A Survey of Meta-heuristics Used for Computing Maximin Latin Hypercube

Arpad Rimmel¹ and Fabien Teytaud²

 ¹ Supélec E3S, France arpad.rimmel@supelec.fr
 ² Univ. Lille Nord de France, France teytaud@lisic.univ-littoral.fr

Abstract. Finding maximin latin hypercube is a discrete optimization problem believed to be *NP*-hard. In this paper, we compare different meta-heuristics used to tackle this problem: genetic algorithm, simulated annealing and iterated local search. We also measure the importance of the choice of the mutation operator and the evaluation function. All the experiments are done using a fixed number of evaluations to allow future comparisons. Simulated annealing is the algorithm that performed the best. By using it, we obtained new highscores for a very large number of latin hypercubes.

1 Introduction

In order to realize a mathematical model of a complex system with D parameters, a fixed number s of experiments are made. The values of the parameters for each experiment can be seen as a point in a D-dimensional space. The choice of the s points is crucial because it will directly impact the quality of the model. A classical requirement for the points is to respect two criteria:

- they must be *evenly spread*. This guaranties a good exploration of the parameter space.
- they must be *non-collapsing*. This ensures the fact that even if a parameter is useless, two different experiments will not give the same result.

One way to choose the points while validating those criteria is to use maximin latin hypercube. A latin hypercube in dimension D and of size s is a set of spoints in $[1..D]^s$ such that on each dimension, every point has a different value. Therefore, the points in a latin hypercube are *non-collapsing*. Latin hypercube have been introduced in [12]. An example is given on figure 1.

Let d_{min} be the minimal distance of all the distances between each pair of points. The maximin latin hypercube is the latin hypercube with the largest d_{min} . The points of a maximin latin hypercube are therefore *evenly spread*. The maximin criteria has been introduced in [9]. Several distance functions can be used. In this paper, we focus on the distance function l_2 . To reduce clutter, we use the square of the distance.

The points that determine the minimal distance are called *critical points*.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 25-36, 2014.

[©] Springer-Verlag Berlin Heidelberg 2014

Х						Х	
	Х			Х			
			Х				Х
		Х			Х		

Fig. 1. Example of latin hypercubes of size 4 and dimension 2. left: $d_{min} = 2$. right: $d_{min} = 5$.

The complexity of finding a maximin latin hypercube depends on the distance function and on the dimension. For dimension 2 and both distance function l_1 and l_{∞} , a polynomial algorithm giving the maximin latin hypercube has been shown in [14]. For other dimensions and other distance functions, the complexity is not known but believed to be *NP*-hard.

Several meta-heuristics have been used in the literature to tackle this problem. The most classical ones are Genetic Algorithms (GA) [10], Simulated Annealing (SA) [13] and Iterated Local Search (ILS) [4]. Those three algorithms will be the focus of this paper and will be detailed later. We can also cite:

- Periodic Design (Perm) [1]. This algorithm uses periodic structures to generate latin hypercube. It gives good results for dimension 2 and correct results for dimension 3 but after that, the algorithm is outperformed by the others. For this reason and the fact that the principle of the algorithm is really different from the other, it will not be used in following comparisons.
- Enhanced Stochastic Evolutionary algorithm (ESE) [8]. This algorithm is based on a combination of GA and SA. Due to its similarity with SA, we do not use this algorithm in our experiments. However, we compare the highscores we find in this paper with the one obtained in [7].

In this paper, we present a comparison of the efficiency of GA, SA and ILS for a fixed number of evaluations. We first describe the principle of the algorithms. We then presents different mutation operators and several evaluation functions described in the literature. Finally, we give results on the efficiency of each algorithm with the different mutation operators and evaluation functions. The best combination allows us to obtain better highscores than those found in the literature for a large number of dimensions and sizes.

2 Algorithm Descriptions

In this section, we will briefly describe each algorithm. For further information, references are given in each section.

2.1 Genetic Algorithms

Genetic algorithms [5],[3] belong to the family of Evolutionary Algorithms. They are mainly used with a discrete search space, meaning they are used to address combinatorial optimization problems. Genetic Algorithms (GA) are techniques inspired by natural evolution, with in particular these following steps : (i) inheritance, (ii) mutation, (iii) crossover and (iv) selection. The principle is to have a population of candidate solutions evolving. Under the pressure selection, the population will converge toward better solutions. Algorithm 1 illustrates this method. λ denotes the population size, i.e. the number of individuals in the population.

Algorithm 1. Genetic Algorithm
Generate the initial population
Evaluate all individuals of the population
while the stopping condition not reached do
for i from 1 to λ do
$parent1 \leftarrow parentalSelection(parentPopulation)$
if crossover probability is satisfied then
$parent2 \leftarrow parentalSelection(parentPopulation)$
$offspringPopulation[i] \leftarrow crossover(parent1, parent2)$
else
$offspringPopulation[i] \leftarrow parent1$
end if
if mutation probability is satisfied then
$offspringPop[i] \leftarrow mutate(offspringPop[i])$
end if
end for
Evaluate all individuals of offspringPopulation
parentPopulation \leftarrow survivalSelection(offspringPopulation, parentPopulation)
end while

2.2 Simulated Annealing

Simulated Annealing [2] is a global optimization algorithm, generally used with a discrete search space. The principle takes inspiration from the annealing principle in metallurgy. This technique consists in two phases : (i) heating and (ii) controlled cooling. In optimization, the method is to evolve a candidate solution thanks to a mutation. According to a certain probability a worse generated solution can be accepted. The idea behind this is to not get stuck in a local optimum. The controlled cooling represents this acceptance probability. Algorithm 2 represents this method.

2.3 Iterated Local Search

Iterated Local Search (ILS) [11] is based on a local search algorithm. An improvement over a single run of a local search is to launch it several times from a different starting point. A classical way of doing this is by choosing a new random starting point, the resulting algorithm is called the multistart approach

Algorithm 2. Simulated Annealing

```
Generate the initial solution s
Evaluate its fitness e \leftarrow f(s)
s_{best} \leftarrow s
e_{best} \leftarrow e
while the stopping condition not reached do
   T \leftarrow \texttt{temperature}(iteration)
   s_{new} \leftarrow \texttt{mutate}(s)
   e_{new} \leftarrow f(s_{new})
   if acceptance probability is satisfied or e_{new} better than e then
      s \leftarrow s_{new}
      e \leftarrow e_{new}
   end if
   if e_{new} better than e_{best} then
      s_{best} \leftarrow s_{new}
      e_{best} \leftarrow e_{new}
   end if
   increment iteration
end while
```

or random restart. The principle of ILS is to choose the new starting point by a perturbation of the last local minimum found instead.

The algorithm 3 is used for the local search. The initial solution is generated with a uniform distribution. The perturbation consists in a rotation of the values of several points on a given dimension.

In algorithm 3, the condition * about the critical point is not necessary. Both possibilities will be studied in the following.

3 Mutations

In [6] 4 different neighborhoods are proposed. We have considered these 4 neighborhoods for our mutations and called them m1 to m4. The main principle of all these mutations is to change two points of the hypercube.

In the first one, the first point is chosen uniformly among all the critical points. The second point is chosen uniformly among all remaining points. For these two points, a random number of coordinates are changed.

In the second one, the two points are selected in the same way, but only one coordinate is changed. The coordinate is chosen randomly.

In the third one, the two points are selected in the same way and only one coordinate is changed. All the coordinates are tried and the one which gives the best d_{min} is selected. This modification add DIM evaluation to the algorithm, those evaluations are taken into account in the experiments.

In the last mutation, the two points are chosen uniformly among all points and the number of coordinates is randomly chosen.

```
Algorithm 3. Local Search of the ILS algorithm
```

```
X = InitialSolution
while there is an improvement do
  for i from 1 to size do
    for j from 1 to size do
       if i != j AND (i or j is a critical point)* then
         for k from 1 to DIM do
            X' = X
            in X' switch value of the points i and j on dimension k
            if eval(X') > eval(X) then
              X = X'
            end if
         end for
       end if
    end for
  end for
end while
return X
```

4 Evaluation Functions

The natural evaluation function for a latin hypercube is the d_{min} function as this is the function used to determine if the latin hypercube is maximin. An other evaluation function ϕ_p has been proposed in [13]. It has the advantage of differentiating situations that would have a similar d_{min} value by using *all* the distances between points. This function is defined as follow:

- let $D_1(X), D_2(X), ..., D_R(X)$ be the set of all the distances between two points of X ordered in increasing order. R is the number of different distances in X.
- let $J_i(X)$ be the number of occurrences of $D_i(X)$.

$$\phi_p(X) = \left(\sum_{r=1}^R \frac{J_r(X)}{(D_r(X))^p}\right)^{\frac{1}{p}}, p \text{ is a parameter.}$$

5 Experiments

In this section, we make several experiments with the most efficient algorithms for the latin hypercube problem: *Genetic Algorithm (GA), Simulated Annealing (SA)* and *Iterated Local Search (ILS)*. We first determine which value to use for each algorithm's parameter. Then, we evaluate the effect of the choice of the mutation function. Finally, we determine the effect of the evaluation function.

For the comparison between the algorithms to be fair and not implementationdependant, we chose to fix the number of time the evaluation of a latin hypercube has to be computed. Unless it is stated otherwise, the number of evaluations used for the experiment is 100000*DIM. We checked that the execution time depends only on the number of evaluations. As testing every combination of dimension and size would be to time consuming, we chose arbitrarily three set of values that will be used for the experiments: (DIM 4 / SIZE 25), (DIM 9 / SIZE 10) and (DIM 8 / SIZE 20).

5.1 Effect of Algorithm Parameters

In this section, we experiment with different parameter values for each algorithm in order to determine which parameter has a high influence on the performance of the algorithm. It will also be used to fix the parameters for the next sections. For those experiments, the mutation operator m3 and the evaluation ϕ_{20} are used.

Genetic Algorithm. The main parameters of the genetic algorithm are λ and *Gen*.

LatinHyperCube	$\lambda 100, Gen 1000$	$\lambda 200, Gen 500$	$\lambda 500, Gen 200$
4/25	$158.2 {\pm} 0.3$	162.1 ± 0.2	155.9 ± 0.2
9/10	$151.3 {\pm} 0.2$	153.0 ± 0.1	153.9 ± 0.1
8/20	$411.8 {\pm} 0.3$	413.0 ± 0.2	401.6 ± 0.2

Table 1. Effect of the modification of the ratio λ/Gen for GA

We see in table 1 that the parameters have a moderate impact on the performance. The ratio λ/Gen that gives the best performance is 2/5. This ratio will be used in the rest of the paper.

Table 2. Performance of SA for different initial and final probabilities

I	(DIM/SIZE)	0.5/0.1	0.3/0.1	0.5/0.01	0.3/0.01	0.1/0.01	0.05/0.01
	4/25	$162.64{\pm}0.1$	$171.97 {\pm} 0.1$	$170.24{\pm}0.09$	$175.24 {\pm} 0.07$	$175.87 {\pm} 0.08$	$174.9 {\pm} 0.1$
	9/10	$154.33 {\pm} 0.02$	$155.35 {\pm} 0.02$	$155.15 {\pm} 0.02$	$155.34 {\pm} 0.02$	$154.86 {\pm} 0.04$	$154.07 {\pm} 0.07$
	8/20	$418.71{\pm}0.1$	$427.88 {\pm} 0.1$	$429.64 {\pm} 0.09$	$434.02 {\pm} 0.08$	$435.33 {\pm} 0.07$	$434.84{\pm}0.08$

Simulated Annealing. We see in table 2 that the value of the initial and final probabilities are very important parameters for the performance of the algorithm. We chose 0.3 for the starting probability and 0.01 for the final probability in the following experiments.

On the contrary, we see in table 3 that the ratio between the number of cycles and the number of trials is insignificant for the performance. We use a ratio of 10/1 for the rest of this paper.

LatinHyperCube (DIM/SIZE)	# cycles	# of trials per cycles	avg scores
4/25	1000	100	$175.24{\pm}0.07$
	500	200	$175.31 {\pm}~0.07$
	200	500	$175.32 {\pm} 0.07$
	100	1000	$175.2 {\pm} 0.07$
9/10	1000	100	$155.34 {\pm} 0.02$
	500	200	$155.34 {\pm} 0.02$
	200	500	$155.3 {\pm} 0.02$
	100	1000	$155.34{\pm}0.02$
8/20	1000	100	$434.02 {\pm} 0.08$
	500	200	$434.96 {\pm} 0.07$
	200	500	$433.89 {\pm} 0.07$
	100	1000	$434.08 {\pm} 0.07$

Table 3. Comparison with mutation3 and eval_phi with simulated annealing

Iterated Local Search. Iterated Local Search does not have many parameters. We will however compare different version of the algorithm.

- v1: in the local search, all the points are considered
- v2: in the local search, only the critical points are considered.
- v3: multistart version of the algorithm v1.

Table 4. Performance of ILS for different versions of the algorithm

LatinHyperCube	ISL v1	ILS v2	ILS v3
4/25	$162.0{\pm}0.2$	$158.5\pm~0.3$	$159.7{\pm}0.2$
9/10	$153.3 {\pm} 0.1$	$152.7 \pm \ 0.1$	$151.0{\pm}0.1$
8/20	$412.7 {\pm} 0.3$	$408.0\pm~0.3$	$409.5 {\pm} 0.2$

The different version have similar performance with a statistically significant advantage for the v1 version. This version will be used in the following sections.

5.2 Effect of the Mutations

We compare the performance of the genetic algorithm and the simulated annealing algorithm with the different mutations described in section 2. The results are given in table 2.

The choice of the mutation operator has a huge impact on the performance of both algorithms. This seems like a good direction for future improvements. In the rest of the paper, we will use the mutation 3.

5.3 Effect of the Evaluation Function

In this section, we compare the performance of the different algorithms when optimizing using the d_{min} function of using the ϕ_p function. The score is always

LatinHyperCube	mutation	GA	SA
4/25	m1	$156.6{\pm}0.2$	$173.82 {\pm} 0.12$
	m^2	$156.4 {\pm} 0.3$	$173.64{\pm}0.12$
	m3	$162.0 {\pm} 0.2$	$175.22 {\pm} 0.07$
	m4	$147.2 {\pm} 0.3$	$173.69 {\pm} 0.09$
9/10	m1	$149.7 {\pm} 0.2$	$155.77 {\pm} 0.02$
	m2	$152.0 {\pm} 0.1$	$155.88 {\pm} 0.02$
	m3	$152.9 {\pm} 0.1$	$155.34{\pm}0.02$
	m4	$147.7 {\pm} 0.2$	$155.68 {\pm} 0.02$
8/20	m1	$399.4 {\pm} 0.3$	$429.79 {\pm} 0.13$
	m2	406.1 ± 0.3	$425.8 {\pm} 0.13$
	m3	$412.8 {\pm} 0.2$	$433.92 {\pm} 0.07$
	m4	$388.8 {\pm} 0.4$	$424.59 {\pm} 0.13$

Table 5. Comparison of the effect of different mutation operators on the performance of the algorithms

the d_{min} value, even when optimizing with ϕ_p . The results are presented in table 6.

Optimizing according to the ϕ_p function improves greatly the results for all 3 algorithms. The value of the parameter p seems to have not so much impact as long as it is greater than 1. In the following, we will use ϕ_{10} as our evaluation function.

5.4 Scalability of the Algorithms

The scalability of an algorithm represents the robustness of the algorithm in front of the number of evaluations. For instance, if an algorithm performs better with a large number of evaluations, it should be a good choice if the evaluations can be parallelized.

We launched each algorithm with its best configuration with different number of evaluations and measured the best d_{min} obtained. The results are given on figure 2.

SA performs better than the two other algorithms in every case. Furthermore, there is no algorithm that improves faster than the others when the number of simulations increases. So SA should stay the best even with larger number of simulations.

6 HighScores

A highscore is the best d_{min} value obtained for a particular SIZE and DIM. It corresponds to the best known lower bond for the maximin value. The previous highscores were obtained with the algorithms Iterated Local Search (see [4]) and ESE (see [7]). According to our comparison, the simulated annealing algorithm with the mutation operator m3 and the evaluation function ϕ_{10} performs better. We launched this algorithm on latin hypercube of dimension 3 to 10 and of

33

LatinHyperCube	Evaluation Function	GA	\mathbf{SA}	ILS
4/25	d_{min}	$142.4{\pm}0.3$	$155.75 {\pm} 0.18$	$118.2{\pm}0.4$
	ϕ_1	$153.6{\pm}0.2$	$166.07 {\pm} 0.06$	$149.9{\pm}0.3$
	ϕ_5	$167.4{\pm}0.2$	$176.47 {\pm} 0.06$	$165.7{\pm}0.2$
	ϕ_{10}	$165.8{\pm}0.2$	$176.47 {\pm} 0.06$	$165.5{\pm}0.2$
	ϕ_{20}	$161.8{\pm}0.2$	$175.26 {\pm} 0.07$	$162.0{\pm}0.2$
9/10	d_{min}	$144.5{\pm}0.2$	$150.00 {\pm} 0.10$	$138.3{\pm}0.2$
	ϕ_1	$153.3{\pm}0.1$	$155.58 {\pm} 0.04$	$153.8{\pm}0.1$
	ϕ_5	$153.4 {\pm} 0.1$	$155.68 {\pm} 0.02$	$153.9{\pm}0.1$
	ϕ_{10}	$153.5{\pm}0.1$	$155.64 {\pm} 0.02$	$153.7{\pm}0.1$
	ϕ_{20}	$153.0{\pm}0.1$	$155.29 {\pm} 0.02$	$153.3{\pm}0.1$
8/20	d_{min}	$381.5 {\pm} 0.4$	$406.18 {\pm} 0.21$	$332.6{\pm}0.7$
	ϕ_1	$396.5 {\pm} 0.3$	$415.16 {\pm} 0.11$	$376.2 {\pm} 0.5$
	ϕ_5	$410.4 {\pm} 0.2$	$430.68 {\pm} 0.09$	$404.1 {\pm} 0.3$
	ϕ_{10}	$414.9 {\pm} 0.2$	$434.29 {\pm} 0.07$	$413.1 {\pm} 0.2$
	ϕ_{20}	413.2 ± 0.2	434.06 ± 0.08	412.7 ± 0.2

Table 6. Comparison of the effect of different evaluation function on the performance of the algorithms

Fig. 2. Effect of the increase of the number of evaluations. We plot the minimal distance as a function of the number of evaluations. The higher the better.

size 2 to 25 with 10 000 000 evaluations. The tables 7 and 8 show the previous highscores obtained with ILS and ESE as well as the ones we get with SA. On a large majority of the latin hypercubes, we obtain similar or better result.

SIZE	DI	M =	3		DIM = 4			DIM = 5			DIM = 6		
	ILS	ESE	Per	SA	ILS	ESE	SA	ILS	ESE	SA	ILS	ESE	SA
2	3	3	3	3	4	4	4	5	5	5	6	6	6
3	6	6	3	6	7	7	7	8	8	8	12	12	12
4	6	6	6	6	12	12	12	14	14	14	20	20	20
5	11	11	6	11	15	15	15	24	24	24	27	27	27
6	14	14	14	14	22	22	22	32	32	32	40	40	40
7	17	17	14	17	28	28	28	40	40	40	52	52	52
8	21	21	21	21	42	42	42	50	50	50	66	63	66
9	22	22	21	22	42	42	42	61	61	61	82	75	82
10	27	27	21	27	50	47	50	82	82	82	93	91	95
11	30	30	24	30	55	55	55	80	80	82	110	108	111
12	36	36	30	36	63	63	63	91	91	94	140	136	142
13	41	41	35	41	70	70	70	102	103	104	139	138	143
14	42	42	35	42	77	77	78	116	114	118	156	154	161
15	48	45	42	48	89	87	89	131	129	134	173	171	178
16	50	50	42	50	92	93	94	152	151	154	192	190	196
17	53	53	42	56	99	99	102	159	158	163	212	208	221
18	57	56	50	57	108	108	114	170	170	174	238	231	247
19	62	59	57	62	118	119	122	187	184	191	259	256	266
20	66	65	57	66	137	130	137	206	206	208	284	279	291
21	69	68	65	69	147	145	149	229	223	232	306	302	314
22	76	72	69	82	147	150	153	241	235	244	331	325	347
23	76	75	72	82	155	159	164	250	250	260	351	348	364
24	78	81	76	83	170	170	171	265	266	274	378	374	388
25	84	86	91	89	174	178	183	282	285	294	408	400	419

 Table 7. Current highscores

SIZE	DI.	M =	7	DI	M =	8	DI	M =	9	DII	M =	10
	ILS	ESE	SA									
2	7	7	7	8	8	8	9	9	9	10	10	10
3	13	13	13	14	14	14	18	18	18	19	19	19
4	21	21	21	26	26	26	28	28	28	33	33	33
5	32	32	32	40	40	40	43	43	43	50	50	50
6	47	47	47	54	53	54	61	61	62	68	68	68
7	62	61	62	71	70	72	80	80	81	90	89	91
8	79	79	80	91	90	91	102	101	103	114	114	116
9	95	92	95	114	112	114	128	126	128	143	142	144
10	112	109	113	133	131	133	157	154	158	173	171	175
11	131	129	132	153	152	157	181	178	184	209	206	211
12	155	152	158	181	177	183	208	204	213	240	235	243
13	181	178	184	208	205	213	242	235	246	274	268	279
14	219	215	220	242	236	245	275	268	282	312	305	318
15	222	220	228	277	273	280	315	309	321	356	347	363
16	249	241	253	326	317	325	357	352	364	403	393	411
17	269	266	278	331	332	343	404	396	413	451	442	462
18	297	291	304	367	361	374	466	451	469	505	496	515
19	323	323	335	398	390	408	466	469	491	569	554	576
20	356	349	369	426	425	446	512	506	528	640	625	645
21	386	380	397	467	463	482	550	548	570	647	650	672
22	421	418	433	505	501	525	593	595	623	697	691	720
23	452	448	466	545	542	566	649	640	667	736	747	774
24	486	481	506	591	585	609	694	690	718	805	800	837
25	525	520	536	631	626	657	746	739	769	866	857	893

 Table 8. Current highscores

7 Conclusion

We presented three classical algorithms to find maximin latin hypercube: genetic algorithm, iterated local search and simulated annealing. The experiments were done with a fixed number of evaluations to allow easier future comparisons. We show that the choice of the mutation operator has a great impact on the performance of each algorithm. Using a surrogate evaluation function also significantly improve the results. We then compared the 3 algorithms and the way they scale up and find that simulated annealing performs better than the other. Finally, we used simulated annealing on longer time settings to obtain scores as good as possible for different latin hypercube. This allowed us to obtain new highscores on most of them.

References

 Bates, S.J., Sienz, J., Toropov, V.V.: Formulation of the optimal latin hypercube design of experiments using a permutation genetic algorithm. AIAA 2011, 1–7 (2004)

- Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing for function optimization. Technometrics 28(3), 209–217 (1986)
- Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine Learning 3(2), 95–99 (1988)
- Grosso, A., Jamali, A., Locatelli, M.: Finding maximin latin hypercube designs by iterated local search heuristics. European Journal of Operational Research 197(2), 541–547 (2009)
- 5. Holland, J.H.: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U. Michigan Press (1975)
- 6. Husslage, B., Rennen, G., Van Dam, E.R., Den Hertog, D.: Space-filling Latin hypercube designs for computer experiments. Tilburg University (2006)
- Husslage, B.G., Rennen, G., van Dam, E.R., den Hertog, D.: Space-filling latin hypercube designs for computer experiments. Optimization and Engineering 12(4), 611–630 (2011)
- Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference 134(1), 268–287 (2005)
- Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26(2), 131–148 (1990)
- Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of latin hypercubes. Journal of Statistical Planning and Inference 136(9), 3231–3247 (2006)
- Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. International series in operations research and management science, pp. 321–354 (2003)
- McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)
- Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. Journal of Statistical Planning and Inference 43(3), 381–402 (1995)
- Van Dam, E.R., Husslage, B., Den Hertog, D., Melissen, H.: Maximin latin hypercube designs in two dimensions. Operations Research 55(1), 158–169 (2007)