
A Hybrid Ant Colony Optimization Algorithm

for the Far From Most String Problem

Christian Blum1,2 and Paola Festa3

1 Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU, San Sebastian, Spain

christian.blum@ehu.es
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3 Department of Mathematics and Applications “R. Caccioppoli”,
University of Napoli FEDERICO II, Italy

paola.festa@unina.it

Abstract. The far from most string problem belongs to the family of
string selection and comparison problems known as sequence consensus
problems, where a finite set of sequences is given and one is interested in
finding their consensus, that is, a new sequence that represents as much
as possible all the given sequences. Among the consensus problems, the
far from most string problem is computationally one of the hardest ones
with applications in several fields, including molecular biology where one
is interested in creating diagnostic probes for bacterial infections or in
discovering potential drug targets.

This paper comes with several contributions. On one side, the first
linear integer programming formulation for the considered problem is in-
troduced. On the other side, a hybrid ant colony optimization approach
for finding good approximate solution to the problem is proposed. Both
approaches are compared to the current state of the art, which is a re-
cently proposed hybrid GRASP with path-relinking. Computational re-
sults on a large set of randomly generated test instances indicate that
the hybrid ACO is very competitive.

1 Introduction

The combinatorial optimization problem tackled in this paper is known as the
far from most string problem (FFMSP). It belongs to a family of string problems
labelled as sequence consensus problems, where a finite set of sequences is given
and one is interested in finding their consensus, that is, a new sequence that
represents as much as possible all the given sequences. Several different (and
even opposing) objectives may be considered in the context of sequence consensus
problems. Examples include the following ones.

1. The consensus is a new sequence whose total distance from all given se-
quences is minimal (closest string problem) (CSP);

2. The consensus is a new sequence whose total distance from all given se-
quences is maximal (farthest string problem) (FSP);

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 C. Blum and P. Festa

3. The consensus is a new sequence far from most of the given sequences, which
is the case of the FFMSP.

Apart from introducing a linear integer programming model, the main con-
tribution of the paper is a hybrid ant colony optimization algorithm (ACO) [2]
for tackling the FFMSP. ACO algorithms are metaheuristics inspired by the
shortest path finding behaviour of natural ant colonies. The hybrid algorithm
outlined in this work concerns a sequential combination of ant colony optimiza-
tion with a mathematical programming solver. In the following, we first provide
the necessary notation for being able to state the FFMSP in a technical way.
After providing the problem definition we give a short summary on related work.

1.1 Notation

In order to be able to formally state the FFMSP, the following notation is in-
troduced.

– An alphabet Σ = {c1, . . . , ck} is a finite set of k different characters.
– si = (si1, s

i
2, . . . , s

i
m) denotes a sequence of m characters (that is, of length

m) over alphabet Σ.
– Given two sequences si and sl over Σ such that |si| = |sl|, the (generalized)

Hamming distance dH(si, sl) between si and sl is calculated as follows:

dH(si, sl) :=

|si|∑

j=1

φ(sij , s
l
j) , (1)

where sij and slj denote the character at position j in sequence si and in

sequence sl, respectively, and φ : Σ × Σ �→ {0, 1} is a predicate function
such that φ(a, b) = 0, if a = b, and φ(a, b) = 1, otherwise.

– Given a set Ω = {s1, . . . , sn} of n sequences of length m over Σ, dΩH denotes
the minimum Hamming distance between all sequences in Ω. Formally,

dΩH := min
{
dH(si, sl) | i, l ∈ {1, . . . , n}, i < l

}
. (2)

Note that 0 ≤ dΩH ≤ m.
– Each sequence s of length m over Σ is a valid solution to the FFMSP. Given

any valid solution s and a threshold value 0 ≤ t ≤ m, set P s ⊆ Ω is defined
as follows:

P s := {si ∈ Ω | dH(si, s) ≥ t}. (3)

1.2 Problem Definition

Given a fixed threshold value t (where 0 ≤ t ≤ m), a finite alphabet Σ of size
k, and a set Ω = {s1, . . . , sn} of n sequences of length m over Σ, the goal of
the FFMSP consists in finding a sequence s∗ of length m over Σ such that P s∗

A Hybrid ACO Algorithm for the FFMSP 3

is of maximal size. In other words, given a solution s, the objective function
f : Σm �→ {1, . . . , n} is defined as follows:

f(s) := |P s| (4)

Among the sequence consensus problems, the FFMSP is one of the computa-
tionally hardest. In fact, compared to the other consensus problems, it is much
harder to approximate, due to the approximation preserving reduction to the
FFMSP from the independent set problem, which is a classical and computation-
ally intractable combinatorial optimization problem. In 2003, Lanctot et al. [11]
proved that for sequences over an alphabet Σ with |Σ| ≥ 3, approximating the
FFMSP within a polynomial factor is NP-hard.

1.3 Related Work

As indicated by the available theoretical results on computational hardness,
polynomial time algorithms for the FFMSP can yield only solutions with no
constant guarantee of approximation. Moreover, with growing instance size, com-
plete techniques quickly reach their limits, and (meta-)heuristics become the only
feasible approach for deriving high-quality solutions. The first attempt in the de-
sign of efficient metaheuristic approaches has been done in 2005 by Meneses et
al. [12], who proposed a heuristic algorithm consisting of a simple greedy con-
struction followed by an iterative improvement phase. Later, in 2007 Festa [5]
designed a GRASP and more recently in 2012 Festa and Pardalos [6] proposed a
genetic algorithm. In 2012, Mousavi et al. [13] devised a new function to be used
as an alternative to the objective function when evaluating neighbor solutions
during the local search phase of the algorithm proposed in [5]. In 2013, Ferone et
al. [4] developed several pure and hybrid multistart iterative heuristics, including

� a pure GRASP approach, inspired by [5];
� a GRASP making use of path-relinking for intensification;
� a pure variable neighborhood search (VNS) approach;
� a VNS using path-relinking for intensification;
� a GRASP that uses VNS to implement the local search phase;
� and a GRASP approach that uses VNS to implement the local search phase
and path-relinking for intensification.

Among all the presented algorithms, the GRASP approach making use of
path-relinking for intensification can currently regarded to be state of the art
for obtaining very good solutions in a resonable amount of computation time.
GRASP [3, 7–9] is a multistart heuristic, where at each iteration a solution is
probabilistically generated biased by a greedy function. Subsequently, a local
search phase is applied starting from the just built solution until a locally opti-
mal solution is found. Repeated applications of the construction procedure yield
diverse starting solutions for the local search and the best overall local optimal
solution is returned as the result.

4 C. Blum and P. Festa

1.4 Organization of the Paper

The remainder of this article is organized as follows. In Section 2, we present
the first linear integer programming formulation for the FFMSP. In Section 3,
we describe a hybrid ant colony approach based on a combination of ant colony
optimization and a mathematical programming solver. Computational results for
both the linear integer programming model and the ACO approach are reported
in Section 4. Finally, concluding remarks and an outlook to future work are given
in Section 5.

2 A Linear Integer Programming Model

First, we developed a linear integer programming model for solving the FFMSP.
This model works on two sets of binary variables. The first set contains for each
position i (i = 1, . . . ,m) of a possible solution and for each character cj ∈ Σ
(j = 1, . . . , k) a binary variable xi,cj ∈ {0, 1}. The second set consists of a binary
variable yr ∈ {0, 1} (r = 1, . . . , n) for each of the n input sequences provided in
set Ω. The linear integer program itself can then be stated as follows.

max

n∑

r=1

yr

subject to:
∑

cj∈Σ

xi,cj = 1 for i = 1, . . . ,m

m∑

i=1

xi,sri
≤ m− tyr for r = 1, . . . , n

xi,cj , yr ∈ {0, 1}

(5)

(6)

(7)

Hereby, constraints (6) ensure that for each position i of a possible solution
exactly one character from Σ is chosen. Moreover, constraints (7) ensure that
yr can only be set to 1 if and only if the number of differences between sr ∈ Ω
and the possible solution (as defined by the setting of the variables xi,cj) is at
least t. Remember, in this context, that sri denotes the character at position i in
sr ∈ Ω.

3 The Proposed Approach

This section is dedicated to a description of the hybrid ACO approach that we
developed for tackling the FFMSP. In the following we first deal with prelimi-
naries, before the framework of the proposed algorithm is outlined.

A Hybrid ACO Algorithm for the FFMSP 5

3.1 Preliminaries

Just like any other learning-based algorithm, ACO generally faces difficulties in
the case of an objective function characterized by large plateaus. Unfortunately,
this is exactly the case of the FFMSP, because the range of possible objective
function values—that is, {0, . . . , n}—is rather small. Therefore, we decided to
introduce a refined way for comparing between valid solutions as follows. First,
given a valid solution s, set Qs ⊆ Ω is indirectly defined as follows:

– |Qs| = max{|P s|+ 1, n};
– dH(s′, s) ≥ dH(s′′, s) for all s′ ∈ Qs and s′′ ∈ Ω \Qs.

In words, set Qs consists of all sequences s′ ∈ Ω that have at least Hamming
distance t with respect to s. Moreover, in case |P s| < n, set Qs also contains
the sequence ŝ ∈ Ω \ P s that has, among all sequence in Ω \ P s, the largest
Hamming distance with respect to s.

Given two valid solutions s and s′, a comparison operator (denoted by >lex)
is used for comparing them. This operator is defined in the following way. It
holds that s >lex s′ if and only if

f(s) > f(s′) or

⎛

⎝f(s) = f(s′) and
∑

s′′∈Qs

dH(s′′, s) >
∑

s′′∈Qs′
dH(s′′, s′)

⎞

⎠ . (8)

In other words, the comparison between s and s′ is done in a lexicographical
way with the original objective function value as a first criterion, and the sum
of the Hamming distances of the solutions from the respective sets Qs and Qs′

with respect to s and s′ as a second criterion. It is intuitively assumed that the
solution for which this sum is greater is somehow closer to a solution with a
higher objective function value.

The second aspect of this section concerns the definition of the pheromone
model and the greedy information, both being of crucial importance for any
ACO algorithm. The pheromone model T consists of a pheromone value τi,cj
for each combination of a position i (i = 1, . . . ,m) in a solution sequence, and a
letter cj ∈ Σ. Moreover, to each of these combinations is assigned a greedy value
ηi,cj which measures the desirability to assign letter cj to position i. Intuitively,
value ηi,cj should be reverse-proportional to the number of occurences of letter
cj at position i in the n input sequences. That is,

ηi,cj :=
(n− |{s ∈ Ω | si = cj}|)

n
. (9)

3.2 Algorithmic Framework

The general framework of the proposed algorithm (see Algorithm 1) is as fol-
lows. First of all, calls to function RunACO(sbs) are executed until either the time
limit tlimACO is reached, or the number of unsuccessful calls to RunACO(sbs),

6 C. Blum and P. Festa

Algorithm 1. (Hybrid) ACO for the FFMSP

1. input: Ω, Σ, t, tlimACO, runlimACO, tlimCPLEX

2. sbs := null
3. runsACO := 0
4. while time limit tlimACO not reached and runsACO < runlimACO do
5. s := RunACO(sbs)
6. if s >lex sbs then
7. sbs := s
8. runsACO := 0
9. else

10. runsACO := runsACO + 1
11. end if
12. end while
13. if time limit tlimCPLEX not reached then
14. sbs := SolutionPolishing(sbs, tlimCPLEX)
15. end if
16. output: the best-so-far solution sbs

as counted by runsACO, has reached the limit runlimACO. Hereby, a call to
RunACO(sbs) is regarded as unsuccessful if the best-so-far solution sbs was not
improved during the run. Function RunACO(sbs) takes the best solution found
so far (sbs) as input and applies an ACO algorithm (as outlined below) until the
convergence of the pheromone values is reached.

After this first phase (lines 4–12 of Algorithm 1) the algorithm possibly applies
a second phase in which the hybridization with a mathematical programming
solver takes place. This hybrid algorithm component works as follows. The best
solution obtained by the ACO-phase is given to the MIP-solver CPLEX as a
starting solution (see, for example, page 531 of the IBM ILOG CPLEX V12.1
user manual: Starting from a Solution: MIP Starts). CPLEX is then used to ap-
ply solution polishing to the given starting solution until the computation time
limit tlimCPLEX is reached (see, for example, page 521 of the IBM ILOG CPLEX
V12.1 user manual: Solution polishing). This is done in function SolutionPolish-
ing(sbs, tlimCPLEX). Solution polishing can be seen as a black box local search
based on branch & cut, with the aim to improve a solution, rather than proving
optimality. The best solution found after this phase is provided as output of the
algorithm.

Note that a hybrid algorithm is obtained by a setting of tlimACO < tlimCPLEX.
On the other side, the pure ACO approach can be applied by setting, for example,
tlimCPLEX = 0 and by assigning a very large value to runlimACO (in order to
avoid that the while-loop of line 4 is stopped before the computation time limit
tlimACO is reached).

3.3 The ACO Phase

In the following, we focus on the description of function RunACO(sbs) of Algo-
rithm1,which is pseudo-coded inAlgorithm2.Note that theACO-implementation

A Hybrid ACO Algorithm for the FFMSP 7

Algorithm 2. Function RunACO(sbs) of Algorithm 1

1. input: sbs

2. srb := null, cf := 0
3. Initialize all pheromone values of T to 0.5
4. while cf < 0.99 do
5. sib := null
6. for all na artificial ants do
7. s := ConstructSolution(T)
8. s := LocalSearch(s)
9. if s >lex sib then sib := s

10. end for
11. sib := PathRelinking(sib, sbs)
12. if sib >lex srb then srb := sib

13. if sib >lex sbs then sbs := sib

14. ApplyPheromoneUpdate(cf ,T ,sib,srb)
15. cf := ComputeConvergenceFactor(T)
16. end while
17. output: the best-so-far solution sbs

used in this function is very similar to a MAX –MIN Ant System (MMAS)
implemented in the Hyper-Cube Framework (HCF) [14, 1]. The function takes
as input the best-so-far solution sbs. At the start, first, all pheromone values of T
are initialized to 0.5. Then, at each iteration, na = 10 solutions are constructed
in function ConstructSolution(T) on the basis of pheromone and greedy informa-
tion. Local search is applied to each of these solutions in function LocalSearch().
Finally, path-relinking is applied to the best solution sib (after local search) gen-
erated in the current iteration. Solution sib is also referred to as the iteration-best
solution. Path-relinking is applied in function PathRelinking(sib, sbs). Hereby, sib

serves as initial solution and the best-so-far solution sbs serves as guiding so-
lution. After updating (if necessary) the best-so-far solution and the so-called
restart-best solution, which is the best solution found so far during the current
application of RunACO(), the pheromone update is performed in function Ap-
plyPheromoneUpdate(cf ,T ,sib,srb). Finally, at the end of each iteration, the new
convergence factor value cf is computed in function ComputeConvergenceFac-
tor(T). In the following we outline the working of the different functions in more
detail.

ConstructSolution(T): For the construction of a new solution s, a letter from Σ
is chosen successively for all positions from 1 to m. The letter choice for each
position 1 ≤ i ≤ m is hereby performed as follows. First, for each letter cj ∈ Σ
a choice probability pi,cj for position i is calculated as follows:

pi,cj :=
τi,cj · ηi,cj∑
c∈Σ τi,c · ηi,c

(10)

8 C. Blum and P. Festa

Then, a value z is chosen uniformly at random from [0.5, 1.0]. In case z ≤ drate,
the letter c ∈ Σ with the largest probability value is chosen for position i. Oth-
erwise, a letter c ∈ Σ is chosen randomly with respect to the probability values.
Hereby, drate is a parameter of the algorithm, which was set to 0.8 after tuning
by hand.

LocalSearch(s) and PathRelinking(sib, sbs): The local search and path-relinking
procedures used in this work are the same as the ones developed in the context
of the GRASP algorithm published in [4]. Therefore, we only provide a short
text-based description. For the pseudo-code we refer the interested reader to the
original work.

The neighborhood of a solution s considered for the local search consists in
all solutions that can be obtained by ex-changing exactly one character with a
different one. The positions of a solution s are examined in a certain order, and, as
soon as an improving neighbor is found, this neighbor is accepted as new current
solution. The procedure stops once no improving neighbor can be found. The
order in which positions are examined is randomly chosen for each application
of local search, which is actually the only difference of our implementation in
comparison to the one as given in [4].

Path-relinking is a concept initially proposed in [10] for the search intensifi-
cation between two solutions. The path-relinking procedure that we applied in
function PathRelinking(sib, sbs) works roughly as follows. Solution sib is used as
initial solution, and the best-so-far solution sbs as guiding solution. The posi-
tions that both solutions have in common remain untouched. The solution space
spanned by the positions that are different in the two solutions is explored by
generating a path in the solution space linking solution sib with sbs. The best
solution found on this path is provided as output of path-relinking.

ApplyPheromoneUpdate(cf ,T ,sib,srb): The ACO procedure makes use of at most
two different solutions for updating the pheromone values, namely solutions sib

and srb. The weight of each solution for the pheromone update is determined as
a function of cf, the convergence factor. The pheromone values τi,cj are updated
as follows:

τi,cj := τi,cj + ρ · (ξi,cj − τi,cj) , (11)

where
ξi,cj := κib ·Δ(sibi , cj) + κrb ·Δ(srbi , cj) . (12)

Hereby, function Δ(s, cj) evaluates to 1 in case character cj is to be found at
position i of solution s. Otherwise, the function evaluates to 0. Moreover, κib is
the weight of solution sib and κrb the one of s

rb. It is required that κib+κrb = 1.
The weight values that we chose are the standard ones shown in Table 1. Finally,
note that the algorithm works with upper and lower bounds for the pheromone
values, that is, τmax = 0.999 and τmin = 0.001. In case a pheromone values sur-
passes one of these limits, the value is set to the corresponding limit. This has
the effect that a complete convergence of the algorithm is avoided.

A Hybrid ACO Algorithm for the FFMSP 9

Table 1. Setting of κib and κrb depending on the convergence factor cf

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0
κrb 0 1/3 2/3 1

ComputeConvergenceFactor(T): The formula that was used for computing the
value of the convergence factor is as follows:

cf := 2

⎛

⎝

⎛

⎝

∑
τ∈T

max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

⎞

⎠− 0.5

⎞

⎠

This implies that at the start of function RunACO(sbs), cf has value zero. On
the other side, in the case in which all pheromone values are either at τmin or
at τmax, cf has a value of one. In general, cf moves in [0, 1]. This completes the
description of the proposed algorithm.

4 Experimental Evaluation

We implemented the proposed algorithm in ANSI C++ using GCC 4.7.3 for com-
piling the software. Moreover, the mathematical program outlined in Section 2
was solved with IBM ILOG CPLEX V12.1. The same version of CPLEX was
used within the hybrid ACO approach. The experimental results that we outline
in the following were obtained on a cluster of PCs with ”Intel(R) Xeon(R) CPU
5160” CPUs of 4 nuclii of 3000 MHz and 4 Gigabyte of RAM.

4.1 Problem Instances

For the purpose of comparing to the state of the art, the algorithms proposed
in this paper were applied to the set of benchmark instances introduced in [4].
This set consists of random instances of different size. More specifically, the
number of input sequences (n) is in {100, 200}, and the length of the input
sequences (m) is in {300, 600, 800}. In all cases, the alphabet size is four, that
is, |Σ| = 4. For each combination of n and m, the set consists of 100 random
instances. This makes a total of 600 instances. Finally, as in [4], our algorithms
were applied to all instances for different settings of parameter t. In particular,
t ∈ {0.75m, 0.8m, 0.85m}.

4.2 Results

We applied a pure version of ACO (tlimACO = 90s, tlimCPLEX = 0s, runlimACO =
very large integer) and a hybrid version of ACO (tlimACO = 60s, tlimCPLEX =
90s, runlimACO = 10) exactly once to each problem instances. This was done
for each of the three considered values for t. The (total) computation time limit

10 C. Blum and P. Festa

Table 2. Numerical results

n,m, t GRASP+PR CPLEX ACO HyACO
100, 300, t = 0.75m 100 100 100 100
100, 300, t = 0.8m 79.61 69.21 73.55 77.84
100, 300, t = 0.85m 13.18 22.08 24.64 28.3
100, 600, t = 0.75m 100 100 100 100
100, 600, t = 0.8m 80.13 66.95 69.12 72.97
100, 600, t = 0.85m 4.98 19.38 20.82 22.82
100, 800, t = 0.75m 100 100 100 100
100, 800, t = 0.8m 82.64 67.28 67.43 70.94
100, 800, t = 0.85m 1.84 18.3 19.84 21.66
200, 300, t = 0.75m 200 200 199.38 200
200, 300, t = 0.8m 100 75.32 104.3 104.17
200, 300, t = 0.85m 11.9 19.16 27.1 28.59
200, 600, t = 0.75m 200 200 199.99 200
200, 600, t = 0.8m 88.49 59.29 85.53 85.02
200, 600, t = 0.85m 2.42 18.12 21.03 21.9
200, 800, t = 0.75m 200 200 199.99 200
200, 800, t = 0.8m 73.08 54.31 78.54 77.95
200, 800, t = 0.85m 0.21 18.56 19.14 20.4

for each run was set to 90 CPU seconds in order to be comparable to the re-
sults reported for the GRASP hybridized with path-relinking in [4]. These three
algorithms are henceforth referred to by ACO, HyACO, and GRASP+PR. More-
over, the mathematical programming solver CPLEX was applied with a CPU
time limit of 90 seconds to each problem instance. Note that we report the values
of the best feasible solutions found by CPLEX within the available computation
time. The corresponding solutions are (expect for the case t = 0.75m) not proven
to be optimal ones. The results are reported in Table 2. Note that for each com-
bination of n, m, and t the given values are averages over the results for 100
problem instances. In each case, the best results are shown in bold font. For the
analysis of the results, the three cases resulting from t ∈ {0.75m, 0.8m, 0.85m}
are treated seperately. This is because the behaviour of the algorithms changes
greatly from one case to another.

Case t = 0.75m: This case results clearly in being the easiest one for all al-
gorithms. In fact, GRASP+PR, CPLEX and HyACO find optimal solution to
all 600 problem instances. The only algorithm that has slight difficulties when
n = 200 is the pure ACO approach, which does not find an optimal solution in
a few cases.

Case t = 0.8m: In this case, CPLEX is not able to prove optimality for any of
the 600 instances. In fact, especially for the larger instances—that is, instances
with n = 200—the performance of CPLEX decreases strongly. Concerning a
comparison of the two ACO version the following can be observed. HyACO ap-
pears to outperform ACO consistently for the smaller instances (n = 100). This
is not the case anymore for the larger instances, where the performance of the

A Hybrid ACO Algorithm for the FFMSP 11

50

60

70

80

90

100

n=100, m=300 n=100, m=600 n=100, m=800 n=200, m=300 n=200, m=600 n=200, m=800
Instance set

R
es

ul
t

Algorithm
GRASP+PR
CPLEX
ACO
ACO+CPLEX

(a) Results for all instances with t = 0.8m.

0

10

20

30

n=100, m=300 n=100, m=600 n=100, m=800 n=200, m=300 n=200, m=600 n=200, m=800
Instance set

R
es

ul
t

Algorithm
GRASP+PR
CPLEX
ACO
ACO+CPLEX

(b) Results for all instances with t = 0.85m.

Fig. 1. Graphical representation of the results from Table 2 for t = 0.8m (see (a)) and
t = 0.85m (see (b))

two algorithms is comparable. GRASP+PR outperforms both ACO approaches
on the set of smaller instances. However, this seems to change with growing in-
stance size. In fact, when n = 200 and m ∈ {300, 800} both ACO approaches
outperform GRASP+PR. The results for this case are also shown in graphical
form in Figure 1(a).

Case t = 0.85m: The results for this case are quite surprising. In fact, comparing
the results of GRASP+PR with the results of the three new approaches, it turns
out that GRASP+PR is not at all able to solve this case (see also the graphical
representation of the results in Figure 1(b). Concerning a comparison of the three
new approaches, it appears that HyACO consistently outperforms the pure ACO
approach, which, in turn, consistently outperforms CPLEX.

5 Conclusions and Future Work

In this work we introduced a pure and a hybrid ACO approach for tackling the
so-called far from most string problem. Moreover, we developed the first linear
integer programming model for this problem. Finally, we described an experi-
mental evaluation and a comparison to the state of the art from the literature,

12 C. Blum and P. Festa

which is a GRASP algorithm extended with path-relinking. The comparison
showed that especially the hybrid ACO approach is very competitive, outper-
forming GRASP in particular for one of the three considered problem cases.

Future lines of work will be focused in particular on the one problem case
(out out three) in which the ACO approaches seem to have slight disadvantages
with respect to GRASP. In addition, we plan to test out approach on a larger
set of instances possibly including real-world instances.

Acknowledgments. This work was supported by grant TIN2012-37930 of the
Spanish Government. In addition, support is acknowledged from IKERBASQUE,
the Basque Foundation for Science.

References

1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Man, Systems and Cybernetics – Part B 34(2), 1161–1172
(2004)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
3. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set

covering problem. Oper. Res. Lett. 8, 67–71 (1989)
4. Ferone, D., Festa, P., Resende, M.: Hybrid metaheuristics for the far from most

string problem. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 174–188. Springer, Heidelberg (2013)

5. Festa, P.: On some optimization problems in mulecolar biology. Mathematical Bio-
science 207(2), 219–234 (2007)

6. Festa, P., Pardalos, P.: Efficient solutions for the far from most string problem.
Annals of Operations Research 196(1), 663–682 (2012)

7. Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro, C.,
Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Aca-
demic Publishers (2002)

8. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part I: Algorithms.
International Transactions in Operational Research 16(1), 1–24 (2009)

9. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part II: Applica-
tions. International Transactions in Operational Research 16(2), 131–172 (2009)

10. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39, 653–684 (2000)

11. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Information and Computation 185(1), 41–55 (2003)

12. Meneses, C., Oliveira, C., Pardalos, P.: Optimization techniques for string selection
and comparison problems in genomics. IEEE Engineering in Medicine and Biology
Magazine 24(3), 81–87 (2005)

13. Mousavi, S., Babaie, M., Montazerian, M.: An improved heuristic for the far from
most strings problem. Journal of Heuristics 18, 239–262 (2012)

14. Stützle, T., Hoos, H.H.: MAX -MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

	A Hybrid Ant Colony Optimization Algorithmfor the Far From Most String Problem
	1 Introduction
	1.1 Notation
	1.2 Problem Definition
	1.3 Related Work
	1.4 Organization of the Paper

	2 A Linear Integer Programming Model
	3 The Proposed Approach
	3.1 Preliminaries
	3.2 Algorithmic Framework
	3.3 The ACO Phase

	4 Experimental Evaluation
	4.1 Problem Instances
	4.2 Results

	5 Conclusions and Future Work
	References

