Chapter 5 Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some *normed structures*, as the norm of the difference between two given elements. This structure can be a group (with a *group norm*), a vector space (with a *vector norm* or, simply, a *norm*), a vector lattice (with a *Riesz norm*), a field (with a *valuation*), etc.

Any norm is *subadditive*, i.e., triangle inequality $||x + y|| \le ||x|| + ||y||$ holds.
norm is *submultiplicative* if **multiplicative triangle inequality** $||xy|| < ||x|| ||y||$ A norm is *submultiplicative* if **multiplicative triangle inequality** $||xy|| \le ||x||||y||$ holds.

• **Group norm metric**

A **group norm metric** is a metric on a *group* $(G, +, 0)$ defined by

$$
||x + (-y)|| = ||x - y||,
$$

where ||.|| is a *group norm* on G, i.e., a function $||.|| : G \rightarrow \mathbb{R}$ such that, for all $x, y \in G$, we have the following properties:

1. $||x|| \ge 0$, with $||x|| = 0$ if and only if $x = 0$;

2.
$$
||x|| = ||-x||
$$
;
3. $||x + y|| < ||x||$

3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

Any group norm metric d is **right-invariant**, i.e., $d(x, y) = d(x + z, y + z)$ for any $x, y, z \in G$. Conversely, any right-invariant (as well as any **left-invariant**, and, in particular, any **bi-invariant**) metric d on G is a group norm metric, since one can define a group norm on G by $||x|| = d(x, 0)$.

• F **-norm metric**

A *vector space* (or *linear space*) over a *field* \mathbb{F} is a set V equipped with operations of *vector addition* $+ : V \times V \rightarrow V$ and *scalar multiplication* $\cdot : \mathbb{F} \times V \rightarrow V$ such that $(V, +, 0)$ forms an *Abelian group* (where $0 \in V$ is the *zero vector*), and, for all *vectors* $x, y \in V$ and any *scalars* $a, b \in \mathbb{F}$, we have the following properties: $1 \cdot x = x$ (where 1 is the multiplicative unit of F), $(ab) \cdot x = a \cdot (b \cdot x)$, $(a + b) \cdot x = a \cdot x + b \cdot x$, and $a \cdot (x + y) = a \cdot x + a \cdot y$.

M.M. Deza, E. Deza, *Encyclopedia of Distances*, DOI 10.1007/978-3-662-44342-2__5

A vector space over the field R of real numbers is called a *real vector space*. A vector space over the field C of complex numbers is called *complex vector space*.

A F **-norm metric** is a metric on a real (complex) vector space V defined by

$$
||x-y||_F,
$$

where $||.||_F$ is an F-norm on V, i.e., a function $||.||_F : V \to \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a with $|a| = 1$, we have the following properties:

- 1. $||x||_F \ge 0$, with $||x||_F = 0$ if and only if $x = 0$;
- 2. $||ax||_F \le ||x||_F$ if $|a| \le 1$;
3. $\lim_{x \to 0} ||ax||_F = 0$;
- 3. $\lim_{a\to 0}$ $||ax||_F = 0$;
- 4. $||x + y||_F \le ||x||_F + ||y||_F$ (triangle inequality).

An F-norm is called *p-homogeneous* if $||ax||_F = |a|^p ||x||_F$ for any scalar a.
Any F-norm metric d is a **translation invariant metric** i.e. $d(x, y) = d(x, y)$ Any F-norm metric d is a **translation invariant metric**, i.e., $d(x, y) = d(x + y)$ $z, y + z$ for all $x, y, z \in V$. Conversely, if d is a translation invariant metric on V, then $||x||_F = d(x, 0)$ is an F-norm on V.

• F^* -metric

An F^* **-metric** is an F **-norm metric** $||x - y||_F$ on a real (complex) vector space V such that the operations of scalar multiplication and vector addition space V such that the operations of scalar multiplication and vector addition are continuous with respect to $||.||_F$. Thus $||.||_F$ is a function $||.||_F : V \to \mathbb{R}$ such that, for all $x, y, x_n \in V$ and for all scalars a, a_n , we have the following properties:

- 1. $||x||_F \ge 0$, with $||x||_F = 0$ if and only if $x = 0$;
- 2. $||ax||_F = ||x||_F$ for all a with $|a| = 1$;
- 3. $||x + y||_F \le ||x||_F + ||y||_F;$
4. $||a \times ||_F \to 0 \text{ if } a \to 0$.
- 4. $||a_n x||_F \rightarrow 0$ if $a_n \rightarrow 0$;
- 5. $\|ax_n\|_F \to 0$ if $x_n \to 0$;
- 6. $||a_n x_n||_F \to 0$ if $a_n \to 0, x_n \to 0$.

The metric space $(V, ||x - y||_F)$ with an F^* -metric is called a n F^* -**space**.
Fouring lently an F^* -space is a metric space (V, d) with a **translation invariant** Equivalently, an F^* -space is a metric space (V, d) with a **translation invariant metric** d such that the operation of scalar multiplication and vector addition are continuous with respect to this metric.

A **complete** F^* -space is called an F-space. A locally convex F-space is known as a **Fréchet space** (cf. Chap. 2) in Functional Analysis.

A **modular space** is an F^* -space $(V, ||.||_F)$ in which the F-norm $||.||_F$ is defined by defined by

$$
||x||_F = \inf\{\lambda > 0 : \rho\left(\frac{x}{\lambda}\right) < \lambda\},\
$$

and ρ is a *metrizing modular* on V, i.e., a function $\rho: V \to [0, \infty]$ such that, for all $x, y, x_n \in V$ and for all scalars a, a_n , we have the following properties:

- 1. $\rho(x) = 0$ if and only if $x = 0$;
- 2. $\rho(ax) = \rho(x)$ implies $|a| = 1$;
- 3. $\rho(ax + by) \le \rho(x) + \rho(y)$ implies $a, b \ge 0, a + b = 1;$
4. $\rho(a, x) \to 0$ if $a_n \to 0$ and $\rho(x) < \infty$.
- 4. $\rho(a_n x) \rightarrow 0$ if $a_n \rightarrow 0$ and $\rho(x) < \infty$;
- 5. $\rho(ax_n) \rightarrow 0$ if $\rho(x_n) \rightarrow 0$ (*metrizing property*);
- 6. For any $x \in V$, there exists $k > 0$ such that $\rho(kx) < \infty$.

• **Norm metric**

A **norm metric** is a metric on a real (complex) vector space V defined by

$$
||x-y||,
$$

where $||.||$ is a *norm* on V, i.e., a function $||.|| : V \to \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

- 1. $||x|| \ge 0$, with $||x|| = 0$ if and only if $x = 0$;
- 2. $||ax|| = |a|||x||;$
- 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

Therefore, a norm $||.||$ is a 1*-homogeneous F -norm*. The vector space $(V, ||.||)$ is called a *normed vector space* or, simply, *normed space*.

Any metric space can be embedded isometrically in some normed vector space as a closed linearly independent subset. Every finite-dimensional normed space is **complete**, and all norms on it are equivalent.

In general, the norm $||.||$ is equivalent (Maligranda, 2008) to the norm

$$
||x||_{u,p} = (||x + ||x|| \cdot u||^p + ||x - ||x|| \cdot u||^p)^{\frac{1}{p}},
$$

introduced, for any $u \in V$ and $p \ge 1$, by Odell and Schlumprecht, 1998. The **norm-angular distance** between x and y is defined (Clarkson, 1936) by

$$
d(x, y) = ||\frac{x}{||x||} - \frac{y}{||y||}||.
$$

The following sharpening of the triangle inequality (Maligranda, 2003) holds:

$$
\frac{||x - y|| - ||x|| - ||y|||}{\min{||x||, ||y||}} \le d(x, y) \le \frac{||x - y|| + ||x|| - ||y|||}{\max{||x||, ||y||}}, \text{ i.e.,}
$$

$$
(2 - d(x, -y)) \min{||x||, ||y||} \le ||x|| + ||y|| - ||x + y||
$$

$$
\le (2 - d(x, -y)) \max{||x||, ||y||}.
$$

Dragomir, 2004, call $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx$ continuous triangle inequality.
Reverse triangle inequality • **Reverse triangle inequality**

The triangle inequality $||x + y|| \le ||x|| + ||y||$ in a normed space $(V, ||.||)$ is
equivalent to the following inequality for any x_i . equivalent to the following inequality, for any $x_1, \ldots, x_n \in V$ with $n \geq 2$:

98 5 Metrics on Normed Structures

$$
||\sum_{i=1}^n x_i|| \leq \sum_{i=1}^n ||x_i||.
$$

If in the normed space $(V, ||.||)$, for some $C > 1$ one has

$$
C||\sum_{i=1}^n x_i|| \geq \sum_{i=1}^n ||x_i||,
$$

then this inequality is called the **reverse triangle inequality**.

This term is used, sometimes, also for the **inverse triangle inequality** (cf. **kinematic metric** in Chap. 26) and for the eventual inequality $Cd(x, z) \geq$ $d(x, y) + d(y, z)$ with $C > 1$ in a metric space (X, d) .

The triangle inequality $||x + y|| \le ||x|| + ||y||$, for any $x, y \in V$, in a normed space $(V \cup \cup)$ is for any number $a > 1$ equivalent (Belbachir Mirzavaziri and space $(V, ||.||)$ is, for any number $q>1$, equivalent (Belbachir, Mirzavaziri and Moslenian, 2005) to the following inequality:

$$
||x + y||^{q} \le 2^{q-1}(||x||^{q} + ||y||^{q}).
$$

The *parallelogram inequality* $||x + y||^2 \le 2(||x||^2 + ||y||^2)$ is the case $q = 2$ of above above.

Given a number q , $0 < q \le 1$, the norm is called q-subadditive if $||x + y||^q \le$ $||x||^q + ||y||^q$ holds for $x, y \in V$.

• **Seminorm semimetric**

A **seminorm semimetric** on a real (complex) vector space V is defined by

 $||x - y||$

where ||.|| is a *seminorm* (or *pseudo-norm*) on V, i.e., a function $||.|| : V \rightarrow \mathbb{R}$ such that, for all $x, y \in V$ and for any scalar a, we have the following properties:

1. $||x|| \ge 0$, with $||0|| = 0$; 2. $||ax|| = |a|||x||;$ 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

The vector space $(V, \|\. \|)$ is called a *seminormed vector space*. Many *normed vector spaces*, in particular, **Banach spaces**, are defined as the quotient space by the subspace of elements of seminorm zero.

A *quasi-normed space* is a vector space V , on which a *quasi-norm* is given. A *quasi-norm* on V is a nonnegative function $||.|| : V \rightarrow \mathbb{R}$ which satisfies the same axioms as a norm, except for the triangle inequality which is replaced by the weaker requirement: there exists a constant $C > 0$ such that, for all $x, y \in V$, the following C**-triangle inequality** (cf. **near-metric** in Chap. 1) holds:

$$
||x + y|| \le C(||x|| + ||y||)
$$

An example of a quasi-normed space, that is not normed, is the *Lebesgue space* $L_p(\Omega)$ with $0 < p < 1$ in which a quasi-norm is defined by

$$
||f|| = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p}, \, f \in L_p(\Omega).
$$

• **Banach space**

A **Banach space** (or *B-space*) is a **complete** metric space $(V, ||x - y||)$ on a vector space V with a norm metric $||x - y||$. Equivalently, it is the complete *normed space* $(V, \vert \vert . \vert \vert)$. In this case, the norm $\vert \vert . \vert \vert$ on V is called the *Banach norm*. Some examples of Banach spaces are:

- 1. l_p^n -spaces, $l_p \leq p \leq \infty$, $n \in \mathbb{N}$;
2. The space C of convergent numerical set
- 2. The space C of convergent numerical sequences with the norm $||x|| =$ sup_n $|x_n|$;
- 3. The space C_0 of numerical sequences which converge to zero with the norm $||x|| = \max_n |x_n|;$
- 4. The space $C_{[a,b]}^{\rho}$, $1 \leq p \leq \infty$, of continuous functions on [a, b] with the L_p -norm $||f||_p = (\int_a^b |f(t)|^p dt)^{\frac{1}{p}}$;
The space C_F of continuous funct
- 5. The space C_K of continuous functions on a compactum K with the norm $||f|| = \max_{t \in K} |f(t)|;$
- 6. The space $(C_{[a,b]})^n$ of functions on $[a, b]$ with continuous derivatives up to and including the order *n* with the norm $||f||_n = \sum_{k=0}^n \max_{a \le t \le b} |f^{(k)}(t)|$;
The space $C^n[I^m]$ of all functions defined in an *m*-dimensional cube the
- 7. The space $C^{n}[I^{m}]$ of all functions defined in an m-dimensional cube that are continuously differentiable up to and including the order n with the norm of uniform boundedness in all derivatives of order at most n ;
- 8. The space $M_{[a,b]}$ of bounded measurable functions on [a, b] with the norm

$$
||f|| = ess \sup_{a \le t \le b} |f(t)| = \inf_{e, \mu(e) = 0} \sup_{t \in [a, b] \setminus e} |f(t)|;
$$

- 9. The space $A(\Delta)$ of functions analytic in the open *unit disk* $\Delta = \{z \in \mathbb{C} : |z|$ 1} and continuous in the closed disk Δ with the norm $||f|| = \max_{z \in \overline{\Delta}} |f(z)|$;
- 10. The **Lebesgue spaces** $L_p(\Omega)$, $1 \le p \le \infty$;
11. The *Sobolev spaces* $W^{k,p}(\Omega)$, $\Omega \subset \mathbb{R}^n$, 1
- 11. The *Sobolev spaces* $W^{k,p}(\Omega)$, $\Omega \subset \mathbb{R}^n$, $1 \le p \le \infty$, of functions f on Ω
such that f and its derivatives up to some order k have a finite I -norm such that f and its derivatives, up to some order k, have a finite L_p -norm, with the norm $||f||_{k,p} = \sum_{i=0}^{k} ||f^{(i)}||_{p};$
The *Rohr space AP* of almost periodic functions
- 12. The *Bohr space AP* of almost periodic functions with the norm

$$
||f|| = \sup_{-\infty < t < +\infty} |f(t)|.
$$

A finite-dimensional real Banach space is called a *Minkowskian space*. A norm metric of a Minkowskian space is called a **Minkowskian metric** (cf. Chap. 6). In particular, any l_p **-metric** is a Minkowskian metric.

All *n*-dimensional Banach spaces are pairwise isomorphic; the set of such spaces becomes compact if one introduces the **Banach–Mazur distance** by $d_{BM}(V, W) = \ln \inf_{T} ||T|| \cdot ||T^{-1}||$, where the infimum is taken over all operators which realize an isomorphism $T: V \to W$.

\cdot *l_n*-metric

The l_p **-metric** d_{l_p} , $1 \le p \le \infty$, is a norm metric on \mathbb{R}^n (or on \mathbb{C}^n), defined by

 $||x - y||_p$

where the l_p -norm $||.||_p$ is defined by

$$
||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}.
$$

For $p = \infty$, we obtain $||x||_{\infty} = \lim_{p \to \infty} \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} = \max_{1 \le i \le n} |x_i|$. The metric space (\mathbb{R}^n, d_i) is abbreviated as l^n and is called l^n -space metric space (\mathbb{R}^n , d_{l_p}) is abbreviated as l_p^n and is called l_p^n -space.

The l_p **-metric**, $1 \le p \le \infty$, on the set of all sequences $x = \{x_n\}_{n=1}^{\infty}$ of real (complex) numbers for which the sum $\sum_{n=1}^{\infty} |x|^{p}$ (for $n = \infty$ the sum real (complex) numbers, for which the sum $\sum_{i=1}^{\infty} |x_i|^p$ (for $p = \infty$, the sum $\sum_{i=1}^{\infty} |x_i|$) is finite, is $\sum_{i=1}^{\infty} |x_i|$) is finite, is

$$
\left(\sum_{i=1}^{\infty} |x_i - y_i|^p\right)^{\frac{1}{p}}.
$$

For $p = \infty$, we obtain max_{i ≥ 1} $|x_i - y_i|$. This metric space is abbreviated as l_p^{∞} and is called l^{∞} -space and is called l_p^{∞} *-space*.

Most important are l_1 -, l_2 - and l_{∞} -metrics. Among l_p -metrics, only l_1 - and l_{∞} metrics are **crystalline metrics**, i.e., metrics having polygonal unit balls. On R all l_p -metrics coincide with the **natural metric** (cf. Chap. 12) $|x - y|$.

The l_2 -norm $||(x_1, x_2)||_2 = \sqrt{x_1^2 + x_2^2}$ on \mathbb{R}^2 is also called *Pythagorean*
addition of the numbers x, and x. Under this commutative operation \mathbb{R} form a *addition* of the numbers x_1 and x_2 . Under this commutative operation, R form a semigroup, and $\mathbb{R}_{>0}$ form a *monoid* (semigroup with identity, 0).

• **Euclidean metric**

The **Euclidean metric** (or **Pythagorean distance**, **as-the-crow-flies distance**, **beeline distance**) d_E is the metric on \mathbb{R}^n defined by

$$
||x-y||_2 = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.
$$

It is the ordinary l_2 **-metric** on \mathbb{R}^n . The metric space (\mathbb{R}^n, d_E) is abbreviated as \mathbb{E}^n and is called **Euclidean space** "Euclidean space" stands for the case $n = 3$, as opposed, for $n = 2$, to *Euclidean plane* and, for $n = 1$, *Euclidean* (or *real*) *line*.

In fact, \mathbb{E}^n is an **inner product space** (and even a **Hilbert space**), i.e., $d_E(x, y) = ||x - y||_2 = \sqrt{\langle x - y, x - y \rangle}$, where $\langle x, y \rangle$ is the *inner product*

on \mathbb{R}^n which is given in the Cartesian coordinate system by $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.
In a standard coordinate system one has $\langle x, y \rangle = \sum_{i=1}^n a_i y_i$, where $\sigma_{ii} =$ In a standard coordinate system one has $\langle x, y \rangle = \sum_{i,j} g_{ij} x_i y_j$, where $g_{ij} =$
 $\langle e, e_j \rangle$ and the **metric tensor** $((\sigma \cdot))$ (cf. Chan 7) is a positive-definite symmet- $\langle e_i, e_j \rangle$, and the **metric tensor** $((g_{ij}))$ (cf. Chap. 7) is a positive-definite symmetric $n \times n$ matrix.

In general, a Euclidean space is defined as a space, the properties of which are described by the axioms of *Euclidean Geometry*.

• **Norm transform metric**

A **norm transform metric** is a metric $d(x, y)$ on a vector space $(V, ||.||)$, which is a function of $||x||$ and $||y|$. Usually, $V = \mathbb{R}^n$ and, moreover, $\mathbb{E}^n = (\mathbb{R}^n, ||.||_2)$. Some examples are (p, q) -relative metric, M-relative metric and, from Chap. 19, the **British Rail metric** $||x|| + ||y||$ for $x \neq y$, (and equal to 0, otherwise), the **radar screen metric** min $\{1, ||x - y||\}$ and max $\{1, ||x - y||\}$ for $x \neq y$. Cf. *t*-truncated and *t*-uniformly discrete metrics in Chap. 4.

• (p, q) **-relative metric**

Let $0 < q \le 1$, and $p \ge \max\{1 - q, \frac{2-q}{3}\}\)$. Let $(V, ||.||)$ be a *Ptolemaic space*, i.e. the norm metric $||x - y||$ is a **Ptolemaic metric** (cf. Chan 1) i.e., the norm metric $||x - y||$ is a **Ptolemaic metric** (cf. Chap. 1).

The (p, q) -relative metric on $(V, ||.||)$ is defined, for x or $y \neq 0$, by

$$
\frac{||x - y||}{(\frac{1}{2}(||x||^p + ||y||^p))^{\frac{q}{p}}}
$$

(and equal to 0, otherwise). In the case of $p = \infty$, it has the form

$$
\frac{||x-y||}{(\max{||x||, ||y||})^q}.
$$

 $(p, 1)$ -, $(\infty, 1)$ - and the original $(1, 1)$ -relative metric on \mathbb{E}^n are called p-relative (or **Klamkin–Meir metric**), **relative metric** and **Schattschneider metric**.

• M**-relative metric**

Let $f : [0, \infty) \to (0, \infty)$ be a convex increasing function such that $\frac{f(x)}{x}$ is a decreasing for $x > 0$. Let $(V \perp \parallel \cdot \cdot)$ be a *Ptolemaic space* i.e. $||x - y||$ is a decreasing for $x>0$. Let $(V, ||.||)$ be a *Ptolemaic space*, i.e., $||x-y||$ is a **Ptolemaic metric**.

The M-**relative metric** on $(V, ||.||)$ is defined by

$$
\frac{||x-y||}{f(||x||)\cdot f(||y||)}.
$$

• **Unitary metric**

The **unitary** (or *complex Euclidean*) **metric** is the l_2 -metric on \mathbb{C}^n defined by

$$
||x-y||_2 = \sqrt{|x_1-y_1|^2 + \cdots + |x_n-y_n|^2}.
$$

For $n = 1$, it is the **complex modulus metric** $|x - y| = \sqrt{(x - y)(x - y)}$ on the *Wessel-Argand plane* (cf. Chan 12). the *Wessel–Argand plane* (cf. Chap. 12).

 \bullet *L*_p-metric

An L_p **-metric** d_{L_p} , $1 \le p \le \infty$, is a norm metric on $L_p(\Omega, \mathcal{A}, \mu)$ defined by

 $||f - g||_p$

for any $f, g \in L_p(\Omega, \mathcal{A}, \mu)$. The metric space $(L_p(\Omega, \mathcal{A}, \mu), d_{L_p})$ is called the Lp**-space** (or **Lebesgue space**).

Here Ω is a set, and A is n σ -algebra of subsets of Ω , i.e., a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathcal{A}$:
- 2. If $A \in \mathcal{A}$, then $\Omega \setminus A \in \mathcal{A}$;
- 3. If $A = \bigcup_{i=1}^{\infty} A_i$ with $A_i \in \mathcal{A}$, then $A \in \mathcal{A}$.

A function $\mu : A \rightarrow \mathbb{R}_{\geq 0}$ is called a *measure* on A if it is *additive*, i.e., $\mu(\bigcup_{i\geq 1} A_i) = \sum_{i\geq 1} \mu(A_i)$ for all pairwise disjoint sets $A_i \in \mathcal{A}$, and satisfies $\mu(\emptyset) = 0$. A measure space is a triple (Ω, A, μ) . $\mu(\emptyset) = 0$. A *measure space* is a triple $(\Omega, \mathcal{A}, \mu)$.

Given a function $f : \Omega \to \mathbb{R}(\mathbb{C})$, its L_p -norm is defined by

$$
||f||_p = \left(\int_{\Omega} |f(\omega)|^p \mu(d\omega)\right)^{\frac{1}{p}}.
$$

Let $L_p(\Omega, \mathcal{A}, \mu) = L_p(\Omega)$ denote the set of all functions $f : \Omega \to \mathbb{R}(\mathbb{C})$ such that $||f||_p < \infty$. Strictly speaking, $L_p(\Omega, \mathcal{A}, \mu)$ consists of equivalence classes of functions, where two functions are *equivalent* if they are equal *almost everywhere*, i.e., the set on which they differ has measure zero. The set $L_{\infty}(\Omega, \mathcal{A}, \mu)$ is the set of equivalence classes of measurable functions $f : \Omega \to$ \mathbb{R} (C) whose absolute values are bounded almost everywhere.

The most classical example of an L_p -metric is d_{L_p} on the set $L_p(\Omega, \mathcal{A}, \mu)$, where Ω is the open interval $(0, 1)$, *A* is the *Borel* σ -*algebra* on $(0, 1)$, and μ is the *Lebesgue measure*. This metric space is abbreviated by $L_p(0, 1)$ and is called $L_p(0, 1)$ -space.

In the same way, one can define the L_p -metric on the set $C_{[a,b]}$ of all real (complex) continuous functions on [a, b]: $d_{L_p}(f, g) = (\int_a^b |f(x) - g(x)|^p dx)^{\frac{1}{p}}$.
For $p = \infty$, $d_f(f, g) = \max_{x \in \mathcal{X}} |f(x) - g(x)|^p$. This metric space is For $p = \infty$, $d_{L_{\infty}}(f, g) = \max_{a \le x \le b} |f(x) - g(x)|$. This metric space is abbreviated by $C_{[a,b]}^p$ and is called $C_{[a,b]}^p$ -space.

If $\Omega = \mathbb{N}$, $\mathcal{A} = 2^{\Omega}$ is the collection of all subsets of Ω , and μ is the *cardinality measure* (i.e., $\mu(A) = |A|$ if A is a finite subset of Ω , and $\mu(A) = \infty$, otherwise), then the metric space $(L_p(\Omega, 2^{\Omega}, |.|), d_{L_p})$ coincides with the space l_p^{∞} .

If $\Omega = V_n$ is a set of cardinality n, $\mathcal{A} = 2^{V_n}$, and μ is the cardinality measure, then the metric space $(L_p(V_n, 2^{V_n}, |.|), d_{L_p})$ coincides with the space l_p^n .

5 Metrics on Normed Structures 103

• **Dual metrics**

The l_p **-metric** and the l_q **-metric**, $1 \leq p, q \leq \infty$, are called **dual** if $1/p + q$ $1/a=1.$

In general, when dealing with a *normed vector space* $(V, \|\cdot\|_V)$, one is interested in the *continuous* linear functionals from V into the base field (\mathbb{R} or \mathbb{C}). These functionals form a **Banach space** $(V', ||.||_{V'})$, called the *continuous dual* of V.
The norm $||.||_{V'}$ on V' is defined by $||T||_{V'} = \sup_{u \in V} ||T(x)||$ The norm $\Vert .\Vert_{V'}$ on V' is defined by $\Vert T\Vert_{V'} = \sup_{\Vert x\Vert_{V} \leq 1} |T(x)|$.

The continuous dual for the metric space l_p^n (l_p^{∞}) is l_q^n (l_q^{∞} , respectively). The continuous dual of l_1^n (l_1^{∞}) is l_{∞}^n (l_{∞}^{∞} , respectively). The continuous duals of the Banach spaces C (consisting of all convergent sequences, with l_{∞} -metric) and C_0 (consisting of the sequences converging to zero, with l_{∞} -metric) are both naturally identified with l_1^{∞} .

• **Inner product space**

An **inner product space** (or *pre-Hilbert space*) is a metric space $(V, ||x - y||)$ on a real (complex) vector space V with an *inner product* $\langle x, y \rangle$ such that the norm metric $||x - y||$ is constructed using the *inner product norm* $||x|| = \sqrt{\langle x, x \rangle}$.

An *inner product* \langle , \rangle on a real (complex) vector space V is a *symmetric bilinear* (in the complex case, *sesquilinear*) form on V, i.e., a function $\langle, \rangle: V \times V \longrightarrow \mathbb{R}$ (C) such that, for all $x, y, z \in V$ and for all scalars α, β , we have the following properties:

1. $\langle x, x \rangle \geq 0$, with $\langle x, x \rangle = 0$ if and only if $x = 0$;

- 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$, where the bar denotes *complex conjugation*;
- 3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$.

For a complex vector space, an inner product is called also a *Hermitian inner product*, and the corresponding metric space is called a *Hermitian inner product space*.

A norm $||.||$ in a *normed space* $(V, ||.||)$ is generated by an inner product if and only if, for all $x, y \in V$, we have: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. In an inner product space, the **triangle equality** (Chap. 1) $||x-y|| = ||x|| + ||y||$, for $x, y \neq 0$, holds if and only if $\frac{x}{\|x\|} = \frac{y}{\|y\|}$, i.e., $x - y \in [x, y]$.

• **Hilbert space**

A **Hilbert space** is an **inner product space** which, as a metric space, is **complete**. More precisely, a Hilbert space is a complete metric space $(H, ||x - y||)$ on a real (complex) vector space H with an *inner product* \langle , \rangle such that the norm metric $||x - y||$ is constructed using the *inner product norm* $||x|| = \sqrt{\langle x, x \rangle}$. Any Hilbert space is a **Banach space**.

An example of a Hilbert space is the set of all sequences $x = \{x_n\}_n$ of real (complex) numbers such that $\sum_{i=1}^{\infty} |x_i|^2$ converges, with the **Hilbert metric** defined by defined by

$$
\left(\sum_{i=1}^{\infty}(x_i-y_i)^2\right)^{\frac{1}{2}}.
$$

Other examples of Hilbert spaces are any L_2 -space, and any finite-dimensional inner product space. In particular, any Euclidean space is a Hilbert space.

A direct product of two **Hilbert spaces** is called a *Liouville space* (or *line space*, *extended Hilbert space*).

Given an infinite cardinal number τ and a set A of the cardinality τ , let \mathbb{R}_a , $a \in A$, be the copies of R. Let $H(A) = \{ \{x_a\} \in \prod_{a \in A} \mathbb{R}_a : \sum_a x_a^2 < \infty \}$; then $H(A)$
with the metric defined for $\{x_a\}$, $\{y_a\} \in H(A)$ as with the metric defined for $\{x_a\}, \{y_a\} \in H(A)$ as

$$
\left(\sum_{a\in A}(x_a-y_a)^2\right)^{\frac{1}{2}},
$$

is called the **generalized Hilbert space** of weight τ .

• **Erdös space**

The **Erdös space** (or *rational Hilbert space*) is the metric subspace of l_2 consisting of all vectors in l_2 with only rational coordinates. It has topological dimension 1 and is not complete. Erdös space is **homeomorphic** to its countable infinite power, and every nonempty open subset of it is homeomorphic to whole space.

The **complete Erdös space** (or *irrational Hilbert space*) is the complete metric subspace of l_2 consisting of all vectors in l_2 the coordinates of which are all irrational.

• **Riesz norm metric**

A *Riesz space* (or *vector lattice*) is a partially ordered vector space (V_{Ri}, \leq) in which the following conditions hold:

- 1. The vector space structure and the partial order structure are compatible, i.e., from $x \le y$ it follows that $x + z \le y + z$, and from $x > 0$, $a \in \mathbb{R}$, $a > 0$ it follows that $ax > 0$;
- 2. For any two elements $x, y \in V_{Ri}$, there exist the *join* $x \vee y \in V_{Ri}$ and *meet* $x \wedge y \in V_{Ri}$ (cf. Chap. 10).

The **Riesz norm metric** is a norm metric on V_{Ri} defined by

$$
||x-y||_{Ri},
$$

where $||.||_{R_i}$ is a *Riesz norm* on V_{R_i} , i.e., a norm such that, for any $x, y \in V_{R_i}$, the inequality $|x| \le |y|$, where $|x| = (-x) \vee (x)$, implies $||x||_{R_i} \le ||y||_{R_i}$.
The space $(V_0, ||\cdot||_D)$ is called a *normed Riesz space*. In the case of a The space $(V_{Ri}, ||.||_{Ri})$ is called a *normed Riesz space*. In the case of completeness, it is called a *Banach lattice*.

• **Banach–Mazur compactum**

The **Banach–Mazur distance** d*BM* between two n-dimensional *normed spaces* $(V, ||.||_V)$ and $(W, ||.||_W)$ is defined by

$$
\ln \inf_T ||T|| \cdot ||T^{-1}||,
$$

5 Metrics on Normed Structures 105

where the infimum is taken over all isomorphisms $T: V \rightarrow W$. It is a metric on the set $Xⁿ$ of all equivalence classes of *n*-dimensional normed spaces, where $V \sim W$ if and only if they are *isometric*. Then the pair (X^n, d_{BM}) is a compact
metric space which is called the **Banach-Mazur compactum** metric space which is called the **Banach–Mazur compactum**.

• **Quotient metric**

Given a *normed space* $(V, \|\cdot\|_V)$ with a norm $\|\cdot\|_V$ and a closed subspace W of V, let $(V/W, ||.||_{V/W})$ be the normed space of cosets $x+W = \{x+w : w \in W\}$, $x \in V$, with the *quotient norm* $||x + W||_{V/W} = \inf_{w \in W} ||x + w||_{V}$. The **quotient metric** is a norm metric on V/W defined by

$$
||(x+W)-(y+W)||_{V/W}.
$$

• **Tensor norm metric**

Given *normed spaces* $(V, \vert\vert . \vert\vert_V)$ and $(W, \vert\vert . \vert\vert_W)$, a norm $\vert\vert . \vert\vert_\otimes$ on the *tensor product* $V \otimes W$ is called *tensor norm* (or *cross norm*) if $||x \otimes y||_{\infty} = ||x||_V ||y||_W$ for all *decomposable* tensors $x \otimes y$.

The **tensor product metric** is a norm metric on $V \otimes W$ defined by

$$
||z-t||_{\otimes}.
$$

For any $z \in V \otimes W$, $z = \sum_j x_j \otimes y_j$, $x_j \in V$, $y_j \in W$, the *projective norm* (or π -norm) of z is defined by $||z||_w = \inf_{z \in V} \sum_i ||x_i||_W ||y_i||_W$ where the infimum π -*norm*) of *z* is defined by $||z||_{pr} = \inf \sum_j ||x_j||_V ||y_j||_w$, where the infimum
is taken over all representations of *z* as a sum of decomposable vectors. It is the is taken over all representations of *z* as a sum of decomposable vectors. It is the largest tensor norm on $V \otimes W$.

• **Valuation metric**

A **valuation metric** is a metric on a *field* F defined by

$$
||x-y||,
$$

where $||.||$ is a *valuation* on \mathbb{F} , i.e., a function $||.|| : \mathbb{F} \to \mathbb{R}$ such that, for all $x, y \in \mathbb{F}$, we have the following properties:

1. $||x|| \ge 0$, with $||x|| = 0$ if and only if $x = 0$;

2. $||xy|| = ||x|| ||y||$,

3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

If $||x + y|| \le \max\{||x||, ||y||\}$, the valuation $||.||$ is called *non-Archimedean*. In this case, the valuation metric is an **ultrametric**. The simplest valuation is the this case, the valuation metric is an **ultrametric**. The simplest valuation is the *trivial valuation* $||.||_{tr}: ||0||_{tr} = 0$, and $||x||_{tr} = 1$ for $x \in \mathbb{F}\setminus\{0\}$. It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the function $\nu : \mathbb{F} \to \mathbb{R} \cup \{\infty\}$ is called a *valuation* if $\nu(x) \geq 0$, $\nu(0) = \infty$, $\nu(xy) =$ $\nu(x) + \nu(y)$, and $\nu(x + y) \ge \min{\{\nu(x), \nu(y)\}}$ for all $x, y \in \mathbb{F}$. The valuation ||.|| can be obtained from the function ν by the formula $||x|| = \alpha^{\nu(x)}$ for some fixed $0 < \alpha < 1$ (cf. *p*-adic metric in Chap. 12).

The *Kürschäk valuation* $|.|_{Krs}$ is a function $|.|_{Krs} : \mathbb{F} \to \mathbb{R}$ such that $|x|_{Krs} \ge$ $[0, |x|]_{Krs} = 0$ if and only if $x = 0$, $|xy|_{Krs} = |x|_{Krs}|y|_{Krs}$, and $|x + y|_{Krs} \le C$ max $\{|x|_{Krs} \le |y|_{Krs}\}$ for all $x, y \in \mathbb{F}$ and for some positive constant C called C max $\{|x|_{Krs}, |y|_{Krs}\}$ for all $x, y \in \mathbb{F}$ and for some positive constant C, called the *constant of valuation*. If $C \le 2$, one obtains the ordinary valuation $||.||$ which
is non-Archimedean if $C \le 1$ In general any $||_K$, is *equivalent* to some $|| ||$ is non-Archimedean if $C \le 1$. In general, any $\left|\frac{1}{Krs} \right|$ is *equivalent* to some $\left|\frac{1}{n}\right|$, $i \in \left|\frac{p}{K} \right| = \left|\frac{1}{K} \right|$ for some $n > 0$ i.e., $|.|_{Krs}^p = ||.||$ for some $p > 0$.
Finally given an *ordered grou*

Finally, given an *ordered group* (G, \cdot, e, \leq) equipped with zero, the *Krull*
valuation is a function $1 \cdot \mathbb{F} \to G$ such that $|x| = 0$ if and only if $x = 0$ *valuation* is a function $|.|: \mathbb{F} \to G$ such that $|x| = 0$ if and only if $x = 0$, $|xy| = |x||y|$, and $|x + y| \le \max\{|x|, |y|\}$ for any $x, y \in \mathbb{F}$. It is a generalization of the definition of non-Archimedean valuation $|| \cdot ||$ (of **generalized metric** in of the definition of non-Archimedean valuation $||.||$ (cf. **generalized metric** in Chap. 3).

• **Power series metric**

Let F be an arbitrary algebraic field, and let $\mathbb{F}\langle x^{-1} \rangle$ be the field of power series of the form $w = \alpha_{-m}x^m + \cdots + \alpha_0 + \alpha_1x^{-1} + \ldots, \alpha_i \in \mathbb{F}$. Given $l > 1$, a *non-Archimedean valuation* $||.||$ on $\mathbb{F}\langle x^{-1} \rangle$ is defined by

$$
||w|| = \begin{cases} l^m, & \text{if } w \neq 0, \\ 0, & \text{if } w = 0. \end{cases}
$$

The **power series metric** is the **valuation metric** $||w - v||$ on $\mathbb{F}\langle x^{-1}\rangle$.