
Chapter 14
Distances in Probability Theory

A probability space is a measurable space .�; A; P /, where A is the set of all
measurable subsets of �, and P is a measure on A with P.�/ D 1. The set �

is called a sample space. An element a 2 A is called an event. P.a/ is called the
probability of the event a. The measure P on A is called a probability measure, or
(probability) distribution law, or simply (probability) distribution.

A random variable X is a measurable function from a probability space
.�; A; P / into a measurable space, called a state space of possible values of the
variable; it is usually taken to be R with the Borel �-algebra, so X W � ! R. The
range X of the variable X is called the support of the distribution P ; an element
x 2 X is called a state.

A distribution law can be uniquely described via a cumulative distribution (or
simply, distribution) function CDF, which describes the probability that a random
value X takes on a value at most x: F.x/ D P.X � x/ D P.! 2 � W X.!/ � x/.

So, any random variable X gives rise to a probability distribution which assigns
to the interval Œa; b� the probability P.a � X � b/ D P.! 2 � W a � X.!/ � b/,
i.e., the probability that the variable X will take a value in the interval Œa; b�.

A distribution is called discrete if F.x/ consists of a sequence of finite jumps at
xi ; a distribution is called continuous if F.x/ is continuous. We consider (as in the
majority of applications) only discrete or absolutely continuous distributions, i.e.,
the CDF function F W R ! R is absolutely continuous. It means that, for every
number � > 0, there is a number ı > 0 such that, for any sequence of pairwise
disjoint intervals Œxk; yk�, 1 � k � n, the inequality

P
1�k�n.yk � xk/ < ı implies

the inequality
P

1�k�n jF.yk/ � F.xk/j < �.
A distribution law also can be uniquely defined via a probability density (or

density, probability) function PDF of the underlying random variable. For an
absolutely continuous distribution, the CDF is almost everywhere differentiable,
and the PDF is defined as the derivative p.x/ D F

0

.x/ of the CDF; so, F.x/ D
P.X � x/ D R x

�1 p.t/dt, and
R b

a
p.t/dt D P.a � X � b/. In the discrete case,
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258 14 Distances in Probability Theory

the PDF is
P

xi �x p.xi /, where p.x/ D P.X D x/ is the probability mass function.
But p.x/ D 0 for each fixed x in any continuous case.

The random variable X is used to “push-forward” the measure P on � to a
measure dF on R. The underlying probability space is a technical device used to
guarantee the existence of random variables and sometimes to construct them.

We usually present the discrete version of probability metrics, but many of them
are defined on any measurable space; see [Bass89,Bass13,Cha08]. For a probability
distance d on random quantities, the conditions P.X D Y / D 1 or equality
of distributions imply (and characterize) d.X; Y / D 0; such distances are called
[Rach91] compound or simple distances, respectively. Often, some ground distance
d is given on the state space X and the presented distance is a lifting of it to
a distance on distributions. A quasi-distance between distributions is also called
divergence or distance statistic.

Below we denote pX D p.x/ D P.X D x/, FX D F.x/ D P.X � x/,
p.x; y/ D P.X D x; Y D y/. We denote by EŒX� the expected value (or mean)
of the random variable X : in the discrete case EŒX� D P

x xp.x/, in the continuous
case EŒX� D R

xp.x/dx.
The covariance between the random variables X and Y is Cov.X; Y / D EŒ.X �

EŒX�/.Y � EŒY �/� D EŒXY� � EŒX�EŒY �: The variance and standard deviation of
X are Var.X/ D Cov.X; X/ and �.X/ D p

Var.X/, respectively. The correlation
between X and Y is Corr.X; Y / D Cov.X;Y /

�.X/�.Y /
; cf. Chap. 17.

14.1 Distances on Random Variables

All distances in this section are defined on the set Z of all random variables with the
same support X ; here X; Y 2 Z.

• p-Average compound metric
Given p � 1, the p-average compound metric (or Lp-metric between
variables) is a metric on Z with X � R and EŒjZjp� < 1 for all Z 2 Z
defined by

.EŒjX � Y jp�/1=p D .
X

.x;y/2X �X
jx � yjpp.x; y//1=p:

For p D 2 and 1, it is called, respectively, the mean-square distance and
essential supremum distance between variables.

• Lukaszyk–Karmovski metric
The Lukaszyk–Karmovski metric (2001) on Z with X � R is defined by

X

.x;y/2X �X
jx � yjp.x/p.y/:
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For continuous random variables, it is defined by
R C1

�1
R C1

�1 jx�yjF.x/F.y/dxdy.
This function can be positive for X D Y . Such possibility is excluded, and so, it
will be a distance metric, if and only if it holds

Z C1

�1

Z C1

�1
jx � yjı.x � EŒX�/ı.y � EŒY �/dxdy D jEŒX� � EŒY �j:

• Absolute moment metric
Given p � 1, the absolute moment metric is a metric on Z with X � R and
EŒjZjp� < 1 for all Z 2 Z defined by

j.EŒjX jp�/1=p � .EŒjY jp�/1=p j:

For p D 1 it is called the engineer metric.
• Indicator metric

The indicator metric is a metric on Z defined by

EŒ1X¤Y � D
X

.x;y/2X �X
1x¤yp.x; y/ D

X

.x;y/2X �X ;x¤y

p.x; y/:

(Cf. Hamming metric in Chap. 1.)
• Ky Fan metric K

The Ky Fan metric K is a metric K on Z, defined by

inff� > 0 W P.jX � Y j > �/ < �g:

It is the case d.x; y/ D jX � Y j of the probability distance.
• Ky Fan metric K�

The Ky Fan metric K� is a metric on Z defined by

E

� jX � Y j
1 C jX � Y j

�

D
X

.x;y/2X �X

jx � yj
1 C jx � yjp.x; y/:

• Probability distance
Given a metric space .X ; d /, the probability distance on Z is defined by

inff� > 0 W P.d.X; Y / > �/ < �g:

14.2 Distances on Distribution Laws

All distances in this section are defined on the set P of all distribution laws such
that corresponding random variables have the same range X ; here P1; P2 2 P .
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• Lp-metric between densities
The Lp-metric between densities is a metric on P (for a countable X ) defined,
for any p � 1, by

.
X

x

jp1.x/ � p2.x/jp/
1
p :

For p D 1, one half of it is called the variational distance (or total variation
distance, Kolmogorov distance). For p D 2, it is the Patrick–Fisher distance.
The point metric supx jp1.x/ � p2.x/j corresponds to p D 1.
The Lissak–Fu distance with parameter ˛ > 0 is defined as

P
x jp1.x/ �

p2.x/j˛ .
• Bayesian distance

The error probability in classification is the following error probability of
the optimal Bayes rule for the classification into two classes with a priori
probabilities �; 1 � � and corresponding densities p1; p2 of the observations:

Pe D
X

x

min.�p1.x/; .1 � �/p2.x//:

The Bayesian distance on P is defined by 1 � Pe .
For the classification into m classes with a priori probabilities �i , 1 � i � m,
and corresponding densities pi of the observations, the error probability becomes

Pe D 1 �
X

x

p.x/ max
i

P.Ci jx/;

where P.Ci jx/ is the a posteriori probability of the class Ci given the obser-
vation x and p.x/ D Pm

iD1 �i P.xjCi /. The general mean distance between m

classes Ci (cf. m-hemimetric in Chap. 3) is defined (Van der Lubbe, 1979) for
˛ > 0, ˇ > 1 by

X

x

p.x/

 
X

i

P.Ci jx/ˇ

!˛

:

The case ˛ D 1; ˇ D 2 corresponds to the Bayesian distance in Devijver, 1974;
the case ˇ D 1

˛
was considered in Trouborst et al., 1974.

• Mahalanobis semimetric
The Mahalanobis semimetric is a semimetric on P (for X � R

n) defined by

q
.EP1 ŒX� � EP2 ŒX�/T A.EP1 ŒX� � EP2 ŒX�/

for a given positive-semidefinite matrix A; its square is a Bregman quasi-
distance (cf. Chap. 13). Cf. also the Mahalanobis distance in Chap. 17.
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• Engineer semimetric
The engineer semimetric is a semimetric on P (for X � R) defined by

jEP1 ŒX� � EP2 ŒX�j D j
X

x

x.p1.x/ � p2.x//j:

• Stop-loss metric of order m

The stop-loss metric of order m is a metric on P (for X � R) defined by

sup
t2R

X

x�t

.x � t/m

mŠ
.p1.x/ � p2.x//:

• Kolmogorov–Smirnov metric
The Kolmogorov–Smirnov metric (or Kolmogorov metric, uniform metric) is a
metric on P (for X � R) defined (1948) by

sup
x2R

jP1.X � x/ � P2.X � x/j:

This metric is used, for example, in Biology as a measure of sexual dimorphism.
The Kuiper distance on P is defined by

sup
x2R

.P1.X � x/ � P2.X � x// C sup
x2R

.P2.X � x/ � P1.X � x//:

(Cf. Pompeiu–Eggleston metric in Chap. 9.)
The Crnkovic–Drachma distance is defined by

sup
x2R

.P1.X � x/ � P2.X � x// ln
1

p
.P1.X � x/.1 � P1.X � x//

C

C sup
x2R

.P2.X � x/ � P1.X � x// ln
1

p
.P1.X � x/.1 � P1.X � x//

:

• Cramér–von Mises distance
The Cramér–von Mises distance (1928) is defined on P (for X � R) by

!2 D
Z C1

�1
.P1.X � x/ � P2.X � x//2dP2.x/:

The Anderson–Darling distance (1954) on P is defined by

Z C1

�1
.P1.X � x/ � P2/.X � x//2

.P2.X � x/.1 � P2.X � x//
dP2.x/:
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In Statistics, above distances of Kolmogorov–Smirnov, Cramér–von Mises,
Anderson–Darling and, below, �2-distance are the main measures of goodness
of fit between estimated, P2, and theoretical, P1, distributions.
They and other distances were generalized (for example by Kiefer, 1955, and
Glick, 1969) on K-sample setting, i.e., some convenient generalized distances
d.P1; : : : ; PK/ were defined. Cf. m-hemimetric in Chap. 3.

• Energy distance
The energy distance (Székely, 2005) between cumulative density functions
F.X/, F.Y / of two independent random vectors X; Y 2 R

n is defined by

d.F.X/; F.Y // D 2EŒjj.X � Y jj� � EŒjjX � X 0jj� � EŒjj.Y � Y 0jj�;

where X; X 0 are iid (independent and identically distributed), Y; Y 0 are iid and
jj:jj is the length of a vector. Cf. distance covariance in Chap. 17.
It holds d.F.X/; F.Y // D 0 if and only if X; Y are iid.

• Prokhorov metric
Given a metric space .X ; d /, the Prokhorov metric on P is defined (1956) by

inff� > 0 W P1.X 2 B/ � P2.X 2 B�/C� and P2.X 2 B/ � P1.X 2 B�/C�g;

where B is any Borel subset of X , and B� D fx W d.x; y/ < �; y 2 Bg.
It is the smallest (over all joint distributions of pairs .X; Y / of random variables
X; Y such that the marginal distributions of X and Y are P1 and P2, respectively)
probability distance between random variables X and Y .

• Levy–Sibley metric
The Levy–Sibley metric is a metric on P (for X � R only) defined by

inff� > 0 W P1.X � x � �/ � � � P2.X � x/ � P1.X � x C �/ C � for any x 2 Rg:

It is a special case of the Prokhorov metric for .X ; d / D .R; jx � yj/.
• Dudley metric

Given a metric space .X ; d /, the Dudley metric on P is defined by

sup
f 2F

jEP1 Œf .X/� � EP2 Œf .X/�j D sup
f 2F

j
X

x2X
f .x/.p1.x/ � p2.x//j;

where F D ff W X ! R; jjf jj1 C Lipd .f / � 1g, and Lipd .f / D
supx;y2X ;x¤y

jf .x/�f .y/j
d.x;y/

.
• Szulga metric

Given a metric space .X ; d /, the Szulga metric (1982) on P is defined by

sup
f 2F

j.
X

x2X
jf .x/jpp1.x//1=p � .

X

x2X
jf .x/jpp2.x//1=pj;
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where F D ff W X ! R; Lipd .f / � 1g, and Lipd .f / D
supx;y2X ;x¤y

jf .x/�f .y/j
d.x;y/

.
• Zolotarev semimetric

The Zolotarev semimetric is a semimetric on P , defined (1976) by

sup
f 2F

j
X

x2X
f .x/.p1.x/ � p2.x//j;

where F is any set of functions f W X ! R (in the continuous case, F is any set
of such bounded continuous functions); cf. Szulga metric, Dudley metric.

• Convolution metric
Let G be a separable locally compact Abelian group, and let C.G/ be the set of
all real bounded continuous functions on G vanishing at infinity. Fix a function
g 2 C.G/ such that jgj is integrable with respect to the Haar measure on G, and
fˇ 2 G� W Og.ˇ/ D 0g has empty interior; here G� is the dual group of G, and Og
is the Fourier transform of g.
The convolution metric (or smoothing metric) is defined (Yukich, 1985), for any
two finite signed Baire measures P1 and P2 on G, by

sup
x2G

j
Z

y2G

g.xy�1/.dP1 � dP2/.y/j:

It can also be seen as the difference TP1.g/ � TP2 .g/ of convolution operators on
C.G/ where, for any f 2 C.G/, the operator TP f .x/ is

R
y2G f .xy�1/dP.y/.

In particular, this metric can be defined on the space of probability measures on
R

n, where g is a PDF satisfying above conditions.
• Discrepancy metric

Given a metric space .X ; d /, the discrepancy metric on P is defined by

supfjP1.X 2 B/ � P2.X 2 B/j W B is any closed ballg:

• Bi-discrepancy semimetric
The bi-discrepancy semimetric (evaluating the proximity of distributions P1,
P2 over different collections A1; A2 of measurable sets) is defined by

D.P1; P2/ C D.P2; P1/;

where D.P1; P2/ D supfinffP2.C / W B � C 2 A2g � P1.B/ W B 2 A1g
(discrepancy).

• Le Cam distance
The Le Cam distance (1974) is a semimetric, evaluating the proximity of
probability distributions P1; P2 (on different spaces X1; X2) and defined as
follows:

maxfı.P1; P2/; ı.P2; P1/g;
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where ı.P1; P2/ D infB

P
x22X2

jBP1.X2 D x2/ � BP2.X2 D x2/j is the Le
Cam deficiency. Here BP1.X2 D x2/ D P

x12X1
p1.x1/b.x2jx1/, where B is a

probability distribution over X1 � X2, and

b.x2jx1/ D B.X1 D x1; X2 D x2/

B.X1 D x1/
D B.X1 D x1; X2 D x2/
P

x2X2
B.X1 D x1; X2 D x/

:

So, BP2.X2 D x2/ is a probability distribution over X2, since
P

x22X2
b.x2jx1/ D

1.
Le Cam distance is not a probabilistic distance, since P1 and P2 are defined over
different spaces; it is a distance between statistical experiments (models).

• Skorokhod–Billingsley metric
The Skorokhod–Billingsley metric is a metric on P , defined by

inf
f

max

�

sup
x

jP1.X � x/ � P2.X � f .x//j; sup
x

jf .x/ � xj;

sup
x¤y

ˇ
ˇ
ˇ
ˇln

f .y/ � f .x/

y � x

ˇ
ˇ
ˇ
ˇ

)

;

where f W R ! R is any strictly increasing continuous function.
• Skorokhod metric

The Skorokhod metric is a metric on P defined (1956) by

inff� > 0 W maxfsup
x

jP1.X < x/ � P2.X � f .x//j; sup
x

jf .x/ � xjg < �g;

where f W R ! R is a strictly increasing continuous function.
• Birnbaum–Orlicz distance

The Birnbaum–Orlicz distance (1931) is a distance on P defined by

sup
x2R

f .jP1.X � x/ � P2.X � x/j/;

where f W R�0 ! R�0 is any nondecreasing continuous function with f .0/ D 0,
and f .2t/ � Cf .t/ for any t > 0 and some fixed C � 1. It is a near-metric,
since the C -triangle inequality d.P1; P2/ � C.d.P1; P3/ C d.P3; P2// holds.
Birnbaum–Orlicz distance is also used, in Functional Analysis, on the set
of all integrable functions on the segment Œ0; 1�, where it is defined by
R 1

0
H.jf .x/ � g.x/j/dx, where H is a nondecreasing continuous function from

Œ0; 1/ onto Œ0; 1/ which vanishes at the origin and satisfies the Orlicz condition:
supt>0

H.2t/

H.t/
< 1.

• Kruglov distance
The Kruglov distance (1973) is a distance on P , defined by
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Z

f .P1.X � x/ � P2.X � x//dx;

where f W R�0 ! R�0 is any even strictly increasing function with f .0/ D 0,
and f .s C t/ � C.f .s/ C f .t// for any s; t � 0 and some fixed C � 1. It
is a near-metric, since the C -triangle inequality d.P1; P2/ � C.d.P1; P3/ C
d.P3; P2// holds.

• Bregman divergence
Given a differentiable strictly convex function �.p/ W Rn ! R and ˇ 2 .0; 1/,
the skew Jensen (or skew Burbea–Rao) divergence on P is (Basseville–Cardoso,
1995)

J
.ˇ/
� .P1; P2/ D ˇ�.p1/ C .1 � ˇ/�.p2/ � �.ˇp1 C .1 � ˇ/p2/:

The Burbea–Rao distance (1982) is the case ˇ D 1
2

of it, i.e., it is

X

x

�
�.p1.x// C �.p2.x//

2
� �.

p1.x/ C .p2.x/

2
/

�

:

The Bregman divergence (1967) is a quasi-distance on P defined by

X

x

.�.p1.x// � �.p2.x// � .p1.x/ � p2.x//�0.p2.x/// D lim
ˇ!1

1

ˇ
J

.ˇ/
� .P1; P2/:

The generalised Kullback–Leibler distance
P

x p1.x/ ln p1.x/

p2.x/
� P

x.p1.x/ �
p2.x// and Itakura–Saito distance (cf. Chap. 21)

P
x

p1.x/

p2.x/
� ln p1.x/

p2.x/
�1 are the

cases �.p/ D P
x p.x/ ln p.x/ � P

x p.x/ and �.p/ D �Px ln p.x/ of the
Bregman divergence. Cf. Bregman quasi-distance in Chap. 13.
Csizár, 1991, proved that the Kullback–Leibler distance is the only Bregman
divergence which is an f -divergence.

• f -divergence
Given a convex function f .t/ W R�0 ! R with f .1/ D 0; f 0.1/ D 0; f 00.1/ D
1, the f -divergence (independently, Csizár, 1963, Morimoto, 1963, Ali–Silvey,
1966, Ziv–Zakai, 1973, and Akaike, 1974) on P is defined by

X

x

p2.x/f

�
p1.x/

p2.x/

�

:

The cases f .t/ D t ln t and f .t/ D .t �1/2 correspond to the Kullback–Leibler
distance and to the �2-distance below, respectively. The case f .t/ D jt � 1j
corresponds to the variational distance, and the case f .t/ D 4.1 � p

t / (as well
as f .t/ D 2.t C 1/ � 4

p
t) corresponds to the squared Hellinger metric.
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Semimetrics can also be obtained, as the square root of the f -divergence, in
the cases f .t/ D .t � 1/2=.t C 1/ (the Vajda–Kus semimetric), f .t/ D
jta � 1j1=a with 0 < a � 1 (the generalized Matusita distance), and f .t/ D
.taC1/1=a�2.1�a/=a.tC1/

1�1=˛
(the Osterreicher semimetric).

• ˛-divergence
Given ˛ 2 R, the ˛-divergence (independently, Csizár, 1967, Havrda–
Charvát, 1967, Cressie–Read, 1984, and Amari, 1985) is defined as KL.P1; P2/,
KL.P2; P1/ for ˛ D 1; 0 and for ˛ ¤ 0; 1, it is

1

˛.1 � ˛/

 

1 �
X

x

p2.x/

�
p1.x/

p2.x/

�˛
!

:

The Amari divergence come from the above by the transformation ˛ D 1Ct
2

.
• Harmonic mean similarity

The harmonic mean similarity is a similarity on P defined by

2
X

x

p1.x/p2.x/

p1.x/ C p2.x/
:

• Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on P is

�.P1; P2/ D
X

x

p
p1.x/p2.x/:

Cf. more general quantum fidelity similarity in Chap. 24.
• Hellinger metric

In terms of the fidelity similarity �, the Hellinger metric (or Matusita distance,
Hellinger–Kakutani metric) on P is defined by

.
X

x

.
p

p1.x/ �p
p2.x//2/

1
2 D 2

p
1 � �.P1; P2/:

• Bhattacharya distance 1

In terms of the fidelity similarity �, the Bhattacharya distance 1 (1946) is

.arccos �.P1; P2//
2

for P1; P2 2 P . Twice this distance is the Rao distance from Chap. 7. It is used
also in Statistics and Machine Learning, where it is called the Fisher distance.
The Bhattacharya distance 2 (1943) on P is defined by

� ln �.P1; P2/:
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• �2-distance
The �2-distance (or Pearson �2-distance) is a quasi-distance on P , defined by

X

x

.p1.x/ � p2.x//2

p2.x/
:

The Neyman �2-distance is a quasi-distance on P , defined by

X

x

.p1.x/ � p2.x//2

p1.x/
:

The half of �2-distance is also called Kagan’s divergence.
The probabilistic symmetric �2-measure is a distance on P , defined by

2
X

x

.p1.x/ � p2.x//2

p1.x/ C p2.x/
:

• Separation quasi-distance
The separation distance is a quasi-distance on P (for a countable X ) defined by

max
x

�

1 � p1.x/

p2.x/

�

:

(Not to be confused with separation distance in Chap. 9.)
• Kullback–Leibler distance

The Kullback–Leibler distance (or relative entropy, information deviation,
information gain, KL-distance) is a quasi-distance on P , defined (1951) by

KL.P1; P2/ D EP1 Œln L� D
X

x

p1.x/ ln
p1.x/

p2.x/
;

where L D p1.x/

p2.x/
is the likelihood ratio. Therefore,

KL.P1; P2/ D �
X

x

p1.x/ ln p2.x/C
X

x

p1.x/ ln p1.x/ D H.P1; P2/�H.P1/;

where H.P1/ is the entropy of P1, and H.P1; P2/ is the cross-entropy of P1 and
P2.
If P2 is the product of marginals of P1 (say, p2.x; y/ D p1.x/p1.y/), the
KL-distance KL.P1; P2/ is called the Shannon information quantity and (cf.
Shannon distance) is equal to

P
.x;y/2X �X p1.x; y/ ln p1.x;y/

p1.x/p1.y/
.

The exponential divergence is defined by
P

x p1.x/.ln p1.x/

p2.x/
/2:
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• Distance to normality
For a continuous distribution P on R, the differential entropy is defined by

h.P / D �
Z 1

�1
p.x/ ln p.x/dx:

It is ln.ı
p

2	e/ for a normal (or Gaussian) distribution gı;
.x/ D
1p

2	ı2
exp

�
� .x�
/2

2ı2

�
with variance ı2 and mean 
.

The distance to normality (or negentropy) of P is the Kullback–Leibler

distance KL.P; g/ D R1
�1 p.x/ ln

�
p.x/

g.x/

�
dx D h.g/�h.P /, where q is a normal

distribution with the same variance as P . So, it is nonnegative and equal to 0 if
and only if P D g almost everywhere. Cf. Shannon distance.
Also, h.ua;b/ D ln .b � a/ for an uniform distribution with minimum a and
maximum b > a, i.e., ua;b.x/ D 1

b�a
, if x 2 Œa; b�, and it is 0, otherwise. It

holds h.ua;b/ � h.P / for any distribution P with support contained in Œa; b�; so,
h.ua;b/ � h.P / can be called the distance to uniformity. Tononi, 2008, used it in
his model of consciousness.

• Jeffrey distance
The Jeffrey distance (or J -divergence, KL2-distance) is a symmetric version
of the Kullback–Leibler distance defined (1946) on P by

KL.P1; P2/ C KL.P2; P1/ D
X

x

..p1.x/ � p2.x// ln
p1.x/

p2.x/
:

The Aitchison distance (1986) is defined by
qP

x.ln p1.x/g.p1/

p2.x/g.p2/
/2, where g.p/ D

.
Q

x p.x//
1
n is the geometric mean of components p.x/ of p.

• Resistor-average distance
The resistor-average distance is (Johnson–Simanović, 2000) a symmetric ver-
sion of the Kullback–Leibler distance on P which is defined by the harmonic
sum

�
1

KL.P1; P2/
C 1

KL.P2; P1/

��1

:

• Jensen–Shannon divergence
Given a number ˇ 2 Œ0; 1� and P1; P2 2 P , let P3 denote ˇP1 C .1 � ˇ/P2. The
skew divergence and the Jensen–Shannon divergence between P1 and P2 are
defined on P as KL.P1; P3/ and ˇKL.P1; P3/C .1�ˇ/KL.P2; P3/, respectively.
Here KL is the Kullback–Leibler distance; cf. clarity similarity.
In terms of entropy H.P / D �Px p.x/ ln p.x/, the Jensen–Shannon diver-
gence is H.ˇP1 C .1 � ˇ/P2/ � ˇH.P1/ � .1 � ˇ/H.P2/, i.e., the Jensen
divergence (cf. Bregman divergence).
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Let P3 D 1
2
.P1 C P2/, i.e., ˇ D 1

2
. Then the skew divergence and twice the

Jensen–Shannon divergence are called K-divergence and Topsøe distance (or
information statistics), respectively. The Topsøe distance is a symmetric version
of KL.P1; P2/. It is not a metric, but its square root is a metric.

• Clarity similarity
The clarity similarity is a similarity on P , defined by

.KL.P1; P3/ C KL.P2; P3// � .KL.P1; P2/ C KL.P2; P1// D

D
X

x

�

p1.x/ ln
p2.x/

p3.x/
C p2.x/ ln

p1.x/

p3.x/

�

;

where KL is the Kullback–Leibler distance, and P3 is a fixed probability law.
It was introduced in [CCL01] with P3 being the probability distribution of
English.

• Ali–Silvey distance
The Ali–Silvey distance is a quasi-distance on P defined by the functional

f .EP1 Œg.L/�/;

where L D p1.x/

p2.x/
is the likelihood ratio, f is a nondecreasing function on R, and

g is a continuous convex function on R�0 (cf. f -divergence).
The case f .x/ D x, g.x/ D x ln x corresponds to the Kullback–Leibler
distance; the case f .x/ D � ln x, g.x/ D xt corresponds to the Chernoff
distance.

• Chernoff distance
The Chernoff distance (or Rényi cross-entropy) on P is defined (1954) by

max
t2.0;1/

Dt .P1; P2/;

where 0 < t < 1 and Dt .P1; P2/ D � ln
P

x.p1.x//t .p2.x//1�t (called the
Chernoff coefficient) which is proportional to the Rényi distance.

• Rényi distance
Given t 2 R, the Rényi distance (or order t Rényi entropy, 1961) is a quasi-
distance on P defined as the Kullback–Leibler distance KL.P1; P2/ if t D 1,
and, otherwise, by

1

1 � t
ln
X

x

p2.x/

�
p1.x/

p2.x/

�t

:

For t D 1
2
, one half of the Rényi distance is the Bhattacharya distance 2. Cf.

f -divergence and Chernoff distance.
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• Shannon distance
Given a measure space .�; A; P /, where the set � is finite and P is a probability
measure, the entropy (or Shannon information entropy) of a function f W � !
X , where X is a finite set, is defined by

H.f / D �
X

x2X

P.f D x/ loga.P.f D x//:

Here a D 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure space.
For any two such partitions f W � ! X and g W � ! Y , denote by H.f; g/ the
entropy of the partition .f; g/ W � ! X � Y (joint entropy), and by H.f jg/ the
conditional entropy (or equivocation). Then the Shannon distance between f

and g is a metric defined by

H.f jg/ C H.gjf / D 2H.f; g/ � H.f / � H.g/ D H.f; g/ � I.f I g/;

where I.f I g/ D H.f / C H.g/ � H.f; g/ is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon distance
can be obtained as a limiting case of the finite subgroup metric.
In general, the information metric (or entropy metric) between two random
variables (information sources) X and Y is defined by

H.X jY / C H.Y jX/ D H.X; Y / � I.X I Y /;

where the conditional entropy H.X jY / is defined by
P

x2X

P
y2Y p.x; y/ ln

p.xjy/, and p.xjy/ D P.X D xjY D y/ is the conditional probability.
The Rajski distance (or normalized information metric) is defined (Rajski, 1961,
for discrete probability distributions X , Y ) by

H.X jY / C H.Y jX/

H.X; Y /
D 1 � I.X I Y /

H.X; Y /
:

It is equal to 1 if X and Y are independent. (Cf., a different one, normalized
information distance in Chap. 11).

• Transportation distance
Given a metric space .X ; d /, the transportation distance (and/or, according
to Villani, 2009, Monge–Kantorovich–Wasserstein–Rubinstein–Ornstein–
Gini–Dall’Aglio–Mallows–Tanaka distance) is the metric defined by

W1.P1; P2/ D inf ES Œd.X; Y /� D inf
S

Z

.X;Y /2X �X
d.X; Y /dS.X; Y /;
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where the infimum is taken over all joint distributions S of pairs .X; Y / of
random variables X; Y such that marginal distributions of X and Y are P1 and
P2.
For any separable metric space .X ; d /, this is equivalent to the Lipschitz
distance between measures supf

R
fd.P1 � P2/, where the supremum is taken

over all functions f with jf .x/�f .y/j � d.x; y/ for any x; y 2 X . Cf. Dudley
metric.
In general, for a Borel function c W X � X ! R�0, the c-transportation
distance Tc.P1; P2/ is inf ES Œc.X; Y /�. It is the minimal total transportation cost
if c.X; Y / is the cost of transporting a unit of mass from the location X to the
location Y . Cf. the Earth Mover’s distance (Chap. 21), which is a discrete form
of it.
The Lp-Wasserstein distance is Wp D .Tdp /1=p D .inf ES Œd p.X; Y /�/1=p .
For .X ; d / D .R; jx � yj/, it is also called the Lp-metric between distribution
functions (CDF) Fi with F �1

i .x/ D supu.Pi .X � x/ < u/, and can be written
as

.inf EŒjX � Y jp�/1=p D
�Z

R

jF1.x/ � F2.x/jpdx

�1=p

D
�Z 1

0

jF �1
1 .x/ � F �1

2 .x/jpdx

�1=p

:

For p D 1, this metric is called Monge–Kantorovich metric (or Wasser-
stein metric, Fortet–Mourier metric, Hutchinson metric, Kantorovich–
Rubinstein metric). For p D 2, it is the Levy–Fréchet metric (Fréchet, 1957).

• Ornstein d -metric
The Ornstein d -metric is a metric on P (for X D R

n) defined (1974) by

1

n
inf
Z

x;y

 
nX

iD1

1xi ¤yi

!

dS;

where the infimum is taken over all joint distributions S of pairs .X; Y / of
random variables X; Y such that marginal distributions of X and Y are P1 and
P2.

• Distances between belief assignments
In Bayesian (or subjective, evidential) interpretation, a probability can be
assigned to any statement, even if no random process is involved, as a way
to represent its subjective plausibility, or the degree to which it is supported
by the available evidence, or, mainly, degree of belief. Within this approach,
imprecise probability generalizes Probability Theory to deal with scarce, vague,
or conflicting information. The main model is Dempster–Shafer theory, which
allows evidence to be combined.



272 14 Distances in Probability Theory

Given a set X , a (basic) belief assignment is a function m W P.X/ ! Œ0; 1�

(where P.X/ is the set of all subsets of X ) with m.;/ D 0 and
P

A�P.X/

m.A/ D 1. Probability measures are a special case in which m.A/ > 0 only
for singletons.
For the classic probability P.A/, it holds then Bel.A/ � P.A/ � Pl.A/, where
the belief function and plausibility function are defined, respectively, by

Bel.A/ D
X

BWB�A

m.B/ and Pl.A/ D
X

BWB\A¤;
m.B/ D 1 � Bel.A/:

The original (Dempster, 1967) conflict factor between two belief assignments
m1 and m2 was defined as c.m1; m2/ D P

A\BD; m1.A/m2.B/. This
is not a distance since c.m; m/ > 0. The combination of m1 and m2,
seen as independent sources of evidence, is defined by m1 ˚ m2.A/ D

1
1�c.m1;m2/

P
B\C DA m1.B/m2.C /.

Usually, a distance between m1 and m2 estimates the difference between these
sources in the form dU D jU.m1/ � U.m2/j, where U is an uncertainty
measure; see Sarabi-Jamab et al., 2013, for a comparison of their performance.
In particular, this distance is called:

confusion (Hoehle, 1981) if U.m/ �P
A m.A/ log2 Bel.A/;

dissonance (Yager, 1983) if U.m/ D E.m/ D �PA m.A/ log2 Pl.A/;
Yager’s factor (Eager, 1983) if U.m/ D 1 �P

A¤;
m.A/

jAj ;
possibility-based (Smets, 1983) if U.m/ D �PA log2

P
BWA�B m.B/;

U -uncertainty (Dubois–Prade, 1985) if U.m/ D I.m/ D �PA m.A/ log2 jAj;
Lamata–Moral’s (1988) if U.m/ D log2.

P
A m.A/jAj/ and U.m/ D E.m/C

I.m/;
discord (Klir–Ramer, 1990) if U.m/ D D.m/ D �PA m.A/ log2.1 �
P

B m.B/ jBnAj
jBj / and a variant: U.m/ D D.m/ C I.m/;

strife (Klir–Parviz, 1992) if U.m/ D �PA m.A/ log2.
P

B m.B/ jA\Bj
jAj /;

Pal et al.’s (1993) if U.m/ D G.m/ D �PA log2 m.A/ and U.m/ D G.m/C
I.m/;
total conflict (George–Pal, 1996) if U.m/ D P

A m.A/
P

B.m.B/.1 �
jA\Bj
jA[Bj //.

Among other distances used are the cosine distance 1 � mT
1 m2

jjm1jjjjm2 jj , the Maha-

lanobis distance
p

.m1 � m2/T A.m1 � m2/ for some matrices A, and pignistic-
based one (Tessem, 1993) maxAfjPB:;.m1.B/ � m2.B/ jA\Bj

jBj jg.
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