A Survey of Meta-heuristics
Used for Computing Maximin Latin Hypercube

Arpad Rimmel' and Fabien Teytaud?

1 Supélec E3S, France
arpad.rimmel@supelec.fr
2 Univ. Lille Nord de France, France
teytaud@lisic.univ-littoral.fr

Abstract. Finding maximin latin hypercube is a discrete optimization
problem believed to be NP-hard. In this paper, we compare different
meta-heuristics used to tackle this problem: genetic algorithm, simulated
annealing and iterated local search. We also measure the importance of
the choice of the mutation operator and the evaluation function. All the
experiments are done using a fixed number of evaluations to allow future
comparisons. Simulated annealing is the algorithm that performed the
best. By using it, we obtained new highscores for a very large number of
latin hypercubes.

1 Introduction

In order to realize a mathematical model of a complex system with D parameters,
a fixed number s of experiments are made. The values of the parameters for each
experiment can be seen as a point in a D-dimensional space. The choice of the
s points is crucial because it will directly impact the quality of the model. A
classical requirement for the points is to respect two criteria:

— they must be evenly spread. This guaranties a good exploration of the pa-
rameter space.

— they must be non-collapsing. This ensures the fact that even if a parameter
is useless, two different experiments will not give the same result.

One way to choose the points while validating those criteria is to use maximin
latin hypercube. A latin hypercube in dimension D and of size s is a set of s
points in [1..D]® such that on each dimension, every point has a different value.
Therefore, the points in a latin hypercube are non-collapsing. Latin hypercube
have been introduced in [12]. An example is given on figure 1.

Let dp,sn be the minimal distance of all the distances between each pair of
points. The maximin latin hypercube is the latin hypercube with the largest
dmin- The points of a maximin latin hypercube are therefore evenly spread. The
maximin criteria has been introduced in [9]. Several distance functions can be
used. In this paper, we focus on the distance function l5. To reduce clutter, we
use the square of the distance.

The points that determine the minimal distance are called critical points.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 25-36, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

26 A. Rimmel and F. Teytaud

Fig. 1. Example of latin hypercubes of size 4 and dimension 2. left: dpmin = 2. right:
dmin = 5.

The complexity of finding a maximin latin hypercube depends on the distance
function and on the dimension. For dimension 2 and both distance function [y
and [, a polynomial algorithm giving the maximin latin hypercube has been
shown in [14]. For other dimensions and other distance functions, the complexity
is not known but believed to be NP-hard.

Several meta-heuristics have been used in the literature to tackle this problem.
The most classical ones are Genetic Algorithms (GA) [10], Simulated Annealing
(SA) [13] and Iterated Local Search (ILS) [4]. Those three algorithms will be the
focus of this paper and will be detailed later. We can also cite:

— Periodic Design (Perm) [1]. This algorithm uses periodic structures to gener-
ate latin hypercube. It gives good results for dimension 2 and correct results
for dimension 3 but after that, the algorithm is outperformed by the oth-
ers. For this reason and the fact that the principle of the algorithm is really
different from the other, it will not be used in following comparisons.

— Enhanced Stochastic Evolutionary algorithm (ESE) [8]. This algorithm is
based on a combination of GA and SA. Due to its similarity with SA, we
do not use this algorithm in our experiments. However, we compare the
highscores we find in this paper with the one obtained in [7].

In this paper, we present a comparison of the efficiency of GA, SA and ILS for
a fixed number of evaluations. We first describe the principle of the algorithms.
We then presents different mutation operators and several evaluation functions
described in the literature. Finally, we give results on the efficiency of each
algorithm with the different mutation operators and evaluation functions. The
best combination allows us to obtain better highscores than those found in the
literature for a large number of dimensions and sizes.

2 Algorithm Descriptions

In this section, we will briefly describe each algorithm. For further information,
references are given in each section.

2.1 Genetic Algorithms

Genetic algorithms [5],[3] belong to the family of Evolutionary Algorithms.They
are mainly used with a discrete search space, meaning they are used to address
combinatorial optimization problems. Genetic Algorithms (GA) are techniques

Meta-heuristics for Maximin Latin Hypercube 27

inspired by natural evolution, with in particular these following steps : (i) inher-
itance, (il) mutation, (iii) crossover and (iv) selection. The principle is to have
a population of candidate solutions evolving. Under the pressure selection, the
population will converge toward better solutions. Algorithm 1 illustrates this
method. A denotes the population size, i.e. the number of individuals in the
population.

Algorithm 1. Genetic Algorithm
Generate the initial population
Evaluate all individuals of the population
while the stopping condition not reached do
for i from 1 to A do
parentl < parentalSelection(parentPopulation)
if crossover probability is satisfied then
parent2 < parentalSelection(parentPopulation)
offspringPopulation[i] < crossover(parentl,parent2)
else
offspringPopulation[i] < parentl
end if
if mutation probability is satisfied then
offspringPop[i] <+ mutate(offspringPopli])
end if
end for
Evaluate all individuals of offspringPopulation
parentPopulation < survivalSelection(offspringPopulation, parentPopulation)
end while

2.2 Simulated Annealing

Simulated Annealing [2] is a global optimization algorithm, generally used with
a discrete search space. The principle takes inspiration from the annealing prin-
ciple in metallurgy. This technique consists in two phases : (i) heating and (ii)
controlled cooling. In optimization, the method is to evolve a candidate solu-
tion thanks to a mutation. According to a certain probability a worse generated
solution can be accepted. The idea behind this is to not get stuck in a local op-
timum. The controlled cooling represents this acceptance probability. Algorithm
2 represents this method.

2.3 Iterated Local Search

Iterated Local Search (ILS) [11] is based on a local search algorithm. An im-
provement over a single run of a local search is to launch it several times from
a different starting point. A classical way of doing this is by choosing a new
random starting point, the resulting algorithm is called the multistart approach

28 A. Rimmel and F. Teytaud

Algorithm 2. Simulated Annealing
Generate the initial solution s
Evaluate its fitness e < f(s)
Shest <— S
Cpest < €
while the stopping condition not reached do
T <+ temperature(iteration)
Snew ¢— mutate(s)
Enew f(Snew)
if acceptance probability is satisfied or e,c., better than e then
S < Spew
€ enew
end if
if enew better than ep.s; then
Sbhest <~ Snew
€pest < Enew
end if
increment iteration
end while

or random restart. The principle of ILS is to choose the new starting point by a
perturbation of the last local minimum found instead.

The algorithm 3 is used for the local search. The initial solution is generated
with a uniform distribution. The perturbation consists in a rotation of the values
of several points on a given dimension.

In algorithm 3, the condition * about the critical point is not necessary. Both
possibilities will be studied in the following.

3 Mutations

In [6] 4 different neighborhoods are proposed. We have considered these 4 neigh-
borhoods for our mutations and called them ml to m4. The main principle of
all these mutations is to change two points of the hypercube.

In the first one, the first point is chosen uniformly among all the critical points.
The second point is chosen uniformly among all remaining points. For these two
points, a random number of coordinates are changed.

In the second one, the two points are selected in the same way, but only one
coordinate is changed. The coordinate is chosen randomly.

In the third one, the two points are selected in the same way and only one
coordinate is changed. All the coordinates are tried and the one which gives the
best dy,in is selected. This modification add DIM evaluation to the algorithm,
those evaluations are taken into account in the experiments.

In the last mutation, the two points are chosen uniformly among all points
and the number of coordinates is randomly chosen.

Meta-heuristics for Maximin Latin Hypercube 29

Algorithm 3. Local Search of the ILS algorithm
X = InitialSolution
while there is an improvement do
for i from 1 to size do
for j from 1 to size do
if i!=j AND (i or j is a critical point)* then
for k from 1 to DIM do
X' =X
in X’ switch value of the points i and j on dimension k
if eval(X’) > eval(X) then
X=X
end if
end for
end if
end for
end for
end while
return X

4 FEvaluation Functions

The natural evaluation function for a latin hypercube is the d,,;, function as
this is the function used to determine if the latin hypercube is maximin. An
other evaluation function ¢, has been proposed in [13]. It has the advantage of
differentiating situations that would have a similar d,,;, value by using all the
distances between points. This function is defined as follow:

— let D1(X),D2(X), ..., Dr(X) be the set of all the distances between two
points of X ordered in increasing order. R is the number of different distances
in X.

— let J;(X) be the number of occurrences of D;(X).

¢p(X) = (27}«11 (15]:(()%))19> " pis a parameter.

5 Experiments

In this section, we make several experiments with the most efficient algorithms
for the latin hypercube problem: Genetic Algorithm (GA), Simulated Annealing
(SA) and Iterated Local Search (ILS). We first determine which value to use for
each algorithm’s parameter. Then, we evaluate the effect of the choice of the
mutation function. Finally, we determine the effect of the evaluation function.

For the comparison between the algorithms to be fair and not implementation-
dependant, we chose to fix the number of time the evaluation of a latin hypercube
has to be computed. Unless it is stated otherwise, the number of evaluations used
for the experiment is 100000 DI M. We checked that the execution time depends
only on the number of evaluations.

30 A. Rimmel and F. Teytaud

As testing every combination of dimension and size would be to time consum-
ing, we chose arbitrarily three set of values that will be used for the experiments:
(DIM 4 / SIZE 25), (DIM 9 / SIZE 10) and (DIM 8 / SIZE 20).

5.1 Effect of Algorithm Parameters

In this section, we experiment with different parameter values for each algorithm
in order to determine which parameter has a high influence on the performance
of the algorithm. It will also be used to fix the parameters for the next sections.
For those experiments, the mutation operator m3 and the evaluation ¢oy are
used.

Genetic Algorithm. The main parameters of the genetic algorithm are A and
Gen.

Table 1. Effect of the modification of the ratio A/Gen for GA

LatinHyperCube A100, Gen1000 A200, Gen500 A500, Gen200

4/25 158.2+0.3 162.1 £ 0.2 1559 £0.2
9/10 151.3+0.2 153.0 £ 0.1 153.9 £0.1
8/20 411.8+0.3 413.0 £ 0.2 401.6 £ 0.2

We see in table 1 that the parameters have a moderate impact on the perfor-
mance. The ratio A/Gen that gives the best performance is 2/5. This ratio will
be used in the rest of the paper.

Table 2. Performance of SA for different initial and final probabilities

(DIM/SIZE) 0.5/0.1 03/0.1 05/0.01 0.3/0.01 0.1/0.01 0.05/0.01
4/25 162.64£0.1 171.9740.1 170.2440.09 175.2440.07 175.87+0.08 174.9+0.1
9/10 154.33+0.02 155.3540.02 155.1540.02 155.34+0.02 154.86+0.04 154.07+0.07
8/20 418.71+0.1 427.88:£0.1 429.64:£0.09 434.0240.08 435.3340.07 434.8440.08

Simulated Annealing. We see in table 2 that the value of the initial and fi-
nal probabilities are very important parameters for the performance of the algo-
rithm. We chose 0.3 for the starting probability and 0.01 for the final probability
in the following experiments.

On the contrary, we see in table 3 that the ratio between the number of cycles
and the number of trials is insignificant for the performance. We use a ratio of
10/1 for the rest of this paper.

Meta-heuristics for Maximin Latin Hypercube 31

Table 3. Comparison with mutation3 and eval phi with simulated annealing

LatinHyperCube (DIM/SIZE) # cycles # of trials per cycles avg scores

4/25 1000 100 175.2440.07
500 200 175.31%+ 0.07
200 500 175.324+0.07
100 1000 175.2£0.07

9/10 1000 100 155.34+0.02
500 200 155.344+0.02
200 500 155.3£0.02
100 1000 155.34+0.02

8/20 1000 100 434.0240.08
500 200 434.96+0.07
200 500 433.89£0.07
100 1000 434.084+0.07

Iterated Local Search. Iterated Local Search does not have many parameters.
We will however compare different version of the algorithm.

— v1: in the local search, all the points are considered
— v2: in the local search, only the critical points are considered.
— v3: multistart version of the algorithm v1.

Table 4. Performance of ILS for different versions of the algorithm

LatinHyperCube ISL v1 ILS v2 ILS v3

4/25 162.0£0.2 158.5+ 0.3 159.740.2
9/10 153.3£0.1 152.7+ 0.1 151.0£0.1
8/20 412.74+0.3 408.0% 0.3 409.5+0.2

The different version have similar performance with a statistically significant
advantage for the v1 version. This version will be used in the following sections.

5.2 Effect of the Mutations

We compare the performance of the genetic algorithm and the simulated anneal-
ing algorithm with the different mutations described in section 2. The results
are given in table 2.

The choice of the mutation operator has a huge impact on the performance
of both algorithms. This seems like a good direction for future improvements. In
the rest of the paper, we will use the mutation 3.

5.3 Effect of the Evaluation Function

In this section, we compare the performance of the different algorithms when
optimizing using the dy,;, function of using the ¢, function. The score is always

32 A. Rimmel and F. Teytaud

Table 5. Comparison of the effect of different mutation operators on the performance
of the algorithms

LatinHyperCube mutation ~ GA SA
4/25 ml 156.6+0.2 173.82+0.12
m2 156.44+0.3 173.64£0.12
m3 162.0£0.2 175.22+0.07
m4 147.240.3 173.69+0.09
9/10 ml 149.7£0.2 155.77+0.02
m2 152.0£0.1 155.88+0.02
m3 152.940.1 155.34+0.02
m4 147.7£0.2 155.68+0.02
8/20 ml 399.4+0.3 429.7940.13
m2 406.1£0.3 425.840.13
m3 412.840.2 433.92+0.07
m4 388.8+0.4 424.59+0.13

the dpmin value, even when optimizing with ¢,. The results are presented in
table 6.

Optimizing according to the ¢, function improves greatly the results for all 3
algorithms. The value of the parameter p seems to have not so much impact as
long as it is greater than 1. In the following, we will use ¢19 as our evaluation
function.

5.4 Scalability of the Algorithms

The scalability of an algorithm represents the robustness of the algorithm in
front of the number of evaluations. For instance, if an algorithm performs better
with a large number of evaluations, it should be a good choice if the evaluations
can be parallelized.

We launched each algorithm with its best configuration with different number
of evaluations and measured the best d,,;, obtained. The results are given on
figure 2.

SA performs better than the two other algorithms in every case. Furthermore,
there is no algorithm that improves faster than the others when the number of
simulations increases. So SA should stay the best even with larger number of
simulations.

6 HighScores

A highscore is the best d,,;, value obtained for a particular SIZFE and DIM. It
corresponds to the best known lower bond for the maximin value. The previous
highscores were obtained with the algorithms Iterated Local Search (see [4]) and
ESE (see [7]). According to our comparison, the simulated annealing algorithm
with the mutation operator m3 and the evaluation function ¢1¢ performs better.
We launched this algorithm on latin hypercube of dimension 3 to 10 and of

Meta-heuristics for Maximin Latin Hypercube 33

Table 6. Comparison of the effect of different evaluation function on the performance

of the algorithms

LatinHyperCube Evaluation Function

o1
o5
®10
®20
dmin
1
o5
®10
P20
dmin
1
o5
®10
P20

9/10

8/20

Scalability of algorithms for DIM 4 / SIZE 25
Drmin

GA SA ILS
142.4£0.3 155.75£0.18 118.2+0.4
153.640.2 166.07+0.06 149.9£0.3
167.4£0.2 176.47£0.06 165.7£0.2
165.8+£0.2 176.47£0.06 165.5+£0.2
161.840.2 175.264+0.07 162.0£0.2
144.5£0.2 150.00£0.10 138.3£0.2
153.3£0.1 155.58+0.04 153.840.1
153.440.1 155.68+0.02 153.9£0.1
153.5£0.1 155.64+0.02 153.740.1
153.0£0.1 155.29£0.02 153.3+0.1
381.5£0.4 406.18+0.21 332.6+0.7
396.5+0.3 415.16+0.11 376.2+0.5
410.440.2 430.68+0.09 404.1+£0.3
414.9£0.2 434.29+0.07 413.1+0.2
413.24+0.2 434.06+0.08 412.7+0.2

Scalability of algorithms for DIM 9/ SIZE 10
Drmin

157

180 156

175 155 /
170] 154

165 —_ 153

160 152

155 151

150 —&% -

145 LS 149 LS

10000 100000 1o 10000 100000 16406

nb Evaluation

nb Evaluation

Scalability of algorithms for DIM 8 / SIZE 20
Dmin

— SA
ILS

100000 1e+06
nb Evaluation

Fig. 2. Effect of the increase of the number of evaluations. We plot the minimal distance
as a function of the number of evaluations. The higher the better.

size 2 to 25 with 10 000 000 evaluations. The tables 7 and 8 show the previous
highscores obtained with ILS and ESE as well as the ones we get with SA. On
a large majority of the latin hypercubes, we obtain similar or better result.

34

A. Rimmel and F. Teytaud

SIZE DIM =3

ILS ESE Per
3 3 3
6 6 3
6 6 6
11 11 6
14 14 14
17 17 14
21 21 21
22 22 21
27 27 21
30 30 24
36 36 30
41 41 35
42 42 35
48 45 42
50 50 42
53 53 42
57 56 50
62 59 57
66 65 57
69 68 65
76 72 69
76 75 72
78 81 76
84 86 91

Table 7. Current highscores

SA

11
14
17
21
22
27
30
36
41
42
48
50
56
57
62
66
69
82
82
83
89

DIM =4
ILS ESE SA
4 4 4
T 7
12 12 12
15 15 15
22 22 22
28 28 28
42 42 42
42 42 42
50 47 50
55 55 55
63 63 63
70 70 70
7777 78
89 87 89
92 93 94
99 99 102
108 108 114
118 119 122
137 130 137
147 145 149
147 150 153
155 159 164
170 170 171
174 178 183

DIM =5
ILS ESE SA
5 5 5

8 8 8
14 14 14
24 24 24
32 32 32
40 40 40
50 50 50
61 61 61
82 82 82
80 80 82
91 91 94
102 103 104
116 114 118
131 129 134
152 151 154
159 158 163
170 170 174
187 184 191
206 206 208
229 223 232
241 235 244
250 250 260
265 266 274
282 285 294

DIM =6
ILS ESE SA
6 6 6
12 12 12
20 20 20
27T 21 27
40 40 40
52 52 52
66 63 66
82 75 82
93 91 95
110 108 111
140 136 142
139 138 143
156 154 161
173 171 178
192 190 196
212 208 221
238 231 247
259 256 266
284 279 291
306 302 314
331 325 347
351 348 364
378 374 388
408 400 419

Meta-heuristics for Maximin Latin Hypercube 35

Table 8. Current highscores

SIZE DIM =7 DIM =8 DIM =9 DIM =10
ILSESE SA ILSESE SA ILS ESE SA ILS ESE SA
2 7T 7 8 8 8 9 9 9 10 10 10
3 13 13 13 14 14 14 18 18 18 19 19 19
4 21 21 21 26 26 26 28 28 28 33 33 33
5 32 32 32 40 40 40 43 43 43 50 50 50
6 47 47 47 54 53 B4 61 61 62 68 68 68
7 62 61 62 71 70 72 8 80 81 90 &9 91
8 79 79 80 91 90 91 102101 103 114 114 116
9 95 92 95 114 112 114 128 126 128 143 142 144
10 112 109 113 133 131 133 157 154 158 173 171 175
11 131 129 132 153 152 157 181 178 184 209 206 211
12 155 152 158 181 177 183 208 204 213 240 235 243
13 181 178 184 208 205 213 242 235 246 274 268 279
14 219 215 220 242 236 245 275268 282 312 305 318
15 222 220 228 277 273 280 315309 321 356 347 363
16 249 241 253 326 317 325 357 352 364 403 393 411
17 269 266 278 331 332 343 404 396 413 451 442 462
18 297 291 304 367 361 374 466 451 469 505 496 515
19 323 323 335 398 390 408 466 469 491 569 554 576
20 356 349 369 426 425 446 512 506 528 640 625 645
21 386 380 397 467 463 482 550 548 570 647 650 672
22 421 418 433 505 501 525 593 595 623 697 691 720
23 452 448 466 545 542 566 649 640 667 736 747 T74
24 486 481 506 591 585 609 694 690 718 805 800 837
25 525 520 536 631 626 657 746 739 769 866 857 893

7 Conclusion

We presented three classical algorithms to find maximin latin hypercube: genetic
algorithm, iterated local search and simulated annealing. The experiments were
done with a fixed number of evaluations to allow easier future comparisons. We
show that the choice of the mutation operator has a great impact on the perfor-
mance of each algorithm. Using a surrogate evaluation function also significantly
improve the results. We then compared the 3 algorithms and the way they scale
up and find that simulated annealing performs better than the other. Finally,
we used simulated annealing on longer time settings to obtain scores as good as
possible for different latin hypercube. This allowed us to obtain new highscores
on most of them.

References

1. Bates, S.J., Sienz, J., Toropov, V.V.: Formulation of the optimal latin hypercube
design of experiments using a permutation genetic algorithm. AIAA 2011, 1-7
(2004)

36

10.

11.

12.

13.

14.

A. Rimmel and F. Teytaud

Bohachevsky, 1.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing
for function optimization. Technometrics 28(3), 209-217 (1986)

Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine
Learning 3(2), 95-99 (1988)

Grosso, A., Jamali, A., Locatelli, M.: Finding maximin latin hypercube designs by
iterated local search heuristics. European Journal of Operational Research 197(2),
541-547 (2009)

Holland, J.H.: Adaptation in natural and artificial systems: An introductory anal-
ysis with applications to biology, control, and artificial intelligence. U. Michigan
Press (1975)

Husslage, B., Rennen, G., Van Dam, E.R., Den Hertog, D.: Space-filling Latin
hypercube designs for computer experiments. Tilburg University (2006)

Husslage, B.G., Rennen, G., van Dam, E.R., den Hertog, D.: Space-filling latin
hypercube designs for computer experiments. Optimization and Engineering 12(4),
611-630 (2011)

Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal de-
sign of computer experiments. Journal of Statistical Planning and Inference 134(1),
268-287 (2005)

Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance de-
signs. Journal of Statistical Planning and Inference 26(2), 131-148 (1990)
Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of latin hyper-
cubes. Journal of Statistical Planning and Inference 136(9), 3231-3247 (2006)
Lourencgo, H.R.., Martin, O.C., Stiitzle, T.: Iterated local search. International series
in operations research and management science, pp. 321-354 (2003)

McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239-245 (1979)

Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference 43(3), 381-402 (1995)

Van Dam, E.R., Husslage, B., Den Hertog, D., Melissen, H.: Maximin latin hyper-
cube designs in two dimensions. Operations Research 55(1), 158-169 (2007)

	A Survey of Meta-heuristics
Used for Computing Maximin Latin Hypercube

	1 Introduction
	2 Algorithm Descriptions
	2.1 Genetic Algorithms
	2.2 Simulated Annealing
	2.3 Iterated Local Search

	3 Mutations
	4 Evaluation Functions
	5 Experiments
	5.1 Effect of Algorithm Parameters
	5.2 Effect of the Mutations
	5.3 Effect of the Evaluation Function
	5.4 Scalability of the Algorithms

	6 HighScores
	7 Conclusion
	References

