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Abstract. Local search algorithms operating in high-dimensional and
multimodal search spaces often suffer from getting trapped in a local
optima, therefore requiring many restarts. Even with multiple restarts,
their search efficiency critically depends on the choice of the neighbor-
hood structure. In this paper we propose an approach in which the need
for the restarts is exploited to improve the neighborhood definitions.
Namely, a graph clustering based linkage detection method is used to
mine the information from several runs, in order to extract variable de-
pendencies and update the neighborhood structure, variation operators
accordingly. We show that the adaptive neighborhood structure approach
enables the efficient solving of challenging global optimization problems
that are both deceptive and multimodal.

1 Introduction

Generic stochastic optimization methods like evolutionary algorithms, swarm al-
gorithms, stochastic hill climbing, simulated and quantum annealing, tabu search
etc. are often used for locating in reasonable time a good approximation of the
global optimum of hard problems, defined over large search spaces and/or ex-
hibiting multimodality, deceptiveness.

However, these methods are not always applicable as there are problems that
are intractable using fixed, problem independent operators and representations [1].
Efficient solving of such problems requires methods that can learn the structure of
a problem on the fly and use operators that adapt the linkage between variables.
In the case of population based methods the sampling offered by the elements of
the population opens the way for inferring valuable statistical information. For
these methods, the replacement of operators like crossover andmutation with a re-
peated selection – model-building – sampling process, enables the required adapt-
ability of the neighborhood structures and adequate performance.

The family of these methods, often called competent evolutionary algorithms
[2] include such examples as the fast messy genetic algorithm [3], the linkage
learning genetic algorithm [4], the extended compact genetic algorithm [5], the
Bayesian Optimization Algorithm (BOA) [6], SEAM [7], DevRep [8], Compact
Genetic Codes [9], Hierarchical Genetic Algorithm [10], hBOA [11] and DS-
GMA++ [12].
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Incorporating statistical models in trajectory based methods like stochastic
hill climbing, simulated and quantum annealing, tabu search etc. is not straight-
forward as these methods sample just one point of the search space at each step.
However, being more lightweight and prone to premature convergence, these
methods are used in conjunction with a a random restart mechanism that facili-
tates a better balance between exploration and exploitation of the search space.
Therefore, we apply learning to the results obtained from several runs, extracting
linkages and providing properly adapted search operators for future runs.

In this paper we extend the simulated annealing trajectory based stochastic
optimizer with a graph clustering based linkage detection method. We investigate
the proposed method performance on the concatenated trap function, a problem
designed to test a global optimization method’s ability to handle deceptiveness
and multiomdality.

The next Section presents and discuss some preliminary notions. The proposed
method is detailed in Section 3. Section 4 describes the experimental setup,
followed by a discussion of the results in Section 5. Finally, the paper concludes
in Section 6.

2 Preliminaries

2.1 Simulated Annealing

Simulated annealing is a generic stochastic global optimization metaheuristic
[13], inspired from the annealing process, which involves heating and controlled
cooling of solids in order to increase the size of their crystals and reduce their
defects due to the changes in internal structure .

The simulated annealing algorithm makes an analogy between the thermody-
namic free energy and the objective function. In the annealing process, a slower
rate of cooling produces a bigger decrease in energy. The simulated slow, con-
trolled cooling, effects the probability that the simulated annealing accepts a
worse solution, decreasing it over time.

In the beginning, when the artificial temperature is high the algorithm will
often accept solutions that are worse than the current solution, encouraging ex-
ploration, facilitating the escape from the basin of attraction of local optima.
As the temperature is reduced the probability of accepting worse solutions de-
creases, focusing the search more on exploitation. The balance provided by the
controlled, gradually decreasing artificial cooling enables the simulated anneal-
ing algorithm to perform well on large search spaces. The pseudo-code of the
method is presented in Alg. 1.

The simulated annealing as many other generic metaheuristics uses a fixed
neighborhood structure which can severely hinder its performance in problems
that require the discovery and efficient mixing of partial sub-solutions, building-
blocks. At each temperature the algorithm performs a number of iterations that
is controlled by a positive parameter nrtries. The algorithms terminates when
it finds a good enough solution, or when there are no improvements over the last
limitNI iterations.
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Algorithm 1. Simulated annealing

1 Define an initially high temperature T ;
2 Define a cooling schedule cooling(T );
3 Define an energy function E(state);

/* Start from a random point */

4 x← RandomState();
5 while not converged and noimprovementcount < limitNI do
6 for i← 1 : nrtries do
7 x new ← neighboor(x);
8 Δ← E(x new)− E(x);
9 if Δ < 0 then

10 x← x new;
11 else

/* Evaluate if the worse state is to be accepted */

12 if rand < e−
Δ
T then

13 x← x new;

/* Decrease the temperature according to the cooling schedule */

14 T ← cooling(T );

2.2 Graph Clustering Based Model Building

Dependent variables are detected by applying a maximum flow clustering algo-
rithms to an adjacency matrix which contains the pairwise interactions between
variables. Therefore, the method is model evaluation free, fast, scalable and eas-
ily parallelizable.

Maximum flow clustering algorithms simulate a special flow within a graph,
which promotes flow where the current is strong whilst reducing flow where the
current is weak. These procedure reveal the cluster structure within the graph,
as the flow across borders between different groups diminish with time, while it
increases within the group.

Simulation of flow through a graph is easily done by transforming the adja-
cency matrix into a column-stochastic square matrix, where each column sums
to 1. This matrix, denoted by M , can be interpreted as the matrix of the tran-
sition probabilities of a random walk (or a Markov chain) defined on the graph,
where M(j, i) represents the probability (stochastic flow) of a transition from
vertex vi to vj . Flow expansion can be simulated by computing powers of the
flow (Markov) matrix M.

One of the most well known and used maximum flow based graph cluster-
ing algorithm is the Markov Clustering Algorithm (MCL) [14]. It offers several
advantages, like a simple, elegant mathematical formulation, robustness to topo-
logical noise [15], support for easy paralellization and adaptation via a simple
parameter enables the obtaining of clusters of different granularity.
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MCL iteratively simulates random walks within a graph by applying two op-
erators called expansion and inflation, until convergence occurs. At the end of
each inflation step a pruning step is also performed, in order to reduce the com-
putational complexity by making M sparse. The MCL process may be regarded
as alternative expansion and contraction of the flow in the graph. The expansion
step is responsible in spreading the flow out of a vertex to potentially new ver-
tices and with the strengthening of the flow to those vertices which are reachable
by multiple paths. This has the effect of enhancing within-cluster flows as there
are more paths between the nodes belonging to the same cluster. The inflation
operator is responsible for both strengthening intra-cluster flow and weakening
inter-cluster flow of current and by this, introducing a non-linearity in the dis-
tribution of the flows. At the beginning the flow distribution is relatively smooth
and uniform, but with each iteration it becomes more and more peaked. In the
end, all the nodes within a tightly-linked group of nodes will start to flow to-
wards one node within the group, forming star sub-graphs associated with the
MCL limits.

The idealized Markov Cluster process, consisting just from the expansion and
inflation operators is known to converge quadratically in the neighborhood of so
called doubly idempotent matrices [14]. In practice, the numbers of epochs until
convergence is reported to be nearly always far below 100.

While several types of models can be extracted from the MCL iterants [16],
here we choose a simple approach, which extracts the linkage groups from
the clusters obtained after convergence of the MCL. Here, the nodes have found
one “attractor” node to which all of their flow is directed, corresponding to only
one non-zero entry per column in M . Nodes sharing the same “attractor” node
are grouped in clusters and their corresponding variables form a linkage group
that can be used by the modified simulated annealing algorithm.

3 Extended Simulated Annealing

The extended simulated annealing has two phases that are alternatively applied.
In the first phase, several runs of simulated annealing are performed according
to the current linkage model and the obtained result are collected in a memory.
In the second phase this accumulated search experience is exploited in order to
learn which variables are linked and the model is updated accordingly. Then
the optimization procedure continues again with the first phase but now using
a model that is more suited to the particular optimization problem. The details
of these two phases are outlined in Algorithm 2.

The parameters of the algorithm are n - number of variables, nS - num-
ber of simulated annealing runs in the search experience accumulation phase,
@stopping cond - stopping criteria which usually places a bound on the quality
of the found solution and/or time, number of objective function evaluations.

R ← corrcoef(memory) returns a matrix R of correlation coefficients calcu-
lated from an input matrixmemory whose columns are variables and whose rows
are the bits of the solution found by the particular simulated annealing runs.
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Algorithm 2. Extended simulated annealing

Input: n, nS

/* Initially each variable is independent */

1 M ← 1 : n;
2 while not @stopping cond do

/* Phase I - accumulate search experience */
3 for i = 1, nS do

/* Apply the simulated annealing algorithm */

4 Define an initially high temperature T ;
5 Define a cooling schedule cooling(T );
6 Define an energy function E(state);

/* Start from a random point */

7 x← RandomState();
8 while not converged and noimprovementcount < limitNI do

/* Perturbation according to the model M */

9 x new ← neighboor(x,M);
10 Δ← E(x new)− E(x);
11 if Δ < 0 then
12 x← x new;
13 else

/* Evaluate if the worse state is to be accepted */

14 if rand < e−
Δ
T then

15 x← x new;

/* Decrease the temperature */

16 T ← cooling(T );

17 memory[i]← x;

/* Phase II - update the model */
/* Calculate correlation coefficients between variables */

18 R← corrcoef(memory);
/* Apply MCL to extract groups of dependent variables */

19 M ←MCL(R);

The matrix R ← corrcoef(memory) is obtained from the covariance matrix
C ← cov(memory) according to the formula

R(i, j) =
C(i, j)

√
C(i, i)C(j, j)

(1)

The essence and capabilities of the proposed method lies in that the pertur-
bation for obtaining x new operates over a linkage model that is continuously
adapted. Variables that are found to be connected are always altered together.

In the beginning each variable forms a separate linkage group, for an 8 variable
problem, the initial model would be M = {[x1], [x2], . . . [x8]}. With this model
the method is equivalent to the standard simulated annealing, when generating
x new each variable is perturbed according to a mutation probability p mut.
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However, if from several runs it can be determined for example that the first
four, respectively the last two variables are correlated, the model is updated to
reflect this knowledge:M = {[x1, x2, x3, x4], [x5], [x6], [x7, x8]}. In the subsequent
runs the simulate annealing will perturb states respecting these dependencies,
always altering the clustered variables together, thus eliminating sub-solution
disruption and facilitating the mixing of these building-blocks.

4 Experiments

Deceptive functions are among the most challenging problems as they exhibit
one or more deceitful optima located far away from the global optimum. The
basins of attraction of the local-optima are much bigger than the attraction
area of the optimal solutions, thus following the objective function gradient is
misleading on average.

Order k deceptive trap function or simply k-Trap, is a function of unitation
(its value depends only on the numbers of 1’s in the input string), based on two
parameters fhigh and flow which define the degree of deception and the fitness
signal-to-noise ratio. The input that contains all but ones is maximally rewarded;
for the other cases, the fitness of the block is directly proportional to the number
of zeros, the string of all zeros being a strong local optima.

Let u be the unitation of the binary input string. The k-trap function is
defined as:

trapk(u) =

{
fhigh , if u = k;
flow − u+1

k , otherwise.
(2)

Concatenating m copies of this trap function [17] gives a global additively
separable, boundedly deceptive function over binary strings:

CTF (x) = −
m−1∑

i=0

trapk

⎛

⎝
ki+k−1∑

j=ki

xj

⎞

⎠ (3)

In this paper we operate over 120 bit length CTF problems, concatenating
m = 20 k-Trap functions based on k = 6, fhigh = flow = 1. For this setup, the
test function have 240 local optima. The global optima, the string of all ones,
has a value of -20.

In a first experiment, we tested how the simple simulated annealing performs
on this 120 bit CTF function. The performance of a stochastic search method
can severely depend on its parametrizations. As there are no definite guidelines
on how to achieve the best configuration, we decided to test a comprehensive
range of parametrizations over 20000 runs. For each run we randomly determined
values for the perturbation probability (p mut ∈ [0.01, 0.25]), the number of
maximum allowed consecutive rejections (1000 ≤ limitNI ≤ 20000) and the
number of tries per temperature (100 ≤ nrtries ≤ 2000).

In the second experiment we tested the performance of the extended method
averaged over 100 runs, using a perturbation probability p mut of 0.05, the al-
lowed maximum number of rejections limitNI was set to 2000 and we performed
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Fig. 1. Parametrizations leading to worst performance of the classical simulated
annealing

just on iteration per temperature. In the search experience accumulation phase,
the simulated annealing is run nS = 100 times.

For both methods the cooling schedule was set to Tk+1 = 0.9Tk.

5 Results

5.1 Performance of the Classical Simulated Annealing

The simple simulated annealing spent 567980353 functions evaluations in the
20000 runs. Despite the high number of trials, it was never able to find the global
optimum, always being mislead by the strong deceptiveness and multimodality
of the CTF.

Figure 1 depicts the parameter configurations which resulted in very poor
performance for the classical simulated annealing, with objective function val-
ues greater than -15. As seen, this corresponds to parametrizations where the
mutation probability is very high or both the number of allowed rejections and
trials per temperature is low.

The parametrizations leading to the best performances for the classical method
are shown in Figure 2. The plots in the parameter space reveal opposite trends,
namely that the method requires high values for the number of allowed rejec-
tions and trials per temperature. Surprisingly, the values of the perturbation
rates cover a wide spectrum, varying between 0.02 and 0.15. Represented by a
dot, this figure also shows the best solution found, which had a value of -18.5.
This value corresponds to solutions for which the method found the optimal
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Fig. 2. Parametrizations leading to best performance of the classical simulated anneal-
ing, where the method managed to correctly identify 8-11 trap functions out of the 20.
The dot denotes the best solution found, corresponding to the -18.5 fitness value.

setting of all ones for 11 k-trap sub-functions out of 20 (discovering 55% of the
correct subsolutions) while converging to the deceptive optima of all zeros on
the remaining 9 sub-functions.

Figure 3 depicts the histogram of the results obtained from the 20000 runs.
With moderate settings for the perturbation probability the classical simulated
annealing surpasses the solution of all zeros (which has a value of -16.6666) but
is rarely able to resolve - find the optimal setting of all ones for half or more of
the m = 20 k-trap sub-functions (values of -18.3333 or lower). These empirical
results confirm that classical simulated annealing is not a suitable solver for the
the CTF as this function requires the efficient mixing of building-blocks with
deceptive intra-block gradient.

5.2 Performance of the Extended Simulated Annealing

In contrast, in our second experiment the proposed extended simulated annealing
found the global optima in every single run. Figure 4 depicts the juxtaposition
of the evolution of these 100 runs, their line style signaling how many learning
cycles, model updates they required until convergence to the global optima.
The solid lines, accounting for 95% of the cases, corresponds to runs where
global optima was found after just one linkage learning phase. The remaining
5% of cases, depicted with dashed lines, corresponds to the cases where 2 or 3
neigborhood structure updates were required before convergence.
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Fig. 3. Histogram of the results obtained from 20000 runs of the classical simulated
annealing on CTF with k = 6, m = 20

In the first 100 epochs, when the model is the trivial one with every vari-
able independently perturbed, the search is equivalent to the classical simulated
annealing. Therefore, as expected, the performance is mediocre, the search never
reaching the -18 fitness threshold.

After the first 100 runs, when the first round a linkage learning is applied
we can see a huge qualitative change in performance. 95% of the time, through
epochs 101-200 the search repeatedly founds the global optimum, which has
the fitness value -20. This sharp performance gain is due to the adapted neigh-
borhood structure, linkage based perturbation which maximizes the chances of
solving k-trap sub-functions while also preventing the disruption of already con-
verged sub-solutions.

However, Figure 4 also reveals that in a few instances, on the same epoch range
severely degenerates. This happens in cases when the learnt model is not accu-
rate, containing many spurious, false linkages. Following through epochs 200-400
we can observe that even in this cases, the method recovers each time, eventu-
ally learning an accurate model and converging to the global optima. Algorithms
using probabilistic models had been long prone to the issue of premature con-
vergence, where the methods can not recover from an inadequate model derived
in the early phases from a biased sample due insufficient sampling. As the ob-
served runs suggest, the continuous cycling and transition between exploration
and exploitation provided by the simulated annealing search strategy seem to
alleviate this problem.
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Fig. 4. Juxtaposition of the 100 runs of the extended simulated annealing on CTF
with k = 6, m = 20

Fig. 5. Evolution of the average performance of the extended simulated annealing
on CTF with k = 6, m = 20. After epoch 100, following the linkage adaptation,
we observe a huge qualitative increase in the average performance, while standard
deviation remains the same.

For the runs requiring just one linkage learning round, the average conver-
gence rate along with its standard deviation is depicted in Figure 5. Again, the
huge gain in performance can be observed immediately after epoch 100, when
the neighborhood structure is adapted according to the linkage groups revealed
by the graph clustering algorithm. Aside from the greatly shifted average per-
formance, the extended simulated annealing exhibits the same search dynamics
(stable, almost constant average, same standard deviation) before and after the
neighborhood adaptation.

Figure 6 depicts the required number of objective function evaluations until
convergence of the proposed method. The cases above the box are the out-
liers, where the method required more than one model update due to the spu-
rious linkages incorporated in the first model. The average on the figure is
located at 665702.35 evaluations, with a standard deviation of 229118.249553.
The quickest convergence took 579841 evaluations while the longest one required
1872947.
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Fig. 6. Box-plot of the required number of CTF evaluations by the extended simulated
annealing

6 Conclusions

Problems requiring the discovery and mixing of sub-solutions often can not be
solved by problem independent search operators that while optimizing one sub-
problem may disrupt already converged sub-solutions.

In this paper we extended the simulated annealing stochastic optimizer with
a neighborhood structure adapting mechanism, linkage based perturbation. The
linkages, groups of dependent variables are extracted from a correlation coeffi-
cient matrix, describing the pairwise dependencies between variables by means of
MCL, a maximum flow based graph clustering algorithm. The proposed method
showed a very robust behavior, 100% success rate on a problem used to test
a method ability to overcome deceptiveness and multimodality. Comprehensive
test runs showed that the same problem can not be solved by a simulated an-
nealing using fixed neighborhood structure.

Also, the experiments revealed a very promising phenomena, namely that
the extended simulated annealing, by alternating exploration and exploitation
phases can recover from erroneous linkage models. This opens the way to study
problems where other model based search methods struggle with the issue of
premature convergence as they can not reco.

Future work will also experiment with the incorporation of richer, probabilistic
models and will address other classes of optimization problems.
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References

1. Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new genera-
tion of evolutionary algorithms. Springer (2005)

2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell (2002)

3. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. In: Proceedings of the
Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 56–64.
Morgan Kaufman (1993)

4. Harik, G.R., Goldberg, D.E.: Learning linkage. In: Belew, R.K., Vose, M.D. (eds.)
FOGA, pp. 247–262. Morgan Kaufmann (1996)

5. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE-
EC 3(4), 287 (1999)
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