-based
multilinear map scheme of Garg et al. [17], and we believe that our new trapdoor gen-
eration tool for such lattices is likely find additional applications in future. We also
remark that our technique can be adapted to the SIS to k-SIS reduction. We thus solve
the open question left by Boneh and Freeman of improving their reduction [8]: from an
exponential loss in k to a polynomial loss in k. Consequently, their linearly homomor-
phic signatures and ordinary signature schemes enjoy much better efficiency/security
trade-offs.

Our construction of a traitor tracing scheme from k-LWE can be seen as an additive
and noisy variant of the (black-box) Boneh-Franklin traitor tracing scheme [7]. While
the Boneh-Franklin scheme is transformed from the ElGamal encryption with a linear
loss (in the maximum number of traitors) in efficiency, our scheme is almost as effi-
cient as standard LWE-based encryption, as long as the maximum number of traitors
is bounded below n/(c logn), where n is the LWE dimension determined by the secu-
rity parameter, and c is a constant. The full functionality of black-box tracing in both
the Boneh-Franklin scheme and ours are of high complexity as they both rely on the
black-box confirmation: given a superset of the traitors, it is guaranteed to find at least
one traitor and no innocent suspect is incriminated. Boneh and Franklin left the im-
provement of the black-box tracing as an interesting open problem. We show that in
lattice setting, the black-box tracing can be accelerated by running the tracing proce-
dure in parallel on untrusted machines. This is a direct consequence of the property of
public traceability, i.e., the possibility of running tracing procedure on public informa-
tion, that our scheme enjoys. We note that almost all traitor tracing systems require that
the tracing key must be kept secret. Some schemes [14,37,9,12] achieve public trace-
ability and some others achieve a stronger notion than public traceability, namely the
non-repudation, but the setup in these schemes require some interactive protocol be-
tween the center and each user such as a secure 2-party computation protocol in [35], a
commitment protocol in [36], an oblivious polynomial evaluation in [42,24,22].

To obtain public traceability and inspired from the notion of projective hash fam-
ily [16], we introduce a new notion of projective sampling family in which each sam-
pling function is keyed and, with a projection of the key on a well chosen space, one
can simulate the sampling function in a computationally indistinguishable way. The
construction of a set of projective sampling families from k-LWE allows us to publicly
sample the tracing signals.

Independently, our new lattice tools may have applications in other areas. The k-
LWE problem has a similar flavour to the Extended-LWE problem from [32]. It would
be interesting to exhibit reductions between these problems. On a closely-related topic,

318 S. Ling et al.

it seems our sampling of a random Gaussian integer matrix X together with a short
basis of ker(X) is compatible with the hardness proof of Extended-LWE from [13]. In
particular, it should be possible to use it as an alternative to [13, Def 4.5] in the proof
of [13, Le 4.7], to show that Extended-LWE remains hard with many hints indepen-
dently sampled from discrete Gaussians.

REMARK. Due to lack of space, some background and the missing proofs of Sections 3
and 5 have been removed from this proceedings version. The full version is available
on the webpages of the authors.

2 Preliminaries

If x is a real number, then �x� is the closest integer to x (with any deterministic rule
in case x is half an odd integer). All vectors will be denoted in bold. By default, our
vectors are column vectors. We let 〈·, ·〉 denote the canonical inner product. For q prime,
we let Zq denote the field of integers modulo q. For two matrices A,B of compatible
dimensions, we let (A|B) and (A‖B) respectively denote the horizontal and vertical
concatenations ofA and B. ForA ∈ Zm×n

q , we define Im(A) = {As : s ∈ Zn
q } ⊆ Zm

q .
For X ⊆ Zm

q , we let Span(X) denote the set of all linear combinations of elements
of X . We let X⊥ denote the linear subspace {b ∈ Zm

q : ∀c ∈ X, 〈b, c〉 = 0}. For
a matrix S ∈ Rm×n, we let ‖S‖ denote the norm of its longest column. If S is full
column-rank, we let σ1(S) ≥ . . . ≥ σn(S) denote its singular values. We let T denote
the additive group R/Z.

If D1 and D2 are distributions over a countable set X , their statistical distance
1
2

∑
x∈X |D1(x) − D2(x)| will be denoted by Δ(D1, D2). The statistical distance is

defined similarly if X is measurable. If X is of finite weight, we let U(X) denote the
uniform distribution over X . For any invertible S ∈ Rm×m and c ∈ Rm, we define the
function ρS,c(b) = exp(−π‖S−1(b− c)‖2). For S = sIm, we write ρs,c, and we omit
the subscripts S and c when S = Im and c = 0. We let να denote the one-dimensional
Gaussian distribution with standard deviation α.

2.1 Euclidean Lattices and Discrete Gaussian Distributions

A lattice is a set of the form {
∑

i≤n xibi : xi ∈ Z} where the bi’s are linearly in-
dependent vectors in Rm. In this situation, the bi’s are said to form a basis of the
n-dimensional lattice. The n-th minimum λn(L) of an n-dimensional lattice L is de-
fined as the smallest r such that the n-dimensional closed hyperball of radius r cen-
tered in 0 contains n linearly independent vectors of L. The smoothing parameter
of L is defined as ηε(L) = min{r > 0 : ρ1/r(L̂ \ 0) ≤ ε} for any ε ∈ (0, 1),

where L̂ = {c ∈ Span(L) : ct · L ⊆ Z} is the dual lattice of L. It was proved in [29,
Le. 3.3] that ηε(L) ≤

√
ln(2n(1 + 1/ε))/π·λn(L) for all ε ∈ (0, 1) and n-dimensional

lattices L.
For a lattice L ⊆ Rm, a vector c ∈ Rm and an invertible S ∈ Rm×m, we de-

fine the Gaussian distribution of parameters L, c and S by DL,S,c(b) ∼ ρS,c(b) =
exp(−π‖S−1(b − c)‖2) for all b ∈ L. When S = σ · Im, we simply write DL,σ,c.

Hardness of k-LWE and Applications in Traitor Tracing 319

Note that DL,S,c = St · DS−tL,1,S−tc. Sometimes, for convenience, we use the no-
tation DL+c,S as a shorthand for c + DL,S,−c. Gentry et al. [19] gave an algorithm,
referred to as GPV algorithm, to sample from DL,S,c when given as input a basis (bi)i
of L such that

√
ln(2n+ 4)/π ·maxi ‖S−tbi‖ ≤ 1.

We extensively use q-ary lattices. The q-ary lattice associated to A ∈ Zm×n
q is de-

fined as Λ⊥(A) = {x ∈ Zm : xt ·A = 0 mod q}. It has dimension m, and a basis can
be computed in polynomial-time from A. For u ∈ Zm

q , we define Λ⊥
u(A) as the coset

{x ∈ Zm : xt ·A = ut mod q} of Λ⊥(A).

2.2 Random Lattices

We consider the following random lattices, called q-ary Ajtai lattices. They are obtained
by sampling A ←↩ U(Zm×n

q) and considering Λ⊥(A). The following lemma provides
a probabilistic bound on the smoothing parameter of Λ⊥(A).

Lemma 1 (Adapted from [19, Le. 5.3]). Let q be prime and m,n integers with m ≥
2n and ε > 0, then ηε(Λ

⊥(A)) ≤ 4q
n
m

√
log(2m(1 + 1/ε))/π, for all except a fraction

2−Ω(n) of A ∈ Zm×n
q .

It is possible to efficiently sample a close to uniform A along with a short basis
of Λ⊥(A) (see [4,5,34,28]).

Lemma 2 (Adapted from [5, Th. 3.1]). There exists a ppt algorithm that given n,m,
q ≥ 2 as inputs samples two matrices A ∈ Zm×n

q and T ∈ Zm×m such that: the
distribution of A is within statistical distance 2−Ω(n) from U(Zm×n

q); the rows of T
form a basis of Λ⊥(A); each row of T has norm ≤ 3mqn/m.

For A ∈ Zm×n
q , S ∈ Rm×m invertible, c ∈ Rm and u ∈ Zn

q , we define the
distribution DΛ⊥

u (A),S,c as c̄ + DΛ⊥(A),S,−c̄+c, where c̄ is any vector of Zm such
that c̄t · A = ut mod q. A sample x from DΛ⊥

u (A),S can be obtained using the GPV
algorithm along with the short basis of Λ⊥(A) provided by Lemma 2. Boneh and Free-
man [8] showed how to efficiently obtain the residual distribution of (A,x) without
relying on Lemma 2.

Theorem 1 (Adapted from [8, Th. 4.3]). Let n,m, q ≥ 2, k ≥ 0 and S ∈ Rm×m

be such that m ≥ 2n, q is prime with q > σ1(S) ·
√
2 log(4m), and σm(S) =

q
n
m · max(Ω(

√
n logm), 2σ1(S)

k
m). Let u1, . . . ,uk ∈ Zn

q and c1, . . . , ck ∈ Rm be
arbitrary. Then the residual distributions of the tuple (A,x1, . . . ,xk) obtained with the
following two experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Zm×n
q); ∀i ≤ k : xi ←↩ DΛ⊥

ui
(A),S,ci .

Exp1 : ∀i ≤ k : xi ←↩ DZm,S,ci ; A←↩ U
(
Zm×n
q |∀i ≤ k : xt

i · A = ut
i mod q

)
.

This statement generalizes [8, Th. 4.3] in three ways. First, the latter corresponds to
the special case corresponding to taking all the ui’s and ci’s equal to 0. This general-
ization does not add any extra complication in the proof of [8, Th. 4.3], but is important

320 S. Ling et al.

for our constructions. Second, the condition on m is less restrictive (the corresponding
assumption in [8, Th. 4.3] is that m ≥ max(2n log q, 2k)). To allow for such small
values of m, we refine the bound on the smoothing parameter of the Λ⊥(A) lattice
(namely, we use Lemma 1). Third, we allow for a non-spherical Gaussian distribution,
which seems needed in our generalized Micciancio-Peikert trapdoor gadget used in the
reduction from LWE to k-LWE in Section 3.2.

We also use the following result on the probability of the Gaussian vectors xi from
Theorem 1 being linearly independent over Zq .

Lemma 3 (Adapted from [8, Le. 4.5]). With the notations and assumptions of Theo-
rem 1, the k vectors x1, . . . ,xk sampled in Exp0 and Exp1 are linearly independent
over Zq , except with probability 2−Ω(n).

2.3 Rényi Divergence

We use Rényi Divergence (RD) in our analysis, relying on techniques developed in
[27,25,26]. For any two probability distributions P and Q such that the support of P is
a subset of the support of Q over a countable domain X , we define the RD (of order 2)

by R(P‖Q) =
∑

x∈X
P (x)2

Q(x) , with the convention that the fraction is zero when both
numerator and denominator are zero. We recall that the RD between two offset discrete
Gaussians is bounded as follows.

Lemma 4 ([25, Le. 4.2]). For any n-dimensional lattice L ⊆ Rn and invertible matrix
S, set P = DL,S,w and Q = DL,S,z for some fixed w, z ∈ Rn. If w, z ∈ L, let
ε = 0. Otherwise, fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(L). Then R(P‖Q) ≤(

1+ε
1−ε

)2
· exp
(
2π‖w − z‖2/σn(S)

2
)
.

We use this bound and the fact that the RD between the parameter distributions of two
distinguishing problems can be used to relate their hardness, if they satisfy a certain
public samplability property.

Lemma 5 ([26]). Let Φ,Φ′ denote two distributions, and D0(r) and D1(r) denote two
distributions determined by some parameter r. Let P, P ′ be two decision problems de-
fined as follows:

• P : Assess whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.
• P ′: Assess whether input x is sampled from distribution X ′

0 or X ′
1, where

X ′
0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′

1 = {x : r ←↩ Φ′, x←↩ D1(r)}.
Assume that D0(·) and D1(·) have the following public samplability property: there

exists a sampling algorithm S with run-time TS such that for all r, b, given any sample
x from Db(r) we have:

• S(0, x) outputs a sample distributed as D0(r) over the randomness of S.
• S(1, x) outputs a sample distributed as D1(r) over the randomness of S.

If there exists a T -time distinguisher A for problem P with advantage ε, then , for
every λ > 0, there exists an O(λε−2 · (TS + T))-time distinguisher A′ for problem P ′

with advantage ε′ ≥ ε3

8R(Φ‖Φ′) −O(2−λ).

Hardness of k-LWE and Applications in Traitor Tracing 321

2.4 Learning with Errors

Let s ∈ Zn
q and α > 0. We define the distribution As,α as follows: Take a ←↩ U(Zn

q)

and e←↩ να, and return (a, 1
q 〈a, s〉+ e) ∈ Zn

q ×T. The Learning With Errors problem
LWEα, introduced by Regev in [38,39], consists in assessing whether an oracle pro-
duces samples from U(Zn

q × T) or As,α for some constant s ←↩ U(Zn
q). Regev [39]

showed that for q ≤ Poly(n) prime and α ∈ (
√
n

2q , 1), LWE is (quantumly) not
easier than standard worst-case lattice problems in dimension n with approximation
factors Poly(n)/α. This hardness proof was partly dequantized in [33,13], and the
requirements that q should be prime and Poly(n) were waived.

In this work, we consider a variant LWE where the number of oracle samples that the
distinguisher requests is a priori bounded. If m denotes that bound, then we will refer
to this restriction as LWEα,m. In this situation, the hardness assumption can be restated
in terms of linear algebra over Zq: Given A ←↩ U(Zm×n

q), the goal is to distinguish
between the distributions (over Tm)

1

q
U (Im(A)) + νmα and

1

q
U
(
Zm
q

)
+ νmα .

Under the assumption that αq ≥ Ω(
√
n), the right hand side distribution is indeed

within statistical distance 2−Ω(n) to U(Tm) (see, e.g., [29, Le. 4.1]). The hardness as-
sumption states that by adding to them a small Gaussian noise, the linear spaces Im(A)
and Zm

q become computationally indistinguishable. This rephrasing in terms of linear
algebra is helpful in the security proof of the traitor tracing scheme. Note that by a stan-
dard hybrid argument, distinguishing between the two distributions given one sample
from either, and distinguishing between them given Q samples (from the same dis-
tribution), are computationally equivalent problems, up to a loss of a factor Q in the
distinguishing advantage.

Finally, we will also use a variant of LWE where the noise distribution να is re-
placed by Dq−1Z,α, and where U(T) is replaced by U(Tq) with Tq being q−1Z with
addition mod 1. This variant, denoted by LWE′, was proved in [34] to be no easier than
standard LWE (up to a constant factor increase in α).

3 New Lattice Tools

The security of our constructions relies on the hardness of a new variant of LWE, which
may be seen as the dual of the k-SIS problem from [8].

Definition 1. Let k ≤ m, S ∈ Rm×m invertible and C = (c1‖ · · · ‖ck) ∈ Rk×m.
The (k, S, C)-LWEα,m problem (or (k, S)-LWE if C = 0) is as follows: Given A ←↩
U(Zm×n

q),u ←↩ U(Zn
q) and xi ←↩ DΛ⊥

−u(A),S,ci for i ≤ k, the goal is to distinguish

between the distributions (over Tm+1)

1

q
· U
(
Im
(ut

A

))
+ νm+1

α and
1

q
· U
(
Spani≤k

(1
xi

)⊥)
+ νm+1

α .

322 S. Ling et al.

The classical LWE problem consists in distinguishing the left distribution from uni-
form, without the hint vectors x+

i = (1‖xi). These hint vectors correspond to the
secret keys obtained by the malicious coalition in the traitor tracing scheme. Once these
hint vectors are revealed, it becomes easy to distinguish the left distribution from the
uniform distribution: take one of the vectors x+

i , get a challenge sample y and com-
pute 〈x+

i ,y〉 ∈ T; if y is a sample from the left distribution, then the centered residue
is expected to be of size ≈ α · (

√
mσ1(S) + ‖ci‖), which is � 1 for standard pa-

rameter settings; on the other hand, if y is sampled from the uniform distribution,
then 〈x+,y〉 should be uniform. The definition of (k, S)-LWE handles this issue by
replacing U(Zm+1

q) by U(Spani≤k(x
+
i)

⊥).
Sampling x+

i from DΛ⊥((ut‖A)),S,ci may seem more natural than imposing that the
first coordinate of each x+

i is 1. Looking ahead, this constraint will prove convenient
to ensure correctness of our cryptographic primitives. Theorem 3 below and its proof
can be readily adapted to this hint distribution. They may also be adapted to improve
the SIS to k-SIS reduction from [8]. Setting C = 0 is also more natural, but for tech-
nical reasons, our reduction from LWE to (k, S, C)-LWE works with unit vectors ci.
However, we show that for small ‖ci‖, there exist polynomial time reductions between
(k, S, C)-LWE and (k, S)-LWE.

In the proof of the hardness of (k, S)-LWE problem, we rely on a gadget integral
matrix G that has the following properties: its first rows have Gaussian distributions, it
is unimodular and its inverse is small. Before going to this proof, we shall build such
a gadget matrix by extending Ajtai’s simultaneous sampling of a random q-ary lattice
with a short basis [4] (see also Lemma 2) to kernel lattices. More precisely, we adapt
the Micciancio-Peikert framework [28] to sampling a Gaussian X ∈ Zm×n along with
a short basis for the lattice ker(X) = {b ∈ Zm : btX = 0}.

3.1 Sampling a Gaussian X with a Small Basis of ker(X)

The Micciancio-Peikert construction [28] relies on a leftover hash lemma stating that
with overwhelming probability over A←↩ U(Zm×n

q) and for a sufficiently large σ, the
distribution of At ·DZm,σ mod q is statistically close to U(Zn

q). We use a similar result
over the integers, starting from a Gaussian X ∈ Zm×n instead of a uniformA ∈ Zm×n

q .
The proof of the following lemma relies on [1], which improves over a similar result
from [2]. The result would be neater with σ2 = σ1, but, unfortunately, we do not know
how to achieve it. The impact of this drawback on our results and constructions is mostly
cosmetic.

Lemma 6. Let m ≥ n ≥ 100 and σ1, σ2 > 0 satisfying σ1 ≥ Ω(
√
mn logm), m ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2
√
mσ2

1 log
3/2(mσ1)). Let X ←↩ Dm×n

Z,σ1
. There exists

a ppt algorithm that takes n,m, σ1, σ2, X and c ∈ Zn as inputs and returns x ∈
Zn, r ∈ Zm such that x = c+Xtr with ‖r‖ ≤ O(σ2/σ1), with probability 1−2−Ω(n),
and

Δ
(
(X,x), Dm×n

Z,σ1
×DZn,σ2,c

)
≤ 2−Ω(n).

We now adapt the trapdoor construction from [28] to kernel lattices.

Hardness of k-LWE and Applications in Traitor Tracing 323

Theorem 2. Let n,m1, σ1, σ2 be as above, and m2 ≥ m1 bounded as nO(1). There
exists a ppt algorithm that given n,m1,m2 (in unary), σ1 and σ2, returns X1 ∈
Zm1×n, X2 ∈ Zm2×n, and U ∈ Zm×m with m = m1 +m2, such that:

• the distribution of (X1, X2) is within statistical distance 2−Ω(n) of Dm1×n
Z,σ1

×
(DZm2 ,σ2,δ1 × · · · × DZm2 ,σ2,δn), where δi denotes the ith canonical unit vector
in Zm2 whose ith coordinate is 1 and whose remaining coordinates are 0.

• we have | detU | = 1 and U ·X = (In‖0) with X = (X1‖X2),
• every row of U has norm ≤ O(

√
nm1σ2) with probability≥ 1− 2−Ω(n).

The second statement implies that the last m − n rows of U form a basis of the
random lattice ker(X).

Proof. We first sample X1 from Dm1×n
Z,σ1

using the GPV algorithm. We run m2 times
the algorithm from Lemma 6, on the input n,m1, σ1, σ2, X1 and c running through the
columns of C = [In|0n×(m2−n)]. This gives X2 ∈ Zm2×n and R ∈ Zm1×m2 such that
Xt

2 = [In|0n×(m2−n)] +Xt
1 · R. One can then see that U ·X = [In‖0], where

U =

[
0 Im2

Im1 −(X1|0)

]
·
[
Im1 0
−Rt Im2

]
=

[
−Rt Im2

Im1 + (X1|0)Rt −(X1|0)

]
, X =

[
X1

X2

]
.

The result then follows from Gaussian tail bounds (to bound the norms of the rows
of X1) and elementary computations. ��

Our gadget matrix G is U−t. In the following corollary, we summarize the properties
we will use.

Corollary 1. Let n,m1,m2,m, σ1, σ2 be as in Theorem 2. There exists a ppt algorithm
that given n,m1,m2 (in unary), and σ1, σ2 as inputs, returns G ∈ Zm×m such that:

• the top n × m submatrix of G is within statistical distance 2−Ω(n) of Dn×m1

Z,σ1
×

(DZm2 ,σ2,δ1 × · · · ×DZm2 ,σ2,δn)
t,

• we have | detG| = 1 and ‖G−1‖ ≤ O(
√
nm2σ2), with probability 1− 2−Ω(n).

3.2 Hardness of k-LWE

The following result shows that this LWE variant, with S a specific diagonal matrix, is
no easier than LWE.

Theorem 3. There exists c > 0 such that the following holds for k = n/(c logn).
Let m, q, σ, σ′ be such that σ ≥ Ω(n), σ′ ≥ Ω(n3σ2/ logn), q ≥ Ω(σ′√logm)
is prime, and m ≥ Ω(n log q) (e.g., σ = Θ(n), σ′ = Θ(n5/ logn), q =
Θ(n5) and m = Θ(n logn)). Then there exists a probabilistic polynomial-time re-
duction from LWEm+1,α in dimension n to (k, S)-LWEm+2n,α′ in dimension 4n,

with α′ = Ω(mn3/2σσ′α) and S =
[

σ · Im+n 0

0 σ′ · In

]
. More concretely, using a

(k, S)-LWEm+2n,α′ algorithm with run-time T and advantage ε, the reduction gives

an LWEm+1,α algorithm with advantage ε′ ≥ ε3

8R(Φ‖Φ′) − O(2−λ) and advantage

ε′ = Ω((ε− 2−Ω(n/ log n))3)−O(2−n).

324 S. Ling et al.

The reduction takes an LWE instance and extends it to a related k-LWE instance
for which the additional hint vectors (xi)i≤k are known. The major difficulty in this
extension is to restrain the noise increase, as a function of k.

The existing approach for this reduction (that we improve below) is the technique
used in the SIS to k-SIS reduction from [8]. In the latter approach, the hint vectors are
chosen independently from a small discrete Gaussian distribution, and then the LWE
matrixA is extended to a larger matrix A′ under the constraint that the hint vectors are in
the q-ary lattice Λ⊥(A′) = {b : btA′ = 0 mod q}. Unfortunately, with this approach,
the transformation from an LWE sample with respect to A, to a k-LWE sample with
respect to A′, involves a multiplication by the cofactor matrix det(G) · G−1 over Z of
a k × k full-rank submatrix G of the hint vectors matrix. Although the entries of G are
small, the entries of its cofactor matrix are almost as large as detG, which is exponential
in k. This leads to an “exponential noise blowup,” restraining the applicability range
to k ≤ Õ(1) if one wants to rely on the hardness of LWE with noise rate 1/α ≤
Poly(n) (otherwise, LWE is not exponentially hard to solve). To restrain the noise
increase for large k, we use the gadget of Corollary 1. Ignoring several technicalities,
the core idea underlying our reduction is that the latter gadget allows us to sample a

small matrix X2 with X
−1

2 also small, which we can then use to transform the given

LWE matrix A+ = (ut‖A) ∈ Z(m+1)×n
q into a taller k-LWE matrix A′+ = T · A+,

using a transformation matrix T of the form

T =

[
Im+1

−X−1

2 X1

]
,

for some small independently sampled matrix X1 = [1|X1]. We can accordingly trans-
form the given LWE sample vector b = A+s + e for matrix A+ into an LWE sample
b′ = Tb = A′+s + Te for matrix A′+ by multiplying the given sample by T . Since
[X1|X2] · T = 0, it follows that [X1|X2] · A′+ = 0, so we can use k small rows
of [X1|X2] as the k-LWE hints x+

i for the new matrix A′+, while, at same time, the
smallness of T keeps the transformed noise e′ = Te small.

Proof. For a technical reason related to the non-zero centers δi in the distribution of
the hint vectors produced by our gadget from Corollary 1, we decompose our reduc-
tion from LWEm+1,α to (k, S)-LWE into two subreductions. The first subreduction
(outlined above) reduces LWEm+1,α in dimension n to (k, S, C)-LWEm+2n,α′ in di-
mension 4n, where the ith row of C is the unit vector ci = (0m+n|δi) ∈ Rm+2n

for i = 1, . . . , k. The second subreduction reduces (k, S, C)-LWEm+2n,α′ in dimen-
sion 4n to (k, S)-LWEm+2n,α′ in dimension 4n. We first describe and analyze the first
subreduction, and then explain the second subreduction.

Description of the First Subreduction. Let (A+, b) with A+ = (ut‖A) denote the

given LWEα,m+1 input instance, where A+ ←↩ U(Z(m+1)×n
q), and b ∈ Tm+1 comes

from either the “LWE distribution” 1
qU (Im(A+)) + νm+1

α or the “Uniform distribu-

tion” 1
qU
(
Zm+1
q

)
+ νm+1

α . The reduction maps (A+, b) to (A′,u′, X, b′) with A′ ∈
Z(m+2n)×4n
q and u′ ∈ Z4n

q independent and uniform, X ∈ Zk×(m+2n) with its ith

Hardness of k-LWE and Applications in Traitor Tracing 325

row xi independently sampled from DΛ⊥
−u′ (A′),S for i ≤ k, and b′ ∈ Tm+1+2n com-

ing from either the “k-LWE distribution” 1
qU (Im(A′+)) + νm+1+2n

α if b is from the

“LWE distribution,” or the “k-Uniform distribution” 1
qU
(
Spani≤k(x

+
i)

⊥) if b is from

the “Uniform distribution.” Here A′+ = (u′t‖A′), and x+
i denotes the vector (1‖xi)

for i ≤ k. The reduction is as follows.

1. Sample gadget X2 ∈ Z2n×2n using Corollary 1 (with parameters n,m1,m2, σ1,
σ2 set to k, n, n, σ, σ′ respectively), and sample X1 ←↩ D2n×m

Z,σ . Define T =[
Im+1

−X
−1
2

· (1|X1)

]
∈ Z(m+1+2n)×(m+1), where 1 is the all-1 vector. Let X ∈

Zk×(m+2n) denote the matrix made of the top k rows of (X1|X2).
2. Sample C+ ∈ Z(m+1+2n)×3n

q with independent columns uniform orthogonally
to Im((1|X)) modulo q. Let ut

C ∈ Z3n
q be the top row of C+, and C ∈

Z(m+2n)×3n
q denote its remaining m+ 2n rows.

3. Compute Σ = α′ · Im+1+2n − T · T t and
√
Σ such that

√
Σ ·

√
Σ

t
= Σ; if Σ is

not positive definite, abort.
4. Compute A′+ = (T ·A+|C+) and b′ = Tb+ 1

qC
+ ·s′+

√
Σe′, with s′ ←↩ U(Z3n

q)

and e′ ←↩ νm+1+2n
1 . Let (u′)t = (u‖uC)

t ∈ Z4n
q be the top row of A′+.

5. Return (A′,u′, X, b′).

Step 1 aims at building a transformation matrix T that sends A+ to the left n columns
of A′+. Two properties are required from this transformation. First, it must be a linear
map with small coefficients, so that when we map the LWE right hand side to the k-
LWE right hand side, the noise component does not blow up. Second, it must contain
some vectors (1‖xi) in its (left) kernel, with xi normally distributed. These vectors
are to be used as k-LWE hints. For this, we use the gadget of the previous subsection.
This ensures that the xi’s are (almost) distributed as independent Gaussian samples
from DZn,σ × DZn,σ′ , and that the matrix T is integral with small coefficients. We
define B ∈ Z2n×n

q by [A+‖B] = TA+, so that we have:[
1|X1|X2

]
·
[
A+

B

]
=
[
1|X1|X2

]
·
[

Im+1

−X−1

2 · (1|X1)

]
·A+ = 0 mod q.

This means each row of
(
X1|X2

)
belongs to Λ⊥

−u(A
′′), where A′′ = [At|Bt]t.

At this stage, it is tempting to define the k-LWE matrix as A′′ and give away the
k-LWE hint vectors xi ∈ Λ⊥

−u(A
′′) making up the matrix X . However, this approach

does not quite work: we have extended A by 2n rows, but we give only k hint
vectors (we cannot output them all, as the bottom rows of X2 may not be normally dis-
tributed). This creates a difficulty for mapping “Uniform” to “k-Uniform” in the reduc-
tion. Step 2 circumvents the above difficulty by sampling extra column vectors C+ ∈
Z(m+1+2n)×3n
q that are uniform in the subspace orthogonal to the hint vectors x+

i

modulo q. When the parameters are properly set, the columns of [T |C+] span the
full subspace orthogonal to the xi’s mod q, with overwhelming probability. We finally

set A′+ =
[

A+

B

∣∣∣C+
]
.

It remains to see how to map “LWE” to “k-LWE.” The main problem, when multiply-
ing b by T , is that the LWE noise gets skewed. If its covariance matrix was of the form

326 S. Ling et al.

α2 ·Im+1, then it becomes α2T ·T t. To compensate for that, in Step 3, we add to T ·b an
independent Gaussian noise with well-chosen covarianceΣ = α′2 ·Im+1+2n−α2T ·T t.
We set α′ large enough to ensure that this symmetric matrix is positive definite. This
noise unskewing technique was adapted to discrete Gaussians and used in cryptography
in [34].

Analysis of the First Subreduction. All steps of the reduction can be implemented in
polynomial time. Its correctness follows from the following three lemmas. The proofs
can be found in the full version.

Lemma 7. The tuple (A′,u′, X) is within statistical distance 2−Ω(n/ logn) of the dis-

tribution in which A′ ∈ Z(m+2n)×4n
q and u′ ∈ Z4n

q are independent and uniform, and
the rows of X ∈ Zk×(m+2n) are from DΛ⊥

−u′ (A′),S,ci , where ci = (0m+n|δi) ∈ Rm+2n

and δi denotes the ith canonical unit vector in Zn for i = 1, . . . , k.

Next, we assume that (A′+, X) is fixed and consider the distribution of b′ in the two
cases of the distribution of b. First we consider the “LWE” to “k-LWE” distribution
mapping.

Lemma 8. The following holds with probability 1 − 2−Ω(n/ log n) over the choice of
X1 and X2. If b ∈ Tm+1 is sampled from 1

qU(ImA) + νm+1
α , then b′ ∈ Tm+1+2n is

within statistical distance 2−Ω(n) of 1
qU (ImA′+) + νm+1+2n

α′ .

Finally, we consider the “Uniform” to “k-Uniform” distribution mapping.

Lemma 9. The following holds with probability 1−2−Ω(n/ log n) over the choice of X1

and X2. If b is sampled from 1
qU
(
Zm+1
q

)
+ νm+1

α , then b′ is within statistical distance

2−Ω(n) of 1
qU
(
Spani≤k(x

+
i)

⊥)+ νm+1+2n
α′ .

Overall, we have described a reduction that maps the “LWE distribution” to the “k-
LWE distribution,” and the “Uniform distribution” to the “k-Uniform distribution,” up
to statistical distance 2−Ω(n/ logn).

Second Subreduction. It remains to reduce the (k, S, C)-LWE with non-zero cen-
ters for the hint distribution, to (k, S)-LWE with zero-centered hints. For this, we use
Lemma 5 to obtain the following.

Lemma 10. Let m′ = m+ 2n, n′ = 4n, and assume that σm′(S) ≥ ω(
√
n). If there

exists a distinguisher against (k, S)-LWEm′,α′ in dimension n′ with run-time T and
advantage ε, then there exists a distinguisher against (k, S, C)-LWEm′,α′ with run-
time T ′ = O(Poly(m′) · (ε− 2−Ω(n))−2 · T) and advantage ε′ = Ω((ε−O(2−n))3/
R−O(2−n)), where R = exp(O(k · (2−n + ‖C‖2/σm′(S)2))).

The main idea of the proof of Lemma 10, given in the full version, is to apply
Lemma 5 with P, P ′ being the (k, S)-LWE and (k, S, C)-LWE problems respectively,
which have instances of the form x = (r,y), where r = (A,u, {xi}i≤k) and the hints
xi for i ≤ k sampled from either the zero-centered distribution ←↩ DΛ⊥

−u(A),S,0 (dis-

tribution Φ of r, in (k, S)-LWE) or the non-zero center distribution ←↩ DΛ⊥
−u(A),S,ci

Hardness of k-LWE and Applications in Traitor Tracing 327

(distribution Φ′ of r, in (k, S, C)-LWE), and y ∈ Tm+1 is a sample from either the
distribution

D0(r) =
1

q
· U
(
Im
(ut

A

))
+ νm+1

α

or the distribution

D1(r) =
1

q
· U
(
Spani≤k

(1
xi

)⊥)
+ νm+1

α .

Given x = (r,y), is possible to efficiently sample y′ from either D0(r) or D1(r), so the
public-samplability property assumed by Lemma 5 is satisfied. This Lemma gives the
desired reduction between (k, S)-LWE and (k, S, C)-LWE, as long as the RD R(Φ‖Φ′)
between the distribution of r in the two problems is polynomially bounded. The latter
reduces to obtaining a bound on the RD between a Gaussian distribution and a small
offset thereof, which is given by Lemma 4.

In our application of Lemma 10, the (k, S, C)-LWE problem resulting from the first
subreduction has ‖C‖ = 1, and σm′(S) = σ, so that R = exp(O(k · (2−n+1/σ2))) =
O(1) using σ = Ω(n) and k ≤ n. This shows that the second subreduction is proba-
bilistic polynomial time. ��

Our technique can be applied to improve the Boneh-Freeman reduction from SIS to
k-SIS, from an exponential loss in k to a polynomial loss in k. In fact, we map A to A′′

in the same way (except that we do not use and add u on top of the matrix A) and then
also use the top k rows of (X1|X2) as the k-SIS hints for the new matrix A′′. Then,
whenever the adversary can output a short vector x1‖x2 that is orthogonal to A′′, we

can also output a short vector (x1 − x2 · X
−1

2 X1) which is orthogonal to A. As the
rows of X1 are distributed as independent Gaussian samples and the adversary is only
given its first k rows, it can be shown that, if x1‖x2 is linearly independent from the

k-SIS hints, then the vector (x1 − x2 · X
−1

2 X1) is null with a negligible probability.
RD may also be used to reduce k-SIS with non-zero-centered hints (with small centers)
to k-SIS with zero-centered hints.

4 A Lattice-Based Public-Key Traitor Tracing Scheme

In this section, we describe and analyze our basic traitor tracing scheme. First, we give
the underlying multi-user public-key encryption scheme. We then explain how to im-
plement black-box confirmation tracing.

4.1 A Multi-user Encryption Scheme

The scheme is designed for a given security parameter n, a number of users N and
a maximum malicious coalition size t. It then involves several parameters q,m, α, S.
These are set so that the scheme is correct (decryption works properly on hon-
estly generated ciphertexts) and secure (semantically secure encryption and pos-
sibility to trace members of malicious coalitions). In particular, we define S

328 S. Ling et al.

as Diag(σ, . . . , σ, σ′, . . . , σ′) ∈ Rm×m where σ′ > σ and their respective numbers
of iterations are set so that (t, S)-LWEm+1,α is hard to solve.

Setup. The trusted authority generates a master key pair using the algorithm from
Lemma 2. Let (A, T) ∈ Zm×n

q × Zm×m be the output. We additionally sample u
uniformly in Zn

q . Matrix T will be part of the tracing key tk, whereas the public key
is pk = A+, with A+ = (ut‖A).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as fol-
lows. The authority executes the GPV algorithm using the basis of Λ⊥(A) consisting
of the rows of T , and the standard deviation matrix S. The authority obtains a sam-
ple xi from DΛ⊥

−u(A),S . The standard deviations σ′ > σ may be chosen as small

as 3mqn/m
√
(2m+ 4)/π. The user secret key is x+

i = (1‖xi) ∈ Zm+1. Using the
Gaussian tail bound and the union bound, we have ‖xi‖ ≤

√
mσ′ for all i ≤ N , with

probability≥ 1−N · 2−Ω(m).
The tracing key tk consists of the matrix T and all pairs (Ui, ski).

Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [19,
Se. 7.1], which we recall, for readability.1 The plaintext and ciphertext domains areP =
{0, 1} and C = Zm+1

q respectively, and:

Enc : M �→
[
ut

A

]
· s+ e+

[
M · �q/2�

0

]
, where s←↩ U(Zn

q) and e←↩ �ναq�m+1.

As explained in [19], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWEm+1,α is hard to solve.

Decrypt. To decrypt a ciphertext c ∈ Zm+1
q , user Ui uses its secret key x+

i and
evaluates the following function Dec fromZm+1

q to {0, 1}: Map c to 0 if 〈x+
i , c〉 mod q

is closer to 0 than ±�q/2�.
If c is an honestly generated ciphertext of a plaintextM ∈ {0, 1}, we have 〈x+

i , c〉 =
〈x+

i , e〉+M · �q/2� mod q, where e←↩ �ναq�m+1. It can be shown that the latter has
magnitude≤ 2

√
mαq‖x+

i ‖with probability 1−2−Ω(n) over the randomness of e. This
is ≤ 3mαqσ′ for all i, with probability≥ 1−N · 2−Ω(n). To ensure the correctness of
the scheme, it suffices to set q ≥ 4mαqσ′. Note that other constraints will be added to
enable tracing.

Theorem 4. Let m,n, q,N be integers such that q is prime and N ≤ 2o(n). Let α, σ,
σ′ > 0 such that σ′ ≥ σ ≥ Ω(mqn/m

√
logm) and α ≤ 1/(4mσ′). Then the scheme

described above is IND-CPA under the assumption that LWEm+1,α is hard. Further,
the decryption algorithm is correct:

∀M ∈ {0, 1}, ∀i ≤ N : Dec (Enc(M,pk), ski) = M

holds with probability≥ 1− 2−Ω(n) over the randomness used in Setup and Enc.

1 As usual, the encryption algorithm may be used to encapsulate session keys which are then fed
into an efficient data encapsulation mechanism to encrypt the data.

Hardness of k-LWE and Applications in Traitor Tracing 329

4.2 Tracing Traitors

We now present a black-box confirmation algorithm Trace.2 It is given access to an
oracle OD that provides black-box access to a decryption device D. It takes as inputs
the tracing key tk = (T, (Ui,x+

i)i≤N) and a set of suspect users {Ui1 , . . . ,Uik} of
cardinality k ≤ t, where t is the a priori bound on any coalition size. Wlog, we may
consider that k = t and ij = j for all j ≤ k.

Algorithm Trace gathers information about which keys have been used to build
decoderD, by feeding different carefully designed distributions to oracleOD . We con-
sider the following t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span(x+

1 , . . . ,x
+
i)

⊥)+ �ναq�m+1.

The first distribution Tr0 is the uniform distribution, whereas the last distribution Trt
is meant to be computationally indistinguishable from Enc(0). We define p∞ as the
probability Pr[OD (c,M) = 1] that the decoder can decrypt the ciphertexts, over the
randomness of M ←↩ U({0, 1}) and c ←↩ Enc(M). We define pi as the probability
the decoder decrypts the signals in Tri, for i ∈ [0, t]:

pi = Pr
c ←↩ Tri

M ←↩ U({0, 1})

[
OD
(
c+

[
M · �q/2�

0

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that Ui is a traitor.
The confirmation and soundness properties are proved in the full version. We now

concentrate on a new feature of our scheme: public traceability.

5 Projective Sampling and Public Traceability

We now modify the scheme of the Section 4 so that the tracing signals can be publicly
sampled. For this purpose, we introduce the concept of projective sampling family.

5.1 Projective Sampling

Inspired from the notion of projective hash family [16], we propose the notion of pro-
jective sampling family in which each sampling function is keyed and, with a projected
key, one can simulate the sampling function in a computationally indistinguishable way.
Let X be a finite non-empty set. Let F = (Fk)k∈K be a collection of sampling func-
tions indexed by K , so that Fk is a sampling function over X , for every k ∈ K . We
call Sam = (F,K,X) a sampling family. We now introduce the concept of projective
sampling.

Definition 2 (Projective Sampling). Let Sam = (F,K,X) be a sampling family. Let
J be a finite, non-empty set, and let π : K → J be a (probabilistic) function. Let also

2 Note that in our context, minimal access is equivalent to standard access: since the plaintext
domain is small, plaintext messages can be tested exhaustively.

330 S. Ling et al.

P = (Pj)j∈J be a collection of sampling functions over X , and D be a distribution
over K . Then PSam = (F,K,X, P, J, π,D) is called a projective sampling family if,
with overwhelming probability over the choice of k, k′ ←↩ D, and given the secret
key k and its projected key π(k), 1) the distributions obtained using Fk and Pπ(k) are
computationally indistinguishable, and 2) the distributions obtained using Fk and Pπ(k′)
can be efficiently distinguished.

The first condition means that for k ←↩ D, the value π(k) “encodes” the sampling
distribution of Fk, so that when π(k) is made public, the sampled signal Fk can be pub-
licly simulated by Pπ(k). The security requirement is very strong because the adversary
is not only given the projected key, as in projective hashing, but also the secret key k.
We require that sampling signals from the secret key and from its projected key are
indistinguishable for the insiders who know the secret key. This is relevant for traitor
tracing, as the traitors are system insiders and they possess secret data. The second con-
dition (that we actually do not directly use in our cryptographic application) allows to
prevent the trivial solution consisting in setting Pπ(k) as an efficient sampling function
that is independent of k: the simulation signal Pπ(k) must be specific to k.3

5.2 Projective Sampling from k-LWE

We construct a set of projective sampling families (PSami)0≤i≤t. The parameters are
almost identical to the parameters in the Setup of the multi-user scheme of Section 4.
A further difference, required for simulation purposes in the security proof, is that σ′ >
σ must be set Ω̃(

√
mn+ πq).

We let A←↩ U(Zm×n
q) and u←↩ U(Zn

q) be public parameters. For each i, we define
Ki = (Zm

q)i and Di as the distribution on Ki that samples k = (xj)j≤i with xj ←↩

DΛ⊥
−u(A),σ for all j ≤ i. The sampling function Fi,k is defined as U(Spanj≤i(x

+
j)

⊥)+
�ναq�m+1. The projected key πi(k) is defined as follows:

• Sample H ∈ Zm×(m−n)
q uniformly, conditioned on Im(A) ⊆ Im(H).

• For each j ≤ i, define ht
j = −xt

j ·H .

• Finally, set J = Zm×(m−n)
q × (Zm−n

q)i and set πi(k) = (H, (hj)j≤i).

We now define the sampling Pi,πi(k) with projected key πi(k) = (H, (hj)j≤i), as
follows:

• Set Hj = (ht
j‖H) ∈ Z(m+1)×(m−n)

q . We havex+t
j ·Hj = 0 and Im(A+) ⊆ Im(Hj).

• Set Pi,πi(k) = U (∩j≤iIm(Hj)) + �ναq�m+1, with ∩j≤0Im(Hj) = Zm+1
q by con-

vention. Note that ∩j≤iIm(Hj) ⊆ Spanj≤i(x
+
j)

⊥.

Theorem 5. For each i = 0, . . . , t, PSami is a projective sampling family. Concretely,
under the (i, S)-LWEα,m hardness assumptions, given the uniformly sampled public
parameters (A,u), the secret key k = (xj)j≤i ←↩ Di and its projected key πi(k) =
(H, (hj)j≤i), the distributions Fi,k and Pi,πi(k) are indistinguishable. Moreover, they
are both indistinguishable from U(Im(A+)) + �ναq�m+1. Finally, with overwhelming

3 Another trivial situation occurs when π(k) = k: the projected key leaks the full information
about the original key and one cannot safely publish the projected key.

Hardness of k-LWE and Applications in Traitor Tracing 331

probability, the distributions Fi,k and Pi,πi(k′) can be efficiently distinguished, when k′

is independently sampled from Di.

Proof. For the last statement, observe that with overwhelming probability, the secret
key k′ contains an x′

j ∈ Zm
q that does not belong to Spanj≤i(xj) (by Lemma 3). In

that case, taking the inner product of all x′
j’s of k′ with a sample from Pi,πi(k′) gives

small residues modulo q, whereas one of the inner products of the x′
j’s with a sample

from with a sample from Fi,k will be uniform modulo q.
We now consider the first statement. From the hardness of (i, S)-LWEm,α, given k,

the distributions

Fi,k = U(Spanj≤i(x
+
j)

⊥) + �ναq�m+1 and U(Im(A+)) + �ναq�m+1

are indistinguishable. Further, given k = (xj)j≤i, the projected key πi(k) =
(H, (hj)j≤i) can be sampled from Di. Therefore, given both k and πi(k), the dis-
tributions Fi,k and U(Im(A+)) + �ναq�m+1 remain indistinguishable.

Now, we have Im(A+) ⊆ ∩j≤iIm(Hj) ⊆ (Spanj≤i(x
+
j))

⊥. Hence:

U(Im(A+)) + U(∩j≤iIm(Hj)) = U(∩j≤iIm(Hj)),

U(Spanj≤i(x
+
j)

⊥) + U(∩j≤iIm(Hj)) = U(Spanj≤i(x
+
j)

⊥).

We note that given h1, . . . ,hi, one can efficiently sample from U(∩j≤iIm(Hj)).
Therefore, under the hardness of (i, S)-LWEm,α, this shows that Fi,k, Pi,πi(k) and
U(Im(A+)) + �ναq�m+1 are indistinguishable. ��

5.3 Public Traceability from Projective Sampling

In the scheme of Section 4, the tracing key tk = (T, (Ui,xi)i≤N) must be kept secret,
as it would reveal the secret keys of the users. The tracing signals are samples from
U(Spanj≤i(x

+
j)

⊥) + �ναq�m+1, which exactly matches Fi,k. By publishing the pro-
jected key πi(k), anyone can use the projective sampling Pi,πi(k): by Theorem 5, given
(k, πi(k)), Fi,k and Pi,πi(k) are indistinguishable and they are both indistinguishable
from the original sampling U(Im(A+)) + �ναq�m+1. We are thus almost done with
public traceability.

However, a subtle point is that we have to use all the projective samplings (Pi,πi(k))
for transforming the secret tracing to the public tracing: all the projected keys (hj)j≤N

should be published. Because the keys k in Fi,k are not independent, it could occur
that the adversary exploits a projected key πi(k) for distinguishing Pi′,πi′ (k′) from the
original signals. To handle this, we prove that, given (xj)j≤i and all the keys (hj)j≤N ,
the adversary cannot distinguish Pi,πi(k) from the original signals. For this purpose, we
exploit a technique from [20] to simulate (hj)i<j≤N from the public information.

Theorem 6. Set i ≤ t. Under the (i, S)-LWEα,m and the LWE′
α,m hardness assump-

tions, given the secret key k = (xj)j≤i and the projected keys (H, (hj)j≤N), the fol-
lowing two distributions are indistinguishable

Pi,α(k) = U(∩j≤iIm(Hj)) + �ναq�m+1 and U(Im(A+)) + �ναq�m+1.

332 S. Ling et al.

Proof. Assume a ppt attacker is given (xj)j≤i (with the xj’s independently sampled
from DΛ⊥

−u(A),σ) and all the projected keys (hj)j≤N)). We are to prove that, under the

(i, S)-LWEα,m and LWE′
α,m hardness assumptions, it cannot distinguish between the

distributions (over Zm+1
q)

U(Im(A+)) + �ναq�m+1 and Pi,πi(k) = U(∩j≤iIm(Hj)) + �ναq�m+1.

We proceed by a sequence of games.
Game0: This is the above distinguishing game. We let ε0 denote the adversary’s
distinguishing advantage. The goal is to show that ε0 is negligible.
Game1: In this second game, we sample x1, . . . ,xi from DΛ⊥

−u(A),σ as in Game0,

but the xj’s for j > i are sampled uniformly in Zn
q , conditioned on xt

j · A = −ut.
The hj’s for j > i are modified accordingly, but the rest is as in Game0. We let ε1
denote the adversary’s distinguishing advantage.

The main point is that in Game1, no secret information is required for sampling the
projected keys hj’s for j > i. The proof of the following lemma may be found in the
full version.

Lemma 11. Under the LWE′
α,m hardness assumption, the quantity |ε1 − ε0| is negli-

gible.

We note that, in Game1, the hj’s can be sampled publicly from the available data.
Therefore, from Theorem 5, under the (i, S)-LWEα,m hardness assumptions, the ad-
vantage ε1 is negligible. ��

Semantic security of the updated scheme. We modify the public information of the
scheme of Section 4, so that we can use the set of projective sampling families de-
scribed above. For this aim, we simply add the projected key (H, (hi)i≤N) to the public
key. The scheme becomes publicly traceable because the tracing signals can be sampled
from the projected keys, as explained above. Finally, as the public key has been modi-
fied, we should prove that the knowledge of these projected keys provides no significant
advantage for an adversary towards breaking the semantic security of the encryption
scheme. Fortunately, the semantic security directly follows from Theorem 6, for the
particular case of i = 0.

Acknowledgements. We thank M. Abdalla, D. Augot, R. Bhattacharrya, L. Ducas,
V. Guleria, G. Hanrot, F. Laguillaumie, K. T. T. Nguyen, G. Quintin, O. Regev, H. Wang
for helpful discussions. The authors were partly supported by the LaBaCry MERLION
grant, the Australian Research Council Discovery Grant DP110100628, the ANR-09-
VERSO-016 BEST and ANR-12-JS02-0004 ROMAnTIC Projects, the INRIA invited
researcher scheme, the Singapore National Research Foundation Research Grant NRF-
CRP2-2007-03, the Singapore MOE Tier 2 research grant MOE2013-T2-1-041, the LIA
Formath Vietnam and the ERC Starting Grant ERC-2013-StG-335086-LATTAC.

Hardness of k-LWE and Applications in Traitor Tracing 333

References

1. Aggarwal, D., Regev, O.: A note on discrete gaussian combinations of lattice vectors (2013),
Draft Available at, http://arxiv.org/pdf/1308.2405v1.pdf

2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma over
infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269,
pp. 97–116. Springer, Heidelberg (2013)

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of
STOC, pp. 99–108. ACM (1996)

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van
Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidel-
berg (1999)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor. Comput.
Science 48(3), 535–553 (2011)

6. Billet, O., Phan, D.H.: Efficient Traitor Tracing from Collusion Secure Codes. In: Safavi-
Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Heidelberg (2008)

7. Boneh, D., Franklin, M.K.: An efficient public key traitor scheme (Extended abstract). In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)

8. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011), Full version available
at, http://eprint.iacr.org/2010/453

9. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In:
Proc. of ACM CCS, pp. 211–220. ACM (2006)

10. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 501–510. ACM Press (2008)

11. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ci-
phertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 573–592. Springer, Heidelberg (2006)

12. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642 (2013),
http://eprint.iacr.org/

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning
with errors. In: STOC, pp. 575–584. ACM (2013)

14. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing schemes. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558. Springer, Heidelberg
(2005)

15. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 257–270. Springer, Heidelberg (1994)

16. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 45–64. Springer, Heidelberg (2002)

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Hei-
delberg (2013)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. In: Proc. of FOCS,
pp. 40–49. IEEE Computer Society Press (2013)

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new crypto-
graphic constructions. In: Proc. of STOC, pp. 197–206. ACM (2008), Full version available
at, http://eprint.iacr.org/2007/432.pdf

http://arxiv.org/pdf/1308.2405v1.pdf
http://eprint.iacr.org/2010/453
http://eprint.iacr.org/
http://eprint.iacr.org/2007/432.pdf

334 S. Ling et al.

20. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assump-
tions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Hei-
delberg (2010)

21. Kiayias, A., Pehlivanglu, S.: Encryption For Digital Content. Springer, Heidelberg (2010)
22. Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor tracing. In:

Digital Rights Management Workshop, pp. 32–50 (2002)
23. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R.

(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002)
24. Komaki, H., Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric self-enforcement

scheme with public traceability. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 225–239. Springer, Heidelberg (2001)

25. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps from
ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 239–256. Springer, Heidelberg (2014)

26. Langlois, A., Stehlé, D., Steinfeld, R.: Improved and simplified security proofs in lattice-
based cryptography: using the Rényi divergence rather than the statistical distance (2014);
Available on the webpages of the authors.

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings.
J. ACM 60(6), 43 (2013)

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718.
Springer, Heidelberg (2012)

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian mea-
sures. SIAM J. Comput 37(1), 267–302 (2007)

30. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J.,
Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

31. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

32. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011)

33. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proc.
of STOC, pp. 333–342. ACM (2009)

34. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

35. Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174,
pp. 49–64. Springer, Heidelberg (1996)

36. Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In: ACM CCS
1997, pp. 151–160. ACM Press (April 1997)

37. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid public key traitor
tracing with full-public-traceability. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer, Heidelberg (2006)

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc.
of STOC, pp. 84–93. ACM (2005)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J.
ACM 56(6) (2009)

40. Regev, O.: The learning with errors problem. In: Invited survey in CCC 2010 (2010),
http://www.cims.nyu.edu/~regev/

41. Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against powerful pirates. In:
Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Workshop on Coding and Cryptography—WCC
2007, pp. 379–388 (April 2007)

42. Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key traitor tracing with-
out trusted agents. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 392–407.
Springer, Heidelberg (2001)

http://www.cims.nyu.edu/~regev/

Improved Short Lattice Signatures

in the Standard Model

Léo Ducas and Daniele Micciancio

University of California, San Diego, CA, USA
{lducas,daniele}@eng.ucsd.edu

Abstract. We present a signature scheme provably secure in the stan-
dard model (no random oracles) based on the worst-case complexity
of approximating the Shortest Vector Problem in ideal lattices within
polynomial factors. The distinguishing feature of our scheme is that it
achieves short signatures (consisting of a single lattice vector), and rela-
tively short public keys (consisting of O(log n) vectors.) Previous lattice
schemes in the standard model with similarly short signatures, due to
Boyen (PKC 2010) and Micciancio and Peikert (Eurocrypt 2012), had
substantially longer public keys consisting of Ω(n) vectors (even when
implemented with ideal lattices).

1 Introduction

Lattice based cryptography [3,4], originally an area of primarily theoretical inter-
est, has seen a tremendous growth during the last decade, due both to substan-
tial efficiency improvements obtainable using lattices with algebraic structure
[16,28], and to the enormous versatility afforded by the Learning with Errors
(LWE) problem [33]. One of the problems that has received most attention so
far, is that of lattice based signatures [24,13,21,9,35,14,22,12,6]. From a theo-
retical point of view, digital signatures can be constructed from any one-way
function [34,19]. So, the existence of digital signature schemes based on the
hardness of lattice problems directly follows from Ajtai’s seminal work [3]. But
generic constructions are rather inefficient. Inputs and outputs of lattice based
cryptographic functions typically consist of one or more Ω̃(n)-dimensional vec-
tors, where n is the security parameter. Generic digital signature constructions
require n parallel applications of a one-way function. So, even if each one-way
function takes as input a single vector, the resulting digital siguatures consist
of n vectors, and require Ω̃(n2) storage even when using algebraic lattices [28].
So, finding efficient constructions of signatures directly based on hard lattice
problems has been an important problem since the early days of lattice cryptog-
raphy, with the main goal of finding “short” signatures, i.e., lattice signatures
consisting of a single lattice vector.

The first direct constructions of lattice signatures were given in [24] and [13].
Both schemes achieved “short” signatures, consisting of a single lattice vector,
but each work had its own pros and cons. On the one hand [24] gave a scheme

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 335–352, 2014.
c© International Association for Cryptologic Research 2014

336 L. Ducas and D. Micciancio

provably secure in the standard model of computation, and with very simple
signing/verification procedures, but only provided a direct construction of one-
time signatures: digital signature schemes that can be used to sign a single mes-
sage. Such schemes can be turned into general purpose signature schemes with
only a logarithmic loss in efficiency using standard tree constructions. However,
these transformations can be quite expensive in practice, because they lead to
signatures consisting of O(log n) vectors. Given that signature size is often the
most critical efficiency parameter affecting the practicality of a scheme, such
signatures can no longer be considered “short”. On the other hand, [13] gave a
scheme that allowed to produce short signatures for arbitrarily many messages,
but only offered heuristic security in the random oracle model. Moreover, the
scheme of [13] was not entirely practical, involving a rather complex signing al-
gorithm based on sampling lattice vectors with gaussian distribution, a problem
that only recently has found more satisfactory solutions [29].

Two lines of research have evolved from [13], trying to address either the
security or efficiency limitations of that work:

– A first line of research [21,22,14,12,6,15] kept investigating lattice signature
in the random oracle model, with the goal of achieving the highest possible
levels of performance, and schemes that are efficient enough to be used in
practice.

– A second line of work, [11,9,29] kept pursuing the important goal of obaining
security in the standard model of computation (no random oracles) while at
the same time improving the efficiency and potential practicality of previous
schemes. Our work is part of this second line of research, which we describe
in more detail.

The current state of the art, when it comes to short lattice signatures in the
standard model, is given by the scheme of Boyen [9], with additional security and
efficiency improvements described in [29]. This scheme achieved the important
goal of “short” lattice signatures (consisting of a single lattice vector), without
resorting to the random oracle model. The main drawback of this scheme was the
huge public key involved. Lattice public keys, even in the random oracle model
[13,21,22,14,12,6], consist of one or more n×m matrices, each of which typically
requires Ω̃(n2) storage. For the sake of comparison, we consider natural adap-
tations of [11,9,29] to the algebraic/ring setting, where n ×m matrices can be
implicitly described by a single m-dimensional vector. Going back to the signa-
ture scheme of [9,29], public keys consist of Ω(n) matrices, and therefore require
at least quadratic Ω̃(n2) total storage even when using “compact” algebraic lat-
tices. We remark that digital signature schemes can be efficiently constructed
out of identity based encryption (IBE) by using ciphertexts as signatures, and
lattice based IBE with short ciphertexts are also known [11,2,1]. However, lattice
IBE schemes are built on top of the signature techniques from [11,9], and bear
the same limitations when it comes to public key size: lattice IBE [11,2,1] use
public keys consisting of Ω(n) matrices, and result in Ω̃(n2) or even Ω̃(n3) pubic
key size depending on the type of lattices employed.

Improved Short Lattice Signatures in the Standard Model 337

Reducing the size of, not only the signatures, but also the public key, was the
main open problem left by [11,9,29,2,1]. We remark that the last few years have
seen major efficiency progress on lattice signatures in the random oracle model
[13,21,22,14,12,6], leaving a substantial gap between random oracle and standard
model signatures. Still, designing efficient signature schemes without random
oracles is an important and well established problem, both for the theory and
practice of cryptography. A recent work in this direction is the paper of Bohl et
al. [7,8,36], which formalized1 a general “confined guessing” technique applicable
to a variety of (not only lattice) settings. Here we describe their results, limited
to the case of lattice signatures, and specialized to algebraic/ring lattices. Among
other things, [7] gives a standard model lattice signature with public keys consist-
ing of a single matrix, and therefore requiring only O(m) = Ω̃(n) storage when
using algebraic/ring lattices. However, this comes at a substantial cost in terms
of signature size: the digital signatures of [7] consist of O(log n) vectors. While
a O(log n) increase may not seem much, it is quite a high cost when it comes
to signature size, both in theory and in practice. In fact, a similar trade-off was
already known since the very first direct construction of lattice signatures [24],
which, as alredy discussed, produced general signatures consisting of O(log n)
vectors (as well as short public keys). In other words, just like [24], the lattice
signatures of [7] are not “short”. (The main contribution of [7] over the classic
scheme of [24], is that the results of [7] also apply to general lattices.)

Our results. We present the first standard model construction of short signatures
based on (algebraic/ring) lattices with relatively small public keys: Similarly
to [9,29], we achieve signatures consisting of a single vector without resorting
to random oracles. At the same time, we substantially reduce the public key
size from the Ω(n) vectors2 of previously best short lattice signatures [9,29] to
just O(log n) vectors. Our scheme is stateless, i.e., all signatures can be pro-
duced independently by running the signing algorithm on input the secret key
and message to be signed. We also give an even more efficient scheme that
further improves the public key size from O(log n) to just O(log logn) vectors
(and at the same time also improves the tightness of the reduction,) almost
matching the asymptotic performance of schemes in the random oracle model
[13,21,22,14,12,6]. This last improvement comes at the cost of statefulness: the
signer has to keep some state information between signatures. However the state
information is extremely simple: all that the signer has to do is to maintain a
counter keeping track of how many signatures have already been produced.

We remark that it is always possible to reduce the public key size by increasing
the size of the signatures, simply by compressing the public key using a colli-
sion resistant hash function (which is easily built from lattices [26,5,23,31]), and
including the original public key in each signature. So, our first scheme (with

1 The technique first appeared in the work of Hohenberger and Waters [18,17] and
was also used in [10].

2 Remember we are in the ring setting, so only one vector is required to represent each
matrix.

338 L. Ducas and D. Micciancio

Scheme Pub. Key Secret Key Signature Reduction SIS parameter β

R1×k
q mat. Rk×k

q mat. Rk
q vec. loss

[13](ROM) 1 1 1 1 Ω̃(n)

[24](Trees) 1 1 log n Q Ω̃(n2)

[11] n n n Q Ω̃(n3/2)

[9,29] n n 1 Q Ω̃(n7/2), Ω̃(n5/2)

[7] 1 1 logc n O(Q2/ε)c Ω̃(n5/2)

Stateless (Sec. 3) logc n logc n 1 O(Q2/ε)c Ω̃(n7/2)

Stateful3 2 logc(log n) 2 logc(logn) 1 2Qc Ω̃(n3/2)

Rq = Zq[X]/f(X) for some (cyclotomic) polynomial f of degree n, q = nO(1), and
k = O(log q). Q denotes the number of signature queries made by the attacker and ε
is its success probability. The value c > 1 is an arbitrary constant that governs the
security/efficiency trade off. The reduction loss is the ratio ε′/ε between the success
probability ε′ of the reduction and the success probability ε of the attacker.

Fig. 1. Comparison to previous work on lattice signatures in the ring setting

O(log n) vectors in the public key and short signatures) subsumes the results of
[7] in the algebraic/ring lattice setting with O(log n) vectors per signatures.

The efficiency of our lattice constructions, compared to previous schemes (all
adapted to the ring setting), is detailed in Figure 1.The trick leading to our
stateful signature scheme can also be applied to improve the generic construction
of [7]. The description of our generic results is deferred to the full version of our
paper.

Techniques. Our results are obtained by combining several techniques previously
used in the construction of lattice-based signatures. Most notably, we use the
“vanishing trapdoor” technique from [9], and the more recent “confined guess-
ing” method of [7,18,17]. In fact, the key generation, signing and verification
algorithms bear strong similarities with previously proposed schemes. However,
the combination appears to be novel and nontrivial. In particular, while both
the results in [9] and those in [7] are presented for general lattices, the way they
are combined in our work makes essential use of the commutativity properties
of ring/algebraic lattices. More specifically, our proof of security exploits a key
homomorphic property of lattice trapdoors (see Lemma 6) which requires certain
matrix products to commute. This is trivially verified in the ring setting, where
one of the matrices corresponds to a ring scalar, but glamorously fails when the
construction is adapted to arbitrary lattices.

Open problems. Interestingly, the methods employed in this paper to obtain
short lattice signatures with small public key seem specific to the ring/algebraic
lattice setting. Only our generic result (see the full version of this article) with
signatures of log logn many vectors applies to arbitrary lattices. We remark
that the question of reducing the public key size is mostly important in the ring

3 See full version of this article.

Improved Short Lattice Signatures in the Standard Model 339

setting: when using general lattices, even a single matrix takes quadratic storage,
so there is little hope to reduce the public key size to linear or quasilinear in the
security parameter. Still, it would be nice to achieve results similar to those in
our paper, but for general lattices: is there a standard model signature scheme
based on general lattices with short signatures (consisting of a single vector) and
small public keys (consisting of O(log n) matrices)?

Another important open problem is to further improve the efficiency of our
scheme, and obtain short signatures where the public key is just O(1) matrices
(or vectors, in the ring setting). Indeed, schemes offering both short public key
and short signatures4 in the standard model have been constructed based on the
Computational Diffie-Hellman (CDH) and RSA problems [18,17].

2 Preliminaries

2.1 Signatures

Definition 1. A signature scheme SS is a triple (KeyGen, Sign,Verif) of PPT
(probabilistic polynomial time) algorithms, together with message spaces Mn. It
is correct if, for all messages μ ∈ Mn, Verif(pk, μ, σ) = 1 holds true, except
with negligible probability (in n) over the choice of (sk, pk) ← KeyGen(1n) and
σ ← Sign(sk, μ).

The standard definitions of security for digital signature schemes (under adap-
tive and non-adaptive attacks) is given in Figure 2.

EUF-naCMASS(n,A) EUF-CMASS(n,A)

A chooses q messages (μ(j)) ∈ Mn

(sk, pk) ← KeyGen(1n)
For all j = 0 . . . Q− 1:

σ(j) ← Sign(sk, μ(j)).
A receives pk, σ(0) . . . σ(Q−1).
A sends an attempted forgery (μ♦ , σ♦)
A wins if Verif(pk, μ♦ , σ♦) = 1 and
μ♦ /∈ {μ(j)}.

(sk, pk) ← KeyGen(1n), A receives pk
For j = 0 . . . Q− 1:

A chooses μ(j)

A receives σ(j) ← Sign(sk, μ(j))
A sends an attempted forgery (μ♦ , σ♦)
A wins if Verif(pk, μ♦ , σ♦) = 1 and
μ♦ /∈ {μ(j)}.

A signature scheme SS = (KeyGen, Sign,Verif) is EUF-naCMA-secure (or Existen-
tially Unforgeable under non-adaptative Chosen Message Attacks) if no PPT adversary
A wins the EUF-naCMASS game (left) with non-negligible probability n−O(1). The
scheme is EUF-CMA-secure (or Existentially Unforgeable under adaptative Chosen
Message Attacks) if no PPT adversary A wins the EUF-CMASS game (right) with
non-negligible probability n−O(1).

Fig. 2. Definition of security for digital signature schemes

4 Here by “short” we mean consisting of O(1) group elements.

340 L. Ducas and D. Micciancio

From Non-Adaptive to Full Security There are two standard techniques to trans-
form non adaptively-secure signature schemes to fully secure ones: Chameleon
Hashing and One Time Signatures both of which can be implemented using lat-
tices [25,13]. For a description of the solution based on Chameleon Hashing see
the full version of this article.

2.2 Lattices and Gaussian Distributions

A (full rank) n-dimensional lattice is the set Λ = L(B) = {Bz : z ∈ Zn} of
all integer linear combinations of n basis vectors B = [b1, . . . ,bn] ∈ Rn×n.
We use notation (x1, . . . , xn) for column vectors, and similarly write (A,B) for
the result of vertically stacking two matrices. The dual lattice Λ∗ is the set of
all v ∈ Rn such that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then
B∗ = B−t is a basis of Λ∗. Many cryptographic applications use a particular
family of so-called q-ary integer lattices, which contain qZm as a sublattice for
some (typically small) integer q. For positive integers n, and q, let A ∈ Zn×m

q

be arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(A) = {z ∈ Zm : ∃ s ∈ Zn

q s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(A) are dual lattices, up to a q scaling
factor: q ·Λ⊥(A)∗ = Λ(A), and vice-versa. For any u ∈ Zn

q admitting an integral

solution to Ax = u mod q, define the coset (or “shifted” lattice) Λ⊥
u (A) = {z ∈

Zm : Az = u mod q} = Λ⊥(A) + x. In the Small Integer Solution problem
(SISp,n,m,β), one is given a matrix A ∈ Zn×m

q and is asked to find a nonzero

vector s ∈ Λ⊥(A) such that ‖s‖ ≤ β where ‖s‖ =
√∑

i s
2
i is the euclidean norm.

The geometric quality of a matrix A ∈ Rm×n is measured by its spectral norm
s1(A) = supx ‖Ax‖/‖x‖.

The n-dimensional Gaussian function ρs : Rn → (0, 1] is defined as ρs(x) =
exp(−π · ‖x/s‖2). For any (countable) set X ⊆ Rn, let ρs(X) =

∑
x∈X ρs(x).

The smoothing parameter of a lattice ηε(Λ) [30] is the smallest s such that
ρ1/s(Λ

∗) ≤ 1 + ε. The discrete gaussian distribution DΛ,s over a lattice Λ is
defined as DΛ,s(x) = ρs(x)/ρs(Λ) for all x ∈ Λ.

We say that a random variable X over R is subgaussian with parameter s > 0
if for all t ∈ R, the (scaled) moment-generating function satisfies E[exp(2πtX)] ≤
exp(πs2t2). If X is subgaussian, then its tails are dominated by a Gaussian of
parameter s, i.e., Pr[|X | ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. More generally,
we say that a random matrix X is subgaussian (of parameter s) if all its one-
dimensional marginals utXv for unit vectors u,v are subgaussian (of parameter
s). It follows immediately from the definition that the concatenation of inde-
pendent subgaussian vectors with common parameter s, interpreted either as a
vector or as a matrix, is subgaussian with parameter s. For any lattice Λ ⊂ Rn

and s > 0, the distribution DΛ,s is subgaussian with parameter s.
We will need the following standard result from the non-asymptotic theory of

random matrices; for further details, see [37].

Improved Short Lattice Signatures in the Standard Model 341

Lemma 1. Let X ∈ Rn×m be a subgaussian random matrix with parameter s.
There exists a universal constant C ≈ 1/

√
2π such that for any t ≥ 0, we have

s1(X) ≤ C · s · (
√
m+

√
n+ t) except with probability at most 2 exp(−πt2).

2.3 Rings and Ideal Lattices

We consider lattice problems restricted to ideal lattices [28,23,32]. Most of our
results apply to ideal/module lattices over arbitrary cyclotomic rings, but for
simplicity we focus our presentation on so-called “SWIFFT” rings [26,5]. These
are rings of the form R = Z[X]/(Φ2n(X)) or Rq = (R/qR), where n is a power
of 2, q is an integer, and Φ2n(X) = Xn+1 is the cyclotomic polynomial of degree
n. For our construction we will require that Φ2n(X) does not split into low degree
polynomials modulo the prime factors of q. More concretely we choose q = 3k

and rely on the following.

Fact 1 (Irreducible factors of Φ2k(X) modulo 3. Corollary of [20, Theorem 2.47]).
For any k ≥ 3 and 2n = 2k we have Φ2n(X) ≡ (Xn/2 + Xn/4 − 1) · (Xn/2 −
Xn/4 − 1) mod 3 and both factors are irreducible in F3[X].

Lemma 2 (Hensel Lemma). Let R = Z[X]/(F (X)) for some monic poly-
nomial F ∈ Z[X]. For any prime p, if u ∈ Rpe is invertible modp (i.e. it is
invertible in Rp) then u is also invertible in Rpe .

Corollary 1. let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and set Rq =
Z[X]/(Φ2n(X), q). Then, any nonzero polynomial t ∈ Rq of degree d < n/2 and
coefficients in {0,±1} is invertible in Rq.

Elements in R have a natural representation as polynomials of degree n − 1
with coefficients in Z, and R can be identified (as an additive group) with the
integer lattice Zn, where each ring element a = a0 + a1x + . . . + an−1x

n−1 ∈
R is associated with the coefficient vector (a0, . . . , an−1) ∈ Zn. We use the
identification R = Zn to define standard lattice quantities like the euclidean
length of a ring element ‖a‖ =

√∑
i |ai|2, or the spectral norm of a ring element

s1(r) = supx ‖r · x‖/‖x‖. The ring R is also identified with the sub-ring of
anti-circulant square matrices of dimension n by regarding each ring element
r ∈ R as a linear transformation x �→ r ·x over (the coefficient embedding) of R.
Notice that the definition of spectral norm of a ring element is consistent with
the definition of spectral norm of the corresponding anticirculant matrix. The
following lemma provides a useful bound on the spectral norm of ring elements.

Lemma 3. For any ring element r ∈ R, we have s1(r) ≤ ‖r‖1 =
∑

i |ri|.
Proof. Let ωk = eπı(2k−1)/n (for k = 1, . . . , n) be the complex roots of the cyclo-
tomic polynomial Φ2n. Consider the image of r under the canonical embedding
σ : R → Cn, which is defined as σ(r) = (r(ω1), . . . , r(ωn)). Using the fact that
σ : R → Cn is a ring homomorphism (with the product + in Cn defined compo-
nentwise) and a scaled isometry (satisfying ‖σ(r)‖ = √n · ‖r‖) we get

s1(r) = sup
x

‖r · x‖
‖x‖ = sup

x

‖σ(r · x)‖
‖σ(x)‖ = sup

x

‖σ(r) + σ(x)‖
‖σ(x)‖ ≤ ‖σ(r)‖∞.

342 L. Ducas and D. Micciancio

Since for any i, |ωi| = 1, we have |r(ωi)| =
∣∣∣∑j rjω

j
i

∣∣∣ ≤∑ |rj | = ‖r‖1. It follows
that s1(r) ≤ ‖σ(r)‖∞ = maxi |σ(r)i| ≤ ‖r‖1.

The discrete Gaussian distribution over the ring DR,s ≡ Dn
Z,s is defined as

usual by identifying the ring R with Zn under the coefficient embedding. It
follows that the discrete gaussian distribution over the ring x ← DR,s is sub-
gaussian of parameter s when x is regarded as a vector. For the anti-circulant
matrix representation, we have the following fact, (proof in App. A).

Fact 2. If R ← Dw×k
R,s , then with overwhelming probability we have s1(R) ≤

s
√
n · O(

√
w +

√
k + ω(

√
logn)).

The euclidean length of vectors in Rk
q is defined similarly by identifying Zq

with the set of representatives {−(q− 1)/2, . . . ,+(q− 1)/2}. Similarly, we define
the q-ary lattices Λ(A) and Λ⊥(A) when A ∈ Rn×m

q is a matrix over the ring Rq

using the standard isomorphism of Rq and the sub-ring of anticirculant matrices
in Zn×n

q .

Definition 2. In the Small Integer Solution over Rings problem (RingSISq,n,m,β),
one is given a row vector A ∈ R1×m

q , and is asked to find a nonzero vector x ∈
Λ⊥
q (A) such that ‖x‖ ≤ β.

Let Um be the uniform distribution over m-dimensional row vectors of ring
elements A = [a1, a2, . . . , am] ∈ R1×m

q . The smoothness proof from [13] can
be adapted to this specific ring case (proof in App. A). A more general ring
regularity result can be found [27, Theorem 7.4], but unfortunately it gives a
larger bound (by a factor n) on required standard deviation s than our specialized
lemma.

Lemma 4 (Smoothness Lemma). Let Rq = Z[X]/(Φ2n(X), q) for n ≥ 4 a

power of 2 and q = 3k a power of 3. Let w ≥ 2�log2 q�+ 2 and s ≥ ω(
√
lnnw).

With overwhelming probability over the choice of A ← Uw, if xi ← DR,s (for
i = 1, . . . , w) are chosen independently at random, then the sum

∑
i ai · xi is

within negligible statistical distance from the uniform distribution over R.

A handy corollary used several time in our proof is the following.

Corollary 2 (Min-entropy bound). Set Rq as above, and let w ≥ 2�log2 q�+
3, s ≥ ω(

√
lnnw). With overwhelming probability over the choice of A ← Uw,

if xi ← DR,s (for i = 1, . . . , w) are chosen independently at random, then for
any nonzero vector V ∈ Rw \{0} the conditional min-entropy of

∑
i vi ·xi given∑

i ai · xi is at least Ω(n).

2.4 Lattice Trapdoors

We use the strong lattice trapdoor construction and algorithms of [29]. For
a modulus q = 3k and integer dimension n, define the gadget matrix G =[
In | 3 · In | . . . | 3k−1 · In

]
∈ Zn×kn

q .

Improved Short Lattice Signatures in the Standard Model 343

Definition 3. For any A ∈ Zn×(m+kn)
q , and (invertible) H ∈ Zn×n

q , a G-

trapdoor for A with tag H is a matrix R ∈ Zm×kn
q such that A(R, I) = HG.

The definition is extended to trapdoors R ∈ Zm′×kn
q with m′ ≤ m by padding

them with zero columns so that [R,O] ∈ Zm×kn
q .

The quality of a trapdoor R is measured by the spectral norm s1(R), and [29]
gives efficient algorithms to generate uniformly randommatricesA together with
high quality trapdoors, and to sample cosets Λ⊥

u (A) with Gaussian distribution
Ds for sufficiently large s. Notice that the tag H can immediately be recovered
from A and R as the first block of HG, and does not need to be specified
explicitly. But when one says that R is a trapdoor, it is usually assumed that
the associated tag H is an invertible matrix.

Theorem 3 ([29]). There is an efficient algorithm SampleD(A,u,R, s) that

on input a matrix A ∈ Zn×(m+kn)
q , a syndrome u ∈ Zn

q , a G-trapdoor R ∈
Zm×kn
q for A, and parameter s > ω(

√
logn) · s1(R), produces a sample from the

distribution DΛ⊥
u (A),s.

The efficient trapdoor generation algorithm of [29] follows immediately from
the definition of G-trapdoor: one simply chooses A′ ∈ Zn×m

q uniformly at ran-

dom, samples a trapdoor matrix R ∈ Zm×nk
q with small entries, and outputs

A = [A′,HG − A′R]. As pointed out in [29], the algorithm is immediately
adapted to ideal lattices, using the observation that the identity matrix In is
precisely the matrix corresponding to the ring element 1 ∈ R, so the gadget ma-
trixG can be regarded as a row vector of ring elements [1, 3, 9, . . . , 3k−1] ∈ R1×k.
The trapdoor generation algorithm is then analyzed using Theorem 4, and the
trapdoor quality is bounded applying Fact 2 to the concatenation of subgaussian
random variables ri ← DR,s ≡ Dn

Z,s. The formal result is stated below.

Theorem 4. There is a polynomial time algorithm GenTrap(A′,H, s) that on
input a matrix A′ ∈ R1×w

q , tag H ∈ Rq, and parameter s > ω(
√
lnnw), outputs

a matrix A′′ ∈ R1×k
q and a G-trapdoor R ∈ Rw×k

q for A = [A′,A′′] with tag H

such that s1(R) = s ·O(
√
w+

√
k+ω(

√
logn)). Moreover, if w ≥ 2(�log2 q�+1)

then with overwhelming probability over the choice of A′ ← Uw, the distribution
of A′′ is statistically close to uniform.

In order to allow for the generation of trapdoors for multiple matrices that
share the same A′, we made A′ an explicit input to the trapdoor genera-
tion algorithm. When A′ ← Uw is chosen freshly at random, we simply write
GenTrap(w,H, s) and let GenTrap output the whole A = [A′,A′′].

Notice that G-trapdoors generated in the ring setting also satisfy the defi-
nition of G-trapdoor for general lattices. So, Theorem 3 can be used as it is,
simply by viewing ring trapdoors R ∈ Rw×k

q as matrices R ∈ Zwn×kn under
the standard embedding from R to the subring of anticirculant matrices. For
convenience, we reformulate Theorem 3 as a corollary specialized to the ring
setting.

344 L. Ducas and D. Micciancio

Corollary 3. There is an efficient algorithm SampleD(A,u,R, s) that on input

a matrix A ∈ R1×(w+k)
q , a syndrome u ∈ Rq, a G-trapdoor R ∈ Rw×k

q for A

with invertible tag H ∈ R, and parameter s > ω(
√
logn) · s1(R), produces a

sample statistically close to the distribution DΛ⊥
u (A),s.

We remark that GenTrap can be called with arbitrary (not necessarily in-
vertible) tags H. The algorithm still outputs a uniformly random A and small
s1(R), but the inversion algorithm of Corollary 3 cannot be used with such
invalid trapdoors.

3 Our Scheme

The scheme is parametrized by an integer n which we assume is a power of 2,
and a modulus q = 3k which we assume to be a power of 3. (Other parameter
settings are possible, but we consider these specific values for concreteness.)
These parameters define the ring Rq = Z[X]/(Φ2n(X), q), where (for n a power
of 2) Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n. The scheme
also uses the parameters w = 2�log2 q� + 2, m = w + k, s = n3/2 · ω(logn)3/2,
and a collection of tags defined below. We recall that the polynomial Φ2n(X) is
irreducible in Z[X], but it can be factored in Fp[X] for some primes p. Our choice
of q = 3k ensures that, in F3[X], the polynomial Φ2n(X) factors into the product
of just 2 irreducible polynomials of degree n/2. (See Fact 1.) In particular, by
Corollary 1, any nonzero polynomial of degree less than n/2 with coefficients in
{0,±1} is invertible in Rq.

Tags For any real constants c > 1 and α ≥ 1
c−1 (fixed throughout the rest of this

section) define the sets of tag prefixes Ti = {0, 1}ci of (strictly increasing) lengths
c0 = 0, ci = �αci� for i ∈ {1, . . . , d} where d = �logc(n/(2α))� = O(log n). We
identify each tag prefix t = [t0, . . . , tci−1] ∈ Ti with a corresponding ring element
t(X) =

∑
j<ci

tjX
j ∈ Rq with binary coefficients tj ∈ {0, 1} and degree less

than ci ≤ cd ≤ n/2. It follows that for any two distinct tag prefixes t, t′ ∈ Ti,
the difference (t(X)− t′(X)) is invertible in Rq. For any full tag t ∈ T = Td and
i ≤ d, we write t≤i ∈ Ti for its prefix of length ci, and t[i] for the (ring) difference
t≤i(X)− t≤i−1(X) ∈ Rq.

Unlike previous work using tags [29,11,9], our construction relies not only
on the algebraic (invertibility) properties of tags, but also on their geometric
properties, described in the following lemma.

Lemma 5. For any i ≤ d and tags t, t′ ∈ T , one has s1((t− t′)[i]) ≤ ci − ci−1.

Proof. Since the difference (t−t′)[i] is a trinary polynomial with at most ci−ci−1

nonzero coefficients, we have ‖(t− t′)[i]‖1 ≤ ci − ci−1. It follows from Lemma 3
that s1((t− t′)[i]) ≤ ‖(t− t′)[i]‖1 ≤ ci − ci−1.

Improved Short Lattice Signatures in the Standard Model 345

3.1 Our Scheme

Key Generation naSS.KeyGen(n): The key generation algorithm runs (A,R)←
GenTrap(w, I, σ) with σ = ω(

√
logn), and chooses A[0],A[1], . . .A[d],U ∈ R1×k

q

and v ∈ Rq uniformly at random. It then outputs the secret key sk = R, and
public key pk = (A,A[0],A[1], . . .A[d],U,v). The public key implicitly defines a

collection of matrices At = [A|A[0] +
∑d

i=1 t[i] ·A[i]] indexed by the tags t ∈ T .
Since σ = ω(

√
logn), by Theorem 4 and Lemma 2, the distribution of A ∈

R1×m
q is statistically close to Um, and R is a G-trapdoor for A (and therefore

also for all At) with invertible tag I and quality s1(R) ≤
√
n · ω(log n).

Signature naSS.Sign(sk = R,μ ∈ {0, 1}nk ⊂ Rk
q): Parse μ as a vector of Rk

q

splitting the nk bits into k binary polynomials. Choose a uniformly random tag
t ∈ T , and compute the matrix At and ring element u = U · μ + v. Then, use
the G-trapdoor R to sample a vector s← SampleD(A,u,R, s). Output the pair
σ = (t, s) as the signature.

Verification naSS.Verif(pk,μ ∈ {0, 1}nk ⊂ Rk
q , σ = (t, s)): Compute At and

u = U · μ + v as in the signing algorithm. Then, check that ‖s‖ ≤ s
√
nm and

that At · s = u.

Correctness The correctness of the scheme is easily verified: Since s > ω(
√
logn)·

s1(R), by Corollary 3 the vector s produced during the signature generation
process follows the distribution DΛ⊥

u (At),s and has length at most s
√
nm =

O(s
√
nk) with overwhelming probability. So, the signature (t, s) is accepted by

the verification algorithm.

3.2 Security Proof

The security of the scheme is based on the following homomorphic property of
G-trapdoors over rings. We remark that the property makes essential use of the
commutativity of matrices corresponding to ring elements in Rq, so it does not
trivially adapts to general lattices, unless one restricts the set of tags to scalar
matrices.

Lemma 6. For i = 0, . . . , d, let R[i] ∈ Rw×k be a G-trapdoor for [A,A[i]] with

tag H[i] ∈ Rq, where A[i] ∈ R1×k
q . Then, any linear combination R =

∑
i ci ·R[i]

with ci ∈ Rq is a G-trapdoor for [A,
∑

i ciA[i]] with tag H =
∑

i ciH[i].

Proof. By definition of G-trapdoor, we know that [A,A[i]](R[i], I) = H[i]G for
all i. Therefore[

A,
∑

i
ciA[i]

]
(R, I) = AR+

∑
i
ciA[i] =

∑
i
ci(AR[i] +A[i])

=
∑

i
ci[A,A[i]](R[i], I) =

∑
i
ciH[i]G = HG.

Therefore R is a G-trapdoor with tag H.

346 L. Ducas and D. Micciancio

Theorem 5 (EUF-naCMASecurity). Under the RingSISn,m,q,β assumption

for β = Õ(n7/2), the above scheme naSS is EUF-naCMA secure. More pre-
cisely, if there exists an attacker A against EUF-naCMAnaSS that runs in time
T , makes at most Q queries where 1 ≤ Q ≤ 2o(n) and succeeds with probability
ε ≥ 2−o(n), then, there exists an algorithm SA that runs in time T ′ = T+poly(n),

and solves SIS(n,w, q, β) with probability ε′ ≥ Ω
(

ε1+c

Q2c

)
.

The rest of the section is devoted to the proof of the theorem.

Confined Guessing Stage We assume we have an attacker A against the EUF-
naCMA security of naSS that makes at most Q = 2o(n) signature queries, and
succeeds with probability ε ≥ 2−o(n). Let i	 the smallest index such that 2Q2/ε ≤
|Ti	 |. (Notice that such index exists because 2Q2/ε = 2o(n) ≤ 2�

n
2c � ≤ |T |.) This

guarantees that, if one chooses Q tags at random in Ti	 , then they will be all
distinct except with probability at most ε/2.

The simulator S receives Q non-adaptive signature queries μ(0) . . .μ(Q−1)

from A. For each message μ(j), the simulator S chooses a uniformly random tag

t(j) ∈ T . If a collision of prefixes happens (i.e., if t
(j)
≤i	 = t

(k)
≤i	 for some j �= k)

the simulator aborts. (This happens with probability at most ε/2.) Otherwise,
S chooses a prefix t	≤i	 ∈ Ti	 uniformly at random. (The rest of the tag t	

will be specified later on.) The hope is that the adversary will output a forgery
(t�, s�) such that t�≤i	 = t	≤i	 . We will make the adversary’s view statistically
independent from the choice of t	≤i	 ∈ Ti	 , so that t�≤i	 = t	≤i	 will hold true
with probability 1/|Ti	 |.

Simulating Key Generation and Signatures The simulator also receives a RingSIS
challenge, the row vector A← Um, from which it will build the public key. This
is done by running (A[i],R[i]) ← GenTrap(A,H[i], σ

′) with σ′ = ω(
√
logn)) for

i = 0, . . . , d and

H[i] =

⎧⎨⎩
0 ∈ Rq if i > i	

1 ∈ Rq if 1 ≤ i ≤ i	

−t	≤i	 if i = 0.

Since ω(
√
logn) ≤ σ′, by Theorem 4 the matrices A[i] are statistically close to

uniform. Moreover, by Fact 2, each R[i] ∈ Rm×k is a G-trapdoor for [A,A[i]]

with s1(R[i]) ≤
√
n ·ω(logn). Therefore, by Lemma 6, Rt = R[0]+

∑d
i=1 t[i] ·R[i]

is a G-trapdoor for At = [A,A[0] +
∑

i t[i] ·A[i]] with tag Ht = t≤i	 − t	≤i	 . The
quality of this trapdoor is

s1(Rt) ≤ s1(R[0]) +
∑

i
s1(t[i] ·R[i]) ≤

(
1 +
∑

i
s1(t[i])

)
max

i
s1(R[i])

≤
(
1 +
∑

i
(ci − ci−1)

)√
n · ω(logn) = n3/2 · ω(logn)

where we have used the geometric bound s1(t[i]) ≤ ci− ci−1 from Fact 5. So, the
simulator can use Rt as a trapdoor to sign messages with tag t as long as Ht

is invertible. We observe that Ht = 0 whenever t	≤i	 = t≤i	 (i.e., when t	≤i	 is a

Improved Short Lattice Signatures in the Standard Model 347

prefix of t), and it is invertible otherwise. So, the simulator can efficiently answer

all signature queries except at most for one index j such that t
(j)
≤i	 = t	≤i	 . If such

index exists, set μ	 = μ(j) and t	 = t(j) (recall that we’ve only chosen the prefix
t	≤i	 of t	 at the confined guessing stage), otherwise S chooses a random μ	

and a random t	 extension of t	≤i	 . We will use our last degree of freedom v to
“program” a signature for this only message μ	: choose a signature s	 ← Dm

R,s,
and set v = At	s

	−Uμ	. Applying Lemma 4, we check that v is close to uniform
and independent of At	 , U and μ. This shows how to efficiently simulate public
key and signatures that are indistinguishable from a real attack.

Notice that we have not specified how to choose U yet. In order to for the
simulator to exploit the forgery, we want U = ARU for some RU with small
entries. We can set RU ← DR,σ′ so that, by Lemma 4, U = ARU is statistically
close to uniform, and s1(RU) =

√
n · ω(logn).

Exploiting the forgery After all those shenanigans from the simulators S, with
probability at least ε/2, the adversary outputs a forgery (t�, s�) for some message
μ� of his choice. The simulator’s secret hope that t�≤i	 = t	≤i	 is fulfilled with
probability 1/|Ti	 |; if not, S aborts. Otherwise we have

At	 · s	 = U · μ	 + v and At� · s� = U · μ� + v

Recall that for any tag t ∈ T we have At = [A|HtG − ARt] (Rt is a G-
trapdoor of At with tag Ht); additionally the condition t�≤i	 = t	≤i	 ensures
Ht	 = Ht� = 0. We derive

[A|−ARt	 |−ARU] ·
[

s	1
s	2
μ	

]
= v = [A|−ARt� |−ARU] ·

[
s�1
s�2
μ�

]
.

In particular we obtain Aw = 0 for

w = (s	1 − s�1 − (Rt	 · s	2 −Rt� · s�2)−RU(μ	 − μ�)) .

Quite obviously, w is small (we will quantify below). Less obviously, it is
nonzero, except with negligible probability. We split our analysis into 4 different
cases, corresponding to different types of forgeries (μ	, t	, s) �= (μ�, t�, s�):

case 1 s	2 �= s�2. Even revealing RU and all R[i] for i > 0, one has that R[0] ·
(s	1 − s�1) conditioned on the knowledge of Ā and A[0] = AR[0] contains
at least Ω(n) bits of min-entropy, using Corollary 2. In particular the
probability that w = 0 is less than 2−Ω(n).

case 2 μ	 �= μ�. Even revealing all R[i] for i ≥ 0, one has that RU · (s	1 − s�1)
conditioned on the knowledge of Ā andU = ARU contains at leastΩ(n)
bits of min-entropy, using Corollary 2. In particular the probability that
w = 0 is less than 2−Ω(n).

case 3 s	1 = s�1, t	 �= t�. Choose some i such that t	[i] �= t�[i]. Even revealing RU

and all R[j] for j �= i, one has that R[i] ·s	1 conditioned on the knowledge

348 L. Ducas and D. Micciancio

of Ā and A[i] = AR[i] contains at least Ω(n) bits of min-entropy, using
Corollary 2. So does (t	[i] − t�[i]) · R[i] · s	1 since t	[i] − t�[i] is an invertible

element of Rq (Corollary 1). In particular the probability that w = 0 is
less than 2−Ω(n).

case 4 s	2 = s�2,μ	 = μ�, t	 = t�, s	1 �= s�1. In this case one notices that w =
s	1 − s�1 �= 0 and concludes.

Size of the extracted SIS solution Because s	, s� are valid signatures, ‖s	‖, ‖s�‖ ≤
s
√
m ≤ n2w ·ω(logn)3/2. Additionally s1(Rt) ≤ n3/2 ·ω(logn) for any tag t ∈ T ,

as proved above, and ‖μ	‖, ‖μ�‖ ≤
√
m = O(

√
nk) and RU ≤

√
n · ω(logn).

Combining all those bounds we obtain

‖w‖ ≤ n7/2 · logn · ω(logn)5/2.

Success probability of the simulation The success probability ε′ of the simulator
is at least (ε− ε/2)/|Ti	 | − 2−Ω(n) where

– ε is the success probability of the attacker,
– ε/2 bounds the probability of a collision of tags,
– 1/|Ti	 | is the probability that the confined guess is correct, i.e., t�≤i	 = t	≤i	 ,

and
– 2−Ω(n) bounds the probability that the extracted SIS solution is zero.

Our choice of i	 (see confined guessing stage) guarantees that 2ci	−1 < 2Q2

ε ≤
2ci	 = |Ti	 |. We also have ci	 ≤ αci

	

= c(αci
	−1) < c(ci	−1 + 1). Therefore

|Ti	 | = 2ci	 ≤ 2c·(ci	−1+1) ≤
(

4Q2

ε

)c
. Overall the success probability of solving

the SIS instance is at least

ε′ ≥ ε

2

(
ε

4Q2

)c

− 2−Ω(n) = Ω

(
ε1+c

Q2c

)
.

Acknowledgments. The authors wish to thank Sorina Ionica for helpful conver-
sations, as well as the anonymous CRYPTO’14 reviewers for pointing out several
issues in a preliminary version of this paper. This research was supported in part
by theDARPAPROCEEDprogramandNSF grantCNS-1117936.Opinions, find-
ings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of DARPA or NSF.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

Improved Short Lattice Signatures in the Standard Model 349

3. Ajtai, M.: Generating hard instances of lattice problems. In: Complexity of Compu-
tations and Proofs, Quaderni di Matematica, vol. 13, pp. 1–32 (2004); Preliminary
version in STOC 1996

4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of STOC 1997, pp. 284–293. ACM (May 1997)

5. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,
A.: Swifftx: A proposal for the sha-3 standard. Submission to NIST (2008),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/SWIFFTX.zip

6. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: CT-RSA, pp. 28–47 (2014)

7. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

8. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing: New sig-
natures from standard assumptions. Cryptology ePrint Archive, Report 2013/171
(2013), http://eprint.iacr.org/2013/171

9. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

10. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Report 2010/086 (2010), http://eprint.iacr.org/2010/086

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. Journal of Cryptology 25(4), 601–639 (2012)

12. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bi-
modal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
Victoria, British Columbia, Canada, May 17–20, pp. 197–206. ACM Press (2008)

14. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

15. Hoffstein, J., Pipher, J., Schanck, J., Silverman, J.H., Whyte, W.: Practical signa-
tures from the partial fourier recovery problem. Cryptology ePrint Archive, Report
2013/757 (2013), http://eprint.iacr.org/2013/757

16. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

17. Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under stan-
dard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 333–350. Springer, Heidelberg (2009)

18. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

19. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (October
1979)

20. Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and its
Applications, vol. 20, Addison-Wesley, Reading (1983)

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/SWIFFTX.zip
http://eprint.iacr.org/2013/171
http://eprint.iacr.org/2010/086
http://eprint.iacr.org/2013/757

350 L. Ducas and D. Micciancio

21. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (2009)

22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

23. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

24. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

25. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

26. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 54–72. Springer, Heidelberg (2008)

27. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 35–54. Springer, Heidelberg (2013)

28. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007); Preliminary ver-
sion in FOCS 2002

29. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

30. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measure. SIAM Journal on Computing 37(1), 267–302 (2007); Preliminary version
in FOCS 2004

31. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

32. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Proceedings of STOC, pp. 478–487. ACM (June 2007)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of ACM 56(6), 34 (2009); Preliminary version in STOC 2005

34. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, Baltimore, Maryland, USA, May 14-16, pp. 387–394. ACM
Press (1990)

35. Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based signa-
tures from lattices without random oracles. In: Sendrier, N. (ed.) PQCrypto 2010.
LNCS, vol. 6061, pp. 182–200. Springer, Heidelberg (2010)

36. Seo, J.H.: Short signatures from Diffie-Hellman: Realizing short public key. Cryp-
tology ePrint Archive, Report 2012/480 (2012),
http://eprint.iacr.org/2012/480

37. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
CoRR, abs/1011.3027 (2010), http://www-personal.umich.edu/~romanv/
papers/non-asymptotic-rmt-plain.pdf

http://eprint.iacr.org/2012/480
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

Improved Short Lattice Signatures in the Standard Model 351

A Missing Proofs

Fact 2. For a vector v ∈ Rn over ring R, let Diag(v) denotes the diagonal
matrice with entries v1 . . . vn. Notice that the component wise product of two
vectors f + g can be written as the matrix-vector product Diag(f) ·g. This gives
the identity σ(f · g) = Diag(σ(f)) · σ(g) for f, g ∈ R with σ : R → Cn denoting
the canonical embedding:

σ : f ∈ R �→ (f(ω1), . . . f(ω�)) ∈ Cn where ω� = e(2�−1)ıπ/n

. Let R = (ri,j)← Dw×k
R,s ; and set

D =

[D1,1 ··· D1,k

...
...

Dw,1 ··· Dw,k

]
∈ Cnw×nk and Di,j = Diag(σ(ri,j)) ∈ Cn×n.

We extend the canonical embedding σ : R → Cn to vectors in Rd as its
componentwise application; σ(v) = (σ(v1), . . . σ(vk)) ∈ Cnk. With this notation,
we have σ(R ·v) = D · σ(v); and because the canonical embedding σ is a scaled
isometry, we have s1(R) = s1(D).

Permuting rows and column, D can be rewritten as the block-diagonal ma-
trix B = Diag(B1, . . .Bn) ∈ Cnw×nk, B� ∈ Cw×k where the coefficients of B�

are all the embeddings σ�(ri,j) = ri,j(ω�) for (i, j) ∈ {1 . . .w} × {1 . . . k}. The
coefficients of Re(B�) (the real part of B�) are independent and sub-gaussian of
parameter s

√
n. Indeed

Re(B�) =

n−1∑
k=0

Re(ωk
�) · (ri,j)k

where the (ri,j)k are independent and sub-gaussian of parameter s while |Re(ωk
�)|

≤ 1. Therefore by Lemma 1

s1(Re(B�)) ≤ s
√
n · O(

√
w +

√
k + ω(

√
logn))

with overwhelming probability. The same results hold for the imaginary part
Im(B�) of B�. We conclude

s1(D) ≤ s1(B) ≤ max
�

s1(B�) ≤ max
�

√
s1(Re(B�))2 + s1(Im(B�))2

≤ s
√
n ·O(

√
w +

√
k + ω(

√
logn)).

Lemma 4. The proof is adapted from [13, Lemma 5.3]. Consider the lattice
Λ(A�) spanned by the columns of A� and the vectors of qZnw ; it is the (scaled)
dual of Λ⊥(A). We will first show that the minimal distance λ∞

1 (Λ(A�)) is at
least q/12 with overwhelming probability, and conclude using [13, Lemma 2.6]
that ηε(Λ

⊥(A)) ≤ ω(
√
lnnw) for some negligible function ε(n).

352 L. Ducas and D. Micciancio

Recall that the irreducible factors of Φ2n(X) mod 3 are P1(X) = Xn/2 +
Xn/4 − 1 and P2(X) = Xn/2 −Xn/4 − 1. Setting p1 = (P1(X)), p2 = (P2(X))
the nonzero ideals of Rq are exactly p1, 3p1 . . . 3

k−1p1; p2, 3p2 . . . 3
k−1p2 and

(1), (3), (32), . . . (3k−1).
Now, fix some x ∈ R \ {0}, et set I = (x), it is one of the nonzero ideal

listed above. Let r ≥ n/2 denotes its rank. Our goal is to prove, that over the
randomness of A ∈ R1×w, the probability that Ax falls in in the hypercube
Cw = {v ∈ Rw| ‖v‖∞ < q/12} is less than 2−O(wr). Because x is a generator of
I the distribution of Ax is uniform over Iw. We proceed by bounding the ratio
|C ∩ I|/|I|.

Case 1: (I = (3h) for h ∈ {0 . . . k − 1}). Observe that |C ∩ I| ≤ |{3hZ ∩
(−q/12, q/12)}n| ≤ �3k−h/6�n; which leads to

|C ∩ I|/|I| ≤
(
3k−h/6 + 1

3k−h

)n

≤
(
1

6
+

1

3k−h

)n

≤ 2−n.

Case 2: (I = 3hpi for h ∈ {0 . . . k−1}). Start by noting that any element e of I

can be uniquely written e = Pi(X)·s where s =
∑n/2−1

i=0 siX
i is a polynomial and

of degree strictly less than n/2 in the ideal (3h) ofR. Also note that ‖e‖∞ ≤ q/12
implies ‖s‖∞ ≤ q/12, indeed for i ∈ {0 . . . n/4 − 1} we have ei = −si and for
i ∈ {n/4 . . . n/2− 1} we have ei+n/2 = si. Using a similar counting argument on
valid values of s we derive

|C ∩ I|/|I| ≤
(
3k−h/6 + 1

3k−h

)n/2

≤
(
1

6
+

1

3k−h

)n/2

≤ 2−n/2.

Taking the union bound over all nonzero x we conclude that λ∞
1 (Λ(A�)) ≥ q/12

except with probability qn · 2−nw/2 ≤ 2−Ω(n).

Corollary 2. Without loss of generality assume that v1 �= 0. Applying the previ-
ous Lemma 4 on

∑
i≥2 ai ·xi, the knowledge of

∑
i ai ·xi = a1 ·x1 +

∑
i≥2 ai ·xi

reveals only negligible any information about x1. Also note that x1 mod 3 is neg-
ligibly close to uniform (ηε(3Z) ≤ ω(

√
lnn) for some negligible function ε(n)).

Setting I = (v1) �= (0) we deduce that v1 · x1 mod 3I is almost uniform
in I/3I. Recall from the previous proof that the only nonzero ideals of Rq

are exactly p1, 3p1 . . . 3
k−1p1; p2, 3p2 . . . 3

k−1p2 and (1), (3), (32), . . . (3k−1) where
both p1 and p2 are ideals of rank n/2. This implies that |I/3I| = 3n/2 or 3n. We
conclude that v1 ·x1 has at least Ω(n) bits of entropy and so has

∑
i vi ·xi.

New and Improved

Key-Homomorphic Pseudorandom Functions

Abhishek Banerjee	 and Chris Peikert		

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Abstract. A key-homomorphic pseudorandom function (PRF) family
{Fs : D → R} allows one to efficiently compute the value Fs+t(x) given
Fs(x) and Ft(x). Such functions have many applications, such as dis-
tributing the operation of a key-distribution center and updatable sym-
metric encryption. The only known construction of key-homomorphic
PRFs without random oracles, due to Boneh et al. (CRYPTO 2013), is
based on the learning with errors (LWE) problem and hence on worst-
case lattice problems. However, the security proof relies on a very strong
LWE assumption (i.e., very large approximation factors), and hence has
quite inefficient parameter sizes and runtimes.

In this work we give new constructions of key-homomorphic PRFs that
are based on much weaker LWE assumptions, are much more efficient in
time and space, and are still highly parallel. More specifically, we improve
the LWE approximation factor from exponential in the input length to
exponential in its logarithm (or less). For input length λ and 2λ security
against known lattice algorithms, we improve the key size from λ3 to λ
bits, the public parameters from λ6 to λ2 bits, and the runtime from λ7

to λω+1 bit operations (ignoring polylogarithmic factors in λ), where
ω ∈ [2, 2.373] is the exponent of matrix multiplication. In addition, we
give even more efficient ring-LWE-based constructions whose key sizes,
public parameters, and incremental runtimes on consecutive inputs are
all quasi-linear Õ(λ), which is optimal up to polylogarithmic factors. To
our knowledge, these are the first low-depth PRFs (whether key homo-
morphic or not) enjoying any of these efficiency measures together with
nontrivial proofs of 2λ security under any conventional assumption.

1 Introduction

A pseudorandom function (PRF) family [GGM84] F = {Fs : D → R} is a finite
set of (deterministic) functions with common domain D and range R (both

� Research supported by the second author’s grants.
�� This material is based upon work supported by the National Science Foundation un-

der CAREER Award CCF-1054495, by the US-Israel Binational Science Foundation
Grant 2010296, by the Alfred P. Sloan Foundation, and by the Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under Contract No. FA8750-11-C-0098. The views expressed are those of the authors
and do not necessarily reflect the official policy or position of the National Science
Foundation, the BSF, the Sloan Foundation, DARPA or the U.S. Government.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 353–370, 2014.
c© International Association for Cryptologic Research 2014

354 A. Banerjee and C. Peikert

finite), for which a randomly chosen Fs ← F cannot be efficiently distinguished
from a uniformly random function U : D → R, given adaptive oracle access. The
index s of function Fs is often called its (secret) key or seed. The family F is key
homomorphic if the set of keys has a group structure and if there is an efficient
algorithm that, given Fs(x) and Ft(x) (but not s or t), outputs Fs+t(x).

Naor, Pinkas, and Reingold [NPR99] constructed, in the random oracle model,
a very simple key-homomorphic PRF family based on the decisional Diffie-
Hellman problem, and gave applications like distributing the operation of a
Key Distribution Center. Recently, Boneh et al. [BLMR13] constructed the
first key-homomorphic PRFs without random oracles, and described many more
applications (all of which are very efficient in their use of the PRF), includ-
ing symmetric-key proxy re-encryption, updatable encryption, and PRFs secure
against related-key attacks (cf. [BC10, LMR14]). The construction of Boneh et
al. is based on the (appropriately parameterized) learning with errors (LWE)
problem [Reg05], and builds upon ideas used in the non-key-homomorphic LWE-
based PRFs of Banerjee, Peikert, and Rosen [BPR12].

One drawback of the construction and proof from [BLMR13] is its rather
strong LWE assumption and, by consequence, large parameters and runtimes.
For example, to obtain a PRF of input length λ with exponential 2λ provable
security against known lattice attacks, the secret keys and public parameters
respectively need to be at least λ3 and λ6 bits, and the runtime to evaluate the
function is at least λ7 bit operations (to produce λ2 output bits), not counting

some polylogarithmic logO(1) λ factors. It is worth noting that among the several
LWE-based PRFs given in [BPR12], the most highly parallelizable “direct” con-
struction (which can be implemented in TC0 ⊆ NC1) relies on roughly the same
strong assumptions and so has similarly low efficiency as the one from [BLMR13].
However, the synthesizer-based construction (in TC1 ⊆ NC2) and sequential
GGM-based one from [BPR12] can be proved secure under much weaker LWE
assumptions, and hence can have much better parameters and runtimes. A nat-
ural question, therefore, is whether there exist key-homomorphic PRFs with
similar security and efficiency characteristics.

Our results. In this work we answer the above question in the affirmative, by
giving new constructions of key-homomorphic PRFs that have substantially bet-
ter efficiency, and still enjoy very high parallelism. As compared with [BLMR13],
we improve the key size from λ3 to λ bits, the public parameters from λ6 to λ2

bits, and the runtime from λ7 to λω+1 bit operations (always omitting logO(1) λ
factors), where ω ∈ [2, 2.373] is the exponent of matrix multiplication. Functions
having these parameters can be implemented in TC1 ⊆ NC2, though seemingly
not in TC0 or NC1.

We also give even more efficient key-homomorphic PRFs based on the ring-
LWE problem [LPR10, LPR13]. Compared with the ring-based analogue of

[BLMR13], and again ignoring logO(1) λ factors, here our keys and public param-
eters are only λ bits (improving upon λ3 and λ4, respectively), and the runtime

New and Improved Key-Homomorphic Pseudorandom Functions 355

is only λ2 bit operations to produce λ output bits (from λ5 to produce λ2).
In addition, the incremental computation of our PRF on successive inputs
(e.g., in a counter-like mode) has runtime only λ. See Figure 1 for a full compar-
ison with [BPR12, BLMR13].

To our knowledge, ours are the first low-depth PRFs (whether key homo-
morphic or not) having nontrivial proofs of exponential 2λ security under any
conventional assumption along with quasi-optimal Õ(λ) key sizes or incremen-
tal runtimes, or quasilinear Õ(λ) nonincremental runtime per output bit. For
example, the GGM construction [GGM84] can have small keys and quasilinear
nonincremental runtime per output bit (using a quasi-optimal PRG), but it is
highly sequential. The Naor-Reingold constructions [NR95, NR97], which are
highly parallel, have at least quadratic λ2 key sizes and runtime per output
bit, even assuming exponential security of the underlying hard problems. And
factoring-based constructions [NRR00] fare much worse due to subexponential-
time factoring algorithms.

In their parallelism and underlying LWE assumptions, our functions are qual-
itatively very similar to the synthesizer- and GGM-based ones from [BPR12]
(see Figure 1); however, the constructions and proofs are completely different.
Instead, our construction can be seen as a substantial generalization of the one
of Boneh et al. [BLMR13], in that theirs is an instantiation of ours with a linear-
depth “left spine” tree. By contrast, our construction can be securely instantiated
with any binary tree, thanks to a new proof technique that may be of use else-
where. The shape of the tree determines the final parameters and parallelism of
the resulting function: roughly speaking, its “left depth” determines the strength
of the LWE assumption in the proof, while its “right depth” determines its paral-
lelism. Interestingly, a complete binary tree turns out to be very far from optimal
for the parameters we care about. Optimal trees can be found efficiently using
dynamic programming, and provide input lengths that are roughly the square
of those yielded by complete binary trees. This is all discussed in detail in the
next section, where we present and analyze our construction.

Other related work. Our construction is reminiscent of those from several recent
works on fully homomorphic encryption, attribute-based encryption, and gar-
bled circuits, e.g., [GSW13, BV14, BGG+14]. In particular, these works obtain
relatively good LWE assumptions and parameters by appropriately scheduling
“bit decomposition” operations to ensure small noise growth, usually at the ex-
pense of increased sequentiality. Our work also falls within this theme, though
our proof techniques are completely different.

Organization. In Section 2 we give our construction and a detailed analysis
of its security and efficiency. In Section 3 we give the proof of the security
theorem, first providing an overview of the key ideas in Section 3.1, and giving the
formal proof in Section 3.3 (after recalling some necessary technical background
in Section 3.2).

356 A. Banerjee and C. Peikert

Reference KH? Expan Sequen Key Params Time/Out Out

this work Y 1 λ− 1 λ [λ] λ2 [λ] λω [λ] λ [λ]

this work Y log4 λ log4 λ λ [λ] λ2 [λ] λω [λ] λ [λ]

[BLMR13] Y λ− 1 1 λ3 [λ3] λ6 [λ4] λ5 [λ3] λ2 [λ2]

[BPR12, GGM] N 1 λ λ [λ] λ2 [λ] λ2 [λ] λ [λ]

[BPR12, synth] N log2 λ log2 λ λ3 [λ2] 0 [0] λω−1 [λ] λ2 [λ]

[BPR12, direct] N λ 1 λ5 [λ3] 0 [0] λ4 [λ2] λ2 [λ2]

Fig. 1. Example instantiations of our key-homomorphic PRF (for input length λ and
provable 2λ security against the best known lattice algorithms) as compared with prior
lattice-based PRFs. “KH” denotes whether the construction is key homomorphic, while
“Expan” and “Sequen” are respectively the expansion and sequentiality (as defined in
Equations (2.4), (2.7)) of the tree T used in the instantiation (or, for prior constructions,
their close analogues). Omitting polylogarithmic logO(1) λ factors, “Key” and “Params”
are respectively the bit lengths of the secret key and public parameters; “Time/Out”
is the best known runtime (in bit operations) per output bit, where ω ∈ [2, 2.373] is
the exponent of matrix multiplication; and “Out” is the output length in bits. The
quantities in brackets refer to the ring-based construction given in Section 2.4.

2 Construction and Analysis

In this section we define and analyze our key-homomorphic PRF, and compare it
with prior LWE-based constructions. The construction involves various parame-
ters (e.g., matrix dimension n, modulus q, tree T) which are all chosen so that the
algorithms are polynomial-time in the security parameter λ. As in [BLMR13], we
work in a model where the PRF family is defined with respect to some random
public parameters that are known to all parties, including the adversary. These
parameters may be generated by a trusted party, or by the user along with the
secret key.

We first recall some standard background. For an integer modulus q ≥ 1, let
Zq = Z/qZ denote the quotient ring of integers modulo q. For an integer p ≤ q,
define the modular “rounding” function �·�p : Zq → Zp as �x�p = �pq · x�, and
extend it coordinate-wise to vectors and matrices over Zq. Let � = �log q� and
define the “gadget” (column) vector

g = (1, 2, 4, . . . , 2�−1) ∈ Z�
q,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}�
as follows: identifying each a ∈ Zq with its integer residue in {0, . . . , q − 1},
let g−1(a) = (x0, x1, . . . , x�−1) ∈ {0, 1}� where a =

∑�−1
i=0 xi2

i is the binary

New and Improved Key-Homomorphic Pseudorandom Functions 357

representation of a. Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq,
which explains our choice of notation.1

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×m
q

→ {0, 1}n�×m
by applying g−1 entry-wise. Notice that for all A ∈ Zn×m

q we have

G ·G−1(A) = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n�
q (2.1)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.
For a full (but not necessarily complete) binary tree T—i.e., one in which

every non-leaf node has two children—let |T | denote the number of its leaves. If
|T | ≥ 1 (i.e., T is not the empty tree), let T.l, T.r respectively denote the left
and right subtrees of T (which may be empty trees).

We now define our function families.

Definition 2.1. Given matrices A0,A1 ∈ Zn×n�
q and a full binary tree T of at

least one node, define the function AT : {0, 1}|T | → Zn×n�
q recursively as

AT (x) =

{
Ax if |T | = 1

AT.l(xl) ·G−1(AT.r(xr)) otherwise,
(2.2)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|
, xr ∈ {0, 1}|T.r|

.

Construction 2.1 (Key-Homomorphic PRF). The function family

FA0,A1,T,p =
{
Fs : {0, 1}|T | → Zn�

p

}
is parameterized by matrices A0,A1 ∈ Zn×n�

q , a binary tree T , and a modulus
p ≤ q, which may all be considered public parameters. A member of the family
is indexed by some s ∈ Zn

q , and is defined as

Fs(x) :=
⌊
st ·AT (x)

⌉
p
. (2.3)

For security based on LWE, we takeA0,A1 and the secret key s to be uniformly
random over Zq; see Theorem 2.1 below for a formal security statement. Similarly
to LWE, it may also be possible to prove security when the entries of s are drawn
from the LWE error distribution (see [ACPS09]). However, most applications of
key-homomorphic PRFs need to use uniformly random secret keys anyway, so
we do not pursue this question further.

Because rounding is nearly linear, i.e., �a + b�p = �a�p + �b�p + e for some
e ∈ {0,±1}, it is easy to see that the family FA0,A1,T,p defined above is “almost”

1 These are just particular definitions of g, g−1 that we fix for convenience. Our con-
structions and proofs only require that g−1 be deterministic, and that g−1(a) be a
“short” integer vector such that 〈g,g−1(a)〉 = a for all a ∈ Zq . Alternatives include
using a signed ternary decomposition, or a larger (or mixed-radix) base; the bounds
in the security theorem are easily adapted to such choices.

358 A. Banerjee and C. Peikert

additively key homomorphic, as defined in [BLMR13]. That is, for any keys Fs, Ft

in the family, we have

Fs+t(x) = Fs(x) + Ft(x) + et,

where ‖e‖∞ ≤ 1. As long as the entries of the error term e are sufficiently
smaller than the output modulus p, this near-homomorphism is sufficient for
all the applications described in [BLMR13], and for obtaining security against
related-key attacks [LMR14].

Notice that the vast majority of the cost of computing Fs(x) is in computing
AT (x), which can done “publicly” without any knowledge of the secret key s.2

This property can be very important for the efficiency of certain applications,
such as the homomorphic evaluation of Fs given an encryption of s. In addition,
notice that if AT (x) has been computed and all the intermediate matrices saved,
then AT (x

′) can be incrementally computed much more efficiently for an x′ that
differs from x in just a single bit. Specifically, one only needs to recompute the
matrices for the internal nodes of T on the path from the leaf corresponding
to the changed bit to the root. As in [BPR12], this can significantly speed up
successive evaluations of Fs on related inputs, e.g., in a counter-like mode using
a Gray code.

Relation to [BLMR13]. Our key-homomorphic PRF can be viewed as a sub-
stantial generalization of the one of Boneh et al. [BLMR13]. Specifically, their
construction can be obtained from ours by instantiating it with a tree T that
consists of a “left spine” with leaves for all its right children. Because all the
right subtrees are just leaves, the only matrices ever decomposed with G−1 are
A0 and A1. Therefore, we can replace them in the public parameters by the bi-

nary matrices Bb = G−1(Ab), yielding the construction Fr(x) = �rt ·
∏|x|

i=1 Bxi�p
from [BLMR13].3

The use of a “left-spine” tree T (as in [BLMR13]) yields an instantiation
which is maximally parallel—in our language (defined below), it has sequentiality
s(T) = 1. The major drawback is that it also has maximal expansion e(T) =
|T | − 1. In our security theorem (Theorem 2.1 below), the LWE approximation
factor and modulus q grow exponentially with e(T), so using a tree with large
expansion leads to a very strong hardness assumption, and therefore large secret
keys and public parameters. By contrast, using trees T with better expansion-
sequentiality tradeoffs allows us obtain much better key sizes and efficiency. See
the discussion in the following subsections and Figure 1 for further details.

2 For a few choices of the tree T , it can be faster to compute st · AT (x) left-to-
right without explicitly computing AT (x), but such trees are rare and yield bad
parameters.

3 Here we have ignored the small detail that in our construction, the matrix Ax1

corresponding to the leftmost leaf in the tree is not decomposed, so our instantiation
is actually Fs(x) = �st · Ax1 · ∏|x|

i=2 Bxi�. However, it is easy to verify that in the
construction of [BLMR13], the secret key may be of the form rt = stG for some
s ∈ Zn

q . Then rtBx1 = stAx1 , which corresponds to our construction.

New and Improved Key-Homomorphic Pseudorandom Functions 359

2.1 Security

In our security proof, the modulus q and underlying LWE error rate, and hence
also the dimension n needed to obtain a desired level of provable security, are
largely determined by a certain parameter of the tree T which we call the expan-
sion e(T). Essentially, the expansion is the maximum number of terms of the
form G−1(·) that are ever consecutively multiplied together when we unwind the
recursive definition of AT , or AT ′ for related trees T ′ considered in the security
proof. Formally, the expansion of T is defined by the recurrence

e(T) =

{
0 if |T | = 1

max{e(T.l) + 1 , e(T.r)} otherwise.
(2.4)

This is simply the “left depth” of the tree, i.e., the maximum length of a root-
to-leaf path, counting only edges from parents to their left children.

We can now state our main security theorem.

Theorem 2.1. Let T be any full binary tree, χ be some distribution over Z
that is subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian
distribution with expectation zero), and

q ≥ p · r
√
|T | · (n�)e(T) · λω(1). (2.5)

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n�
q , the

family FA0,A1,T,p with secret key chosen uniformly from Zn
q is a secure PRF

family, under the decision-LWEn,q,χ assumption.

An outline of the proof, which contains all the main and new ideas, is given
in Section 3.1; the formal proof appears in in Section 3.3.

Notice that the modulus-to-noise ratio for the underlying LWE problem is q/r ≈
(n log q)e(T), i.e., exponential in the expansion e(T). Known reductions [Reg05,
Pei09, BLP+13] (for r ≥ 3

√
n) guarantee that such an LWE instantiation is at least

as hard as (quantumly) approximating various lattice problems in the worst case
to within ≈ q/r factors on n-dimensional lattices. Known algorithms for achiev-
ing such factors take time exponential in n/ log(q/r) = Ω̃(n/e(T)), so in order
to obtain provable 2λ security against the best known lattice algorithms, the best
parameters we can use are

n = e(T) · Θ̃(λ) and log q = e(T) · Θ̃(1). (2.6)

These parameters determine the runtimes and key sizes of the construction, as
analyzed below.

We conclude this discussion of security by remarking that, as in [BPR12,
BLMR13], and in contrast with essentially all lattice-based encryption schemes,
it is possible that our PRF is actually secure for much smaller parameters than
our proof requires. For example, taking q = poly(n) even for large e(T), with p|q
to ensure that rounding produces “unbiased” output, may actually be secure—
but we do not know how to prove it. (We also do not know of any effective attacks

360 A. Banerjee and C. Peikert

against such parameters.) The reason for this possibility is that the function itself
does not actually expose any low-error-rate LWE samples to the attacker; they
are used only in the proof as part of a thought experiment. Whether any of
the constructions from this work or [BPR12, BLMR13] can be proved secure for
smaller parameters under a standard assumption is a fascinating open question.
For the remainder of the paper, we deal only with parameters for which we can
prove security under (ring-)LWE.

2.2 Size, Time, and Depth

Here we briefly analyze the secret key and public parameter sizes, runtime, and
circuit depth of our PRFs, always normalizing to 2λ provable security under stan-
dard lattice assumptions. In some cases these quantities are not very practical
(or even asymptotically good), especially when the tree T has large expansion.
In Section 2.4 we give a much more efficient construction using ring-LWE, which
can be quasi-optimal in key size, public parameters, and depth (simultaneously).

The secret key, which is a uniformly random element of Zn
q , has size Θ(n log q),

which is e(T)2 ·Θ̃(λ) by Equation (2.6). The public parameters, being two n×n�
matrices over Zq, are Θ(n2 log2 q) = e(T)4 · Θ̃(λ2) bits.

For runtime, computing AT (x) from scratch takes one decomposition with
G−1 and one (n×n�)-by-(n�×n�) matrix multiplication over Zq per internal node
of T . (As mentioned above, incremental computation of AT (x) on related inputs
can be much faster.) Using näıve matrix multiplication, this is a total of Θ(|T | ·
n3 log2 q) ring operations in Zq, which translates to e(T)6·Θ̃(λ4) bit operations by
Equation (2.6) (even using quasi-linear-time multiplication in Zq, which is needed

only when log q �= Õ(1)). This can be improved somewhat using asymptotically
faster matrix multiplication, but still remains a rather large Ω(|T | · nω log2 q),
where ω ≥ 2 is the exponent of matrix multiplication.

For certain trees T our construction is highly parallelizable, i.e., it can be
computed by a low-depth circuit. First, notice that each Zq-entry of st ·AT (x)
(and hence each Zp-entry of the PRF output) can be computed independently.
This is because each column of AT (x) can be computed independently, by in-
duction and the fact that G−1 works independently on the columns of AT.r(xr).
Next, since linear operations over Zq can be computed by depth-one arithmetic
circuits (with unbounded fan-in), the circuit depth of our construction is pro-
portional to the maximum nesting depth of G−1(·) expressions when we fully
unwind the definition of AT . We call this the sequentiality s(T) of the tree T ,
which is formally defined by the recurrence

s(T) =

{
0 if |T | = 1

max{e(T.l) , e(T.r) + 1} otherwise.
(2.7)

This is simply the “right depth” of the tree, i.e., the maximum length of a root-
to-leaf path, counting only edges from parents to their right children.

New and Improved Key-Homomorphic Pseudorandom Functions 361

2.3 Instantiations

Here we discuss some interesting instantiations of the tree T and the efficiency
properties of the resulting functions; see Figure 1 for a summary. Generally speak-
ing, for a given tree size |T | (the PRF input length) there is a tradeoff between
expansion e(T) and sequentiality s(T). Flipping this around, given bounds e, s
we are interested in obtaining a largest possible tree T such that e(T) ≤ e and
s(T) ≤ s; let t(e, s) denote the size of such a tree. At first blush, it may be
surprising that under the simplifying restriction e = s, a complete binary tree
of depth s is very far from optimal! To see this, notice that

t(e, s) =

{
1 if e = 0 or s = 0

t(e − 1, s) + t(e, s− 1) otherwise.
(2.8)

The base cases follow from the fact that only a single leaf satisfies the bounds,
and in the recursive case, the first and second terms respectively denote the sizes
of the optimal left and right subtrees. It is easy to verify that this recurrence is
simply the one that defines the binomial coefficients :

t(e, s) =

(
e+ s

e

)
=

(
e+ s

s

)
.

One can also efficiently construct an optimal tree for given e, s using dynamic
programming.

For example, if we restrict to e = s, then by Stirling’s approximation we
get that t(e, s) =

(
2s
s

)
≈ 4s/

√
sπ. Said another way, we can get a PRF with

input length |T | where the expansion and sequentiality are both ≈ log4(|T |). By
contrast, a complete binary tree with these parameters has size only 2s ≈

√
|T |.

By Theorem 2.1 and Equation (2.6), this means we can get a PRF with input
length λ and security 2λ having sequentiality O(log λ) and secret keys of quasi-
optimal bit length Õ(λ).

By ignoring parallelism, one can reduce the expansion even further by let-
ting T be a “right spine” with leaves for all its left children. Then e(T) = 1 and
s(T) = |T |−1, yielding even better parameters: the underlying LWE assumption
has a nearly polynomial nω(1) approximation factor, and for security level 2λ

we still obtain secret keys of quasi-optimal bit length Õ(λ); moreover, here the
hidden factors are at least a logλ factor smaller than in the case above.

2.4 Ring Variant

Due to the several matrix multiplications (of dimension at least n) involved in
computing AT (x), our LWE-based construction is not very practically efficient.
Fortunately, we can obtain a much more efficient analogue based on the ring-
LWE problem [LPR10]. Here we just describe the construction and analyze its
efficiency. The proof of security based on ring-LWE proceeds in essentially the
same way as the one for our main construction, and is therefore omitted.

362 A. Banerjee and C. Peikert

For concreteness, let R ∼= Z[X]/(Xn + 1) where n is a power of two, which is
known as the 2nth cyclotomic ring. (The construction and analysis may be gen-
eralized to arbitrary cyclotomic rings using the tools developed in [LPR13].) For
a modulus q, let Rq = R/qR ∼= Zq[X]/(Xn + 1), and define a suitable “gadget”
vector g ∈ R�

q and deterministic function g−1 : Rq → R�, so that g−1(a) is “short”

and 〈g,g−1(a)〉 = a for all a ∈ Rq. (E.g., we may let g = (1, 2, 4, . . . , 2�−1) ∈ R�
q

and define g−1(a) so that each of its R-entries has {0, 1}-coefficients with respect
to an appropriate “short” Z-basis of R.) Extend g−1 to row vectors over Rq by
applying g−1 entry-wise.

Construction 2.2. Fix some row vectors a0, a1 ∈ R�
q, and for a binary tree T ,

define aT : {0, 1}|T | → R�
q recursively as

aT (x) =

{
ax if |T | = 1

aT.l(xl) · g−1(aT.r(xr)) otherwise,
(2.9)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|
, xr ∈ {0, 1}|T.r|

.
We define the function family

Fa0,a1,T,p =
{
Fs : {0, 1}|T | → R�

p

}
,

which is parameterized by row vectors a0, a1 ∈ R�
q, a binary tree T , and a

modulus p ≤ q. A member of the family is indexed by some s ∈ R (or Rq), and
is defined as

Fs(x) := �s · aT (x)�p. (2.10)

Analysis. Evaluating aT (x) from scratch takes one decomposition with g−1 and
one vector-matrix multiplication of dimension � = log q over Rq per internal
node of T , for a total of O(|T | · �2) ring operations in Rq. Ring operations in
Rq can be performed in O(n log n) scalar operations over Zq, and g−1 can be

computed in O(n log q) time. Using a tree T with expansion e(T) = Õ(1), by
Equation (2.6) we can get a PRF with input length λ and 2λ security (under
conventional assumptions) running in Õ(λ2) bit operations to output at least λ
bits. When T has polylogarithmic depth, the incremental cost per invocation is
reduced to Õ(λ) bit operations, which is quasi-optimal.

As an optimization, and analogously to the LWE-based construction, each Rq-
entry of aT (x) ∈ R�

q can be computed independently in O(|T | · �) ring operations
each. Therefore, we can compute each Rp-entry of the output (yielding at least n
output bits) in just O(|T | · �) ring operations. This may be useful in applications
that do not need the entire large output length.

3 Security Proof

In this section we prove the security theorem, Theorem 2.1, which says that
Fs(x) = �st ·AT (x)�p from Construction 2.1 is a PRF under the LWE assumption,
for appropriate parameters.

New and Improved Key-Homomorphic Pseudorandom Functions 363

3.1 Proof Outline

We start with an overview of the proof, which highlights the central (new) ideas.
(For technical reasons, the formal proof proceeds a bit differently than this out-
line, but the main ideas are the same.) The basic strategy, first used in [BPR12],
is to define a sequence of hybrid games where the function inside the rounding
operation �·�p changes in ways that are indistinguishable to the adversary, ei-
ther statistically or computationally. As in prior works [BPR12, BLMR13], these
changes include introducing small additive terms that are “rounded away” and
hence preserve the input-output behavior (with high probability), and replacing
LWE instances with uniformly random ones. In addition, we introduce a new
proof technique described within.

Let T be any full binary tree, and suppose its leftmost leaf v is at depth d > 1.
(If d = 1, then |T | = 1 and the function is trivially a PRF based on the “learning
with rounding” problem, which is as hard as LWE for our choice of parameters,
or even slightly better ones [BPR12, AKPW13].) In the real attack game, the
adversary has oracle access to Fs(·), which, by unwinding the definition of AT ,
is of the form

Fs(x) =
⌊
st ·AT (x)

⌉
p
=

⌊
st ·Ax0 ·

d∏
i=1

G−1(ATi(x
′
i))︸ ︷︷ ︸

ST (x′)

⌉
p

,

where subtree Ti is the right child of v’s ith ancestor, and x = x0‖x′ = x0‖x′
1‖

· · · ‖x′
d where |x0| = 1 and |x′

i| = |Ti| for all i.
We next consider a hybrid game in which st · Ab for b ∈ {0, 1} is replaced

by an LWE vector st ·Ab + etb, for some short error vectors e0, e1. That is, the
adversary instead has oracle access to the function

F ′
s,e0,e1

(x) :=
⌊
(st ·Ax0 + etx0

) · ST (x
′)
⌉
p
=
⌊
st ·AT (x) + etx0

· ST (x
′)
⌉
p
.

Because ex0 and any matrix of the form G−1(·) are short, etx0
· ST (x

′) is short.
More precisely, its entries are of magnitude bounded by ≈ (n log q)d, which is
much less than q/p because d ≤ e(T) and by assumption on q. Therefore, the
additive term etx0

· ST (x
′) is very unlikely the change the final rounded value,

i.e., with high probability F ′
s,e0,e1

(x) = Fs(x) for all the adversary’s queries x.
Therefore, this hybrid game is statistically indistinguishable from the real attack.

In the next hybrid game, we replace each st ·Ab+etb for b ∈ {0, 1} by uniformly
random and independent ut

b, i.e., the adversary has access to the function

F ′′
u0,u1

(x) :=
⌊
ut
x0
· ST (x

′)
⌉
p
=

⌊
ut
x0
·G−1(AT1(x

′
1))·

d∏
i=2

G−1(ATi(x
′
i))︸ ︷︷ ︸

S′
T (x′)

⌉
p

. (3.1)

Since ST (x
′) can be efficiently computed from the public parameters Ab and the

adversary’s queries x, this game is computationally indistinguishable from the
previous one, under the LWE assumption.

364 A. Banerjee and C. Peikert

At this point, we would like to be able to proceed by replacing the terms
ut
x0
·G−1(AT1(x

′
1)) with some “noisy” variants, then replace those with uniform

and independent vectors for all values of x0‖x′
1, etc. Indeed, this is possible if x

′
1

consists of a single bit (i.e., if |T1| = 1 and hence AT1(x
′
1) = Ax′

1
), using “non-

uniform LWE” exactly as is done in [BLMR13]. Unfortunately, non-uniform LWE
does not appear to be sufficient when x′

1 is more than one bit (i.e., when |T1| > 1),
because the matrices AT1(x

′
1) are not independent for different values of x

′
1. And

requiring |Ti| = 1 for all i makes T have maximal expansion e(T) = |T | − 1.
Our main new proof technique is a way to deal with the above issue. Going

back to Equation (3.1), as “wishful thinking” suppose that each ub was of the
form ut

b = stb ·G for some (uniform, say) sb ∈ Zn
q . Then the G factor would undo

the decomposition G−1(·), and the adversary would have access to the function

F ′′′
s0,s1(x) :=

⌊
stx0

·AT1(x
′
1) · S′

T (x
′)
⌉
p
=
⌊
stx0

·AT ′(x′)
⌉
p
,

where T ′ is the full binary tree obtained from T by removing its leftmost leaf v
and promoting v’s sibling subtree T1 to replace their parent. Notice that the
above function is just two independent members of our function family instanti-
ated with tree T ′. Moreover, T ′ has expansion e(T ′) ≤ e(T), because expansion
is just “left depth.” Therefore, the above function would be a PRF simply by
induction on |T |.

Unfortunately, our “wishful thinking” fails in a very strong sense: a uniformly
random ut is highly likely to be very far from any vector of the form st · G.
However, becauseGt ·Zn

q is a subgroup of Zn�
q , a uniformly random vector u ∈ Zn�

q

can be decomposed as ut = st ·G+vt where s ∈ Zn
q is uniform, and v is uniform

in (some canonical set of representatives of) the quotient group Zn�
q /(Gt · Zn

q)
and independent of s. Therefore, the function in Equation (3.1) is equivalent to
the function

F ′′′
s0,s1,v0,v1

(x) :=
⌊
stx0

·AT ′(x′) + vt
x0
· ST (x

′)
⌉
p
,

where T ′ and x′ are exactly as in the previous paragraph. Note that vb is not
short, so the extra additive term above does not simply “round away”—but we
do not need it to. The main point is that vb may be chosen independently of (and
hence without knowledge of) sb by the simulator, and then the additive term
may be efficiently computed from it and other public information. Essentially,
this allows us to complete the proof by induction on |T |. (Again, the actual proof
is structured a bit differently, to allow us to simulate the independent additive
terms inside the rounding operation.)

3.2 Additional Background

Games and indistinguishability. In our security proof, we model interaction
with the adversary through a series of probabilistic experiments called games.
For an adversary A interacting with two games H0 and H1, the distinguishing
advantage of A, which is implicitly a funtion of the security parameter λ, is
defined as AdvH0,H1(A) = |Pr[A accepts in H0] − Pr[A accepts in H1]|. Two

New and Improved Key-Homomorphic Pseudorandom Functions 365

games H0 and H1 are computationally distinguishable, denoted H0
c≈ H1, if

AdvH0,H1(A) = negl(λ) for any efficient adversary A.

Learning with errors. We use the following form of the learning with errors (LWE)
problem, due to Regev [Reg05]. For a positive integer dimension n, a modulus
q ≥ 2, and a probability distribution χ over Z, the decision-LWEn,q,χ assumption
is that for for any polynomially bounded m,w,

(A← Zn×m
q ,Bt = St ·A+Et ∈ Zw×m

q)
c≈ (A← Zn×m

q ,Bt ← Zw×m
q),

where on the left St ← Zw×n
q and Et ← χw×m. (The assumption for w = 1

implies the assumption for larger w, by a routine hybrid argument.)
For χ = DZ,r where r ≥ 3

√
n, and under mild conditions on the form

of the modulus q, the decision-LWEn,q,χ assumption holds true assuming that
various problems on n-dimensional lattices are hard for quantum algorithms
to approximate to within Õ(n · q/r) factors in the worst case [Reg05]; see
also [Pei09, BLP+13] and references therein for similar statements assuming
only classical (non-quantum) hardness.

3.3 Proof of Security Theorem

In this section we give the formal proof of Theorem 2.1.
To aid the proof we first define a couple of auxiliary function families. The

first family simply consists of the “pre-rounded” counterparts of the functions
Fs ∈ F = FA0,A1,T,p.

Definition 3.1. For A0,A1 ∈ Zn×n�
q and a full binary tree T , the family G =

GA0,A1,T is the set of functions Gs : {0, 1}|T | → Zn�
q indexed by some s ∈ Zn

q , and

defined as Gs(x) := st ·AT (x) (where we defineAT (ε) := G for the empty tree T).
We endow G with the distribution where s← Zn

q is chosen uniformly at random.

Note that Fs(x) = �Gs(x)�p.
The next family G̃ consists of functions that are certain “noisy” versions of the

functions in G. The family E of “error functions” used in the definition is a family

of functions from {0, 1}|T |
to Zn�, and is formally defined in Definition 3.5 below.

An important point is that the functions in E ∈ E have exponentially large keys,
but they may be efficiently sampled “lazily,” as values E(x) are needed. See the
discussion following Definition 3.5 for details.

Definition 3.2. For A0,A1 ∈ Zn×n�
q and a full binary tree T , the family G̃ =

G̃A0,A1,T is the set of functions G̃s,E : {0, 1}|T | → Zn�
q indexed by some Gs ∈ G

and E ∈ E = EA0,A1,T , and defined as G̃s,E(x) := Gs(x) + E(x). We endow G̃
with the distribution where Gs ← G and E ← E are chosen independently.

The proof of Theorem 2.1 consists of showing that with overwhelming prob-
ability, the rounding of Gs ∈ G agrees with the rounding of essentially any
corresponding G̃s,E ∈ G̃ on all the attacker’s queries, because the outputs of the

366 A. Banerjee and C. Peikert

error functions E ∈ E are small. This proof follows very similary to the style of
the proof of the “degree-k” PRF of [BPR12], and thus we relegate the details to
the full version. The main crux of the theorem, which we show in Theorem 3.1
below, is in proving that G̃ is a PRF family without any rounding, and hence
with rounding as well. It follows that the rounding of Gs ← G (i.e., Fs ← F)
cannot be distinguished from a uniformly random function, as desired.

We now formally define the “error function” family E = EA0,A1,T . To define
the error functions we first need a couple of simple definitions.

Definition 3.3 (Pruning). For a full binary tree T of at least one node, define
its pruning T ′ = pr(T) inductively as follows: if |T.l| ≤ 1 then T ′ := T.r;
otherwise, T ′.l := pr(T.l) and T ′.r := T.r. We let T (i) denote the ith successive
pruning of T , i.e., T (0) = T and T (i) = pr(T (i−1)).

In other words, pruning a tree node removes its leftmost leaf v and replaces
the subtree rooted at v’s parent (if it exists) with the subtree rooted at v’s
sibling. Notice that pruning cannot increase the tree’s expansion (i.e., left depth;
see Equation (2.4)): e(T ′) ≤ e(T).

Definition 3.4. Given A0,A1 ∈ Zn×n�
q and a full binary tree T of at least one

node, define the function ST : {0, 1}|T |−1 → Zn�×n� recursively as follows:

ST (x) =

{
I (the identity matrix) if |T | = 1

ST.l(xl) ·G−1(AT.r(xr)) otherwise,
(3.2)

where x = xl‖xr for |xl| = |T.l| − 1, |xr| = |T.r|.

Notice that if T ′ = pr(T) and x = x1‖x′ ∈ {0, 1}|T |
for |x1| = 1, then it follows

directly from the definitions (recalling that Aε(ε) = G) and by induction that

AT (x) = Ax1 · ST (x
′), (3.3)

G · ST (x
′) = AT ′(x′). (3.4)

Definition 3.5 (Error Functions). For public matrices A0,A1 ∈ Zn×n�
q and

a full binary tree T , the family E = EA0,A1,T consists of functions from {0, 1}|T |

to Zn�, defined inductively as follows.

– For |T | = 0, the sole function in E is defined simply as E(ε) := 0.
– For |T | ≥ 1, a function in E is indexed by some e0, e1 ∈ Zn� and E′

0, E
′
1 ∈

E ′ = EA0,A1,T ′ , where T ′ is the pruning of T . For x = x1‖x′ ∈ {0, 1}|T |
, the

function is defined as

Ee0,e1,E′
0,E

′
1
(x) := etx1

· ST (x
′) + E′

x1
(x′).

For a given error function distribution χ over Z, we endow E with the dis-
tribution where e0, e1 ← χn� and E′

0, E
′
1 ← E ′ are all chosen independently.

New and Improved Key-Homomorphic Pseudorandom Functions 367

Note that a function E ∈ E is fully specified by exponentially (in |T |) many

error vectors (namely, one ew for each w ∈ {0, 1}≤|T |
), and the value E(x) is fully

determined by those ew wherew is a prefix of x (andA0,A1). This large number of
error vectors is what prevents G̃ itself from being usable as a PRF family. However,
as needed in the proof of Theorem2.1, a functionE ← E can be sampled “lazily” as
values E(x) are needed, since each value of E(x) depends on only a small number
of the error vectors. The fact that the output of the error function is “small” with
very high probability is also used in the proof of the theorem. Proving this fact is a
standard technical exercise, and it is furnished in the full version.

We now prove that the function family G̃ from Definition 3.2 is pseudorandom.

Theorem 3.1. For any n, q ≥ 1 and error distribution χ over Z, any full binary
tree T , and over the uniformly random and independent choice of A0,A1 ∈
Zn×n�
q , the family G̃ = G̃A0,A1,T is pseudorandom, assuming the hardness of

decision-LWEn,q,χ.

Proof. We proceed through a series of games, one for each bit of the input. In
each successive game, we modify the function family G̃ a little, until we are left

with the family of all functions from {0, 1}|T |
to Zn�

q (with uniform distribution),
and we show that each successive game is computationally indistinguishable
under the LWE assumption from the theorem statement.

To define the games formally, we first need some notation. For a bit string x
of length at least i, let x(i) = x1x2 · · ·xi denote the string of its first i bits, and

let x(i) denote the remainder of the string. Where A0,A1 and T are clear from
context, let G(i) = GA0,A1,T (i) and similarly for E(i). Let P ⊂ Zn� denote an

arbitrary set of representatives of the quotient group Zn�
q /Gt · Zn

q , and define a

family of auxiliary functions V(i) = V(i)
A0,A1,T

as follows.

Definition 3.6. For public matrices A0,A1 ∈ Zn×n�
q , a full binary tree T , and

0 ≤ i ≤ |T |, the family V(i) = V(i)
A0,A1,T

consists of functions from {0, 1}|T |
to

Zn�, and is defined inductively as follows.

– The sole function in V(0) is defined simply as V (x) := 0.
– For i ≥ 1, a function in V(i) is indexed by some vw ∈ Zn� for every w ∈
{0, 1}i, and some V ′ ∈ V(i−1). The function is defined as

V{vw},V ′(x) := vt
x(i)

· ST (i−1)(x(i)) + V ′(x).

We endow V(i) with the distribution where the vw ← P and V ′ ← V(i−1) are
all chosen independently and uniformly.

Similarly to the family E of error functions, the description of a function in V(i)

consists of an exponential (in i) number of vw vectors, and can be sampled lazily.
We now define game Hi for 0 ≤ i ≤ |T |.

Game Hi. ChooseA0,A1 ← Zn×n�
q independently, and lazily sampleGsw ← G(i)

and Ew ← E(i) for each w ∈ {0, 1}i, and V ← V(i). Give the adversary A0,A1

and oracle access to the function

H(x) := Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x). (3.5)

368 A. Banerjee and C. Peikert

Claim. Game H0 corresponds to the real attack game against the family G̃, and
game H|T | corresponds to oracle access to a uniformly random function.

The first claim follows by definition of G̃ = G̃A0,A1,T , and because V(0) consists
solely of the zero function. For the second claim, for i = |T | we have x(i) = x,

x(i) = ε, and T (i) = ε (the empty tree), so by Definitions 3.1, 3.5, and 3.6,

H(x) = Gsx(ε) + Ex(ε) + V (x) = stx ·G+ vt
x + V ′(x).

Since sx ∈ Zn
q ,vx ∈ P are uniformly random and independent for each x, and

P is a set of representatives of the quotient group Zn�
q /Gt · Zn

q , the values stx ·
G+ vt

x ∈ Zn�
q are uniformly random and independent. Since V ′ is independent

of these as well, H is a uniformly random function.
It remains to prove that successive games are computationally indistinguish-

able. To do so we define the following games H ′
i for 1 ≤ i ≤ |T |.

Game H ′
i. Choose A0,A1 ← Zn×n�

q independently, and lazily sample uw ← Zn�
q

and Ew ← E(i) for each w ∈ {0, 1}i, and V ′ ← V(i−1). Give the adversaryA0,A1

and oracle access to the function

H ′(x) = ut
x(i)

· ST (i−1)(x(i)) + Ex(i)
(x(i)) + V (x). (3.6)

Claim. For 1 ≤ i ≤ |T |, games Hi and H ′
i are equivalent.

We can write each uniformly random uw ∈ Zn�
q for w ∈ {0, 1}i as ut

w = stw ·
Gt + vt

w, where sw ∈ Zn
q and vw ∈ P are uniformly random and independent.

Therefore, we can rewrite the function H ′(·) from Equation (3.6) as

H ′(x) =
(
stx(i)

·G+ vt
x(i)

)
· ST (i−1)(x(i)) + Ex(i)

(x(i)) + V ′(x)

= stx(i)
·G · ST (i−1)(x(i)) + Ex(i)

(x(i)) +
(
vt
x(i)

· ST (i−1)(x(i)) + V ′(x)
)

= Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x),

where in the final equality we have used Equation (3.4), and we have defined V (x)
to be the second parenthesized component of the previous expression. Notice that
all the functions Gsx(i)

, Ex(i)
, and V are drawn independently from G(i), E(i),

and V(i) (respectively), and this proves the claim.

Claim. For 0 ≤ i ≤ |T | − 1, games Hi and H ′
i+1 are computationally indistin-

guishable under the LWE assumption from the theorem statement.

To prove the claim, we design an efficient simulator S which receives as input a
pair of matrices (A,Bt) ∈ Zn×2n�

q ×ZQ×2n�
q , where Q = poly(λ) is the minimum

of 2i and the number of queries that the adversary makes. The simulator parses
A = [A0 | A1] where A0,A1 ∈ Zn×n�

q and gives them to the adversary. It lazily

samples a V ← V(i) and an Ew ← E(i+1) for every w ∈ {0, 1}i+1
. Then for each

New and Improved Key-Homomorphic Pseudorandom Functions 369

query x from the adversary, if a vector bt
x(i)

has not already been defined, it lets

bt
x(i)

be a previously unused row of Bt. It parses bt
x(i)

= (bt
x(i)‖0 | b

t
x(i)‖1), where

bx(i)‖b ∈ Zn�
q for each b ∈ {0, 1}. It then answers the query with the value

J(x) := bt
x(i+1)

· ST (i)(x(i+1)) + Ex(i+1)
(x(i+1)) + V (x).

We now analyze the behavior of S for the two distributions of (A,Bt) from the
decision-LWE problem. In both cases, A is uniformly random and so the public
parameters are properly distributed. When B is uniformly random, it can be
seen by inspection that the function J is drawn from the same distribution as
the function H ′ in game H ′

i+1 described in Equation (3.6), so the simulator
exactly emulates game H ′

i+1.
We now analyze the other case, namely, Bt = St · A + Et for independent

St ← ZQ×n
q and Et ← χQ×2n�. Then letting stx(i)

, (etx(i)‖0 | e
t
x(i)‖1) respectively

be the rows of St,Et corresponding to the row of Bt used as bt
x(i)

, we have

J(x) =
(
stx(i)

·Axi+1 + et
x(i)‖xi+1

) · ST (i) (x
(i+1)) + Ex(i+1)

(x(i+1)) + V (x)

= stx(i)
·AT (i) (x

(i)) +
(
et
x(i)‖xi+1

· ST (i) (x
(i+1)) +Ex(i)‖xi+1

(x(i+1))
)
+ V (x)

= Gsx(i)
(x(i)) + Ex(i)

(x(i)) + V (x),

where in the second equality we have used Equation (3.3), and in the last
expression we have defined Ex(i)

(x(i)) to be the parenthesized component from
the previous expression. Notice that by the distributions of all the variables, the
functions Gsw , Ew (for each queried prefix w ∈ {0, 1}i) and V are all drawn
independently from G(i), E(i), and V(i), so in this case the simulator exactly
emulates game Hi.

Because the two LWE input distributions are computationally indistinguish-
able by assumption and S is efficient, it follows that Hi and H ′

i+1 are computa-
tionally indistinguishable, and the claim is proved.

By repeated application of the claims above, we have that H0
c≈ H ′

1 ≡ H1
c≈

H ′
2 ≡ · · · ≡ H|T |−1

c≈ H ′
|T | ≡ H|T |, and so H0

c≈ H|T | by the triangle inequality.

This completes the proof of Theorem 3.1.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009)

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited - new reduction, properties and applications. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013)

[BC10] Bellare, M., Cash, D.: Pseudorandom functions and permutations prov-
ably secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010)

370 A. Banerjee and C. Peikert

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014)

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Hei-
delberg (2013)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC, pp. 575–584 (2013)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: ITCS, p. 1 (2014)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1984); Preliminary version in FOCS 1984

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

[LMR14] Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of
PRFs secure against related-key attacks. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer,
Heidelberg (2014)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. Journal of the ACM 60(6), 43:1–43:35 (2013);
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465.
Springer, Heidelberg (2010)

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryp-
tography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

[NPR99] Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions
and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
327–346. Springer, Heidelberg (1999)

[NR95] Naor, M., Reingold, O.: Synthesizers and their application to the parallel
construction of pseudo-random functions. J. Comput. Syst. Sci. 58(2),
336–375 (1995); Preliminary version in FOCS 1995

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. J. ACM 51(2), 231–262 (1997); Preliminary
version in FOCS 1997

[NRR00] Naor, M., Reingold, O., Rosen, A.: Pseudorandom functions and factoring.
SIAM J. Comput. 31(5), 1383–1404 (2000); Preliminary version in STOC
2000

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: STOC, pp. 333–342 (2009)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 1–40 (2005); Preliminary version in STOC
2005

Homomorphic Signatures with Efficient

Verification for Polynomial Functions

Dario Catalano1, Dario Fiore2, and Bogdan Warinschi3

1 Università di Catania, Italy
catalano@dmi.unict.it

2 IMDEA Software Institute, Spain
dario.fiore@imdea.org

3 University of Bristol, UK
bogdan@compsci.bristol.ac.uk

Abstract. A homomorphic signature scheme for a class of functions C
allows a client to sign and upload elements of some data set D on a
server. At any later point, the server can derive a (publicly verifiable)
signature that certifies that some y is the result computing some f ∈ C
on the basic data set D. This primitive has been formalized by Boneh
and Freeman (Eurocrypt 2011) who also proposed the only known con-
struction for the class of multivariate polynomials of fixed degree d ≥ 1.
In this paper we construct new homomorphic signature schemes for such
functions. Our schemes provide the first alternatives to the one of Boneh-
Freeman, and improve over their solution in three main aspects. First,
our schemes do not rely on random oracles. Second, we obtain security
in a stronger fully-adaptive model: while the solution of Boneh-Freeman
requires the adversary to query messages in a given data set all at once,
our schemes can tolerate adversaries that query one message at a time, in
a fully-adaptive way. Third, signature verification is more efficient (in an
amortized sense) than computing the function from scratch. The latter
property opens the way to using homomorphic signatures for publicly-
verifiable computation on outsourced data. Our schemes rely on a new
assumption on leveled graded encodings which we show to hold in a
generic model.

1 Introduction

Cryptographic mechanisms for building trust are essential for the shift towards
a world where weak clients leverage access to all-powerful servers to remotely
store and compute on data. Trust issues include availability of storage, privacy
of data, authenticity of delegated computation, etc. which in turn take a mul-
titude of forms. For example, privacy concerns range from simply ensuring the
secrecy of stored data, to additionally allowing for search over outsourced data
and/or optimizing storage space. This paper contributes to the area of verifi-
able computation, and specifically to the setting in which a client delegates the
computation of one or more functions F1, F2, . . . , Fn on one or more of its data
sets D1, D2, . . . , Dm. The crucial requirement here is that the answer y returned

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 371–389, 2014.
c© International Association for Cryptologic Research 2014

372 D. Catalano, D. Fiore, and B. Warinschi

by the server, purportedly the result of Fi(Dj), can be efficiently verified. Ef-
ficiency has multiple dimensions, but two are needed to avoid trivial solutions:
the client should not have to store all data Dj on which the server computes
and/or verification should be faster than simply computing Fi on Dj .

In addition to the different forms of efficiency one may require, the problem of
verifiable computation also comes in several different scenarios. For example, the
function computed by the server may be fixed or changing, the data stored may
be fixed or incrementally updated, the client may have access to multiple (non-
communicating) servers, the verification of the result may be interactive, etc. In
this work we focus on the scenario where the client has access to a single server,
he can incrementally add data on the server, the functions to be computed are
not known in advance, and the verification of the result is non-interactive and
can be done publicly.

To place our contribution in the landscape of solutions for verifiable com-
putation and to facilitate the comparison with existent solutions, we note that
previously proposed protocols for verifiable computation use one of two tech-
niques. The first type of solutions (which for brevity we call proof-based) build
on foundations going back to Micali’s computationally sound proofs [26]. The
idea is for the server to provide (or to prove knowledge of) a certificate for the NP
statement: y = F (D). The earlier work used probabilistically checkable proofs
(PCPs) [26], whereas recent results rely on succinct arguments (SNARGs) or suc-
cinct arguments of knowledge (SNARKs) [7,22] where the dependency between
the length of the statement and the proof is greatly reduced. Other protocols
where proofs are not explicitly mentioned can be thought of as instantiations
where the proofs are encrypted information-theoretic secure MAC [21,27].

The second type of solutions use homomorphic authenticators; we refer to
these constructions as authenticator-based. In these constructions, one attaches
to every input data an unforgeable authenticator. The main property is that any
operation (gate) used in the computation which takes as input correctly authen-
ticated data, produces a result together with a valid authenticator. Solutions
exist in both the symmetric and the public-key setting. Depending on how the
authenticator is verified, we distinguish between homomorphic message authen-
tication codes [24,10,4] and homomorphic signatures [9]. Clearly, the difficulty
of the problem increases with the class of functions one considers. For example,
there are numerous signature schemes homomorphic with respect to linear func-
tions over vector spaces [1,8,23,2,13,14,19,3,12]. In contrast, there has been little
progress on signature schemes homomorphic with respect to non-linear poly-
nomials. The only known construction is provided by Boneh and Freeman [9]
who construct a homomorphic signature scheme for multivariate polynomials of
constant degree.

Summary of our contribution and relation to previous work. In this paper we
provide the first alternative to the homomorphic signature scheme of Boneh and
Freeman (henceforth BF), which is the work closest to ours. Our result improves
over the BF solution in three main aspects. First, we solve a problem left open
in [9], as unlike the BF scheme, our construction does not rely on the random

Homomorphic Signatures with Efficient Verification for Polynomial Functions 373

oracle assumption. Second, our scheme is proven secure in a stronger adaptive
model: in the BF scheme the adversary is restricted to query signatures on mes-
sages belonging to a given data set all at once; in contrast, our construction is
proven secure against adversaries that can query one message at a time in a
fully adaptive way. Finally, our construction enjoys efficient verification in that
verifying a signature against a function f can be done faster than computing f
(and in particular does not require storing the input data). More accurately, this
property holds in an amortized sense: after a single (local) pre-computation of f ,
one can verify the evaluation of f on any dataset more efficiently. This property
has been recently identified, defined and realized for homomorphic MACs in [4].
Our construction is the first to achieve efficient verification for homomorphic
signatures, and therefore it opens the way to using homomorphic signatures for
verifiable computation.

We remark that other constructions of homomorphic authenticators are either
in the symmetric key setting [24,10,4], or are for the restricted class of linear
functions [1,8,23,2,13,14,19,3,12]. Below we discuss the benefits that our solu-
tion brings to the broader field of verifiable computation. We start with general
remarks on the benefits that authenticator-based solutions hold over proof-based
ones.

Incremental, compositional verifiable computation. Homomorphic
authenticators naturally give rise to incremental/composable verifiable compu-
tation: the output of some computation on authenticated data is already au-
thenticated so it can be fed as input for follow-up computation. This property is
of particular interest to parallelize computations (e.g., MapReduce). Emulating
this composition within the proof-based frameworks is possible [7] but it leads
to complex statements and less natural realizations. For an extensive discussion
of this issue see [24].

Flexible scenarios. Furthermore, homomorphic authenticators are applica-
ble to a broader range of scenarios as neither the data to be computed on, nor the
function to be applied need to be known in advance. For example the data can
be incrementally updated (by authenticating and uploading new pieces of data),
and the function to be applied can be selected at any point by the server (with-
out having to wait for some parameters generated by the client). In contrast,
in (most) proof-based solutions the function needs to be known at the moment
when data is uploaded, or a copy of the data needs to be kept locally by the
client [21,15,6,18,27,7,22]. Perhaps the biggest advantage of verifiable computa-
tion based on authenticators is that verification does not need the input data;
indeed we only need to check that the result comes with a valid authentica-
tor. Just like for incremental computation, an analogous result can be obtained
with proof-based constructions through theoretically beautiful but practically
cumbersome solutions. For example, one can fix the computation performed by
the server to be some universal circuit and then see the actual function to be
computed as part of the data that is uploaded. While the dependency between
data and functions is broken, verification would still need the whole data (and
function description) as input.

374 D. Catalano, D. Fiore, and B. Warinschi

Improving flexibility is also addressed by the notions of memory delegation
and streaming delegation [16] in which a client can outsource a large memory
to a server, keeps a small local state, and can later delegate and verify compu-
tations on the outsourced memory. This setting is very general and is close to
the one achieved by using homomorphic authenticators. As mentioned in [24], a
difference between memory delegation and homomorphic authenticators is that
the former considers a single user who outsources the data all at once and keeps
a state associated with the data. In contrast, by using homomorphic authentica-
tors various users may independently upload several data items without sharing
any state (beyond the fixed signing key).

Complexity assumptions. In terms of the usual trade-off between efficiency
and the underlying assumptions our scheme fares well. Most proof-based con-
structions rely on proofs (SNARGs, SNARKs) for which instantiations either
rely on the random oracle model [26] or employ non-falsifiable assumptions. Our
scheme is in the standard model and is based on problems in the groups underly-
ing a multi-linear map. Our scheme can be instantiated with any of the existing
graded encoding schemes [20,17] and hence it will increase in efficiency with any
progress on the implementation of the latter primitive [25].

High level idea of our construction. Our scheme signs messages in Zp and is
homomorphic with respect to polynomial functions on Zn

p (where n is the size
of the data set); the degree of the polynomial is d (which is bounded).

To realize our construction we proceed in three main stages. First we con-
struct an homomorphic scheme (with the same domain, and homomorphic with
respect to the same class of functions) secure in a weaker sense: in an attack, the
adversary asks all of the messages to be signed non-adaptively before the scheme
is initialized. This is the technically most difficult part of the paper. Then we
provide a generic transformation that strengthens any weakly-secure homomor-
phic signature for degree-d polynomials to an adaptive-secure one, i.e. one that
withstands adaptive chosen-message attacks. The third step is to optimize the
resulting construction when instantiated with the weakly-secure scheme that we
develop. Below we provide an overview of these steps, starting with the generic
transformation. Then we describe the main ideas that go into the construction of
our weakly-secure scheme. To conclude, we discuss the efficiency of the scheme
that we obtain from our weakly-secure scheme via both the generic and the
optimized transformation.

In both schemes we encode a message in Zp as the free term of a polynomial
of degree at most d. Messages in the data set are encoded in polynomials of de-
gree one, whereas the results of computations will be encoded by higher degree
polynomials. Start with a weakly secure homomorphic signature scheme Π . The
signing key for the scheme we construct consists of d+1 different signing keys for
Π , say sk1, sk2, . . . , skd+1. If messagem is encoded by some polynomial t, then a
signature on m is of the form (σ1, σ2, . . . , σd+1), where σi is a signature using the
weakly secure scheme on t(i) using ski. Since we only work with polynomials of
degree at most d, the d+1 points that are signed uniquely determine the polyno-
mial t, hence the message m. Homomorphicity of the scheme that we construct

Homomorphic Signatures with Efficient Verification for Polynomial Functions 375

follows from that of the underlying scheme. Given signatures (σ1
1 , σ

1
2 , . . . , σ

1
d+1)

and (σ2
1 , σ

2
2 , . . . , σ

2
d+1) for messages m1 and m2, a signature on m1 ◦m2 (where ◦

is one of the operations in Zp) is (σ
1
1 ◦σ2

1 , σ
1
2 ◦σ2

2 , . . . , σ
1
d+1◦σ2

d+1). Without going
into the details, a key idea of using the encoding of messages into polynomials
is that a simulator can adaptively sign arbitrary messages, while having access
only to signatures (of Π) on a set of random messages.

Our construction of the weakly-secure signature scheme is based on graded
encodings [20]. The overview here uses the (more idealized) leveled multilinear
maps setting. The basic idea is that a signature on a data set message mi is a
level-1 element of the form Λ = g(ri−mix)b, where gri is some public informa-
tion, b is the secret key and g, gx, gb are in the public key1. Given signatures
on messages m1 and m2 one obtains a signature on the sum by simply com-
puting Λ1 · Λ2. To obtain a signature on the multiplication m1 · m2, we apply
the graded map to g(r1−m1x)b and g(r2−m2x)b and obtain something of the form

g
[r1r2−(r1m2+r2m1)x+m1m2x

2]b2

2 where g2 is a generator of G2. The main issue with
the resulting signature is verification: here, one should either know the original
messages m1,m2 (which is what we want to avoid) or keep track in the signature
of the middle term in the exponent (which we also want to avoid since this term
grows with successive multiplications). We solve this problem with two main
ideas: (1) we publish a randomized version gabx of the secret value gbx, and (2)
we create a twin version of every signature which has the form Γ = g(r−mx)ab.
This way, a signature on the multiplication of m1 · m2 is obtained by apply-
ing the graded map to Λ1 = g(r1−m1x)b and Γ2 = g(r2−m2x)ab, which produces

something of the form g
[r1r2−(r1m2+r2m1)x+m1m2x

2]ab2

2 . Then, by using gabx, the
latter value can now be “cleaned up” (by multiplying appropriately computed

values) to obtain g
[r1r2−m1m2x

2]ab2

2 . More generally, we show how to clean the
multiplication of arbitrary signatures to always produce a signature of the form

g
[f(r)−f(m)xi]ai−1bi

i , where i is the degree of polynomial f , gi is the generator in
Gi, m is the vector of original messages, and r is the vector of ri’ in the publicly
known gr1 , gr2 , Related issues that we solve include enabling verification of
these signatures, and ensuring that the cleaning information does not enable the
creation of forgeries. Also, while the simplified description above works for signa-
tures in a single dataset, our full realization provides a way to deal with multiple
datasets. The construction sketched above is homomorphic for polynomials of
degree-d, if instantiated with 2d-linear maps, and is proven weakly-secure under
a new, constant-size, assumption that we prove hard in the generic multilinear
group model. As a final note, we observe that this construction enjoys efficient
verification, which (intuitively) follows from that one can precompute f(r) and
reuse it to verify all signatures for the same f . In terms of efficiency, in this
weakly-secure construction every signature consists of the message m and two
group elements—Λ, Γ—and is in principle of constant size. When instantiated
with currently known graded encoding schemes, each of these group elements

1 We emphasize that our signatures are quite different, and we only use these to explain
the intuition.

376 D. Catalano, D. Fiore, and B. Warinschi

(aka encodings) is of size O(d2+d logn) (ignoring the security parameter), if we
want to support n-variate polynomials of degree d.

By applying our generic transformation we obtain an adaptive-secure homo-
morphic signature in which signatures have size O(d), which turns into O(d3 +
d2 logn) when instantiated with known graded encoding schemes [20,17,25]. We
also show a more optimized transformation tailored to our weakly-secure scheme,
which yields a more efficient adaptive-secure homomorphic signature where, for
instance, the size of the public and the secret key does not grow by a factor
of d. Furthermore, we show that our weakly-secure scheme can be also proven
adaptive-secure, though by assuming a stronger, interactive, assumption.

2 Preliminaries

2.1 Leveled Multilinear Maps and Graded Encodings

In this section we recall the definition of leveled multilinear maps and the com-
putational assumptions used in our scheme. Candidate implementations of this
abstraction have been recently proposed [20,17,25] in the form of graded encod-
ings, a concept similar to generic, leveled multilinear maps.

In generic, symmetric, leveled multilinear maps we assume the existence of
an algorithm G(1λ, k) that, on input the security parameter and an integer k
indicating the number of levels (i.e., the number of allowed pairing operations),
generates the description pp of leveled multilinear groups (G1, . . . ,Gk), each of
large prime order p > 2λ. We let gi be a canonical generator of Gi; we assume
that pp includes g1 ∈ G1. The groups are such that there exists a set of bilinear
maps {ei,j : Gi×Gj → Gi+j}i,j≥1,i+j≤k such that ∀a, b ∈ Zp: ei,j(g

a
i , g

b
j) = gabi+j .

When obvious from the context we drop the indices i, j from ei,j . We work with
symmetric bilinear maps and we let the canonical generators gi ∈ Gi be obtained
by repeatedly applying the map to g1, i.e. we let gi = e(g1, gi−1).

Hardness Assumption. Below we define the computational assumption that
underlies the security of our scheme. In the full version we justify the assumption
by proving it holds in a generic model for level multilinear maps. The assumption
can also be tested using recently proposed automated techniques [5]. Informally,
the assumption says that given the level-1 encodings ga1 , g

b
1, g

ab
1 , gx1 , g

xa
1 , gabx1 with

a, b, x ∈ Zp random, it must be hard to compute a level-k encoding of ak−1(bx)k

(i.e., g
ak−1(bx)k

k). More formally:

Definition 1 (k-Augmented-Power Multilinear Diffie-Hellman). Let pp
be the description of a set of multilinear groups and g1 ∈ G1 be a random

generator. Let a, b, x
$← Zp be chosen at random. We define the advantage

of an adversary A in solving the k-APMDH problem as AdvAPMDH
A (λ) =

Pr[A(g1, ga1 , gb1, gab1 , gx1 , g
ax
1 , gabx1) = g

ak−1(bx)k

k], and we say that the k-APMDH

assumption holds for G if for every PPT A, AdvAPMDH
A (λ) is negligible in λ.

Graded Encodings. Informally speaking, a k-graded encoding system for a

ring R includes a system of sets {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, k], α ∈ R} such that

Homomorphic Signatures with Efficient Verification for Polynomial Functions 377

for every fixed i ∈ [0, k] the sets {S(α)
i : α ∈ R} are disjoint. The set S

(α)
i con-

tains the level-i encodings of α ∈ R. As a first requirement, the system needs an

algorithm to obtain an encoding ai ∈ S
(α)
i of some ring element α (notice that

such encoding can be randomized). Additionally, the encoding system is homo-
morphic in a graded sense. Namely, let us abuse notation and assume that every

set S
(α)
i is a ring where +, · are the usual addition/multiplication operations.

Then, for any ai ∈ S
(α)
i and bi ∈ S

(β)
i we have ai + bj ∈ S

(α+β)
i . Furthermore,

for ai ∈ S
(α)
i and bj ∈ S

(β)
j we have ai · bj ∈ S

(α·β)
i+j , if i + j ≤ k. Finally, the

encoding system has an algorithm to test if a given a is an encoding of 0 in the

last level k, i.e., if a ∈ S
(0)
k . We refer to [20] or the full version of our work for a

more precise description of graded encodings.

2.2 Homomorphic Signatures for Multi-labeled Programs

In this section we provide the definition of homomorphic signatures. Our defini-
tion is essentially the same as the one proposed by Freeman in [19] except that
we adapt it to work in the model of multi-labeled programs introduced in [4] as
an extension to labeled programs [24,10].

Multi-labeled Programs. A labeled program P consists of a tuple (f, τ1, . . . ,
τn) such that f : Mn → M is a function on n variables (e.g., a circuit), and
τi ∈ {0, 1}∗ is the label of the i-th variable input of f . Labeled programs can be
composed in the following way. Given P1, . . . ,Pt and a function g : Mt →M,
the composed program P∗ is the one obtained by evaluating g on the outputs
of P1, . . . ,Pt, and is compactly denoted as P∗ = g(P1, . . . ,Pt). The labeled
inputs of P∗ are all distinct labeled inputs of P1, . . . ,Pt, i.e., all inputs with
the same label are grouped together in a single input of the new program. Let
fid :M→M be the canonical identity function and τ ∈ {0, 1}∗ be a label. Then
Iτ = (fid, τ) is the identity program for input label τ . Using this notation, observe
that any program P = (f, τ1, . . . , τn) can be expressed as the composition of n
identity programs P = f(Iτ1 , . . . , Iτn).

A multi-labeled program PΔ is a pair (P , Δ) in which P = (f, τ1, . . . , τn) is a
labeled program and Δ ∈ {0, 1}∗ is a binary string called the data set identifier.
Multi-labeled programs allow for composition within the same data set in the
most natural way, i.e., given multi-labeled programs (P1, Δ), . . . , (Pt, Δ) sharing
the same data set identifier Δ, and given a function g :Mt →M, the composed
multi-labeled program P∗

Δ is the pair (P∗, Δ) where P∗ is the composed program
g(P1, . . . ,Pt), andΔ is the data set identifier shared by all the Pi. Similarly to the
labeled case, we define a multi-labeled identity program as I(Δ,τ) = ((fid, τ,), Δ).

Definition 2 (Homomorphic Signatures). Ahomomorphic signature scheme
HomSig is a tuple of probabilistic, polynomial-time algorithms (KeyGen, Sign,Ver,
Eval) satisfying four properties: authentication correctness, evaluation correctness,
succinctness, and security. More precisely:

KeyGen(1λ,L) takes a security parameter λ, the description of the label space
L (possibly fixing a maximum data set size N), and outputs a public key vk

378 D. Catalano, D. Fiore, and B. Warinschi

and a secret key sk. The public key vk defines implicitly a message space M
and a set F of admissible functions.

Sign(sk, Δ, τ,m) takes a secret key sk, a data set identifier Δ, a label τ ∈ L, a
message m ∈ M, and it outputs a signature σ.

Ver(vk,PΔ,m, σ) takes a public key vk, a multi-labeled program PΔ = ((f, τ1,
. . . , τn), Δ) with f ∈ F , a message m ∈ M, and a signature σ. It outputs
either 0 (reject) or 1 (accept).

Eval(vk, f,σ) takes a public key vk, a function f ∈ F and a tuple of signatures
{σi}ni=1 (assuming that f takes n inputs). It outputs a new signature σ.

Authentication Correctness. Intuitively, a homomorphic signature satis-
fies authentication correctness if the signatures generated by Sign(sk, Δ, τ,m)
verify correctly for m as the output of the identity program I(Δ,τ). Formally,
HomSig has authentication correctness if for a given label space L, all key pairs

(sk, vk)
$← KeyGen(1λ,L), any label τ ∈ L, data set identifier Δ ∈ {0, 1}∗, and

any signature σ
$← Sign(sk, Δ, τ,m), Ver(vk, I(Δ,τ),m, σ) outputs 1 with all but

negligible probability.

Evaluation Correctness. Informally, this property says that running the
evaluation algorithm on signatures (σ1, . . . , σn) such that σi verifies formi as the
output of a multi-labeled program (Pi, Δ), produces a signature σ which verifies
for f(m1, . . . ,mn) as the output of the composed program (f(P1, . . . ,Pn), Δ).

More formally, fix a key pair (sk, vk)
$← KeyGen(1λ,L), a function g :Mt →M

and any set of program/message/signature triples {(Pi,mi, σi)}ti=1 such that
Ver(vk,Pi,mi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ =
Eval(vk, g, (σ1, . . . , σt)), then Ver(vk,P∗,m∗, σ∗) = 1 holds with all but negligible
probability.

Succinctness. A homomorphic signature scheme is succinct if, for a fixed
security parameter λ, the size of the signatures depends at most logarithmically
on the data set size N .

Security. We say that a homomorphic signature scheme HomSig is secure if
for every PPT adversary A we have Pr[HomUF-CMAA,HomSig(λ) = 1] ≤ ε(λ)
where ε(λ) is a negligible function, and the experiment HomUF-CMAA,HomSig(λ)
is defined as follows.

Key generation The challenger runs (vk, sk)
$← KeyGen(1λ,L) and gives vk to

the adversary.
Signing Queries The adversary can adaptively submit queries of the form

(Δ, τ,m), where Δ is a dataset identifier, τ ∈ L, and m ∈M. The challenger
proceeds as follows: If (Δ, τ,m) is the first query with data set identifier Δ,
then the challenger initializes an empty list TΔ = ∅ for Δ. If TΔ does not
already contain a tuple (τ, ·) (i.e., the adversary never asked for a query

(Δ, τ, ·)), the challenger computes σ
$← Sign(sk, Δ, τ,m), returns σ to A and

updates the list TΔ←TΔ ∪ (τ,m). If (τ,m) ∈ TΔ (i.e., the adversary had al-
ready queried the tuple (Δ, τ,m)), then the challenger replies with the same
signature generated before. If TΔ contains a tuple (τ,m′) for some message
m′ �= m, then the challenger ignores the query.

Homomorphic Signatures with Efficient Verification for Polynomial Functions 379

Forgery The previous stage is repeated a polynomial number of times until the
adversary outputs a tuple (P∗

Δ∗ ,m∗, σ∗).

Finally, the experiment outputs 1 if the tuple returned by the adversary is
a forgery, and 0 otherwise. However, to do this we need to provide a way for
characterizing forgeries in this model. To this end, we recall the notion of well-
defined program w.r.t. a list TΔ [19]. A labeled program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) is

well-defined with respect to TΔ∗ if one of the following two cases holds:

– there exist messages m1, . . . ,mn such that the list TΔ∗ contains all tuples
(τ∗1 ,m1), . . . , (τ

∗
n ,mn). Intuitively, this means that the challenger has gener-

ated signatures for the entire input space of f for data set Δ∗.
– there exist indices i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ TΔ∗ (i.e., A never asked

signing queries of the form (Δ∗, τ∗i , ·)), and the function f∗({mj}(τj,mj)∈TΔ∗∪
{m̃j}(τj,·)/∈TΔ∗) outputs the same value for all possible choices of m̃j ∈ M.
Intuitively, this case means that the inputs that were not signed in the ex-
periment never contribute to the computation of f .

The experiment HomUF-CMA outputs 1 if and only if Ver(vk,P∗
Δ∗ ,m∗, σ∗) = 1

and one of the following conditions holds:

– Type 1 Forgery: no list TΔ∗ was created during the game, i.e., during the
experiment no message m has ever been signed with respect to a data set
identifier Δ∗.

– Type 2 Forgery: P∗ is well-defined w.r.t. TΔ∗ andm∗ �= f∗({mj}(τj,mj)∈TΔ∗),
i.e., m∗ is not the correct output of the labeled program P∗ when executed
on previously signed messages (m1, . . . ,mn).

– Type 3 Forgery: P∗ is not well-defined w.r.t. TΔ∗ .

As pointed out by Freeman [19], for a general class of functions it may not
be possible for the challenger to efficiently decide whether a given program is
well-defined or not. Freeman shows that for the case of linearly-homomorphic sig-
natures this is not an issue. More precisely he shows that any adversary who out-
puts a Type-3 forgery can be converted into one that outputs a Type-2 forgery.
Below, we show two simple propositions that allow to overcome this issue for
the case of homomorphic signatures whose class of supported functions are arith-
metic circuits of degree d, over a finite field of order p such that d/p < 1/2. The
first proposition is taken from [11] and provides a way to probabilistically test
whether a program is well-defined.

Proposition 1 ([11]). Let λ, n ∈ N and let F be the class of arithmetic circuits
f : Fn → F over a finite field F of order p and such that the degree of f is at most
d, for d

p < 1
2 . Then, there exists a probabilistic polynomial-time algorithm that

for any given f ∈ F , decides if there exists y ∈ F such that f(u) = y, ∀u ∈ Fn

(i.e., if f is constant) and is correct with probability at least 1− 2−λ.

The second proposition below is the analogue of the one proven by Freeman,
which shows that any adversary who outputs a Type-3 forgery can be converted

380 D. Catalano, D. Fiore, and B. Warinschi

into one that outputs a Type-2 forgery. This result has been proven for homo-
morphic MACs in [11]. Here we extend it to homomorphic signatures. For lack
of space, its proof appears in the full version.

Proposition 2. Let λ ∈ N be the security parameter, and let F be the class of
arithmetic circuits f : Fn → F over a finite field F of order p and such that
the degree of f is at most d, for d

p < 1
2 . Let HomSig be a signature scheme with

message space F, and let Eb be the event that the adversary returns a Type-b
forgery (for b = 1, 2, 3) in experiment HomUF-CMA. Then, if for any adversary
B we have that Pr[HomUF-CMAB,HomSig(λ) = 1∧E2] ≤ ε, then for any adversary
A producing a Type-3 forgery it holds Pr[HomUF-CMAA,HomSig(λ) = 1 ∧ E3] ≤
ε+ 2−λ.

Weakly-Secure Homomorphic Signatures. In our work we also consider a
weaker notion of unforgeability for homomorphic signatures. We define experi-
mentWeak-HomUF-CMAA,HomSig which is a variant of HomUF-CMAA,HomSig. The
difference is that before key generation A declares all the signing queries that it
will make (i.e., messages), but without necessarily specifying the data set names,
i.e., A outputs {mτ,j}τ∈L, for j = 1 to Q, where Q is the number of different
queried datasets. Once applying the above change, in the signing query phase, A
will only specify a data set Δj and will receive signatures on {(Δj , τ,mτ,j)}τ∈L.
Also, notice that with this change, there are no Type-3 forgeries as the data sets
are always full.

While this security notion may look rather weak, in Section 3 we show a
generic way to convert any weakly-secure homomorphic signature for arithmetic
circuits of degree d to an adaptively secure one (for the same class of functions.)

2.3 Homomorphic Signatures with Efficient Verification

We propose the notion of homomorphic signatures with efficient verification,
which naturally extends to the public-key setting the analogous notion intro-
duced for homomorphic MACs in [4]. Roughly speaking, this property says that
the verification algorithm can be split in two phases. In an offline phase, given
the verification key vk and a labeled program P , one precomputes a concise
key vkP . The latter key can then be used to verify signatures (in the online
phase) w.r.t. P and any dataset Δ. Crucially, vkP can be reused an unbounded
number of times, and the verification cost of the online phase is much less than
running P . As in [4], this efficiency property is defined in an amortized sense,
so that verification is more efficient when the same program P is executed on
different data sets. This property enables the use of homomorphic signatures for
publicly-verifiable delegation of computation on outsourced data.

The formal definition follows.

Definition 3. Let HomSig = (KeyGen, Sign,Ver,Eval) be a homomorphic signa-
ture scheme for multi-labeled programs. HomSig satisfies efficient verification if
there exist two additional algorithms (VerPrep,EffVer) such that:

Homomorphic Signatures with Efficient Verification for Polynomial Functions 381

VerPrep(vk,P): on input the verification key vk and a labeled program P =
(f, τ1, . . . , τn), this algorithm generates a concise verification key vkP . We
stress that this verification key does not depend on any data set identifier Δ.

EffVer(vkP , Δ,m, σ): given a verification key vkP , a data set identifier Δ, a
message m ∈ M and a signature σ, the efficient verification algorithm out-
puts 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

Correctness. Let (sk, vk)
$← KeyGen(1λ) be honestly generated keys, and

(PΔ,m, σ) be any program/message/signature tuple with PΔ = (P , Δ) such

that Ver(vk,PΔ,m, σ) = 1. Then, for every vkP
$← VerPrep(vk,P), EffVer(vkP ,

Δ,m, σ) = 1 holds with all but negligible probability.

Amortized Efficiency. Let PΔ = (P , Δ) be a program, let (m1, . . . ,mn) ∈
Mn be any vector of inputs, and let t(n) be the time required to compute P(m1,
. . . ,mn). If vkP←VerPrep(vk,P), then the time required for EffVer(vkP , Δ,m, τ)
is t′ = o(t(n)).

Notice that in our efficiency requirement, we do not include the time needed to
compute vkP . This is justified by the fact that, being vkP independent of Δ,
the same vkP can be re-used in many verifications involving the same labeled
programP but many differentΔ. Namely, the cost of computing vkP is amortized
over many verifications of the same function on different data sets.

3 From Weakly-Secure to Adaptive-Secure Homomorphic
Signatures

In this section we show how to convert a weakly-secure homomorphic signature
that works for arithmetic circuits of degree k, into an adaptive-secure one sup-
porting the same class of functionalities. The only restriction is that the message
space is expected to be some finite field, e.g., Zp for a prime p, that does not
depend on the secret key. In the full version we show how to extend these ideas to
the case where the messages and the polynomials supported by the homomorphic
signature scheme are defined over the integers.

The basic idea behind the conversion is to interpret the message one wants
to sign as the free term of a random degree-1 (univariate) polynomial t(z) de-
fined over a finite field. Next, rather than signing m, one signs (k + 1) points
of this polynomial, e.g., t(1), . . . , t(k + 1), by using (k + 1) different secret keys.
To homomorphically evaluate a function over such signatures, one executes the
Eval algorithm in a point-wise fashion. Interestingly, the homomorphic proper-
ties of the underlying signature scheme remains preserved because of analogous
properties of polynomials. The formal description of the scheme follows.

LetHomSig = (KeyGen, Sign,Eval,Ver) be aweakly-secure schemewithmessage
space Zp, our (adaptive-secure) homomorphic signature HomSig∗ = (KeyGen∗,
Sign∗,Eval∗,Ver∗) works as follows.

382 D. Catalano, D. Fiore, and B. Warinschi

KeyGen∗(1λ, k,L). Let λ be the security parameter, k ∈ N+ be a constant denot-
ing the bound on the degree of the supported polynomials, and L ⊂ {0, 1}∗
be a set of admissible labels L = {τ1, . . . , τN}, for some N = poly(λ). The
algorithms runs (k + 1) times KeyGen(1λ, k,L). Denoting by (vki, ski) the
public key/secret key pair obtained from the i-th execution of KeyGen, the
algorithm outputs sk = (sk1, . . . , skk+1), vk = (vk1, . . . , vkk+1). The message
space M is Zp

Sign∗(sk, Δ, τ,m). The signing algorithm takes as input the secret key sk =
(sk1, . . . , skk+1), a data set identifierΔ ∈ {0, 1}∗, a label τ ∈ L and a message
m ∈ Zp. The signing procedure consists of two main steps. First it generates
a random degree-1 (univariate) polynomial t(z) such that t(0) = m ∈ Zp.

Second, for i = 1, . . . , k + 1, it signs t(i) using σi
$← Sign(ski, Δ, τ, t(i)). In

other words, each t(i) is signed with respect to a different signing key ski.
The signing algorithm returns σ = ((σ1, t(1)), . . . , (σk+1, t(k + 1)).

Eval∗(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, an arithmetic circuit f : Zn

p → Zp and a vector σ of n signatures

σ(1), . . . , σ(n) such that σ(i) is a (k+1)-tuple ((σ
(i)
1 , t(i)(1)), . . . , (σ

(i)
k+1, t

(i)(k+
1)). Eval∗ computes a signature σ = ((σ1, t(1)), . . . , (σk+1, t(k+1))), by com-

puting σi ← Eval(vki, f, (σ
(1)
i , . . . , σ

(n)
i)) and t(i)←f(t(1)(i), . . . , t(n)(i)).

Ver∗(vk,PΔ,m, σ). Let PΔ = ((f, τ1, . . . , τn), Δ) be a multi-labeled program
such that f : Zn

p → Zp is an arithmetic circuit of degree d ≤ k. Let m ∈ Zp

and σ = ((σ1, t(1)), . . . , (σk+1, t(k + 1)).
First of all, Ver∗ checks that the signatures on all the values t(i) are correct.
To do so, it runs bi←Ver(vki,PΔ, t(i), σi), ∀i = 1, . . . , k + 1. If b1 = . . . =
bk+1 = 1 Ver∗ proceeds to the next step, otherwise it stops and returns 0.
So, if the values t(i) in the signature are valid, Ver∗ uses these values to
interpolate a polynomial t(z) of degree (at most) k. More precisely, this is
done as follows: if the degree of the arithmetic circuit f is k, t(z) is inter-
polated using all the t(i)’s; if, on the other hand, f is of degree d < k, the
algorithm first interpolates t(z) using t(1), . . . , t(d+1) and then checks that
t(z) is correct with respect to t(d + 2), . . . , t(k + 1).2 Finally, Ver∗ checks
whether t(0) = m or not. Again, if any of the above tests fail the algorithm
outputs 0, otherwise it outputs 1.

To complete the description of HomSig∗ we give the algorithms for efficient
verification:

VerPrep∗(vk,P). Let P = (f, τ) be a labeled program for an arithmetic circuit
f ∈ Zn

p → Zp with labels τ = (τ1, . . . , τn). For i = 1 to (k+1) the algorithm

runs vk
(i)
P = VerPrep(vki,P) and returns the efficient verification key vkP =

(vk
(1)
P , . . . , vk

(k+1)
P).

EffVer∗(vkP , Δ,m, σ). Let (σ = ((σ1, t(1)), . . . , (σ(k+1), t(k + 1)). For i = 1 to

(k+1), the online verification algorithm runs bi←EffVer(vk
(i)
P , Δ, t(i), σi). If

2 This is done by simply recomputing the interpolated polynomial on points (d +
2), . . . , (k + 1).

Homomorphic Signatures with Efficient Verification for Polynomial Functions 383

the t(i)’s correctly interpolate to m and ∧k+1
i=1 bi = 1, output 1. Otherwise

output 0. Notice that if the EffVer provides efficient verification, then EffVer∗

has efficient verification as well.

In the following theorem (its proof is in the full version), we show that if
HomSig is a weakly-secure scheme, our transformation yields an adaptive-secure
homomorphic signature.

Theorem 1. If HomSig is a weakly-secure homomorphic signature scheme for
arithmetic circuits of degree d ≤ k then HomSig∗ is an adaptive-secure homo-
morphic signature scheme for the same class of circuits.

4 A Weakly-Secure Homomorphic Signature

In this section we describe our construction of homomorphic signatures with ef-
ficient verification from leveled multilinear maps. When working with 2k-linear
maps, our scheme can support the evaluation of arithmetic circuits of degree
k. The scheme presented in this section is proven weakly-secure under the AP-
MDH assumption (Definition 1). This construction can then be turned into an
adaptive-secure scheme by either applying our generic transformation of Section
3, or by tailoring our generic technique to this scheme.

Here we describe the scheme using the abstraction of leveled multilinear maps.
A discussion about implementing the scheme with graded encodings is given later
in this section and more details appear in the full version.

Without loss of generality our scheme works with arithmetic circuits in which
addition gates take inputs of the same degree. Notice that any arithmetic circuit
f : Fn → F of degree d can be converted into another circuit f̃ : Fn+1 → F of the
same degree d such that f̃ can compute the same function of f . The idea of the
transformation is very simple: one first adds to f̃ (say at the end) one additional
input wire, labeled by u; then, whenever there is an addition gate taking inputs
x1, x2 such that deg(x1) < deg(x2), one multiplies x1 by u as many times as
needed to obtain a wire x′

1 such that deg(x1) = deg(x2). Finally, by assigning 1 to
the input labeled by u, it is easy to see that f̃(m1, . . . ,mn, 1) = f(m1, . . . ,mn).
From now on we assume that the circuits used in our scheme have this form.

In what follows we provide a full-detailed description of our construction,
which is rather intricate. We refer the reader to the introduction for a more
intuitive explanation of our ideas.

To build our scheme we use a regular signature scheme Σ′ = (KeyGen′, Sign′,
Ver′), a pseudorandom function F : K × {0, 1}∗ → Z2

p with key space K, and
an implementation of leveled multilinear groups whose description is generated
by G. Our homomorphic signature scheme HomSig = (KeyGen, Sign,Eval,Ver)
works as follows.

KeyGen(1λ, k,L). Let λ be the security parameter, k ∈ N+ be a constant denot-
ing the bound on the degree of the supported polynomials, and L ⊂ {0, 1}∗
be a set of admissible labels L = {u} ∪ {τ1, . . . , τN}, for some N = poly(λ).
Here “u” (which stands for “unity”) is a special additional label that is

384 D. Catalano, D. Fiore, and B. Warinschi

used for the modified arithmetic circuits in which addition gates always take
in homogenous monomials. The set of labels is implicitly defining the maxi-
mum data set size N supported by the scheme. The key generation algorithm
works as follows.

– Generate a key pair (sk′, vk′) $← KeyGen′(1λ) for the regular signature
scheme.

– Choose a random seed K
$← K for the PRF FK : {0, 1}∗ → Z2

p.

– RunG(1λ, 2k) to generate the description of (2k)-linear groupsG1, . . . ,G2k

of order p, where p is a prime number of roughly λ bits. In the scheme, we
use group elements with subscripts to denote the group they live in. Also,
for an h1 ∈ G1, we denote by hi ∈ G1 the i-fold graded multiplication of
h1. Analogous notation is used for other group elements.

– Choose random elements g1, h1
$← G1 as well as N + 1 random values

Rτ
$← G1, ∀τ ∈ L.

Finally, output sk = (sk′,K), vk = (vk′, g1, h1, {Rτ}τ∈L), and let the message
space M be Zp.

Sign(sk, Δ, τ,m). The signing algorithm takes as input the secret key sk =
(sk′,K), a data set identifier Δ ∈ {0, 1}∗, a label τ ∈ L and a message
m ∈ Zp. The signing procedure consists of two main steps. First, it uses
the pseudorandom function to (re-)derive some common parameters for the
dataset Δ and signs the public part of these parameters using the regular
signature scheme. Second, it uses the secret part of the parameters for Δ to
create the homomorphic component of the signature which is the one strictly
bound to (Δ, τ,m). The latter procedure is the core of our technique. We
describe it below as a separate subroutine.
– HomSign(vk, a, b, τ,m): this algorithm simply computes Λ1 = (Rτh

−m
1)b,

Γ1 = Λa
1 , and returns ν = (m,Λ1, Γ1).

The full signing algorithm proceeds as follows.
1. Derive two integers (a, b)←FK(Δ) using the pseudorandom function, and

compute A1 = ga1 , B1 = gb1, C1 = gab1 , T1 = ha
1 , U1 = hab

1 .
2. Run the routine HomSign(vk, a, b, u, 1) described above, to compute a

triple νΔ,u = (1, Λu, Γu) ∈ Zp × G2
1. The tuple νΔ,u is essentially the

homomorphic component of a signature of “1” with respect to the special
label “u” and for the dataset Δ. This signature νΔ,u is needed to perform
the homomorphic evaluations on the modified circuits.

3. Let ppΔ = (Δ,A1, B1, C1, T1, U1, νΔ,u) be the public parameters of
dataset Δ. Then sign ppΔ using the regular signature scheme, i.e., com-
pute σΔ←Sign′(sk′, ppΔ).

4. Run HomSign(vk, a, b, τ,m) to generate a tuple ν = (m,Λ1, Γ1) ∈ Zp ×
G2

1.
Finally, the signing algorithm returns the signature σ = (ppΔ, σΔ, ν). Ob-
serve that when generating many signatures for the same datasetΔ the steps
1–3 can be executed only once.

Eval(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, an arithmetic circuit f : Zn

p → Zp and a vector σ of n signatures

Homomorphic Signatures with Efficient Verification for Polynomial Functions 385

σ(1), . . . , σ(n) such that σ(i) = (pp
(i)
Δ , σ

(i)
Δ , νi) for i = 1, . . . , n. Eval computes

a signature σ = (ppΔ, σΔ, ν) as follows.

First, set ppΔ = pp
(1)
Δ and σΔ = σ

(1)
Δ . Namely, we take the common parame-

ters of the first signature in the vector. Observe that our notion of evaluation
correctness works for signatures in the same data set, i.e., all these signatures
are supposed to share the same parameters.

In the second stage, Eval computes the homomorphic component ν by ho-
momorphically evaluating the circuit f over the values {νi}ni=1. To do so, it
proceeds over f gate by gate.

At every gate fg, given two values ν1, ν2 (or a value ν1 and a constant
c ∈ Zp), Eval runs the algorithm ν←GateEval(vk, ppΔ, fg, ν1, ν2) described
below that returns a new value ν, which is in turn passed on as input to the
next gate in the circuit. When the computation reaches the last gate of the
circuit f , Eval outputs the value ν obtained by running GateEval on such last

gate. On input ν1 = (m1, Λ
(1)
i , Γ

(1)
i) ∈ Zp × G2

i and ν2 = (m2, Λ
(2)
j , Γ

(2)
j) ∈

Zp × G2
j , GateEval(vk, ppΔ, fg, ν1, ν2) proceeds as follows. For an addition

gate f+, it computes m = m1 +m2, Λi = Λ
(1)
i · Λ(2)

i , and Γi = Γ
(1)
i · Γ (2)

i .
For a multiplication-by-constant gate f× and constant c ∈ Zp, it computes

m = c ·m1, Λi = (Λ
(1)
i)c, and Γi = (Γ

(1)
i)c. For a multiplication gate f×, it

computes m = m1 ·m2, Λd = e(Λ
(1)
i , Γ

(2)
j) · e(Λ(1)

i , Um2

j) · e(Um1

i , Λ
(2)
j), and

Γd = e(Γ
(1)
i , Γ

(2)
j) · e(Γ (1)

i , Um2

j) · e(Um1

i , Γ
(2)
j).

Ver(vk,PΔ,m, σ). Let PΔ = ((f, τ1, . . . , τn), Δ) be a multi-labeled program such
that f : Zn

p → Zp is an arithmetic circuit of degree d ≤ k. Let m ∈ Zp and
σ = (ppΔ, σΔ, ν) be a signature with ν = (m,Λd, Γd) ∈ Zp × G2

d. First, run
Ver′(vk′, ppΔ, σΔ) to check that σΔ is a valid signature on ppΔ for the same
Δ taken as input by the verification algorithm. If σΔ is valid, then proceed
as follows. Otherwise, stop and return 0 (reject).

Use the graded maps to evaluate the circuit f on the values (Rτ1 , . . . , Rτn).
Namely, replace additions in f (for inputs of degree i) by the group oper-
ation in Gi, whereas a multiplication in f , with inputs of degree i and j
respectively, is replaced by evaluating the graded map ei,j . We compactly
denote this operation as R = f(Rτ1 , . . . , Rτn) ∈ Gd. Next, output 1 only if
the following two equations are satisfied:

e(R · h−m
d , ga

d−1bd

d) = e(Λd, gd) (1)

e(Λd, A1) = e(Γd, g1) (2)

Finally, to complete the description of HomSig we give the algorithms for efficient
verification:

VerPrep(vk,P). Let P = (f, τ) be a labeled program for an arithmetic circuit
f ∈ Zn

p → Zp with labels τ = (τ1, . . . , τn). The algorithm computes R =

f(Rτ1 , . . . , Rτn) ∈ Gd, hd, g
ad−1bd

d = e(Cd−1, B1), and returns the concise

verification key vkP = (vk′, g1, hd, g
ad−1bd

d , R).

386 D. Catalano, D. Fiore, and B. Warinschi

EffVer(vkP , Δ,m, σ). The online verification is basically the same as Ver except

that the values R, hd, g
ad−1bd

d have been already computed in the off-line
phase and are now part of the online algorithm’s input. Notice that the
computational complexity of the online verification depends only on the com-
plexity of computing the group operations and the bilinear maps in equations
(1), (2). Using current graded encoding schemes, the cost essentially becomes
poly(k, logN) which is much less than the cost of evaluating an N -variate
polynomial of degree k.

It is easy to see that running the combination of VerPrep and EffVer produces
the same result as running Ver.

Very intuitively, the correctness of the scheme follows by that, for any opera-
tion +,×, GateEval preserves the form of the signatures, i.e., Λi = (Rh−m

i)a
i−1bi

and Γi = Λa
i .

In the following theorem we prove that HomSig is a weakly-secure homomor-
phic signature scheme. For lack of space, the proof of security and a formal proof
of correctness appear in the full version.

Theorem 2. If Σ′ is an unforgeable signature scheme, F is a pseudorandom
function, and G is the generator of 2k-linear groups such that the 2k-APMDH
assumption holds for G, then HomSig is a weakly-secure homomorphic signature
scheme for arithmetic circuits of degree k.

Achieving Adaptive Security. In order to achieve adaptive security for the
scheme described above, we discuss three different approaches. The first one is
to apply our generic transformation of Section 3. In the transformed scheme,
both public/secret keys and the signatures are longer by a factor of d, that for
the class of functions considered in this work is assumed to be independent of
n. As a second possibility, we exploit the specific structure of our weakly-secure
scheme, and show a more optimized transformation which avoids increasing the
size of public and secret keys, i.e., they remain of the same size as in HomSig.
Finally, as a third possibility, we show that, under a stronger, interactive variant
of the APMDH assumption, the scheme HomSig is by itself adaptive-secure. The
optimized transformation and the adaptive security of HomSig appear in the full
version of our work.

Instantiating the Scheme with Graded Encodings. In the full version of
our paper we show how to translate the scheme presented above to the setting
of graded encodings [20,17]. Here we discuss the changes incurred by our scheme
to accommodate the differences between multilinear maps and (known) graded
encoding schemes. Recall that graded encodings can be randomized. In addition:
(1) the ring R in which the encoded values live is not public, i.e., the order p
of the encoding sets Si may not be publicly known (although a lower bound
on p is public); (2) one cannot (publicly) encode arbitrary elements “in the
exponent”; (3) in order for the zero-test to work properly, one can support only a
bounded number of operations over the encodings. To address the first difference,
our scheme signs messages that are integers within a certain bound B, and as

Homomorphic Signatures with Efficient Verification for Polynomial Functions 387

the class of admissible functions we consider N -variate polynomials of constant
degree k over the integers. We can then bound the size of all reachable outputs
(obtained by applying an admissible f on integers in ZB) – say it is B∗ – and
finally we instantiate the parameters of the graded encoding scheme accordingly
so that the order p of the ring is such that p > B∗. For the second difference,
we note that graded encodings allow one to encode arbitrary elements with
the knowledge of a trapdoor which, in our case, can be made available to the
signer. In the key generation we let the signer use this procedure to publish
level-1 encodings of the logB∗ powers of 2 (i.e., the equivalent of h2j

1). This way,
upon verification, an encoding of m (i.e., hm

d) can be obtained by adding up the
encodings of the appropriate powers of 2, according to the bit-decomposition of
m (i.e., hm

d = e(
∏

j:mj=1 h
2j

1 , hi−1)). This operation can be done by “consuming
the noise” of at most logB∗ additions. To address the third difference, we note
that the solutions to (1) and (2) already provide a bound on the maximum
number of operations (additions and multiplications) that will be performed
over the encodings when running the homomorphic evaluation algorithm. Using
such bounds it is then possible to take appropriately large parameters of the
graded encodings that can accommodate this number of operations.

Acknowledgements. The research of Dario Fiore has been partially sup-
ported by the European Commission’s Seventh Framework Programme Marie
Curie Cofund Action AMAROUT II (grant no. 291803), and by the Madrid
Regional Government under project PROMETIDOS-CM (ref. S2009/TIC1465).
The work of Bogdan Warinschi has been supported in part by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant EP/H043454/1,
and has received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 609611 (PRACTICE).

References

1. Agrawal, S., Boneh, D.: Homomorphic mACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013, pp. 863–874. ACM Press (November 2013)

5. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112.
Springer, Heidelberg (2014)

388 D. Catalano, D. Fiore, and B. Warinschi

6. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press (June 2013)

8. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

9. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

10. Catalano, D., Fiore, D.: Practical homomorphic mACs for arithmetic circuits.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 336–352. Springer, Heidelberg (2013)

11. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
mACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 538–555. Springer, Heidelberg (2014)

12. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor)
one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 680–699. Springer, Heidelberg (2013)

13. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

14. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

15. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation us-
ing fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

16. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

17. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

18. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.)
ACM CCS 2012, pp. 501–512. ACM Press (October 2012)

19. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

21. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nIZKs without pCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

Homomorphic Signatures with Efficient Verification for Polynomial Functions 389

23. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 142–160. Springer, Heidelberg (2010)

24. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

25. Langlois, A., Stehle, D., Steinfeld, R.: GGHLite: More efficient multilinear maps
from ideal lattices. In: Advances in Cryptology – Eurocrypt 2014, Springer, Hei-
delberg (2014)

26. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

27. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

Structure-Preserving Signatures

from Type II Pairings

Masayuki Abe1, Jens Groth2	, Miyako Ohkubo3, and Mehdi Tibouchi1

1 NTT Secure Platform Laboratories, Japan
2 University College London, UK

3 Security Fundamentals Lab, NSRI, NICT, Japan

Abstract. We investigate structure-preserving signatures in asymmet-
ric bilinear groups with an efficiently computable homomorphism from
one source group to the other, i.e., the Type II setting. It has been shown
that in the Type I and Type III settings, structure-preserving signatures
need at least 2 verification equations and 3 group elements. It is therefore
natural to conjecture that this would also be required in the intermediate
Type II setting, but surprisingly this turns out not to be the case. We
construct structure-preserving signatures in the Type II setting that only
require a single verification equation and consist of only 2 group elements.
This shows that the Type II setting with partial asymmetry is different
from the other two settings in a way that permits the construction of
cryptographic schemes with unique properties.

Wealso investigate lower bounds on the size of the public verification key
in the Type II setting. Previous work on structure-preserving signatures
has explored lower bounds on the number of verification equations and the
number of group elements in a signature but the size of the verification key
has not been investigated before. We show that in the Type II setting it is
necessary to have at least 2 group elements in the public verification key in
a signature scheme with a single verification equation.

Our constructions match the lower bounds so they are optimal with re-
spect to verification complexity, signature sizes and verification key sizes.
In fact, in terms of verification complexity, they are the most efficient
structure preserving signature schemes to date.

We give two structure-preserving signature schemes with a single verifi-
cation equation where both the signatures and the public verification keys
consist of two group elements each. One signature scheme is strongly exis-
tentially unforgeable, the other is fully randomizable. Having such simple
and elegant structure-preserving signatures may make the Type II setting
the easiest to use when designing new structure-preserving cryptographic
schemes, and lead to schemes with the greatest conceptual simplicity.

Keywords: Structure-preserving signatures, Type II pairings, strong
existential unforgeability, randomizability, lower bounds.

� The research leading to these results has received funding from the Engineering and
Physical Sciences Research Council grant EP/J009520/1 and the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement n. 307937.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 390–407, 2014.
c© International Association for Cryptologic Research 2014

Structure-Preserving Signatures from Type II Pairings 391

1 Introduction

Structure-preserving signatures [3] are pairing-based signatures that consist of
group elements and are verified by testing equality of products of pairings of group
elements. They are useful building blocks in modular design of cryptographic pro-
tocols, in particular in combination with non-interactive zero-knowledge (NIZK)
proofs of knowledge about group elements [22]. There are numerous applications
of structure-preserving signatures, such as blind signatures [3,17], group sig-
natures [3,17,26], homomorphic signatures [25,9], delegatable anonymous cre-
dentials [16], compact verifiable shuffles [14], network encoding [8], oblivious
transfer [20,12], tightly secure encryption [23,2], anonymous e-cash [28], etc.

Galbraith, Paterson and Smart [18] classify pairings e : G1 × G2 → GT into
three types depending on whether G1 = G2 (Type I), or there is an efficiently
computable homomorphism ψ : G2 → G1 (Type II), or there is no efficiently
computable homomorphism in either direction between G1 and G2 (Type III).
Structure-preserving signatures have been analyzed in the symmetric Type I set-
ting [4] and in the fully asymmetric Type III setting [7], and in both cases it has
been shown that a structure-preserving signatures requires at least 2 verification
equations and 3 group elements in the signatures.

It is thus natural to conjecture that 2 verification equations and 3 group ele-
ments would be needed in the intermediate Type II setting as well; and indeed
this is the case if the messages belong to G1. However, when the messages belong
to G2 we find the conjecture to be false, and give constructions of structure-
preserving signatures with only one verification equation and 2 group elements
in the signatures. This is significant from a high level pairing-based cryptography
perspective, as it provides a concrete example of a property that can be obtained
in the Type II setting but not in the other settings. Therefore, contrary to ex-
pectations, we settle Chatterjee and Menezes’ open question of whether schemes
based on Type II pairings can always be converted to Type III pairings at no
efficiency loss [15] in the negative.

Having a single verification equation make the structure-preserving signature
schemes quite efficient. As we discuss in Sect. 2.1 even though Type III pair-
ings are more efficient in some respects with current techniques (certain group
elements have a more compact representation), Type II pairings are compet-
itive, especially in terms of speed. Our proposed scheme is the most efficient
construction to date in terms of verification complexity. Furthermore, with only
one verification equation, structure-preserving signatures become conceptually
simpler and easier to use for the designer of cryptographic schemes. Groth-Sahai
proofs for the Type II setting [22,19] also incur a smaller overhead when there
is only one verification equation.

We give two constructions of structure-preserving signatures. One is random-
izable, which means that a signature on a message can be randomized to look
like a new fresh signature on the message. This randomization is useful because
it ensures that one of the group elements in the signature is uniformly ran-
dom, which is a convenient feature when building anonymization protocols: this
random group element can be revealed in the clear without showing what the

392 M. Abe et al.

Table 1. Most efficient structure-preserving signatures schemes for all three types of
pairings, in terms of signature size, verification key size and number of verification
equations. Boldface values are known to be optimal for their respective pairing types.
Verification key size is inclusive of group elements that can be shared in a common
reference string used by all signers.

Setting Signature Verification key Equations

Type III [4] 3 2 2
Type I [7] 3 3 2
Type II (this work) 2 2 1

original signature was. In other contexts, it is desirable that the signature can-
not be tampered with, and our second construction satisfies this property: it is
strongly unforgeable.

Prior work has explored lower bounds in the Type I and Type III settings, and
established that 2 verification equations are required, and that signatures must
consist of at least 3 group elements in both of those cases [4,7]. A third dimension
of efficiency is the size of the verification key of the signature scheme. In this
paper, we obtain the first lower bounds on verification key size in the literature
on structure-preserving signatures: in the Type II setting, a verification key for
a single verification equation signature scheme must have at least two group
elements. A summary of the best known constructions and efficiency bounds for
all three types of pairings is provided in Table 1.

Related Work. The term “structure-preserving signatures” was first intro-
duced by Abe et al. [3], but the notion appears in earlier works as well. Groth [21]
proposed the first structure-preserving signature scheme, but the construction
involves hundreds of group elements and is not practical. Green and Hohen-
berger [20] constructed a structure-preserving signature scheme secure against
random message attacks but which is not known to be secure against adaptive
chosen message attacks. Cathalo, Libert and Yung [13] constructed a signature
scheme that is structure-preserving in a relaxed sense that permits the verifica-
tion key to include target group elements. Hofheinz and Jager [23] and Abe et
al. [1,2] investigated the possibility of basing structure-preserving signatures on
standard assumptions. They proposed structure-preserving signatures based on
the decision linear (DLIN) assumption. The use of a nice security assumption,
however, comes at the price of reduced efficiency.

Abe et al. [4] showed that structure-preserving signatures in Type III bilinear
groups require at least 3 group elements and 2 verification equations. They also
gave structure-preserving signatures matching those bounds that are secure in
the generic bilinear group model.

Abe et al. [5] later showed that 3-element signatures cannot be proved secure
under a non-interactive assumption using black-box reductions, so strong assump-
tions are needed to get optimal efficiency in the Type III setting. It is an open

Structure-Preserving Signatures from Type II Pairings 393

question whether a similar impossibility of basing optimal structure-preserving
signatures on non-interactive assumptions also holds in the Type II setting (we
conjecture it does). However, to get a more conservative non-interactive assump-
tion wemodify our first structure-preserving signature scheme in the full version of
this paper [6] to base it on a standard non-interactive hardness assumption. The
modification requires adding an extra group element to the verification key and
the signature but the scheme still has only a single verification equation.

Recently Abe et al. [7] investigated the symmetric setting (Type I) and found
that the same lower bound of 3 group elements and 2 verification equations
applies. They also presented a unified structure-preserving signature scheme
working in all three types of settings and meeting this bound, which means a
structure-preserving signature scheme with 3 group elements and 2 verification
equations exists (and is the best construction published so far) in the Type II
setting we investigate. They also considered the question of verification key size
and their scheme requires 3 additional elements in addition to the description
of the bilinear group. However, two of these group elements can be fixed in a
common reference string together with the description of the bilinear group and
may therefore be reused by structure-preserving signature schemes leaving only
one variable group element in the verification key. It is an open question whether
such a technique applies in the Type II setting.

2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator, which given the security parameter k returns
a bilinear group description (p,G1,G2,GT , e, ψ,G,H)← G(1k) such that

– G1,G2,GT are cyclic groups of order p, which is a k-bit prime
– ψ : G2 → G1 is a homomorphism such that ψ(H) = G, hence ψ(Ha) = Ga

for all a ∈ Z
– G generates G1, H generates G2 and e(G,H) generates GT

– e : G1 × G2 → GT is a bilinear map, i.e., e(Ga, Hb) = e(G,H)ab for all
a, b ∈ Z

– There are efficient algorithms for computing group operations, evaluating
the homomorphism ψ and the bilinear map e, comparing group elements
and deciding membership of the groups

Generic Algorithms. In a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated
by G we refer to deciding group membership, computing group operations in G1,
G2 or GT , comparing group elements and evaluating the homomorphism or the
bilinear map as the generic bilinear group operations. The signature schemes we
construct only use generic bilinear group operations.

As a matter of notation, we will use capital letters G,H,M,R, S, T, U, V,W
for group elements in G1 and G2. We will use small letters 1,m, r, s, t, u, v, w for
the corresponding discrete logarithms of group elements with respect to base G
or H .

394 M. Abe et al.

Type II Pairings. Galbraith, Paterson and Smart [18] classify bilinear groups
into three types according to the efficient morphisms that exist between the
source groups G1 and G2. Type I pairings have G1 = G2 and G = H , i.e., ψ
is the identity function (or equivalently, it is an efficiently computable and effi-
ciently invertible isomorphism). Type II pairings have an efficiently computable
isomorphism ψ from one source group to the other but none in the reverse direc-
tion. Type III pairings have no efficiently computable isomorphism from either
source group to the other, i.e., in the definition given above ψ would not be effi-
ciently computable. We will throughout this paper work in the Type II setting.

Type II pairings are usually constructed from the same type of pairing-friendly
ordinary elliptic curves as Type III pairings. In contrast with Type III pairings,
however, G2 is then chosen as some subgroup of order p in the p-torsion of the
curve other than the trace-zero subgroup (and the homomorphism ψ is then
the trace map). As a result, there is no efficient way to hash to G2 in the
Type II setting, but this is of course an irrelevant feature for structure-preserving
cryptographic schemes since they only rely on the structure-preserving generic
operations and avoid structure-destroying primitives such as cryptographic hash
functions.

In terms of efficiency, Type II pairings compare quite favorably to Type I
pairings (especially at higher security levels, and particularly now that low-
characteristic pairings are known to be broken [24,10]), and are close to Type III
pairings: in fact, a Type II pairing computation can be reduced to a Type III
one at the cost of one multiplication in G1 [18, Note 10]. The size of the repre-
sentation of elements in G1 is also the same in the Type II and Type III settings,
and usually much smaller than in Type I pairings. However, Type II pairings
do not support compression using twists for elements in G2, and hence their
representation tends to be larger than in the Type III setting (by a factor of 1
to 6 depending on the embedding degree), and arithmetic in G2 is accordingly
slower.

This has prompted suggestions, for example by Chatterjee and Menezes [15],
that Type II pairings were “merely less efficient implementations of Type III
pairings”, and that cryptographic schemes designed in the Type II setting should
adapt to the Type III setting at the cost of slightly different security proofs or
assumptions. The present paper shows that this belief is incorrect, in the sense
that certain Type II primitives (viz. structure-preserving signatures with a single
verification equation) have no secure counterpart in the Type III setting.

2.2 Secure Signature Schemes

A digital signature scheme (with setup algorithm P) is a quadruple of efficient
algorithms (P ,K,S,V). The setup algorithm P takes the security parameter and
outputs a public parameter PP . The key generation algorithm K takes PP as
input and returns a public verification key VK and a secret signing key SK. We
will always assume that V K includes PP and that SK includes V K. The signing
algorithm S takes a signing key SK and a message M in the message space M
defined by PP and V K as input and returns a signature Σ. The verification

Structure-Preserving Signatures from Type II Pairings 395

algorithm V takes the verification key V K, a message M and the signature Σ
and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (P ,K,S,V) is cor-
rect if for all probabilistic polynomial time adversaries A

Pr

⎡⎢⎢⎣
PP ← P(1k)
(V K, SK)← K(PP)
M ← A(SK)
Σ ← SSK(M)

: M ∈M ∧ VVK(M,Σ) = 1

⎤⎥⎥⎦ = 1− negl(k).

We say the signature scheme is perfectly correct if the probability is exactly 1.

All the signature schemes we construct will have perfect correctness. The lower
bounds on the other hand will hold even for signature schemes that are only
computationally correct as defined above.

A signature scheme is said to be existentially unforgeable if it is hard to
forge a signature on a new message that has not been signed before. The ad-
versary may see signatures on other messages before making the forgery. We
distinguish between a random message attack (RMA), where the adversary gets
pairs of random messages and corresponding signatures, and an adaptive chosen
message attack (CMA) where the adversary can choose arbitrary messages and
receive signatures on them. Our signature schemes will be existentially unforge-
able against the strong adaptive chosen message attack, but our lower bounds
on the complexity of signature schemes will hold even for the weaker random
message attacks.

Definition 2 (EUF-CMA). A signature scheme (P ,K,S,V) is existentially un-
forgeable under adaptive chosen message attack if for all non-uniform polynomial
time A

Pr

⎡⎣PP ← P(1k)
(V K, SK)← K(PP)
(M,Σ)← ASSK(·)(V K)

: M /∈ Q ∧ VV K(M,Σ) = 1

⎤⎦ = negl(k),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signa-
ture for a message that has already been signed. A signature scheme is strongly
existentially unforgeable if it is hard to find a signature on a message that has not
been signed before and also hard to find a new signature for a message that has
already been signed. This notion, denoted by sEUF-CMA, is formally captured
in the same way as the definition of EUF-CMA except for additionally requiring
(M,Σ) /∈ Q where Q is the set of message-signature pairs from A’s queries to
the signing oracle.

We get the definition for existential unforgeability against random message
attack (EUF-RMA) by modifying the signing oracle to picking M ←M at ran-
dom, computing Σ ← SSK(M) and returning (M,Σ) to the adversary whenever
the signing oracle is queried.

396 M. Abe et al.

Corresponding security notions for one-time signature schemes can be ob-
tained by restricting the adversary to only calling the signing oracle once in the
above definitions.

Randomizable Signatures. In some applications it is desirable to have ran-
domizable signatures, i.e., given a signature it is possible to randomize it such
that it looks like a fresh signature on the message. The randomization is carried
out by a randomization algorithm R that takes as input a verification key V K,
a message M and a signature Σ and returns a randomized signature Σ.

Definition 3 (Randomizability). A signature scheme (P ,K,S,V) is said to
be (perfectly) randomizable if there exists a randomization algorithm R such that
for all k ∈ N and all interactive adversaries A

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
PP ← P(1k)
(V K, SK)← K(PP)
(M,Σ)← A(SK)
Σ0 ← SSK(M)
Σ1 ←RVK(M,Σ)
b← {0, 1}

: VVK(M,Σ) = 1 ∧ A(Σb) = b

⎤⎥⎥⎥⎥⎥⎥⎦ ≤
1

2
.

2.3 Structure-Preserving Signature Schemes

We study structure-preserving signature schemes [3] on bilinear groups generated
by group generator G. In a structure preserving signature scheme the verification
key, the messages and the signatures consist only of group elements from G1

and G2 and the verification algorithm evaluates the signature by deciding group
membership of elements in the signature, using the homomorphism ψ and by
evaluating pairing product equations, which are equations of the form∏

i

∏
j

e(Xi, Yj)
aij = 1,

where X1, X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP ,
V K, M and Σ and a11, a12, . . . ∈ Zp are constants stored in PP . Structure-
preserving signatures are extremely versatile because they mix well with other
pairing-based protocols. Groth-Sahai proofs [22] are for instance designed with
pairing product equations in mind and can therefore easily be applied to
structure-preserving signatures.

Definition 4 (Structure-preserving signatures). A signature scheme (P,
K, S, V) is said to be structure preserving over bilinear group generator G if

– PP includes a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated by G, group
elements in G1 and G2, and constants in Zp,

– the verification key consists of PP and group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– the signatures consist of group elements in G1 and G2, and
– the verification algorithm only needs to decide membership in G1 and G2,

use the homomorphism ψ, and evaluate pairing product equations.

Structure-Preserving Signatures from Type II Pairings 397

Generic signer. Abe et al. [3] did not explicitly require the signing algorithm
to only use generic group operations when they defined structure-preserving
signatures. However, all existing structure-preserving signatures in the literature
have generic signing algorithms and we believe it would be a surprising result
in itself to construct a structure-preserving signature with a non-generic signer.
Our constructions have generic signer algorithms and some of our lower bounds
will assume the signer is generic.

3 Randomizable Structure-Preserving Signatures

We will now show that in the Type II setting it is possible to construct an
EUF-CMA secure structure-preserving signature scheme with a single verification
equation. This is surprising since both in the symmetric Type I setting and the
fully asymmetric Type III setting structure-preserving signature schemes require
at least two verification equations [4,7].

The signature scheme is given in Fig. 1. It has a single verification equation
and both signatures and verification keys consist of two group elements. This is
optimal with respect to both verification complexity, signature size and verifica-
tion key size as we demonstrate in Sect. 5.

As an additional benefit, the signature scheme is perfectly randomizable. We
show a simple randomization algorithm that converts a signature into a new
randomized signature that looks exactly like a fresh signature on the message.
It is worth observing that while the natural formalization of randomizability
gives both the message and the signature to the randomization algorithm our
randomization algorithm does not need the message and simply ignores it and
randomizes the signature directly. There may be applications where this is a
feature.

The signature scheme is designed with Groth-Sahai proofs in mind. If we
randomize a signature, we may reveal the random group element R without
this leaking any information about the message or the original signature from
which the randomized signature was derived. When R is public the verification
equation become linear, which makes Groth-Sahai proofs very efficient.

It is easy to see that the signature scheme is perfectly correct. Randomized
signatures are perfectly indistinguishable from real signatures since both types of
signatures are uniquely determined by the uniformly random non-trivial group
element R. We will now prove that the signature scheme is existentially unforge-
able under adaptive chosen message attack.

Theorem 1. The signature scheme in Fig. 1 is EUF-CMA secure in the generic
bilinear group model.

Proof. A generic adversary only uses generic group operations. This means that
in G1 and G2 it can only compute linear combinations of group elements from
the verification key and the signatures it has seen and use the map ψ to map
elements from G2 to G1. Linear combinations on verification key elements and
signature elements correspond to formal polynomials (of degree ranging from

398 M. Abe et al.

Setup P(1k): Return PP = (p,G1,G2,GT , e, ψ,G,H) ← G(1k).
Key generation K(PP): Choose v, w ← Zp and compute the keys V K =

(PP , V,W) and SK = (PP , v, w) as

V ← Gv W ← Gw.

Signing SSK(M): On M ∈ G2 choose r ← Zp and compute signature Σ = (R,S)
as

R ← Hr S ← MvHr2+w.

Randomization RV K(M, (R,S)): Pick α ← Z∗
p and compute the randomized

signature Σ′ = (R′, S′) as

R′ ← RHα S′ ← SR2αHα2

.

Verification VV K(M, (R,S)): Accept if and only if M,R, S ∈ G2 and

e(G,S) = e(V,M)e(ψ(R),R)e(W,H).

Fig. 1. Randomizable structure-preserving signature scheme for messages in G2

0 to q + 1 after q signature queries) in the discrete logarithms of the group
elements. We will show that no linear combinations produce formal polynomials
corresponding to a forgery. By the master theorem in [11] this means that the
signature scheme is secure in the generic bilinear group model.

The group elements in V K are G, V,W ∈ G1 and H ∈ G2 with corresponding
discrete logarithms 1, v, w and 1. On a query Mi with discrete logarithm mi

from the adversary, the signature oracle responds with a signature (Ri, Si) with
discrete logarithms

ri ← Z∗
p si = vmi + r2i + w.

Suppose the adversary after q queries constructs (M, (R,S)) in G2. Since the
adversary is generic it can only construct them in G2 such that the discrete
logarithms m, r, s are linear combinations of 1, r1, s1, . . . , rq, sq, i.e.,

m =μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w),

r =ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi(vmi + r2i + w),

s =σ +

q∑
i=1

σriri +

q∑
i=1

σsi(vmi + r2i + w).

Similarly, the discrete logarithm mi of a signing query is a linear combination
of 1, r1, s1, . . . , ri−1, si−1.

We will show that the signature scheme is EUF-CMA secure, i.e., an adversary
cannot construct a valid signature (R,S) on M where the discrete logarithms

Structure-Preserving Signatures from Type II Pairings 399

m, r, s satisfy the verification equation

s = vm+ r2 + w

unless it reuses M = Mj from a previous query.
We can write s = vm+ r2 + w as

σ +

q∑
i=1

(
σriri + σsi(vmi + r2i + w)

)
− v

(
μ+

q∑
i=1

μriri + μsi(vmi + r2i + w)

)

=

(
ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi(vmi + r2i + w)

)2

+ w.

We first look at the terms r4i . Observe that all elements m, r, s,m1, . . . ,mq con-
structed using generic bilinear group operations in G2, i.e., linear combinations
of the discrete logarithms, can only have degree 0, 1 or 2 in ri. This shows that
each term r4i has coefficient 0 in s − vm. On the other side of the verification
equation each term r4i has coefficient ρ2si . Therefore ρsi = 0 for all i = 1, . . . , q.

In s−vm the coefficients of all combinations rirj are 0 for i �= j. On the other
side of the verification equation in the product r2 they have coefficients ρriρrj .
This means for all i �= j we have ρriρrj = 0 and therefore there can be at most
one ρrj �= 0. We now have r = ρ+ ρrjrj giving us that s = vm+ r2 + w can be
written as

σ +

q∑
i=1

σriri +

q∑
i=1

σsi(vmi + r2i + w)

= v

(
μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w)

)
+
(
ρ+ ρrjrj

)2
+ w

for some j ∈ {1, . . . , q}.
Comparing the coefficients of r2i from the two sides of the verification equation

we get σsj = ρ2rj and σsi = 0 for i �= j. The coefficients of w on the two sides
of the verification equation gives us σsj = 1. Then the verification equation is
described as

vmj + r2j + σ +

q∑
i=1

σriri + w

= v

(
μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w)

)
+
(
ρ+ ρrjrj

)2
+ w

for some j ∈ {1, . . . , q}.
Looking at coefficient of terms that involve v we then get vmj = vm, which

shows us m = mj and therefore M = Mj . ��

In some cases it is desirable to sign many group elements at once. The sig-
nature scheme we presented can easily be modified to sign n group elements at

400 M. Abe et al.

once by changing the verification equation to:

e(G,S) =
n∏

i=1

e(Vi,Mi)e(ψ(R), R)e(W,H)

and modifying the key generation and signing processes accordingly. The security
proof for the generalized scheme is virtually the same as the proof for Theorem 1.

4 Strongly Unforgeable Structure-Preserving Signatures

For some applications it is desirable to use a strongly existentially unforgeable
signature scheme. It is in general harder to get strong unforgeability because now
also the signatures have to be immutable, but we will present a construction that
preserves optimality with respect to verification complexity, signature size and
verification key size.

Fig. 2 gives a structure-preserving signature scheme with a single verification
equation, 2 element verification keys and 2 element signatures. It is easy to
see that it is perfectly correct. Signature verification requires only two pairing
evaluations (not counting the constant factor e(G,H)), which makes this scheme
the most efficient structure preserving signature so far in terms of verification
complexity (faster than all previous Type I and Type III constructions by a
significant margin). In the full version of this paper [6], we prove that it is
strongly existentially unforgeable under adaptive chosen message attack.

Theorem 2. The signature scheme in Fig. 2 is sEUF-CMA secure in the generic
bilinear group model.

5 Lower Bounds in the Type II Setting

We will now establish lower bounds for the complexity of structure-preserving
signature schemes in the Type II setting. Unlike the Type I and the Type III

Setup P(1k): Return PP = (p,G1,G2,GT , e, ψ,G,H) ← G(1k).
Key generation K(PP): Choose v, w ← Zp and compute V K = (PP , V,W) and

SK = (PP , v, w) using

V ← Gv W ← Gw.

Signing SSK(M): On M ∈ G2 choose t ← Z∗
p and compute signature Σ = (R,S)

as
R ← Ht−w S ← M

v
t H

1
t .

Verification VV K(M, (R,S)): Accept if and only if M,R, S ∈ G2 and

e(Wψ(R), S) = e(V,M)e(G,H).

Fig. 2. Strong structure-preserving signature scheme for messages in G2

Structure-Preserving Signatures from Type II Pairings 401

settings where two verification equation are needed we have already seen in
Sections 3 and 4 that it is possible to use only one verification equation in the
Type II setting. However, these signature schemes only work for messages in
G2. We start by showing this is necessarily so, a structure-preserving signature
scheme for messages in G1 cannot have a single verification equation.

Theorem 3. A structure-preserving signature scheme for messages in G1 must
have at least two verification equations. This holds even for one-time signatures
with security against random message attack.

Proof. Suppose we have a structure-preserving signature scheme with a single
verification equation for messages in G1. We will construct a one-time random
message attack on the scheme. The attacker queries the signing oracle and get
a signature on a random message M ∈ G1. Let S be a group element in the
signature that appears non-trivially in the verification equation.

If S ∈ G1 we can write the verification equation as e(M,X) = e(S, Y)Z
where X,Y, Z are expression that do not include any M or S terms. We now
have e(Mψ(Y), X) = e(Sψ(X), Y)Z, which means replacing the group element
S with S∗ = Sψ(X) in the signature gives us a forgery on M∗ = Mψ(Y).

If S ∈ G2 we can write the verification equation as e(M,SaX)·e(ψ(S)bY, S) =
Z for some a, b ∈ Zp and expressions X,Y, Z that do not have any M or S terms.

Pick r ← Z∗
p and defineΔ = (SaX)

1
r . Replace S with S∗ = SΔ to get a signature

on M∗ = M(Maψ(Δ)bY ψ(S)2b)−
1

a+r . For the signature to be non-trivial in M
we must have SaX �= 1 with overwhelming probability, giving us that Δ is
uniformly random in G∗

1 and, therefore, that M∗ �= M with high probability, so
we do obtain a forgery. ��

With Theorem 3 in mind, we will in the rest of this section only consider
structure-preserving signatures on M ∈ G2. We will now show our main result
in this section, which is that the verification key must have at least two group
elements. The following theorem follows as a corollary to Lemmata 1, 2 and 3.

Theorem 4. A structure-preserving signature scheme with a single verification
equation and a generic signer must have at least two group elements in the verifi-
cation key. This holds even for one-time signatures secure under random message
attack.

Lemma 1. A structure-preserving signature for M ∈ G2 with a single verifica-
tion equation cannot have a non-redundant signature element S ∈ G1. This holds
even for one-time signatures with security under random message attack.

Proof. We will construct an one-time random message attack similar to the one
for the proof of Theorem 3 with the roles of M and S reversed. The attacker
queries the signing oracle and gets a signature on a random message M ∈ G2.
Let S ∈ G1 be an element in the signature that appears non-trivially in the
verification equation, i.e., it does not have negligible probability of being paired
with 1.

402 M. Abe et al.

We can write the verification equation as e(S,MaX) · e(ψ(M)bY,M) = Z for
some a, b ∈ Zp and expressions X,Y, Z that do not have any M or S terms.

Pick r ← Z∗
p and define Δ = (MaX)

1
r . Replace S in the signature with S∗ =

S(Saψ(Δ)bY ψ(M)2b)−
1

a+r to get a signature on M∗ = MΔ. For the signature
scheme to be non-redundant in S the probability of MaX �= 1 has to be non-
negligible and in that case Δ is uniformly random in G∗

1, giving us M∗ �= M so
that we do obtain a forgery. ��

Lemma 2. There is no structure-preserving signature for M ∈ G2 with a single
verification equation and a key consisting of a single group element V ∈ G2. This
holds even for one-time signatures with security under random message attack.

Proof. From Lemma 1 we can without loss of generality consider only signature
schemes where all signature elements belong to G2. A group element S ∈ G2

from the signature appears as e(ψ(S), SaX) in the verification equation, where
X is an expression that does not contain an S-term. If a �= 0 we can substitute
S with S′ = SX

1
2a to get the simpler term e(ψ(S′), S′)a in the verification

equation. Moreover, if a = 0 but X involves another signature element T b for
b �= 0 we can by substituting T with T ′ = TS−1 get a term e(ψ(S), Sa′

) with
a′ = b �= 0. Using these two diagonalization techniques we can without loss
of generality write the single verification equation for the structure-preserving
signature (S1, . . . , Sn) ∈ Gn

2 on M ∈ G2 as

e(ψ(M),MaX)
∏
i∈I

e(ψ(Si),M
biYi) ·

∏
j∈J

e(ψ(Sj), Sj)
cj = Z,

where I, J are disjoint subsets of {1, . . . , n}, bi �= 0, Yi �= 1 or both for each i ∈ I,
cj �= 0 for each j ∈ J , and X,Yi and Z are expressions that only involve constant
terms and the verification key.

The adversary starts by getting a signature (S1, . . . , Sn) on a random message
M . If I �= ∅ we can use the method from the proof of Lemma 1 to modify Si

into S∗
i giving a forgery on M∗ �= M . If I = ∅ and a = 0 we can use the method

from the proof of Theorem 3 to obtain a forgery on a message M∗ �= M .
The remaining case is when I = ∅ and a �= 0, i.e., the verification equation is

e(ψ(M),MaX) ·
∏
j∈J

e(ψ(Sj), Sj)
cj = Z,

with a �= 0 and each cj �= 0. But in this case the equation can be seen as
a quadratic equation in M with two solutions. The signature on M is also a
signature on M∗ = M−1X− 1

a . This gives us an existential forgery unless M∗ =
M , which only happens in the unlikely event that X = M−2a. ��

Lemma 3. There is no structure-preserving signature for M ∈ G2 with a single
verification equation, a generic signer and a verification key consisting of a single
group element V ∈ G1. This holds even for one-time signatures with security
under random message attack.

Structure-Preserving Signatures from Type II Pairings 403

Proof. As in the proof of Theorem 2 we can rewrite the verification equation as

e(ψ(M),MaHx) ·
∏
i∈I

e(ψ(Si),M
biHyi)

·
∏
j∈J

e(ψ(Sj), Sj)
cj · e(V,Md

n∏
k=1

Sek
k Hf) = e(G,H)z ,

where I, J are disjoint subsets of {1, . . . , n}, x, yi, z ∈ Zp are constant terms,
bi �= 0, Yi �= 1 or ei �= 0 for each i ∈ I, and cj �= 0 for each j ∈ J . We will
consider three cases: all ek = 0 and d = 0 but f �= 0, all ek = 0 but d �= 0, and
without loss of generality e1 �= 0.

In the first case d = 0 and all ek = 0 but without loss of generality f =
1. The adversary makes a one-time random message attack to get a signature
(S1, . . . , Sn) on a random message M . We can now make an analysis similar to
the proof of Lemma 2 to create an existential forgery on a message M∗ �= M .

In the second case all ek = 0 but d �= 0. The adversary picks M = H− f
d

such that the e(V, ∗) part cancels out. If there is an i ∈ I such that M biHyi =

H−bi
f
d+yi �= 1, we can pick all other signature elements Sk = 1 for k �= i and since

we know all the discrete logarithm solve for the discrete logarithm si of Si to get

a signature on M = H
f
d . Else if there is no such i ∈ I, then we have an equation

in the discrete logarithms of the signature such that m(am+x)+
∑

j∈J cjs
2
j = z

with m = − d
f . By the completeness of the signature scheme, this equation is

solvable in the unknowns sj and can be efficiently solved [27], which gives us a
signature on M .

Finally, in the third case without loss of generality e1 �= 0. We can substitute

S1 with (Md
∏n

k=1 S
ek
k Hf)

− 1
e1 to get a structure-preserving signature scheme

with a verification equation of the form

e(ψ(M),MaHx) ·
∏

i∈I\{1}
e(ψ(Si),M

biHyi) ·
∏

j∈J\{1}
e(ψ(Sj), Sj)

cj

= e(V Gγψ(M)μ
∏

k∈I∪J

ψ(Sk)
σk , S1) · e(G,H)z,

for some μ, σk ∈ Zp and with suitable modifications of a, x, bi, yi and z.
Our strategy now is to pick S1 = 1 to eliminate the effect of the verification

key V . If there is a bi �= 0 or yi �= 0, we can pick m ← Zp at random and set

Sk = 1 for k �= i and Si = H
z−m(am+x)

bim+y to get a signature on M = Hm.
If all bi = yi = 0 but there is some j ∈ J\{1} where cj �= 0 we instead set Sk =

1 for k �= j and solve the bivariate quadratic m(am+ x) + cjs
2
j = z in Zp[m, sj],

which can be done efficiently [27] unless a = x = 0 and cj and z �= 0 have different
quadratic residuosity. However, if a = x = 0 the adversary can use a one-time
random message to get a signature on M . The adversary picks r ← Z∗

p and

replaces Sj with S∗
j = SjS

r
k to get a signature on M∗ = MS

−2cjr
j S

−σj−cjr
2

k . For
the verification equation to be non-trivial in M , with overwhelming probability
Sk �= 1 and therefore M∗ �= M so we have an existential forgery.

404 M. Abe et al.

The remaining case is when both all bi = yi = 0 and all cj = 0, i.e., the
verification equation is

e(ψ(M),MaHx) = e(V Gγψ(M)μ
∏

k∈I∪J

ψ(Sk)
σk , S1) · e(G,H)z.

If z = 0 we immediately get a signature (1, . . . , 1) on the message M = 1, so let
us from now on consider the case where z �= 0.

If there is a σk �= 0 for k �= 1, we can substitute Sk with GγMμ
∏

�∈(I∪J) S
σ�

� to

get verification equation e(ψ(M),MaHx) = e(V Sk, S1)·e(G,H)z . The adversary
gets a signature on a randommessageM and replaces Sk with S∗

k = SkM
2aSa

1H
x

to get a signature on M∗ = MS1. With overwhelming probability S1 �= 1, since
otherwise the signature would not affect any part of the equation, giving us
M∗ �= M .

Finally, let us consider the case where we only have a single signature el-
ement S1 that is used in a non-trivial way, i.e., the verification equation is
e(ψ(M),MaHxS−μ

1) = e(V Gγψ(S1)
σ1 , S1) · e(G,H)z. If a �= 0 the attacker

can use a one-time random message attack to get a signature on a random
message M , which is also a signature on M∗ = M−1(HxS−μ

1)−
1
a . We have

M∗ �= M unless Sμ
1 = M2aHx but since a and x are known to the adversary

this would mean the adversary could forge signatures on arbitrary messages. If
a = 0 and x �= 0 we can pick S1 = 1 to give us a signature on M = H

z
x .

Finally, if a = 0 and x = 0 we cannot sign the message using a generic signer.
A generic signer computes S1 = MαHβ using known α, β ∈ Zp and is unlikely
over the choice of the unknown discrete logarithm of M to solve the equality
−μ(αm+ β) = (v + γ + αm+ β)(αm+ β) + z unless it is possible to use α = 0,
in which case the signature is independent of M and therefore either invalid or
valid for every message. ��

We have now established a lower bound of 2 group elements in the verifica-
tion key for structure-preserving signatures with a single verification equation
and that this lower bound even holds for one-time random message attacks. In
the full version of this paper [6] we give a structure-preserving one-time signa-
ture where the signature is a single group element, so such a lower bound does
not hold for the signature size. However, if the adversary is allowed to obtain
multiple signatures on random messages we can establish a lower bound of 2
group elements for the signatures.

Theorem 5. A structure-preserving signature scheme with a generic signer that
is existentially unforgeable against random message attacks must have at least 2
group elements for messages in G2 and at least 3 group elements for messages
in G1.

Proof. Suppose that we have a structure-preserving signature scheme with just
one group element in the signature and a single verification equation. The ver-
ification equation can for any given message be seen as a quadratic or linear
equation in the discrete logarithm of the signature, so there are at most two

Structure-Preserving Signatures from Type II Pairings 405

potential signatures on the message. We conclude from Lemma 4 below that a
structure-preserving signature with a single verification equation must consist of
at least two group elements.

If there is more than one verification equation we now have two linear or
quadratic equations in the signature elements. For messages in G1 we know by
Theorem 3 that at least two verification equations are needed. Both equations
must place non-trivial constraints on the signature or else we could reduce to
a single verification equation. Again by Lemma 4, we therefore get that for
messages in G1 at least 3 signature elements are needed, since with one or two
group elements in the signature there would be at most 4 possible signatures
satisfying the verification equations. ��

Lemma 4. A structure-preserving signature scheme with a generic signer that is
existentially unforgeable against random message attacks must for each message
have a superpolynomial number of potential signatures.

Proof. Suppose that for a message M ∈ G2 there are only a polynomial num-
ber of signatures Σ = (R1, . . . , Rm, S1, . . . , Sn) ∈ Gm

1 × Gn
2 . Since the signer is

generic this means there is a set {(→α,
→
β ,

→
γ ,

→
δ)}poly(k)i=1 of vectors in (Zm

p)2×(Zn
p)

2

creating signature vectors Σ = (ψ(M)
→
αG

→
β ,M

→
γH

→
δ) by entry-wise exponenti-

ation. Given signatures Σ0 and Σ1 on random messages M0 and M1 we have
1

poly(k)2 probability that they are constructed with the same (
→
α,

→
β ,

→
γ ,

→
δ) pair.

In that case

Σ∗ = Σr
0Σ

1−r
1 =

(
ψ(M r

0M
1−r
1)

→
αG

→
β , (M r

0M
1−r
1)

→
γ
H

→
δ

)
is a signature on M∗ = M r

0M
1−r
1 for all r ∈ Zp. A similar proof applies to the

case where M ∈ G1. ��

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

4. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

406 M. Abe et al.

5. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

6. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. Cryptology ePrint Archive, Report 2014/312 (2014),
http://eprint.iacr.org/

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively ran-
domizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

8. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

9. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

10. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

12. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer
with hidden access control from attribute-based encryption. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg
(2012)

13. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

14. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

15. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmet-
ric pairings — The role of Ψ revisited. Discrete Applied Mathematics 159(13),
1311–1322 (2011)

16. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidel-
berg (2011)

17. Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055,
pp. 16–33. Springer, Heidelberg (2010)

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

19. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

20. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

21. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Structure-Preserving Signatures from Type II Pairings 407

22. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

23. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

24. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. IACR ePrint Archive, Report 2013/095 (2013),
http://eprint.iacr.org/

25. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

26. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

27. Van de Woestijne, C.E.: Deterministic equation solving over finite fields. PhD the-
sis, Leiden University (2006)

28. Zhang, J., Li, Z., Guo, H.: Anonymous transferable conditional E-cash. In:
Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106,
pp. 45–60. Springer, Heidelberg (2013)

http://eprint.iacr.org/

(Hierarchical) Identity-Based Encryption
from Affine Message Authentication

Olivier Blazy, Eike Kiltz, and Jiaxin Pan

Faculty of Mathematics
Horst Görtz Institute for IT-Security
Ruhr University Bochum, Germany

{olivier.blazy,eike.kiltz,jiaxin.pan}@rub.de

Abstract. We provide a generic transformation from any affine mes-
sage authentication code (MAC) to an identity-based encryption (IBE)
scheme over pairing groups of prime order. If the MAC satisfies a security
notion related to unforgeability against chosen-message attacks and, for
example, the k-Linear assumption holds, then the resulting IBE scheme
is adaptively secure. Our security reduction is tightness preserving, i.e.,
if the MAC has a tight security reduction so has the IBE scheme. Fur-
thermore, the transformation also extends to hierarchical identity-based
encryption (HIBE). We also show how to construct affine MACs with
a tight security reduction to standard assumptions. This, among other
things, provides the first tightly secure HIBE in the standard model.

Keywords: IBE, HIBE, standard model, tight reduction.

1 Introduction

Identity-based encryption (IBE) [24] enables a user to encrypt to a recipient’s
identity id (e.g., an email or phone number); decryption can be done using a
user secret key for id, obtained from a trusted authority. The first instantiations
of an IBE scheme were given in 2001 [7,4,23]. Whereas earlier constructions
relied on the random oracle model, the first adaptively secure construction in
the standard model was proposed in [26]. Here adaptive security means that
an adversary may select the challenge identity id∗ after seeing the public key
and arbitrarily many user secret keys for identities of his choice. The concept
of IBE generalizes naturally to hierarchical IBE (HIBE). In an L-level HIBE,
hierarchical identities are vectors of identities of maximal length L and user
secret keys for a hierarchical identity can be delegated. An IBE is simply a
L-level HIBE with L = 1.

In this work we focus on adaptively secure (H)IBE schemes in the standard
model. The construction from [26] has the disadvantage of a non-tight security
reduction, i.e., the security reduction reducing security of the L-level HIBE to
the hardness of the underlying assumption loses at least a factor of QL, where
Q is the maximal number of user secret key queries. Modern HIBE schemes

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 408–425, 2014.
c© International Association for Cryptologic Research 2014

(H)IBE from Affine Message Authentication 409

[25,6] only lose a factor Q, independent of L. The first tightly secure IBE was
recently proposed by Chen and Wee [6] but designing a L-level HIBE for L > 1
and a tight (i.e., independent of Q) security reduction to a standard assumption
remains an open problem.

Until now, all known constructions of (H)IBE schemes are specific, i.e., they
are custom-made to a specific hardness assumption. This is in contrast to other
basic cryptographic primitives such as signatures and public-key encryption, for
which efficient generic transformations have been known for a long time. We
would like to highlight the concept of smooth projective hash proof systems for
chosen-ciphertext secure encryption [9] and an old construction by Bellare and
Goldwasser [1] that transforms any pseudorandom function (PRF) plus a non-
interactive zero-knowledge (NIZK) proof into a signature scheme. Until today
no generic construction of a (H)IBE from any “simple” low-level cryptographic
primitive is known. However, the recent IBE scheme by Chen and Wee [6] uses
a specific randomized PRF at the core of their construction, but its usage is
non-modular.

1.1 This Work

Affine MACs. In this work we put forward the notion of affine message au-
thentication codes (affine MACs). An affine MAC over Zn

q is a randomized MAC
with a special algebraic structure over some group G = 〈g〉 of prime-order q. For
a vector a ∈ Zn

q , define [a] := ga = (ga1 , . . . , gan)� ∈ Gn as the implicit repre-
sentation of a over G. Roughly speaking, the MAC tag τm = ([t], [u]) of an affine
MAC over Zn

q on message m ∈ M is split into a random message-independent
part [t] ∈ Gn plus a message-depending affine part [u] ∈ G satisfying

u =
∑

fi(m)x�
i · t+

∑
f ′
i(m)x′

i ∈ Zq, (1)

where fi, f
′
i : M→ Zq are public functions and xi ∈ Zn

q , x′
i ∈ Zq are from the

secret key skMAC. Almost all group-based MACs recently considered in [10], as
well as the MAC derived from the randomized Naor-Reingold PRF [21] implicitly
given in [6] are affine.

From Affine MACs to IBE. Let us fix (possibly symmetric) pairing groups
G1,G2,GT equipped with a bilinear map e : G1 ×G2 → GT . Let Dk-MDDH be
any Matrix Diffie-Hellman Assumption [11]1 that holds in G1, e.g., k-Linear or
DDH.

Our main result is a generic transformation IBE[MACn,Dk] from any affine
message authentication code MACn over Zn

q into an IBE scheme. If MACn (de-
fined over G2) is PR-CMA-secure (pseudorandom against chosen message attacks,

1 The Dk-MDDH assumption over G1 captures naturally all subspace decisional as-
sumptions over prime order groups. Concretely, it states that given [A]1 ∈ G(k+1)×k,
the value [A ·w]1 ∈ Gk+1

1 is pseudorandom, where A ∈ Z(k+1)×k
q gets chosen accord-

ing to distribution Dk and w ∈ Zk
q . Examples include k-Linear and DDH (k = 1).

410 O. Blazy, E. Kiltz, and J. Pan

a decisional variant of the standard UF-CMA security for MACs) and the Dk-
MDDH assumption holds in G1, then IBE[MACn,Dk] is an adaptively secure (and
anonymous) IBE scheme. Furthermore, the security reduction of IBE[MACn,Dk]
is as tight as the one of MACn. The size of the public IBE parameters depends
on the size of the MAC secret key skMAC, whereas the IBE ciphertexts and user
secret keys always contain n + k + 1 group elements. We stress that our trans-
formation works with any k ≥ 1 and any Dk-MDDH Assumption, hence Dk can
be chosen to match the security assumption of MACn.

We also extend our generic transformation to HIBE schemes. In particular,
we have two generic HIBE constructions depending on different properties of
the underlying affine MACs. If the affine MAC is delegatable (to be defined in
Section 5.1), we obtain an adaptively secure L-level HIBE HIBE[MACn,Dk]. If
the affine MAC is furthermore anonymity-preserving, we obtain an anonymous
and adaptively secure L-level HIBE AHIBE[MACn,Dk]. Both of the construc-
tions have the same tightness properties as the MAC, and their ciphertexts
sizes are the same as in the IBE case. Due to different delegation methods,
AHIBE[MACn,Dk] has slightly shorter public parameters, but larger user secret
keys than HIBE[MACn,Dk]. Due to space restrictions, the anonymity-preserving
transformation AHIBE[MACn,Dk] is only given in the full version [3].

Let us highlight again the fact that the underlying object is a symmetric prim-
itive (a MAC) that we transform to an asymmetric primitive (an IBE scheme).
Furthermore, as a MAC is a very simple and well-understood object, we hope
that our transformation can contribute to understanding the more complex ob-
ject of an IBE scheme.

Two Delegatable Affine MACs. To instantiate our transformations, we con-
sider two specific delegatable affine MACs. Our first construction, MACNR[Dk], is
a generalization of the MAC derived from the randomized Naor-Reingold PRF
[6] to any Dk-MDDH Assumption. (Unfortunately, the MAC based on the origi-
nal deterministic Naor-Reingold PRF is not affine.) We show that it is affine over
Zn
q with n = k and delegatable. We prove PR-CMA-security with an (almost) tight

security reduction to Dk-MDDH. (Almost tight, as the security reduction loses a
factor O(m), where m is the length of the message space.) This leads to the first
HIBE with a tight security reduction to a standard assumption. Ciphertexts and
user secret keys ofHIBE[MACNR[Dk],Dk] only contain 2k+1 group elements which
is 3 in case we use k = 1 and the SXDH Assumption (i.e., DDH in G1 and G2).
Interestingly, our SXDH-based IBE scheme can be seen as a “two-copy version” of
Waters’ IBE [26] which does not have a tight security reduction. The disadvantage
of MACNR[Dk] is that the public parameters of IBE[MACNR[Dk],Dk] are linear in
the bit-size of the identity space.

Our second construction, MACHPS[Dk], is based on a hash proof system given
in [11] for any Dk-MDDH problem. A hash proof system is known to imply a
UF-CMA-secure MAC [10]. We extend this result to PR-CMA-security, where
the reduction loses a factor of Q, the number of MAC queries. Furthermore,
MACHPS[Dk] is affine over Zk+1

q (i.e., n = k + 1) and delegatable. Whereas
public parameters of the L-level HIBE HIBE[MACHPS[Dk],Dk] only depend on

(H)IBE from Affine Message Authentication 411

L, ciphertexts and user secret keys contain 2k + 2 group elements which is 4
in case of the SXDH assumption (k = 1). We remark that the efficiency of
HIBE[MACHPS[Dk],Dk] is roughly the same as a HIBE proposed in [6]. Addi-
tionally, we show MACHPS[Dk] is also anonymity-preserving, which implies an
anonymous (but non-tight) HIBE, AHIBE[MACHPS[Dk],Dk], while the delegat-
able MACNR[Dk] is unlikely to be anonymity-preserving.

Table 1 summarizes all known (H)IBE scheme and their parameters.

Extensions. In fact, our generic transformation even gives (hierarchical) ID-
based hash proof system from any (delegatable) affine MAC and the Dk-MDDH
assumption. From an (H)ID-based hash proof system one readily obtains a
chosen-ciphertext secure (H)IBE [16]. Furthermore, any (H)IBE directly implies
a (Hierarchical ID-based) signature scheme [12]. The signature obtained from
IBE[MACNR[Dk],Dk] has a tight security reduction. Even though it is not entirely
structure preserving, it can still be used to obtain a constant-size IND-CCA-secure
public-key encryption scheme with a tight security reduction in the multi-user
and multi-challenge setting [14,2].

1.2 Technical Details

Our Transformation. The high level idea behind our generic transformation
IBE[MAC,Dk] from any affine MAC over Zn

q to an IBE scheme is the transfor-

Table 1. Comparison between known adaptively secure IBEs with identity-space
ID = {0, 1}λ and L-level HIBEs with identity-space ID = ({0, 1}λ)L in prime or-
der groups from standard assumptions. For |pk| (public-key size), |usk| (user secret-key
size), and |C| (ciphertext size), we count the sum of all elements in G1,G2, GT , and Zq.
Q is the number of user secret key queries by the adversary. Schemes from this paper
are: IBEHPS := IBE[MACHPS[Dk], k-LIN], IBENR := IBE[MACNR[Dk], k-LIN], HIBEHPS :=
HIBE[MACHPS[Dk], k-LIN], HIBENR := HIBE[MACNR[Dk], k-LIN] and AHIBEHPS :=
AHIBE[MACHPS[Dk], k-LIN].

Scheme |pk| |usk| |C| Anonymity? Loss Assumption

IB
E

Wat05 [26] 4 + λ 2 2 – O(λQ) DBDH
Wat09 [25] 13 9 10 – O(Q) 2-LIN
Lew12 [17] 25 6 6

√
O(Q) 2-LIN

CLL+12 [5] 9 4 4 – O(Q) SXDH
JR13 [15] 7 5 4 – O(Q) SXDH
CW13 [6] 2k2(2λ+ 1) + k 4k 4k – O(λ) k-LIN
IBEHPS 3k2 + 4k 2k + 2 2k + 2

√
O(Q) k-LIN

IBENR 2λk2 + 2k 2k + 1 2k + 1
√

O(λ) k-LIN

H
IB

E

Wat05 [26] O(λL) O(λL) 1 + L – O(λQ)L DBDH
Wat09 [25] O(L) O(L) O(L) – O(Q) 2-LIN
CW13 [6] O(Lk2) O(Lk) 2k + 2 – O(Q) k-LIN
HIBEHPS O(Lk2) O(Lk) 2k + 2 – O(Q) k-LIN
HIBENR O(Lλk2) O(Lλk) 2k + 1 – O(Lλ) k-LIN
AHIBEHPS O(Lk2) O(Lk2) 2k + 2

√
O(Q) k-LIN

412 O. Blazy, E. Kiltz, and J. Pan

mation from Bellare and Goldwasser [1] from a MAC (originally, a PRF) and
a NIZK to a signature scheme. We use the same approach but define the user
secret keys to be Bellare-Goldwasser signatures. The (H)IBE encryption func-
tionality makes use of the special properties of the algebraic MAC and (tuned)
Groth-Sahai proofs.

Concretely, the public key pk of the IBE scheme contains special perfectly
hiding commitments [Z]1 to the MAC secret keys skMAC, which also depend on
the Dk-MDDH assumption. The user secret key usk[id] of an identity id contains
the MAC tag τid = ([t]2, [u]2) ∈ Gn+1

2 on id, plus a tuned Groth-Sahai [13] non-
interactive zero-knowledge (NIZK) proof π that τid was computed correctly with
respect to the commitments [Z]1 containing skMAC. Since the MAC is affine, the
NIZK proof π ∈ Gk is very compact. The next observation is that the NIZK
verification equation for π is a linear equation in the (committed) MAC secret
keys and hence a randomized version of it gives rise to the IBE ciphertext and
a decryption algorithm.

Security Proof. The security proof can also be sketched easily at a high level.
We first apply a Cramer-Shoup argument [8], where we decrypt the IBE chal-
lenge ciphertext using the MAC secret key skMAC. Next, we make the challenge
ciphertext inconsistent which involves one application of the Dk-MDDH assump-
tion. Now we can use the NIZK simulation routine to simulate the NIZK proof
π from the user secret key usk[id] = (τid, π). At this point, as the commitments
perfectly hide the MAC secret keys skMAC, the only part of the security exper-
iment still depending on skMAC is τid from usk[id] plus the computation of the
challenge ciphertext. Now we are in the position to make the reduction to the
symmetric primitive. We can use the PR-CMA symmetric security of MAC to
argue directly about the pseudorandomness of the IBE challenge ciphertext. An
IBE with pseudorandom ciphertexts is both IND-CPA secure and anonymous.

1.3 Other Related Work

Recently, Wee [27] proposed an information-theoretic primitive called predicate
encodings that characterize the underlying algebraic structure of a number of
predicate encoding schemes, including known IBE [19] and attribute-based en-
cryption (ABE) [18] schemes. The main conceptual difference to affine MACs is
that predicate encodings is a purely information-theoretic object. Furthermore,
the framework by Wee is inherently limited to composite order groups.

Waters introduced the dual system framework [25] in order to facility tighter
proofs for (H)IBE systems and beyond. The basic idea is that there exists func-
tional and semi-functional ciphertexts and user secret keys, that are compu-
tationally indistinguishable. Decrypting a ciphertext with a user secret key is
successful unless both are semi-functional. TheDk-MDDH assumptions are specif-
ically tailored to the dual system framework as they provide natural subspace
assumptions over Gk+1. Previous dual system constructions [25,19,6] usually
first construct a scheme over composite-order groups and then transform it into
prime-order groups. As the transformation uses a subspace assumption overGk+1

(H)IBE from Affine Message Authentication 413

for each component of the composite-order group, ciphertexts and user secret
keys contain at least 2(k + 1) group elements. An exception is a recent direct
construction in prime-order groups by Jutla and Roy [15]. Their scheme is based
on the SXDH assumption (i.e., k = 1) and achieves slightly better ciphertext
size of 3 group elements plus one element from Zq. Even though our construc-
tion and proof strategy is inspired by the Bellare-Goldwasser NIZK approach
and Cramer-Shoup’s hash proof systems, we still roughly follow the dual system
framework. However, as we give a direct construction in prime-order groups,
our IBE scheme IBE[MACNR[Dk],Dk] has ciphertexts and user secret keys of size
2k + 1, breaking the “2(k + 1) barrier”.

Lewko and Waters [20] consider the difficulty of a security proof for L-level
HIBEs that does not proving exponentially in L. Essentially, they prove that any
scheme with rerandomizable user secret keys (over the space of all “functional"
user secret keys) will suffer an exponential degradation in security. While some
of our tightly-secure HIBEs are rerandomizable, they are only rerandomizable
over the space of all user secret keys generated by the user secret key genera-
tion algorithm. Hence, our tightly-secure HIBE does not contradict the negative
results of [20].

1.4 Open Problems

We leave finding a PR-CMA-secure algebraic MAC with a tight security reduc-
tion and constant-size secret keys as an open problem. Given our main result this
would directly imply a tightly-secure (H)IBE with constant-size public param-
eters. Furthermore, we leave finding a tightly-secure and anonymity-preserving
delegatable affine MAC as an open problem, which would imply a tightly-secure
anonymous HIBE.

Finally, we think that the concept of algebraic MACs can be extended such
that our transformation also covers more general predicate encoding schemes,
including attribute-based encryption.

2 Definitions

2.1 Notation

If x ∈ Bn, then |x| denotes the length n of the vector. Further, x←$ B denotes
the process of sampling an element x from set B uniformly at random.

Games. We use games for our security reductions. A game G is defined by pro-
cedures Initialize and Finalize, plus some optional procedures P1, . . . ,Pn.
All procedures are given using pseudo-code, where initially all variables are un-
defined. An adversary A is executed in game G if it first calls Initialize, ob-
taining its output. Next, it may make arbitrary queries to Pi (according to their
specification), again obtaining their output. Finally, it makes one single call to
Finalize(·) and stops. We define GA as the output of A’s call to Finalize.

414 O. Blazy, E. Kiltz, and J. Pan

2.2 Pairing Groups and Matrix Diffie-Hellman Assumption

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and g2
are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerated) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [11]. For
s ∈ {1, 2, T } and a ∈ Zq define [a]s = gas ∈ Gs as the implicit representation of
a in Gs. More generally, for a matrix A = (aij) ∈ Zn×m

q we define [A]s as the
implicit representation of A in Gs:

[A]s :=

⎛⎝ga11
s ... ga1m

s

gan1
s ... ganm

s

⎞⎠ ∈ Gn×m
s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs

be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute
the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T using the
pairing e. For a,b ∈ Zk

q define e([a]1, [b]2) := [a�b]T ∈ GT .
We recall the definition of the matrix Diffie-Hellman (MDDH) assumption

[11].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z(k+1)×k

q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A ←$ Dk form an
invertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←$ Dk, w ←$ Zk

q and
u←$ Zk+1

q .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk

be a matrix distribution and s ∈ {1, 2, T }. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where G ← GGen(1λ), A←$ Dk,w←$ Zk
q ,u←$ Zk+1

q .

For each k ≥ 1, [11] specifies distributions Lk, Ck, SCk, ILk such that
the corresponding Dk-MDDH assumption is the k-Linear assumption, the k-
Cascade, the k-Symmetric Cascade, and the Incremental k-Linear Assumption,
respectively. All assumptions are generically secure in bilinear groups and form a

(H)IBE from Affine Message Authentication 415

hierarchy of increasingly weaker assumptions. The distributions of A are exem-
plified for k = 2, where a1, . . . , a6 ←$ Zq.

C2 :

⎛⎝a1 0
1 a2
0 1

⎞⎠ , SC2 :

⎛⎝a1 0
1 a1
0 1

⎞⎠ , L2 :

⎛⎝a1 0
0 a2
1 1

⎞⎠ , U2 :

⎛⎝a1 a2
a3 a4
a5 a6

⎞⎠ .

It was also shown in [11] that Uk-MDDH is implied by all other Dk-MDDH
assumptions. If A is chosen from SCk, then [A]s can be represented with 1
group element; if A is chosen from Lk or Ck, then [A]s can be represented with
k group elements; If A is chosen from Uk, then [A]s can be represented with
(k+1)k group elements. Hence, SCk-MDDH offers the same security guarantees
as k-Linear, while having the advantage of a more compact representation.

3 Message Authentication Codes

We use the standard definition of a (randomized) message authentication code
MAC = (GenMAC,Tag,Ver), where skMAC ←$ GenMAC(par) returns a secret key,
τ ←$ Tag(skMAC,m) returns a tag τ on message m from some message space M,
and Ver(skMAC,m, τ) ∈ {0, 1} returns a verification bit.

3.1 Affine MACs

Affine MACs over Zn
q are group-based MACs with a specific algebraic structure.

Definition 3. Let par be system parameters containing a group G = (G2, q, g2)
of prime-order q and let n ∈ N. We say that MAC = (GenMAC,Tag,Ver) is affine
over Zn

q if the following conditions hold:
1. GenMAC(par) returns skMAC containing (B,x0, . . . ,x�, x

′
0, . . . , x

′
�′), where B ∈

Zn×n′
q , xi ∈ Zn

q , x′
j ∈ Zq, for some n′, �, �′ ∈ N.

2. Tag(skMAC,m ∈ B�) returns a tag τ = ([t]2, [u]2) ∈ Gn
2 ×G2, computed as

t = Bs ∈ Zn
q for s←$ Z

n′
q (2)

u =

�∑
i=0

fi(m)x�
i t+

�′∑
i=0

f ′
i(m)x′

i ∈ Zq (3)

for some public defining functions fi :M→ Zq and f ′
i :M→ Zq. Vector t

is the randomness and u is the (deterministic) message-depending part.
3. Ver(skMAC,m, τ = ([t]2, [u]2)) verifies if (3) holds.

The standard security notion for probabilistic MACs is unforgeability against
chosen-message attacks UF-CMA [10]. In this work we require pseudorandom
against chosen-message attacks (PR-CMA), which is slightly stronger than
UF-CMA. Essentially, we require that the values used for one single verification
equation (3) on message m∗ are pseudorandom over G1 and GT .

416 O. Blazy, E. Kiltz, and J. Pan

Initialize:
skMAC ←$ GenMAC(par)
Return ε

Eval(m):
QM = QM ∪ {m}
Return ([t]2, [u]2) ←$ Tag(skMAC,m)

Chal(m∗): //one query
h ←$ Z∗

q

h0 =
∑

fi(m
∗)xi · h ∈ Zn

q ;
h1 =

∑
f ′
i(m

∗)x′
i · h ∈ Zq

h0 ←$ Zn
q ; h1 ←$ Zq

Return ([h]1, [h0]1, [h1]T)

Finalize(d ∈ {0, 1}):
Return d ∧ (m∗ /∈ QM)

Fig. 1. Games PR-CMAreal and PR-CMArand for defining PR-CMA security. In all
procedures, the boxed statements redefining (h0, h1) are only executed in game
PR-CMArand.

Let G = (G1,G2,GT , q, g1, g2, e) be an asymmetric pairing group such
that (G2, g2, q) is contained in par. We define the PR-CMA security via
games PR-CMAreal and PR-CMArand from Figure 1. Note that the output
([h]1, [h0]1, [h1]T) of Chal(m∗) in game PR-CMAreal can be viewed as a “token”
for message m∗ to check verification equation (3) for arbitrary tags ([t]2, [u]2) via
equation e([h]1, [u]2)

?
= e([t]1, [h0]1) · [h1]T . Intuitively, the pseudorandomness of

[h1]T is responsible for indistinguishabilty and of [h0]1 to prove anonymity of
the IBE scheme.

Definition 4. An affine MAC over Zn
q is PR-CMA-secure if for all PPT A,

Advpr-cma
MAC (A) := Pr[PR-CMAA

real ⇒ 1]− Pr[PR-CMAA
rand ⇒ 1] is negligible, where

the experiments are defined in Figure 1.

3.2 An Affine MAC from the Naor-Reingold PRF

Unfortunately, the (deterministic) Naor-Reingold pseudorandom function is not
affine. We use the following randomized version MACNR[Dk] = (GenMAC,Tag,Ver)
of it based on any matrix assumption Dk. For the special case Dk = Lk, it was
implicitly given in [6]. For a matrix A ∈ Z(k+1)×k

q we denote the upper k rows
by A ∈ Zk×k

q and the last row by A ∈ Z1×k
q .

GenMAC(par):
A ←$ Dk; B := A ∈ Zk×k

q

x1,0, . . . ,xm,1 ←$ Zk
q

x′
0 ←$ Zq

Ret skMAC =
(B,x1,0, . . . ,xm,1, x

′
0)

Tag(skMAC,m):
s ←$ Zk

q ; t = Bs

u = (
∑|m|

i=1 x

i,mi

)t+ x′
0

Ret τ = ([t]2, [u]2)
∈ Gk

2 ×G2

Ver(skMAC, τ,m):

If u = (
∑|m|

i=1 x

i,mi

)t+x′
0

then ret 1
Else ret 0

Note that MACNR[Dk] is n-affine over Zn
q with message space M = {0, 1}m.

Writing xi,b = x2i+b we have n = n′ = k, �′ = 0, � = 2m + 1 and functions

(H)IBE from Affine Message Authentication 417

f0(m) = f1(m) = 0, f ′
0(m) = 1, and f2i+b(m) = (mi = b) for 1 ≤ i ≤ m, where

mi is the i-th bit of m. (To perfectly fit our definition, xi,b should be renamed
to x2i+b, but we conserve the other notations for better readability.)

Theorem 1. MACNR[Dk] is tightly PR-CMA-secure under the Dk-MDDH as-
sumption. In particular, for all adversaries A there exists an adversary D with
T(A) ≈ T(D) and Advpr-cma

MACNR[Dk]
(A) ≤ 4m(AdvDk,GGen(D)− 1/(q − 1)).

Note that the security bound is (almost) tight, as m is the bit-length of message
space M. The proof follows the ideas from [6,22]. We use m hybrids, where
in hybrid i all the (maximal Q) values x�

i,1−m∗
i
· t in the response to an Eval

query are replaced by uniform randomness. Here m∗ is the message from the
challenge query. We use the Q-fold Dk-MDDH assumption [11] (which gives
Q-many real-or-random Dk-MDDH tuples) to interpolate between the hybrids,
where the reductions guesses m∗

i correctly with probability 1/2. As the Q-foldDk-
MDDH assumption is tightly implied by the standardDk-MDDH assumption [11],
the proof follows. A formal proof can be found in the full version [3].

We remark, that one can define an alternative version of MACNR[Dk] by setting
x0 :=

∑
xi,0, xi := xi,1−xi,0 and u = (x�

0 +
∑|m|

i=1 mix
�
i)t+ x′

0. This MAC has
a shorter secret key and can also be shown to be PR-CMA. (However, it does not
satisfy the stronger security notion of HPR-CMA needed in Sect. 5.)

3.3 An Affine MAC from Hash Proof System

Let Dk be a matrix distribution. We now combine the hash proof system for
the subset membership problem induced by the Dk-MDDH assumption from
[11] with the generic MAC construction from [10] and obtain the following
MACHPS[Dk] forM = Z�

q. Algorithm GenMAC(par) picks B←$ Dk, x0, . . . ,x� ←$

Zk+1
q , and x′

0 ←$ Zq. The MAC secret-key is skMAC = (B,x0, . . . ,x�, x
′
0).

Tag(skMAC,m):
Parse skMAC = (B,x0, . . . ,x�, x

′
0)

s ←$ Zk
q ; t = Bs ∈ Zk+1

q

u = (x

0 +

∑|m|
i=1 mi · x

i)t+ x′
0

Return τ = ([t]2, [u]2) ∈ Gk+1
2 ×G2

Ver(skMAC, τ,m):
Parse skMAC = (B,x0, . . . ,x�, x

′
0)

If u = (x

0 +

∑|m|
i=1 mi · x

i)t+ x′
0

then return 1
Else return 0

Note that MACHPS[Dk] is n-affine over Zn
q with n = k + 1, n′ = k, �′ = 0, and

defining functions f0(m) = 1, fi(m) = mi, and f ′
0(m) = 1, where mi is the i-th

component of m. For the moment we use � = 1 which already gives a MAC with
exponential message space M = Zq.

Combining [11,10] we obtain that MACHPS[Dk] is UF-CMA under the Dk-
MDDH assumption. The proof extends to show even PR-CMA security. Com-
pared to MACNR[Dk], we lose the tight reduction, but gain much shorter public
parameters. A formal proof can be found in the full version [3].

Theorem 2. MACHPS[Dk] is PR-CMA-secure under the Dk-MDDH assumption.
In particular, for all adversaries A there exists an adversary D with T(A) ≈

418 O. Blazy, E. Kiltz, and J. Pan

T(D) and Advpr-cma
MACHPS[Dk]

(A) ≤ 2Q(AdvDk,GGen(D) + 1/q), where Q is the maxi-
mal number of queries to Eval(·).

4 Identity-Based Encryption from Affine MACs

In this section, we will present our transformation IBE[MAC,Dk] from affine
MACs to IBE based on the Dk-MDDH assumption.

4.1 Identity-Based Key Encapsulation

We now recall syntax and security of IBE in terms of an ID-based key encapsu-
lation mechanism IBKEM. Every IBKEM can be transformed into an ID-based
encryption scheme IBE using a (one-time secure) symmetric cipher.

Definition 5 (Identity-Based Key Encapsulation Scheme). An identity-
based key encapsulation (IBKEM) scheme IBKEM consists of four PPT algo-
rithms IBKEM = (Gen,USKGen,Enc,Dec) with the following properties.
– The probabilistic key generation algorithm Gen(1λ) returns the (master) pub-

lic/secret key (pk, sk). We assume that pk implicitly defines a message space
M, an identity space ID, a key space K, and ciphertext space C.

– The probabilistic user secret key generation algorithm USKGen(sk, id) returns
the user secret-key usk[id] for identity id ∈ ID.

– The probabilistic encapsulation algorithm Enc(pk, id) returns the symmetric
key K ∈ K together with a ciphertext C ∈ C with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the de-
capsulated key K ∈ K or the reject symbol ⊥.

For perfect correctness we require that for all λ ∈ N, all pairs (pk, sk) generated
by Gen(1λ), all identities id ∈ ID, all usk[id] generated by USKGen(sk, id) and all
(K,C) output by Enc(pk, id):

Pr[Dec(usk[id], id,C) = K] = 1.

The security requirements for an IBKEM we consider here are indistinguisha-
bility and anonymity against chosen plaintext and identity attacks (IND-ID-CPA
and ANON-ID-CPA). Instead of defining both security notions separately, we
define pseudorandom ciphertexts against chosen plaintext and identity attacks
(PR-ID-CPA) which means that challenge key and ciphertext are both pseudo-
random. Note that PR-ID-CPA trivially implies IND-ID-CPA and ANON-ID-CPA.

We define PR-ID-CPA-security of IBKEM formally via the games given in Fig-
ure 2.

Definition 6 (PR-ID-CPA Security). An identity-based key encapsulation
scheme IBKEM is PR-ID-CPA-secure if for all PPT A, Advpr-id-cpaIBKEM (A) :=

|Pr[PR-ID-CPAA
real ⇒ 1]− Pr[PR-ID-CPAA

rand ⇒ 1]| is negligible.

(H)IBE from Affine Message Authentication 419

Procedure Initialize:
(pk, sk) ←$ Gen(1λ)
Return pk

Procedure USKGen(id):
QID ← QID ∪ {id}
Return usk[id] ←$ USKGen(sk, id)

Procedure Enc(id∗): //one query
(K∗,C∗) ←$ Enc(pk, id∗)

K∗ ←$ K;C∗ ←$ C
Return (K∗,C∗)

Procedure Finalize(β):
Return (id∗ ∈ QID) ∧ β

Fig. 2. Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-
security

4.2 The Transformation

LetDk be a matrix distribution that outputs matrices A ∈ Z(k+1)×k
q . Let MAC be

an affine MAC over Zn
q with message space ID. Our IBKEM IBKEM[MAC,Dk] =

(Gen,USKGen,Enc,Dec) for key-space K = GT and identity space ID is defined
in Figure 3.

Gen(par):
A ←$ Dk

skMAC ←$ GenMAC(par)
Parse skMAC = (B,x0, . . . ,x�, x

′
0, . . . , x

′
�′)

For i = 0, . . . , �:
Yi ←$ Zk×n

q ;Zi = (Y

i | xi) ·A ∈ Zn×k

q

For i = 0, . . . , �′:
y′
i ←$ Zk

q ; z
′
i = (y′

i

 | x′

i) ·A ∈ Z1×k
q

pk := (G, [A]1, ([Zi]1)0≤i≤�, ([z
′
i]1)0≤i≤�′)

sk := (skMAC, (Yi)0≤i≤�, (y
′
i)0≤i≤�′)

Return (pk, sk).

USKGen(sk, id):
([t]2, [u]2) ←$ Tag(skMAC, id)

v =
∑�

i=0 fi(id)Yit+
∑�′

i=0 f
′
i(id)y

′
i ∈ Zk

q

Return usk[id] := ([t]2, [u]2, [v]2) ∈ Gn+1+k
2

Enc(pk, id):
r ←$ Zk

q

c0 = Ar ∈ Zk+1
q

c1 = (
∑�

i=0 fi(id)Zi) · r ∈ Zn
q

C = ([c0]1, [c1]1)

K = (
∑�′

i=0 f
′
i(id)z

′
i) · r ∈ Zq

Return (K = [K]T ,C)

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [u]2, [v]2)
Parse C = ([c0]1, [c1]1)

K = e([c0]1,

[
v
u

]
2

) · e([c1]1, [t]2)−1

Return K ∈ GT .

Fig. 3. Definition of the transformation IBKEM[MAC,Dk]

The intuition behind our construction is that the values [Zi]1, [z
′
i]1 from pk

can be viewed as perfectly hiding commitments to the secrets keys skMAC =
(x1, . . . ,x�, x

′
1, . . . , x

′
�′) of MAC. User secret key generation computes the MAC

tag τ = ([t]2, [u]2)←$ Tag(skMAC) plus a “non-interactive zero-knowledge proof”
[v]2 proving that τ was computed correctly with respect to the commitments.

420 O. Blazy, E. Kiltz, and J. Pan

As the MAC is affine, the NIZK proof has a very simple structure. The encryp-
tion algorithm is derived from a randomized version of the NIZK verification
equation. Here we again make use of the affine structure of MAC.

To show correctness of IBKEM[MAC,Dk], let (K,C) be the output of Enc(pk, id)
and let usk[id] be the output of USKGen(sk, id). By Equation (3) in Section 3, we
have

e([c0]1,

[
v
u

]
2

) =

[
(Ar)� ·

(∑�
i=0 fi(id)Yit+

∑�′

i=0 f
′
i(id)y

′
i∑�

i=0 fi(id)x
�
i t+

∑�′

i=0 f
′
i(id)x

′
i

)]
T

,

e([c1]1, [t]2) =

[
(Ar)�

(∑
fi(id)Yi∑
fi(id)x

�
i

)
· t
]
T

,

and the quotient of the two elements yields K = [(
∑�′

i=0 f
′
i(id)z

′
i) · r]T .

Theorem 3. Under the Dk-MDDH assumption relative to GGen in G1 and the
PR-CMA-security ofMAC, IBKEM[MAC,Dk] is aPR-ID-CPA-secure IBKEM. Par-
ticularly, for all adversaries A there exist adversaries B1 and B2 with T(B1) ≈
T(A) ≈ T(B2) and Advpr-id-cpaIBKEM[MAC,Dk]

(A) ≤ AdvDk,GGen(B1) + Advpr-cma
MAC (B2).

The proof can be found in the full version [3].

5 Hierarchical Identity-Based Encryption from
Delegatable Affine MACs

In this section, we will define syntax and security requirements of delegatable
affine MACs and describe our transformation HIBE[MAC,Dk] from delegatable
affine MACs to HIBE based on any Dk-MDDH assumption. In the full version
[3] we recall syntax and IND-HID-CPA security of a hierarchical ID-based key
encapsulation mechanism (HIBKEM).

5.1 Delegatable Affine MACs

Definition 7. An affine MAC over Zn
q (Definition 3) is delegatable, if the mes-

sage space is M = B≤m for some finite base set B, �′ = 0 with f ′
0(m) = 1, and

there exists a public function l :M→ {0, . . . , �} such that for all m′ ∈ M with
m′ = (m1, . . . ,mp+1) ∈ Bp+1 and length p prefix m = (m1, . . . ,mp) of m, we have
l(m) ≤ l(m′) and

fi(m
′) =

{
fi(m) 0 ≤ i ≤ l(m)

0 l(m′) < i ≤ �
.

Note that for a delegatable MAC, equation (3) simplifies to

u =

⎛⎝l(m)∑
i=0

fi(m)x�
i +

l(m′)∑
i=l(m)+1

fi(m
′)x�

i

⎞⎠ t+ f ′
0(m)x′

0.

(H)IBE from Affine Message Authentication 421

Intuitively, this property will be used for HIBE user secret key delegation.

Security requirements. Let MAC be a delegatable affine MAC over Zn
q with

message space M = B≤m :=
⋃m

i=1 Bi. To build a HIBE, we require a new
notion denoted as HPR0-CMA security. It differs from PR-CMA security in two
ways. Firstly, additional values needed for HIBE delegation are provided to the
adversary through the call to Initialize and Eval. Secondly, Chal always
returns a real h0 which is the reason why our HIBE is not anonymous. (In
fact, the additional values actually allow the adversary to distinguish real from
random h0.)

Let G = (G1,G2,GT , q, g1, g2, e) be an asymmetric pairing group such that
(G2, g2, q) is contained in par. Consider the games from Figure 4.

Initialize:
skMAC = (B, (xi)0≤i≤�, x

′
0) ←$ GenMAC(par)

Return ([B]2, ([x

i B]2)0≤i≤�)

Eval(m):
QM = QM ∪ {m}
([t]2, [u]2) ←$ Tag(skMAC,m)
For i = (m) + 1, . . . , �:

di = x

i t ∈ Zq; d′i = x

i t
′ ∈ Zq

Return ([t]2, [u]2, [t
′]2, [u′]2, ([di]2)(m)+1≤i≤�)

Chal(m∗): // one query
h ←$ Zq

h0 =
∑

fi(m
∗
i)xi · h ∈ Zn

q

h1 = x′
0 · h ∈ Zq

h1 ←$ Zq

Return ([h]1, [h0]1, [h1]T)

Finalize(β ∈ {0, 1}):
Return β ∧ (Prefix(m∗) ∩QM = ∅)

Fig. 4. Games HPR-CMAreal, and HPR0-CMArand for defining HPR0-CMA security

Definition 8. A delegatable affine MAC over Zn
q is HPR0-CMA-secure if for all

PPT A, Adv
hpr0-cma
MAC (A) := Pr[HPR-CMAA

real ⇒ 1] − Pr[HPR0-CMAA
rand ⇒ 1] is

negligible.

5.2 Examples of Delegatable Affine MACs

We first note that MACNR[Dk] from Section 3 with message spaceM = {0, 1}≤m

is delegatable.

Theorem 4. Under theDk-MDDH assumption,MACNR[Dk] is tightlyHPR0-CMA
secure. In particular, for all adversariesA there exists an adversaryD withT(A) ≈
T(D) and Adv

hpr0-cma
MACNR[Dk]

(A) ≤ 6m(AdvDk,GGen(D)− 1/(q − 1)).

The proof is similar to that of Theorem 1, with the difference that the reduction
between games Gi and Gi−1 now has to guess m∗

i ∈ {0, 1,⊥}, where ⊥ means
that |m∗| < i. Furthermore, h0 from Chal(m∗) is not pseudorandom in the
delegatable case, since ([B]2, ([x

�
i B]2)0≤i≤m) are disclosed from Initialize and

422 O. Blazy, E. Kiltz, and J. Pan

then it is easy to check if h0 is well-formed under m∗ by using the pairing. A
formal proof of Theorem 4 is given in [3].

We now turn to MACHPS[Dk] from Section 3 with message space M = B≤m =
(Z∗

q)
≤m. Again, it can be verified to be delegatable. One should remark the

change on B, where we now define B = Z∗
q to avoid having a collision between

the MAC of m and the MAC of m‖0.

Theorem 5. Under the Dk-MDDH assumption, MACHPS[Dk] is HPR0-CMA-
secure. In particular, for all adversaries A there exists an adversary D with
T(A) ≈ T(D) and Adv

hpr0-cma
MACHPS[Dk]

(A) ≤ 2Q(AdvDk,GGen(D) + 1/q), where Q is
the maximal number of queries to Eval(·).

A formal proof can be found in the full version [3].

5.3 The Transformation

Let Dk be a matrix distribution that outputs matrices A ∈ Z(k+1)×k
q . Let MAC

be a delegatable affine MAC over Zn
q with message space M = B≤m. Our

HIBKEM[MAC,Dk] = (Gen,USKGen,USKDel,Enc,Dec) for key-space K = GT

and hierarchical identity space ID =M = B≤m is defined as in Figure 5. Com-
pared to the IBE construction from Section 4, the main difference is that Gen
also returns a delegation key dk which allows re-randomization of every usk[id].
Further, USKGen also outputs user delegation keys udk[id] allowing USKDel to
delegate.

To show correctness of HIBKEM[MAC,Dk], first note that (û, v̂) computed
in USKDel is a correct user secret key for id′, û =

∑l(id′)
i=0 fi(id

′)x�
i t + x′

0 and
v̂ =

∑l(id′)
i=0 fi(id

′)Yit + y′
0. In the next step they get rerandmozied as u′ =∑l(id′)

i=0 fi(id
′)x�

i (t+Bs′) and v′ =
∑l(id′)

i=0 fi(id
′)Yi(t+Bs′)+y′

0. Consequently,
usk[id′] from USKDel has the same distribution as the one output by USKGen. By
applying the similar correctness argument from HIBKEM[MAC,Dk], we can show
that a correctly generated ciphertext can be correctly decapsulated by using a
correct user secret key.

The next theorem shows our construction is a IND-HID-CPA-secure HIBKEM.
Its proof can be found in [3]. We remark that HIBKEM[MAC,Dk] can never be
anonymous as one can always check whether c0 ·

∑
fi(id)(E

�
i ‖di) = c1 ·B using

the pairing.

Theorem 6. If MAC is HPR0-CMA-secure and the Dk-MDDH assumption holds
in G1 then HIBKEM[MAC,Dk] is IND-HID-CPA secure. For all adversaries A
there exist adversaries B1 and B2 with T(B1) ≈ T(A) ≈ T(B2) and

Advind-hid-cpaHIBKEM[MAC,Dk]
(A) ≤ AdvDk,GGen(B1) + Adv

hpr0-cma
MAC (B2).

(H)IBE from Affine Message Authentication 423

Gen(par):
A ←$ Dk; skMAC ←$ GenMAC(par)
Parse skMAC = (B,x0, . . . ,x�, x

′
0, . . . , x

′
�′)

For i = 0, . . . , � :
Yi ←$ Zk×n

q ;Zi = (Y

i | xi) ·A ∈ Zn×k

q

di = x

i ·B ∈ Zn′

q ;Ei = Yi ·B ∈ Zk×n′
q

y′
0 ←$ Zk

q ; z
′
0 = (y′

0

 | x′

0) ·A ∈ Z1×k
q

pk := (G, [A]1, ([Zi]1)0≤i≤�, [z
′
0]1)

dk := ([B]2, ([di]2, [Ei]2)0≤i≤�)
sk := (skMAC, (Yi)0≤i≤�,y

′
0)

Return (pk, dk, sk)

USKGen(sk, id ∈ ID):
([t]2, [u]2) ←$ Tag(skMAC, id)
// t ∈ Zn

q ;u =
∑

fi(id)x

i t+ x′

0 ∈ Zq

v =
∑l(id)

i=0 fi(id)Yit+ y′
0 ∈ Zk

q

For i = l(id) + 1, . . . , �:
di = x

i t ∈ Zq; ei = Yit ∈ Zk
q

usk[id] := ([t]2, [u]2, [v]2)
udk[id] := ([di]2, [ei]2)l(id)<i≤�

Return (usk[id], udk[id])

Enc(pk, id):
r ←$ Zk

q ; c0 = Ar ∈ Zk+1
q

c1 = (
∑l(id)

i=0 fi(id)Zi) · r ∈ Zn
q

K = z′0 · r ∈ Zq.
Return K = [K]T and C = ([c0]1, [c1]1)

USKDel(usk[id], udk[id], id, idp+1):
Parse id ∈ Bp, idp+1 ∈ B
id′ := (id1, . . . , idp, idp+1) ∈ Bp+1

If p ≥ m, then return ⊥
//Delegation of u and v:
û = u+

∑l(id′)
i=l(id)+1 fi(id

′)di ∈ Zq

v̂ = v +
∑l(id′)

i=l(id)+1 fi(id
′)ei ∈ Zk

q

//Rerandomization of û and v̂:
s′ ←$ Zn′

q

t′ = t+Bs′ ∈ Zn
q

u′ = û+
∑l(id′)

i=0 fi(id
′)dis

′ ∈ Zq

v′ = v̂ +
∑l(id′)

i=0 fi(id
′)Eis

′ ∈ Zk
q

//Rerandomization of d′i and ei:
For i = l(id′) + 1, . . . , �:

d′i = di + dis
′ ∈ Zq

e′
i = ei +Eis

′ ∈ Zk
q

usk[id′] := ([t′]2, [u]2, [v′]2)
udk[id′] := ([d′i]2, [e

′
i]2)l(id′)<i≤�

Return (usk[id′], udk[id′])

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [u]2, [v]2)
Parse C = ([c0]1, [c1]1)

K = e([c0]1,

[
v
u

]
2

) · e([c1]1, [t]2)−1

Return K ∈ GT

Fig. 5. Definition of the transformation HIBKEM[MAC,Dk]

5.4 Anonymity-Preserving Transformation

In this section, we sketch an alternative (but less efficient) transformation, which
is anonymity-preserving. Due to space limitations, we only give the idea behind
our construction and refer to the full version for details.

Our transformation is based on the notion of APR-CMA-security (anonymity-
preserving pseudorandomness against chosen-message attacks) for a delegatable
affine MAC MAC over Zn

q with message space M = B≤m :=
⋃m

i=1 Bi. It dif-
fers from HPR-CMA-security (Section 5.1) in the sense that Eval(m) will out-
put the terms for usk rerandomization, not Initialize and that in the random
game, Chal returns uniform (h0, h1). Unfortunately, MACNR[Dk] is unlikely to
be APR-CMA-secure, but MACHPS[Dk] with message space M = B≤m = (Z∗

q)
≤m

is provably APR-CMA-secure.
Compared to the HIBE construction from Section 5.3, the new transforma-

tion AHIBKEM[MAC,Dk] uses a different rerandomization method for usk :=

424 O. Blazy, E. Kiltz, and J. Pan

([t]2, [u]2, [v]2): USKGen outputs a random basis T which allows rerandomiza-
tion of t; similarly, u and V are generated for rerandomizing u and v. In the
full version we prove that if MAC is an APR-CMA-secure and the Dk-MDDH
assumption holds in G1, then AHIBKEM[MAC,Dk] is PR-HID-CPA-secure, i.e.,
IND-HID-CPA-secure and anonymous.

Acknowledgements. All authors were (partially) supported by the Sofja Ko-
valevskaja Award of the Alexander von Humboldt Foundation and the German
Federal Ministry for Education and Research. Jiaxin Pan was also partially sup-
ported by the German Israel Foundation.

We thank Hoeteck Wee for various comments and helpful discussions.

References

1. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

2. Blazy, O., Kakvi, S., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. unpublished (2013)

3. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. Cryptology ePrint Archive, Full version of this paper
(2014)

4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (2013)

6. Chen, J., Wee, H.: Fully (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 435–460. Springer, Heidelberg (2013)

7. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

10. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 355–374. Springer, Heidelberg (2012)

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

12. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

(H)IBE from Affine Message Authentication 425

13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

14. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

15. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

16. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009)

17. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

19. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

20. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014)

21. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (October
1997)

22. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract). In: 29th ACM STOC, pp. 189–199.
ACM Press (May 1997)

23. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan (January 2000)

24. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

25. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE un-
der simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

26. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

27. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Witness Encryption

from Instance Independent Assumptions

Craig Gentry1, Allison Lewko2, and Brent Waters3,	

1 IBM Research, T.J. Watson, Yorktown Heights, NY, USA
cbgentry@us.ibm.com

2 Columbia University, New York, NY, USA
alewko@cs.columbia.edu

3 University of Texas at Austin, TX, USA
bwaters@cs.utexas.edu

Abstract. Witness encryption was proposed by Garg, Gentry, Sahai,
and Waters as a means to encrypt to an instance, x, of an NP language
and produce a ciphertext. In such a system, any decryptor that knows
of a witness w that x is in the language can decrypt the ciphertext
and learn the message. In addition to proposing the concept, their work
provided a candidate for a witness encryption scheme built using multi-
linear encodings. However, one significant limitation of the work is that
the candidate had no proof of security (other than essentially assuming
the scheme secure).

In this work we provide a proof framework for proving witness en-
cryption schemes secure under instance independent assumptions. At
the highest level we introduce the abstraction of positional witness en-
cryption which allows a proof reduction of a witness encryption scheme
via a sequence of 2n hybrid experiments where n is the witness length of
the NP-statement. Each hybrid step proceeds by looking at a single wit-
ness candidate and using the fact that it does not satisfy the NP-relation
to move the proof forward. We show that this “isolation strategy” en-
ables one to create a witness encryption system that is provably secure
from assumptions that are (maximally) independent of any particular
encryption instance. We demonstrate the viability of our approach by
implementing this strategy using level n-linear encodings where n is the
witness length. Our complexity assumption has ≈ n group elements, but
does not otherwise depend on the NP-instance x.

1 Introduction

Witness encryption, as introduced by Garg, Gentry, Sahai, and Waters [14], is
a primitive that allows one to encrypt to an instance of an NP language L.

� Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, Mi-
crosoft Faculty Fellowship, and Packard Foundation Fellowship.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 426–443, 2014.
c© International Association for Cryptologic Research 2014

Witness Encryption from Instance Independent Assumptions 427

An encryptor will take in an instance x along with a message m and run the
encryption algorithm to produce a ciphertext CT. Later a user will be able to
decrypt the ciphertext and recover m if they know of a witness w showing that
x is in the language L according to some witness relation R(·, ·). The security
of witness encryption states that, for any ciphertext created for an instance
x that is not in the language L, it must be hard to distinguish whether the
ciphertext encrypts m0 or m1. Concepts related to witness encryption include:
(in the computational setting) point-filter functions [16], and (in the statistical
setting for languages in SZK) non-interactive instance-dependent commitments
[23], including efficiently-extractable ones [15].

The primitive of encrypting to an instance is intriguing in its own right, and
Garg et. al. show that it has many compelling applications, including public
key encryption with very fast key generation, identity-based encryption [22,3,8],
attribute-based encryption [21] (ABE) for arbitrary circuits, and ABE for Turing
Machines [17]. The work of [17] goes on to develop even further applications, such
as reusable garbling schemes for Turing machines.

These powerful applications motivate the quest for constructions of witness
encryption with strong provable security guarantees. In [14], they gave a witness
encryption construction for the NP-complete Exact Cover problem [19] using
multilinear encodings (first suggested in [5] and first constructed by Garg, Gen-
try, and Halevi [11], with an alternative construction later provided by Coron,
Lepoint and Tibouchi [9]).

While the GGSW construction candidate demonstrates the plausibility of real-
izing secure witness encryption, they were unable to reduce the security of their
system to anything simpler than directly assuming the security of their con-
struction. Instead they applied what we will call an instance dependent family
of assumptions that they called the “Decision Graded Encoding No-Exact-Cover
Problem.” The assumption is that for each instance x not in the language, no
PPT attacker can distinguish between two particular distributions of multilinear
encodings. The distributions directly embed the Exact Cover instance x and are
almost identical to the structure of the ciphertexts from the construction.

The Importance and Difficulty of Using Simple Assumptions While a generic
group argument might give some confidence that it will be difficult to find an
attack on a scheme, a reduction to an assumption simpler than the scheme
itself is much more desirable. First, such a reduction will often provide critical
insight and understanding into why the scheme is secure. Second, the ideas
behind proof reductions often transcend their original settings and will be of use
elsewhere. Having a single, concrete assumption also provides a clearer focus for
cryptanalysis efforts to stress-test a candidate scheme.

Prior to this work, no known schemes could be reduced to instance-independent
assumptions. This is also the case for all known indistinguishability obfuscation
schemes. For example, [12] explicitly reduces to a instance-dependent family of
assumption, while [20] implicitly does this through a meta-assumption.

Our goal is to create techniques for building witness encryption systems that
are provably secure under radically simpler assumptions. To achieve this, we

428 C. Gentry, A. Lewko, and B. Waters

must first confront an intuitive barrier that is formalized as an impossibility re-
sult in [14] (with some restrictions). The idea is that any black-box security re-
duction to an instance-independent assumption for a witness encryption scheme
must (in some sense) verify that a statement is false. Otherwise, we could use the
reduction to break the assumption by “fooling it” on a true statement for which
we know a witness, and hence can simulate an attack. Since the best known
methods for solving NP-hard problems take exponential time, this implies an
instance independent reduction will have an exponential security loss.

Our Strategy To address the barrier above, we devise a proof technique that
employs a reduction which gradually “learns” that the instance x is not in the
language. Consider a instance x /∈ L with witness candidates of n bits. Our
strategy is to allow a reduction to build a hybrid argument by isolating and
examining each witness candidate, w, in sequence and utilizing the fact that
R(x,w) = 0 (i.e. the witness is not valid) to progress the hybrid to the next
step. (Since there are 2n witness candidates, the proof strategy will inherently
use complexity leveraging, as will any reduction strategy that falls within the
confines of the [14] impossibility result.) In this way, we obtain a “true reduction”
that represents a new understanding of the security of witness encryption.

To implement this hybrid approach, we will need a technique that somehow al-
lows a proof to compactly “save” its work for all of the witnesses it has examined.
Our starting point will be a broadcast encryption (BE) [10] system proposed by
Boneh and Waters [6] in 2006, which was the first collusion resistant system
to be proved adaptively secure. Instead of proving security all at once, they
employed a method of altering the challenge ciphertext over a sequence of N
hybrid experiments for a BE system of N users. At the center of their approach
was a new abstraction that they called augmented broadcast encryption. An
augmented BE system has an encryption algorithm EncryptAugBE(PK, S, t,m)
that takes as input a public key PK, a set of user indices S ⊆ [0, N − 1] , an
index t ∈ [0, N], and a message m. This produces a ciphertext CT. The seman-
tics of the system are that a user with index u ∈ [0, N − 1] 1 can decrypt the
ciphertext and learn the message only if u ∈ S and u ≥ t. These are like the se-
mantics of standard broadcast encryption, but with the added constraint of the
index t. Augmented broadcast encryption has two security properties. The first
is that no poly-time attack can distinguish between EncryptAugBE(PK, S, t,m)
and EncryptAugBE(PK, S, t+1,m) if the attacker does not have the key for index
t or if t /∈ S. The second property is that the scheme is semantically secure if we
encrypt to index t = N , thus cutting off all the user keys whether or not they
are in S.

It is straightforward to make a standard broadcast encryption using an aug-
mented one, as we can create a broadcast ciphertext to the set S by simply
calling EncryptAugBE(PK, S, t = 0,m). By setting t = 0, the range condition is
never invoked. The advantage of using this condition comes into the proof where

1 The Boneh-Waters paper uses indices 1, . . . , N for the users. We shift this to
0, . . . , N − 1 to better match our exposition.

Witness Encryption from Instance Independent Assumptions 429

we want to prove that no attack algorithm can distinguish an encryption to an
adaptively chosen set S∗ (meaning it is chosen after seeing the public key) if it is
only given keys for u /∈ S∗. The proof proceeds by a sequence of indistinguishable
hybrid experiments where at the i-th hybrid the challenge ciphertext is gener-
ated for index t = i. Finally, we move to t = N and the second property then
implies security of the scheme. Even though there were N indices, the abstrac-
tion and hybrid sequence allowed for a proof to isolate one user at a time. The
BW construction melded a broadcast system with the Boneh-Sahai-Waters [4]
traitor tracing [7] system to enforce the range condition.

Positional Witness Encryption With these concepts in mind, we can turn back
to the problem of devising a proof strategy for witness encryption for an NP-
complete language L. The first step we take is the introduction of a primitive that
we call positional witness encryption. A positional witness encryption system has
an encryption algorithm EncryptPWE(1

λ, x, t,m) that takes as input a security
parameter 1λ, astring x, a position index t ∈ [0, 2n], and a messagem and outputs
a ciphertext CT. Here we let n be the witness length of x and letN = 2n. One can
decrypt a ciphertext by producing a witness w such that R(x,w) = 1 and w ≥ t
where w is interpreted as an integer. Essentially, this has the same correctness
semantics as standard witness encryption, but with the range condition added.
The security properties are as follows:

– Positional Indistinguishability: If R(x, t) = 0 then no poly-time attacker can
distinguish between EncryptPWE(1

λ, x, t,m) and EncryptPWE(1
λ, x, t+1,m).

– Message Indistinguishability: No poly-time attacker can distinguish between
EncryptPWE(1

λ, x, t = 2n,m0) and EncryptPWE(1
λ, x, t = 2n,m1) for all

equal length messages m0,m1.

We point out that the security definition of positional witness encryption is
not explicitly constrained to x /∈ L in any place. However, if some x /∈ L, then
for all witnesses w ∈ [0, 2n − 1] (interpreting the bitstring w as an integer) we
have that R(x,w) = 0. This leads to a natural construction and proof strategy
for witness encryption. To witness encrypt a message m to an instance x, we
call EncryptPWE(1

λ, x, t = 0,m). To prove security, we design a sequence of
indistinguishable hybrids where we increase the value of t at each step until we
get to t = N = 2n where we can invoke message indistinguishability. Each step
can be made since x /∈ L implies R(x,w) = 0. The hybrids cause a 2n loss of
security relative to the security of the positional witness encryption and this
should be compensated for in setting the security parameter. 2

The potential advantage of positional witness encryption is that it offers a
hybrid strategy where the core security property is focused on whether a sin-
gle witness satisfies a relation. However, there is still a very large gap between

2 We note that complexity leveraging is used elsewhere in “computing on en-
crypted data”. For example, current solutions of Attribute-Based Encryption for
circuits [13,18] are naturally selectively secure and require complexity leveraging to
achieve adaptive security.

430 C. Gentry, A. Lewko, and B. Waters

imagining this primitive and realizing it. First, we need a data structure that
can both securely hide t and compactly store it (e.g. ciphertexts cannot grow
proportional to the number of witnesses N = 2n). Next, we need to be able to
somehow embed an instance x of an NP-complete problem. This must be done
in such a way that the security proof can isolate a property that depends on
whether R(x,w) = 0 for each witness candidate w and use this to increment the
positional data in a manner oblivious to an attacker.

Tribes Schemes and Their Uses We begin our realization by introducing a data
structure that we call a tribes matrix, which will be flexible enough to encode
both a position and a CNF formula. A tribes matrix will induce a boolean func-
tion from n-bit inputs to a single output bit. We then introduce a cryptographic
primitive called a tribes scheme that will hide some properties of the matrix while
still enabling evaluation of the corresponding boolean function. The benefit of
this middle layer of abstraction is that it portions the work into a manageable
hybrid security proof at the abstract level and creates a rather slim and concise
target for lower level instantiations. This naturally increases the potential for
instantiating our framework with a variety of different assumptions.

The name “tribes” was chosen because of the structural similarities between
the induced boolean function and the tribes function commonly considered in
boolean function analysis (e.g. [2]). In the tribes function, n inputs are thought
of as people that are partitioned into � tribes, and the function outputs 1 if
and only if at least one tribe takes value 1 unanimously. In our case, we define
3-dimensional n×�×2 matrix, where we think of it as having n rows, � columns,
and 2 “slots” for each row and column pair. The slots take values from a 2-
symbol alphabet, notated as {U,B} and are {0, 1}-indexed. The B stands for
“blocked” and the U stands for “unblocked.” To evaluate the boolean function
on a n bit input x1, . . . , xn, we consider each of the � columns as a tribe, but in
each row i we take the value in the slot indexed by xi (this means that the input
bits specify the composition of the tribe from a pre-existing set of values, rather
than providing the values themselves). If some tribe is unanimously “blocked,”
the function outputs 1, otherwise it outputs 0. For a tribes matrix denoted by
M , we will denote the associated boolean function by fM .

When we embed a tribes matrix into a tribes scheme, we seek to allow access
to evaluating the function without revealing full information about the matrix
entries. Of course, some properties of the matrix entries can be inferred from
black-box access to the function, and this is fine; we only seek to hide a very
specific kind of structure that does not affect the function evaluation on any
input. For this, we define the notions of “inter-column” and “intra-column”
security, and the combination essentially requires that the tribes schemes for
two matrices that differ in a single slot value are indistinguishable if there a
simple reason why this slot value does not affect the boolean function.

More precisely, suppose we wish to hide the value of a slot in row i∗, col-
umn k. If there is a column j such that the corresponding slot has value B,
and furthermore in all rows i �= i∗, occurrences of B in column k are always
matched by occurrences of B in column j, then we can change the value of this

Witness Encryption from Instance Independent Assumptions 431

slot in row i∗ without affecting the boolean function. To see this, observe that
regardless of the value at this slot in column k, for any input where tribe k is
unanimously blocked, tribe j is also unanimously blocked. Inter-column security
requires that we can furthermore hide this change in the sense of computational
indistinguishability. The second property of intra-column security ensures that
if both slots of a particular row in a single column have the value U , then any
other slot in the column can be changed without an attacker noticing.

We next consider how one might encode positions and CNF formulas into a
tribes matrix. Our approach is to encode these two objects separately, and then
simply concatenate the matrices. To encode a position t, we wish to produce a
tribes matrix M where the boolean function fM will output 1 for every witness
y < t, and will output 0 otherwise. The key observation is that every potential
witness y < t will have some bit j where it first departs from t (starting from
the most significant bit), and in this bit y will be 0 and t will be 1. We leverage
this by designing the jth column of M to be blocked precisely for such y.

To encode a CNF formula in a tribes matrix, we build a column corresponding
to each clause, where the rows are indexed by the variables, x1, . . . , xn. To fill in
the slots of row i in column j, we see if the literal xi or its negation xi appear
in the jth clause. If xi appears, we put a U in the 1-indexed slot. If xi appears,
we put a U in the 0-indexed slot. For any remaining slots, we put B. This yields
a column that is blocked precisely for inputs that do not satisfy the clause. We
therefore get a matrix whose associated boolean function outputs 1 if and only
if the CNF formula is unsatisfied.

From this, we can construct a positional witness encryption scheme. To en-
crypt a message bit to a particular position and formula, the encryptor forms
tribes matrices as above, concatenates them, and concatenates one extra column
to encode the message (it will contain all U ’s if the bit is 0 and all B’s if the
bit is one). It finally embeds this matrix in a tribes scheme, which serves as the
ciphertext. A decryptor can then evaluate the boolean function to recover the
message. (If R(x,w) = 1 and w ≥ t, then the output of the tribes evaluation will
reflect the message; otherwise, it outputs 1 regardless of the message.)

To prove positional indistinguishability, we proceed through a hybrid ar-
gument that relies upon the inter-column security of the cryptographic tribes
scheme to incrementally change the matrix entries to an encoding of the next
position. During this process, we will need to leverage the fact that the current
position represents a witness that does not satisfy the CNF formula. The key
observation here is that there will be at least one clause that is not satisfied, and
the column for that clause can be used to make changes to entries in another
column through the inter-column security game.

Instantiating a Tribes Scheme Finally, what is left is to instantiate a tribes
scheme and reduce the inter-column and intra-column security requirements to a
computational assumption. We give three related constructions each from multi-
linear algebraic groups with an n linear map, which required for a tribes instance
of n rows.

432 C. Gentry, A. Lewko, and B. Waters

Our first instantiation uses composite order symmetric multilinear groups.
The group’s order is a product n + � primes for an n by � tribes matrix. Our
next instantiation (which can be found in the full version) utilizes asymmetric
groups to reduce the order of the group to the product of � primes. Also in
the full version of this paper, we modify the instantiation to be in prime order
using a translation based on eigenvectors. Each instance is based on a pair of
multilinear map assumptions that depend on n (or n and �), but are independent
of the contents of the tribes matrix. The assumptions we use in the composite
order symmetric context for example, are given in Section 5, and we call them the
multilinear subgroup decision and multilinear subgroup elimination assumptions,
as they are rather natural variants of subgroup decision assumptions typically
used in bilinear groups. In fact, in the full version we explain how to use only the
multilinear subgroup elimination assumption. We also justify the prime order
variants of our assumptions in the multilinear generic group model and show
how to translate from algebraic groups into the multilinear encodings of Coron,
Lepoint and Tibouchi (CLT) [9].

2 Positional Witness Encryption

We will first give our definition of a positional witness encryption system and
then show how it implies standard witness encryption by a hybrid argument.

We define a positional witness encryption scheme for an NP language L. Let
R(·, ·) be the corresponding witness relation and let n = n(|x|) be the witness
length for a particular witness x. The system consists of two algorithms:

Encryption. The algorithm EncryptPWE(1
λ, x, t,m) takes as input a secu-

rity parameter 1λ, an unbounded-length string x, a position index t ∈ [0, 2n]
(we let n = n(x)) and a message m ∈M for some (fixed and finite) message
space M, and outputs a ciphertext CT.

Decryption. The algorithm DecryptPWE(CT, w) takes as input a ciphertext
CT and a length n string w, and outputs a message m or the symbol ⊥. (We
assume the ciphertext specifies the instance x and therefore n = n(|x|) is
known.)

Given a string w ∈ {0, 1}n we will sometimes slightly abuse notation and also
refer to w as an integer in [0, 2n−1] where the most significant bit is the leftmost
bit. In other words, we consider the integer Σi=1,··· ,nwi · 2n−i, where wi is the
i-th bit of the string w.

Definition 1 ((Perfect) Correctness of Positional Witness Encryp-
tion). For any security parameter λ, for any m ∈ M, and for any x ∈ L
such that R(x,w) holds for w ≥ t, we have that

DecryptPWE

(
EncryptPWE(1

λ, x, t,m), w
)
= m.

Witness Encryption from Instance Independent Assumptions 433

2.1 Security of Positional Witness Encryption

Message Indistinguishability The security of a positional witness encryption for
language L is given as two security properties. The first is message indistinguisha-
bility, which is parameterized by an instance x and two equal length messages
m0,m1. Intuitively, the security property states that if one encrypts to the “fi-
nal” position t = 2n (where n is the witness length of x) then no attacker can
distinguish whether a ciphertext is an encryption of m0 or m1. We emphasize
that this security property is entirely independent of whether x ∈ L. We define
the (parameterized) advantage of an attacker as

MsgPWEAdvA,x,m0,m1
(λ) =∣∣∣Pr[A(EncryptPWE(1

λ, x, t=2n,m1))= 1]− Pr[A(EncryptPWE(1
λ, x, t = 2n,m0))=1]

∣∣∣ .
Definition 2 (Message Indistinguishability Security of Positional Wit-
ness Encryption).

We say that a positional witness encryption scheme for a language L with wit-
ness relation R(·, ·) is Message Indistinguishability secure if for any probabilistic
poly-time attack algorithm A there exists a negligible function in the security
parameter negl(·) such that for all instances x and equal length messages m0,m1

we have MsgPWEAdvA,x,m0,m1
(λ) ≤ negl(λ).

We letMsgPWEAdvA,x(λ) be the maximum value ofMsgPWEAdvA,x,m0,m1
(λ)

over the pairs m0,m1 ∈ M for each λ.

Position Indistinguishability The second security game is positional indistin-
guishability. Informally, this security game states that it is hard to distinguish
between an encryption to position t from an encryption to t+ 1 when t is not a
valid witness – that is, R(x, t) = 0. (Here we slightly abuse notation in the other
direction by interpreting the integer t as a bit string.) Positional indistinguisha-
bility security is parameterized by an instance x, a message m, and a position
t ∈ [0, 2n − 1] where n is the witness length of x. We define the (parameterized)
advantage of an attacker as

PosPWEAdvA,x,m,t(λ) =∣∣Pr[A(EncryptPWE(1
λ, x, t+ 1,m)) = 1]− Pr[A(EncryptPWE(1

λ, x, t,m)) = 1]
∣∣ .

Definition 3 (Position Indistinguishability Security of Positional Wit-
ness Encryption).

We say that a positional witness encryption scheme for a language L with
witness relation R(·, ·) is Position Indistinguishability secure if for any prob-
abilistic poly-time attack algorithm A there exists a negligible function in the
security parameter negl(·) such that for all instances x, all message m, and any
t ∈ [0, 2n − 1] where R(x, t) = 0 we have PosPWEAdvA,x,m,t(λ) ≤ negl(λ).

We let PosPWEAdvA,x(λ) be the maximum value of PosPWEAdvA,x,m,t(λ)
over m ∈M and t ∈ [0, 2n] where R(x, t) = 0 for each λ.

We further require that both the message length and the problem statement
length must be bounded by some polynomial of the security parameter.

434 C. Gentry, A. Lewko, and B. Waters

A quick note on the witness encryption definition. We provide the definition
of witness encryption in the appendix of the full version. The definition of our
appendix follows the original of Garg, Gentry, Sahai, and Waters [14], but with
two modifications. First, we restrict ourselves to perfect correctness for simplic-
ity. Second, in defining soundness security we use a notation that the scheme
is secure if for all PPT attackers there exists a negligible function negl(·) such
that for any x /∈ L the attacker must only be able to distinguish encryption
with probability at most negl(λ). The GGSW definition had a different ordering
of quantifiers which allowed the bounding negligible function for a particular
attacker to depend on the instance x. Bellare and Tung Hoang [1] showed that
this formulation was problematic for multiple applications of witness encryption.
Our positional witness encryption definition follows a similar corrected ordering
of quantifiers.

Building Witness Encryption from Positional Witness Encryption Building stan-
dard witness encryption from Positional WE is straightforward. The proofs fol-
lows from the hybrid outlined in the introduction. We describe this formally in
the full version of this paper.

3 Tribes Schemes

A tribes matrix M is an n× �× 2 3-dimensional matrix, with entries belonging
to the two symbol alphabet {B,U}, which stand for “blocked” and “unblocked”.
We consider [n] = {1, 2, . . . , n} as indexing the rows, [�] as indexing the columns,
and {0, 1} as indexing the “slots” (i.e. we think of M as an n× � matrix whose
entries are pairs of slots, each containing a symbol from {B,U}).

Such a matrix M defines a boolean function fM from {0, 1}n to {0, 1} as
follows. Given an input x = (x1, x2, . . . , xn) ∈ {0, 1}n, we examine each column
of M . Suppose, for example, that we are considering column j. We cycle through
the n rows of this column, and while considering row i, we take the value of the
slot whose index matches xi. If the column contains at least one value U in these
slots, then we define the value of the column to be 0. Otherwise, we define it to
be 1. Finally, if there exists a column with value 1, we define the output of the
function to be 1, otherwise it is 0.

More formally, we define fM as:

fM (x) :=

{
1, ∃j s.t. Mi,j,xi = B ∀i ∈ [n];
0, otherwise.

The name for these matrices is inspired by the tribes function, an interesting
object in boolean function analysis. In that domain, one considers the input
boolean vector as specifying the “votes” of a population that is organized into
tribes, and the output is 1 if and only if there exists a tribe that unanimously
voted 1. This is not a perfect analogy to our setting, since we view the input
not as specifying these votes directly but rather as selecting each vote from a
predetermined set of two possible values. Nonetheless, we adopt the “tribes”

Witness Encryption from Instance Independent Assumptions 435

terminology as a helpful device for reinforcing the key feature here that the
output of our function is 1 if and only some column takes on unanimous values
of B when the input is used for indexing the slots.

3.1 Tribes Schemes

We next use the notion of tribes matrices to define a cryptographic primitive
that we will call a tribes scheme. A tribes scheme will have two algorithms.
The first algorithm, Create, will take in tribes matrices and generate objects
that we will call cryptographic tribes. This algorithm is randomized. The second
algorithm, Eval, will take in a cryptographic tribe and an input and compute
the boolean function described above for the tribes matrix that is incorporated
in the cryptographic tribe. This algorithm is deterministic.

Create(λ,M) → T The creation algorithm takes in a security parameter λ and
a tribes matrix M and outputs a cryptographic tribe T .

Eval(T, x ∈ {0, 1}n)→ {0, 1} The evaluation algorithm takes in a cryptographic
tribe T and a boolean vector x and outputs a value {0, 1}.

Correctness We require perfect correctness, meaning that for every tribes matrix
M ∈ {B,U}n×�×2, for any security parameter λ, and for any input vector x ∈
{0, 1}n, we have that

Eval(Create(λ,M), x) = fM (x).

3.2 Tribes Security Properties

We will define two security properties for a tribes scheme. Both will be defined
as typical distinguishing games between a challenger and an attacker. We call
the first of these the intra-column game, as it only relies on a condition within a
single column of the underlying tribes matrix. We call the other the inter-column
game, as it involves a relationship between two columns that allows us to change
a “U” symbol to a “B”.

Intra-column Game This game is parameterized by a security parameter λ, a
tribes matrix M , an index j of a column in M such that there is some row i∗

where both slots take the value U3, and an alternate column C ∈ {B,U}n×2

such that the row i∗ also has both slots equal to U . All of these parameters are
given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs
Create(λ,M) to produce a cryptographic tribe T . If b = 1, it forms M ′ by
replacing the jth column of M with C, and then runs Create(λ,M ′) to produce
T . It gives T to the attacker, who must then guess the value of the bit b.

3 Of course, for an arbitrary tribes matrix, such a column may not exist. This is
an extra condition we are imposing on M , and this property is only defined for
such M .

436 C. Gentry, A. Lewko, and B. Waters

Definition 4. We say a tribes scheme has intra-column security if for every
polynomial time attacker A, there exists a negligible function negl(λ) such that
the attacker’s advantage in the Intra-column Game is ≤ negl(λ), for any valid
settings of M, j, C. Note that the negligible function depends only on A and λ,
and is independent of the dimensions of M , for example.

Inter-column Game This game is parameterized by a security parameter λ, a
tribes matrix M , two indices j and k of columns of M , an index i∗ of a row of
M , and a slot index β such that Mi∗,j,β = B. We require the following condition
on the jth and kth columns of M . For every row i and slot γ except for i = i∗

and γ = 1 − β, if Mi,k,γ = B, then Mi,j,γ = B as well (i.e. when there is only
one U among these values, it is always in column k)4. All of these parameters
are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs
Create(λ,M) to produce a cryptographic tribe T . If b = 1, it forms M ′ by
copying M except for flipping just one entry: M ′

i∗,k,β = B if Mi∗,k,β = U , and
M ′

i∗,k,β = U if Mi∗,k,β = B. It then runs Create(λ,M ′) to produce T . The
challenger gives T to the attacker, who finally must guess the value of the bit b.

Definition 5. We say a tribes scheme has inter-column security if for every
polynomial attacker A, there exists a negligible function negl(λ) such that the
attacker’s advantage in the Inter-Column Game is ≤ negl(λ), for any valid
settings of M, j, k, i, β. Note that the negligible function depends only on A and
λ, and is independent of the dimensions of M , for example.

In the full version, we define a tribes-lite scheme as a relaxed notion of a tribes
scheme, where only inter-column security is required. We then demonstrate how
to be build a tribes scheme from a tribes-lite scheme.

Required Security To be useful for ultimately building witness encryption, the
required security of all of our security games is that they must be negl(λ) ·
2−n where negl(λ) is some negligible function. The demand for the 2−n term is
passed down from the positional hybrid of the previous Section 2. In the next
section we show how to build positional WE from a Tribes scheme. Since that
reduction involves only a polynomial number of hybrids in n (and thus λ) these
are absorbed in the negligible function.

4 Constructing a Positional Witness Encryption Scheme
from a Tribes Scheme

We will now show how to build a positional witness encryption scheme from a
tribes scheme.

4 Again, these are extra conditions we are imposing on M, j, k, β in order for this game
to be applicable.

Witness Encryption from Instance Independent Assumptions 437

4.1 Encoding a CNF in a Tribal Matrix

Suppose we have a CNF formula φ with n variables and � clauses. In other words,
we can write φ = φ1 ∧ φ2 ∧ . . . ∧ φ�, where each φi is a clause over the variables
X1, . . . , Xn and their negations, denoted X1, . . . , Xn. We will define an n× �× 2
tribes matrix Mφ.

In order to set the entries of the jth column of Mφ, we consider the jth

clause φj . For each row i, we do the following: (A) If Xi appears in φj , we set

Mφ
i,j,1 = U . (B) If Xi appears in φj , we set Mφ

i,j,0 = U . (C) For any entries

Mφ
i,j,β not yet defined, set Mφ

i,j,β = B. We note the following property of Mφ:

Lemma 1. If we consider a boolean string x ∈ {0, 1}n as an assignment of
truth values to the variables X1, . . . , Xn of φ, then if clause φj is unsatisfied by
x, column j of Mφ will evaluate to value 1, and hence fMφ(x) = 1. If x satisfies
φ, then fMφ(x) = 0.

Proof. Suppose clause φj is unsatisfied by the assignment x. For each i ∈ [n], we

consider Mφ
i,j,xi

. If xi = 0, then φj unsatisfied implies that Xi does not appear

in φj , and so Mφ
i,j,0 = B. Similarly, if xi = 1, then φj unsatisfied implies Xi does

not appear in φj , so Mφ
i,j,1 = B. Thus, fMφ(x) = 1. Conversely, if x satisfies φ,

then for each column j, there exists some row i such that either xi = 0 and Xi

appears in φj or xi = 1 and Xi appears in φj . Either way, M
φ
i,j,xi

= U . Hence,
fMφ(x) = 0.

4.2 Encoding a Position in a Tribal Matrix

Suppose we have a position t considered as a binary string t = (t1, t2, . . . , tn) ∈
{0, 1}n. We will define an n × n × 2 tribes matrix M t. We describe M t by
specifying how to fill in the jth column of M t. To Set Column j:

For i < j, M t
i,j,0 = B, M t

i,j,1 =

{
U, if ti = 0;

B, if ti = 1.

For i = j, M t
i,j,0 =

{
U, if ti = 0;

B, if ti = 1.
M t

i,j,1 = U

For i > j, M t
i,j,0 = B = M t

i,j,1.

We now establish some relevant properties of M t. First, we observe that the
associated boolean function fMt evaluates to 1 for every boolean string y < t
and evaluates to 0 for every y ≥ t. Here, we use “<” and “≥” to denote the
order induced by the usual ordering of integers, when we think of t, y as binary
expansions with t1, y1 being the most significant bits.

438 C. Gentry, A. Lewko, and B. Waters

Lemma 2. If y < t, then fMt(y) = 1.

Proof. Since y < t, there must be some index k ∈ [n] such that ti = yi for all
i < k and tk = 1 while yk = 0. We consider the kth column of M t. We claim
that for all i, M t

i,k,yi
= B. To see this, we can consult our description of the kth

column of M t above, noting that for i < k, whenever yi = 1, then ti = 1 as well
(by definition of k). Thus, fMt(y) = 1.

Lemma 3. If y ≥ t, then fMt(y) = 0.

Proof. We let k ∈ [n] denote an index such that yi = ti for all i ≤ k, and
yk+1 = 1, tk+1 = 0, if k + 1 ≤ n. For a column j where j ≤ k, we observe
that Mj,j,yj = U , since yj = tj . For any column j where j > k, we observe that
Mk+1,j,yk+1

= U . This is because tk+1 = 0 and yk+1 = 1. Hence, fMt(y) = 0.

This defines an effective encoding of positions t from 0 to 2n− 1 (considering
t as an integer). We also require an encoding of 2n. We define M2n to be the
same as M2n−1, except that the first diagonal entry has both slots equal to B.
We observe that fM2n (y) = 1 for all n-bit values y, since the first column is all
filled with B values.

4.3 Our Positional Witness Encryption Scheme

We let our message space be {0, 1}.

EncryptPWE(1
λ, φ, t,m) The encryptor constructs Mφ and M t as above. For

m ∈ {0, 1}, it constructs an additional column Cm (which is n × 2) as follows.
If m = 1, Cm

i,0 = Cm
i,1 = B for all i, and if m = 0, Cm

i,0 = Cm
i,1 = U for all i. It

also constructs a completely unblocked column S, meaning that Si,0 = Si,1 = U
for all i. Note that appending such a column to a tribes matrix will not affect
the evaluation function. (This “scratch column” S will be useful in the proof of
security.)

It then forms an n× (�+n+2)×2 tribes matrix M as M := Mφ||M t||Cm||S,
meaning that the first � columns are taken to be Mφ, the next n columns
are taken to be M t, and the final two columns are taken to be Cm and S.
The encryptor then calls Create(λ,M) to produce a tribes scheme T , and sets
CT := T .

DecryptPWE(CT, w) The decryptor runs Eval(CT, w) and outputs the result.

4.4 Security of our Positional Witness Encryption Scheme

We now prove security of the positional witness encryption based on the two
tribes properties on inter-column and intra-column security. The most complex
part is the proof of position hiding, which is given over a sequence of hybrid
steps. At a very high level the proof (for indistinguishability of position t from
t+1) proceeds in two stages. In the first stage the reduction algorithm identifies

Witness Encryption from Instance Independent Assumptions 439

a clause, j, in the CNF formula that the witness candidate w = t does not
satisfy. Such a clause must exist for this to be a valid instance of the positional
game. The proof then uses the j-th column in the CNF portion of the matrix to
(undetectably) change the scratch column S from having U ’s in each of its 2 · n
slots to having a B in row i slot ti for each i. (The other n slots remain U .) The
security properties are used to argue that such a change is indistinguishable to
an attacker. This copy action into the scratch column will cause the column to
evaluate as “blocked” on input t and remain evaluating to unblocked on all other
inputs. Intuitively, this will have no impact on the overall evaluation since the
j-th column caused a block on input t anyway — providing a conceptual sanity
check for our claim. Intuitively, this stage reflects the fact that t is not a valid
witness and represents this fact in the scratch column.

The next stage of our proof solely involves the scratch column and position
matrix. A series of hybrid steps will use the scratch column to update the posi-
tional part of the matrix from position t to position t+ 1 by “assimilating” the
scratch column from the previous stage. At the end of these steps that scratch
column will again become unblocked in all slots and thus matching the end goal
of our argument. Our proof can be found in the full version.

5 An Instantiation in a Symmetric Model of Composite
Order Multilinear Groups

We provide a description of our first instance of a tribes schemes by instantiating
it in symmetric composite order multilinear groups. Its proof of security and
intuition on the assumptions appear in the full version.

5.1 An Abstract Model of Composite Order Multilinear Groups

We let G denote a (cyclic) group of order N = p1p2 · · · pr, where p1, . . ., pr are
distinct primes. We let GT also denote a cyclic group of order N . We suppose
that we have a k-linear map E : Gk → GT . We assume this is non-degenerate,
meaning that if g generates G, then E(g, g, . . . , g) generates GT . We write the
group operations multiplicatively, and we let 1G, 1GT denote the identity ele-
ments in G and GT respectively.

For each prime pi dividing the group order of N , we have a subgroup Gpi

of order pi inside G. We let gpi denote a generator for Gpi . We let Gp1p2 , for
example, denote the subgroup of order p1p2 that is generated by gp1gp2 .

These subgroups are “orthogonal” under G, meaning (for example) that if
h ∈ Gp1p2···pi−1pi+1pr , then for any g2, . . . , gk−1 ∈ G,

E(h, g2, . . . , gk−1, gpi) = 1GT .

More generally, each element of G can be expressed as gα1
p1
gα2
p2
· · · gαr

pr
. Thus if we

have k elements ofG that are input to E, we can write them as g
α1,1
p1 g

α2,1
p2 · · · gαr,1

pr ,

440 C. Gentry, A. Lewko, and B. Waters

. . ., g
α1,k
p1 g

α2,k
p2 · · · gαr,k

pr , and by multi-linearity of E and orthogonality we then
have:

E(g
α1,1
p1

g
α2,1
p2

· · · gαr,1
pr , . . . , g

α1,k
p1

g
α2,k
p2

· · · gαr,k
pr) = E(g

α1,1
p1

, . . . , g
α1,k
p1

) · · ·E(g
αr,1
pr , . . . , g

αr,k
pr).

We let G(λ, r, k) denote a group generation algorithm that takes in a security
parameter λ, a desired number of prime factors r, and a desired level of mul-
tilinearity k and outputs a description of a group G as above. We assume the
description includes a generator g ∈ G, the group order N , the primes p1, . . . , pr
comprising N , and efficient algorithms for the group operation in G, the group
operation in GT , and the multilinear map E. Note that with a generator g for
the full group plus knowledge of the prime factors, one can efficiently produce a
generator for any subgroup of order dividing N .

Computational Assumption 1S Our first computational assumption in the sym-
metric setting will be parameterized by positive integers n and ν. It will concern
a group of orderN = a1 . . . anb1 . . . bνc, where a1, . . . , an, b1, . . . , bν , c are n+ν+1
distinct primes. We give out generators ga1 , . . . , gan , gb1 , . . . , gbν for each prime
order subgroup except for the subgroup of order c. For each i ∈ [n], we also give
out a group element hi sampled uniformly at random from the subgroup of or-
der ca1 · · · ai−1ai+1 · · ·an. The challenge term is a group element T ∈ G that
is either sampled uniformly at random from the subgroup or order ca1 · · · an
or uniformly at random from the subgroup of order a1 · · · an. The task is to
distinguish between these two distributions of T .

We name this assumption the (n, ν)-multilinear subgroup elimination assump-
tion.

Computational Assumption 2S Our second computational assumption will be
parameterized by positive integers n and ν. It will again concern a group of
order N = a1 . . . anb1 . . . bνc, where a1, . . . , an, b1, . . . , bν , c are n+ ν +1 distinct
primes. As in Assumption 1, we give out generators ga1 , . . . , gan , gb1 , . . . , gbν for
each prime order subgroup except for the subgroup of order c. The challenge term
is a group element T that is either sampled uniformly at random the subgroup
of order can or the subgroup of order an. The task is to distinguish between
these two distributions of T .

We name this assumption the (n, ν)-multilinear subgroup decision assumption.

5.2 Instantiating a Tribes Scheme

Suppose we wish to build a tribes scheme for n× � × 2 tribes matrices, and we
have a generation algorithm G for producing composite order multilinear groups.
We construct a tribes scheme as follows:

Create(λ,M): The creation algorithm takes in a security parameter λ and an
n × � × 2 tribes matrix M (entries in {U,B}). It then calls G(λ, r = n + �, n)
to produce a group G of order N = p1 · · · pnq1 · · · q� equipped with an n-linear

Witness Encryption from Instance Independent Assumptions 441

map E. It will produce 2n group elements, each indexed by a row i ∈ [n] and
a slot β ∈ {0, 1}. We let gi,β be sampled as follows. First, for each i′ �= i, a
uniformly random element si′ of the subgroup of order pi′ is sampled. Next, for
each column index j ∈ [�], if Mi,j,β = B, then zj is sampled as a uniformly
random element of the subgroup of order qj . If Mi,j,β = U , then zj := 1G. (All
of these values are freshly resampled for each i, β.) We set:

gi,β :=
∏
i′ �=i

si′
�∏

j=1

zj .

The tribes scheme T consists of these 2n elements {gi,β} (we assume this implic-
itly includes a description of G that enables efficient computation of the group
operation and E, and the full group order N , but not the individual primes
comprising N).

Eval(T, x): The evaluation algorithm takes in a tribes scheme T and a boolean
vector x = (x1, . . . , xn) ∈ {0, 1}n. It computes E(g1,x1 , g2,x2, . . . , gn,xn) and
checks whether this is equal to 1GT or not. If is it the identity, it outputs 0.
Otherwise, it outputs 1.

Correctness We first establish that Eval(Create(λ,M), x) = fM (x). We first
observe that (by orthogonality of distinct prime order subgroups)
E(g1,x1 , g2,x2, . . . , gn,xn) can be considered as a product of contributions within
each prime order subgroup. Consider a prime pi. No component in the subgroup
of order pi appears in gi,xi (regardless of the value of xi), so this contribution
is trivial (just the identity element). For analyzing the contribution of the qj
primes, we consider two cases. Suppose ∃ a column j such that Mi,j,xi = B for
all i ∈ [n]. This is equivalent to supposing that fM (x) = 1. In this case, there is
a random component in the subgroup of order qj incorporated in every gi,xi , so
the contribution will be (with high probably) a non-identity element in the qj
order subgroup of GT . This cannot be “canceled out” by a contribution in any
other prime order subgroup, so the result will be �= 1GT in this case, resulting
in an output that matches fM . In the other case, no such column j exists. This
means that for every column j, there is some gi,xi which lacks a component
in the order qj subgroup, hence causing a result of 1GT , and the output again
matches fM .

In the full version, we show that inter-column security for this tribes scheme is
implied by the multilinear subgroup elimination assumption, and intra-column
security is implied by the multilinear subgroup decision assumption. One can
alternatively rely solely on the multlinear subgroup elimination assumption to
build a tribes-lite scheme first and then derive a tribes scheme from it.

Acknowledgements. We thank Mihir Bellare and Amit Sahai for helpful dis-
cussions and comments.

442 C. Gentry, A. Lewko, and B. Waters

References

1. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-
based cryptography. Cryptology ePrint Archive, Report 2013/704 (2013),
http://eprint.iacr.org/

2. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and minima
of banzhaf values. In: FOCS, pp. 408–416 (1985)

3. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003); Extended abstract in Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg (2001)

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temporary Mathematics 324, 71–90 (2003)

6. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and re-
voke system. In: ACM Conference on Computer and Communications Security,
pp. 211–220 (2006)

7. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

8. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

9. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

10. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

11. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013)

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS,
pp. 40–49. IEEE Computer Society (2013)

13. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128
(2013), http://eprint.iacr.org/

14. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC, pp. 467–476 (2013)

15. Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical zero knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (2012)

16. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2005, pp. 553–562. IEEE (2005)

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits. In:
STOC (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/

Witness Encryption from Instance Independent Assumptions 443

19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

20. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. Cryptology ePrint Archive, Report 2013/781 (2013),
http://eprint.iacr.org/

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

23. Tompa, M., Woll, H.: Random self-reducibility and zero knowledge interactive
proofs of possession of information. In: FOCS, pp. 472–482 (1987)

http://eprint.iacr.org/

RSA Key Extraction via Low-Bandwidth

Acoustic Cryptanalysis�

Daniel Genkin1, Adi Shamir2, and Eran Tromer3

1 Technion and Tel Aviv University, Israel
danielg3@cs.technion.ac.il

2 Weizmann Institute of Science, Israel
adi.shamir@weizmann.ac.il
3 Tel Aviv University, Israel

tromer@cs.tau.ac.il

Abstract. Many computers emit a high-pitched noise during operation,
due to vibration in some of their electronic components. These acoustic
emanations are more than a nuisance: as we show in this paper, they can
leak the key used in cryptographic operations. This is surprising, since
the acoustic information has very low bandwidth (under 20 kHz using
common microphones, and a few hundred kHz using ultrasound micro-
phones), which is many orders of magnitude below the GHz-scale clock
rates of the attacked computers. We describe a new acoustic cryptanal-
ysis attack which can extract full 4096-bit RSA keys from the popular
GnuPG software, within an hour, using the sound generated by the com-
puter during the decryption of some chosen ciphertexts. We experimen-
tally demonstrate such attacks, using a plain mobile phone placed next
to the computer, or a more sensitive microphone placed 10 meters away.

1 Introduction

1.1 Overview

Cryptanalytic side-channel attacks target implementations of cryptographic al-
gorithms which, while perhaps secure at the mathematical level, inadvertently
leak secret information through indirect channels: variations in power consump-
tion, electromagnetic emanations, timing variations, contention for CPU re-
sources such as caches, and so forth (see [And08] for a survey). Acoustic
emanations are another potential channel, but so far it was used only in or-
der to eavesdrop to slow electromechanical components such as keyboards and
printers [AA04,ZZT05,BDG+10].

In this paper, we focus on a different source of computer noise: vibration of
electronic components in the computer, sometimes heard as a faint high-pitched
tone or hiss (commonly called “coil whine”, though often generated by capaci-
tors). These acoustic emanations, typically caused by voltage regulation circuits,
are correlated with system activity since CPUs drastically change their power

� The authors thank Lev Pachmanov for programming and experiments support.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 444–461, 2014.
c© International Association for Cryptologic Research 2014

mailto:danielg3@cs.technion.ac.il
mailto:adi.shamir@weizmann.ac.il
mailto:tromer@cs.tau.ac.il

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 445

draw according to the operations they execute, but in a very coarse way due
to the low bandwidth, which does not enable the attacker to “hear” individual
instructions executed on a multi-GHz computer.1

The first indication that acoustic emanation from electronic computers is of
cryptanalytic interest was by Shamir and Tromer [ST04], observing that different
RSA keys have distinguishable acoustic fingerprints. However, no approach has
been proposed to extract actual key bits from the faint, noisy and low-bandwidth
acoustic information. In fact, a recent survey stated that while “acoustic effects
have been suggested as possible side channel, the quality of the resulting mea-
surements is likely to be low” [KJJR11].

Acoustic Cryptanalysis. In this paper we show that despite this skepticism,
full key recovery via pure acoustic cryptanalysis is feasible on common software
and hardware. As a typical case study, we focused on GnuPG (GNU Privacy
Guard) [Gpg], which is a popular cross-platform open-source implementation
of the OpenPGP standard. We first verified that different secret keys can be
distinguished by the spectrum of the sound made when they are used. We then
developed a new key extraction attack which can find the full 4096-bit RSA
secret keys used by GnuPG running on a laptop computer, within an hour, by
analyzing only the sound picked up by either a plain cellular phone placed next
to the computer, or by a sensitive microphone from a distance of 10 meters. In a
nutshell, our attack relies on crafting special chosen RSA ciphertexts that cause
numerical cancellations deep inside GnuPG’s modular exponentiation algorithm.
This causes the special value zero to appear frequently in the innermost loop of
the algorithm, where it affects control flow. A single iteration of that loop is
much too fast for direct acoustic observation. However, in our attack the effect
is repeated and amplified over many thousands of iterations, resulting in a gross
leakage effect that is discernible for hundreds of milliseconds and distinguishable
in the acoustic spectrum. Thus, our attack not only causes key-dependent side-
channel leakage in GnuPG’s RSA implementation, but moreover utilizes the
GnuPG’s own code in order to amplify the aforementioned leakage.

Chosen Ciphertexts by e-mail. Our key extraction technique requires the
decryption of multiple ciphertexts which are adaptively chosen by the attacker.
Prior works which used chosen plaintexts or ciphertexts required direct access to
the input of the protected device, or attacked network protocols such as SSL/TLS
or WEP. To break GnuPG, we used a new attack vector based on Enigmail [Eni],
which is a popular plugin to the Thunderbird e-mail client that enables trans-
parent signing and encryption of e-mail messages using GnuPG, following the
OpenPGP and PGP/MIME standards. For “new e-mail” notifications, Enig-
mail automatically decrypts each e-mail as soon as it is received, provided that
the GnuPG passphrase is cached or empty. In this case, an attacker can e-mail
suitably-crafted messages to the victims (backdated, so they go unnoticed), and

1 Above a few hundred kHz, sound propagation in the air has a very short range, due
to non-linear attenuation and distortion effects (viscosity, relaxation and diffusion
at the molecular level). Most microphones are limited to about 20 kHz.

446 D. Genkin, A. Shamir, and E. Tromer

observe the acoustic signature of their automatic decryption, thereby closing the
adaptive attack loop without manual intervention by the recipient.

Applicability. Our observations apply to many laptop computers made by
various vendors and running various operating systems. Signal quality and effec-
tive attack distance vary greatly, and seem to be correlated with the computer’s
age (i.e., older computers tend to emit stronger and more informative sounds).
Our acoustic attacks can be applied in a large variety of situations. For exam-
ple, any electronic device which has an internal microphone can be used to spy
on itself, using an unprivileged application which has access to the microphone
listen to the sounds made by a privileged security application (even when the
two applications run in two different virtual machines). On a cellular phone, the
whole attack can be packaged into a simple software “app” which can close the
adaptive chosen-ciphertext loop in real time, using the phone’s signal processing
capabilities and wireless data connectivity. The phone can then be used to spy
on a nearby laptop computer, for example, during an hour-long face-to-face busi-
ness meeting between two persons who place their gadgets on the same table. In
another scenario, the attacker can place in advance a hidden acoustic bug near
the likely location of the attacked laptop, e.g., in a lecture podium used by a
visiting speaker, or in a hotel desk.

Physical Countermeasures. Many of the physical side-channel countermea-
sures used in highly sensitive applications, such as air gaps, Faraday cages, and
power supply filters, provide no protection against acoustic leakage. In particu-
lar, Faraday cages containing computers require ventilation, which is typically
provided by means of vents covered with perforated sheet metal or metal hon-
eycomb. These are very effective at attenuating compromising electromagnetic
radiation (“TEMPEST”), but — as we empirically verified — are nearly trans-
parent to acoustic emanations. This can make the acoustic attack one of the few
remaining options when the target is heavily protected by expensive shielding
that blocks all the standard sources of electronic emanations.

Current Status. Our attacks can be applied to all recent versions of the
GnuPG 1.x series (up to the latest, 1.4.15, released on 15 Oct. 2013), including
the side-channel mitigation introduced in GnuPG 1.4.14 (which ironically helps
our attack by amplifying the aforementioned effect of the zero value in the inner-
most loop). After disclosing our detailed attack to the GnuPG developers and
main distributors, we suggested several suitable countermeasures, and verified
that the new versions of GnuPG 1.x and of libgcrypt (which underlies GnuPG
2.x), released concurrently with this paper’s first public posting, correctly im-
plement our countermeasures and resist the current key-extraction attack.

1.2 Related Work

Auditory eavesdropping on human conversations is a common practice, first
published several millenia ago [Gen]. Analysis of sound emanations from me-
chanical devices is a newer affair, with precedents in military context such as

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 447

identification of vehicles (e.g., submarines) via the sound signature of their en-
gine or propeller. Wright [Wri87, pp. 103–107] provides an account of MI5 and
GCHQ using a phone tap to eavesdrop on an electromechanical Hagelin ci-
pher machine, by counting the clicks during the rotors’ secret-setting procedure.
Keystroke timing patterns (which can be acquired acoustically) are known to be
a way to identify users, and more recently, also to leak information about the
typed text (see [SWT01] and the references therein). Later work by Asonov and
Agrawal [AA04], improved by Zhuang et al. [ZZT05], Berger et al. [BWY06],
and by Halevi and Saxena [HS10], shows that keys can also be distinguished
individually by their sound, due to minute differences in mechanical properties
such as their position on a slightly vibrating printed circuit board. Backes et
al. [BDG+10] show that the sound produced by dot matrix printers can be used
to recover printed English text.

NSA’s partially-declassified “TEMPEST Fundamentals” [Nat82] mentions
acoustic emanations, but defines them narrowly as “emanations in the form of
free-space acoustical energy produced by the operation of a [sic] purely mechan-
ical or electromechanical device equipment”. Other official publications, such as
the latest FIPS 140-3 draft [Nat09], describe a large variety of side channel at-
tacks, but do not mention acoustic emanations. One is thus led to conclude that
this attack vector was not believed to pose a threat to nonmechanical systems.

2 Observing Acoustic Leakage

In this section we show that it is possible, using acoustic emanations, to glean
information about the CPU operations of various laptop computers. We show
that it is possible for an attacker to learn the instructions executed by the target
computer, solely by observing its acoustic emanations using a microphone. More-
over, we show a rudimentary cryptographic side channel, namely distinguishing
GnuPG RSA keys (which will be further developed in the subsequent sections).

Lab-grade Experimental Setup. For the experiments in this section, meant
to best characterize the emitted signal, we used carefully-optimized lab-grade
equipment with very high sensitivity and frequency range. Specifically, we
measured the acoustic emanations using a Brüel&Kjær 4190 and 4939 micro-
phone capsules, connected to a Brüel&Kjær 2669 pre-amplifier, powered by
a Brüel&Kjær 2804 microphone power supply. The signal is low-pass filtered
at 1.9MHz, amplified using a (customized) Mini-Circuits ZPUL-30P amplifier,
and then high-pass filtered at 10 kHz. The result is digitized using an National
Instruments PXIe 6356. For further details, see the extended version of this
paper [GST13].

Culprit Components. The exploited acoustic emanations are clearly not
caused by fan rotation, hard disk activity, or audio speakers — as readily verified
by disabling these. Rather, they are caused by vibrations of electrical compo-
nents in the power supply circuitry, familiar to many as the faint high-pitched
whine produced by some devices and power adapters (commonly called “coil
whine”, though not always emanating from coils). The physical source of the

448 D. Genkin, A. Shamir, and E. Tromer

Fig. 1. Portable measurement setup recording a laptop through an EMI-shielded vent
panel (1/2”-thick cross-cell double-honeycomb mesh, Holland Shielding Systems Hon-
eycomb Ventilation 9500).

relevant emanations is difficult to characterize precisely, since it varies between
target machines, and is typically located in the hard-to-reach innards. Still, ex-
perimentation with the microphone placement invariably located the strongest
useful signals in the vicinity of the on-board voltage regulation circuit supporting
the CPU. Indeed, modern CPUs change their power consumption dramatically
depending on software load, and we conjecture that this affects, and modulates,
the dynamics of the pulse-width-modulation-based voltage regulator. More re-
mote stages of the power supply (e.g., laptops’ external AC-DC “power brick”
adapter) sometimes exhibit software-dependent acoustic leakage as well.

Microphone Placement. The placement of the microphone relative to the
laptop body has a great influence on the obtained signal. Ideally, we would
like to measure acoustic emanations as close as possible to the CPU’s on-board
power supply located on the laptop’s motherboard, but without intrusion or
disassembly. Luckily, laptop computers have a substantial cooling system for
heat dissipation, with a fan that requires large exhaust holes. In addition, there
are numerous holes and gaps for ports such as USB, Express Card slot, and
Ethernet port. Each of the above ports has proven useful on some computers.

Acoustic or EM? To ascertain that the obtained signal is truly acoustic rather
than electromagnetic interference picked up by the microphone, we placed a sheet
of non-conductive sound-absorbing material (e.g., cork or thick cloth) in front
of the microphone. This always resulted in a severe attenuation of the recorded
signals. Thus, we conclude that the measured signals are indeed acoustic.

EM Shielding. As discussed in Section 1.1, standard TEMPEST electro-
magnetic shielding, such as metal meshes and perforated metal, can be nearly-
transparent to acoustic emanations, as we verified on a professionally-produced
EMI mesh shield (see Figure 1, and note that as before, covering the mesh with
cardboard severely attenuated the signal).

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 449

Fig. 2. Acoustic measurement frequency spectrogram of a recording of different CPU
operations using the Brüel&Kjær 4939 microphone capsule. The horizontal axis is
frequency (0–350 kHz), the vertical axis is time (1.7 sec), and intensity is proportional
to the instantaneous energy in that frequency band.

2.1 Distinguishing Various CPU Operations

We begin our analysis of acoustic leakage by attempting to distinguish various
operations performed by the CPU of the target computer. For this purpose we
wrote a simple program that executes (partially unrolled) loops containing one of
the following x86 instructions: HLT (CPU sleep), MUL (integer multiplication),
FMUL (floating-point multiplication), main memory access (forcing L1 and L2
cache misses), and REP NOP (short-term idle). While it was possible to distin-
guish between some CPU operations on almost all the machines we tested, some
machines have a particularly rich leakage spectrum. Figure 2 shows a recording
of the Evo N200 laptop while executing our program using the Brüel&Kjær 4939
high frequency microphone capsule. As can be seen in Figure 2, the leakage of the
Evo N200 is present all over the 0–350kHz spectrum. Moreover, different types
of operations can be easily distinguished. Similar types of leakage (although less
prominent) was detected on numerous other machines as well.

2.2 GnuPG Key Distinguishability

The results in Section 2.1 demonstrate that it is possible, even when using a very
low-bandwidth measurement of 35 kHz, to obtain information about the code
executed by the target machine. While this is certainly some form of leakage, it
is not clear how to use this information to form a real key extraction attack on
the target machine. In this section, we show that some useful information about
a secret key used by the target machine can be obtained from the acoustic
information, even though it is still unclear how to use it to derive the full key. In
particular, we demonstrate that the acoustic information obtained during a single
RSA secret operation (such as ciphertext decryption or signature generation)
suffices in order to determine which of several randomly generated keys was used
by the target machine during that operation. Throughout this paper, we target
a standard and commonly used RSA implementation, GnuPG (GNU Privacy

450 D. Genkin, A. Shamir, and E. Tromer

Guard) [Gpg], a popular open source implementation of the OpenPGP standard
available on all major operating systems.2

The Sound of a Single RSA Secret Key. Figure 3 depicts the spectrogram
of five RSA signing operations in sequence, using the same message and five ran-
domly generated 4096-bit keys. Each signing operation is preceded by a short
delay, during which the CPU is in a sleep state. Figure 3 contains several interest-
ing effects. The delays are manifested as bright horizontal strips. Between these
strips, the five signing operations can be clearly distinguished. Halfway through
each signing operation there is a transition at several frequency bands (marked
by yellow arrows), corresponding to the transition between exponentiation mod-
ulo the secret p to exponentiation modulo the secret q, in the RSA decryption
implementation of GnuPG, which uses the Chinese Remainder Theorem.

Distinguishing between RSA Secret Keys. Having observed that the
acoustic signature of modular integer exponentiation depends on the modulus
involved. Thus, one may expect different keys to cause different sounds. This
is indeed the case, as demonstrated in Figure 3. It is readily observed that
each signature (and in fact, each exponentiation using modulus p or q) has a
unique spectral signature. This ability to distinguish keys is of interest in traffic-
analysis applications.3 It is likewise possible to distinguish between algorithms,
between different implementations of an algorithm, and between different com-
puters (even of the same model) running the same algorithm. Again, this effect
is consistent and reproducible (in various frequency ranges) on various machines
and manufacturers. Finally, for the case of ElGamal decryption, various secret
keys can also be acoustically distinguished.

3 Overview of GnuPG RSA Key Extraction

In this section, we present our acoustic RSA key extraction attack, and discuss
its performance (e.g., extracting a whole RSA key within about one hour using
just the acoustic emanations from the target machine). For concreteness, in the
following we consider GnuPG 1.4.14 and key size of 4096 bit (i.e., 2048 bit primes
p, q), which should be secure beyond the year 2031 [BBB+12].

3.1 GnuPG’s Modular Exponentiation Routine

GnuPG’s Mathematical Library. Algebraic operations on large integers
(which are much larger than the machine’s word size) are implemented using

2 We focus on the GnuPG 1.x series and its internal cryptographic library (including
the side-channel countermeasures recently added in GnuPG 1.4.14 following the
work of [YF13]). The effects presented in the paper were observed on a variety of
operating systems (Windows 2000 through 7, Fedora Core 2 through 19), GnuPG
versions 1.2.4 through 1.4.15, and many target machines.

3 For example, observing that an embassy has now decrypted a message using a rarely-
used key, heard before only in specific diplomatic circumstances, can be valuable.

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 451

Fig. 3. Acoustic signature (1.4 sec, 0–40 kHz) of five GnuPG RSA signatures executed
on a Lenovo ThinkPad T61. Recorded using the lab-grade setup and the Brüel&Kjær
4190 microphone capsule. The transitions between p and q are marked by yellow arrows.

software routines. GnuPG uses an internal mathematical library called MPI,
which is based on the GMP library [Gmp], to store and perform mathematical
operations on large integers. MPI stores each large integer in an array of limbs,
each consisting of a 32-bit word (on the x86 architecture used in our tests).

We now review the modular exponentiation used in GnuPG’s implementation
of RSA (as introduced in GnuPG v1.4.14). GnuPG uses a side-channel protected
variant of the square-and-multiply modular exponentiation algorithm, processing
the bits of the exponent d from most significant bit to the least significant one.
Algorithm 1 is a pseudocode of the modular exponentiation algorithm used in
GnuPG. The operation size in limbs(x) returns the number of limbs in the
t-bit number x, namely �t/32�. Understanding this top-level exponentiation
routine suffices for the high-level description of our attack. For details about
GnuPG’s underlying multiplication routines, necessary for understanding the
attack’s success, see Section 4.

Since GnuPG represents large numbers in arrays of 32 bit limbs, GnuPG
optimizes the number of modulo reductions by always checking (at the end of
every multiplication and squaring) whether the number of limbs in the partially
computed result exceeds the number of limbs in the modulus. If so, a modular
reduction operation is performed. If not, reduction will not decrease the limb
count, and thus is not performed. This measurement of size in terms of limbs,
as opposed to bits, slightly complicates our attack. Note that due to a recently
introduced side-channel mitigation technique (following the work of [YF13]), this
code always performs the multiplications, regardless of the bits of d.

3.2 The Attack Algorithm

Our attack is an adaptive chosen-ciphertext attack, which exposes the secret
factor q one bit at a time, from MSB to LSB (similarly to Boneh and Brumley’s

452 D. Genkin, A. Shamir, and E. Tromer

Algorithm 1. GnuPG’s modular exponentiation (see function mpi powm in
mpi/mpi-pow.c).

Input: Three integers c, d and q in binary representation such that d = dn · · · d1.
Output: m = cd mod q.
1: procedure modular exponentiation(c, d, q)
2: if size in limbs(c) > size in limbs(q) then
3: c ← c mod q

4: m ← 1
5: for i ← n downto 1 do
6: m ← m2 � Karatsuba or grade-school squaring
7: if size in limbs(m) > size in limbs(q) then
8: m ← m mod q

9: t ← m · c � Karatsuba or grade-school multiplication
10: if size in limbs(t) > size in limbs(q) then
11: t ← t mod q

12: if di = 1 then
13: m ← t
14: return m
15: end procedure

timing attack [BB05]). For each bit qi of q, starting from the most significant
bit position (i = 2048), we assume that key bits q2048 · · · qi+1 were correctly
recovered, and check the two hypotheses about qi. Eventually, we learn all of q
and thus recover the factorization of n. Note that after recovering the top half
the bits of q, it is possible to use Coppersmith’s attack [Cop97] (following Rivest
and Shamir [RS85]) to recover the remaining bits, or to continue extracting them
using the side channel.4

Ciphertext Choice for Modified GnuPG. Let us first consider a modified
version of GnuPG’s modular exponentiation routine (Algorithm 1), where the
size comparisons done in line 2 are removed and line 3 is always executed.

GnuPG always generates RSA keys such that the most significant bit of q is
set, i.e., q2048 = 1. Assume that we have already recovered the topmost i − 1
bits of q, and let gi,1 be the 2048 bit ciphertext whose topmost i − 1 bits are
the same as those recovered from q, whose i-th bit is 0, and whose remaining
(low) bits are 1. Consider the RSA decryption of gi,1. Two cases are possible,
depending on qi.

– qi = 1. Then gi,1 < q. The ciphertext gi,1 is passed as the variable c to
Algorithm 1, in which (with the modification introduced earlier) the modular
reduction of c in line 3 returns c (since c = gi,1 < q). Thus, the structure of c
(a 2048 bit number whose i− 1 lowest bits are set to 1) is preserved, and it is
passed to the multiplication routine in line 9.

4 The same technique applies to p. However, on many machines we noticed that the
second modular exponentiation (modulo q) exhibits a better signal-to-noise ratio,
possibly because the target’s power circuitry has by then stabilized.

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 453

– qi = 0. Then q ≤ gi,1. Thus, when gi,1 is passed as the variable c to
Algorithm 1, the modular reduction of c in line 3 changes the value of c.
Since c and q share the same topmost 2048 − i bits, the reduction amounts
to computing c← c− q, which is a random-looking number of size i− 1 bits.
This is then passed to the multiplication routine in line 9.

Thus, depending on qi, the second operand to the multiplication routine will
be either full-size and repetitive or shorter and random-looking. We may hope
that the multiplication routine’s implementation will behave differently in these
two cases, and thus result in key-dependent side-channel leakage. Note that the
multiplication is performed 2048 times with that same second operand, which
will hopefully amplify the difference and create a distinct leakage pattern that
persists for the duration of the exponentiation. As we shall see, there is indeed
a difference, which lasts for hundreds of milliseconds and can thus be detected
even by very low bandwidth leakage channels such as our acoustic technique.5

Ciphertext Choice for Unmodified GnuPG. Unfortunately, line 2 in Al-
gorithm 1 makes its reduction decision on the basis of the limb count of c. This
poses a problem for the above attack, since even if gi,1 ≥ q, both gi,1 and q have
the same number of limbs (64 limbs each). Thus, the branch in line 2 of Algo-
rithm 1 is never taken, so c is never reduced modulo q, and the multiplication
routine always gets a long and repetitive second operand.

This can be solved in either of two ways. First, GnuPG’s binary format parsing
algorithm is willing to allocate space for leading zeros. Thus, one may just ask for
a decryption of gi,1 with additional limbs of leading zeros. GnuPG will pass on
this suboptimal representation to the modular exponentiation routine, causing
the branch in line 2 of Algorithm 1 to be always taken and the reduction to
always take place, allowing us to perform the attack.

While the above observation can be easily remedied by changing the parsing
algorithm to not allocate leading zero limbs, there is another way (which is
harder to fix) to ensure that the branch in line 2 of Algorithm 1 is always taken.
Note that the attacker has access to the public RSA modulus n = pq, which is
128 limbs (4096 bits) long. Moreover, by definition it holds that n = 0 mod q.
Thus, by requesting the decryption of the 128 limb number gi,1+n, the attacker
can still ensure that the branch in line 2 of Algorithm 1 will be always taken
and proceed with the attack.

3.3 Acoustic Leakage of the Bits of q

In this section we present empirical results on acoustic leakage of the bits of
q using our attack. As argued in Section 3.2, we expect that during the entire
modular exponentiation operation using the prime q, the acoustic leakage will
depend on the value of the single bit being attacked.

5 Ironically, the latest GnuPG implementations use the side-channel mitigation tech-
nique of always multiplying the intermediate results by the input, but this only helps
our attack, since it doubles the number of multiplications and replaces their random
timing with a repetitive pattern that is easier to record and analyze.

454 D. Genkin, A. Shamir, and E. Tromer

(a) attacked bit is zero (b) attacked bit is one

 0
 1
 2
 3
 4
 5

 34 35 36 37 38 39P
ow

er
 D

en
si

ty
(n

V
2 /H

z)

Frequency (kHz)

Attacked bit is 1
Attacked bit is 0

(c) Frequency spectra of the second modular exponentiation

Fig. 4. Acoustic emanations of RSA decryption for various values of the attacked bit
(q2039 = 1 and q2038 = 0)

Figure 4(a) shows a typical recording of RSA decryption when the value of the
attacked bit of q is 0 and Figure 4(b) shows a recording of RSA decryption when
the value of the attacked bit of q is 1. Several effects are shown in the figures.
Recall that GnuPG first performs modular exponentiation using the secret prime
p and then performs another modular exponentiation using the secret prime q.
As in figure 3, the transition between p and q is clearly visible in Figures 4(a)
and 4(b). Note, then, that the acoustic signatures of the modular exponentiation
using the prime q (the second exponentiation) are quite different in Figures 4(a)
and 4(b). This is the effect utilized to extract the bits of q.

The spectral signatures in Figure 4(c) were computed from the acoustic sig-
natures of the second modular exponentiation in Figures 4(a) and 4(b). For each
signature, we computed the median frequency spectrum (i.e., the median value
in each frequency bin over the sliding-window FFT spectra). Again, the differ-
ences in the frequency spectra between a 0-valued bit and a 1-valued bit are
clearly visible and can be used to extract the bits of q.

Unfortunately, the differences in acoustic leakage between 0-valued bits and
1-valued bits as presented in this section become less prominent as the attack
progresses. Thus, in order to extract the entire 2048 bit prime q, additional
analysis and improvements to the basic attack algorithm are needed (see the
extended version [GST13] for details).

3.4 Overall Attack Performance

We conducted our attack in a variety of measurement setups, on various tar-
get machines and software configurations. The attack’s success, and its run-
ning time (due to repeated measurements and backtracking), depend on many

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 455

Fig. 5. Photograph of our portable setup. In this photograph (A) is a Lenovo ThinkPad
T61 target, (B) is a Brüel&Kjær 4190 microphone capsule mounted on a Brüel&Kjær
2669 preamplifier held by a flexible arm, (C) is a Brüel&Kjær 5935 microphone power
supply and amplifier, (D) is a National Instruments MyDAQ device with a 10 kHz
RC high-pass filter cascaded with a 150 kHz RC low-pass filter on its A2D input, and
(E) is a laptop computer performing the attack. Full key extraction is possible in this
configuration, from a distance of 1 meter (see Section 3.4).

physical parameters. These include the machine model and age, the signal ac-
quisition hardware, the microphone positioning, ambient noise, room acoustics,
and temperature (affecting fan activity). The following are examples of success-
ful key-extraction experiments.

Ultrasound-Frequency Attack. Extracting the topmost 1024 bits of q (and
thereby, the whole key) from GnuPG 1.4.14, running on a Lenovo ThinkPad
T61 laptop, in a typical office environment, takes approximately 1 hour. Since
this laptop’s useful signal is at approximately 35kHz, there is no need to use
the full capabilities of the lab-grade setup (see Section 2), and instead we used
a portable (briefcase-sized) setup consisting of a Brüel&Kjær 4190 microphone
capsule connected (via a Brüel&Kjær 2669 pre-amplifier) to a Brüel&Kjær 5935
amplifier and microphone power supply, filtered, and digitized using a National
Instruments MyDAQ device. Figure 5 depicts this portable setup.

Audible-Frequency Attack. Low frequency sound propagates in the air, and
through obstacles, better than high frequency sound. Moreover, larger capsule
diaphragms allow better sensitivity but reduce the frequency range. Indeed, some
machines, such as the Lenovo ThinkPad X300 and ThinkPad T23, exhibit useful
leakage at lower leakage frequency, 15–22kHz (i.e., within audible range). This
allows us to use the very sensitive Brüel&Kjær 4145 microphone capsule and
extract the key from some machines at the range of around 1 meter. Moreover, by
placing the Brüel&Kjær 4190 microphone in a parabolic reflector, we were able
to extract all the bits automatically from the range of 4 meters. (See Figure 6 for
a similar setup.) With human-assisted signal processing, we extended the range
up to 10 meters.

456 D. Genkin, A. Shamir, and E. Tromer

(a) Parabolic microphone (b) Distant attack

Fig. 6. (a) Brüel&Kjær 4145 microphone capsule and 2669 preamplifier, attached to
a transparent parabolic reflector (56 cm diameter), on a tripod. (b) same, connected to
the portable measurement setup, attacking a target laptop from a distance of 4 meters.

Fig. 7. Physical setup of a key recovery attack. A mobile phone (Samsung Note II) is
placed 30 cm from a target laptop. The phone’s internal microphone points towards the
laptop’s fan vents. Full key extraction is possible with this configuration and distance.

Mobile-Phone Attack. Lowering the leakage frequency also allows us to use
lower quality microphones such as the ones in smartphones. We used several
Android phones, with similar results: HTC Sensation, Samsung Galaxy S II
and Samsung Galaxy Note II. Recorded using a custom Android app, accessing
the internal microphone. Due to the lower signal-to-noise ratio and frequency
response of the phone’s internal microphone, our attack is limited in frequency
(about 24 kHz) and in range (about 30 cm). However, it is still possible to perform
it on certain target computers, simply by placing the phone’s microphone near to
and directed towards the fan exhaust vent of the target while running the attack
(see Figure 7). Unlike previous setups, all that is required from the attacker in
order to actually mount the attack is to download a suitable application to the
phone, and place it appropriately near the target computer.

4 Analyzing the Code of GnuPG RSA

In this section we analyze how our attack affects the code of GnuPG’s multi-
plication routine and causes the differences presented in Section 3.3. We begin

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 457

Algorithm 2. GnuPG’s basic multiplication code (see functions mul n basecase
and mpihelp mul in mpi/mpih-mul.c).

Input: Two numbers a = ak · · · a1 and b = bn · · · b1 of size k and n limbs respectively.
Output: a · b.
1: procedure mul basecase(a, b)
2: if b1 ≤ 1 then
3: if b1 = 1 then
4: p ← a
5: else
6: p ← 0

7: else
8: p ← mul by single limb(a, b1) � p ← a · b1
9: for i ← 2 to n do
10: if bi ≤ 1 then
11: if bi = 1 then � (and if bi = 0 do nothing)
12: p ← add with offset(p, a, i) � p ← p+ a · 232·i
13: else
14: p ← mul and add with offset(p, a, bi, i) � p ← p+ a · bi · 232·i
15: return p
16: end procedure

by describing the multiplication algorithms used by GnuPG (Section 4.1) and
then proceed (Sections 4.2 and 4.3) to describe the effects of our attack on the
internal values computed during the execution of these algorithms.

4.1 GnuPG’s Multiplication Routine

GnuPG’s large-integer multiplication routine combines two multiplication algo-
rithms: a basic grade-school multiplication routine, and a variant of a recursive
Karatsuba multiplication algorithm [KO62]. The chosen combination of algo-
rithms is based on the size of the operands, measured in whole limbs. Our
attack (usually) utilizes the specific implementation of the Karatsuba multi-
plication routine in order to make an easily-observable connection between the
control flow inside the grade-school multiplication routine and the current bit of
q. This lets us leak q one bit at a time.

GnuPG’s Basic Multiplication Routine. The side-channel weakness we
exploit in GnuPG’s code resides inside the basic multiplication routines. Both
of the basic multiplication routines used by GnuPG are almost identical im-
plementations of the simple, quadratic-complexity grade-school multiplication
algorithm, with optimizations for multiplication by limbs equal to 0 or 1 (see
Algorithm 2).

Note how mul basecase handles zero limbs of b. In particular, when a
zero limb of b is encountered, none of the operations mul by single limb,
add with offset andmul and add with offset are performed and the loop
in line 9 continues to the next limb of b. This particular optimization is critical

458 D. Genkin, A. Shamir, and E. Tromer

for our attack. Specifically, our chosen ciphertext will cause the private key bit
qi to affect the number of zero limbs of b given to mul basecase, thus affecting
the control flow in lines 3 and 11, and thereby the side-channel emanations.

GnuPG’s Karatsuba Multiplication Routine. The basic multiplication
routine described above is invoked by both the modular exponentiation routine
described in Section 3.1 and by the Karatsuba multiplication routine implement-
ing a variant of the Karatsuba multiplication algorithm with some optimizations.
GnuPG’s variant of the Karatsuba multiplication algorithm relies on

uv = (22n + 2n)uHvH + 2n(uH − uL)(vL − vH) + (2n + 1)vLuL , (1)

where uH, vH are the most significant halves of u and v respectively and uL, vL are
the least significant halves of u and v respectively. Note the subtraction vL − vH
in Equation 1. Recall that in Section 3 we created a connection between the
bits of q and specific values of c. Concretely, for the case where qi = 1, then c
is a 2048 bit number such that its first 2048− i bits are the same as q, its i-th
bit is zero, and the rest of its bits are ones. Conversely, for the case where the
qi = 0, we have that c consists of i− 1 random-looking bits.

The code of GnuPG passes c (with some whole-limb truncations) directly
to the Karatsuba multiplication routine as the second operand v. Thus, this
structure of c has the property that the result of computing vL − vH will have
almost all of its limbs equal to zero when the current bit of q is 1 and have all
of its limbs be random-looking when the current bit of q is 0. Thus, when the
recursion eventually reaches its base case, mul basecase, it will be the case
that if the current bit of q is 1, the values of the second operand b supplied
to mul basecase (in some branches of the recursion) will have almost all of
its limbs equal to zero, and when the current bit of q is 0, the values of the
second operand b supplied to mul basecase in all branches of the recursion will
be random-looking. Next, by (indirectly) measuring the number of operations
performed by mul basecase, we shall be able to deduce the number of zero
limbs in c and thus whether the correct bit of q is 0 or 1.

4.2 Attacking the Most Significant Limb of q

In this section we analyze the effects of our attack on mul basecase (Algo-
rithm 2). Note that in this case, the cipher text c used in the main loop of the
modular exponentiation routine (Algorithm 1) always contains at least 2017 bits
(64 limbs), meaning that mul is used for multiplication.

Since in this case both c and m are of the same length and since the constant
KARATSUBA THRESHOLD is defined to be 16, the Karatsuba multiplication
routine generates a depth-4 recursion tree where each node has 3 children before
using the basic multiplication code (mul basecase) on 8-limb (256 bit) numbers
located on the leaves of the tree. Combining this observation with the case
analysis in Section 3.2, we see that for each bit i of q:

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 459

– If qi = 1, then the second operand b of mul mainly consists of limbs having
all their bits set to 1.
Thus, during the first call to the Karatsuba multiplication routine, the result
of vL − vH contains mostly zero limbs, causing the second operand of all the
calls to mul basecase resulting from the recursive call for computing (uH −
uL) · (vL − vH) to contain mostly zero limbs.

– If qi = 0, then the second operand b of mul consists of random-looking limbs.
Thus, during the first call to the Karatsuba multiplication routine, result of
vL − vH contains very few (if any) zero limbs, causing the second operand of
all the calls to mul basecase to consist of mostly non-zero limbs.

Next, recall that the control flow in mul basecase depends on the number of
non-zero limbs present in its second operand. The drastic change in the number
of zero limbs in the second is detectable by our side-channel measurements. Thus,
we are able to leak the bits of q, one bit at a time, by creating the connection
between the current bit of q and the number of zero limbs in the second operand
of mul basecase using our carefully chosen cipher texts.

Finally, note that the Karatsuba multiplication algorithm is (indirectly) called
during the main loop of the modular exponentiation routine (Algorithm 1) once
per bit of dq as computed by the RSA decryption operation. Since dq is a 2048
bit number, we get that the leakage generated by line 11 in mul basecase

(Algorithm 2) is repeated once for every zero limb of b for a total of 7 times
during an execution of mul basecase, which is in turn repeated once for every
leaf resulting from the first computation of (uH − uL) · (vL − vH) for a total of 9
times in each of the 2048 multiplications in that loop. Thus, we get that leakage
generated by line 11 in mul basecase is repeated 2048 · 9 · 7 = 129024 times.
This repetition is what allows the leakage generated by line 11 in mul basecase

to be detected using only low bandwidth measurements.

4.3 The Remaining Bits of q

Unfortunately, the analysis in Section 4.2 does not precisely hold for the re-
maining bits of q. Recall that by our choice of ciphertexts, at the beginning of
modular exponentiation both c − n and q always agree on some prefix of
their bits and this prefix becomes longer as the attack progresses and more bits
of q are extracted. Thus, since c − n < 2q, the reduction of c modulo q always
returns c− q − n for the case of c− n ≥ q and c− n otherwise.

In particular, after the first limb of q has been successfully extracted, for
the case where qi = 0, the value of c after the modular reduction in line 2 of
modular exponentiation (Algorithm 1) is shorter than 64 limbs. Since in
line 9, while m remains a 64 limb number, the part of the multiplication routine
responsible for handling operands of different sizes is used. Thus, instead of a
single call to the Karatsuba multiplication routine, might make several recursive
calls to itself as well as several calls to the Karatsuba multiplication routine.

Nonetheless, there is still a connection between the secret bits of q and the
structure of the value of c passed to multiplication routine by the modular ex-
ponentiation routine (Algorithm 1), as follows. For any 1 ≤ i ≤ 2048, one of

460 D. Genkin, A. Shamir, and E. Tromer

the following two cases holds. If qi = 1, then c is a 2048 bit number such that
the first 2048− i bits are the same as q, the i-th bit is zero, and the rest of the
bits are ones. If qi = 0, then c consists of i− 1 random-looking bits. While the
analysis in this case is not as precise as in Section 4.2, the number of zero limbs
in the second operand of mul basecase still allows us to extract the bits of q.

The acoustic distinguishability of the two cases does vary with bit index, and
in particular is harder for the range q1850, . . . , q1750. Using additional techniques
(discussed in the extended version of this paper [GST13]), we recover these
problematic bits and continue our attack.

5 Conclusion

In this paper we developed a new side channel attack, exploiting low-bandwidth
computation-dependent acoustic emanationswhich easily escape computers’ chas-
sis (and even expensive Faraday cages). We demonstrated extraction of full RSA
keys within a reasonable amount of time using commonly available and easily con-
cealed components. Some algorithmic countermeasures, such as ciphertext nor-
malization and randomization, are effective against our key-extractionattack (and
thus implemented in GnuPG consequentially to our results’ disclosure), though
not against acoustic key-distinguishing, and are discussed in the extended version
of this paper [GST13].

Acknowledgments. Lev Pachmanov wrote much of the software setup used
in our experiments, including custom signal acquisition programs. Avi Shtibel,
Ezra Shaked and Oded Smikt assisted in constructing and configuring the ex-
perimental setup. Assa Naveh assisted in various experiments, and offered valu-
able suggestions. Sharon Kessler provided copious editorial advice. We thank
Werner Koch, lead developer of GnuPG, for the prompt response to our disclo-
sure and the productive collaboration in adding suitable countermeasures. We
are indebted to Pankaj Rohatgi for inspiring the origin of this research; to Nir
Yaniv for audio recording advice and use of the Nir Space Station studio; and
to National Instruments Israel for donating PCI-6052E and MyDAQ hardware.

This work was sponsored by the Check Point Institute for Information Se-
curity; by European Union’s Tenth Framework Programme (FP10/2010-2016)
under grant agreement 259426 ERC-CaC, by the the Leona M. & Harry B. Helm-
sley Charitable Trust; by the Israeli Ministry of Science and Technology; by the
Israeli Centers of Research Excellence I-CORE program (center 4/11); and by
NATO’s Public Diplomacy Division in the Framework of ”Science for Peace”.

References

[AA04] Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Sympo-
sium on Security and Privacy, pp. 3–11 (2004)

[And08] Anderson, R.J.: Security engineering — a guide to building dependable
distributed systems, 2nd edn. Wiley (2008)

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis 461

[BB05] Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer
Networks 48(5), 701–716 (2005)

[BBB+12] Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST SP 800-57:
Recommendation for key management — part 1: General (2012)

[BDG+10] Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acous-
tic side-channel attacks on printers. In: USENIX Security Symposium,
pp. 307–322 (2010)

[BWY06] Berger, Y., Wool, A., Yeredor, A.: Dictionary attacks using keyboard acous-
tic emanations. In: ACM Conference on Computer and Communications
Security, pp. 245–254 (2006)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[Eni] The Enigmail Project. Enigmail: A simple interface for OpenPGP email
security

[Gen] Genesis 27:5
[Gmp] GNU multiple precision arithmetic library
[Gpg] The GNU Privacy Guard
[GST13] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-

bandwidth acoustic cryptanalysis (extended version). IACR Cryptology
ePrint Archive, 2013:857 (2013)

[HS10] Halevi, T., Saxena, N.: On pairing constrained wireless devices based on
secrecy of auxiliary channels: the case of acoustic eavesdropping. In: ACM
Conference on Computer and Communications Security, pp. 97–108 (2010)

[KJJR11] Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. Journal of Cryptographic Engineering 1(1), 5–27 (2011)

[KO62] Karatsuba, A., Ofman, Y.: Multiplication of Many-Digital Numbers by Au-
tomatic Computers. Proceedings of the USSR Academy of Sciences 145,
293–294 (1962)

[Nat82] National Security Agency. NACSIM 5000: TEMPEST fundamentals
(February 1982)

[Nat09] National Institute of Standards and Technology. FIPS 140-3: Draft security
requirements for cryptographic modules, revised draft (2009)

[RS85] Rivest, R.L., Shamir, A.: Efficient factoring based on partial informa-
tion. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34.
Springer, Heidelberg (1986)

[ST04] Shamir, A., Tromer, E.: Acoustic cryptanalysis: on nosy people and noisy
machines. Eurocrypt rump session (2004)

[SWT01] Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing
attacks on SSH. In: USENIX Security Symposium, vol. (2001)

[Wri87] Wright, P.: Spycatcher. Viking Penguin (1987)
[YF13] Yarom, Y., Falkner, K.E.: Flush+reload: a high resolution, low noise,

L3 cache side-channel attack. IACR Cryptology ePrint Archive, 2013:448
(2013)

[ZZT05] Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revis-
ited. In: ACM Conference on Computer and Communications Security,
pp. 373–382 (2005)

On the Impossibility of Cryptography

with Tamperable Randomness

Per Austrin1,	, Kai-Min Chung2,		, Mohammad Mahmoody3,	 	 	,
Rafael Pass4,†, and Karn Seth4

1 KTH Royal Institute of Technology, Stockholm, Sweden
austrin@kth.se

2 Academica Sinica, Taipei, Taiwan
kmchung@iis.sinica.edu.tw

3 University of Virginia, Charlottesville, VA, USA
mohammad@cs.virginia.edu

4 Cornell University, New York, NY, USA
{rafael,karn}@cs.cornell.edu

Abstract. We initiate a study of the security of cryptographic primi-
tives in the presence of efficient tampering attacks to the randomness of
honest parties. More precisely, we consider p-tampering attackers that
may efficiently tamper with each bit of the honest parties’ random tape
with probability p, but have to do so in an “online” fashion. Our main
result is a strong negative result: We show that any secure encryption
scheme, bit commitment scheme, or zero-knowledge protocol can be “bro-
ken” with probability p by a p-tampering attacker. The core of this result
is a new Fourier analytic technique for biasing the output of bounded-
value functions, which may be of independent interest.

We also show that this result cannot be extended to primitives such
as signature schemes and identification protocols: assuming the existence
of one-way functions, such primitives can be made resilient to (1/poly(n))-
tampering attacks where n is the security parameter.1

Keywords: Tampering, Randomness, Encryption.

� Work done while at University of Toronto, funded by NSERC
�� Supported in part by NSF Award CNS-1217821.

� � � Research done while in part supported by NSF Award CNS-1217821.
† Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty
Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF
Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and
AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in
this document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1 The full version of the paper is available at [4].

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 462–479, 2014.
c© International Association for Cryptologic Research 2014

On the Impossibility of Cryptography with Tamperable Randomness 463

1 Introduction

A traditional assumption in cryptography is that the only way for an attacker
to gather or control information is by receiving and sending messages to honest
parties. In particular, it is assumed that the attacker may not access the inter-
nal states of honest parties. However, such assumptions on the attacker—which
we refer to as physical assumptions—are quite strong (and even unrealistic).
In real-life, an attacker may through a “physical attack” learn some “leakage”
about the honest parties’ internal states and may even tamper with their inter-
nal states. For instance, a computer virus may (e.g., using a, so-called, buffer
overflow attack [2, 18, 32]) be able to bias the randomness of an infected com-
puter. Understanding to what extents the traditional physical assumptions can
be relaxed, to capture such realistic attacks, is of fundamental importance.

Indeed, in recent years leakage-resilient cryptography—that is, the design of
cryptographic schemes and protocols that remain secure even when the attacker
may receive (partial) leakage about the internal state of the honest parties—has
received significant attention (see e.g., [1, 7, 10, 12–14,21, 25, 30, 31, 34]).

In this work, we focus on understanding the power of tampering attacks—
that is, attacks where the adversary may partially modify (i.e., tamper with) the
internal state of honest parties. Early results in the 1990’s already demonstrate
that tampering attacks may be very powerful: by just slightly tampering with
the computation of specific implementations of some cryptographic schemes (e.g.,
natural implementations of RSA encryption [33]), Boneh, DeMillo and Lipton [6]
demonstrated that the security of these schemes can be broken completely.

Previous works on tamper-resilient cryptography consider tampering of com-
putation [3,5,6,16,24,30] and tampering with the memory of an honest party who
holds a secret (e.g., a signing or a decryption algorithm) [9,15,19,26,29,30]. This
line of research culminated in strong compilers turning any polynomial-size cir-
cuit C into a new “tamper-resilient” polynomial-size circuit C′; tamper-resilience
here means that having “grey-box” access to C′ (i.e., having black-box access
while tampering with the computation of C′) yields no more “knowledge” than
simply having black-box access to C. These works, thus, show how to keep a
secret hidden from a tampering attacker. Our focus here is somewhat different.
In analogy with recent work of leakage-resilient security, we aim to investigate
to what extent a tampering attacker may violate the security of a cryptographic
protocol by tampering with the internal state of honest parities.

For concreteness, let us focus on the security of public-key encryption schemes
(but as we shall see shortly, our investigation applies to many more cryptographic
tasks such as zero-knowledge proofs and secure computation). Roughly speaking,
we require a tamper-resilient encryption scheme to guarantee that ciphertexts
conceal the encrypted messages, even if the internal computation of the sender

464 P. Austrin et al.

(of the ciphertext) has been tampered with.2 As first observation note that if the
attacker may completely change the computation of the sender, he could simply
make the sender send the message in the clear. Thus, to hope for any reasonable
notion of tamper-resilient security we need to restrict the attacker’s ability to
tamper with the computation.

Tampering with Randomness. Among various computational resources, random-
ness might be one of the hardest to protect against tampering. This is due to
the fact that randomness is usually generated (perhaps based on some “physi-
cal” resources available to the system) and any malicious attacker who is able
to change the bits along their generation can mount a tampering attack against
the randomness. Indeed given the breakthrough results of [22, 27, 28] it is be-
coming even more clear that randomness is one of the most vulnerable aspects
of a cryptographic system. Thus, a very basic question is to what extent we
can protect our systems against tampering with randomness. In this work we
initiate a formal study of this question by considering tampering attacks to the
randomness of the honest players; namely we study the following basic question:

Can security of cryptographic primitives be preserved under tampering
attacks to the randomness of honest parties?

Note that we need to restrict the tampering ability of the attacker, for oth-
erwise the adversary can effectively make the scheme deterministic by always
fixing the randomness of the honest parties to all zeros. But it is well-known
that deterministic encryption schemes cannot be semantically secure. Therefore,
here we initiate study of the power of weak types of tampering attacks to the
randomness of the honest parties.

General Model: The Tampering Virus. We envision the adversary as consisting
of two separate entities: (1) a classical attacker who interacts with the honest
parties only by sending/receiving messages to/from them (without any side-
channels), and (2) a tampering circuit (a.k.a. the “virus”) who observes the
internal state of the honest parties and may only tamper with their random-
ness (but may not communicate with the outside world, and in particular with
the classical attacker). The tampering circuit only gets to tamper with a small
fraction of the random bits, and in an efficient manner. Note that this model

2 Let us remark that the simulation property of tamper-resilient compilers do not nec-
essarily guarantee that if the sender algorithm is compiled into a “tamper-resilient”
version, then the encryption scheme is tamper-resilient. This is due to the fact that
the simulation property of those compilers only guarantee that an attacker cannot
learn more from tampering with the sender strategy than it could have with black-box
access to it. But in the case of encryption schemes, it is actually the input to the al-
gorithm (i.e., the message to be encrypted) that we wish to hide (as opposed to some
secret held by the algorithm). See the full version for a more detailed comparison
with previous work.

On the Impossibility of Cryptography with Tamperable Randomness 465

excludes a scenario in which the virus (even efficiently) samples the whole ran-
domness, regardless of the original randomness sampled by the system, because
in this cases all of the sampled tampered bits might be different from the system’s
original random seed. However, here we study weak attackers who only tamper
with a small fraction of the random bits. In fact, previous works on resettable
cryptography [8] can be interpreted as achieving tamper resilience against adver-
saries who tamper with all of the randomness of the honest parties by resampling
the randomness of the honest parties and executing them again and again. This
is incomparable to our model, since our adversary does not have control over
the honest parties’ execution (to run them again), but is more powerful in that
it could change the value of some of the random bits.

Online Tampering. Let 0 < p < 1 be the parameter describing the “power”
of adversary (which defines the fraction of tampered bits). It still remains to
clarify how the tampering is done over these bits. The first naive model would
allow the adversary to tamper with a p fraction of the bits after all the bits are
sampled by the system (and, thus, are known to the virus as well). However,
this is not realistic since the sequence of random bits used by the system could
always be sampled in an online manner; namely, the system could sample the
i-th random bit whenever it needs it and might use it “on the fly”. Therefore,
a tampering adversary also needs to tamper with them one-by-one, efficiently,
and in an on-line fashion.

More precisely, we consider a so-called p-tampering attack, where the adver-
sary gets to tamper with the random tape of the honest players as follows.
The randomness of honest parties is generated bit-by-bit, and for each gener-
ated bit xi the efficient tampering circuit gets to tamper with it with inde-
pendent probability p having only knowledge of previously generated random
bits x1, x2, . . . , xi−1 (but not the value of the random bits tossed in the fu-
ture). Roughly speaking, requiring security with respect to p-tampering attacks
amounts to requiring that security holds even if the honest players’ random-
ness comes from a computationally efficient analog of a Santha-Vazirani (SV)
source [35]. Recall that a random variableX = (X1, . . . , Xn) over bit strings is an
SV source with parameter δ if for every i ∈ [n] and every (x1, . . . , xi) ∈ {0, 1}i,
it holds that δ ≤ P[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1 − δ. It is easy to
see that the random variable resulting from performing a p-tampering attack on
a uniform n-bit string is an SV source with parameter (1 − p)/2; in fact, any
SV source is equivalent to performing a computationally unbounded p-tampering
attack on a uniform n-bit string.

The main focus of this work is on the following question:

Can security be achieved under p-tampering attacks?

2 Our Results and Techniques

Our main result is a strong negative answer to the question above for a vari-
ety of basic cryptographic primitives. A p-tampering attacker can break all of

466 P. Austrin et al.

the following with advantage Ω(p): (1) the security of any CPA-secure (public-
key or private-key) encryption scheme, (2) the zero-knowledge property of any
efficient-prover proof (or argument) system for nontrivial languages, (3) the hid-
ing property of any commitment scheme, and (4) the security of any protocol for
computing a “nontrivial” finite function. More formally, we prove the following
theorems.

Theorem 1 (Impossibility of Encryption). LetΠ be any CPA-secure public-
key encryption scheme. Then a p-tampering attacker can break the security of Π
with advantage Ω(p). Moreover, the attacker only tampers with the random bits of
the encryption (not the key-generation) without knowing the message.

A similar impossibility result holds for private-key encryption schemes in
which the tampering adversary can also tamper with the randomness of the
key-generation phase.3

Theorem 2 (Impossibility of Zero-Knowledge). Let (P, V) be an efficient
prover proof/argument system for a language L ∈ NP such that the view of any
p-tampering verifier can be simulated by an efficient simulator with indistin-
guishability gap o(p), then the language L is in BPP.

Theorem 3 (ImpossibilityofCommitments).Let (S,R) beabit-commitment
scheme. Then, either an efficient malicious sender can break the biding with advan-
tage Ω(p) (without tampering), or an efficient malicious p-tampering receiver can
break the hiding with advantage Ω(p).

Following [19] we consider two-party functions f : D1 × D2 �→ R where only
one player gets the output. A function f is called trivial in this context, if
there is a deterministic single-message (i.e., only one player speaks) protocol for
computing f that is information theoretically secure.

Theorem 4 (Impossibility of Secure Computation). The security of any
protocol for computing a two-party non-trivial function can be broken with ad-
vantage Ω(p) through a p-tampering attack.

Relation to Subliminal Channels. Cryptographic research on “subliminal chan-
nels” [36] and the related field of “kleptography” [37] study whether a crypto-
graphic scheme can be “misused” for a purpose other than the original purpose
it was designed for (e.g., by putting an undetectable trapdoor in the systems).
The existence of subliminal channels between “outside” and “inside” adversaries
could be a huge security concern in certain scenarios such as voting schemes [17].
Our Theorem 1 (and its private-key variant) show that any efficient encryption
scheme always has a subliminal channel between an outsider adversary and an
insider virus who is (only) able to tamper with the randomness of the encryption
device no matter how the encryption algorithm tries to “detect” a virus who is
signaling a bit of information to the adversary.

3 Note that this is necessary, because the one-time pad encryption is deterministic
during its encryption phase.

On the Impossibility of Cryptography with Tamperable Randomness 467

Tampering with Randomness vs. Imperfect Randomness. Our negative results
are closely related to the impossibility result of Dodis et al. [11] on the “im-
possibility of cryptography with imperfect randomness”, where the security of
cryptographic primitives are analyzed assuming that the honest parties only have
access to randomness coming from an SV source (as opposed to the randomness
being perfectly uniform). [11] present several strong impossibility results for se-
cure realizability of cryptography primitives in a setting where players only have
access to such imperfect randomness. The SV sources they consider for their
impossibility results, however, may not be efficiently computable.

The key-difference between tamper-resilient security in our setting and secu-
rity with imperfect randomness is that we restrict to randomness sources that
are efficiently sampled through an (online) p-tampering attack; thus achieving
tamper-resilient security becomes easier than resilience to imperfect randomness.
Note that even if one can efficiently sample from the sources employed by [11],
that still does not solve our main question, because by sampling fresh random-
ness for the system the adversary is indeed tampering with all of the random
seed. As we discussed above, however, in such scenario the adversary can always
fix the randomness to zero and so we are essentially down to the determinis-
tic case. Another, perhaps less important difference, is that for primitives with
simulation-based security, we allow the simulator to depend on the p-tampering
attacker, whereas in [11] the simulator must work for any randomness source;
this further makes achieving tamper-resilient security easier than resilience to
imperfect randomness.

Positive Results. We complement the above negative results by demonstrating
some initial positive results: Assuming the existence of one-way functions, for
any p = n−α, where α > 0 is a constant and n is the security parameter, every
implementation of signature schemes, identification protocols, and witness hiding
protocols can be made resilient against p-tampering attackers. We also present a
relaxed notion of semantic security for encryption schemes that can be achieved
under n−α-tampering attacks. We show that for these primitives, security holds
even if the randomness source “min-entropy loss” of at most O(log n). We next
show how to use PRGs to ensure that a tampering attacker will only be able
to decrease the overall (pseudo) min-entropy by O(log n). The above mentioned
primitives already imply the existence of one-way functions [23], thus preventing
against n−α-tampering attacks can be achieved for these primitives uncondition-
ally. Finally, we present positive results for tamper-resilient key-agreement and
secure multi-party computation in the presence of (at least) two honest players.
For further details see the full version [4] of the paper.

2.1 Our Techniques

Our main technical contribution is to develop new methods for biasing Boolean,
and more generally, bounded-value functions, using a p-tampering attack.

468 P. Austrin et al.

Biasing Bounded-Value Functions. Our first (negative) result uses elemen-
tary Fourier analysis to prove an efficient version of the Santha-Vazirani theo-
rem: Any balanced (or almost balanced) efficiently computable Boolean function
f can be biased by Ω(p) through an efficient p-tampering attack.

Specifically, let Un denote the uniform distribution over {0, 1}n and let UTam,p
n

denote the distribution obtained after performing a p-tampering attack on Un

using a tampering algorithm Tam; more precisely, let UTam,p
n = (X1, . . . , Xn)

where with probability 1− p, Xi is a uniform random bit, and with probability
p, Xi = Tam(1n, X1, . . . , Xi−1).

Theorem 5 (Biasing Boolean Functions: Warm-up). There exists an ora-
cle machine Tam with input parameters n and ε < 1 that runs in time poly(n/ε)
and for every n ∈ N and ε ∈ (0, 1), every Boolean function f : {0, 1}n →
{−1, 1}, and every p < 1, for μ = E[f(Un)] it holds that

E[f(UTamf ,p
n)] ≥ μ+ p · (1− |μ| − ε).

The tampering algorithm Tam is extremely simple and natural; it just greedily
picks the bit that maximizes the bias at every step. More precisely,
Tamf (x1, . . . , xi−1) estimates the value of

EUn−i [f(x1, . . . , xi−1, b, Un−i)]

for both of b = 0 and b = 1 by sampling, and sets xi to the bit b with larger
estimated expectation.

Theorem 5 suffices for our impossibility result for tamper-resilient zero-
knowledge. For all our remaining impossibility results, however, we need a more
general version that also deals with bounded value functions f : {0, 1}n →
[−1, 1]. Our main technical theorem provides such a result.

Theorem 6 (Main Technical Theorem: Biasing Bounded-Value Func-
tions). There exists an efficient oracle machine Tam such that for every n ∈ N ,
every bounded-value function f : {0, 1}n → [−1, 1], and every p < 1,

E[f(UTamf ,p
n)] ≥ E[f(Un)] +

p · Var[f(Un)]

5
.

Note that in Theorem 6 the dependence on the variance of f is necessary
because f may be the constant function f(x) = 0, whereas for the case of
balanced Boolean functions this clearly cannot happen. Let us also point out
that we have not tried to optimize the constant 1/5, and indeed it seems that
a more careful analysis could be used to bring it down since for small p the
constant gets close to 1.

The greedy algorithm does not work in the non-Boolean case anymore. The
problem, roughly speaking, is that a greedy strategy will locally try to increase
the expectation, but that might lead to choosing a wrong path. As a “counter-
example” consider a function f such that: conditioned on x1 = 0 f is a constant
function ε, but conditioned on x1 = 1, f is a Boolean function with average

On the Impossibility of Cryptography with Tamperable Randomness 469

−ε. For such f , the greedy algorithm will set x1 = 0 and achieves bias at most
ε, while by choosing x1 = 1 more bias could be achieved. To circumvent this
problem we use a “mildly greedy” strategy: we take only one sample of f(·) by
choosing x′

i, x
′
i+1, . . . , x

′
n at random (x1, . . . , xi−1 are already fixed). Then, we

keep the sampled x′
i with probability proportional to how much the output of f

is close to our “desired value”, and flip the value of x′
i otherwise.

More precisely, Tam(1n, x1, . . . , xi−1) proceeds as follows:

– Samples (x′
i, x

′
i+1, . . . , x

′
n)← Un−i+1 and compute

y = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n).

– Sample Tam(1n, x1, . . . , xi−1) from a Boolean random variable with average
y · x′

i (i.e. output x
′
i with probability 1+y

2 , and −x′
i with probability 1−y

2).

Note that our mildly greedy strategy is even easier to implement than the greedy
one: to tamper with each bit, it queries f only once.

Impossibility Results for Tamper-Resilient Cryptography. We employ
the biasing algorithms of Theorems 5 and 6 to obtain our negative results using
the following blue-print: We first prove a computational version of the “splitting
lemma” of [11] (Lemma 7 below which follows from Corollary 3.2 in [11]). Then
we will use the same arguments as those of [11] to derive our impossibility results.

Lemma 7 ([11]). Let f0 and f1 be two efficient functions from {0, 1}m to
{0, 1}poly(m) such that Prx←Um [f0(x) �= f1(x)] ≥ 1/ poly(n). Then there an
Santha-Vazirani source of randomness X with parameter 1/2− 1/ poly(n) such
that f0(X) is computationally distinguishable from f1(X).

We use our Theorem 6 to prove the following computational version of Lemma 7
which allows one to distinguish the functions f0, f1 by tampering with their ran-
dom input.

Lemma 8 (Computational Splitting Lemma). Let f0 and f1 be two ef-
ficient functions from {0, 1}m to {0, 1}poly(m) and Prx←Um [f0(x) �= f1(x)] ≥
ε > 1/ poly(m). Then one can efficiently find a poly(m)-size function f and a
poly(m)-size tampering circuit Tam such that

Pr[f(f1(U
Tam,p
n)) = 1] ≥ Pr[f(f0(U

Tam,p
n)) = 1] +Ω(ε · p).

Proof Outline. We derive Lemma 8 from Theorem 6 as follows. We use Theo-
rem 6 to bias the difference function gf (x) = f(f1(x))− f(f0(x)) (with domain
{−1, 0,+1}) towards 1 by a tampering circuit Tam. It is easy to see that if f is
Boolean, doing this is equivalent to the goal of Lemma 8. We show that if one
samples f from a family of pairwise independent Boolean functions, then the
resulting function gf (·) has sufficient variance as needed by Theorem 6.

We use our Lemma 8 similar to the way Lemma 7 is employed in [11] to derive
our impossibility results for tamper resilient: encryption schemes, commitments,
and two-party secure function evaluation protocols. For all these primitives an
adversary uses Lemma 8 to generate a tampering circuit Tam that later on
lets him distinguish the corresponding challenges (generated using the tampered
randomness) and break the security.

470 P. Austrin et al.

Zero-Knowledge. Zero-knowledge proofs in the setting of [11] require a universal
simulator that simultaneously handles a large class of imperfect randomness
sources. We can also use our Lemma 8 to rule out such tamper-resilient zero-
knowledge proofs. In the computational setting, however, it is the malicious
verifier who generates the bad source of randomness, and so we shall allow the
simulator to depend on the tampering circuit as well. Thus, the simulator in our
setting has more power. This prevents us from applying Lemma 8 directly.

We proceed in using the following high level outline. In the first step, we gener-
alize a result by Goldreich and Oren [20] showing that non-trivial zero-knowledge
protocols cannot have deterministic provers. Our generalization to [20] shows
that non-trivial zero-knowledge protocols require having prover messages with
min-entropy ω(logn). This means that the verifier can apply a (seeded) random-
ness extractor to the transcript and obtain one almost unbiased bit. In a second
step, we show how to use (the proof of) Theorem 5 to tamper with the prover’s
randomness so as to signal bits of the witness to the verifier.

This outline, however, oversimplifies: is it not the case that every non-trivial
zero-knowledge protocol requires the prover messages to have min-entropy
ω(logn); in fact, for some “easy” instances, the prover may not communicate
at all. Rather, we demonstrate that an “instance-based” version of the min-
entropy extension of the Goldreich and Oren [20] theorem holds, and using it we
can prove that either the prover’s messages have high min-entropy (and thus the
witness can be leaked to the verifier), or the instance can be decided “trivially”.
It follows that in either case, we can correctly decide the instance and thus the
language must be trivial.

3 Biasing Functions via Online Tampering

In this section we study how much the output of a bounded function can be
biased through a tampering attack, and we will formally prove Theorem 5 and
Theorem 6. For the full proofs of the applications of these two theorems (sketched
in previous section) we refer the reader to the full version of the paper [4].

First we formally define an online tampering process and a tampering source
of randomness (as a result of an online tampering attack performed on a uniform
source of randomness).

Definition 9. A distribution X = (X1, . . . , Xn) over {−1, 1}n is an (efficient)
p-tampering source if there exists an (efficient) tampering algorithm Tam such
that X can be generated in an online fashion as follows: For i = 1, . . . , n,

Xi =

{
Tam(1n, X1, . . . , Xi−1) with probability p,

U i
1 with probability 1− p,

where U i
1 denotes a uniformly random bit over {−1, 1}. In other words, with

probability p, Tam gets to tamper the next bit with the knowledge of the previous

On the Impossibility of Cryptography with Tamperable Randomness 471

bits (after the tampering)4. The tampering algorithm Tam might also receive an
auxiliary input and use it in its tampering strategy.5 We use UTam,p

n to denote
the p-tampered source obtained by the above tampering process with tampering
algorithm Tam.

Note that in the definition above, the tampering algorithm Tam might be
completely oblivious to the parameter p. By referring to Tam as a p-tampering
algorithm, we emphasize on the fact that Tam’s algorithm might depend on p.

Remark 10. Every p-tampering source is also a Santha-Vazirani source [35] with
parameter δ = (1− p)/2. In fact, it is not hard to see that without the efficiency
consideration, the two notions are equivalent.

3.1 Preliminaries: Calculating the Effect of a Single Variable

Recall that the Fourier coefficients of any function f : {−1, 1}n → [−1, 1] are
indexed by the subsets S of [n] and are defined as f̂(S) := Ex[f(x)χS(x)], where

χS(x) :=
∏

i∈S xi. Note that the Fourier coefficient of the empty set f̂(∅) is
simply the expectation E[f(Un)].

For every prefix x≤i = (x1, . . . , xi), let fx≤i
: {−1, 1}n−i → [−1, 1] be the

restriction of f on x≤i, i.e., fx≤i
(xi+1, . . . , xn) := f(x1, . . . , xn). We note that

the variables of fx≤i
are named (xi+1, . . . , xn) and thus the Fourier coefficients

of fx≤i
are f̂x≤i

(S)’s with S ⊆ {i + 1, . . . , n}. The following basic identity can
be proved by straightforward calculation.

f̂x1(∅) = f̂(∅) + f̂({1}) · x1. (1)

Recall that f̂(∅) and f̂x1(∅) are simply expectations. One interpretation of the

above identity is that ±f̂({1}) is the change of expectation when we set x1 = ±1.
This is thus useful for analyzing the bias introduced as the result of a tampering
attack.

Using the above identity with a simple induction, we can express f(x) as
a sum of Fourier coefficients of restrictions of f . Namely, f(x) equals to the

expectation f̂(∅) plus the changes in expectation when we set xi bit by bit.

Lemma 11. f(x) = f̂(∅) +
∑n

i=1 f̂x≤i−1
({i}) · xi for every x ∈ {−1, 1}n.

4 In a stronger variant of tampering attacks, the attacker might be completely stateful
and memorize the original values of the previous bits before and after tampering and
also the places where the tampering took place, and use this extra information in its
future tampering. Using the weaker stateless attacker of Definition 9 only makes our
negative results stronger. Our positive results hold even against stateful attackers.

5 The auxiliary input could, e.g., be the information that the tampering algorithm
receives about the secret state of the tampered party; this information might not be
available at the time the tampering circuit is generated by the adversary.

472 P. Austrin et al.

Proof. By expanding f̂x≤j
(∅) = f̂x≤j−1

(∅)+f̂x≤j−1
({j})·xj , (implied by Equation

(1)) and a simple induction on j it follows that:

f(x) = f̂x≤j
(∅) +

n∑
i=j+1

f̂x≤i−1
({i}) · xi,

which proves the lemma.

As a corollary, the above lemma implies that the sum of Fourier coefficients
(of restrictions of f) in absolute value is at least |f(x)| − |f̂(∅)|.

Corollary 12. For every x ∈ {−1, 1}n, it holds that
∑n

i=1

∣∣∣f̂x≤i−1
({i})
∣∣∣ ≥

|f(x)| − |f̂(∅)|.

Proof. By triangle inequality we have

n∑
i=1

∣∣∣f̂x≤i−1
({i})
∣∣∣ = n∑

i=1

∣∣∣f̂x≤i−1
({i}) · xi

∣∣∣ ≥ ∣∣∣∣∣
n∑

i=1

f̂x≤i−1
({i}) · xi

∣∣∣∣∣
= |f(x)− f̂(∅)| ≥ |f(x)| − |f̂(∅)|

where the second equality uses Lemma 11.

3.2 The Boolean Case

A seminal result by Santha and Vazirani [35] shows that for every balanced
Boolean function f (e.g., a candidate “extractor”), there exists a p-tampering
source X that biases the output of f by at least p. We now present a strength-
ening of this result that additionally shows that if the function f is efficiently
computable, then the source X could be an efficient p-tampering one (and only
needs to use f as a black box). In the language of extractors, our result thus
proves a strong impossibility result for deterministic randomness extraction from
“efficient” Santha-Vazirani sources. Our proof of the generalized result is quite
different (and in our eyes simpler) than classic proofs of the Santha-Vazirani
theorem and may be of independent interest.

In fact, we present two different proofs. The first one achieves optimal bias
p for balanced f , whereas the second uses an extremely simple “lazy greedy”
tampering algorithm that makes only a single query to f and achieves bias p/3
for balanced f .

Theorem 13 (Theorem 5 restated). There exists an oracle machine Tam
with input parameters n and ε < 1 that runs in time poly(n/ε) and for every
n ∈ N and ε ∈ (0, 1), every Boolean function f : {0, 1}n → {−1, 1}, and every
p < 1, for μ = E[f(Un)] it holds that

E[f(UTamf ,p
n)] ≥ μ+ p · (1− |μ| − ε).

On the Impossibility of Cryptography with Tamperable Randomness 473

Proof (Proof of Theorem 5). Let us first present a proof with an inefficient
tampering algorithm achieving bias p · (1 − |μ|); next, we show how to make
it efficient while not loosing much in bias. On input x≤i−1 = (x1, . . . , xi−1),

Tam sets xi = sgn(f̂x≤i−1
({i})). By Equation (1), f̂x≤i−1

({i}) corresponds to the
change in expectation of fx≤i−1

when setting the value of xi. This amounts to

greedily choosing the xi that increases the expectation. Let X = UTam,p
n . By

applying Lemma 11 and the linearity of expectations, we have

E[f(X)] = f̂(∅) +
n∑

i=1

EX

[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

EX≤i−1

[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since Tam tampers with the i’th bit with independent probability p, therefore

E[Xi|X≤i−1] = p · sgn(f̂X≤i−1
({i})

and so it holds that

E[f(X)] = f̂(∅) + p ·
n∑

i=1

EX

[∣∣∣f̂X≤i−1
({i})
∣∣∣] = f̂(∅) + p · EX

[
n∑

i=1

∣∣∣f̂X≤i−1
({i})
∣∣∣]

≥ f̂(∅) + p · (1− f̂(∅))

where the last inequality follows by Corollary 12.
Note that the above tampering algorithm Tam in general is not efficient since

computing f̂x≤i−1
({i}) exactly may be hard. However, we show that Tam may

approximate f̂x≤i−1
({i}) using M = Θ(n

2

ε2 · log
n
ε) samples, and set xi according

to the sign of the approximation of f̂x≤i−1
({i}), while still inducing essentially

the same bias. This clearly can be done efficiently given oracle access to f . As

before, let X = UTamf ,p
n denote the corresponding p-tampering source. To lower

bound E[f(X)], we note that the only difference from the previous case is that

Tam(1n, x≤i−1) is no longer always outputting sgn(f̂x≤i−1
({i})). Nevertheless,

we claim that for every x<i it holds that

f̂x≤i−1
({i}) · E[Xi|X≤i−1 = x≤i−1] ≥ p ·

(
|f̂x≤i−1

({i})| − ε/n
)

since either (i) |f̂x≤i−1
({i})| ≥ ε/2n in which case (by a Chernoff bound) Tam

outputs sgn(f̂x≤i−1
({i})) with probability at least 1−ε/2n, or (ii) |f̂x≤i−1

({i})| <
ε/2n in which case the inequality holds no matter what Tam outputs since
|E[Xi|X≤i−1 = x≤i−1]| ≤ p. A lower bound on E[f(X)] then follows by the
same analysis as before:

E[f(X)] ≥ f̂(∅) + p ·
n∑

i=1

EX

[∣∣∣f̂X≤i−1
({i})
∣∣∣− ε/n

]
≥ μ+ p · (1− |f̂(∅)| − ε).

474 P. Austrin et al.

Before presenting the second proof, we state the following lemma, which fol-
lows similarly to lemma 11, but instead it relies on a squared version of Equation
(1). See the full version for a proof.

Lemma 14. For every x ∈ {−1, 1}n,

f(x)2 = f̂(∅)2 +
n∑

i=1

(
f̂x≤i−1

({i})2 + 2f̂x≤i−1
(∅) · f̂x≤i−1

({i}) · xi

)
.

We continue to present the second proof using a “lazy greedy” tampering
algorithm that makes a single query to f and achieves bias p/3 for balanced f .

Theorem 15. There exists an oracle machine Tam that makes a single query
to its oracle such that for every n ∈ N , every Boolean function f : {0, 1}n →
{−1, 1}, and every p < 1, for μ = E[f(Un)] it holds that

E[f(UTamf ,p
n)] ≥ μ+ p · (1− μ2)/3.

Proof. We consider a lazy greedy tampering algorithm LTam that on input x≤i−1

= (x1, . . . , xi−1), samples uniformly random (x′
i, . . . , x

′
n)← Un−i+1, queries y =

f(x1, xi−1, x
′
i, . . . , x

′
n), and outputs Xi = x′

i if y = 1 and Xi = −x′
i if y = −1.

Namely, LTam samples a random completion of x≤i−1 and output the sampled
bit x′

i iff the sample evaluates to 1.
Interestingly, this simple lazy greedy LTam implicitly “plays the first Fourier

coefficient” in expectation in the sense that E[Tam(x≤i−1)] = f̂x≤i−1
({i}).

Claim. For every x≤i−1, E[LTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = LTam(x≤i−1). We have E[Xi] = Ex≥i←Un−i+1 [f(x) · xi] =

f̂x≤i−1
({i}).

To analyze LTam, we derive two equalities analogous to that in the proof of
Theorem 5, and the theorem follows by combining the two equalities. First, since
LTam gets to tamperwith bit iwith independent probability p andE[LTam(x≤i−1)]

= f̂x≤i−1
({i}), by Lemma 3.3, we have that E[Xi|X≤i−1] = p · f̂X≤i−1

({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑

i=1

EX

[
f̂X≤i−1

({i})2
]
. (2)

Similarly, by applying Lemma 14 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +
n∑

i=1

(
EX [f̂X≤i−1

({i})2]
)

+

n∑
i=1

(
2EX≤i−1

[f̂X≤i−1
(∅) · f̂X≤i−1

({i}) · E[Xi|X≤i−1]]
)
.

On the Impossibility of Cryptography with Tamperable Randomness 475

Simplifying using the fact that f is Boolean, the trivial bound |f̂X≤i−1
(∅)| ≤ 1,

and E[Xi|X≤i−1] = p · f̂X≤i−1
({i}) gives

1 ≤ f̂(∅)2 + (1 + 2p) ·
n∑

i=1

EX [f̂X≤i−1
({i})2]. (3)

Plugging Equation (3) in Equation (2) yields

E[f(X)] ≥ f̂(∅) + p

1 + 2p

(
1− f̂(∅)2

)
≥ μ+ p ·

(
1− μ2

)
/3,

which completes the proof of Theorem 15.

3.3 Tampering with Bounded-Value Functions—The General Case

We further consider the more general case of tampering non-Boolean, bounded-
value functions. We present an efficient tampering algorithm that biases the
expectation of the function by an amount linear in the variance of the function.

Theorem 16 (Theorem 6 restated). There exists an efficient oracle machine
Tam such that for every n ∈ N , every bounded-value function f : {0, 1}n →
[−1, 1], and every p < 1,

E[f(UTamf ,p
n)] ≥ E[f(Un)] +

p · Var[f(Un)]

5
.

We prove Theorem 5 using lazy greedy tampering algorithm again. As before,
we let LTam take a single sample, and make decision based on the outcome of
the sample, but since f is not Boolean, we make randomized decision based on
the function value on the sample. Specifically, on input x≤i−1 = (x1, . . . , xi−1):

– LTam samples uniformly random (x′
i, . . . , x

′
n)← Un−i+1, and computes y =

f(x1, xi−1, x
′
i, . . . , x

′
n).

– LTam outputs Xi = x′
i with probability (1 + y)/2, and Xi = −x′

i with
probability (1− y)/2. Note that Xi has expectation E[Xi] = y · x′

i.

The following claim says that LTam “implicitly plays the first Fourier coefficient”
in expectation.

Claim. For every x≤i−1 ∈ {−1, 1}i−1, E[LTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = LTam(x≤i−1). We have:

E[Xi] = Ex≥i←Un−i+1 [f(x) · xi] = f̂x≤i−1
({i}).

Let X = ULTamf ,p
n . Also, let the mean E[f(Un)] = μ, the second moment

E[f(Un)
2] = ν, and the variance Var[f] = σ2 be denoted so. The analyze of

the lazy greedy algorithm LTam for the non-Boolean case is significantly more
involved. We first follow an analogous step in the analysis of Boolean case to

476 P. Austrin et al.

derive an inequality between E[f(X)] and E[f(X)2], then rely on a potential
function analysis to derive a second inequality relation between E[f(X)] and
E[f(X)2], and then derive a lower bound on E[f(X)] by combining the two. The
two inequalities are stated in the following lemmas.

Lemma 17. E[f(X)]− μ ≥ p
1+2p ·

(
E[f(X)2]− ν + σ2

)
.

Lemma 18. E[f(X)] + E[f(X)2]
2 + E[f(X)2]2

4 ≥ μ+ ν
2 + ν2

4 .

We first use the above two lemmas to show that E[f(X)] − μ ≥ (pσ2)/5,
which implies that E[f(X)] ≥ μ+ p ·Var[f]/5, as desired. If E[f(X)2] ≥ ν, then
Lemma 17 implies

E[f(X)]− μ ≥ p

1 + 2p
· σ2 ≥ 1

5
· pσ2.

For the case that E[f(X)2] ≤ ν, let α � ν − E[f(X)2] ≥ 0. Lemma 18 implies

E[f(X)]− μ ≥ 1

2
(ν − E[f(X)2]) +

1

4
(ν2 − E[f(X)2]2) ≥ α

2

which together with Lemma 17 implies that

[f(X)]− μ ≥ max

{
p

1 + 2p
·
(
σ2 − α

)
,
α

2

}
≥ p

1 + 4p
≥ pσ2

5
.

Now we prove Lemmas 17 and 18. The proof of Lemma 17 is a generalization of
the analysis for biasing Boolean functions.

Proof (Proof of Lemma 17). By applying Lemma 11 and the linearity of expec-
tations, we have

E[f(X)] = f̂(∅) +
n∑

i=1

EX

[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

EX≤i−1

[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since LTam gets to tamperwith bit iwith independent probability p, by Lemma 3.3
we have that E[Xi|X≤i−1] = p · f̂X≤i−1

({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑

i=1

EX

[
f̂X≤i−1

({i})2
]
. (4)

Similarly, by applying Lemma 14 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +
n∑

i=1

(
EX [f̂X≤i−1

({i})2]
)

+

n∑
i=1

(
2EX≤i−1

[f̂X≤i−1
(∅) · f̂X≤i−1

({i}) · E[Xi|X≤i−1]]
)
.

On the Impossibility of Cryptography with Tamperable Randomness 477

Simplifying using the trivial bound |f̂X≤i−1
(∅)| ≤ 1 and E[Xi|X≤i−1] = p ·

f̂X≤i−1
({i}) gives

E[f(X)2] ≤ f̂(∅)2 + (1 + 2p) ·
n∑

i=1

EX [f̂X≤i−1
({i})2]. (5)

The lemma follows by combining Equations (4) and (5):

E[f(X)] ≥ f̂(∅) + p

1 + 2p

(
E[f(X)2]− f̂(∅)2

)
= μ+

p

1 + 2p

(
E[f(X)2]− ν + σ2

)
where the last equality uses the fact that f̂(∅)2 = μ2 = ν − σ2.

The proof of Lemma 18 is less trivial. Our key observation is the following
useful property of the lazy greedy tampering algorithm LTam: consider the func-
tion f together with an arbitrary function g : {−1, 1}n → [−1, 1] (ultimately,
we shall set g(x) = f(x)2, but in the discussion that follows, g can be com-
pletely unrelated to f). While intuitively we expect the expectation of f to be
increasing after tampering, it is clearly possible that the tampering causes the
expectation of g to decrease. Nevertheless, we show that for a properly defined
potential function combining the expectations of f and g, the potential is guar-
anteed to be non-decreasing after tampering. Namely, we prove the following
lemma whose proof can be found in the full version of the paper.

Lemma 19. Let g : {−1, 1}n → [−1, 1] be an arbitrary function. For every
prefix x≤i ∈ {−1, 1}i, define a potential

Φ(x≤i) := f̂x≤i
(∅) +

ĝx≤i
(∅)

2
+

ĝx≤i
(∅)2

4
,

and let Φ := Φ(x≤0). Then it holds that E[Φ(X)] ≥ Φ.

Lemma 18 now follows easily.

Proof (Proof of Lemma 18). By applying Lemma 19 with g = f2 and noting
that ĝ(∅) = ν, we have

E[f(X)] +
E[f(X)2]

2
+

E[f(X)2]2

4
≥ μ+

ν

2
+

ν2

4
.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. One, A.: Smashing the stack for fun and profit. Phrack Magazine 7(49), File 14
(1996)

478 P. Austrin et al.

3. Anderson, R., Kuhn, M.: Tamper resistance – a cautionary note. In: Proceedings
of the Second USENIX Workshop on Electronic Commerce, pp. 1–11 (November
1996)

4. Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility
of cryptography with tamperable randomness. Cryptology ePrint Archive, Report
2013/194 (2013), http://eprint.iacr.org/

5. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510. IEEE Computer Society (2010)

8. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

9. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011)

10. Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering.
IACR Cryptology ePrint Archive, 2012:366 (2012); Informal publication

11. Dodis, Ong, Prabhakaran, Sahai: On the (im)possibility of cryptography with im-
perfect randomness. In: FOCS: IEEE Symposium on Foundations of Computer
Science, FOCS (2004)

12. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

13. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520. IEEE Computer Society (2010)

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302. IEEE Computer Society (2008)

15. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C.
(ed.) ICS, pp. 434–452. Tsinghua University Press (2010)

16. Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: How to trade leakage
for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011)

17. Ariel, J.: Feldman and Josh Benaloh. On subliminal channels in encrypt-on-cast
voting systems. In: Proceedings of the 2009 Conference on Electronic Voting Tech-
nology/Workshop on Trustworthy Elections, EVT/WOTE 2009, p. 12. USENIX
Association, Berkeley (2009)

18. Frykholm, N.: Countermeasures against buffer overflow attacks. Technical report,
RSA Data Security, Inc., pub-RSA:adr (November 2000)

19. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware
tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer,
Heidelberg (2004)

20. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1), 1–32 (1994)

21. Goldwasser, S., Rothblum, G.: How to compute in the presence of leakage (2012)

http://eprint.iacr.org/

On the Impossibility of Cryptography with Tamperable Randomness 479

22. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium (August 2012)

23. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proceedings of the 30th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 230–235 (1989)

24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

25. Kalai, Y., Lewko, A., Rao, A.: Formulas resilient to short-circuit errors (2012)
26. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky

memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011)

27. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter,
C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012),
http://eprint.iacr.org/

29. Liu, F.-H., Lysyanskaya, A.: Algorithmic tamper-proof security under probing at-
tacks. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 106–120.
Springer, Heidelberg (2010)

30. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 517–532. Springer, Heidelberg (2012)

31. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

32. Pincus, J.D., Baker, B.: Beyond stack smashing: Recent advances in exploiting
buffer overruns. IEEE Security & Privacy 2(4), 20–27 (2004)

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

34. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012)

35. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random
sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)

36. Simmons, G.J.: Subliminal channels; past and present. ETT 5(4), 15 (1994)
37. Young, A., Yung, M.: The dark side of “Black-box” cryptography, or: Should we

trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996)

http://eprint.iacr.org/

Multiparty Key Exchange, Efficient Traitor
Tracing, and More from Indistinguishability

Obfuscation

Dan Boneh and Mark Zhandry

Stanford University, CA, USA
{dabo,zhandry}@cs.stanford.edu

Abstract. In this work, we show how to use indistinguishability obfus-
cation (iO) to build multiparty key exchange, efficient broadcast encryp-
tion, and efficient traitor tracing. Our schemes enjoy several interesting
properties that have not been achievable before:
– Our multiparty non-interactive key exchange protocol does not re-

quire a trusted setup. Moreover, the size of the published value from
each user is independent of the total number of users.

– Our broadcast encryption schemes support distributed setup, where
users choose their own secret keys rather than be given secret keys
by a trusted entity. The broadcast ciphertext size is independent of
the number of users.

– Our traitor tracing system is fully collusion resistant with short ci-
phertexts, secret keys, and public key. Ciphertext size is logarithmic
in the number of users and secret key size is independent of the num-
ber of users. Our public key size is polylogarithmic in the number
of users. The recent functional encryption system of Garg, Gentry,
Halevi, Raykova, Sahai, and Waters also leads to a traitor tracing
scheme with similar ciphertext and secret key size, but the construc-
tion in this paper is simpler and more direct. These constructions
resolve an open problem relating to differential privacy.

– Generalizing our traitor tracing system gives a private broadcast
encryption scheme (where broadcast ciphertexts reveal minimal in-
formation about the recipient set) with optimal size ciphertext.

Several of our proofs of security introduce new tools for proving security
using indistinguishability obfuscation.

1 Introduction

An obfuscator is a machine that takes as input a program, and produces a second
program with identical functionality that in some sense hides how the original
program works. An important notion of obfuscation called indistinguishability
obfuscation (iO) was proposed by Barak et al. [BGI+01] and further studied
by Goldwasser and Rothblum [GR07]. Indistinguishability obfuscation asks that
obfuscations of any two (equal-size) programs that compute the same function
are computationally indistinguishable. The reason iO has become so important

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 480–499, 2014.
c© International Association for Cryptologic Research 2014

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 481

is a recent breakthrough result of Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [GGH+13b] that put forward the first candidate construction for an effi-
cient iO obfuscator for general boolean circuits. The construction builds upon the
multilinear map candidates of Garg, Gentry, and Halevi [GGH13a] and Coron,
Lepoint, and Tibouchi [CLT13].

In subsequent work, Sahai and Waters [SW13] showed that indistinguisha-
bility obfuscation is a powerful cryptographic primitive: it can be used to build
public-key encryption from pseudorandom functions, selectively-secure short sig-
natures, deniable encryption, and much more. Hohenberger, Sahai, and Wa-
ters [HSW13] showed that iO can be used to securely instantiate the random
oracle in several random-oracle cryptographic systems.

Our results. In this paper, we show further powerful applications for indistin-
guishability obfuscation. While the recent iO constructions make use of multi-
linear maps, the converse does not seem to hold: we do not yet know how to
build multilinear maps from iO. Nevertheless, we show that iO can be used to
construct many of the powerful applications that follow from multilinear maps.
The resulting iO-based constructions have surprising features that could not be
previously achieved, not even using the current candidate multilinear maps. All
of our constructions employ the punctured PRF technique introduced by Sahai
and Waters [SW13].

1.1 Multiparty Non-Interactive Key Exchange

Our first construction uses iO to construct a multiparty non-interactive key
exchange protocol (NIKE) from a pseudorandom generator. Recall that in a
NIKE protocol, N parties each post a single message to a public bulletin board.
All parties then read the board and agree on a shared key k that is secret from
any eavesdropper who only sees the bulletin board. The classic Diffie-Hellman
protocol solves the two-party case N = 2. The first three-party protocol was
proposed by Joux [Jou04] using bilinear maps. Boneh and Silverberg [BS03]
gave a protocol for general N using multilinear maps. The candidate multilinear
map constructions by Garg, Gentry, and Halevi [GGH13a] using ideal lattices,
and by Coron, Lepoint, and Tibouchi [CLT13] over the integers, provide the first
implementations for N parties, but require a trusted setup phase. Prior to this
work, these were the only known constructions for NIKE.

We construct new NIKE protocols from a general indistinguishability obfus-
cator. Our basic protocol is easy to describe: each user generates a random seed
s for a pseudorandom generator G whose output is at least twice the size of the
seed. The user posts G(s) to the bulletin board. When N users wish to generate
a shared group key, they each collect all the public values from the bulletin board
and run a certain public obfuscated program PKE (shown in Figure 1) on the
public values along with their secret seed. The program outputs the group key.

482 D. Boneh and M. Zhandry

Inputs: public values x1, . . . xN ∈ XN , an index i ∈ [N], and a secret seed s ∈ S
Embedded constant: pseudorandom function PRF with an embedded random key

1. If xi �= G(s), output ⊥
2. Otherwise, output PRF(x1, x2, . . . , xN)

Fig. 1. The program PKE

We show that this protocol is secure in a semi-static model [FHKP13]: an
adversary that is allowed to (non-adaptively) corrupt participants of its choice
cannot learn the shared group key of a group of uncorrupt users of its choice. The
proof uses the punctured PRF technique of Sahai and Waters, but interestingly
requires the full power of the constrained PRFs of Boneh and Waters [BW13] for
arbitrary circuit constraints. In addition, we show that the point-wise punctured
PRFs used by Sahai and Waters are sufficient to prove security, but only in a
weaker static security model where the adversary cannot corrupt users. We leave
the construction of a fully adaptively secure NIKE (in the sense of [FHKP13])
from iO as a fascinating open problem.

In the full version [BZ14], we observe that our iO-based NIKE can be eas-
ily extended to an identity-based multiparty key exchange. Existing ID-NIKE
protocols are based on multilinear maps [FHPS13].

Comparison to existing constructions. While NIKE can be built directly from
multilinear maps, our iO-based protocol has a number of advantages:

– No trusted setup. Existing constructions [GGH13a, CLT13] require a trusted
setup to publish public parameters: whoever generates the parameters can
expose the secret keys for all groups just from the public values posted by
members of the group. A variant of our iO-based construction requires no
trusted setup, and in fact requires no setup at all. We simply have user
number 1 generate the obfuscated program PKE and publish it along with
her public values. The resulting scheme is the first statically secure NIKE
protocol with no setup requirements. In the full version [BZ14] we enhance
the construction and present a NIKE protocol with no setup that is secure in
the stronger semi-static model. This requires changing the scheme to defend
against a potentially malicious program PKE published by a corrupt user.
To do so we replace the secret seed s by a digital signature generated by
each user. Proving security from iO requires the signature scheme to have a
special property we call constrained public-keys, which may be of indpendent
interest. We construct such signatures from iO.

– Short public values. In current multilinear-based NIKE protocols, the size
of the values published to the bulletin board is at least linear in the number
of users N . In our basic iO-based construction, the size of published values
is independent of N .

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 483

– Since the published values are independent of any public parameters, the
same published values can be used in multiple NIKE environments setup by
different organizations.

It is also worth noting that since our NIKE is built from a generic iO mechanism,
it may eventually depend on a weaker complexity assumption than those needed
for secure multilinear maps.

1.2 Broadcast Encryption
Broadcast encryption [FN94] lets an encryptor broadcast a message to a subset of
recipients. The system is said to be collusion resistant if no set of non-recipients
can learn information about the plaintext. The efficiency of a broadcast system
is measured in the ciphertext overhead: the number of bits in the ciphertext
beyond what is needed to describe the recipient set and encrypt the payload
message using a symmetric cipher. The shorter the overhead, the better (an
overhead of zero is optimal). We survey some existing constructions in related
work below.

Using a generic conversion from NIKE to broadcast encryption described in
the full version [BZ14], we obtain two collusion-resistant broadcast systems. The
first is a secret-key broadcast system with optimal broadcast size. The second
is a public-key broadcast system with constant overhead, namely independent
of the number of recipients. In both systems, decryption keys are constant size
(i.e. independent of the number of users). The encryption key, however, is linear
in the number of users as in several other broadcast systems [BGW05, GW09,
DPP07, BW13].

By starting from our semi-static secure NIKE, we obtain a semi-static secure
broadcast encryption (as defined by Gentry and Waters [GW09]). Then applying
a generic conversion due to Gentry and Waters [GW09], we obtain a fully adap-
tively secure public-key broadcast encryption system with the shortest known
ciphertext overhead.

Our public-key broadcast encryption has a remarkable property that has so
far not been possible, not even using the candidate multilinear maps. The system
is a public-key distributed broadcast system: users generate secret keys on their
own and simply append their corresponding public values to the broadcast public
key. In contrast, in existing low-overhead public-key broadcast systems surveyed
below, users are assigned their secret key by a trusted authority who has the
power to decrypt all broadcasts. In our iO-based public-key system, there is no
trusted authority.

Another interesting aspect of the construction is that the PRG used in the
scheme (as in the program PKE) can be replaced by the RSA public key en-
cryption system where the RSA secret key plays the role of the PRG seed and
the corresponding RSA public key plays the role of the PRG output. Then, our
broadcast system shows that iO makes it possible to use existing certified RSA
keys in a short-ciphertext broadcast encryption system and in a NIKE protocol.
To prove security using iO we need the following property of RSA: there is a dis-
tribution of invalid RSA public-keys (e.g. products of three random large primes)

484 D. Boneh and M. Zhandry

that is computationally indistinguishable from a distribution of real RSA public
keys (i.e. products of two random large primes). This property also holds for
other public-key systems such as Regev’s lattice encryption scheme, but does
not hold for systems like basic ElGamal encryption.

1.3 Recipient-Private Broadcast Encryption

A broadcast encryption system is said to be recipient-private if broadcast cipher-
texts reveal nothing about the intended set of recipients [BBW06, LPQ12, FP12].
Valid recipients will learn that they are members of the recipient set (by suc-
cessfully decrypting the ciphertext), but should learn nothing else about the set.
Until very recently, the best recipient-private broadcast systems had a broadcast
size of O(λ ·N), proportional to the product of the security parameter λ and the
number of users N .

Using iO, we construct a recipient-private broadcast system with a broadcast
size of O(λ + N), proportional to the sum of the security parameter and the
number of users. This is the best possible broadcast size. If one is allowed to
leak the size k of the recipient set (and nothing else) then we construct a system
where the broadcast size is proportional to O(λ + k log N), which is again the
best possible. Building such systems has been open for some time [BBW06] and
is now resolved using iO.

Our approach to building a recipient-private broadcast system is to embed an
encryption of the intended recipient set in the broadcast header. We publish an
obfuscated program in the public key that begins by decrypting the encrypted
recipient set in the broadcast header. It then decrypts the message body only
if the recipient can provide a proof that it is one of the intended recipients.
Interestingly, encrypting the recipient set in a way that lets us prove security
using iO is non-trivial. The problem is that using a generic CPA-secure scheme
is insecure due to potential malleability attacks on the encrypted recipient set
that can break recipient privacy. Using an authenticated encryption scheme to
prevent the malleability attack is problematic because forged valid ciphertexts
exist (even though they may be difficult to construct), and this prevents us from
proving security using iO. The difficulty arises because iO can only be applied
to two programs that agree on all inputs, including hard-to-compute ones.

Instead of using authenticated encryption, we encrypt the recipient set using
a certain malleable encryption scheme that lets us translate an encryption of a
recipient set S to an encryption of some other recipient set S′. We use indistin-
guishability of obfuscations to argue that an attacker cannot detect this change,
thereby proving recipient privacy.

The recent succinct functional encryption scheme of Garg et al. [GGH+13b]
can also be used to build recipient-private broadcast encryption from iO. How-
ever, our construction is quite different and is simpler and more direct. For
example, it does not use non-interactive zero-knowledge proofs. Moreover, our
scheme has shorter secret keys: O(1) as a function of N compared to NO(1). The
main drawback of our scheme is the larger public key: NO(1) compared to O(1).

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 485

1.4 Traitor Tracing with Short Ciphertexts, Secret Keys, and
Public Keys

Private broadcast-encryption is further motivated by its application to traitor
tracing systems [CFN94]. Recall that traitor tracing systems, introduced by
Chor, Fiat, and Naor, help content distributors identify the origin of pirate
decryption boxes, such as pirate cable-TV set top decoders. Boneh, Sahai, and
Waters [BSW06] showed that a private broadcast encryption system that can
broadcast privately to any of the N + 1 sets ∅, {1}, {1, 2}, . . . , {1, . . . , N} is suf-
ficient for building an N -user traitor tracing system. The ciphertext used in
the traitor tracing system under normal operation is simply a broadcast to the
full set {1, . . . , N}, allowing all decoders to decrypt. Therefore, the goal is, as
before, to build a private broadcast system for this specific set system where ci-
phertext overhead is minimized. Such systems are called private linear broadcast
encryption (PLBE).

Adapting our iO-based private broadcast system to the linear set system
above, we obtain a collusion resistant traitor tracing system where ciphertext
size is O(λ + log N) where λ is the security parameter and N is the total num-
ber of users in the system. Moreover, secret keys are short: their length is λ,
independent of N . However, this scheme has large public keys, polynomial in N
and λ. The main reason public keys are large is that the malleable encryption
scheme we need requires polynomial size circuits for encryption and decryption.

Fortunately we can reduce the public-key size to only poly(log N, λ) without
affecting secret-key or ciphertext size. We do so by adapting the authenticated
encryption approach discussed in the previous section: when embedding the en-
crypted recipient set in the broadcast ciphertext we also embed a MAC of the
encrypted set. The decryption program will reject a broadcast ciphertext with
an invalid MAC. To prove security we need to puncture the MAC algorithm at
all possible recipient sets. Naively, since in a PLBE there are N +1 recipient sets,
the resulting program size would be linear in N thereby resulting in large secret
keys. Instead, we step through a sequence of hybrids where at each hybrid we
puncture the MAC at exactly one point. This sequence of hybrids ensures that
the obfuscated decryption program remains small. Once this sequential punc-
turing process completes, security follows from security of an embedded PRF.
We emphasize that this proof technique works for proving security of a PLBE
because of the small number of possible recipient sets.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used
to obtain collusion resistant traitor tracing, however as for private broadcast
encryption, our construction is conceptually simpler and has shorter secret keys.

Connection to Differential Privacy Dwork et al. [DNR+09] show that efficient
traitor tracing schemes imply the impossibility of any differentially private data
release mechanism. A data release mechanism is a procedure that outputs a data
structure that supports approximations to queries of the form “what fraction of
records have property P ?” Informally, a data release mechanism is differentially
private if it does not reveal whether any individual record is in the database.

486 D. Boneh and M. Zhandry

Applying the counter-example of [DNR+09] to our traitor tracing scheme,
we obtain a database of N records of size λ and N2O(λ) queries. Moreover,
the records are just independent uniform bit strings. Even with these small and
simple records and relatively few queries, no polynomial time (in λ and N) differ-
entially private data release mechanism is possible, so long as our construction is
secure. The first scheme this counter example was applied to is the traitor trac-
ing scheme of Boneh, Sahai, and Waters [BSW06], giving records of size O(λ),
but with a query set of size 2Õ(

√
N), exponential in N .

Ullman [Ull13] shows that, assuming one-way functions exist, there is no al-
gorithm that takes a database of N records of size λ and an arbitrary set of
approximately O(N2) queries, and approximately answers each query in time
poly(N, λ) while preserving differential privacy. This result also uses the connec-
tion between traitor tracing and differential privacy, but is qualitatively differ-
ent from ours. Their result applies to algorithms answering any arbitrary set of
O(N2) queries while maintaining differential privacy, whereas we demonstrate a
fixed set of O(N2λ) queries that are impossible to answer efficiently.

Constrained PRFs. Recall that constrained PRFs, needed in iO proofs of secu-
rity, are PRFs for which there are constrained keys than enable the evaluation
of the PRF at a subset of the PRF domain and nowhere else [BW13, KPTZ13,
BGI13]. The next section gives a precise definition. Our last construction shows
that iO, together with a one-way function, are sufficient to build a constrained
PRF for arbitrary circuit constraints. Consequently, all our constructions that
utilize circuit constrained PRFs can be directly built from iO and a one-way func-
tion without additional assumptions. In fact, Moran and Rosen [MR13] show,
under the assumption that NP is not solvable in probabilistic polynomial time in
the worst case, that indistinguishability obfuscation implies one-way functions.
Previously, constrained PRFs for arbitrary circuit constraints were built using
multilinear maps [BW13].

1.5 Related Work

While some works have shown how to obfuscate simple functionalities such as
point functions [Can97, CMR98, LPS04, Wee05], inner products [CRV10], and
d-CNFs [BR13a], it is only recently that obfuscation for poly-size circuits became
possible [GGH+13b, BR13b, BGK+13] and was applied to building higher level
cryptographic primitives [SW13, HSW13].

Broadcast encryption. Fully collusion resistant broadcast encryption has been
widely studied. Revocation systems [NNL01, HS02, GST04, DF02, LSW10] can
encrypt to N − r users with ciphertext size of O(r). Further combinatorial solu-
tions [NP00, DF03] achieve similar parameters. Algebraic constructions
[BGW05, GW09, DPP07] using bilinear maps achieve constant (but non-zero)
ciphertext overhead and some are even identity-based [GW09, Del07, SF07]. Mul-
tilinear maps give secret-key broadcast systems with optimal ciphertext size and
short private keys [BS03, FHPS13, BW13]. They also give public-key broadcast

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 487

systems with short ciphertexts and short public keys (using an O(log N)-linear
map) [BWZ14], but using the existing multilinear candidates, those systems are
not distributed: users must be given their private keys by a central authority. The
difficulty with using existing N -linear maps for distributed public-key broadcast
encryption is that the encoding of a single element requires Ω(N) bits, and
therefore a short ciphertext cannot include even a single element.

Recipient-private broadcast encryption. The first constructions for private broad-
cast encryption [BBW06, LPQ12] required a ciphertext header whose size is pro-
portional to the product of the security parameter and the number of recipients.
More recently, Fazio and Perera [FP12] presented a system with a weaker privacy
guarantee called outsider anonymity, but where the header size is proportional
to the number of revoked users. Kiayias and Samari [KS13] even provide lower
bounds showing that certain types of natural constructions cannot improve on
these bounds.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used to
build recipient-private broadcast encryption from iO. Our scheme is conceptually
simpler, and avoids the need for non-interactive zero-knowledge proofs. Moreover,
our scheme has shorter secret keys: O(1) in N compared to NO(1) — though for
private linear broadcast, their secret keys are polylog(N). The main drawback of
our scheme is the large public key size: NO(1) compared to O(log N).

Traitor tracing. The literature on traitor tracing is vast and here we only dis-
cuss results on fully collusion resistant systems. Since the trivial fully-collusion
resistant system has ciphertext size that is linear in the number of users, we are
only interested in fully collusion resistant systems that achieve sub-linear size
ciphertext. The first such system [BSW06, BW06], using bilinear maps, achieved√

n size ciphertexts with constant size keys. Other schemes based on different
assumptions achieve similar parameters [GKSW10, Fre10]. Combinatorial con-
structions can achieve constant size ciphertexts [BN08, Sir07], but require secret
keys whose size is quadratic (or worse) in the number of users. In most traitor
tracing systems, the tracing key must be kept secret. Some systems, including
ours, allow anyone to run the tracing algorithm [Pfi96, PW97, WHI01, KY02,
CPP05, BW06].

Recently, Koppula, Ramchen, and Waters [KRW13] provide counter-examples
to the conjecture that all bit encryption schemes are circularly secure. Concur-
rently and independent of our work, they use a valid/invalid key strategy that is
similar to our strategy of replacing correctly generated public parameters with
incorrect parameters, but in a very different context.

2 Preliminaries: Definitions and Notation

In this section, we briefly discuss notation and the building blocks for our
constructions: indistinguishability obfuscation and constrained pseudorandom
functions. A more complete description of these primitives appears in the full
version [BZ14].

488 D. Boneh and M. Zhandry

Notation We let [N] = {1, · · · , N} denote the positive integers from 1 to N . For
a set S we denote by x ← S the uniform random variable on S. For a randomized
algorithm A, we denote by x ← A(y) the random variable defined by the output
of A on input y.
Indistinguishability Obfuscation. An indistinguishability obfuscatior iO is a prob-
abilistic polynomial time algorithm that takes a circuit C and produces an ob-
fuscated circuit C′ = iO(C). We require that C′(x) = C(x) for all inputs x.
For security, we require that, for any two circuits C1 and C2 that agree on all
inputs, no probabilistic polynomial time adversary can distinguish the obfusca-
tion C′

1 = iO(C1) from C′
2 = iO(C2). The first candidate construction of such

obfuscators is due to Garg et al. [GGH+13b].
Constrained Pseudorandom Functions. A constrained pseudorandom function
(PRF) [BW13, KPTZ13, BGI13] PRF for a class of subsets S is a pseudorandom
function for which there is an efficient algorithm that takes the secret key k for
PRF and a set S ∈ S, and outputs a circuit PRFS

k which satisfies

PRFS
k (x) =

{
PRFk(x) if x ∈ S

⊥ if x /∈ S
.

For security, we require that the circuit PRFS
k reveals no information about

PRFk(x) for points x /∈ S. From this point forward, we will omit reference to
the secret key k. We are interested in several classes of subsets S. A punctured
PRF is a constrained PRF for all sets whose complements are polynomial in size.
The PRF construction of Goldreich, Goldwasser, and Micali [GGM86] satisfies
this notion. An inverval constrained PRF allows sets of the form {1, . . . , �} and
{�′, . . . , D} where the domain is {1, . . . , D}. The construction of [GGM86] also
satisfies this stronger notion. We also consider constrained PRFs for circuit pred-
icates, where S consists of all sets accepted by polynomial-sized circuits. Boneh
and Waters [BW13] show how to build a constrained PRF for circuit predicates
using multilinear maps. In the full version [BZ14], we show that such PRFs can
also be built from indistinguishability obfuscation and any punctured PRF.

3 Key Exchange from Indistinguishability Obfuscation

In this section, we show how to realize multiparty non-interactive key exchange
(NIKE) from general indistinguishability obfuscation. Intuitively, a NIKE proto-
col allows a group of users to simultaneously publish a single message, and all will
derive the same shared group key. The first such protocols [BS03, GGH13a, CLT13]
are based on multilinear maps. Our construction, based on a generic iO obfuscator,
has the following properties:

– Using a punctured pseudorandom function, our protocol achieves a static
notion of security, similar to existing protocols.

– Using a constrained pseudorandom function for circuit predicates, our pro-
tocol achieves a stronger notion of security called semi-static security. We
show in the full version [BZ14] how to use iO to construct constrained pseu-
dorandom functions for circuit predicates from any secure puncturable PRF.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 489

– While our base protocol requires a trusted setup phase, our setup phase can
be run independently of the messages sent by users. In the full version [BZ14]
we use this property to remove the setup phase altogether, arriving at the
first NIKE protocol without trusted setup. We provide protocols for both
static and semi-static security.

We begin by first defining NIKE protocols and their security. To setup the NIKE
protocol for N users, run a procedure Setup(λ, N), which outputs public parame-
ters params. Then each party i ∈ [N] runs a publish algorithm Publish(params, i),
which generates two values: a user secret key ski and a user public value pvi. User
i keeps ski as his secret, and publishes pvi to the other users. Finally, each user
runs a key generation algorithm KeyGen(params, i, ski, {pvj}j∈[N]) using their
secret and all other user’s public values, which outputs a shared key k.

For correctness, we require that each user derives the same secret key. That
is, for all i, i′ ∈ [N],

KeyGen(params, i, ski, {pvj}j∈[N]) = KeyGen(params, i′, ski′ , {pvj}j∈[N])

For security, here we only consider a static notion of security. In the full
version [BZ14], we also consider a stronger semi-static security notion. Fix a
bit b, and consider the following experiment. The challenger runs params ←
Setup(λ, N). For i ∈ [N], the challenger also runs (ski, pvi) ← Publish(params, i).
Set k0 = KeyGen(params, 1, ski, {pvj}j∈[N]) and k1 ← K. Give the adversary
{pvj}j∈[N], kb. For b = 0, 1 let Wb be the event that b′ = 1 and define AdvKE(λ) =
| Pr[W0] − Pr[W1]|.

Definition 1. A multiparty key exchange protocol (Setup,Publish,KeyGen) is
statically secure if, for any polynomials N , and any PPT adversary A, the func-
tion AdvKE(λ) is negligible.

3.1 Our Construction

We now build a multiparty non-interactive key exchange (NIKE) from indistin-
guishability obfuscation and pseudorandom generators. The idea is the following:
each party generates a seed si as their secret key, and publishes xi = PRG(si) as
their public value, where PRG is a pseudorandom generator. In the setup-phase,
a key k is chosen for a punctured pseudorandom function PRF. The shared secret
key will be the function PRF evaluated at the concatenation of the samples xi.
To allow the parties to compute the key, the setup will publish an obfuscated
program for PRF which requires knowledge of a seed to operate. In this way,
each of the parties can compute the key, but anyone else will not know any of
the seeds, and will therefore be unable to compute the key.

The construction is as follows:

Construction 1. LetPRF be a constrained pseudorandom function, and let PRG :
{0, 1}λ → {0, 1}2λ be a pseudorandom generator. Let iO be a program indistin-
guishability obfuscator.

490 D. Boneh and M. Zhandry

– Setup(λ, G, N): Sets up the key exchange protocol supporting at most N users
and allowing any group of at most G users to compute a shared secret key.
Choose a random key to obtain an instance of a pseudorandom function PRF.
Build the program PKE in Figure 2, padded to the appropriate length1. Also
choose a random x0 ∈ {0, 1}2λ. Output PiO = iO(PKE) and x0 as the public
parameters.

– Publish(λ): Party i chooses a random seed si ∈ {0, 1}λ as a secret key, and
publish xi = PRG(si)

– KeyGen(PiO, x0, i, si, S, {xi}i∈S): Abort if |S| > G or i /∈ S. Let S(j) denote
the jth index in S, and S−1(k) for k ∈ S be the inverse. Let

x̂j =

{
xS(j) if j ≤ |S|
x0 if j > |S|

Run PiO on (x̂1, ..., x̂G, S−1(i), si) to obtain k = PRF(x̂1, ..., x̂G) or ⊥.

Inputs: x̂1, . . . x̂G ∈ XG, i ∈ [G], s ∈ S
Constants: PRF

1. If x̂i �= PRG(s), output ⊥
2. Otherwise, output PRF(x̂1, x̂2, . . . , x̂G)

Fig. 2. The program PKE (same as Figure 1)

Correctness is trivial by inspection. For security, we consider two cases. If PRF
is a punctured PRF, then we get static security. If PRF is a constrained PRF for
circuit predicates, then our construction actually achieves a semi-static notion
of security (as defined in the full version [BZ14]). Security is summarized by the
following theorem:

Theorem 2. If PRG is a secure pseudorandom generator, PRF a secure punc-
tured PRF, and iO a secure indistinguishability obfuscator, then Construction 1
is a statically secure NIKE. If, in addition, PRF is a secure constrained PRF for
circuit predicates, then Construction 1 is semi-statically secure.

Removing trusted setup. Before proving Theorem 2, notice that if the adver-
sary is able to learn the random coins used by Setup, he will be able to break
the scheme. All prior key exchange protocols [GGH13a, CLT13] also suffer from
this weakness. However, note that, unlike previous protocols, Publish does not
depend on params. This allows us to remove trusted setup as follows: each user

1 To prove security, we will replace PKE with the obfuscation of another program P ′
KE ,

which may be larger than PKE . In order for the obfuscations to be indistinguishable,
both programs must have the same size.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 491

runs both Setup and Publish, and publishes their own public parameters paramsi

along with xi. Then in KeyGen, choose some paramsi in a canonical way (say,
corresponding smallest xi when treated as an integer), and run the original key
exchange protocol using params = paramsi. Now there is no setup, and static
security follows from the static security of the original scheme. However, in the
full version [BZ14] we show that semi-static does not follow. Instead, in the full
version we give a modified construction that achieves semi-static security.

The proof of Theorem 2 is given in the full version [BZ14]. Here we sketch the
main idea:

Proof sketch. For simplicity, assume G = N , though it is easy to generalize
to N > G. In the static security game, the challenger draws N random seeds s∗

i ,
and lets x∗

i = PRG(s∗
i). It also constructs an obfuscation of the program PKE in

Figure 2. Then it gives this obfuscation, all of the x∗
i , and a challenge key k∗ to

the adversary A. A then outputs its guess for whether k∗ = PRF(x∗
1, . . . , x∗

N) or
not. We first slightly change the game by choosing the x∗

i uniformly at random
in {0, 1}2λ. The security of PRG shows that this modification at most negligibly
changes A’s advantage. Because the image of PRG is so much bigger than its
domain, with high probability, none of the x∗

i are in the image of PRG. Thus, we
can modify PKE to obtain a new program P ′

KE that aborts whenever an input xi

equals x∗
i for some i and this does not change the functionality of PKE . Now P ′

KE

never evaluates PRF on the point (x∗
1, . . . , x∗

N), so we can puncture PRF at that
point, and include only the punctured program in P ′

KE . The indistinguishability
of obfuscations shows that these modifications are undetectable by A. We can
simulate the view of A using only the punctured PRF, and A still succeeds with
non-negligible probability. However, A now distinguishes the correct value of PRF
at the puncture point from a truly random value, violating the security of PRF.
For semi-static security, we need to puncture PRF at all points corresponding to
the various subsets the adversary may challenge on, which we do using a PRF
for circuit predicates. �

4 Traitor Tracing with Small Parameters

In this section, we present a private linear broadcast encryption (PLBE) scheme,
which has short ciphertexts, secret keys, and public keys. Boneh, Sahai, and
Waters [BSW06] show that this implies a fully collusion resistant traitor tracing
system with the same parameters.

Our approach gives a more general primitive called a recipient private broad-
cast system. Informally, a recipient private broadcast system allows the broad-
caster to broadcast a message to a subset of N users. For security, we require
that any user outside of the recipient set cannot learn the message, and each user
only learns one bit of information about the recipient set: whether or not they
are in it. We give a formal definition in the full version [BZ14]. Private linear
broadcast encryption is recipient broadcast encryption where the only recipient
sets allowed are ∅ = [0], [1], . . . , [N].

492 D. Boneh and M. Zhandry

To setup a PLBE scheme for N users, run a setup procedure Setup(λ, N),
which outputs public parameters params and user secret keys {ski}i∈[N] for each
user. Distribute ski to user i. To encrypt to a set [j], run an encryption algorithm
Enc(params, j) to obtain a header Hdr and message encryption key k. Use k to
encrypt the message, and broadcast Hdr along with the resulting ciphertext. A
user i ≤ j decrypts by running Dec(params, ski,Hdr), which outputs the message
encryption key that can be used to actually decrypt the ciphertext.

For correctness, we require that any encryption to a set [i] can be decrypted by
any user in [j]. In other words, if (Hdr, k) ← Enc(params, j), then Dec(params, ski,
Hdr) = k for i ≤ j.

For security, we have two experiments: semantic security and recipient privacy.
For semantic security, fix a bit b and consider the following experiment. The
adversary commits to a set [j]. The challenger then runs params, {ski}i∈[N] ←
G(λ, N), and then gives params as well as the secret keys {ski}i>j for users not
in [j] to the adversary. The challenger also runs (Hdr, k0) ← Enc(params, j), and
generates k1 ← K, and gives Hdr, kb. The adversary outputs a guess b′ for b. For
b = 0, 1 let Wb be the event that b′ = 1 and PLBE(adv)

SS (λ) = | Pr[W0] − Pr[W1]|.
For recipient privacy, also fix a bit b. The adversary commits to a user i∗.

The challenger runs params, {ski}i∈[N] ← G(λ, N), and gives params as well as
the secret keys {ski}i�=i∗ for all users except i∗ to the adversary. The challenger
also runs (Hdr, k) ← Enc(params, i∗ − b) and gives Hdr to the adversary. The
adversary outputs a guess b′ for b. For b = 0, 1 let Wb be the event that b′ = 1
and PLBE(adv)

RP (λ) = | Pr[W0] − Pr[W1]|.
Definition 2. A private linear broadcast (PLBE) scheme (Setup,Publish,
KeyGen) is secure if, for any polynomials N , and any PPT adversary A, the
functions PLBE(adv)SS (λ) and PLBE(adv)RP (λ) are negligible.

4.1 Private Broadcast Encryption: First Construction
Construction overview. Since a broadcast ciphertext should reveal as little as
possible about the recipient set S our plan is to embed an encryption of the
set S in the broadcast ciphertext. The public-key will contain an obfuscated
program that decrypts the encrypted recipient set S and then outputs a message
decryption key only if the recipient can prove it is a member of S. However,
encrypting the set S so that we can prove security using iO is non-trivial, and
requires a certain type of encryption system.

In more detail, each user’s private key will be a random seed si, and we let
xi = PRG(si) as in the previous section. We need to allow user i to learn the
message decryption key for all sets S containing i. To that end, we include in
the public key an obfuscated program that takes three inputs: an encrypted
recipient set, an index i, and a seed si. The program decrypts the encrypted
set, checks that the index i is in the set, and that the seed si is correct for that
index (i.e. xi = PRG(si)). If all the checks pass, the program evaluates some
pseudorandom function on the ciphertext to obtain the message decryption key
and outputs that key.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 493

We immediately see a problem with the description above: the obfuscated
program must, at a minimum, have each of the xi embedded in it, making
the program and hence the public key linear in size. To keep the public key
short, we instead generate the seeds si using a pseudorandom function PRFsk:
si = PRFsk(i). We then have the program compute the xi on the fly as xi =
PRG(PRFsk(i)).

Another problem with the above description is that encrypting the recipient
set S using a generic CPA-secure encryption scheme is insufficient for providing
recipient privacy. The problem is that ciphertexts may be malleable: an attacker
may be able to transform an encryption of a set S containing user i into an
encryption of a set S′ containing user j instead (that is, j is in S′ if and only if
i is in S). Now the attacker can use user j’s secret key to decrypt the broadcast
ciphertext. If decryption succeeds the attacker learns that user i is in the original
ciphertext’s recipient set, despite not having user i’s secret key. This violates
recipient privacy.

To solve this problem, we authenticate the encrypted recipient set using a
message authentication code (MAC). However, proving security is a bit chal-
lenging because the decryption program must include the secret MAC key, and
we need to ensure that this key does not leak to the attacker. We do so by imple-
menting the MAC using a constrained PRF that supports interval constraints.
We then prove that this is sufficient to thwart the aforementioned malleability
attacks and allows us to prove security of the scheme.

We now present our private linear broadcast construction (i.e. the case where
S = LinN). We first present a private-key variant, where a secret broadcast
key is required to encrypt. In the full version [BZ14], we show how to make the
system public-key. We discuss extending this construction to other set systems
at the end of the section.

Construction 3. Our traitor tracing scheme consists of three algorithms
(Setup,Enc,Dec) defined as follows:

– Setup(λ, N): Let PRFenc : {0, 1}2λ → [N] and PRFkey : {0, 1}2λ ×{0, . . . , N}
→ {0, 1}λ be punctured PRFs and PRFmac : {0, 1}2λ × {0, . . . , N} → {0, 1}λ

and PRFsk : [N] → {0, 1}λ be interval constrained PRFs. Let si ← PRFsk(i)
for each i ∈ [N]. Let PT T −Dec be the program in Figure 3, padded to the
appropriate length. User i’s secret key is si, and the public parameters are
params = PDec = iO(PT T −Dec).

– Enc((PRFenc,PRFmac,PRFkey), [j]): Pick a random r ∈ {0, 1}2λ, and let
c1 ← PRFenc(r) + j mod (N + 1). Let c2 ← PRFmac(r, c1). Finally, let
k ← PRFkey(r, c1). Output (Hdr = (r, c1, c2), k).

– Dec(params, si, i, r, c): Run k ← PDec(r, c, si, i).

A public-key system. As described, our scheme requires a secret broadcast key in
order to encrypt. However, using the trick of Sahai and Waters [SW13], we show
in the full version [BZ14] how to include in the public parameters an obfuscated
program that allows anyone to encrypt.

494 D. Boneh and M. Zhandry

Inputs: r, c1, c2, s, i
Constants: PRFenc,PRFmac,PRFkey ,PRFsk

1. Let j ← c1 − PRF1(r) mod (N + 1)
2. Let x ← PRG(PRFsk(i))
3. Let y ← PRG(PRFmac(r, c1))
4. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥ and

stop
5. Otherwise, output PRFkey(r, c1)

Fig. 3. The program PTT−Dec

In our public key scheme, secret keys have length λ, and ciphertexts have
size 3λ + log(N + 1). The public key consists of two obfuscated programs. The
size of these programs is only dependent polylogarithmically on the number of
users, so the obfuscated programs will have size poly(log N, λ). Therefore, we
simultaneously achieve small ciphertexts, secret keys, and public keys. Security
is given by the following theorem:

Theorem 4. If PRFenc and PRFkey are secure punctured PRFs, PRFmac and
PRFsk are secure interval constrained PRFs, and PRG is a secure pseudoran-
dom generator, then (Setup,Enc,Dec) in Construction 3 is an adaptively secure
private linear broadcast encryption scheme.

The proof is given in the full version [BZ14]. Here we sketch the main ideas:

Proof sketch. We must prove that our scheme is both semantically secure and
has recipient privacy. For semantic security, the adversary A commits to a set
[j∗], and receives the secret keys si for all i > j∗. A also receives the obfuscation
of PT T −Dec, as well as a challenge (r∗, c∗

1, c∗
2) that is an encryption to the set

[j∗], and a key k∗. A must distinguish the correct k∗ from random. Our first
step is to modify PT T −Dec by puncturing PRFsk at each key that A does not
receive, and hard-code the values xi = PRG(PRFsk(i)) into PT T −Dec so that is
correctly decrypts all valid ciphertexts. This does not change the functionality
of PT T −Dec. We then replace these xi with random values in {0, 1}2λ, and the
security of PRFsk and PRG shows that this change is undetectable by A. Now,
with overwhelming probability, none of the xi for i ≤ j∗ are in the image of
PRG, so we can modify PT T −Dec to abort if i ≤ j∗. On the challenge ciphertext,
j = j∗, the PT T −Dec will also abort if i > j∗, meaning PT T −Dec will always
abort. Therefore, we can puncture PRFkey at (r∗, c∗

1) without modifying the
functionality of PT T −Dec. The indistinguishability of obfuscations shows that
these changes are undetectable. However, A now distinguishes the correct value
of PRFkey ad (r∗, c∗

1) from random, violating the security of PRFkey . One problem
with the above proof is that hard-coding all xi into PT T −Dec expands its size
considerably. We show in the full version [BZ14] how to puncture PRFsk, one
user at a time, using a sequence of hybrids while keeping PT T −Dec small.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 495

For recipient privacy, the proof is more complicated but similar. Here, A
commits to a j∗, and receives all secret keys except those for user j∗ and
and encryption to the set [j∗ − b] for some b ∈ {0, 1}. A must determine
b. Similar to the semantic security case, we puncture PRFsk at j∗ and re-
place xj∗ = PRG(PRFsk(j∗)) with a truly random value in {0, 1}2λ, and then
modify PT T −Dec so that it aborts if i = j∗. Now we puncture PRFmac at all
points (r∗, c1), and hard-code yc1 = PRG(PRFmac(r∗, c1)) into PT T −Dec. For
each c1 �= c∗

1, we replace yc1 with a truly random value in {0, 1}2λ. Similar to
the semantic security proof, we have to puncture iteratively in order to keep
the program size small. At this point, the only (r∗, c1, c2) that authenticates is
the challenge ciphertext itself. This means we can puncture PRFenc at r∗, and
hard-code the necessary values to decrypt the challenge ciphertext, including
z∗ = PRFenc(r∗). The security of PRFenc shows that we can replace z∗ with
a truly random value. At this point, c∗

1 = j∗ − b + z∗. As we show in the full
version [BZ14], in the b = 0 case, we can replace z∗ with z∗ −1 without changing
the functionality of PT T −Dec. However, moving to z∗ − 1 also moves us to the
b = 1 case, meaning that A actually breaks the indistinguishability of obfusca-
tions. �

4.2 Extension to Other Set Systems

Construction 3 easily extends the other classes of recipient sets — for exam-
ple, the set of all subsets of [N], or the subsets of size exactly r. Ciphertexts
will simply be an encryption of (the description of) the recipient set, and the
obfuscated program will output the PRF applied to the ciphertext only if the
user can supply a valid seed for one of the users in the set. However, now the
number of possible recipient sets is exponential, and consequently our security
reduction becomes non-polynomial. In the full version [BZ14], we give a different
construction that has a polynomial security proof for these classes of recipient
sets. However, the public key size becomes NO(1).

Acknowledgments. This work is supported by NSF, DARPA, IARPA, and
others, as listed in the full version.

References

[BBW06] Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribu-
tion using private broadcast encryption. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI13] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. Cryptology ePrint Archive, Report 2013/401 (2013)

496 D. Boneh and M. Zhandry

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631 (2013), http://eprint.iacr.org/

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg
(2005)

[BN08] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext.
In: ACM Conference on Computer and Communications Security,
pp. 501–510 (2008)

[BR13a] Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. Cryptol-
ogy ePrint Archive, Report 2013/557 (2013), http://eprint.iacr.org/

[BR13b] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563 (2013), http://eprint.iacr.org/

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324, 71–90 (2003)

[BSW06] Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Trac-
ing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg
(2006)

[BW06] Boneh, D., Waters, B.: A fully collusion resistant broadcast trace and
revoke system with public traceability. In: ACM Conference on Computer
and Communication Security, CCS (2006)

[BW13] Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their
Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BWZ14] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Full version available
at the Cryptology ePrint Archives http://eprint.iacr.org/2013/642.

[Can97] Canetti, R.: Towards realizing random oracles: Hash functions that hide
all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over
the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CMR98] Canetti, R., Micciancio, D., Reingold, O.: Perfectly One-Way Probabilis-
tic Hash Functions. In: Proc. of STOC 1998, pp. 131–140 (1998)

[CPP05] Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor
tracing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 542–558. Springer, Heidelberg (2005)

[CRV10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane mem-
bership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89.
Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/642

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 497

[Del07] Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size
Ciphertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

[DF02] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless re-
ceivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80.
Springer, Heidelberg (2003)

[DF03] Dodis, Y., Fazio, N.: Public key broadcast encryption secure against
adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)

[DNR+09] Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the
complexity of differentially private data release: efficient algorithms and
hardness results. In: Proceedings of STOC 2009 (2009)

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dy-
namic broadcast encryption with constant-size ciphertexts or decryption
keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.)
Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007)

[FHKP13] Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive
key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 254–271. Springer, Heidelberg (2013)

[FHPS13] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable
Hash Functions in the Multilinear Setting. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer,
Heidelberg (2013)

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[FP12] Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012)

[Fre10] Freeman, D.M.: Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Proc. of FOCS 2013 (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random
Functions. Journal of the ACM (JACM) 33(4), 792–807 (1986)

[GKSW10] Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building ef-
ficient fully collusion-resilient traitor tracing and revocation schemes.
In: ACM Conference on Computer and Communications Security,
pp. 121–130 (2010)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007)

[GST04] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation
in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

498 D. Boneh and M. Zhandry

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption sys-
tems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

[HS02] Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidel-
berg (2002)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/509 (2013)

[Jou04] Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. Journal
of Cryptology 17(4), 263–276 (2004)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Dele-
gatable pseudorandom functions and applications. In: Proceedings ACM
CCS (2013)

[KRW13] Koppula, V., Ramchen, K., Waters, B.: Separations in circular secu-
rity for arbitrary length key cycles. Cryptology ePrint Archive, Report
2013/683 (2013), http://eprint.iacr.org/

[KS13] Kiayias, A., Samari, K.: Lower bounds for private broadcast encryp-
tion. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692,
pp. 176–190. Springer, Heidelberg (2013)

[KY02] Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key
traitor tracing. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 32–50. Springer, Heidelberg (2003)

[LPQ12] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryp-
tion: Adaptive security and efficient constructions in the standard model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 206–224. Springer, Heidelberg (2012)

[LPS04] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

[LSW10] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small
private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285
(2010)

[MR13] Moran, T., Rosen, A.: There is no indistinguishability obfuscation in
pessiland. Cryptology ePrint Archive, Report 2013/643 (2013),
http://eprint.iacr.org/

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001)

[NP00] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

[Pfi96] Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996.
LNCS, vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

[PW97] Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collu-
sions. In: Proceedings of the ACM Conference on Computer and Com-
munication Security, pp. 151–160 (1997)

[SF07] Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. IACR
Cryptology ePrint Archive (2007)

[Sir07] Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against
powerful pirates. In: Workshop on Coding and Cryptography (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 499

[SW13] Sahai, A., Waters, B.: How to Use Indistinguishability Obfuscation: Deni-
able Encryption, and More. Cryptology ePrint Archive, Report 2013/454
(2013), http://eprint.iacr.org/

[Ull13] Ullman, J.: Answering n{2+o(1)} counting queries with differential privacy
is hard. In: STOC, pp. 361–370 (2013)

[Wee05] Wee, H.: On obfuscating point functions. In: Proc. of STOC 2005, p. 523
(2005)

[WHI01] Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key
traitor tracing without trusted agents. In: Naccache, D. (ed.) CT-RSA
2001. LNCS, vol. 2020, pp. 392–407. Springer, Heidelberg (2001)

http://eprint.iacr.org/

Indistinguishability Obfuscation
from Semantically-Secure Multilinear Encodings

Rafael Pass	, Karn Seth, and Sidharth Telang

Cornell University, New York, NY, USA
{rafael,karn,sidtelang}@cs.cornell.edu

Abstract. We define a notion of semantic security of multilinear (a.k.a.
graded) encoding schemes, which stipulates security of a class of alge-
braic “decisional” assumptions: roughly speaking, we require that for ev-
ery nuPPT distribution D over two constant-length sequences m0,m1

and auxiliary elements z such that all arithmetic circuits (respecting
the multilinear restrictions and ending with a zero-test) are constant
with overwhelming probability over (mb,z), b ∈ {0, 1}, we have that
encodings of m0,z are computationally indistinguishable from encod-
ings of m1,z. Assuming the existence of semantically secure multilinear
encodings and the LWE assumption, we demonstrate the existence of
indistinguishability obfuscators for all polynomial-size circuits.

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its
implementation details (making it hard to “reverse-engineer”), while preserving
the functionality (i.e, input/output behavior) of the program. Precisely defining
what it means to “scramble” a program is non-trivial: on the one hand, we want a
definition that can be plausibly satisfied, on the other hand, we want a definition
that is useful for applications.

Hada [Had00] and Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan,
and Yang [BGI+01] show that simulation-based notion such as virtual black-box
obfuscation (VBB) [BGI+01]—which, roughly speaking, require that everything
that can be learn from the code of the obfuscated program can be simulated
using just black-box access to the functionality—run into strong impossibility
results.

We here focus on the notion of indistinguishability obfuscation, first defined
by Barak et al. [BGI+01] and explored by Garg, Gentry, Halevi, Raykova, Sahai,
and Waters [GGH+13b]. Roughly speaking, this notion requires that obfusca-
tions O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose
� Work supported in part by a Microsoft Faculty Fellowship, NSF Award CNS-

1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR
YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-
0211. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the US Government.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 500–517, 2014.
c© International Association for Cryptologic Research 2014

{rafael, karn, sidtelang}@cs.cornell.edu

Semantically-Secure Multilinear Encodings 501

outputs agree on all inputs) from some class C are computationally indistin-
guishable. In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova,
Sahai, and Waters [GGH+13b] provided the first candidate constructions of in-
distinguishability obfuscators for all polynomial-size circuits, based on so-called
multilinear (a.k.a. graded) encodings [BS03, Rot13, GGH13a]—for which candi-
date constructions were recently discovered in the seminal work of Garg, Gentry
and Halevi [GGH13a], and more recently, alternative constructions were pro-
vided by Coron, Lepoint and Tibouchi [CLT13].

The obfuscator construction of Garg et al proceeds in two steps. They first
provide a candidate construction of an indistinguishability obfuscator for NC1

(this construction is essentially assumed to be secure); next, they demonstrate
a “bootstrapping” theorem showing how to use fully homomorphic encryption
(FHE) schemes [Gen09] and indistinguishability obfuscators for NC1 to obtain
indistinguishability obfuscators for all polynomial-size circuits. Further construc-
tions of obfuscators for NC1 were subsequently provided by Brakerski and Roth-
blum [BR14] and Barak, Garg, Kalai, Paneth and Sahai [BGK+13]—in fact,
these constructions achieve the even stronger notion of virtual-black-box obfus-
cation in idealized “generic” multilinear encoding models.

In parallel with the development of candidate obfuscation constructions, several
surprising applications of indistinguishability have emerged (see e.g.,
[[GGH+13b, SW14, HSW14, BZ14, GGHR14, BCP14, BCPR14, GGG+14],
[KNY14,KMN+14]]).Furthermore, as shownbyGoldwasser andRothblum[GR07],
indistinguishability obfuscators provide a very nice “best-possible” obfuscation
guarantee: if a functionality can be VBB obfuscated (even non-efficiently!), then
any indistinguishability obfuscator for this functionality is VBB secure.

1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains open:

Can the security of general-purpose indistinguishability obfuscators be
reduced to some “natural” intractability assumption?

The principal goal of the current paper is to make progress toward addressing
this question.

Note that while the construction of indistinguishability obfuscation of Garg
et al is based on some intractability assumption, the assumption is very tightly
tied to their scheme—in essence, the assumption stipulates that their scheme is
a secure indistinguishability obfuscator.

The VBB constructions of Brakerski and Rothblum [BR14] and Barak et al
[BGK+13] give us more confidence in the plausible security of their obfuscators,
in that they show that at least “generic” attacks—that treat multilinear encod-
ing as if they were “physical envelopes” on which multilinear operations can
be performed—cannot be used to break security of the obfuscators. But at the
same time, non-generic attacks against their scheme are known—since general-
purpose VBB obfuscation is impossible. Thus, it is not clear to what extent
security arguments in the generic multilinear encoding model should make us

502 R. Pass and K. Seth, and S. Telang

more confident that these constructions satisfy e.g., a notion of indistinguisha-
bility obfuscation.1 In particular, the question of to what extent one can capture
“real-world” security properties from security proofs in the generic model through
a “meta-assumption” (regarding multilinear encoding) was raised (but not inves-
tigated) in [BGK+13]; see Remark 1 there. In this work, we initiate a study of
this question.

1.2 Security of Multilinear (Graded) Encodings

Towards explaining the assumptions we consider, let us start by briefly recalling
multilinear (a.k.a. graded) encoding schemes [GGH13a, GGH+13b]. Roughly
speaking, such schemes enable anyone that has access to a public parameter pp
and encodings Ex

S = Enc(x, S), Ey
S = Enc(y, S′) of ring elements x, y under the

sets S, S′ ⊂ [k] to efficiently:2

– compute an encoding Ex·y
S∪S′ of x·y under the set S∪S′, as long as S∩S′ = ∅;

– compute an encoding Ex+y
S of x+ y under the set S as long as S = S′;

– compute an encoding Ex−y
S of x− y under the set S as long as S = S′.

(Given just access to the public-parameter pp, generating an encoding to a par-
ticular element x may not be efficient; however, it can be efficiently done given
access to the secret parameter sp.) Additionally, given an encoding Ex

S where
the set S is the whole universe [k]—called the “target set”—we can efficiently
check whether x = 0 (i.e., we can “zero-test” encodings under the target set [k].)
In essence, multilinear encodings enable computations of certain restricted set
of arithmetic circuits (determined by the sets S under which the elements are
encoded) and finally determine whether the output of the circuit is 0; we refer
to these as the legal arithmetic circuits.

Semantical Security of Multilinear (Graded) Encodings. The above de-
scription only explains the functionality of multlinear encodings, but does not
discuss security. As far as we are aware, there have been two approaches to defin-
ing security of multilinear encodings. The first approach, initiated in [GGH13a],
stipulates specific hardness assumptions closely related to the DDH assumption.
The second approach instead focuses on generic attackers and assumes that the
1 In fact, mirroring ideas from [GGSW13], assuming the existence of indistinguisha-

bility obfuscation and one-way functions it is easy to come up with a method to
sample C1, C2, z such that with high probability C1(z) = C2(z) (and thus, given z,
we can easily distinguish obfuscations of them), yet the pair of circuits (C1, C2) are
indistinguishable from a pair of functionally equivalent circuits. Thus, there are "fake
attacks" on indistinguishability obfuscation that cannot be efficiently distinguished
from a real attack.

2 Just as [BR14, BGK+13], we here rely on “set-based” graded encoding; these
were originally called “generalized” graded encodings in [GGH13a]. Following
[GGH+13b, BGK+13] (and in particular the notion of a “multilinear jigsaw puz-
zles” in [GGH+13b]), we additionally enable anyone with the secret parameter to
encode any elements (as opposed to just random elements as in [GGH13a]).

Semantically-Secure Multilinear Encodings 503

attacker does not get to see the actual encodings but instead can only access
them through legal arithmetic circuits.

In this work, we consider the first approach, but attempt to capture a general
class of algebraic “decisional” assumptions (such as the the graded DDH assump-
tion of [GGH13a]) which holds against generic attackers (and as such, it can be
viewed as a merge of the two approaches). In essence, our notion of (single-
message) semantical security attempts to capture the intuition that encodings
of elements m0 and m1 (under the set S) are indistinguishable in the presence of
encodings of “auxiliary” elements z (under sets T), as long as m0,m1, z are sam-
pled from any “nice” distribution D; in the context of a graded DDH assumption,
think of z as a vector of independent uniform elements, m0 as the product of
the elements in z and m1 as an independent uniform element. We analogously
consider stronger notions of constant-message and multi-message semantical se-
curity, where m0,m1 (and S) are replaced by either constant-length or arbitrary
polynomial-length vectors m0,m1 of elements (and sets S).

Defining what makes a distribution D “nice” turns out to be quite non-trivial:
A first (and minimal) approach—similar to e.g., the uber assumption of [BBG05]
in the context of bilinear maps—would be to simply require that D samples ele-
ments m0,m1, z such that no generic attacker can distinguish m0, z and m0, z.
As we discuss in Section 1.3, the most natural formalization of this approach can
be attacked assuming standard cryptographic hardness assumptions. The distri-
bution D considered in the attack, however, is “unnatural” in the sense that
encodings of mb, z actually leak information about mb even to generic attackers
(in fact, this information fully determines the bit b, it is just that it cannot be
computed in polynomial time).

Our notion of a valid message distribution disallows such information leakage
w.r.t. generic attacks. More precisely, we require that every (even unbounded-
size) legal arithmetic circuit C is constant over (mb, z), b ∈ {0, 1} with
overwhelming probability; that is, there exists some bit c such that with over-
whelming probability over m0,m1, z ← D, C(mb, z) = c for b ∈ {0, 1} (recall
that a legal arithmetic circuit needs to end with a zero-test and thus the output
of the circuit will be either 0 or 1). We refer to any distribution D satisfying
this property as being valid, and our formal definition of semantical security now
only quantifies over such valid message distributions.

Obfuscation from Semantically-Secure Multilinear Encodings. As a
starting point, we observe that slight variants of the constructions of [BR14,
BGK+13] can be shown to satisfy indistinguishability obfuscation for NC1 assum-
ing multi-message semantically-secure multilinear encodings. In fact, any VBB
secure obfuscation in the generic model where the construction only releases
encodings of elements (as the constructions of [BR14, BGK+13] do) satisfies in-
distinguishability obfuscation assuming a slight strengthening of multi-message
semantical security where validity only consider polynomial-size (as opposed to
arbitrary-size) legal arithmetic circuits:3 let m0 denote the elements correspond-
ing to an obfuscation of some program Π0, and m1 the elements corresponding
3 We thank Sanjam Garg for this observation.

504 R. Pass and K. Seth, and S. Telang

to an obfuscation of some functionally equivalent program Π1. VBB security
implies that all polynomial-size legal arithmetic circuits are constant with over-
whelming probability over both m0 and m1 (as any such query can be simulated
given black-box access to the functionality of the program), and thus encodings
of m0 and m1 (i.e., obfuscations of Π0 and Π1) are indistinguishable. By slightly
tweaking the construction of [BGK+13] and the analysis4, we can extend this to
hold against all (arbitrary-size) legal arithmetic circuits, and thus indistinguisha-
bility of the encodings (which implies indistinguishability of the obfuscations)
follows as a direct consequence of the multi-message security assumption.

While this observation does takes us a step closer towards basing the security
of obfuscation on a simple, natural, assumption, it is unappealing in that the as-
sumption itself directly implies the security of the scheme (without any security
reduction).

Our central result shows how to construct indistinguishability obfuscators for
NC1 based on the existence of constant-message semantically-secure multilinear
encodings; in the sequel, we simply refer to such schemes as being semanti-
cally secure (dropping “constant-message” from the notation). Note that the
constant-message restriction not only simplifes (and reduces the complexity)
of the assumption, it also takes us a step closer to the more standard GDDH
assumption. (As far as we know, essentially all “DDH-type” assumptions in “stan-
dard”/bilinear or multilinear settings consider a constant-message setting, stipu-
lating indistinguishability of either a single or a constant number of elements in
the presence of polynomially many auxiliary elements. It is thus safe to say that
such constant-message indistinguishability assumptions are significantly better
understood than their multi-message counterpart.)

Theorem 1 (Informally stated). Assume the existence of semantically secure
multilinear encodings. Then there exists an indistinguishability obfuscator forNC1.

As far as we know, this is the first result presenting indistinguishability obfus-
cators for NC1 based on any type of assumption with a “non-trivial” security
reduction w.r.t. arbitrary nuPPT attackers.

The core of our result is a general technique for transforming any obfuscator
for matrix branching programs that satisfies a weak notion of neighboring-matrix
indistinguishability obfuscation—which roughly speaking only requires indistin-
guishability of obfuscations of branching programs that differ only in a con-
stant number of matrices—into a “full-fledged” indistinguishability obfuscator.
We next show how to adapt the construction of [BGK+13] and its analysis to
satisfy neighboring-matrix indistinguishability obfuscation based on semantical
secure multilinear encodings; on a high-level, the security analysis in the generic
model is useful for proving that the particular message distribution we consider
is “valid”.5

4 Briefly, we need to tweak the construction to ensure a “perfect” simulation property.
5 As we explain in more details later, to use our transformation, we need to deal with

branching programs that satisfy a slightly more liberal definition of a branching
program than what is used in earlier works. This is key reason why we need to
modify the construction and analysis from [BGK+13].

Semantically-Secure Multilinear Encodings 505

If additionally assuming the existence of a leveled FHE [RAD78, Gen09]
with decryption in NC1—implied, for instance, by the LWE assumption [BV11,
BGV12]—our construction can be bootstrapped up to obtain indistinguishabil-
ity obfuscators for all polynomial-size circuits by relying on the technique from
[GGH+13b].

Theorem 2 (Informally stated). Assume the existence of semantically secure
multilinear encodings and a leveled FHE with decryption in NC1. Then there
exists indistinguishability obfuscators for P/poly.

Semantical Security w.r.t. Restricted Classes of Distributions. Our
most basic notion of semantical security requires indistinguishability to hold
w.r.t. to any “valid” message distribution. This may seem like a strong assump-
tion. Firstly, such a notion can clearly not be satisfied by a deterministic encoding
schemes (as envisioned in the original work of [BS03])—we can never expect en-
codings of 0 and 1 (under a non target set, and without any auxiliary inputs) to
be indistinguishable. Secondly, even if we have a randomized encoding scheme in
mind (such as the candidates of [GGH13a, CLT13]), giving the attacker access to
encodings of arbitrary elements may be dangerous: As mentioned in [GGH13a],
attacks (referred to as “weak discrete logarithm attacks”) on their scheme are
known in settings where the attacker can get access to “non-trivial” encodings
of 0 under any non-target set S ⊂ [k]. (We mention that, as far as we know, no
such attacks are currently known on the candidate construction of [CLT13].)

For the purposes of the results in our paper, however, it suffices to consider
a notion of semantical security w.r.t. restricted classes of distributions D. In
particular, to deal with both of the above issues, we consider “high-entropy”
distributions D that sample elements m0,m1, z such that 1) each individual
element has high-entropy, and 2) any element, associated with a non-target set
S ⊂ [k], that can be obtained by applying “legal” algebraic operations to (mb, z)
(for b ∈ {0, 1}) has high-entropy (and thus is non-zero with overwhelming prob-
ability).6 We refer to such message distributions as being entropically valid.

Basing Security on “Single-Distribution” Semantical Security. The as-
sumption that a scheme satisfies semantical security may be viewed as an
(exponential-size) class of algebraic “decisional” assumptions (or as a “meta”-
assumption, just like the “uber assumption” of [BBG05]): we have one assump-
tion for each valid message distributions D. Indeed, to prove indistinguishability
of obfuscations of two circuits C0, C1, we rely on an instance in this class which is
a function of the circuits C0, C1—in the language of [GGSW13, GLW14], security
is thus based on an “instance-dependent” assumption.

This view-point also clarifies that semantical security is not an efficiently fal-
sifiable assumption [Nao03]: the problem is that there may not exist an efficient
way of checking whether a distribution D is valid (as this requires checking that
6 Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−
O(log log |R|) where R is the ring associated with the encodings; that is, the min-
entropy is “almost” optimal (i.e., log |R|).

506 R. Pass and K. Seth, and S. Telang

all legal arithmetic circuits are constant with overwhelming probability, which
in our particular case would require checking whether C0 and C1 are functionally
equivalent).

We finally observe that both of these issues can be overcome if we make
subexponential hardness assumptions: there exists a single (uniform PPT sam-
plable) distribution Sam over (nuPPT message distributions D) that are provably
entropically valid such that it suffices to assume the existence of an encoding
scheme that is entropic semantically secure w.r.t., this particular distribution
with subexponentially small indistinguishability gap.7 Note that this is a single,
non-interactive and efficiently falsifiable, decisional assumption.

1.3 Alternative Notions of Semantical Security

We finally investigate various ways of defining a “super” (or uber) assumption
for multilinear encodings. As mentioned above, a natural way of defining se-
curity of multilinear encodings would be to require that for specific classes of
problems, generic attacks cannot be beaten (this is the approach alluded to in
[BGK+13]). Perhaps the most natural instantiation of this in the context of
a multilinear DDH assumption would be to require that for any distribution
D over m0,m1, z (where m0,m1 are constant-length sequences), if encodings
of m0, z and and m0, z are indistinguishable w.r.t. to generic attackers, then
they are also indistinguishable w.r.t. arbitrary nuPPT attackers; in essence, “if
an algerbraic decisional assumption holds w.r.t. to generic attacks, then it also
holds with respect to nuPPT attackers”. We refer to this notion of security as
extractable uber security.8

Our second main result shows that, assuming the existence of a leveled FHE
with decryption in NC1, there do not exist extractable uber-secure multilinear
encodings (even if we only require security to hold w.r.t high-entropy distribu-
tions D).

Theorem 3 (Informally stated). Assume the existence of a leveled FHE with
decryption in NC1. Then no multilinear encodings can satisfy extractable (en-
tropic) uber security.

The high-level idea behind this result is to rely on the “conflict” between the
feasibility of VBB obfuscation in the generic model of [BGK+13] and the im-
possibility of VBB obfuscation in the “standard” model [BGI+01]: we let mb, z
contain a generically-secure VBB obfuscation of a program Πb that hides b given
just black-box access to Πb, yet b can be recovered given the code of Πb. By
generic security of the obfuscation, it follows that efficient generic attackers
7 These results were added to our e-Print report April 25, 2014, motivated in part by

[GLW14] (which bases witness encryption on an instant-independent assumption)
and a conversation with Amit Sahai.

8 We use the adjective “extractable” as this security notion implies that if an nuPPT
attacker can distinguish encodings, then the arithmetic circuits needed to distinguish
the elements can be efficiently extracted out.

Semantically-Secure Multilinear Encodings 507

cannot distinguish m0, z and m1, z yet, “non-generic” (i.e., standard PPT) at-
tackers can. In our formal treatment, to rule out constant-message (as opposed
to multi-message) security, we rely on a variant of the obfuscator presented in
this paper, enhanced using techniques from [BGK+13].

We emphasize that in the above attack it is cruicial that we restrict to ef-
ficient (nuPPT) generic attacks. In the full version of the paper we consider
several plausible ways of defining uber security for multilinear encodings, which
circumvent the above impossibility results by requiring indistinguishability of
encodings only if the encodings are statistically close w.r.t. unbounded generic
attackers (that are restricted to making polynomially many zero-test queries).
We highlight that none of these assumptions are needed for our construction
of an indistinguishability obfuscation and are stronger than semantical security,
but they may find other applications.

2 Definition of Semantically Secure Graded Encodings

2.1 Graded Encoding Schemes

Graded (multilinear) encoding schemes were originally introduced in the work
of Garg, Gentry and Halevi [GGH13a]. Just as [BR14, BGK+13], we here rely
on “set-based” (or “asymmetric”) graded encoding; these were originally called
“generalized” graded encodings in [GGH13a]. Following [GGH+13b, BGK+13]
and the notion of “multilinear jigsaw puzzles” from [GGH+13b], we additionally
enable anyone with the secret parameter to encode any elements (as opposed to
just random elements as in [GGH13a]).

Definition 1 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding
scheme for k ∈ N and ring R is a collection of sets {Eα

S : α ∈ R,S ⊆ [k]} with
the following properties

– For every S ⊆ [k] the sets {Eα
S : a ∈ R} are disjoint.

– There are associative binary operations ⊕ and (such that for every α1, α2 ∈
R, S ⊆ [k], u1 ∈ Eα1

S and u2 ∈ Eα2

S it holds that u1⊕u2 ∈ Eα1+α2

S and u1(
u2 ∈ Eα1−α2

S where ‘+′ and ‘−′ are the addition and subtraction operations
in R.

– There is an associative binary operation ⊗ such that for every α1, α2 ∈ R,
S1, S2 ⊆ [k] such that S1 ∩ S2 = ∅, u1 ∈ Eα1

S1
and u2 ∈ Eα2

S2
it holds that

u1 ⊗ u2 ∈ Eα1·α2

S1∪S2
where ‘·’ is multiplication in R.

Definition 2 (Graded Encoded Scheme). A graded encoding scheme E is
associated with a tuple of PPT algorithms, (InstGenE ,EncE ,AddE , SubE ,MultE ,
isZeroE) which behave as follows:

– Instance Generation: InstGenE takes as input the security parameter 1n and
multilinearity parameter 1k, and outputs secret parameters sp and public
parameters pp which describe a (k,R)-graded encoding scheme {Eα

S : α ∈
R,S ⊆ [k]}. We refer to Eα

S as the set of encodings of the pair (α, S). We re-
strict to graded encoding schemes where R is Zp and p is a prime exponential
in n and k.

508 R. Pass and K. Seth, and S. Telang

– Encoding: EncE takes as input the secret parameters sp, an element α ∈ R
and set S ⊆ [k], and outputs a random encoding of the pair (α, S).

– Addition: AddE takes as input the public parameters pp and encodings u1 ∈
Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1+α2, S) if S1 = S2 =

S and outputs ⊥ otherwise.
– Negation: SubE takes as input the public parameters pp and encodings u1 ∈

Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1−α2, S) if S1 = S2 =

S and outputs ⊥ otherwise.
– Multiplication: MultE takes as input the the public parameters pp and encod-

ings u1 ∈ Eα1

S1
, u2 ∈ Eα2

S2
, and outputs an encoding of the pair (α1 ·α2, S1∪S2)

if S1 ∩ S2 = ∅ and outputs ⊥ otherwise.
– Zero testing: isZeroE takes as input the public parameters pp and an encoding

u ∈ ES(α), and outputs 1 if and only if α = 0 and S is the universe set [k].9

Whenever it is clear from the context, to simplify notation we drop the subscript
E when we refer to the above procedures (and simply call them InstGen,Enc, . . .).

In known candidate constructions [GGH13a, CLT13], encodings are “noisy”
and the noise level increases with each operation; the parameters, however, are
set so that any poly(n, k) operations can be performed without running into
trouble. For convenience of notation (and just like all other works in the area),
we ignore this noise issue.10

Note that the above procedures allow algebraic operations on the encodings in
a restricted way. Given the public parameters and encodings made under the sets
S, one can only perform algebraic operations that are allowed by the structure
of the sets in S. We call such operations S-respecting and formalize this notion
as follows:

Definition 3 (Set Respecting Arithmetic Circuits). For any sequence S
of subsets of [k], we say that an arithmetic circuit C (i.e. gates perform only
ring operations {+,−, ·}) is S-respecting if it holds that

– Eevery input wire of C is tagged with some set in S.
– For every + and − gate in C, if the tags of the two input wires are the same

set S then the output wire of the gate is tagged with S. Otherwise the output
wire is tagged with ⊥.

9 In the candidate scheme given by [GGH13a], isZero may not have perfect correct-
ness: the generated instances (pp, sp) can be “bad” with some negligible probability,
so that there could exist an encoding u of a nonzero element where isZero(pp, u) = 1.
However, these “bad” parameters can be efficiently detected during the execution of
InstGen. We can thus modify the encoding scheme to simply set Enc(pp, e) = e when-
ever the parameters are “bad” (and appropriately modify Add,Sub,Mult and isZero
so that the operate on “unencoded” elements. This change ensures that, for every
pp, including “bad” ones, the zero test procedure isZero works with perfect correct-
ness. We note that since bad parameters occur only with negligible probability, this
change does not affect the security of the encodings.

10 The above definition can be easily generalized to deal with the candidates by only re-
quiring that the above conditions hold when u1, u2 have been obtained by poly(n, k)
operations.

Semantically-Secure Multilinear Encodings 509

– For every · gate in C, if the tags of the two input wires are sets S1 and S2

and S1 ∩ S2 = ∅ then the output wire of the gate is tagged with S1 ∪ S2.
Otherwise the output wire is tagged with ⊥.

– It holds that the output wire is tagged with the universe set [k].11

2.2 Semantical Security

We now turn to defining semantical security of graded encoding schemes. As
outlined in the introduction, we start by defining the notion of a respecting
(or valid) message sampler w.r.t. to sets S,T . Such a message sampler samples
elements m0,m1, z such that for every (S,T)-respecting circuit C, isZero(C(·))
is constant over (mb, z), b ∈ {0, 1} with overwhelming probability.

Definition 4 (Respecting Message Sampler). Let E be a graded encoding
scheme, and {(Sn,Tn)}n∈N be an ensemble of pairs of sequences of sets over
[kn]. We say that a nuPPT M is a {(Sn,T n)}n∈N-respecting message sampler
(or valid w.r.t. {(Sn,T n)}n∈N) if

– M on input 1n and a public parameter pp computes the ring R associated with
pp and next based on only 1n and R generates and outputs a pair (m0,m1)
of sequences of |Sn| ring elements and a sequence z of |Tn| ring elements;

– There exists a polynomial Q(·, ·) such that for every n ∈ N, every (sp, pp) in
the support of InstGen(1n, 1kn), every (S,T)-respecting arithmetic circuit C,
there exists a constant c ∈ {0, 1} such that for any b ∈ {0, 1},

Pr[(m0,m1, z)←M(1n, pp) : isZero(C(mb, z)) = c] ≥ 1−Q(n, kn)/|R|.

Let us comment that Definition 4 allows the message sampler M to select
m0,m1, z based on the ring R = Zp (or else we could not pick a uniform element
in the ring). On the other hand, to make the notion of valid message samplers
as restrictive as possible, we prevent the message selection from depending on
pp in any other way.

We can now define what it means for a graded encoding scheme to be se-
mantically secure. Roughly speaking, we require that encodings of (m0, z) and
(m1, z) under the sets (S,T) are indistinguishable as long as (m0,m1, z) is
sampled by a message sampler that is valid w.r.t. (S,T).

Definition 5 (Semantic Security). Let E be a graded encoding scheme and
q(·) and c(·) be polynomials. We say a graded encoding scheme E is (c, q)-
semantically secure if for every polynomial k(·), every ensemble {(Sn,Tn)}n∈N

where Sn and T n are sequences of subsets of [k(n)] of length c(k(n))) and q(k(n))
respectively, for every {(Sn,T n)}n∈N-respecting message sampler M and every
nuPPT adversary A, there exists a negligible function ε such that for every se-
curity parameter n ∈ N,

|Pr[Output0(1
n) = 1]− Pr[Output1(1

n) = 1]| ≤ ε(n)

11 For ease of notation, we assume that the description of a set S also contains a
description of the universe set [k].

510 R. Pass and K. Seth, and S. Telang

where Outputb(1n) is A’s output in the following game:

– Let (sp, pp)← InstGen(1n, 1k(n)).
– Let m0,m1, z ←M(1n, pp).
– Let ub ← {Enc(sp,m0[i],Sn[i])}c(kn)

i=1 , {Enc(sp, z[i],Tn[i])}q(k(n))i=1 .
– Finally, run A(1n, pp,ub).

We say that E is (constant-message) semantically secure if it is (O(1), O(k))-
semantically secure; we say that E multi-message semantically secure if it is
(O(k), O(k))-semantically secure. We additionally say that E is subexponentially-
hard semantically secure if there exists some exists some constant α > 0 such
that for every nuPPT A the above indistinguishability gap is bounded by ε(n) =
2−O(nα).

In analogy with the GDDH assumption [GGH13a], our notion of semantical se-
curity restricts to the case when the number of elements encoded is O(k).12
Let us end this section by remarking that (sub-exponentially hard) semantical
security trivially holds against polynomial-time “generic” attackers that are re-
stricted to “legally” operating on the encodings—in fact, it holds even against
unbounded generic attackers that are restricted to only making polynomially
(or even subexponentially) many zero-test queries: recall that each legal zero-
test query is constant with overwhelming probability (whether we operate on
m0, z or m1, z) and thus by a Union Bound, the output of any generic at-
tacker restricted to polynomially many zero-test queries is also constant with
overwhelming probability.

Semantical Security w.r.t. Restricted Classes of Message Samplers. For
our specific construction of indistinguishability obfuscators it suffices to assume
the existence of semantically secure encodings w.r.t. restricted classes of message
samplers M , where the {(Sn,T n)}n∈N-respecting condition on M is replaced by
some stronger restriction on M . It particular, it suffices to restrict to message
samplers M that induce a high-entropy13 distribution over m0,m1, z—not only
the individual elements have high min-entropy but also any element computed
by applying a “non-terminal” sequence of legal arithmetic operations to mb, z
(for b ∈ {0, 1}); we refer to schemes satisfying this weaker notion of semantical
security entropic semantically secure (and refer the reader to the full version for
a formal definition).

12 This restriction was suggested in [BCKP14] and independently by Hoeteck Wee;
our original formulation of semantical security considered an unbounded polynomial
number of elements in z (but our proof of security only relied on security for O(k)
elements). We now refer to the unbounded notion as unbounded semantical security,
but it will not be needed for any of our results.

13 Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−
O(log log |R|) where R is the ring associated with the encodings; that is, the min-
entropy is “almost” optimal (i.e., log |R|).

Semantically-Secure Multilinear Encodings 511

3 Proof Overview

We here provide an overview of our obfuscator and its proof of security, and refer
the reader to the full version [PST13] for further details.

The Basic Obfuscator. We start by providing a construction of a “basic” ob-
fuscator; our final construction will then rely on the basic obfuscator as a black-
box. The construction of this obfuscator closely follows the design principles laid
out in the original work by Garg et al [GGH+13b] and follow-up constructions
[BR14, BGK+13] (in fact, the basic obfuscator may be viewed as a simplified
version of the obfuscator from [BGK+13]). As these works, we proceeds in three
steps:

– We view the NC1 circuit to be obfuscated as a branching program BP (us-
ing Barrington’s Theorem [Bar86])—that is, the program is described by m
pairs of matrices (Bi,0, Bi,1), each one labelled with an input bit inp(i). The
program is evaluated as follows: for each i ∈ [m], we choose one of the two
matrices (Bi,0, Bi,1), based on the input. Next, we compute the product of
the chosen matrices, and based on the product determine the output—there
is a unique “accept” (i.e., output 1) matrix, and a unique “reject” (i.e., output
0) matrix.

– The branching program BP is randomized using Kilian’s technique [Kil88]
(roughly, each pair of matrices is appropriately multiplied with the same
random matrix R while ensuring that the output is the same), and then
“randomized” some more—each individual matrix is multiplied by a random
scalar α. Let us refer to this step as Rand.

– Finally the randomized matrices are encoded using multilinear encodings
with the sets selected appropriately. We here rely on a (simple version) of
the straddling set idea of [BGK+13] to determine the sets. We refer to this
step as Encode.

(The original construction as well as the subsequent works also consisted of sev-
eral other steps, but for our purposes these will not be needed.) The obfuscated
program is now evaluated by using the multilinear operations to evaluate the
branching program and finally appropriately use the zero-test to determine the
output of the program.

Roughly speaking, the idea behind the basic obfuscator is that the multilinear
encodings intuitively ensure that any attacker getting the encoding needs to
multiply matrices along paths that corresponds to some input to the branching
program (the straddling sets are used to ensure that the input is used consistently
in the evaluation)14; the scalars α, roughly speaking, ensure that a potential
attacker without loss of generality can use a single “multiplication-path” and still
succeed with roughly the same probability, and finally, Kilian’s randomization
steps ensures that if an attacker only operates on matrices along a single path
that corresponds to some input x (in a consistent way), then its output can

14 The encodings, however, still permit an attacker to add elements within matrices.

512 R. Pass and K. Seth, and S. Telang

be perfectly simulated given just the output of the circuit on input x. (The
final step relies on the fact that the output of the circuit uniquely determines
product of the branching program along the path, and Kilian’s randomization
then ensures that the matrices along the path are random conditioned on the
product being this unique value.) Thus, if an attacker can tell apart obfuscations
of two programs BP0, BP1, there must exist some input on which they produce
different outputs. The above intuitions can indeed be formalized w.r.t. generic
attackers (that only operate on the encodings in a legal way, respecting the set
restrictions), relying on arguments from [BR14, BGK+13]. This already suffices
to prove that the basic obfuscator is an indistinguishability obfuscator assuming
the encodings are multi-message semantically secure.15

The Merge Procedure. Tobase security on theweaker assumption of (constant-
message) semantical security, we will add an additional program transformation
steps before the Rand and Encode steps. Roughly speaking, we would like to have
a method Merge(BP0, BP1, b) that “merges” BP0 and BP1 into a single branching
programthat evaluatesBPb; additionally, we require thatMerge(BP0, BP1, 0) and
Merge(BP0, BP1, 1) only differ in a constant number of matrices. We achieve this
merge procedure by connecting together BP0, BP1 into a branching program of
double width and adding two “switch” matrices in the beginning and the end, deter-
mining ifwe should go “up” or “down”.Thus, to switchbetweenMerge(BP0, BP1, 0)
(which is functionally equivalent to BP0) and Merge(BP0, BP1, 1) (which is func-
tionally equivalent toBP1) we just need to switch the “switch matrices”. More pre-
cisely, given branching programs BP0 and BP1 described respectively by pairs of
matrices {(B0

i,0, B
0
i,1), (B1

i,0, B
1
i,1)}i∈[m], we construct a merged program

Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m+2] such that

B̂0
i,b = B̂1

i,b=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) differ only in the first and the last matrices (i.e., the
“switch” matrices). Furthermore, it is not hard to see that Merge(BP0, BP1, b)
is functionally equivalent to BPb.
15 As mentioned above, there are still some minor subtleties involved in doing this: the

analyses of [BR14, BGK+13] implicitly show that all polynomial-size legal arithmetic
circuits are constant with overwhelming probability, but by slightly tweaking the
constructions and the analyses to ensure a “perfect” simulation property, we can
extend these arguments to hold against all (arbitrary-size) legal arithmetic circuits
and thus base security on multi-message semantical security.

Semantically-Secure Multilinear Encodings 513

Our candidate obfuscator is now defined as iO(B) = Encode(Rand(Merge(BP,
I, 0))), where I is simply a “dummy" program of the same size as BP .16

The idea behind the merge procedure is that to prove that obfuscations of
two programs BP0, BP1 are indistinguishable, we can come up with a sequence
of hybrid experiments that start with iO(BP0) and end with iO(BP1), but be-
tween any two hybrids only changes a constant number of encodings, and thus
we may rely on semantic security of multilinear encodings to formalize the above
intuitions. At a high level, our strategy will be to matrix-by-matrix, replace the
dummy branching program in the obfuscation of BP0 with the branching pro-
gram for BP1. Once the entire dummy branching program has been replaced
by BP1, we flip the “switch" so that the composite branching program now
computes the branching program for BP1. We then replace the branching pro-
gram for BP0 with BP1, matrix by matrix, so that we have two copies of the
branching program for BP1. We now flip the “switch" again, and finally restore
the dummy branching program, so that we end up with one copy of BP1 and
one copy of the dummy, which is now a valid obfuscation of BP1. In this way,
we transition from an obfuscation of BP0 to an obfuscation of BP1, while only
changing a small piece of the obfuscation in each step. (On a very high-level,
this approach is somewhat reminiscient of the Naor-Yung “two-key” approach
in the context of CCA security [NY90] and the “two-key” bootstrapping result
for indistinguishability obfuscation due to Garg et al [GGH+13b]—in all these
approaches the length of the scheme is artificially doubled to facilitate a hybrid
argument. It is perhaps even more reminiscient of the Feige-Shamir “trapdoor
witness” approach for constructing zero-knowledge arguments [FS90], whereby
an additional “dummy” trapdoor witness is introduced in the construction to
enable the security proof.)

More precisely, consider the following sequence of hybrids.

– We start off with iO(BP0) = Enc(Rand(Merge(BP0, I, 0)))
– We consider a sequence of hybrids where we gradually change the dummy

program I to become BP1; that is, we consider Encode(Rand(Merge(BP0,
BP ′, 0))), where BP ′ is “step-wise” being populated with elements from BP1.

– We reach Encode(Rand(Merge(BP0, BP1, 0))).
– We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).
– We consider a sequence of hybrids where we gradually change the BP0 to

become BP1; that is, we consider Encode(Rand(Merge(BP ′, BP1, 1))), where
BP ′ is “step-wise” being populated with elements from BP1.

– We reach Encode(Rand(Merge(BP1, BP1, 1))).
– We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).
– We consider a sequence of hybrids where we gradually change the second

BP1 to become I; that is, we consider Encode(Rand(Merge(BP1, BP ′, 0))),
where BP ′ is “step-wise” being populated with elements from I.

– We reach Encode(Rand(Merge(BP1, I, 0))) = iO(BP1).
16 This description oversimplifies a bit. Formally, the Rand step needs to depends on

the field size used in the Encode steps, and thus in our formal treatment we combine
these two steps together.

514 R. Pass and K. Seth, and S. Telang

By construction we have that if BP0 and BP1 are functionally equivalent, then
so will all the hybrid programs–the key point is that we only “morph” between
two branching programs on the “inactive” part of the merged branching program.
Furthermore, by construction, between any two hybrids we only change a con-
stant number of elements. Thus, if some distinguisher can tell apart iO(BP0)
and iO(BP1), it must be able to tell apart two consecutive hybrids. But, by
semantic security it then follows that some “legal” arithmetic circuit can tell
apart the encodings in the two hybrids. Roughly speaking, we can now rely on
simulation security of the basic obfuscator w.r.t. to just legal arithmetic circuits
to complete the argument. A bit more precisely, based on BP0, BP1 and the
hybrid index i, we can define a message sampler Mi,BP0,BP1 that is valid (by the
simulation arguments in [BGK+13]) as long as BP0 is functionally equivalent
to BP1, yet our distinguisher manages to distinguish messages sampled from
Mi,BP0,BP1 , contradicting semantical security.

Dealing with Branching Programs with Non-unique Outputs. There
is a catch with the final step though. Recall that to rely on Kilian’s simulation
argument it was crucial that there are unique accept and reject matrices. For our
“merged” programs, this is no longer the case (the output matrix is also a function
of the second “dummy” program), and thus it is no longer clear how to prove that
the message distribution above is valid. We overcome this issue by noting that
the first column of the output matrix actually is unique, and this is all we need
to determine the output of the branching program; we refer to such branching
programs as fixed output-column branching programs. Consequently it suffices to
release encodings of the just first column (as opposed to the whole matrices) of
the last matrix pair in the branching program, and we can still determine the
output of the branching program. As we show, for such a modified scheme, we
can also simulate the (randomized) matrices along an “input-path” given just
the first column of the output matrix.

A Modular Analysis: Neighboring-Matrix iO. In the actual proof, we
provide a modular analysis of the above two steps (that may be interesting in
its own right).

– We define a notion of neighboring-matrix indistinguishability obfuscation,
which relaxes indistinguishability obfuscation by only requiring security to
hold w.r.t. any two functionally equivalent branching programs that differ
in at most a constant number of matrices.

– We then use the above merge procedure (and the above hybrid argument)
to show that the existence of a neighboring-matrix iO for all “fixed output
column” branching programs implies the existence of a “full-fledged” iO.

– We finally use the “basic obfuscator” construction to show how to construct
a neighboring-matrix iO for all fixed output column branching programs
based on (constant-message) semantical security.

Basing Security on a (Single) Falsifiable Assumption. To base security
on a falsifiable assumption, we rely on a different merge procedure from the

Semantically-Secure Multilinear Encodings 515

work of Boyle, Chung and Pass [BCP14]: Given two NC1 circuits C0, C1 taking
(at most) n-bit inputs, and a string z, let M̂erge(C0, C1, z) be a circuit that on
input x runs C0(x) if x ≥ z and C1(x) otherwise; in essence, this procedure lets
us “traverse” between C0 and C1 while provably only changing the functionality
on at most one input. ([BCP14] use this type of merged circuits to perform a
binary search and prove that indistinguishability obfuscation implies differing-
input obfuscation for circuits that differ in only polynomially many inputs.) We
now define a notion of neighboring-input iO, which relaxes iO by only requiring
that security holds with respect to “neigboring-input” programs M̂erge(C0, C1, z),
M̂erge(C0, C1, z+1) that are functionally equivalent. Note that checking whether
M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) are functionally equivalent is easy: they
are equivalent iff C0(z) = C1(z). (As such, the assumption that a scheme sat-
isfies neighboring-input iO is already an efficiently falsfiable assumption.) Fur-
thermore, by a simple hybrid argument over z ∈ {0, 1}n, exponentially-secure
neighboring-input iO implies “full” iO—exponential security is needed since we
have 2n hybrids. (We mention a very recent work by Gentry, Lewko and Waters
[GLW14] in the context of witness encryption [GGSW13] that similarly defines a
falsifiable primitive “positional witness encryption” that implies the full-fledged
notion with an exponential security loss.)

Additionally, note that to show that our construction satisfies exponentially-
secure neighboring-input iO, we only need to rely on exponentially-secure seman-
tical security w.r.t. classes of message distributions corresponding to programs
of the form M̂erge(C0, C1, z), M̂erge(C0, C1, z+1). Equivalently, it suffices to rely
on exponentially-secure semantical security w.r.t. a single distribution over sets
and message samplers corresponding to uniformly selected z and programsC0, C1

(again, this only results in an exponential security loss). Finally, by padding the
security parameter of the multilinear encodings in the construction, it actually
suffices to rely on subexponential security.

Acknowledgments. We are very grateful to Benny Applebaum, Omer Paneth,
Ran Canetti, Kai-Min Chung, Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sa-
hai, abhi shelat, Hoeteck Wee and Daniel Wichs for many helpful comments. We
are especially gratefeul to Shai for pointing out the connection between semanti-
cal security for multilinear encodings and the “uber” assumption for bilinear maps
of [BBG05], and for several very useful conversations about multilinear encod-
ings and the security of the [GGH13a] constructions, to Amit for several helpful
conversations about the presentation of our results, and Benny for suggesting
we make our proof more modular (which lead to the notion of neigboring-matrix
branching programs). Finally thanks to the anonymous Crypto reviewers for
their useful comments. Thanks so very much!

References

[Bar86] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In: STOC, pp. 1–5 (1986)

516 R. Pass and K. Seth, and S. Telang

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[BCKP14] Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box ob-
fuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: STOC 2014 (2014)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631 (2013)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomor-
phic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Contemporary Mathematics 324(1), 71–90 (2003)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) lwe. In: FOCS, pp. 97–106 (2011)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: STOC 1990, pp. 416–426 (1990)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University (2009)

[GGG+14] Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602.
Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: Proc. of FOCS (2013)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

Semantically-Secure Multilinear Encodings 517

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Proceedings of the 45th Annual ACM Symposium on
Symposium on Theory of Computing, STOC 2013, pp. 467–476 (2013)

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007)

[Had00] Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg
(2000)

[HSW14] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220.
Springer, Heidelberg (2014)

[Kil88] Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings
of the Twentieth annual ACM Symposium on Theory of Computing,
pp. 20–31. ACM (1988)

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-
way functions and (im)perfect obfuscation. Cryptology ePrint Archive,
Report 2014/347 (2014), http://eprint.iacr.org/

[KNY14] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for np from indis-
tinguishability obfuscation. CoRR, abs/1403.5698 (2014)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual
ACM symposium on Theory of Computing, pp. 427–437 (1990)

[PST13] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. Cryptology ePrint Archive, Re-
port 2013/781 (2013)

[RAD78] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy
homomorphisms. In: Foundations of Secure Computation, pp. 169–179.
Academia Press (1978)

[Rot13] Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg
(2013)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deni-
able encryption, and more. In: Proc. of STOC 2014 (2014)

http://eprint.iacr.org/

On the Implausibility

of Differing-Inputs Obfuscation
and Extractable Witness Encryption

with Auxiliary Input

Sanjam Garg1, Craig Gentry1, Shai Halevi1, and Daniel Wichs2,	

1 IBM Research, T.J. Watson, Yorktown Heights, NY, USA
sanjamg@cs.ucla.ed, cbgentry@us.ibm.com, shaih@alum.mit.edu

2 Dept. of Computer Science, Northeastern University, Boston, MA, USA
wichs@ccs.neu.edu

Abstract. The notion of differing-inputs obfuscation (diO) was intro-
duced by Barak et al. (CRYPTO 2001). It guarantees that, for any two
circuits C0, C1, if it is difficult to come up with an input x on which
C0(x) = C1(x), then it should also be difficult to distinguish the obfusca-
tion of C0 from that of C1. This is a strengthening of indistinguishability
obfuscation, where the above is only guaranteed for circuits that agree
on all inputs: C0(x) = C1(x) for all x. Two recent works of Ananth et
al. (ePrint 2013) and Boyle et al. (TCC 2014) study the notion of diO in
the setting where the attacker is also given some auxiliary information
related to the circuits, showing that this notion leads to many interesting
applications.

In this work, we show that the existence of general-purpose diO with
general auxiliary input has a surprising consequence: it implies that a
specific circuit C∗ with specific auxiliary input aux∗ cannot be obfuscated
in a way that hides some specific information. In other words, under
the conjecture that such special-purpose obfuscation exists, we show that
general-purpose diO cannot exist. We do not know if this special-purpose
obfuscation assumption is implied by diO itself, and hence we do not
get an unconditional impossibility result. However, the special-purpose
obfuscation assumption is a falsifiable assumption which we do not know
how to break for candidate obfuscation schemes. Showing the existence
of general-purpose diO with general auxiliary input would necessitate
showing how to break this assumption.

We also show that the special-purpose obfuscation assumption implies
the impossibility of extractable witness encryption with auxiliary input,
a notion proposed by Goldwasser et al. (CRYPTO 2013). A variant of
this assumption also implies the impossibility of “output-only dependent”
hardcore bits for general one-way functions, as recently constructed by
Bellare and Tessaro (ePrint 2013) using diO.

� Research supported by NSF grants 1347350, 1314722.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 518–535, 2014.
c© International Association for Cryptologic Research 2014

On the Implausibility of Differing-Inputs Obfuscation 519

1 Introduction

The formal study of program obfuscation was initiated by Hada [Had00] and
Barak et al. [BGI+01, BGI+12]. Since then there have been many negative
and, more recently, also positive results on obfuscation. We briefly survey both
directions.

Negative Results. Hada observed that a super-strong notion of obfuscation,
requiring that the obfuscated code does not leak anything beyond what can
be learned given black-box oracle access to the underlying function, cannot be
met unless the obfuscated function is learnable. Barak et al. define a slightly
weaker (but still very strong) notion of “virtual-black-box” (VBB) obfuscation,
roughly requiring that the obfuscated circuit does not leak any predicate of the
obfuscated function beyond what can be learned given black-box oracle access to
that function. The main result of Barak et al. shows the impossibility of VBB-
obfuscation for general circuits. The impossibility result constructs specific albeit
“contrived” functions that cannot be VBB-obfuscated, but also shows that such
functions can be embedded into cryptosystems giving “contrived” constructions
of cryptosystems (signature schemes, encryption, pseudo-random functions) that
cannot be VBB-obfuscated. The main idea behind this result is to construct
functions where obfuscated code can be “fed” into the function as an input,
causing it to output extra information. Such counterexamples even exist in weak
computational classes, (such as any class that simultaneously contains NC0 and
a PRF [App13]), and therefore we cannot even get general VBB obfuscation for
such weak classes. However, this result still leaves open the possibility that many
specific functions and most natural cryptosystems can be VBB-obfuscated.

The work of Goldwasser and Kalai [GK05] considers a notion of VBB obfus-
cation with auxiliary input and shows that no pseudo-random function (even
natural ones) can be VBB-obfuscated in the presence of arbitrary auxiliary in-
put. Recent work extends this result to weaker assumptions and more restricted
forms of auxiliary input [GK13, BCPR13b]. In all these works, the impossibil-
ity result constructs some contrived auxiliary input. In particular, in all these
results, the auxiliary input is itself an obfuscated circuit. These negative results
leave open two interesting possibilities:

– Perhaps most “natural” functions and “standard-construction” cryptosys-
tems can be VBB-obfuscated in the presence of most “natural” auxiliary
inputs, even though there are “contrived” examples of functions and auxil-
iary inputs that cannot be obfuscated.

– Perhaps some general form of obfuscation, weaker than VBB, is possible for
general functions.

Positive Results. In the face of their impossibility result, Barak et al. pro-
posed two weaker notions of obfuscation that may be achievable for general
functions: indistinguishability obfuscation and differing-inputs obfuscation. In-
distinguishability obfuscation says that for any pair of circuits C0, C1 that agree

520 S. Garg et al.

on all inputs C0(x) = C1(x), it should be hard to distinguish the obfuscation of
C0 from that of C1. The work of Garg et al. [GGH+13] gave the first candidate
for general-purpose indistinguishability obfuscation based on multilinear maps,
and several applications of this primitive. Many more applications have appeared
since then [SW13, HSW13, GGHR13, BZ13, MO13, PPS13, GGJS13, GJKS13].
Indistinguishability obfuscation is also called the “best possible” obfuscation
since anything that any obfuscator can hide, an indistinguishability obfusca-
tor (with sufficient padding) is guaranteed to hide as well. Therefore, one can
conjecture that this obfuscator satisfies stronger properties.

The works of [BR13, BGK+13] also give constructions of obfuscators satisfying
even the stronger VBB property in the “generic multilinear map” model. This
result is difficult to interpret since we do have “non-generic” attacks given by
the prior negative results.

Reconciling the positive and negative results suggests the following interpre-
tation: when it comes to general functionalities and general auxiliary input, one
can cook-up clever “contrived” counterexamples that allow for “non-generic”
attacks, and therefore one must settle for weak notions of obfuscation, like in-
distinguishability obfuscation. On the other hand, when it comes to specific
functionalities with fixed auxiliary input, even strong notions of VBB obfusca-
tion may be achievable. In particular, if we fix a specific function and auxiliary
input, unless there is some “obvious” attack where the code of the function can
be meaningfully used as an input (either to the function itself or to some other
function given by the auxiliary input) it may be reasonable to assume that VBB
obfuscation is possible in this specific case.

Differing-Inputs Obfuscation. Despite its usefulness in many recent appli-
cations, indistinguishability obfuscation is often difficult to use as a general
assumption. The work of Barak et al. also proposed a stronger notion called
differing-inputs obfuscation (diO). In particular, this notion says that for any
distribution on circuits (C0, C1), if it is hard to find an input x such that
C0(x) �= C1(x), then it should also be hard to distinguish the obfuscation of
C0 from that of C1. The recent work of Ananth et al. [ABG+13] and Boyle et al.
[BCP14] extend this notion to the setting of auxiliary input, where the attacker
is given (C0, C1, aux) and, if it is hard to use this information to find an input x
on which C0(x) �= C1(x), then it should also be hard to use this information to
distinguish the obfuscation of C0 and C1. These works give several interesting
applications of this notion, including the ability to obfuscate Turing Machine
without the cost of converting them into a circuit.1

Our Result. As our main result, we show that the existence of general-purpose
differing-inputs obfuscation (diO) with auxiliary-input leads to a surprising con-
sequence: it would show the impossibility of obfuscating a specific circuit C∗

with specific auxiliary input aux∗ in a way that hides some specific information.
In particular, we put forth a “counter-conjecture” that such “special purpose”

1 We are not aware of any applications of diO without auxiliary input.

On the Implausibility of Differing-Inputs Obfuscation 521

circuit-obfuscators exist and, under this conjecture, general-purpose diO with
auxiliary input does not exist. Moreover, under the same conjecture, we also
show that extractable witness encryption (with auxiliary input) does not exist.
We also consider a restricted scenario of “bounded-length axillary input” where
the length of the auxiliary input is bounded a-priori, and the diO obfuscator is
given the length bound. We show that a variant of our ‘special purpose obfusca-
tion” conjecture (using an obfuscator for Turing Machines rather than circuits)
rules this out as well. Lastly, in Appendix A, we also show that this variant of
our conjecture rules out “output-only dependent” hardcore bits for general one-
way functions, where the value of the hardcore bit is completely determined by
the output of the function. Such hardcore bits were recently constructed using
diO with bounded-length auxiliary input by Bellare and Tessaro [BT13].

What to Believe? Our “special-purpose obfuscation” conjecture is not known
to be implied by differing-inputs obfuscation itself, and hence we do not get
unconditional impossibility results. In particular, our main result leaves us with
the following two opposing possibilities: (I) general-purpose diO with auxiliary
input exists, (II) our special-purpose obfuscation assumption holds. We cannot
objectively say which one of these is false. However, (II) is a falsifiable assumption
in the formal sense of [Nao03], where an efficient challenger can check if an attack
is valid. Using the obfuscator of [GGH+13] (or [BR13, BGK+13]), we currently
do not know of any attacks on (II). In other words, the validity of (I) would imply
the existence of an efficient algorithm whose correctness would be easy to verify,
but we do not have any candidate for this algorithm. On the other hand, (I) itself
is not stated as a falsifiable assumption, and there is no direct way to verify an
attack against it via an efficient challenger. Indeed, we present an efficient attack
that contradicts the security of (I), but there is no direct way to check if our
attack is “valid” since doing so requires proving (II). Therefore, we view our
result as presenting a significant challenge to the plausibility of general-purpose
diO with auxiliary input. See further discussion on our conjecture in Section 4.

Consequences of Our Result. Assuming that our “special-purpose obfusca-
tion” conjecture holds, we have ruled out the existence of general-purpose diO
with auxiliary input. However, it may still be reasonable to assume that diO
security and even VBB security with auxiliary input can hold in concrete cases.
Many of the applications of diO in the works [ABG+13, BCP14] and follow-up
works remain plausible and only rely on diO security with some concrete aux-
iliary input, which is unlikely to contain our “counterexample”.2 Nevertheless,
to avoid our implausibility result, one would have to carefully pose a new diO
assumption for the specific auxiliary input required in each new application and
convincingly argue that this assumption is plausible even if the general one is

2 The notable exceptions are “extractable/functional witness encryption”[BCP14] and
“output-only dependent hardcore bits for any one-way function” [BT13] where the
auxiliary input is external and is not fixed by the construction. Our counterexamples
show that these notions are “implausible” in their general form.

522 S. Garg et al.

not. Although this approach may be a sound, it runs counter to our goal of
constructing a wide variety of cryptosystems from a few general (and plausible)
assumptions.

Related Work. Our technique follows the approach of similar results [GK05]
[GK13, BCPR13b, BCPR13a, BP13], all of which use one form of obfuscation
to derive counterexamples for other forms of obfuscation and/or various ex-
tractability assumptions. In particular, the results of [GK05, GK13, BCPR13b]
show that existence of iO implies the impossibility of VBB obfuscation of natu-
ral functionalities with (unnatural) auxiliary input, whereas [BCPR13a, BP13]
show that existence of iO/diO implies impossibility of extractable functions and
related extractability primitives.

Our Technique. The main idea of our technique is to create a contrived “aux-
iliary input” aux which is itself an obfuscated circuit. In particular, aux allows
the attacker to distinguish any obfuscations of some carefully designed C0, C1,
without gaining the ability to find an input on which they differ. The “special
purpose” assumption is needed to guarantee that aux does not “leak” an input
x on which C0(x) �= C1(x).

In more detail, the circuits Cb (b ∈ {0, 1}) have a verification key vk of a
signature scheme hard-coded in them. If they get an input x = (m,σ) consist-
ing of a valid message/signature pair, they output the bit b, else they just both
output 0. Finding an input x on which C0(x) �= C1(x) requires finding a valid
message/signature pair (which is hard to do even given vk). We set the auxiliary
input aux to be a “special-purpose” obfuscation of a circuit C∗ that has the
signing key sk hard-coded and is defined as follows: given as input any circuit C
with 1-bit output, it outputs C(m,σ) where m = H(C) is a hash of C and σ is a
signature ofm under sk. It is easy to use (an obfuscation of) C∗ to distinguish C0

and C1 just by feeding them to C∗. However, given black-box access to C∗, we
show that it is impossible to recover any message/signature pair and therefore
any input x on which C0(x) �= C1(x). Intuitively, each call to C∗ leaks one bit of
information on a fresh message/signature pair, which is not enough to recover
any such pair in full. We therefore put forth the conjecture that there exists a
“special-purpose” method of obfuscating C∗, that does not allow the attacker
to learn any message/signature pair. Under this special-purpose obfuscation as-
sumption, the auxiliary input aux allows us to distinguish any obfuscation of
C0, C1 but does not allow us to find any input x on which C0(x) �= C1(x).

2 Preliminaries and Definitions

Notation. We let λ denote the security parameter throughout the paper. We
use the notation C[prm] to denote a circuit that depends on a parameter prm.
The parameter can be an arbitrary string, and we think of prm as being “hard
wired” in the description of the corresponding circuit. The input to a circuit

On the Implausibility of Differing-Inputs Obfuscation 523

is specified inside parenthesis, so C[prm](x) describes the computation of the
circuit C[prm] (whose definition depends on prm) on the input x.

Differing-Inputs Obfuscation. Our definition of differing-inputs obfuscation
(diO) with auxiliary input follows that of Ananth et al. [ABG+13], which is
also equivalent to that of Boyle et al. [BCP14]. First, we define the notion of
“differing-inputs” circuits.

Definition 1. A circuit family C with a sampler (C0, C1, aux)← Sam(1λ) which
samples C0, C1 ∈ C is said to be a differing-inputs family if for all PPT attackers
A there is a negligible function ε such that:

Pr[C0(x) �= C1(x) : (C0, C1, aux)← Sam(1λ), x← A(1λ, C0, C1, aux)] ≤ ε(λ).

Definition 2. A PPT algorithm O is a differing-inputs obfuscator (diO) for a
differing-inputs family C, Sam if the following holds:

– Correctness: For all λ ∈ N, C ∈ C and all inputs x, we have:

Pr[C′(x) = C(x) | C′ ← O(1λ, C)] = 1.

– Security: For all PPT distinguishers D, there is a negligible function ε such
that:

|Pr[D(1λ,O(1λ, C0), aux) = 1]− Pr[D(1λ,O(1λ, C1), aux) = 1]| ≤ ε(λ)

where (C0, C1, aux)← Sam(1λ).

A PPT algorithm O is a general-purpose differing-inputs obfuscator if the above
holds for all differing-inputs families C, Sam.

The works of [ABG+13, BCP14] put forth the conjecture that general-purpose
diO exists, and that the obfuscator of [GGH+13] is a good candidate.

Extractable Witness Encryption. Next we define the “extractable” vari-
ant of witness encryption following Goldwasser et al. [GKP+13]. The notion
of witness encryption was first defined and realized by Garg et al. [GGSW13].
Goldwasser et al. [GKP+13] conjecture that the same construction can be as-
sumed to be extractable with auxiliary input. For simplicity, we assume that
the message space is 1 bit. Next we present these definitions formally (follow-
ing [GGSW13, GKP+13], but making the definitions even weaker by assuming
the auxiliary input comes from an efficiently sampleable distribution and allow-
ing the extractor to depend on this distribution).

Definition 3. A witness encryption scheme for an NP language L (with cor-
responding witness relation R) consists of the following two polynomial-time
algorithms:

524 S. Garg et al.

Encryption. The algorithm Enc(1λ, x, b) takes as input a security parameter
1λ, an unbounded-length string x, and a message b ∈ {0, 1} and outputs a
ciphertext c.
Decryption. The algorithm Dec(c, w) takes as input a ciphertext c and an
unbounded-length string w, and outputs a message b or the symbol ⊥.

These algorithms satisfy the following two conditions:

– Correctness. For any security parameter λ, for any b ∈ {0, 1}, and for any
x ∈ L such that R(x,w) holds, we have that

Pr
[
Dec
(
Enc(1λ, x, b), w

)
= b
]
= 1

– Extractable Security. For any PPT adversary A, polynomial-time sampler
(x, aux)← Sam(1λ) and for any polynomial q(·), there exists a PPT extractor
E and a polynomial p(·), such that:

Pr

[
A(1λ, x, c, aux) = b

∣∣∣∣ b← {0, 1}, (x, aux)← Sam(1λ),
c← Enc(1λ, x, b)

]
≥ 1

2
+

1

q(λ)

⇒ Pr[E(1λ, x, aux) = w s.t. (x,w) ∈ RL : (x, aux)← Sam(1λ)] ≥ 1

p(λ)
.

3 The Counterexample to diO and the Counter-
Conjecture

We construct a family (C, Sam) which we show to be unobfuscatable with respect
to differing-inputs obfuscation. However, to show that this family (C, Sam) is a
differing-inputs family, we will in turn need to rely on a new “special purpose
obfuscation” conjecture.

Let S = (KeyGen, Sig,Ver) be a signature scheme with signature size �sig(λ)
and a deterministic signing algorithm.3 Let H = {Hλ} be a collision-resistant
hash function (CRHF) family with output size �hash(λ). Define the circuit family
C consisting of circuits C[b, vk] ∈ C defined as follows:

C[b, vk](m,σ) // Hard-coded values: b ∈ {0, 1}, vk verification key

// Input: m ∈ {0, 1}�hash(λ), σ ∈ {0, 1}�sig(λ)
– Check Vervk(m,σ) = 1. If not output 0 else output b.

Let �circ(λ) be the maximal size of the circuit C[b, vk] when b ∈ {0, 1} and
(sk, vk)← KeyGen(1λ).

Our counterexample to diO will consist of setting C0 = C[0, vk] and C1 =
C[1, vk]. Finding an input on which C0(x) �= C1(x) is equivalent to finding any
valid message/signature pair x = (m,σ) which is hard given only the description

3 Any signature scheme can be converted into one with a deterministic signing algo-
rithm by replacing the random coins with a PRF of the message.

On the Implausibility of Differing-Inputs Obfuscation 525

of C0, C1 (which includes vk). However, we will provide an additional auxiliary
input aux which makes it easy to distinguish any (bounded size) obfuscation of
C0 from that of C1. We will need to argue that aux does not leak any valid
message/signature pair, which will require a new assumption.

Let �∗ = �∗(λ) be be a length parameter (which will later be set to correspond
to the size of a candidate obfuscation of the circuits C[b, vk]). Define the circuit
family Cbreak consisting of circuits C∗[H, sk] ∈ Cbreak with input-length �∗ and
1-bit output as follows:

C∗[H, sk](C) // Hard-coded values: H ∈ H, sk signing key

// Input: C : a circuit of size |C| = �∗ with 1-bit output.
– Compute m = H(C), σ = Sigsk(m).
– Output the bit C(m,σ).

Let spO be a “special purpose” obfuscator that satisfies correctness and
whose security properties we will define shortly. We define the circuit sampler
Sam�∗(1

λ), parameterized by some polynomial �∗(·), as follows:

– Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.
– Set C0 = C[0, vk], C1 = C[1, vk] ∈ C.
– Set C∗ = C∗[H, sk] ∈ Cbreak to be a circuit with input-length �∗ = �∗(λ) and

set aux← spO(1λ, C∗).
– Output C0, C1, aux.

It is easy to see that the the circuit family C, Sam�∗ is unobfuscatable since aux
allows one to easily distinguish any obfuscations of C0 and C1 that have circuit-
size at most �∗. For any candidate obfuscator O, we can choose �∗ sufficiently
large to ensure that O fails.

Lemma 1. Fix any signature/hash schemes S, H which define the class of cir-
cuits C, and let spO be any “special-purpose obfuscator” satisfying correctness.
Then for any candidate diO obfuscator O there is a polynomial �∗(λ) such that
the obfuscations of the family (C, Sam�∗) under O are easily distinguishable: there
is a polynomial-time distinguisher D such that

|Pr[D(1λ,O(1λ, C0), aux) = 1]− Pr[D(1λ,O(1λ, C1), aux) = 1]| = 1

where (C0, C1, aux)← Sam�∗(1
λ).

Proof. Let �circ(λ) be the maximal size of the circuit C[b, vk] ∈ C when b ∈ {0, 1}
and (sk, vk) ← KeyGen(1λ). Set �∗(λ) be the maximal size of O(1λ, C) for any

C ∈ C of size |C| = �circ(λ). The distinguisher D(1λ, C̃, aux) simply interprets

aux as a circuit and outputs aux(C̃). It is easy to see that, if C̃ = O(1λ, Cb),

then aux(C̃) = b and therefore the distinguishing advantage is 1. Also the size

of C̃ is at most �∗(λ) and hence it can be used as an input to aux.

To get a counterexample to the existence of general-purpose differing-inputs
obfuscation, we need to show that, for some signature scheme S, CRHF H and

526 S. Garg et al.

obfuscator spO, the family (C, Sam�∗) is a differing-inputs family for any �∗.
Notice that finding an input x = (m,σ) on which C0(x) �= C1(x) is the same
as finding a valid message/signature pair. Therefore, the above reduces to the
following conjecture which says that, given the obfuscation of the “breaker”
circuit C∗ it is difficult to produce any valid message/signature pair.

Conjecture 1 (Special-Purpose Obfuscation). There exists a signature scheme S,
CRHF H and an obfuscator spO such that the following hods. For any PPT
attacker A and any polynomial �∗(·) there is a negligible ε(λ) such that:

Pr

⎡⎣Vervk(m,σ) = 1

∣∣∣∣∣∣
(sk, vk)← KeyGen(1λ), H ← Hλ

C̃ ← spO(1λ, C∗[H, sk])

(m,σ)← A(1λ, vk, C̃)

⎤⎦ ≤ ε(λ)

where we take the circuit C∗[H, sk] ∈ Cbreak with input-size �∗(λ) as defined
above.

If we fix some specific choice of schemes S, H, spO (e.g., a standard construction
of signatures and hash functions and the obfuscation scheme of [GGH+13]) then
the above becomes a falsifiable assumption. We can efficiently test if an attacker
A breaks the scheme. We now show that, under the above conjecture, the circuit
family (C, Sam) defined above is a differing-inputs family.

Lemma 2. For any signature scheme S, CRHF H and an obfuscator spO sat-
isfying Conjecture 1, for any polynomial �∗, the circuit family (C, Sam�∗) defined
above is a differing-inputs family.

Proof. Assume there is a PPT attacker B such that:

Pr[C0(x) �= C1(x) : (C0, C1, aux)← Sam�∗(1
λ), x← B(1λ, C0, C1, aux)] = ε(λ).

Since C0(x) �= C1(x) means that x = (m,σ) such that Vervk(m,σ) = 1, we get

Pr[Vervk(m,σ) = 1 : (C0, C1, aux)← Sam�∗(1
λ), x← B(1λ, C0, C1, aux)] = ε(λ).

Define the attacker A(1λ, vk, C̃) that constructs C0 = C[0, vk], C1 = C[1, vk],

aux = C̃ and calls B(1λ, C0, C1, aux). Then

Pr

[
Vervk(m,σ) = 1

∣∣∣∣ (sk, vk)← KeyGen(1λ), H ← Hλ,
(m,σ)← A(1λ, vk, spO(1λ, C∗[H, sk]))

]
= ε(λ)

where the input size of C∗[H, sk] is �∗(λ). Therefore, by the conjecture, we must
have ε(λ) is negligible, which means that the (C, Sam�∗) is differing-inputs family.

Combining Lemma 2 and Lemma 1 we get the main theorem.

Theorem 1. Under the special-purpose obfuscation conjecture (Conjecture 1),
general-purpose differing-inputs obfuscators do not exist.

On the Implausibility of Differing-Inputs Obfuscation 527

4 Substantiating the Special-Purpose Obfuscation
Conjecture

We now attempt to substantiate the special-purpose obfuscation conjecture
(Conjecture 1). As a first step, we show that black-box access to the circuit
C∗[H, sk] cannot be used to leak a message/signature pair. Intuitively, each
query C allows the attacker to learn 1 bit of leakage C(m,σ) on a signature of the
message m = H(C). Assuming the attacker cannot break collision-resistance, he
cannot get get more than 1 bit of leakage on any single signature. Generically,
seeing 1 bit of leakage on signatures of many different messages does not allow
an attacker to come up with any valid message, signature pair. We formalize this
via the following Lemma.

Lemma 3. For any signature scheme S and CRHF H, and parameter �∗(λ),
for any PPT attacker A there is a negligible ε(·) such that:

Pr

[
Vervk(m,σ) = 1

∣∣∣∣ (sk, vk)← KeyGen(1λ), H ← Hλ,

(m,σ)← AC∗[H,sk](·)(1λ, vk, H)

]
≤ ε(λ)

where C∗[H, sk] ∈ Cbreak is defined above and has input size �∗(λ).

Proof. Fix some signature scheme S and CRHF H and PPT attacker A. Let
q = q(λ) be an upper bound on the number of queries that A makes to C∗ and
let ε(λ) denote the success probability of A. We define an attacker B on the
EU-CMA (existential unforgeability against chosen message attack) signature
security of S as follows:

– B guesses an index i← [q] and a bit b← {0, 1} uniformly at random.
– B gets vk from its challenger and samples H ← Hλ. It runs A(1λ, vk, H).

• Whenever A makes any query other than the ith query to C∗ with some
input C, the attacker B computes m = H(C) uses its signing oracle to
compute σ = Sigsk(m). It then output C(m,σ).

• When A makes the ith query Ci to C∗, the attacker B simply responds
with the bit b it chose randomly.

– At the end B outputs the value (m,σ) that A outputs.

Define the events:

– WinB is the event that B wins the EU-CMA signature game.

– Ver is the event that Vervk(m,σ) = 1.

– Col is the event that, during the course of the game, the attacker A submits
two different circuits C,C′ to its oracle such that H(C) = H(C′).

– Good1 is the event that, if A outputs (m,σ), then no query Cj to C∗ resulted
in H(Cj) = m other than possibly the ith query.

– Good2 is the event that, if the ith query is Ci, and we set m = H(Ci),
σ = Sigsk(m), then Ci(m,σ) = b.

528 S. Garg et al.

Then we have

Pr[WinB] ≥ Pr[Ver ∧ Good1] ≥ Pr[Ver ∧ Good1 ∧ Good2 ∧ ¬Col]
≥ Pr[Good1 | Ver ∧ Good2 ∧ ¬Col] Pr[Ver ∧ Good2 ∧ ¬Col]

≥ 1

q
Pr[Ver ∧ Good2 ∧ ¬Col] (1)

≥ 1

q
Pr[Good2] Pr[Ver | Good2]− Pr[Col]

≥ 1

2q
ε(λ)− δcol(λ) (2)

where δcol(λ) := Pr[Col] is negligible by the security of the CRHF. Equation
(1) follows since, even if we condition on ¬Col and all other randomness in the
game other than the choice of i, the attacker A made at most 1 query Cj such
that H(Cj) = m and therefore with probability 1/q over only the choice of i we
have i = j. Equation (2) follows since the probability of Good2 is 1

2 only over
the choice of b, and conditioned on Good2, the attacker B perfectly simulates the
obfuscation game for A.

Since, by the security of the signature scheme, we must have Pr[WinB] is
negligible, this must also mean that ε(λ) is negligible, which concludes the proof.

Further Informal Discussion. We stress that to rule out general-purpose diO
we do not need the conjecture above to hold for all hash functions and signatures.
4 Rather, it is enough that it holds for some hash function and signature scheme
(such as e.g., RSA PKCS #1 v1.5).

Let’s consider attempts at attacking the conjecture, and give highly infor-
mal arguments for why they seem to fail. To do so, let’s fix some “standard-
construction” hash function and signature scheme such as RSA PKCS #1 v1.5,
in which case we are also fixing the auxiliary information aux = vk. As men-
tioned, all of the prior obfuscation impossibility results have the same gen-
eral structure which, applied to our problem, would require us to either: (i)
use the obfuscated-code spO(C∗) to design a special input on which C∗ out-
puts additional information [BGI+12], or (ii) interpret the auxiliary information
aux = vk as code which outputs some information when given spO(C∗) as an
input [GK05, GK13, BCPR13b]. Since in our case vk is just the verification of
a standard scheme (e.g. RSA PKCS #1 v1.5), there does not seem to be much
hope in approach (ii). On the other hand, there do not seem to be any special
inputs on which C∗ acts in any “special way” so as to exploit approach (i). The
fact that the input to C∗ is itself interpreted as a circuit C and executed by
C∗ should give us some pause. After all, we can make C depend on spO(C∗).
But such inputs would not be treated in any kind of special way by C∗: they

4 Indeed, we suspect that one should be able to come up with some “unnatural”
signature and hash function for which it does not hold (following similar counter-
examples from [BGI+12, GK05, GK13, BCPR13b]).

On the Implausibility of Differing-Inputs Obfuscation 529

would still only allow the attacker to leak one bit of information C(m,σ) on an
honestly generated message/signature pair.

Finally, we note that a recent result that relates iO to a limited form of
diO has no bearing on our counterexample: Boyle et al. [BCP14] showed that
differing-inputs obfuscation is already implied by indistinguishability obfusca-
tion, in the special case where the two circuits C0, C1 only differ on polynomially
many inputs. In our counterexample, the circuits C0, C1 differ on all valid mes-
sage/signature pairs where the message-domain is super-polynomial. Therefore,
we do not get any negative results for indistinguishability obfuscation.

5 Bounded-Length Auxiliary Input

Our counterexample shows that, under our special-purpose obfuscation conjec-
ture, there is no general-purpose diO scheme that works with any auxiliary input.
In particular, we constructed family (C0, C1, aux) where the definition of aux re-
lies on some parameter �∗ such that any obfuscations of C0 and C1 having size
at most �∗ are always distinguishable given aux. We can make the parameter
�∗ arbitrary large at the expense of making the auxiliary input aux correspond-
ingly large. This leaves open the possibility of a diO scheme that is secure for
all auxiliary input of some arbitrary but a-priori bounded size. We define this
as follows:

Definition 4. We define a general-purpose diO obfuscator with bounded-length
auxiliary input analogously to Definition 1 but with the following changes:

– The syntax of the obfuscator O(1λ, 1�aux(λ), C) now takes an additional pa-
rameter �aux(λ).

– We require that for all polynomial �aux(λ) security holds for differing-inputs
families (C, Sam) where the size of aux in (C0, C1, aux)← Sam(1λ) is bounded
by �aux(λ).

Our previously described counterexample does not rule out this definition. In
particular, the auxiliary input aux in our counterexample is an obfuscated circuit
that takes as input an obfuscation of Cb. If the obfuscation of Cb can depend on
(and exceed) the size of aux, then this would not work. However, we can rule out
this weaker notion of diO for bounded-length auxiliary input if we additionally
assume that we have a special-purpose obfuscator spO which works directly on
Turing Machines rather than circuits. In particular, a Turing Machine special-
purpose obfuscator spO(1λ,M) takes as input a Turing Machine M and outputs
an obfuscated Turing Machine M̃ where M̃ can be evaluated on arbitrary-length
inputs and produces the same output as M .

The Counterexample. Fix a signature scheme S and hash function family H
as before, and define the circuit family C consisting of circuits C[b, vk] as before.
We define the “breaker” Turing Machine M∗[H, sk] which has H and sk hard-
coded in its description analogously to the way we defined the “breaker” circuit
C∗[H, sk], as follows:

530 S. Garg et al.

M∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key

// Input: C circuit with 1-bit output and arbitrary size.
– Compute m = H(C), σ = Sigsk(m).
– Output C(m,σ).

Notice that, unlike before, we no longer have any parameter �∗ that would fix
the maximal input length of the input circuit C given to M∗[H, sk].

Let spO be a Turing-Machine obfuscator that satisfies correctness. We define
the circuit sampler SamTM (1λ) as follows:

– Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.
– Set C0 = C[0, vk], C1 = C[1, vk] ∈ C.
– Set M∗ = M∗[H, sk] and aux← spO(1λ,M∗).
– Output C0, C1, aux.

Conjecture 2 (Special-Purpose TM Obfuscation). There exists a signature
scheme S, CRHF H and an Turing Machine obfuscator spO such that the fol-
lowing hods: for any PPT attacker A there is a negligible ε(λ) such that:

Pr

[
Vervk(m,σ) = 1

∣∣∣∣ (sk, vk) ← KeyGen(1λ),H ← Hλ,

M̃ ← spO(1λ,M∗[H, sk]), (m,σ) ← A(1λ, vk, M̃)

]
≤ ε(λ)

where the Turing Machine M∗[H, sk]is defined above.

Theorem 2. Under the special-purpose TM obfuscation conjecture (Conjecture
2), there is no general-purpose diO obfuscators (for circuits) that has security
for bounded-length auxiliary input.

In particular, under the conjecture, the circuit family (C, SamTM) defined
above is a fixed differing-inputs family with some fixed polynomial bound on the
length of the auxiliary input, yet there is no diO obfuscator for this particular
family.

The proof of the above theorem is the same as that of Theorem 1.

Discussion. We note that candidate general-purpose iO and diO obfuscators
for Turing Machines were constructed by [BCP14, ABG+13]. Although the se-
curity claims rely on general-purpose (circuit) diO with auxiliary input, it seems
reasonable to assume that these constructions are secure in special cases, and
also that they satisfies stronger security properties than merely iO and diO.
In particular, using these candidate obfuscators, we do not know of any at-
tacks on Conjecture 2. Moreover, it is still a falsifiable assumption once we fix
some candidates S,H, spO. On the other hand, the Turing Machine conjecture
certainly seems stronger and more complex than the corresponding circuit con-
jecture (Conjecture 1).

On the Implausibility of Differing-Inputs Obfuscation 531

6 Extending Implausibility to Extractable Witness
Encryption

In previous section we showed that a “special-purpose obfuscation” conjecture
(Conjecture 1) can be used to rule out existence of a general-purpose differing-
inputs obfuscator. In this section we show that the same “special-purpose obfus-
cation” conjecture can also be used to rule out existence of extractable witness
encryption. Note that this is a stronger result as general-purpose differing-inputs
obfuscation is known to imply extractable witness encryption.

Theorem 3. Under the special-purpose obfuscation conjecture (Conjecture 1),
extractable witness encryption does not exist.

Proof. We prove our theorem by giving an NP-relation R for which there does
not exist an extractable witness encryption scheme. In order to prove this we
will need to rely on our “special-purpose obfuscation” conjecture (Conjecture 1).

Let S = (KeyGen, Sig,Ver) be a signature scheme with a deterministic signing
algorithm.We define theNP-relationRver so that (vk, (m,σ)) ∈ Rver if and only
if Vervk(m,σ) = 1. Let (Enc,Dec) be a candidate extractable witness encryption
for this relation R. Given an string vk and a ciphertext c, let C[vk, c](w) be the
circuit that takes as input a witness w and computes Dec(c, w). Let �∗(λ) be the
size of C[vk, c].

We now define the same auxiliary input as in the previous section. Let H =
{Hλ} be a collision-resistant hash function (CRHF) family with output size
�in(λ). Define the circuit family Cbreak consisting of circuits C∗[H, sk] ∈ Cbreak
defined as follows:

C∗[H, sk](C) // Hard-coded values: H ∈ Hλ, sk signing key

// Input: C circuit of size �∗(λ) with 1-bit output.
– Compute m = H(C), σ = Sigsk(m).
– Output C(m,σ).

Let spO be a “special purpose” obfuscator whose properties defined in Conjec-
ture 1. We define the distribution samples Sam(1λ) as follows:

– Sample (sk, vk)← KeyGen(1λ) and H ← Hλ.
– Set C∗ = C∗[H, sk] ∈ Cbreak and aux← spO(C∗).
– Output vk, aux, where vk is the NP statement.

Now consider an experiment where we sample (vk, aux) ← Sam(1λ) and en-
crypt c← Enc(1λ, vk, b) where b← {0, 1} and vk acts as an NP statement. We
construct an adversary A that can output b with probability 1. Our adversary
A(1λ, vk, c, aux) simply interprets aux as a circuit and outputs aux(C[vk, c]). It
is easy to see that, if c = Enc(1λ, vk, b), then aux(C[vk, c]) = b and therefore the
adversary outputs b with probability 1.

On the other hand, we claim that no extractor E that can output valid wit-
nesses given (vk, aux), contradicting the extractability property of the witness

532 S. Garg et al.

encryption scheme. Notice that finding a witness w = (m,σ) for the statement
consisting of a verification key vk under the relation Rver is same as finding a
valid message/signature pair given just the “special purpose” obfuscation aux
and vk (the proof of this is similar to the proof of Lemma 2). In other words,
Conjecture 1 directly implies that for any PPT candidate extractor E there is a
negligible ε such that:

Pr[E(1λ, vk, aux) = (m,σ) s.t. (vk, (m,σ)) ∈ Rver : (x, aux)← Sam(1λ)] ≤ ε(λ)

contradicting the extractability requirement of extractable witness encryption.
This completes our proof.

Bounded-Length Auxiliary Input. We could also define extractable wit-
ness encryption with bounded-length auxiliary input, where the encryption/
decryption procedures can all depend on the size of the auxiliary input. This
would be analogous to the definition of diO with bounded-length auxiliary in-
put. We can rule out this notion of witness encryption with bounded-length
auxiliary input under our special-purpose Turing Machine obfuscation assump-
tion (Conjecture 2) analogously to our results for diO in Section 5.

7 Conclusions

We propose a seemingly reasonable “special-purpose” obfuscation conjecture un-
der which general-purpose diO and extractable witness encryption with auxiliary
input cannot exist. Furthermore a variant of this conjecture also shows the im-
possibility of output-only dependent hardcore bits for every one-way function.
Many interesting open problems remain. Firstly, is there some inherent reason
why our conjecture cannot hold? This is certainly possible, and we cannot objec-
tively say which of the two conflicting possibilities (diO with auxiliary input vs.
our conjecture) is false. However, the conjecture is a simple-to-state falsifiable
assumption. Showing the possibility of general-purpose diO and extractable wit-
ness encryption would require coming up with an attack on this conjecture. On
the other hand, general-purpose diO and witness encryption are not stated as fal-
sifiable assumptions; indeed we give a candidate attack on these notions, but we
cannot efficiently check if the attack is valid. In the absence of further evidence,
we choose to interpret this result as giving strong evidence that general-purpose
diO and extractable witness encryption are “implausible”. Is there a way to
convert this “implausibility” result into an “impossibility” result? On a different
note, is it still reasonable to assume the existence of general-purpose diO without
auxiliary input? We do not see any way to extend our “implausibility” result
to the case without auxiliary input. Lastly, it remains as an interesting open
problem to characterize the known techniques for getting obfuscation impossi-
bility results, and come up with a strong and general obfuscation assumption
that capture everything which is not directly ruled out by these techniques.

On the Implausibility of Differing-Inputs Obfuscation 533

Acknowledgments.We thank Mariana Raykvoa and Amit Sahai for initial dis-
cussions relating to this work, Nir Bitansky for suggesting we look at extractable
witness encryption, and Mihir Bellare for pointing us to his paper on poly-many
hardcore bits and for suggesting we consider diO with bounded-length auxiliary
input.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689 (2013), http://eprint.iacr.org/

[App13] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom func-
tions. Cryptology ePrint Archive, Report 2013/699 (2013),
http://eprint.iacr.org/

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BCPR13a] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability ob-
fuscation vs. auxiliary-input extractable functions: One must fall. Cryptol-
ogy ePrint Archive, Report 2013/641 (2013), http://eprint.iacr.org/

[BCPR13b] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: More on the impossi-
bility of virtual-black-box obfuscation with auxiliary input. Cryptology
ePrint Archive, Report 2013/701 (2013), http://eprint.iacr.org/

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Hei-
delberg (2001)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J.
ACM 59(2), 6 (2012)

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631 (2013), http://eprint.iacr.org/

[BP13] Boyle, E., Pass, R.: Limits of extractability assumptions with distri-
butional auxiliary input. Cryptology ePrint Archive, Report 2013/703
(2013),
http://eprint.iacr.org/

[BR13] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563 (2013), http://eprint.iacr.org/

[BT13] Bellare, M., Tessaro, S.: Poly-many hardcore bits for any one-way func-
tion. Cryptology ePrint Archive, Report 2013/873 (2013),
http://eprint.iacr.org/

[BZ13] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/642 (2013), http://eprint.iacr.org/

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. To appear in FOCS 2013, vol. 2013, p. 451 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

534 S. Garg et al.

[GGHR13] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure mpc
from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/601 (2013), http://eprint.iacr.org/

[GGHW13] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. Cryptology ePrint Archive, Report 2013/860 (2013),
http://eprint.iacr.org/

[GGJS13] Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/727 (2013),
http://eprint.iacr.org/

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: STOC (2013)

[GJKS13] Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for
randomized functionalities. Cryptology ePrint Archive, Report 2013/729
(2013), http://eprint.iacr.org/

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with aux-
iliary input. In: FOCS, pp. 553–562 (2005)

[GK13] Goldwasser, S., Kalai, Y.T.: A note on the impossibility of obfuscation
with auxiliary input. Cryptology ePrint Archive, Report 2013/665 (2013),
http://eprint.iacr.org/

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–
553. Springer, Heidelberg (2013)

[Had00] Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg
(2000)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/509 (2013), http://eprint.iacr.org/

[MO13] Marcedone, A., Orlandi, C.: Obfuscation [implies] (ind-cpa security [does
not imply] circular security). Cryptology ePrint Archive, Report 2013/690
(2013), http://eprint.iacr.org/

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003)

[PPS13] Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for np. Cryp-
tology ePrint Archive, Report 2013/754 (2013),
http://eprint.iacr.org/

[SW13] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deni-
able encryption, and more. Cryptology ePrint Archive, Report 2013/454
(2013),
http://eprint.iacr.org/

A Output-Only Dependent Hardcore Bits

In a recent work, Bellare and Tessaro [BT13] show the existence of polynomially
many hardcore bits for any one-way function. In the case of injective one-way

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

On the Implausibility of Differing-Inputs Obfuscation 535

functions, their construction relies on indistinguishability obfuscation. However,
in the case of arbitrary one-way functions, it relies on diO with auxiliary input.
The construction has a very interesting property which we call “output-only
dependence”. In particular, even if the one-way function f(x) is many-to-one,
the hardcore bits h(x) are completely determined by f(x); for any inputs x, x′

such that f(x) = f(x′) we also get h(x) = h(x′). This property is interesting
even in the case of a single hardcore bit, and does not hold for any of the known
general constructions (such as for the Goldreich-Levin bit).

Unfortunately, we show that our special-purpose obfuscation assumption (for
Turing Machines) also gives a counterexample to the security of the hardcore
bit construction of [BT13]. More generally, we show that there is a contrived
one-way function that does not have any output-only dependent hardcore bit.
In more detail:

– Under the special-purpose obfuscation conjecture for circuits (Conjecture
1), we construct a one-way function that does not have any output-only
dependent hardcore bits given auxiliary input.5

– Under the special-purpose obfuscation conjecture for Turing Machines (Con-
jecture 2) we get the above result even without auxiliary input. In particular,
we construct a one-way function which does not have any output-only de-
pendent hardcore bits.

Due to space constraints, this result appears in our full version [GGHW13].

5 The result of Bellare and Tessaro [BT13] does not consider auxiliary input.

Maliciously Circuit-Private FHE

Rafail Ostrovsky1,	, Anat Paskin-Cherniavsky2,		,
and Beni Paskin-Cherniavsky3

1 Department of Computer Science and Mathematics, UCLA, USA
rafail@cs.ucla.edu

2 Department of Computer Science, UCLA, USA
anpc@cs.ucla.edu

3 cben@users.sf.net

Abstract. We present a framework for transforming FHE (fully ho-
momorphic encryption) schemes with no circuit privacy requirements
into maliciously circuit-private FHE. That is, even if both maliciously
formed public key and ciphertext are used, encrypted outputs only re-
veal the evaluation of the circuit on some well-formed input x∗. Previous
literature on FHE only considered semi-honest circuit privacy. Circuit-
private FHE schemes have direct applications to computing on encrypted
data. In that setting, one party (a receiver) holding an input x wishes to
learn the evaluation of a circuit C held by another party (a sender). The
goal is to make receiver’s work sublinear (and ideally independent) of
|C|, using a 2-message protocol. The transformation technique may be
of independent interest, and have various additional applications. The
framework uses techniques akin to Gentry’s bootstrapping and condi-
tional disclosure of secrets (CDS [AIR01]) combining a non circuit pri-
vate FHE scheme, with a homomorphic encryption (HE) scheme for a
smaller class of circuits which is maliciously circuit-private. We devise
the first known circuit private FHE, by instantiating our framework by
various (standard) FHE schemes from the literature.

Keywords: Fully homomorphic encryption, computing on encrypted
data, privacy, malicious setting.

� Work supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-
Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Re-
search Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014 -11 -1-
0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

�� Work supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174.
This material is based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014
-11 -1-0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 536–553, 2014.
c© International Association for Cryptologic Research 2014

Maliciously Circuit-Private FHE 537

1 Introduction

In this paper, we devise a first fully homomorphic encryption scheme (FHE)
[Gen09] that satisfies (a meaningful form of) circuit privacy in the malicious
setting—a setting where the public key and ciphertext input to Eval are not
guaranteed to be well-formed. We present a framework for transforming FHE
schemes with no circuit privacy requirements into maliciously circuit-private
FHE. The transformation technique may be of independent interest, and have
various additional applications. The framework uses techniques akin to Gentry’s
bootstrapping and conditional disclosure of secrets (CDS [AIR01]) combining a
non circuit private FHE scheme, with a homomorphic encryption (HE) scheme
for a smaller class of circuits which is maliciously circuit-private. We then demon-
strate an instantiation of this framework using schemes from the literature.

The notion of FHE does not require circuit privacy even in the semi-honest
setting (but rather standard IND-CPA security, the ability to evaluate arbitrary
circuits on encrypted inputs and encrypted outputs being “compact”). In [Gen09]
and [vDGHV09, appendix C], the authors show how to make their FHE schemes
circuit-private in the semi-honest setting.

One natural application of (compact) FHE is the induced 2-message, 2-party
protocol, where a receiver holds an input x, and a sender holds a circuit C; the re-
ceiver learns C(x), while the sender learns nothing. In the first round the receiver
generates a public-key pk, encrypts x to obtain c, and sends (pk, c). The sender
evaluates C on (pk, c) using the schemes’ homomorphism, and sends back the
result. An essential requirement is that receiver’s work (and overall communica-
tion) is poly(k, n, o(|C|)), where k is a security parameter, ideally independent of
|C| altogether. This application of homomorphic encryption, termed computing
on encrypted data, was studied both in several works [IP07, BKOI07] predating
Gentry’s first fully homomorphic scheme, and mentioned in [Gen09].

The underlying scheme’s IND-CPA security translates into the standard
simulation-based notion of privacy against a malicious sender in the stand-
alone model1 (but not any form of correctness against a malicious sender). The
circuit privacy of the scheme translates into a privacy guarantee against a ma-
licious receiver (of the same “flavor”). While standard FHE (without extra re-
quirements) does not imply any security guarantees against malicious receivers,
the semi-honestly circuit-private schemes from (e.g.) [vDGHV09] imply stan-
dard simulation-based security against semi-honest receivers. Thus, a maliciously
circuit-private scheme induces a protocol which is private against malicious cor-
ruptions in the stand-alone model.

Let us now define maliciously circuit-privacy of FHE more precisely. We say
a scheme is circuit-private if it satisfies the following privacy notion ala [IP07],
stating that any (pk, c) pair induces some “effective” encrypted input x∗:

1 Privacy against a malicious sender comes “for free”, as the protocol is 2-round, and
the client speaks first.

538 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

Definition 1. (informal). We say a C-homomorphic2 encryption scheme
(KeyGen,Enc,Eval,Dec) is (maliciously) circuit-private if there exists an un-
bounded algorithm Sim, such that for all security parameters k, and all pk∗, c∗

there exists x∗, such that for all circuits C ∈ C over |x∗| variables Sim(1k, C(x∗))
=s Eval(1k, pk∗, C, c∗) (statistically indistinguishable). We say the scheme is
semi-honestly circuit-private if the above holds only for well-formed pk∗, c∗ pairs.

An FHE satisfying Definition 1 induces a protocol private against a mali-
cious sender (by IND-CPA security of the FHE), but private against unbounded
malicious receivers with unbounded simulation.3

On one hand, this privacy notion is weaker compared to full security as the
simulation is not efficient; on the other hand, it is stronger in the sense that it
holds against unbounded adversaries as well.

Due to impossibility results for general 2-round sender-receiver computation
in the plain model (e.g. [BLV04]), this notion has become standard in the (non-
interactive, plain model) setting of computing on encrypted data
[NP01, AIR01, HK12, IP07] as a plausible relaxation.

It is important to note that we only consider the plain model. If preprocessing,
such as CRS was allowed, the malicious case could be easily reduced to the semi-
honest case. That is, given CRS, Enc could have added a NIZK proving that the
key is well-formed, and that the ciphertext is a valid ciphertext under that public
key. Then, Eval could explicitly check that the proof is valid, if not return ⊥,
otherwise run Eval as for the semi-honest setting (for that scheme). Some care
needs to be taken even in this setting, so that the scheme for the semi-honest
setting used has somewhat enhanced privacy. More specifically, it needs to hold
assuming (pk, c) are in the support of valid pk and c ∈ Encpk(·) respectively,
but not that the distribution of (pk, c) is identical to the honestly generated
one. Indeed, such a semi-honestly circuit-private scheme has been put forward
in [GHV10] (when applied to a perfectly correct FHE scheme). On the other
hand, the semi-honestly private scheme suggested in [vDGHV09] needs that pk
has the proper distribution (KeyGen(1k)), rather than just being in the support
of that distribution.

To summarize, our main “take home” theorem is as follows.

Theorem 1. (informal) Assume an FHE scheme F with decryption circuits in
NC1 exists. Assume further there exists a maliciously circuit private HE B that
supports bit OT exists. Then, there exists a maliciously circuit private multi-hop
FHE scheme.

There exist several instantiations of the theorem by ingredients from the liter-
ature. All known FHE schemes from the literature, such as [Gen09, vDGHV09,
BV11] have efficient decryption circuits as required by the Theorem. Some candi-
dates for B are [NP01, AIR01, HK12].

2 In particular, for fully homomorphic schemes, C is the class of all circuits.
3 Jumping ahead, settling for computational indistinguishability with unbounded sim-
ulation would allow for somewhat simplified constructions. However, we shoot for
the best achievable privacy notion.

Maliciously Circuit-Private FHE 539

In terms of implications toMPC, our result can be interpreted as non-interactive
2PC protocols with asymmetric inputs as follows.

Theorem 2. (informal) Assume the preconditions of Theorem 1 hold. Then,
there exist 2-message client-server MPC protocols where the client holds x, and
the server holds n = 1|x| a circuit C with n inputs (which may be much larger
then x), and 1k a security parameter. The client learns C(x) (but nothing else,
not even |C|), and the server learns nothing about x (but |x|). The privacy guar-
antee for the client is standard simulation-based computational privacy. The pri-
vacy guarantee for the server is based on unbounded simulation (against possibly
unbounded clients). The protocols’s communication is at most poly(n, k) (as the
client is efficient in its own input). 4

Multi-hop circuit-private FH. It is a desirable property of an FHE scheme that
the outputs of Eval applied to any given circuit C mapping {0, 1}n to {0, 1}m
can be fed again into Eval running on a circuit taking {0, 1}m as input, and so on
- an unbounded number of times. In the terminology of [GHV10], this property
of a HE scheme is referred to as multi-hop. If only upto some i such iterations
are supported, the scheme is called i-hop. The standard definition of FHE, thus
corresponds to 1-hop encryption. However, there exists a simple transformation
for any compact FHE into multi-hop. This is done by including an encryption of
the secret key in the public key, and homomorphically decrypting the encrypted
outputs received using the encrypted key bits (as in Gentry’s bootstrapping the-
orem [Gen09, GHV10]). The maliciously circuit-private FHE resulting from our
construction is also designed to be only 1-hop, but the standard transformation
does not make it multi-hop, as it does not preserve malicious circuit-privacy.

In Section 3.3, we define multi-hop maliciously circuit-private HE, and sketch
a modification to our 1-hop scheme, making it multi-hop. Our transformation
starts with the above transformation, and adds some validation of the added key
bits.

1.1 Previous Work

Circuit private FHE implicit in work on MPC. As explained above, (compact)
HE naturally gives rise to non-interactive client-server protocols for computing
on encrypted data (and the privacy level of the protocol depends on the notion
of circuit privacy of the FHE). An essential requirement is that client’s work in
these protocols is sub-linear in |C| (ideally independent of |C|).

In the other direction, standard two-message client-server protocols (inputs
of similar length, only client learns output), robust against malicious receivers,

4 In fact, the above result can be interpreted as general ”size hiding” 2PC with asym-
metric inputs. The case in Theorem 2 is a special case with F (x, y) being the uni-
versal function of evaluating a circuit y on input x. In the general case, F is some
polynomial-time computable function. The client learns F (x, y) (but not even |y|),
and the server learns only |x|. This can be implemented by letting the server set
C = Fy(x), and run the protocol from Theorem with input C, |x| for the server and
input x for the client.

540 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

induce circuit-private (not necessarily compact) HE, when applied with the uni-
versal function [CCKM00,GHV10]. Roughly the round-1 message of the client is
viewed as an encryption for his input, and the senders’ reply as Eval’s output.
This is still not an encryption scheme, as in the protocol, the client needs to
”remember” the randomness generating a round-1 message in order to “decode”
the reply. This is solved by setting KeyGen output a public-key, private-key pair
of some public key encryption scheme as (pk, sk) respectively. Enc is augmented
concatenate an encryption cr of its randomness under pk. Eval is augmented to
pass cr as is. Intuitively, if the protocol was private against malicious clients,
then so is the encryption scheme (as the randomness was known to the client
anyway).

One specific construction of HE from 2PC is by combining an information-
theoretic version of Yao’s garbled circuits with oblivious transfer (OT) secure
against malicious receivers [NP01, AIR01, HK12, IP07]. As information-theoretic
Yao is only efficient for NC1, the resulting HE scheme captures only functions
in NC1. Also, this generic construction, even in the semi-honest setting (for all
known 2PC protocols from then literature) has encrypted output size at least
|C|, while the crux of HE is having compact encrypted outputs—ideally poly(k),
as modern FHE schemes achieve.

Another relevant work is a recent work on 2-message 2-party evaluation of
a public function f(x, y), where the work of the party holding y (wlog.) is
poly(k, n, log |f |), where |f | is the size of f ’s circuit representation [DFH12].
Their protocol is maliciously UC-secure [Can01]. Instantiating f with the uni-
versal function for evaluating circuits, results in HE with good compactness
properties for circuits of certain size. However, this protocol requires CRS, and
thus does not translate into (circuit private) HE in the plain model.

Circuit privacy in HE literature. Without the circuit privacy requirement, FHE
candidates have been proposed in a line of work following the seminal work
of Gentry [Gen09, vDGHV09, BV11], to mention a few. However, these works
typically do not have circuit privacy as a goal.

Circuit privacy in the semi-honest setting, for properly generated pk and c
has been addressed in [Gen09, vDGHV09]. In both works, the solution method is
akin to that used in additively homomorphic cryptosystems [GM84, DJ01]. The
idea in the latter is to (homomorphically) add a fresh encryption of 0. In FHE,
the situations is a bit more complicated, as the output of Eval typically has a
different domain than “fresh” encryptions, so adding a 0 is not straightforward.
However, a generalization of this technique often works (see e.g. [vDGHV09]).

Another approach suggested in [vDGHV09] for the semi-honest setting is re-
placing the encrypted output c with a Yao garbled circuit for decryption (with
sk, c as inputs), thereby transforming any scheme into a semi-honestly circuit-
private one.

The work of [GHV10] considers a generalization of circuit privacy of HE (re-
ferred there as function privacy) to a setting with multiple evaluators and single
encryptor (and decryptor), where all but a single evaluatorEi can collude to learn
extra information about Ei’s circuit. Among other contributions, in [GHV10], the

Maliciously Circuit-Private FHE 541

authors further abstract the Yao-based approach from [vDGHV09] as a combina-
tion of two HE scheme, one compact but not private, the other (semi-honestly)
private but not compact, so that the result is both compact and (semi-honestly)
private.We use this transformation as is as a first step in our transformation (along
with some additional ideas formulated in [GHV10]).

As mentioned above, the malicious setting (with compact encrypted outputs)
has been addressed in the context ofObliviousTransfer (OT) [NP01,AIR01,HK12]
(these works can be viewed as HE for the limited class of Oblivious Transfer func-
tions). For broader classes of functions [IP07] devisemaliciously circuit-privateHE
for depth-bounded branching programs (with partial compactness).

All of the above schemes use the Conditional Disclosure of Secrets (CDS)
methodology [GIKM98]. CDS is a light-weight alternative to zero-knowledge
proofs, that receives a secret string, an encryption c of some x in an HE, and
the corresponding pk. It discloses the secret iff. x satisfies a certain condition.
CDS was originally defined for well-formed pk, c, leading to semi-honestly cir-
cuit private HE constructions [AIR01]. The CDS from [AIR01] works for additive
HE with ciphertexts over groups of a prime order, and [Lip05] generalized it to
groups of sufficiently “rough” composite order. For specific groups, the tech-
nique of [Lip05] turned out to generalize to situations where (pk, c) may not be
well-formed. Roughly, the secret luckily remains hidden even if the CDS was
obliviously performed on the (possibly malformed) encryptions and pk as if they
were proper. Such CDS was used in [HK12, IP07] to obtain maliciously circuit-
private HE.

1.2 Our Techniques

We devise a framework for transforming FHE schemes with no circuit privacy
requirements into maliciously circuit-private FHE. We use 2 ingredients which
have implementations in the literature: powerful (evaluate circuits) compact
FHE without privacy F , and weak (evaluate formulas) non-compact maliciously
circuit-private HE P (by “compact” we refer to the strong requirement that
encrypted outputs have size poly(k), where k is the security parameter). Our
construction proceeds in three steps:

Lemma 1 ([GHV10]). A compact FHE without privacy can be upgraded to
(compact) semi-honestly circuit private by decrypting its encrypted output under
a (possibly non-compact) enhanced semi-honestly private HE, capable of eval-
uating the decryption circuit. The resulting scheme has enhanced semi-honest
circuit privacy, assuming only that pk, c are in the support of honestly generated
pairs, rather then being distributed as honestly generated pairs.

Lemma 2 (this paper). An enhanced semi-honestly circuit-private FHE can
be upgraded to maliciously circuit-private by homomorphically validating its keys
and inputs under a (possibly non-compact) maliciously circuit-private FHE ca-
pable of evaluating a circuit validating that (pk, c) are well-formed (provided a
suitable witness as additional input).

542 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

The output resulting from composing these two steps is not compact—but
fortunately:

Lemma 3 (this paper,same construction as [GHV10] for semi-honest
setting). Any circuit-private FHE can be upgraded to compact by homomor-
phically decrypting its output under a compact (F)HE (while preserving circuit-
privacy).

Let us now elaborate on each of the steps.

Step 1. The first step transforms a ”main” (compact) FHE scheme M1 into
a semi-honestly circuit-private scheme (M2). An output encrypted via EvalM1

may contain extra information about the structure of C (though limited to
poly(k) since M1 is compact). An easy way to strip all information beyond the
value of the function is to decrypt it already during Eval under an ”auxiliary”
scheme A1 which is semi-honestly circuit-private. To make sure the evaluator
learns no secret information (skM , x), the decryption is done ”blindly”, using
A1’s homomorphic properties. Details follow.

KeyGen generates a public key pk = (pkM1 , pkA1 , askM1
= EncA1(skM1)) and

secret key skA1 . Enc simply outputs cM1 = EncM1(x). Now, Eval first computes
outM1 = EvalM1(C, cM1), and outputs EvalA1(DecM1 , (outM1 , askM1

)).5 Dec
simply applies DecA1 to Eval’s output.

Enhanced semi-honest circuit privacy of the resulting scheme follows by (semi-
honest) circuit privacy of A1, and the correctness of M1. For enhanced circuit
privacy, we assume perfect correctness ofM1 rather then allowing for negligible
decryption error, as is common in the FHE literature. The reason is that oth-
erwise, the receiver could pick pairs (pk, c) for which the output of Eval is not
C(x) with high probability over Eval’s randomness, and potentially reveal a bit
about the circuit not consistent with x.

Note that since M1 is compact |outA1 | = poly(k) even if A1 is not compact.
M1,A1 can be instantiated via almost any FHE from the literature, and (non-
compact) semi-honestly circuit-private HE obtained from non-interactive 2PC
protocols, such as Yao-based protocols (see above). In particular, although most
FHE schemes from the literature have (negligible) decryption errors, they can
be modified to have perfect correctness, while maintaining security.6

5 The trick of ”re-encrypting” under A1 using A1’s own Eval procedure to perform the
decryption is similar in Gentry’s bootstrapping technique in [Gen09] for transforming
a “somewhat homomorphic” scheme into (unleveled) FHE. One difference is that
here we can use two different schemes. Another difference is that for the purpose
of reducing noise via Gentry’s bootstrapping theorem, it is important to hardwire c
as a string into the decryption circuit, rather then supplying an encryption of it. In
step 1, we can afford introducing c into Dec in either way.

6 Consider for example the [BV11] scheme can be modified to use Gaussian noise
truncated to a value which still does not incur decryption errors. It is easy to prove
that the new scheme remains secure under the same (LWE) assumption - essentailly
because samples larger then some bound hae negligible probability of being sampled.
A similar trick can be applied to other LWE-based FHE schemes [BV11, Bra12,
GSW13].

Maliciously Circuit-Private FHE 543

Step 2. The above approach generally fails in the malicious setting, even with
stronger ingredients. Let A2 be a maliciously circuit-private scheme, andM2 be
the semi-honestly circuit-private FHE resulting from step 1. An obvious attempt
is using A2 instead of A1 in the first decryption; another is repeating the con-
struction, taking M2 and additionally decrypting its output under A2. Neither
is enough.

On a high level, in a maliciously circuit-private A2, any pkA2 , askM ”induce”
an encryption of some sk∗M under A2, so, we may think of them as being well-
formed. However, the following potential attack exists. Assume even that pkM
is well-formed, but cM is arbitrarily malformed. Thus outM is not guaranteed
to be a valid encryption of some x, and may instead carry some other arbitrary
(upto poly(k)) bits of information about C. In turn, DecM (cM , sk∗M) may leak
some of this information (even if sk∗M is the right key corresponding to pkM).

To fix the above potential attack (and other similar ones) and achieve mali-
cious circuit privacy, we validate (pk, c) of M2. (In particular, for M2 resulting
from step 1, we need to also check that askM1

encrypts an skM1 that corre-
sponds to pkM1 as part of validating pkM2 is well-formed.) Such validation is
generally hard, so we augment KeyGenM2

and EncM2 to supply a helpful wit-
ness (encrypted under A2). For starters we want the full randomness used by
them. However known A2 instantiations with malicious circuit privacy against
unbounded adversaries, as we require can only evaluate functions in NC1 and
KeyGenM2

,EncM2 need not be in NC1. 7 But surely they are in P, and we can use
the standard transform to validate polynomial work in parallel we require the
witness to also include values of all intermediate wires of KeyGenM2

,EncM2 , val-
idate all gates in parallel, and have a log-depth AND tree. A similar issue arises
already in step 1, where A1 needs to evaluate the decryption circuit ofM1. The
same trick can not by applied there, as the values to decrypt are not known
to the receiver. Thus we need to assume DecM1 is in NC1, which is fortunately
satisfied by all known schemes from the literature.

Somewhat more precisely, we transform M2 in the following non-blackbox
way.

– Enc(x) outputs cM2 = EncM2(r
′, pkM2 , x) along with arM2

= EncA2(r) - a
witness that cM2 is a proper encryption (derived from r′).

– Eval(C, cM2) : Let V alidate(pkM2, cM2 , out, rkM2 , rM2) denote a circuit
where rkM2 , rM2 arepurportedwitnesses for thewell-formedness ofpkM2, cM2

respectively. It outputs out if rkM2 , rM2 certifywell-formedness of pkM2 , cM2 ,
and the all-zero vector otherwise.

• Compute outM2 = EvalM2(pkM2 , C, cM2).

• Output out = EvalA2(V alidatepkM2 ,cM2 ,outM2
(arkM2

, arM2
)) (that is,

fixing the suitable variables in V alidate to the values at the subscript).

– Dec outputs DecM2(skM2 ,DecA2,out(skA2)).

7 Settling for unbounded simulation against bounded distinguishers, would allow to
evaluate arbitrary circuits under the scheme without further complications, however,
we are shooting for the strongest possible privacy guarantee.

544 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

Note that pkM2 , cM2 , outM2 are hardwired into V alidate, rather then en-
crypted via A2 (in Eval). The subtle reason for this, is that if pkM2 is malformed,
“encrypting” values under it can yield effective encryptions of different values,
possibly making us perform the “wrong” validation.

In a nutshell, the construction works by enhanced semi-honest circuit privacy
ofM2 if (pkM2 , cM2) is well-formed, and the validation procedure takes care of
the fact that it is indeed well-formed (otherwise, no information whatsoever is
revealed about C).

Merging steps 1 and 2 (Section 3.1). Steps 1+2 provide a clear blueprint for
transforming a (compact) FHE F into maliciously circuit-private FHE by com-
bining it with a maliciously circuit-private HE P capable of evaluating F ’s de-
cryption and validation circuits. That is, the same maliciously circuit-private P
may instantiate both A1 and A2. M2 resulting from step 1 is fed into step 2.
In section 3.1 we describe the natural composition of the two steps in a sin-
gle protocol, making a small shortcut that exploits the structure of M2 output
by step 1, and the fact that A1 = A2. Namely, we do not have to check the
well-formedness of askM2

as an encryption under A2.

Step 3. Let us look more closely at the compactness of the scheme achieved
from steps 1+2. The validate circuit that needs to be evaluated has input of
size m = poly(k, n) (and polynomial size |C|). Thus, if P is not compact, the
encrypted output size is some poly(|C| ,m, k) – also poly(k, n).

This is acceptable for our main application of computing on encrypted data,
as receiver’s input is of size n. However, it would be nice to meet the current
standard for FHE where encrypted output size is independent of n.

A more complicated setting is that of leveled FHE. In such schemes,
KeyGen(1k, 1d) generates an additional key pkEval received by Eval (all the rest
remains the same), which may grow with the bound d on depth of circuits to be
evaluated. In a nutshell, such schemes are often considered in the FHE literature
in order to make the underlying assumptions more plausible, avoiding so called
(weak) circular security assumptions.

The encrypted output size is poly(k, n, d)—quite undesirable!
The idea is to combine the circuit-private (non-compact) HE M3 resulting

from steps 1+2 with a compact FHE A3 with no circuit privacy “in the opposite
direction” from step 1. That is, use A3 to homomorphically decrypt the output
ofM3 to “compress” it. Intuitively, even though the FHE A3 used for decrypting
is not circuit-private, the resulting scheme is, because EvalA3 merely acts upon
a string that we originally were willing to output “in the plain”, so there is no
need to protect it.

2 Preliminaries

Notation. We use −−−→arrow to denote vectors, though not always—we tend to use
it to stress element-wise handling, e.g. bit-by-bit encryptions. For a function

Maliciously Circuit-Private FHE 545

f(a, b, c, . . .),
−→
f (−→a , b,−→c , . . .) is a shorthand for (f(a1, b, c1, . . .), f(a2, b,

c2, . . .), . . .). When considering function vectors, all inputs which are the same in
all executions appear without an arrow (even if they are vectors by themselves).

For a pair of vectors u, v (u, v) denotes the vector resulting from concatenating
u, v. For vectors u, v over some U t, V t (u; v) denotes ((u1, v1), . . . , (ut, vt)).

For a function f(a, b, c, . . .), we denote the set of functions fixing some of its
parameters (here b, c) as follows f |b,c (a, . . .). f |b=B,c=C denotes a function fixing
the parameters to particular values B,C respectively.

For randomized algorithms A(x, r), we sometimes write out ∈ A(x) as a short-
hand for out ∈ support(A(x, r)). By negl(k) we refer to a function that for all
polynomials p(k), negl(k) < 1

p(k) for all k > K, where K is a constant de-

termined by p. We use the standard notions of statistical and computational
indistinguishability of distribution ensembles. Usually an encryption of x under
scheme Y will be named yx.

Representation Models When we say a HE scheme is C-homomorphic for a
class of functions, we actually mean functions having programs C from the
set C of programs. By a program C, we mean a string representing a function
f : {0, 1}n → {0, 1}. The correspondence between programs C and the function
it represents is determined by an underlying representation model U . A repre-
sentation model U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is an efficient algorithm taking
an input (C, x), and returning f(x), where f is the function represented by C.
By |C| we simply refer to the length of the string C (as opposed to size(C), which
is a related measure depending on U , such as the number of gates in a boolean
circuit). For completeness, for circuits and other models we let U(C, x) = 0
whenever the input (C, x) is syntactically malformed.

As typical in the FHE literature, our default representation model is boolean
circuits, unless stated otherwise. We use circuits over some complete set of gates,
such as {AND,XOR,NOT }. Another model we will consider is boolean formu-
las, which are circuits with fanout 1. We assume the underlying DAGs of circuits
are connected. For formulas, we assume wlog. that depth(C) ≤ c log size(C) for
a global constant c (that is, that they are “balanced”). For a circuit C, size(C)
denotes the number of wires in C’s underlying graph, and depth(C) the number
of gates on the longest path between an input wire and the output wire of the
circuit. By NC1 we refer to the class of function (families) with uniform formulas
of size poly(n).

2.1 Homomorphic Encryption

Throughout the paper k denotes the security parameter taken by HE schemes. A
(public-key) homomorphic encryption scheme (HE) E = (KeyGenE ,EncE ,EvalE ,
DecE) is a quadruple of PPT algorithms as follows.

KeyGen(1k): Outputs a public key, secret key pair (pk, sk).
Enc(pk, b): Takes a public key and a bit b to encrypt, and returns an encryption

c of the bit under pk.

546 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

Eval(pk, C, c = (c1, . . . , cn)): Takes a public key pk, a bit-by-bit encryption c of
a bit vector x ∈ {0, 1}n, a function represented by a program C (encoded
in a pre-fixed representation model U) and outputs an encryption out of bit
U(C, x). We assume wlog. that pk includes 1k (intuitively, this is intended
to handle maliciously generated public keys). We refer to outputs of Eval as
“encrypted outputs”.

Dec(sk, out): Takes a secret key sk, and a purported output out of Eval, outputs
a bit.

Throughout the paper, HE is semantically secure if (KeyGen,Enc,Dec) satis-
fies standard IND-CPA security for public key encryption schemes as in [GM84].
An HE scheme is weakly circular-secure if even knowing a bit-by-bit encryption
of the schemes’ secret key sk, the adversary still has negligible advantage in
the IND-CPA experiment.In this paper, we consider a general notion of homo-
morphism, under various program classes, rather then just circuits (to express
weaker homomorphism properties then FHE).

Definition 2 ((U, C)-homomorphic encryption). Let C =
⋃
Ck. We say a

scheme E is (U, C)-homomorphic if for every k > 0 and every program C ∈ Ck
on inputs x ∈ {0, 1}n, the experiment

(pk, sk)
$←− KeyGen(1k)

out
$←− Dec(sk,Eval(pk, C,

−−→
Enc(pk,−→x)))

outputs out = U(C, x) with probability 1 for all x ∈ {0, 1} and all random choices
of the algorithms involved. We say the scheme is k-independently homomorphic
if Ck = C for all k.8

By default our schemes are k-independently homomorphic (in particular the Ck’s
are not explicitly defined).

If a scheme satisfies that C equals the set of all circuits, and is k-independetly
homomorphic, we refer to it as “fully homomorphic” (FHE).

Definition 3. We say a (U, C)-homomorphic scheme E is compact if there ex-
ists an output bound B(k, n, |C|) = poly(k) on the output of Eval on all 1k, n and
C ∈ Ck on n bits.

Another standard variant of HE we consider is leveled HE. In this variant,
KeyGen is modified to take another parameter 1d. KeyGen outputs keys (pk, sk),
where pk includes a fixed-size part pkEnc, which depends only on k; likewise,
sk depends only on k. Enc is modified to accept pkEnc as the public key, and
only Eval receives the entire public key pk. In particular, Enc is the same for
all d. The notions of compact HE is as for non-leveled schemes (B(k, n, |C|) =
8 For instance, the notion of “somewhat homomorphic” schemes in the FHE literature
corresponds to non k-independent schemes, where Ck is a set of circuits with depth
bounded by some function of k.

Maliciously Circuit-Private FHE 547

poly(k)).For compact schemes, the algorithm Dec is also independent of d. We
say such a leveled compact scheme is an FHE, if for all D, the (standard) HE ED
induced by fixing d = D when calling KeyGen(1d, ·) induces a k-independently
C-homomorphic scheme ED, where C is the set of all depth-D circuits. The
encrypted outputs’ size is still poly(k) (for a global polynomial independent of
d).

Standard FHE schemes can be thought of as a special case of leveled FHE
schemes where KeyGen simply ignores d. Thus, all schemes Ed are the same
(standard) FHE scheme. We refer to this special case as unleveled FHE. A HE
scheme is maliciously circuit private if every (pk, c) (even arbitrarily malformed)
induce some “effective” input x∗.

Definition 4. Let E = (KeyGen,Enc,Eval,Dec) denote a (U, C)-homomorphic
scheme. We say E is (maliciously) circuit private if there exist unbounded algo-
rithms Sim(1k, pk∗, c∗, b), and deterministic Ext(1k, pk∗, b), such that for all k,
and all pk∗, c∗ = (c∗1, . . . , c

∗
n) and all programs C : {0, 1}n → {0, 1} ∈ (U, C) in

Ck the following holds:

–
−→
x∗ =

−→
Ext(1k, pk∗,

−→
c∗).

– Sim(1k, pk∗, c∗, U(C, x∗)) =s Eval(1k, pk∗, C, c∗).

In particular, for circuits C(x1, . . . , xn) ∈ Ck the output distribution of Eval
(including length) depends only on n, k. For leveled schemes, Sim and Ext also
take a depth parameter 1d. We say a scheme is semi-honestly circuit-private
if the above holds, where pk∗, c∗ belong to the set of well-formed public-key,
ciphertext pairs.

3 Framework

In this section we spell out the construction outlined in the introduction in more
detail, including a certain simplification. All security proofs are deferred to the
full version. We will need the representation model (USI , C) (from “split-input”)
and the weaker notion of “input-privacy” for P . The purpose of introducing this
seemingly unnatural representation model and relaxed circuit privacy definition
is to allow for simpler implementations of auxiliary HE schemes we use, and
overall presentation of our result. The scenario in Theorem 3 is that a function
f known to the adversary is to be homomorphically evaluated on a (partially)
secret input y, together with the adversary’s input x, so hiding f would be an
overkill. More specifically, the implementation we use for P is based on Yao’s
garbled circuits, which works with a pair of private inputs x, y, and a public
circuit C. It outputs C(x, y), but nothing else about x, y. It also leaks quite a
lot about C itself (there is no goal of protecting it). While we could use Yao to
get circuit privacy for f |y scheme by evaluating a universal function, there is no
need to. The straightforward use of Yao with C = f provides exactly what we
need.

Programs in the model are represented by a pair (Cp, Cs), where Cp is a circuit

on some m variables, and Cs ∈ {0, 1}t for some t ≤ m. A program (Cp, Cs) is

548 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

interpreted as a function f over n = m − |Cs| variables via USI((Cp, Cs), x) =
Cp(Cs, x). Typically, we will consider (USI , C)-homomorphic schemes where for
each (Cp, Cs), all (Cp, Z) for Z ∈ {0, 1}∗ of length t ≤ m are in C. In this case,
we specify C as just a set of circuits.

We say a (USI , C)-homomorphic scheme is input-private if it satisfies Defi-
nition 4, with the only modification that Sim receives Cp as an input. (This is
exactly the guarantee from converting any 2PC protocol where both parties have
private input but the function is public to an HE.)

3.1 From Compact FHE to Circuit-Private (Somewhat Compact)
FHE

In this section we spell out the combination of steps 1 and 2 as described in
the introduction. The schemes F ,P are a compact FHE, and maliciously circuit
private HE respectively. Here P is for the split input model, and is input-private
rather then circuit-private. Although the construction would go through with
standard circuit privacy of P , this simplifies the presentation and instantiation
of the framework.

Given a leveled FHE F we define a set of programs CF (to be interpreted via
USI) as follows.

1. Let DecF ,k(skF , outF) denote the decryption circuit of F instantiated with
security parameter k (recall Dec,Enc are independent of d).

2. Let V alidatek,d,n(pkF , cF , sk′F , rFE , outF) be the circuit computing

V alidatek,d,n(. . .) =

⎧⎪⎨
⎪⎩
outF if (pkF , skF) ∈ KeyGenF (1k, 1d), and

∀i (cF,i ∈ EncF (bi, rFE,i) for some bit bi ∈ {0, 1})−→
0 otherwise.

where:
– (pkF , skF) is a purported public-key private-key pair output by

KeyGenF (1k, 1d). sk′F = (skF , rFK) where rFK is the purported random
string used in the generation of (pkF , skF), along with all the interme-
diate outputs of gates in the circuit for KeyGen on input rFK .9

– cF = (cF ,1, . . . , cF ,n) is a purported encryption under pkF of the input
bit vector and rFE is a purported vector of randomness used when gen-
erating cF , along with intermediate values for the circuit (where rFK,i

corresponds to bit xi).
3. Let CF include all pairs of the formsC = (V alidatek,d,n(. . .), (pkF , cF , outF))

and (DecF ,k(skF), outF).

Construction 5. Let F ,P be schemes as above. We construct the following
scheme M3.

9 As explained in the intro, the goal of the intermediate values is to put the validation
in NC1, making it implementable by known circuit-private P with the required notion
of privacy.

Maliciously Circuit-Private FHE 549

KeyGenM3
(1k): let (pkP , skP)

$←− KeyGenP(1
k), (pkF , skF)

$←−
KeyGenF (1k, 1d), and let sk′F = (skF , rKF), where rKF is induced by
the randomness used by KeyGenF as specified in V alidate; −−→psk′

F =
−−−→
EncP(pkP ,

−−→
sk′F). Return (pkM3 , skM3) = ((pkP , pkF ,−−→psk′

F), (skP , skF)).
Here pkM3,Enc = (pkP , pkF ,Enc, pskF).

EncM3(pkM3 = (pkP , pkF ,Enc, pskF), b ∈ {0, 1}): Return (c,−−→prFE) =

(EncF(pkF , b),
−−−→
EncP(pkP ,−−→rFE), where rFE is derived from the randomness

used by EncF as in V alidate.
EvalM3(1

k, pkP = (pkP , pkF , psk′
F), C, c = (cP ; prFE)):

1. If C is syntactically malformed, or |x| does not match the number of
inputs to C, replace C with the circuit returning x1 ∧ x1.

2. Set outF = EvalF(pkF , C, cF)), outP = EvalP(pkP , (DecF , outF), pskF)
3. Let (Cp, Cs) = (V alidatek,d,n, (outP , pkF , cF))
4. Compute and output out = EvalP (pkP , (Cp, Cs), psk′

F , prFE).

DecM3(skM3 , outA): Output y = DecF (skF ,
−−−→
DecP(skP ,

−→
out)).

Theorem 3. Assume a compact leveled FHE scheme F = (KeyGenF ,EncF ,
EvalF ,DecF) and P a (USI , CF)-homomorphic, input-private scheme, exist. Con-
sider the resulting scheme M3 as specified in Construction 5 above when instan-
tiating with F ,P. Then M3 is a circuit-private FHE. It is unleveled iff M3 is
unleveled, and is compact iff P is compact. If P is not compact, M3’s output
complexity is poly(k, d, n) (poly(k, n) if F is unleveled).

3.2 Compactization of Circuit-Private FHE

When instantiated by the best known constructions from the literature,
Theorem 3 only yields poly(n, k), poly(n, d, k) encrypted output complexity for
unleveled and leveled F respectively. This is so, since all circuit-private CF -
homomorphic P for some FHE F we know of are not compact.

In this section, we devise a simple transformation (corresponding to Lemma 3 in
the introduction) for making a (leveled) scheme’s output compact (only poly(k)),
while preserving circuit privacy. This will yield leveled circuit-private FHE with
optimal (poly(k)) compactness.

The idea is to use bootstrapping similar to that of step 1 but “in reverse”
order. Namely, we take a main scheme M3 which is circuit-private but not
compact, and ”decrypt” it under a scheme A3 which is compact but has no
circuit privacy guarantees.

Theorem 4 (Compaction theorem). Assume a leveled C-homomorphic
circuit-private scheme M3 and a compact FHE scheme A3 exist.10 Then the
scheme M4 in the following construction is a compact C-homomorphic circuit-
private scheme.

10 In fact, A3 should only be compact and homomorphic for the circuit family it is
used for. It does not need to be an FHE.

550 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

Construction 6. Let M3,A3 be HE schemes as in Theorem 4.

KeyGenM4
(1k, 1d): Sample (pkM3 , skM3)

$←− KeyGenM3
(1k, 1d, rk); let

sk′
M3

= (skM3 , rk); (pkA3 , skA3)
$←− KeyGenA3

(1k); −−→ask′
P

$←−
−−−−→
EncA3(pkA3 ,

−−−−−−−→
(skM3 , rk)). Output (pk, sk) = ((pkM3 , pkA3 , askM3

), skA3).

Here pkEnc = (pkM3,Enc, pkA3 , askM3
).

EncM4(pk, b): Output EncM3(pkM3,Enc, b).
11

EvalM4(1
k, pk, C, c):

– outM3

$←− EvalM3(1
k, pkM3 , C, c).

– Let DecM3,k denote the decryption circuit of M3 with parameter k.
Then DecM3,k|out=outM3

(skM3) is a circuit for decrypting (hard-wired)

outM3 under secret keys generated by KeyGenM3
.

– Compute and output outA3 = EvalA3(1
k, pkA3 , DecM3,k, askM3

).

DecM4(sk = skA3 , out): Output DecA3(skA3 , out).

Combining Theorem 3 and Theorem 4, we get:

Theorem 5. Assume a compact unleveled FHE scheme F and a (USI , CM)-
homomorphic maliciously input-private scheme P exist. Then there exists a ma-
liciously circuit-private compact unleveled scheme M4.

Getting rid of circular security Theorem 4 still leaves open the question of ob-
taining compact leveled circuit-private FHE. We show that posing some mild
additional efficiency requirements onM3,A3 in Theorem 4, we are able to mod-
ify Construction 6 to allow for a leveled Athree.

Theorem 6. Assume schemes F ,P as Theorem 5 exist. Additionally, assume
DecP,k(out, sk) has depth poly(depth(Cp), k), where out = EvalP(Cp, Cs) for
some Cs.

12 Assume also that {DecF ,k} induced by F is in NC1. Then there
exists a compact leveled circuit-private scheme M4.

3.3 Multi-hop Circuit-Private FHE

In this chapter, we focus on unleveled FHE schemes and show how to upgrade
Theorem 5 to yield a multi-hop M4 (under the same assumptions).

A multi-hop scheme is an FHE scheme, where Eval is modified to support
(pk, C, c), where the ci’s are either outputs of Enc or of previous Evals. More
formally, if ci is a purported output of Enc we label it as a level-0 execution of
Eval. We recursively define an execution of Eval to be of level l, if the highest level
input ci to it is of level l − 1. Formally defining (perfectly correct) multi-hop is
a natural recursive extension of Definition 2. The base case of level-0 executions
is correct decryption for chiphertexts generated by Enc as in Definition 2. We

11 Here and elsewhere, we do not distinguish between the parts of pk used in Eval and
Enc, and refer to both as pk. The distinction is implied by the context.

12 The circuit for Dec can be efficiently computed from out.

Maliciously Circuit-Private FHE 551

further require that the evaluation of a level-i execution for every i > 1 is
correct in the sense that applying Dec to its output recovers the value induced
by appropriately combining the circuits involved in the graph of Evals. Similarly,
a scheme is i-hop if it satisfies the above correctness requirements only for level-j
executions of Eval, where j ≤ i. Thus standard FHE correspond to 1-hop. The
definitions of IND-CPA security and compactness extend for multi-hop schemes
in the natural way. The definition of maliciously circuit-private multi-hop FHE
is precisely Definition 4.

The construction induced by Theorem 5 is only 1-hop, but not multi-hop.
There exists a straightforward transformation from compact FHE schemes into
multi-hop schemes (see discussion in Section 1), but it does not necessarily pre-
serve malicious circuit privacy. However, it can be modified to work here. We
start from the scheme M4 resulting from our construction, instantiated with
an FHE F , and a maliciously circuit private P , where M1 = A3 = F , and
A1 = A2 = P , reusing keys for the same scheme. Thus, both encrypted inputs
and encrypted output of M4 are encryptions under F and same key. We can
thus include encryptions of the bits of skF in pkMH . In subsequent executions
of Eval using this one as input, one can first decrypt the outi’s using these key
bits, and plug the decrypted outi’s into the original schemeM4 as the ci’s input
to Eval. The main caveat is that in our construction the well-formedness of the
ci’s fed to a subsequent instance of Eval needs to be certified (under A) as part
of the output of the previous Eval. The key observation is that there is no need
to certify the well-formedness of the outi’s, but rather only that of the secret key
bits used for decryption!13 Moreover, we only need to prove that skF constitute
valid encryptions of some bits under pkF specified in pkM4 (not even correspon-
dence to the pkF published as part of pk!). This is ok because skF is short and
independent of the circuit being evaluated. As these are decrypted under the
specified key bits in subsequent Eval’s, the result would be an enryption of some
value independent of the (subsequent) C, which is what we need (as in M4, if
validation fails, nothing is learned about C).

We defer an explicit description and full analysis of our multi-hop construc-
tion, as well as implications to MPC and comparison to [GHV10] to the full
version.

4 Instantiations of the Framework

We devise instantiations of schemes F ,P as required in Theorem 6. As these
requirements are strictly stronger then the requirements in Theorem 5, they
immediately yield an instantiation of Theorem 5 as well. The component F has
many instantiations from the literature.

13 If we had to certify them, seemingly, we would need to give a proof on the validity
of the execution of Eval, referring to its inputs. It is not clear how to make it short
and protect the privacy of that Eval’s circuit.

552 R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky

For P we use the following instantiation, induced by the specific construction
combining an information theoretic variant of Yao’s garbled circuits [IK02] with
maliciously circuit-private OT-homomorphic schemes.

Lemma 4. Assume the existence of circuit-private schemes which are ho-
momorphic for (bit) OT. In particular, the DDH,QR,Paillier or the DCRA
assumptions yield such OT schemes [AIR01, HK12]. Then there exists a
circuit-private (USI , C)-homomorphic scheme P where C consists of all (bal-
anced) formulas. Furthermore, P has decryption circuits DecP,k(sk, out) of depth
depth(Cp)poly(k), where out = EvalP(Cp, Cs).

The following corollary of Theorem 6 (5) and Lemma 4 is our working, ”take-
home”, instantiation of the framework.

Corollary 1. Assume a leveled FHE F with decryption circuits in NC1 exists.
Assume further that there exist (bit) OT-homomorphic circuit-private HE. Then
there exists a circuit-private compact FHE M4. M4 is unleveled if M is.

As mentioned above, M has many “efficient enough” instantiations. See the
full version for some examples and proofs of Lemma 4 and Corollary 1 (almost
immediate).

5 Future Work

The “work horse” of our bootstrapping-based transformation 1 for transform-
ing FHE into circuit-private is a circuit-private bit-OT-homomorphic HE. The
known constructions from the literature we are aware of can not base circuit-
private OT on some assumption the implies FHE (such as LWE, approximate
GCD etc.). We do not see good reasons, except for historical ones to why this
is the case. Such a construction would give an example of compact FHE which
can be made circuit-private without additional assumptions.

References

[AIR01] Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public key
encryption that allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)

[BKOI07] Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key
Encryption That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)

[BLV04] Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box
zero knowledge. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. (83) (2004)

[Bra12] Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

Maliciously Circuit-Private FHE 553

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) lwe. Cryptology ePrint Archive, Report 2011/344 (2011),
http://eprint.iacr.org/2011/344

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure Two-Party Computation with
Low Communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University (2009), http://crypto.stanford.edu/craig

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryp-
tion and Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

[GIKM98] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data pri-
vacy in private information retrieval schemes. In: Vitter, J.S. (ed.) STOC,
pp. 151–160. ACM (1998)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptology 25(1), 158–193 (2012)

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via
perfect randomizing polynomials (2002)

[IP07] Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007), Full version in,
http://www.cs.technion.ac.il/users/wwwb/

cgi-bin/tr-info.cgi/2012/PHD/PHD-2012-16

[Lip05] Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Commu-
nication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao
Kosaraju, S. (ed.) SODA, pp. 448–457. ACM/SIAM (2001)

[vDGHV09] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. Cryptology ePrint Archive, Report
2009/616 (2009), http://eprint.iacr.org/2009/616

http://eprint.iacr.org/2011/344
http://crypto.stanford.edu/craig
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2012/PHD/PHD-2012-16
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2012/PHD/PHD-2012-16
http://eprint.iacr.org/2009/616

Algorithms in HElib

Shai Halevi1 and Victor Shoup1,2

1 IBM Research, Yorktown Heights, NY, USA
2 New York University, New York, NY, USA

Abstract. HElib is a software library that implements homomorphic en-
cryption (HE), specifically the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme, focusing on effective use of the Smart-Vercauteren ciphertext
packing techniques and the Gentry-Halevi-Smart optimizations. The un-
derlying cryptosystem serves as the equivalent of a “hardware platform”
for HElib, in that it defines a set of operations that can be applied ho-
momorphically, and specifies their cost. This “platform” is a SIMD envi-
ronment (somewhat similar to Intel SSE and the like), but with unique
cost metrics and parameters. In this report we describe some of the al-
gorithms and optimization techniques that are used in HElib for data
movement, linear algebra, and other operations over this “platform.”

1 Introduction

Homomorphic encryption (HE) [18,8] enables performing arithmetic operations
on encrypted data even without knowing the secret decryption key. All HE
schemes to date roughly follow the outline of Gentry’s first candidate from 2009,
in which fresh ciphertexts are “noisy” to ensure security and this noise grows
with every operation until it becomes so large so as to cause decryption errors.
This results in a “somewhat homomorphic” encryption scheme (SWHE) that can
only evaluate low-depth circuits, which can then be converted to a “fully homo-
morphic” encryption scheme (FHE) using bootstrapping. Currently, the most
asymptotically efficient SWHE schemes that we have are the RLWE-variants
of Brakerski-Gentry-Vaikuntanathan scheme [6] and Brakerski’s scale-invariant
scheme [4], and the NTRU-based scheme [13,16]. All these schemes work in
polynomial rings, and use rings of the form Rp = Z[X]/(F (X), p) as their native
plaintext space, with F a cyclotomic polynomial and p an integer.

Smart and Vercauteren observed [19] that (for a prime p) an element in this
native plaintext space can be used to encode a vector of values from a finite
field Fpd , for some integer d that depends on F and p, and that homomorphic
operations then induce the corresponding entry-wise operation on the encrypted
vectors. Gentry, Halevi, and Smart showed [10] how to use the SV “ciphertext
packing” technique to perform asymptotically efficient computation, where a
(wide enough) T -gate arithmetic circuit can be evaluated homomorphically in
time T · polylog(k), with k the security parameter. Crucial to obtaining this
asymptotic efficiency is the use of automorphisms as a technique to move values
between the different “slots” in a given plaintext vector, following [17,6].

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 554–571, 2014.
c© International Association for Cryptologic Research 2014

Algorithms in HElib 555

Turning to software implementations, HElib [12] is an open-source C++ li-
brary that implements the BGV scheme, focusing on effective use of cipher-
text packing and the GHS optimizations. It includes an implementation of the
BGV scheme itself with all its basic homomorphic operations, and also some
higher-level procedures implementing the GHS data-movement procedures, sim-
ple linear algebra, and some other procedures. This report is focused on these
higher level procedures and the various optimizations that went into implement-
ing them.

A useful analogy to keep in mind is to think of the lower-level of HElib as im-
plementing an “assembly language” which is executed on a “hardware platform”
given by the underlying HE scheme. The “platform” defines a set of operations
that can be applied homomorphically and the cost of these operations; our goal
in the current work is to provide efficient implementation of simple routing and
linear-algebra procedures over that “platform.” Since the homomorphic opera-
tions define entry-wise operations on the vector of plaintext values, the “plat-
form” defines for us a SIMD environment (somewhat similar to things like Intel’s
SSE, the Motorola/IBM AltiVec architecture, and the like). Hence the focus of
this work is the design of efficient algorithms over this SIMD architecture.

A word of caution: The view of the HE “platform” as a linear array is oversim-
plified, and presented here for sake of readability. In reality we have something
closer to a multi-dimensional array (and even this view hides some details) —
see the full version [11, Section 5].

Although SIMD hardware architectures are quite common in practice (cf.
[20]), we were unable to find much algorithmic literature concerning asymptotic
efficiency in such environments. This is perhaps related to the fact that common
hardware architectures have vectors with only a handful of entries (for exam-
ple an SSE register can hold at most 32 8-bit values). On the other hand, the
plaintext arrays in HElib often hold a few hundred plaintext slots (sometimes
even a few thousand), making asymptotic treatment of SIMD algorithms more
relevant. Another difference between the “platform” provided by HE and the
common hardware SIMD platforms is their cost metrics: in HElib we need to
optimize for two parameters, namely time and noise-magnitude. These corre-
spond roughly to size and depth of the corresponding SIMD circuits, but the
correspondence is not quite one-to-one, since different operations have different
time and noise behavior.

Contents of this report. In Section 2 we introduce notations and describe some
details of the HE “platform.” In Section 3 we describe the implementation and
optimizations of the GHS permutation techniques. In particular we describe a
generalization of Benes networks to handle networks of arbitrary width, extend-
ing earlier work of Chang and Melham [7], and also our approach for optimizing
the GHS “hypercube networks.”

In Section 4 we describe our procedures for computing running- and total-sums
of a vector, for replicating the entries of a vector, and for performing a matrix-
vector multiplication, and in Section 5 we describe procedures for computing the
norm and trace functions entry-wise on a vector

556 S. Halevi and V. Shoup

In the full version [11] we describe a procedure for evaluating a polynomial
entry-wise on a vector. We also discuss how to adapt all of these procedures to
work on a multi-dimensional array (which is what more naturally arises in the
HE context), rather than a linear array.

2 Background and Notation

The characteristics that define the “hardware platform” for HElib are common
to many contemporary HE schemes, including the ring-LWE variants of BGV [6]
and Brakerski’s scale-invariant scheme [4], the NTRU-based HE scheme [13,16],
and maybe even some LWE-based schemes [5]. Two salient characteristics of
these cryptosystems are the following:

Growing noise. All contemporary SWHE schemes use noisy ciphertexts, where a
fresh ciphertext includes a noise component that grows with each homomorphic
operation, until it is so large that it causes decryption errors. However, different
operations have very different noise-growth behavior. For example, multiplica-
tion increases the noise much more than addition.

Plaintext vectors. The plaintext space of these schemes can be viewed as a vector
space over some finite field (or a module over a finite ring). This means that each
native plaintext of the cryptosystem corresponds to a vector of plaintext values
that the application cares about. The underlying field (or ring) and the dimension
of the vector are both derived from some parameters of the cryptosystems; see,
e.g., [10, Appendix C.2] (in the full version) for a description. When using such
cryptosystems for specific homomorphic computation, we are typically faced
with a 2-parameter optimization problem, trying to minimize both the noise-
growth and the running time. In a typical scenario we would first choose the
system parameters, which determine the maximum allowable level of noise, and
then try to minimize the running time subject to this fixed bound on the noise.
Consequently most of the optimization procedures that we describe in this work
has the form of optimizing the running time subject to some depth constraints.

In Table 1 we summarize the available homomorphic operations, their effect
on the noise, and their running time. For each parameter (noise and time) we
divide the operations into expensive, moderate, and cheap. We often think of
the cheap operations as essentially for free, the expensive operations as costing
one unit (of either time or noise), and the moderate operations as having a
cost of 1/2 unit. We remark that the cost in Table 1 (and even the operations
themselves) are merely an approximation, see the full version [11, Section 5] for
some more details.

We would like to draw the reader’s attention to the “moderate” noise-growth
of the multiply-by-constant operation, and stress that we have to pay this “mod-
erate” cost even if we are multiplying by a constant zero-one vector. This is
different than other (additively) homomorphic schemes where multiplication by
zero or one is really “for free.” In our implementation we extensively use mul-
tiplications by zero-one vectors to extract from a given vector only some of the

Algorithms in HElib 557

Table 1. Homomorphic operations and their cost

Operation Time Noise Comments

Addition cheap cheap entry-wise addition of vectors
Constant-add cheap cheap entry-wise addition of a constant vector

Multiplication expensive expensive entry-wise multiplication of vectors
Constant multiply cheap moderate entry-wise multiplication by constant vector

Rotation expensive cheap cyclic rotation of vector by any amount

Frobenius expensive cheap entry-wise Frobenius map, X �→ Xpn

entries but not others. We refer to this operation as multiplicative masking (or
masking, for short). We also note that using rotations and multiplicative mask-
ing we can implement shifts with zero-fill, which would be expensive in terms of
running time and moderate in terms of noise.

Notations. Throughout this report we use [n] for the set {0 . . n − 1}, and use
zero-based indexing for vectors. For two vectors u, v, we use u+ v and u× v to
denote entry-wise addition and multiplication.

3 Permutations and Shift-Networks

The core of the GHS homomorphic data-routing techniques [10] is the use of
Benes-like networks to arbitrarily permute the slots in a ciphertext (which is
needed to allow different slots to interact with each other). In this section we
describe our implementation and optimizations of the GHS techniques. We begin
by introducing the notion of a shift network, and the shift-network minimization
problem.

3.1 Shift Networks

A shift network is a method to realize an arbitrary permutation in terms of rota-
tions, multiplicative masking, and additions. We begin by describing an arbitrary
permutation in terms of a single “shift column”: for an arbitrary permutation
π : [n]→ [n], the shift-column corresponding to π is a vector shπ that describes
for each index i the distance that i needs to travel under π. In formula, we have
shπ[i] = π(i)− i (subtraction over the integers).

We note that a shift-column gives us a simple way of applying π to an arbitrary
vector v using shift operations, multiplicative masking, and additions. Namely,
for every value δ that appears in shπ we first construct a mask mδ which is 1 in
the entries where shπ[i] = δ and 0 elsewhere. We then extract from v only these
entries (by multiplying mδ × v), shift the result by δ positions, and add up all
the resulting vectors. Namely the permuted vector is obtained by

w ←
∑

δ∈shπ

(mδ × v)$ δ

558 S. Halevi and V. Shoup

where × denote entry-wise multiplication and$ denotes shift. The running-time
cost of this implementation of π is proportional to the number of distinct values
in shπ. Specifically if shπ contains t distinct non-zero values then this imple-
mentation would perform t shift operations (and some other cheap operations
that we ignore). Hence we define the cost of shπ as the number of distinct non-
zero values in it. The cost of this operation in terms of noise is roughly a single
multiply-by-constant (since adding the resulting vector has almost no effect on
the noise).

If we use rotations instead of shifts, then we can apply a similar procedure
but this time use a mask m′

δ which is 1 in the entries where shπ[i] = δ (mod n)
and 0 elsewhere, then set

w ←
∑

δ∈shπ mod n

(m′
δ × v)$> δ

where$> denotes rotation. The running-time cost of the implementation would
then be related to the number of distinct non-zero values in shπ modulo n, and
the cost in terms of noise will be a single multiply-by-constant (since rotations
and additions are cheap). We thus also define the reduced cost of shπ as the
number of distinct non-zero values in it modulo n.

A shift network N is a sequence of shift-columns, namely, an n × d matrix
(for some d), with each column representing a permutation. If the d columns
represent the permutation π1, . . . , πd then the network as a whole represents the
composed permutation π = πd ◦ · · · ◦ π1. We say that d is the depth of the shift
network, and the columns of N are the levels of the network. The (reduced) cost
of the network N is just the sum of the (reduced) costs of all levels.

A shift network for π implies an algorithm for applying π to vectors, just by
applying each πi in turn using its shift vector. If the network has depth d and
reduced cost c, then this implementation of π takes c multiplicative masks, c
rotations, and O(c) additions, and has depth of d multiplicative masking oper-
ations, d rotations, and O(d) additions.

The Cheapest-shift-network (CSN) problem. Of course there are many different
shift networks that implement the same permutation, and given a target permu-
tation π we want to find the cheapest network for it. In our setting, we typically
think of the depth as a constraint and the (reduced) cost as the quantity that
we optimize for. Hence we get the following optimization problem:

Input: A permutation π over [n] and a depth-bound B.
Output: A shift-network for π of depth ≤ B, minimizing the (reduced) cost.

We note that the bound parameter really does matter. For example, most
permutations require a cost-Ω(n) depth-1 solution, but every permutation has
a cost-O(

√
n) depth-2 solution (and more generally cost O(d · n1/d) depth-d

solution). Even the unbounded version of this problem (with B =∞) seems in-
teresting, but in our case we are typically more interested in the bounded version.
We do not know of an efficient procedure for finding the least-cost network for

Algorithms in HElib 559

a given permutation and depth-bound, and speculate that it is a hard problem.
Below we show, however, that when restricting ourselves to a certain natural
class of solutions we can efficiently find the least-cost solution in this class.

3.2 Benes Networks

A Benes network for a permutation π is a special kind of shift network, which is
rather cheap and can be constructed efficiently from any permutation. We begin
by reviewing basic Benes network construction for n = 2r, then describe the
generalization of Chang and Melham [7] to arbitrary n and our optimizations.

For n = 2r, a Benes network for a permutation π on [n] is a shift network of
depth 2r−1, where every level in the network has a cost at most 2. Such a network
decomposes π into 2r−1 permutations: π = σr−1 ◦· · ·σ1 ◦σ0◦τ1 · · ·◦τr−1, where
the action of each σk and τk is to move any i ∈ [n] to either i, i+ 2k, or i− 2k.
This is a network of depth 2r−1 = O(log n) and cost at most 4r−2 = O(log n),
hence it corresponds to a fairly efficient permutation algorithm.

Decomposing a permutation into a Benes network can be done via a recursive
procedure. In the first step, we decompose π = σ ◦ ρ ◦ τ , with ρ consisting of
independent permutations on the top and bottom halves of the network, and
then we recurse on two halves of ρ. Computing the decomposition π = σ ◦ ρ ◦ τ
can be done using the greedy “looping algorithm.” Denote m = n/2 = 2r−1,
S0 = {0 . .m− 1} and S1 = {m. . n− 1}. We seek a decomposition as above such
that:

(P1) σ and τ map each i ∈ S0 to i or i+m, and each i ∈ S1 to i or i −m;
(P2) ρ consists of a permutation on S0 and a permutation on S1.

We construct an undirected graph G with 2n nodes, Li, Ri for i ∈ [n] (call these
“left nodes” and “right nodes”); we add an edge from Li to Rπ(i) for each i ∈ [n]
(call these “permutation edges”), and also an edge from Li to Li+m and Ri to
Ri+m for each i < m (call these “conflict edges”).

It is easy to see that G is 2-colorable. Indeed, a simple algorithm to 2-color
the graph is to start at any node, and trace out a path that must lead back
to the starting node, alternating between permutation and conflict edges. This
creates an even cycle that we can color with two colors, which we then remove
from G; we then repeat the procedure on the smaller graph.

Once we have a two coloring of G with each vertex ν colored by C(ν) ∈ {0, 1},
we define σ and τ as follows: For each left vertex Li, we interpret a color of 0
as τ sending i to the top half and a color of 1 as τ sending i to the bottom half.
So we have τ(i) := i if i ∈ S0 and C(Li) = 0, or if i ∈ S1 and C(Li) = 1, and
otherwise τ(i) := i±m.

Similarly, for each right vertex Ri, we interpret a color of 0 as σ receiving i
from the bottom half and a color of 1 as σ receiving i from the top half. Hence
we have σ−1(i) := i if i ∈ S0 and C(Li) = 1, or if i ∈ S1 and C(Li) = 0, and
otherwise σ−1(i) := i±m. More succinctly:

for i ∈ S0: τ(i) := i+ C(Li)m, σ−1(i) := i+ (1− C(Ri))m;
for i ∈ S1: τ(i) := i− (1− C(Li))m, σ−1(i) := i− C(Ri)m.

(1)

560 S. Halevi and V. Shoup

Setting the permutations τ and σ determines also the middle permutation ρ
(which must satisfy property (P2)) and we then recurse on the two halves of ρ.

We stress that in our setting, it is crucial that the shift amounts for the per-
mutations σk, τk are always exactly ±2k and 0, regardless of the permutation π.
Indeed, in the above, we recurse on two different halves of ρ, and subsequent
steps recurse on a large number of different permutations. Had the shift amounts
depended on the actual permutations, we would have had a higher cost for the
shift-columns that implement ρ.

3.3 General Benes Networks

When n is not a power of two, we could, of course, round n to the next power
of two and then apply a Benes network; however, this would effectively double
the cost of implementing a permutation in our setting. Chang and Melham [7]
proposed a generalization of Benes networks that works for any n, not just a
power of two. Below we describe this generalization and then optimize it for our
setting.

Note that the procedure above for decomposing π = σ ◦ ρ ◦ τ work for any
even n. When n is odd, we instead break the network into two “nearly equal”
parts, namely one part of size �n/2�, and the other of size �n/2�. Suppose that we
let the top part be the smaller of the two, so we set m = �n/2�, S0 = {0 . .m−1}
and S1 = {m. . n − 1}. Chang and Melham observed that we can adapt the
procedure from above for decomposing π = σ ◦ ρ ◦ τ with properties (P1) and
(P2) simply by insisting that the last index, n− 1, is mapped to itself by both σ
and τ , and applying the procedure from above to all the other indexes. Formally,
we construct a graph G using the same rules as above, except that we add a
special conflict edge between Ln−1 and Rn−1 (note that none of the other conflict
edges are incident to either of these two nodes). The rest of the algorithm works
without any change, and correctness follows from the exact same argument.

Now that we can partition both even- and odd-size networks, we can again
recurse and construct a “generalized Benes network” of depth d = 2�logn� − 1
for any permutation. However, we no longer have the property that each level
of the network only has shift amounts 0 and ±m for a single shift amount m, so
we can no longer bound the cost of the network by 2d.

Trying to bound the cost of the resulting network, we observe that all the
sub-permutations at a certain level of the network are almost of the same size;
specifically, they have size either �n/2k� or �n/2k�. It follows that each level has
at most four non-zero shift amounts, namely ±�n/2k+1� and ±�n/2k+1�, so we
can bound the cost of the network by 4d. Unfortunately, this bound still implies
a factor-of-2 slowdown when n is not a power of two. Below we describe another
optimization that allows us to recover the original bound of 2d.

Further optimizations. To reduce the cost further, we observe that there are two
different options for how to split the network when n is odd, and that these
two options result in different shift amounts in the shift-vectors for σ and τ .
Specifically, above we made the bottom part larger, which meant setting the shift

Algorithms in HElib 561

amount to m = �n/2� and fixing σ(n−1) = τ(n−1) = n−1 by adding a conflict
edge between Ln−1 = Rn−1. However, we can also make the top half larger,
setting the shift amount to m = �n/2� and fixing σ(m− 1) = τ(m− 1) = m− 1
by adding a conflict edge between Lm−1 = Rm−1. An illustration of the two
bipartite graphs and the corresponding decompositions of π that we get for a
size-5 permutation can be found in Figure 1.

This observation gives us the freedom to choose the shift amounts that are
used in partitioning odd-size subnetworks to either �n/2� or �n/2�, as needed
to be compatible with the even-size sub-networks in that level (if any). Thus
we can recursively decompose any permutation π on [n] for arbitrary n as π =
σr−1 ◦ · · ·σ1 ◦ σ0 ◦ τ1 ◦ · · · τr−1, where r = �log2 n� and the action of each σk

and τk is to move any i ∈ [n] to either i or i ± Δk, with the “shift amount”
Δk :=

⌈
�n/2r−1−k�/2

⌉
. Thus, we get a shift network for π of depth 2�log2 n�−1

and a cost of 2 for each level, which means a (4 logn)-approximation for the
unbounded cheapest-shift-network problem;

Fig. 1. Illustration of two ways to decompose a size-5 permutation as π = τ ◦ ρ ◦ σ

3.4 Balancing Depth and Cost in Benes Networks

In our application to HE we often need to consider trade-offs between depth
and cost in constructing shift networks. One natural way to enforce a depth
constraint is to start from a solution to the unbounded CSN problem (such as a
Benes network), and then “collapse” several consecutive levels into one, thereby
reducing the depth at the price of increasing the cost.

Given a general Benes network and a bound B, we seek the “optimal way” to
collapse consecutive levels so as to get a depth-B network for the same permu-
tation. Recall that the domain size n determines the depth d of the generalized
Benes network, as well as the set of possible shift amounts that may appear at
each level of the network. Our approach is therefore to devise the level-collapse
strategy based only on n and the bound B, rather than re-compute it for each
permutation separately.

To compute the optimal level-collapse strategy for given n and B, we use a
simple dynamic-programming approach. Let d = 2�log2 n�− 1 be the depth of a
generalized Benes network for size-n permutations and let Sk be the set of shift
amounts that can occur at level k in the network. (That is, Sk = {0,±Δk} for
k ≤ �logn� and Sk = {0,±Δd−k} for k > �logn�.)

562 S. Halevi and V. Shoup

For each pair of indexes 0 ≤ j1 ≤ j2 < d, we let L(j1, j2) denote the num-
ber of possible non-zero shift amounts that can occur when collapsing levels j1
through j2. (This number is certainly an upper bound for the cost of the corre-
sponding shift-vector for any particular Benes network, and usually it is a fairly
tight one.) Specifically, L(j1, j2) is the number of distinct non-zero integers in
the interval (−n, n) that can be written as a sum εj1 + εj1+1 + · · · + εj2 , with
εk ∈ Sk for all k = j1 . . j2. Clearly the L(j1, j2) values can be computed effi-
ciently (in time quasi-linear in n). Given these values, we can write a recursive
formula for the optimal level-collapsing strategy for a given n,B. Specifically for
each 0 ≤ d′ ≤ d, 0 ≤ B′ ≤ B let Opt(d′, B′) be the cost of the optimal way
of collapsing some of the first d′ columns of the depth-d network so as to get
depth B′. Then we have Opt(d′, B′) = 0 if d′ = 0, Opt(d′, B′) =∞ if d′ > 0 and
B′ = 0, and otherwise

Opt(d′, B′) = min
�=1..d′

{
L(d′ − �, d′ − 1) + Opt(d′ − �, B′ − 1)

}
.

In words, we consider collapsing the last � levels into a single level of cost L(d′−
�, d′ − 1), and then add to that the optimal cost for the first d′ − � levels, using
the bound B′ − 1 in place of B′.

Since there are only O(d2) values (d′, B′) as above, we can use standard dy-
namic programming techniques to compute Opt(d,B) and the collapsing strat-
egy that achieves it.1 We should note here that any n× d shift network can be
collapsed to a network of depth 1 and cost at most 2n− 1 (and reduced cost at
most n− 1).

3.5 Hypercube Networks

A different method of constructing shift networks, which is described in [10], is
via “hypercube networks”: If n can be factored as n = ab, then we can impose
on [n] a two-dimensional matrix structure of a rows and b columns, using some
appropriate bijective map M : [n] → [a] × [b]. Some possible choices of the
map M include:

CRT order (when gcd(a, b) = 1): M(i) �→ (i mod a, i mod b) ;
Row-major order: M maps 0 . . b− 1 to the first row, b . . 2b− 1 to the second

row, etc;

column-major order: M maps 0 . . a− 1 to the first column, a . . 2a− 1 to the
second column, etc.

Row- and column-major orders may appear more natural, but CRT ordering
(when applicable) has an advantage, because the map M is actually a ring
homomorphism (viewing [n], [a], [b] as the rings Zn,Za,Zb, respectively). As done
in [10], we will use the following decomposition lemma from [15]:

1 This algorithm can be easily adapted to use reduced network costs in place of network
costs, when that is the desired cost metric.

Algorithms in HElib 563

Lemma 1. Let S = [a]× [b] be a set of ab positions, arranged as a rectangular
matrix of a rows and b columns. For every permutation π over S, there exist
permutations σ, ρ, τ such that π = σ ◦ ρ ◦ τ , where σ and τ permute positions
within each column, and ρ permutes positions within each row. Moreover, there
is a polynomial-time algorithm that given π outputs the permutations σ, ρ, τ .

Of course, once we decompose π as above, we can apply the same lemma
recursively to each row of ρ, thus imposing an r-dimensional hypercube structure
on [n] and decomposing π into 2r − 1 permutations π = π1 ◦ · · · ◦ π2r−1, each
of which acts along a single dimension.2 We can then construct Benes networks
for the πi’s, collapsing some of the levels within those networks so as to satisfy
a bound B on the overall depth. Optimizing over this class of solutions requires
finding the best splitting of n into factors, the best way to lay out the hypercube,
and the best strategy for collapsing the levels of the Benes networks.

So consider n = ab, and a map M : [n] → [a] × [b], which induces a corre-
spondence between a permutation π on [a] × [b] and its representation π̄ as a
permutation on [n]. Furthermore, consider the natural generalization of the no-
tion of a shift network to an a× b matrix: the entries in such a network are now
of the form (Δi,Δj), and in determining reduced costs, we consider two entries
(Δi,Δj) and (Δi′, Δj′) to be equivalent if Δi ≡ Δi′ (mod a) and Δj ≡ Δj′

(mod b).
Next, consider a decomposition π = σ ◦ ρ ◦ τ , as in Lemma 1 and let σ̄, ρ̄, τ̄ be

the corresponding permutations on [n]. We can easily translate shift networks
for σ, ρ, τ into shift networks for σ̄, ρ̄, τ̄ ; however, the relationship between the
(reduced) costs of the shift for σ, ρ, τ and the (reduced) costs of the shift networks
for σ̄, ρ̄, τ̄ depends on the mapping M used to impose the matrix structure on
[n].
CRT Order. Let λa, λb be the CRT coefficients of a, b, respectively. Then a
shift amount of (Δi,Δj) for a permutation on [a] × [b] translates to a shift
amount that is congruent to λaΔi + λbΔj modulo n for a permutation on [n].
Since λa ≡ 0 (mod b) and λb ≡ 0 (mod a), it follows that the reduced costs of
the shift networks for σ̄, ρ̄, τ̄ are equal to the reduced costs for the networks for
σ, ρ, τ . Thus, reduced costs are preserved in the translation; however, unreduced
costs may not be preserved.
Row-major Order. A shift amount of (Δi,Δj) for a permutation on [a]× [b]
translates to a shift amount of bΔi+aΔj for a permutation on [n]. It follows that
the unreduced costs of the shift networks for σ̄, ρ̄, τ̄ are equal to the unreduced
costs of the networks for σ, ρ, τ .

For reduced costs, the situation is a bit different. The shift networks for σ, τ
have entries of the form (Δi, 0), which translates to bΔi; it follows that the
reduced costs of the shift networks for σ̄, τ̄ are the same as the reduced costs of
the shift networks for σ, τ . In contrast, the shift network for ρ has entries of the

2 Clearly, a Benes network of width n = 2r is a special case of this construction.
Unfortunately, we do not know of a generalization of Lemma 1 along the lines of the
generalized Benes networks from [7].

564 S. Halevi and V. Shoup

form (0, Δj), which translates to Δj; it follows that the reduced cost of the shift
network for ρ̄ is equal to the unreduced cost of the shift network for ρ.
Column-major Order. This situation is analogous to row-major order, except
that reduced costs for σ̄, τ̄ are equal to the unreduced costs for σ, τ , while for ρ̄
we get the reduced cost of ρ.

The above observations suggest a recursive formulation to obtain a network of
optimal cost for domain size n satisfying a bound B on the depth of the network.
Starting from an initial domain size n, bound B, and cost metric to optimize
(reduced/unreduced cost), we compare using size-n generalized Benes network
to all splits n = ab and all possible ways of allocating our depth budget B to the
three recursive subproblems. We use row/column ordering for the a× b matrix
when trying to minimize the unreduced cost, and CRT ordering when trying to
minimize the reduced cost and have gcd(a, b) = 1. We then recursively solve the
three subproblems, trying to optimize either the reduced or unreduced cost, as
needed according to the rules from above.

Let SplitRcost(n,B), SplitUcost(n,B) denote the best reduced/unreduced
cost for a size-n network with depth-bound B, and similarly let
BenesRcost(n,B),BenesUcost(n,B) be the best (reduced/unreduced) cost of a
generalized Benes for these parameters. Then we have:

SplitUcost(n,B) =

min

⎛
⎝BenesUcost(n,B),

min
ab=n

B1+B2+B3=B

(
SplitUcost(a,B1) + SplitUcost(b,B2) + SplitUcost(a,B3)

)⎞⎠ ;

SplitRcost(n,B) =

min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

BenesRcost(n,B),

min
ab=n,gcd(a,b)=1
B1+B2+B3=B

(
SplitRcost(a,B1) + SplitRcost(b,B2) + SplitRcost(a,B3)

)
,

min
ab=n,gcd(a,b) �=1
B1+B2+B3=B

(
SplitRcost(a,B1) + SplitUcost(b,B2) + SplitRcost(a,B3)

)
,

min
ab=n,gcd(a,b) �=1
B1+B2+B3=B

(
SplitUcost(a,B1) + SplitRcost(b,B2) + SplitUcost(a,B3)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since there are only polynomially many (n,B) pairs, we can again use dynamic
programming to solve these recurrences efficiently. We note that to count the to-
tal number of rotations required to implement a permutation on a domain of size
n, the relevant quantity is the reduced cost of the network, i.e., SplitRcost(n,B).
However, in calculating this reduced cost we need to know the unreduced cost
of some of the subproblems that arise in the above calculation.

An illustrative timing results for some settings of the parameters are given in
Table 2.

4 Replication and Linear Algebra

Since our “platform” works natively on vectors of plaintext values, it seems
natural to provide support for simple vector and linear algebra operations. In this
section we describe algorithmic issues in our implementation of these operations.

Algorithms in HElib 565

Table 2. Timing results for permutations in various vector sizes. The starred lines
indicate that we had to choose larger parameters because of the larger depth.

Cyclotomic field Vector size Shift-network depth Shift-network cost Time

m = 4369 n = 256 3 60 4.1 sec
7 35 2.6 sec
10 31 2.8 sec∗

m = 8191 n = 630 5 37 5.0 sec
7 30 4.3 sec
9 28 4.0 sec

m = 21845 n = 1024 5 66 21.2 sec
7 45 18.3 sec∗
9 41 16.7 sec∗

We begin with some basic operations for computing running sums and total
sums, and then continue to replication and matrix-vector multiplication.

4.1 Running- and Total Sums

The “running sums” function w ← RS(v) outputs a vector w such that w[i] =∑i
k=0 v[k] for i ∈ [n]. The “total sums” function w← TS(v) outputs a vector w

such that w[i] =
∑n−1

k=0 v[k] for i ∈ [n]. Both of these functions are implemented
using a “repeated doubling” approach whose running time and depth is O(log n)
additions and rotations/shifts.

Below is the code for these procedures, note that the running-sums proce-
dure uses shifts with zero-fill (which can be implemented using rotations and
multiplicative masking), while total-sums uses rotations. Here, we denote by
NumBits(n) the number of bits in n, and bitj(n) is the jth bit of n (with bit 0
being the low-order bit). The invariant throughout the total-sums procedure is

that w[i] =
∑e−1

k=0 v[i − k mod n] for i ∈ [n]; moreover, at the end of iteration j,
the binary representation of e consists of bits j . .NumBits(n)− 1 of n.

RS(v):

1 w ← v, e ← 1
2 while e < n do
3 w ← w + (w � e), e ← 2 · e
4 return w

TS(v):

1 w ← v, e ← 1
2 for j ← NumBits(n)− 2 down to 0 do
3 w ← w + (w>>>e), e ← 2 · e
4 if bitj(n) = 1 then
5 w ← v + (w>>> 1), e ← e+ 1
6 return w

We stress that although these two procedures are quite similar, the total-
sum procedure uses only rotations and additions that are “cheap” in terms of
noise, while the running-sums procedure uses shifts that induce “moderate” noise
growth via the requisite masks.

4.2 Replication

Typical homomorphic computation has gates with large fan-out, which requires
that we replicate some plaintext values many times. We have not (yet) imple-
mented a completely generic replication method (such as the ones from [10]),

566 S. Halevi and V. Shoup

but we describe procedures that we did implement for efficient replication in a
few interesting special cases.

Replicating a Single Value. We begin with a procedure for replicating a
single entry across the entire array. This procedure uses multiplicative masking
to extract the entry, then total-sums to replicate it across the vector. It has
both running time and depth of O(log n) additions and rotations and a single
multiplicative masking.

Full Replication. In full replication, we take a vector v and produce vectors
{wi}i∈[n] such that each wi has v[i] in all positions. A naive solution just repeats
the single-element replication n times, resulting in running time of O(n log n)
additions and rotations, and n masks; and a depth of O(log n) “cheap” additions
and rotations and one “moderate” masking.

We can do better than this. We begin by describing a faster, simple recursive
procedure that uses just O(n) additions, rotations, and masks, but has a depth
of O(log n) multiplicative masking operations. We then we present a hybrid
algorithm with the same linear running time, but with a masking depth of just
O(log logn).

A simple recursive procedure. Consider first the case of n = 2�, where it is easy
to apply a simple divide-and-conquer approach: in each stage we double the
number of vectors while halving the number of distinct values in each vector.
The following diagram illustrates this approach on a vector of size 4:

0123

0101

0000 1111

2323

2222 3333

Implementing this approach, we have a recursive procedure that takes as input
a vector w and an integer h = 0 . . � (and is invoked initially with w = v and
h = �). The input vector w consists of 2�−h repetitions of the same size-2h

vector (which we call u). The procedure computes two vectors wL, wR, with wL

consisting of 2�−h+1 repetitions of the first half of u, and wR consisting of 2�−h+1

repetitions of the second half of u, and then concatenates the lists obtained by
processing wL and wR recursively, but with h decreased by 1. The recursion
stops when h = 0 and the singleton list 〈w〉 is returned.

RecursiveReplicate(w, h) :

1 if h = 0 then return 〈w〉
2 else

set mask[i] ← bith−1(i) for i ∈ [n] // choose half the entries
3 w1 ← mask ×w, w0 ← w − w1

4 wL ← w0 + (w0 >>> 2h−1), wR ← w1 + (w1 <<< 2h−1)
5 return RecursiveReplicate(wL, h− 1) || RecursiveReplicate(wR, h− 1).

It is not too difficult to adapt this procedure for the case where n is not a
power of 2. Suppose 2� is the largest power of 2 not exceeding n. By multiplying

Algorithms in HElib 567

by appropriate masks, we can construct vectors v1 and v2, so that v1 equals v
in the first 2� positions and is 0 everywhere else, and v2 equals v in the last
n − 2� positions and is 0 everywhere else. We apply RecursiveReplicate(v1, �),
which gives us vectors w0, . . . , w2�−1, where wi is v[i] is the first 2� positions,
and 0 everywhere else. Since 2� > n/2, we can fill out the rest of each wi as
required at a cost of one mask, rotation, and addition per output vector. We
apply the very same procedure to v2 <<< 2�, but we only need to process the first
n− 2� vectors produced by RecursiveReplicate.

One easily verifies that the running time of this algorithm is O(n) additions,
rotations, and multiplicative masking; its depth is O(log n) additions, rotations,
and masking.

A Shallower Full Replication Procedure. We now describe a modification
of RecursiveReplicate that retains the same running time bound, while achieving
a masking depth of O(log logn), rather than O(log n). This is done by replacing
the top levels of the recursive algorithm by a flatter but more time-consuming
procedure (similar to the naive solution from the beginning of Section 4.2), and
only switch back to the recursive procedure for the bottom few levels. We show
that with a judicious choice of the number of levels to flatten, the overall running
time remains O(n), while the masking depth decreases to O(log logn). Again,
assume for simplicity that n = 2� is a power of two, and let k be a parameter,
whose value we will choose to be log2 log2 n+O(1).

We partition the entries in the input vector v into n/2k blocks, each of size
2k, with block i consisting of positions i2k . . (i+1)2k−1. In the first stage of the
algorithm we use a “naive procedure,” similar to the single-entry replication, to
construct vectors vi, i = 0 . . n/2k − 1, where vi consists of the entries in block i
repeated n/2k times. (With our choice of the parameter k ≈ log logn, this “naive
part” does most of the replication work, giving us n/ logn vectors with only logn
distinct values in each.)

Each vi is produced using the naive procedure, whose running time and
depth are both O(log(n/2k)) additions and rotations, and a single multiplica-
tive masking. Since we have to repeat this procedure for each vi, the total
running time of this first stage is n/2k · log(n/2k) additions and rotations,
and O(n/2k) masks. With our choice of k ≈ log logn we get running time of
n/ logn · log(n/ logn) = O(n).

For the second stage, we simply apply Algorithm RecursiveReplicate to (vi, k)
for i = 0 . . n/2k − 1. The running time of the second stage is O(n) additions,
rotations, and masks; its depth is k = O(log logn) additions, rotations, and
masks. For example, if n = 8 and k = 1, the block size would be 2, and the first
stage would produce 4 vectors. This is as illustrated in the following diagram:

568 S. Halevi and V. Shoup

01234567

01010101

00000000 11111111

23232323

22222222 33333333

45454545

44444444 55555555

67676767

66666666 77777777

4.3 Matrix/Vector Multiplication

We now proceed to describe our matrix-vector multiplication implementation,
namely implementing the operation w ← Av where we consider w, v as column
vectors. The vectors are always encrypted, and the matrix could either be en-
crypted or in plaintext. The main difference between the two cases is the cost of
the operations that are required to move the matrix entries around. When the
matrix is encrypted, its representation (column-, row-, or diagonal-order) may
have a significant impact on the cost of these data movement operations. If it is
in the clear, we can use the most convenient representation.

Matrix in column-order. Assume that we are given the columns of the matrix
as vectors of our underlying “platform”, A = (c0 | · · · | cn−1), so we have

Av =
∑n−1

i=0 v[i]ci. This suggests that we apply an algorithm for full replication

to v, obtaining the vectors v0, . . . , vn−1, and then compute w ←
∑n−1

i=0 vi × ci.
Using the HybridReplicate algorithm in §4.2, the running time of this algorithm
will be O(n) additions, multiplications, multiplicative masking, and rotations,
and its depth is O(n) additions, O(log n) rotations, O(log logn) multiplicative
masking, and a single multiplication.

Matrix in row-order. Another natural layout of A is where the rows of A are
stored as vectors of the underlying “platform”. In this case we could try to
transpose the matrix A so as to be able use the O(n) algorithm from above
(or otherwise rearrange the entries of A), but this seem to require O(n log n)
complexity. However, we can still get a linear-time algorithm, as follows. Suppose
the rows of A are stored as vectors r0, . . . , rn−1. We first compute the vectors
pi = v × ri for i ∈ [n]. To complete the calculation, it remains to compute
the entries of w by the rule w[i] =

∑
j pi[j] for i ∈ [n]. Viewing this mapping

from p0, . . . , pn−1 to w as a linear map, we may consider the n× n2 matrix that
represents it. But observe: the transpose of this matrix represents the linear map
corresponding to the replication problem; by the “transposition principle” [2,3],
this immediately gives us an algorithm with the same complexity as any of our
algorithms for replication: the algorithm for the transposed problem simply runs
the original in reverse, with fan-out and fan-in of addition exchanging roles, and
rotations having their direction reversed, and masking operations unchanged.

Algorithms in HElib 569

Matrix in diagonal order. It turns out that the most convenient representation
of the matrix is diagonal order, which lets us use the parallel “systolic” multipli-
cation algorithm, cf. [14, Figure 1-35]. Certainly, if the matrix is given to us in
the clear, this is the representation of choice. As far as we know, the first usage
of this method in the context of SIMD computation was in the implementations
of Salsa20/ChaCha, see [1, Section 3]. We thank Daniel Bernstein for pointing
out to us this method.

In detail, we represent the matrix by n vectors of the underlying “plat-
form” d0, . . . , dn−1 that contain the generalized diagonals of A, namely, di =
(A0,i, A1,i+1, . . . , An−1,n+i−1), so di[j] = Aj,j+i (where index arithmetic is mod-

ulo n). Then the product w = Av can be computed as w ←
∑n−1

i=0 di× (v <<< i),
which takes n rotations, multiplications, and additions, and has a depth of one
multiplication, one rotation, and n additions. To see that this gives the right
answer, note that the j’th entry in the result is w[j] =

∑n−1
i=0 di[j] · (v <<<i)[j] =∑n−1

i=0 Aj,j+i · v[j + i] =
∑n−1

k=0 Aj,k · v[k], as needed.

4.4 Performance Results

An illustrative timing results for some settings of the parameters are given in
Table 3. These tests were run on a five-year-old IBM BladeCenter HS22/7870,
with two Intel X5570 (4-core) processors, running at 2.93GHz. However, since
HElib is (currently) not thread safe, these tests only utilized one of the eight
cores available on that machine. As the operations in these procedures are “em-
barrassingly parallelizable” we expect that a thread-safe implementation would
be about eight times faster on the same machine.

Table 3. Timing results for some operations in various vector sizes

Cyclotomic field Vector size Operation Time

m = 4369 n = 256 One-Entry Replication 0.3 sec
Full Replication 24.8 sec
Matrix multiply 25.7 sec

m = 8191 n = 630 One-Entry Replication 0.9 sec
Full Replication 192 sec
Matrix multiply 84.3 sec

m = 21845 n = 1024 One-Entry Replication 3.2 sec
Full Replication 800 sec
Matrix multiply 473 sec

5 Computing Norms and Traces

Recall that the individual plaintext slots in a HE ciphertext can hold elements
from some finite field Fpd , and that the underlying HE “platform” gives us the

Frobenius operations σi(X) = Xpi

for i = 0 . . d− 1, which is applied to all the

570 S. Halevi and V. Shoup

slots in a SIMD manner. These operations have the same cost as the rotation
operations, namely they are “expensive” in terms of running time but “cheap”
in terms of added noise.

Below we describe how to use the Frobenius operations to compute the norms
and traces of the elements in the slots. Recall that the norm and trace maps are
defined as follows:

Norm: N : Fpd → Fp, N(α) :=
∏d−1

i=0 σi(α) =
∏d−1

i=0 αpi

= α(pd−1)/(p−1);

Trace: T : Fpd → Fp, T (α) :=
∑d−1

i=0 σi(α) =
∑d−1

i=0 αpi

.

Computing traces and norms is often useful. For example, the “field switch-
ing” procedure of Gentry, Halevi, Peikert and Smart [9] relies on comput-
ing the trace. Also, computing the norm is useful in the (quite common)
case where we need to compute the “not-equal-to-zero” function. That is,
to map each non-zero slot to 1 while keeping the zero slots as zero, we
just need to compute the function N(X)p−1 (and in the special case p =
2 this is just the norm function itself). Computing the norm and trace is
done directly by their definitions above, as described in the following code:

Norm(v):

1 w ← v
2 e ← 1
3 for j ← NumBits(d) − 2 down to 0 do
4 w ← w × σe(w)

5 e ← 2 · e
6 if bitj(d) = 1 then
7 w ← v × σ(w)
8 e ← e+ 1
9 return w

Trace(v):

1 w ← v
2 e ← 1
3 for j ← NumBits(d) − 2 down to 0 do
4 w ← w + σe(w)

5 e ← 2 · e
6 if bitj(d) = 1 then
7 w ← v + σ(w)
8 e ← e+ 1
9 return w

The running time and depth of the norm computation is O(log d) Frobenius
powers and multiplications, and that of the trace computation is O(log d) Frobe-
nius powers and additions.

Acknowledgments. Supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National Business Center
(DoI/NBC) contract number D11PC20202. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of IARPA, DoI/NBC, or the U.S. Government.

References

1. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008),
http://cr.yp.to/papers.html#chacha

http://cr.yp.to/papers.html#chacha

Algorithms in HElib 571

2. Bordewijk, J.L.: Inter-reciprocity applied to electrical networks. Applied Scien-
tific Research B: Electrophysics, Acoustics, Optics, Mathematical Methods 6, 1–74
(1956)

3. Bostan, A., Lecerf, G., Schost, E.: Tellegen’s principle into practice. In: Proceedings
of the 2003 International Symposium on Symbolic and Algebraic Computation,
ISSAC 2003, pp. 37–44. ACM (2003)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapsvp. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

5. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS
2012 (2012), http://eprint.iacr.org/2011/277

7. Chang, C., Melhem, R.: Arbitrary size benes networks. Parallel Processing Let-
ters 07(03), 279–284 (1997)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing – STOC 2009, pp. 169–178.
ACM (2009)

9. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style ho-
momorphic encryption. Journal of Computer Security 21(5), 663–684 (2013)

10. Gentry, C., Halevi, S., Smart, N.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012), Full version at
http://eprint.iacr.org/2011/566

11. Halevi, S., Shoup, V.: Algorithms in HElib. Cryptology ePrint Archive, Report
2014/106 (2014), http://eprint.iacr.org/

12. Halevi, S., Shoup, V.: HElib - An Implementation of homomorphic encryption
(accessed February 2014), https://github.com/shaih/HElib/

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

14. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers Inc., San Francisco (1992)

15. Lev, G., Pippenger, N., Valiant, L.: A fast parallel algorithm for routing in permu-
tation networks. IEEE Transactions on Computers C-30, 93–100 (1981)

16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

18. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

19. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, Codes
and Cryptography 71(1), 57–81 (2014)

20. SIMD. Wikipedia article (accessed February 2014),
http://en.wikipedia.org/wiki/SIMD

http://eprint.iacr.org/2011/277
http://eprint.iacr.org/2011/566
http://eprint.iacr.org/
https://github.com/shaih/HElib/
http://en.wikipedia.org/wiki/SIMD

Author Index

Abdalla, Michel I-77
Abe, Masayuki I-241, I-390
Aggarwal, Divesh II-183
Albrecht, Martin R. I-57
Alperin-Sheriff, Jacob I-297
Ananth, Prabhanjan II-164
Austrin, Per I-462

Banerjee, Abhishek I-353
Barthe, Gilles I-95
Beimel, Amos II-387
Bellare, Mihir I-1, I-169
Benhamouda, Fabrice I-77
Ben-Sasson, Eli II-276
Bentov, Iddo II-421
Bhargavan, Karthikeyan II-235
Bitansky, Nir II-71, II-108, II-146
Blazy, Olivier I-408
Boneh, Dan I-206, I-480
Brzuska, Christina I-188

Camenisch, Jan II-256
Canetti, Ran II-71, II-108, II-337
Catalano, Dario I-371
Chen, Shan I-39
Chiesa, Alessandro II-276
Choi, Seung Geol II-513
Chung, Kai-Min I-462
Cohn, Henry II-71

Dachman-Soled, Dana II-146, II-405
Dai, Yuanxi I-20
Data, Deepesh II-199
Dinur, Itai I-149
Dodis, Yevgeniy II-37, II-183
Driessen, Benedikt I-57
Ducas, Léo I-335

Fagerholm, Edvard I-95
Farràs, Oriol II-217
Farshim, Pooya I-188
Fiore, Dario I-95, I-371
Fisch, Ben II-313
Fleischhacker, Nils II-405

Fournet, Cédric II-235
Freund, Daniel II-313

Gabizon, Ariel II-387
Garg, Sanjam I-518
Gaži, Peter I-113
Genkin, Daniel I-444
Gentry, Craig I-426, I-518
Goldwasser, Shafi II-71
Goyal, Vipul II-164
Granger, Robert II-126
Groth, Jens I-241, I-390
Guo, Jian I-131

Halevi, Shai I-518, I-554
Hanaoka, Goichiro II-90
Hansen, Torben II-217
Herold, Gottfried I-261
Hesse, Julia I-261
Hoang, Viet Tung I-169
Hofheinz, Dennis I-261
Huang, Yan II-458

Ishai, Yuval II-369, II-387

Jafargholi, Zahra II-183
Jain, Abhishek II-337
Jutla, Charanjit S. II-295

Kaced, Tarik II-217
Kalai, Yael Tauman II-71, II-108
Katz, Jonathan II-405, II-458, II-513
Kavun, Elif Bilge I-57
Keelveedhi, Sriram I-169
Kiltz, Eike I-408
Kiyoshima, Susumu II-351
Kleinjung, Thorsten II-126
Kohlweiss, Markulf II-235
Kolesnikov, Vladimir II-440, II-458
Kumaresan, Ranjit II-421, II-458
Kunihiro, Noboru II-90
Kushilevitz, Eyal II-387

Lampe, Rodolphe I-39
Larraia, Enrique II-495

574 Author Index

Leander, Gregor I-57
Lee, Hyung Tae I-224
Lee, Jooyoung I-20, I-39
Lehmann, Anja II-256
Lenstra, H.W. I-280
Leurent, Gaëtan I-149
Lewko, Allison I-426
Lin, Huijia II-146
Lindell, Yehuda II-476
Ling, San I-315
Liu, Yi-Kai II-19
Lysyanskaya, Anna II-256, II-405

Mahmoody, Mohammad I-462
Malozemoff, Alex J. II-458, II-513
Meldgaard, Sigurd II-387
Mennink, Bart I-20
Micciancio, Daniele I-335
Miles, Eric II-183
Mitchell, John I-95
Mittelbach, Arno I-188
Mohassel, Payman II-440

Naor, Moni II-313
Neven, Gregory II-256

Ohkubo, Miyako I-241, I-390
Orsini, Emmanuela II-495
Ostrovsky, Rafail I-536, II-369

Paar, Christof I-57
Padró, Carles II-217
Pan, Jiaxin I-408
Pandey, Omkant II-164
Paneth, Omer II-71, II-108, II-337
Papakonstantinou, Periklis A. II-55
Paskin-Cherniavsky, Anat I-536, II-387
Paskin-Cherniavsky, Beni I-536
Pass, Rafael I-462, I-500
Passelègue, Alain I-77
Paterson, Kenneth G. I-1, I-77
Peikert, Chris I-297, I-353
Peyrin, Thomas I-131
Phan, Duong Hieu I-315
Pietrzak, Krzysztof I-113
Pironti, Alfredo II-235
Prabhakaran, Manoj M. II-199
Prabhakaran, Vinod M. II-199

Ràfols, Carla I-261
Reyzin, Leonid II-183
Riva, Ben II-476
Rogaway, Phillip I-1
Rosen, Alon II-71
Rosulek, Mike II-440
Roy, Arnab II-295
Rupp, Andy I-261
Rybár, Michal I-113

Sasaki, Yu I-131
Scedrov, Andre I-95
Schmidt, Benedikt I-95
Schröder, Dominique II-405
Seo, Jae Hong I-224
Seth, Karn I-462, I-500
Seurin, Yannick I-39
Shamir, Adi I-444, II-37
Shoup, Victor I-554
Silverberg, A. I-280
Smart, Nigel P. II-495
Stehlé, Damien I-315
Steinberger, John I-20, I-39
Steinfeld, Ron I-315
Stephens-Davidowitz, Noah II-37
Strub, Pierre-Yves II-235

Tango, Takeya I-241
Telang, Sidharth I-500
Tibouchi, Mehdi I-390
Tromer, Eran I-444, II-276

Unruh, Dominique II-1

Virza, Madars II-276

Wang, Lei I-131
Warinschi, Bogdan I-371
Waters, Brent I-206, I-426
Wichs, Daniel I-518, II-37

Yalçın, Tolga I-57
Yamada, Shota II-90
Yamakawa, Takashi II-90
Yang, Guang II-55

Zanella-Béguelin, Santiago II-235
Zhandry, Mark I-206, I-480
Zikas, Vassilis II-369, II-513
Zumbrägel, Jens II-126

	Preface
	CRYPTO 2014
	Table of Contents – Part I
	Symmetric Encryption and PRFs
	Security of Symmetric Encryptionagainst Mass Surveillance
	1 Introduction
	2 Preliminaries
	3 Subverting Encryption
	4 Mounting ASAs
	4.1 IV-Replacement Attacks
	4.2 The Biased-Ciphertext Attack

	5 Defeating ASAs
	References

	The Security of Multiple Encryptionin the Ideal Cipher Model
	1 Introduction
	2 Definitions
	3 Statement of Results
	4 An Attack of Cost exp(κ��/2)
	5 Preliminary Reductions and Proof Overview
	6 Proof of Theorem 1
	References

	Minimizing the Two-Round Even-Mansour Cipher
	1 Introduction
	2 Preliminaries
	3 A Sum-Capture Theorem
	4 Security Proof for the Single Permutation Case
	References

	Block Ciphers – Focus on the Linear Layer(feat. PRIDE)
	1 Introduction
	1.1 The Linear Layer
	1.2 The Current State of Lightweight Cryptography
	1.3 Our Contribution

	2 Notation and Preliminaries
	3 The Interleaving Construction
	3.1 The General Construction
	3.2 Searching for L0
	3.3 Ensuring High Dependency

	4 Optimizing for Hardware
	4.1 Hardware-Optimal Examples

	5 Software-Friendly Examples and the Cipher PRIDE
	5.1 The Search for the Linear Layer
	5.2 An Extremely Efficient Linear Layer
	5.3 Sbox Selection
	5.4 Description of PRIDE
	5.5 Performance Analysis

	6 Conclusion
	References

	Related-Key Security for Pseudorandom Functions Beyond the Linear Barrier
	1 Introduction
	2 Definitions
	3 Repairing and Extending the Bellare-Cash Framework
	4 Related-Key Security for Affine RKD Functions
	5 Further Generalisation of the Bellare-Cash Framework
	6 Related-Key Security for Polynomial RKD Functions
	References

	Formal Methods
	Automated Analysis of CryptographicAssumptions in Generic Group Models
	1 Introduction
	1.1 An Overview of Our Contribution
	1.2 Related Work
	1.3 Preliminaries

	2 Generic Group Models and Symbolic Group Models
	3 Master Theorem for Non-interactive Assumptions
	4 Automated Analysis of Non-interactive Assumptions
	4.1 Non-parametric Assumptions
	4.2 Parametric Assumptions

	5 Interactive Assumptions
	References

	Hash Functions
	The Exact PRF-Security of NMAC and HMAC
	1 Introduction
	1.1 Our Contributions
	1.2 More Related Work

	2 Preliminaries
	2.1 Random Systems
	2.2 Message Authentication Codes and PRFs

	3 PRF-Security of NMAC
	3.1 Security Lower Bound
	3.2 Matching Attacks

	4 PRF-Security of the NI Construction
	References

	Updates on Generic Attacksagainst HMAC and NMAC
	1 Introduction
	2 Description of NMAC and HMAC
	3 Functional Graph
	4 Selective Forgery Attacks
	4.1 Attack with a Very Constrained Target Message
	4.2 Attack with More Freedom Degrees on the Target Message

	5 Improved Universal Forgery Attacks
	5.1 Revisiting Previous Universal Forgery Attacks on HMAC and NMAC
	5.2 Our Observations
	5.3 Improved Universal Forgery Attacks

	6 Time-Memory Tradeoff for Key Recovery Attacks
	6.1 Recovering Kout
	6.2 Recovering Kin

	7 Conclusion
	References

	Improved Generic Attacksagainst Hash-Based MACs and HAIFA
	1 Introduction
	1.1 Our Results
	1.2 Framework of the Attacks

	2 HMAC and Hash-Based MACs
	3 Description and Analysis of Collision Search Algorithms
	3.1 Collision Search Algorithms
	3.2 Analysis of the Collision Search Algorithms

	4 Filters
	4.1 Collision Filters
	4.2 Diamond Filters

	5 Internal State-Recovery for NMAC and HMAC with HAIFA
	6 New Tradeoffs for Merkle-Damg˚ard
	6.1 Trade-Off Based on Iteration Chains
	6.2 Trade-Off Based on Cycles

	7 Shorter Message Attacks
	7.1 Merkle-Damg˚ard
	7.2 HAIFA

	8 Universal Forgery Attacks with Short Queries
	8.1 A Universal Forgery Attack Based on the Reduction of the Image-Set Size
	8.2 A Universal Forgery Attack Based on Collisions

	9 Conclusions and Open Problems
	References

	Cryptography from Compression Functions:The UCE Bridge to the ROM
	1 Introduction
	2 Preliminaries
	3 UCE Framework
	4 UCE from Indifferentiability
	5 UCE from Universal Hashing
	6 Fast, Parallelizable AU Hash from Reduced-Round AES
	7 Implementation
	References

	Indistinguishability Obfuscation and UCEs:The Case of ComputationallyUnpredictable Sources
	1 Introduction
	2 Preliminaries
	3 UCE1 and UCE2 Security
	3.1 The iO Attack
	3.2 Statistical Unpredictability

	4 Bounded Parallel Sources
	4.1 Randomized Encodings
	4.2 Composing iO with Randomized Encodings
	4.3 Splitting and Parallelizing S Using Decomposable REs

	5 Split Sources
	References

	Groups and Maps
	Low Overhead Broadcast Encryption from Multilinear Maps
	1 Introduction
	2 Preliminaries
	2.1 Broadcast Encryption
	2.2 Multilinear Maps

	3 Our Asymmetric Multilinear Map Construction
	3.1 The Hybrid Diffie-Hellman Exponent Assumption (HDHE) Assumption
	3.2 Security of Our Construction

	4 Our Symmetric Multilinear Map Construction
	4.1 The Multilinear Diffie-Hellman Exponent Assumption
	4.2 Security of Our Construction

	5 Our Third Construction
	References

	Security Analysis of Multilinear Mapsover the Integers
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Fast Polynomial Algorithms

	3 Masked Partial Approximate Common Divisors
	3.1 Parameters as an Instance of the MPACD Problem

	4 Our Algorithms for the n-MPACD Problem
	4.1 Overview
	4.2 Basic Algorithm for n-MPACD
	4.3 Analysis

	5 Attack on System Parameters of Multilinear Maps over the Integers
	5.1 Speed Increase for Multilinear Maps Parameters
	5.2 Implementation

	6 Discussions
	References

	Converting Cryptographic Schemesfrom Symmetric to Asymmetric Bilinear Groups
	1 Introduction
	2 Preliminaries
	3 Overview with Example
	4 Formal Model
	4.1 Cryptographic System
	4.2 Abstract Algorithms

	5 Conversion Using Dependency Graph
	5.1 Simulating Group Operation Oracle
	5.2 Dependency Graphs
	5.3 Deployment Algorithm
	5.4 How to Find the Best Valid Split

	References
	Appendix

	Polynomial Spaces: A New Frameworkfor Composite-to-Prime-Order Transformations
	1 Introduction
	2 Preliminaries
	3 Our Framework
	4 Our Constructions
	4.1 A Projecting Pairing Based on the 2-SCasc Assumption
	4.2 Projecting Multilinear Maps from any Matrix Assumption
	4.3 Canceling and Projecting k-Linear Maps From PolynomialSpaces

	5 Optimality and Impossibility Results
	5.1 Optimality of Polynomial Multiplication
	5.2 Optimality of our Projecting Multilinear Map from the SCasc-Assumption

	6 Review of Previous Results in Our Framework
	7 A Direct Application: More Efficient Groth-Sahai Proofs
	References

	Lattices
	Revisiting the Gentry-Szydlo Algorithm
	1 Introduction
	2 G-Lattices and the Modified Group Ring
	2.1 Lattices and G-Lattices
	2.2 The Modified Group Ring ZG
	2.3 Ideal Lattices

	3 Invertible G-Lattices, Short Vectors, and the Tensor Algebra Λ
	3.1 Invertible G-Lattices
	3.2 Short Vectors
	3.3 The Witt-Picard Group
	3.4 The Extended Tensor Algebra Λ

	4 The Main Ingredients
	5 The Algorithm
	References

	Faster Bootstrapping with Polynomial Error
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Subgaussian Random Variables
	2.2 Symmetric Groups and Zq-Embeddings

	3 GSW Cryptosystem
	3.1 Cryptosystem and Homomorphic Operations
	3.2 Analysis

	4 Homomomorphic Encryption for Symmetric Groups
	4.1 Encryption Scheme
	4.2 Analysis
	4.3 Optimizations for Zr Embeddings

	5 Bootstrapping
	5.1 Specification and Usage
	5.2 Procedures
	5.3 Analysis

	References

	Hardness of k-LWE and Applications in Traitor Tracing
	1 Introduction
	2 Preliminaries
	2.1 Euclidean Lattices and Discrete Gaussian Distributions
	2.2 Random Lattices
	2.3 Rényi Divergence
	2.4 Learning with Errors

	3 New Lattice Tools
	3.1 Sampling a Gaussian X with a Small Basis of ker(X)
	3.2 Hardness of k-LWE

	4 A Lattice-Based Public-Key Traitor Tracing Scheme
	4.1 A Multi-user Encryption Scheme
	4.2 Tracing Traitors

	5 Projective Sampling and Public Traceability
	5.1 Projective Sampling
	5.2 Projective Sampling from k-LWE
	5.3 Public Traceability from Projective Sampling

	References

	Improved Short Lattice Signaturesin the Standard Model
	1 Introduction
	2 Preliminaries
	2.1 Signatures
	2.2 Lattices and Gaussian Distributions
	2.3 Rings and Ideal Lattices
	2.4 Lattice Trapdoors

	3 Our Scheme
	3.1 Our Scheme
	3.2 Security Proof

	References

	New and ImprovedKey-Homomorphic Pseudorandom Functions
	1 Introduction
	2 Construction and Analysis
	2.1 Security
	2.2 Size, Time, and Depth
	2.3 Instantiations
	2.4 Ring Variant

	3 Security Proof
	3.1 Proof Outline
	3.2 Additional Background
	3.3 Proof of Security Theorem

	References

	Asymmetric Encryption and Signatures
	Homomorphic Signatures with EfficientVerification for Polynomial Functions
	1 Introduction
	2 Preliminaries
	2.1 Leveled Multilinear Maps and Graded Encodings
	2.2 Homomorphic Signatures for Multi-labeled Programs
	2.3 Homomorphic Signatures with Efficient Verification

	3 From Weakly-Secure to Adaptive-Secure Homomorphic Signatures
	4 A Weakly-Secure Homomorphic Signature
	References

	Structure-Preserving Signaturesfrom Type II Pairings
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Secure Signature Schemes
	2.3 Structure-Preserving Signature Schemes

	3 Randomizable Structure-Preserving Signatures
	4 Strongly Unforgeable Structure-Preserving Signatures
	5 Lower Bounds in the Type II Setting
	References

	(Hierarchical) Identity-Based Encryption from Affine Message Authentication
	1 Introduction
	1.1 This Work
	1.2 Technical Details
	1.3 Other Related Work
	1.4 Open Problems

	2 Definitions
	2.1 Notation
	2.2 Pairing Groups and Matrix Diffie-Hellman Assumption

	3 Message Authentication Codes
	3.1 Affine MACs
	3.2 An Affine MAC from the Naor-Reingold PRF
	3.3 An Affine MAC from Hash Proof System

	4 Identity-Based Encryption from Affine MACs
	4.1 Identity-Based Key Encapsulation
	4.2 The Transformation

	5 Hierarchical Identity-Based Encryption from Delegatable Affine MACs
	5.1 Delegatable Affine MACs
	5.2 Examples of Delegatable Affine MACs
	5.3 The Transformation
	5.4 Anonymity-Preserving Transformation

	References

	Witness Encryptionfrom Instance Independent Assumptions
	1 Introduction
	2 Positional Witness Encryption
	2.1 Security of Positional Witness Encryption

	3 Tribes Schemes
	3.1 Tribes Schemes
	3.2 Tribes Security Properties

	4 Constructing a Positional Witness Encryption Scheme from a Tribes Scheme
	4.1 Encoding a CNF in a Tribal Matrix
	4.2 Encoding a Position in a Tribal Matrix
	4.3 Our Positional Witness Encryption Scheme
	4.4 Security of our Positional Witness Encryption Scheme

	5 An Instantiation in a Symmetric Model of Composite Order Multilinear Groups
	5.1 An Abstract Model of Composite Order Multilinear Groups
	5.2 Instantiating a Tribes Scheme

	References

	Side Channels and Leakage Resilience I
	RSA Key Extraction via Low-BandwidthAcoustic Cryptanalysis
	1 Introduction
	1.1 Overview
	1.2 Related Work

	2 Observing Acoustic Leakage
	2.1 Distinguishing Various CPU Operations
	2.2 GnuPG Key Distinguishability

	3 Overview of GnuPG RSA Key Extraction
	3.1 GnuPG’s Modular Exponentiation Routine
	3.2 The Attack Algorithm
	3.3 Acoustic Leakage of the Bits of q
	3.4 Overall Attack Performance

	4 Analyzing the Code of GnuPG RSA
	4.1 GnuPG’s Multiplication Routine
	4.2 Attacking the Most Significant Limb of q
	4.3 The Remaining Bits of q

	5 Conclusion
	References

	On the Impossibility of Cryptographywith Tamperable Randomness
	1 Introduction
	2 Our Results and Techniques
	2.1 Our Techniques

	3 Biasing Functions via Online Tampering
	3.1 Preliminaries: Calculating the Effect of a Single Variable
	3.2 The Boolean Case
	3.3 Tampering with Bounded-Value Functions—The General Case

	References

	Obfuscation I
	Multiparty Key Exchange, Efficient TraitorTracing, and More from Indistinguishability Obfuscation
	1 Introduction
	1.1 Multiparty Non-Interactive Key Exchange
	1.2 Broadcast Encryption
	1.3 Recipient-Private Broadcast Encryption
	1.4 Traitor Tracing with Short Ciphertexts, Secret Keys, and Public Keys
	1.5 Related Work

	2 Preliminaries: Definitions and Notation
	3 Key Exchange from Indistinguishability Obfuscation
	3.1 Our Construction

	4 Traitor Tracing with Small Parameters
	4.1 Private Broadcast Encryption: First Construction
	4.2 Extension to Other Set Systems

	References

	Indistinguishability Obfuscation from Semantically-Secure Multilinear Encodings
	1 Introduction
	1.1 Towards “Provably-Secure” Obfuscation
	1.2 Security of Multilinear (Graded) Encodings
	1.3 Alternative Notions of Semantical Security

	2 Definition of Semantically Secure Graded Encodings
	2.1 Graded Encoding Schemes
	2.2 Semantical Security

	3 Proof Overview
	References

	On the Implausibilityof Differing-Inputs Obfuscationand Extractable Witness Encryptionwith Auxiliary Input
	1 Introduction
	2 Preliminaries and Definitions
	3 The Counterexample to diO and the Counter- Conjecture
	4 Substantiating the Special-Purpose Obfuscation Conjecture
	5 Bounded-Length Auxiliary Input
	6 Extending Implausibility to Extractable Witness Encryption
	7 Conclusions
	References

	FHE
	Maliciously Circuit-Private FHE
	1 Introduction
	1.1 Previous Work
	1.2 Our Techniques

	2 Preliminaries
	2.1 Homomorphic Encryption

	3 Framework
	3.1 From Compact FHE to Circuit-Private (Somewhat Compact) FHE
	3.2 Compactization of Circuit-Private FHE
	3.3 Multi-hop Circuit-Private FHE

	4 Instantiations of the Framework
	5 Future Work
	References

	Algorithms in HElib
	1 Introduction
	2 Background and Notation
	3 Permutations and Shift-Networks
	3.1 Shift Networks
	3.2 Benes Networks
	3.3 General Benes Networks
	3.4 Balancing Depth and Cost in Benes Networks
	3.5 Hypercube Networks

	4 Replication and Linear Algebra
	4.1 Running- and Total Sums
	4.2 Replication
	4.3 Matrix/Vector Multiplication
	4.4 Performance Results

	5 Computing Norms and Traces
	References

	Author Index

