Chapter 8
Distances on Surfaces and Knots

8.1 General Surface Metrics

A surface is a real 2D (two-dimensional) manifold M 2 i.e., a Hausdorff space,
each point of which has a neighborhood which is homeomorphic to a plane E2, or a
closed half-plane (cf. Chap. 7).

A compact orientable surface is called closed if it has no boundary, and it
is called a surface with boundary, otherwise. There are compact nonorientable
surfaces (closed or with boundary); the simplest such surface is the Mobius strip.
Noncompact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with, say, g
(cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like
Mobius strip in them). In both cases the number g is called the genus of the surface.
In the case of handles, the surface is orientable; it is called a torus (doughnut),
double torus, and triple torus for g = 1,2 and 3, respectively. In the case of cross-
caps, the surface is nonorientable; it is called the real projective plane, Klein bottle,
and Dyck’s surface for g = 1,2 and 3, respectively. The genus is the maximal
number of disjoint simple closed curves which can be cut from a surface without
disconnecting it (the Jordan curve theorem for surfaces).

The Euler—Poincaré characteristic of a surface is (the same for all polyhedral
decompositions of a given surface) the number y = v — e + f, where v,e and
f are, respectively, the number of vertices, edges and faces of the decomposition.
Then y = 2 — 2g if the surface is orientable, and y = 2 — g if not. Every surface
with boundary is homeomorphic to a sphere with an appropriate number of (disjoint)
holes (i.e., what remains if an open disk is removed) and handles or cross-caps. If &
is the number of holes, then y = 2 — 2g — & holds if the surface is orientable, and
x =2—g—hifnot.

The connectivity number of a surface is the largest number of closed cuts that can
be made on the surface without separating it into two or more parts. This number is
equal to 3 — y for closed surfaces, and 2 — y for surfaces with boundaries. A surface
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168 8 Distances on Surfaces and Knots

with connectivity number 1, 2 and 3 is called, respectively, simply, doubly and triply
connected. A sphere is simply connected, while a torus is triply connected.

A surface can be considered as a metric space with its own intrinsic metric, or
as a figure in space. A surface in [E3 is called complete if it is a complete metric
space with respect to its intrinsic metric.

Useful shape-aware (preserved by isomorphic deformations of the surface)
distances on the interior of a surface mesh can be defined by isometric embedding
of the surface into a suitable high-dimensional Euclidean space; for example,
diffusion metric (cf. Chap. 15 and histogram diffusion distance from Chap.21)
and Rustamov et al., 2009.

A surface is called differentiable, regular, or analytic, respectively, if in a
neighborhood of each of its points it can be given by an expression

r=ru,v) =r(xuv),xuv),xu,v))),

where the position vector r = r(u,v) is a differentiable, regular (i.e., a sufficient
number of times differentiable), or real analytic, respectively, vector function
satisfying the condition r,, X r, # 0.

Any regular surface has the intrinsic metric with the line element (or first
Jfundamental form)

ds? = dr* = E(u,v)du* + 2F (u,v)dudv + G(u, v)dv*,
where E(u,v) = (ry,r.), F(u,v) = (r,,nr,), G(u,v) = (r,,r,). The length of a

curve defined on the surface by the equations u = u(t), v = v(¢), t € [0,1], is
computed by

1
/ VEU? + 2FuV + Gv'2dt,
0

and the distance between any points p,q € M? is defined as the infimum of the
lengths of all curves on M2, connecting p and ¢g. A Riemannian metric is a
generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature, and
mean curvature. To compute these curvatures at a given point of the surface,
consider the intersection of the surface with a plane, containing a fixed normal
vector, i.e., a vector which is perpendicular to the surface at this point. This
intersection is a plane curve. The curvature k of this plane curve is called the normal
curvature of the surface at the given point. If we vary the plane, the normal curvature
k will change, and there are two extremal values, the maximal curvature ki, and the
minimal curvature k,, called the principal curvatures of the surface. A curvature is
taken to be positive if the curve turns in the same direction as the surface’s chosen
normal, otherwise it is taken to be negative.
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The Gaussian curvature is K = k 1k, (it can be given entirely in terms of the first
fundamental form). The mean curvature is H = %(kl + k»).

A minimal surface is a surface with mean curvature zero or, equivalently, a
surface of minimum area subject to constraints on the location of its boundary.

A Riemann surface is a one-dimensional complex manifold, or a 2D real manifold
with a complex structure, i.e., in which the local coordinates in neighborhoods of
points are related by complex analytic functions. It can be thought of as a deformed
version of the complex plane. All Riemann surfaces are orientable. Closed Riemann
surfaces are geometrical models of complex algebraic curves. Every connected
Riemann surface can be turned into a complete 2D Riemannian manifold with
constant curvature —1, 0, or 1. The Riemann surfaces with curvature —1 are called
hyperbolic, and the unit disk A = {z € C : |z] < 1} is the canonical example. The
Riemann surfaces with curvature 0 are called parabolic, and C is a typical example.
The Riemann surfaces with curvature 1 are called elliptic, and the Riemann sphere
C U {oo} is a typical example.

* Regular metric
The intrinsic metric of a surface is regular if it can be specified by the line
element

ds* = Edu® + 2Fdudv + Gdv?,

where the coefficients of the form ds? are regular functions.
Any regular surface, given by an expression r = r(u,v), has a regular metric
with the line element ds*, where E (u,v) = (ry. 1), F(u,v) = (ru,r), G(u,v) =
(rv, 1)

¢ Analytic metric
The intrinsic metric on a surface is analytic if it can be specified by the line
element

ds* = Edu* + 2Fdudv + Gdv?,

where the coefficients of the form ds? are real analytic functions.
Any analytic surface, given by an expression r = r(u, v), has an analytic metric
with the line element ds?, where E (u,v) = (r,, 1), F(u,v) = (ru. 1), G(u,v) =
(rv, 1)

e Metric of nonpositive curvature
A metric of nonpositive curvature is the intrinsic metric on a saddle-like
surface. A saddle-like surface is a generalization of a surface of negative
curvature: a twice continuously-differentiable surface is a saddle-like surface if
and only if at each point of the surface its Gaussian curvature is nonpositive.
These surfaces can be seen as antipodes of convex surfaces, but they do not form
such a natural class of surfaces as do convex surfaces.
A metric of negative curvature is the intrinsic metric on a surface of negative
curvature, i.e., a surface in |E? that has negative Gaussian curvature at every point.
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A surface of negative curvature locally has a saddle-like structure. The intrinsic
geometry of a surface of constant negative curvature (in particular, of a pseudo-
sphere) locally coincides with the geometry of the Lobachevsky plane. There
exists no surface in E* whose intrinsic geometry coincides completely with the
geometry of the Lobachevsky plane (i.e., a complete regular surface of constant
negative curvature).

e Metric of nonnegative curvature
A metric of nonnegative curvature is the intrinsic metric on a convex surface.
A convex surface is a domain (i.e., a connected open set) on the boundary of a
convex body in E? (in some sense, it is an antipode of a saddle-like surface).
The entire boundary of a convex body is called a complete convex surface. If the
body is finite (bounded), the complete convex surface is called closed. Otherwise,
it is called infinite (an infinite convex surface is homeomorphic to a plane or to a
circular cylinder).
Any convex surface M2 in E? is a surface of bounded curvature. The total
Gaussian curvature w(A) = [ [, K(x)do(x) of a set A C M? is always
nonnegative (here o (.) is the area, and K(x) is the Gaussian curvature of M? at a
point x), i.e., a convex surface can be seen as a surface of nonnegative curvature.
The intrinsic metric of a convex surface is a convex metric (not to be confused
with metric convexity from Chap. 1) in the sense of Surface Theory, i.e., it
displays the convexity condition: the sum of the angles of any triangle whose
sides are shortest curves is not less that .
A metric of positive curvature is the intrinsic metric on a surface of positive
curvature, i.e., a surface in IE3 that has positive Gaussian curvature at every point.

e Metric with alternating curvature
A metric with alternating curvature is the intrinsic metric on a surface with
alternating (positive or negative) Gaussian curvature.

* Flat metric
A flat metric is the intrinsic metric on a developable surface, i.e., a surface, on
which the Gaussian curvature is everywhere zero. Cf. flat space in Chap. 1.
In general, a Riemannian metric on a surface is locally Euclidean up to a third
order error (distortion of metric) measured by the Gaussian curvature.

* Metric of bounded curvature
A metric of bounded curvature is the intrinsic metric p on a surface of bounded
curvature.
A surface M? with an intrinsic metric p is called a surface of bounded curvature
if there exists a sequence of Riemannian metrics p, defined on M 2 such that
pn — p uniformly for any compact set A C M?, and the sequence |w,|(A) is
bounded, where |w|,(4) = [ [, |K(x)|do(x) is the total absolute curvature of
the metric p, (here K(x) is the Gaussian curvature of M? at a point x, and o (.)
is the area).

e A-Metric
A A-metric (or metric of type A) is a complete metric on a surface with
curvature bounded from above by a negative constant.
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A A-metric does not have embeddings into E3. It is a generalization of the result
in Hilbert, 1901: no complete regular surface of constant negative curvature (i.e.,
a surface whose intrinsic geometry is the geometry of the Lobachevsky plane)
exists in E3.

e (h, A)-metric
A (h, A)-metric is a metric on a surface with a slowly-changing negative
curvature.
A complete (%2, A)-metric does not permit a regular isometric embedding in
three-dimensional Euclidean space (cf. A-metric).

* G-distance
A connected set G of points on a surface M? is called a geodesic region if,
for each point x € G, there exists a disk B(x,r) with center at x, such that
Bs = G N B(x, r) has one of the following forms: B¢ = B(x,r) (x is a regular
interior point of G); B¢ is a semidisk of B(x,r) (x is a regular boundary point
of G); Bg is a sector of B(x, r) other than a semidisk (x is an angular point of
G); B¢ consists of a finite number of sectors of B(x, ) with no common points
except x (a nodal point of G).
The G-distance between any x and y € G is the greatest lower bound of
the lengths of all rectifiable curves connecting x and y € G and completely
contained in G.

¢ Conformally invariant metric
Let R be a Riemann surface. A local parameter (or local uniformizing parameter,
local uniformizer) is a complex variable z considered as a continuous function
Zpy = @p(p) of a point p € R which is defined everywhere in some
neighborhood (parametric neighborhood) V(py) of a point py € R and which
realizes a homeomorphic mapping (parametric mapping) of V(py) onto the disk
(parametric disk) A(po) = {z € C : |z| < r(po)}, where ¢p,,(po) = O.
Under a parametric mapping, any point function g(p) defined in the parametric
neighborhood V(py), goes into a function of the local parameter z: g(p) =
8(4,, (2) = G(2).
A conformally invariant metric is a differential p(z)|dz| on the Riemann surface
R which is invariant with respect to the choice of the local parameter z. Thus, to
each local parameter z (z : U — C) a function p, : z(U) — [0, 00] is associated
such that, for any local parameters z; and z,, we have

dzi(p)
dz(p)

Pa@(p) _
P @i (p))

forany p € Uy N U,.

Every linear differential A(z)dz and every quadratic differential Q(z)dz* induce
conformally invariant metrics |A(z)||dz| and |Q(z)|'/?||dz|, respectively (cf. Q-
metric).

e (-metric
An Q-metric is a conformally invariant metric p(z)|dz| = |Q(z)|'/?|dz| on a
Riemann surface R defined by a quadratic differential Q(z)dz>.
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A quadratic differential Q(z)dz* is a nonlinear differential on a Riemann surface
R which is invariant with respect to the choice of the local parameter z. Thus, to
each local parameter z (z : U — C) a function Q. : z(U) — C is associated
such that, for any local parameters z; and z,, we have

04, (z2(p) _ (dm (»)

2
0., (zi(p)) - de(p)) forany p € U, N Us.

* Extremal metric
Let I" be a family of locally rectifiable curves on a Riemann surface R and let
P be a class of conformally invariant metrics p(z)|dz| on R such that p(z) is
square-integrable in the z-plane for every local parameter z, and the following
Lebesgue integrals are not simultaneously equal to 0 or co:

Ay(R) = / / p*(z)dxdy and L,(T) = inf / o(2)|dz|.
R yel y
The modulus of the family of curves I is defined by

AR
O = @y

The extremal length of the family of curves T is the reciprocal of M(T).

Let Py be the subclass of P such that, for any p(z)|dz| € P and any y € T,
one has fy p(z)ldz| = 1.If P # @, then M(I') = infyep, A,(R). Every metric
from Py is called an admissible metric for the modulus on T'. If there exists p*
for which

M(T) = inf Ay(R) = Ay (R),

the metric p*|dz]| is called an extremal metric for the modulus on I'. It is a
conformally invariant metric.
* Fréchet surface metric

Let (X,d) be a metric space, M 24 compact 2D manifold, f a continuous
mapping f : M? — X, called a parametrized surface, and o : M?> — M?
a homeomorphism of M? onto itself. Two parametrized surfaces f; and f, are
called equivalent if inf, max,ep2 d(f1(p), f2(0(p))) = 0, where the infimum is
taken over all possible homeomorphisms . A class f* of parametrized surfaces,
equivalent to f, is called a Fréchet surface. It is a generalization of the notion of
a surface in Euclidean space to the case of an arbitrary metric space (X, d).

The Fréchet surface metric on the set of all Fréchet surfaces is defined by

inf max d(fi(p), f2(0(p)))
0 peM
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for any Fréchet surfaces f;* and f,*, where the infimum is taken over all possible
homeomorphisms ¢. Cf. the Fréchet metric in Chap. 1.

Hempel metric

A handlebody of genus g is the boundary sum of g copies of a solid torus; it is
homeomorphic to the closure of a regular neighborhood of some finite graph in
R, Given a closed orientable 3-manifold M , its Heegaard splitting (of genus g)
is M = AUp B where A, B are genus g handlebodiesin M suchthat M = AUB
and AN B = 0A = dB = P. Then P is called a (genus g) Heegaard surface
of M. In knot applications, Heegaard splitting of the exterior of a knot K (the
complement of an open solid torus knotted like K) are considered.

Two embedded curves are isotopic if there exists a continuous deformation
of one embedding to another through a path of embeddings. Given a closed
connected orientable surface S of genus at least two, let C(S) = (V,E)
denotes the graph whose vertices are isotopy classes of essential (not bounding
disk on the surface) simple closed curves and whose edges are drawn between
vertices with disjoint representative curves. This graph is connected. For any
subsets of vertices X,Y C V, denote by ds(X,Y) their set-to-set distance
minds(x,y) :x € X,y € Y, where dg(x, y) is the path metric of C(S).

If S is the boundary of a handlebody H , let M ( H ) denotes the set of vertices with
representatives bounding meridian disks D of H, i.e., such that dD are essential
simple closed curves in dH . The Hempel distance of a (genus g > 2) Heegaard
splitting M = A Up B is defined (Hempel, 2001) to be dp (M (A), M(B)).

A Heegaard splitting M = A Up B is stabilized, if there are meridian disks
Dy, Dp of A, B respectively such that D4 and dDp intersects transversely
in a single point. The Reidemeister—Singer distance between two Heegaard
surfaces/splittings is the minimal number of stabilizations (roughly, additions
of a “trivial” handle) and destabilizations (inverse operation) relating them.

8.2 Intrinsic Metrics on Surfaces

In this section we list intrinsic metrics, given by their line elements (which, in fact,
are 2D Riemannian metrics), for some selected surfaces.

Quadric metric

A quadric (or quadratic surface, surface of second-order) is a set of points in [E3,
whose coordinates in a Cartesian coordinate system satisfy an algebraic equation
of degree two. There are 17 classes of such surfaces. Among them are: ellip-
soids, one-sheet and two-sheet hyperboloids, elliptic paraboloids, hyperbolic
paraboloids, elliptic, hyperbolic and parabolic cylinders, and conical surfaces.
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For example, a cylinder can be given by the following parametric equations:
x1(u,v) =acosv, x(u,v) =asinv, x3(u,v) = u.
The intrinsic metric on it is given by the line element
ds*> = di* + a’dV’.

An elliptic cone (i.e., a cone with elliptical cross-section) has the following
equations:

h—u h—u

x1(u,v) =a cosv, x2(u,v) =b sinv, x3(u,v) = u,

where £ is the height, a is the semi-major axis, and b is the semi-minor axis of
the cone. The intrinsic metric on it is given by the line element
,  h?+a*cos’v+bZsin®v , _(a® —b*)(h—u)cosvsiny
ds” = du” 42
h? h?
(h — u)*(a®sin*v + b>cos?v)
+ W dv”.

dudv+

¢ Sphere metric
A sphere is a quadric, given by the Cartesian equation (x; — a)? + (x, — b)* +
(x3 — ¢)?> = r?, where the point (a, b, ) is the center of the sphere, and r > 0
is the radius of the sphere. The sphere of radius r, centered at the origin, can be
given by the following parametric equations:

x1(0,¢) =rsinfcos¢, x2(0,¢) = rsinfsing, x3(0,¢) = rcosb,

where the azimuthal angle ¢ € [0, 2m), and the polar angle 6 € [0, ].
The intrinsic metric on it (in fact, the 2D spherical metric) is given by the line
element

ds* = r’d6* + r’ sin’ 0d¢>.

A sphere of radius r has constant positive Gaussian curvature equal to 7.
¢ Ellipsoid metric

2 2 2
An ellipsoid is a quadric given by the Cartesian equation ;—; + Z—% + z—% =1,o0r
by the following parametric equations:

x1(0,¢) = acospsinf, x,(0,¢) = bsingsind, x3(0,¢) = ccosb,

where the azimuthal angle ¢ € [0, 2m), and the polar angle 6 € [0, ].
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The intrinsic metric on it is given by the line element

ds? = (b?cos® ¢ + a®sin” ¢) sin® Odgp? + (b> — a®) cos ¢ sin ¢ cos 6 sin OdOdp+
+((a® cos® ¢ + b?sin® ¢) cos® O + ¢?sin® 0)dH>.

¢ Spheroid metric
A spheroid is an ellipsoid having two axes of equal length. It is also a rotation
surface, given by the following parametric equations:

x1(u,v) = asinvcosu, x;(u,v) = asinvsinu, x3(u,v) = ccosv,

where 0 <u <2m,and 0 <v < 7.
The intrinsic metric on it is given by the line element

1
ds® = a®sin® vdu® + E(a2 + ¢ + (@® — ¢*) cos(2v))dv’.

¢ Hyperboloid metric

A hyperboloid is a quadric which may be one- or two-sheeted.

The one-sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the perpendicular bisector to the line between the foci, while
the two-sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the line joining the foci.

The one-sheeted circular hyperboloid, oriented along the x3 axis, is given by the

b

2 2
Cartesian equation Z—; + 5 j—% = 1, or by the following parametric equations:

x1(u,v) = av/'1 +u%cosv, xo(u,v) = a1+ u?sinv, x3(u,v) = cu,

where v € [0, 27r). The intrinsic metric on it is given by the line element

2.2

ds* = (2 + an du? + a*(u® + 1) dv’.
u? + 1

* Rotation surface metric
A rotation surface (or surface of revolution) is a surface generated by rotating a
2D curve about an axis. It is given by the following parametric equations:

x1(u,v) = ¢(v)cosu, x3(u,v) = ¢(v)sinu, x3(u,v) = ¥ ().
The intrinsic metric on it is given by the line element

ds*> = ¢>2du2 + ((,15/2 + w/z) v
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¢ Pseudo-sphere metric
A pseudo-sphere is a half of the rotation surface generated by rotating a tractrix
about its asymptote. It is given by the following parametric equations:

x1(u,v) = sechucosv, xy(u,v) = sechusinv, x3(u,v) = u—tanhu,

where u > 0, and 0 < v < 2. The intrinsic metric on it is given by the line
element

ds® = tanh® udi® + sech’u dv’.

The pseudo-sphere has constant negative Gaussian curvature equal to —1, and
in this sense is an analog of the sphere which has constant positive Gaussian
curvature.

* Torus metric
A torus is a surface having genus one. A torus azimuthally symmetric about the

x3 axis is given by the Cartesian equation (¢ — \/x7 + x3)> 4+ x2 = a?, or by the
following parametric equations:

x1(u,v) = (c +acosv)cosu, xo(u,v) = (c +acosv)sinu, x3(u,v) = asinv,

where ¢ > a, and u,v € [0, 27).
The intrinsic metric on it is given by the line element

ds* = (¢ + acosv)’du® + a’dv’.

For toroidally confined plasma, such as in magnetic confinement fusion, the
coordinates u, v and a correspond to the directions called , respectively, toroidal
(long, as lines of latitude, way around the torus), poloidal (short way around the
torus) and radial. The poloidal distance, used in plasma context, is the distance
in the poloidal direction.
* Helical surface metric

A helical surface (or surface of screw motion) is a surface described by a plane
curve y which, while rotating around an axis at a uniform rate, also advances
along that axis at a uniform rate. If y is located in the plane of the axis of rotation
x3 and is defined by the equation x3 = f(u), the position vector of the helical
surface is

r = (ucosv, usinv, f(u) = hv), h = const,
and the intrinsic metric on it is given by the line element

ds> = (1 + f2)du® + 2hf'dudv + (i + h>)dv*.



8.2 Intrinsic Metrics on Surfaces 177

If f = const, one has a helicoid; if h = 0, one has a rotation surface.
¢ Catalan surface metric
The Catalan surface is a minimal surface, given by the following equations:

x1(u,v) = u—sinucoshv, x;(u,v) =1—cosucoshv, x3(u,v)

oy . v
= 4sin (—) sinh (—) .
2 2
The intrinsic metric on it is given by the line element

ds> = 2 cosh? (g) (cosh v — cos u)du® + 2 coshz(g) (cosh v — cos u) dv?.
* Monkey saddle metric
The monkey saddle is a surface, given by the Cartesian equation x3 = xl(xl2 -
3x§), or by the following parametric equations:

x1(u,v) = u, xo(u,v) =v, x3(u,v) = w? — 3w?,

This is a surface which a monkey can straddle with both legs and his tail. The
intrinsic metric on it is given by the line element

ds®> = (1 + (su? — 3v»)D)du* — 2(18uv(u® — v?))dudv + (1 + 36u*v?)dv?).

* Distance-defined surfaces and curves
We give below examples of plane curves and surfaces which are the loci of
points with given value of some function of their Euclidean distances to the given
objects.
A parabola is the locus of all points in R? that are equidistant from the given
point (focus) and given line (directrix) on the plane.
A hyperbola is the locus of all points in R? such that the ratio of their distances
to the given point and line is a constant (eccentricity) greater than 1. It is also
the locus of all points in R? such that the absolute value of the difference of their
distances to the two given foci is constant.
An ellipse is the locus of all points in R? such that the sum of their distances to
the two given points (foci) is constant; cf. elliptic orbit distance in Chap.25. A
circle is an ellipse in which the two foci are coincident.
A Cassini oval is the locus of all points in R? such that the product of their
distances to two given points is a constant k. If the distance between two points
is 2@, then such oval is called a lemniscate of Bernoulli.
A circle of Appolonius is the locus of points in R? such that the ratio of their
distances to the first and second given points is constant.
A Cartesian oval is the locus of points in R? such that their distances r1, r, to the
foci (—1,0), (1, 0) are related linearly by ar; +br, = 1. The casesa =b,a = —b
anda = % (orb = %) correspond to the ellipse, hyperbola and limagon of Pascal,
respectively.
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A Cassinian curve is the locus of all points in R? such that the product of their
distances to n given points (poles) is constant. If the poles form a regular n-gon,
then this (algebraic of degree 2n) curve is a sinusoidal spiral given also by polar
equation " = 2 cos(n6), and the case n = 3 corresponds to the Kiepert curve.
Farouki and Moon, 2000, considered many other multipolar generalizations of
above curves. For example, their trifocal ellipse is the locus of all points in R?
(seen as the complex plane) such that the sum of their distances to the three cube
roots of unity is a constant k. If k = 2+/3, the curve pass through (and is singular
at) the three poles.

In R3, a surface, rotationally symmetric about an axis, is a locus defined via
Euclidean distances of its points to the two given poles belonging to this axis. For
example, a spheroid (or ellipsoid of revolution) is a quadric obtained by rotating
an ellipse about one of its principal axes.

It is a sphere, if this ellipse is a circle. If the ellipse is rotated about its major
axis, the result is an elongated (as the rugby ball) spheroid which is the locus of
all points in R? such that the sum of their distances to the two given points is
constant. The rotation about its minor axis results in a flattened spheroid (as the
Earth) which is the locus of all points in R? such that the sum of the distances to
the closest and the farthest points of given circle is constant.

A hyperboloid of revolution of two sheets is a quadric obtained by revolving a
hyperbola about its semi-major (real) axis. Such hyperboloid with axis A B is the
locus of all points in R? such that the absolute value of the difference of their
distances to the points A and B is constant.

Any point in R” is uniquely defined by its Euclidean distances to the vertices of a
nondegenerated n-simplex. If a surface which is not rotationally symmetric about
an axis, is a locus in R? defined via distances of its points to the given poles, then
three noncollinear poles is needed, and the surface is symmetric with respect to
reflexion in the plane defined by the three poles.

8.3 Distances on Knots

A knot is a closed, self-nonintersecting curve that is embedded in S 3. The trivial
knot (or unknot) O 1is a closed loop that is not knotted. A knot can be generalized
to a link which is a set of disjoint knots. Every link has its Seifert surface, i.e., a
compact oriented surface with the given link as boundary.

Two knots (links) are called equivalent if one can be smoothly deformed into
another. Formally, a link is defined as a smooth one-dimensional submanifold of
the 3-sphere S3; a knot is a link consisting of one component; two links L; and
L, are called equivalent if there exists an orientation-preserving homeomorphism
f 83— S3suchthat f(L;) = L,.

All the information about a knot can be described using a knot diagram. It is
a projection of a knot onto a plane such that no more than two points of the knot



8.3 Distances on Knots 179

are projected to the same point on the plane, and at each such point it is indicated
which strand is closest to the plane, usually by erasing part of the lower strand. Two
different knot diagrams may both represent the same knot. Much of Knot Theory is
devoted to telling when two knot diagrams represent the same knot.

An unknotting operation is an operation which changes the overcrossing and the
undercrossing at a double point of a given knot diagram. The unknotting number
of a knot K is the minimum number of unknotting operations needed to deform
a diagram of K into that of the trivial knot, where the minimum is taken over all
diagrams of K. Roughly, the unknotting number is the smallest number of times
a knot K must be passed through itself to untie it. An f{-unknotting operation
in a diagram of a knot K is an analog of the unknotting operation for a f{-part
of the diagram consisting of two pairs of parallel strands with one of the pair
overcrossing another. Thus, an f-unknotting operation changes the overcrossing and
the undercrossing at each vertex of obtained quadrangle.

* Gordian distance
The Gordian distance is a metric on the set of all knots defined, for given knots
K and K’, as the minimum number of unknotting operations needed to deform a
diagram of K into that of K’, where the minimum is taken over all diagrams of
K from which one can obtain diagrams of K’. The unknotting number of K is
equal to the Gordian distance between K and the trivial knot O.
Let rK be the knot obtained from K by taking its mirror image, and let —K be
the knot with the reversed orientation. The positive reflection distance Ref , (K)
is the Gordian distance between K and rK. The negative reflection distance
Ref _(K) is the Gordian distance between K and —rK. The inversion distance
Inv(K) is the Gordian distance between K and —K.
The Gordian distance is the case k = 1 of the Ci-distance which is the
minimum number of Cj-moves needed to transform K into K’; Habiro, 1994
and Goussarov, 1995, independently proved that, for k > 1, it is finite if and
only if both knots have the same Vassiliev invariants of order less than k. A C;-
move is a single crossing change, a C,-move (or delta-move) is a simultaneous
crossing change for 3 arcs forming a triangle. C,- and Cs-distances are called
delta distance and clasp-pass distance, respectively.

¢ f#-Gordian distance
The ff-Gordian distance (see, for example, [Mura85]) is a metric on the set of all
knots defined, for given knots K and K’, as the minimum number of ff-unknotting
operations needed to deform a diagram of K into that of K’, where the minimum
is taken over all diagrams of K from which one can obtain diagrams of K.
Let 7K be the knot obtained from K by taking its mirror image, and let —K
be the knot with the reversed orientation. The positive {{-reflection distance
Ref i (K) is the f{-Gordian distance between K and rK . The negative {-reflection
distance Ref* (K) is the f-Gordian distance between K and —rK. The f-
inversion distance Inv*(K) is the f-Gordian distance between K and —K.
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* Knot complement hyperbolic metric
The complement of a knot K (or a link L) is S*\ K (or S3\ L, respectively).
A knot (or, in general, a link) is called hyperbolic if its complement supports a
complete Riemannian metric of constant curvature —1. In this case, the metric is
called a knot (or link) complement hyperbolic metric, and it is unique.
A knot is hyperbolic if and only if (Thurston, 1978) it is not a satellite knot (then
it supports a complete locally homogeneous Riemannian metric) and not a forus
knot (does not lie on a trivially embedded torus in S3). The complement of any
nontrivial knot supports a complete nonpositively curved Riemannian metric.
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