Chapter 13 Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study of spaces of functions. This usage of the word *functional* goes back to the calculus of variations which studies functions whose argument is a function. In the modern view, Functional Analysis is seen as the study of complete *normed vector spaces*, i.e., **Banach spaces**.

For any real number $p \ge 1$, an example of a Banach space is given by L_p -space of all Lebesgue-measurable functions whose absolute value's *p*-th power has finite integral.

A **Hilbert space** is a Banach space in which the norm arises from an *inner product*. Also, in Functional Analysis are considered *continuous linear operators* defined on Banach and Hilbert spaces.

13.1 Metrics on Function Spaces

Let $I \subset \mathbb{R}$ be an *open interval* (i.e., a nonempty connected open set) in \mathbb{R} . A real function $f: I \to \mathbb{R}$ is called *real analytic* on I if it agrees with its *Taylor series* in an *open neighborhood* U_{x_0} of every point $x_0 \in I$: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ for any $x \in U_{x_0}$. Let $D \subset \mathbb{C}$ be a *domain* (i.e., a *convex* open set) in \mathbb{C} .

A complex function $f : D \to \mathbb{C}$ is called *complex analytic* (or, simply, *analytic*) on D if it agrees with its Taylor series in an open neighborhood of every point $z_0 \in D$. A complex function f is analytic on D if and only if it is *holomorphic* on D, i.e., if it has a complex derivative $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ at every point $z_0 \in D$.

Integral metric

The **integral metric** is the L_1 -metric on the set $C_{[a,b]}$ of all continuous real (complex) functions on a given segment [a, b] defined by

$$\int_a^b |f(x) - g(x)| dx.$$

The corresponding metric space is abbreviated by $C^1_{[a,b]}$. It is a Banach space. In general, for any **compact** topological space X, the integral metric is defined on the set of all continuous functions $f : X \to \mathbb{R}(\mathbb{C})$ by $\int_X |f(x) - g(x)| dx$.

Uniform metric

The **uniform metric** (or **sup metric**) is the L_{∞} -metric on the set $C_{[a,b]}$ of all real (complex) continuous functions on a given segment [a, b] defined by

$$\sup_{x \in [a,b]} |f(x) - g(x)|.$$

The corresponding metric space is abbreviated by $C_{[a,b]}^{\infty}$. It is a Banach space. A generalization of $C_{[a,b]}^{\infty}$ is the *space of continuous functions* C(X), i.e., a metric space on the set of all continuous (more generally, bounded) functions $f: X \to \mathbb{C}$ of a topological space X with the L_{∞} -metric $\sup_{x \in X} |f(x) - g(x)|$.

In the case of the metric space C(X, Y) of continuous (more generally, bounded) functions $f : X \to Y$ from one **metric compactum** (X, d_X) to another (Y, d_Y) , the sup metric between two functions $f, g \in C(X, Y)$ is defined by $\sup_{x \in X} d_Y(f(x), g(x))$.

The metric space $C_{[a,b]}^{\infty}$, as well as the metric space $C_{[a,b]}^1$, are two of the most important cases of the metric space $C_{[a,b]}^p$, $1 \le p \le \infty$, on the set $C_{[a,b]}$ with the L_p -metric $(\int_a^b |f(x) - g(x)|^p dx)^{\frac{1}{p}}$. The space $C_{[a,b]}^p$ is an example of an L_p -space.

Dogkeeper distance

Given a metric space (X, d), the **dogkeeper distance** is a metric on the set of all functions $f : [0, 1] \rightarrow X$, defined by

$$\inf_{\sigma} \sup_{t \in [0,1]} d(f(t), g(\sigma(t))),$$

where $\sigma : [0, 1] \rightarrow [0, 1]$ is a continuous, monotone increasing function such that $\sigma(0) = 0, \sigma(1) = 1$. This metric is a special case of the **Fréchet metric**.

For the case, when (X, d) is Euclidean space \mathbb{R}^n , this metric is the original (1906) **Fréchet distance** between parametric curves $f, g : [0, 1] \to \mathbb{R}^n$. This distance can be seen as the length of the shortest leash that is sufficient for the man and the dog to walk their paths f and g from start to end. For example, the Fréchet distance between two concentric circles of radius r_1 and r_2 respectively is $|r_1-r_2|$. The **discrete Fréchet distance** (or *coupling distance*, Eiter and Mannila, 1994) is an approximation of the Fréchet metric for polygonal curves f and g. It considers only positions of the leash where its endpoints are located at vertices of f and g. So, this distance is the minimum, over all order-preserving pairings of vertices in f and g, of the maximal Euclidean distance between paired vertices.

• Bohr metric

Let \mathbb{R} be a metric space with a metric ρ . A continuous function $f : \mathbb{R} \to \mathbb{R}$ is called *almost periodic* if, for every $\epsilon > 0$, there exists $l = l(\epsilon) > 0$ such that every interval $[t_0, t_0 + l(\epsilon)]$ contains at least one number τ for which $\rho(f(t), f(t + \tau)) < \epsilon$ for $-\infty < t < +\infty$.

The **Bohr metric** is the **norm metric** ||f-g|| on the set *AP* of all almost periodic functions defined by the norm

$$||f|| = \sup_{-\infty < t < +\infty} |f(t)|.$$

It makes *AP* a Banach space. Some generalizations of almost periodic functions were obtained using other norms; cf. **Stepanov distance**, **Weyl distance**, **Besicovitch distance** and **Bochner metric**.

• Stepanov distance

The **Stepanov distance** is a distance on the set of all measurable functions $f : \mathbb{R} \to \mathbb{C}$ with summable *p*-th power on each bounded integral, defined by

$$\sup_{x \in \mathbb{R}} \left(\frac{1}{l} \int_x^{x+l} |f(x) - g(x)|^p dx \right)^{1/p}$$

The Weyl distance is a distance on the same set defined by

$$\lim_{l \to \infty} \sup_{x \in \mathbb{R}} \left(\frac{1}{l} \int_x^{x+l} |f(x) - g(x)|^p dx \right)^{1/p}$$

.

• Besicovitch distance

The **Besicovitch distance** is a distance on the set of all measurable functions $f : \mathbb{R} \to \mathbb{C}$ with summable *p*-th power on each bounded integral defined by

$$\left(\overline{\lim}_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}|f(x)-g(x)|^{p}dx\right)^{1/p}$$

The generalized Besicovitch almost periodic functions correspond to this distance.

• Bochner metric

Given a measure space $(\Omega, \mathcal{A}, \mu)$, a Banach space $(V, ||.||_V)$, and $1 \le p \le \infty$, the *Bochner space* (or *Lebesgue–Bochner space*) $L^p(\Omega, V)$ is the set of all measurable functions $f : \Omega \to V$ such that $||f||_{L^p(\Omega, V)} \le \infty$.

Here the Bochner norm $||f||_{L^{p}(\Omega,V)}$ is defined by $(\int_{\Omega} ||f(\omega)||_{V}^{p} d\mu(\omega))^{\frac{1}{p}}$ for $1 \leq p < \infty$, and, for $p = \infty$, by ess $\sup_{\omega \in \Omega} ||f(\omega)||_{V}$.

• Bergman *p*-metric

Given $1 \le p < \infty$, let $L_p(\Delta)$ be the L_p -space of Lebesgue measurable functions f on the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ with $||f||_p = (\int_{\Delta} |f(z)|^p \mu(dz))^{\frac{1}{p}} < \infty$.

The Bergman space $L_p^a(\Delta)$ is the subspace of $L_p(\Delta)$ consisting of analytic functions, and the **Bergman** *p*-metric is the L_p -metric on $L_p^a(\Delta)$ (cf. Bergman metric in Chap. 7). Any Bergman space is a Banach space.

• Bloch metric

The *Bloch space* B on the *unit disk* $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ is the set of all analytic functions f on Δ such that $||f||_B = \sup_{z \in \Delta} (1 - |z|^2) |f'(z)| < \infty$. Using the complete *seminorm* $||.||_B$, a norm on B is defined by

$$||f|| = |f(0)| + ||f||_B$$

The **Bloch metric** is the **norm metric** ||f - g|| on *B*. It makes *B* a Banach space.

• Besov metric

Given 1 , the*Besov space* $<math>B_p$ on the *unit disk* $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ is the set of all analytic functions f in Δ such that $||f||_{B_p} = \left(\int_{\Delta} (1-|z|^2)^p |f'(z)|^p d\lambda(z)\right)^{\frac{1}{p}} < \infty$, where $d\lambda(z) = \frac{\mu(dz)}{(1-|z|^2)^2}$ is the Möbius invariant measure on Δ . Using the complete *seminorm* $||.||_{B_p}$, the *Besov norm* on B_p is defined by

$$||f|| = |f(0)| + ||f||_{B_p}.$$

The **Besov metric** is the norm metric ||f - g|| on B_p .

It makes B_p a Banach space. The set B_2 is the classical *Dirichlet space* of functions analytic on Δ with square integrable derivative, equipped with the **Dirichlet metric**. The *Bloch space* B can be considered as B_{∞} .

• Hardy metric

Given $1 \le p < \infty$, the *Hardy space* $H^p(\Delta)$ is the class of functions, analytic on the *unit disk* $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, and satisfying the following growth condition for the *Hardy norm* $||.||_{H^p}$:

$$||f||_{H^{p}(\Delta)} = \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right)^{\frac{1}{p}} < \infty$$

The **Hardy metric** is the **norm metric** $||f - g||_{H^p(\Delta)}$ on $H^p(\Delta)$. It makes $H^p(\Delta)$ a Banach space.

In Complex Analysis, the Hardy spaces are analogs of the L_p -spaces of Functional Analysis. Such spaces are applied in Mathematical Analysis itself, and also in Scattering Theory and Control Theory (cf. Chap. 18).

• Part metric

The **part metric** is a metric on a *domain* D of \mathbb{R}^2 defined for any $x, y \in \mathbb{R}^2$ by

$$\sup_{f \in H^+} \left| \ln \left(\frac{f(x)}{f(y)} \right) \right|,\,$$

where H^+ is the set of all positive *harmonic functions* on the domain D. A twice-differentiable real function $f : D \to \mathbb{R}$ is called *harmonic* on D if its *Laplacian* $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2}$ vanishes on D.

Orlicz metric

Let M(u) be an even convex function of a real variable which is increasing for u positive, and $\lim_{u\to 0} u^{-1}M(u) = \lim_{u\to\infty} u(M(u))^{-1} = 0$. In this case the function p(v) = M'(v) does not decrease on $[0, \infty)$, $p(0) = \lim_{v\to 0} p(v) = 0$, and p(v) > 0 when v > 0. Writing $M(u) = \int_0^{|u|} p(v) dv$, and defining $N(u) = \int_0^{|u|} p^{-1}(v) dv$, one obtains a pair (M(u), N(u)) of *complementary functions*. Let (M(u), N(u)) be a pair of complementary functions, and let G be a bounded

Let (M(u), N(u)) be a pair of complementary functions, and let G be a bounded closed set in \mathbb{R}^n . The Orlicz space $L^*_M(G)$ is the set of Lebesgue-measurable functions f on G satisfying the following growth condition for the Orlicz norm $||f||_M$:

$$||f||_M = \sup\left\{\int_G f(t)g(t)dt : \int_G N(g(t))dt \le 1\right\} < \infty.$$

The **Orlicz metric** is the norm metric $||f - g||_M$ on $L^*_M(G)$. It makes $L^*_M(G)$ a Banach space [Orli32].

When $M(u) = u^p$, $1 , <math>L_M^*(G)$ coincides with the space $L_p(G)$, and, up to scalar factor, the L_p -norm $||f||_p$ coincides with $||f||_M$.

The Orlicz norm is equivalent to the Luxemburg norm $||f||_{(M)} = \inf\{\lambda > 0 : \int_G M(\lambda^{-1}f(t))dt \le 1\}$; in fact, $||f||_{(M)} \le ||f||_M \le 2||f||_{(M)}$.

Orlicz–Lorentz metric

Let $w : (0, \infty) \to (0, \infty)$ be a nonincreasing function. Let $M : [0, \infty) \to [0, \infty)$ be a nondecreasing and convex function with M(0) = 0. Let G be a bounded closed set in \mathbb{R}^n .

The *Orlicz–Lorentz space* $L_{w,M}(G)$ is the set of all Lebesgue-measurable functions f on G satisfying the following growth condition for the *Orlicz–Lorentz norm* $||f||_{w,M}$:

$$||f||_{w,M} = \inf\left\{\lambda > 0: \int_0^\infty w(x)M\left(\frac{f^*(x)}{\lambda}\right)dx \le 1\right\} < \infty,$$

where $f^*(x) = \sup\{t : \mu(|f| \ge t) \ge x\}$ is the nonincreasing rearrangement of f.

The **Orlicz–Lorentz metric** is the **norm metric** $||f - g||_{w,M}$ on $L_{w,M}(G)$. It makes $L_{w,M}(G)$ a Banach space.

The Orlicz-Lorentz space is a generalization of the Orlicz space $L_M^*(G)$ (cf. **Orlicz metric**), and the Lorentz space $L_{w,q}(G)$, $1 \le q < \infty$, of all Lebesgue-measurable functions f on G satisfying the following growth condition for the Lorentz norm:

$$||f||_{w,q} = \left(\int_0^\infty w(x)(f^*(x))^q\right)^{\frac{1}{q}} < \infty.$$

• Hölder metric

Let $L^{\alpha}(G)$ be the set of all bounded continuous functions f defined on a subset G of \mathbb{R}^n , and satisfying the *Hölder condition* on G. Here, a function f satisfies the *Hölder condition* at a point $y \in G$ with *index* (or *order*) α , $0 < \alpha \le 1$, and with coefficient A(y), if $|f(x) - f(y)| \le A(y)|x - y|^{\alpha}$ for all $x \in G$ sufficiently close to y.

If $A = \sup_{y \in G} (A(y)) < \infty$, the Hölder condition is called *uniform* on *G*, and *A* is called the *Hölder coefficient* of *G*. The quantity $|f|_{\alpha} = \sup_{x,y \in G} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$, $0 \le \alpha \le 1$, is called the *Hölder* α -seminorm of *f*, and the *Hölder norm* of *f* is defined by

$$||f||_{L^{\alpha}(G)} = \sup_{x \in G} |f(x)| + |f|_{\alpha}.$$

The **Hölder metric** is the **norm metric** $||f-g||_{L^{\alpha}(G)}$ on $L^{\alpha}(G)$. It makes $L^{\alpha}(G)$ a Banach space.

• Sobolev metric

The *Sobolev space* $W^{k,p}$ is a subset of an L_p -space such that f and its derivatives up to order k have a finite L_p -norm. Formally, given a subset G of \mathbb{R}^n , define

$$W^{k,p} = W^{k,p}(G) = \{ f \in L_p(G) : f^{(i)} \in L_p(G), 1 \le i \le k \},\$$

where $f^{(i)} = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n} f$, $\alpha_1 + \dots + \alpha_n = i$, and the derivatives are taken in a weak sense. The *Sobolev norm* on $W^{k,p}$ is defined by

$$||f||_{k,p} = \sum_{i=0}^{k} ||f^{(i)}||_{p}.$$

In fact, it is enough to take only the first and last in the sequence, i.e., the norm defined by $||f||_{k,p} = ||f||_p + ||f^{(k)}||_p$ is equivalent to the norm above.

For $p = \infty$, the Sobolev norm is equal to the *essential supremum* of |f|: $||f||_{k,\infty} = ess \sup_{x \in G} |f(x)|$, i.e., it is the infimum of all numbers $a \in \mathbb{R}$ for which |f(x)| > a on a set of measure zero.

The **Sobolev metric** is the **norm metric** $||f - g||_{k,p}$ on $W^{k,p}$. It makes $W^{k,p}$ a Banach space.

The Sobolev space $W^{k,2}$ is denoted by H^k . It is a Hilbert space for the *inner* product $\langle f, g \rangle_k = \sum_{i=1}^k \langle f^{(i)}, g^{(i)} \rangle_{L_2} = \sum_{i=1}^k \int_G f^{(i)} \overline{g}^{(i)} \mu(d\omega)$.

• Variable exponent space metrics

Let *G* be a nonempty open subset of \mathbb{R}^n , and let $p : G \to [1, \infty)$ be a measurable bounded function, called a *variable exponent*. The *variable exponent Lebesgue* space $L_{p(.)}(G)$ is the set of all measurable functions $f : G \to \mathbb{R}$ for which the modular $\varrho_{p(.)}(f) = \int_G |f(x)|^{p(x)} dx$ is finite. The Luxemburg norm on this space is defined by

$$||f||_{p(.)} = \inf\{\lambda > 0 : \varrho_{p(.)}(f/\lambda) \le 1\}.$$

The variable exponent Lebesgue space metric is the norm metric $||f - g||_{p(.)}$ on $L_{p(.)}(G)$.

A variable exponent Sobolev space $W^{1,p(.)}(G)$ is a subspace of $L_{p(.)}(G)$ consisting of functions f whose distributional gradient exists almost everywhere and satisfies the condition $|\nabla f| \in L_{p(.)}(G)$. The norm

$$||f||_{1,p(.)} = ||f||_{p(.)} + ||\nabla f||_{p(.)}$$

makes $W^{1,p(.)}(G)$ a Banach space. The **variable exponent Sobolev space metric** is the norm metric $||f - g||_{1,p(.)}$ on $W^{1,p(.)}$.

Schwartz metric

The Schwartz space (or space of rapidly decreasing functions) $S(\mathbb{R}^n)$ is the class of all Schwartz functions, i.e., infinitely-differentiable functions $f : \mathbb{R}^n \to \mathbb{C}$ that decrease at infinity, as do all their derivatives, faster than any inverse power of x. More precisely, f is a Schwartz function if we have the following growth condition:

$$||f||_{\alpha\beta} = \sup_{x \in \mathbb{R}^n} \left| x_1^{\beta_1} \dots x_n^{\beta_n} \frac{\partial^{\alpha_1 + \dots + \alpha_n} f(x_1, \dots, x_n)}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} \right| < \infty$$

for any nonnegative integer vectors α and β . The family of *seminorms* $||.||_{\alpha\beta}$ defines a **locally convex** topology of $S(\mathbb{R}^n)$ which is **metrizable** and complete. The **Schwartz metric** is a metric on $S(\mathbb{R}^n)$ which can be obtained using this topology (cf. **countably normed space** in Chap. 2).

The corresponding metric space on $S(\mathbb{R}^n)$ is a *Fréchet space* in the sense of Functional Analysis, i.e., a locally convex *F*-space.

Bregman quasi-distance

Let $G \subset \mathbb{R}^n$ be a closed set with the nonempty interior G^0 . Let f be a *Bregman function with zone* G.

The **Bregman quasi-distance** $D_f: G \times G^0 \to \mathbb{R}_{\geq 0}$ is defined by

$$D_f(x, y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle,$$

where $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$. $D_f(x, y) = 0$ if and only if x = y. Also $D_f(x, y) + D_f(y, z) - D_f(x, z) = \langle \nabla f(z) - \nabla f(y), x - y \rangle$ but, in general, D_f does not satisfy the triangle inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called a *Bregman* function with zone G if the following conditions hold:

- 1. f is continuously differentiable on G^0 ;
- 2. *f* is strictly convex and continuous on *G*;
- 3. For all $\delta \in \mathbb{R}$ the *partial level sets* $\Gamma(x, \delta) = \{y \in G^0 : D_f(x, y) \le \delta\}$ are bounded for all $x \in G$;
- 4. If $\{y_n\}_n \subset G^0$ converges to y^* , then $D_f(y^*, y_n)$ converges to 0;
- 5. If $\{x_n\}_n \subset G$ and $\{y_n\}_n \subset G^0$ are sequences such that $\{x_n\}_n$ is bounded, $\lim_{n\to\infty} y_n = y^*$, and $\lim_{n\to\infty} D_f(x_n, y_n) = 0$, then $\lim_{n\to\infty} x_n = y^*$.

When $G = \mathbb{R}^n$, a sufficient condition for a strictly convex function to be a Bregman function has the form: $\lim_{\|x\|\to\infty} \frac{f(x)}{\|x\|} = \infty$.

13.2 Metrics on Linear Operators

A *linear operator* is a function $T : V \to W$ between two vector spaces V, W over a field \mathbb{F} , that is compatible with their linear structures, i.e., for any $x, y \in V$ and any scalar $k \in \mathbb{F}$, we have the following properties: T(x + y) = T(x) + T(y), and T(kx) = kT(x).

Operator norm metric

Consider the set of all linear operators from a *normed space* $(V, ||.||_V)$ into a normed space $(W, ||.||_W)$. The *operator norm* ||T|| of a *linear operator* $T : V \rightarrow W$ is defined as the largest value by which T stretches an element of V, i.e.,

$$||T|| = \sup_{||v||_{V} \neq 0} \frac{||T(v)||_{W}}{||v||_{V}} = \sup_{||v||_{V} = 1} ||T(v)||_{W} = \sup_{||v||_{V} \leq 1} ||T(v)||_{W}$$

A linear operator $T: V \rightarrow W$ from a normed space V into a normed space W is called *bounded* if its operator norm is finite. For normed spaces, a linear operator is bounded if and only if it is *continuous*.

The **operator norm metric** is a **norm metric** on the set B(V, W) of all bounded linear operators from V into W, defined by

$$||T - P||.$$

The space (B(V, W), ||.||) is called the *space of bounded linear operators*. This metric space is **complete** if W is. If V = W is complete, the space B(V, V) is a *Banach algebra*, as the operator norm is a *submultiplicative norm*.

A linear operator $T : V \to W$ from a Banach space V into another Banach space W is called *compact* if the image of any bounded subset of V is a relatively compact subset of W. Any compact operator is bounded (and, hence, continuous). The space (K(V, W), ||.||) on the set K(V, W) of all compact operators from V into W with the operator norm ||.|| is called the *space of compact operators*.

• Nuclear norm metric

Let B(V, W) be the space of all bounded linear operators mapping a Banach space $(V, ||.||_V)$ into another Banach space $(W, ||.||_W)$. Let the *Banach dual* of V be denoted by V', and the value of a functional $x' \in V'$ at a vector $x \in V$ by $\langle x, x' \rangle$.

A linear operator $T \in B(V, W)$ is called a *nuclear operator* if it can be represented in the form $x \mapsto T(x) = \sum_{i=1}^{\infty} \langle x, x_i' \rangle y_i$, where $\{x_i'\}_i$ and $\{y_i\}_i$ are sequences in V' and W, respectively, such that $\sum_{i=1}^{\infty} ||x_i'||_{V'} ||y_i||_{W} < \infty$. This representation is called *nuclear*, and can be regarded as an expansion of T as a sum of operators of rank 1 (i.e., with one-dimensional range). The *nuclear norm* of T is defined as

$$||T||_{nuc} = \inf \sum_{i=1}^{\infty} ||x_i'||_{V'} ||y_i||_{W},$$

where the infimum is taken over all possible nuclear representations of T.

The **nuclear norm metric** is the **norm metric** $||T - P||_{nuc}$ on the set N(V, W) of all nuclear operators mapping V into W. The space $(N(V, W), ||.||_{nuc})$, called the *space of nuclear operators*, is a Banach space.

A *nuclear space* is defined as a **locally convex** space for which all continuous linear functions into an arbitrary Banach space are nuclear operators. A nuclear space is constructed as a projective limit of Hilbert spaces H_{α} with the property that, for each $\alpha \in I$, one can find $\beta \in I$ such that $H_{\beta} \subset H_{\alpha}$, and the embedding operator $H_{\beta} \ni x \rightarrow x \in H_{\alpha}$ is a *Hilbert–Schmidt operator*. A *normed space* is nuclear if and only if it is finite-dimensional.

Finite nuclear norm metric

Let F(V, W) be the space of all *linear operators of finite rank* (i.e., with finite-dimensional range) mapping a Banach space $(V, ||.||_V)$ into another Banach space $(W, ||.||_W)$. A linear operator $T \in F(V, W)$ can be represented in the form $x \mapsto T(x) = \sum_{i=1}^{n} \langle x, x'_i \rangle y_i$, where $\{x'_i\}_i$ and $\{y_i\}_i$ are sequences in V' (*Banach dual* of V) and W, respectively, and $\langle x, x'_i \rangle$ is the value of a functional $x' \in V'$ at a vector $x \in V$. The *finite nuclear norm* of T is defined as

$$||T||_{fnuc} = \inf \sum_{i=1}^{n} ||x_i'||_{V'} ||y_i||_{W}$$

where the infimum is taken over all possible finite representations of T.

The **finite nuclear norm metric** is the **norm metric** $||T - P||_{fnuc}$ on F(V, W). The space $(F(V, W), ||.||_{fnuc})$ is called the *space of operators of finite rank*. It is a dense linear subspace of the *space of nuclear operators* N(V, W).

• Hilbert–Schmidt norm metric

Consider the set of all linear operators from a Hilbert space $(H_1, ||.||_{H_1})$ into a Hilbert space $(H_2, ||.||_{H_2})$. The *Hilbert–Schmidt norm* $||T||_{H_S}$ of a linear operator $T : H_1 \to H_2$ is defined by

$$||T||_{HS} = \left(\sum_{\alpha \in I} ||T(e_{\alpha})||_{H_2}^2\right)^{1/2},$$

where $(e_{\alpha})_{\alpha \in I}$ is an orthonormal basis in H_1 . A linear operator $T : H_1 \to H_2$ is called a *Hilbert–Schmidt operator* if $||T||_{HS}^2 < \infty$.

The **Hilbert–Schmidt norm metric** is the **norm metric** $||T - P||_{HS}$ on the set $S(H_1, H_2)$ of all Hilbert–Schmidt operators from H_1 into H_2 . In Euclidean space $||.||_{HS}$ is also called *Frobenius norm*; cf. **Frobenius norm metric** in Chap. 12.

For $H_1 = H_2 = H$, the algebra S(H, H) = S(H) with the Hilbert–Schmidt norm is a *Banach algebra*. It contains operators of finite rank as a dense subset, and is contained in the space K(H) of compact operators. An *inner product* \langle,\rangle_{HS} on S(H) is defined by $\langle T, P \rangle_{HS} = \sum_{\alpha \in I} \langle T(e_\alpha), P(e_\alpha) \rangle$, and $||T||_{HS} = \langle T, T \rangle_{HS}^{1/2}$. So, S(H) is a Hilbert space (independent of the chosen basis $(e_\alpha)_{\alpha \in I}$). **Trace-class norm metric**

Given a Hilbert space H, the *trace-class norm* of a linear operator $T : H \to H$ is

$$||T||_{tc} = \sum_{\alpha \in I} \langle |T|(e_{\alpha}), e_{\alpha} \rangle,$$

where |T| is the *absolute value* of T in the *Banach algebra* B(H) of all bounded operators from H into itself, and $(e_{\alpha})_{\alpha \in I}$ is an orthonormal basis of H.

An operator $T : H \to H$ is called a *trace-class operator* if $||T||_{tc} < \infty$. Any such operator is the product of two *Hilbert–Schmidt operators*.

The trace-class norm metric is the norm metric $||T - P||_{tc}$ on the set L(H) of all trace-class operators from H into itself.

The set L(H) with the norm $||.||_{tc}$ forms a Banach algebra which is contained in the algebra K(H) (of all compact operators from H into itself), and contains the algebra S(H) of all Hilbert–Schmidt operators from H into itself.

Schatten *p*-class norm metric

Let $1 \le p < \infty$. Given a separable Hilbert space *H*, the *Schatten p-class norm* of a compact linear operator $T : H \to H$ is defined by

$$||T||_{Sch}^p = \left(\sum_n |s_n|^p\right)^{\frac{1}{p}}.$$

where $\{s_n\}_n$ is the sequence of *singular values* of *T*. A compact operator *T* : $H \to H$ is called a *Schatten p-class operator* if $||T||_{Sch}^p < \infty$.

The Schatten *p*-class norm metric is the norm metric $||T - P||_{Sch}^p$ on the set $S_p(H)$ of all Schatten *p*-class operators from *H* onto itself. The set $S_p(H)$ with the norm $||.||_{Sch}^p$ forms a Banach space. $S_1(H)$ is the *trace-class* of *H*, and $S_2(H)$ is the *Hilbert–Schmidt class* of *H*. Cf. Schatten norm metric (in Chap. 12) for which trace and Frobenius norm metrics are cases p = 1 and p = 2, respectively.

• Continuous dual space

٠

For any vector space V over some field, its *algebraic dual space* is the set of all linear functionals on V.

Let (V, ||.||) be a normed vector space. Let V' be the set of all continuous linear functionals T from V into the base field (\mathbb{R} or \mathbb{C}). Let ||.||' be the operator norm on V' defined by

$$||T||' = \sup_{||x|| \le 1} |T(x)|.$$

The space (V', ||.||') is a Banach space which is called the **continuous dual** (or *Banach dual*) of (V, ||.||).

The continuous dual of the metric space l_p^n (l_p^∞) is l_q^n (l_q^∞) , respectively), where q is defined by $\frac{1}{p} + \frac{1}{q} = 1$. The continuous dual of l_1^n (l_1^∞) is l_∞^n (l_∞^∞) , respectively). **Distance constant of operator algebra**

Let \mathcal{A} be an subalgebra of B(H), the algebra of all bounded operators on a Hilbert space H. For any operator $T \in B(H)$, let P be a projection, P^{\perp} be its orthogonal complement and $\beta(T, \mathcal{A}) = \sup\{||P^{\perp}TP|| : P^{\perp}\mathcal{A}P = (0)\}$.

Let $dist(T, A) = \inf_{A \in A} ||T - A||$ be the *distance of* T to algebra A; cf. matrix nearness problems in Chap. 12. It holds $dist(T, A) \ge \beta(T, A)$.

The algebra \mathcal{A} is *reflexive* if $\beta(T, \mathcal{A}) = 0$ implies $T \in \mathcal{A}$; it is *hyperreflexive* if there exists a constant $C \ge 1$ such that, for any operator $T \in B(H)$, it holds

$$dist(T, \mathcal{A}) \leq C\beta(T, \mathcal{A}).$$

The smallest such *C* is called the **distance constant** of the algebra A.

In the case of a reflexive algebra of matrices with nonzero entries specified by a given pattern, the problem of finding the distance constant can be formulated as a matrix-filling problem: given a partially completed matrix, fill in the remaining entries so that the operator norm of the resulting complete matrix is minimized.