Chapter 5 Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some *normed structures*, as the norm of the difference between two given elements. This structure can be a group (with a *group norm*), a vector space (with a *vector norm* or, simply, a *norm*), a vector lattice (with a *Riesz norm*), a field (with a *valuation*), etc.

Any norm is *subadditive*, i.e., triangle inequality $||x + y|| \le ||x|| + ||y||$ holds. A norm is *submultiplicative* if **multiplicative triangle inequality** $||xy|| \le ||x||||y||$ holds.

• Group norm metric

A group norm metric is a metric on a group (G, +, 0) defined by

$$||x + (-y)|| = ||x - y||,$$

where ||.|| is a *group norm* on *G*, i.e., a function $||.|| : G \to \mathbb{R}$ such that, for all $x, y \in G$, we have the following properties:

1. $||x|| \ge 0$, with ||x|| = 0 if and only if x = 0;

2.
$$||x|| = ||-x||;$$

3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

Any group norm metric *d* is **right-invariant**, i.e., d(x, y) = d(x + z, y + z) for any $x, y, z \in G$. Conversely, any right-invariant (as well as any **left-invariant**, and, in particular, any **bi-invariant**) metric *d* on *G* is a group norm metric, since one can define a group norm on *G* by ||x|| = d(x, 0).

• *F*-norm metric

A vector space (or linear space) over a field \mathbb{F} is a set V equipped with operations of vector addition $+: V \times V \to V$ and scalar multiplication $\cdot: \mathbb{F} \times V \to V$ such that (V, +, 0) forms an Abelian group (where $0 \in V$ is the zero vector), and, for all vectors $x, y \in V$ and any scalars $a, b \in \mathbb{F}$, we have the following properties: $1 \cdot x = x$ (where 1 is the multiplicative unit of \mathbb{F}), $(ab) \cdot x = a \cdot (b \cdot x)$, $(a + b) \cdot x = a \cdot x + b \cdot x$, and $a \cdot (x + y) = a \cdot x + a \cdot y$.

M.M. Deza, E. Deza, *Encyclopedia of Distances*, DOI 10.1007/978-3-662-44342-2_5

A vector space over the field \mathbb{R} of real numbers is called a *real vector space*. A vector space over the field \mathbb{C} of complex numbers is called *complex vector space*.

A F-norm metric is a metric on a real (complex) vector space V defined by

$$||x - y||_{F}$$

where $||.||_F$ is an *F*-norm on *V*, i.e., a function $||.||_F : V \to \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar *a* with |a| = 1, we have the following properties:

- 1. $||x||_F \ge 0$, with $||x||_F = 0$ if and only if x = 0;
- 2. $||ax||_F \le ||x||_F$ if $|a| \le 1$;
- 3. $\lim_{a\to 0} ||ax||_F = 0;$
- 4. $||x + y||_F \le ||x||_F + ||y||_F$ (triangle inequality).

An *F*-norm is called *p*-homogeneous if $||ax||_F = |a|^p ||x||_F$ for any scalar *a*. Any *F*-norm metric *d* is a **translation invariant metric**, i.e., d(x, y) = d(x + z, y + z) for all $x, y, z \in V$. Conversely, if *d* is a translation invariant metric on *V*, then $||x||_F = d(x, 0)$ is an *F*-norm on *V*.

• F*-metric

An F^* -metric is an F-norm metric $||x - y||_F$ on a real (complex) vector space V such that the operations of scalar multiplication and vector addition are continuous with respect to $||.||_F$. Thus $||.||_F$ is a function $||.||_F : V \to \mathbb{R}$ such that, for all $x, y, x_n \in V$ and for all scalars a, a_n , we have the following properties:

- 1. $||x||_F \ge 0$, with $||x||_F = 0$ if and only if x = 0;
- 2. $||ax||_F = ||x||_F$ for all *a* with |a| = 1;
- 3. $||x + y||_F \le ||x||_F + ||y||_F;$
- 4. $||a_n x||_F \rightarrow 0$ if $a_n \rightarrow 0$;
- 5. $||ax_n||_F \rightarrow 0$ if $x_n \rightarrow 0$;
- 6. $||a_n x_n||_F \rightarrow 0$ if $a_n \rightarrow 0, x_n \rightarrow 0$.

The metric space $(V, ||x - y||_F)$ with an F^* -metric is called a nF^* -space. Equivalently, an F^* -space is a metric space (V, d) with a **translation invariant metric** d such that the operation of scalar multiplication and vector addition are continuous with respect to this metric.

A complete F^* -space is called an F-space. A locally convex F-space is known as a **Fréchet space** (cf. Chap. 2) in Functional Analysis.

A modular space is an F^* -space $(V, ||.||_F)$ in which the F-norm $||.||_F$ is defined by

$$||x||_F = \inf\{\lambda > 0 : \rho\left(\frac{x}{\lambda}\right) < \lambda\},\$$

and ρ is a *metrizing modular* on *V*, i.e., a function $\rho : V \to [0, \infty]$ such that, for all *x*, *y*, $x_n \in V$ and for all scalars *a*, a_n , we have the following properties:

- 1. $\rho(x) = 0$ if and only if x = 0;
- 2. $\rho(ax) = \rho(x)$ implies |a| = 1;
- 3. $\rho(ax + by) \le \rho(x) + \rho(y)$ implies $a, b \ge 0, a + b = 1$;
- 4. $\rho(a_n x) \to 0$ if $a_n \to 0$ and $\rho(x) < \infty$;
- 5. $\rho(ax_n) \to 0$ if $\rho(x_n) \to 0$ (metrizing property);
- 6. For any $x \in V$, there exists k > 0 such that $\rho(kx) < \infty$.

• Norm metric

A norm metric is a metric on a real (complex) vector space V defined by

$$||x - y||,$$

where ||.|| is a *norm* on V, i.e., a function $||.|| : V \to \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

1. $||x|| \ge 0$, with ||x|| = 0 if and only if x = 0;

2.
$$||ax|| = |a|||x||;$$

3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

Therefore, a norm ||.|| is a 1-homogeneous *F*-norm. The vector space (V, ||.||) is called a *normed vector space* or, simply, normed space.

Any metric space can be embedded isometrically in some normed vector space as a closed linearly independent subset. Every finite-dimensional normed space is **complete**, and all norms on it are equivalent.

In general, the norm ||.|| is equivalent (Maligranda, 2008) to the norm

$$||x||_{u,p} = (||x + ||x|| \cdot u||^{p} + ||x - ||x|| \cdot u||^{p})^{\frac{1}{p}}$$

introduced, for any $u \in V$ and $p \ge 1$, by Odell and Schlumprecht, 1998. The **norm-angular distance** between x and y is defined (Clarkson, 1936) by

$$d(x, y) = ||\frac{x}{||x||} - \frac{y}{||y||}||$$

The following sharpening of the triangle inequality (Maligranda, 2003) holds:

$$\frac{||x-y|| - |||x|| - ||y|||}{\min\{||x||, ||y||\}} \le d(x, y) \le \frac{||x-y|| + |||x|| - ||y|||}{\max\{||x||, ||y||\}}, \text{ i.e.,}$$

$$(2 - d(x, -y)) \min\{||x||, ||y||\} \le ||x|| + ||y|| - ||x + y||$$

$$\le (2 - d(x, -y)) \max\{||x||, ||y||\}.$$

Dragomir, 2004, call $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx$ continuous triangle inequality. • Reverse triangle inequality

The triangle inequality $||x + y|| \le ||x|| + ||y||$ in a normed space (V, ||.||) is equivalent to the following inequality, for any $x_1, \ldots, x_n \in V$ with $n \ge 2$:

5 Metrics on Normed Structures

$$||\sum_{i=1}^{n} x_i|| \le \sum_{i=1}^{n} ||x_i||.$$

If in the normed space (V, ||.||), for some $C \ge 1$ one has

$$C || \sum_{i=1}^{n} x_i || \ge \sum_{i=1}^{n} ||x_i||,$$

then this inequality is called the reverse triangle inequality.

This term is used, sometimes, also for the **inverse triangle inequality** (cf. **kinematic metric** in Chap. 26) and for the eventual inequality $Cd(x,z) \ge d(x, y) + d(y, z)$ with $C \ge 1$ in a metric space (X, d).

The triangle inequality $||x + y|| \le ||x|| + ||y||$, for any $x, y \in V$, in a normed space (V, ||.||) is, for any number q > 1, equivalent (Belbachir, Mirzavaziri and Moslenian, 2005) to the following inequality:

$$||x + y||^q \le 2^{q-1}(||x||^q + ||y||^q).$$

The parallelogram inequality $||x + y||^2 \le 2(||x||^2 + ||y||^2)$ is the case q = 2 of above.

Given a number $q, 0 < q \le 1$, the norm is called *q*-subadditive if $||x + y||^q \le ||x||^q + ||y||^q$ holds for $x, y \in V$.

• Seminorm semimetric

A seminorm semimetric on a real (complex) vector space V is defined by

||x - y||,

where ||.|| is a *seminorm* (or *pseudo-norm*) on V, i.e., a function $||.|| : V \to \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

1. $||x|| \ge 0$, with ||0|| = 0; 2. ||ax|| = |a|||x||; 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

The vector space (V, ||.||) is called a *seminormed vector space*. Many *normed vector spaces*, in particular, **Banach spaces**, are defined as the quotient space by the subspace of elements of seminorm zero.

A quasi-normed space is a vector space V, on which a quasi-norm is given. A quasi-norm on V is a nonnegative function $||.|| : V \to \mathbb{R}$ which satisfies the same axioms as a norm, except for the triangle inequality which is replaced by the weaker requirement: there exists a constant C > 0 such that, for all $x, y \in V$, the following C-triangle inequality (cf. near-metric in Chap. 1) holds:

$$||x + y|| \le C(||x|| + ||y||)$$

An example of a quasi-normed space, that is not normed, is the *Lebesgue space* $L_p(\Omega)$ with 0 in which a quasi-norm is defined by

$$||f|| = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p}, f \in L_p(\Omega).$$

Banach space

A **Banach space** (or *B*-space) is a **complete** metric space (V, ||x - v||) on a vector space V with a norm metric ||x - y||. Equivalently, it is the complete normed space (V, ||.||). In this case, the norm ||.|| on V is called the Banach norm. Some examples of Banach spaces are:

- 1. l_n^n -spaces, l_n^∞ -spaces, $1 \le p \le \infty, n \in \mathbb{N}$;
- 2. The space C of convergent numerical sequences with the norm ||x|| = $\sup_n |x_n|;$
- 3. The space C_0 of numerical sequences which converge to zero with the norm $||x|| = \max_n |x_n|;$
- 4. The space $C_{[a,b]}^{p}$, $1 \leq p \leq \infty$, of continuous functions on [a,b] with the L_p -norm $||f||_p = (\int_a^b |f(t)|^p dt)^{\frac{1}{p}};$ 5. The space C_K of continuous functions on a compactum K with the norm
- $||f|| = \max_{t \in K} |f(t)|;$
- 6. The space $(C_{[a,b]})^n$ of functions on [a, b] with continuous derivatives up to and including the order *n* with the norm $||f||_n = \sum_{k=0}^n \max_{a \le t \le b} |f^{(k)}(t)|;$
- 7. The space $C^{n}[I^{m}]$ of all functions defined in an *m*-dimensional cube that are continuously differentiable up to and including the order *n* with the norm of uniform boundedness in all derivatives of order at most *n*;
- 8. The space $M_{[a,b]}$ of bounded measurable functions on [a,b] with the norm

$$||f|| = ess \sup_{a \le t \le b} |f(t)| = \inf_{e,\mu(e)=0} \sup_{t \in [a,b] \setminus e} |f(t)|$$

- 9. The space $A(\Delta)$ of functions analytic in the open *unit disk* $\Delta = \{z \in \mathbb{C} : |z| < 0\}$ 1} and continuous in the closed disk Δ with the norm $||f|| = \max_{z \in \overline{\Lambda}} |f(z)|$;
- 10. The **Lebesgue spaces** $L_p(\Omega)$, $1 \le p \le \infty$;
- 11. The Sobolev spaces $W^{k,p}(\Omega), \Omega \subset \mathbb{R}^n, 1 \leq p \leq \infty$, of functions f on Ω such that f and its derivatives, up to some order k, have a finite L_n -norm, with the norm $||f||_{k,p} = \sum_{i=0}^{k} ||f^{(i)}||_{p}$;
- 12. The Bohr space AP of almost periodic functions with the norm

$$||f|| = \sup_{-\infty < t < +\infty} |f(t)|$$

A finite-dimensional real Banach space is called a *Minkowskian space*. A norm metric of a Minkowskian space is called a Minkowskian metric (cf. Chap. 6). In particular, any l_p -metric is a Minkowskian metric.

All *n*-dimensional Banach spaces are pairwise isomorphic; the set of such spaces becomes compact if one introduces the **Banach–Mazur distance** by $d_{BM}(V, W) = \ln \inf_T ||T|| \cdot ||T^{-1}||$, where the infimum is taken over all operators which realize an isomorphism $T : V \to W$.

• l_p -metric

The l_p -metric d_{l_p} , $1 \le p \le \infty$, is a norm metric on \mathbb{R}^n (or on \mathbb{C}^n), defined by

$$||x - y||_p,$$

where the l_p -norm $||.||_p$ is defined by

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}.$$

For $p = \infty$, we obtain $||x||_{\infty} = \lim_{p \to \infty} \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} = \max_{1 \le i \le n} |x_i|$. The metric space (\mathbb{R}^n, d_{l_p}) is abbreviated as l_p^n and is called l_p^n -space.

The l_p -metric, $1 \le p \le \infty$, on the set of all sequences $x = \{x_n\}_{n=1}^{\infty}$ of real (complex) numbers, for which the sum $\sum_{i=1}^{\infty} |x_i|^p$ (for $p = \infty$, the sum $\sum_{i=1}^{\infty} |x_i|$) is finite, is

$$(\sum_{i=1}^{\infty} |x_i - y_i|^p)^{\frac{1}{p}}.$$

For $p = \infty$, we obtain $\max_{i \ge 1} |x_i - y_i|$. This metric space is abbreviated as l_p^{∞} and is called l_p^{∞} -space.

Most important are l_1 -, l_2 - and l_{∞} -metrics. Among l_p -metrics, only l_1 - and l_{∞} metrics are **crystalline metrics**, i.e., metrics having polygonal unit balls. On \mathbb{R} all l_p -metrics coincide with the **natural metric** (cf. Chap. 12) |x - y|.

The l_2 -norm $||(x_1, x_2)||_2 = \sqrt{x_1^2 + x_2^2}$ on \mathbb{R}^2 is also called *Pythagorean addition* of the numbers x_1 and x_2 . Under this commutative operation, \mathbb{R} form a semigroup, and $\mathbb{R}_{\geq 0}$ form a *monoid* (semigroup with identity, 0).

Euclidean metric

The Euclidean metric (or Pythagorean distance, as-the-crow-flies distance, beeline distance) d_E is the metric on \mathbb{R}^n defined by

$$||x - y||_2 = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

It is the ordinary l_2 -metric on \mathbb{R}^n . The metric space (\mathbb{R}^n, d_E) is abbreviated as \mathbb{E}^n and is called **Euclidean space** "Euclidean space" stands for the case n = 3, as opposed, for n = 2, to *Euclidean plane* and, for n = 1, *Euclidean* (or *real*) *line*.

In fact, \mathbb{E}^n is an **inner product space** (and even a **Hilbert space**), i.e., $d_E(x, y) = ||x - y||_2 = \sqrt{\langle x - y, x - y \rangle}$, where $\langle x, y \rangle$ is the *inner product*

on \mathbb{R}^n which is given in the Cartesian coordinate system by $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. In a standard coordinate system one has $\langle x, y \rangle = \sum_{i,j} g_{ij} x_i y_j$, where $g_{ij} = \langle e_i, e_j \rangle$, and the **metric tensor** ((g_{ij})) (cf. Chap. 7) is a positive-definite symmetric $n \times n$ matrix.

In general, a Euclidean space is defined as a space, the properties of which are described by the axioms of *Euclidean Geometry*.

• Norm transform metric

A norm transform metric is a metric d(x, y) on a vector space (V, ||.||), which is a function of ||x|| and ||y|. Usually, $V = \mathbb{R}^n$ and, moreover, $\mathbb{E}^n = (\mathbb{R}^n, ||.||_2)$. Some examples are (p,q)-relative metric, *M*-relative metric and, from Chap. 19, the British Rail metric ||x|| + ||y|| for $x \neq y$, (and equal to 0, otherwise), the radar screen metric min $\{1, ||x - y||\}$ and max $\{1, ||x - y||\}$ for $x \neq y$. Cf. *t*-truncated and *t*-uniformly discrete metrics in Chap. 4.

• (*p*, *q*)-relative metric

Let $0 < q \le 1$, and $p \ge \max\{1 - q, \frac{2-q}{3}\}$. Let (V, ||.||) be a *Ptolemaic space*, i.e., the norm metric ||x - y|| is a **Ptolemaic metric** (cf. Chap. 1).

The (p,q)-relative metric on (V, ||.||) is defined, for x or $y \neq 0$, by

$$\frac{||x - y||}{\left(\frac{1}{2}(||x||^p + ||y||^p)\right)^{\frac{q}{p}}}$$

(and equal to 0, otherwise). In the case of $p = \infty$, it has the form

$$\frac{||x - y||}{(\max\{||x||, ||y||\})^q}.$$

(p, 1)-, $(\infty, 1)$ - and the original (1, 1)-relative metric on \mathbb{E}^n are called *p*-relative (or Klamkin–Meir metric), relative metric and Schattschneider metric.

• *M*-relative metric

Let $f : [0, \infty) \to (0, \infty)$ be a convex increasing function such that $\frac{f(x)}{x}$ is decreasing for x > 0. Let (V, ||.||) be a *Ptolemaic space*, i.e., ||x - y|| is a **Ptolemaic metric**.

The *M*-relative metric on (V, ||.||) is defined by

$$\frac{||x-y||}{f(||x||) \cdot f(||y||)}.$$

• Unitary metric

The **unitary** (or *complex Euclidean*) **metric** is the l_2 -metric on \mathbb{C}^n defined by

$$||x - y||_2 = \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2}$$

For n = 1, it is the **complex modulus metric** $|x - y| = \sqrt{(x - y)(x - y)}$ on the *Wessel-Argand plane* (cf. Chap. 12).

• L_p -metric

An L_p -metric d_{L_p} , $1 \le p \le \infty$, is a norm metric on $L_p(\Omega, \mathcal{A}, \mu)$ defined by

 $||f - g||_{p}$

for any $f, g \in L_p(\Omega, \mathcal{A}, \mu)$. The metric space $(L_p(\Omega, \mathcal{A}, \mu), d_{L_p})$ is called the L_p -space (or Lebesgue space).

Here Ω is a set, and A is n σ -algebra of subsets of Ω , i.e., a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathcal{A};$
- 2. If $A \in \mathcal{A}$, then $\Omega \setminus A \in \mathcal{A}$;
- 3. If $A = \bigcup_{i=1}^{\infty} A_i$ with $A_i \in \mathcal{A}$, then $A \in \mathcal{A}$.

A function $\mu : \mathcal{A} \to \mathbb{R}_{\geq 0}$ is called a *measure* on \mathcal{A} if it is *additive*, i.e., $\mu(\bigcup_{i\geq 1}A_i) = \sum_{i\geq 1}\mu(A_i)$ for all pairwise disjoint sets $A_i \in \mathcal{A}$, and satisfies $\mu(\emptyset) = 0$. A *measure space* is a triple $(\Omega, \mathcal{A}, \mu)$.

Given a function $f : \Omega \to \mathbb{R}(\mathbb{C})$, its L_p -norm is defined by

$$||f||_p = \left(\int_{\Omega} |f(\omega)|^p \mu(d\omega)\right)^{\frac{1}{p}}$$

Let $L_p(\Omega, \mathcal{A}, \mu) = L_p(\Omega)$ denote the set of all functions $f : \Omega \to \mathbb{R}(\mathbb{C})$ such that $||f||_p < \infty$. Strictly speaking, $L_p(\Omega, \mathcal{A}, \mu)$ consists of equivalence classes of functions, where two functions are *equivalent* if they are equal *almost everywhere*, i.e., the set on which they differ has measure zero. The set $L_{\infty}(\Omega, \mathcal{A}, \mu)$ is the set of equivalence classes of measurable functions $f : \Omega \to \mathbb{R}(\mathbb{C})$ whose absolute values are bounded almost everywhere.

The most classical example of an L_p -metric is d_{L_p} on the set $L_p(\Omega, \mathcal{A}, \mu)$, where Ω is the open interval (0, 1), \mathcal{A} is the *Borel* σ -algebra on (0, 1), and μ is the *Lebesgue measure*. This metric space is abbreviated by $L_p(0, 1)$ and is called $L_p(0, 1)$ -space.

In the same way, one can define the L_p -metric on the set $C_{[a,b]}$ of all real (complex) continuous functions on [a, b]: $d_{L_p}(f, g) = (\int_a^b |f(x) - g(x)|^p dx)^{\frac{1}{p}}$. For $p = \infty$, $d_{L_{\infty}}(f, g) = \max_{a \le x \le b} |f(x) - g(x)|$. This metric space is abbreviated by $C_{[a,b]}^p$ and is called $C_{[a,b]}^p$ -space.

If $\Omega = \mathbb{N}$, $\mathcal{A} = 2^{\Omega}$ is the collection of all subsets of Ω , and μ is the *cardinality measure* (i.e., $\mu(A) = |A|$ if A is a finite subset of Ω , and $\mu(A) = \infty$, otherwise), then the metric space $(L_p(\Omega, 2^{\Omega}, |.|), d_{L_p})$ coincides with the space l_p^{∞} .

If $\Omega = V_n$ is a set of cardinality n, $\mathcal{A} = 2^{V_n}$, and μ is the cardinality measure, then the metric space $(L_p(V_n, 2^{V_n}, |.|), d_{L_p})$ coincides with the space l_p^n .

5 Metrics on Normed Structures

• Dual metrics

The l_p -metric and the l_q -metric, $1 < p, q < \infty$, are called **dual** if 1/p + 1/q = 1.

In general, when dealing with a *normed vector space* $(V, ||.||_V)$, one is interested in the *continuous* linear functionals from V into the base field (\mathbb{R} or \mathbb{C}). These functionals form a **Banach space** $(V', ||.||_{V'})$, called the *continuous dual* of V. The norm $||.||_{V'}$ on V' is defined by $||T||_{V'} = \sup_{||x||_V \leq 1} |T(x)|$.

The continuous dual for the metric space l_p^n (l_p^∞) is $l_q^{\overline{n}}$ $(l_q^\infty$, respectively). The continuous dual of l_1^n (l_1^∞) is l_∞^n (l_∞^∞) , respectively). The continuous duals of the Banach spaces C (consisting of all convergent sequences, with l_∞ -metric) and C_0 (consisting of the sequences converging to zero, with l_∞ -metric) are both naturally identified with l_1^∞ .

Inner product space

An **inner product space** (or *pre-Hilbert space*) is a metric space (V, ||x - y||) on a real (complex) vector space V with an *inner product* $\langle x, y \rangle$ such that the norm metric ||x - y|| is constructed using the *inner product norm* $||x|| = \sqrt{\langle x, x \rangle}$.

An *inner product* \langle,\rangle on a real (complex) vector space V is a *symmetric bilinear* (in the complex case, *sesquilinear*) form on V, i.e., a function $\langle,\rangle: V \times V \longrightarrow \mathbb{R}$ (\mathbb{C}) such that, for all $x, y, z \in V$ and for all scalars α, β , we have the following properties:

1. $\langle x, x \rangle \ge 0$, with $\langle x, x \rangle = 0$ if and only if x = 0;

2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$, where the bar denotes *complex conjugation*;

3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$.

For a complex vector space, an inner product is called also a *Hermitian inner product*, and the corresponding metric space is called a *Hermitian inner product space*.

A norm ||.|| in a *normed space* (V, ||.||) is generated by an inner product if and only if, for all $x, y \in V$, we have: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. In an inner product space, the **triangle equality** (Chap. 1) ||x - y|| = ||x|| + ||y||, for $x, y \neq 0$, holds if and only if $\frac{x}{||x||} = \frac{y}{||y||}$, i.e., $x - y \in [x, y]$.

Hilbert space

A Hilbert space is an inner product space which, as a metric space, is complete. More precisely, a Hilbert space is a complete metric space (H, ||x - y||) on a real (complex) vector space H with an *inner product* \langle,\rangle such that the norm metric ||x - y|| is constructed using the *inner product norm* $||x|| = \sqrt{\langle x, x \rangle}$. Any Hilbert space is a **Banach space**.

An example of a Hilbert space is the set of all sequences $x = \{x_n\}_n$ of real (complex) numbers such that $\sum_{i=1}^{\infty} |x_i|^2$ converges, with the **Hilbert metric** defined by

$$(\sum_{i=1}^{\infty} (x_i - y_i)^2)^{\frac{1}{2}}.$$

Other examples of Hilbert spaces are any L_2 -space, and any finite-dimensional inner product space. In particular, any Euclidean space is a Hilbert space.

A direct product of two **Hilbert spaces** is called a *Liouville space* (or *line space*, *extended Hilbert space*).

Given an infinite cardinal number τ and a set A of the cardinality τ , let $\mathbb{R}_a, a \in A$, be the copies of \mathbb{R} . Let $H(A) = \{\{x_a\} \in \prod_{a \in A} \mathbb{R}_a : \sum_a x_a^2 < \infty\}$; then H(A)with the metric defined for $\{x_a\}, \{y_a\} \in H(A)$ as

$$(\sum_{a\in A} (x_a - y_a)^2)^{\frac{1}{2}},$$

is called the **generalized Hilbert space** of weight τ .

Erdös space

The **Erdös space** (or *rational Hilbert space*) is the metric subspace of l_2 consisting of all vectors in l_2 with only rational coordinates. It has topological dimension 1 and is not complete. Erdös space is **homeomorphic** to its countable infinite power, and every nonempty open subset of it is homeomorphic to whole space.

The **complete Erdös space** (or *irrational Hilbert space*) is the complete metric subspace of l_2 consisting of all vectors in l_2 the coordinates of which are all irrational.

Riesz norm metric

A *Riesz space* (or *vector lattice*) is a partially ordered vector space (V_{Ri}, \preceq) in which the following conditions hold:

- 1. The vector space structure and the partial order structure are compatible, i.e., from $x \leq y$ it follows that $x + z \leq y + z$, and from $x \succ 0$, $a \in \mathbb{R}$, a > 0 it follows that $ax \succ 0$;
- 2. For any two elements $x, y \in V_{Ri}$, there exist the *join* $x \lor y \in V_{Ri}$ and *meet* $x \land y \in V_{Ri}$ (cf. Chap. 10).

The **Riesz norm metric** is a norm metric on V_{Ri} defined by

$$||x-y||_{Ri},$$

where $||.||_{Ri}$ is a *Riesz norm* on V_{Ri} , i.e., a norm such that, for any $x, y \in V_{Ri}$, the inequality $|x| \leq |y|$, where $|x| = (-x) \lor (x)$, implies $||x||_{Ri} \leq ||y||_{Ri}$. The space $(V_{Ri}, ||.||_{Ri})$ is called a *normed Riesz space*. In the case of completeness, it is called a *Banach lattice*.

Banach–Mazur compactum

The **Banach–Mazur distance** d_{BM} between two *n*-dimensional normed spaces $(V, ||.||_V)$ and $(W, ||.||_W)$ is defined by

$$\ln \inf_{T} ||T|| \cdot ||T^{-1}||,$$

5 Metrics on Normed Structures

where the infimum is taken over all isomorphisms $T: V \to W$. It is a metric on the set X^n of all equivalence classes of *n*-dimensional normed spaces, where $V \sim W$ if and only if they are *isometric*. Then the pair (X^n, d_{BM}) is a compact metric space which is called the **Banach–Mazur compactum**.

• Quotient metric

Given a *normed space* $(V, ||.||_V)$ with a norm $||.||_V$ and a closed subspace W of V, let $(V/W, ||.||_{V/W})$ be the normed space of cosets $x + W = \{x + w : w \in W\}$, $x \in V$, with the *quotient norm* $||x + W||_{V/W} = \inf_{w \in W} ||x + w||_V$. The **quotient metric** is a norm metric on V/W defined by

$$||(x + W) - (y + W)||_{V/W}.$$

• Tensor norm metric

Given *normed spaces* $(V, ||.||_V)$ and $(W, ||.||_W)$, a norm $||.||_{\otimes}$ on the *tensor product* $V \otimes W$ is called *tensor norm* (or *cross norm*) if $||x \otimes y||_{\otimes} = ||x||_V ||y||_W$ for all *decomposable* tensors $x \otimes y$.

The **tensor product metric** is a norm metric on $V \otimes W$ defined by

$$||z-t||_{\otimes}$$

For any $z \in V \otimes W$, $z = \sum_j x_j \otimes y_j$, $x_j \in V$, $y_j \in W$, the *projective norm* (or π -*norm*) of z is defined by $||z||_{pr} = \inf \sum_j ||x_j||_V ||y_j||_W$, where the infimum is taken over all representations of z as a sum of decomposable vectors. It is the largest tensor norm on $V \otimes W$.

• Valuation metric

A valuation metric is a metric on a *field* \mathbb{F} defined by

$$||x - y||,$$

where ||.|| is a *valuation* on \mathbb{F} , i.e., a function $||.|| : \mathbb{F} \to \mathbb{R}$ such that, for all $x, y \in \mathbb{F}$, we have the following properties:

1. $||x|| \ge 0$, with ||x|| = 0 if and only if x = 0;

- 2. ||xy|| = ||x|| ||y||,
- 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

If $||x + y|| \le \max\{||x||, ||y||\}$, the valuation ||.|| is called *non-Archimedean*. In this case, the valuation metric is an **ultrametric**. The simplest valuation is the *trivial valuation* $||.||_{tr}$: $||0||_{tr} = 0$, and $||x||_{tr} = 1$ for $x \in \mathbb{F} \setminus \{0\}$. It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the function $v : \mathbb{F} \to \mathbb{R} \cup \{\infty\}$ is called a *valuation* if $v(x) \ge 0$, $v(0) = \infty$, v(xy) = v(x) + v(y), and $v(x + y) \ge \min\{v(x), v(y)\}$ for all $x, y \in \mathbb{F}$. The valuation ||.|| can be obtained from the function v by the formula $||x|| = \alpha^{v(x)}$ for some fixed $0 < \alpha < 1$ (cf. *p*-adic metric in Chap. 12).

The Kürschäk valuation $|.|_{Krs}$ is a function $|.|_{Krs} : \mathbb{F} \to \mathbb{R}$ such that $|x|_{Krs} \ge 0$, $|x|_{Krs} = 0$ if and only if x = 0, $|xy|_{Krs} = |x|_{Krs}|y|_{Krs}$, and $|x + y|_{Krs} \le C \max\{|x|_{Krs}, |y|_{Krs}\}$ for all $x, y \in \mathbb{F}$ and for some positive constant C, called the *constant of valuation*. If $C \le 2$, one obtains the ordinary valuation ||.|| which is non-Archimedean if $C \le 1$. In general, any $|.|_{Krs}$ is *equivalent* to some ||.||, i.e., $|.|_{Krs}^p = ||.||$ for some p > 0.

Finally, given an *ordered group* (G, \cdot, e, \leq) equipped with zero, the *Krull valuation* is a function $|.| : \mathbb{F} \to G$ such that |x| = 0 if and only if x = 0, |xy| = |x||y|, and $|x + y| \leq \max\{|x|, |y|\}$ for any $x, y \in \mathbb{F}$. It is a generalization of the definition of non-Archimedean valuation ||.|| (cf. **generalized metric** in Chap. 3).

• Power series metric

Let \mathbb{F} be an arbitrary algebraic field, and let $\mathbb{F}\langle x^{-1} \rangle$ be the field of power series of the form $w = \alpha_{-m}x^m + \cdots + \alpha_0 + \alpha_1x^{-1} + \cdots, \alpha_i \in \mathbb{F}$. Given l > 1, a *non-Archimedean valuation* ||.|| on $\mathbb{F}\langle x^{-1} \rangle$ is defined by

$$||w|| = \begin{cases} l^m, & \text{if } w \neq 0, \\ 0, & \text{if } w = 0. \end{cases}$$

The power series metric is the valuation metric ||w - v|| on $\mathbb{F}\langle x^{-1}\rangle$.