
Chapter 15
Distances in Graph Theory

A graph is a pair G D .V; E/, where V is a set, called the set of vertices of the
graph G, and E is a set of unordered pairs of vertices, called the edges of the graph
G. A directed graph (or digraph) is a pair D D .V; E/, where V is a set, called the
set of vertices of the digraph D, and E is a set of ordered pairs of vertices, called
arcs of the digraph D.

A graph in which at most one edge may connect any two vertices, is called a
simple graph. If multiple edges are allowed between vertices, the graph is called a
multigraph. A graph, together with a function which assigns a positive weight to
each edge, is called a weighted graph or network.

The graph is called finite (infinite) if the set V of its vertices is finite (infinite,
respectively). The order and size of a finite graph .V; E/ are jV j and jEj,
respectively.

A subgraph of a graph G D .V; E/ is a graph G
0 D .V

0

; E
0

/ with V
0 � V and

E
0 � E . If G

0

is a subgraph of G, then G is called a supergraph of G
0

. A subgraph
.V

0

; E
0

/ of .V; E/ is its induced subgraph if E
0 D fe D uv 2 E W u; v 2 V

0g.
A graph G D .V; E/ is called connected if, for any u; v 2 V , there exists a .u�v/

walk, i.e., a sequence of edges uw1 D w0w1, w1w2, : : : , wn�1wn D wn�1v from E .
A .u � v/ path is a .u � v/ walk with distinct edges. A graph is called m-connected
if there is no set of m � 1 edges whose removal disconnects the graph; a connected
graph is 1-connected. A digraph D D .V; E/ is called strongly connected if, for any
u; v 2 V , the directed .u � v/ and .v � u/ paths both exist. A maximal connected
subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg.v/ of a vertex
v 2 V of a graph G D .V; E/ is the number of its vertices adjacent to v.

A complete graph is a graph in which each pair of vertices is connected by an
edge. A bipartite graph is a graph in which the set V of vertices is decomposed into
two disjoint subsets so that no two vertices within the same subset are adjacent. A
simple path is a simple connected graph in which two vertices have degree 1, and
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276 15 Distances in Graph Theory

other vertices (if they exist) have degree 2; the length of a path is the number of its
edges.

A cycle is a closed simple path, i.e., a simple connected graph in which every
vertex has degree 2. The circumference of a graph is the length of the longest
cycle in it. A tree is a simple connected graph without cycles. A tree having a path
from which every vertex has distance �1 or �2, is called a caterpillar or lobster,
respectively.

Two graphs which contain the same number of vertices connected in the same
way are called isomorphic. Formally, two graphs G D .V .G/; E.G// and H D
.V .H/; E.H// are called isomorphic if there is a bijection f W V.G/ ! V.H/

such that, for any u; v 2 V.G/, uv 2 E.G/ if and only if f .u/f .v/ 2 E.H/.
We will consider mainly simple finite graphs and digraphs; more exactly, the

equivalence classes of such isomorphic graphs.

15.1 Distances on the Vertices of a Graph

• Path metric
The path metric (or graphic metric, shortest path metric) dpath is a metric on
the vertex-set V of a connected graph G D .V; E/ defined, for any u; v 2 V , as
the length of a shortest .u � v/ path in G, i.e., a geodesic. Examples follow.
Given an integer n � 1, the line metric on f1; : : : ; ng in Chap. 1 is the path
metric of the path Pn D f1; : : : ; ng. The path metric of the Cayley graph � of a
finitely generated group .G; �; e/ is called a word metric.
The hypercube metric is the path metric of a hypercube graph H.m; 2/ with the
vertex-set V D f0; 1gm, and whose edges are the pairs of vectors x; y 2 f0; 1gm

such that jfi 2 f1; : : : ; ng W xi ¤ yi gj D 1; it is equal to jfi 2 f1; : : : ; ng W
xi D 1g4fi 2 f1; : : : ; ng W yi D 1gj. The graphic metric space associated
with a hypercube graph coincides with a Hamming cube, i.e., the metric space
.f0; 1gm; dl1/.
The belt distance (Garber–Dolbilin, 2010) is the path metric of a belt graph
B.P / of a polytope P with centrally symmetric facets. The vertices of B.P / are
the facets of P and two vertices are connected by an edge if the corresponding
facets lie in the same belt (the set of all facets of P parallel to a given face of
codimension 2).
The reciprocal path metric is called geodesic similarity.

• Weighted path metric
The weighted path metric dwpath is a metric on the vertex-set V of a connected
weighted graph G D .V; E/ with positive edge-weights .w.e//e2E defined by

min
P

X

e2P

w.e/;

where the minimum is taken over all .u � v/ paths P in G.
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Sometimes, 1
w.e/

is called the length of the edge e. In the theory of electrical

networks, the edge-length 1
w.e/

is identified with the resistance of the edge e. The

inverse weighted path metric is minP

P
e2P

1
w.e/

.
• Metric graph

A metric (or metrized) graph is a connected graph G D .V; E/, where edges e

are identified with line segments Œ0; l.e/� of length l.e/. Let xe be the coordinate
on the segment Œ0; l.e/� with vertices corresponding to xe D 0; l.e/; the ends
of distinct segments are identified if they correspond to the same vertex of G. A
function f on G is the jEj-tuple of functions fe.xe/ on the segments.
A metric graph can be seen as an infinite metric space .X; d/, where X is the
set of all points on above segments, and the distance between two points is the
length of the shortest, along the line segments traversed, path connecting them.
Also, it can be seen as one-dimensional Riemannian manifold with singularities.
There is a bijection between the metric graphs, the equivalence classes of finite
connected edge-weighted graphs and the resistive electrical networks: if an
edge e of a metric graph has length l.e/, then 1

l.e/
is the weight of e in the

corresponding edge-weighted graph and l.e/ is the resistance along e in the
corresponding resistive electric circuit. Cf. the resistance metric.
A quantum graph is a metric graph equipped with a self-adjoint differential
operator (such as a Laplacian) acting on functions on the graph. The Hilbert
space of the graph is ˚e2EL2.Œ0; w.e/�/, where the inner product of functions is
hf; gi D P

e2E

R w.e/

0 f �
e .xe/ge.xe/dxe .

• Spin network
A spin network is (Penrose, 1971) a connected graph .V; E/ with edge-weights
.w.e//e2E (spins), w.e/ 2 N, such that for any distinct edges e1; e2; e3 with a
common vertex, it holds spin triangle inequality jw.e1/ � w.e2/j � w.e3/ �
w.e1/Cw.e2/ and fermion conservation: w.e1/Cw.e2/Cw.e3/ is an even number.
The quantum space-time (Chap. 24) in Loop Quantum Gravity is a network of
loops at Planck scale. Loops are represented by adapted spin networks: directed
graphs whose arcs are labeled by irreducible representations of a compact Lie
group and vertices are labeled by interwinning operators from the tensor product
of labels on incoming arcs to the tensor product of labels on outgoing arcs.
Such networks represent “quantum states” of the gravitational field on a 3D
hypersurface.

• Detour distance
Given a connected graph G D .V; E/, the detour distance is (Chartrand and
Zhang, 2004) a metric on the vertex-set V defined, for u ¤ v, as the length of the
longest .u � v/ path in G. So, this distance is 1 or jV j � 1 if and only if uv is a
bridge of G or, respectively, G contains a Hamiltonian .u � v/ path.
The monophonic distance is (Santhakumaran and Titus, 2011) a distance (in
general, not a metric) on the V defined, for u ¤ v, as the length of a longest
monophonic (or minimal), i.e., containing no chords, .u � v/ path in G.
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The height of a DAG (acyclic digraph) is the number of vertices in a longest
directed path.

• Cutpoint additive metric
Given a graph G D .V; E/, Klein–Zhu, 1998, call a metric d on V

graph-geodetic metric if, for u; w; v 2 V , the triangle equality d.u; w/ C
d.w; v/ D d.u; v/ holds if w is a .u; v/-gatekeeper, i.e., w lies on any path
connecting u and v. Cf. metric interval in Chap. 1. Any gatekeeper is a cutpoint,
i.e., removing it disconnects G and a pivotal point, i.e., it lies on any shortest
path between u and v.
Chebotarev, 2010, call a metric d on the vertices of a multigraph without loops
cutpoint additive if d.u; w/Cd.w; v/ D d.u; v/ holds if and only if w lies on any
path connecting u and v. The resistance metric is cutpoint additive (Gvishiani
and Gurvich, 1992), while the path metric is graph-geodetic only (in the weaker
Klein–Zhu sense). See also Chebotarev–Shamis metric.

• Graph boundary
Given a connected graph G D .V; E/, a vertex v 2 V is (Chartrand et al.,
2003) a boundary vertex if there exists a witness, i.e., a vertex u 2 V such that
d.u; v/ � d.u; w/ for all neighbors w of v. So, the end-vertices of a longest path
are boundary vertices. The boundary of G is the set of all boundary vertices.
The boundary of a subset M � V is the set @M � E of edges having precisely
one endpoint in M . The isoperimetric number of G is (Buser, 1978) inf @M

jM j ,
where the infimum is taken over all M � V with 2jM j � jV j.

• Graph diameter
Given a connected graph G D .V; E/, its graph diameter is the largest value of
the path metric between vertices of G.
A connected graph is vertex-critical (edge-critical) if deleting any vertex (edge)
increases its diameter. A graph G of diameter k is goal-minimal if for every edge
uv, the inequality dG�uv.x; y/ > k holds if and only if fu; vg D fx; yg.
If G is m-connected and a is an integer, 0 � a < m, then the a-fault diameter
of G is the maximal diameter of a subgraph of G induced by jV j � a of its
vertices. For 0 < a � m, the a-wide distance da.u; v/ between vertices u and v
is the minimum integer l , for which there are at least a internally disjoint .u � v/

paths of length at most l in G: cf. Hsu–Lyuu–Flandrin–Li distance. The a-wide
diameter of G is maxu;v2V da.u; v/; it is at least the .a � 1/-fault diameter of G.
Given a strong orientation O of a connected graph G D .V; E/, i.e., a strongly
connected digraph D D .V; E 0/ with arcs e0 2 E 0 obtained from edges e 2 E by
orientation O , the diameter of D is the maximal length of shortest directed .u�v/

path in it. The oriented diameter of a graph G is the smallest diameter among
strong orientations of G. If it is equal to the diameter of G, then any orientation
realizing this equality is called tight. For example, a hypercube graph H.m; 2/

admits a tight orientation if m � 4 (McCanna, 1988).
• Path quasi-metric in digraphs

The path quasi-metric in digraphs ddpath is a quasi-metric on the vertex-set V

of a strongly connected digraph D D .V; E/ defined, for any u; v 2 V , as the
length of a shortest directed .u � v/ path in D.
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The circular metric in digraphs is a metric on the vertex-set V of a strongly
connected digraph D D .V; E/, defined by ddpath.u; v/ C ddpath.v; u/.

• Strong distance in digraphs
The strong distance in digraphs is a metric between vertices v and v of a
strongly connected digraph D D .V; E/ defined (Chartrand–Erwin–Raines–
Zhang, 1999) as the minimum size (the number of edges) of a strongly connected
subdigraph of D containing v and v. Cf. Steiner distance of a set.

• ‡-metric
Given a class ‡ of connected graphs, the metric d of a metric space .X; d/

is called a ‡-metric if .X; d/ is isometric to a subspace of a metric space
.V; dwpath/, where G D .V; E/ 2 ‡ , and dwpath is the weighted path metric
on V with positive edge-weight function w; cf. tree-like metric.

• Tree-like metric
A tree-like metric (or weighted tree metric) d on a set X is a ‡-metric for the
class ‡ of all trees, i.e., the metric space .X; d/ is isometric to a subspace of a
metric space .V; dwpath/, where T D .V; E/ is a tree, and dwpath is the weighted
path metric on the vertex-set V of T with a positive weight function w. A metric
is a tree-like metric if and only if it satisfies the four-point inequality.
A metric d on a set X is called a relaxed tree-like metric if the set X can be
embedded in some (not necessary positively) edge-weighted tree such that, for
any x; y 2 X , d.x; y/ is equal to the sum of all edge weights along the (unique)
path between corresponding vertices x and y in the tree. A metric is a relaxed
tree-like metric if and only if it is a relaxed four-point inequality metric.

• Katz similarity
Given a connected graph G D .V; E/ with positive edge-weight function w D
.w.e//e2E , let V D fv1; : : : ; vng. Denote by A the .n � n/-matrix ..aij//, where
aij D aji D w.ij/ if ij is an edge, and aij D 0, otherwise. Let I be the identity
.n � n/-matrix, and let t; 0 < t < 1

�
, be a parameter, where � D maxi j�i j is the

spectral radius of A and �i are the eigenvalues of A. Define the .n � n/-matrix

K D ..kij// D
1X

iD1

t i Ai D .I � tA/�1 � I:

The number kij is called the Katz similarity between vi and vj . Katz, 1953,
proposed it for evaluating social status.
Chebotarev, 2011, defined, for a similar .n � n/-matrix ..cij// D P1

iD0 t i Ai D
.I � tA/�1 and connected edge-weighted multigraphs allowing loops, the walk
distance between vertices vi and vj as any positive multiple of dt.i; j / D
� ln cijp

cii cjj
(cf. the Nei standard genetic distance in Chap. 23). He proved that dt

is a cutpoint additive metric and the path metric in G coincides with the short
walk distance limt!0C

dt� ln t
in G, while the resistance metric in G coincides

with the long walk distance limt! 1
�

�
2dt

n.t�1��/
in the graph G0 obtained from G

by attaching weighted loops that provide G0 with uniform weighted degrees.
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If G is a simple unweighted graph, then A is its adjacency matrix. Let J be the
.n�n/-matrix of all ones and let � D mini �i . Let N D ..nij// D �.I �J /�A.
Neumaier, 1980, remarked that ..

p
nij// is a semimetric on the vertices of G.

• Resistance metric
Given a connected graph G D .V; E/ with positive edge-weight function
w D .w.e//e2E , let us interpret the edge-weights as electrical conductances
and their inverses as resistances. For any two different vertices u and v, suppose
that a battery is connected across them, so that one unit of a current flows in
at u and out in v. The voltage (potential) difference, required for this, is, by
Ohm’s law, the effective resistance between u and v in an electrical network; it is
called the resistance (or electric) metric �.u; v/ between them (Sharpe, 1967,
Gvishiani–Gurvich, 1987, and Klein–Randic, 1993 [KlRa93]). So, if a potential
of one volt is applied across vertices u and v, a current of 1

�.u;v/
will flow. The

number 1
�.u;v/

is a measure of the connectivity between u and v.

Let r.u; v/ D 1
w.e/

if uv is an edge, and r.u; v/ D 0, otherwise. Formally,

�.u; v/ D .
X

w2V

f .w/r.w; v//�1;

where f W V ! Œ0; 1� is the unique function with f .u/ D 1, f .v/ D 0 andP
z2V .f .w/ � f .z//r.w; z/ D 0 for any w ¤ u; v.

The resistance metric is a weighted average of the lengths of all .u � v/ paths. It
is applied when the number of .u � v/ paths, for any u; v 2 V , matters.
A probabilistic interpretation (Gobel–Jagers, 1974) is: �.u; v/ D .deg.u/Pr.u !
v//�1, where deg.u/ is the degree of the vertex u, and Pr.u ! v/ is the probability
for a random walk leaving u to arrive at v before returning to u. The expected
commuting time between u and v is 2

P
e2E w.e/�.u; v/.

Then �.u; v/ � minP

P
e2P

1
w.e/

, where P is any .u � v/ path (cf. inverse
weighted path metric), with equality if and only if such a path P is unique. So, if
w.e/ D 1 for all edges, the equality means that G is a geodetic graph, and hence
the path and resistance metrics coincide. Also, it holds that �.u; v/ D jft Wuv2t2T gj

jT j
if uv is an edge, and �.u; v/ D jT 0�T j

jT j , otherwise, where T; T 0 are the sets of
spanning trees for G D .V; E/ and G0 D .V; E [ fuvg/.
If w.e/ D 1 for all edges, then �.u; v/ D .guu C gvv/ � .guv C gvu/, where ..gij//

is the Moore–Penrose generalized inverse of the Laplacian matrix ..lij// of the
graph G: here lii is the degree of vertex i , while, for i ¤ j , lij D 1 if the vertices
i and j are adjacent, and lij D 0, otherwise. A symmetric (for an undirected
graph) and positive-semidefinite matrix ..gij// admits a representation KKT . So,
�.u; v/ is the squared Euclidean distance between the u-th and v-th rows of K .
The distance

p
�.u; v/ is a Mahalanobis distance (cf. Chap. 17) with a weight-

ing matrix ..gij//. So, �u;v D auvj..gij//jauv, where auv are the vectors of zeros
except for C1 and �1 in the u-th and v-th positions. This distance is called a
diffusion metric in [CLMNWZ05] because it depends on a random walk.
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The number 1
2

P
u;v2V �.u; v/ is called the total resistance (or Kirchhoff index)

of G.
• Hitting time quasi-metric

Let G D .V; E/ be a connected graph. Consider random walks on G, where at
each step the walk moves to a vertex randomly with uniform probability from the
neighbors of the current vertex. The hitting (or first-passage) time quasi-metric
H.u; v/ from u 2 V to v 2 V is the expected number of steps (edges) for a
random walk on G beginning at u to reach v for the first time; it is 0 for u D v.
This quasi-metric is a weightable quasi-semimetric (cf. Chap. 1).
The commuting time metric is C.u; v/ D H.u; v/ C H.v; u/.
Then C.u; v/ D 2jEj�.u; v/, where �.u; v/ is the resistance metric (or effective
resistance), i.e., 0 if u D v and, otherwise, 1

�.u;v/
is the current flowing into v,

when grounding v and applying a 1 volt potential to u (each edge is seen as a

resistor of 1 ohm). Also, �.u; v/ D supf WV !R; D.f />0
.f .u/�f .v//2

DE.f /
, where DE.f /

is the Dirichlet energy of f , i.e.,
P

st2E.f .s/ � f .t//2.
The above setting can be generalized to weighted digraphs D D .V; E/ with
arc-weights cij for ij 2 E and the cost of a directed .u � v/ path being the sum
of the weights of its arcs. Consider the random walk on D, where at each step
the walk moves by arc ij with reference probability pij proportional to 1

cij
; set

pij D 0 if ij … E . Saerens et al., 2008, defined the randomized et al. shortest
path quasi-distance d.u; v/ on vertices of D as the minimum expected cost of a
directed .u � v/ path in the probability distribution minimizing the expected cost
among all distributions having a fixed Kullback–Leibler distance (cf. Chap. 14)
with reference probability distribution. In fact, their biased random walk model
depends on a parameter � � 0. For � D 0 and large � , the distance d.u; v/ C
d.v; u/ become a metric; it is proportional to the commuting time and the usual
path metric, respectively.

• Chebotarev–Shamis metric
Given ˛ > 0 and a connected weighted multigraph G D .V; EI w/ with positive
edge-weight function w D .w.e//e2E , denote by L D ..lij// the Laplacian (or
Kirchhoff ) matrix of G, i.e., lij D �w.ij/ for i ¤ j and lii D P

j ¤i w.ij/.
The Chebotarev–Shamis metric d˛.u; v/ (Chebotarev and Shamis, 2000, called
1
2
d˛.u; v/ ˛-forest metric) between vertices u and v is defined by

2quv � quu � qvv

for the protometric ..gij// D �.I C ˛L/�1, where I is the identity matrix.
Chebotarev and Shamis showed that their metric of G D .V; EI w/ is the
resistance metric of another weighted multigraph, G0 D .V 0; E 0I w0/, where
V 0 D V [ f0g, E 0 D E [ fu0 W u 2 V g, while w0.e/ D ˛w.e/ for all e 2 E and
w0.u0/ D 1 for all u 2 V . In fact, there is a bijection between the forests of G

and trees of G0. This metric becomes the resistance metric of G D .V; EI w/ as
˛ ! 1.
Their forest metric (1997) is the case ˛ D 1 of the ˛-forest metric.
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Chebotarev, 2010, remarked that 2 ln quv � ln quu � ln qvv is a cutpoint additive
metric d 00̨.u; v/, i.e., d 00̨.u; w/ C d 00̨.w; v/ D d 00̨.u; v/ holds if and only if w lies
on any path connecting u and v. The metric d 00̨ is the path metric if ˛ ! 0C and
the resistance metric if ˛ ! 1.

• Truncated metric
The truncated metric is a metric on the vertex-set of a graph, which is equal to
1 for any two adjacent vertices, and is equal to 2 for any nonadjacent different
vertices. It is the 2-truncated metric for the path metric of the graph. It is the
.1; 2/ � B-metric if the degree of any vertex is at most B .

• Hsu–Lyuu–Flandrin–Li distance
Given an m-connected graph G D .V; E/ and two vertices u; v 2 V , a container
C.u; v/ of width m is a set of m .u � v/ paths with any two of them intersecting
only in u and v. The length of a container is the length of the longest path in it.
The Hsu–Lyuu–Flandrin–Li distance between vertices u and v (Hsu–Lyuu,
1991, and Flandrin–Li, 1994) is the minimum of container lengths taken over
all containers C.u; v/ of width m. This generalization of the path metric is used
in parallel architectures for interconnection networks.

• Multiply-sure distance
The multiply-sure distance is a distance on the vertex-set V of an
m-connected weighted graph G D .V; E/, defined, for any u; v 2 V , as the
minimum weighted sum of lengths of m disjoint .u�v/ paths. This generalization
of the path metric helps when several disjoint paths between two points are
needed, for example, in communication networks, where m � 1 of .u � v/ paths
are used to code the message sent by the remaining .u � v/ path (see [McCa97]).

• Cut semimetric
A cut is a partition of a set into two parts. Given a subset S of Vn D
f1; : : : ; ng, we obtain the partition fS; VnnSg of Vn. The cut semimetric (or split
semimetric) ıS defined by this partition, is a semimetric on Vn defined by

ıS.i; j / D
�

1; if i ¤ j; jS \ fi; j gj D 1;

0; otherwise:

Usually, it is considered as a vector in R
jEnj, E.n/ D ffi; j g W 1 � i < j � ng.

A circular cut of Vn is defined by a subset SŒkC1;l� D fk C 1; : : : ; lg.mod n/ �
Vn: if we consider the points f1; : : : ; ng as being ordered along a circle in that
circular order, then SŒkC1;l� is the set of its consecutive vertices from k C 1 to
l . For a circular cut, the corresponding cut semimetric is called a circular cut
semimetric.
An even cut semimetric (odd cut semimetric ) is ıS on Vn with even (odd,
respectively) jS j. A k-uniform cut semimetric is ıS on Vn with jS j 2 fk; n �
kg. An equicut semimetric (inequicut semimetric) is ıS on Vn with jS j 2
fb n

2
c; d n

2
eg (jS j … fb n

2
c; d n

2
eg, respectively); see, for example, [DeLa97].
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• Decomposable semimetric
A decomposable semimetric is a semimetric on Vn D f1; : : : ; ng which can be
represented as a nonnegative linear combination of cut semimetrics. The set of
all decomposable semimetrics on Vn is a convex cone, called the cut cone CUTn.
A semimetric on Vn is decomposable if and only if it is a finite l1-semimetric.
A circular decomposable semimetric is a semimetric on Vn D f1; : : : ; ng
which can be represented as a nonnegative linear combination of circular cut
semimetrics. A semimetric on Vn is circular decomposable if and only if it is a
Kalmanson semimetric with respect to the same ordering (see [ChFi98]).

• Finite lp-semimetric
A finite lp-semimetric d is a semimetric on Vn D f1; : : : ; ng such that .Vn; d/

is a semimetric subspace of the lm
p -space .Rm; dlp / for some m 2 N.

If, instead of Vn, is taken X D f0; 1gn, the metric space .X; d/ is called the
ln
p-cube. The ln

1 -cube is called a Hamming cube; cf. Chap. 4. It is the graphic
metric space associated with a hypercube graph H.n; 2/, and any subspace of it
is called a partial cube.

• Kalmanson semimetric
A Kalmanson semimetric d with respect to the ordering 1; : : : ; n is a semimet-
ric on Vn D f1; : : : ; ng which satisfies the condition

maxfd.i; j / C d.r; s/; d.i; s/ C d.j; r/g � d.i; r/ C d.j; s/

for all 1 � i � j � r � s � n.
Equivalently, if the points f1; : : : ; ng are ordered along a circle Cn in that circular
order, then the distance d on Vn is a Kalmanson semimetric if the inequality

d.i; r/ C d.j; s/ � d.i; j / C d.r; s/

holds for i; j; r; s 2 Vn whenever the segments Œi; j �, Œr; s� are crossing
chords of Cn.
A tree-like metric is a Kalmanson metric for some ordering of the vertices of the
tree. The Euclidean metric, restricted to the points that form a convex polygon in
the plane, is a Kalmanson metric.

• Multicut semimetric
Let fS1; : : : ; Sqg, q � 2, be a partition of the set Vn D f1; : : : ; ng, i.e., a
collection S1; : : : ; Sq of pairwise disjoint subsets of Vn such that S1 [ � � � [ Sq D
Vn.
The multicut semimetric ıS1;:::;Sq is a semimetric on Vn defined by

ıS1;:::;Sq .i; j / D
�

0; if i; j 2 Sh for some h; 1 � h � q;

1; otherwise:
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• Oriented cut quasi-semimetric
Given a subset S of Vn D f1; : : : ; ng, the oriented cut quasi-semimetric ı

0

S is a
quasi-semimetric on Vn defined by

ı
0

S.i; j / D
�

1; if i 2 S; j 62 S;

0; otherwise:

Usually, it is considered as the vector of RjIn j, I.n/ D f.i; j / W 1 � i ¤ j � ng.
The cut semimetric ıS is ı

0

S C ı
0

VnnS
.

• Oriented multicut quasi-semimetric
Given a partition fS1; : : : ; Sqg, q � 2, of Vn, the oriented multicut
quasi-semimetric ı

0

S1;:::;Sq
is a quasi-semimetric on Vn defined by

ı
0

S1;:::;Sn
.i; j / D

�
1; if i 2 Sh; j 2 Sm; h < m;

0; otherwise :

15.2 Distance-Defined Graphs

Below we first give some graphs defined in terms of distances between their vertices.
Then some graphs associated with metric spaces are presented.

A graph .V; E/ is, say, distance-invariant or distance monotone if its metric
space .V; dpath/ is distance invariant or distance monotone, respectively (cf.
Chap. 1). The definitions of such graphs, being straightforward subcases of corre-
sponding metric spaces, will be not given below.

• k-Power of a graph
The k-power of a graph G D .V; E/ is the supergraph Gk D .V; E 0/ of G with
edges between all pairs of vertices having path distance at most k.

• Distance-residual subgraph
For a connected finite graph G D .V; E/ and a set M � V of its vertices, a
distance-residual subgraph is (Luksic and Pisanski, 2010) a subgraph induced
on the set of vertices u of G at the maximal point-set distance minv2M dpath.u; v/

from M . Such a subgraph is called vertex-residual if M consists of a vertex, and
edge-residual if M consists of two adjacent vertices.

• Isometric subgraph
A subgraph H of a graph G D .V; E/ is called an isometric subgraph if the
path metric between any two points of H is the same as their path metric in G.
A subgraph H is called a convex subgraph if it is isometric, and for any u; v 2 H

every vertex on a shortest .u � v/ path belonging to H also belongs to H .
A subset M � V is called gated if for every u 2 V n M there exists a unique
vertex g 2 M (called a gate) lying on a shortest .u � v/ path for every v 2 M .
The subgraph induced by a gated set is a convex subgraph.
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• Retract subgraph
A subgraph H of G is called a retract subgraph if it is induced by an
idempotent metric mapping of G into itself, i.e., f 2 D f W V ! V with
dpath.f .u/; f .v// � dpath.u; v/ for u; v 2 V . Any retract subgraph is isometric.

• Partial cube
A partial cube is an isometric subgraph of a Hamming cube, i.e., of a
hypercube H.m; 2/. Similar topological notion was introduced by Acharya,
1983: any graph .V; E/ admits a set-indexing f W V [ E ! 2X with injective
f jV ; f jR and f .uv/ D f .u/�f .v/ for any .uv/ 2 E . The set-indexing number
is min jX j.

• Median graph
A connected graph G D .V; E/ is called a median graph if, for any three
vertices u; v; w 2 V , there exists a unique vertex that lies simultaneously on a
shortest .u � v/, .u � w/ and .w � v/ paths, i.e., .V; dpath/ is a median metric
space.
The median graphs are exactly retract subgraphs of hypercubes. Also, they are
exactly partial cubes such that the vertex-set of any convex subgraph is gated
(cf. isometric subgraph).

• Geodetic graph
A graph is called geodetic if there exists at most one shortest path between any
two of its vertices. A graph is called strongly geodetic if there exists at most one
path of length less than or equal to the diameter between any two of its vertices.
A uniformly geodetic graph is a connected graph such that the number of shortest
paths between any two vertices u and v depends only on d.u; v/.
A graph is a forest (disjoint union of trees) if and only if there exists at most one
path between any two of its vertices.
The geodetic number of a finite connected graph .V; E/ [BuHa90] is min jM j
over sets M � V such that any x 2 V lies on a shortest .u � v/ path with
u; v 2 M .

• k-geodetically connected graph
A k-connected graph is called (Entringer–Jackson–Slater, 1977)
k-geodetically connected (k � GC) if the removal of less than k vertices
(or, equivalently, edges) does not affect the path metric between any pair of the
remaining vertices.
2 � GC graphs are called self-repairing. Cf. Hsu–Lyuu–Flandrin–Li distance.

• Interval distance monotone graph
A connected graph G D .V; E/ is called interval distance monotone if any of
its intervals IG.u; v/ induces a distance monotone graph, i.e., its path metric is
distance monotone, cf. Chap. 1.
A graph is interval distance monotone if and only if (Zhang–Wang, 2007) each
of its intervals is isomorphic to either a path, a cycle or a hypercube.

• Distance-regular graph
A connected regular (i.e., every vertex has the same degree) graph G D .V; E/

of diameter T is called distance-regular (or drg) if, for every two its vertices
u; v and any integers 0 � i; j � T , the number jfw 2 V W dpath.u; w/ D i;
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dpath.v; w/ D j gj depends only on i; j and k D dpath.u; v/, but not on the choice
of u and v.
A special case of it is a distance-transitive graph, i.e., such that its group of
automorphisms is transitive, for any 0 � i � T , on the pairs of vertices .u; v/

with dpath.u; v/ D i . An analog of drg is an edge-regular graph (Fiol–Carriga,
2001).
Any drg is a distance-balanced graph (or dbg), i.e., jWu;vj D jWv;uj, where
Wu;v D fx 2 V W d.x; u/ < d.x; v/g. Such graph is also called self-median since
it is exactly one, metric median (cf. eccentricity in Chap. 1) of which is V . A
gbg is called nicely distance-balanced if jWu;vj is the same for all edges uv.
Any drg is a distance degree-regular graph (i.e., jfx 2 V W d.x; u/ D igj
depends only on i ; such graph is also called strongly distance-balanced), and a
walk-regular graph (i.e., the number of closed walks of length i starting at u
depends only on i ). van Dam–Omidi, 2013, call a graph strongly walk-regular if
there is an l � 2 such that the number of walks of length l from u to v depends
only on whether the d.u; v/ is 0; 1, or �2; for l D 2, it is a strongly regular graph,
i.e., a drg of diameter 2. A d -Deza graph (Gu, 2013) is a regular graph .V; E/ in
which there are exactly d different values of jfw 2 V W d.u; w/ D d.v; w/ D 1gj
for distinct u; v 2 V .
A graph G is a distance-regularized graph if for each u 2 V , if admits
an intersection array at vertex u, i.e., the numbers ai .u/ D jGi .u/ \ G1.v/j,
bi .u/ D jGiC1.u/ \ G1.v/j and ci .u/ D jGi�1.v/ \ G1.v/j depend only on the
distance d.u; v/ D i and are independent of the choice of the vertex v 2 Gi .u/.
Here, for any i , Gi .w/ is the set of all vertices at the distance i from w. Godsil–
Shawe-Taylor, 1987, defined such graph and proved that it is either drg or
distance-biregular (a bipartite one with vertices in the same class having the
same intersection array).
A drg is also called a metric association scheme or P -polynomial association
scheme. A finite polynomial metric space (cf. Chap. 1) is a special case of it,
also called a (P and Q)-polynomial association scheme.

• Distance-regular digraph
A strongly connected digraph D D .V; E/ is called distance-regular (Damerell,
1981) if, for any its vertices u; v with dpath.u; v/ D k and for any integer
0 � i � k C 1, the number of vertices w, such that dpath.u; w/ D i and
dpath.v; w/ D 1, depends only on k and i , but not on the choice of u and v.
In order to find interesting classes of distance-regular digraphs with unbounded
diameter, the above definition was weakened by two teams in different directions.
Call d.x; y/ D .d.x; y/; d.y; x// the two-way distance in digraph D. A
strongly connected digraph D D .V; E/ is called weakly distance-regular
(Wang and Suzuku, 2003) if, for any its vertices u; v with d.u; v/ D .k1; k2/,
the number of vertices w, such that d.w; u/ D .i1; i2/ and d.w; v/ D .j1; j2/,
depends only on the values k1; k2; i1; i2; j1; j2. Comellas et al., 2004, defined a
weakly distance-regular digraph as one in which, for any vertices u and v, the
number of u ! v walks of every given length only depends on the distance
d.u; v/.
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• Metrically almost transitive graph
An automorphism of a graph G D .V; E/ is a map g W V ! V such that u is
adjacent to v if and only if g.u/ is adjacent to g.v/, for any u; v 2 V . The set
Aut.G/ of automorphisms of G is a group with respect to the composition of
functions.
A graph G is metrically almost transitive (Krön–Möller, 2008) if there is an
integer r such that, for any vertex u 2 V it holds

[g2Aut.G/fg.B.u; r/ D fv 2 V W dpath.u; v/ � rg/g D V:

• Metric end
Given an infinite graph G D .V; E/, a ray is a sequence .x0; x1; : : :/ of distinct
vertices such that xi and xiC1 are adjacent for i � 0.
Two rays R1 and R2 are equivalent whenever it is impossible to find a bounded
set of vertices F such that any path from R1 to R2 contains an element of F .
Metric ends are defined as equivalence classes of metric rays which are rays
without infinite, bounded subsets.

• Graph of polynomial growth
Let G D .V; E/ be a transitive locally finite graph. For a vertex v 2 V , the
growth function is defined by

f .n/ D jfu 2 V W d.u; v/ � ngj;

and it does not depend on v. Cf. growth rate of metric space in Chap. 1.
The graph G is a graph of polynomial growth if there are some positive
constants k; C such that f .n/ � C nk for all n � 0. It is a graph of exponential
growth if there is a constant C > 1 such that f .n/ > C n for all n � 0.
A group with a finite symmetric set of generators has polynomial growth rate
if the corresponding Cayley graph has polynomial growth. Here the metric ball
consists of all elements of the group which can be expressed as products of at
most n generators, i.e., it is a closed ball centered in the identity in the word
metric, cf. Chap. 10.

• Distance-polynomial graph
Given a connected graph G D .V; E/ of diameter T , for any 2 � i � T denote
by Gi the graph .V; E

0

/ with E
0 D fe D uv 2 E W dpath.u; v/ D ig. The graph G

is called a distance-polynomial if the adjacency matrix of any Gi , 2 � i � T ,
is a polynomial in terms of the adjacency matrix of G.
Any distance-regular graph is a distance-polynomial.

• Distance-hereditary graph
A connected graph is called distance-hereditary (Howorka, 1977) if each of its
connected induced subgraphs is isometric.
A graph is distance-hereditary if each of its induced paths is isometric. A graph is
distance-hereditary, bipartite distance-hereditary, block graph, tree if and only if
its path metric is a relaxed tree-like metric for edge-weights being, respectively,
nonzero half-integers, nonzero integers, positive half-integers, positive integers.
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A graph is called a parity graph if, for any u; v 2 V , the lengths of all
induced .u � v/ paths have the same parity. A graph is a parity graph (moreover,
distance-hereditary) if and only if every induced subgraph of odd (moreover, any)
order of at least five has an even number of Hamiltonian cycles (McKee, 2008).

• Distance magic graph
A graph G D .V; E/ is called a distance magic graph if it admits a distance
magic labeling, i.e., a magic constant k > 0 and a bijection f W V !
f1; 2; : : : ; jV jg with

P
uv2E f .v/ D k for every u 2 V . Introduced by Vilfred,

1994, these graphs generalize magic squares (such complete n-partite graphs
with parts of size n).
Among trees, cycles and Kn, only P1; P3; C4 are distance magic. The hypercube
graph H.m; 2/ is distance magic if m D 2; 6 but not if m � 0; 1; 3

.mod 4/.
• Block graph

A graph is called a block graph if each of its blocks (i.e., a maximal 2-connected
induced subgraph) is a complete graph. Any tree is a block graph.
A graph is a block graph if and only if its path metric is a tree-like metric or,
equivalently, satisfies the four-point inequality.

• Ptolemaic graph
A graph is called Ptolemaic if its path metric satisfies the Ptolemaic inequality

d.x; y/d.u; z/ � d.x; u/d.y; z/ C d.x; z/d.y; u/:

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every
cycle of length greater than 3 has a chord. So, any block graph is Ptolemaic.

• k-cocomparability graph
A graph G D .V; E/ is called (Chang–Ho–Ko, 2003) k-cocomparability graph
if its vertex-set admits a linear ordering < such that for any three vertices u <

v < w, d.u; w/ � k implies d.u; v/ � k or d.v; w/ � k.
• Distance-perfect graph

Cvetković et al., 2007, observed that any graph of diameter T has at most
k C T k vertices, where k is its location number (cf. Chap. 1), i.e., the minimal
cardinality of a set of vertices, the path distances from which uniquely determines
any vertex. They called a graph distance-perfect if it meets this upper bound and
proved that such a graph has T ¤ 2.

• t-irredundant set
A set S � V of vertices in a connected graph G D .V; E/ is called
t-irredundant (Hattingh–Henning, 1994) if for any u 2 S there exists a vertex
v 2 V such that, for the path metric dpath of G, it holds

dpath.v; x/ � t < dpath.v; V nS/ D min
u…S

dpath.v; u/:

The t-irredundance number irt of G is the smallest cardinality jS j such that S

is t-irredundant but S [ fvg is not, for every v 2 V nS .
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The t-domination number 	t and t-independent number ˛t of G are, respectively,
the cardinality of the smallest .t C 1/-covering (by the open balls of the radius
r C 1) and largest d t

2
e-packing of the metric space .V; dpath.u; v//; cf. the radii

of metric space in Chap. 1. Then it holds that 	t C1

2
� irt � 	t � ˛t .

Let BS denote fv 2 V W d.v; S/ D 1g. Then maxS�V jBS j D jV j � 	1 and
maxS�V .jBS j � jS j/ are called the enclaveless number and the differential of G.

• r-Locating-dominating set
Let D D .V; E/ be a digraph and C � V , and let B�

r .v/ denote the set of all
vertices x such that there exists a directed .x � v/ path with at most r arcs.
If B�

r .v/ \ C , v 2 V n C (respectively, v 2 V ), are nonempty distinct
sets, C is called (Slater, 1984) an r-locating-dominating set (respectively, an
r-identifying code; cf. Chap. 16) of D. Such sets of smallest cardinality are
called optimal.

• Locating chromatic number
The locating chromatic number of a graph G D .V; E/ is the minimum number
of color classes C1; : : : ; Ct needed to color vertices of G so that any two adjacent
vertices have distinct colors and each vertex u 2 V has distinct color code
.minv2C1 d.u; v/; : : : ; minv2Ck

d.u; v//.
• k-Distant chromatic number

The k-distant chromatic number of a graph G D .V; E/ is the minimum
number of colors needed to color vertices of G so that any two vertices at distance
at most k have distinct colors, i.e., it is the chromatic number of the k-power
of G.

• Distance between edges
The distance between edges in a connected graph G D .X; E/ is the number of
vertices in a shortest path between them. So, adjacent edges have distance 1.
A distance-k matching of G is a set of edges no two of which are within distance
k. For k D 1, it is the usual matching. For k D 2, it is also induced (or strong)
matching. A distance-k matching of G is equivalent to an independent set in the
k-power of the line graph of G. A distance-k edge-coloring of G is an edge-
coloring such that each color class induces a distance-k matching.
The distance-k chromatic index �k.G/ is the least integer t such that there
exists a distance-t edge-coloring of G. The distance-k matching number 
k.G/

is the largest integer t such that there exists a distance-t matching in G with t

edges. It holds that �k.G/
k.G/ � jEj.
The distance between faces of a plane graph is the number of vertices in a
shortest path between them. A distance-k face-coloring is a face-coloring such
that any two faces at distance at most k have different colors. The distance-k
face chromatic index is the least integer t such that such coloring exists.

• Rainbow distance
In an edge-colored graph, the rainbow distance is (Chartrand and Zhang, 2005)
the length of a shortest rainbow (i.e., containing no color twice) path.
In a vertex-colored graph, the colored distance is (Dankelmann et al., 2001) the
sum of distances between all unordered pairs of vertices having different colors.
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• D-distance graph
Given a set D of positive numbers containing 1 and a metric space .X; d/, the
D-distance graph is a graph G D .V D X; E/ with the edge-set E D fuv W
d.u; v/ 2 Dg (cf. D-chromatic number in Chap. 1). If .X; d/ is path metric of a
graph H , then G is called the distance power H D of H .
Alon–Kupavsky, 2014, call G (in the case .X; d/ D E

n, d D f1g) the faithful
unit-distance graph, using term unit-distance graph for E 	 f.u; v/ W jju�vjj2 D
1g.
For a positive number t , the signed distance graph is (Fiedler, 1969) a signed
graph with the vertex-set X in which vertices x; y are joined by a positive edge
if t > d.x; y/, by a negative edge if d.x; y/ > t , and not joined if d.x; y/ D t .
A D-distance graph is called a distance graph (or unit-distance graph) if D D
f1g, an �-unit graph if D D Œ1 � �; 1 C ��, a unit-neighborhood graph if D D
.0; 1�, an integral-distance graph if D D ZC, a rational-distance graph if D D
QC, and a prime-distance graph if D is the set of prime numbers (with 1).
Every finite graph can be represented by a D-distance graph in some E

n. The
minimum dimension of such a Euclidean space is called the D-dimension of G.
A matchstick graph is a crossingless unit-distance graph in E

2.
• Distance-number of a graph

Given a graph G D .V; E/, its degenerate drawing is a mapping f W V ! R
2

such that jf .V /j D jV j and f .uv/ is an open straight-line segment joining the
vertices f .u/ and f .v/ for any edge uv 2 E; it is a drawing if, moreover, f .w/ …
f .uv/ for any uv 2 E and w 2 V .
The distance-number dn.G/ of a graph G is (Carmi et al., 2008) the minimum
number of distinct edge-lengths in a drawing of G.
The degenerate distance-number of G, denoted by ddn.G/, is the minimum
number of distinct edge-lengths in a degenerated drawing of G. The first of
the Erdös-type distance problems in Chap. 19 is equivalent to determining
ddn.Kn/.

• Dimension of a graph
The dimension dim.G/ of a graph G is (Erdös–Harary–Tutte, 1965) the
minimum k such that G has a unit-distance representation in R

k , i.e., every edge
is of length 1. The vertices are mapped to distinct points of Rk , but edges may
cross.
For example, dim.G/ D n � 1; 4; 2 for G D Kn; Km;n; Cn (m � n � 3).

• Bar-and-joint framework
A n-dimensional bar-and-joint framework is a pair .G; f /, where G D .V; E/

is a finite graph (no loops and multiple edges) and f W V ! R
n is a map with

f .u/ ¤ f .v/ whenever uv 2 E . The framework is a straight line realization of
G in R

n in which the length of an edge uv 2 E is given by jjf .u/ � f .v/jj2.
The vertices and edges are called joints and bars, respectively, in terms of
Structural Engineering. A tensegrity structure (Fuller, 1948) is a mechanically
stable bar framework in which bars are either cables (tension elements which
cannot get further apart), or struts (compression elements which cannot get closer
together).
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A framework .G; f / is globally rigid if every framework .G; f 0/, satisfying
jjf .u/ � f .v/jj2 D jjf 0.u/ � f 0.v/jj2 for all uv 2 E , also satisfy it for all
u; v 2 V . A framework .G; f / is rigid if every continuous motion of its vertices
which preserves the lengths of all edges, also preserves the distances between
all pairs of vertices. The framework .G; f / is generic if the set containing the
coordinates of all the points f .v/ is algebraically independent over the rationals.
The graph G is n-rigid if every its n-dimensional generic realization is rigid. For
generic frameworks, rigidity is equivalent to the stronger property of infinitesimal
rigidity.
An infinitesimal motion of .G; f / is a map m W V ! R

n with .m.u/ �
m.v//.f .u/ � f .v// D 0 whenever uv 2 E . A motion is trivial if it can be
extended to an isometry of Rn. A framework is an infinitesimally rigid if every
motion of it is trivial, and it is isostatic if, moreover, the deletion of any its edge
will cause loss of rigidity. .G; f / is an elastic framework if, for any � > 0,
there exists a ı > 0 such that for every edge-weighting w W E ! R>0 with
maxuv2E jw.uv/ � jjf .u/ � f .v/jj2j � ı, there exist a framework .G; f 0/ with
maxv2V jjf .u/ � f 0.v/jj2 < �.
A framework .G; f / with jjf .u/ � f .v/jj2 > r if u; v 2 V; u ¤ c and
jjf .u/; f .v/jj2 � R if uv 2 E , for some 0 < r < R, is called (Doyle–Snell,
1984) a civilized drawing of a graph. The random walks on such graphs are
recurrent if n D 1; 2.

• Distance constrained labeling
Given a sequence ˛ D .˛1; : : : ; ˛k/ of distance constraints ˛1 � � � � � ˛k > 0,
a �˛-labeling of a graph G D .V; E/ is an assignment of labels f .v/ from the set
f0; 1; : : : ; �g of integers to the vertices v 2 V such that, for any t with 0 � t � k,
jf .v/ � f .u/j � ˛t whenever the path distance between u and v is t .
The radio frequency assignment problem, where vertices are transmitters (avail-
able channels) and labels represent frequencies of not-interfering channels,
consists of minimizing �. Distance-two labeling is the main interesting case
˛ D .2; 1/; its span is the difference between the largest and smallest labels
used.

• Distance-related graph embedding
An embedding of the guest graph G D .V1; E1/ into the host graph H D .V2; E2/

with jV1j � jV2j, is an injective map from V1 into V2.
The wire length, dilation and antidilation of G in H are

min
f

X

.uv/2E1

dH .f .u/; f .v//; min
f

max
.uv/2E1

dH .f .u/; f .v//; max
f

min
.uv/2E1

dH .f .u/; f .v//;

respectively, where f is any embedding of G into H . The main distance-
related graph embedding problems consist of finding or estimating these three
parameters.
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The bandwidth and antibandwidth of G is the dilation and antidilation, respec-
tively, of G in a path H with V1 vertices.

• Bandwidth of a graph
Given a graph G D .V; E/ with jV j D n, its ordering is a bijective mapping
f W V ! f1; : : : ; ng. Given a number b > 0, the bandwidth problem for .G; b/

is the existence of ordering f with the stretch maxuv2E jf .u/ � f .v/j at most b.
The bandwidth of G, denoted by bw.G/, is the minimum stretch over all f .
The antibandwidth problem for G is to find ordering f with maximal
minuv2E jf .u/ � f .v/j (antibandwidth).

• Path distance width of a graph
Given a connected graph G D .V; E/, an ordered partition V D [t

iD1Li

of its vertices is called a distance structure on G if Li D fv 2 V W
minu2L1 dpath.u; v/ D i � 1g for 1 � i � t . The structure is rooted if jL1j D 1.
The path distance width pwd.G/ of G is defined (Yamazaki et al., 1999) as
min max1�i�t jLi j over all distance structures on G.
An ordered partition V D [t

iD1Li is called a level structure on G if for each
edge uv with u 2 Li and v 2 Lj , it holds that ji � j j � 1. The level width (or
strong pathwidth) lw.G/ is min max1�i�t jLi j over all level structures.
Clearly, lw.G/ � pdw.G/. Yamazaki et al., 1999, proved that pdw.G/ can be
arbitrarily larger than the bandwidth bw.G/ and lw.G/ � bw.G/ < 2lw.G/.

• Tree-length of a graph
A tree decomposition of a graph G D .V; E/ is a pair of a tree T with vertex-set
W and a family of subsets fXi W i 2 W g of V with [i2W Xi D V such that

1. for every edge .uv/ 2 E , there is a subset Xi containing u; v, and
2. for every v 2 V , the set i 2 W W v 2 Xi induces a connected subtree of T .

The chordal graphs (i.e., ones without induced cycles of length at least 4) are
exactly those admitting a tree decomposition where every Xi is a clique.
For tree decomposition, the tree-length is maxi2W diam.Xi/ (diam.Xi / is the
diameter of the subgraph of G induced by Xi ) and tree-width is maxi2W jXi j � 1.
The tree-length of G (Dourisboure–Gavoille, 2004) and its tree-width
(Robertson–Seymour, 1986) are the minima, over all tree decompositions, of
above tree-length and tree-width. The path-length G is defined taking as trees
only paths.
Given a linear ordering e1; : : : ; ejEj of the edges of G, let, for 1 � i < jEj,
denote by G�i and Gi< the graphs induced by the edges fe1; : : : ; eig and
feiC1; : : : ; ejEjg, respectively. The linear-length is max1�i<jEj diam.V .G�i / \
V.Gi<//. The linear-length of G (Umezawa–Yamazaki, 2009) is the minimum
of the above linear-length taken over all the linear orderings of its edges.

• Spatial graph
A spatial graph (or spatial network) is a graph G D .V; E/, where each vertex
v has a spatial position .v1; : : : ; vn/ 2 R

n. (G is called a geometric graph if it is
drawn on R

2 and its edges are straight-line segments.)
The graph-theoretic dilation and geometric dilation of G are, respectively:
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max
v;u2V

d.v; u/

jjv � ujj2 and max
.vu/2E

d.v; u/

jjv � ujj2 :

• Distance Geometry problem
Given a weighted finite graph G D .V; EI w/, the Distance Geometry problem
(DGP) is the problem of realizing it as a spatial graph G D .V 0; E 0/, where
x W V ! V 0 is a bijection with x.v/ D .v1; : : : ; vn/ 2 R

n for every v 2 V and
E 0 D f.x.u/x.v// W .uv/ 2 Eg, so that for every edge .uv/ 2 E it holds that

jjx.u/ � x.u/jj2 D w.uv/:

The main application of DGP is the molecular DGP: to find the coordinates of
the atoms of a given molecular conformation are by exploiting only some of the
distances between pairs of atoms found experimentally; cf. [MLLM13].

• Arc routing problems
Given a finite set X , a quasi-distance d.x; y/ on it and a set A 	 f.x; y/ W x; y 2
Xg, consider the weighted digraph D D .X; A/ with the vertex-set X and arc-
weights d.x; y/ for all arcs .x; y/ 2 A. For given sets V of vertices and E of
arcs, the arc routing problem consists of finding a shortest (i.e., with minimal
sum of weights of its arcs) .V; E/-tour, i.e., a circuit in D D .X; A/, visiting
each vertex in V and each arc in E exactly once or, in a variation, at least once.
The Asymmetric Traveling Salesman problem corresponds to the case V D X ,
E D ;; the Traveling Salesman problem is the symmetric version of it (usually,
each vertex should be visited exactly once). The Bottleneck Traveling Salesman
problem consists of finding a .V; E/-tour T with smallest max.x;y/2T d.x; y/.
The Windy Postman problem corresponds to the case V D ;, E D A, while the
Chinese Postman problem is the symmetric version of it.
The above problems are also considered for general arc- or edge-weights; then,
for example, the term Metric TSP is used when edge-weights in the Traveling
Salesman problem satisfy the triangle inequality, i.e., d is a quasi-semimetric.

• Steiner distance of a set
The Steiner distance of a set S � V of vertices in a connected graph G D
.V; E/ is (Chartrand et al., 1989) the minimum size (number of edges) of a
connected subgraph of G, containing S . Such a subgraph is a tree, and is called
a Steiner tree for S . Cf. general Steiner diversity in Steiner ratio (Chap. 1).
The Steiner distance of the set S D fu; vg is the path metric between u and v. The
Steiner k-diameter of G is the maximum Steiner distance of any k-subset of V .

• t-Spanner
A factor, i.e., a spanning subgraph, H D .V; E.H// of a connected graph G D
.V; E/ is called a t-spanner (or t-multiplicative spanner) of G if, for every u; v 2
V , the inequality d H

path.u; v/=d G
path.u; v/ � t holds. The value t is called the stretch

factor (or dilation) of H . Cf. distance-related graph embedding and spatial
graph.
The graph H D .V; E.H// is called a k-additive spanner of G if, for every
u; v 2 V , the inequality d H

path.u; v/ � d G
path.u; v/ C k holds.
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Mulder and Nebeský, 2012, defined, for connected H , the guide of .H; G/ as the
ternary relation R � V � V � V consisting of ordered triples .u; w; v/ such that
uw 2 E and d H

path.u; w/ C d H
path.w; v/ D d H

path.u; v/. The guide of .G; G/ is called
the step ternary relation; cf. metric betweenness in Chap. 1.

• Optimal realization of metric space
Given a finite metric space .X; d/, a realization of it is a weighted graph G D
.V; EI w/ with X � V such that d.x; y/ D dG.x; y/ holds for all x; y 2 X .
The realization is optimal if it has minimal

P
.uv/2E w.uv/.

• Proximity graph
Given a finite subset V of a metric space .X; d/, its proximity graph is a graph
representing neighbor relationships between points of V . Such graphs are used
in Computational Geometry and many real-world problems. The main examples
are presented below. Cf. underlying graph of a metric space in Chap. 1.
A spanning tree of V is a set T of jV j�1 unordered pairs .x; y/ of different points
of V forming a tree on V ; the weight of T is

P
.x;y/2T d.x; y/. A minimum

spanning tree MST.V / of V is a spanning tree with the minimal weight. Such a
tree is unique if the edge-weights are distinct.
A nearest neighbor graph is the digraph NNG.V / D .V; E/ with vertex-set
V D v1; : : : ; vjV j and, for x; y 2 V , xy 2 E if y is the nearest neighbor of x,
i.e., d.x; y/ D minvi 2V nfxg d.x; vi / and only vi with maximal index i is picked.
The k-nearest neighbor graph arises if k such vi with maximal indices are picked.
The undirect version of NNG.V / is a subgraph of MST.V /.
A relative neighborhood graph is (Toussaint, 1980) the graph RNG.V / D
.V; E/ with vertex-set V and, for x; y 2 V , xy 2 E if there is no point
z 2 V with maxfd.x; z/; d.y; z/g < d.x; y/. Also considered, for .X; d/ D
.R2; jjx � yjj2/, the related Gabriel graph GG.V / (in general, ˇ-skeleton) and
Delaunay triangulation DT.V /; then NNG.V / 	 MST.V / 	 RNG.V / 	
GG.V / 	 DT.V /.
For any x 2 V , its sphere of influence is the open metric ball B.x; rx/ D fz 2
X W d.x; z/ < rg in .X; d/ centered at x with radius rx D minz2V nfxg d.x; z/.
Sphere of influence graph is the graph SIG.V / D .V; E/ with vertex-set V and,
for x; y 2 V , xy 2 E if B.x; rx/ \ B.y; ry/ ¤ ;; so, it is a proximity graph
and an intersection graph. The closed sphere of influence graph is the graph
CSIG.V / D .V; E/ with xy 2 E if B.x; rx/ \ B.y; ry/ ¤ ;.

15.3 Distances on Graphs

• Chartrand–Kubicki–Schultz distance
The Chartrand–Kubicki–Schultz distance (or �-distance, 1998) between two
connected graphs G1 D .V1; E1/ and G2 D .V2; E2/ with jV1j D jV2j D n is

minf
X

jdG1.u; v/ � dG2.�.u/; �.v//jg;



15.3 Distances on Graphs 295

where dG1; dG2 are the path metrics of graphs G1; G2, the sum is taken over
all unordered pairs u; v of vertices of G1, and the minimum is taken over all
bijections � W V1 ! V2.

• Subgraph metric
Let F D fF1 D .V1; E1/; F2 D .V2; E2/; : : : ; g be the set of isomorphism classes
of finite graphs. Given a finite graph G D .V; E/, denote by si .G/ the number
of injective homomorphisms from Fi into G, i.e., the number of injections � W
Vi ! V with �.x/�.y/ 2 E if xy 2 Ei divided by the number jV jŠ

.jV j�jVi j/Š of such
injections from Fi with jVi j � jV j into KjV j. Set s.G/ D .si .G//1

iD1 2 Œ0; 1�1.
Let d be the Cantor metric (cf. Chap. 18) d.x; y/ D P1

iD1 2�i jxi � yi j
on Œ0; 1�1 or any metric on Œ0; 1�1 inducing the product topology. Then
Bollobás–Riordan, 2007, defined the subgraph metric between the graphs G1

and G2 as

d.s.G1/; s.G2//

and generalized it on kernels (or graphons), i.e., symmetric measurable functions
k W Œ0; 1� � Œ0; 1� ! R�0, replacing G by k and the above si .G/ by

si .k/ D
Z

Œ0;1�jVi j

Y

st2Ei

k.xsxt /

jVi jY

sD1

dxs:

• Benjamini–Schramm metric
The rooted graphs .G; o/ and .G0; o0/ (where G D .V; E/; G0 D .V 0; E 0/ and
o 2 V; o0 2 V 0) are isomorphic is there is a graph-isomorphism of G onto G0
taking o to o0. Let X be the set of isomorphism classes of rooted connected
locally finite graphs and let .G; o/; .G0; o0/ be representatives of two classes.
Let k be the supremum of all radii r , for which rooted metric balls .BG.o; r/; o/

and .BG0.o0; r/; o0/ (in the usual path metric) are isomorphic as rooted graphs.
Benjamini and Schramm, 2001, defined the metric 2�k between classes repre-
sented by .G; o/ and .G0; o0/. Here 2�1 means 0. Benjamini and Curien, 2011,
defined the similar distance 1

1Ck
.

• Rectangle distance on weighted graphs
Let G D G.˛; ˇ/ be a complete weighted graph on f1; : : : ; ng with
vertex-weights ˛i > 0, 1 � i � n, and edge-weights ˇij 2 R, 1 � i < j � n.

Denote by A.G/ the n � n matrix ..aij//, where aij D ˛i ˛j ˇij

.
P

1�i�n ˛i /2 .

The rectangle distance (or cut distance) between two weighted graphs G D
G.˛; ˇ/ and G0 D G.˛0; ˇ0/ (with vertex-weights .˛0

i / and edge-weights .ˇ0
ij/)

is defined (Borgs–Chayes–Lovász–Sós–Vesztergombi, 2007) by

max
I;J �f1;:::;ng

ˇ̌
ˇ̌
ˇ̌
X

i2I;j 2J

.aij � a0
ij/

ˇ̌
ˇ̌
ˇ̌C

nX

iD1

ˇ̌
ˇ̌
ˇ

˛iP
1�j �n ˛j

� ˛0
iP

1�j �n ˛0
j

ˇ̌
ˇ̌
ˇ ;

where A.G/ D ..aij// and A.G0/ D ..a0
ij//.
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In the case .˛0
i / D .˛i /, the rectangle distance is jjA.G/�A.G0/jjcut, i.e., the cut

norm metric (cf. Chap. 12) between matrices A.G/ and A.G0/ and the rectangle
distance from Frieze–Kannan, 1999. In this case, the l1- and l2-metrics between
two weighted graphs G and G0 are defined as jjA.G/ � A.G0/jj1 and jjA.G/ �
A.G0/jj2, respectively. The subcase ˛i D 1 for all 1 � i � n corresponds to
unweighted vertices. Cf. the Robinson–Foulds weighted metric.
Authors generalized the rectangle distance on kernels (or graphons), i.e., sym-
metric measurable functions k W Œ0; 1� � Œ0; 1� ! R�0, using the cut norm
jjkjjcut D supS;T �Œ0;1� j R

S�T
k.x; y/dxdyj.

A map � W Œ0; 1� ! Œ0; 1� is measure-preserving if, for any measurable subset
A � Œ0; 1�, the measures of A and ��1.A/ are equal. For a kernel k, define
the kernel k� by k�.x; y/ D k.�.x/; �.y//. The Lovász–Szegedy semimetric
(2007) between kernels k1 and k1 is defined by

inf
�

jjk�
1 � k2jjcut;

where � ranges over all measure-preserving bijections Œ0; 1� ! Œ0; 1�. Cf.
Chartrand–Kubicki–Schultz distance.

• Subgraph-supergraph distances
A common subgraph of graphs G1 and G2 is a graph which is isomorphic to
induced subgraphs of both G1 and G2. A common supergraph of graphs G1 and
G2 is a graph which contains induced subgraphs isomorphic to G1 and G2.
The Zelinka distance dZ [Zeli75] on the set G of all graphs (more exactly, on
the set of all equivalence classes of isomorphic graphs) is defined by

dZ D maxfn.G1/; n.G2/g � n.G1; G2/

for any G1; G2 2 G, where n.Gi / is the number of vertices in Gi , i D 1; 2, and
n.G1; G2/ is the maximum number of vertices of their common subgraph.
The Bunke–Shearer metric (1998) on the set of nonempty graphs is defined by

1 � n.G1; G2/

maxfn.G1/; n.G2/g :

Given any set M of graphs, the common subgraph distance dM on M is

maxfn.G1/; n.G2/g � n.G1; G2/;

and the common supergraph distance d �
M is defined, for any G1; G2 2 M, by

N.G1; G2/ � minfn.G1/; n.G2/g;

where n.Gi / is the number of vertices in Gi , i D 1; 2, while n.G1; G2/ and
N.G1; G2/ are the maximal order of a common subgraph G 2 M and the minimal
order of a common supergraph H 2 M, respectively, of G1 and G2.
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dM is a metric on M if the following condition (i) holds:

(i) if H 2 M is a common supergraph of G1; G2 2 M, then there exists a
common subgraph G 2 M of G1 and G2 with n.G/ � n.G1/Cn.G2/�n.H/.

d �
M is a metric on M if the following condition (ii) holds:

(ii) if G 2 M is a common subgraph of G1; G2 2 M, then there exists a common
supergraph H 2 M of G1 and G2 with n.H/ � n.G1/ C n.G2/ � n.G/.

One has dM � d �
M if the condition (i) holds, and dM � d �

M if (ii) holds.
The distance dM is a metric on the set G of all graphs, the set of all cycle-free
graphs, the set of all bipartite graphs, and the set of all trees. The distance d �

M

is a metric on the set G of all graphs, the set of all connected graphs, the set of
all connected bipartite graphs, and the set of all trees. The Zelinka distance dZ

coincides with dM and d �
M on the set G of all graphs. On the set T of all trees the

distances dM and d �
M are identical, but different from the Zelinka distance.

The Zelinka distance dZ is a metric on the set G.n/ of all graphs with n vertices,
and is equal to n� k or to K � n for all G1, G2 2 G.n/, where k is the maximum
number of vertices of a common subgraph of G1 and G2, and K is the minimum
number of vertices of a common supergraph of G1 and G2.
On the set T.n/ of all trees with n vertices the distance dZ is called the Zelinka
tree distance (see, for example, [Zeli75]).

• Fernández–Valiente metric
Given graphs G and H , let G1 D .V1; E1/ and G2 D .V2; E2/ be
their maximum common subgraph and minimum common supergraph; cf.
subgraph-supergraph distances. The Fernández–Valiente metric (2001)
between G and H is

.jV2j C jE2j/ � .jV1j C jE1j/:

• Graph edit distance
The graph edit distance (Axenovich–Kézdy–Martin, 2008, and Alon–Stav,
2008) between graphs G and G0 on the same labeled vertex-set is defined by

ded.G; G0/ D jE.G/�E.G0/j:

It is the minimum number of edge deletions or additions needed to transform G

into G0, and half of the Hamming distance between their adjacency matrices.
Given a graph property (i.e., a family H of graphs), let ded.G; H/ be
minfded.G; G0/ W V.G0/ D V.G/; G0 2 Hg. Given a number p 2 .0; 1�,
the edit distance function of a property H is (if this limit exists) defined by

edH.p/ D lim
n!1

max

(
ded.G; H/ W jV .G/j D n; jE.G/j D

$
p

 
n

2

!%)   
n

2

!!
�1

:
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If H is hereditary (closed under the taking induced subgraphs) and nontrivial
(contains arbitrarily large graphs), then (Balogh–Martin, 2008) it holds

edH.p/ D lim
n!1EŒded.G.n; p/; H/�

  
n

2

!!�1

I

G.n; p/ is the random graph (Chap. 1) on n vertices with edge probability p.
Bunke, 1997, defined the graph edit distance between vertex- and edge-labeled
graphs G1 and G2 as the minimal total cost of matching G1 and G2, using
deletions, additions and substitutions of vertices and edges. Cf. also tree, top-
down, unit cost and restricted edit distance between rooted trees.
The Bayesian graph edit distance between two relational graphs (i.e., triples
.V; E; A/, where V; E; A are the sets of vertices, edges, vertex-attributes) is
(Myers–Wilson–Hancock, 2000) their graph edit distance with costs defined by
probabilities of operations along an editing path seen as a memoryless error
process. Cf. transduction edit distances (Chap. 11) and Bayesian distance
(Chap. 14).
The structural Hamming distance between two digraphs G D .X; E/ and
G0 D .X; E 0/ is defined (Acid–Campos, 2003) as SHD.G; G0/ D jE�E 0j.

• Edge distance
The edge distance on the set of all graphs is defined (Baláž et al., 1986) by

jE1j C jE2j � 2jE12j C jjV1j � jV2jj

for any graphs G1 D .V1; E1/ and G2 D .V2; E2/, where G12 D .V12; E12/ is a
common subgraph of G1 and G2 with maximal number of edges. This distance
has many applications in Organic and Medical Chemistry.

• Contraction distance
The contraction distance is a distance on the set G.n/ of all graphs with n

vertices defined by

n � k

for any G1; G2 2 G.n/, where k is the maximum number of vertices of a graph
which is isomorphic simultaneously to a graph, obtained from each of G1 and G2

by a finite number of edge contractions. To perform the contraction of the edge
uv 2 E of a graph G D .V; E/ means to replace u and v by one vertex that is
adjacent to all vertices of V nfu; vg which were adjacent to u or to v.

• Edge move distance
The edge move distance (Baláž et al., 1986) is a metric on the set G.n; m/ of all
graphs with n vertices and m edges, defined, for any G1; G2 2 G.m; n/, as the
minimum number of edge moves necessary for transforming the graph G1 into
the graph G2. It is equal to m � k, where k is the maximum size of a common
subgraph of G1 and G2.
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An edge move is one of the edge transformations, defined as follows: H can be
obtained from G by an edge move if there exist (not necessarily distinct) vertices
u; v; w, and x in G such that uv 2 E.G/, wx … E.G/, and H D G � uv C wx.

• Edge jump distance
The edge jump distance is an extended metric (which in general can take the
value 1) on the set G.n; m/ of all graphs with n vertices and m edges defined,
for any G1; G2 2 G.m; n/, as the minimum number of edge jumps necessary for
transforming G1 into G2.
An edge jump is one of the edge transformations, defined as follows: H can be
obtained from G by an edge jump if there exist four distinct vertices u; v; w, and
x in G, such that uv 2 E.G/, wx … E.G/, and H D G � av C wx.

• Edge flipping distance
Let P D fv1; : : : ; vng be a collection of points on the plane. A triangulation T

of P is a partition of the convex hull of P into a set of triangles such that each
triangle has a disjoint interior and the vertices of each triangle are points of P .
The edge flipping distance is a distance on the set of all triangulations of
P defined, for any triangulations T and T1, as the minimum number of edge
flippings necessary for transforming T into T1.
An edge e of T is called flippable if it is the boundary of two triangles t and
t

0

of T , and C D t [ t
0

is a convex quadrilateral. The flipping e is one of the
edge transformations, which consists of removing e and replacing it by the other
diagonal of C . Edge flipping is an special case of edge jump.
The edge flipping distance can be extended on pseudo-triangulations, i.e.,
partitions of the convex hull of P into a set of disjoint interior pseudo-triangles
(simply connected subsets of the plane that lie between any three mutually
tangent convex sets) whose vertices are given points.

• Edge rotation distance
The edge rotation distance (Chartand–Saba–Zou, 1985) is a metric on the set
G.n; m/ of graphs with n vertices and m edges, defined, for any G1; G2, as the
minimum number of edge rotations needed for transforming G1 into G2.
An edge rotation is one of the edge transformations, defined as follows: H can
be obtained from G by an edge rotation if there exist distinct vertices u; v, and w
in G, such that uv 2 E.G/, uw … E.G/, and H D G � uv C uw.

• Tree edge rotation distance
The tree edge rotation distance is a metric on the set T.n/ of all trees with n

vertices defined, for all T1, T2 2 T.n/, as the minimum number of tree edge
rotations necessary for transforming T1 into T2. A tree edge rotation is an edge
rotation performed on a tree, and resulting in a tree.
For T.n/ the tree edge rotation and the edge rotation distances may differ.

• Edge shift distance
The edge shift distance (or edge slide distance) is a metric (Johnson, 1985) on
the set Gc.n; m/ of all connected graphs with n vertices and m edges defined,
for any G1; G2 2 Gc.m; n/, as the minimum number of edge shifts necessary for
transforming G1 into G2.
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An edge shift is one of the edge transformations, defined as follows: H can be
obtained from G by an edge shift if there exist distinct vertices u; v, and w in G

such that uv; vw 2 E.G/, uw … E.G/, and H D G � uv C uw. Edge shift is a
special kind of edge rotation in the case when the vertices v; w are adjacent in G.
The edge shift distance can be defined between any graphs G and H with
components Gi .1 � i � k/ and Hi .1 � i � k/, respectively, such that Gi

and Hi have the same order and the same size.
• F -rotation distance

The F -rotation distance is a distance on the set GF .n; m/ of all graphs with n

vertices and m edges, containing a subgraph isomorphic to a given graph F of
order at least 2 defined, for all G1, G2 2 GF .m; n/, as the minimum number of
F -rotations necessary for transforming G1 into G2.
An F -rotation is one of the edge transformations, defined as follows: let F

0

be
a subgraph of a graph G, isomorphic to F , let u; v; w be three distinct vertices of
the graph G such that u 62 V.F

0

/, v; w 2 V.F
0

/, uv 2 E.G/, and uw … E.G/;
H can be obtained from G by the F -rotation of the edge uv into the position uw
if H D G � uv C uw.

• Binary relation distance
Let R be a nonreflexive binary relation between graphs, i.e., R � G � G, and
there exists G 2 G such that .G; G/ … R.
The binary relation distance is a metric (which can take the value 1) on the set
G of all graphs defined, for any graphs G1 and G2, as the minimum number of
R-transformations necessary for transforming G1 into G2. We say that a graph
H can be obtained from a graph G by an R-transformation if .H; G/ 2 R.
An example is the distance between two triangular embeddings of a complete
graph (i.e., its cellular embeddings in a surface with only 3-gonal faces) defined
as the minimal number t such that, up to replacing t faces, the embeddings are
isomorphic.

• Crossing-free transformation metrics
Given a subset S of R2, a noncrossing spanning tree of S is a tree whose vertices
are points of S , and edges are pairwise noncrossing straight line segments.
The crossing-free edge move metric (see [AAH00]) on the set TS of all
noncrossing spanning trees of a set S , is defined, for any T1; T2 2 TS , as the
minimum number of crossing-free edge moves needed to transform T1 into T2.
Such move is an edge transformation which consists of adding some edge e in
T 2 TS and removing some edge f from the induced cycle so that e and f do
not cross.
The crossing-free edge slide metric is a metric on the set TS of all noncrossing
spanning trees of a set S defined, for any T1; T2 2 TS , as the minimum number
of crossing-free edge slides necessary for transforming T1 into T2. Such slide is
one of the edge transformations which consists of taking some edge e in T 2 TS

and moving one of its endpoints along some edge adjacent to e in T , without
introducing edge crossings and without sweeping across points in S (that gives a
new edge f instead of e). The edge slide is a special kind of crossing-free edge
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move: the new tree is obtained by closing with f a cycle C of length 3 in T , and
removing e from C , in such a way that f avoids the interior of the triangle C .

• Traveling salesman tours distances
The Traveling Salesman problem is the problem of finding the shortest tour that
visits a set of cities. We will consider only Traveling Salesman problem with
undirected links. For an n-city traveling salesman problem, the space Tn of tours
is the set of .n�1/Š

2
cyclic permutations of the cities 1; 2; : : : ; n.

The metric D on Tn is defined in terms of the difference in form: if tours T; T
0 2

Tn differ in m links, then D.T; T
0

/ D m.
A k-OPT transformation of a tour T is obtained by deleting k links from T , and
reconnecting. A tour T

0

, obtained from T by a k-OPT transformation, is called
a k-OPT of T . The distance d on the set TN is defined in terms of the 2-OPT
transformations: d.T; T

0

/ is the minimal i , for which there exists a sequence of i

2-OPT transformations which transforms T to T
0

. In fact, d.T; T
0

/ � D.T; T
0

/

for any T; T
0 2 TN (see, for example, [MaMo95]). Cf. arc routing problems.

• Orientation distance
The orientation distance (Chartrand–Erwin–Raines–Zhang, 2001) between two
orientations D and D0 of a finite graph is the minimum number of arcs of D

whose directions must be reversed to produce an orientation isomorphic to D0.
• Subgraphs distances

The standard distance on the set of all subgraphs of a connected graph G D
.V; E/ is defined by

minfdpath.u; v/ W u 2 V.F /; v 2 V.H/g
for any subgraphs F; H of G. For any subgraphs F , H of a strongly connected
digraph D D .V; E/, the standard quasi-distance is defined by

minfddpath.u; v/ W u 2 V.F /; v 2 V.H/g:
Using standard operations (rotation, shift, etc.) on the edge-set of a graph, one
gets corresponding distances between its edge-induced subgraphs of given size
which are subcases of similar distances on the set of all graphs of a given size
and order.
The edge rotation distance on the set Sk.G/ of all edge-induced subgraphs with
k edges in a connected graph G is defined as the minimum number of edge
rotations required to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can
be obtained from F by an edge rotation if there exist distinct vertices u; v, and w
in G such that uv 2 E.F /, uw 2 E.G/nE.F /, and H D F � uv C uw.
The edge shift distance on the set Sk.G/ of all edge-induced subgraphs with
k edges in a connected graph G is defined as the minimum number of edge
shifts required to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can be
obtained from F by an edge shift if there exist distinct vertices u; v and w in G

such that uv; vw 2 E.F /, uw 2 E.G/nE.F /, and H D F � uv C uw.
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The edge move distance on the set Sk.G/ of all edge-induced subgraphs with k

edges of a graph G (not necessary connected) is defined as the minimum number
of edge moves required to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H

can be obtained from F by an edge move if there exist (not necessarily distinct)
vertices u; v; w, and x in G such that uv 2 E.F /, wx 2 E.G/nE.F /, and H D
F � uv C wx. The edge move distance is a metric on Sk.G/. If F and H have s

edges in common, then it is equal to k � s.
The edge jump distance (which in general can take the value 1) on the
set Sk.G/ of all edge-induced subgraphs with k edges of a graph G (not
necessary connected) is defined as the minimum number of edge jumps required
to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can be obtained from
F by an edge jump if there exist four distinct vertices u; v; w, and x in G such
that uv 2 E.F /, wx 2 E.G/nE.F /, and H D F � uv C wx.

15.4 Distances on Trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root.
The depth of a vertex v, depth.v/, is the number of edges on the path from v to the
root. A vertex v is called a parent of a vertex u, v D par.u/, if they are adjacent,
and depth.u/ D depth.v/ C 1; in this case u is called a child of v. A leaf is a vertex
without child. Two vertices are siblings if they have the same parent.

The in-degree of a vertex is the number of its children. T .v/ is the subtree of T ,
rooted at a node v 2 V.T /. If w 2 V.T .v//, then v is an ancestor of w, and w is a
descendant of v; nca.u; v/ is the nearest common ancestor of the vertices u and v.

T is called a labeled tree if a symbol from a fixed finite alphabet A is assigned
to each node. T is called an ordered tree if a left-to-right order among siblings in
T is given. On the set Trlo of all rooted labeled ordered trees there are three editing
operations:

• Relabel—change the label of a vertex v;
• Deletion—delete a nonrooted vertex v with parent v

0

, making the children of
v become the children of v

0

; the children are inserted in the place of v as a
subsequence in the left-to-right order of the children of v

0

;
• Insertion—the complement of deletion; insert a vertex v as a child of a v

0

making
v the parent of a consecutive subsequence of the children of v

0

.

For unordered trees above operations (and so, distances) are defined similarly,
but the insert and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation, and the
cost of a sequence of editing operations is the sum of the costs of these operations.

The ordered edit distance mapping is a representation of the editing operations.
Formally, the triple .M; T1; T2/ is an ordered edit distance mapping from T1 to T2,
T1; T2 2 Trlo, if M � V.T1/ � V.T2/ and, for any .v1; w1/, .v2; w2/ 2 M , the
following conditions hold: v1 D v2 if and only if w1 D w2 (one-to-one condition),
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v1 is an ancestor of v2 if and only if w1 is an ancestor of w2 (ancestor condition), v1

is to the left of v2 if and only if w1 is to the left of w2 (sibling condition).
We say that a vertex v in T1 and T2 is touched by a line in M if v occurs in

some pair in M . Let N1 and N2 be the set of vertices in T1 and T2, respectively, not
touched by any line in M . The cost of M is given by 	.M / D P

.v;w/2M 	.v !
w/ CP

v2N1
	.v ! �/ CP

w2N2
	.� ! w/, where 	.a ! b/ D 	.a; b/ is the cost

of an editing operation a ! b which is a relabel if a; b 2 A, a deletion if b D �,
and an insertion if a D �. Here � 62 A is a special blank symbol, and 	 is a metric
on the set A [ � (excepting the value 	.�; �/).

• Tree edit distance
The tree edit distance (see [Tai79]) on the set Trlo of all rooted labeled ordered
trees is defined, for any T1; T2 2 Trlo, as the minimum cost of a sequence of
editing operations (relabels, insertions, and deletions) turning T1 into T2.
In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ 	.M /,
where the minimum is taken over all such mappings .M; T1; T2/.
The unit cost edit distance between T1 and T2 is the minimum number of three
above editing operations turning T1 into T2, i.e., it is the tree edit distance with
cost 1 of any operation.

• Selkow distance
The Selkow distance (or top-down edit distance, degree-1 edit distance) is a
distance on the set Trlo of all rooted labeled ordered trees defined, for any
T1; T2 2 Trlo, as the minimum cost of a sequence of editing operations (relabels,
insertions, and deletions) turning T1 into T2 if insertions and deletions are
restricted to leaves of the trees (see [Selk77]).
The root of T1 must be mapped to the root of T2, and if a node v is to be deleted
(inserted), then any subtree rooted at v is to be deleted (inserted).
In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ 	.M /,
where the minimum is taken over all such mappings .M; T1; T2/ such that
.par.v/; par.w// 2 M if .v; w/ 2 M , where neither v nor w is the root.

• Restricted edit distance
The restricted edit distance is a distance on the set Trlo of all rooted labeled
ordered trees defined, for any T1; T2 2 Trlo, as the minimum cost of a sequence
of editing operations (relabels, insertions, and deletions) turning T1 into T2 with
the restriction that disjoint subtrees should be mapped to disjoint subtrees.
In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ 	.M /,
where the minimum is taken over all such mappings .M; T1; T2/ satisfying the
following condition: for all .v1; w1/, .v2; w2/, .v3; w3/ 2 M , nca.v1; v2/ is a
proper ancestor of v3 if and only if nca.w1; w2/ is a proper ancestor of w3.
This distance is equivalent to the structure respecting edit distance which is
defined by min.M;T1;T2/ 	.M /. Here the minimum is taken over all ordered
edit distance mappings .M; T1; T2/, satisfying the following condition: for all
.v1; w1/, .v2; w2/, .v3; w3/ 2 M , such that none of v1; v2, and v3 is an ancestor of
the others, nca.v1; v2/ D nca.v1; v3/ if and only if nca.w1; w2/ D nca.w1; w3/.
Cf. constrained edit distance in Chap. 11.
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• Alignment distance
The alignment distance (see [JWZ94]) is a distance on the set Trlo of all rooted
labeled ordered trees defined, for any T1; T2 2 Trlo, as the minimum cost of an
alignment of T1 and T2. It corresponds to a restricted edit distance, where all
insertions must be performed before any deletions.
Thus, one inserts spaces, i.e., vertices labeled with a blank symbol �, into T1 and
T2 so that they become isomorphic when labels are ignored; the resulting trees
are overlaid on top of each other giving the alignment TA which is a tree, where
each vertex is labeled by a pair of labels. The cost of TA is the sum of the costs
of all pairs of opposite labels in TA.

• Splitting-merging distance
The splitting-merging distance (see [ChLu85]) is a distance on the set Trlo of
all rooted labeled ordered trees defined, for any T1; T2 2 Trlo, as the minimum
number of vertex splittings and mergings needed to transform T1 into T2.

• Degree-2 distance
The degree-2 distance is a metric on the set Tl of all labeled trees (labeled free
trees), defined, for any T1; T2 2 Tl , as the minimum number of editing operations
(relabels, insertions, and deletions) turning T1 into T2 if any vertex to be inserted
(deleted) has no more than two neighbors. This metric is a natural extension of
the tree edit distance and the Selkow distance.

A phylogenetic X -tree is an unordered unrooted tree with the labeled leaf set X

and no vertices of degree two. If every interior vertex has degree three, the tree is
called binary. Let T.X/ denote the set of all phylogenetic X -trees.

• Robinson–Foulds metric
A cut AjB of X is a partition of X into two subsets A and B (see cut
semimetric). Removing an edge e from a phylogenetic X -tree induces a cut of
the leaf set X which is called the cut associated with e.
The Robinson–Foulds metric (or Bourque metric, bipartition distance) is a
metric on the set T.X/, defined, for any phylogenetic X -trees T1; T2 2 T.X/,
by

1

2
j†.T1/4†.T2/j D 1

2
j†.T1/ n †.T2/j C 1

2
j†.T2/ n †.T1/j;

where †.T / is the collection of all cuts of X associated with edges of T .
The Robinson–Foulds weighted metric is a metric on the set T.X/ of all
phylogenetic X -trees defined by

X

AjB2†.T1/[†.T2/

jw1.AjB/ � w2.AjB/j

for all T1; T2 2 T.X/, where wi D .w.e//e2E.Ti / is the collection of positive
weights, associated with the edges of the X -tree Ti , †.Ti / is the collection of all
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cuts of X , associated with edges of Ti , and wi .AjB/ is the weight of the edge,
corresponding to the cut AjB of X , i D 1; 2. Cf. more general cut norm metric
in Chap. 12 and rectangle distance on weighted graphs.

• �-metric
Given a phylogenetic X -tree T with n leaves and a vertex v in it, let �.v/ D
.�1.v/; : : : ; �n.v//, where �i .v/ is the number of different paths from the vertex
v to the i -th leaf. Let �.T / denote the multiset on the vertex-set of T with �.v/

being the multiplicity of the vertex v.
The �-metric (Cardona–Roselló–Valiente, 2008) is a metric on the set T.X/ of
all phylogenetic X -trees defined, for all T1; T2 2 T.X/, by

1

2
j�.T1/��.T2/j;

where � denotes the symmetric difference of multisets.
Cf. the metrics between multisets in Chap. 1 and the Dodge–Shiode WebX
quasi-distance in Chap. 22.

• Nearest neighbor interchange metric
The nearest neighbor interchange metric (or crossover metric) on the set
T.X/ of all phylogenetic X -trees, is defined, for all T1; T2 2 T.X/, as the
minimum number of nearest neighbor interchanges required to transform T1

into T2.
A nearest neighbor interchange consists of swapping two subtrees in a tree that
are adjacent to the same internal edge; the remainder of the tree is unchanged.

• Subtree prune and regraft distance
The subtree prune and regraft distance is a metric on the set T.X/ of all
phylogenetic X -trees defined, for all T1; T2 2 T.X/, as the minimum number
of subtree prune and regraft transformations required to transform T1 into T2.
A subtree prune and regraft transformation proceeds in three steps: one selects
and removes an edge uv of the tree, thereby dividing the tree into two subtrees Tu

(containing u) and Tv (containing v); then one selects and subdivides an edge of
Tv, giving a new vertex w; finally, one connects u and w by an edge, and removes
all vertices of degree two.

• Tree bisection-reconnection metric
The tree bisection-reconnection metric (or TBR-metric) on the set T.X/ of all
phylogenetic X -trees is defined, for all T1; T2 2 T.X/, as the minimum number
of tree bisection and reconnection transformations required to transform T1 into
T2.
A tree bisection and reconnection transformation proceeds in three steps: one
selects and removes an edge uv of the tree, thereby dividing the tree into two
subtrees Tu (containing u) and Tv (containing v); then one selects and subdivides
an edge of Tv, giving a new vertex w, and an edge of Tu, giving a new vertex z;
finally one connects w and z by an edge, and removes all vertices of degree two.
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• Quartet distance
The quartet distance (see [EMM85]) is a distance of the set Tb.X/ of all
binary phylogenetic X -trees defined, for all T1; T2 2 Tb.X/, as the number of
mismatched quartets (from the total number .n

4/ possible quartets) for T1 and T2.
This distance is based on the fact that, given four leaves f1; 2; 3; 4g of a tree,
they can only be combined in a binary subtree in three ways: .12j34/, .13j24/, or
.14j23/: the notation .12j34/ refers to the binary tree with the leaf set f1; 2; 3; 4g
in which removing the inner edge yields the trees with the leaf sets f1; 2g and
f3; 4g.

• Triples distance
The triples distance (see [CPQ96]) is a distance of the set Tb.X/ of all binary
phylogenetic X -trees defined, for all T1; T2 2 Tb.X/, as the number of triples
(from the total number .n

3/ possible triples) that differ (for example, by which
leaf is the outlier) for T1 and T2.

• Perfect matching distance
The perfect matching distance is a distance on the set Tbr .X/ of all rooted
binary phylogenetic X -trees with the set X of n labeled leaves defined, for any
T1; T2 2 Tbr .X/, as the minimum number of interchanges necessary to bring the
perfect matching of T1 to the perfect matching of T2.
Given a set A D f1; : : : ; 2kg of 2k points, a perfect matching of A is a partition of
A into k pairs. A rooted binary phylogenetic tree with n labeled leaves has a root
and n�2 internal vertices distinct from the root. It can be identified with a perfect
matching on 2n � 2, different from the root, vertices by following construction:
label the internal vertices with numbers nC1; : : : ; 2n�2 by putting the smallest
available label as the parent of the pair of labeled children of which one has the
smallest label among pairs of labeled children; now a matching is formed by
peeling off the children, or sibling pairs, two by two.

• Tree rotation distance
The tree rotation distance is a distance on the set Tn of all rooted ordered binary
trees with n interior vertices defined, for all T1; T2 2 Tn, as the minimum number
of rotations, required to transform T1 into T2.
Given interior edges uv, vv0, vv00 and uw of a binary tree, the rotation is replacing
them by edges uv, uv00, vv0 and vw.
There is a bijection between edge flipping operations in triangulations of convex
polygons with nC2 vertices and rotations in binary trees with n interior vertices.

• Attributed tree metrics
An attributed tree is a triple .V; E; ˛/, where T D .V; E/ is the underlying
tree, and ˛ is a function which assigns an attribute vector ˛.v/ to every vertex
v 2 V . Given two attributed trees .V1; E1; ˛/ and .V2; E2; ˇ/, consider the set
of all subtree isomorphisms between them, i.e., the set of all isomorphisms f W
H1 ! H2, H1 � V1, H2 � V2, between their induced subtrees.
Given a similarity s on the set of attributes, the similarity between isomorphic
induced subtrees is defined as Ws.f / D P

v2H1
s.˛.v/; ˇ.f .v///. Let � be the

isomorphism with maximal similarity Ws.�/ D W.�/.
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The following four semimetrics on the set Tatt of all attributed trees are used:

maxfjV1j; jV2jg � W.�/; jV1j C jV2j � 2W.�/ and

1 � W.�/

maxfjV1j; jV2jg ; 1 � W.�/

jV1j C jV2j � W.�/
:

They become metrics on the set of equivalences classes of attributed trees:
two such trees .V1; E1; ˛/ and .V2; E2; ˇ/ are called equivalent if they are
attribute-isomorphic, i.e., if there exists an isomorphism g W V1 ! V2 between
the trees such that, for any v 2 V1, we have ˛.v/ D ˇ.g.v//. Then jV1j D jV2j D
W.g/.

• Maximal agreement subtree distance
The maximal agreement subtree distance (MAST) is a distance of the set T of
all trees defined, for all T1; T2 2 T, as the minimum number of leaves removed
to obtain a (greatest) agreement subtree.
An agreement subtree (or common pruned tree) of two trees is an identical
subtree that can be obtained from both trees by pruning leaves with the same
label.
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