
Chapter 5
Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some normed
structures, as the norm of the difference between two given elements. This structure
can be a group (with a group norm), a vector space (with a vector norm or, simply,
a norm), a vector lattice (with a Riesz norm), a field (with a valuation), etc.

Any norm is subadditive, i.e., triangle inequality jjx C yjj � jjxjj C jjyjj holds.
A norm is submultiplicative if multiplicative triangle inequality jjxyjj � jjxjjjjyjj
holds.

• Group norm metric
A group norm metric is a metric on a group .G; C; 0/ defined by

jjx C .�y/jj D jjx � yjj;

where jj:jj is a group norm on G, i.e., a function jj:jj W G ! R such that, for all
x; y 2 G, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjxjj D jj � xjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

Any group norm metric d is right-invariant, i.e., d.x; y/ D d.x C z; y C z/ for
any x; y; z 2 G. Conversely, any right-invariant (as well as any left-invariant,
and, in particular, any bi-invariant) metric d on G is a group norm metric, since
one can define a group norm on G by jjxjj D d.x; 0/.

• F -norm metric
A vector space (or linear space) over a field F is a set V equipped with operations
of vector addition C W V � V ! V and scalar multiplication � W F � V ! V

such that .V; C; 0/ forms an Abelian group (where 0 2 V is the zero vector),
and, for all vectors x; y 2 V and any scalars a; b 2 F, we have the following
properties: 1 �x D x (where 1 is the multiplicative unit of F), .ab/ �x D a � .b �x/,
.a C b/ � x D a � x C b � x, and a � .x C y/ D a � x C a � y.
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96 5 Metrics on Normed Structures

A vector space over the field R of real numbers is called a real vector space.
A vector space over the field C of complex numbers is called complex vector
space.
A F -norm metric is a metric on a real (complex) vector space V defined by

jjx � yjjF ;

where jj:jjF is an F -norm on V , i.e., a function jj:jjF W V ! R such that, for all
x; y 2 V and for any scalar a with jaj D 1, we have the following properties:

1. jjxjjF � 0, with jjxjjF D 0 if and only if x D 0;
2. jjaxjjF � jjxjjF if jaj � 1;
3. lima!0 jjaxjjF D 0;
4. jjx C yjjF � jjxjjF C jjyjjF (triangle inequality).

An F -norm is called p-homogeneous if jjaxjjF D jajpjjxjjF for any scalar a.
Any F -norm metric d is a translation invariant metric, i.e., d.x; y/ D d.x C
z; y C z/ for all x; y; z 2 V . Conversely, if d is a translation invariant metric on
V , then jjxjjF D d.x; 0/ is an F -norm on V .

• F �-metric
An F �-metric is an F -norm metric jjx � yjjF on a real (complex) vector
space V such that the operations of scalar multiplication and vector addition
are continuous with respect to jj:jjF . Thus jj:jjF is a function jj:jjF W V ! R

such that, for all x; y; xn 2 V and for all scalars a; an, we have the following
properties:

1. jjxjjF � 0, with jjxjjF D 0 if and only if x D 0;
2. jjaxjjF D jjxjjF for all a with jaj D 1;
3. jjx C yjjF � jjxjjF C jjyjjF ;
4. jjanxjjF ! 0 if an ! 0;
5. jjaxnjjF ! 0 if xn ! 0;
6. jjanxnjjF ! 0 if an ! 0, xn ! 0.

The metric space .V; jjx � yjjF / with an F �-metric is called a nF �-space.
Equivalently, an F �-space is a metric space .V; d/ with a translation invariant
metric d such that the operation of scalar multiplication and vector addition are
continuous with respect to this metric.
A complete F �-space is called an F -space. A locally convex F -space is known
as a Fréchet space (cf. Chap. 2) in Functional Analysis.
A modular space is an F �-space .V; jj:jjF / in which the F -norm jj:jjF is
defined by

jjxjjF D inff� > 0 W �
�x

�

�
< �g;

and � is a metrizing modular on V , i.e., a function � W V ! Œ0; 1� such that, for
all x; y; xn 2 V and for all scalars a; an, we have the following properties:
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1. �.x/ D 0 if and only if x D 0;
2. �.ax/ D �.x/ implies jaj D 1;
3. �.ax C by/ � �.x/ C �.y/ implies a; b � 0; a C b D 1;
4. �.anx/ ! 0 if an ! 0 and �.x/ < 1;
5. �.axn/ ! 0 if �.xn/ ! 0 (metrizing property);
6. For any x 2 V , there exists k > 0 such that �.kx/ < 1.

• Norm metric
A norm metric is a metric on a real (complex) vector space V defined by

jjx � yjj;

where jj:jj is a norm on V , i.e., a function jj:jj W V ! R such that, for all x; y 2 V

and for any scalar a, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjaxjj D jajjjxjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

Therefore, a norm jj:jj is a 1-homogeneous F -norm. The vector space .V; jj:jj/ is
called a normed vector space or, simply, normed space.
Any metric space can be embedded isometrically in some normed vector space
as a closed linearly independent subset. Every finite-dimensional normed space
is complete, and all norms on it are equivalent.
In general, the norm jj:jj is equivalent (Maligranda, 2008) to the norm

jjxjju;p D .jjx C jjxjj � ujjp C jjx � jjxjj � ujjp/
1
p ;

introduced, for any u 2 V and p � 1, by Odell and Schlumprecht, 1998.
The norm-angular distance between x and y is defined (Clarkson, 1936) by

d.x; y/ D jj x

jjxjj � y

jjyjj jj:

The following sharpening of the triangle inequality (Maligranda, 2003) holds:

jjx � yjj � jjjxjj � jjyjjj
minfjjxjj; jjyjjg � d.x; y/ � jjx � yjj C jjjxjj � jjyjjj

maxfjjxjj; jjyjjg ; i.e.,

.2 � d.x; �y// minfjjxjj; jjyjjg � jjxjj C jjyjj � jjx C yjj
� .2 � d.x; �y// maxfjjxjj; jjyjjg:

Dragomir, 2004, call j R b

a
f .x/dxj � R b

a
jf .x/jdx continuous triangle inequality.

• Reverse triangle inequality
The triangle inequality jjx C yjj � jjxjj C jjyjj in a normed space .V; jj:jj/ is
equivalent to the following inequality, for any x1; : : : ; xn 2 V with n � 2:
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jj
nX

iD1

xi jj �
nX

iD1

jjxi jj:

If in the normed space .V; jj:jj/, for some C � 1 one has

C jj
nX

iD1

xi jj �
nX

iD1

jjxi jj;

then this inequality is called the reverse triangle inequality.
This term is used, sometimes, also for the inverse triangle inequality (cf.
kinematic metric in Chap. 26) and for the eventual inequality Cd.x; z/ �
d.x; y/ C d.y; z/ with C � 1 in a metric space .X; d/.
The triangle inequality jjx C yjj � jjxjj C jjyjj, for any x; y 2 V , in a normed
space .V; jj:jj/ is, for any number q > 1, equivalent (Belbachir, Mirzavaziri and
Moslenian, 2005) to the following inequality:

jjx C yjjq � 2q�1.jjxjjq C jjyjjq/:

The parallelogram inequality jjx C yjj2 � 2.jjxjj2 C jjyjj2/ is the case q D 2 of
above.
Given a number q, 0 < q � 1, the norm is called q-subadditive if jjx C yjjq �
jjxjjq C jjyjjq holds for x; y 2 V .

• Seminorm semimetric
A seminorm semimetric on a real (complex) vector space V is defined by

jjx � yjj;

where jj:jj is a seminorm (or pseudo-norm) on V , i.e., a function jj:jj W V ! R

such that, for all x; y 2 V and for any scalar a, we have the following
properties:

1. jjxjj � 0, with jj0jj D 0;
2. jjaxjj D jajjjxjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

The vector space .V; jj:jj/ is called a seminormed vector space. Many normed
vector spaces, in particular, Banach spaces, are defined as the quotient space by
the subspace of elements of seminorm zero.
A quasi-normed space is a vector space V , on which a quasi-norm is given. A
quasi-norm on V is a nonnegative function jj:jj W V ! R which satisfies the
same axioms as a norm, except for the triangle inequality which is replaced by
the weaker requirement: there exists a constant C > 0 such that, for all x; y 2 V ,
the following C -triangle inequality (cf. near-metric in Chap. 1) holds:

jjx C yjj � C.jjxjj C jjyjj/
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An example of a quasi-normed space, that is not normed, is the Lebesgue space
Lp.�/ with 0 < p < 1 in which a quasi-norm is defined by

jjf jj D
�Z

�

jf .x/jpdx

�1=p

; f 2 Lp.�/:

• Banach space
A Banach space (or B-space) is a complete metric space .V; jjx � yjj/ on a
vector space V with a norm metric jjx � yjj. Equivalently, it is the complete
normed space .V; jj:jj/. In this case, the norm jj:jj on V is called the Banach
norm. Some examples of Banach spaces are:

1. ln
p-spaces, l1

p -spaces, 1 � p � 1, n 2 N;
2. The space C of convergent numerical sequences with the norm jjxjj D

supn jxnj;
3. The space C0 of numerical sequences which converge to zero with the norm

jjxjj D maxn jxnj;
4. The space C

p

Œa;b�, 1 � p � 1, of continuous functions on Œa; b� with the

Lp-norm jjf jjp D .
R b

a
jf .t/jpdt/

1
p ;

5. The space CK of continuous functions on a compactum K with the norm
jjf jj D maxt2K jf .t/j;

6. The space .CŒa;b�/
n of functions on Œa; b� with continuous derivatives up to and

including the order n with the norm jjf jjn D Pn
kD0 maxa�t�b jf .k/.t/j;

7. The space C nŒI m� of all functions defined in an m-dimensional cube that are
continuously differentiable up to and including the order n with the norm of
uniform boundedness in all derivatives of order at most n;

8. The space MŒa;b� of bounded measurable functions on Œa; b� with the norm

jjf jj D ess sup
a�t�b

jf .t/j D inf
e;�.e/D0

sup
t2Œa;b�ne

jf .t/jI

9. The space A.�/ of functions analytic in the open unit disk � D fz 2 C W jzj <

1g and continuous in the closed disk � with the norm jjf jj D maxz2� jf .z/j;
10. The Lebesgue spaces Lp.�/, 1 � p � 1;
11. The Sobolev spaces W k;p.�/, � � R

n, 1 � p � 1, of functions f on �

such that f and its derivatives, up to some order k, have a finite Lp-norm,
with the norm jjf jjk;p D Pk

iD0 jjf .i/jjp;
12. The Bohr space AP of almost periodic functions with the norm

jjf jj D sup
�1<t<C1

jf .t/j:

A finite-dimensional real Banach space is called a Minkowskian space. A norm
metric of a Minkowskian space is called a Minkowskian metric (cf. Chap. 6). In
particular, any lp-metric is a Minkowskian metric.
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All n-dimensional Banach spaces are pairwise isomorphic; the set of such
spaces becomes compact if one introduces the Banach–Mazur distance by
dBM.V; W / D ln infT jjT jj�jjT �1jj, where the infimum is taken over all operators
which realize an isomorphism T W V ! W .

• lp-metric
The lp-metric dlp , 1 � p � 1, is a norm metric on R

n (or on C
n), defined by

jjx � yjjp;

where the lp-norm jj:jjp is defined by

jjxjjp D .

nX
iD1

jxi jp/
1
p :

For p D 1, we obtain jjxjj1 D limp!1 p
pPn

iD1 jxi jp D max1�i�n jxi j. The
metric space .Rn; dlp / is abbreviated as ln

p and is called ln
p-space.

The lp-metric, 1 � p � 1, on the set of all sequences x D fxng1
nD1 of

real (complex) numbers, for which the sum
P1

iD1 jxi jp (for p D 1, the sumP1
iD1 jxi j) is finite, is

.

1X
iD1

jxi � yi jp/
1
p :

For p D 1, we obtain maxi�1 jxi � yi j. This metric space is abbreviated as l1
p

and is called l1
p -space.

Most important are l1-, l2- and l1-metrics. Among lp-metrics, only l1- and l1-
metrics are crystalline metrics, i.e., metrics having polygonal unit balls. On R

all lp-metrics coincide with the natural metric (cf. Chap. 12) jx � yj.
The l2-norm jj.x1; x2/jj2 D

q
x2

1 C x2
2 on R

2 is also called Pythagorean
addition of the numbers x1 and x2. Under this commutative operation, R form a
semigroup, and R�0 form a monoid (semigroup with identity, 0).

• Euclidean metric
The Euclidean metric (or Pythagorean distance, as-the-crow-flies distance,
beeline distance) dE is the metric on R

n defined by

jjx � yjj2 D
p

.x1 � y1/2 C � � � C .xn � yn/2:

It is the ordinary l2-metric on R
n. The metric space .Rn; dE/ is abbreviated as

E
n and is called Euclidean space “Euclidean space” stands for the case n D 3,

as opposed, for n D 2, to Euclidean plane and, for n D 1, Euclidean (or real)
line.
In fact, E

n is an inner product space (and even a Hilbert space), i.e.,
dE.x; y/ D jjx � yjj2 D phx � y; x � yi, where hx; yi is the inner product
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on R
n which is given in the Cartesian coordinate system by hx; yi D Pn

iD1 xi yi .
In a standard coordinate system one has hx; yi D P

i;j gij xi yj , where gij D
hei ; ej i, and the metric tensor ..gij// (cf. Chap. 7) is a positive-definite symmet-
ric n � n matrix.
In general, a Euclidean space is defined as a space, the properties of which are
described by the axioms of Euclidean Geometry.

• Norm transform metric
A norm transform metric is a metric d.x; y/ on a vector space .V; jj:jj/, which
is a function of jjxjj and jjyj. Usually, V D R

n and, moreover, En D .Rn; jj:jj2/.
Some examples are .p; q/-relative metric, M -relative metric and, from
Chap. 19, the British Rail metric jjxjj C jjyjj for x ¤ y, (and equal to 0,
otherwise), the radar screen metric minf1; jjx � yjjg and maxf1; jjx � yjjg for
x ¤ y. Cf. t-truncated and t-uniformly discrete metrics in Chap. 4.

• .p; q/-relative metric
Let 0 < q � 1, and p � maxf1 � q;

2�q

3
g. Let .V; jj:jj/ be a Ptolemaic space,

i.e., the norm metric jjx � yjj is a Ptolemaic metric (cf. Chap. 1).
The .p; q/-relative metric on .V; jj:jj/ is defined, for x or y ¤ 0, by

jjx � yjj
. 1

2
.jjxjjp C jjyjjp//

q
p

(and equal to 0, otherwise). In the case of p D 1, it has the form

jjx � yjj
.maxfjjxjj; jjyjjg/q

:

.p; 1/-, .1; 1/- and the original .1; 1/-relative metric on E
n are called p-relative

(or Klamkin–Meir metric), relative metric and Schattschneider metric.
• M -relative metric

Let f W Œ0; 1/ ! .0; 1/ be a convex increasing function such that f .x/

x
is

decreasing for x > 0. Let .V; jj:jj/ be a Ptolemaic space, i.e., jjx � yjj is a
Ptolemaic metric.
The M -relative metric on .V; jj:jj/ is defined by

jjx � yjj
f .jjxjj/ � f .jjyjj/ :

• Unitary metric
The unitary (or complex Euclidean) metric is the l2-metric on C

n defined by

jjx � yjj2 D
p

jx1 � y1j2 C � � � C jxn � ynj2:
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For n D 1, it is the complex modulus metric jx � yj D
q

.x � y/.x � y/ on
the Wessel–Argand plane (cf. Chap. 12).

• Lp-metric
An Lp-metric dLp , 1 � p � 1, is a norm metric on Lp.�; A; �/ defined by

jjf � gjjp
for any f; g 2 Lp.�; A; �/ . The metric space .Lp.�; A; �/; dLp / is called the
Lp-space (or Lebesgue space).
Here � is a set, and A is n �-algebra of subsets of �, i.e., a collection of subsets
of � satisfying the following properties:

1. � 2 A;
2. If A 2 A, then �nA 2 A;
3. If A D [1

iD1Ai with Ai 2 A, then A 2 A.

A function � W A ! R�0 is called a measure on A if it is additive, i.e.,
�.[i�1Ai / D P

i�1 �.Ai / for all pairwise disjoint sets Ai 2 A, and satisfies
�.;/ D 0. A measure space is a triple .�; A; �/.
Given a function f W � ! R.C/, its Lp-norm is defined by

jjf jjp D
�Z

�

jf .!/jp�.d!/

� 1
p

:

Let Lp.�; A; �/ D Lp.�/ denote the set of all functions f W � ! R (C)
such that jjf jjp < 1. Strictly speaking, Lp.�; A; �/ consists of equivalence
classes of functions, where two functions are equivalent if they are equal
almost everywhere, i.e., the set on which they differ has measure zero. The set
L1.�; A; �/ is the set of equivalence classes of measurable functions f W � !
R (C) whose absolute values are bounded almost everywhere.
The most classical example of an Lp-metric is dLp on the set Lp.�; A; �/, where
� is the open interval .0; 1/, A is the Borel �-algebra on .0; 1/, and � is the
Lebesgue measure. This metric space is abbreviated by Lp.0; 1/ and is called
Lp.0; 1/-space.
In the same way, one can define the Lp-metric on the set CŒa;b� of all real

(complex) continuous functions on Œa; b�: dLp .f; g/ D .
R b

a
jf .x/ � g.x/jpdx/

1
p .

For p D 1, dL1
.f; g/ D maxa�x�b jf .x/ � g.x/j. This metric space is

abbreviated by C
p

Œa;b� and is called C
p

Œa;b�-space.

If � D N, A D 2� is the collection of all subsets of �, and � is the
cardinality measure ( i.e., �.A/ D jAj if A is a finite subset of �, and
�.A/ D 1, otherwise), then the metric space .Lp.�; 2�; j:j/; dLp / coincides
with the space l1

p .
If � D Vn is a set of cardinality n, A D 2Vn , and � is the cardinality measure,
then the metric space .Lp.Vn; 2Vn ; j:j/; dLp / coincides with the space ln

p .
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• Dual metrics
The lp-metric and the lq-metric, 1 < p; q < 1, are called dual if 1=p C
1=q D 1.
In general, when dealing with a normed vector space .V; jj:jjV /, one is interested
in the continuous linear functionals from V into the base field (R or C). These
functionals form a Banach space .V 0; jj:jjV 0/, called the continuous dual of V .
The norm jj:jjV 0 on V 0 is defined by jjT jjV 0 D supjjxjjV �1 jT .x/j.
The continuous dual for the metric space ln

p (l1
p ) is ln

q (l1
q , respectively). The

continuous dual of ln
1 (l1

1 ) is ln1 (l11 , respectively). The continuous duals of the
Banach spaces C (consisting of all convergent sequences, with l1-metric) and
C0 (consisting of the sequences converging to zero, with l1-metric) are both
naturally identified with l1

1 .
• Inner product space

An inner product space (or pre-Hilbert space) is a metric space .V; jjx �yjj/ on
a real (complex) vector space V with an inner product hx; yi such that the norm
metric jjx � yjj is constructed using the inner product norm jjxjj D phx; xi.
An inner product h; i on a real (complex) vector space V is a symmetric bilinear
(in the complex case, sesquilinear) form on V , i.e., a function h; i W V �V �! R

(C) such that, for all x; y; z 2 V and for all scalars ˛; ˇ, we have the following
properties:

1. hx; xi � 0, with hx; xi D 0 if and only if x D 0;
2. hx; yi D hy; xi, where the bar denotes complex conjugation;
3. h˛x C ˇy; zi D ˛hx; zi C ˇhy; zi.

For a complex vector space, an inner product is called also a Hermitian inner
product, and the corresponding metric space is called a Hermitian inner product
space.
A norm jj:jj in a normed space .V; jj:jj/ is generated by an inner product if and
only if, for all x; y 2 V , we have: jjx C yjj2 C jjx � yjj2 D 2.jjxjj2 C jjyjj2/.
In an inner product space, the triangle equality (Chap. 1) jjx�yjj D jjxjjCjjyjj,
for x; y ¤ 0, holds if and only if x

jjxjj D y

jjyjj , i.e., x � y 2 Œx; y�.
• Hilbert space

A Hilbert space is an inner product space which, as a metric space, is com-
plete. More precisely, a Hilbert space is a complete metric space .H; jjx � yjj/
on a real (complex) vector space H with an inner product h; i such that the norm
metric jjx � yjj is constructed using the inner product norm jjxjj D phx; xi.
Any Hilbert space is a Banach space.
An example of a Hilbert space is the set of all sequences x D fxngn of real
(complex) numbers such that

P1
iD1 jxi j2 converges, with the Hilbert metric

defined by

.

1X
iD1

.xi � yi /
2/

1
2 :
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Other examples of Hilbert spaces are any L2-space, and any finite-dimensional
inner product space. In particular, any Euclidean space is a Hilbert space.
A direct product of two Hilbert spaces is called a Liouville space (or line space,
extended Hilbert space).
Given an infinite cardinal number 	 and a set A of the cardinality 	 , let Ra, a 2 A,
be the copies of R. Let H.A/ D ffxag 2 Q

a2A Ra W P
a x2

a < 1g; then H.A/

with the metric defined for fxag; fyag 2 H.A/ as

.
X
a2A

.xa � ya/2/
1
2 ;

is called the generalized Hilbert space of weight 	 .
• Erdös space

The Erdös space (or rational Hilbert space) is the metric subspace of l2
consisting of all vectors in l2 with only rational coordinates. It has topological
dimension 1 and is not complete. Erdös space is homeomorphic to its countable
infinite power, and every nonempty open subset of it is homeomorphic to whole
space.
The complete Erdös space (or irrational Hilbert space) is the complete metric
subspace of l2 consisting of all vectors in l2 the coordinates of which are all
irrational.

• Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space .VRi; �/ in
which the following conditions hold:

1. The vector space structure and the partial order structure are compatible, i.e.,
from x � y it follows that x C z � y C z, and from x 	 0, a 2 R, a > 0 it
follows that ax 	 0;

2. For any two elements x; y 2 VRi, there exist the join x _ y 2 VRi and meet
x ^ y 2 VRi (cf. Chap. 10).

The Riesz norm metric is a norm metric on VRi defined by

jjx � yjjRi;

where jj:jjRi is a Riesz norm on VRi, i.e., a norm such that, for any x; y 2 VRi, the
inequality jxj � jyj, where jxj D .�x/ _ .x/, implies jjxjjRi � jjyjjRi.
The space .VRi; jj:jjRi/ is called a normed Riesz space. In the case of complete-
ness, it is called a Banach lattice.

• Banach–Mazur compactum
The Banach–Mazur distance dBM between two n-dimensional normed spaces
.V; jj:jjV / and .W; jj:jjW / is defined by

ln inf
T

jjT jj � jjT �1jj;
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where the infimum is taken over all isomorphisms T W V ! W . It is a metric
on the set Xn of all equivalence classes of n-dimensional normed spaces, where
V 
 W if and only if they are isometric. Then the pair .Xn; dBM/ is a compact
metric space which is called the Banach–Mazur compactum.

• Quotient metric
Given a normed space .V; jj:jjV / with a norm jj:jjV and a closed subspace W of
V , let .V=W; jj:jjV=W / be the normed space of cosets xCW D fxCw W w 2 W g,
x 2 V , with the quotient norm jjx C W jjV=W D infw2W jjx C wjjV .
The quotient metric is a norm metric on V=W defined by

jj.x C W / � .y C W /jjV=W :

• Tensor norm metric
Given normed spaces .V; jj:jjV / and .W; jj:jjW /, a norm jj:jj˝ on the tensor
product V ˝W is called tensor norm (or cross norm) if jjx˝yjj˝ D jjxjjV jjyjjW
for all decomposable tensors x ˝ y.
The tensor product metric is a norm metric on V ˝ W defined by

jjz � t jj˝:

For any z 2 V ˝ W , z D P
j xj ˝ yj , xj 2 V , yj 2 W , the projective norm (or


-norm) of z is defined by jjzjjpr D inf
P

j jjxj jjV jjyj jjW , where the infimum
is taken over all representations of z as a sum of decomposable vectors. It is the
largest tensor norm on V ˝ W .

• Valuation metric
A valuation metric is a metric on a field F defined by

jjx � yjj;

where jj:jj is a valuation on F, i.e., a function jj:jj W F ! R such that, for all
x; y 2 F, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjxyjj D jjxjj jjyjj,
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

If jjx C yjj � maxfjjxjj; jjyjjg, the valuation jj:jj is called non-Archimedean. In
this case, the valuation metric is an ultrametric. The simplest valuation is the
trivial valuation jj:jjtr: jj0jjtr D 0, and jjxjjtr D 1 for x 2 Fnf0g. It is non-
Archimedean.
There are different definitions of valuation in Mathematics. Thus, the function
� W F ! R [ f1g is called a valuation if �.x/ � 0, �.0/ D 1, �.xy/ D
�.x/ C �.y/, and �.x C y/ � minf�.x/; �.y/g for all x; y 2 F. The valuation
jj:jj can be obtained from the function � by the formula jjxjj D ˛�.x/ for some
fixed 0 < ˛ < 1 (cf. p-adic metric in Chap. 12).
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The Kürschäk valuation j:jKrs is a function j:jKrs W F ! R such that jxjKrs �
0, jxjKrs D 0 if and only if x D 0, jxyjKrs D jxjKrsjyjKrs, and jx C yjKrs �
C maxfjxjKrs; jyjKrsg for all x; y 2 F and for some positive constant C , called
the constant of valuation. If C � 2, one obtains the ordinary valuation jj:jj which
is non-Archimedean if C � 1. In general, any j:jKrs is equivalent to some jj:jj,
i.e., j:jpKrs D jj:jj for some p > 0.
Finally, given an ordered group .G; �; e; �/ equipped with zero, the Krull
valuation is a function j:j W F ! G such that jxj D 0 if and only if x D 0,
jxyj D jxjjyj, and jx Cyj � maxfjxj; jyjg for any x; y 2 F. It is a generalization
of the definition of non-Archimedean valuation jj:jj (cf. generalized metric in
Chap. 3).

• Power series metric
Let F be an arbitrary algebraic field, and let Fhx�1i be the field of power series
of the form w D ˛�mxm C � � � C ˛0 C ˛1x�1 C : : : , ˛i 2 F. Given l > 1, a
non-Archimedean valuation jj:jj on Fhx�1i is defined by

jjwjj D
�

lm; if w ¤ 0;

0; if w D 0:

The power series metric is the valuation metric jjw � vjj on Fhx�1i.
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