
Chapter 7
Riemannian and Hermitian Metrics

Riemannian Geometry is a multidimensional generalization of the intrinsic geom-
etry of 2D surfaces in the Euclidean space E

3. It studies real smooth manifolds
equipped with Riemannian metrics, i.e., collections of positive-definite symmetric
bilinear forms ..gij// on their tangent spaces which vary smoothly from point to
point. The geometry of such (Riemannian) manifolds is based on the line element
ds2 D P

i;j gijdxidxj . This gives, in particular, local notions of angle, length of
curve, and volume.

From these notions some other global quantities can be derived, by integrating
local contributions. Thus, the value ds is interpreted as the length of the vector
.dx1; : : : ; dxn/, and it is called the infinitesimal distance. The arc length of a curve �

is expressed by
R
�

qP
i;j gijdxidxj , and then the intrinsic metric on a Riemannian

manifold is defined as the infimum of lengths of curves joining two given points of
the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an
ordinary metric, in fact, the intrinsic metric, called Riemannian distance, on any
connected Riemannian manifold. A Riemannian metric is an infinitesimal form of
the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Euclidean
Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic
Geometry, of non-Euclidean Geometry. If the bilinear forms ..gij// are nonde-
generate but indefinite, one obtains pseudo-Riemannian Geometry. In the case of
dimension four (and signature .1; 3/) it is the main object of the General Theory of
Relativity.

If ds D F.x1; : : : ; xn; dx1; : : : ; dxn/, where F is a real positive-definite convex
function which cannot be given as the square root of a symmetric bilinear form (as
in the Riemannian case), one obtains the Finsler Geometry generalizing Riemannian
Geometry.

© Springer-Verlag Berlin Heidelberg 2014
M.M. Deza, E. Deza, Encyclopedia of Distances,
DOI 10.1007/978-3-662-44342-2__7

133



134 7 Riemannian and Hermitian Metrics

Hermitian Geometry studies complex manifolds equipped with Hermitian met-
rics, i.e., collections of positive-definite symmetric sesquilinear forms (or 3

2
-linear

forms) since they are linear in one argument and antilinear in the other) on their
tangent spaces, which vary smoothly from point to point. It is a complex analog of
Riemannian Geometry.

A special class of Hermitian metrics form Kähler metrics which have a
closed fundamental form w. A generalization of Hermitian metrics give complex
Finsler metrics which cannot be written as a bilinear symmetric positive-definite
sesqulinear form.

7.1 Riemannian Metrics and Generalizations

A real n-manifold Mn with boundary is (cf. Chap. 2) a Hausdorff space in which
every point has an open neighborhood homeomorphic to either an open subset of
E
n, or an open subset of the closed half of En. The set of points which have an

open neighborhood homeomorphic to E
n is called the interior (of the manifold); it

is always nonempty.
The complement of the interior is called the boundary (of the manifold); it is an

(n � 1)-dimensional manifold. If it is empty, one obtains a real n-manifold without
boundary. Such manifold is called closed if it is compact, and open, otherwise.

An open set of Mn together with a homeomorphism between the open set and
an open set of En is called a coordinate chart. A collection of charts which cover
Mn is an atlas on Mn. The homeomorphisms of two overlapping charts provide a
transition mapping from a subset of En to some other subset of En.

If all these mappings are continuously differentiable, then Mn is a differentiable
manifold. If they are k times (infinitely often) continuously differentiable, then the
manifold is a Ck manifold (respectively, a smooth manifold, or C1 manifold).

An atlas of a manifold is called oriented if the Jacobians of the coordinate
transformations between any two charts are positive at every point. An orientable
manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space: they are locally
path-connected, locally compact, and locally metrizable. Every smooth Riemannian
manifold embeds isometrically (Nash, 1956) in some finite-dimensional Euclidean
space.

Associated with every point on a differentiable manifold is a tangent space and
its dual, a cotangent space. Formally, letMn be a Ck manifold, k � 1, and p a point
of Mn. Fix a chart ' W U ! E

n, where U is an open subset of Mn containing p.
Suppose that two curves �1 W .�1; 1/ ! Mn and �2 W .�1; 1/ ! Mn with �1.0/ D
�2.0/ D p are given such that ' � �1 and ' � �2 are both differentiable at 0.

Then �1 and �2 are called tangent at 0 if .' � �1/0

.0/ D .' � �2/0

.0/. If the
functions ' � �i W .�1; 1/ ! E

n, i D 1; 2, are given by n real-valued component
functions .' ��i/1.t/; : : : ; .' ��i/n.t/, the condition above means that their Jacobians
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�
d.'��i /1.t/

dt ; : : : ;
d.'��i /n.t/

dt

�
coincide at 0. This is an equivalence relation, and the

equivalence class �
0

.0/ of the curve � is called a tangent vector of Mn at p.
The tangent space Tp.Mn/ ofMn at p is defined as the set of all tangent vectors

at p. The function .d'/p W Tp.Mn/ ! E
n defined by .d'/p.�

0

.0// D .' � �/0

.0/,
is bijective and can be used to transfer the vector space operations from E

n over to
Tp.M

n/.
All the tangent spaces Tp.Mn/, p 2 Mn, when “glued together”, form the

tangent bundle T .Mn/ of Mn. Any element of T .Mn/ is a pair .p; v/, where
v 2 Tp.Mn/.

If for an open neighborhood U of p the function ' W U ! R
n is a coordinate

chart, then the preimage V of U in T .Mn/ admits a mapping  W V ! R
n � R

n

defined by  .p; v/ D .'.p/; d'.p//. It defines the structure of a smooth 2n-
dimensional manifold on T .Mn/. The cotangent bundle T �.Mn/ ofMn is obtained
in similar manner using cotangent spaces T �

p .M
n/, p 2 Mn.

A vector field on a manifoldMn is a section of its tangent bundle T .Mn/, i.e., a
smooth function f W Mn ! T .Mn/ which assigns to every point p 2 Mn a vector
v 2 Tp.Mn/.

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field on a manifold.

Formally, the covariant derivative r of a vector u (defined at a point p 2 Mn) in
the direction of the vector v (defined at the same point p) is a rule that defines a third
vector at p, called rvu which has the properties of a derivative. A Riemannian metric
uniquely defines a special covariant derivative called the Levi-Civita connection.
It is the torsion-free connection r of the tangent bundle, preserving the given
Riemannian metric.

The Riemann curvature tensor R is the standard way to express the curvature of
Riemannian manifolds. The Riemann curvature tensor can be given in terms of the
Levi-Civita connection r by the following formula:

R.u; v/w D rurvw � rvruw � rŒu;v�w;

where R.u; v/ is a linear transformation of the tangent space of the manifold Mn;
it is linear in each argument. If u D @

@xi
and v D @

@xj
are coordinate vector fields,

then Œu; v� D 0, and the formula simplifies to R.u; v/w D rurvw � rvruw, i.e., the
curvature tensor measures anti-commutativity of the covariant derivative. The linear
transformation w ! R.u; v/w is also called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the
full curvature tensorR. It can be thought of as a Laplacian of the Riemannian metric
tensor in the case of Riemannian manifolds. Ricci curvature is a linear operator on
the tangent space at a point. Given an orthonormal basis .ei /i in the tangent space
Tp.M

n/, we have

Ric.u/ D
X

i

R.u; ei /ei :
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The value of Ric.u/ does not depend on the choice of an orthonormal basis. Starting
with dimension four, the Ricci curvature does not describe the curvature tensor
completely.

The Ricci scalar (or scalar curvature) Sc of a Riemannian manifold Mn is the
full trace of the curvature tensor; given an orthonormal basis .ei /i at p 2 Mn, we
have

Sc D
X

i;j

hR.ei ; ej /ej ; eii D
X

i

hRic.ei /; ei i:

The sectional curvature K.�/ of a Riemannian manifold Mn is defined as the
Gauss curvature of an �-section at a point p 2 Mn, where a �-section is a locally-
defined piece of surface which has the 2-plane � as a tangent plane at p, obtained
from geodesics which start at p in the directions of the image of � under the
exponential mapping.

• Metric tensor
The metric (or basic, fundamental) tensor is a symmetric tensor of rank 2, that
is used to measure distances and angles in a real n-dimensional differentiable
manifold Mn. Once a local coordinate system .xi /i is chosen, the metric tensor
appears as a real symmetric n � n matrix ..gij//.
The assignment of a metric tensor on Mn introduces a scalar product (i.e.,
symmetric bilinear, but in general not positive-definite, form) h; ip on the tangent
space Tp.Mn/ at any p 2 Mn defined by

hx; yip D gp.x; y/ D
X

i;j

gij.p/xiyj ;

where x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ 2 Tp.Mn/. The collection of all these
scalar products is called the metric g with the metric tensor ..gij//. The length
ds of the vector .dx1; : : : ; dxn/ is expressed by the quadratic differential form

ds2 D
X

i;j

gijdxidxj ;

which is called the line element (or first fundamental form) of the metric g.

The length of a curve � is expressed by the formula
R
�

qP
i;j gijdxidxj . In

general it may be real, purely imaginary, or zero (an isotropic curve).
Let p; q and r be the numbers of positive, negative and zero eigenvalues of the
matrix ..gij// of the metric g; so, p C q C r D n. The metric signature (or,
simply, signature) of g is the pair .p; q/. A nondegenerated metric (i.e., one
with r D 0) is Riemannian or pseudo-Riemannian if its signature is positive-
definite (q D 0) or indefinite (pq > 0), respectively.
The nonmetricity tensor is the covariant derivative of a metric tensor. It is 0 for
Riemannian metrics but can be ¤ 0 for pseudo-Riemannian ones.
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• Nondegenerate metric
A nondegenerate metric is a metric g with the metric tensor ..gij//, for which
the metric discriminant det..gij// ¤ 0. All Riemannian and pseudo-Riemannian
metrics are nondegenerate.
A degenerate metric is a metric g with det..gij// D 0 (cf. semi-Riemannian
metric and semi-pseudo-Riemannian metric). A manifold with a degenerate
metric is called an isotropic manifold.

• Diagonal metric
A diagonal metric is a metric g with a metric tensor ..gij// which is zero for
i ¤ j . The Euclidean metric is a diagonal metric, as its metric tensor has the
form gii D 1; gij D 0 for i ¤ j .

• Riemannian metric
Consider a real n-dimensional differentiable manifoldMn in which each tangent
space is equipped with an inner product (i.e., a symmetric positive-definite
bilinear form) which varies smoothly from point to point.
A Riemannian metric on Mn is a collection of inner products h; ip on the
tangent spaces Tp.Mn/, one for each p 2 Mn.
Every inner product h; ip is completely defined by inner products hei ; ej ip D
gij.p/ of elements e1; : : : ; en of a standard basis in E

n, i.e., by the real symmetric
and positive-definite n � n matrix ..gij// D ..gij.p///, called a metric tensor.
In fact, hx; yip D P

i;j gij.p/xiyj , where x D .x1; : : : ; xn/ and y D
.y1; : : : ; yn/ 2 Tp.M

n/. The smooth function g completely determines the
Riemannian metric.
A Riemannian metric on Mn is not an ordinary metric on Mn. However, for a
connected manifold Mn, every Riemannian metric on Mn induces an ordinary
metric on Mn, in fact, the intrinsic metric of Mn,
For any points p; q 2 Mn the Riemannian distance between them is defined as

inf
�

Z 1

0

hd�
dt
;
d�

dt
i 12 dt D inf

�

Z 1

0

v
u
u
t
X

i;j

gij
dxi
dt

dxj
dt

dt;

where the infimum is over all rectifiable curves � W Œ0; 1� ! Mn, connecting p
and q.
A Riemannian manifold (or Riemannian space) is a real n-dimensional dif-
ferentiable manifold Mn equipped with a Riemannian metric. The theory of
Riemannian spaces is called Riemannian Geometry. The simplest examples of
Riemannian spaces are Euclidean spaces, hyperbolic spaces, and elliptic spaces.

• Conformal metric
A conformal structure on a vector space V is a class of pairwise-homothetic
Euclidean metrics on V . Any Euclidean metric dE on V defines a conformal
structure f�dE W � > 0g.
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A conformal structure on a manifold is a field of conformal structures on the
tangent spaces or, equivalently, a class of conformally equivalent Riemannian
metrics. Two Riemannian metrics g and h on a smooth manifold Mn are called
conformally equivalent if g D f � h for some positive function f on Mn, called
a conformal factor.
A conformal metric is a Riemannian metric that represents the conformal
structure. Cf. conformally invariant metric in Chap. 8.

• Conformal space
The conformal space (or inversive space) is the Euclidean space E

n extended
by an ideal point (at infinity). Under conformal transformations, i.e., continuous
transformations preserving local angles, the ideal point can be taken to be an
ordinary point. Therefore, in a conformal space a sphere is indistinguishable from
a plane: a plane is a sphere passing through the ideal point.
Conformal spaces are considered in Conformal (or angle-preserving, Möbius)
Geometry in which properties of figures are studied that are invariant under
conformal transformations. It is the set of transformations that map spheres into
spheres, i.e., generated by the Euclidean transformations together with inversions
which in coordinate form are conjugate to xi ! r2xiP

j x
2
j

, where r is the radius

of the inversion. An inversion in a sphere becomes an everywhere well defined
automorphism of period two. Any angle inverts into an equal angle.
The 2D conformal space is the Riemann sphere, on which the conformal
transformations are given by the Möbius transformations z ! azCb

czCd , ad�bc ¤ 0.
In general, a conformal mapping between two Riemannian manifolds is a
diffeomorphism between them such that the pulled back metric is conformally
equivalent to the original one. A conformal Euclidean space is a Riemannian
space admitting a conformal mapping onto an Euclidean space.
In the General Theory of Relativity, conformal transformations are considered on
the Minkowski space R1;3 extended by two ideal points.

• Space of constant curvature
A space of constant curvature is a Riemannian space Mn for which the
sectional curvatureK.�/ is constant in all 2D directions � .
A space form is a connected complete space of constant curvature k. Examples
of a flat space form, i.e., with k D 0, are the Euclidean space and flat torus. The
sphere and hyperbolic space are space forms with k > 0 and k < 0, respectively.

• Generalized Riemannian space
A generalized Riemannian space is a metric space with the intrinsic metric,
subject to certain restrictions on the curvature. Such spaces include spaces of
bounded curvature, Riemannian spaces, etc. They are defined and investigated
on the basis of their metric alone, without coordinates.
A space of bounded curvature (� k and � k

0

) is defined by the condition: for
any sequence of geodesic triangles Tn contracting to a point, we have

k � lim
ı.Tn/

�.T 0n /
� lim

ı.Tn/

�.T 0n /
� k

0

;
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where a geodesic triangle T D xyz is the triplet of geodesic segments Œx; y�,
Œy; z�, Œz; x� (the sides of T ) connecting in pairs three different points x; y; z,
ı.T / D ˛ C ˇ C � � � is the excess of the geodesic triangle T , and �.T 0/
is the area of a Euclidean triangle T 0 with the sides of the same lengths. The
intrinsic metric on the space of bounded curvature is called a metric of bounded
curvature.
Such a space turns out to be Riemannian under two additional conditions:
local compactness of the space (this ensures the condition of local existence of
geodesics), and local extendability of geodesics. If in this case k D k

0

, it is a
Riemannian space of constant curvature k (cf. space of geodesics in Chap. 6).

A space of curvature � k is defined by the condition lim ı.Tn/

�.T 0n /
� k. In such a

space any point has a neighborhood in which the sum ˛ C ˇ C � of the angles
of a geodesic triangle T does not exceed the sum ˛k C ˇk C �k of the angles of
a triangle T k with sides of the same lengths in a space of constant curvature k.
The intrinsic metric of such space is called a k-concave metric.

A space of curvature � k is defined by the condition lim ı.Tn/

�.T 0n /
� k. In such a

space any point has a neighborhood in which ˛ C ˇ C � � ˛k C ˇk C �k for
triangles T and T k . The intrinsic metric of such space is called a K-concave
metric.
An Alexandrov metric space is a generalized Riemannian space with upper, lower
or integral curvature bounds. Cf. a CAT(�1) space in Chap. 6.

• Complete Riemannian metric
A Riemannian metric g on a manifold Mn is called complete if Mn forms a
complete metric space with respect to g.
Any Riemannian metric on a compact manifold is complete.

• Ricci-flat metric
A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature tensor.
A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat
metric. Ricci-flat manifolds represent vacuum solutions to the Einstein field
equation, and are special cases of Kähler–Einstein manifolds. Important Ricci-
flat manifolds are Calabi–Yau manifolds, and hyper-Kähler manifolds.

• Osserman metric
An Osserman metric is a Riemannian metric for which the Riemannian
curvature tensor R is Osserman, i.e., the eigenvalues of the Jacobi operator
J .x/ W y ! R.y; x/x are constant on the unit sphere Sn�1 in E

n (they are
independent of the unit vectors x).

• G-invariant Riemannian metric
Given a Lie group .G; �; id/ of transformations, a Riemannian metric g on a
differentiable manifoldMn is calledG-invariant, if it does not change under any
x 2 G. The group .G; �; id/ is called the group of motions (or group of isometries)
of the Riemannian space .Mn; g/. Cf. G-invariant metric in Chap. 10.
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• Ivanov–Petrova metric
Let R be the Riemannian curvature tensor of a Riemannian manifold Mn, and
let fx; yg be an orthogonal basis for an oriented 2-plane � in the tangent space
Tp.M

n/ at a point p of Mn.
The Ivanov–Petrova metric is a Riemannian metric on Mn for which the
eigenvalues of the antisymmetric curvature operator R.�/ D R.x; y/ [IvSt95]
depend only on the point p of a Riemannian manifold Mn, but not upon the
plane � .

• Zoll metric
A Zoll metric is a Riemannian metric on a smooth manifold Mn whose
geodesics are all simple closed curves of an equal length. A 2D sphere S2 admits
many such metrics, besides the obvious metrics of constant curvature. In terms
of cylindrical coordinates .z; �/ (z 2 Œ�1; 1�, � 2 Œ0; 2��), the line element

ds2 D .1C f .z//2

1 � z2
dz2 C .1 � z2/d�2

defines a Zoll metric on S2 for any smooth odd function f W Œ�1; 1� ! .�1; 1/
which vanishes at the endpoints of the interval.

• Berger metric
The Berger metric is a Riemannian metric on the Berger sphere (i.e., the three-
sphere S3 squashed in one direction) defined by the line element

ds2 D d�2 C sin2 �d	2 C cos2 ˛.d C cos �d	/2;

where ˛ is a constant, and � , 	,  are Euler angles.
• Cycloidal metric

The cycloidal metric is a Riemannian metric on the half-plane R2C D fx 2 R
2 W

x2 > 0g defined by the line element

ds2 D dx21 C dx22
2x2

:

It is called cycloidal because its geodesics are cycloid curves. The corresponding
distance d.x; y/ between two points x; y 2 R

2C is equivalent to the distance


.x; y/ D jx1 � y1j C jx2 � y2jp
x1 C p

x2 Cpjx2 � y2j

in the sense that d � C
, and 
 � Cd for some positive constant C .



7.1 Riemannian Metrics and Generalizations 141

• Klein metric
The Klein metric is a Riemannian metric on the open unit ball Bn D fx 2 R

n W
jjxjj2 < 1g in R

n defined by

q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/

1 � jjxjj22
for any x 2 Bn and y 2 Tx.B

n/, where jj:jj2 is the Euclidean norm on R
n, and

h; i is the ordinary inner product on R
n.

The Klein metric is the hyperbolic case a D �1 of the general form

p
.1C ajjxjj2/jjyjj2 � ahx; yi2

1C ajjxjj2 ;

while a D 0; 1 correspond to the Euclidean and spherical cases.
• Carnot–Carathéodory metric

A distribution (or polarization) on a manifold Mn is a subbundle of the tangent
bundle T .Mn/ of Mn. Given a distribution H.Mn/, a vector field in H.Mn/

is called horizontal. A curve � on Mn is called horizontal (or distinguished,
admissible) with respect to H.Mn/ if �

0

.t/ 2 H�.t/.M
n/ for any t .

A distribution H.Mn/ is called completely nonintegrable if the Lie brackets
of H.Mn/, i.e., Œ� � � ; ŒH.Mn/;H.Mn/��, span the tangent bundle T .Mn/, i.e.,
for all p 2 Mn any tangent vector v from Tp.M

n/ can be presented as
a linear combination of vectors of the following types: u, Œu;w�, Œu; Œw; t ��,
Œu; Œw; Œt; s���; � � � 2 Tp.Mn/, where all vector fields u;w; t; s; : : : are horizontal.
The Carnot–Carathéodory metric (or CC metric, sub-Riemannian metric,
control metric) is a metric on a manifold Mn with a completely nonintegrable
horizontal distribution H.Mn/ defined as the section gC of positive-definite
scalar products on H.Mn/. The distance dC .p; q/ between any points p; q 2
Mn is defined as the infimum of the gC -lengths of the horizontal curves joining
p and q.
A sub-Riemannian manifold (or polarized manifold) is a manifoldMn equipped
with a Carnot–Carathéodory metric. It is a generalization of a Riemannian
manifold. Roughly, in order to measure distances in a sub-Riemannian manifold,
one is allowed to go only along curves tangent to horizontal spaces.

• Pseudo-Riemannian metric
Consider a real n-dimensional differentiable manifoldMn in which every tangent
space Tp.Mn/, p 2 Mn, is equipped with a scalar product which varies
smoothly from point to point and is nondegenerate, but indefinite.
A pseudo-Riemannian metric on Mn is a collection of scalar products h; ip on
the tangent spaces Tp.Mn/, p 2 Mn, one for each p 2 Mn.
Every scalar product h; ip is completely defined by scalar products hei ; ej ip D
gij.p/ of elements e1; : : : ; en of a standard basis in E

n, i.e., by the real
symmetric indefinite n � n matrix ..gij// D ..gij.p///, called a metric tensor
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(cf. Riemannian metric in which case this tensor is not only nondegenerate but,
moreover, positive-definite).
In fact, hx; yip D P

i;j gij.p/xiyj , where x D .x1; : : : ; xn/ and y D
.y1; : : : ; yn/ 2 Tp.M

n/. The smooth function g determines the pseudo-
Riemannian metric.
The length ds of the vector .dx1; : : : ; dxn/ is given by the quadratic differential
form

ds2 D
X

i;j

gijdxidxj :

The length of a curve � W Œ0; 1� ! Mn is expressed by the formula

Z

�

sX

i;j

gijdxidxj D
Z 1

0

v
u
u
t
X

i;j

gij
dxi
dt

dxj
dt

dt:

In general it may be real, purely imaginary or zero (an isotropic curve).
A pseudo-Riemannian metric on Mn is a metric with a fixed, but indefinite
signature .p; q/, p C q D n. A pseudo-Riemannian metric is nondegenerate,
i.e., its metric discriminant det..gij// ¤ 0. Therefore, it is a nondegenerate
indefinite metric.
A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real
n-dimensional differentiable manifold Mn equipped with a pseudo-Riemannian
metric. The theory of pseudo-Riemannian spaces is called Pseudo-Riemannian
Geometry.

• Pseudo-Euclidean distance
The model space of a pseudo-Riemannian space of signature .p; q/ is the
pseudo-Euclidean space R

p;q , p C q D n which is a real n-dimensional vector
space R

n equipped with the metric tensor ..gij// of signature .p; q/ defined, for
i ¤ j , by g11 D � � � D gpp D 1, gpC1;pC1 D � � � D gnn D �1, gij D 0.
The line element of the corresponding metric is given by

ds2 D dx21 C � � � C dx2p � dx2pC1 � � � � � dx2n:

The pseudo-Euclidean distance of signature .p; q D n � p/ on R
n is defined

by

d2pE.x; y/ D D.x; y/ D
pX

iD1
.xi � yi /2 �

nX

iDpC1
.xi � yi /

2:

Such a pseudo-Euclidean space can be seen as Rp � iRq , where i D p�1.
The pseudo-Euclidean space with .p; q/ D .1; 3/ is used as flat space-time model
of Special Relativity; cf. Minkowski metric in Chap. 26.
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The points correspond to events; the line spanned by x and y is space-like if
D.x; y/ > 0 and time-like if D.x; y/ < 0. If D.x; y/ > 0, then

p
D.x; y/

is Euclidean distance and if D.x; y/ < 0, then
pjD.x; y/j is the lifetime of a

particle (from x to y).
The pseudo-Euclidean distance of signature .p; q D n � p/ is the case A D

diag.ai / with ai D 1 for 1 � i � p and ai D �1 for p C 1 � i � n, of the

weighted Euclidean distance
qP

1�i�n ai .xi � yi /2 in Chap. 17.

• Blaschke metric
The Blaschke metric on a nondegenerate hypersurface is a pseudo-Riemannian
metric, associated to the affine normal of the immersion 	 W Mn ! R

nC1, where
Mn is an n-dimensional manifold, and R

nC1 is considered as an affine space.
• Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable manifold
Mn is a degenerate Riemannian metric, i.e., a collection of positive-semidefinite
scalar products hx; yip D P

i;j gij.p/xiyj on the tangent spaces Tp.Mn/,
p 2 Mn; the metric discriminant det..gij// D 0.
A semi-Riemannian manifold (or semi-Riemannian space) is a real
n-dimensional differentiable manifold Mn equipped with a semi-Riemannian
metric.
The model space of a semi-Riemannian manifold is the semi-Euclidean space
Rnd , d � 1 (sometimes denoted also by R

n
n�d ), i.e., a real n-dimensional vector

space R
n equipped with a semi-Riemannian metric.

It means that there exists a scalar product of vectors such that, relative to a
suitably chosen basis, the scalar product hx; xi has the form hx; xi D Pn�d

iD1 x2i .
The number d � 1 is called the defect (or deficiency) of the space.

• Grushin metric
The Grushin metric is a semi-Riemannian metric on R

2 defined by the line
element

ds2 D dx21 C dx22
x21
:

• Agmon distance
The Agmon metric attached to an energy E and a potential V is defined as

ds2 D maxf0; V .x/� E0.h/gdx2;

where dx2 is the standard metric on R
d . Then the Agmon distance on R

d is the
corresponding Riemannian distance defined, for any x; y 2 R

d , by

inf
�

f
Z 1

0

p
maxfV.�.s// �E0.h/; 0g � j� 0

.s/jds W �.0/ D x; �.1/ D y; � 2 C1g:
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• Semi-pseudo-Riemannian metric
A semi-pseudo-Riemannian metric on a real n-dimensional differentiable
manifold Mn is a degenerate pseudo-Riemannian metric, i.e., a collection of
degenerate indefinite scalar products hx; yip D P

i;j gij.p/xiyj on the tangent
spaces Tp.Mn/, p 2 Mn; the metric discriminant det..gij// D 0. In fact, a semi-
pseudo-Riemannian metric is a degenerate indefinite metric.
A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space) is a
real n-dimensional differentiable manifold Mn equipped with a semi-pseudo-
Riemannian metric. The model space of such manifold is the semi-pseudo-
Euclidean space Rnl1;:::;lr

m1;:::;mr�1

, i.e., a vector space Rn equipped with a semi-pseudo-

Riemannian metric.
It means that there exist r scalar products hx; yia D P

�iaxiayia , where
a D 1; : : : r , 0 D m0 < m1 < � � � < mr D n, ia D ma�1 C 1; : : : ma,
�ia D ˙1, and �1 occurs la times among the numbers �ia . The product hx; yia is
defined for those vectors for which all coordinates xi ; i � ma�1 or i > ma C 1

are zero.
The first scalar square of an arbitrary vector x is a degenerate quadratic form
hx; xi1 D �Pl1

iD1 x2i CPn�d
jDl1C1 x

2
j . The number l1 � 0 is called the index, and

the number d D n �m1 is called the defect of the space. If l1 D � � � D lr D 0,
we obtain a semi-Euclidean space. The spaces R

n

m
and R

n
k;l
m

are called quasi-

Euclidean spaces.
The semi-pseudo-non-Euclidean space S

n
l1;:::;lr
m1;:::;mr�1

is a hypersphere in R
nC1
l1;:::;lr
m1;:::;mr�1

with identified antipodal points. It is called semielliptic (or semi-non-Euclidean)
space if l1 D � � � D lr D 0 and a semihyperbolic space if there exist li ¤ 0.

• Finsler metric
Consider a real n-dimensional differentiable manifoldMn in which every tangent
space Tp.Mn/, p 2 Mn, is equipped with a Banach norm jj:jj such that the
Banach norm as a function of position is smooth, and the matrix ..gij//,

gij D gij.p; x/ D 1

2

@2jjxjj2
@xi @xj

;

is positive-definite for any p 2 Mn and any x 2 Tp.Mn/.
A Finsler metric on Mn is a collection of Banach norms jj:jj on the tangent
spaces Tp.Mn/, one for each p 2 Mn. Its line element has the form

ds2 D
X

i;j

gijdxidxj :

The Finsler metric can be given by fundamental function, i.e., a real positive-
definite convex function F.p; x/ of p 2 Mn and x 2 Tp.M

n/ acting at the
point p. F.p; x/ is positively homogeneous of degree one in x: F.p; �x/ D
�F.p; x/ for every � > 0. Then F.p; x/ is the length of the vector x.
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The Finsler metric tensor has the form ..gij// D .. 1
2

@2F 2.p;x/

@xi @xj
//. The length of

a curve � W Œ0; 1� ! Mn is given by
R 1
0 F.p;

dp
dt /dt. For each fixed p the Finsler

metric tensor is Riemannian in the variables x.
The Finsler metric is a generalization of the Riemannian metric, where the
general definition of the length jjxjj of a vector x 2 Tp.M

n/ is not necessarily
given in the form of the square root of a symmetric bilinear form as in the
Riemannian case.
A Finsler manifold (or Finsler space) is a real differentiable n-manifold Mn

equipped with a Finsler metric. The theory of such spaces is Finsler Geometry.
The difference between a Riemannian space and a Finsler space is that the former
behaves locally like a Euclidean space, and the latter locally like a Minkowskian
space or, analytically, the difference is that to an ellipsoid in the Riemannian case
there corresponds an arbitrary convex surface which has the origin as the center.
A pseudo-Finsler metric F is defined by weakening the definition of a
Finsler metric): ..gij// should be nondegenerate and of constant signature (not
necessarily positive-definite) and hence F could be negative. The pseudo-Finsler
metric is a generalization of the pseudo-Riemannian metric.

• .˛; ˇ/-metric
Let ˛.x; y/ D p

˛ij.x/yiyj be a Riemannian metric and ˇ.x; y/ D bi .x/y
i

be a 1-form on a n-dimensional manifold Mn. Let s D ˇ

˛
and 	.s/ is an C1-

positive function on some symmetric interval .�r; r/ with r > ˇ

˛
for all .x; y/

in the tangent bundle TM D [x2MTx.Mn/ of the tangent spaces Tx.Mn/. Then
F D ˛	.s/ is a Finsler metric (Matsumoto, 1972) called an .˛; ˇ/-metric. The
main examples of .˛; ˇ/-metrics follow.
The Kropina metric is the case 	.s/ D 1

s
, i.e., F D ˛2

ˇ
.

The generalized Kropina metric is the case 	.s/ D sm, i.e., F D ˇm˛1�m.
The Randers metric (1941) is the case 	.s/ D 1C s, i.e., F D ˛ C ˇ.
The Matsumoto slope metric is the case 	.s/ D 1

1�s , i.e., F D ˛2

˛�ˇ .

The Riemann-type .˛; ˇ/-metric is the case 	.s/ D p
1C s2, i.e., F D

˛2 C ˇ2.

Park and Lee, 1998, considered the case 	.s/ D 1C s2, i.e., F D ˛ C ˇ2

˛
.

• Shen metric
Given a vector a 2 R

n, jjajj2 < 1, the Shen metric (2003) is a Finsler metric on
the open unit ball Bn D fx 2 R

n W jjxjj2 < 1g in R
n defined by

q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/C hx; yi

1 � jjxjj22
C ha; yi
1C ha; xi

for any x 2 Bn and y 2 Tx.B
n/, where jj:jj2 is the Euclidean norm on R

n, and
h; i is the ordinary inner product on R

n. It is a Randers metric and a projective
metric. Cf. Klein metric and Berwald metric.
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• Berwald metric
The Berwald metric (1929) is a Finsler metric FBe on the open unit ball Bn D
fx 2 R

n W jjxjj2 < 1g in R
n defined, for any x 2 Bn and y 2 Tx.Bn/, by

�q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/C hx; yi

�2

.1 � jjxjj22/2
q

jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/
;

where jj:jj2 is the Euclidean norm on R
n, and h; i is the inner product on R

n. It is

a projective metric and an .˛; ˇ/-metric with 	.s/ D .1Cs/2, i.e.,F D .˛Cˇ/2
˛

.
The Riemannian metrics are special Berwald metrics. Every Berwald metric is
affinely equivalent to a Riemannian metric.
In general, every Finsler metric on a manifoldMn induces a spray (second-order
homogeneous ordinary differential equation) yi @

@xi
� 2Gi @

@yi
which determines

the geodesics. A Finsler metric is a Berwald metric if the spray coefficients
Gi D Gi.x; y/ are quadratic in y 2 Tx.M

n/ at any point x 2 Mn, i.e.,
Gi D 1

2
�ijk.x/y

j yk .

A Finsler metric is a more general Landsberg metric�ijkD 1
2
@yj @yk .�

i
jk.x/y

j yk/.
The Landsberg metric is the one for which the Landsberg curvature (the covariant
derivative of the Cartan torsion along a geodesic) is zero.

• Douglas metric
A Douglas metric a Finsler metric for which the spray coefficients Gi D
Gi.x; y/ have the following form:

Gi D 1

2
�ijk.x/yiyk C P.x; y/yi :

Every Finsler metric which is projectively equivalent to a Berwald metric is
a Douglas metric. Every Berwald metric is a Douglas metric. Every known
Douglas metric is (locally) projectively equivalent to a Berwald metric.

• Bryant metric
Let ˛ be an angle with j˛j < �

2
. Let, for any x; y 2 R

n, A D jjyjj42 sin2 2˛ C
�jjyjj22 cos 2˛ C jjxjj22jjyjj22 � hx; yi2�2, B D jjyjj22 cos 2˛ C jjxjj22jjyjj22 �
hx; yi2, C D hx; yi sin 2˛, D D jjxjj42 C 2jjxjj22 cos 2˛ C 1. Then we get a
Finsler metric

sp
AC B

2D
C
�
C

D

�2
C C

D
:

On the 2D unit sphere S2, it is the Bryant metric (1996).
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• m-th root pseudo-Finsler metric
An m-th root pseudo-Finsler metric is (Shimada, 1979) a pseudo-Finsler
metric defined (with ai1:::im symmetric in all its indices) by

F.x; y/ D .ai1:::im.x/y
i1:::im/

1
m :

For m D 2, it is a pseudo-Riemannian metric. The 3rd and 4th root pseudo-
Finsler metrics are called cubic metric and quartic metric, respectively.

• Antonelli–Shimada metric
The Antonelli–Shimada metric (or ecological Finsler metric) is an m-th root
pseudo-Finsler metric defined, via linearly independent 1-forms ai , by

F.x; y/ D
 

nX

iD1
.ai /m

! 1
m

:

The Uchijo metric is defined, for a constant k, by

F.x; y/ D
 

nX

iD1
.ai /2

! 1
2

C ka1:

• Berwald–Moör metric
The Berwald–Moör metric is an m-th root pseudo-Finsler metric, defined by

F.x; y/ D .y1 : : : yn/
1
n :

More general Asanov metric is defined, via linearly independent 1-forms ai , by

F.x; y/ D .a1 : : : an/
1
n :

The Berwald–Moör metrics with n D 4 and n D 6 are applied in Relativity
Theory and Diffusion Imaging, respectively. The pseudo-Finsler spaces which
are locally isomorphic to the 4th root Berwald–Moör metric, are expected to be
more general and productive space-time models than usual pseudo-Riemannian
spaces, which are locally isomorphic to the Minkowski metric.

• Kawaguchi metric
The Kawaguchi metric is a metric on a smooth n-dimensional manifold Mn,
given by the arc element ds of a regular curve x D x.t/, t 2 Œt0; t1� via the
formula

ds D F.x;
dx

dt
; : : : ;

d kx

dtk
/dt;
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where the metric function F satisfies Zermelo’s conditions:
Pk

sD1 sx.s/F.s/iD F ,
Pk

sDr .sk/x.s�rC1/iF.s/i D 0, x.s/i D dsxi

dts , F.s/i D @F

@x.s/i
, and r D 2; : : : ; k.

These conditions ensure that the arc element ds is independent of the parametriza-
tion of the curve x D x.t/.
A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold equipped
with a Kawaguchi metric. It is a generalization of a Finsler manifold.

• Lagrange metric
Consider a real n-dimensional manifoldMn. A set of symmetric nondegenerated
matrices ..gij.p; x/// define a generalized Lagrange metric onMn if a change
of coordinates .p; x/ ! .q; y/, such that qi D qi.p1; : : : ; pn/, yi D .@j qi /xj
and rank .@j qi / D n, implies gij.p; x/ D .@iqi /.@j qj /gij.q; y/.
A generalized Lagrange metric is called a Lagrange metric if there exists a
Lagrangian, i.e., a smooth function L.p; x/ such that it holds

gij.p; x/ D 1

2

@2L.p; x/

@xi @xj
:

Every Finsler metric is a Lagrange metric with L D F 2.
• DeWitt supermetric

The DeWitt supermetric (or Wheeler–DeWitt supermetric)G D ..Gijkl// cal-
culates distances between metrics on a given manifold, and it is a generalization
of a Riemannian (or pseudo-Riemannian) metric g D ..gij//.
For example, for a given connected smooth 3-dimensional manifold M3, con-
sider the space M.M3/ of all Riemannian (or pseudo-Riemannian) metrics
on M3. Identifying points of M.M3/ that are related by a diffeomorphism
of M3, one obtains the space Geom.M3/ of 3-geometries (of fixed topology),
points of which are the classes of diffeomorphically equivalent metrics. The
space Geom.M3/ is called a superspace. It plays an important role in several
formulations of Quantum Gravity.
A supermetric, i.e., a “metric on metrics”, is a metric on M.M3/ (or on
Geom.M3/) which is used for measuring distances between metrics on M3 (or
between their equivalence classes). Given g D ..gij// 2 M.M3/, we obtain

jjıgjj2 D
Z

M3

d3xGijkl.x/ıgij.x/ıgkl.x/;

where Gijkl is the inverse of the DeWitt supermetric

Gijkl D 1

2
p

det..gij//
.gikgjl C gilgjk � �gijgkl/:

The value � parametrizes the distance between metrics in M.M3/, and may take
any real value except � D 2

3
, for which the supermetric is singular.
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• Lund–Regge supermetric
The Lund–Regge supermetric (or simplicial supermetric) is an analog of
the DeWitt supermetric, used to measure the distances between simplicial
3-geometries in a simplicial configuration space.
More exactly, given a closed simplicial 3D manifold M3 consisting of several
tetrahedra (i.e., 3-simplices), a simplicial geometry on M3 is fixed by an
assignment of values to the squared edge lengths of M3, and a flat Riemannian
Geometry to the interior of each tetrahedron consistent with those values.
The squared edge lengths should be positive and constrained by the triangle
inequalities and their analogs for the tetrahedra, i.e., all squared measures
(lengths, areas, volumes) must be nonnegative (cf. tetrahedron inequality in
Chap. 3).
The set T .M3/ of all simplicial geometries on M3 is called a simplicial
configuration space. The Lund–Regge supermetric ..Gmn// on T .M3/ is induced
from the DeWitt supermetric on M.M3/, using for representations of points in
T .M3/ such metrics in M.M3/ which are piecewise flat in the tetrahedra.

• Space of Lorentz metrics
Let Mn be an n-dimensional compact manifold, and L.Mn/ the set of all
Lorentz metrics (i.e., the pseudo-Riemannian metrics of signature .n � 1; 1/)
on Mn.
Given a Riemannian metric g on Mn, one can identify the vector space S2.Mn/

of all symmetric 2-tensors with the vector space of endomorphisms of the tangent
to Mn which are symmetric with respect to g. In fact, if Qh is the endomorphism
associated to a tensor h, then the distance on S2.Mn/ is given by

dg.h; t/ D sup
x2Mn

q

tr. Qhx � Qtx/2:

The set L.Mn/ taken with the distance dg is an open subset of S2.Mn/ called
the space of Lorentz metrics. Cf. manifold triangulation metric in Chap. 9.

• Perelman supermetric proof
The Thurston’s Geometrization Conjecture is that, after two well-known split-
tings, any 3D manifold admits, as remaining components, only one of eight
Thurston model geometries. If true, this conjecture implies the validity of the
famous Poincaré Conjecture of 1904, that any 3-manifold, in which every simple
closed curve can be deformed continuously to a point, is homeomorphic to the
3-sphere.
In 2002, Perelman gave a gapless “sketch of an eclectic proof” of Thurston’s
conjecture using a kind of supermetric approach to the space of all Riemannian
metrics on a given smooth 3-manifold. In a Ricci flow the distances decrease in
directions of positive curvature since the metric is time-dependent. Perelman’s
modification of the standard Ricci flow permitted systematic elimination of
arising singularities.
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7.2 Riemannian Metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory. A list
of such metrics is given below.

• Thermodynamic metrics
Given the space of all extensive (additive in magnitude, mechanically conserved)
thermodynamic variables of a system (energy, entropy, amounts of materials), a
thermodynamic metric is a Riemannian metric on the manifold of equilibrium
states defined as the 2nd derivative of one extensive quantity, usually entropy
or energy, with respect to the other extensive quantities. This information
geometric approach provides a geometric description of thermodynamic systems
in equilibrium.
The Ruppeiner metric (Ruppeiner, 1979) is defined by the line element ds2R D
gRij dxidxj ; where the matrix ..gRij // of the symmetric metric tensor is a negative
Hessian (the matrix of 2nd order partial derivatives) of the entropy function S :

gRij D �@i@j S.M;N a/:

Here M is the internal energy (which is the mass in black hole applications)
of the system and Na refer to other extensive parameters such as charge,
angular momentum, volume, etc. This metric is flat if and only if the statistical
mechanical system is noninteracting, while curvature singularities are a signal
of critical behavior, or, more precisely, of divergent correlation lengths (cf.
Chap. 24).
The Weinhold metric (Weinhold, 1975) is defined by gWij D @i @jM.S;N

a/.
The Ruppeiner and Weinhold metrics are conformally equivalent (cf. conformal
metric) via ds2 D gRij dMidMj D 1

T
gWij dSidSj , where T is the temperature.

The thermodynamic length in Chap. 24 is a path function that measures the
distance along a path in the state space.

• Fisher information metric
In Statistics, Probability, and Information Geometry, the Fisher information
metric is a Riemannian metric for a statistical differential manifold (see,
for example, [Amar85, Frie98]). Formally, let p� D p.x; �/ be a family of
densities, indexed by n parameters � D .�1; : : : ; �n/ which form the parameter
manifold P .
The Fisher information metric g D g� on P is a Riemannian metric, defined
by the Fisher information matrix ..I.�/ij//, where

I.�/ij D E�

�
@ lnp�
@�i

� @ lnp�
@�j

	

D
Z
@ lnp.x; �/

@�i

@ lnp.x; �/

@�j
p.x; �/dx:

It is a symmetric bilinear form which gives a classical measure (Rao measure)
for the statistical distinguishability of distribution parameters.
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Putting i.x; �/ D � lnp.x; �/, one obtains an equivalent formula

I.�/ij D E�

�
@2i.x; �/

@�i@�j

	

D
Z
@2i.x; �/

@�i @�j
p.x; �/dx:

In a coordinate-free language, we get

I.�/.u; v/ D E� Œu.lnp�/ � v.lnp�/� ;

where u and v are vectors tangent to the parameter manifold P , and u.lnp�/ D
d
dt lnp�CtujtD0 is the derivative of lnp� along the direction u.
A manifold of densities M is the image of the parameter manifold P under
the mapping � ! p� with certain regularity conditions. A vector u tangent to
this manifold is of the form u D d

dtp�CtujtD0, and the Fisher information metric
g D gp on M , obtained from the metric g� on P , can be written as

gp.u; v/ D Ep

�
u

p
� v

p

	

:

• Fisher–Rao metric
Let Pn D fp 2 R

n W Pn
iD1 pi D 1; pi > 0g be the simplex of strictly positive

probability vectors. An element p 2 Pn is a density of the n-point set f1; : : : ; ng
with p.i/ D pi . An element u of the tangent space Tp.Pn/ D fu 2 R

n WPn
iD1 ui D 0g at a point p 2 Pn is a function on f1; : : : ; ng with u.i/ D ui .

The Fisher–Rao metric gp on Pn is a Riemannian metric defined by

gp.u; v/ D
nX

iD1

uivi
pi

for any u; v 2 Tp.Pn/, i.e., it is the Fisher information metric on Pn.
The Fisher–Rao metric is the unique (up to a constant factor) Riemannian metric
on Pn, contracting under stochastic maps [Chen72].
This metric is isometric, by p ! 2.

p
p1; : : : ;

p
pn/, with the standard metric on

an open subset of the sphere of radius two in R
n. This identification allows one

to obtain on Pn the geodesic distance, called the Rao distance, by

2 arccos.
X

i

p
1=2
i q

1=2
i /:

The Fisher–Rao metric can be extended to the set Mn D fp 2 R
n; pi > 0g of all

finite strictly positive measures on the set f1; : : : ; ng. In this case, the geodesic
distance on Mn can be written as

2

 
X

i

.
p
pi � p

qi /
2

!1=2

for any p; q 2 Mn (cf. Hellinger metric in Chap. 14).
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• Monotone metrics
Let Mn be the set of all complex n � n matrices. Let M � Mn be the manifold
of all such positive-definite matrices. Let D � M, D D f
 2 M W Tr
 D 1g,
be the submanifold of all density matrices. It is the space of faithful states of an
n-level quantum system; cf. distances between quantum states in Chap. 24.
The tangent space of M at 
 2 M is T
.M/ D fx 2 Mn W x D x�g, i.e., the
set of all n � n Hermitian matrices. The tangent space T
.D/ at 
 2 D is the
subspace of traceless (i.e., with trace 0) matrices in T
.M/.
A Riemannian metric � on M is called monotone metric if the inequality

�h.
/.h.u/; h.u// � �
.u; u/

holds for any 
 2 M, any u 2 T
.M/, and any stochastic, i.e., completely
positive trace preserving mapping h.
It was proved in [Petz96] that � is monotone if and only if it can be written as

�
.u; v/ D Tr uJ
.v/;

where J
 is an operator of the form J
 D 1
f .L
=R
/R


. Here L
 and R
 are the
left and the right multiplication operators, and f W .0;1/ ! R is an operator
monotone function which is symmetric, i.e., f .t/ D tf .t�1/, and normalized, i.e.,
f .1/ D 1. Then J
.v/ D 
�1v if v and 
 are commute, i.e., any monotone metric
is equal to the Fisher information metric on commutative submanifolds.
The Bures metric (or statistical metric) is the smallest monotone metric,
obtained for f .t/ D 1Ct

2
. In this case J
.v/ D g, 
gCg
 D 2v, is the symmetric

logarithmic derivative. For any 
1; 
2 2 M the geodesic distance defined by the
Bures metric, (cf. Bures length in Chap. 24) can be written as

2

r

Tr.
1/C Tr.
2/� 2Tr.
qp


1
2
p

1/:

On the submanifold D D f
 2 M W Tr
 D 1g of density matrices it has the form

2 arccos Tr.
qp


1
2
p

1/:

The right logarithmic derivative metric (or RLD-metric) is the greatest mono-
tone metric, corresponding to the function f .t/ D 2t

1Ct . In this case J
.v/ D
1
2
.
�1v C v
�1/ is the right logarithmic derivative.

The Bogolubov–Kubo–Mori metric (or BKM-metric) is obtained for f .x/ D
x�1
lnx . It can be written as �
.u; v/ D @2

@s@t
Tr.
C su/ ln.
C tv/js;tD0.

• Wigner–Yanase–Dyson metrics
The Wigner–Yanase–Dyson metrics (or WYD-metrics) form a family of metrics
on the manifold M of all complex positive-definite n � n matrices defined by
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�˛
.u; v/ D @2

@t@s
Trf˛.
 C tu/f�˛.
C sv/js;tD0;

where f˛.x/ D 2
1�˛ x

1�˛
2 , if ˛ ¤ 1, and is ln x, if ˛ D 1. These metrics are

monotone for ˛ 2 Œ�3; 3�. For ˛ D ˙1 one obtains the Bogolubov–Kubo–Mori
metric; for ˛ D ˙3 one obtains the right logarithmic derivative metric.
The Wigner–Yanase metric (or WY-metric) is �0
, the smallest metric in the

family. It can be written as �
.u; v/ D 4Tr u.
p
L
 Cp

R
/
2.v/:

• Connes metric
Roughly, the Connes metric is a generalization (from the space of all probability
measures of a set X , to the state space of any unital C �-algebra) of the
transportation distance (Chap. 14) defined via Lipschitz seminorm.
Let Mn be a smooth n-dimensional manifold. Let A D C1.Mn/ be the
(commutative) algebra of smooth complex-valued functions on Mn, represented
as multiplication operators on the Hilbert space H D L2.Mn; S/ of square
integrable sections of the spinor bundle on Mn by .f /.p/ D f .p/.p/ for
all f 2 A and for all  2 H .
Let D be the Dirac operator. Let the commutator ŒD; f � for f 2 A be the
Clifford multiplication by the gradient rf , so that its operator norm jj:jj in H is
given by jjŒD; f �jj D supp2Mn jjrf jj.
The Connes metric is the intrinsic metric onMn, defined by

sup
f 2A;jj ŒD;f � jj�1

jf .p/ � f .q/j:

This definition can also be applied to discrete spaces, and even generalized toC �-
algebras; cf. Rieffel metric space. In particular, for a labeled connected locally
finite graph G D .V;E/ with the vertex-set V D fv1; : : : ; vn; : : : g, the Connes
metric on V is defined, for any vi ; vj 2 V , by supjj ŒD;f � jjDjjdf jj�1 jfvi � fvj j,
where ff D P

fvi vi W P jfvi j2 < 1g is the set of formal sums f , forming a
Hilbert space, and jj ŒD; f � jj is supi .

Pdeg.vi /
kD1 .fvk � fvi /

2/
1
2 .

• Rieffel metric space
Let V be a normed space (or, more generally, a locally convex topological vector
space, cf. Chap. 2), and let V 0 be its continuous dual space, i.e., the set of all
continuous linear functionals f on V . The weak-� topology on V 0 is defined as
the weakest (i.e., with the fewest open sets) topology on V 0 such that, for every
x 2 V , the map Fx W V 0 ! R defined by Fx.f / D f .x/ for all f 2 V 0, remains
continuous.
An order-unit space is a partially ordered real (complex) vector space .A;� /

with a special distinguished element e (order unit) satisfying the following
properties:

1. For any a 2 A, there exists r 2 R with a � re;
2. If a 2 A and a � re for all positive r 2 R, then a � 0 (Archimedean

property).
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The main example of an order-unit space is the vector space of all self-adjoint
elements in a unital C �-algebra with the identity element being the order
unit. Here a C �-algebra is a Banach algebra over C equipped with a special
involution. It is called unital if it has a unit (multiplicative identity element);
such C �-algebras are also called, roughly, compact noncommutative topological
spaces.
Main example of a unital C �-algebra is the complex algebra of linear operators
on a complex Hilbert space which is topologically closed in the norm topology
of operators, and is closed under the operation of taking adjoints of operators.
The state space of an order-unit space .A;�; e/ is the set S.A/ D ff 2 A0C W
jjf jj D 1g of states, i.e., continuous linear functionals f with jjf jj D f .e/ D 1.
A Rieffel (or compact quantum as in Rieffel, 1999) metric space is a pair
.A; jj:jjLip/, where .A;�; e/ is an order-unit space, and jj:jjLip is a Œ0;C1�-valued
seminorm on A (generalizing the Lipschitz seminorm) for which it hold:

1. For a 2 A, jjajjLip D 0 holds if and only if a 2 Re;
2. the metric dLip.f; g/ D supa2AWjjajjLip�1 jf .a/ � g.a/j generates on the state

space S.A/ its weak-� topology.

So, .S.A/; dLip/ is a usual metric space. If the order-unit space .A;�; e/ is a
C �-algebra, then dLip is the Connes metric, and if, moreover, the C �-algebra is
noncommutative, .S.A/; dLip/ is called a noncommutative metric space.
The term quantum is due to the belief that the Planck-scale geometry of space-
time comes from such C �-algebras; cf. quantum space-time in Chap. 24.
Kuperberg and Weaver, 2010, proposed a new definition of quantum metric
space, in the setting of von Neumann algebras.

7.3 Hermitian Metrics and Generalizations

A vector bundle is a geometrical construct where to every point of a topological
space M we attach a vector space so that all those vector spaces “glued together”
form another topological space E . A continuous mapping � W E ! M is called a
projection E on M . For every p 2 M , the vector space ��1.p/ is called a fiber of
the vector bundle.

A real (complex) vector bundle is a vector bundle � W E ! M whose fibers
��1.p/, p 2 M , are real (complex) vector spaces.

In a real vector bundle, for every p 2 M , the fiber ��1.p/ locally looks like the
vector space Rn, i.e., there is an open neighborhoodU of p, a natural number n, and
a homeomorphism ' W U �R

n ! ��1.U / such that, for all x 2 U and v 2 R
n, one

has �.'.x; v// D v, and the mapping v ! '.x; v/ yields an isomorphism between
R
n and ��1.x/. The set U , together with ', is called a local trivialization of the

bundle.
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If there exists a “global trivialization”, then a real vector bundle � W M � R
n !

M is called trivial. Similarly, in a complex vector bundle, for every p 2 M , the fiber
��1.p/ locally looks like the vector space Cn. The basic example of such bundle is
the trivial bundle � W U � C

n ! U , where U is an open subset of Rk .
Important special cases of a real vector bundle are the tangent bundle T .Mn/

and the cotangent bundle T �.Mn/ of a real n-dimensional manifold Mn
R

D Mn.
Important special cases of a complex vector bundle are the tangent bundle and the
cotangent bundle of a complex n-dimensional manifold.

Namely, a complex n-dimensional manifold Mn
C

is a topological space in which
every point has an open neighborhood homeomorphic to an open set of the n-
dimensional complex vector space C

n, and there is an atlas of charts such that the
change of coordinates between charts is analytic. The (complex) tangent bundle
TC.M

n
C
/ of a complex manifold Mn

C
is a vector bundle of all (complex) tangent

spaces of Mn
C

at every point p 2 Mn
C

. It can be obtained as a complexification
TR.M

n
R
/˝C D T .Mn/˝C of the corresponding real tangent bundle, and is called

the complexified tangent bundle of Mn
C

.
The complexified cotangent bundle ofMn

C
is obtained similarly as T �.Mn/˝C.

Any complex n-dimensional manifold Mn
C

D Mn can be regarded as a real 2n-
dimensional manifold equipped with a complex structure on each tangent space.

A complex structure on a real vector space V is the structure of a complex vector
space on V that is compatible with the original real structure. It is completely
determined by the operator of multiplication by the number i , the role of which
can be taken by an arbitrary linear transformation J W V ! V , J 2 D �id, where id
is the identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field in a vector bundle. A metric connection is
a linear connection in a vector bundle � W E ! M , equipped with a bilinear form
in the fibers, for which parallel displacement along an arbitrary piecewise-smooth
curve in M preserves the form, that is, the scalar product of two vectors remains
constant under parallel displacement.

In the case of a nondegenerate symmetric bilinear form, the metric connection
is called the Euclidean connection. In the case of nondegenerate antisymmetric
bilinear form, the metric connection is called the symplectic connection.

• Bundle metric
A bundle metric is a metric on a vector bundle.

• Hermitian metric
A Hermitian metric on a complex vector bundle � W E ! M is a collection
of Hermitian inner products (i.e., positive-definite symmetric sesquilinear forms)
on every fiber Ep D ��1.p/, p 2 M , that varies smoothly with the point p in
M . Any complex vector bundle has a Hermitian metric.
The basic example of a vector bundle is the trivial bundle � W U � C

n ! U ,
where U is an open set in R

k . In this case a Hermitian inner product on C
n, and

hence, a Hermitian metric on the bundle � W U � C
n ! U , is defined by
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hu; vi D uTHv;

where H is a positive-definite Hermitian matrix, i.e., a complex n � n matrix

such that H� D H
T D H , and vTHv > 0 for all v 2 C

nnf0g. In the simplest
case, one has hu; vi D Pn

iD1 uivi .
An important special case is a Hermitian metric h on a complex manifold Mn,
i.e., on the complexified tangent bundle T .Mn/˝C ofMn. This is the Hermitian
analog of a Riemannian metric. In this case h D g C iw, and its real part g is a
Riemannian metric, while its imaginary part w is a nondegenerate antisymmetric
bilinear form, called a fundamental form. Here g.J.x/; J.y// D g.x; y/,
w.J.x/; J.y// D w.x; y/, and w.x; y/ D g.x; J.y//, where the operator J
is an operator of complex structure on Mn; as a rule, J.x/ D ix. Any of the
forms g;w determines h uniquely.
The term Hermitian metric can also refer to the corresponding Riemannian
metric g, which givesMn a Hermitian structure.
On a complex manifold, a Hermitian metric h can be expressed in local
coordinates by a Hermitian symmetric tensor ..hij//:

h D
X

i;j

hijdzi ˝ d zj ;

where ..hij// is a positive-definite Hermitian matrix. The associated fundamental
form w is then written as w D i

2

P
i;j hijdzi ^ d zj . A Hermitian manifold (or

Hermitian space) is a complex manifold equipped with a Hermitian metric.
• Kähler metric

A Kähler metric (or Kählerian metric) is a Hermitian metric h D g C iw on a
complex manifold Mn whose fundamental form w is closed, i.e., dw D 0 holds.
A Kähler manifold is a complex manifold equipped with a Kähler metric.
If h is expressed in local coordinates, i.e., h D P

i;j hijdzi ˝ d zj , then the

associated fundamental form w can be written as w D i
2

P
i;j hijdzi ^d zj , where

^ is the wedge product which is antisymmetric, i.e., dx ^ dy D �dy ^ dx (hence,
dx ^ dx D 0).
In fact, w is a differential 2-form on Mn, i.e., a tensor of rank 2 that is
antisymmetric under exchange of any pair of indices: w D P

i;j fijdxi ^ dxj ,
where fij is a function on Mn. The exterior derivative dw of w is defined by

dw D P
i;j

P
k

@fij

@xk
dxk ^ dxi ^ dxk . If dw D 0, then w is a symplectic (i.e., closed

nondegenerate) differential 2-form. Such differential 2-forms are called Kähler
forms.
The metric on a Kähler manifold locally satisfies hij D @2K

@zi @zj
: for some function

K , called the Kähler potential. The term Kähler metric can also refer to the
corresponding Riemannian metric g, which givesMn a Kähler structure. Then a
Kähler manifold is defined as a complex manifold which carries a Riemannian
metric and a Kähler form on the underlying real manifold.
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• Hessian metric
Given a smooth f on an open subset of a real vector space, the associated
Hessian metric is defined by

gij D @2f

@xi@xj
:

A Hessian metric is also called an affine Kähler metric since a Kähler metric on
a complex manifold has an analogous description as @2f

@zi @zj
.

• Calabi–Yau metric
The Calabi–Yau metric is a Kähler metric which is Ricci-flat.
A Calabi–Yau manifold (or Calabi–Yau space) is a simply connected complex
manifold equipped with a Calabi–Yau metric. It can be considered as a 2n-
dimensional (6D being particularly interesting) smooth manifold with holonomy
group (i.e., the set of linear transformations of tangent vectors arising from
parallel transport along closed loops) in the special unitary group.

• Kähler–Einstein metric
A Kähler–Einstein metric is a Kähler metric on a complex manifold Mn

whose Ricci curvature tensor is proportional to the metric tensor. This propor-
tionality is an analog of the Einstein field equation in the General Theory of
Relativity.
A Kähler–Einstein manifold (or Einstein manifold) is a complex manifold
equipped with a Kähler–Einstein metric. In this case the Ricci curvature tensor,
seen as an operator on the tangent space, is just multiplication by a constant.
Such a metric exists on any domainD � C

n that is bounded and pseudo-convex.
It can be given by the line element

ds2 D
X

i;j

@2u.z/

@zi @zj
dzi d zj ;

where u is a solution to the boundary value problem: det. @2u
@zi @zj

/ D e2u onD, and

u D 1 on @D. The Kähler–Einstein metric is a complete metric. On the unit disk
� D fz 2 C W jzj < 1g it is coincides with the Poincaré metric.
Let h be the Einstein metric on a smooth compact manifold Mn�1 without
boundary, having scalar curvature .n � 1/.n � 2/. A generalized Delaunay
metric on R � Mn�1 is (Delay, 2010) of the form g D u

4
n�2 .dy2 C h/, where

u D u.y/ > 0 is a periodic solution of u00 � .n�2/2
4

u C n.n�2/
4

u
nC2
n�2 D 0.

There is one parameter family of constant positive curvature conformal metrics
on R � S

n�1, referred to as Delaunay metric; cf. Kottler metric in Chap. 26.
• Hodge metric

The Hodge metric is a Kähler metric whose fundamental form w defines an
integral cohomology class or, equivalently, has integral periods.
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A Hodge manifold (or Hodge variety) is a complex manifold equipped with
a Hodge metric. A compact complex manifold is a Hodge manifold if and only
if it is isomorphic to a smooth algebraic subvariety of some complex projective
space.

• Fubini–Study metric
The Fubini–Study metric (or Cayley–Fubini–Study metric) is a Kähler metric
on a complex projective space CPn defined by a Hermitian inner product h; i in
C
nC1. It is given by the line element

ds2 D hx; xihdx; dxi � hx; dxihx; dxi
hx; xi2 :

The Fubini–Study distance between points .x1 W : : : W xnC1/ and .y1 W : : : W
ynC1/ 2 CPn, where x D .x1; : : : ; xnC1/ and y D .y1; : : : ; ynC1/ 2 C

nC1nf0g,
is equal to

arccos
jhx; yij

phx; xihy; yi :

The Fubini–Study metric is a Hodge metric. The space CPn endowed with this
metric is called a Hermitian elliptic space (cf. Hermitian elliptic metric).

• Bergman metric
The Bergman metric is a Kähler metric on a bounded domainD � C

n defined,
for the Bergman kernel K.z; u/, by the line element

ds2 D
X

i;j

@2 lnK.z; z/

@zi @zj
dzid zj :

It is a biholomorhically invariant metric on D, and it is complete if D is
homogeneous. For the unit disk � D fz 2 C W jzj < 1g the Bergman metric
coincides with the Poincaré metric; cf. also Bergman p-metric in Chap. 13.

The set of all analytic functions f ¤ 0 of class L2.D/ with respect
to the Lebesgue measure, forms the Hilbert space L2;a.D/ � L2.D/ with
an orthonormal basis .	i /i . The Bergman kernel is a function in the domain
D �D � C

2n, defined by KD.z; u/ D K.z; u/ D P1
iD1 	i .z/	i .u/.

The Skwarczynski distance is defined by

.1
jK.z; u/j

p
K.z; z/

p
K.u; u/

/
1
2 :

• Hyper-Kähler metric
A hyper-Kähler metric is a Riemannian metric g on a 4n-dimensional Rieman-
nian manifold which is compatible with a quaternionic structure on the tangent
bundle of the manifold.
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Thus, the metric g is Kählerian with respect to 3 Kähler structures .I;wI ; g/,
.J;wJ ; g/, and .K;wK; g/, corresponding to the complex structures, as endo-
morphisms of the tangent bundle, which satisfy the quaternionic relationship

I 2 D J 2 D K2 D IJK D �JIK D �1:

A hyper-Kähler manifold is a Riemannian manifold equipped with a hyper-
Kähler metric. manifolds are Ricci-flat. Compact 4D hyper-Kähler manifolds are
called K3-surfaces; they are studied in Algebraic Geometry.

• Calabi metric
The Calabi metric is a hyper-Kähler metric on the cotangent bundle
T �.CPnC1/ of a complex projective space CPnC1.
For n D 4k C 4, this metric can be given by the line element

ds2 D dr2

1 � r�4 C 1

4
r2.1 � r�4/�2 C r2.�21 C �22/

C 1

2
.r2 � 1/.�21˛ C �22˛/C 1

2
.r2 C 1/.†21˛ C†22˛/;

where .�; �1; �2; �1˛; �2˛;†1˛;†2˛/, with ˛ running over k values, are
left-invariant one-forms (i.e., linear real-valued functions) on the coset
SU.k C 2/=U.k/. Here U.k/ is the unitary group consisting of complex
k � k unitary matrices, and SU.k/ is the special unitary group of complex k � k
unitary matrices with determinant 1.
For k D 0, the Calabi metric coincides with the Eguchi–Hanson metric.

• Stenzel metric
The Stenzel metric is a hyper-Kähler metric on the cotangent bundleT �.SnC1/
of a sphere SnC1.

• SO.3/-invariant metric
An SO.3/-invariant metric is a 4D 4-dimensional hyper-Kähler metric with the
line element given, in the Bianchi type IX formalism (cf. Bianchi metrics in
Chap. 26) by

ds2 D f 2.t/dt2 C a2.t/�21 C b2.t/�22 C c2.t/�23 ;

where the invariant one-forms �1, �2, �3 of SO.3/ are expressed in terms of Euler
angles � ,  , 	 as �1 D 1

2
.sin d� � sin � cos d	/, �2 D � 1

2
.cos d� C

sin � sin d	/, �3 D 1
2
.d C cos �d	/, and the normalization has been chosen

so that �i ^ �j D 1
2
�ijkd�k . The coordinate t of the metric can always be chosen

so that f .t/ D 1
2
abc, using a suitable reparametrization.

• Atiyah–Hitchin metric
The Atiyah–Hitchin metric is a complete regular SO.3/-invariant metric with
the line element
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ds2 D 1

4
a2b2c2

�
dk

k.1 � k2/K2

�2
C a2.k/�21 C b2.k/�22 C c2.k/�23 ;

where a; b; c are functions of k, ab D �K.k/.E.k/ � K.k//, bc D
�K.k/.E.k/ � .1 � k2/K.k//, ac D �K.k/E.k/, and K.k/, E.k/ are the
complete elliptic integrals, respectively, of the first and second kind, with

0 < k < 1. The coordinate t is given by the change of variables t D � 2K.1�k2/
�K.k/

up to an additive constant.
• Taub–NUT metric

The Taub–NUT metric (cf. also Chap. 26) is a complete regular SO.3/-
invariant metric with the line element

ds2 D 1

4

r Cm

r �m dr2 C .r2 �m2/.�21 C �22 /C 4m2 r �m
r Cm

�23 ;

where m is the relevant moduli parameter, and the coordinate r is related to t by
r D mC 1

2mt . NUT manifold was discovered in Ehlers, 1957, and rediscovered in
Newman–Tamburino–Unti, 1963; it is closely related to the metric in Taub, 1951.

• Eguchi–Hanson metric
The Eguchi–Hanson metric is a complete regular SO.3/-invariant metric
with the line element

ds2 D dr2

1 � �
a
r

�4 C r2
�

�21 C �22 C
�

1 �
�a

r

�4
�

�23

�

;

where a is the moduli parameter, and the coordinate r is a
p

coth.a2t/.
The Eguchi–Hanson metric coincides with the 4D Calabi metric.

• Complex Finsler metric
A complex Finsler metric is an upper semicontinuous function F W
T .Mn/ ! RC on a complex manifold Mn with the analytic tangent bundle
T .Mn/ satisfying the following conditions:

1. F 2 is smooth on LMn, where LMn is the complement in T .Mn/ of the zero
section;

2. F.p; x/ > 0 for all p 2 Mn and x 2 LMn
p ;

3. F.p; �x/ D j�jF.p; x/ for all p 2 Mn, x 2 Tp.Mn/, and � 2 C.

The function G D F 2 can be locally expressed in terms of the coordinates
.p1; : : : ; pn; x1; : : : ; xn/; the Finsler metric tensor of the complex Finsler metric
is given by the matrix..Gij// D .. 1

2
@2F 2

@xi @xj
)), called the Levi matrix. If the

matrix ..Gij// is positive-definite, the complex Finsler metric F is called strongly
pseudo-convex.
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• Distance-decreasing semimetric
Let d be a semimetric which can be defined on some class M of complex
manifolds containing the unit disk � D fz 2 C W jzj < 1g. It is called distance-
decreasing if, for any analytic mapping f W M1 ! M2 with M1;M2 2 M, the
inequality d.f .p/; f .q// � d.p; q/ holds for all p; q 2 M1 .
The Carathéodory semimetric FC , Sibony semimetric FS , Azukawa semi-
metric FA and Kobayashi semimetric FK are distance-decreasing with FC and
FK being the smallest and the greatest distance-decreasing semimetrics. They
are generalizations of the Poincaré metric to higher-dimensional domains, since
FC D FK is the Poincaré metric on the unit disk �, and FC D FK 	 0 on C

n.
It holds FC .z; u/ � FS.z; u/ � FA.z; u/ � FK.z; u/ for all z 2 D and u 2 C

n. If
D is convex, then all these metrics coincide.

• Biholomorphically invariant semimetric
A biholomorphism is a bijective holomorphic (complex differentiable in a
neighborhood of every point in its domain) function whose inverse is also
holomorphic.
A semimetric F.z; u/ W D � C

n ! Œ0;1� on a domain D in C
n is called

biholomorphically invariant if F.z; u/ D j�jF.z; u/ for all � 2 C, and
F.z; u/ D F.f .z/; f 0.z/u/ for any biholomorphism f W D ! D0.
Invariant metrics, including the Carathéodory, Kobayashi, Sibony, Azukawa,
Bergman, and Kähler–Einstein metrics, play an important role in Complex
Function Theory, Complex Dynamics and Convex Geometry. The first four
metrics are used mostly because they are distance-decreasing. But they are
almost never Hermitian. On the other hand, the Bergman metric and the
Kähler–Einstein metric are Hermitian (in fact, Kählerian), but, in general, not
distance-decreasing.
The Wu metric (Cheung and Kim, 1996) is an invariant non-Kähler Hermitian
metric on a complex manifold Mn which is distance-decreasing, up to a fixed
constant factor, for any holomorphic mapping between two complex manifolds.

• Kobayashi metric
Let D be a domain in C

n. Let O.�;D/ be the set of all analytic mappings f W
� ! D, where � D fz 2 C W jzj < 1g is the unit disk.
The Kobayashi metric (or Kobayashi–Royden metric) FK is a complex
Finsler metric defined, for all z 2 D and u 2 C

n, by

FK.z; u/ D inff˛ > 0 W 9f 2 O.�;D/; f .0/ D z; f̨
0

.0/ D ug:

Given a complex manifoldMn, the Kobayashi semimetric FK is defined by

FK.p; u/ D inff˛ > 0 W 9f 2 O.�;Mn/; f .0/ D p; f̨
0

.0/ D ug

for all p 2 Mn and u 2 Tp.Mn/.
FK.p; u/ is a seminorm of the tangent vector u, called the Kobayashi seminorm.
FK is a metric if Mn is taut, i.e., O.�;Mn/ is a normal family (every sequence
has a subsequence which either converge or diverge compactly).
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The Kobayashi semimetric is an infinitesimal form of the Kobayashi semidis-
tance (or Kobayashi pseudo-distance, 1967) KMn on Mn, defined as follows.
Given p; q 2 Mn, a chain of disks ˛ from p to q is a collection of points
p D p0; p1; : : : ; pk D q ofMn, pairs of points a1; b1I : : : I ak; bk of the unit disk
�, and analytic mappings f1; : : : fk from � into Mn, such that fj .aj / D pj�1
and fj .bj / D pj for all j .
The length l.˛/ of a chain ˛ is the sum dP .a

1; b1/C � � �CdP .a
k; bk/, where dP

is the Poincaré metric. The Kobayashi semimetric KMn on Mn is defined by

KMn.p; q/ D inf
˛
l.˛/;

where the infimum is taken over all lengths l.˛/ of chains of disks ˛ from p to q.
Given a complex manifold Mn, the Kobayashi–Busemann semimetric on Mn

is the double dual of the Kobayashi semimetric. It is a metric if Mn is taut.
• Carathéodory metric

Let D be a domain in C
n. Let O.D;�/ be the set of all analytic mappings f W

D ! �, where � D fz 2 C W jzj < 1g is the unit disk.
The Carathéodory metric FC is a complex Finsler metric defined by

FC .z; u/ D supfjf 0

.z/uj W f 2 O.D;�/g

for any z 2 D and u 2 C
n.

Given a complex manifoldMn, the Carathéodory semimetric FC is defined by

FC .p; u/ D supfjf 0

.p/uj W f 2 O.Mn;�/g

for all p 2 Mn and u 2 Tp.Mn/.FC is a metric ifMn is taut, i.e., every sequence
in O.�;Mn/ has a subsequence which either converge or diverge compactly.
The Carathéodory semidistance (or Carathéodory pseudo-distance, 1926)CMn

is a semimetric on a complex manifoldMn, defined by

CMn.p; q/ D supfdP .f .p/; f .q// W f 2 O.Mn;�/g;

where dP is the Poincaré metric.
In general, the integrated semimetric of the infinitesimal Carathéodory semimet-
ric is internal for the Carathéodory semidistance, but does not equal to it.

• Azukawa semimetric
Let D be a domain in C

n. Let KD.z/ be the set of all logarithmically plurisub-
harmonic functions f W D ! Œ0; 1� such that there exist M; r > 0 with
f .u/ � M jju � zjj2 for all u 2 B.z; r/ � D; here jj:jj2 is the l2-norm on C

n, and
B.z; r/ D fx 2 C

n W jjz � xjj2 < rg. Let gD.z; u/ be supff .u/ W f 2 KD.z/g.
The Azukawa semimetric FA is a complex Finsler metric defined by
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FA.z; u/ D lim�!0

1

j�jgD.z; z C �u/

for all z 2 D and u 2 C
n.

The Azukawa metric is an infinitesimal form of the Azukawa semidistance.
• Sibony semimetric

Let D be a domain in C
n. Let KD.z/ be the set of all logarithmically plurisub-

harmonic functions f W D ! Œ0; 1/ such that there exist M; r > 0 with
f .u/ � M jju � zjj2 for all u 2 B.z; r/ D fx 2 C

n W jjz � xjj2 < rg � D.
Let C2

loc.z/ be the set of all functions of class C2 on some open neighborhood
of z.
The Sibony semimetric FS is a complex Finsler semimetric defined by

FS.z; u/ D sup
f 2KD.z/\C2loc.z/

v
u
u
t
X

i;j

@2f

@zi @zj
.z/uiuj

for all z 2 D and u 2 C
n.

The Sibony semimetric is an infinitesimal form of the Sibony semidistance.
• Teichmüller metric

A Riemann surface R is a one-dimensional complex manifold. Two Riemann
surfaces R1 and R2 are called conformally equivalent if there exists a bijective
analytic function (i.e., a conformal homeomorphism) from R1 into R2. More
precisely, consider a fixed closed Riemann surface R0 of a given genus g � 2.
For a closed Riemann surface R of genus g, one can construct a pair .R; f /,
where f W R0 ! R is a homeomorphism. Two pairs .R; f / and .R1; f1/ are
called conformally equivalent if there exists a conformal homeomorphism h W
R ! R1 such that the mapping .f1/�1 � h � f W R0 ! R0 is homotopic to the
identity.
An abstract Riemann surface R� D .R; f /� is the equivalence class of all
Riemann surfaces, conformally equivalent toR. The set of all equivalence classes
is called the Teichmüller space T .R0/ of the surface R0.
For closed surfaces R0 of given genus g, the spaces T .R0/ are isometrically
isomorphic, and one can speak of the Teichmüller space Tg of surfaces of
genus g. Tg is a complex manifold. If R0 is obtained from a compact surface
of genus g � 2 by removing n points, then the complex dimension of Tg is
3g � 3C n.
The Teichmüller metric is a metric on Tg defined by

1

2
inf
h

lnK.h/

for anyR�
1 ; R

�
2 2 Tg , where h W R1 ! R2 is a quasi-conformal homeomorphism,

homotopic to the identity, and K.h/ is the maximal dilation of h. In fact,
there exists a unique extremal mapping, called the Teichmüller mapping which
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minimizes the maximal dilation of all such h, and the distance between R�
1 and

R�
2 is equal to 1

2
lnK , where the constant K is the dilation of the Teichmüller

mapping.
In terms of the extremal length extR� .�/, the distance between R�

1 and R�
2 is

1

2
ln sup

�

extR�

1
.�/

extR�

2
.�/

;

where the supremum is taken over all simple closed curves on R0.
The Teichmüller space Tg , with the Teichmüller metric on it, is a geodesic metric
space (moreover, a straight G-space) but it is neither Gromov hyperbolic, nor
a Busemann convex metric space.
The Thurston quasi-metric on the Teichmüller space Tg is defined by

1

2
inf
h

ln jjhjjLip

for anyR�
1 ; R

�
2 2 Tg , where h W R1 ! R2 is a quasi-conformal homeomorphism,

homotopic to the identity, and jj:jjLip is the Lipschitz norm on the set of all
injective functions f W X ! Y defined by jjf jjLip D supx;y2X;x¤y

dY .f .x/;f .y//

dX .x;y/
.

The moduli space Rg of conformal classes of Riemann surfaces of genus g is
obtained by factorization of Tg by some countable group of automorphisms of
it, called the modular group. The Zamolodchikov metric, defined (1986) in
terms of exactly marginal operators, is a natural metric on the conformal moduli
spaces.
Liu, Sun and Yau, 2005, showed that all known complete metrics on the
Teichmüller space and moduli space (including Teichmüller metric, Bergman
metric, Cheng–Yau–Mok Kähler–Einstein metric, Carathéodory metric,
McMullen metric) are equivalent since they are quasi-isometric (cf. Chap. 1) to
the Ricci metric and the perturbed Ricci metric introduced by them.

• Weil–Petersson metric
The Weil–Petersson metric is a Kähler metric on the Teichmüller space Tg;n
of abstract Riemann surfaces of genus g with n punctures and negative Euler
characteristic. This metric has negative Ricci curvature; it is geodesically convex
(cf. Chap. 1) and not complete.
The Weil–Peterson metric is Gromov hyperbolic if and only if (Brock and
Farb, 2006) the complex dimension 3g � 3C n of Tg;n is at most two.

• Gibbons–Manton metric
The Gibbons–Manton metric is a 4n-dimensional hyper-Kähler metric on
the moduli space of n-monopoles which admits an isometric action of the
n-dimensional torus T n. It is a hyper-Kähler quotient of a flat quaternionic vector
space.
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• Metrics on determinant lines
Let Mn be an n-dimensional compact smooth manifold, and let F be a flat
vector bundle over Mn. Let H �.Mn; F / D ˚n

iD0H i .Mn; F / be the de Rham
cohomology of Mn with coefficients in F . Given an n-dimensional vector space
V , the determinant line det V of V is defined as the top exterior power of V , i.e.,
det V D ^nV . Given a finite-dimensional graded vector space V D ˚n

iD0Vi , the
determinant line of V is defined as the tensor product det V D ˝n

iD0.detVi/.�1/
i
.

Thus, the determinant line detH �.Mn; F / of the cogomology H �.Mn; F / can
be written as detH �.Mn; F / D ˝n

iD0.detHi.Mn; F //.�1/i .
The Reidemeister metric is a metric on detH �.Mn; F /, defined by a given
smooth triangulation of Mn, and the classical Reidemeister–Franz torsion.
Let gF and gT.M

n/ be smooth metrics on the vector bundle F and tangent bundle
T .Mn/, respectively. These metrics induce a canonical L2-metric hH

�.Mn;F /

on H �.Mn; F /. The Ray–Singler metric on detH �.Mn; F / is defined as the
product of the metric induced on detH �.Mn; F / by hH

�.Mn;F / with the Ray–
Singler analytic torsion. The Milnor metric on detH �.Mn; F / can be defined
in a similar manner using the Milnor analytic torsion. If gF is flat, the above two
metrics coincide with the Reidemeister metric. Using a co-Euler structure, one
can define a modified Ray–Singler metric on detH �.Mn; F /.
The Poincaré–Reidemeister metric is a metric on the cohomological deter-
minant line detH �.Mn; F / of a closed connected oriented odd-dimensional
manifold Mn. It can be constructed using a combination of the Reidemeister
torsion with the Poincaré duality. Equivalently, one can define the Poincaré–
Reidemeister scalar product on detH �.Mn; F / which completely determines
the Poincaré–Reidemeister metric but contains an additional sign or phase
information.
The Quillen metric is a metric on the inverse of the cohomological determinant
line of a compact Hermitian one-dimensional complex manifold. It can be
defined as the product of the L2-metric with the Ray-Singler analytic torsion.

• Kähler supermetric
The Kähler supermetric is a generalization of the Kähler metric for the case of
a supermanifold. A supermanifold is a generalization of the usual manifold with
fermonic as well as bosonic coordinates. The bosonic coordinates are ordinary
numbers, whereas the fermonic coordinates are Grassmann numbers.
Here the term supermetric differs from the one used in this chapter.

• Hofer metric
A symplectic manifold .Mn;w/, n D 2k, is a smooth even-dimensional manifold
Mn equipped with a symplectic form, i.e., a closed nondegenerate 2-form, w.
A Lagrangian manifold is a k-dimensional smooth submanifold Lk of a sym-
plectic manifold .Mn;w/, n D 2k, such that the form w vanishes identically on
Lk , i.e., for any p 2 Lk and any x; y 2 Tp.Lk/, one has w.x; y/ D 0.
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Let L.Mn;�/ be the set of all Lagrangian submanifolds of a closed symplectic
manifold .Mn;w/, diffeomorphic to a given Lagrangian submanifold �. A
smooth family ˛ D fLtgt , t 2 Œ0; 1�, of Lagrangian submanifolds Lt 2
L.Mn;�/ is called an exact path connecting L0 and L1, if there exists a
smooth mapping ‰ W � � Œ0; 1� ! Mn such that, for every t 2 Œ0; 1�, one
has ‰.� � ftg/ D Lt , and ‰ 
 w D dHt ^ dt for some smooth function
H W � � Œ0; 1� ! R. The Hofer length l.˛/ of an exact path ˛ is defined by
l.˛/ D R 1

0
fmaxp2� H.p; t/ � minp2� H.p; t/gdt.

The Hofer metric on the set L.Mn;�/ is defined by

inf
˛
l.˛/

for any L0;L1 2 L.Mn;�/, where the infimum is taken over all exact paths on
L.Mn;�/, that connect L0 and L1.
The Hofer metric can be defined similarly on the group Ham.Mn;w/ of
Hamiltonian diffeomorphisms of a closed symplectic manifold .Mn;w/, whose
elements are time-one mappings of Hamiltonian flows 	Ht : it is inf˛ l.˛/, where
the infimum is taken over all smooth paths ˛ D f	Ht g, t 2 Œ0; 1�, connecting 	
and  .

• Sasakian metric
A Sasakian metric is a metric on a contact manifold, naturally adapted to the
contact structure.
A contact manifold equipped with a Sasakian metric is called a Sasakian space,
and it is an odd-dimensional analog of a Kähler manifold. The scalar curvature
of a Sasakian metric which is also Einstein metric, is positive.

• Cartan metric
A Killing form (or Cartan–Killing form) on a finite-dimensional Lie algebra �
over a field F is a symmetric bilinear form

B.x; y/ D Tr.adx � ady/;

where Tr denotes the trace of a linear operator, and adx is the image of x under
the adjoint representation of �, i.e., the linear operator on the vector space �
defined by the rule z ! Œx; z�, where Œ; � is the Lie bracket.
Let e1; : : : en be a basis for the Lie algebra �, and Œei ; ej � D Pn

kD1 �kij ek , where
�kij are corresponding structure constants. Then the Killing form is given by

B.xi ; xj / D gij D
nX

k;lD1
�kil �

l
ik:

In Theoretical Physics, the metric tensor ..gij// is called a Cartan metric.
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