
Christian Blum
Gabriela Ochoa (Eds.)

 123

LN
CS

 8
60

0

14th European Conference, EvoCOP 2014
Granada, Spain, April 23–25, 2014
Revised Selected Papers

Evolutionary Computation
in Combinatorial Optimization

Lecture Notes in Computer Science 8600
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Christian Blum Gabriela Ochoa (Eds.)

Evolutionary Computation
in Combinatorial Optimization

14th European Conference, EvoCOP 2014
Granada, Spain, April 23-25, 2014
Revised Selected Papers

13

Volume Editors

Christian Blum
IKERBASQUE, Basque Foundation for Science
University of the Basque Country
Department of Computer Science and Artificial Intelligence
Paseo Manuel Lardizabal 1, 20018 San Sebastian, Spain
E-mail: christian.c.blum@gmail.com

Gabriela Ochoa
University of Stirling, School of Natural Sciences
Department of Computing Science and Mathematics
Cottrell Building, Stirling FK9 4LA, UK
E-mail: gabriela.ochoa@cs.stir.ac.uk

Cover illustration designed by Laura Pirovano.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44319-4 e-ISBN 978-3-662-44320-0
DOI 10.1007/978-3-662-44320-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014944311

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

During past decades, metaheuristic algorithms have been shown to be provenly
effective for a wide range of hard combinatorial optimization problems arising
in a variety of industrial, economic, and scientific settings. Well-known exam-
ples of metaheuristics include, but are not limited to, ant colony optimization,
evolutionary algorithms, greedy randomized adaptive search procedures, iter-
ated local search, simulated annealing, tabu search and variable neighborhood
search. Metaheuristics have been applied to many different types of optimization
problems, including scheduling, timetabling, network design, transportation and
distribution, vehicle routing, packing and cutting, satisfiability and general inte-
ger linear programing. The series of EvoCOP events is dedicated, in particular,
to algorithmic advances in this field of research.

The first edition of EvoCOP was held in 2001. Since then the event has been
held annually. Noteably, EvoCOP was the first event specifically dedicated to the
application of evolutionary computation and related methods to combinatorial
optimization problems. Originally held as a workshop, EvoCOP eventually be-
came a conference in 2004. Past events gave researchers an excellent opportunity
to present their latest research and to discuss current developments and appli-
cations. Following the general trend of the disappearance of boundaries between
different metaheuristics, EvoCOP has broadened its scope in recent years and
has solicited papers on any kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2014, the 14th European
Conference on Evolutionary Computation in Combinatorial Optimization. It was
held in Granada, Spain, during April 23–25, 2014, jointly with EuroGP 2014, the
17th European Conference on Genetic Programming, EvoBIO 2014, the 12th Eu-
ropean Conference on Evolutionary Computation, Machine Learning and Data
Mining in Computational Biology, EvoMUSART 2014, the Third International
Conference on Evolutionary and Biologically Inspired Music, Sound, Art and
Design, and EvoApplications 2014 (formerly EvoWorkshops), which consisted of
13 individual tracks ranging from complex systems over evolutionary algorithms
in energy applications to evolutionary robotics. Since 2007, all these events are
grouped under the collective name EvoStar, and constitute Europe’s premier
co-located event on evolutionary computation and metaheuristics.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, 3906, 4446, 4972, 5482, 6022, 6622, 7245, 7832). Below we
report statistics for each conference.

VI Preface

EvoCOP submitted accepted acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%
2008 69 24 34.8%
2009 53 21 39.6%
2010 69 24 34.8%
2011 42 22 52.4%
2012 48 22 45.8%
2013 50 23 46.0%
2014 42 20 47.6%

The rigorous, double-blind reviewing process of EvoCOP 2014 resulted in
the selection of 20 out of 42 submitted papers; the acceptance rate was 47.6%.
Even though slightly lower, the number of submissions was in line with previous
years, which is–given the current times of crisis and limited funding–a rather
remarkable achievement. At this point we would like to emphasize the work of
the Program Committee. In fact, the dedicated work of our Program Committee
members is essential for the continuing success of EvoCOP. We would also like to
mention that acceptance/rejection decisions were not only based on the received
referee reports but also on a personal evaluation of the program chairs.

There are various persons and institutions that contributed to the success of
the conference and to whom we would like to express our appreciation. First of
all, we thank the local organizers of EvoStar 2014, J.J. Merelo and his team,
from the University of Granada. They did an extraordinary job. Furthermore,
we would like to thank Marc Schoenauer from Inria (France) for his continu-
ing support concerning the MyReview conference management system. We also
thank Kevin Sim from Edinburgh Napier University, Mauro Castelli from the
Universidade Nova de Lisboa and Pablo Garćıa Sánchez from the University of
Granada for an excellent web site and publicity material. Thanks are also due
to Jennifer Willies and the Institute for Informatics and Digital Innovation at
Napier University in Edinburgh, Scotland, for administrative support and event
coordination. Finally, we gratefully acknowledge the University of Granada for
its support to EvoStar.

Last, but not least, we would like to thank Carlos Cotta, Peter Cowling,
Jens Gottlieb, Jin-Kao Hao, Jano van Hemert, Peter Merz, Martin Middendorf,
and Günther R. Raidl for their hard work and dedication at past editions of
EvoCOP, which contributed to making this conference one of the reference events
in evolutionary computation and metaheuristics.

May 2014 Christian Blum
Gabriela Ochoa

Organization

EvoCOP 2014 was organized jointly with EuroGP 2014, EvoBIO 2014,
EvoMUSART 2014, and EvoApplications 2014.

Organizing Committee

PC Chairs

Christian Blum IKERBASQUE
University of the Basque Country, Spain

Gabriela Ochoa University of Stirling, UK

Local Organization

Juan J. Merelo University of Granada, Spain
The whole organizer team of the University
of Granada

Publicity Chairs

Kevin Sim University of Edinburgh, UK
Mauro Castelli Universidade Nova de Lisboa, Portugal
Pablo Garćıa Sánchez University of Granada, Spain

EvoCOP Steering Committee

Carlos Cotta Universidad de Málaga, Spain
Peter Cowling University of York, UK
Jens Gottlieb SAP AG, Germany
Jin-Kao Hao University of Angers, France
Jano van Hemert University of Edinburgh, UK
Peter Merz Hannover University of Applied Sciences and

Arts, Germany
Martin Middendorf University of Leipzig, Germany
Günther Raidl Vienna University of Technology, Austria

Program Committee

Adnan Acan Eastern Mediterranean University,
Turkey

Hernán Aguirre Shinshu University, Japan
Enrique Alba Universidad de Málaga, Spain

VIII Organization

Mehmet Emin Aydin University of Bedfordshire, UK
Ruibin Bai University of Nottingham, UK
Thomas Bartz-Beielstein Cologne University of Applied Sciences,

Germany
Maria Blesa Universitat Politècnica de Catalunya, Spain
Christian Blum IKERBASQUE and University of the Basque

Country, Spain
Sandy Brownlee University of Stirling, UK
Rafael Caballero University of Málaga, Spain
Alexandre Caminada UTBM, France
Pedro Castillo Universidad de Granada, Spain
José Francisco Chicano Garcia Universidad de Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Peter Cowling University of York, UK
Keshav Dahal University of the West of Scotland, UK
Karl Doerner Johannes Kepler University Linz, Austria
Benjamin Doerr LIX, Ecole Polytechnique, France
Anton V. Eremeev Omsk Branch of Sobolev Institute of

Mathematics, Russia
Francisco Fernández de Vega University of Extremadura, Spain
Bernd Freisleben University of Marburg, Germany
Philippe Galinier Ecole Polytechnique de Montreal, Canada
Adrien Goeffon University of Angers, France
Jens Gottlieb SAP, Germany
Walter Gutjahr University of Vienna, Austria
Jin-Kao Hao University of Angers, France
Richard F. Hartl University of Vienna, Austria
Emma Hart Edinburgh Napier University, UK
Geir Hasle SINTEF Applied Mathematics, Norway
István Juhos University of Szeged, Hungary
Graham Kendall University of Nottingham, UK
Joshua Knowles University of Manchester, UK
Mario Köppen Kyushu Institute of Technology, Japan
Jozef Kratica University of Belgrade, Serbia
Frédéric Lardeux University of Angers, France
Rhyd Lewis Cardiff University, UK
Arnaud Liefooghe Université des Sciences et Technologies de Lille,

France
José Antonio Lozano University of the Basque Country, Spain
Zhipeng Lu HUST, China
Penousal Machado University of Coimbra, Portugal
Dirk C. Mattfeld University of Braunschweig, Germany
Barry McCollum Queen’s University Belfast, UK
Juan Julián Merelo University of Granada, Spain

Organization IX

Peter Merz Hannover University of Applied
Sciences and Arts, Germany

Martin Middendorf Universität Leipzig, Germany
Julian Molina University of Málaga, Spain
Antonio Mora University of Granada, Spain
Pablo Moscato The University of Newcastle, Australia
Christine L. Mumford Cardiff University, UK
Nysret Musliu Vienna University of Technology, Austria
Yuichi Nagata Tokyo Institute of Technology, Japan
Giuseppe Nicosia University of Catania, Italy
Gabriela Ochoa University of Stirling, UK
Beatrice Ombuki-Berman Brock University, Canada
Mario Pavone University of Catania, Italy
Francisco J.B. Pereira Universidade de Coimbra, Portugal
Daniel Cosmin Porumbel University of Artois, France
Jakob Puchinger Austrian Institute of Technology,

Austria
Günther Raidl Vienna University of Technology,

Austria
Marcus Randall Bond University, Queensland, Australia
Marc Reimann Warwick Business School, UK
Eduardo Rodriguez-Tello Civerstav - Tamaulipas, Mexico
Andrea Roli Università degli Studi di Bologna, Italy
Frédéric Saubion University of Angers, France
Marc Schoenauer Inria, France
Patrick Siarry Université Paris-Est Créteil Val-de-Marne,

France
Kevin Sim Edinburgh Napier University, UK
Jim Smith University of the West of England, UK
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
El-ghazali Talbi Université des Sciences et Technologies de Lille,

France
Kay Chen Tan National University of Singapore, Singapore
Jorge Tavares Microsoft, Germany
Jano van Hemert University of Edinburgh, UK
Nadarajen Veerapen University of Stirling, UK
Sebastien Verel Université de Nice Sophia Antipolis, France
Takeshi Yamada NTT Communication Science Laboratories,

Japan
Shengxiang Yang De Montfort University, UK

Table of Contents

A Hybrid Ant Colony Optimization Algorithm for the Far From Most
String Problem . 1

Christian Blum and Paola Festa

A Parametric Framework for Cooperative Parallel Local Search 13
Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet

A Survey of Meta-heuristics Used for Computing Maximin Latin
Hypercube . 25

Arpad Rimmel and Fabien Teytaud

An Analysis of Parameters of irace . 37
Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

An Improved Multi-objective Algorithm for the Urban Transit Routing
Problem . 49

Matthew P. John, Christine L. Mumford, and Rhyd Lewis

An Iterated Greedy Heuristic for Simultaneous Lot-Sizing and
Scheduling Problem in Production Flow Shop Environments 61

Harlem M.M. Villadiego, José Eĺıas C. Arroyo,
and André Gustavo dos Santos

Balancing Bicycle Sharing Systems: An Approach for the Dynamic
Case . 73

Christian Kloimüllner, Petrina Papazek, Bin Hu,
and Günther R. Raidl

Cooperative Selection: Improving Tournament Selection via Altruism . . . 85
Juan Luis Jiménez Laredo, Sune S. Nielsen, Grégoire Danoy,
Pascal Bouvry, and Carlos M. Fernandes

Diversity-Driven Selection of Multiple Crossover Operators
for the Capacitated Arc Routing Problem . 97

Pietro Consoli and Xin Yao

Dynamic Period Routing for a Complex Real-World System:
A Case Study in Storm Drain Maintenance . 109

Yujie Chen, Peter Cowling, and Stephen Remde

Elementary Landscape Decomposition of the Hamiltonian Path
Optimization Problem . 121

Darrell Whitley and Francisco Chicano

XII Table of Contents

Gaussian Based Particle Swarm Optimisation and Statistical Clustering
for Feature Selection . 133

Mitchell C. Lane, Bing Xue, Ivy Liu, and Mengjie Zhang

Global Optimization of Multimodal Deceptive Functions 145
David Iclănzan

Learning Inherent Networks from Stochastic Search Methods 157
David Iclănzan, Fabio Daolio, and Marco Tomassini

Metaheuristics for the Pick-Up and Delivery Problem with Contracted
Orders . 170

Philip Mourdjis, Peter Cowling, and Martin Robinson

Modeling an Artificial Bee Colony with Inspector for Clustering
Tasks . 182

Cosimo Birtolo, Giovanni Capasso, Davide Ronca,
and Gennaro Sorrentino

Personalized Multi-day Trips to Touristic Regions:
A Hybrid GA-VND Approach . 194

Ali Divsalar, Pieter Vansteenwegen, Masoud Chitsaz,
Kenneth Sörensen, and Dirk Cattrysse

Phase Transition and Landscape Properties of the Number Partitioning
Problem . 206

Khulood Alyahya and Jonathan E. Rowe

The Firefighter Problem: Application of Hybrid Ant Colony
Optimization Algorithms . 218

Christian Blum, Maria J. Blesa, Carlos Garćıa-Mart́ınez,
Francisco J. Rodŕıguez, and Manuel Lozano

The Influence of Correlated Objectives on Different Types of P-ACO
Algorithms . 230

Ruby L.V. Moritz, Enrico Reich, Matthias Bernt,
and Martin Middendorf

Author Index . 243

A Hybrid Ant Colony Optimization Algorithm

for the Far From Most String Problem

Christian Blum1,2 and Paola Festa3

1 Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU, San Sebastian, Spain

christian.blum@ehu.es
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3 Department of Mathematics and Applications “R. Caccioppoli”,
University of Napoli FEDERICO II, Italy

paola.festa@unina.it

Abstract. The far from most string problem belongs to the family of
string selection and comparison problems known as sequence consensus
problems, where a finite set of sequences is given and one is interested in
finding their consensus, that is, a new sequence that represents as much
as possible all the given sequences. Among the consensus problems, the
far from most string problem is computationally one of the hardest ones
with applications in several fields, including molecular biology where one
is interested in creating diagnostic probes for bacterial infections or in
discovering potential drug targets.

This paper comes with several contributions. On one side, the first
linear integer programming formulation for the considered problem is in-
troduced. On the other side, a hybrid ant colony optimization approach
for finding good approximate solution to the problem is proposed. Both
approaches are compared to the current state of the art, which is a re-
cently proposed hybrid GRASP with path-relinking. Computational re-
sults on a large set of randomly generated test instances indicate that
the hybrid ACO is very competitive.

1 Introduction

The combinatorial optimization problem tackled in this paper is known as the
far from most string problem (FFMSP). It belongs to a family of string problems
labelled as sequence consensus problems, where a finite set of sequences is given
and one is interested in finding their consensus, that is, a new sequence that
represents as much as possible all the given sequences. Several different (and
even opposing) objectives may be considered in the context of sequence consensus
problems. Examples include the following ones.

1. The consensus is a new sequence whose total distance from all given se-
quences is minimal (closest string problem) (CSP);

2. The consensus is a new sequence whose total distance from all given se-
quences is maximal (farthest string problem) (FSP);

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 C. Blum and P. Festa

3. The consensus is a new sequence far from most of the given sequences, which
is the case of the FFMSP.

Apart from introducing a linear integer programming model, the main con-
tribution of the paper is a hybrid ant colony optimization algorithm (ACO) [2]
for tackling the FFMSP. ACO algorithms are metaheuristics inspired by the
shortest path finding behaviour of natural ant colonies. The hybrid algorithm
outlined in this work concerns a sequential combination of ant colony optimiza-
tion with a mathematical programming solver. In the following, we first provide
the necessary notation for being able to state the FFMSP in a technical way.
After providing the problem definition we give a short summary on related work.

1.1 Notation

In order to be able to formally state the FFMSP, the following notation is in-
troduced.

– An alphabet Σ = {c1, . . . , ck} is a finite set of k different characters.
– si = (si1, s

i
2, . . . , s

i
m) denotes a sequence of m characters (that is, of length

m) over alphabet Σ.
– Given two sequences si and sl over Σ such that |si| = |sl|, the (generalized)

Hamming distance dH(si, sl) between si and sl is calculated as follows:

dH(si, sl) :=

|si|∑
j=1

φ(sij , s
l
j) , (1)

where sij and slj denote the character at position j in sequence si and in

sequence sl, respectively, and φ : Σ × Σ �→ {0, 1} is a predicate function
such that φ(a, b) = 0, if a = b, and φ(a, b) = 1, otherwise.

– Given a set Ω = {s1, . . . , sn} of n sequences of length m over Σ, dΩH denotes
the minimum Hamming distance between all sequences in Ω. Formally,

dΩH := min
{
dH(si, sl) | i, l ∈ {1, . . . , n}, i < l

}
. (2)

Note that 0 ≤ dΩH ≤ m.
– Each sequence s of length m over Σ is a valid solution to the FFMSP. Given

any valid solution s and a threshold value 0 ≤ t ≤ m, set P s ⊆ Ω is defined
as follows:

P s := {si ∈ Ω | dH(si, s) ≥ t}. (3)

1.2 Problem Definition

Given a fixed threshold value t (where 0 ≤ t ≤ m), a finite alphabet Σ of size
k, and a set Ω = {s1, . . . , sn} of n sequences of length m over Σ, the goal of
the FFMSP consists in finding a sequence s∗ of length m over Σ such that P s∗

A Hybrid ACO Algorithm for the FFMSP 3

is of maximal size. In other words, given a solution s, the objective function
f : Σm �→ {1, . . . , n} is defined as follows:

f(s) := |P s| (4)

Among the sequence consensus problems, the FFMSP is one of the computa-
tionally hardest. In fact, compared to the other consensus problems, it is much
harder to approximate, due to the approximation preserving reduction to the
FFMSP from the independent set problem, which is a classical and computation-
ally intractable combinatorial optimization problem. In 2003, Lanctot et al. [11]
proved that for sequences over an alphabet Σ with |Σ| ≥ 3, approximating the
FFMSP within a polynomial factor is NP-hard.

1.3 Related Work

As indicated by the available theoretical results on computational hardness,
polynomial time algorithms for the FFMSP can yield only solutions with no
constant guarantee of approximation. Moreover, with growing instance size, com-
plete techniques quickly reach their limits, and (meta-)heuristics become the only
feasible approach for deriving high-quality solutions. The first attempt in the de-
sign of efficient metaheuristic approaches has been done in 2005 by Meneses et
al. [12], who proposed a heuristic algorithm consisting of a simple greedy con-
struction followed by an iterative improvement phase. Later, in 2007 Festa [5]
designed a GRASP and more recently in 2012 Festa and Pardalos [6] proposed a
genetic algorithm. In 2012, Mousavi et al. [13] devised a new function to be used
as an alternative to the objective function when evaluating neighbor solutions
during the local search phase of the algorithm proposed in [5]. In 2013, Ferone et
al. [4] developed several pure and hybrid multistart iterative heuristics, including

� a pure GRASP approach, inspired by [5];
� a GRASP making use of path-relinking for intensification;
� a pure variable neighborhood search (VNS) approach;
� a VNS using path-relinking for intensification;
� a GRASP that uses VNS to implement the local search phase;
� and a GRASP approach that uses VNS to implement the local search phase
and path-relinking for intensification.

Among all the presented algorithms, the GRASP approach making use of
path-relinking for intensification can currently regarded to be state of the art
for obtaining very good solutions in a resonable amount of computation time.
GRASP [3, 7–9] is a multistart heuristic, where at each iteration a solution is
probabilistically generated biased by a greedy function. Subsequently, a local
search phase is applied starting from the just built solution until a locally opti-
mal solution is found. Repeated applications of the construction procedure yield
diverse starting solutions for the local search and the best overall local optimal
solution is returned as the result.

4 C. Blum and P. Festa

1.4 Organization of the Paper

The remainder of this article is organized as follows. In Section 2, we present
the first linear integer programming formulation for the FFMSP. In Section 3,
we describe a hybrid ant colony approach based on a combination of ant colony
optimization and a mathematical programming solver. Computational results for
both the linear integer programming model and the ACO approach are reported
in Section 4. Finally, concluding remarks and an outlook to future work are given
in Section 5.

2 A Linear Integer Programming Model

First, we developed a linear integer programming model for solving the FFMSP.
This model works on two sets of binary variables. The first set contains for each
position i (i = 1, . . . ,m) of a possible solution and for each character cj ∈ Σ
(j = 1, . . . , k) a binary variable xi,cj ∈ {0, 1}. The second set consists of a binary
variable yr ∈ {0, 1} (r = 1, . . . , n) for each of the n input sequences provided in
set Ω. The linear integer program itself can then be stated as follows.

max

n∑
r=1

yr

subject to:∑
cj∈Σ

xi,cj = 1 for i = 1, . . . ,m

m∑
i=1

xi,sri
≤ m− tyr for r = 1, . . . , n

xi,cj , yr ∈ {0, 1}

(5)

(6)

(7)

Hereby, constraints (6) ensure that for each position i of a possible solution
exactly one character from Σ is chosen. Moreover, constraints (7) ensure that
yr can only be set to 1 if and only if the number of differences between sr ∈ Ω
and the possible solution (as defined by the setting of the variables xi,cj) is at
least t. Remember, in this context, that sri denotes the character at position i in
sr ∈ Ω.

3 The Proposed Approach

This section is dedicated to a description of the hybrid ACO approach that we
developed for tackling the FFMSP. In the following we first deal with prelimi-
naries, before the framework of the proposed algorithm is outlined.

A Hybrid ACO Algorithm for the FFMSP 5

3.1 Preliminaries

Just like any other learning-based algorithm, ACO generally faces difficulties in
the case of an objective function characterized by large plateaus. Unfortunately,
this is exactly the case of the FFMSP, because the range of possible objective
function values—that is, {0, . . . , n}—is rather small. Therefore, we decided to
introduce a refined way for comparing between valid solutions as follows. First,
given a valid solution s, set Qs ⊆ Ω is indirectly defined as follows:

– |Qs| = max{|P s|+ 1, n};
– dH(s′, s) ≥ dH(s′′, s) for all s′ ∈ Qs and s′′ ∈ Ω \Qs.

In words, set Qs consists of all sequences s′ ∈ Ω that have at least Hamming
distance t with respect to s. Moreover, in case |P s| < n, set Qs also contains
the sequence ŝ ∈ Ω \ P s that has, among all sequence in Ω \ P s, the largest
Hamming distance with respect to s.

Given two valid solutions s and s′, a comparison operator (denoted by >lex)
is used for comparing them. This operator is defined in the following way. It
holds that s >lex s′ if and only if

f(s) > f(s′) or

⎛⎝f(s) = f(s′) and
∑

s′′∈Qs

dH(s′′, s) >
∑

s′′∈Qs′
dH(s′′, s′)

⎞⎠ . (8)

In other words, the comparison between s and s′ is done in a lexicographical
way with the original objective function value as a first criterion, and the sum
of the Hamming distances of the solutions from the respective sets Qs and Qs′

with respect to s and s′ as a second criterion. It is intuitively assumed that the
solution for which this sum is greater is somehow closer to a solution with a
higher objective function value.

The second aspect of this section concerns the definition of the pheromone
model and the greedy information, both being of crucial importance for any
ACO algorithm. The pheromone model T consists of a pheromone value τi,cj
for each combination of a position i (i = 1, . . . ,m) in a solution sequence, and a
letter cj ∈ Σ. Moreover, to each of these combinations is assigned a greedy value
ηi,cj which measures the desirability to assign letter cj to position i. Intuitively,
value ηi,cj should be reverse-proportional to the number of occurences of letter
cj at position i in the n input sequences. That is,

ηi,cj :=
(n− |{s ∈ Ω | si = cj}|)

n
. (9)

3.2 Algorithmic Framework

The general framework of the proposed algorithm (see Algorithm 1) is as fol-
lows. First of all, calls to function RunACO(sbs) are executed until either the time
limit tlimACO is reached, or the number of unsuccessful calls to RunACO(sbs),

6 C. Blum and P. Festa

Algorithm 1. (Hybrid) ACO for the FFMSP

1. input: Ω, Σ, t, tlimACO, runlimACO, tlimCPLEX

2. sbs := null
3. runsACO := 0
4. while time limit tlimACO not reached and runsACO < runlimACO do
5. s := RunACO(sbs)
6. if s >lex sbs then
7. sbs := s
8. runsACO := 0
9. else

10. runsACO := runsACO + 1
11. end if
12. end while
13. if time limit tlimCPLEX not reached then
14. sbs := SolutionPolishing(sbs, tlimCPLEX)
15. end if
16. output: the best-so-far solution sbs

as counted by runsACO, has reached the limit runlimACO. Hereby, a call to
RunACO(sbs) is regarded as unsuccessful if the best-so-far solution sbs was not
improved during the run. Function RunACO(sbs) takes the best solution found
so far (sbs) as input and applies an ACO algorithm (as outlined below) until the
convergence of the pheromone values is reached.

After this first phase (lines 4–12 of Algorithm 1) the algorithm possibly applies
a second phase in which the hybridization with a mathematical programming
solver takes place. This hybrid algorithm component works as follows. The best
solution obtained by the ACO-phase is given to the MIP-solver CPLEX as a
starting solution (see, for example, page 531 of the IBM ILOG CPLEX V12.1
user manual: Starting from a Solution: MIP Starts). CPLEX is then used to ap-
ply solution polishing to the given starting solution until the computation time
limit tlimCPLEX is reached (see, for example, page 521 of the IBM ILOG CPLEX
V12.1 user manual: Solution polishing). This is done in function SolutionPolish-
ing(sbs, tlimCPLEX). Solution polishing can be seen as a black box local search
based on branch & cut, with the aim to improve a solution, rather than proving
optimality. The best solution found after this phase is provided as output of the
algorithm.

Note that a hybrid algorithm is obtained by a setting of tlimACO < tlimCPLEX.
On the other side, the pure ACO approach can be applied by setting, for example,
tlimCPLEX = 0 and by assigning a very large value to runlimACO (in order to
avoid that the while-loop of line 4 is stopped before the computation time limit
tlimACO is reached).

3.3 The ACO Phase

In the following, we focus on the description of function RunACO(sbs) of Algo-
rithm1,which is pseudo-coded inAlgorithm2.Note that theACO-implementation

A Hybrid ACO Algorithm for the FFMSP 7

Algorithm 2. Function RunACO(sbs) of Algorithm 1

1. input: sbs

2. srb := null, cf := 0
3. Initialize all pheromone values of T to 0.5
4. while cf < 0.99 do
5. sib := null
6. for all na artificial ants do
7. s := ConstructSolution(T)
8. s := LocalSearch(s)
9. if s >lex sib then sib := s

10. end for
11. sib := PathRelinking(sib, sbs)
12. if sib >lex srb then srb := sib

13. if sib >lex sbs then sbs := sib

14. ApplyPheromoneUpdate(cf ,T ,sib,srb)
15. cf := ComputeConvergenceFactor(T)
16. end while
17. output: the best-so-far solution sbs

used in this function is very similar to a MAX –MIN Ant System (MMAS)
implemented in the Hyper-Cube Framework (HCF) [14, 1]. The function takes
as input the best-so-far solution sbs. At the start, first, all pheromone values of T
are initialized to 0.5. Then, at each iteration, na = 10 solutions are constructed
in function ConstructSolution(T) on the basis of pheromone and greedy informa-
tion. Local search is applied to each of these solutions in function LocalSearch().
Finally, path-relinking is applied to the best solution sib (after local search) gen-
erated in the current iteration. Solution sib is also referred to as the iteration-best
solution. Path-relinking is applied in function PathRelinking(sib, sbs). Hereby, sib

serves as initial solution and the best-so-far solution sbs serves as guiding so-
lution. After updating (if necessary) the best-so-far solution and the so-called
restart-best solution, which is the best solution found so far during the current
application of RunACO(), the pheromone update is performed in function Ap-
plyPheromoneUpdate(cf ,T ,sib,srb). Finally, at the end of each iteration, the new
convergence factor value cf is computed in function ComputeConvergenceFac-
tor(T). In the following we outline the working of the different functions in more
detail.

ConstructSolution(T): For the construction of a new solution s, a letter from Σ
is chosen successively for all positions from 1 to m. The letter choice for each
position 1 ≤ i ≤ m is hereby performed as follows. First, for each letter cj ∈ Σ
a choice probability pi,cj for position i is calculated as follows:

pi,cj :=
τi,cj · ηi,cj∑
c∈Σ τi,c · ηi,c

(10)

8 C. Blum and P. Festa

Then, a value z is chosen uniformly at random from [0.5, 1.0]. In case z ≤ drate,
the letter c ∈ Σ with the largest probability value is chosen for position i. Oth-
erwise, a letter c ∈ Σ is chosen randomly with respect to the probability values.
Hereby, drate is a parameter of the algorithm, which was set to 0.8 after tuning
by hand.

LocalSearch(s) and PathRelinking(sib, sbs): The local search and path-relinking
procedures used in this work are the same as the ones developed in the context
of the GRASP algorithm published in [4]. Therefore, we only provide a short
text-based description. For the pseudo-code we refer the interested reader to the
original work.

The neighborhood of a solution s considered for the local search consists in
all solutions that can be obtained by ex-changing exactly one character with a
different one. The positions of a solution s are examined in a certain order, and, as
soon as an improving neighbor is found, this neighbor is accepted as new current
solution. The procedure stops once no improving neighbor can be found. The
order in which positions are examined is randomly chosen for each application
of local search, which is actually the only difference of our implementation in
comparison to the one as given in [4].

Path-relinking is a concept initially proposed in [10] for the search intensifi-
cation between two solutions. The path-relinking procedure that we applied in
function PathRelinking(sib, sbs) works roughly as follows. Solution sib is used as
initial solution, and the best-so-far solution sbs as guiding solution. The posi-
tions that both solutions have in common remain untouched. The solution space
spanned by the positions that are different in the two solutions is explored by
generating a path in the solution space linking solution sib with sbs. The best
solution found on this path is provided as output of path-relinking.

ApplyPheromoneUpdate(cf ,T ,sib,srb): The ACO procedure makes use of at most
two different solutions for updating the pheromone values, namely solutions sib

and srb. The weight of each solution for the pheromone update is determined as
a function of cf, the convergence factor. The pheromone values τi,cj are updated
as follows:

τi,cj := τi,cj + ρ · (ξi,cj − τi,cj) , (11)

where
ξi,cj := κib ·Δ(sibi , cj) + κrb ·Δ(srbi , cj) . (12)

Hereby, function Δ(s, cj) evaluates to 1 in case character cj is to be found at
position i of solution s. Otherwise, the function evaluates to 0. Moreover, κib is
the weight of solution sib and κrb the one of s

rb. It is required that κib+κrb = 1.
The weight values that we chose are the standard ones shown in Table 1. Finally,
note that the algorithm works with upper and lower bounds for the pheromone
values, that is, τmax = 0.999 and τmin = 0.001. In case a pheromone values sur-
passes one of these limits, the value is set to the corresponding limit. This has
the effect that a complete convergence of the algorithm is avoided.

A Hybrid ACO Algorithm for the FFMSP 9

Table 1. Setting of κib and κrb depending on the convergence factor cf

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0
κrb 0 1/3 2/3 1

ComputeConvergenceFactor(T): The formula that was used for computing the
value of the convergence factor is as follows:

cf := 2

⎛⎝⎛⎝
∑
τ∈T

max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

⎞⎠− 0.5

⎞⎠
This implies that at the start of function RunACO(sbs), cf has value zero. On
the other side, in the case in which all pheromone values are either at τmin or
at τmax, cf has a value of one. In general, cf moves in [0, 1]. This completes the
description of the proposed algorithm.

4 Experimental Evaluation

We implemented the proposed algorithm in ANSI C++ using GCC 4.7.3 for com-
piling the software. Moreover, the mathematical program outlined in Section 2
was solved with IBM ILOG CPLEX V12.1. The same version of CPLEX was
used within the hybrid ACO approach. The experimental results that we outline
in the following were obtained on a cluster of PCs with ”Intel(R) Xeon(R) CPU
5160” CPUs of 4 nuclii of 3000 MHz and 4 Gigabyte of RAM.

4.1 Problem Instances

For the purpose of comparing to the state of the art, the algorithms proposed
in this paper were applied to the set of benchmark instances introduced in [4].
This set consists of random instances of different size. More specifically, the
number of input sequences (n) is in {100, 200}, and the length of the input
sequences (m) is in {300, 600, 800}. In all cases, the alphabet size is four, that
is, |Σ| = 4. For each combination of n and m, the set consists of 100 random
instances. This makes a total of 600 instances. Finally, as in [4], our algorithms
were applied to all instances for different settings of parameter t. In particular,
t ∈ {0.75m, 0.8m, 0.85m}.

4.2 Results

We applied a pure version of ACO (tlimACO = 90s, tlimCPLEX = 0s, runlimACO =
very large integer) and a hybrid version of ACO (tlimACO = 60s, tlimCPLEX =
90s, runlimACO = 10) exactly once to each problem instances. This was done
for each of the three considered values for t. The (total) computation time limit

10 C. Blum and P. Festa

Table 2. Numerical results

n,m, t GRASP+PR CPLEX ACO HyACO
100, 300, t = 0.75m 100 100 100 100
100, 300, t = 0.8m 79.61 69.21 73.55 77.84
100, 300, t = 0.85m 13.18 22.08 24.64 28.3
100, 600, t = 0.75m 100 100 100 100
100, 600, t = 0.8m 80.13 66.95 69.12 72.97
100, 600, t = 0.85m 4.98 19.38 20.82 22.82
100, 800, t = 0.75m 100 100 100 100
100, 800, t = 0.8m 82.64 67.28 67.43 70.94
100, 800, t = 0.85m 1.84 18.3 19.84 21.66
200, 300, t = 0.75m 200 200 199.38 200
200, 300, t = 0.8m 100 75.32 104.3 104.17
200, 300, t = 0.85m 11.9 19.16 27.1 28.59
200, 600, t = 0.75m 200 200 199.99 200
200, 600, t = 0.8m 88.49 59.29 85.53 85.02
200, 600, t = 0.85m 2.42 18.12 21.03 21.9
200, 800, t = 0.75m 200 200 199.99 200
200, 800, t = 0.8m 73.08 54.31 78.54 77.95
200, 800, t = 0.85m 0.21 18.56 19.14 20.4

for each run was set to 90 CPU seconds in order to be comparable to the re-
sults reported for the GRASP hybridized with path-relinking in [4]. These three
algorithms are henceforth referred to by ACO, HyACO, and GRASP+PR. More-
over, the mathematical programming solver CPLEX was applied with a CPU
time limit of 90 seconds to each problem instance. Note that we report the values
of the best feasible solutions found by CPLEX within the available computation
time. The corresponding solutions are (expect for the case t = 0.75m) not proven
to be optimal ones. The results are reported in Table 2. Note that for each com-
bination of n, m, and t the given values are averages over the results for 100
problem instances. In each case, the best results are shown in bold font. For the
analysis of the results, the three cases resulting from t ∈ {0.75m, 0.8m, 0.85m}
are treated seperately. This is because the behaviour of the algorithms changes
greatly from one case to another.

Case t = 0.75m: This case results clearly in being the easiest one for all al-
gorithms. In fact, GRASP+PR, CPLEX and HyACO find optimal solution to
all 600 problem instances. The only algorithm that has slight difficulties when
n = 200 is the pure ACO approach, which does not find an optimal solution in
a few cases.

Case t = 0.8m: In this case, CPLEX is not able to prove optimality for any of
the 600 instances. In fact, especially for the larger instances—that is, instances
with n = 200—the performance of CPLEX decreases strongly. Concerning a
comparison of the two ACO version the following can be observed. HyACO ap-
pears to outperform ACO consistently for the smaller instances (n = 100). This
is not the case anymore for the larger instances, where the performance of the

A Hybrid ACO Algorithm for the FFMSP 11

50

60

70

80

90

100

n=100, m=300 n=100, m=600 n=100, m=800 n=200, m=300 n=200, m=600 n=200, m=800
Instance set

R
es

ul
t

Algorithm
GRASP+PR
CPLEX
ACO
ACO+CPLEX

(a) Results for all instances with t = 0.8m.

0

10

20

30

n=100, m=300 n=100, m=600 n=100, m=800 n=200, m=300 n=200, m=600 n=200, m=800
Instance set

R
es

ul
t

Algorithm
GRASP+PR
CPLEX
ACO
ACO+CPLEX

(b) Results for all instances with t = 0.85m.

Fig. 1. Graphical representation of the results from Table 2 for t = 0.8m (see (a)) and
t = 0.85m (see (b))

two algorithms is comparable. GRASP+PR outperforms both ACO approaches
on the set of smaller instances. However, this seems to change with growing in-
stance size. In fact, when n = 200 and m ∈ {300, 800} both ACO approaches
outperform GRASP+PR. The results for this case are also shown in graphical
form in Figure 1(a).

Case t = 0.85m: The results for this case are quite surprising. In fact, comparing
the results of GRASP+PR with the results of the three new approaches, it turns
out that GRASP+PR is not at all able to solve this case (see also the graphical
representation of the results in Figure 1(b). Concerning a comparison of the three
new approaches, it appears that HyACO consistently outperforms the pure ACO
approach, which, in turn, consistently outperforms CPLEX.

5 Conclusions and Future Work

In this work we introduced a pure and a hybrid ACO approach for tackling the
so-called far from most string problem. Moreover, we developed the first linear
integer programming model for this problem. Finally, we described an experi-
mental evaluation and a comparison to the state of the art from the literature,

12 C. Blum and P. Festa

which is a GRASP algorithm extended with path-relinking. The comparison
showed that especially the hybrid ACO approach is very competitive, outper-
forming GRASP in particular for one of the three considered problem cases.

Future lines of work will be focused in particular on the one problem case
(out out three) in which the ACO approaches seem to have slight disadvantages
with respect to GRASP. In addition, we plan to test out approach on a larger
set of instances possibly including real-world instances.

Acknowledgments. This work was supported by grant TIN2012-37930 of the
Spanish Government. In addition, support is acknowledged from IKERBASQUE,
the Basque Foundation for Science.

References

1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Man, Systems and Cybernetics – Part B 34(2), 1161–1172
(2004)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
3. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set

covering problem. Oper. Res. Lett. 8, 67–71 (1989)
4. Ferone, D., Festa, P., Resende, M.: Hybrid metaheuristics for the far from most

string problem. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 174–188. Springer, Heidelberg (2013)

5. Festa, P.: On some optimization problems in mulecolar biology. Mathematical Bio-
science 207(2), 219–234 (2007)

6. Festa, P., Pardalos, P.: Efficient solutions for the far from most string problem.
Annals of Operations Research 196(1), 663–682 (2012)

7. Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro, C.,
Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Aca-
demic Publishers (2002)

8. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part I: Algorithms.
International Transactions in Operational Research 16(1), 1–24 (2009)

9. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part II: Applica-
tions. International Transactions in Operational Research 16(2), 131–172 (2009)

10. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39, 653–684 (2000)

11. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Information and Computation 185(1), 41–55 (2003)

12. Meneses, C., Oliveira, C., Pardalos, P.: Optimization techniques for string selection
and comparison problems in genomics. IEEE Engineering in Medicine and Biology
Magazine 24(3), 81–87 (2005)

13. Mousavi, S., Babaie, M., Montazerian, M.: An improved heuristic for the far from
most strings problem. Journal of Heuristics 18, 239–262 (2012)

14. Stützle, T., Hoos, H.H.: MAX -MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

A Parametric Framework

for Cooperative Parallel Local Search

Danny Munera1, Daniel Diaz1, Salvador Abreu2, and Philippe Codognet3

1 University of Paris 1-Sorbonne, France
Danny.Munera@malix.univ-paris1.fr, Daniel.Diaz@univ-paris1.fr

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

3 JFLI-CNRS / UPMC / University of Tokyo, Japan
codognet@is.s.u-tokyo.ac.jp

Abstract. In this paper we address the problem of parallelizing local
search. We propose a general framework where different local search en-
gines cooperate (through communication) in the quest for a solution.
Several parameters allow the user to instantiate and customize the frame-
work, like the degree of intensification and diversification. We imple-
mented a prototype in the X10 programming language based on the
adaptive search method. We decided to use X10 in order to benefit from
its ease of use and the architectural independence from parallel resources
which it offers. Initial experiments prove the approach to be successful,
as it outperforms previous systems as the number of processes increases.

1 Introduction

Constraint Programming is a powerful declarative programming paradigm which
has been successfully used to tackle several complex problems, among which
many combinatorial optimization ones. One way of solving problems formulated
as a Constraint Satisfaction Problem (CSP) is to resort to Local Search meth-
ods [13,12], which amounts to the methods collectively designated as Constraint-
Based Local Search [18]. One way to improve the performance of Local Search
Methods is to take advantage of the increasing availability of parallel compu-
tational resources. Parallel implementation of local search meta-heuristics have
been studied since the early 90’s, when multiprocessor machines started to be-
come widely available, see [24]. One usually distinguishes between single-walk
and multiple-walk methods. Single-walk methods consist in using parallelism
inside a single search process, e.g., for parallelizing the exploration of the neigh-
borhood, while multiple-walk methods (also called multi-start methods) consist
in developing concurrent explorations of the search space, either independently
or cooperatively with some communication between concurrent processes. A key
point is that independent multiple-walk (IW) methods are the easiest to imple-
ment on parallel computers and can in theory lead to linear speed-up, cf. [24].

Previous work on independent multi-walk local search in a massively paral-
lel context [2,7,8] achieves good but not ideal parallel speedups. On structured

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 D. Munera et al.

constraint-based problems such as (large instances of) Magic Square or All-
Interval, independent multiple-walk parallelization does not yield linear speedups,
reaching for instance a speedup factor of “only” 50-70 for 256 cores. However on
the Costas Array Problem, the speedup can be linear, even up to 8000 cores [8].
On a more theoretical level, it can be shown that the parallel behavior depends
on the sequential runtime distribution of the problem: for problems admitting
an exponential distribution, the speedup can be linear, while if the runtime dis-
tribution is shifted-exponential or (shifted) lognormal, then there is a bound on
the speedup (which will be the asymptotic limit when the number of cores goes
to infinity), see [23] for a detailed analysis of these phenomena.

In order to improve the independent multi-walk approach, a new paradigm
that includes cooperation between walks has to be defined. Indeed, Cooperative
Search methods add a communication mechanism to the IW strategy, to share
or exchange information between solver instances during the search process.
However, developing an efficient cooperative method is a very complex task,
cf. [6], and many issues must solved: What information is exchanged? Between
what processes is it exchanged? When is the information exchanged? How is it
exchanged? How is the imported data used? [22].

We recently started to work towards a redesigned platform for parallel local
search, for which some early results are described in [17]. In the present arti-
cle we progress towards a general framework, while extending the experimental
evaluation to a distributed computing platform.

In this article, we propose a general framework for cooperative search, which
defines a flexible and parametric cooperative strategy based on the coopera-
tive multi-walk (CW) scheme. This framework is oriented towards distributed
architectures based on clusters of nodes, with the notion of “teams” running
on nodes and regrouping several search engines (called “explorers”) running on
cores, and the idea that all teams are distributed and thus have limited inter-
node communication. This framework allows the programmer to define aspects
such as the degree of intensification and diversification present in the parallel
search process. A good trade-off is essential to achieve good performance. For
instance, a parallel scheme has been developed in [1] with groups of parallel SAT
solvers communicating their best configurations on restart, but performance de-
grades when groups contain more than 16 processes. In [15] another approach
is described where a hybrid intensification/diversification is shown to help when
scaling into hundreds of cores.

We also propose an implementation of our general cooperative framework and
perform an experimental performance evaluation over a set of well-known CSPs.
We compare its performance against the Independent Walk implementation and
show that in nearly all examples we achieve better performance. Of course,
these are just preliminary results and even better performance could be obtained
by optimizing the current version. An interesting aspect of the implementation
it that we use the X10 programming language, a novel language for parallel
processing developed by IBM Research, because it gives us more flexibility than
using a more traditional approach, e.g., an MPI communication package.

A Parametric Framework for Cooperative Parallel Local Search 15

The rest of the paper is organized as follow. We briefly review the adaptive
local search method and present the independent Multi-Walks experiments in
section 2. We introduce our Cooperative Search framework in section 3 and,
subsequently, present an implementation of this framework in the X10 language
in section 4. Section 5 compares the results obtained with both the Indepen-
dent Multi-Walks implementation and the Cooperative Search implementation.
Finally, in section 6, we conclude and propose some ideas for future work.

2 Local Search and Parallelism

In this study, we use a generic, domain-independent constraint-based local search
method named Adaptive Search [3,4]. This metaheuristic takes advantage of the
CSP formulation and makes it possible to structure the problem in terms of
variables and constraints and to analyze the current assignment of variables
more precisely than an optimization of a global cost function e.g., the number
of constraints that are not satisfied. Adaptive Search also includes an adaptive
memory inspired in Tabu Search [10] in which each variable leading to a local
minimum is marked and cannot be chosen for the next few iterations. A local
minimum is a configuration for which none of the neighbors improve the current
configuration. The input of the Adaptive Search algorithm is a CSP, for each
constraint an error function is defined. This function is a heuristic value to
represent the degree of satisfaction of a constraint and gives an indication on
how much the constraint is violated. Adaptive Search is based on iterative repair
from the variables and constraint error information, trying to reduce the error
in the worse variable. The basic idea is to calculate the error function for each
constraint, and then combine for each variable the errors of all constraints in
which it appears, thus projecting constraint errors on involved variables. Then,
the algorithm chooses the variable with the maximum error as a “culprit” and
selects it to modify later its value. The purpose is to select the best neighbor
move for the culprit variable, this is done by considering all possible changes
in the value of this variable (neighbors) and selecting the lower value of the
overall cost function. Finally, the algorithm also includes partial resets in order
to escape stagnation around local minimum; and it is possible to restart from
scratch when the number of iterations becomes too large.

Independent Multi-Walks

To take advantage of the parallelism in Local Search methods different strategies
have been proposed like functional parallelism and data parallelism. Functional
parallelism aims to parallelize the search algorithm but it generally has too big
overheads due to the management of the fine-grained tasks (creation, synchro-
nization and termination) [17]. In contrast, data parallelism tries to parallelize
the exploration of the search space. A straightforward implementation of data
parallelism is the Independent Multi-Walks (IW) approach. The idea is to use
isolated sequential Local Search solver instances dividing the search space of

16 D. Munera et al.

the problem through different random starting points [24]. This approach has
been successfully used in constraint programming problems reaching good per-
formance [2,7,8].

We implemented a IW strategy for the Adaptive Search. This implemention
is developed with the PGAS language X10. We tested it on a set of 4 classical
benchmarks. Three of them are taken from CSPLib [9]: the All-Interval Problem
(AIP, prob007) with size 400, Langford’s Numbers Problem (LNP, prob024) with
size 500 and the Magic Square Problem (MSP, prob019) with size 200 × 200.
The last benchmark is the Costas Array Problem [14] (CAP) with size 20. For
all problems, we select difficult instances involving very large search spaces.
These instances are generally out of reach of the traditional complete solvers
like Gecode [21].

1 8 16 24 32

8

16

24

32
LNP500
AIP400
MSP200
CAP20
Ideal

Number of cores

Sp
ee

d-
up

1

Fig. 1. Speed-ups of Independent Multi-Walks on
a distributed system

The testing environment used
in each running was a mixed
cluster with 5 AMD nodes and
3 Intel nodes. Each AMD node
has two quad-core Opteron
2376 processors. Each Intel node
has two quad-core Xeon X3450
processors. All systems use a
dedicated Gigabit-Ethernet in-
terconnect. Figure 1 shows the
speed-ups obtained when
increasing the numbers of cores.
We solve the instances using 8,
16, 24 and 32 cores.

The results show quasi-linear speed-ups for the CAP instance, in accordance
with [8]. However, for MSP and AIP the speed-up tends to flatten out when
increasing the number of cores. For instance, for MSP the speed-up is only im-
proved by 1 unit when going from 16 to 32 cores. Finally for LNP the performance
is very poor with a speed-up of 2 using 32 cores.

3 Cooperative Search Framework

As seen above, the speed-ups obtained with the IW strategy are good with few
compute instances, however when the number of cores increases the performance
tends to taper off and the gain is not significant. To tackle this problem, Co-
operative Search methods add a communication mechanism to the IW strategy,
in order to share information between solver instances while the search is run-
ning. Sharing information can improve the probability to get a solution faster
than a parallel isolated search. However, all previous experiments indicate that
it is very hard to get better performance than IW [16,22].1 Clearly, this may be
explained by the overhead incurred in performing communications, but also by

1 Sometimes it even degrades performance!

A Parametric Framework for Cooperative Parallel Local Search 17

the uncertainty of the benefits stemming from abandoning the current state in
favor of another, heuristics-based information which may or may not lead to a
solution.

In this work we propose a parametric cooperative local search framework
aimed at increasing the performance of parallel implementations based on the
Independent Multi-Walks strategy. This framework allows the programmer to
define, for each specific problem, a custom trade-off between intensification and
diversification in the search process. Intensification directs the solver to explore
deeply a promising part of the search space, while diversification helps to extend
the search to different regions of the search space [13].

3.1 Framework Design

Fig. 2. Cooperative Framework Overview

Figure 2 presents the general struc-
ture of the framework. All available
solver instances (Explorers) are
grouped into Teams. Each team im-
plements a mechanism to ensure in-
tensification in the search space,
swarming to the most promising
neighborhood found by the team
members. Simultaneously, all the
teams implement a mechanism to col-
lectively provide diversification for
the search (outside the groups). The
expected effect is that different teams will work on different regions of the search
space. Inter-team communication is needed to ensure diversification while intra-
team communication is needed for intensification. This framework is oriented
towards distributed architectures based on clusters of nodes: teams are mapped
to nodes and explorers run on cores. For efficiency reasons it will be necessary
to limit inter-node (ie. inter-team) communication.

The first parameter of the framework is the number of nodes per team
(nodes per team), which is directly related to the trade-off between intensifi-
cation and diversification. This parameter takes values from 1 to the maximum
number of nodes (frequently linked to maximum number of available cores for
the program in IW). When nodes per team is equal to 1, the framework co-
incides with the IW strategy, it is expected that each 1-node team be work-
ing on a different region of the search space, without intensification. When the
nodes per team is equal to the maximum number of nodes, the framework has
the maximum level of intensification, but there is no diversification at all (only
1 team available). Both diversification and intensification mechanisms are based
on the use of communication between nodes. We will explain the precise role of
each one in the following section.

Although we presented the framework with Local Search, it is clearly applica-
ble to other metaheuristics as well, such as Simulated Annealing, Genetic Algo-
rithms, Tabu Search, neighboring search, Swarm Optimization, or Ant-Colony

18 D. Munera et al.

optimization. It is also possible to combine different algorithms in a portfolio
approach. For instance a team could implement a local search method, a second
team could use a pure tabu search heuristics and another team could try to find
a solution using a genetic algorithm. Inside a same team it is also possible to use
different versions of a given metaheuristics (e.g. with different values for control
parameters).

3.2 Ensuring Diversification

To provide diversification we propose a communication mechanism between
teams. The teams share information to compute their current distance to other
teams (distance between current configurations in the search space). Thus, if
two groups are too close, a corrective action is executed. The parameters of this
mechanism are defined as follows.

Inter-team Communication Topology: This parameter defines the way in
which the communications between teams is done. For instance, in the All-to-All
Scheme each team shares information with every other team; in the Ring Scheme
each team only shares information with the “adjacent” teams, i.e. the previous
and the next teams (e.g., team 5 only communicates with teams 4 and 6). In the
Random scheme two teams are selected randomly to communicate each other.

Inter-team Communication Interval: This parameter indicates how fre-
quently the communication between teams occurs. One possible approach is to
measure the communication interval in terms of number of iterations elapsed in
the main loop of the algorithm.

Distance Function: this function is used to check the closeness of two teams
(in order to detect if they are exploring a similar region of the search space). For
this, the teams compare their current configurations using the distance function.
A simple function can count the number of different values in both configurations
(i.e. vectors). But, depending on the problem, it is possible to elaborate more
complex functions (e.g., taking into account the values and/or the indexes in the
vector, using weighted sums. . .) When a computed distance is lower than the
minimum permissible distance parameter, the two teams are declared too close.

Corrective Action: this parameter controls what to do when two teams are
too close. In that case one team must correct its trajectory (this can be the
“worst” one, i.e. the team whose configuration’s cost is the higher). As possible
corrective action the team’s head node can decide to update its internal state,
e.g., clearing its Elite Pool (see below). It can also restart a percentage of the
team’s explorers, in order to force them to explore a different portion of the
search space.

3.3 Ensuring Intensification

We provide intensification by means of a communication mechanism. Here also,
it is possible to have different communication topologies between the explorers of

A Parametric Framework for Cooperative Parallel Local Search 19

a team. In our framework, we select a topology in which each node communicates
with a single other node, thereby constituting a team (see Figure 3).

Fig. 3. Structure of a Team

The team is composed of one head node and
n explorer nodes. Explorer nodes implement
a solver instance of a Local Search method.
Each Explorer node periodically reports to the
head node, conveying some practical informa-
tion about its search process (e.g., its current
configuration, the associated cost, the number
of iterations reached, the number of local min-
imum reached, etc.). The head node then pro-
cesses the messages and makes decisions to ensure the intensification in the
search2. Moreover, the head node stores the configurations with the best costs
in its Elite Pool (EP) and provides it on demand to Explorers. The head node can
also decide to do some actions on its elite pool (e.g., combining configurations
to create a new one, similarly to what is done in genetic algorithms).

Explorer Node. Explorer nodes periodically ask the head node for an elite
configuration from the EP. If the cost of the new EP configuration is lower
than its current configuration, the worker node switches to the EP one. Thus
the nodes in a group intensify the search process, progressing towards the most
promising neighbor found by their group. This is mainly intensification, but if
an explorer node luckily finds a better configuration, then the whole team moves
to this new promising neighborhood of the search space. The team is not bound
to any specific region. The parameters of this mechanism are as follows:

– Report interval: The report interval parameter indicates how frequently the
explorer nodes communicate information to the head node.

– Update interval: The update interval parameter indicates how frequently the
explorer nodes try to obtain a new configuration from the EP in the head
node.

Head Node. The head node receives and processes all the information from
the explorer nodes in the team. Because of this, it has a more global vision
about what is happening in the team and it can make decisions based in the
comparative performance of the explorers nodes.

The main duty of the head node is to provide an intensification mechanism for
the explorer nodes, resorting to the EP. The EP has different tuning parameters
that must be defined at design time: First, the size of the pool which is the
maximum number of configurations that the EP can store. Second, the entry
policy, which defines the rules to accept or reject the incoming configurations.
Finally the request policy, which defines which configuration is actually delivered
to an explorer node when it makes a request.

2 Recall, the head node also ensures the diversification by inter-team communication
as explained above.

20 D. Munera et al.

One possible entry policy for this framework is described below. When a mes-
sage from the explorer node is received by the head node, the algorithm discards
the configuration instead of storing it in the EP, in the following situations: (1)
if the cost of the configuration is greater than the current worst cost in the
EP, (2) if the configuration is already stored in the EP. If the configuration is
not discarded, the algorithm then looks for a free slot in the EP. If there is
one, the incoming configuration is stored. If not, the algorithm selects a victim
configuration (e.g., random, worst, etc.) to be replaced by the new one.

There are many options to implement the request policy in the head node.
A simple one is to always return the best configuration in the EP, or any (ran-
domly chosen) configuration of the EP. Also, it is possible to implement more
sophisticated algorithms. For instance, a mechanism where the probability of a
configuration being selected from the EP is tied to its cost. We may even create
a mutation mechanism on the EP, inspired in genetic algorithms [25,5], aspiring
to improve the quality of the current configurations.

Although the main function of the head node is to provide intensification
within the team, there exist many smart activities that the head node can carry
out based in the collected information. For example, it can improve the efficiency
of all the nodes in the team by comparing its performance and take corrective
decisions, even before an event happens in the explorer node. Also, path relinking
techniques [11] can be applied when different local minima have been detected.

4 An X10 Implementation

In order to verify the performance of our cooperative search strategy, we imple-
mented a prototype of the framework using the Adaptive Search method, written
in the X10 programming language.

X10 [20] is a general-purpose language developed at IBM, which provides a
PGAS variant, Asynchronous PGAS (APGAS), which makes it more flexible and
usable even in non-HPC platforms [19]. With this model, X10 supports different
levels of concurrency with simple language constructs.

There are two main abstractions in the X10 model: places and activities. A
place is the abstraction of a virtual shared-memory process, it has a coherent
portion of the address space. The X10 construct for creating a place in X10 is the
at operation, and is commonly used to create a place for each physical process-
ing unit. An activity is the mechanism which abstracts the single threads that
perform computation within a place. Multiple activities may be simultaneously
active in one place.

Regarding communication, an activity may reference objects in other places.
However, an activity may synchronously access data items only in the place
in which it is running. If it becomes necessary to read or modify an object
at some other place, the place-shifting operation at may be used. For more
explicit communication, the GlobalRef construct allows cross-place references.
GlobalRef includes information on the place where an object resides, therefore
an activity may locally access the object by moving to the corresponding place.

A Parametric Framework for Cooperative Parallel Local Search 21

A detailed examination of X10, including tutorials, language specification and
examples may be found at http://x10-lang.org/.

To implement our framework in X10, we mapped each explorer node to one
X10 place, using a solver instance of the Adaptive Search method as in the
Independent Multi-Walks strategy. In this implementation, the head nodes also
act as explorer nodes in their “spare” time.

The parameter nodes per team is passed to the main program as a external
value. The program reads this value and creates all the instances of the solver
together with the necessary references to perform the communication between
nodes within a team and between the different teams in the execution.

We used the construct GlobalRef to implement communication in X10. Every
head node reference is passed to the relevant explorer nodes of the team, and
to the other head nodes in the program. The main loop of the solver has code
to trigger all the events in the framework: Inter-Team Communication event
(between teams), Report event (between the explorer nodes and head node into
a team) and Update event (explorer nodes request a new configuration from the
head node).

In the initial implementation, we opted for each explorer node only commu-
nicating its current configuration and cost pair 〈configuration, cost〉 to its head
node. In the request event, we chose to send a random configuration from the EP
to the explorer nodes. For simplicity, this first implementation does not commu-
nicate between head nodes of different teams, so diversification is only granted
by the randomness of the initial point and the different seeds in each node.

5 Results and Analysis

In this section we compare our X10 implementation3 of our framework to the
independent Multi-Walks version in order to see the gain in terms of speed-ups.
For this experiment, we the set of problems presented in section 2.

We used different values for parameter nodes per team: 2, 4, 8 and 16. The
Report Interval and the Update Interval parameters were set to 100 iterations,
finally we tried values from 1 to 4 as the size of the EP. We only retained the
results for the best performing parameters. For all cases, we ran 100 samples
and averaged the times.

Table 1 compares the Independent Multi-Walks implementation (IW) to our
Cooperative Multi-Walks implementation (CW) for each of the problems (LNP,
AIP, MSP and CAP). For each problem, a pair of rows presents the speed-up
factor of the cooperative strategy CW w.r.t. the independent strategy IW (the
best entry in each column is in bold fold).

In figure 4 we visualize same results, in a more directly perceptible form. The
speed-ups obtained with IW (dotted line) and CW (continuous line) clearly show
that in most cases, we are getting closer to a “ideal” speedup. It is worth noticing
that AIP is unaffected by the cooperative solver when using a small numbers of
cores and worse when using 24 or 32 cores. However, For the LNP, MSP and

3 Source at https://github.com/dannymrock/CSP-X10.git, branch teamplaces.

http://x10-lang.org/
https://github.com/dannymrock/CSP-X10.git

22 D. Munera et al.

Table 1. Timings and speed-ups for IW and CW on a distributed system

Problem time (s) Strategy Speed-up with k cores time (s)
1 core 8 16 24 32 32 cores

AIP-400 280
IW 7.1 13.1 15.3 19.5 14.3
CW 7.3 15.3 17.3 19.2 14.6

speedup gain 3.5 % 17 % 13 % -1.6 %

LNP-500 19.1
IW 2.1 2.0 2.2 2.1 8.95
CW 2.5 3.1 3.4 3.4 5.7

speedup gain 22 % 56 % 54 % 57 %

MSP-200 274
IW 6.1 8.6 10.5 11.5 23.9
CW 8.5 14.6 15.7 18.9 14.6

speedup gain 39 % 69 % 50 % 64 %

CAP-20 992
IW 7.6 13.2 21.5 28.2 35.2
CW 8.9 16.8 27.6 32.2 30.8

speedup gain 18 % 27 % 28 % 15 %

CAP the results clearly show that the cooperative search significantly improves
on the performance of the Independent Multi-Walks approach. For instance, in
CAP the cooperative strategy actually reaches super linear speed-ups over the
entire range of cores (speed-up of 32.2 with 32 cores). The best gain reaches 69%
in the MSP.

1 8 16 24 32

8

16

24

32
LNP500-CW
LNP500-IW
AIP400-CW
AIP400-IW
MSP200-CW
MSP200-IW
CAP20-CW
CAP20-IW
Ideal

Number of cores

Sp
ee

d-
up

1

Fig. 4. Speed-Up CW vs IW

This experimentswe carried
out show that our cooperative
framework can improve the
time to find a solution for chal-
lenging instances in three of
four benchmarks. It is clear
that the overall performance of
our cooperative teams strategy
is better than the Independent
Multi-Walks implementation.
The main source of improve-
ment can be attributed to the
search intensification achieved

within each team. Intensification ensures that the search always stays in the best
neighborhood found by the team. However, diversification is also necessary to en-
sure the entire set of cores does not get stuck in a local minimum.

6 Conclusion and Further Work

Following up on previous work on parallel implementations, in this paper we
are concerned with the design of a general cooperative framework for parallel
execution of local search algorithms, enabling a wide range of experimentation.

A Parametric Framework for Cooperative Parallel Local Search 23

We decided to work with X10 as the implementation language, because it ab-
stracts over many interesting parallel architectures while retaining a general-
purpose stance. The general organization of the proposed framework entails
structuring the workers as teams, each with the mission of intensifying the search
in a particular region of the search space. The teams are then expected to com-
municate among themselves to promote search diversification. The concepts and
entities involved are all subject to parametric control (e.g., trade-off between
intensification and diversification, the team communication topology,. . .).

The initial experimentation which we carried out with an early prototype al-
ready proved to outperform the independent Multi-Walks parallel approach, even
with very incomplete parameter tuning. We find these results very encouraging,
suggesting that we proceed along this line of work, by defining new organiza-
tional and operational parameters as well as extending the experimentation with
the ones already introduced.

This being only a preliminary work, and looking forward, we will continue
to explore different communication patterns and topologies. The framework we
presented relies on Local Search but it is not limited to it. We therefore plan
on experimenting with other meta-heuristics or a portfolio search scheme. This
is also made convenient by X10’s object-oriented setting. It is also important to
figure out why problems such as the All-Interval Series (AIP) do not benefit from
cooperation among solvers: is it intrinsic to a certain class of problems? Which
problems? Can we improve performance with different settings of the framework
parameters?

Acknowledgments. The authors wish to acknowledge the Computer Science
Department of UNL (Lisbon) for granting us access to its computing resources.

References

1. Arbelaez, A., Codognet, P.: Massively Parallel Local Search for SAT. In: 2012
IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI),
Athens, pp. 57–64. IEEE (November 2012)

2. Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in Parallel Constraint-
Based Local Search. In: Hao, J.-K., Merz, P. (eds.) EvoCOP 2011. LNCS, vol. 6622,
pp. 96–107. Springer, Heidelberg (2011)

3. Codognet, P., Dı́az, D.: Yet another local search method for constraint solving. In:
Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg
(2001)

4. Codognet, P., Diaz, D.: An Efficient Library for Solving CSP with Local Search.
In: 5th International Conference on Metaheuristics, Kyoto, Japan, pp. 1–6 (2003)

5. Cortes, O.A.C., da Silva, J.C.: A Local Search Algorithm Based on Clonal Selec-
tion and Genetic Mutation for Global Optimization. In: 2010 Eleventh Brazilian
Symposium on Neural Networks, pp. 241–246. IEEE (2010)

6. Crainic, T.G., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel
variable neighborhood search for the p-median. Journal of Heuristics 10(3), 293–
314 (2004)

24 D. Munera et al.

7. Diaz, D., Abreu, S., Codognet, P.: Targeting the Cell Broadband Engine for
constraint-based local search. Concurrency and Computation: Practice and Ex-
perience (CCP&E) 24(6), 647–660 (2011)

8. Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel Local Search
for the Costas Array Problem. In: Parallel Computing and Optimization, PCO
2012, Shanghai, China. IEEE (May 2012)

9. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical re-
port (1999)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (July 1997)
11. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of Scatter Search and Path Re-

linking. Control and Cybernetics 29(3), 653–684 (2000)
12. Gonzalez, T. (ed.): Handbook of Approximation Algorithms and Metaheuristics.

Chapman and Hall / CRC (2007)
13. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-

gan Kaufmann / Elsevier (2004)
14. Kadioglu, S., Sellmann, M.: Dialectic Search. In: Gent, I.P. (ed.) CP 2009. LNCS,

vol. 5732, pp. 486–500. Springer, Heidelberg (2009)
15. Machado, R., Abreu, S., Diaz, D.: Parallel local search: Experiments with a pgas-

based programming model. CoRR, abs/1301.7699 (2013), Proceedings of PADL
2013, Rome, Italy

16. Machado, R., Abreu, S., Diaz, D.: Parallel Performance of Declarative Program-
ming Using a PGAS Model ((forthcoming)). In: Sagonas, K. (ed.) PADL 2013.
LNCS, vol. 7752, pp. 244–260. Springer, Heidelberg (2013)

17. Munera, D., Diaz, D., Abreu, S.: Towards Parallel Constraint-Based Local Search
with the X10 Language. In: 20th International Conference on Applications of
Declarative Programming and Knowledge Management (INAP), Kiel, Germany
(2013)

18. Pascal, V.H., Laurent, M.: Constraint-Based Local Search. The MIT Press (2005)
19. Saraswat, V., Almasi, G., Bikshandi, G., Cascaval, C., Cunningham, D., Grove,

D., Kodali, S., Peshansky, I., Tardieu, O.: The Asynchronous Partitioned Global
Address Space Model. In: The First Workshop on Advances in Message Passing,
Toronto, Canada, pp. 1–8 (2010)

20. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language
specification - Version 2.3. Technical report (2012)

21. Schulte, C., Tack, G., Lagerkvist, M.: Modeling and Programming with Gecode
(2013)

22. Toulouse, M., Crainic, T., Gendreau, M.: Communication Issues in Designing Co-
operative Multi-Thread Parallel Searches. In: Meta-Heuristics: Theory & Applica-
tions, pp. 501–522. Kluwer Academic Publishers, Norwell (1995)

23. Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las
vegas algorithms. In: 43rd International Conference on Parallel Processing, ICPP
2013. IEEE Press (October 2013)

24. Verhoeven, M.G.A., Aarts, E.H.L.: Parallel local search. Journal of Heuristics 1(1),
43–65 (1995)

25. Zhang, Q., Sun, J.: Iterated Local Search with Guided Mutation. In: IEEE Inter-
national Conference on Evolutionary Computation, pp. 924–929. IEEE (2006)

A Survey of Meta-heuristics

Used for Computing Maximin Latin Hypercube

Arpad Rimmel1 and Fabien Teytaud2

1 Supélec E3S, France
arpad.rimmel@supelec.fr

2 Univ. Lille Nord de France, France
teytaud@lisic.univ-littoral.fr

Abstract. Finding maximin latin hypercube is a discrete optimization
problem believed to be NP-hard. In this paper, we compare different
meta-heuristics used to tackle this problem: genetic algorithm, simulated
annealing and iterated local search. We also measure the importance of
the choice of the mutation operator and the evaluation function. All the
experiments are done using a fixed number of evaluations to allow future
comparisons. Simulated annealing is the algorithm that performed the
best. By using it, we obtained new highscores for a very large number of
latin hypercubes.

1 Introduction

In order to realize a mathematical model of a complex system withD parameters,
a fixed number s of experiments are made. The values of the parameters for each
experiment can be seen as a point in a D-dimensional space. The choice of the
s points is crucial because it will directly impact the quality of the model. A
classical requirement for the points is to respect two criteria:

– they must be evenly spread. This guaranties a good exploration of the pa-
rameter space.

– they must be non-collapsing. This ensures the fact that even if a parameter
is useless, two different experiments will not give the same result.

One way to choose the points while validating those criteria is to use maximin
latin hypercube. A latin hypercube in dimension D and of size s is a set of s
points in [1..D]s such that on each dimension, every point has a different value.
Therefore, the points in a latin hypercube are non-collapsing. Latin hypercube
have been introduced in [12]. An example is given on figure 1.

Let dmin be the minimal distance of all the distances between each pair of
points. The maximin latin hypercube is the latin hypercube with the largest
dmin. The points of a maximin latin hypercube are therefore evenly spread. The
maximin criteria has been introduced in [9]. Several distance functions can be
used. In this paper, we focus on the distance function l2. To reduce clutter, we
use the square of the distance.

The points that determine the minimal distance are called critical points.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 25–36, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

26 A. Rimmel and F. Teytaud

Fig. 1. Example of latin hypercubes of size 4 and dimension 2. left: dmin = 2. right:
dmin = 5.

The complexity of finding a maximin latin hypercube depends on the distance
function and on the dimension. For dimension 2 and both distance function l1
and l∞, a polynomial algorithm giving the maximin latin hypercube has been
shown in [14]. For other dimensions and other distance functions, the complexity
is not known but believed to be NP-hard.

Several meta-heuristics have been used in the literature to tackle this problem.
The most classical ones are Genetic Algorithms (GA) [10], Simulated Annealing
(SA) [13] and Iterated Local Search (ILS) [4]. Those three algorithms will be the
focus of this paper and will be detailed later. We can also cite:

– Periodic Design (Perm) [1]. This algorithm uses periodic structures to gener-
ate latin hypercube. It gives good results for dimension 2 and correct results
for dimension 3 but after that, the algorithm is outperformed by the oth-
ers. For this reason and the fact that the principle of the algorithm is really
different from the other, it will not be used in following comparisons.

– Enhanced Stochastic Evolutionary algorithm (ESE) [8]. This algorithm is
based on a combination of GA and SA. Due to its similarity with SA, we
do not use this algorithm in our experiments. However, we compare the
highscores we find in this paper with the one obtained in [7].

In this paper, we present a comparison of the efficiency of GA, SA and ILS for
a fixed number of evaluations. We first describe the principle of the algorithms.
We then presents different mutation operators and several evaluation functions
described in the literature. Finally, we give results on the efficiency of each
algorithm with the different mutation operators and evaluation functions. The
best combination allows us to obtain better highscores than those found in the
literature for a large number of dimensions and sizes.

2 Algorithm Descriptions

In this section, we will briefly describe each algorithm. For further information,
references are given in each section.

2.1 Genetic Algorithms

Genetic algorithms [5],[3] belong to the family of Evolutionary Algorithms.They
are mainly used with a discrete search space, meaning they are used to address
combinatorial optimization problems. Genetic Algorithms (GA) are techniques

Meta-heuristics for Maximin Latin Hypercube 27

inspired by natural evolution, with in particular these following steps : (i) inher-
itance, (ii) mutation, (iii) crossover and (iv) selection. The principle is to have
a population of candidate solutions evolving. Under the pressure selection, the
population will converge toward better solutions. Algorithm 1 illustrates this
method. λ denotes the population size, i.e. the number of individuals in the
population.

Algorithm 1. Genetic Algorithm

Generate the initial population
Evaluate all individuals of the population
while the stopping condition not reached do

for i from 1 to λ do
parent1 ← parentalSelection(parentPopulation)
if crossover probability is satisfied then

parent2 ← parentalSelection(parentPopulation)
offspringPopulation[i] ← crossover(parent1,parent2)

else
offspringPopulation[i] ← parent1

end if
if mutation probability is satisfied then

offspringPop[i] ← mutate(offspringPop[i])
end if

end for
Evaluate all individuals of offspringPopulation
parentPopulation ← survivalSelection(offspringPopulation, parentPopulation)

end while

2.2 Simulated Annealing

Simulated Annealing [2] is a global optimization algorithm, generally used with
a discrete search space. The principle takes inspiration from the annealing prin-
ciple in metallurgy. This technique consists in two phases : (i) heating and (ii)
controlled cooling. In optimization, the method is to evolve a candidate solu-
tion thanks to a mutation. According to a certain probability a worse generated
solution can be accepted. The idea behind this is to not get stuck in a local op-
timum. The controlled cooling represents this acceptance probability. Algorithm
2 represents this method.

2.3 Iterated Local Search

Iterated Local Search (ILS) [11] is based on a local search algorithm. An im-
provement over a single run of a local search is to launch it several times from
a different starting point. A classical way of doing this is by choosing a new
random starting point, the resulting algorithm is called the multistart approach

28 A. Rimmel and F. Teytaud

Algorithm 2. Simulated Annealing

Generate the initial solution s
Evaluate its fitness e ← f(s)
sbest ← s
ebest ← e
while the stopping condition not reached do

T ← temperature(iteration)
snew ← mutate(s)
enew ← f(snew)
if acceptance probability is satisfied or enew better than e then

s ← snew

e ← enew

end if
if enew better than ebest then

sbest ← snew

ebest ← enew

end if
increment iteration

end while

or random restart. The principle of ILS is to choose the new starting point by a
perturbation of the last local minimum found instead.

The algorithm 3 is used for the local search. The initial solution is generated
with a uniform distribution. The perturbation consists in a rotation of the values
of several points on a given dimension.

In algorithm 3, the condition ∗ about the critical point is not necessary. Both
possibilities will be studied in the following.

3 Mutations

In [6] 4 different neighborhoods are proposed. We have considered these 4 neigh-
borhoods for our mutations and called them m1 to m4. The main principle of
all these mutations is to change two points of the hypercube.

In the first one, the first point is chosen uniformly among all the critical points.
The second point is chosen uniformly among all remaining points. For these two
points, a random number of coordinates are changed.

In the second one, the two points are selected in the same way, but only one
coordinate is changed. The coordinate is chosen randomly.

In the third one, the two points are selected in the same way and only one
coordinate is changed. All the coordinates are tried and the one which gives the
best dmin is selected. This modification add DIM evaluation to the algorithm,
those evaluations are taken into account in the experiments.

In the last mutation, the two points are chosen uniformly among all points
and the number of coordinates is randomly chosen.

Meta-heuristics for Maximin Latin Hypercube 29

Algorithm 3. Local Search of the ILS algorithm

X = InitialSolution
while there is an improvement do

for i from 1 to size do
for j from 1 to size do

if i != j AND (i or j is a critical point)* then
for k from 1 to DIM do

X ′ = X
in X’ switch value of the points i and j on dimension k
if eval(X ′) > eval(X) then

X = X ′

end if
end for

end if
end for

end for
end while
return X

4 Evaluation Functions

The natural evaluation function for a latin hypercube is the dmin function as
this is the function used to determine if the latin hypercube is maximin. An
other evaluation function φp has been proposed in [13]. It has the advantage of
differentiating situations that would have a similar dmin value by using all the
distances between points. This function is defined as follow:

– let D1(X), D2(X), ..., DR(X) be the set of all the distances between two
points ofX ordered in increasing order.R is the number of different distances
in X .

– let Ji(X) be the number of occurrences of Di(X).

φp(X) =
(∑R

r=1
Jr(X)

(Dr(X))p

) 1
p

, p is a parameter.

5 Experiments

In this section, we make several experiments with the most efficient algorithms
for the latin hypercube problem: Genetic Algorithm (GA), Simulated Annealing
(SA) and Iterated Local Search (ILS). We first determine which value to use for
each algorithm’s parameter. Then, we evaluate the effect of the choice of the
mutation function. Finally, we determine the effect of the evaluation function.

For the comparison between the algorithms to be fair and not implementation-
dependant, we chose to fix the number of time the evaluation of a latin hypercube
has to be computed. Unless it is stated otherwise, the number of evaluations used
for the experiment is 100000∗DIM .We checked that the execution time depends
only on the number of evaluations.

30 A. Rimmel and F. Teytaud

As testing every combination of dimension and size would be to time consum-
ing, we chose arbitrarily three set of values that will be used for the experiments:
(DIM 4 / SIZE 25), (DIM 9 / SIZE 10) and (DIM 8 / SIZE 20).

5.1 Effect of Algorithm Parameters

In this section, we experiment with different parameter values for each algorithm
in order to determine which parameter has a high influence on the performance
of the algorithm. It will also be used to fix the parameters for the next sections.
For those experiments, the mutation operator m3 and the evaluation φ20 are
used.

Genetic Algorithm. The main parameters of the genetic algorithm are λ and
Gen.

Table 1. Effect of the modification of the ratio λ/Gen for GA

LatinHyperCube λ100, Gen1000 λ200, Gen500 λ500, Gen200

4/25 158.2±0.3 162.1 ± 0.2 155.9 ± 0.2
9/10 151.3±0.2 153.0 ± 0.1 153.9 ± 0.1
8/20 411.8±0.3 413.0 ± 0.2 401.6 ± 0.2

We see in table 1 that the parameters have a moderate impact on the perfor-
mance. The ratio λ/Gen that gives the best performance is 2/5. This ratio will
be used in the rest of the paper.

Table 2. Performance of SA for different initial and final probabilities

(DIM/SIZE) 0.5/0.1 0.3/0.1 0.5/0.01 0.3/0.01 0.1/0.01 0.05/0.01

4/25 162.64±0.1 171.97±0.1 170.24±0.09 175.24±0.07 175.87±0.08 174.9±0.1
9/10 154.33±0.02 155.35±0.02 155.15±0.02 155.34±0.02 154.86±0.04 154.07±0.07
8/20 418.71±0.1 427.88±0.1 429.64±0.09 434.02±0.08 435.33±0.07 434.84±0.08

Simulated Annealing. We see in table 2 that the value of the initial and fi-
nal probabilities are very important parameters for the performance of the algo-
rithm. We chose 0.3 for the starting probability and 0.01 for the final probability
in the following experiments.

On the contrary, we see in table 3 that the ratio between the number of cycles
and the number of trials is insignificant for the performance. We use a ratio of
10/1 for the rest of this paper.

Meta-heuristics for Maximin Latin Hypercube 31

Table 3. Comparison with mutation3 and eval phi with simulated annealing

LatinHyperCube (DIM/SIZE) # cycles # of trials per cycles avg scores

4/25 1000 100 175.24±0.07
500 200 175.31± 0.07
200 500 175.32±0.07
100 1000 175.2±0.07

9/10 1000 100 155.34±0.02
500 200 155.34±0.02
200 500 155.3±0.02
100 1000 155.34±0.02

8/20 1000 100 434.02±0.08
500 200 434.96±0.07
200 500 433.89±0.07
100 1000 434.08±0.07

Iterated Local Search. Iterated Local Search does not have many parameters.
We will however compare different version of the algorithm.

– v1: in the local search, all the points are considered
– v2: in the local search, only the critical points are considered.
– v3: multistart version of the algorithm v1.

Table 4. Performance of ILS for different versions of the algorithm

LatinHyperCube ISL v1 ILS v2 ILS v3

4/25 162.0±0.2 158.5± 0.3 159.7±0.2
9/10 153.3±0.1 152.7± 0.1 151.0±0.1
8/20 412.7±0.3 408.0± 0.3 409.5±0.2

The different version have similar performance with a statistically significant
advantage for the v1 version. This version will be used in the following sections.

5.2 Effect of the Mutations

We compare the performance of the genetic algorithm and the simulated anneal-
ing algorithm with the different mutations described in section 2. The results
are given in table 2.

The choice of the mutation operator has a huge impact on the performance
of both algorithms. This seems like a good direction for future improvements. In
the rest of the paper, we will use the mutation 3.

5.3 Effect of the Evaluation Function

In this section, we compare the performance of the different algorithms when
optimizing using the dmin function of using the φp function. The score is always

32 A. Rimmel and F. Teytaud

Table 5. Comparison of the effect of different mutation operators on the performance
of the algorithms

LatinHyperCube mutation GA SA

4/25 m1 156.6±0.2 173.82±0.12
m2 156.4±0.3 173.64±0.12
m3 162.0±0.2 175.22±0.07
m4 147.2±0.3 173.69±0.09

9/10 m1 149.7±0.2 155.77±0.02
m2 152.0±0.1 155.88±0.02
m3 152.9±0.1 155.34±0.02
m4 147.7±0.2 155.68±0.02

8/20 m1 399.4±0.3 429.79±0.13
m2 406.1±0.3 425.8±0.13
m3 412.8±0.2 433.92±0.07
m4 388.8±0.4 424.59±0.13

the dmin value, even when optimizing with φp. The results are presented in
table 6.

Optimizing according to the φp function improves greatly the results for all 3
algorithms. The value of the parameter p seems to have not so much impact as
long as it is greater than 1. In the following, we will use φ10 as our evaluation
function.

5.4 Scalability of the Algorithms

The scalability of an algorithm represents the robustness of the algorithm in
front of the number of evaluations. For instance, if an algorithm performs better
with a large number of evaluations, it should be a good choice if the evaluations
can be parallelized.

We launched each algorithm with its best configuration with different number
of evaluations and measured the best dmin obtained. The results are given on
figure 2.

SA performs better than the two other algorithms in every case. Furthermore,
there is no algorithm that improves faster than the others when the number of
simulations increases. So SA should stay the best even with larger number of
simulations.

6 HighScores

A highscore is the best dmin value obtained for a particular SIZE and DIM . It
corresponds to the best known lower bond for the maximin value. The previous
highscores were obtained with the algorithms Iterated Local Search (see [4]) and
ESE (see [7]). According to our comparison, the simulated annealing algorithm
with the mutation operator m3 and the evaluation function φ10 performs better.
We launched this algorithm on latin hypercube of dimension 3 to 10 and of

Meta-heuristics for Maximin Latin Hypercube 33

Table 6. Comparison of the effect of different evaluation function on the performance
of the algorithms

LatinHyperCube Evaluation Function GA SA ILS

4/25 dmin 142.4±0.3 155.75±0.18 118.2±0.4
φ1 153.6±0.2 166.07±0.06 149.9±0.3
φ5 167.4±0.2 176.47±0.06 165.7±0.2
φ10 165.8±0.2 176.47±0.06 165.5±0.2
φ20 161.8±0.2 175.26±0.07 162.0±0.2

9/10 dmin 144.5±0.2 150.00±0.10 138.3±0.2
φ1 153.3±0.1 155.58±0.04 153.8±0.1
φ5 153.4±0.1 155.68±0.02 153.9±0.1
φ10 153.5±0.1 155.64±0.02 153.7±0.1
φ20 153.0±0.1 155.29±0.02 153.3±0.1

8/20 dmin 381.5±0.4 406.18±0.21 332.6±0.7
φ1 396.5±0.3 415.16±0.11 376.2±0.5
φ5 410.4±0.2 430.68±0.09 404.1±0.3
φ10 414.9±0.2 434.29±0.07 413.1±0.2
φ20 413.2±0.2 434.06±0.08 412.7±0.2

Fig. 2. Effect of the increase of the number of evaluations. We plot the minimal distance
as a function of the number of evaluations. The higher the better.

size 2 to 25 with 10 000 000 evaluations. The tables 7 and 8 show the previous
highscores obtained with ILS and ESE as well as the ones we get with SA. On
a large majority of the latin hypercubes, we obtain similar or better result.

34 A. Rimmel and F. Teytaud

Table 7. Current highscores

SIZE DIM = 3 DIM = 4 DIM = 5 DIM = 6
ILS ESE Per SA ILS ESE SA ILS ESE SA ILS ESE SA

2 3 3 3 3 4 4 4 5 5 5 6 6 6
3 6 6 3 6 7 7 7 8 8 8 12 12 12
4 6 6 6 6 12 12 12 14 14 14 20 20 20
5 11 11 6 11 15 15 15 24 24 24 27 27 27
6 14 14 14 14 22 22 22 32 32 32 40 40 40
7 17 17 14 17 28 28 28 40 40 40 52 52 52
8 21 21 21 21 42 42 42 50 50 50 66 63 66
9 22 22 21 22 42 42 42 61 61 61 82 75 82
10 27 27 21 27 50 47 50 82 82 82 93 91 95
11 30 30 24 30 55 55 55 80 80 82 110 108 111
12 36 36 30 36 63 63 63 91 91 94 140 136 142
13 41 41 35 41 70 70 70 102 103 104 139 138 143
14 42 42 35 42 77 77 78 116 114 118 156 154 161
15 48 45 42 48 89 87 89 131 129 134 173 171 178
16 50 50 42 50 92 93 94 152 151 154 192 190 196
17 53 53 42 56 99 99 102 159 158 163 212 208 221
18 57 56 50 57 108 108 114 170 170 174 238 231 247
19 62 59 57 62 118 119 122 187 184 191 259 256 266
20 66 65 57 66 137 130 137 206 206 208 284 279 291
21 69 68 65 69 147 145 149 229 223 232 306 302 314
22 76 72 69 82 147 150 153 241 235 244 331 325 347
23 76 75 72 82 155 159 164 250 250 260 351 348 364
24 78 81 76 83 170 170 171 265 266 274 378 374 388
25 84 86 91 89 174 178 183 282 285 294 408 400 419

Meta-heuristics for Maximin Latin Hypercube 35

Table 8. Current highscores

SIZE DIM = 7 DIM = 8 DIM = 9 DIM = 10
ILS ESE SA ILS ESE SA ILS ESE SA ILS ESE SA

2 7 7 7 8 8 8 9 9 9 10 10 10
3 13 13 13 14 14 14 18 18 18 19 19 19
4 21 21 21 26 26 26 28 28 28 33 33 33
5 32 32 32 40 40 40 43 43 43 50 50 50
6 47 47 47 54 53 54 61 61 62 68 68 68
7 62 61 62 71 70 72 80 80 81 90 89 91
8 79 79 80 91 90 91 102 101 103 114 114 116
9 95 92 95 114 112 114 128 126 128 143 142 144
10 112 109 113 133 131 133 157 154 158 173 171 175
11 131 129 132 153 152 157 181 178 184 209 206 211
12 155 152 158 181 177 183 208 204 213 240 235 243
13 181 178 184 208 205 213 242 235 246 274 268 279
14 219 215 220 242 236 245 275 268 282 312 305 318
15 222 220 228 277 273 280 315 309 321 356 347 363
16 249 241 253 326 317 325 357 352 364 403 393 411
17 269 266 278 331 332 343 404 396 413 451 442 462
18 297 291 304 367 361 374 466 451 469 505 496 515
19 323 323 335 398 390 408 466 469 491 569 554 576
20 356 349 369 426 425 446 512 506 528 640 625 645
21 386 380 397 467 463 482 550 548 570 647 650 672
22 421 418 433 505 501 525 593 595 623 697 691 720
23 452 448 466 545 542 566 649 640 667 736 747 774
24 486 481 506 591 585 609 694 690 718 805 800 837
25 525 520 536 631 626 657 746 739 769 866 857 893

7 Conclusion

We presented three classical algorithms to find maximin latin hypercube: genetic
algorithm, iterated local search and simulated annealing. The experiments were
done with a fixed number of evaluations to allow easier future comparisons. We
show that the choice of the mutation operator has a great impact on the perfor-
mance of each algorithm. Using a surrogate evaluation function also significantly
improve the results. We then compared the 3 algorithms and the way they scale
up and find that simulated annealing performs better than the other. Finally,
we used simulated annealing on longer time settings to obtain scores as good as
possible for different latin hypercube. This allowed us to obtain new highscores
on most of them.

References

1. Bates, S.J., Sienz, J., Toropov, V.V.: Formulation of the optimal latin hypercube
design of experiments using a permutation genetic algorithm. AIAA 2011, 1–7
(2004)

36 A. Rimmel and F. Teytaud

2. Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing
for function optimization. Technometrics 28(3), 209–217 (1986)

3. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine
Learning 3(2), 95–99 (1988)

4. Grosso, A., Jamali, A., Locatelli, M.: Finding maximin latin hypercube designs by
iterated local search heuristics. European Journal of Operational Research 197(2),
541–547 (2009)

5. Holland, J.H.: Adaptation in natural and artificial systems: An introductory anal-
ysis with applications to biology, control, and artificial intelligence. U. Michigan
Press (1975)

6. Husslage, B., Rennen, G., Van Dam, E.R., Den Hertog, D.: Space-filling Latin
hypercube designs for computer experiments. Tilburg University (2006)

7. Husslage, B.G., Rennen, G., van Dam, E.R., den Hertog, D.: Space-filling latin
hypercube designs for computer experiments. Optimization and Engineering 12(4),
611–630 (2011)

8. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal de-
sign of computer experiments. Journal of Statistical Planning and Inference 134(1),
268–287 (2005)

9. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance de-
signs. Journal of Statistical Planning and Inference 26(2), 131–148 (1990)

10. Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of latin hyper-
cubes. Journal of Statistical Planning and Inference 136(9), 3231–3247 (2006)

11. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. International series
in operations research and management science, pp. 321–354 (2003)

12. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

13. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference 43(3), 381–402 (1995)

14. Van Dam, E.R., Husslage, B., Den Hertog, D., Melissen, H.: Maximin latin hyper-
cube designs in two dimensions. Operations Research 55(1), 158–169 (2007)

An Analysis of Parameters of irace

Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, CoDE, Université libre de Bruxelles, Belgium
{leslie.perez.caceres,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. The irace package implements a flexible tool for the au-
tomatic configuration of algorithms. However, irace itself has specific
parameters to customize the search process according to the tuning sce-
nario. In this paper, we analyze five parameters of irace: the number of
iterations, the number of instances seen before the first elimination test,
the maximum number of elite configurations, the statistical test and the
confidence level of the statistical test. These parameters define some key
aspects of the way irace identifies good configurations. Originally, their
values have been set based on rules of thumb and an intuitive under-
standing of the configuration process. This work aims at giving insights
about the sensitivity of irace to these parameters in order to guide their
setting and further improvement of irace.

1 Introduction

Algorithm configuration [5, 9] is the task of finding a setting of the categori-
cal, ordinal, and numerical parameters of a target algorithm that exhibit good
empirical performance on a class of problem instances. Currently, few tools are
available for configuring algorithms automatically [1,4,10–12]. The irace pack-
age [12] implements an iterated racing framework for the automatic configuration
of algorithms [3,6]. irace is currently available as an R package and the details
of its implementation and a tutorial on how to use it can be found in [12]. The
implementation of irace is flexible, allowing the user to adjust the configura-
tion process according to the configuration scenario at hand. As a flexible tool,
irace itself has parameters. The default parameter settings of irace have been
defined by rules of thumb based on intuition of how the configuration process
may work [3, 6, 12]. So far, experimental analysis of these parameters have fo-
cused on a single race, studying the effect of the number of initial configurations,
the particular statistical test or the confidence level [5,7]. This paper is the first
to empirically study the impact that specific settings of irace parameters have
on the effectiveness of the configuration process. Section 2 describes details of
irace and its default settings, Section 3 describes the experimental setup and
Section 4 presents the experiments results. We conclude in Section 5.

2 The irace Procedure

Automatic algorithm configuration tools, henceforth called configurators, are al-
gorithms that tackle expensive, stochastic nonlinear mixed-variable optimization

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 37–48, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

38 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

problems. The problem tackled by a configurator is called a configuration sce-
nario and it is given as a target algorithm to be configured, a set of training
instances representative of the problem to be solved by the target algorithm,
and the configuration budget, which is the maximum computational effort (e.g.,
number of runs of the target algorithm) that the configurator has available. In
addition, configurators have themselves parameters that affect their search.The
search of irace consists of a number of iterations. In each iteration, a set of
candidate algorithm configurations is generated and the best configurations of
the iteration are identified by racing. Within a race, configurations are tested on
a sequence of problem instances and, at each step, all surviving configurations
are tested on a new instance. Candidate configurations are eliminated from the
race if they are found to be poor performing according to some criterion. In
irace, this criterion is implemented by means of statistical testing. For irace a
minimum number of iterations (N iter) is defined as N iter = �2 + log2(N

param),
where Nparam is the number of parameters of the target algorithm. The user-
defined budget (B, the maximum number of target algorithm runs) is distributed
across the iterations by setting the budget Bi available for iteration i to

Bi =
(B −Bused

i)

N iter − i+ 1
(1)

where Bused
i is the budget that has already been used before iteration i. An it-

eration is stopped as soon as the budget is spent or the number of candidates in
the race reaches Nmax, defined by Nmax = �2+ log2(N

param). If an iteration is
stopped due to this latter condition, the iteration budget may not be used com-
pletely, and thus there may be enough budget to do more than N iter iterations.
Each iteration starts with a set of Ci configurations:

Ci =

⌊
Bi

max(μ, T first) + min(5, i)

⌋
(2)

where μ ensures a minimum number of instances seen per iteration (five by de-
fault) and T first is explained below. Using this definition of Ci, the number of
candidates sampled decreases with the iteration number. This was done to ac-
count for the effect that candidate configurations become more similar as the
configuration process progresses and more problem instances are needed to dis-
criminate between them. In the first iteration of irace, an initial set of candidate
configurations may be specified, the other candidates are generated uniformly at
random. In the following iterations, the set of candidates is formed by the best
candidates of the previous iteration and by new candidates that are sampled
around these best candidates. For numerical (integer or continuous) parameters
a truncated normal distribution is used and for categorical parameters a discrete
one. Ordinal parameters are treated as integers. The distributions are updated
every iteration, biasing the sampling towards the best candidates found. Each
race evaluates the current set of candidates on a sequence of problem instances.
Candidates are discarded from the race as soon as they show statistically worse
performance than the best candidate so far. In the current irace implemen-
tation, either the Friedman test with its associated post-test [8] or a Student

An Analysis of Parameters of irace 39

t-test can be used as statistical test. The first statistical test of an iteration is
performed after seeing T first instances (T first = 5, by default). The survivors are
evaluated on the next instances and every T each instances a statistical test is
applied (T each = 1, by default). A race finishes when at most Nmax survivors
remain in the race or the available budget Bi is exhausted. At the end of an
iteration, the best candidates are selected from the survivors; these candidates
are called elite candidates. The number of elite candidates in an iteration is given
by Nelite

i = min{N surv
i , Nmax}, where N surv

i is the number of candidates that
remain in the race when iteration i is finished. The selection of the elite candi-
dates is done by ranking them (according to the sum of ranks for the Friedman
test or the mean quality for t-test), and selecting from the lowest ranked. The
elite candidates are then used to generate new candidates; to do so, they are
selected to become parents with probability;

pz =
Nelite

i − rz + 1

Nelite
i · (Nelite

i + 1)/2
(3)

where Nelite
i is the actual number of elite candidates in iteration i and rz is

the ranking of elite candidate z. New candidates are sampled according to the
distribution associated to each parameter in the selected parent. Once Ci can-
didates are obtained (including the Nelite

i ones and newly sampled ones), a new
race begins. irace terminates when the total budget is exhausted or when the
remaining budget is not enough to perform a new iteration. Finally, the best
configuration found is returned.

3 Experimental Setup

In this section, we detail the configuration scenarios used for analyzing irace.
Each scenario has a target algorithm, a set of training and test instances and a
budget. The configuration scenarios are available at the supplementary informa-
tion page (http://iridia.ulb.ac.be/supp/IridiaSupp2013-008/).

3.1 Configuration Scenarios

ACOTSP is a software package that implements various ant colony optimiza-
tion (ACO) algorithms [17] for solving the Traveling Salesman Problem (TSP).
The ACOTSP scenario requires the configuration of 11 parameters of ACOTSP,
three categorical, four integer and four continuous. The training set is composed
of ten random Euclidean TSP instances of each of 1000, 1500, 2000, 2500 and
3000 cities; the test set has 50 instances of each of the previous sizes. All in-
stances and their optimal solutions are available from the supplementary pages.
The goal is to minimize tour length. The maximum execution time of a run of
ACOTSP is set to 20 seconds and the total configuration budget to 5000 runs.

SPEAR is a tree search solver for SAT problems [2]. The SPEAR scenario
requires the configuration of 26 parameters of SPEAR, all of them categorical.

http://iridia.ulb.ac.be/supp/IridiaSupp2013-008/

40 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

The training and the test set are composed of 302 SAT instances each, which be-
long to the SAT configuration benchmark “Spear-swv”. The goal is to minimize
mean algorithm runtime. The maximum execution time for each run of SPEAR
is set to 300 seconds and the total configuration budget is 10000 runs.

MOACO is a framework of multi-objective ACO algorithms [13]. The
MOACO scenario requires the configuration of 16 parameters: 11 categorical,
one integer and four real. The training and the test set are composed each of
10 instances of 500, 600, 700, 800, 900, 1000 cities. The goal is to optimize the
quality of the Pareto-front approximation as measured by the hypervolume qual-
ity measure [18]. The hypervolume is to be maximized, however, for consistency
with the other scenarios, we plot the negative normalized hypervolume, which
is to be minimized. The maximum execution time of each run of MOACO is
defined by 4 · (instance size/100)2. The total configuration budget is 5000 runs.

3.2 Training Set Analysis

The homogeneity of the training set with respect to algorithm performance is
conjectured to have a high impact on the configuration process and possibly
on the parameter settings of configurators. Homogeneity refers to the correla-
tion between algorithm performance across instance sets: highly homogeneous
instance sets maintain the same relative ranking of algorithms; highly hetero-
geneous instance sets lead to strongly different rankings depending on the par-
ticular problem instance to be tackled. Consequently, highly heterogeneous sets
hinder the progress of the configuration process as candidate algorithm config-
urations may have inconsistent performance. A parametric measure of instance
set homogeneity was proposed in [14], suggesting that the Friedman test statis-
tic may be useful. As this latter statistic is not normalized and, thus, depends
on the number of instances and configurations, we use the Kendall concordance
coefficient (W) [15], which is a normalization of the Friedman test statistic. For
each training set we generate 100 candidates uniformly distributed in the con-
figuration parameter space. These candidates are evaluated on the instance set
and Kendall’s W statistic is calculated using instances as blocks and candidates
as groups. The statistic of this test can be interpreted as a measure of how sim-
ilar is the relative performance of candidates (that is, their ranking) across the
instance set. A value close to one indicates high homogeneity, a value close to
zero high heterogeneity. We performed the test using the complete instance sets
and subsets grouped by instance size (ACOTSP and MOACO) or instance type
(SPEAR). As shown by Table 1, the instances used in the ACOTSP and MOACO
scenarios are much more homogeneous than those in the SPEAR scenario.

3.3 Experimental Setup

In the following sections, each experiment consists of 20 trials of irace, resulting
in 20 final best configurations for each configuration scenario and each parame-
ter setting of irace. For each configuration obtained, the average performance on

An Analysis of Parameters of irace 41

Table 1. Kendall’s W statistic measured across 100 algorithm configurations on the
training sets (all) and subsets grouped by size or type. The Set column is the set or
subset of instances, the Size column is the number of instances in the set.

ACOTSP SPEAR MOACO

Set Size W Set Size W Set Size W

all 50 0.96974 all 302 0.16017 all 60 0.99049
1000 10 0.98227 dspam 49 0.15446 500 10 0.99152
1500 10 0.98125 gzip 37 0.38442 600 10 0.99206
2000 10 0.98250 hsat 148 0.15510 700 10 0.99322
2500 10 0.98493 itox 26 0.61934 800 10 0.99256
3000 10 0.98089 winedump 17 0.29974 900 10 0.99311

winegcc 22 0.62083 1000 10 0.99096
xinetd 3 0.35308

Table 2. Wilcoxon signed-rank test p-values comparing the mean performance over the
test instances of configurations obtained by irace using N iter ∈ {1, 3,default, large}

default vs. large default vs. 3 default vs. 1

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO

F-test 0.33 0.4304 0.8695 0.7562 0.7562 0.0003948 1.907e−5 0.7285 1.907e−6

t-test 0.2943 0.498 0.0007076 0.7285 0.4304 1.907e−6 0.0002098 0.5459 1.907e−6

the test set is computed. We repeat each experiment using, as elimination test
either the F-test (and its associated post-hoc tests) or the Student t-test without
multiple test correction.1 The experiments were executed on a cluster running
Cluster Rocks GNU/Linux 6.0. The experiments involving the ACOTSP scenario
were executed on an AMD Opteron 6128 with 8 cores of 2GHz and 16GB RAM.
The ones involving the SPEAR and MOACO scenarios were executed on an
AMD Opteron 6272 with 16 cores of 2.1GHz and 64GB RAM.

4 Experiments

In this section, we examine the impact of five parameters of irace on the per-
formance of the final algorithm configuration found in the configuration process.

Number of Iterations. The number of iterations (N iter) strongly modifies the
search behavior of irace. With more iterations, fewer configurations are used
in each iteration. The number of newly sampled configurations is also reduced
as the number of elite configurations remains the same. Overall, this leads to an

1 Using multiple test corrections in the Student t-test results in a search process that
does not effectively eliminate poor candidates [5]. Avoiding multiple test corrections
makes the process more heuristic, but proves to be effective.

42 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080
ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

i=1 i=3 i=5 i=8

10
20
30
40
50
60

SPEAR

M
ea

n
ru

nt
im

e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.006

0.007

0.008

0.009
ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

i=1 i=3 i=5 i=8
0

10

20

30

40

50

SPEAR

M
ea

n
ru

nt
im

e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 1. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using N iter ∈ {1, 3,default, large}

intensification of the search by splitting the budget in short races. Less iterations,
on the other hand, lead to a stronger diversification of the search. The default
number of iterations of irace depends on the number of parameters. We increase
this value to N iter = �2 + 2 · log2(Nparam) and we refer to this setting as
“large” in the following. Additionally, we use two fixed settings: N iter = 3 and
N iter = 1. The latter actually corresponds to a single race using configurations
sampled uniformly at random [3]. In Fig. 1, we present the results of the 20
independent executions of irace on the three configuration scenarios and the
results of the Wilcoxon test are shown in Table 2. In the SPEAR scenario,
none of the differences is statistically significant, confirming the observation from
the box-plots that no clear differences arise. Surprisingly, even a race based
on a single random sample of configurations (N iter = 1) obtains reasonable
performance here. This is different from the MOACO and ACOTSP scenarios,
where irace with N iter = 1 performs significantly worse than the other settings,
confirming earlier results [6]. Other differences in the ACOTSP scenario are,
however, not statistically significant. In the MOACO scenario, the default setting
performs significantly better than N iter = 3, while the large setting performs
significantly worse than the default only when using t-test. The results indicate
that the default setting is overall reasonably robust. Nonetheless, the number
of iterations has an impact on the quality of the final configurations and the
adaptation of the number of iterations to the configuration scenario may be
useful to improve irace performance.

First Elimination Test. The elimination of candidates during the race allows
irace to focus the search around the best configurations. Here, we analyze the

An Analysis of Parameters of irace 43

0.0055

0.0060

0.0065

0.0070

0.0075

ACOTSP
%

 d
ev

ia
tio

n
fr

om
 o

pt
.

f=2 f=5

10

20

30

40

SPEAR

M
ea

n
ru

nt
im

e

f=2 f=5

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

f=2 f=5

10

20

30

40
SPEAR

M
ea

n
ru

nt
im

e

f=2 f=5

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 2. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using T first ∈ {2, 5}

Table 3. Wilcoxon signed-rank test p-values comparing the mean performance over
the test instances of configurations obtained by irace using T first = 2 vs. T first = 5

ACOTSP SPEAR MOACO

F-test 0.01362 0.1231 0.1231
t-test 0.03623 0.5958 0.6477

sensibility of irace to the number of instances evaluated before performing the
first elimination test (T first). We performed experiments using the default set-
ting of (T first = 5) and a reduced value of T first = 2. Reducing the value of T first

allows irace to more aggressively eliminate configurations. The budget saved in
this way may be used later to sample a higher number of configurations. How-
ever, good configurations may erroneously be lost more easily. The experimental
results are shown in Fig. 2. In the ACOTSP scenario a setting of T first = 2
seems to worsen performance, while on the SPEAR and MOACO scenarios no
clear differences are visible. The Wilcoxon paired test in Table 3 supports this
analysis. Our hypothesis was that with a setting of T first = 2, poor candidates
are eliminated earlier and in later iterations more candidates may be sampled. In
order to corroborate this hypothesis, we plot the development of the number of
surviving configurations during the search process of irace (Fig. 3). The plots
show one run of irace that is representative for the general behavior.

Maximum Number of Elite Configurations. The maximum number of
elite configurations (Nmax) influences the exploration / exploitation trade-off
in the search process. In the extreme case of Nmax = 1, irace samples new

44 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

0
50

10
0

15
0

Number of survivors ACOTSP trial 12

Number of training instances seen

f=5
f=2

0
50

10
0

15
0

N
um

be
r

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

Number of survivors SPEAR trial 16

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

N
um

be
r

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

35
0 Number of survivors MOACO trial 9

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

35
0

N
um

be
r

o f
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

Fig. 3. Number of surviving candidates in irace using T first ∈ {2, 5} and F-test

configurations only around the best configuration found so far. A larger value of
Nmax (potentially) induces a more diverse search. In this section, we examine
the possible differences that are incurred by setting Nmax = 1 and compare it
to the default setting. The results of these experiments are shown in Fig. 4 and
the Wilcoxon test p-values in Table 4. While in the ACOTSP scenario using
only one elite configuration worsens significantly performance, in the MOACO
and SPEAR scenarios performance it is not significantly worse. Intensifying the
search by strongly reducing the number of elite candidates does not seem to
improve the performance of the final configurations in any of the configuration
scenarios. These results indicate that the default setting is reasonably adequate.

Statistical Test. The main difference between the F-test (plus post-test) and
the Student t-test is that the latter uses the raw quality values returned by the
target algorithm, while the former transforms the values into ranks. Hence, the
F-test can detect minimal but consistent differences between the performance
of the configurations but it is insensitive to large sporadic differences, whereas
the t-test is influenced by such outliers. Figure 5 shows box-plots comparing
the configurations obtained using both statistical tests and Table 5 provides the
Wilcoxon test p-values. The first set of plots show the average performance of
the candidates on the test set and the second set of plots compares the average
performance of the candidates per instance. The results of the Wilcoxon test
indicate significant differences only for the MOACO case, where the usage of the
t-test leads to better performance. It is interesting, however, to analyze in more
detail the SPEAR configuration scenario. While there is no significant difference
w.r.t. to the average performance (mean runtime), the F-test leads to shorter
runtimes on more instances than the t-test; however, the t-test performs much
better than the configurations obtained by the F-test on the subset of the hsat
instances. Configurations obtained by using the F-test solve a majority of in-
stances faster than configurations obtained by using the t-test; this difference is
statistically significant. This corresponds to the fact that the F-test prefers to
improve the mean ranking by performing well on a majority of instances while
the t-test improves the mean performance and tends to reduce worst case per-
formance, which in the SPEAR configuration scenario are very long runtimes.
In this sense, these results confirm earlier observations for different configura-
tors [11, 16].

An Analysis of Parameters of irace 45

0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

s=1 s=5

10
20
30
40
50
60
70

SPEAR

M
ea

n
ru

nt
im

e

s=1 s=6

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080

ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

s=1 s=5

5
10
15
20
25
30

SPEAR

M
ea

n
ru

nt
im

e

s=1 s=6

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 4. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using Nmax ∈ {1, default}

Table 4. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using the default setting of Nmax vs. Nmax = 1, over the test set

ACOTSP SPEAR MOACO

F-test 3.624e−5 0.7285 0.4304
t-test 0.0005856 0.5958 0.4304

Table 5. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using F-test vs. t-test

ACOTSP SPEAR MOACO

0.2943 0.5958 0.03277

Statistical Test Confidence Level. The confidence level of the irace elim-
ination test is set by default to 0.95. Larger values mean that the test is more
strict, so it takes more evaluations (or clearer differences) to eliminate configura-
tions; lower values allow eliminating configurations faster, save budget, but risk
removing good configurations based on few unlucky runs. We assess the effect of
this parameter on the configuration process by experimenting with confidence
levels ∈ {0.75, 0.95, 0.99}. Results are summarized in Fig. 6 and Table 6. For the
ACOTSP configuration scenario, a setting of 0.99 is clearly worse than the de-
fault setting. Even if on the MOACO configuration scenario the 0.99 confidence
level is significantly better than the default, the absolute difference is small and
we would recommend using the default 0.95 level. Considering a smaller confi-
dence level such as 0.75 may be an option. In fact, in two cases this setting is

46 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

0.0055

0.0060

0.0065

ACOTSP
%

 d
ev

ia
tio

n
fr

om
 o

pt
.

F−test t−test

5
10
15
20
25
30

SPEAR

M
ea

n
ru

nt
im

e

F−test t−test
−1.058
−1.056
−1.054
−1.052
−1.050
−1.048
−1.046

MOACO

M
ea

n
hy

pe
rv

ol
um

e

F−test t−test
(a) Box plots of the mean performance over the test instances of 20 configurations
obtained by irace.

0.002

0.004

0.006

0.008

0.010

0.012
ACOTSP

1000
1500
2000
2500
3000

t−
te

st

F−test
0

50

100

150

SPEAR
dspam
gzip
hsat
itox
winedump
winegcc
xinetdt−

te
st

F−test
−1.07

−1.06

−1.05

−1.04

−1.03
MOACO

500
600
700
800
900
1000t−

te
st

F−test
(b) Scatter plots of the mean performace per instance over the 20 configurations
obtained by irace.

Fig. 5. Comparison of the mean performance over the test instances of 20 configura-
tions obtained by irace using F-test and t-test

statistically better than the default setting while in one it is worse. However,
the results also indicate that the behavior of irace is affected differently by the
confidence level used depending on the statistical test used (see, e.g. MOACO
configuration scenario). This is different from the other experiments, where the
impact of irace parameter settings was similar for both elimination tests.

5 Final Remarks and Future Work

In this paper, we analyse the impact of five irace parameters on the final con-
figuration performance. The experiments were performed on three configuration
scenarios. The ACOTSP and the MOACO scenarios show a fairly homogeneous
training set, while the SPEAR configuration scenario has a highly heterogeneous
set of instances and a large variability of the quality values (runtime), making
the configuration process more variable. The default settings of the number of it-
erations and the number of elite configurations proved to be reasonably robust.
Reducing the setting of the first elimination test did not improve the perfor-
mance of irace, although the results obtained suggest that lower values for this
parameter could be used with highly homogeneous sets of instances. Larger dif-
ferences were observed when altering the type of statistical test. However, in this
case, the best setting depends on the goal of the configuration process. If the
goal should take into account outliers, then irace should use the t-test rather
than the F-test. Finally, the confidence level had a strong effect on the results.

An Analysis of Parameters of irace 47

0.006

0.007

0.008

0.009

ACOTSP
%

 d
ev

ia
tio

n
fr

om
 o

pt
.

c=.75 c=.95 c=.99

10
20
30
40
50
60

SPEAR

M
ea

n
ru

nt
im

e

c=.75 c=.95 c=.99

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080
0.0085

ACOTSP

%
 d

ev
ia

tio
n

fr
om

 o
pt

.

c=.75 c=.95 c=.99
0

10

20

30

40

50
SPEAR

M
ea

n
ru

nt
im

e

c=.75 c=.95 c=.99

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 6. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using confidence level in {0.75, 0.95, 0.99}

Table 6. Wilcoxon signed-rank test p-values comparing configurations obtained by
irace using confidence level in {0.75, 0.95, 0.99}

0.75 vs. 0.95 0.99 vs. 0.95

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO

F-test 0.01531 0.4091 1.907e−6 1.907e−6 0.7841 0.002325
t-test 0.02148 0.9563 0.1429 1.907e−6 0.3683 0.2455

Large values were consistently worse, whereas lower values were sometimes better
depending on the scenario and the type of statistical test. Further work will
extend and complement the current experimental analysis in order to account
for more parameter settings and their possible interactions. Additional scenarios
may help to identify clearer trends or use an automatic configuration process to
configure improved default settings of irace. Nonetheless, the insights obtained
in this work are helping us to design future improvements to irace.

Acknowledgments. This work received support from the META-X project,
an Action de Recherche Concertée funded by the Scientific Research Directorate
of the French Community of Belgium, the COMEX project within the Interuni-
versity Attraction Poles Programme of the Belgian Science Policy Office, and
the EU FP7 ICT Project COLOMBO, Cooperative Self-Organizing System for
Low Carbon Mobility at Low Penetration Rates (agreement no. 318622). Manuel
López-Ibáñez and Thomas Stützle acknowledge support from the Belgian F.R.S.-
FNRS, of which they are a postdoctoral researcher and a senior research asso-
ciate, respectively.

48 L. Pérez Cáceres, M. López-Ibáñez, and T. Stützle

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

2. Babić, D., Hutter, F.: Spear theorem prover. In: SAT 2008: Proceedings of the SAT
2008 Race (2008)

3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

4. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: Proceedings of CEC 2005, pp. 773–780. IEEE Press (2005)

5. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. SCI,
vol. 197. Springer, Heidelberg (2009)

6. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

7. Branke, J., Elomari, J.: Racing with a fixed budget and a self-adaptive significance
level. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 272–280.
Springer, Heidelberg (2013)

8. Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons (1999)
9. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi,

Y., et al. (eds.) Autonomous Search, pp. 37–71. Springer, Berlin (2012)
10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

12. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6),
861–875 (2012)

14. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm
configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219,
pp. 190–204. Springer, Heidelberg (2012)

15. Siegel, S., Castellan Jr., N.J.: Non Parametric Statistics for the Behavioral Sciences,
2nd edn. McGraw Hill (1988)

16. Smit, S.K., Eiben, A.E.: Beating the “world champion” evolutionary algorithm via
REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 1–8.
IEEE Press (2010)

17. Stützle, T.: ACOTSP: A software package of various ant colony optimization al-
gorithms applied to the symmetric traveling salesman problem (2002),
http://www.aco-metaheuristic.org/aco-code/

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

http://www.aco-metaheuristic.org/aco-code/

An Improved Multi-objective Algorithm

for the Urban Transit Routing Problem

Matthew P. John1,2, Christine L. Mumford1, and Rhyd Lewis2

1 Cardiff School of Computer Science & Informatics, UK
2 Cardiff School of Mathematics, UK

JohnMP@cardiff.ac.uk

Abstract. The determination of efficient routes and schedules in public
transport systems is complex due to the vast search space and multi-
ple constraints involved. In this paper we focus on the Urban Transit
Routing Problem concerned with the physical network design of pub-
lic transport systems. Historically, route planners have used their local
knowledge coupled with simple guidelines to produce network designs.
Several major studies have identified the need for automated tools to aid
in the design and evaluation of public transport networks. We propose a
new construction heuristic used to seed a multi-objective evolutionary al-
gorithm. Several problem specific mutation operators are then combined
with an NSGAII framework leading to improvements upon previously
published results.

1 Introduction

The Urban Transit Network Design Problem (UTNDP) involves the determina-
tion of an efficient set of routes and schedules for public transportation systems
such as bus, rail and tram networks. Ceder and Wilson [1] identified five main
stages for bus service planning: network design, frequency setting, timetable de-
velopment, bus scheduling and driver scheduling. Given that each stage of the
UTNDP is NP-hard [2], it is usually considered impractical to solve all the stages
simultaneously.

In this paper we focus on the network design element, which is tasked with
determining an efficient set of routes on an already established road (or rail)
network, usually with previously identified pickup and drop off locations (e.g.
bus stops). Building upon recently published work by Mumford [3], we present a
much improved multi-objective approach based upon NSGAII [4]. Our approach
considers the trade offs between passenger and operator costs by producing ap-
proximate Pareto optimal sets for consideration by a human decision maker.
Furthermore, we provide a discussion of the many specialised heuristics and
operators we have tested during the development of our approach.

Historically, route planners have used a combination of local knowledge and
simple guidelines to produce route sets. Several major studies (see [5, 6]) have
identified the need for automated computer based tools for the design and eval-
uation of public transport networks. Automation is, however, highly complex

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 49–60, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

50 M.P. John, C.L. Mumford, and R. Lewis

and computationally expensive due to the large search space and multiple con-
straints involved in public transportation planning. The increase in congestion,
pollution, greenhouse gas emissions and dwindling oil resources have placed em-
phasis on the use of public transport in recent years in an attempt to reduce the
reliance of the private car. Achieving an increase in public transportation usage
is clearly desirable but is also an extremely complex issue. However frequent and
reliable cost-effective services are clearly key attributes.

Bagloee and Ceder [7] have recently pointed out that many public transit net-
works have not been reappraised from anywhere between 20 to 50 years. Land
use patterns have changed considerably in this time period with the migration
away from town centres into surrounding suburban areas; however public trans-
port has been relatively slow to respond. It is our view that the development of
automated tools to aid public transport networks is timely.

Prior to 1979, the few papers published on the UTNDP considered only highly
specific problem instances [8, 9]. In 1979, Christoph Mandl [10, 11] approached
the problem in a rather more generic form. He concentrated on the network de-
sign phase, and developed a two-stage solution. First a set of feasible routes is
generated, second, heuristics are applied to improve the quality of the routes in
this set. Following Mandl’s pioneering work, heuristic methods have been widely
used to solve the UTNDP, e.g. [1, 12]. With the advancement of computing tech-
nology over the last two decades however, metaheuristic techniques have become
increasingly popular for solving these problems, particularly genetic algorithms
(GAs) [13–16]. Other metaheuristic methods such as tabu search and simulated
annealing can also be seen in [17, 18]. Nevertheless, comparative work has been
limited to Mandl’s 15 vertex instance.

One of the first approaches using a GA was proposed by Pattnaik et al. [15]
utilising a route set generation procedure guided by a demand matrix, designer
knowledge, and route constraints to produce a set of candidate routes. The role
of the GA is simply to select a number of routes from the candidate set, where
each route is given a unique identifier encoded in binary. This approach is similar
to those proposed by Tom and Mohan [16] and Fan and Machemehl [19].

Chakroborty and Dwivedi [14] generated an initial set of candidate route sets
each with a fixed number of routes. A GA was then applied using two crossover
operators: 1) Inter-string crossover which exchanges routes from the parent route
sets, and 2) Intra-string crossover which exchanges parts of a route in a parent
if two routes share a common vertex. Mutation is then applied by randomly
selecting a vertex and changing it to any of its acceptable adjacent vertices.

Similar to Chakroborty and Dwivedi, Fan et al. [20] generated an initial pop-
ulation of feasible route sets. Their GA used a mutation operator where a vertex
can be either added to the end of a route or removed from the start. However,
their GA lacked a crossover operator.

Bagloee and Ceder [7] tackled real sized road networks using a combination
of heuristics, a GA and an ant-system. They determined the location of stops
based upon the distance to high concentrations of travel demand and then used
a system inspired by Newtonian gravity theory to produce a set of candidate

An Improved Multi-objective Algorithm for the UTNDP 51

routes. A GA was then used to search through the candidate routes to find a
good solution – the frequencies of the routes was computed simultaneously.

Recently Mumford [3] presented an approach using a constructive heuristic
to generate an initial population. This was then evolved using a multi-objective
evolutionary algorithm (MOEA). Mumford’s crossover operator alternates the
selection of routes between two parents, favoring routes containing vertices that
are not currently present in the partial solution, while ensuring route connec-
tivity. Two mutation operators are also proposed that add or delete a bounded
random number of vertices from a route set. Four benchmark instances based
on real-world bus route networks were also created and made publicly available
[3].

2 Problem Description

The network design problem can be formally stated as follows. Given a graph
G = (V,E) where V = {v1, . . . , vn} is a set of vertices and E = {e1, . . . , em} is
a set of edges, we are given:

– A weight for each edge, Wei , which defines the time it takes to traverse edge
ei;

– A matrix Dn×n where Dvi,vj gives the passenger demand between a pair of
vertices vi and vj .

A route Ri is defined as a simple path (i.e. no loops/repeated vertices) through
the graph G. Let GRi = (VRi , ERi) be the subgraph induced by a route Ri. A
solution is defined as a set of overlapping routes R = {R1, . . . , Rr} where the
number of routes, r, and the minimum, m1, and maximum, m2, number of
vertices in a route are to be specified by the user. In order for R to be valid the
following conditions must hold:

|R|⋃
i=1

VRi = V (1)

m1 ≤ |VRi | ≤ m2 ∀Ri ∈ R (2)

GR = (

|R|⋃
i=1

VRi ,

|R|⋃
i=1

ERi) is connected (3)

|R| = r (4)

Constraint (1) ensures that all vertices in V are in at least one route in R.
Constraint (2) specifies that each route should contain between m1 and m2

vertices (these values are based on considerations such as driver fatigue and the
difficulty of maintaining the schedule [6]). Constraint (3) specifies that a path
exists between all pairs of vertices in GR. If Constraint (1) is satisfied then

52 M.P. John, C.L. Mumford, and R. Lewis

GR = (V,
|R|⋃
i=1

ERi). Finally, Constraint (4) ensures that the solution contains the

correct number of routes.
For this problem formulation, the following assumptions are also made:

1. There will always be sufficient vehicles on each route Ri ∈ R to ensure that
the demand between every pair of vertices is satisfied.

2. A vehicle will travel back and forth along the same route, reversing its di-
rection each time it reaches a terminal vertex.

3. The transfer penalty (representing the inconvenience of moving from one
vehicle to another) is set at a fixed constant. In this study a value of 5
minutes is used in line with previous studies (e.g. [14, 21]).

4. Passenger choice of routes is based on shortest travel time (which includes
transfer penalties).

In this problem we consider both the passenger cost and operator cost. In gen-
eral, passengers would like to travel to their destination in the shortest possible
time, but avoiding the inconvenience of making too many transfers. We define a
shortest path between two vertices using the route set R as αvi,vj (R). A path
may include both transport links and transfer links (a transfer link facilitates the
changing from one vehicle to another with the associated time penalty). This is
shown in Fig. 1 with the original network expanded to include transfer vertices
and transfer links. The shortest path evaluation is thus completed on the transit
network Fig. 1(b). The minimum journey time, αvi,vj (R), from any given pair of
vertices is thus made up of two components: in vehicle travel time and transfer
penalty. We define the passenger cost for a route set R to be the mean journey
time over all passengers as given by Mumford [3]:

F1(R) =

∑n
i,j=1 Dvi,vjαvi,vj (R)∑n

i,j=1 Dvi,vj

(5)

Operator costs depend on many factors, such as the number of vehicles needed
to maintain the required level of service, the daily distance travelled by the
vehicles and the costs of employing sufficient drivers. We use a simple proxy for
operator costs: the sum of the costs (in time) for traversing all the routes in one
direction, as given by Mumford [3]:

F2(R) =
∑

∀Ri∈R

∑
∀ej∈Ri

Wej (6)

3 Methodology

In this paper we propose an approach that seeds a MOEA with a high qual-
ity initial population formed using a powerful heuristic construction procedure.
NSGAII [4] is then used with the crossover and repair operators proposed by
Mumford [3] along with several new mutation operators.

An Improved Multi-objective Algorithm for the UTNDP 53

Fig. 1. (a) Route network – road network with routes overlayed (b) Transit network –
network used for evaluation

3.1 NSGAII

NSGAII is an elitist non-dominated sorting MOEA widely used to solve multi-
objective optimization problems. It has been shown to find a better spread of
solutions and convergence nearer to the true Pareto-optimal front compared with
other Pareto based methods [4] .

The basic form of an NSGAII generation proceeds by creating an offspring
population of size N. This is then combined with the parent population of size
N to produce a population, P = {R1,R2, . . . ,R2N}. Let us now define two
attributes of a route set Ri: 1) Rirank the non-dominated front that Ri belongs
to, and 2)Ridist the crowding distance associated withRi as defined by Deb et al.
[4]. P is then sorted such that ∀Ri,Rj ∈ P Rirank ≤ Rjrank and Ridist ≥ Rjdist

for i < j. The successor population is then formed by taking the first N solutions
in P .

Similar to [4], in our case a new population is generated using binary tourna-
ment selection with a crossover probability of 0.9. The probability of mutating
each route in an offspring is set as 1

r .

3.2 Heuristic Construction

As mentioned earlier, heuristic construction was widely used for the network
design stage before the use of metaheuristic algorithms became more widespread
in the literature. Our construction heuristic creates solutions by incorporating
knowledge that exploits the underlying structure of the problem.

The majority of previous approaches for tackling network design (see [18, 19,
15]) generate a candidate pool of routes using Dijkstra’s shortest path algorithm
and Yen’s [22] k -shortest path algorithm to enumerate all possible routes. An
optimization algorithm is then applied to find the best combination of routes
from the candidate pool, although there is still no guarantee that the optimal

54 M.P. John, C.L. Mumford, and R. Lewis

configuration of routes will be selected. As such we have chosen to combine our
approach with that used by Shih and Mahmassani [21] with modifications to
produce route sets that balance the cost to the operator and passengers whilst
ensuring the constraints of the problem are adhered to. Shih and Mahmassani
[21] generate an initial route set using a heuristic procedure that continually
adds routes until user-defined levels on directness and coverage are reached. This
contrasts with our approach where the number of routes is fixed. Furthermore,
our method ensures that all vertices are present within a route set, allowing a
passenger to reach any vertex in the network using transfers if necessary.

Our approach generates a set of weighted graphs using a weighted sum of
normalized travel time and (1 − normalized demand) with weights specified in
advance by the user. A route set, R, is then generated from a given weighted
graph. A spanning subgraph is first created using an iterative procedure with the
objective of minimizing the sum of the weighted edge costs. In the first iteration
of this procedure the pair of vertices (seed pair) with the lowest weighted edge
cost are selected. In subsequent iterations a seed pair contains one vertex already
contained in the subgraph, ensuring that routes remain connected. A seed pair
is then expanded to form a route by adding adjacent vertices.

During this expansion process vertices that are adjacent to the first or last
vertex in the route are sorted against their weighted edge cost. The minimum
cost unused vertex is then added to the route. If there are no unused vertices
the minimum cost adjacent vertex is instead added to the route providing of
course that the vertex is not present in the current route under construction. If
multiple vertices are in the set of potential vertices with equal weight a random
vertex from this set is selected. Vertices are continually inserted until a vertex
can no longer be inserted that would not cause a constraint to be violated.

Providing that |R| < r the next stage of the heuristic procedure is applied
using an approach utilized by Shih and Mahmassani [21]. The vertex pairs (vi, vj)
that are yet to be satisfied directly (i.e. it is not possible to travel between the
vertices without having to make a transfer) are extracted from the network and
sorted in non-ascending order based upon the demand Dvi,vj . The unsatisfied
vertex pairs are taken in order and Yen’s k -shortest path algorithm is applied
to determine if a valid route, originating at vi and terminating at vj , can be
constructed that obeys all of the constraints. In our case a maximum of ten
‘shortest’ paths are explored for each vertex pair. An alternative to satisfying
the vertex pairs that are not satisfied directly is to minimize the travel time for
passengers on high demand vertex pairs. In this instance all the vertex pairs
are extracted and sorted based upon non-ascending demand. If a valid route is
found, the cost of the route is calculated and compared with the αvi,vj (R). If the
cost is less than αvi,vj (R) the route is inserted into R. This process is applied
iteratively until |R| = r.

3.3 Genetic Operators

Crossover: We use the crossover operator proposed by Mumford [3], which en-
sures that the problem constraints are obeyed. Given two parents, the crossover

An Improved Multi-objective Algorithm for the UTNDP 55

operator constructs an offspring, R′, by alternatively selecting a route from
each parent that maximises the proportion of unseen vertices, until |R′| = r.
The set of unseen vertices is defined as Vunseen = V − VR′ . Consider a route
Ri = 〈1, 7, 8, 9, 12, 14〉 that is contained in one of the parents and is being con-
sidered for insertion into R′. If R′ = {R1} where R1 = 〈12, 15, 0, 5, 3〉 then
Vunseen = Ri −R1 = {1, 7, 8, 9, 14}. Therefore the proportion of unseen vertices

is |Vunseen|
|Ri| = 5

6 in this case.

After crossover has been applied it is possible that the offspring will not
contain all the vertices in V . In these cases the repair procedure used by Mumford
is applied that attempts to add the missing vertices to either the back or front
of the routes.

Mutation: In our approach eight mutation operators are used. Some of these
apply heuristics to mutate the route set in a way that encourages an improvement
in quality. Mutation must be carefully controlled to prevent violation of the prob-
lem constraints. The names of these mutation operators are add-nodes, del-nodes,
exchange, merge, replace, remove-overlapping, two-opt and invert-exchange.

Add-nodes and del-nodes were both proposed in [3]. At the start of add-nodes
or del-nodes an integer I is generated uniform randomly in the range [1, r× m2

2],
giving the number of vertices to be added or removed from R. A route Ri ∈ R
is then selected at random and, in the case of add-nodes, vertices are added to
the end of the route until the addition of a vertex would cause Constraint (2) to
be violated or, result in Ri no longer being a simple path. Following a similar
approach, vertices are then added to the front of the route if possible. This
process is repeated for each Ri ∈ R until I vertices have been added to R or all
routes have been exhausted. The case is the same for del-nodes with I vertices
being removed from R whilst ensuring feasibility.

The Exchange operator, as proposed by Mandl [10], selects a route at ran-
dom. The route set is then searched to determine if there exists a route with a
common vertex to the selected route. The problem constraints are also checked
to determine if R will be valid after the mutation has been applied. If valid, the
two routes are split at the first common vertex, creating four route segments.
The two original routes are then replaced by exchanging the segments to create
two new routes. The exchange of route parts attempts to reduce the number of
transfers passengers must make.

Similar to exchange, the merge operator, selects a random route and searches
the remaining routes to find a route that shares a common terminal vertex. The
two routes are then merged creating one continuous route, disregarding one of
the common terminal vertices – providing that Constraint (2) is not violated
and the merged route is a simple path. If successful, a route generation proce-
dure (route-gen) is then used to generate a new route for insertion. The route
generation procedure is as follows: vertex pairs that are not yet satisfied di-
rectly are extracted from the route set and sorted via non-ascending demand
(i.e. given every pair of vertices in the network we are only interested in those
that cannot be reached without transfers, given the current configuration of R).

56 M.P. John, C.L. Mumford, and R. Lewis

Yen’s k -shortest path algorithm is then used to generate a bounded number of
paths, in our case ten, between the two vertices and a random path selected for
insertion. If the number of vertex pairs yet to be satisfied directly is zero, a path
is generated between the vertices with the highest demand in the network.

The Replace operator removes a route Ri ∈ R that satisfies the least demand
directly compared with all other routes in R. A replacement route is then gener-
ated using the route-gen procedure described above. The purpose of the replace
mutation is to sacrifice routes that serve a relatively low demand in place of high
demand routes. Replace can cause a route set to become invalid if the removed
route acted as a transfer hub for routes, i.e. the route set was only connected
when the removed route was present. If this situation occurs the repair proce-
dure used during crossover is applied and, if successful, the mutated solution is
returned. Otherwise the mutation is abandoned.

The Remove-overlapping operator replaces a route that is a subset of an-
other route. If an overlapping route is discovered, it is removed and the route
generation procedure described above is used to produce a replacement route.
Replacing the route provides the operator with the ability to remove duplicate
services and use these resources to serve other passenger demand.

Two-opt, proposed in 1958 by Croes [23] for use with the traveling salesman
problem selects two vertices at random in a route and inverts the vertices between
them. Its original purpose was to remove crossover points in a route, however
this is not allowed to occur in this context. In our case it reorders the vertices in
a route attempting to reduce the travel time between vertex pairs, abandoning
infeasible attempts.

Invert-exchange selects two routes at random and generates two random index
locations. The vertices between the two random index locations are then inverted
and exchanged between the two routes. For example, given two routes R1 =
〈3, 5, 8, 10, 12, 15〉 and R2 = 〈1, 6, 9, 8, 11, 7〉 with the selected indices of 3 and
5. We invert everything in R1 between the indices giving 〈12, 10, 8〉 then replace
the vertices in R2 between the indices with the inverted section from R1. In
this case the resultant two routes would be R3 = 〈3, 5, 11, 8, 9, 15〉 and R4 =
〈1, 6, 12, 10, 8, 7〉. Invert-exchange attempts to decrease the travel time between
vertices and prevent passengers having to make a transfer. Similar to two-opt
there is a high possibility that the majority of routes created using this approach
will be infeasible. As such, two routes are continually chosen at random until
the routes have been exhausted or a feasible solution has been found.

4 Results

In this section we show how the algorithm of Mumford [3] (Algorithm A), based
on the SEAMO2 framework, can be improved, by seeding the MOEA with our
heuristically generated solutions (Algorithm B). We then look at the effects of
adding our mutation operators (Algorithm C) and finally look at the effects of
using the NSGAII framework (Algorithm D) as opposed to SEAMO2. All exper-
iments use an initial population of size 200 and are run for 200 generations, the

An Improved Multi-objective Algorithm for the UTNDP 57

Table 1. Problem instances used for comparison with the lower bound (LB) for each
objective

Instance Vertices Edges r m1 m2 Vertices in Typical Transit Net. LBF1 LBF2

Mandl 15 20 6 2 8 6× (2+8)
2

= 30 10.0058 63
Mumford0 30 90 12 2 15 102 13.0121 94
Mumford1 70 210 15 10 30 300 19.2695 294
Mumford2 110 385 56 10 22 896 22.1689 749
Mumford3 127 425 60 12 25 1110 24.7453 928

same as in [3] so that valid comparisons can be made. Running times range from
a couple of seconds for Mandl’s instance up to two days for Mumford3. Twenty
replicate runs are used and the results have been combined into approximate
Pareto sets for comparison. Problem instances generated by Mumford [3] along
with Mandl’s [10] benchmark are used. Table 1 summarises the details of each
instance along with the parameters used and lower bounds as given in [3].

Using our heuristic construction procedure, a subset of unique solutions are ran-
domly selected for insertion into an initial population. Randomly generated solu-
tions are then used to top-up the initial population if there are too few heuristic
solutions. These random solutions are created using the same approach as Mum-
ford [3] to seed her MOEA. In summary this approach constructs a route set one
route at a time. A route length is randomly generated between m1 and m2 and a
random vertex, v ∈ V , is selected as the seed. A randomly selected adjacent ver-
tex is then added to the back of the route, and this process is repeated. Once the
vertices that can be added to the back are exhausted the process is repeated from
the front of the route until the desired length is achieved.

We firstly augment Mumford’s SEAMO2 algorithm with our heuristic method
for generating the initial population (Algorithm B). Table 2 presents the best

Table 2. Best objective values extracted from twenty replicate runs using heuristic
seeding for the initial population (Algorithm B). Mumford’s [3] results are given in
brackets.

Mandl Mumford0 Mumford1 Mumford2 Mumford3

Best for F1 10.25(10.33) 15.40(16.05) 23.91(24.79) 27.02(28.65) 29.50(31.44)
passenger F2 212(224) 745(759) 1861(2038) 5461(5632) 6320(6665)

Best for F1 13.48(15.13) 32.78(32.40) 39.98(34.69) 32.33(36.54) 36.12(36.92)
operator F2 63(63) 95(111) 462(568) 1875(2244) 2301(2830)

Table 3. S-metric comparison over the five benchmark instances for our proposed
modifications

Instance Alg. A Alg. B Alg. C Alg. D

Mandl 2620.19 2620.21 2626.94 2631.16
Mumford0 14951.24 15031.81 15304.90 15451.50
Mumford1 111947.82 114614.99 114972.74 117866.22
Mumford2 306261.94 322753.72 322618.47 337987.85
Mumford3 507983.61 538371.55 539296.98 562793.74

58 M.P. John, C.L. Mumford, and R. Lewis

solutions from the passenger and operator perspective compared to the findings
of [3]. We see that our heuristic is clearly beneficial, producing an improvement
over all the instances. Where an improvement is made in the objective value, ei-
ther from the passenger or operator perspective, we can see that an improvement
is also made to the other objective on the majority of instances. An improve-
ment from the operator perspective on Mandl’s instance is not possible as 63
is the lower bound for this instance [3]. However, a decrease is observed in the

10 10.5 11 11.5 12 12.5 13 13.5

60

80

100

120

140

160

180

200

220
Mandl

Passenger Cost F
1
 (minutes)

O
pe

ra
to

r
C

os
t F

2 (
m

in
ut

es
)

Algorithm A
Algorithm B
Algorithm C
Algorithm D

14 16 18 20 22 24 26 28 30 32 34

0

100

200

300

400

500

600

700

800
Mumford0

Passenger Cost F
1
 (minutes)

O
pe

ra
to

r
C

os
t F

2 (
m

in
ut

es
)

Algorithm A
Algorithm B
Algorithm C
Algorithm D

22 24 26 28 30 32 34 36 38 40

400

600

800

1000

1200

1400

1600

1800

2000

2200
Mumford1

Passenger Cost F
1
 (minutes)

O
pe

ra
to

r
C

os
t F

2 (
m

in
ut

es
)

Algorithm A
Algorithm B
Algorithm C
Algorithm D

26 28 30 32 34 36 38 40 42 44 46

1500

2000

2500

3000

3500

4000

4500

5000

5500
Mumford2

Passenger Cost F
1
 (minutes)

O
pe

ra
to

r
C

os
t F

2 (
m

in
ut

es
)

Algorithm A
Algorithm B
Algorithm C
Algorithm D

28 30 32 34 36 38 40 42 44

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
Mumford3

Passenger Cost F
1
 (minutes)

O
pe

ra
to

r
C

os
t F

2 (
m

in
ut

es
)

Algorithm A
Algorithm B
Algorithm C
Algorithm D

Fig. 2. Combined Pareto fronts extracted from twenty runs for each of the five bench-
mark instances using the four algorithms

An Improved Multi-objective Algorithm for the UTNDP 59

passenger objective associated with the operator objective of 63 compared to
that found by Mumford.

Taking the best algorithm (Algorithm B) from the previous experiment we
now examine the effect of augmenting the algorithm with our proposed mutation
operators. Comparing S-metric values for Algorithms B and C (Table 3) we can
see that an improvement is achieved with all instances apart from Mumford2. If
the Pareto set is plotted for Mumford2 (Fig. 2) it can be seen that there is an
improvement in the passenger objective for the majority of solutions. However,
we struggle to make improvements in the extremes of the operator objective.

Given the popularity of NSGAII and its stated ability to produce a Pareto set
closer to the true Pareto-optimal front compared with other Pareto based meth-
ods [4], it was used instead of SEAMO2 in our third set of experiments. Here,
we used our mutation operators and heuristic seeding, together with Mumford’s
crossover operator. As mentioned earlier a probability of crossover and mutation
of 0.9 and 1

r respectively are used. A comparison of S-metric values, Table 3,
shows that NSGAII gives an improvement over all the problem instances. This is
displayed graphically in Fig. 2. These improvements can be attributed to the fol-
lowing: 1) A higher selection pressure compared with SEAMO2, and 2) Increased
rate of mutation leading to a greater exploration of the search space.

5 Conclusion

This paper has presented a new construction heuristic for creating initial so-
lutions to the transit network design problem. For this problem it has been
shown that the use of heuristic solutions in a MOEA’s initial population can
produce an improvement in the resultant Pareto set – compared with the use
of solely randomly generated solutions. Several mutation operators have also
been proposed and combined with our construction heuristic to produce an im-
provement over previously published results. Finally, we have also shown that
further improvements can be found if NSGAII is used in place of SEAMO2. We
are currently investigating the introduction of frequency setting to the MOEA
framework using more realistic evaluation, allowing our model to more accu-
rately reflect passenger choice. In addition we are collecting real-world data to
enable the production of more benchmark instances.

References

1. Ceder, A., Wilson, N.H.M.: Bus network design. Transportation Research Part
B 20(4), 331–344 (1986)

2. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: Models
and algorithms. Transportation Science 18(1), 1–55 (1984)

3. Mumford, C.L.: New heuristic and evolutionary operators for the multi-objective
urban transit routing problem. In: 2013 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 939–946 (2013)

60 M.P. John, C.L. Mumford, and R. Lewis

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

5. Nielsen, G., Nelson, J.D., Mulley, C., Tegner, G., Lind, G., Lange, T.: Public
transport–planning the networks. HiTrans Best Practice Guide (2005)

6. Zhao, F., Gan, A.: Optimization of transit network to minimize transfers (2003)
7. Bagloee, S.A., Ceder, A.A.: Transit-network design methodology for actual-size

road networks. Transportation Research Part B 45(10), 1787–1804 (2011)
8. Lampkin, W., Saalmans, P.D.: The design of routes, service frequencies, and sched-

ules for a municipal bus undertaking: A case study. In: OR, pp. 375–397 (1967)
9. Silman, L.A., Barzily, Z., Passy, U.: Planning the route system for urban buses.

Computers & Operations Research 1(2), 201–211 (1974)
10. Mandl, C.E.: Applied network optimization. Academic Pr. (1979)
11. Mandl, C.E.: Evaluation and optimization of urban public transportation networks.

European Journal of Operational Research 5(6), 396–404 (1980)
12. Baaj, M.H., Mahmassani, H.S.: Hybrid route generation heuristic algorithm for

the design of transit networks. Transportation Research Part C 3(1), 31–50 (1995)
13. Agrawal, J., Mathew, T.V.: Transit route network design using parallel genetic

algorithm. Journal of Computing in Civil Engineering 18(3), 248–256 (2004)
14. Chakroborty, P., Dwivedi, T.: Optimal route network design for transit systems

using genetic algorithms. Engineering Optimization 34(1), 83–100 (2002)
15. Pattnaik, S.B., Mohan, S., Tom, V.M.: Urban bus transit route network design

using genetic algorithm. Journal of Transportation Engineering 124(4), 368–375
(1998)

16. Tom, V.M., Mohan, S.: Transit route network design using frequency coded genetic
algorithm. Journal of Transportation Engineering 129(2), 186–195 (2003)

17. Fan, W., Machemehl, R.B.: A tabu search based heuristic method for the transit
route network design problem. Computer-aided Systems in Public Transport, 387–
408 (2008)

18. Fan, W., Machemehl, R.B.: Using a simulated annealing algorithm to solve
the transit route network design problem. Journal of Transportation Engineer-
ing 132(2), 122–132 (2006)

19. Fan, W., Machemehl, R.B.: Optimal transit route network design problem with
variable transit demand: genetic algorithm approach. Journal of Transportation
Engineering 132(1), 40–51 (2006)

20. Fan, L., Mumford, C.L., Evans, D.: A simple multi-objective optimization algo-
rithm for the urban transit routing problem. In: IEEE Congress on Evolutionary
Computation, CEC 2009, pp. 1–7 (2009)

21. Shih, M.C., Mahmassani, H.S.: A design methodology for bus transit networks
with coordinated operations. Technical Report SWUTC/94/60016-1 (1994)

22. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Sci-
ence 17(11), 712–716 (1971)

23. Croes, G.A.: A method for solving traveling-salesman problems. Operations Re-
search 6(6), 791–812 (1958)

An Iterated Greedy Heuristic

for Simultaneous Lot-Sizing and Scheduling
Problem in Production Flow Shop Environments

Harlem M.M. Villadiego, José Eĺıas C. Arroyo, and André Gustavo dos Santos

Department of Computer Science
Universidade Federal de Viçosa, UFV

Viçosa, MG, Brazil
harlem.villadiego@ufv.br, {jarroyo,andre}@dpi.ufv.br

Abstract. In this work, we consider the integrated lot-sizing and se-
quencing problem in a permutation flow shop with machine sequence-
dependent setups. The problem is to determine the lot sizes and the
production sequence in each period of a planning horizon such that the
customer demands must be met and the capacity of the machines must
be respected. The objective is to determine the sum of the setup costs,
the production costs and the inventory costs over the planning horizon.
Due to the complexity of the problem, we propose a heuristic based on
Iterated Greedy metaheuristic which uses sequencing and lot-sizing de-
cisions. The proposed method is compared against the best heuristics
available in the literature in a large set of problem instances. Compre-
hensive computational and statistical analyses are carried out in order
to validate the performance of the proposed heuristic.

Keywords: Lot-sizing, flow shop scheduling, metaheuristics.

1 Introduction

Production planning is the most important issues of production industries since
it is the activity that allows to coordinate and to conduct all operations in
a production process in order to meet the commitments made to customers
of the company. According to [1], production planning involves lot-sizing and
scheduling decisions. A lot-sizing indicates the quantity of a product (or lot of
a product) manufactured on a machine continuously without interruption. The
scheduling is responsible for establishing the sequence of products to be produced
determining their start and completion time, in a time period.

In the literature several studies address the problem of lot sizing and schedul-
ing jointly. Problems that have features such as multi-product, capacitated and
sequence-dependent setup time are more common. Barany et al. [2] proposed
strong formulations for multi-product capacitated lot sizing problem (CLSP)
obtaining good results in a single machine. Almada-Lobo et al. [3] proposed a
heuristic method with exact formulations for the CLSP considering sequence-
dependent setup times. Almada-Lobo et al. [4] also investigated the CLPS with

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 61–72, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

62 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

sequence-dependent setup times. These authors proposed a Variable Neighbour-
hood Search heuristic and the results were better when compared to the heuristic
proposed by Almada-Lobo et al. [3]. A literature review for the CLSP can be
found in [5]. Toledo et al. [6] investigated the multi-level capacitated lot-sizing
problem (MCLSP) in parallel machines and proposed a multi-population ge-
netic algorithm with mathematical programming techniques. The MCLSP is
considered when is a dependency between the production of various products
in different levels of production. The production environment in the MCLSP
can be: single machine, parallel machine, flow shop, among others. Models and
algorithms for the MCLSP are discussed in Karimi et al. [7]. A discussion of lot-
sizing and scheduling with sequence-dependent setup times is found in Clark and
Clark [8]. Zhu and Wilhelm [9] presented a review of lot-sizing and scheduling
problems and conclude that researches on flow shop environment are scarce.

In this paper, we investigate the simultaneous lot-sizing and scheduling prob-
lem in flow shop (LSSPFS) production environment. The first work for the
LSSPFS was presented by Sikora et al. [10]. These authors proposed a heuristic
method based on two non-integrated approaches: one for lot-sizing and other
for the scheduling. For the same problem, Sikora [11] proposed a genetic algo-
rithm which performs better than the heuristic method proposed by Sikora et
al. [10]. Ponnambalam et al. [12] proposed a hybrid heuristic that combines ge-
netic algorithm and simulated annealing. In this heuristic, the genetic algorithm
attempts to solve the lot-sizing while the simulated annealing solve the schedul-
ing problem. The results obtained by this hybrid heuristic are better than those
presented by Sikora [11]. Smith et al. [13] propose a mathematical model for
the LSSPFS. Due to the large number of decision variables that presents in the
mathematical model, this is only feasible for smaller instances.

Mohammadi et al. [14] presents a mixed-integer programming (MIP) model
for the LSSPFS with machines sequence-dependent setups. In this problem, de-
mands must be met, the capacity of the machines must be respected, and setups
are preserved between periods of the planning horizon. Mohammadi et al. [14]
also developed two lower bounds, two heuristic based on the “rolling Horizon”
strategy and two heuristic based on ”relax and fix” strategy. The authors claim
that the heuristics “relax and fix” achieved better results. Mohammadi et al. [15]
extend the work done by Mohammadi et al. [14]. They used the same MIP
model, the same lower bounds and proposed some improvements in the heuris-
tics. Mohammadi et al. [16] considered the same MIP model and lower bounds
of Mohammadi et al. [14], however they introduced two new heuristics based on
“rolling horizon” strategy and on the classical NEH heuristic [17], respectively.
Belo Filho et al. [18] proposed an Asynchronous Teams (A Times) heuristic
which is compared with the methods proposed by Mohammadi et al. [15]. These
authors showed that the A Times heuristic provides the best results. Rameza-
nian et al. [19] propose a new and more efficient MIP model for LSSPFS. This
model has a smaller number of decision variables and constraints. Besides the
new model, these authors proposed also two heuristics based on the “rolling

Simultaneous Lot-Sizing and Scheduling Problem 63

horizon” strategy. The heuristics outperformed the methods proposed by Mo-
hammadi et al. [16].

In this work, we propose a Iterated Greedy (IG) heuristic to solve the same
LSSPFS problem which is also addressed in [16], [18] and [19]. IG is a simple and
efficient metaheuristic proposed by Ruiz et al. [20] for the flow shop scheduling
problem. Our IG heuristic tries to find the best production sequence (processing
order of products) in each period by minimizing the setup costs. For an obtained
production sequence, the lot sizes are determined by a backward and forward
improvement method, similar to that proposed by Shim et al. [21]. The proposed
IG heuristic is compared against the two best heuristics available in the liter-
ature: the A times heuristic proposed by Belo Filho et al. [18] and the Rolling
Horizon (RH) based heuristic proposed by Ramezanian et al. [19].

2 Problem Description

This paper is considered the integrated problem of lot sizing and scheduling.
Each lot is a specific quantity of a product, which must be processed in a pro-
duction environment of type flow shop, where machines are limited in capacity
and arranged in series in a finite planning horizon and divided into periods.
There a certain demand for each product in each period, which must always
be attended without delay. Therefore, must determine the amount to produce
(lot sizing) of each product, as well the order in which they will be processed
on the machines in each period. The objective function (f) of the problem is
to minimize the sum of the production cost, sequence-dependent setup and in-
ventory costs. This problem is well stated by Mohammadi et al [14]. The main
assumptions of the problem are summarized as fallows:

– Lot-sizing and scheduling are made simultaneously.
– The finite planning horizon is divided into T periods.
– At the beginning of the planning horizon machines are set for a specific

product.
– Several products can be manufactured in each period.
– Each machine has a processing capacity.
– At any time, each machine can process at most one product.
– At any time, each product can be processed on at most one machine.
– The setup of a machine must be completed in a period.
– Sequence-dependent setup costs and times occur for product changes on

machinery.
– The triangle inequality with respect to the setup cost and time holds holds,

i.e., it is never faster to change over from one product to another by means
of a third product.

– External demands for the finished products are known.
– Shortage is not permitted.
– A component cannot be produced in a period until the production of its

required components is finished. In other words, production at a level can
only be started if a sufficient amount of the required products from the
previous level are available; this is called vertical interaction.

64 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

3 Iterated Greedy Heuristic for the LSSPFS

In this section, we develop an Iterated Greedy (IG) heuristic to tackle the
LSSPFS problem. The proposed IG tries to improve iteratively a solution
through four different stages: destruction-construction, local search, lot-sizing
improvement and the acceptance criterion. IG starts by generating an initial
solution by means of a constructive procedure. Then, it applies iteratively the
above mentioned four steps process until a predefined stopping condition is sat-
isfied. The stages destruction-construction and local search are used to generate
a good production sequence. The lot-sizing improvement stage is applied to the
best production sequence obtained by the local search in order to improve the
lot-sizing quality. The new current solution is chosen between the current solu-
tion and the solution obtained from the lot-sizing improvement stage is chosen
at each iteration (acceptance criterion).

The general scheme of the proposed IG heuristic is presented in Algorithm
1. It starts by generating an initial solution (line 1). If a unfeasible solution
is built, we use the MIP model proposed by [19] to obtain a valid solution
(lines 2 to 4). The iterations of the IG are computed in lines 6 to 16 until
the stopping criterion is satisfied (maximum number of iterations). In lines 7
and 8 are executed the destruction-construction and local search procedures,
respectively. The lot-sizing improvement is run in line 9. Lines 10 through 14 is
tested the acceptance criterion. The best obtained solution is returned by the
algorithm (line 17).

Algorithm 1. IG(d, It ls, It bf , It IG)

1. SOL := Construction Initial Solution();
2. if Infeasible Solution(SOL) then
3. SOL := MIP(SOL);
4. end if
5. SOL∗ := SOL;
6. while iterations ≤ It IG do
7. SOL := Destruction Construction(SOL, d);
8. SOL := Local Search(SOL, It ls);
9. SOL := Lot-Sizing Improvement(SOL, It bf);

10. if f(SOL) < f(SOL∗) then
11. SOL∗ := SOL;
12. else
13. SOL := SOL∗;
14. end if
15. iterations := iterations+ 1;
16. end while
17. return SOL∗;

In next subsections we detail the representation of a solution, the construction
of the initial solution and the four stages of the proposed IG heuristic.

Simultaneous Lot-Sizing and Scheduling Problem 65

3.1 Solution Representation

In the IG heuristic, a solution is represented by T (number of periods) matrices
of order 3 ×N (where, N is number of products). The first row of each matrix
represents the production sequence, the second row stores the quantity produced
of each product and the next row stores the inventories of the products. Figure
1 shows an example of a solution for two periods (T1 and T2) and three products
(J1, J2 and J3). The production sequence in the first period is (J3, J2, J1), and
in the second period is (J1, J2, J3). LSjt and Ijt represent, respectively, the lot
sizing and inventory for each product j in period t.

T1 T2

production sequence J3 J2 J1 J1 J2 J3

Lot Sizing LS31 LS21 LS11 LS12 LS22 LS32

Inventory I31 I21 I11 I12 I22 I32

Fig. 1. Solution Representation

3.2 Construction of an Initial Solution

The construction of an initial solution is made in two phases. In the first phase,
the production sequence for each period is constructed. In the second phase,
from the obtained production sequence, the lot sizes are determined.

The production sequences are generated applying the Total Heuristic (TH)
proposed by Simons et al. [22] for the flow shop scheduling problem with sequence
dependent setup times. In this work, we minimize the setup costs over all the
machines. In TH heuristics, from period 2 is taken into account the last product
processed in the prior period to maintain preservation of the machines between
periods (setup carryover).

Considering the production sequences previously obtained in the first phase,
the lot sizes are determined in backward direction, that is, from the last period
to the first period [21]. If the total cumulative remaining demand is less than
or equal to the available capacity, the lost sizes are set to the corresponding
demands. Otherwise, the lot sizes are set to the corresponding demands from
the last product in the sequence considering the available capacity. When the
demand of a determined period violates the available capacity, this demand is
moved to preceding period. In some cases, we can to obtain an unfeasible solu-
tion. When this occurs, we execute the MIP model proposed by Ramezanian et
al. [19] to determine the lot sizes. This model considers the production sequence
obtained in the first phase of the construction procedure.

3.3 Destruction and Construction Procedures

The destruction procedure is applied to each production sequence π of N prod-
uct. This procedure removes randomly d different product of π. The results of

66 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

this procedure are two sub-sequences, the first being the partial sequence πD

with N − d product and the second being a sequence of removed product, which
we denote as πR. πR contains the products that have to be reinserted into πD

to yield a complete sequence. The Construction procedure starts with the sub-
sequence πD and performs d steps in which the products in πR are reinserted into
πD. The process start inserting the first product of πR, into all possible N−d+1
positions of πD. The best position for this product in πD sequence is the one that
yields the smallest setup cost. This process is iterated until πR is empty. The
destruction and construction procedures are applied to the production sequence
of each period.

3.4 Local Search

The sequences returned by Destruction and Construction procedures are im-
proved by a Local Search procedure. This procedure is based on the interchange
and insertion movements. This Local Search is a variant of the Variable Neigh-
borhood Search method to solve the permutation flow shop proposed by Tasge-
tiren et al. [23]. The interchange movement randomly selects two products in the
sequence and exchanges their positions. The insertion movement removes a ran-
dom product from its original position and inserts in all possible position. The
objective function to be minimized in the Local Search is also the setup costs
(fsc). The Local Search procedure is detailed in Algorithm 2. This algorithm
receives as parameters a production sequence (π) and the maximum number of
iterations (It ls) which is used as stop condition.

Algorithm 2. Local Search(It ls, π)

1. for l := 1 to It ls do
2. improved := true
3. while improved = true do
4. φ := π
5. if improved = true then
6. φ := sequence obtained by swapping two adjacent products randomly;
7. else
8. φ := the best sequence obtained by inserting an product randomly in all

possible positions;
9. end if

10. if fSC(φ) < fSC(π) then
11. π := φ;
12. improved := true
13. else
14. improved := false
15. end if
16. end while
17. end for
18. return π;

Simultaneous Lot-Sizing and Scheduling Problem 67

3.5 Lot-sizing Improvement

The Lot-sizing improvement consists of two methods: backward and forward
improvement methods. These methods are similar to those proposed by Shim
et al. [21]. The backward method, shifts a certain amount of a product (say, J)
from period Ti to an earlier period Ti−1. Depending on the available capacity in
period Ti−1, we can only move the entire lot of product J . Before a lot is moved,
we check the period Ti−1 for the available capacity. If product J is already
produced in period Ti−1, no new set-up is needed and all the slack capacity
available in period Ti−1 can be used to produce more of product J . Due that
the lot-splitting is not considered, the idea is to reduce the production and setup
cost. The forward method, is the inverse of backward method. Here, a certain
amount of a product J in period Ti is shifted to a later period Ti+1. The amount
of production shifted (whole lot or a fraction) depends on available capacity in
period Ti+1. Note that the main purpose of the forward improvement is to reduce
the inventory holding cost. In both methods, the product J and the period Ti are
randomly selected. The backward and forward methods are repeated It bf times
and the best solution found is returned. Figure 2. (a) illustrates an example of
backward method for two periods. In this example the quantities produced of
product J2 in period T2 (LS22) is moved to the period T1. This reduce production
and setup costs in period T2. The Figure 2. (b) illustrates an example of forward
method, where part of the production of product J2 in the period T1 (I21) is
moved to the next period (T2). This movement reduces inventory costs in period
T1.

T1 T2 T1 T2

J3 J2 J1 J1 − J3 J3 J2 J1 J1 J2 J3

LS31 LS21 + LS22 LS11 LS12 − LS32 LS31 LS21 LS11 LS12 LS22 + I21 LS32

I31 I21 I11 I12 − I32 I31 − I11 I12 I22 I32

(a) (b)

Fig. 2. Backward and Forward methods

4 Computational Experiments

In this section we present the computational test made to analyze the perfor-
mance of the proposed IG heuristic. All tests were run on an Intel(R) Xeon(R)
CPU X5650 2.67GHz with 48GB of RAM. The results obtained by IG heuristic
are compared with the results of A Times and RH heuristics proposed by Belo
Filho et al. [18] and Ramezanian et al. [19], respectively. These heuristics were
re-implemented according to the original papers. In the A times implementa-
tion, we use the MIP model proposed by Ramezanian et al. [24]. All algorithms
were coded in C ++, using classes and libraries of IBM ILOG CPLEX 12.4 and
CPLEX Concert Technology.

68 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

In order to evaluate the performance of the proposed heuristic, we generated
300 instances of the problem, by combining different number of products, ma-
chines and periods: (N,M, T). The sizes of the instances vary in the range of
(3, 3, 3) to (65, 65, 65). These instances were generated according to the test data
proposed by Mohammadi et al. [14]. For each size (N,M, T), five instances were
generated. Table 1 shows the sizes of the generated instances.

4.1 Calibration of the IG Heuristic

For the IG heuristic, four parameters were adjusted: destruction parameter (d),
number of iterations of local search (It ls), number of iterations of the lot-
sizing improvement (It bf) and the total iterations of IG heuristic (It IG).
For each parameter, three levels of values were tested: d = 0.2N, 0.4N, 0.6N ;
It ls = 3, 5, 7; It bf = 4, 6, 8 and It IG = 100T, 150T, 200T . Note that, by
combining the values of the four parameters we have 81 configurations of the IG
heuristic.

To determine the best combination of the parameters, a computational ex-
periment is carried out. We employ a Design of Experiments approach where
each parameter is a controlled factor. All the 81 configurations were tested in a
full factorial experimental design [25]. For each configuration of the values, the
algorithm was run ten times to solve each test instance. As response variable
for the experiments, we use the Relative Percentage Deviation (RPD) which is
computed in the following way:

RPD% = 100 × fmethod − fbest
fbest

(1)

where fmethod is the average objective function value (among the ten runs) ob-
tained by a given algorithm configuration and fbest is the best objective function
value found by any of the algorithm configurations.

All the results (not shown in detail due to reasons of space) are analyzed by
the Analysis of Variance (ANOVA) test. The best parameters found for the IG
heuristic were: d = 0.6N , It ls = 5, It bf = 8 and It IG = 150T .

4.2 Results and Comparisons

The obtained results by the three heuristics, IG, RH and A Times, are com-
pared by using the RPD (equation (1)). To solve each test problem, each heuris-
tic was run 10 times. Table 2 shows the average RPD for the three heuristics
for the last twenty large instances. The average best results are in boldface. We
can see that the IG heuristic shows a very good performance and provides the
best RPD values in thirteen of twenty types of large instances.

In order to validate the results obtained by the three heuristic and check if
the observed differences are statistically significant between them, an ANOVA
test was performed, where the RPD is considered as non-controllable factor.
In this analysis, we use all the 300 instances, from smaller instance (3, 3, 3) to

Simultaneous Lot-Sizing and Scheduling Problem 69

Table 1. Size of the used instances

Small Medium Large

(3, 3, 3) (20, 15, 15) (45, 40, 40)
(5, 3, 3) (15, 20, 15) (40, 45, 40)
(3, 5, 3) (15, 15, 20) (40, 40, 45)
(3, 3, 5) (20, 20, 20) (45, 45, 45)
(5, 5, 5) (25, 20, 20) (50, 45, 45)
(7, 5, 5) (20, 25, 20) (45, 50, 45)
(5, 7, 5) (20, 20, 25) (45, 45, 50)
(5, 5, 7) (25, 25, 25) (50, 50, 50)
(7, 7, 7) (30, 25, 25) (55, 50, 50)
(10, 5, 5) (25, 30, 25) (50, 55, 50)
(5, 10, 5) (25, 25, 30) (50, 50, 55)
(5, 5, 10) (30, 30, 30) (55, 55, 55)
(10, 7, 7) (35, 30, 30) (60, 55, 55)
(7, 10, 7) (30, 35, 30) (55, 60, 55)
(7, 7, 10) (30, 30, 35) (55, 55, 55)

(10, 10, 10) (35, 35, 35) (60, 60, 60)
(15, 10, 10) (40, 35, 35) (65, 60, 60)
(10, 15, 10) (35, 40, 35) (60, 65, 60)
(10, 10, 15) (35, 35, 40) (60, 60, 65)
(15, 15, 15) (40, 40, 40) (65, 65, 65)

Table 2. Average RPD for the heuristics

Instance IG A Times RH

(45, 40, 40) 0.2380 1.5631 2.5274
(40, 45, 40) 0.1332 1.1488 1.3230
(40, 40, 45) 0.3519 1.7013 0.2512
(45, 45, 45) 0.3600 0.0896 0.0861
(50, 45, 45) 0.2134 2.8277 3.1790
(45, 50, 45) 0.1926 0.8997 2.9597
(45, 45, 50) 0.8802 0.2253 3.2108
(50, 50, 50) 1.6614 0.1936 2.0947
(55, 50, 50) 0.3182 0.3391 0.1783
(50, 55, 50) 0.0571 0.1800 0.1536
(50, 50, 55) 0.1793 0.2617 2.4745
(55, 55, 55) 0.1980 1.6696 1.4926
(60, 55, 55) 0.0901 0.1642 0.1108
(55, 60, 55) 0.1235 0.5582 0.7605
(55, 55, 55) 0.2219 0.0854 1.2726
(60, 60, 60) 0.1936 1.5123 3.4994
(65, 60, 60) 0.1489 1.5879 2.2476
(60, 65, 60) 0.4144 0.0725 0.5391
(60, 60, 65) 0.0941 1.7381 0.1630
(65, 65, 65) 0.1078 0.5641 0.7282

the largest (65, 65, 65). Since the p-value found through the ANOVA is 0.0005,
which is smaller than 0.05, there is a statistical significant difference between
them heuristic with a confidence level of 95%.

The ANOVA does not specify which heuristics are different. So, we use the
Multiple Comparisons test for comparing each pair of means with a 95% confi-
dence level. Table 3 shows the result of this test. In this Table, the “Difference”
column displays the sample mean of the first algorithm minus that of the second.

The “+/- Limits” column shows an uncertainty interval for the difference. The
heuristics pairs, for which the absolute value of the difference exceeds the limit,
are statistically different at the selected confidence level (95%). This difference
is indicated by an (*) in the ”Significant” column. In this Table, we can see that
two pairs of heuristics have significant statistical difference. That is, a statistical
significant difference between the pairs of heuristic IG−RH and IG−A Times.
There is not statistical significant difference between the pair of heuristic RH −
A Times. The same analysis can be displayed in the Figure 3a. This Figure shows
the means plot and Tukey’s Honestly Significant Difference (HSD) intervals at
95% confidence level from the Multiple Comparisons test. Since the interval for
the IG heuristics does not overlap any of the other intervals, the mean of IG is
significantly different of the other two heuristic.

70 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

Algorithms

%
R
P
D

IG RH A_Times
0,5

0,8

1,1

1,4

1,7

2

(a) RPD indicator (b) Average computational times

Fig. 3. Means plot and Tukey’s HSD 95% confidence intervals for the evaluated algo-
rithms

Table 3. Multiple Range Tests for RPD

Contrast Significant Difference +/- Limits

IG - RH * -0.8744 0.411
IG - A Times * -0,6257 0.411
RH - A Times 0.2487 0.411

4.3 Analysis of the Computational Times

The experiments described in 4.2 were made considering the quality of the solu-
tions with respect to the objective function value. However, it is also important
to consider the performance of the heuristics on the CPU time. We execute an
ANOVA test in which the response variable under study is the average compu-
tational time presented by each heuristic. Since the p-value found through the
ANOVA is 0.0000, which is smaller than 0.05, there is a statistically significant
difference between all the average computational time of the heuristic with a
confidence level of 95%. Table 4 shows the result of the Multiple Comparisons
test for comparing each pair of average computational time. In this Table, we
can see that there are significant differences between all pairs of heuristics. These
results indicate that, with a confidence level of 95%, the IG heuristic spends less
computational time.

Table 4. Multiple Range Tests for average time

Contrast Significant Difference +/- Limits

IG - RH * -222.2 21.59
IG - A Times * -29.0 21.59
RH - A Times * 193.2 21.59

In Figure 3b we can see that all average computational times of the heuristics
are significantly different with a confidence level of 95 %. Note that the IG
heuristic has the lowest average computational time. The Figure shows that the
average computational time of IG, RH and A Time are 107.2, 329.3 and 136.2
seconds, respectively.

Simultaneous Lot-Sizing and Scheduling Problem 71

5 Conclusion

The integrated lot-sizing and scheduling problem in flow shop environment has
been discussed in this paper. To determine the lot sizes and the production se-
quence in each period of a planning horizon, we suggested a IG heuristic. In
order to evaluate the performance of the proposed heuristic, new large instances
were generated according to Mohammadi et al. [14]. We have obtained the best
combination of parameters for the IG heuristic by performing a design of ex-
periments approach. After an exhaustive computational and statistical analysis
we can conclude that the proposed IG heuristic shows an excellent performance
overcoming the two heuristics, A Times and RH , in a comprehensive bench-
mark set of instances. Future research directions involve the consideration of
new approaches for lot sizing decision, and apply the IG heuristic to simultane-
ous lot-sizing and scheduling problem in another machine environment.

References

1. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming.
Springer (2006)

2. Barany, I., Van Roy, T.J., Wolsey, L.A.: Strong formulations for multi-item capac-
itated lot sizing. Management Science 30(10), 1255–1261 (1984)

3. Almada-Lobo, B., Klabjan, D., Antónia Carravilla, M., Oliveira, J.F.: Single ma-
chine multi-product capacitated lot sizing with sequence-dependent setups. Inter-
national Journal of Production Research 45(20), 4873–4894 (2007)

4. Almada-Lobo, B., James, R.J.: Neighbourhood search meta-heuristics for capaci-
tated lot-sizing with sequence-dependent setups. International Journal of Produc-
tion Research 48(3), 861–878 (2010)

5. Drexl, A., Kimms, A.: Lot sizing and scheduling survey and extensions. European
Journal of Operational Research 99(2), 221–235 (1997)

6. Toledo, C., Frana, P., Morabito, R., Kimms, A.: Multi-population genetic algo-
rithm to solve the synchronized and integrated two-level lot sizing and scheduling
problem. International Journal of Production Research 47(11), 3097–3119 (2009)

7. Karimi, B., Ghomi, S.F., Wilson, J.: The capacitated lot sizing problem: A review
of models and algorithms. Omega 31(5), 365–378 (2003)

8. Clark, A.R., Clark, S.J.: Rolling-horizon lot-sizing when set-up times are sequence-
dependent. International Journal of Production Research 38(10), 2287–2307 (2000)

9. Zhu, X., Wilhelm, W.E.: Scheduling and lot sizing with sequence-dependent setup:
A literature review. IIE Transactions 38(11), 987–1007 (2006)

10. Sikora, R., Chhajed, D., Shaw, M.J.: Integrating the lot-sizing and sequencing
decisions for scheduling a capacitated flow line. Computers & Industrial Engineer-
ing 30(4), 659–679 (1996)

11. Sikora, R.: A genetic algorithm for integrating lot-sizing and sequencing in schedul-
ing a capacitated flow line. Computers & Industrial Engineering 30(4), 969–981
(1996)

12. Ponnambalam, S., Reddy, M.: A ga-sa multiobjective hybrid search algorithm for
integrating lot sizing and sequencing in flow-line scheduling. The International
Journal of Advanced Manufacturing Technology 21(2), 126–137 (2003)

72 H.M.M. Villadiego, J.E.C. Arroyo, and A.G. dos Santos

13. Smith-Daniels, V., Ritzman, L.P.: A model for lot sizing and sequencing in process
industries. The International Journal of Production Research 26(4), 647–674 (1988)

14. Mohammadi, M., Ghomi, S.F., Karimi, B., Torabi, S.A.: Rolling-horizon and fix-
and-relax heuristics for the multi-product multi-level capacitated lotsizing problem
with sequence-dependent setups. Journal of Intelligent Manufacturing 21(4), 501–
510 (2010)

15. Mohammadi, M., Ghomi, S.F., Karimi, B., Torabi, S.: Mip-based heuristics for lot-
sizing in capacitated pure flow shop with sequence-dependent setups. International
Journal of Production Research 48(10), 2957–2973 (2010)

16. Mohammadi, M., Torabi, S.A., Ghomi, S.F., Karimi, B.: A new algorithmic ap-
proach for capacitated lot-sizing problem in flow shops with sequence-dependent
setups. The International Journal of Advanced Manufacturing Technology 49(1-4),
201–211 (2010)

17. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

18. Belo Filho, M.A.F., dos Santos, M.O., de Meneses, C.N.: Dimensionamento e se-
quenciamento de lotes para uma linha de producao flowshop: Métodos de soluçao
(2012)

19. Ramezanian, R., Saidi-Mehrabad, M., Teimoury, E.: A mathematical model for in-
tegrating lot-sizing and scheduling problem in capacitated flow shop environments.
The International Journal of Advanced Manufacturing Technology, 1–15 (2012)

20. Ruiz, R., Stützle, T.: An iterated greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness objectives.
European Journal of Operational Research 187(3), 1143–1159 (2008)

21. Shim, I.S., Kim, H.C., Doh, H.H., Lee, D.H.: A two-stage heuristic for single ma-
chine capacitated lot-sizing and scheduling with sequence-dependent setup costs.
Computers & Industrial Engineering 61(4), 920–929 (2011)

22. Simons Jr., J.: Heuristics in flow shop scheduling with sequence dependent setup
times. Omega 20(2), 215–225 (1992)

23. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: A particle swarm op-
timization algorithm for makespan and total flowtime minimization in the per-
mutation flowshop sequencing problem. European Journal of Operational Re-
search 177(3), 1930–1947 (2007)

24. Ramezanian, R., Saidi-Mehrabad, M.: Hybrid simulated annealing and mip-based
heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-
stage production system. Applied Mathematical Modelling 37(7), 5134–5147 (2013)

25. Montgomery, D.G.: Design and Analysis of Experiments. Wiley, New York (2001)

Balancing Bicycle Sharing Systems:

An Approach for the Dynamic Case�

Christian Kloimüllner, Petrina Papazek, Bin Hu, and Günther R. Raidl��

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{kloimuellner,papazek,hu,raidl}@ads.tuwien.ac.at

Abstract. Operators of public bicycle sharing systems (BSSs) have to
regularly redistribute bikes across their stations in order to avoid them
getting overly full or empty. We consider the dynamic case where this is
done while the system is in use. There are two main objectives: On the
one hand it is desirable to reach particular target fill levels at the end
of the process so that the stations are likely to meet user demands for
the upcoming day(s). On the other hand operators also want to prevent
stations from running empty or full during the rebalancing process which
would lead to unsatisfied customers. We extend our previous work on the
static variant of the problem by introducing an efficient way to model
the dynamic case as well as adapting our previous greedy and PILOT
construction heuristic, variable neighborhood search and GRASP. Com-
putational experiments are performed on instances based on real-world
data from Citybike Wien, a BSS operator in Vienna, where the model
for user demands is derived from historical data.

1 Introduction

Bicycle Sharing Systems (BSSs) are evolving in large cities all over the world.
They offer various advantages regarding urban development, attractiveness for
citizens, reduce individual motorized traffic and complement public transport.
Furthermore, BSSs also contribute to public health by encouraging people to
do sports [1]. A BSS consists of multiple bike stations distributed over various
strategically favorable positions in the city. A registered user is allowed to rent
a bike at a station and return it later at another station. Due to miscellaneous
factors such as altitude of stations, demographic characteristics, or nearby public
transport stops, some stations tend to run empty whereas others tend to get full.
In case of an empty station, customers are not able to rent bikes while in case
of a full station, customers cannot return their bikes. Therefore, BSS operators
need to redistribute bikes among stations on a regular basis to avoid or at least

� This work is supported by the Austrian Research Promotion Agency (FFG), contract
831740.

�� The authors thank Matthias Prandtstetter, Andrea Rendl and Markus Straub from
the Austrian Institute of Technology (AIT) for the collaboration in this project.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 73–84, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

74 C. Kloimüllner et al.

minimize customer dissatisfaction. Usually this task is done by a vehicle fleet
that picks up bikes from stations with excesses of bikes and delivers them to
stations with deficits.

When trying to approach our definition of Balancing Bicycle Sharing Sys-
tem (BBSS) problem, the goal is to find a route for every vehicle with corre-
sponding loading instructions, respectively, so that the system is brought to a
balanced state and is able to fulfill user demands as much as possible. So far,
almost all of our recent work considered only the static variant where it is as-
sumed that the rebalancing process is done while the system is not in use [2–5].
This is a useful approach for BSSs which, e.g., do not operate overnight, and is
also practical for strategic planning to reach desired fill levels in the long term
as it depicts a simplification to the problem. In this work we extend our previous
algorithms for the static case towards the dynamic scenario where we take user
demands over time into account, and try to reduce unfulfilled demands during
the rebalancing process as well as reaching target fill levels for stations at the
end. We propose an efficient way to model and simulate these dynamics as well
as adapt a greedy and PILOT construction heuristic, Variable Neighborhood
Search (VNS) and GRASP accordingly.

2 Related Work

BBSS can be regarded as a special variant of the capacitated single commodity
split pickup and delivery vehicle routing problem. Particular features are that
we allow multiple visits of stations, consider heterogeneous vehicles, and the
possibility of loading or unloading an arbitrary number of bikes.

Most related approaches address the static variant of BBSS and apply Mixed
Integer Programming (MIP) techniques. A direct comparison of existing works
is difficult as most of them consider different problem characteristics. Chemla
et al. [6] propose a branch-and-cut algorithm on a relaxed MIP model in conjunc-
tion with a tabu search for obtaining upper bounds. However, they assume only
a single vehicle and reaching the target fill levels as a hard constraint. Benchi-
mol et al. [7] also consider a single vehicle and balance as a hard constraint and
propose approximation algorithms. Raviv et al. [8] use MIP approaches with
a convex penalty objective function to minimize user dissatisfaction and tour
lengths for multiple vehicles. However, they ignore the number of loading opera-
tions. In our recent works we developed several metaheuristic approaches which
scale well for large instances [3–5]. In particular, we introduced a Greedy Con-
struction Heuristic (GCH) and a VNS approach in [3], a PILOT construction
heuristic and GRASP in [5]. Different strategies for finding meaningful loading
instructions for candidate routes including optimal ones were studied in [2]. In [4]
we refined our concepts and provided more extensive computational analysis.
Di Gaspero et al. [9, 10] investigate Constraint Programming (CP) approaches
in conjunction with ant colony optimization, a smart branching strategy, and
large neighborhood search. They test on the same BBSS variant as we do, but
could not outperform our VNS approach from [3].

Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case 75

Concerning the dynamic BBSS scenario, there exist only few MIP approaches
so far. Contardo et al. [11] present an approach utilizing Dantzig-Wolfe and
Benders decomposition. They obtain upper and lower bounds for instances with
up to 100 stations, but face significant gaps. Unlike our problem definition, they
focus exclusively on fulfilling user demands but do not consider target fill levels.
Schuijbroek et al. [12] apply a clustering-first route-second strategy. A clustered
MIP heuristic, or alternatively, a CP approach handle the routing problems. In
contrast to our work they define intervals for fulfilling user demands. These are
considered as hard constraints whereas we try to minimize as many unfulfilled
demands as possible. Additionally, they do not consider target fill levels. Chemla
et al. [13] present a theoretical framework to estimate the vehicles’ impacts on
the system and propose heuristic approaches for a single vehicle. Besides, they
suggest a pricing strategy to encourage users to return bikes at stations which
tend to run empty soon. Pfrommer et al. [14] investigate a heuristic for planning
tours with multiple vehicles and also suggest a dynamic pricing strategy. They
periodically recompute truck tours and dynamic prices while the system is active
and test with a simulation based on historic data.

Other related works examine strategic planning aspects of BSSs such as lo-
cation and network design [15, 16] or system characteristics and usage patterns
[17]. However, these aspects are not within the scope of this work.

3 Problem Definition

We consider the dynamic scenario of BBSS, referred to as DBBSS, where rebal-
ancing is done while we simulate system usage by considering expected cumu-
lated user demands. In addition to the input data for the static problem variant
we particularly consider expected user demands from a prediction model.

For the BSS infrastructure we are given a complete directed graph G = (V ∪
{0}, A) where node set V represents rental stations, node 0 the vehicles’ depot,
and arc set A the fastest connection between all nodes. Each arc (u, v) ∈ A is
assigned a weight corresponding to the travel time tu,v > 0 (including average
times for loading and unloading actions). Each station v ∈ V has a capacity
Cv ≥ 0 denoting the total number of bike slots. The initial fill level pv is the
number of available bikes at the beginning of the rebalancing while the target
fill level qv states the desired number of bikes at the end of the rebalancing. For
the rebalancing procedure we are given a fleet of vehicles L = {1, . . . , |L|} where
each vehicle l ∈ L has a capacity Zl > 0. Finally, let t̂max be the time budget
within a vehicle has to finish its route which starts and ends at the depot 0.

Regarding user demands over time we assume the expected cumulated demand
μv(t) ∈ R occurring at each station v ∈ V from the beginning of the rebalancing
process until time t, 0 ≤ t ≤ t̂max to be given as an essentially arbitrary function.
The cumulated demand is calculated by subtracting the expected number of
bikes to be returned from the expected number of bikes to be rent over the
respective time period. An example of a demand function is shown in Figure 1.
Note that we display pv −μv(t) as the dash-dotted line in order to highlight the

76 C. Kloimüllner et al.

Cv

μv(t)

qv

t0

end of segment events t0

t00 t10 t20 t30 t40

demand function pv − μv(t)

LEGEND

capacity Cv of station v

pv

target fill level tv of station v

l1

ti1

δunf,+

ti2

l2

expected bikes at station v

ll pickup by vehicle l at event til

Fig. 1. Example of a demand function and two pickup events

area where unfulfilled demands occur. Thus, a positive slope of μv(t) indicates
that more users are expected to rent bikes than to return them in the time period
t, and vice versa. Demands are always fulfilled immediately as far as possible,
i.e., bikes or parking slots are available. Unfulfilled demands cannot be fulfilled
later and are penalized in the objective function. Let δ̂unf,−v denote the total
amount of unfulfilled bike demands for station v ∈ V , i.e., the number of users
who want to rent a bike but are not able to at the desired station. Analogously,
let δ̂unf,+v refer to the total number of unfulfilled slot demands, i.e., the amount
of users who cannot return bikes as the station is already full.

A solution to DBBSS consists of a route for every vehicle and corresponding
loading instructions for every stop at a station. A route of length ρl is defined as
an ordered, arbitrarily long sequence of stations rl = (r1l , . . . , r

ρl

l), ril ∈ V where
the depot is assumed to be implicitly added as start and end node. The loading
instruction for vehicle l ∈ L during the i-th stop at station v ∈ V is denoted
as yil,v. Positive values for yil,v denote the corresponding number of bikes to be
picked up, negative values denote deliveries. Feasible solutions must fulfill the
following conditions. For any station, its fill level (i.e., the number of currently
available bikes) must always lie between 0 and its capacity Cv. For any vehicle
l ∈ L the load may never exceed its capacity, i.e., bl ≤ Zl. Moreover, a solution is
only feasible, if and only if no route’s total travel time, denoted by tl, exceeds the
time budget, and additionally, every vehicle must return empty to the depot 0.

The goal is to find a route for each vehicle with corresponding loading instruc-
tions such that the following objective function is minimized:

f(r, y) = ωunf
∑
v∈V

(δ̂unf,−v + δ̂unf,+v) + ωbal
∑
v∈V

|qv − pv|

+ ωload
∑
l∈L

ρl∑
i=1

|yi
l,ri

l
|+ ωtime

∑
l∈L

tl (1)

Parameters ωunf , ωbal, ωload, and ωtime ≥ 0 are used for controlling the rela-
tive importance of the corresponding term in the objective function. The most
important goal is to minimize unfulfilled demands as well as to minimize the

Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case 77

deviation from the target fill levels. Secondarily, we also want to keep the total
number of loading instructions and the total driving time as small as possible,
however, those aspects are considered to be clearly less important.

4 Modeling the Dynamic Scenario

In this section we show how DBBSS can be modeled by calculating dynamic
behavior of the system, i.e., considering the user demands, so that it can be
approached by metaheuristics.

4.1 Segments and Events

One of our major aims is to avoid a time discretization of the demand functions
and corresponding fill level calculations as this would introduce errors and is also
time consuming if done in an appropriate resolution. Alternatively, we follow the
approach of splitting each cumulated demand function into weakly monotonic
segments instead of iterating through all discrete time points. Along with the
practically reasonable assumption that the number of segments per station is
relatively small, such an approach is much more efficient.

For this purpose, we split function μv(t) into monotonically weakly increasing
or decreasing segments. Let t0 = (t00, . . . , t

ρ0

0) with t00 = 0 be an ordered sequence

of ρ0 extreme values of μv(t) so that μv(t) is weakly monotonic for t ∈ [ti−1
0 , ti0],

∀i = 1, . . . , ρ0, see Figure 1. Time ti0, i = 1, . . . , ρ0, refers to the end of the i-th
weakly monotonic segment. In general, let til , ∀l ∈ L, i = 0, . . . , ρl, be the time
when vehicle l performs its i-th stop, i.e.,

til =

⎧⎪⎪⎨
⎪⎪⎩
0 for i = 0

tsl,r1l
for i = 1 if ρl ≥ 1

ti−1
l + t

ri−1
l

,ri
l

for i = 2, . . . , ρl if ρl ≥ 2.

(2)

For each station v ∈ V we define a data structure which denotes the series of
events Wv = 〈(l1, i1), . . . , (l|Wv|, i|Wv |)〉. Each event (lj , ij), j = 1, . . . , |Wv| with
lj ∈ {0} ∪ L and ij ∈ {1, . . . , ρlj} either refers to a station-visit event, in which
case lj ∈ L indicates the corresponding vehicle and ij the number of its stop,
or an end-of-segment event, in which case lj = 0 and ij denotes the respective

segment of μv(t). Following the above definitions, the time of event (lj , ij) is t
ij
lj
,

and all events in Wv are ordered according to increasing times. Multiple events
occurring at the same time are ordered arbitrarily, except that an end-of-segment
event always appears last.

4.2 Expected Number of Bikes at Stations

For each station and event we need to derive a fill level considering the cumulated
user demand as well as all performed loading or unloading instructions occurred
up to this event.

78 C. Kloimüllner et al.

Let av,j ∈ [0, Cv] denote the expected number of bikes at station v ∈ V and
event j = 1, . . . , |Wv| by considering all expected demands fulfilled as far as
possible and all pickups and deliveries performed up to and including event j.
Note that, as the cumulated user demand is only a forecast model based on
historical data, the fill level of every event may also be fractional. Formally, av,j
is calculated as follows:

av,j =

{
pv for j = 0

max(min(av,j−1 − (μv(t
ij
lj
) − μv(t

ij−1
lj−1

)), Cv), 0) − y
ij
lj

for j = 1, . . . , |Wv|.
(3)

End-of-segment events are considered for the correct computation of unfulfill-
able demands. For the ease of notation, the above formula considers them in the
same way as vehicle-visit events. Since no bikes are delivered or picked up by
these events, we define the loading instructions to be yi0 = 0, for i = 1, . . . , ρ0.

With respect to unfulfilled demands, we distinguish between unfulfilled bike

demands δ̂unf,−v and unfulfilled slot demands δ̂unf,+v for each station v ∈ V .
They occur whenever the expected cumulated demand μv(t) over time horizon
t ∈ [0, t̂max] cannot be satisfied, i.e., when μv(t) < 0 ∧ av(t) = 0 or μv(t) > 0 ∧
av(t) = Cv, respectively. Unfulfilled demands occurring at station v between
events j − 1 and j, j = 1, . . . , |Wv|, can formally be described as

δunf,−v,j = max(μv(t
ij
lj
)− μv(t

ij−1

lj−1
)− av,j−1 + y

ij
lj
, 0) (4)

δunf,+v,j = max(−(μv(t
ij
lj
)− μv(t

ij−1

lj−1
))− (Cv − av,j−1)− y

ij
lj
, 0), (5)

and consequently the overall unfulfilled demands are

δ̂unf,−v =

|Wv |∑
j=1

δunf,−v,j , and δ̂unf,+v =

|Wv |∑
j=1

δunf,+v,j . (6)

4.3 Classification of Stations

We assume that the stations are well-designed in a sense that their capacities
are sufficiently large for daily fluctuations, i.e., it will not be necessary to pick
up and deliver bikes to the same station at different times on a single day in
order to fulfill all demands. Furthermore, we have shown in previous work [3]
that the monotonicity restriction (i.e., it is allowed to either only pick up or
deliver bikes at a station) has in practice only a neglectably small impact on
the solution quality but substantially simplifies the problem. Additionally, our
project partner Citybike Wien mentioned that they only perform either pickups
or deliveries at a particular station on the same day. Therefore, we again classify
the stations into pickup stations Vpic ⊆ V and delivery stations Vdel ⊆ V and
impose monotonicity, i.e., allow only the respective operations.

In the static case this classification is done by considering the total deviation
in balance for a particular station, i.e., pv − qv ∀v ∈ V . If this value is less
than 0, then the corresponding station refers to the set of delivery stations, and

Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case 79

otherwise it is classified as a pickup station. However, in the dynamic case we
have to consider user demands during the rebalancing process along with the
scaling factors in the objective function (1).

Thus, we consider the situation when no rebalancing is done at all. Based on
equation (6) and objective function (1) we determine for each station v ∈ V the
total penalty for slot deficit and bike deficit:

δmissing
v = ωunf δ̂unf,+ + ωbal min(0, av,|Wv | − qv)−

ωunf δ̂unf,− − ωbal min(0, qv − av,|Wv|).
(7)

If δmissing
v < 0, v is a delivery station. If δmissing

v > 0, v is a pickup station.
Otherwise, if δmissing

v = 0, the station is already balanced, and thus, will not be
considered anymore.

4.4 Restrictions on Loading Instructions

For every stop of a vehicle, we need to calculate how many bikes the vehicle
is allowed to pick up or deliver at most so that the capacity constraints are
never violated and unnecessary unfulfilled demands are never introduced. These
bounds are then utilized to set loading instructions for the corresponding vehicle
stops later during the optimization process. Formally, we define slacks Δy−

v ,j and

Δy+
v ,j as the maximum amount of bikes which may be delivered/picked up at

station v and event j = 1, . . . , |Wv|.

Δy−
v,j =

{
max(0, qv − av,|Wv |) for j = |Wv|
min(Cv − av,j ,Δyv,y+1 + δunf,−v,j+1) for j = 1, . . . , |Wv| − 1

(8)

Δy+
v,j =

{
max(0, av,|Wv| − qv) for j = |Wv|
min(av,j ,Δyv,j+1 + δunf,+v,j+1) for j = 1, . . . , |Wv| − 1.

(9)

Note, that we have to iterate backwards by starting with the last event until we
reach the time when the currently considered vehicle stop occurs.

By definition, let Δyunf,+v,j and Δyunf,−v,j denote the slack without including the
last event, i.e., starting with event j = |Wv| − 1. These two terms are used by
the construction heuristic in the next section.

5 Greedy Construction Heuristic

We extend the Greedy Construction Heuristic (GCH) from our previous work [3]
to fit the dynamic case. A vehicle tour is built by iteratively appending stations
from a set of feasible successors F ⊆ V . This set includes each station which can
be improved and is reachable within the vehicles time budget. An improvement
may be achieved if δmissing

v > 0, ∀v ∈ Vpic, or δmissing
v < 0, ∀v ∈ Vdel. Then,

for each station v ∈ F we compute the total number of bikes that can either be
picked up from or delivered to this station:

γv =

{
min(Δy−

v,j , Zl − bl) for v ∈ F ∩ Vpic,

min(Δy+
v,j , bl) for v ∈ F ∩ Vdel.

(10)

80 C. Kloimüllner et al.

Note that bl denotes the number of bikes currently stored in vehicle l. As shown
in (10), we need the slacks for determining possible loading instructions as they
are calculated by equation (8). In order to guarantee that vehicles return empty
to the depot, we correct the load for pickup stations by estimating the amount of
bikes that can be delivered afterwards in the same fashion as in [3] by recursively
looking forward.

It is necessary to consider impacts of loading instructions on a station with
respect to target fill level and unfulfilled demands separately and weight them
with ωbal and ωunf in the same way as it is done in the objective function (1).
We obtain

g(v) =

⎧⎨
⎩

ωbal·min(γv ,max(0,av,|Wv |−qv))+ωunf ·min(γv ,Δy
unf,+
v,j)

tu,v
∀v ∈ Vpic,

ωbal·min(γv ,max(0,qv−av,|Wv |))+ωunf ·min(γv ,Δy
unf,−
v,j)

tu,v
∀v ∈ Vdel,

(11)

where tu,v is the travel time from the vehicle’s last stop u to station v. In each
greedy iteration the station with the highest g(v) is appended to the currently
considered vehicle tour. Loading instructions are set as follows:

yv,j = γv if v ∈ Vpic, and yv,j = −γv if v ∈ Vdel (12)

Since in the dynamic case timing is important, we additionally introduce a
term which we refer to as urgency. It states how urgent it is to visit stations with
future unfulfilled demands. We propose two methods to compute this value.

Additive Urgency: For a station v we consider the time of the next period where
unfulfilled demands occur. If the vehicle cannot reach the station until the first
period starts, we consider the next period, and so on. In case a station has no
periods of unfulfilled demands at all or none of them are reachable in time, it is
ignored. Moreover, we introduce an additional scaling factor ωurg which denotes
the importance of urgency. Formally,

uadd =

{
0 if tunfv < tu,v

ωurg · δunf
tunfv

if tunfv ≥ tu,v
(13)

where tunfv is the time left up to the start of the next unfulfilled demand for
station v ∈ V and tu,v is the travel time to the considered station which, by
definition, has to be greater than 0. The greedy value including the urgency of
the visit g′(v) is then calculated as g′(v) = g(v) + uadd.

Multiplicative Urgency: In the multiplicative approach we multiply the basic
g(v) from (11) by an exponential function. Again, we consider the time until the
next unfulfilled demand, analogously as for the additive approach. The term is
computed as

umul = exp(−max(0, tunfv − tu,v) · ωurg). (14)

The greedy value criterion is then extended to g′(v) = g(v) · umul.

Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case 81

PILOT Construction Heuristic: Due to the nature of greedy algorithms,
shortsighted decisions cannot be completely avoided no matter how we choose the
greedy evaluation criterion. Therefore, we use the PILOT method [18] to address
this drawback. The functionality remains the same as in [5] which extends GCH
by evaluating each potential successor in a deeper way by constructing a complete
temporary route from it, and finally considering its objective value as g(v).

6 Metaheuristic Approaches

In order to further improve the results obtained by the construction heuristics,
we apply Greedy Randomized Adaptive Search (GRASP) and Variable Neigh-
borhood Search (VNS). For both metaheuristic approaches we use an incom-
plete solution representation based on storing for each vehicle l ∈ L its route
rl = (r1l , . . . , r

ρl

l) only. The loading instructions yil,v, l ∈ L, v ∈ V, i = 1, . . . , ρl
are efficiently calculated during evaluation by applying the same greedy strategy
as in GCH, see Section 5, utilizing the restriction procedure from Section 4.4 to
obtain bounds on the y-variables and accelerate the calculations.

Variable Neighborhood Search: The VNS approach from [3] is adapted with
respect to the procedure for deriving loading instructions. The general layout
and neighborhood structures remain the same. We use remove-station, insert-
unbalanced-station, intra-route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-
route-exchange and intra-route 3-opt neighborhood structures for local improve-
ment within an embedded Variable Neighborhood Descent (VND), while for
shaking we apply move-sequence, exchange-sequence, destroy-&-recreate, and
remove-stations operations.

Greedy Randomized Adaptive Search: We also consider GRASP by ex-
tending the construction heuristics in the same way as in our previous work [5]
with adaptations for the dynamic problem variant. The idea is to iteratively ap-
ply GCH or PILOT from Section 5 and locally improve each solution with VND.
While there we always select the best successor, we use for GRASP a restricted
candidate list with respect to the greedy evaluation criterion. The degree of ran-
domization is controlled by a parameter α ∈ [0, 1]. In the dynamic case we used
the same values which turned out to work best in the static case.

7 Computational Results

We performed comprehensive tests for our DBBSS approaches. Generating new
benchmark instances was necessary in order to introduce the user demand val-
ues. They are based on the same set of Vienna’s real Citybike stations we used in
our previous works [2–5]. Cumulated user demands for the stations are piecewise
linear functions derived from historical data based on an hourly discretization.
The instances we use in this paper contain 30 to 90 stations with different num-
bers of vehicles and different time budgets and are available at1. As the BSS in

1 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

82 C. Kloimüllner et al.

Table 1. Results of GCH, PILOT, and the variants with VND

Inst. set GCH PILOT GCH-VND PILOT-VND

|V | |L| t̂max #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s]

30 1 8h 0 54.06 12.50 < 0.1 0 50.98 11.19 0.1 18 50.61 11.56 0.4 13 49.97 10.95 0.4

30 2 4h 0 59.79 15.65 < 0.1 1 55.47 13.78 < 0.1 9 55.87 13.58 0.2 22 54.89 13.44 0.1

60 1 8h 0 186.49 28.14 < 0.1 1 180.59 28.81 0.5 8 180.20 28.72 0.5 23 178.85 29.29 0.9

60 2 4h 0 202.69 31.82 < 0.1 0 191.06 29.98 0.2 9 193.32 30.06 0.4 21 189.69 29.81 0.4

60 2 8h 0 104.49 12.77 < 0.1 0 98.64 11.03 0.9 12 98.00 12.05 2.4 18 96.74 10.80 3.2

60 4 4h 0 118.76 17.38 < 0.1 0 106.98 13.53 0.4 4 108.96 13.34 1.8 26 105.36 13.41 1.3

90 1 8h 0 354.83 34.79 < 0.1 0 346.73 33.49 1.1 6 348.20 34.74 0.7 24 344.99 33.45 1.5

90 2 4h 0 371.13 34.55 < 0.1 0 360.49 36.06 0.5 5 362.74 35.53 0.5 25 358.21 35.09 0.9

90 2 8h 0 232.86 27.07 < 0.1 0 221.02 24.24 2.1 3 223.16 24.71 2.6 27 218.57 23.86 4.1

90 3 8h 0 155.26 19.27 < 0.1 0 144.35 16.80 2.8 6 144.43 17.94 8.6 24 141.25 16.26 6.9

90 4 4h 0 254.25 27.51 < 0.1 0 239.70 27.86 1.0 7 242.91 27.90 2.1 23 237.47 27.63 2.2

90 5 4h 0 210.12 24.26 < 0.1 0 194.03 24.55 1.2 7 195.75 24.38 4.2 23 191.72 23.96 3.3

Total 0 2304.73 285.72 < 0.1 2 2190.04 271.31 10.8 94 2204.15 274.48 24.4 269 2167.71 267.95 25.2

Table 2. Results of static VNS, dynamic VNS, and PILOT-GRASP

Inst. set SVNS DVNS PILOT-GRASP

|V | |L| t̂max #best obj sd #best obj sd #best obj sd

30 1 8h 4 54.90 10.93 20 47.36 10.51 9 47.54 10.57

30 2 4h 4 58.68 13.08 19 50.84 11.50 11 50.84 11.35

60 1 8h 0 197.25 30.01 29 172.30 27.13 4 172.84 26.96

60 2 4h 0 207.09 30.37 22 182.12 29.28 10 183.09 29.13

60 2 8h 0 114.64 12.75 26 91.80 10.63 4 92.30 10.40

60 4 4h 0 126.42 15.11 23 99.24 11.39 7 99.85 11.54

90 1 8h 0 368.18 37.47 19 337.92 32.74 11 338.49 32.23

90 2 4h 0 380.50 38.80 19 349.98 33.97 11 351.05 34.74

90 2 8h 0 242.60 26.09 11 210.62 23.79 19 210.19 23.03

90 3 8h 0 168.99 16.31 11 135.97 15.10 19 135.40 15.06

90 4 4h 0 262.41 30.41 17 225.94 25.77 13 226.39 26.19

90 5 4h 0 216.53 23.76 18 182.03 21.82 12 182.20 22.21

Total 8 2398.19 285.10 234 2086.11 253.63 130 2090.16 253.38

Vienna currently consists of 111 stations and 1300 bicycles the instances used
inhere are realistic and praxis-relevant. For each parameter combination exists
a set of 30 independent instances. All our algorithms are implemented in C++

using GCC 4.6. Each test run was performed on a single core of an Intel Xeon
E5540 machine with 2.53GHz. The scaling factors of the objective function are
set to ωunf = ωbal = 1, ωload = ωtime = 1

100 000 , i.e., an improvement with re-
spect to balance and/or unfulfilled demands is always preferred over reducing
the tour length and/or the number of loading instructions. For the greedy eval-
uation criterion we use multiplicative urgency. We omit a detailed comparison
since the difference between these strategies becomes more significant only on
larger instances with hundreds of stations.

In Table 1 we compare different methods for quickly obtaining good starting
solutions, namely GCH, PILOT, GCH with VND, and PILOT with VND. The
columns show the instance characteristics, and for each algorithm the number
of times the corresponding approach yields the best result (#best), the average
objective values (obj), the standard deviations (sd), and the average CPU-times
t̃tot. The differences of the average objective values are frequently relatively small
due to the weight factors ωload and ωtime, but they are still crucial for evaluating
the quality of solutions. Therefore, the #best numbers give us a better indication

Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case 83

of which algorithm variants perform best. We observe that PILOT outperforms
GCH on every instance while the additional time is only moderate. This trend
continues when we add VND to further improve the solutions. Not only does
PILOT-VND outperform GCH-VND, but it also requires less time. This is due
to the superior starting solutions, so VND terminates after fewer iterations.

In Table 2 we test our metaheuristic approaches and additionally compare
them to the VNS for the static case from [3], denoted by SVNS. For a reasonable
comparison, SVNS initially converts a DBBSS instance into a static one by
adding for each station the final cumulative user demand to the respective target
value; negative values and values exceeding the station capacity Cv are replaced
by zero and Cv, respectively. The idea is to neglect the timing aspects of station
visits and check if this static VNS is able to find reasonable solutions also for
the dynamic case. To assure always obtaining feasible solutions to DBBSS in
the end, loading instructions for the finally best static solution are recalculated
by the new greedy strategy of the dynamic case. We observe that GCH from
Table 1 already performs a little bit better than the SVNS. DVNS and GRASP
are able to compute results that are more than 10% better than those of SVNS.
Therefore, we conclude that although it is possible to apply algorithms for the
static case to the dynamic scenario, dedicated dynamic approaches taking time-
dependent user demands into account are clearly superior. Among the dynamic
approaches DVNS performs best on most of the considered instances. According
to a Wilcoxon signed-rank test, all observed differences on the overall number of
best solutions among any pair of compared approaches are statistically significant
with an error level of less than 1%.

8 Conclusions and Future Work

In this work we showed how to extend the metaheuristics developed in our pre-
vious work for static BBSS to the significantly more complex dynamic variant.
Starting from a model which can handle essentially arbitrary time-dependent ex-
pected user demand functions, we proposed an efficient way to calculate loading
instructions for vehicle tours. We use an objective function where the weights of
unfulfilled user demands and target fill levels can be adjusted in an easy way.
Practically, this has a high relevance for the BSS operator. We also extended
our previously introduced construction heuristics, VNS and GRASP, so that dy-
namic user demands are considered appropriately. Tests on practically realistic
instances show that the dynamic approaches indeed make sense. Depending on
the available time for optimization, greedy or PILOT construction heuristics are
useful for fast runs, while VNS is most powerful for longer runs.

In future work it would be particularly interesting to also consider the im-
pact of demand shifts among stations when their neighbors become either full
or empty. Especially, when users want to return bikes and an intended target
station is full, this demand obviously will not diminish but be shifted to some
neighboring station(s). Considering this aspect might lead to an even more pre-
cise model, but also increases the model’s complexity significantly.

84 C. Kloimüllner et al.

References

1. DeMaio, P.: Bike-sharing: History, impacts, models of provision, and future. Jour-
nal of Public Transportation 12(4), 41–56 (2009)

2. Raidl, G.R., Hu, B., Rainer-Harbach, M., Papazek, P.: Balancing bicycle sharing
systems: Improving a VNS by efficiently determining optimal loading operations.
In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS,
vol. 7919, pp. 130–143. Springer, Heidelberg (2013)

3. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C.
(eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)

4. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: PILOT, GRASP, and VNS
approaches for the static balancing of bicycle sharing systems. Technical Report
TR 186-1-13-01, Vienna, Austria (29 pages, 2013, submitted to the JOGO)

5. Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B.: A PILOT/VND/GRASP
hybrid for the static balancing of public bicycle sharing systems. In: Moreno-Dı́az,
R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST. LNCS, vol. 8111, pp.
372–379. Springer, Heidelberg (2013)

6. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)

7. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier,
F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO –
Operations Research 45(1), 37–61 (2011)

8. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Transp. and Log., 1–43 (2013)

9. Di Gaspero, L., Rendl, A., Urli, T.: A hybrid ACO+CP for balancing bicycle
sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 198–212. Springer, Heidelberg (2013)

10. Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing
bike sharing systems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 758–773.
Springer, Heidelberg (2013)

11. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a dynamic public bike-
sharing system. Technical Report CIRRELT-2012-09, Montreal, Canada (2012)

12. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Ve-
hicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School
of Business, Carnegie Mellon University (2013)

13. Chemla, D., Meunier, F., Pradeau, T., Calvo, R.W., Yahiaoui, H.: Self-service bike
sharing systems: simulation, repositioning, pricing. Technical Report hal-00824078,
CERMICS (2013)

14. Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redis-
tribution and online price incentives in shared mobility systems. Technical report,
Cornell University, NY (2013)

15. Lin, J.H., Chou, T.C.: A geo-aware and VRP-based public bicycle redistribution
system. International Journal of Vehicular Technology (2012)

16. Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle
sharing system design: Formulation and solution. Computers & Industrial Engi-
neering 65(1), 77–86 (2013)

17. Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing
systems: Analysis of Vélib’. Int. Journal of Sustain. Transp. 7(1), 85–106 (2013)

18. Voß, S., Fink, A., Duin, C.: Looking ahead with the PILOT method. Annals of
Operations Research 136, 285–302 (2005)

Cooperative Selection:

Improving Tournament Selection via Altruism

Juan Luis Jiménez Laredo1, Sune S. Nielsen1, Grégoire Danoy1,
Pascal Bouvry1, and Carlos M. Fernandes2

1 FSTC-CSC/SnT,
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi,

1359 Luxembourg, Luxembourg
{juan.jimenez,sune.nielsen,gregoire.danoy,pascal.bouvry}@uni.lu

2 Laseeb: Evolutionary Systems and Biomedical Engineering,
Technical University of Lisbon, Lisbon, Portugal

cfernandes@laseeb.org

Abstract. This paper analyzes the dynamics of a new selection scheme
based on altruistic cooperation between individuals. The scheme, which
we refer to as cooperative selection, extends from tournament selection
and imposes a stringent restriction on the mating chances of an individ-
ual during its lifespan: winning a tournament entails a depreciation of its
fitness value. We show that altruism minimizes the loss of genetic diver-
sity while increasing the selection frequency of the fittest individuals. An
additional contribution of this paper is the formulation of a new combi-
natorial problem for maximizing the similarity of proteins based on their
secondary structure. We conduct experiments on this problem in order
to validate cooperative selection. The new selection scheme outperforms
tournament selection for any setting of the parameters and is the best
trade-off, maximizing genetic diversity and minimizing computational
efforts.

1 Introduction

Evolutionary algorithms (EAs) are optimization meta-heuristics inspired by the
Darwinian process of natural selection. As in nature, individuals in EAs compete
for survival and the fittest are preferentially selected for reproduction. Through
the course of generations, evolution operates bottom up by filtering good genes
in the population and optimizing the design of the individuals. This complex
process is triggered by a set of simple rules, the cornerstones being the breeding
operators and the selection scheme: the formers leveraging the proper mixing of
individuals’ structures and the latter balancing the selection pressure. If the se-
lection pressure is too intensive, the population will lose genetic diversity quickly
and the algorithm will converge to local optima. On the other hand, if the se-
lection pressure is too relaxed, the speed of convergence will slow down and the
algorithm will waste computational efforts. Hence, the design of efficient selection
schemes remains as an open topic of research in Evolutionary Computation.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 85–96, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

86 J.L. Jiménez Laredo et al.

In addition to canonical approaches such as ranking or roulette wheel [4],
other selection schemes have been designed, e.g. to balance exploration and ex-
ploitation [1], to autonomously decide on the state of reproduction of individuals
[7], or to be able to self-adapt the selection pressure on-line [3]. Nevertheless,
tournament selection [8] is still one of the most studied and employed schemes for
selection. Tournament selection is an easy-to-implement easy-to-model scheme,
in which the best of t randomly sampled individuals is selected for mating. This
simple scheme has many advantages such as allowing the tuning of the selection
pressure by simply varying the size of the tournament, having a low algorithmic
complexity (i.e. O(t) for a single selection) and being suitable for parallel and
decentralized execution as it does not require to compute estimates of the global
population. However, tournament selection has been also reported to have some
disadvantages that we aim to cover in this paper.

Poli [9] points out two different phases in a tournament: the sampling phase
where t individuals are randomly chosen from the population, and the selection
phase, in which the best of the sampled individuals is selected for reproduction.
The two main issues arising from Poli’s study are known as the not-sampling
and multi-selection problems, both of them responsible for the loss of diversity.
The not-sampling issue refers to the probability of an individual for not being
sampled. Xie, Zhang and Andreae [14] conduct a thorough analysis on this issue
and conclude that, independently of the population size, some individuals in
every generation will never be sampled when using small tournament sizes, e.g.
for binary tournament 13% of the individuals are never sampled, if t = 3 that
value is ∼ 5%, and so on. In contrast, the multi-selection1 issue refers to the
probability of an individual for being selected multiple times in the selection
phase. The risk here is that, if the tournament size is large, a small elite of
individuals could take over the population and quickly reduce the diversity. Given
that the only tunable parameter in tournament selection is the tournament size,
either the not-sampling or multi-selection issue will always be present to some
extent at any value of the parameter.

Some authors have presented alternative solutions to the not-sampling prob-
lem. The backward-chaining proposal by Poli [9], the unbiased tournament selec-
tion by Sokolov and Whitley [12] or the round-replacement by Xie and Zhang [13]
successfully address the issue. In their respective proposals, all authors are able
to save the computational efforts associated to the evaluation of not-sampled
individuals. Xie and Zhang, however, show that the sampling countermeasures
are only effective in the case of binary tournament. For larger tournament sizes
they claim that “the not sampled issue in standard tournament selection is not
critical”. On the basis of previous findings the authors recommend that research
should focus on tuning the parent selection pressure instead of developing alter-
native sampling replacement strategies.

1 The multi-selection problem is alternatively referred to as not-selection problem,
i.e. the multiple selection of some individuals implies the opposite problem, some
individuals are never selected.

Cooperative Selection: Improving Tournament Selection via Altruism 87

With such a recommendation in mind, cooperative selection [6] tackles the se-
lection phase in tournament selection. The aim is to minimize the loss of diversity
due to the multi-selection of elite individuals. Given that the multi-selection issue
is more relevant for large tournament sizes, the not-sampling of individuals is
assumed as a minor issue. Nonetheless, any of the aforementioned not-sampling
solutions could be easily integrated within our approach as they are complemen-
tary. Cooperative selection tries to prevent the multi-selection of elite individuals
by implementing an altruistic rule: after winning a tournament, an individual
must decrease its own fitness as to yield its position to the second-ranked indi-
vidual for future tournaments.

In this paper, we analyze first the properties of the approach under simplified
assumptions. Then, in order to validate such properties in a real problem, we
tackle a new combinatorial problem designed to maximize the similarity between
proteins. In that context, cooperative selection is shown to preserve a higher
genetic diversity than tournament selection and to require less evaluations to
yield the same quality in solutions.

The rest of the paper is structured as follows. Section 2 introduces the new
selection scheme. This section also analyzes the main properties of the approach
and provides some assessment for tuning the scheme parameters. Section 3
presents a new combinatorial problem that is used afterwards to validate the
cooperative selection scheme. Finally, some conclusions and future lines of re-
search are exposed in section 4.

2 Cooperative Selection

Cooperative selection is a variant in the selection phase of tournament selection.
This section presents a description of the new selection scheme and analyzes
its properties for different parameter values using tournament selection as the
counterpart for comparison.

2.1 Scheme Description

In order to describe cooperative selection, let us first introduce the following
definitions and nomenclature:

– An association −→a = {−→x1, . . . ,−→xa} is the scheme’s equivalent of a tournament,
where a set of individuals −→xi : i ∈ {1, . . . , a} is randomly sampled from a
population P to compete for selection in an association of size a.

– Every individual −→x = {x1, . . . , xl} | −→x ∈ P has a length of l parameters and
is characterized by two different fitness metrics:
• The canonical fitness function f(−→x).
• A transcription of f(−→x) called cooperative fitness fcoop(−→x), which is
initialized in an atomic operation:

sync.eval(−→x){f(−→x), fcoop(−→x)← f(−→x)} (1)

Hence, fcoop(−→x) = f(−→x) holds true right after the evaluation of −→x .

88 J.L. Jiménez Laredo et al.

Given an association −→a as provided by the sampling method described above,
Procedure 1 details the criteria to select an individual from −→a . Note here that
−→a and an analogue tournament

−→
t are indistinguishable and therefore, the only

difference between cooperative and tournament selection relies on this procedure.

Procedure 1. Pseudo-code of Cooperative Selection

CooperativeSelection (−→a)

#1. Ranking step:

rank(−→a) = {(−→x 1, . . . ,−→x i,−→x i+1, . . . ,−→x a) | ∀i : fcoop(−→x i) ≥ fcoop(−→x i+1)}

#2. Competition step:

winner ← −→x 1

#3. Altruistic step:

fcoop(−→x 1) ← fcoop(
−→x 2)+fcoop(

−→x 3)

2

return winner

The competition (or selection phase) in cooperative selection consists of three
steps. In the first one, the sampled individuals (−→a) are ranked according to
their cooperative fitness. To that end, without any loss of generality, we have
considered in this paper the case of maximizing the fitness. In a second step,
the individual with the highest cooperative fitness fcoop(−→x 1) is selected as the
winner of the competition. However, these two steps would not change from a
canonical competition if it were not for the final step where, after being selected,
the winner altruistically decreases its own cooperative fitness. In the next section
we show that such a simplistic rule has a tremendous impact on reducing the
environmental selection pressure and consequently the loss of genetic diversity.

2.2 Properties and Tuning of Parameters

Cooperative selection is based on tournament selection and, as in tournament
selection, the scheme can also be divided into two main phases: the sampling
phase in which the individuals are randomly sampled to create an association,
and the selection phase in which the individual with the highest cooperative
fitness is selected for reproduction. In order to analyze the properties of co-
operative selection, this section tackles both phases incrementally by assessing
first the bias introduced during the sampling phase, and then by analyzing the
combined effect of the not-sampling and not-selection of individuals during the
selection phase.

The Sampling Phase. The sampling of individuals in cooperative selection can
be described by the probability model presented by Xie et al. [14] for tournament

Cooperative Selection: Improving Tournament Selection via Altruism 89

selection. The model states that the probability of an individual to be sampled
in y ∈ {1, . . . , P} associations/tournaments is:

1−
(
1− 1

P

)ya

(2)

where P is the population size, a the association/tournament size, and y the
number of associations/tournaments within the generation.

Fig. 1. Probability of sampling an individual at least once per generation for y = P .
Given that the sampling of individuals is performed identically in tournament and
cooperative selection, these results hold in both schemes. Results are the average of 30
independent runs.

In Fig. 1 we verify empirically the model via simulations and estimate the
sampling probabilities for P ∈ {100, 400, 800} and a ∈ {2, 4, 8, 16}. The obtained
results show that the association size (a) is the main factor influencing the
sampling probability while the population size (P) does not seem to affect the
probability trend (Sokolov and Whitley [12] show that the population size may
indeed affect the trend if P < 10 however populations in EAs are usually not
that small). Independently of the population size, there is a certain probability
for an individual of not being sampled when a is small. An individual that is not
sampled does not have any chance to pass to subsequent generations and thus,
its associated genetic material and computational efforts are hopelessly wasted.
Such a waste amounts to ∼ 13% of the population for a = 2; a percentage that
becomes progressively smaller as the association size increases and that can be
neglected from a > 5. Therefore, the association size should be preferentially set
to large values for an optimal operation of the scheme.

The Selection Phase. Once an association −→a = {−→x1, . . . ,−→xa} is sampled from
the population, the selection phase is responsible for determining which individ-
ual in−→a will be finally selected for reproduction. At this stage, a large association
size entails an increase in the selection pressure and a loss of genetic diversity.
Such an effect is well known in tournament selection for large tournament sizes
and needs to be assessed for cooperative selection.

90 J.L. Jiménez Laredo et al.

Xie and Zhang [13] propose an experimental method for assessing the loss
of diversity according to different values of a. The method employs a synthetic
population called fitness rank distribution (FRD). The idea behind a FRD is
that a population can be partitioned into different bags of individuals with an
equal fitness. Given that each of these bags has an associated fitness rank, a
selection scheme can be characterized by the amount of individuals which are
selected from the different bags. In order to analyze cooperative selection, we
will assume a simplistic scenario in which the FRDs emulate the fitnesses of a
randomly initialized population in an easy problem [11]. Fig. 2 shows three of
these FRDs in which the best individuals are ranked first.

Fig. 2. Fitness rank distributions for three different population sizes. FRDs are dropped
from a normally distributed variable X ∼ N (0, 36) and then shifted until min(X) =
0. This method approximates a N (18, 36) distribution and guarantees non-negative
values.

Using a FRD as an input, our genetic algorithm assumes a generational scheme
with selection as the single operator to be applied. Any possible loss of diversity
is therefore due to the selection scheme and can be assessed by computing the
amount of individuals discarded from one generation to the other. In this context,
there are two possible causes for losing diversity: those individuals that are not-
sampled, and those ones that being sampled are not-selected.

Fig. 3 compares the loss of diversity in tournament and cooperative selec-
tion as a function of the tournament/association size. The selection pressure
monotonically increases for both schemes. However, cooperative selection scales
more gracefully than tournament selection: for a = t = 20 cooperative selection
outperforms tournament selection by a ∼ 24%.

Given the different responses of both schemes to parametrization, we define as
analogues a tournament (t) and an association (a) inducing the same loss of di-
versity, e.g. t = 2 and a = 8 in Fig. 3. This notion is relevant to make comparisons
between schemes: since two analogue parameters preserve the diversity equally,
one scheme will outperform the other if, for an analogue parametrization, the
scheme preferentially selects fitter individuals. Note here that the variety and
quality of the selected individuals are two conflicting objectives.

Cooperative Selection: Improving Tournament Selection via Altruism 91

Fig. 3. Loss of diversity in tournament selection (left) and cooperative selection (right)
for P = 400. The dashed line exemplifies an equivalence between analogue tournament
and association sizes.

To gain insights into this question, Fig. 4 computes the selection frequen-
cies for different parametrizations of tournament and cooperative selection. The
results show two main outcomes:

1. Cooperative selection is more robust to parameter tuning than tournament
selection as the size of an association has less impact on the selection fre-
quencies than the respective tournament size.

2. In the case of an analogue parametrization (i.e. t2 is analogue to a8), the
frequency of good individuals is higher in cooperative selection than in tour-
nament selection.

Fig. 4. Expected selection frequencies for different tournament and association sizes in
tournament selection (left) and cooperative selection (center). The graph on the right
compares the selection frequencies between binary tournament (t2) and its analogue
association size (a8). Frequencies are obtained from 30 independent runs.

92 J.L. Jiménez Laredo et al.

3 Validating Cooperative Selection in a Noisy Real
Problem

In order to validate the previous outcomes on cooperative selection, we tackle
in this section the problem of finding two proteins (provided as two sequences
of codons) with a similar secondary structure. The pairwise comparison of the
secondary structure is a multi-modal problem with tools such as the Vector
Alignment Search Tool (VAST)2 dedicated to classify similarities between pro-
teins. VAST requires a pdb3 file as an input to query a database for similarities.
However, pdb’s are obtained in laboratories using expensive and time-consuming
techniques such as X-ray crystallography or nuclear magnetic resonance [2].
These techniques prevent a systematic search of all possible sequences. In this
context, we propose ESSS as a meta-model for exploring the problem landscape.

3.1 Estimated Secondary Structure Similarity (ESSS)

The secondary structure is a primary approach to determine the three-dimensional
form of an amino acid sequence. Given that the biological functionality of a pro-
tein is conferred by its 3D structure, establishing the 3D similarity between two
proteins provides an estimation of their related properties. ESSS is an assessment
on the similarity of the secondary structure between two sequences.

Using the tool PROFphd [10], the likely secondary structure type T (ci) can
be estimated per codon ci with a reliability RT (ci) ∈ {1...10} in the sequence
C = {c1...cN}. With Tref(i) the actual type found at position i of the reference
structure, the estimated secondary structure similarity score F is calculated as
follows:

F (C, Tref) =
N∑
i=1

Match(T (ci), Tref (i)) (3)

where

Match(T (ci), Tref (i)) =

⎧⎨⎩
0 if T (ci) ∧ Tref(i) /∈ {Helix, Sheet}

RT (ci) if T (ci) = Tref (i)
−RT (ci) if T (ci) �= Tref (i)

The reference types Tref (i) are extracted from the original pdb file. In this
paper, we conduct an experiment using the 256b sequence4 as a reference (Tref).
The 256b sequence is composed of 106 codons and codifies the cytochrome B562
molecule.

2 VAST and pdb’s of sequences are available on-line at
http://www.ncbi.nlm.nih.gov/Structure/

3 Protein Data Bank format.
4 VAST and pdbs of sequences are available on-line at
http://www.ncbi.nlm.nih.gov/Structure/

http://www.ncbi.nlm.nih.gov/Structure/
http://www.ncbi.nlm.nih.gov/Structure/

Cooperative Selection: Improving Tournament Selection via Altruism 93

Multi-modality. ESSS is a multi-modal problem. Only for the 256b sequence
that we tackle in this paper, VAST provides a list of 1635 related structures from
which 4JEA is the most similar. 4JEA codifies the soluble cytochrome B562 and
differs in only 13 out of 106 codons.

Noisiness. ESSS theoretical optimum is at F (256b, 256b) = 860 for the instance
under study. However, to yield such a value, PROFphd should return the maxi-
mum reliability RT = 10 at any of the 86 positions of the sequence folding as a
helix. Given that PROFphd is a meta-model based on a neural network, there is
a certain error due to the training process which translates in the actual fitness
being F (256b, 256b) = 463. The noisiness of the function can be further proven
since the sequence 4JEA scores F (4JEA, 256b) = 520; more than the reference
sequence itself, i.e. F (4JEA, 256b) > F (256b, 256b).

3.2 Experimental Setup

Experiments in this paper are conducted for a generational 1-elitism genetic
algorithm. Two versions of the algorithm are considered: one using cooperative
selection and the other being tournament selection. In order to validate the
properties described in section 2.2, analogue parameters t = 2 and a = 8 are
tested. Additionally, t = 8 is also analyzed to check differences with respect to
a = 8. Table 1 presents a summary of all parameter settings.

Table 1. Parameters of the experiments

ESSS instance
Reference pdb file 256b

Individual length (L) 106
Features multimodality and noisiness

GA settings
Scheme 1-elitism generational GA

Selection of Parents Tournament Selection &
Cooperative Selection

Tournament size 2, 8
Association size 8
Recombination Uniform Crossover, pc = 1.0

Mutation Uniform, pm = 1
L

Population sizes (P) {100,200,400,800}

3.3 Analysis of Results

Miller and Goldberg [8] were the first in analyzing the relations between noisy
functions and selection schemes. In general, noise has a disruptive effect on the
convergence of a genetic algorithm, delaying the convergence rate and increas-
ing the computational requirements. The common approach to counteract this
effect is to increase the selection intensity. However, if the selection pressure is
too high, the algorithm risks to prematurely converge to sub-optimal solutions.
Noisy functions are therefore an attractive context to validate the properties

94 J.L. Jiménez Laredo et al.

of cooperative selection: the new selection scheme has been shown to increase
the selection frequency of the fittest individuals (i.e. selection intensity) without
paying an additional cost in diversity.

Unlike other noisy problems (see e.g. [5] for a survey), ESSS does not include
a true fitness function to recalibrate errors of the meta-model. Therefore, di-
versity is prioritized over quality in such a way that results can be validated a
posteriori in the lab [2]. That leads to the notion of feasible region: a range of
fitness values used as termination criteria. We assume the feasible region to be
[F (256b, 256b), F (4JEA, 256b)] = [463, 520] for the instance under study.

Fig. 5 shows that cooperative selection (a = 8) yields better results than
tournament selection (t = 2) while the genetic diversity is similarly preserved in
both schemes as it was predicted in section 2.2 for analogue parametrizations. On
the other hand, tournament selection converges faster than cooperative selection
if the algorithms are equally parametrized (a = 8 = t). However, a high value
of tournament selection (t = 8) increases the selection pressure and the genetic
diversity is significantly diminished.

Fig. 5. Convergence of the average fitness in cooperative and tournament selection
(left) and respective average hamming distance (right). The area in gray denotes the
feasible region. Results are obtained over 30 independent runs for P = 400.

In order to find best trade-offs between speed of convergence and preservation
of diversity, we reproduce previous experiments for P ∈ {100, 200, 400, 800}with
F = 520 set as the termination condition. Fig. 6 shows the results for cooper-
ative and tournament selection where the upper-left corner is the optimal area.
In all cases and independently of the population size, cooperative selection has
better results regarding diversity and number of evaluations. That is, coopera-
tive selection outperforms tournament selection. Although such results must be
interpreted under the perspective of this study, the obtained conclusions should
be easily generalized to further problems and optimization paradigms.

Cooperative Selection: Improving Tournament Selection via Altruism 95

Fig. 6. Trade-off between diversity and computational effort for cooperative selection
{a8} and tournament selection {t2, t8}

4 Conclusions and Future Works

This paper analyzes a new selection scheme that we call cooperative selection
in the context of genetic algorithms. The scheme is an extension of tournament
selection that, by implementing an altruistic behavior in winners of the compe-
tition, is able to cope with two of the main problems of tournament selection:
the “not-sampling” and “multi-selection” of individuals. On the one hand, the
approach preferentially uses large association sizes, which neglects the proba-
bility of “not-sampling” an individual. On the other hand, the depreciation of
the fitness in winners of the competition diminishes the ”multi-selection” of the
same elite of individuals.

We show that the new scheme preserves a higher genetic diversity than tour-
nament selection when both schemes are equally parametrized. Additionally,
cooperative selection casts fitter individuals when the loss of diversity is equal in
both schemes. That allows the algorithm to converge faster to quality solutions
while preserving the genetic diversity. The key to explain such a behavior is
that the new scheme can select the same variety of individuals as in tournament
selection but choosing preferentially fitter ones.

In order to validate such properties in a real problem, we formulate in this
paper a new combinatorial problem for maximizing the similarity between pro-
teins. The conducted experiments confirm previous conclusions: cooperative se-
lection outperforms tournament selection for any setting of the parameters and
is the best trade-off, maximizing genetic diversity and minimizing computational
efforts.

As a future work, we plan to proceed with the mathematical modeling of the
proposed selection scheme. Additionally, we also plan to investigate the adequacy
of the approach in high-dimensional continuous optimization problems.

96 J.L. Jiménez Laredo et al.

Acknowledgements. This work has been funded by the UL-EvoPerf project.
Fernandes wishes to thank FCT his Research Fellowship (SFRH/ BPD/66876/
2009). This work was also supported by FCT PROJECT [PEst-OE/EEI/
LA0009/2013].

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Trans. Evolutionary Computation 9(2), 126–142 (2005)

2. Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-
Kunstleve, R.W., Jiang, J., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J.,
Rice, L.M., Simonson, T., Warren, G.L.: Crystallography and NMR System: A
New Software Suite for Macromolecular Structure Determination. Acta Crystallo-
graphica Section D 54(5), 905–921 (1998)

3. Eiben, A.E., Schut, M.C., De Wilde, A.R.: Boosting genetic algorithms with self-
adaptive selection. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, pp. 1584–1589 (2006)

4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
5. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.

Trans. Evol. Comp. 9(3), 303–317 (2005)
6. Laredo, J.L.J., Dorronsoro, B., Fernandes, C., Merelo, J.J., Bouvry, P.: Oversized

populations and cooperative selection: Dealing with massive resources in parallel
infrastructures. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp.
444–449. Springer, Heidelberg (2013)

7. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: On the run-time dynamics
of a peer-to-peer evolutionary algorithm. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 236–245. Springer,
Heidelberg (2008)

8. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the vary-
ing effects of noise. Evol. Comput. 4(2), 113–131 (1996)

9. Poli, R.: Tournament selection, iterated coupon-collection problem, and backward-
chaining evolutionary algorithms. In: Wright, A.H., Vose, M.D., De Jong, K.A.,
Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 132–155. Springer, Heidel-
berg (2005)

10. Rost, B., Sander, C.: Combining evolutionary information and neural networks to
predict protein secondary structure. Proteins 19(1), 55–72 (1994)

11. David Schaffer, J., Eshelman, L.J.: On crossover as an evolutionarily viable strat-
egy. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp. 61–68. Morgan Kaufmann
(1991)

12. Sokolov, A., Whitley, D.: Unbiased tournament selection. In: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp.
1131–1138. ACM, New York (2005)

13. Xie, H., Zhang, M.: Impacts of sampling strategies in tournament selection for
genetic programming. Soft Comput. 16(4), 615–633 (2012)

14. Xie, H., Zhang, M., Andreae, P.: Another investigation on tournament selection:
modelling and visualisation. In: Proceedings of the 9th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2007, pp. 1468–1475. ACM, New
York (2007)

Diversity-Driven Selection

of Multiple Crossover Operators
for the Capacitated Arc Routing Problem

Pietro Consoli and Xin Yao

CERCIA,
School of Computer Science, University of Birmingham,

Birmingham, West Midlands, B15 2TT, UK
{p.a.consoli,x.yao}@cs.bham.ac.uk

Abstract. The Capacitated Arc Routing Problem (CARP) is a NP-
Hard routing problem with strong connections with real world problems.
In this work we aim to enhance the performance of MAENS, a state-
of-the-art algorithm, through a self-adaptive scheme to choose the most
suitable operator and a diversity-driven ranking operator. Experimental
results on 181 problem instances show how these techniques can both
improve the results of the current state-of-the-art algorithms and provide
good directions to develop EAs with a more robust approximation ratio.

Keywords: Memetic Algorithm, Stochastic Ranking, Capacitated Arc
Routing Problem, Self-Adaptation, Approximation Algorithms.

1 Introduction

The Capacitated Arc Routing Problem (CARP) 1981[12] has been an object
of study mostly because of its close relationship with real world problems.
For the CARP a considerable number of exact methods, heuristics and meta-
heuristics has been created. Among the meta-heuristics, several population-based
approaches can be mentioned. Lacomme et al. proposed a Genetic Algorithm[17],
a Memetic Algorithm[18] as well as an ant-based approach[19]. Chu et al. pro-
posed a scatter search in 2006[4] while Beullens et al. proposed a Guided Local
Search [3] using a heuristic based on the evaluation of the potential mutations
of each solution. Hertz and Mittaz[14] used a Variable Neighbourhood Search
which uses a set of new mutation operators.

Tang et al. proposed a Memetic Algorithm[32] named MAENS whose local
search is provided with a long-step operator, named Merge-Split.

Several algorithms have been proposed for different versions of the problem,
such as the Memetic Algorithm in [25] for the Periodic CARP. Mei et al. also
proposed an approach for the multi objective CARP in [24]. Another attempt
based on a Tabu Search is described in [23]. Xing et al. developed in [36] a
hybrid algorithm based on the ACO meta-heuristic for the Extended CARP,
which introduces several constraints, such as a maximum service time, penalties

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 97–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

98 P. Consoli and X. Yao

for turns and a variable amount and position of depots. In [37] Xing et al.
proposed an evolutionary approach for the Multi-Depot CARP. More recently,
Mei et al[22] adopted a Cooperative Co-evolution framework[28] to decompose
Large Scale CARP instances.

For NP-Hard problems strongly connected with real world applications as the
CARP, it is important that algorithms that we design are reliable enough to
return good solutions, when not optimal, in as many cases as possible. However,
for this problem, the work on the reinforcement of the average results of the
algorithms has been lacking.

The aim of this research is therefore to strengthen the approximation ability
of a state-of-the-art algorithm for the CARP through the following techniques:

– the use of a novel distance measure between CARP solutions;
– a diversity-driven stochastic ranking operator;
– a set of new recombination operators for the problem;
– an Adaptive Operator Selection strategy which uses a new Credit Assign-

ment technique based on the aforementioned ranking operator.

The rest of the paper is organized as follows. Section 2 introduces some prelim-
inary notions such as the definition of the CARP and the MAENS algorithm
which represents the state-of-the-art for this problem. Section 3 presents a novel
diversity measure for CARP solutions and a diversity-driven ranking operator.
Section 4 introduces a suite of crossover operators for the problem and the Adap-
tive Operator Selection technique adopted. Section 5 shows the performance of
the MAENS algorithm when using the proposed techniques. Section 6 includes
the conclusions and the future work.

2 Background

2.1 Problem Definition

G = (V,A) is a connected directed graph where V is the set of vertices, A is the
set of arcs, and the subset AR ⊂ A is the subset of required arcs. Elements of
A are also called tasks, while AR will be the required tasks. Each tasks t has a
demand d(t) which indicates the load necessary to serve the task, a service cost
sc(t) of crossing the task, a dead-heading cost dc(t) of crossing the task without
serving it, an ID and a reference to their head(t) and their tail(t) task. The
tasks need to be served by a fleet of m vehicles with a capacity C and whose
route starts and ends in a vertex called depot. Each task must be served within
a single tour and each vehicle is bound to its capacity. A solution for a CARP
instance can therefore be represented by a set of routes, which are sequences of
tasks that need to be visited in the given order. To distinguish between routes
a dummy task is commonly used with ID 0, which represents the vehicle being
in the depot with null service cost and demand. The objective is therefore to
minimize the total service cost (TC) of the routing subject to the previously
mentioned constraints.

Diversity-Driven Selection of Multiple Crossover Operators for the CARP 99

Table 1. Summary of CARP definition. app(Si) counts the times that a task appears
in the sequence S, inv(Si) returns the task in the opposite direction of Si and nveh is
the number of maximum vehicles allowed.

Problem Definition minTC(S) =
∑length(S)−1

i=1 (sc(Si) + sp(Si, Si+1))

Constraints
load(Ri) ≤ Q

app(Si) = 1, ∀Si ∈ AR

m <= nveh

Total Service Cost TC =
∑length(S)−1

i=1 (sc(Si) + sp(Si, Si+1))

Total Load load(Rk) =
∑length(Rk)

i=1 d(Sik)

The TC is calculated in the following way. When the vehicle is serving a
required task Si, the TC will include its serving cost sc(Si) plus the total cost
of the shortest path (sp) necessary to connect the tail of the task to the head
of the next task Si+1, obtained through the use of Dijkstra algorithm[7]. A full
definition of the problem is included in Table 1.

2.2 MAENS

1. initialise a population pop;
2. while (pop not full OR attempts < trial)

do
3. generate a new individual p;
4. if (p is not a clone) then
5. add p to pop;
6. end if
7. end while
8. while (stopping criterion is not satisfied)

do
9. for (i = 0 to size∗offset) do

10. randomly select p1, and p2 from
pop;

11. generate six = SBX(p1, p2);
12. extract a random value r
13. if (r < lsprob) then

14. generate sils = LocSearch(six,p);
15. else
16. sils = six;
17. end if
18. if (sils is a clone of a parent) then
19. overwrite parent;
20. else
21. if (sils not a clone) then
22. add to pop;
23. end if
24. end if
25. end for
26. pop = Stochastic Ranking(pop);
27. end while

Fig. 1. MAENS Algorithm

The Memetic Algorithm with Extended
Neighbourhood Search (MAENS)[32] is
one of the most competitive and efficient
algorithms in the context of the CARP.
Its pseudo-code is provided in figure 1. It
is possible to divide it into four phases:
initialization (lines 1-7), crossover (lines
10-11), local search (line 14) and stochas-
tic ranking (line 26). During the ini-
tialization phase, solutions are generated
through the use of the Path-Scanning
procedure [12]. In the main cycle, cou-
ples of parent solutions are randomly
selected to generate an offspring using
the Sequence Based Crossover (SBX) op-
erator [29]. A local search is therefore
performed on the neighbourhood of the
solution, with a probability lsprob, us-
ing three move operators, namely Single
Insertion (one task is moved to another
route), Double Insertion (two consecutive
tasks are moved to another route) and
Swap (two tasks of different routes exchange their places). The best solution
is then improved through the Merge-Split operator, which applies the Path

100 P. Consoli and X. Yao

Scanning procedure[12] and the Ulusoy Splitting tour [34] to the tasks of two
randomly selected routes. The local search procedure is completed by another
iterative search using the three move operators. The offspring are then com-
pared to the solutions of the previous generation and sorted using the Stochastic
Ranking procedure [31].

Analysis of the Algorithm. We have analysed the algorithmic features of
MAENS[32] in order to identify what might be the possible drawbacks that af-
fect the robustness of its results. As a memetic algorithm, it is equipped with a
local search operator which greatly improves its capacity of exploiting the good
solutions found during the search. This exploitation ability might not be bal-
anced enough by an efficient exploration as the algorithm does not have any
mechanism that maintains the diversity of the population. The algorithm makes
use of a single heuristic, the Path-Scanning[12], in both the initialization phase
and within the local search. This might affect the ability of the algorithm to
generate new routes during this phase. We choose therefore to contrast the ex-
ploitation ability of the algorithm embedding a control over the diversity of the
population in the ranking operator and increasing the breadth of the recombi-
nation move replacing the SBX with a suite of different operators.

2.3 Approximation Algorithms

An Approximation Algorithm can be defined as follows[26]. Given a minimization
optimization problem P with a cost function c, and an algorithm A that is able to
produce a feasible solution fA(I) for the instance I of P whose optimal solution
is f(I), then the algorithm A is an ε−approximate algorithm of P if for any
instance I of P :

ε ≥ |c(fA(I))− c(f(I))|
c(f(I))

for some value ε ≥ 0 and ε is the approximation ratio of A. As explained in [13],
when evaluating the approximation of EAs, due to their stochastic nature, it
would be more convenient to evaluate the estimated value E(fA(I)) instead of
the results obtained by a single execution of the EA.

3 A Distance Measure for the CARP

In order to be able to evaluate the performance of the algorithm in terms of
exploration ability, it is necessary to define a distance measure between solutions.
We have identified three possible approaches to define such a measure and we
propose a novel one.

3.1 Measuring the Average Diversity of the Population

A first approach is to consider routes as clusters of tasks and consequently to
choose an index that is commonly used in the data clustering context. Two non

Diversity-Driven Selection of Multiple Crossover Operators for the CARP 101

trivial issues affect this approach: it does not take into account the task service
order and it has a high computational cost (O(n2)).

One could choose a different approach by considering routes as strings and
to use similarity indexes taken from this field, such as the Levenshtein distance
[20]. Although this approach is more precise than the previous one, it is still
computationally non trivial (O(n2)) and it has the issue of depending on the
chosen representation.

A third approach is that of considering the relationship of consecutiveness
between edges as items of the dataset (e.g. if task t2 follows task t1 the couple
(t1, t2) is an item of the dataset) and using a similarity measure between sets.
The task service order is therefore split into couples of tasks. This approach
has a linear computational time (O(n)) and it achieves a higher precision, if
compared to the classic clustering approach, by taking into account the task
service order. Such a measure has been successfully used in the context of multi-
objective Vehicle Routing Problem as in [10] where the number of overlapping
arcs is measured through the use of the Jaccard Index[16]. However, since this
measure is not a proper metric, despite being valid to perform comparisons
between solutions, it might be not fit to compute average distances. For this
reason we propose a new distance measure able to deal with this issue.

3.2 A Revised Distance Measure Based on Neighbour Tasks

1. find p1(t) and n1(t)∀t in S1;
2. find p2(t) and n2(t)∀t in S2;
3. for (each task t) do
4. if (task t is served in both solutions)

then
5. if (p1(t) = p2(t)) then
6. add one;
7. end if
8. if (n1(t) = n2(t)) then
9. add one;

10. end if
11. end if
12. end for
13. divide the obtained value by 2N .

Fig. 2. Diversity Measure for CARP

Similarly to the aforementioned mea-
sure, we exploit the relation of con-
secutiveness between tasks inside the
routes. However, the similarity measure
adopted in this work is not based on
the number of shared arcs between two
tasks, but on the number of tasks which
share their previous or next arcs. This
approach maintains the linear computa-
tional cost and takes into account the
service order, but has the advantage of
always having consistent measurements
as the number of tasks is a constant

value. The proposed metric between two solutions S1 and S2 is described in
Figure 3.2.

We define pi(t) and ni(t) as the functions that return respectively the previous
and the next tasks of task t in solution i. Clearly this similarity measure will be
equal to 0 if the two solutions are completely different (when p1(t) �= p2(t) and
n1(t) �= n2(t), ∀t) and equal to 1 if the solutions are identical (p1(t) = p2(t) and
n1(t) = n2(t), ∀t). We also point out as the 2N possible values achievable are
uniformly distributed in the [0− 1] space, this allows the calculation of average
similarities within the population.

102 P. Consoli and X. Yao

3.3 Diversity-Driven Stochastic Ranking

We have initially used such a measure to define a new ranking operator with the
aim to preserve the diversity of the population.

In order to do that, we have embedded this information in the stochastic
ranking operator[31], which has also been used in the MAENS algorithm[32].

1. for (size of the population) do
2. for (each consecutive couple p and q) do
3. extract a random value r;
4. switch p and q IF:
5. a) (rts(p) < rts(q) and rts(p) > maxrts);
6. b) (davg(p) < davg(q) and r < R1);
7. c) (f(p) > f(q) and r < R2);
8. d) (f(p) = f(q) and davg(p) < davg(q));
9. e) (v(p) < v(q)).

10. end for
11. end for

Fig. 3. Diversity-Driven Stochastic Ranking

The pseudo-code of the Diversity-
Driven Stochastic Ranking is
included in Figure 3.3, where
functions rts(·), f(·), v(·) refer re-
spectively to the number of vehi-
cles, the fitness function and the
amount of violation of each so-
lution and maxrts is the maxi-
mum number of available vehicles.
A first condition limits the num-
ber of solutions violating the con-
straint relative to the maximum number of allowed vehicles. Thus, besides com-
paring the solutions according to their fitness and violation, we use the value
dAV G as a crowding distance to bias the search towards the areas of the search
space which have not been thoroughly exploited. Therefore, we switch the po-
sition of the solutions also in the case of reduced diversity. As this is the first
attempt to use such a measure, the work might be extended by using a more
refined one that might consider either only the n closest solutions, or the number
of solutions which are at least λ-distant or also the distance from the centroid
individual of the population.

4 Operator Selection

As previously mentioned, the use of a single heuristic to generate routes might
limit the exploration capacity of the algorithm and consequently its ability to
escape local optima.

We propose the use of a suite of crossover operators under the assumption
that it might lead to a more robust performance of the algorithm.

This offers the advantage to use each heuristic in those instances where they
perform better. As this is not known a priori, it is necessary to define a operator-
selection strategy which is able to address the problem of selecting the best
performing crossover operator for each instance. Besides, the use of the proper
combination of heuristics might improve further the performance of the single
use of each one of them, as different heuristics might be the best in different
phases of the search.

4.1 Crossover Operators

We have defined four new crossover operators for the CARP problem, namely
GSBX, GRX, PBX, SPBX, which are described in this section.

Diversity-Driven Selection of Multiple Crossover Operators for the CARP 103

Greedy Sequence Based Crossover (GSBX). The first operator applies a
greedy selection to the SBX[29] operator. A route from each solution is randomly
selected. These routes are therefore split in two parts and combined in order to
generate two different solutions.

The greedy choice replaces the random selection of routes using the following
rule that supports the selection of those routes which might have been less
efficiently filled. Thus, the route A will have a higher probability to be chosen
than route B if Q− load(A) ≤ Q− load(B) where Q is the maximum load that
a vehicle can carry.

Greedy Route Crossover (GRX). The GRX operator adapts the concept
of the GPX operator for the Graph Colouring Problem [9] in the context of
the CARP. With a round robin criterion, the best route in one of the parent
solutions is selected. The selection is performed with the same greedy-rule used
in the GSBX operator.

The route is then copied in the offspring and its tasks are removed from
parent solution routes. This process is repeated until all remaining routes R
in parent solutions have load(R) < Q/2. The remaining routes are therefore
randomly selected and combined to form new routes or inserted (when |R| = 1)
in the existing ones in the positions which minimize the total service cost of the
solution.

Pivot Based Crossover (PBX). The PBX operator ranks a list of tasks in
a similar way to the Augment-Insert[27] heuristic, although it differs from it as
the tasks are ranked according to the load of their outward and return paths,
instead of their total service cost.

A route from each parent individual is randomly selected and their tasks are
inserted in a unordered list L. A pivot task is therefore identified by choosing
with higher probability if either its outward or return path has the highest load
when using only tasks t ∈ L. The selected subpath is adopted and the rest of
the route is built by choosing to insert the tasks in L that minimize the total
cost of the route and that do not violate the capacity constraint.

Shortest Path Based Crossover (SPBX). The SPBX applies the idea of
the PBX operator to a couple of tasks (tA, tB). If the total cost of the shortest
path using the tasks of a list L is SPL(·, ·), the algorithm will select with a
higher probability the couple tA and tB belonging to L such that SPL(tA, tB) is
maximised while SPL(depot, tA) and SPL(tB, depot) are minimised.

4.2 Adaptive Operator Selection

The Adaptive Operator Selection (AOS) is typically composed of an Operator
Selection Rule (OSR) , such as [11,33], and a Credit Assignment Mechanism.

The Operator Selection scenario can be seen as a dynamic version of the game
theory Multi Armed Bandit problem. Each operator represents an arm with an
unknown reward probability. The aim is therefore to select during each time-
step the arm that maximises the probability of obtaining the reward. Several

104 P. Consoli and X. Yao

experiments have shown how MAB-based approaches outperform the former
techniques[5].

Common Credit Assignment techniques rely on the evaluation of the fitness
function, assigning a higher reward to the operator whose offspring shows the
higher improvement. Some reward techniques which also consider diversity have
been proposed in the context of multi-modal problems, such as [21]. We have
chosen therefore to adopt a MAB-based technique, called dMAB, first proposed
in [5], and we have combined it with a new credit assignment technique based
on the use of the diversity-driven ranking operator that we have previously in-
troduced. The choice of dMAB is merely dictated by the fact that it is one of
the most promising techniques in the area of AOS, as in this stage we are not
interested into identifying the most efficient operator. Comparisons of the perfor-
mance of dMAB with respect other techniques, which have not been performed
in this context, can be found in dMAB original paper[5].

Dynamic Multi-Armed Bandit. The dMAB adapts the classic Multi-Armed
Bandit scenario to a dynamic context where the reward probability of each arm
is not independent and is not fixed. To address the dynamic context problem,
the classical Upper Confidence Bound (UCB1)[1] algorithm is combined with
a Page Hinkley test[15], to identify the change of reward probabilities. More
information can be found in the original paper [5].

Credit Assignment by Stochastic Ranking. We propose a new credit as-
signment mechanism exploiting the selection operated by the diversity-driven
ranking operator. We assign a reward r which is proportional to the number of
offspring generated by the selected operator that will survive to the next gener-
ation after the stochastic ranking operator has been applied. Therefore, r = 0
when none of the individuals generated by the selected operator has survived
the ranking process and r = 1 when only individuals generated by it have been
chosen by the ranking operator.

Such a technique shows several advantages with respect to classic fitness-based
credit assignment ones:

– it takes into account the fitness of the solutions, their similarity and the
violation of the constraints;

– the adaptive operation selection process does not require domain knowledge;
– the reward values are always normalized and there is no need to derive a

scaling factor;
– unlike fitness-based techniques, it is not affected by the convergence speed

of the algorithm.

5 Experimental Studies

We have tested the results of the original algorithm against several versions that
we have labelled MAENSd, MAENSm and MAENS*, which are respectively
the versions of the algorithm adopting the diversity-driven stochastic ranking

Diversity-Driven Selection of Multiple Crossover Operators for the CARP 105

Table 2. MAENS* parameters

Name Description Value
psize population size 30
ubtrial maximum attempts to generate each initial solution 50
opsize offspring generated during each generation 6*psize
Pls probability of performing the local search 0.2
p routes selected during MergeSplit 2

Gm maximum generations 500
SRr1 probability of sorting solutions according to their diversity 0.25
SRr2 probability of sorting solutions according to their fitness 0.7
σ tolerance factor for Page-Hinkley test 0.05
λ change threshold for Page-Hinkley test 1.25

operator, the one using the proposed AOS strategy and the combination of both
techniques.

The comparison has been carried out on four benchmark test sets, namely
gdb[6] (23 instances), val [2] (34 instances), egl [8] (24 instances), and Beullens et
al.[3], which is composed of four groups of 25 instances, namely C,D,E and F.

Table 3. A summary of the results of
the four algorithms. Each column shows
the number of instances where each al-
gorithm achieved a better average fit-
ness (W), performed equally (D) or
worse (L) than MAENS, the mean av-
erage fitness (avg), standard deviation
(std) and best result (best) as well as
the mean approximation ratio (ε).

MAENS MAENSd MAENSm MAENS*
W – 85 79 91
D – 76 74 77
L – 20 28 13
avg 2040.77 2036.05 2035.90 2034.15
std 9.42 5.23 6.37 5.02
best 2026.25 2028.06 2026.09 2026.24
ε .0195 .0161 .0164 .0154

The Wilcoxon Signed-Rank test[35] has
been used to perform a statistical hy-
potesis test between MAENS and each
of the proposed versions. The test has
been conducted using the R software
environment[30]. In each case, the test
has rejected the null hypothesis that the
results of the two algorithms were not sig-
nificantly different. Table 4 reports the
details of such tests.

Table 2 shows the parameters used to
execute the algorithm for 30 independent
trials on each of the 181 instances. The
algorithm has not been through a pro-
cess of parameter configuration. Parame-
ters present in the original version of the

algorithm (first 7 parameters included in table 2) have kept their original values.
New parameters such as those necessary for the Page-Hinckley test have been
identified through a few test-and-trial attempts, using the set of benchmark
instances as a training set.

Table 4. Results of two-sided tests
of significance for the three pro-
posed versions of the MAENS al-
gorithm. The columns show the
V statistic computed with the
Wilcoxon Signed-Rank Test and
the p-value obtained.

MAENSd MAENSm MAENS*
V 4773 4917 5039

p-values 1.995e-10 2.945e-10 7.096e-14

For the sake of brevity we do not in-
clude the complete results of the compar-
isons, which are however available on the
authors website1, but we only report a sum-
mary of the results in table 3. In terms of
mean average fitness, both MAENSd and
MAENSm manage to outperform the origi-
nal algorithm in 85 and 79 instances, and lose
the comparison only in 20 and 28 cases. The

1 http://www.cs.bham.ac.uk/~pac265/

http://www.cs.bham.ac.uk/~pac265/

106 P. Consoli and X. Yao

results of their combined version MAENS* confirm how the combination of the
two techniques has a constructive effect on the algorithm, achieving a better av-
erage fitness in 91 instances and losing in only 13. In terms of average standard
deviation, the results of MAENSd and MAENSm represent an improvement with
respect to the original algorithm, lowering it from 9.42 to 5.23 in the first case
and to 6.37 in the second case. Even in this case the results of MAENS* improve
the result achieving an average standard deviation of 5.02. We interpret this
result as a sign of an improved convergence reliability. The average mean results
obtained by the three algorithms reflects the previously mentioned analysis.

An interesting result is that of the average best result obtained by the al-
gorithms. MAENSd showed a somehow predictable reduction of the algorithm
exploitation ability (2028.06 against 2026.25 of MAENS) while MAENSm man-
aged to slightly improve the average best result (2026.09). MAENS* coherently
achieved results between those of MAENSd and MAENSm (2025.82), confirm-
ing the effectiveness of this combination, which discovered new optima for 18
instances.

We have also compared the algorithms in terms of their average approximation-
ratio. MAENS ratio of 0.0195 has been reduced to 0.0160 and 0.0164 in the cases
of MAENSd and MAENSm and to 0.0154 in the case of MAENS*.

With regard to the runtime, MAENS* is essentially comparable to its origi-
nal version. The additional computational cost introduced by the calculation of
the average diversity of the solutions is balanced by the improved convergence
speed, while the AOS does not add any noticeable cost in the algorithm, whose
computational cost is still largely dominated by the local search procedure.

6 Conclusions

We have proposed an improved version of the current state-of-the-art algorithm
for the CARP[32], called MAENS*. The main characteristics of this algorithm
are (a) a new diversity measure between solutions, (b) a diversity-driven stochas-
tic ranking operator, (c) an AOS strategy using four novel crossover operators
and (d) a novel Credit Assignment strategy using the aforementioned ranking
operator to define rewards. The results of a comparison between the two algo-
rithms show how MAENS* outperformed the the original algorithm in terms of
average fitness and produced more robust and reliable results.

The work carried out so far leaves space to several possible improvements, as
optimal values of the parameters adopted could be identified, as well as gener-
alizations of the techniques proposed in this work to other combinatorial opti-
misation problems.

Acknowledgement. This work was supported by EPSRC (Grant No. EP/
I010297/ 1). Xin Yao was supported by a Royal Society Wolfson Research Merit
Award. The authors would like to thank the anonymous reviewers for their
insightful and constructive comments.

Diversity-Driven Selection of Multiple Crossover Operators for the CARP 107

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

2. Benavent, E., Campos, V., Corberán, A., Mota, E.: The capacitated arc routing
problem: lower bounds. Networks 22(7), 669–690 (1992)

3. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided lo-
cal search heuristic for the capacitated arc routing problem. European Journal of
Operational Research 147(3), 629–643 (2003)

4. Chu, F., Labadi, N., Prins, C.: A scatter search for the periodic capacitated arc
routing problem. European Journal of Operational Research 169(2), 586–605 (2006)

5. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M., et al.: Adaptive operator
selection with dynamic multi-armed bandits. In: Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 913–920 (2008)

6. DeArmon, J.S.: A comparison of heuristics for the capacitated Chinese postman
problem. Ph.D. thesis, University of Maryland (1981)

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

8. Eglese, R.W.: Routing winter gritting vehicles. Discrete Applied Mathemat-
ics 48(3), 231–244 (1994)

9. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4), 379–397 (1999)

10. Garcia-Najera, A.: Preserving population diversity for the multi-objective vehicle
routing problem with time windows. In: Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late Breaking
Papers, pp. 2689–2692. ACM (2009)

11. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and clas-
sifier system bidding. Machine Learning 5(4), 407–425 (1990)

12. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–
315 (1981)

13. He, J., Yao, X.: An analysis of evolutionary algorithms for finding approximation
solutions to hard optimisation problems. In: The 2003 Congress on Evolutionary
Computation, CEC 2003, vol. 3, pp. 2004–2010. IEEE (2003)

14. Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undi-
rected capacitated arc routing problem. Transportation Science 35(4), 425–434
(2001)

15. Hinkley, D.V.: Inference about the change-point from cumulative sum tests.
Biometrika 58(3), 509–523 (1971)

16. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes
et du Jura. Impr. Corbaz (1901)

17. Lacomme, P., Prins, C., Ramdane-Chérif, W.: A genetic algorithm for the capaci-
tated arc routing problem and its extensions. In: Boers, E.J.W., Gottlieb, J., Lanzi,
P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWork-
shop 2001. LNCS, vol. 2037, pp. 473–483. Springer, Heidelberg (2001)

18. Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms for
arc routing problems. Annals of Operations Research 131(1-4), 159–185 (2004)

19. Lacomme, P., Prins, C., Tanguy, A.: First competitive ant colony scheme for the
CARP. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F.,
Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 426–427. Springer, Heidelberg
(2004)

108 P. Consoli and X. Yao

20. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707 (1966)

21. Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph,
G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199,
pp. 256–265. Springer, Heidelberg (2008)

22. Mei, Y., Li, X., Yao, X.: Cooperative co-evolution with route distance grouping for
large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary
Computation (accepted on July 31, 2013)

23. Mei, Y., Tang, K., Yao, X.: A global repair operator for capacitated arc routing
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics 39(3), 723–734 (2009)

24. Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multi-
objective capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation 15(2), 151–165 (2011)

25. Mei, Y., Tang, K., Yao, X.: A memetic algorithm for periodic capacitated arc
routing problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 41(6), 1654–1667 (2011)

26. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Courier Dover Publications (1998)

27. Pearn, W.L.: Augment-insert algorithms for the capacitated arc routing problem.
Computers & Operations Research 18(2), 189–198 (1991)

28. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function
optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS,
vol. 866, pp. 249–257. Springer, Heidelberg (1994)

29. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii:
genetic search. INFORMS Journal on Computing 8(2), 165–172 (1996)

30. R Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2013),
http://www.R-project.org

31. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

32. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search
for capacitated arc routing problems. IEEE Transactions on Evolutionary Compu-
tation 13(5), 1151–1166 (2009)

33. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In:
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp.
1539–1546. ACM (2005)

34. Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research 22(3), 329–337 (1985)

35. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80–83 (1945)

36. Xing, L.N., Rohlfshagen, P., Chen, Y.W., Yao, X.: A hybrid ant colony optimization
algorithm for the extended capacitated arc routing problem. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics 41(4), 1110–1123 (2011)

37. Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: An evolutionary approach to the
multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation 14(3), 356–374 (2010)

http://www.R-project.org

Dynamic Period Routing

for a Complex Real-World System:
A Case Study in Storm Drain Maintenance

Yujie Chen, Peter Cowling, and Stephen Remde

York Centre for Complex Systems Analysis (YCCSA)
and Dept. of Computer Science, University of York, UK
{yc1005,peter.cowling,stephen.remde}@york.ac.uk

Abstract. This paper presents a case study of a real world storm drain
maintenance problem where we must construct daily routes for a main-
tenance vehicle while considering the dynamic condition and social value
of drains. To represent our problem, a dynamic period vehicle routing
problem with profit (DPVRPP) model is proposed. This differs from the
classical period routing problem in a number of ways. Firstly, it is dy-
namic: during the planning horizon, the demands from damaged drains
and residents reports arrive continuously. In addition, the drains con-
dition is changing over time. Secondly, our objective is maximizing the
profit, defined here as the drains condition with respect to its social value.

This study is based on large-scale data provided by Gaist Solutions
Ltd. and the council of a UK town (Blackpool). We propose an adaptive
planning heuristic (APH) that produces daily routes based on our model
and an estimation of changing drain condition in the future. Computa-
tional results show that the APH approach can, within reasonable CPU
time, produce much higher quality solutions than the scheduling strategy
currently implemented by Blackpool council.

1 Introduction

This paper describes a study of scheduling vehicle routes for the drain mainte-
nance problem of Blackpool. The storm drain maintenance system in Blackpool
records 28,290 drains distributed over approximately 36.1km2. Drain cleaning is
undertaken by Blackpool local council who presently deploys one team with 2
vehicles, one for daily cleaning and a high pressure jet machine for blocked drain
cleaning. Due to the limitation of the number of workers, only one vehicle works
each day. Every day the vehicle should visit and clean the planned drains and
return to the depot. Usually, drains are cleaned once per year.

In addition to the normal daily cleaning, the drain cleaning crews are also
responsible for emergency events (e.g. residents calling reports or damage repair).
Every drain has an associated social value. This value is derived from a number
of social factors provided by Blackpool council. To be more specific, all the
drains are graded between 0-6 by considering: which road they belong to; is
it near a school; is it near a hospital; is it near an economic center or is it in

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 109–120, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

110 Y. Chen, P. Cowling, and S. Remde

the district center. A higher social value implies that if this drain is blocked and
floods happen here, it brings relatively larger economic and social losses. In other
words, we prefer to clean the drains with higher social value more frequently to
keep them working properly.

Based on the feature of the drain maintenance problem, we propose a new
model called the dynamic period vehicle routing problem with profit (DPVRPP)
and use an adaptive planning method to solve this problem. There are two main
differences to the well-studied period vehicle routing problem (PVRP)[1]. First,
there is no hard visit frequency constraint for each drain during the planning pe-
riod. The condition of each drain is changing during the long planning period and
emergency events may occur. Hence, the updated plan is activated in response
to these changes. Second, instead of minimizing the total distance travelled, the
DPVRPP aims to maximize the total profit during the planning horizon. In this
case, the profit is measured by all the drains’ condition with respect to their
social value. Efficient routes that help to shorten the total travel distance are
implicitly preferred.

The remainder of this paper is organised as follows. In Section 2, relevant
literature is surveyed. Then, we present a mathematical model of the storm
drain maintenance problem in Section 3, followed by the adaptive heuristic in
Section 4. Section 5 reports a series of experiments and analysis. Section 6 gives
the conclusions.

2 Related Works

The closest well-studied variation of the vehicle routing problem (VRP) is the
PVRP [1]. As a generalization of the ordinary VRP problem, the PVRP extends
the planning period from one day to many days. Over the planning period, each
customer must be visited on a required number of days. In classical PVRP,
customers’ requirements are known in advance. They can be served in a set of
certain patterns. For example, a customer requiring two visits per week can be
arranged in Monday-Thursday or Wednesday-Saturday pattern. Therefore, the
PVRP is also named as the allocation-routing problem [2].

A number of solutions for the PVRP are proposed since the problem ap-
peared. Chao et al. [3] presented a two-phase record-to-record algorithm that
is constructed by several local moves applied one after another for the PVRP.
Cordeau et al. [4] and Brandao and Mercer [5] implemented a tabu search heuris-
tic for the PVRP with time window constraints and heterogeneous vehicles. Ale-
gre et al. [6] applied a scatter search framework to solve the PVRP with a very
long planning period. This algorithm is designed based on a problem of assign-
ing calendars to customers in a periodic vehicle loading problem [7]. A variable
neighbourhood search (VNS) approach for the PVRP has been proposed by
Hemmelmayr et al. [8]. Based on the work in [8], Pirkwieser and Raidl added a
coarsening and refinement process into VNS, which is called multilevel VNS for
the PVRP [9].

For our problem, one of the important characteristics is its profit maximization
objective. Similar work has been done in the literature. Baptista et al. modelled

Dynamic Period Routing for a Complex Real-World System 111

a paper recycling problem as the PVRP with some new features [10], in which
the visit frequency for each customer was not fixed. Instead, the number of vis-
its within the planning period becomes a decision variable. Furthermore, their
objective function adds the customer demand as profit. Gonalves et al. consid-
ered an oil collection problem [11]. They aimed to maximize the profit rather
than minimize the travel distance during the period. Also, a visit frequency was
treated as a decision variable which is related to the profit.

In terms of the dynamic routing problem, the literature is relatively sparse.
Angelelli et al. simplified a dynamic multi-period vehicle routing problem (DM-
PVRP) such that each request has to be served within two days and only one
vehicle without capacity constraint is available [12]. As an extension of the previ-
ous work, a fleet of vehicles and on-line requests are considered using replanning
during the day [13]. Wen et al. modelled a real-life dynamic multi-period and
multi-objective routing problem and proposed a three-phase heuristic embedded
within a rolling horizon scheme [14].

3 Storm Drains Maintenance Problem

The storm drain maintenance problem is considered as a long period dynamic
routing problem. All the drains are scheduled in a daily maintenance schema,
and calling reports may arrive at any time and have to be scheduled as early as
possible but no hard constraints are given. In addition, not every drain is acces-
sible when visited, usually caused by vehicles parked on top of them. Another
situation is that a drain may be reported as damaged or not working properly,
which requires a specific type of vehicle to fix. A set of heterogeneous vehicles
provide the services. Every day, one vehicle departs from the depot at 9:00 am
and returns at 5:00 pm. There are no other capacity constraints for the vehicles.
This problem is dynamic because the drains’ condition changes over time, calling
reports are continuously arriving and damaged drains are increasing over time.
Hence, we must re-plan the schedule with up to date information.

The drain maintenance problem is modelled as an undirected complete graph
G = (V,E), where V is the set containing N number of drains and one depot,
and E is the set of edges (i, j), ∀i, j ∈ V . ci,j represents the travel time between
vertex i and vertex j, where ∀i, j ∈ V . For each day, the planning process can
be solved as the PVRP of the next r days. We describe the formulation for the
scheduling problem on day t (t ∈ D, where D is the set of days in the whole
scheduling period and r � |D|). Two types of vehicles Mtype are provided:
type one for daily maintenance and normal calling reports; type two for fixing
damaged drains. Every day, the vehicle’s maximum working time is Tmax. t1 and
t2 are time required to clean a normal drain and fix a damaged drain respectively.
Furthermore, each drain has a social value Qi, where larger number means this
drain is more important or if it is blocked, it would cause worse consequences.

In order to maximise the overall maintenance quality under a dynamic en-
vironment, we need a method to estimate the condition of each drain over
the planning horizon r. The Weibull distribution [15], a common predictor of

112 Y. Chen, P. Cowling, and S. Remde

equipment failures, with shape parameter m and scale parameter x0 is used to
estimate this.

Pi(d) is the probability drain i is blocked on day d of the scheduling period

xidl =

{
1, if drain i is visited by type l vehicle on day d
0, otherwise

.

yijdl =

{
1, if edge (i, j) is visited by type l vehicle on day d
0, otherwise

.

Using these notations, the drain maintenances problem on day t can be for-
mulated as follows:

max

t+r−1∑
d=t

N∑
i=1

Qi(1− Pi(d)) (1)

Subject to:

N∑
i=1

xidltl +
∑

(i,j)∈E

ci,jyijdl ≤ Tmax; ∀d ∈ D, l = 1, 2 (2)

xidl = 1⇔ ∃!j, j′ : yijdl = yj′idl = 1; ∀d ∈ D, l = 1, 2 (3)

(

N∑
i=1

xid1)(

N∑
i=1

xid2) = 0; ∀d ∈ D (4)

x0dl = 1; ∀d ∈ D, l = 1, 2 (5)

y0jdl = 1; ∀d ∈ D, l = 1, 2 (6)

yi0dl = 1; ∀d ∈ D, l = 1, 2 (7)

Objective function 1 maximizes the overall profit during the planning horizon
from d = t to d = t + r − 1. It is measured by each drain’s condition 1 − Pi

on each day multiplied by its social value. Fig. 1 a) illustrates the estimation of
the probability of a drain i blocked since the last clean under damaged, calling
report received and normal state, respectively. According to the drain cleaning
life cycle data provided by Blackpool council, we set the shape parameter m = 2
in the Weibull function. The scale parameter x0 equals 365, 20, 10 on normal,
calling and damaged state respectively. Fig. 1 b) presents an example of the
probability of one drain getting blocked changing over time. In the example,
since the last cleaning day, the probability of getting blocked increases slowly
over time. On the 100th day, this drain is recorded as damaged. Hence, from day
100 to day 120 the drain is blocked and then it is fixed on 120th day. On the
365th day, it is cleaned for the second time.

Constraint 2 guarantees that the time spent on each daily route is less than
the limit Tmax. Constraints 3, 5, 6 and 7 ensure every route is feasible and starts
from depot and returns to the depot. Constraint 4 allows only one vehicle to
work each day.

Dynamic Period Routing for a Complex Real-World System 113

Fig. 1. a) Probability of drain i blocked in different states; b) An example of drain i’
blocked probability changing over time

4 Adaptive Planning Heuristic (APH)

In order to react to emergency events and the changing situations, we propose a
dynamic planning process at the beginning of each day. To avoid short-sighted
plans that do not consider the overall drains condition over a longer period and
to reduce the complexity of planning over a whole D day period, this method
produces a future r days plan based on the most recent drain information.

Another issue we have to face is the large number of drains. Planning for the
entire problem everyday is inefficient. Therefore, a two stage method is intro-
duced, which includes routing and adaptive planing heuristics. For each stage,
VNS is used as a search framework embedded with different local moves. This
method is summarized in Algorithm 1.

Algorithm 1. Two stage routing and adaptive planing heuristic

Routing stage: Construct a set Sbasic of optimized routes that visit all the drains
at least once.
Scheduling stage:
for each day t in the time horizon D do

Generate and update the set of new routes by considering up to date drains’
information: Snew

Sall = Sbasic ∪ Snew

Generate the schedule for future r days by choosing r routes from Sall.
end for

In the adaptive planing heuristic, the parameter r is a user-defined parameter
and depends on the specific problem. A bigger value of r considers a longer view
of the entire scheduling horizon. In Section 5, an analysis on r is presented.

4.1 Routing Stage

The routing stage aims to find a group of optimized candidate routes that may
be scheduled in the future days. In this stage, our objective function 1 is not
applied. Instead, we purely treat it as a VRP using the objective function:

114 Y. Chen, P. Cowling, and S. Remde

min
∑
i∈V

∑
j∈V

ci,jzi,j (8)

Sbasic represents the solution generated in the first stage and S∗
basic as the

best solution. zi,j = 1 if edge (i, j) is in solution Sbasic and zi,j = 0 otherwise.
The VRP is solved by a variable neighbourhood search heuristic made up of

three components: construction, routes optimization, refining.

Construction. Due to the large number of drains, firstly we cluster all the
drains by looking at which ward each drain belongs to. Blackpool is divided by
21 similar size wards. For each group of drains, the Clarke-Wright (CW) Savings
heuristic [16] is used to solve the sub-problem as a VRP.

The possibility of inaccessible drains is considered during the process of route
construction by using merge criteria 9.

n(1− pinacc)t1 +
∑

(i,j)∈s

ci,j ≤ Tmax (9)

Where n is the number of drains in the route s ∈ Sbasic and pinacc is the probabil-
ity of each drain being inaccessible when visited. Furthermore, the stop criteria
of the CW algorithm used here is that no more routes can be merged without
breaking the Tmax limit. At the end of the CW algorithm we can not guarantee
every route reaches the Tmax or comes close to it.

Optimization. After an initial solution is constructed, an optimization phase is
executed to improve it. So far, all the drains are included in solution Sbasic with
visiting frequency equal to 1. In the next step, we use the VNS with i-relocate
and j-cross-exchange (see Fig. 2) to optimize all the routes in Sbasic regardless
of which ward the route belongs to. Here, i-relocate means that the segments
changed in one relocated move have maximum number of nodes equals i. Sim-
ilar, j-cross-exchange means that the segments changed in one cross-exchange
move have maximum number of nodes equals j. Standard VNS [17] with first
improvement acceptance is used. In total, 12 neighbourhoods are implemented.
The order of neighbourhoods is i-relocate (i = 1, 2, 3, 4, 5, 6) and then j-cross-
exchange (j = 1, 2, 3, 4, 5, 6).

In order to enhance the solution quality, a local search strategy is used after
a solution is obtained through “shaking”. Two of the most popular iterative
improvement procedures 2-opt and 3-opt are applied here. 2-opt and 3-opt are
single route improved strategies. Hence, only the two modified routes have to be
re-optimized.

Refine Phase. At the end of the optimization phase, we should be able to get
the optimum solution of the VRP. However, we can not guarantee every route
maximizes the use of the daily time limitation Tmax. Therefore, an insertion
heuristic is implemented. For each route s ∈ Sbasic, we try to insert more drains

Dynamic Period Routing for a Complex Real-World System 115

Fig. 2. a) Cross exchange; b) Relocated

which are not already in s using the Nearest Neighbour heuristic[18] until no
more drains can be inserted without breaking the Tmax limitation. Finally, 2-
opt and 3-opt is applied to each s ∈ Sbasic to guarantee every s reaches its best
value and we get our best solution for the preparation stage S∗

basic.

4.2 Adaptive Planning Stage

The adaptive planning process is run every day and makes the decision based on
up to date information and the estimation of the future change. Two processes
are implemented: updating the candidate routes set and scheduling.

Update Candidate Routes Set. At the end of each day, a new calling reports
and b damaged drains reports are simulated. Calling reports that have not solved
from previous days and a new calling reports from today make up the set Vcalls.
In the same way, we also get a set Vdamage.

We use Scalling to represent the set of routes that include drains in set Vcalls.
Scalling can be obtained by using the method proposed in the routing stage with-
out the refine step. Then, for each route s ∈ Scalling, we treat it as an opportunity
to clean more drains near by. Hence, instead of the refine step presented in stage
one, a variation of cheapest insertion procedure is shown here (see algorithm
2). To keep the algorithm simple, we measure the distance between drain i and
route s by using the distance between i and the closest drain j on route s.

Because damaged drains should be handled by a different type of vehicle,
we reconstruct the routes for all drains in the set Vdamage by considering it as
a VRP. The method used here is the CW heuristic [16]. Then we get a route
collection Sdamage.

At this point, we update our routes collection using the following rules:

Sall = S∗
basic + Scalling + Sdamage

Scheduling Routes Using VNS. The final step of our process aims to produce
an r-days schedule based on the optimized candidate routes set Sall. Firstly, we
build an initial plan by choosing r number of routes with the highest

∑
i∈r Qi ∗

(1 − Pi(today)). Then, a VNS method with i-replace and j-exchange (see Fig.
3) local moves is implemented to improve the initial plan. The VNS uses neigh-
bourhood i-replace (i = 2, 1) then j-exchange (j = 4, 3, 2, 1) in order.

116 Y. Chen, P. Cowling, and S. Remde

Algorithm 2. Cheapest insertion heuristic

Scalling = set of routes that only include the drains in set Vcalls

for all s ∈ Scalling do
Vs= set of drains not in route s
for all i ∈ Vs do

calculate the distance between i and s
end for
sortlist= sort vertices in increasing order by means of the distance to route s
repeat

insert vertex i from the top of sortlist into the best position of route s
delete i from sortlist

until no more vertices in sortlist can be added to s without break Tmax limit
end for
return Scalling

Fig. 3. a) Replace local move with one day schedule changed; b) Exchange local move
with two days schedules changed

5 Computational Results

Data & Parameters. The drain location data in our research is provided
by Blackpool council. On average 1500 calls are received every year. In our
simulation, the probability of a drain to be recorded as a calling event relates to
its condition 1− Pi(d). The worse the drain condition, the higher probability a
call is received. Here, we set the probability of receiving a call for drain i equal to
γ ∗Pi(d). γ is set into 0.0003 to match the real calling reports receiving situation.
Since we do not have official data of the probability for the damage report and
inaccessible drains, we approximate these values from Manchester council data.
According to their records, 5.1% of drains do not get attended and 10.8% of
drains get damaged per year. Due to the memory limitation, half of the drains
chosen at random have been studied in the following experiments.

Planning Horizon Analysis. First, we investigate the effects of the future
days planning parameter r to our solution quality. We test the APH with r from
1 to 9. The results are shown in Fig. 4 and we observe r = 6 produces the
best plans. As we mentioned before, a bigger value of r considers a longer view

Dynamic Period Routing for a Complex Real-World System 117

Fig. 4. The effect of parameter r

of the entire scheduling horizon. But, in the dynamic situation, too big r may
mis-predict the future situation, which results in worse scheduling.

Comparison to Manual Strategy. Currently, a reactive strategy is used
in Blackpool. Drains on the main street are scheduled into a annual cleaning
schema. If any call or damaged report is received, the maintenance team will be
taken away from the normal daily maintenance.

To compare the APH with the manual strategy (MS), thirty random runs
using the manual strategy and the APH with r = 6 are performed. Table 1
and Fig. 5 summarize the result by comparing the average of drains’ condition
over one year. Over 76% drains have block probability less than 40% by using
the APH. In comparison, this number of the MS is 28%. Fig. 6 illustrates the
detail change over one year. Both the APH and the MS cases start with the
same initial drains’ situation. When we apply the APH approach, the overall
drains condition gradually improves through the first half year and stays in a
generally good condition. The reactive manual strategy shows a vicious circle: a
bad strategy leads to worse drain condition; worse drain condition leads to more
reports and increases the reactive maintenance.

Table 1. Performance of the APH and the MS with 95% confidence intervals

APH Manual

Normalized Fitness 158.24 ± 0.054 100 ± 0.903

In terms of social value, the APH also produces a significantly better solution
compared to the manual strategy. Table 2 depicts the drains condition distri-
bution with different social values. The APH always prefers to keep the higher
social value drains in a good condition. Over 91% drains with social value = 6
have the block probability less than 40%.

Next we analyse the waiting time between a call being made and the drain
being cleaned. Results show that when we use the APH approach, the total calls
received through whole year is about 3 times less than using the MS. This is

118 Y. Chen, P. Cowling, and S. Remde

Fig. 5. a) The average block probability distribution of drains over one year using
adaptive planning heuristic; b) The average block probability distribution of drains
over one year using manual strategy

Fig. 6. a) The block probability distribution of drains over one year using adaptive
planning heuristic; b) The block probability distribution of drains over one year using
manual strategy

because more drains are under a good condition when we apply the APH. This
overall increase in correlation comes at a price, the APH is not fast at responding
to the calls and damage. On average, the residents’ waiting time is about 58 days
when the APH is applied, which is about 4.8 times longer than the MS.

Robustness Analysis. Finally, we test robustness of the APH by changing the
calling rate γ and the probability of getting damaged. Three scenario are tested
here: the first scenario with the total number of calling and damage reports
both doubled; the second one with the total number of calling and damage
report equal to the Blackpool historic recording data and the third one with
the numbers both reduced by half. Sixteen random runs were carried out for
each scenario. Table 3 shows the value of fitness is higher under more ‘stable’
scenario. Furthermore, these results also show that longer ‘look ahead’ strategy
suit more ‘stable’ scenario. Compared to the strategy without ‘look ahead’, the
best fitnesses improve 0.218%, 0.135% and 0.0029% under scenario one, two,
three respectively. ‘Look ahead’ strategy helps the scheduling process and more
effectiveness is obtained under more dynamic situation.

Dynamic Period Routing for a Complex Real-World System 119

Table 2. The distribution of block probability of drains with different social values

Overall Social value ≥ 4 Social value ≥ 5 Social value ≥6

Manual APH Manual APH Manual APH Manual APH

p = 1 19.3% 1.8% 14.8% 0.8% 17.9% 0.7% 23% 0.3%

0.8 ≤ p < 1 21.5% 4.8% 16.1 2.5% 18.9% 2.8% 24.7% 1.5%

0.6 ≤ p < 0.8 17.3% 6.3% 13.1% 4.1% 14.5% 3.7% 19.3% 2.1%

0.4 ≤ p < 0.6 13.8% 11.5% 11% 7.3% 11.7% 6.5% 15.2% 3.7%

0.2 ≤ p < 0.4 27.8% 75% 44.6% 84.6% 36.7% 85.7% 17.8% 91.6%

0.0 ≤ p < 0.2 0.2% 0.5% 0.4% 0.7% 0.3% 0.7% 0.1% 0.7%

Table 3. Normalized fitness of the APH under different scenarios

Best Solution Fitness Best r Fitness for r=1 Improvement (%)

First Scenario 100.218 5 100.000 0.2183
Second Scenario 101.809 6 101.672 0.1347
Third Scenario 103.985 7 103.982 0.0029

6 Conclusion

We have studied a dynamic period routing problem with profit (DPVRPP) that
is motivated by the large scale real-life storm drain maintenance problem. Two
difficulties include the large number of drains and the dynamic situation. A
detailed model for the problem has been presented. We have proposed a two
stage method composed of routing and scheduling processes. The main idea is
to effectively and wisely react to the changing drains situation by looking into
the near future. In addition, due to the distribution and large number of drains,
routing them first will help to efficiently use the daily working time and vehicle
resources. Also it helps to decrease the scheduling problem size, which makes
responding to the dynamic situation and replanning every day for large scale
problem possible. The APH approach has been tested on real-world data. Results
show that the APH improves performance by about 58% compared to the current
manual strategy in terms of drains condition by doing preventative maintenance
rather than reactive work. A potential down side is that it then takes longer
to react to (the massively reduced number of) blocked drain reports. We have
shown that looking ahead several days is effective – with the number of days of
look ahead influenced particularly by problem stability.

Acknowledgements. We would like to thank Steve Birdsall of Gaist Solutions
Ltd. for providing data and domain knowledge, as well as the anonymous ref-
erees for their helpful comments. This work is funded by the EPSRC LSCITS
program.

120 Y. Chen, P. Cowling, and S. Remde

References

1. Christofides, N., Beasley, J.E.: The period routing problem. Networks 14(2), 237–
256 (1984)

2. Ball, M.O.: Allocation/routing: Models and algorithms. In: Golden, B.L., Assad,
A. (eds.) Vehicle Routing: Methods and Studies, pp. 194–221 (1988)

3. Chao, I.M., Golden, B.L., Wasil, E.: An improved heuristic for the period vehicle
routing problem. Networks 26(1), 25–44 (1995)

4. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

5. Brandão, J., Mercer, A.: A tabu search algorithm for the multi-trip vehicle routing
and scheduling problem. Eur. J. Oper. Res. 100(1), 180–191 (1997)

6. Alegre, J., Laguna, M., Pacheco, J.: Optimizing the periodic pick-up of raw mate-
rials for a manufacturer of auto parts. Eur. J. Oper. Res. 179(3), 736–746 (2007)

7. Delgado, C., Laguna, M., Pacheco, J.: Minimizing labor requirements in a periodic
vehicle loading problem. Comput. Optim. Appl. 32(3), 299–320 (2005)

8. Hemmelmayr, V., Doerner, K., Hartl, R.: A variable neighborhood search heuristic
for periodic routing problems. Eur. J. Oper. Res. 195(3), 791–802 (2009)

9. Pirkwieser, S., Raidl, G.R.: Multilevel variable neighborhood search for periodic
routing problems. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022,
pp. 226–238. Springer, Heidelberg (2010)

10. Baptista, S., Oliveira, R., Zúquete, E.: A period vehicle routing case study. Eur.
J. Oper. Res. 139, 220–229 (2002)

11. Goncalves, L., Ochi, L., Martins, S.: A grasp with adaptive memory for a period
vehicle routing problem. In: Computational Intelligence for Modelling, Control
and Automation, 2005 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, vol. 1, pp. 721–727 (2005)

12. Angelelli, E., Speranza, M., Savelsbergh, M.: Competitive analysis for dynamic
multiperiod uncapacitated routing problems. Networks 49(4), 308–317 (2007)

13. Angelelli, E., Bianchessi, N., Mansini, R., Speranza, M.: Short Term Strategies
for a Dynamic Multi-Period Routing Problem. Transportation Research Part C:
Emerging Technologies 17(2), 106–119 (2009)

14. Wen, M., Cordeau, J.F., Laporte, G., Larsen, J.: The dynamic multi-period vehicle
routing problem. Comput. Oper. Res. 37(9), 1615–1623 (2010)

15. Weibull, W.: A statistical distribution function of wide applicability. Journal of
Applied Mechanics 18, 293–297 (1951)

16. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research 12(4), 568–581 (1964)

17. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions Research 24, 1097–1100 (1997)

18. Bentley, J.J.: Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing 4, 387–411 (1992)

Elementary Landscape Decomposition of the

Hamiltonian Path Optimization Problem�,��

Darrell Whitley1 and Francisco Chicano2

1 Dept. of Computer Science, Colorado State University, Fort Collins, CO, USA
whitley@cs.colostate.edu

2 Dept. de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
chicano@lcc.uma.es

Abstract. There exist local search landscapes where the evaluation
function is an eigenfunction of the graph Laplacian that corresponds
to the neighborhood structure of the search space. Problems that dis-
play this structure are called “Elementary Landscapes” and they have
a number of special mathematical properties. The problems that are
not elementary landscapes can be decomposed in a sum of elementary
ones. This sum is called the elementary landscape decomposition of the
problem. In this paper, we provide the elementary landscape decomposi-
tion for the Hamiltonian Path Optimization Problem under two different
neighborhoods.

Keywords: Landscape theory, elementary landscapes, hamiltonian path
optimization, quadratic assignment problem.

1 Introduction

Grover [7] originally observed that there exist neighborhoods for Traveling Sales-
person Problem (TSP), Graph Coloring, Min-Cut Graph Partitioning, Weight
Partitioning, as well as Not-All-Equal-SAT that can be modeled using a wave
equation borrowed from mathematical physics. Stadler named this class of prob-
lems “elementary landscapes” and showed that if a landscape is elementary,
the objective function is an eigenfunction of the Laplacian matrix that describes
the connectivity of the neighborhood graph representing the search space. When

� This research was sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number FA9550-11-1-0088. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

�� It was also partially funded by the Fulbright program, the Spanish Ministry of Edu-
cation (“José Castillejo” mobility program), the University of Málaga (Andalućıa
Tech), the Spanish Ministry of Science and Innovation and FEDER under con-
tract TIN2011-28194 and VSB-Technical University of Ostrava under contract OTRI
8.06/5.47.4142. The authors would also like to thank the organizers and participants
of the seminar on Theory of Evolutionary Algorithms (13271) at Schloß Dagstuhl -
Leibniz-Zentrum für Informatik.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 121–132, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

122 D. Whitley and F. Chicano

the landscape is not elementary it is always possible to write the objective func-
tion as a sum of elementary components, called the elementary landscape de-
composition (ELD) of a problem [6].

Landscape theory has been proven to be quite effective computing summary
statistics of the optimization problem. Sutton et al. [14] show how to compute
statistical moments over spheres and balls of arbitrary radius around a given so-
lution in polynomial time using the ELD of pseudo-Boolean functions. Chicano
and Alba [4] and Sutton and Whitley [13] have shown how the expected value
of the fitness of a mutated individual can be exactly computed using the ELD.
Measures like the autocorrelation length and the autocorrelation coefficient can
be efficiently computed using the ELD of a problem. Chicano and Alba [5] proved
that Fitness-Distance Correlation can be exactly computed using landscape the-
ory for pseudo-Boolean functions with one global optimum.

The landscape analysis of combinatorial optimization problems has also in-
spired the design of new and more efficient search methods. This is the case of the
average-constant steepest descent operator for NK-landscapes and MAX-kSAT
of Whitley et al. [15], the second order partial derivatives of Chen et al. [3] and
the hyperplane initialization for MAX-kSAT of Hains et al. [8].

However, the first step in the landscape analysis is to find the ELD of the prob-
lem. In this paper, we present the ELD of the Hamiltonian Path Optimization
Problem (HPO) for two different neighborhoods: the reversals and the swaps.
This problem has applications in DNA fragment assembling and the construction
of radiation hybrid maps. The remainder of the paper is organized as follows. In
Section 2 we present a short introduction to landscape theory. Section 3 presents
the HPO and its relationship with QAP. In Sections 4 and 5 we present the land-
scape structre of HPO for the reversals and swaps neighborhood, respectively.
Finally, Section 6 concludes the paper and outlines future directions.

2 Background on Landscape Theory

Let (X,N, f) be a landscape, where X is a finite set of candidate solutions,
f : X → R is a real-valued function defined on X and N : X → 2X is the
neighborhood operator. The pair (X,N) is called configuration space and induces
a graph in which X is the set of nodes and an arc between (x, y) exists if
y ∈ N(x). The adjacency and degree matrices of the neighborhood N are:

Ax,y =

{
1 if y ∈ N(x),
0 otherwise;

Dx,y =

{
|N(x)| if x = y,
0 otherwise.

We restrict our attention to regular neighborhoods, where |N(x)| = d > 0
for a constant d, for all x ∈ X . Then, the degree matrix is D = dI, where I is
the identity matrix. The Laplacian matrix Δ associated to the neighborhood is
defined by Δ = A−D. In the case of regular neighborhoods it is Δ = A− dI.
Any discrete function, f , defined over the set of candidate solutions can be
characterized as a vector in R|X|. Any |X | × |X | matrix can be interpreted as a
linear map that acts on vectors in R|X|. For example, the adjacency matrix A

Elementary Landscape Decomposition of the HPO 123

acts on function f as follows (A f)(x) =
∑

y∈N(x) f(y), where the component

x of (A f) is the sum of the function values of all the neighbors of x. Stadler
defines the class of elementary landscapes where the function f is an eigenvector
(or eigenfunction) of the Laplacian up to an additive constant [11].

Definition 1. Let (X,N, f) be a landscape and Δ the Laplacian matrix of
the configuration space. The landscape is said to be elementary if there ex-
ists a constant b, which we call offset, and an eigenvalue λ of −Δ such that
(−Δ)(f − b) = λ(f − b). When the neighborhood is clear from the context we
also say that f is elementary.

We use −Δ instead of Δ in the definition to avoid negative eigenvalues, since
Δ is negative semidefinite. In connected neighborhoods, where the graph related
to the configuration space (X,N) is connected, the offset b is the average value
of the function over the whole search space: b = f̄ . Taking into account basic
results of linear algebra, it can be proven that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ. If f is an elementary
function with eigenvalue λ, then the average in the neighborhood of a solution
can computed as:

Avg(f(y))
y∈N(x)

= f(x) +
λ

d
(f̄ − f(x)), (1)

known as Grover’s wave equation [7], which claims that the average fitness in
the neighborhood of a solution x can be computed from the fitness of x. The
reader interested in Landscape Theory can refer to the survey by Reidys and
Stadler [11].

3 Hamiltonian Path Optimization Problem

Given a complete edge-weighted graph, the Hamiltonian Path Optimization
Problem (HPO) consists in finding the minimum-cost path that visits all vertices
in the graph exactly once, without visiting any vertex twice. This problem has
applications in DNA “Linkage Marker” ordering, and in manufacturing, specif-
ically in “set-up cost” minimization. It is similar to the Traveling Salesperson
Problem (TSP), except that the result is not a circuit. The path can start at any
vertex in the graph and it can end at any other vertex. There exists a polynomial
time tranformation that converts any Hamiltonian Path Optimization Problem
over n vertices into a Traveling Salesman Problem over n+1 vertices. Assuming
the goal is minimization and that all of the edge weights are positive, an addi-
tional dummy vertex can be added that is connected to every other vertex with
zero cost. The optimal Hamiltonian Path is thus transformed into a circuit by
using the dummy vertex (and two zero cost edges) to return to the beginning of
the path: the Hamiltonian Path and the Circuit have exactly the same cost. We
will return to this observation in the conclusions.

The solutions for the HPO problem can be modeled as permutations, which
indicate in which order all the vertices are visited. Let us number all the vertices

124 D. Whitley and F. Chicano

of the graph and let w be the weight matrix, which we will consider symmetric,
where wp,q is the weight of the edge (p, q). The fitness function for HPO is:

f(π) =

n−1∑
i=1

wπ(i),π(i+1), (2)

where π is a permutation and π(i) is the i-th element in that permutation. HPO
is a subtype of a more general problem: the Quadratic Assignment Problem
(QAP) [2]. Given two matrices r and w the fitness function of QAP is:

fQAP (π) =

n∑
i,j=1

ri,jwπ(i),π(j). (3)

We can observe that (3) generalizes (2) if w is the weight matrix for HPO
and we define ri,j = δji+1, where δ is the Kronecker delta. HPO has applica-
tions in Bioinformatics, in particular in DNA fragment assembling [10] and the
construction of radiation hybrid maps [1].

4 Landscape for Reversals

Given a permutation π and two positions i and j with 1 ≤ i < j ≤ n, we can
form a new permutation π′ by reversing the elements between i and j (inclusive).
Formally, the new permutation is defined as:

π′(k) =

{
π(k) if k < i or k > j,
π(j + i− k) if i ≤ k ≤ j.

(4)

Figure 1(a) illustrates the concept of reversal. The reversal neighborhood
NR(π) of a permutation π contains all the permutations that can be formed by
applying reversals to π. Each reversal can be identified by a pair [i, j], which are
the starting and ending positions of the reversal. We use square brackets in the
reversals to distinguish them from swaps. Then, we have |NR(π)| = n(n− 1)/2.

In the context of HPO, where we consider a symmetric cost matrix, the so-
lution we obtain after applying the reversal [i, j] = [1, n] to π has the same
objective value as π, since it is simply a reversal of the complete permutation.
For this reason, we will remove this reversal from the neighborhood. We will
call the new neighborhood the reduced reversal neighborhood, denoted with NRR

to distinguish it from the original reversal neighborhood. We have |NRR(π)| =
n(n − 1)/2 − 1. In the remaining of this section we will refer always to the re-
duced reversal neighborhood unless otherwise stated. The landscape analyzed in
this section is composed of the set of permutations of n elements, the reduced
reversal neighborhood and the objective function (2). We will use the component
model explained in the next section to prove that this landscape is elementary.

Elementary Landscape Decomposition of the HPO 125

2 4 3 5 1 6

2 1 5 3 4 6

(a) Reversal

2 4 3 5 1 6

2 1 3 5 4 6

(b) Swap

Fig. 1. Examples of reversal and swap for a permutation of size 6

4.1 Component Model

Whitley and Sutton developed a “component” based model that makes it easy to
identify elementary landscapes [17]. Let C be a set of “components” of a problem.
Each component c ∈ C has a weight (or cost) denoted by w(c). A solution x ⊆ C
is a subset of components and the evaluation function f(x) maps each solution x
to the sum of the weights of the components in x: f(x) =

∑
c∈xw(c). Finally, let

C − x denote the subset of components that do not contribute to the evaluation
of solution x. Note that the sum of the weights of the components in C − x is
computed by

∑
c∈C w(c)−f(x). In the context of the component model, Grover’s

wave equation can be expressed as:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
c∈C

w(c)− f(x)

)
,

where p1 = α/d is the (sampling) rate at which components that contribute to
f(x) are removed from solution x to create a neighboring solution y ∈ N(x),
and p2 = β/d is the rate at which components in the set C − x are sampled to
create a neighboring solution y ∈ N(x). By simple algebra,

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w(c)− f(x)

)
= f(x) +

λ

d
(f̄ − f(x)),

where λ = α+ β, and f̄ = β/(α+ β)
∑

c∈C w(c) [16].

4.2 Proof of Elementariness

Let us start presenting two lemmas.

Lemma 1. Given the n! possible Hamiltonian Paths over n vertices, all edges
appear the same number of times in the n! solutions and this number is 2(n−1)!.

Proof. Each edge (u, v) of the graph can be placed in positions 1, 2, . . . , n− 1
of the permutation. This means a total of n − 1 positions where (u, v) can be

126 D. Whitley and F. Chicano

placed. For each position it can appear as u followed by v or v followed by u.
Once it is fixed in one position the rest of the positions of the permutation must
be filled with the remaining n− 2 elements. This can be done in (n− 2)! ways.
Thus, each edge (u, v) of the graph appears in 2 · (n − 1) · (n − 2)! = 2(n− 1)!
permutations. ��

Lemma 2. The average fitness value of the Hamiltonian Path Optimization
Problem over the entire solution space is: f̄ = 2/n

∑
c∈C w(c).

Proof. There are n(n−1)/2 edges in the cost matrix, and there are n−1 edges in
any particular solution. Since all edges uniformly appear in the set of all possible
solutions, Lemma 1 implies:

f̄ =
2(n− 1)!

∑
c∈C w(c)

n!
= 2/n

∑
c∈C

w(c).

��

The next theorem presents the main result of this section: it proves that HPO
is an elementary landscape for the reduced reversals neighborhood.

Theorem 1. For the Hamiltonian Path Optimization Problem,

Avg(f(y))
y∈NRR(x)

= f(x) +
n

n(n− 1)/2− 1
(f̄ − f(x)),

and it is an elementary landscape for the reduced reversals neighborhood.

Proof. First, we need to show that all of the n−1 edges that contributes to f(x)
are uniformly broken by the reverse operator when all of the neighbors of f(x)
are generated. The segments to be reversed range in length from 2 to n − 1. If
the length of the segment is i, then the number of possible segments of length i
is n− (i− 1). Let us consider reversals of length i and n− i+1 together, where
1 < i ≤ n/2. The reversal of length i will break the first and last i − 1 edges
in the permutation only once, but it will break all interior edges twice. However
the reversal of length n− i+1 will only break the first and last i− 1 edges, and
it will break these edges only once. Thus, grouping these together, all edges are
broken twice for each value of i.

When n is even, the reversals of length n/2 and n/2+1 are grouped together
and the pairing is complete. Thus, for i = 2 to n/2 all edges are broken twice,
and thus every edge is broken 2(n/2− 1) = (n− 2) times and α = n− 2.

When n is odd, reversals of length (n + 1)/2 are a special case. For i = 2 to
(n− 1)/2 all edges are broken twice, so all edges have been broken 2((n− 1)/2−
1) = (n − 3) times, but this does not count the reversal of length (n + 1)/2.
When the reversal of length (n+1)/2 is applied (and is not paired with another
reversal) each edge is broken exactly once. Thus all edges are now broken (n−2)
times and α = n− 2.

Elementary Landscape Decomposition of the HPO 127

Next we show that all weights in the cost matrix in the set C−x are uniformly
sampled by the reverse operator. Consider the vertex vi in the permutation.
Holding i fixed for the moment, consider all cuts that are made at location i
and all feasible locations j < i. When all possible values of j are considered,
this causes all of the vertices in the permutation left of vertex vi to come into a
position adjacent to vi except for vi−1 which is already adjacent. Next consider a
cut at location i+1 (i is still fixed) and all feasible locations m > i+1. When all
of the possible of value of m are considered all of the vertices in the permutation
to the right of vertex vi are moved into a position adjacent to vi except vi+1.
Thus, in these cases vi does not move, but every edge not in the solution x
that is incident on vertex i is sampled once. Since this is true for all vertices, it
follows that every edge not in the current solution is sampled twice (β = 2): once
for each of the vertices in which it is incident. Therefore, summing over all the
neighbors: d ·Avg(f(y))y∈N(x) = d · f(x)− (n− 2)f(x) + 2

(∑
c∈C w(c)− f(x)

)
.

Computing the average over the neighborhood and taking into account the
result of Lemma 2:

Avg(f(y))
y∈N(x)

= f(x)− n− 2

n(n− 1)/2− 1
f(x) +

2

n(n− 1)/2− 1

(∑
c∈C

w(c) − f(x)

)
= f(x) +

n

n(n− 1)/2− 1
(f̄ − f(x)).

��

5 Landscape Structure for Swaps

Given a permutation π, we can build a new permutation π′ by swapping two
positions i and j in the permutation. The new permutation is defined as:

π′(k) =

⎧⎨⎩
π(k) if k �= i and k �= j,
π(i) if k = j,
π(j) if k = i.

(5)

Figure 1(b) illustrates the concept of swap. The swap neighborhood NS(π) of
a permutation π contains all the permutations that can be formed by applying
swaps to π. Each swap can be identified by the pair (i, j) of positions to swap. The
cardinality of the swap neighborhood is |NS(π)| = n(n− 1)/2. Unless otherwise
stated, we will refer always to the swap neighborhood in this section.

We will analyze the landscape composed of the set of permutations of n el-
ements, the swap neighborhood and the objective function (2). The approach
used for this analysis will be different than the one in the previous section. In-
stead of using the component model we will base our results in the analysis of
the QAP landscape done in [6]. The reasons for not using the component model
will be discussed at the end of the section.

128 D. Whitley and F. Chicano

5.1 Previous Results for QAP

According to Chicano et al. [6], the ELD of the QAP for the swap neighborhood
is composed of three components. The objective function analyzed in [6] is more
general than (3), it corresponds to the Lawler version of QAP [9]:

f(π) =

n∑
i,j,p,q=1

ψi,j,p,qδ
p
π(i)δ

q
π(j), (6)

where δ is the Kronecker delta. The correspondence with (3) is ψi,j,p,q = ri,jwp,q.
The elementary landscape decomposition of the Lawler QAP is given next.

Theorem 2 (from [6]). The landscape composed of the permutations of n ele-
ments, the swap neighborhood and the objective function (6) can be decomposed
as the sum of at most three elementary landscapes with eigenvalues λ1 = n,
λ2 = 2n and λ3 = 2(n− 1). The definition of these elementary components are:

fn(π) =
1

n(n− 2)

n∑
i,j=1
i�=j

n∑
p,q=1
p �=q

ψi,j,p,q φn
(i,j),(p,q)(π) +

n∑
i,p=1

ψi,i,p,p δpπ(i), (7)

f2n(π) =
1

2n

n∑
i,j=1
i�=j

n∑
p,q=1
p �=q

ψi,j,p,q φ2n
(i,j),(p,q)(π), (8)

f2(n−1)(π) =
1

2(n− 2)

n∑
i,j=1
i�=j

n∑
p,q=1
p �=q

ψi,j,p,q φ
2(n−1)
(i,j),(p,q)(π), (9)

where the φ functions are defined using as base the φα,β,γ,ε,ζ
(i,j),(p,q) function as

φn
(i,j),(p,q) = φn−1,3−n,0,2−n,1−n

(i,j),(p,q) , φ2n
(i,j),(p,q) = φn−1,3−n,0,2,1

(i,j),(p,q) and φ
2(n−1)
(i,j),(p,q) =

φn−3,n−3,0,0,1
(i,j),(p,q) . The φα,β,γ,ε,ζ

(i,j),(p,q) function is defined as:

φα,β,γ,ε,ζ
(i,j),(p,q)(π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α if π(i) = p ∧ π(j) = q,
β if π(i) = q ∧ π(j) = p,
γ if π(i) = p⊕ π(j) = q,
ε if π(i) = q ⊕ π(j) = p,
ζ if π(i) /∈ {p, q} ∧ π(j) /∈ {p, q},

(10)

where ⊕ denotes the exclusive OR. The function f can be written in a compact
form as: f = fn + f2n + f2(n−1).

In the next subsection we analyze this decomposition, providing some proper-
ties that are useful to find the elementary landscape decomposition of the HPO
under the swap neighborhood.

5.2 Elementary Landscape Decomposition of the HPO

The functions φn
(i,j),(p,q), φ

2n
(i,j),(p,q), and φ

2(n−1)
(i,j),(p,q) defined above have some prop-

erties that make f2n and f2(n−1) vanish when the matrices r and w fulfill some
concrete conditions. The next proposition summarizes these properties:

Elementary Landscape Decomposition of the HPO 129

Proposition 1. The functions φn
(i,j),(p,q), φ2n

(i,j),(p,q), and φ
2(n−1)
(i,j),(p,q) defined in

Theorem 2 hold the next equalities:

φλ
(i,j),(p,q) = φλ

(j,i),(q,p) for λ = n, 2n, 2(n− 1), (11)

φ2n
(i,j),(p,q) + φ2n

(j,i),(p,q) = 2, (12)

φ
2(n−1)
(i,j),(p,q) = φ

2(n−1)
(j,i),(p,q). (13)

Proof. The first equation (11) follows from the fact that exchanging i and j at
the same time as p and q in any of the branch conditions of the function (10)
leaves the condition unchanged, thus the function is the same.

In order to prove Eqs. (12) and (13) we can observe that exchanging i and
j in (10) is equivalent to swapping the values of α and β (first and second
branches) and those of γ and ε (third and fourth branches). The fifth branch is
left unchanged. Thus, Eq. (13) is a direct consequence of this swap of branch
values and (12) can be proven as follows:

φ2n
(i,j),(p,q)(π) + φ2n

(j,i),(p,q)(π)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n− 1
3− n

0
2
1

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3− n
n− 1

2
0
1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if π(i) = p ∧ π(j) = q,
2 if π(i) = q ∧ π(j) = p,
2 if π(i) = p⊕ π(j) = q,
2 if π(i) = q ⊕ π(j) = p,
2 if π(i) /∈ {p, q} ∧ π(j) /∈ {p, q}.

��

Let us now analyze the consequences of these properties for the elementary
landscape decomposition of a QAP instance.

Theorem 3. Let us consider the elementary landscape decomposition of (6) for
the swap neighborhood given in Theorem 2. Then we have:

– If any of the matrices r or w is symmetric then f2n is constant.
– If any of the matrices r or w is antisymmetric then f2(n−1) is zero.

Proof. We will prove the theorem assuming that r has the required property
(symmetric or antisymmetric) and then we will prove that the corresponding
elementary components are still constant or zero if we exchange r and w.

Let us assume that matrix r is symmetric (ri,j = rj,i), then we can write:

f2n =
1

2n

n∑
i,j=1
i<j

n∑
p,q=1
p �=q

ri,jwp,q

(
φ2n
(i,j),(p,q) + φ2n

(j,i),(p,q)

)
by (12)

=
1

2n

n∑
i,j=1
i<j

n∑
p,q=1
p �=q

2ri,jwp,q =
1

n

⎛⎜⎝ n∑
i,j=1
i<j

ri,j

⎞⎟⎠
⎛⎜⎝ n∑

p,q=1
p �=q

wp,q

⎞⎟⎠ , (14)

130 D. Whitley and F. Chicano

which is a constant value that only depends on the instance, not the solution.
Let us now assume that r is antisymmetric (ri,j = −rj,i), then we can write:

f2(n−1) =
1

2(n− 2)

n∑
i,j=1
i<j

n∑
p,q=1
p �=q

ri,jwp,q

(
φ
2(n−1)
(i,j),(p,q) − φ

2(n−1)
(j,i),(p,q)

)
= 0.

Let us call g(π) to the fitness function we obtain by exchanging matrices r and
w in the definition of the fitness function (6) and let us call f(π) to the original
fitness function. The relationship between these two functions is as follows:

g(π) =

n∑
i,j=1

n∑
p,q=1

wi,jrp,qδ
p
π(i)δ

q
π(j) renaming indices (p↔ i and q ↔ j)

=

n∑
p,q=1

n∑
i,j=1

wp,qri,jδ
i
π(p)δ

j
π(q) =

n∑
i,j=1

n∑
p,q=1

ri,jwp,qδ
p
π−1(i)δ

q
π−1(j) = f(π−1).

The elementary landscape decomposition of g(π) = gn(π)+g2n(π)+g2(n−1)(π)
can thus be written based on the elementary landscape decomposition of f(π)
as: gλ(π) = fλ(π

−1) for λ = n, 2n, 2(n−1). If the w matrix of the original fitness
function f is symmetric or antisymmetric then the r matrix of the g function
will have the same property, and, as we have proven above, g2n = constant or
g2(n−1) = 0, respectively. But this means that also f2n = constant or f2(n−1) = 0,
respectively. ��

Since the addition of constant values does not affect the number of elemen-
tary components of a landscape, when one of the components is constant in the
previous theorem, this component vanishes from the elementary landscape de-
composition. In other words, the number of elementary components is reduced
whenever any of the conditions in the previous theorem holds. For example, an
instance of QAP having a symmetric w will have at most two elementary compo-
nents, instead of three. The conditions can co-occur in the same instance. If an
instance of QAP has one of the matrices symmetric and the other one antisym-
metric it will be an elementary landscape, since f2n and f2(n−1) are constants.
For HPO we have the next result.

Corollary 1. The Hamiltonian Path Optimization Problem with symmetric cost
matrix is the sum of at most two elementary components in the swap neighbor-
hood. One possible expression for these two components is:

fn =
1

n(n− 2)

n−1∑
i=1

∑
p,q=1
p �=q

wp,qφ
n
(i,i+1),(p,q) +

n− 1

n

n∑
p,q=1
p<q

wp,q, (15)

f2(n−1) =
1

2(n− 2)

n−1∑
i=1

∑
p,q=1
p �=q

wp,qφ
2(n−1)
(i,i+1),(p,q), (16)

Elementary Landscape Decomposition of the HPO 131

where fn, and f2(n−1) are elementary with eigenvalues n and 2(n − 1), respec-
tively, and the objective function of HPO f can be written as: f = fn + f2(n−1).

Proof. Since the matrix w is symmetric in the HPO, according to Theorem 3
the f2n component is constant and its value is: f2n = n−1

n

∑
p,q=1
p<q

wp,q, where

we use (14) and take into account that the r matrix contains n− 1 ones in the
upper triangle. We sum this constant to the fn component (without changing
its elementariness) and we have the claimed result after some algebraic simplifi-
cations in the equations. ��

The landscape of HPO with the swap neighborhood is the sum of two ele-
mentary landscapes. This is the main reason why the component model is not
useful for this analysis. The component model can only be used to prove that a
landscape is elementary but it is not able to describe landscapes that are sums
of more than one elementary component. Furthermore, it is not able to prove
the elementariness of some elementary landscapes. This happens, in particular,
in elementary landscapes with irrational eigenvalues.

Another mathematical tool to provide the elementary landscape decompo-
sition of optimization problems is the spectral theory of quasi-Abelian Cayley
graphs. When the solution set is an Abelian group this theory provides an easy
and elegant elementary landscape decomposition of any objective function. This
happens for example, in the case of the q-ary hypercube [12]. When the solution
set is not an Abelian group, as in the case of the permutations, the math in-
volved is more complex but still give elegant answers if the set of generators that
define the neighborhood is the union of conjugacy classes of the group [11]. The
generators of the swap neighborhood (2-cycles) form a conjugacy class, so the
spectral theory could be applied in this case; but the generators of the reversal
(and reduced reversal) neighborhood are not the union of conjugacy classes, what
makes the component model to be, as far as we know, the best methodology to
prove the elementariness of the landscape.

6 Conclusions and Future Work

In this work we have proven that the Hamiltonian Path Optimization Problem is
elementary under the reversals neighborhood and is the sum of two elementary
components in the case of the swaps neighborhood. We have also provided the
expressions for the elementary components in the latter case.

In the two neighborhoods considered in the paper the number of moves is
Θ(n2). For problems that are extremely large, e.g., with billions of vertices, it
may not be reasonable to look at all possible moves. On the other hand, some
form of heuristic might be used to decide if there exists a smaller subset of
locations where the permutation might be reasonably be broken, while other
edges are not broken. In this way, a problem with billions of vertices might be
mapped onto a problem with only hundreds of thousands vertices. This leads to
the so-called Partial Neighborhoods [17]. An interesting question to analyze is
the landscape structure for these partial neighborhoods.

132 D. Whitley and F. Chicano

At the beginning of Section 3, we noted that every Hamiltonian Path Opti-
mization Problem over n vertices can be converted into a Traveling Salesman
Problems over n+ 1 vertices. In practice, this means that existing TSP solvers
can be use to solve the Hamiltonian Path Optimization Problem. One inter-
esting question is whether the elementary landscapes which exist for the TSP
can be mapped onto the elementary landscapes which we have defined for the
Hamiltonian Path Optimization Problem.

References

1. Agarwala, R., Applegate, D.L., Maglott, D., Schuler, G.D.: A fast and scalable ra-
diation hybrid map construction and integration strategy. Genome Research 10(3),
350–364 (2000)

2. Burkard, R.E.: Quadratic Assignment Problems. In: Handbook of Combinatorial
Optimization, 2nd edn., pp. 2741–2815. Springer (2013)

3. Chen, W., Whitley, D., Hains, D., Howe, A.: Second order partial derivatives for
NK-landscapes. In: Proceeding of GECCO, pp. 503–510. ACM (2013)

4. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip
mutation using landscapes theory. In: Proc. of GECCO, pp. 2027–2034 (2011)

5. Chicano, F., Alba, E.: Exact computation of the fitness-distance correlation for
pseudoboolean functions with one global optimum. In: Hao, J.-K., Middendorf, M.
(eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 111–123. Springer, Heidelberg (2012)

6. Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary land-
scape decomposition of combinatorial optimization problems. Evolutionary Com-
putation 19(4), 597–637 (2011)

7. Grover, L.K.: Local search and the local structure of NP-complete problems. Op-
erations Research Letters 12, 235–243 (1992)

8. Hains, D., Whitley, D., Howe, A., Chen, W.: Hyperplane initialized local search
for MAXSAT. In: Proceeding of GECCO, pp. 805–812. ACM (2013)

9. Lawler, E.L.: The quadratic assignment problem. Manage. Sci. 9, 586–599 (1963)
10. Parsons, R., Forrest, S., Burks, C.: Genetic algorithms, operators, and DNA frag-

ment assembly. Machine Learning 21, 11–33 (1995)
11. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1), 3–54

(2002)
12. Sutton, A.M., Chicano, F., Whitley, L.D.: Fitness function distributions over gen-

eralized search neighborhoods in the q-ary hypercube. Evol. Comput. 21(4) (2013)
13. Sutton, A.M., Whitley, D., Howe, A.E.: Mutation rates of the (1+1)-EA on pseudo-

boolean functions of bounded epistasis. In: Proc. of GECCO, pp. 973–980 (2011)
14. Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded

pseudo-boolean functions over hamming spheres of arbitrary radius in polynomial
time. Theoretical Computer Science 425, 58–74 (2011)

15. Whitley, D., Chen, W.: Constant time steepest descent local search with lookahead
for NK-landscapes and MAX-kSAT. In: Proc. of GECCO, pp. 1357–1364 (2012)

16. Whitley, D., Sutton, A.M., Howe, A.E.: Understanding elementary landscapes. In:
Proc. of GECCO, pp. 585–592 (2008)

17. Whitley, L.D., Sutton, A.M.: Partial neighborhoods of elementary landscapes. In:
Proc. of GECCO, pp. 381–388 (2009)

Gaussian Based Particle Swarm Optimisation
and Statistical Clustering for Feature Selection

Mitchell C. Lane1, Bing Xue1, Ivy Liu2, and Mengjie Zhang1

1 School of Engineering and Computer Science
2 School of Mathematics, Statistics and Operations Research,

Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
{Mitchell.Lane,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz,

Ivy.Liu@msor.vuw.ac.nz

Abstract. Feature selection is an important but difficult task in classification,
which aims to reduce the number of features and maintain or even increase the
classification accuracy. This paper proposes a new particle swarm optimisation
(PSO) algorithm using statistical clustering information to solve feature selection
problems. Based on Gaussian distribution, a new updating mechanism is devel-
oped to allow the use of the clustering information during the evolutionary pro-
cess of PSO based on which a new algorithm (GPSO) is developed. The proposed
algorithm is examined and compared with two traditional algorithms and a PSO
based algorithm which does not use clustering information on eight benchmark
datasets of varying difficulty. The results show that GPSO can be successfully
used for feature selection to reduce the number of features and achieve similar
or even better classification performance than using all features. Meanwhile, it
achieves better performance than the two traditional feature selection algorithms.
It maintains the classification performance achieved by the standard PSO for fea-
ture selection algorithm, but significantly reduces the number of features and the
computational cost.

Keywords: Particle swarm optimisation, Gaussian distribution, Statistical clus-
tering, Feature selection.

1 Introduction

Feature selection is a process of selecting a small subset of relevant features from the
original large feature set, which can reduce the dimensionality of the data and increase
the performance of a machine learning technique (e.g. a classification algorithm). It
becomes increasingly important in data mining and machine learning because of the
advances of data collection techniques, which increases the total number of features in-
cluded in the dataset. Existing feature selection algorithms can be broadly classified into
two categories: filter and wrapper approaches [1]. Filter approaches are independent of
any learning algorithm while wrapper approaches include a classification/learning al-
gorithm as part of the evaluation function. Therefore, wrapper approaches can often
achieve better accuracy than filter approaches [1].

Feature selection is a challenging task, which has a large search space with 2n pos-
sible points, where n is the total number of features in the dataset. This leads to the

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 133–144, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

134 M.C. Lane et al.

problems of the high computational cost and stagnation in local optima in most existing
feature selection approaches. Particle swarm optimisation (PSO) [2, 3] is a powerful
global search technique, which is computationally less expensive than other evolution-
ary computation techniques such as genetic programming (GP) and genetic algorithms
(GAs) [4]. Therefore, PSO has been successfully applied to many areas, including fea-
ture selection [5–7].

Feature interaction is a common and complex problem in classification [1], which
also makes feature selection a hard problem. Feature interaction may change the re-
lationship between a feature(s) and the class labels. Due to feature interaction, an in-
dividually relevant feature may become redundant and a weakly relevant feature may
become highly useful when combining with other features. The removal or addition of
some features needs to consider the appearance or absence of other features. Therefore,
the optimal feature subset is a group of complementary features that working together
can increase the classification performance.

Many statistical measures have been applied to form the evaluation function in fea-
ture selection algorithms [8]. However, all of them are used in filter approaches. Sta-
tistical clustering methods [9, 10] can group relatively homogeneous features together
based on a statistical model. This method considers all features simultaneously and
takes feature interaction into account. Features in the same cluster are similar and they
are dissimilar to features in other clusters. Since feature interaction is an important
factor in feature selection, the statistical feature interaction information found by the
clustering method can be used to develop a good feature selection algorithm. However,
this has not been seriously investigated to date.

1.1 Goals

The overall goal of this paper is to investigate the use of statistical clustering informa-
tion in PSO for feature selection. To achieve this goal, a statistical clustering method
is performed as a preprocessing step on part of the training set to group features into
different clusters. A Gaussian based updating mechanism is developed to incorporate
the clustering information during the evolutionary process of PSO. A new PSO based
feature selection algorithm named GPSO is then developed to reduce the number of
features and increase the classification accuracy. Specifically, we will investigate:

– whether GPSO with the developed Gaussian updating mechanism can successfully
utilise the clustering information to select a small subset of features to achieve
similar or even better classification performance than using all features;

– whether GPSO can achieve better performance than the standard PSO for feature
selection without clustering information, and

– whether GPSO can outperform two traditional feature selection algorithms.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation (EC) technique, which imitates the social be-
haviours of birds flocking and fish schooling [2, 3]. PSO uses a swarm of particles

Gaussian Based PSO and Statistical Clustering for Feature Selection 135

to search for the optimal solution, where each particle represents a possible solution
in the search space. Each particle has a position vector, xi = (xi1, xi2, ..., xiD), and
a velocity vector, vi = (vi1, vi2, ..., viD), where D is the dimensionality. During the
evolutionary process, each particle remembers its previous best position (pbest) and the
best position found so far by the swarm (gbest). In binary PSO (BPSO)[11], each ele-
ment in the position vector is a binary value. The velocity represents the probability of
an element in the position taking value 1. To achieve this, a sigmoid function s(vid) is
used to transform vid to (0, 1). BPSO updates the position and velocity of each particle
according to Equations 1 and 2.

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) + c2 ∗ r2i ∗ (pgd − xt
id) (1)

xid =

{
1, if rand() < s(vid)
0, otherwise

(2)

where

s(vid) =
1

1 + e−vid
(3)

where t denotes the t th iteration in the search process. d denotes the d th dimension
in the search space. w is the inertia weight. c1 and c2 are acceleration constants. r1i,
r2i and rand() are random values uniformly distributed in [0, 1]. pid and pgd represent
the value of pbest and gbest in the d th dimension, respectively. v t

id is limited by a
predefined maximum velocity vmax , where v t

id ∈ [−vmax , vmax].
When using BPSO for feature selection, the dimensionality of the search space is the

total number of features in the dataset. “1” in the position vector means the correspond-
ing feature is selected and “0” otherwise [5].

2.2 Related Work on Feature Selection

A number of feature selection algorithms have been proposed, which can be seen in
[1, 5, 12]. Due to the page limit, only typical EC based feature selection algorithms and
the role of statistics are reviewed here.

EC Approaches for Feature Selection. Zhu et al. [13] proposed a feature selection
method using a memetic algorithm that is a combination of local search and GA. Ex-
periments show that this algorithm outperforms GA alone and other algorithms. Ne-
shatian et al. [14] proposed a feature ranking method for feature selection, where each
feature is assigned a score according to the frequency of its appearance in a collection
of GP trees and the fitness of those trees. Feature selection can be achieved by using the
top-ranked features for classification. Based on ant colony optimisation (ACO), Kanan
and Faez [15] developed a wrapper feature selection algorithm, which outperforms GA
and other ACO based algorithms on a face detection dataset, but its performance has
not been tested on other problems. He et al. [16] applied a binary differential evolu-
tion (BDE) algorithm to filter feature selection with a mutual information based fitness
function. However, the proposed algorithm is not compared with any other algorithm
and the datasets used include a relatively small number (maximum 56) of features. Al-
Ani et al. [17] also proposed a DE based method, where features are distributed to a set

136 M.C. Lane et al.

of wheels and DE is employed to select features from each wheel. This algorithm can
significantly reduce the number of features and improve the classification performance.

Chuang et al. [5] proposed a PSO based algorithm that resets gbest if it maintains
the same value after several iterations. The experiments on cancer-related gene expres-
sion datasets show that the proposed algorithm can select a small number of features
to improve the classification performance. Xue et al. [18] developed new initialisation
and pbest and gbest updating mechanisms in PSO for feature selection, which can
increase the classification accuracy and reduce both the number of features and the
computational time. Wang et al. [19] redefined the velocity in BPSO as the number of
elements that should be changed in the position. The experiments show that the pro-
posed approach is computationally less expensive than GA. Fdhila et al. [20] applied a
multi-swarm PSO algorithm to solve feature selection problems. However, the compu-
tational cost of the proposed algorithm is high because it involves parallel evolutionary
processes and multiple sub-swarms with a relative large number of particles. Yang et al.
[21] proposed two PSO based feature selection approaches based on two inertia weight
setting methods. The results show that the two algorithms can outperform sequential
forward search, sequential forward floating search, sequential GA and different hybrid
GAs. Xue et al. [12, 22] also proposed a PSO based multi-objective approach for feature
selection, which shows that the PSO based approach outperforms three other commonly
used EC based multi-objective algorithms, i.e. NSGAII, SPEA2, and PAES.

Javani et al. [23] applied PSO for feature selection and clustering in machine learn-
ing, where each particle is used to optimise the weights for all features and cluster center
values. feature selection is achieved by omitting features with a low weight. However,
features with a low weight may be useful because of feature interaction and the removal
may reduce the performance of the feature subset. Note that the clustering problem here
is a machine learning task which aims to group instances into different clusters. This is
different from the statistical clustering used in this paper, which aims to group features
into different clusters.

Statistics in Feature Selection. Many statistical methods can be used to reduce the di-
mensionality of a dataset [8], such as principal component analysis, linear discriminant
analysis, or canonical correlation analysis. However, most of them are not feature selec-
tion approaches because they create new features. Some researchers introduce statistical
measures to evaluate the relationship between a feature and the class labels, which are
then used in feature selection to evaluate the goodness of the selected features. Based
on a statistical discrepancy measure, Jakub Segen [24] developed a feature selection
method, which starts with the feature that best distinguishes the classes, and iteratively
adds features which in combination with the chosen features improve the classifica-
tion discrimination. Relief [25] uses a statistical method to select the relevant features,
where each feature has a score indicating its relevance to the class labels. Relief se-
lects all the relevant features. However, the selected features may still have redundancy
because Relief does not consider the redundancy between the relevant features. Many
other statistical measures such as Pearson’s correlation and least square regression er-
ror, have been used in feature selection to score the significance of features in class
separability.

Gaussian Based PSO and Statistical Clustering for Feature Selection 137

Clustering analysis is an important class of statistical techniques that can be ap-
plied to group features/variables to a number of clusters. A statistical clustering method
can group relatively homogeneous features together taking feature interactions into ac-
count [9, 10]. A statistical clustering method usually considers feature interaction in the
dataset. Therefore, the statistical feature interaction information found by a statistical
clustering method can be used to develop a good feature selection algorithm, but this
has not been seriously investigated.

Based on PSO and a statistical clustering method [9, 10] that groups features into
different clusters and similar features to the same cluster, Lane et al. [6] proposed a
feature selection algorithm, which uses PSO to select one feature from each cluster. The
results show that by selecting a representative feature from each cluster, the proposed
algorithm can significantly reduce the number of features and increase the classification
performance. This shows the the statistical clustering information (i.e. feature clusters)
can provide useful information in feature selection. Therefore, this work will also utilise
such information to further develop the new approach.

3 The Proposed Approach

We use a newly developed clustering method based on statistical models proposed by
Pledger and Arnold [9] and Matechou et. al. [10] to group features into different clus-
ters. Due to the page limit, it is not described here. The statistical clustering method
is performed as a preprocessing step on a small number of training instances to group
features into different clusters.

Features in the same cluster are considered as similar features. Therefore, to use sta-
tistical clustering information for feature selection, on one hand, a single feature can
be selected as a representative of its associated cluster. On the other hand, features
from the same cluster might still be complementary to each other, which means that
multiple features may be needed from a single feature cluster. Therefore, we want to
consider feature clustering and feature interaction information to develop a new PSO
approach to selecting features based on the obtained feature clusters, which is different
from the traditional PSO based approach that selects features based on the whole fea-
ture set. The new approach is expected to encourage the selection of a single feature
from each cluster, but when needed, it can also select multiple features from the same
cluster. However, the original updating mechanism in PSO does not consider clustering
information. Therefore, a new position updating mechanism is needed.

In PSO for feature selection, the position of a particle represents one feature subset,
but the traditional position updating mechanism PSO does not consider the clustering
information. Based on a Gaussian distribution (i.e. normal distribution) function, the
new position updating mechanism is proposed to consider the clustering information,
which first determines the number of features that will be selected from a cluster, and
then determines the selection of individual features from that cluster.

3.1 Determine the Number of Features Selected

Since a small number of features is preferred, there should be a relatively large (small)
probability to select a small (large) number of features from a given feature cluster.

138 M.C. Lane et al.

111

|clu|=5

m (i.e. select m features from |clu|)

g(
m

)
(i.

e.
 p

ro
ba

bi
lit

y)

μ=1, σ=log(10*|clu|)
μ=1, σ=|clu|/5+2
μ=1, σ=4

0.055

0.070

0.090

0.110

0.130

1 2 3 4 5

(a) |clu| = 5

11

|clu|=30

m (i.e. select m features from |clu|)

g(
m

)
(i.

e.
 p

ro
ba

bi
lit

y)

μ=1, σ=log(10*|clu|)
μ=1, σ=|clu|/5+2
μ=1, σ=4

0.00

0.02

0.04

0.06

0.08

0.10

1 5 10 15 20 25 30

(b) |clu| = 30

Fig. 1. The effects of the standard deviation functions upon two Gaussian distributions (colour)

Gaussian distribution is used here to determine the probability of selecting a certain
number (m) of features. Gaussian distribution is typically shown by N(μ, σ), where
μ is the mean and σ is the standard deviation. The output of the Gaussian function
is used here as the probability of selecting m of features from a cluster. In Gaussian
function, the output value is the largest when using μ as input. Since selecting only 1
feature from each cluster is the ideal case, which should have the largest probability,
μ = 1 is used here. σ determining the change of the probability is a key factor, which
should be defined according to the feature cluster size, i.e. the number of features in
this cluster. A logarithmic function using the cluster size (|clu|) as the input variable,
σ = log(10× |clu|), is used to determine σ.

Based on μ = 1 and σ = log(10 × |clu|), the Gaussian distribution function is
built to calculate the probability of selecting m (1 ≤ m ≤ |clu|) features from a given
cluster, which is shown by Equation 4.

g(m) =
exp(− (m−1)2

2log2(10×|clu|))√
2π log(10× |clu|)

(4)

Fig. 1 plots the Gaussian function shown by Equation 4, where |clu| = 5 in Fig. 1(a)
is used as a representative of a small feature cluster, and |clu| = 30 in Fig. 1(b) is used
as a representative of a large feature cluster. Fig. 1 also plots the Gaussian distribution of
using a constant σ = 4 and and a linearly changing σ (σ = |clu|/5+2), which are used
for comparison purposes to explain why σ = log(10× |clu|) is chosen here. From Fig.
1(a), it can be seen that σ = log(10× |clu|) provides a chance of selecting 1, 2, 3 or 4
features that is more even than the linear function, which favors selecting 1 or 2 features
from the small cluster. From Fig. 1(b), it can be observed that σ = log(10 × |clu|)
provides a much smaller chance for selecting more than 10 features than the other two
standard deviation functions. Therefore, fewer redundant features will be introduced
when using σ = log(10× |clu|) since features are similar within a cluster.

For a given feature cluster, a desired feature list is formed by adding the features
if a random value is smaller than s(vid). If there are |DF | features, the sum of all
the possible g(m) values should be 1. Therefore, g(m) is normalised to make sure

Gaussian Based PSO and Statistical Clustering for Feature Selection 139

∑|DF |
m=1 g(m) = 1. Based on the normalised g(m) values, a “roulette wheel selection” is

performed here to determine the value of m. Note that the “roulette wheel selection” is
performed on features within a cluster (not on individuals within a swarm/population).
It is used here to ensure that the large g(m) will have a large chance to be selected, but
the small g(m) will also have a chance to be selected (not completely ruled out).

3.2 How to Select Features

When using PSO for feature selection, each feature corresponds to one dimension in the
position and velocity. “1” in the position means the corresponding feature is selected.
Selecting m features from a cluster means m dimensions in the position are updated to
“1” and all other dimensions in the same cluster are updated to “0”.

In the proposed algorithm, m features are chosen based on the maximum probability
mechanism, where the motivation is that the velocity in PSO represents the probability
of the corresponding dimension taking value “1” [11]. In terms of feature selection, the
velocity represents the probability of a feature being selected. Therefore, the m features
with the highest velocity in a certain cluster should have the largest probability to be
selected.

3.3 An Example

Taking a cluster with 30 features as an example, the following steps show the process of
the proposed Gaussian position updating procedure. The elements in the position that
correspond to other clusters are updated in the same way.

– Step 1: Build the Gaussian function g(m) using μ = 1 and σ = log(10× 30);
– Step 2: Build a set of desired features DF : add feature i to the desired feature list

if a random value is smaller than 1
1+e−vid

;
– Step 3: Calculate the g(m) values with m = 1, 2, 3, ...|DF | and normalise them;
– Step 4: Based on the normalised g(m) values, the “roulette wheel selection” is

performed to determine the value of m;
– Step 5: Update the position of the m dimensions with the largest velocities to “1”

and all other dimensions in the same cluster to “0”.

Based on the proposed Gaussian updating mechanism, we develop a new PSO ap-
proach (named GPSO) to incorporate the statistical clustering information to address
feature selection problems.

4 Experimental Design

A set of experiments have been conducted to examine the performance of the proposed
algorithm (GPSO). Eight benchmark datasets shown in Table 1 were chosen from the
UCI machine learning repository [26], which have different numbers of features, classes
and instances. The instances in each dataset are split randomly into a training set (70%)
and a test set (30%). The statistical clustering method used here was taken from a re-
cently developed algorithm [9, 10], which is not described here due to the page limit.

140 M.C. Lane et al.

Table 1. Datasets

Dataset No. of features No. of clusters No. of classes No. of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

A small number (less than 500) of training instances are used in the statistical clustering
method to speed up the clustering process, which is part of the training set on datasets
such as Madelon. The number of clusters obtained are listed in the third column of
Table 1.

A standard BPSO based feature selection algorithm (PSOFS), which does not con-
sider the statistical clustering information as GPSO, is used as a baseline algorithm to
test the performance of GPSO. In all the two PSO based methods, K-Nearest Neighbour
(KNN) with K=5 is used in the fitness function to evaluate the classification accuracy
of the selected features. The parameters are set as follows [3]: w = 0.7298, c1 = c2 =
1.49618, vmax = 6.0, the population size is 30, the maximum number of iterations is
100 and the fully connected topology is used. The algorithms have been conducted for
40 independent runs on each dataset. The non-parametric statistical significance test,
Wilcoxon test, is performed between the testing classification performance of a PSO
algorithm and all features. The significance level is selected as 0.05 (or confidence in-
terval is 95%).

To further examine the performance of the proposed algorithms, we also compare
them with two traditional feature selection methods, which are linear forward selec-
tion (LFS) [27] and greedy stepwise backward selection (GSBS). LFS and GSBS were
derived from two typical feature selection algorithms, i.e. sequential forward selection
(SFS) and sequential backward selection (SBS), respectively. LFS [27] restricts the
number of features that are considered in each step of the forward selection, which can
reduce the number of evaluations. Therefore, LFS is computationally less expensive
than SFS and can obtain good results. The greedy stepwise feature selection algorithm
implemented in Weka [28] can move either forward or backward. Given that LFS per-
forms a forward selection, a backward search is chosen in greedy stepwise search to
form a greedy stepwise backward selection (GSBS). GSBS starts with all available fea-
tures and stops when the deletion of any remaining feature reduces the classification
accuracy.

5 Results and Discussions

Table 2 shows the experimental results of PSOFS, GPSO, where “All” means that all of
the available features are used for classification, “AveSize” shows the average number
of features selected in the 40 independent runs, “AveAcc”, “BestAcc” and “StdAcc”
shows the average, the best and the standard deviation of the 40 testing accuracies.
“Test” shows the results of the Wilson significance tests, where “+” (-) means PSOFS,

Gaussian Based PSO and Statistical Clustering for Feature Selection 141

Table 2. Experimental Results

Dataset Method AveSize BestAcc AveAcc ± StdAcc Test Time

Wine

All 13 76.54
PSOFS 8.32 97.53 95.96 ± 1.8725 + 0.25
GPSO 5.38 98.77 96.7 ± 2.7521 + 0.18

Vehicle

All 18 83.86
PSOFS 9.28 85.83 84.3 ± 0.6194 + 8.13
GPSO 8.92 85.24 84.26 ± 0.5962 + 4.51

Ionosphere

All 34 83.81
PSOFS 10.38 93.33 89.05 ± 1.8444 + 1.36
GPSO 7.5 94.29 89.26 ± 1.6631 + 0.92

Sonar

All 60 76.19
PSOFS 24.72 87.3 79.52 ± 2.9222 + 0.75
GPSO 17.75 87.3 78.49 ± 3.7217 + 0.68

Musk1

All 166 83.92
PSOFS 83.6 89.51 85.65 ± 2.102 + 10.09
GPSO 39.6 89.51 84.91 ± 2.5641 = 3.56

Arrhythmia

All 279 94.46
PSOFS 119.35 95.14 94.57 ± 0.3351 = 11.82
GPSO 45.9 95.7 94.86 ± 0.355 + 3.83

Madelon

All 500 70.9
PSOFS 244.68 78.85 76.83 ± 1.2334 + 866.47
GPSO 36.25 87.82 85.61 ± 1.0066 + 137.67

Multiple Features

All 649 98.63
PSOFS 295.52 99.2 99 ± 0.0962 + 726.19
GPSO 92.25 99.27 99.02 ± 0.1258 + 112.94

GPSO is significantly better (or worse) than “All”, and “=” means they are similar (no
significant difference). The last column shows the average computational time used by
the two PSO algorithms in a single run, which is expressed in minutes.

5.1 Results of GPSO

According to Table 2, it can be seen that the feature subsets selected by GPSO achieved
significantly higher classification accuracy than using all features on all datasets. Fur-
thermore, on all datasets, GPSO selected fewer than half of the original features, which
is less than 20% on the datasets with a large number of features, i.e. the Arrhythmia,
Madelon and Multiple Features datasets. For example, on the Madelon dataset, GPSO
selected on average only around 7.2% of the original features (36.08 out of 500) and
increased the classification accuracy from 70.9% to on average 85.61%.

Compared with PSOFS which does not use the statistical clustering information,
it can be seen that GPSO achieved similar or even better classification performance
than PSOFS, but the average number of features selected by GPSO is smaller or much
smaller than PSOFS in all datasets. On the three datasets with more than 200 features,
i.e. Arrhythmia, Madelon and Multiple Features, GPSO further reduced more than 60%
of the feature selected by PSOFS, but still achieved slightly better classification perfor-
mance than PSOFS. The reason is that on such large datasets, GPSO further removed
redundant and irrelevant features, which reduced the complexity of the problem and
increased the classification performance on unseen test data.

The results suggest that by developing the new Gaussian based updating mecha-
nism in PSO, GPSO can successfully use the statistical clustering information to ad-
dress feature selection problems. GPSO reduced the dimensionality of the datasets and

142 M.C. Lane et al.

Table 3. Further Comparisons

Method
Wine Vehicle Ionosphere Sonar

Size Accuracy Size Accuracy Size Accuracy Size Accuracy
LFS 7 74.07 9 83.07 4 86.67 3 77.78
GSBS 8 85.19 16 75.79 30 78.1 48 68.25

Method
Musk1 Arrhythmia Madelon Multiple Features

Size Accuracy Size Accuracy Size Accuracy Size Accuracy
LFS 10 85.31 11 94.46 7 64.62 18 99.0
GSBS 122 76.22 130 93.55 489 51.28

simultaneously increased the classification performance in all cases, and also outper-
formed the standard PSO based feature selection algorithm, PSOFS.

5.2 Comparisons on Computational Time

According to Table 2, it can be seen that GPSO finished the evolutionary training pro-
cess within 6 minutes in almost all cases, except on the Madelon and Multiple Features
datasets, where a large number of features and instances are involved. Since the number
of features selected by GPSO is much smaller than all the original features, the testing
classification time will also be significantly reduced over using all the original features.

GPSO used a much shorter time than PSOFS on all datasets. The main reason is that
as wrapper approaches, their computational time was mainly spent on evaluating the
classification performance of the selected features, where a small number of features
used a shorter time than a large number of features. GPSO selected a much smaller
number of features than PSOFS, so its evaluations are much faster than PSOFS, espe-
cially on the large datasets. Note that although GPSO involves the statistical clustering
process, this process is very fast since it is only performed on a part of the training
examples. The computational time used by PSOFS is longer than the total time used by
the statistical clustering method and GPSO.

5.3 Further Comparisons with Traditional Methods

Both LFS and GSBS are deterministic algorithms and only a single solution is obtained
on each dataset, where the results are shown in Table 3. The results of using GSBS on
the Multiple Features dataset are not available because the dataset is too big and the
training process took too long time to finish.

Comparing Table 3 with Table 2, it can be seen that the number of features selected
by LFS is usually smaller than GPSO, but GPSO achieved significantly better classi-
fication performance than LFS on almost all datasets. GPSO outperformed GSBS in
terms of both the number of features and the classification performance on all datasets.

The results show that GPSO based on PSO and the feature clustering information can
better explore the solution space to obtain better feature subsets than LFS and GSBS.
In terms of the computational time, GPSO is slower than LFS because LFS selected a
smaller number of features, but it is faster than GSBS on datasets with a relative large
number of features.

Gaussian Based PSO and Statistical Clustering for Feature Selection 143

6 Conclusions and Future Work

The goal of this paper was to develop a new approach to using the statistical clustering
information in PSO for feature selection. The goal was successfully achieved by devel-
oping a new Gaussian based updating mechanism to propose a new algorithm named
GPSO. GPSO was examined and compared with two traditional feature selection algo-
rithms (LFS and GSBS) and a standard PSO based feature selection algorithm (PSOFS)
on eight benchmark datasets of varying difficulty. The results show that GPSO can suc-
cessfully use the statistical clustering information to select a small subset of features and
achieve similar or significantly better classification performance than using all features
on all the eight datasets. GPSO achieved significantly better classification performance
than LFS, although the number of features is slightly larger. It outperformed GSBS in
terms of both the number of features and classification accuracy. GPSO achieved similar
classification performance to PSOFS, but selected a much smaller number of features
and used a much shorter time. Compared with the original features, GPSO achieved
significantly better classification performance, and reduced the number of features to
an order of magnitude on the large datasets.

This work shows that statistical clustering information can be successfully used to
improve the performance of a PSO based feature selection algorithm. The successes
of GPSO provides motivations to further explore the use of statistical methods with
evolutionary computation techniques to solve feature selection problems. For exam-
ple, statistical clustering information and PSO can be used for multi-objective feature
selection or for feature construction.

References

1. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(4), 131–
156 (1997)

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948 (1995)

3. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International Confer-
ence on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

4. Engelbrecht, A.P.: Computational intelligence: An introduction, 2nd edn. Wiley (2007)
5. Chuang, L.Y., Chang, H.W.: Improved binary PSO for feature selection using gene expres-

sion data. Computational Biology and Chemistry 32(29), 29–38 (2008)
6. Lane, M., Xue, B., Liu, I., Zhang, M.: Particle swarm optimisation and statistical clustering

for feature selection. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp.
214–220. Springer, Heidelberg (2013)

7. Cervante, L., Xue, B., Shang, L., Zhang, M.: A multi-objective feature selection approach
based on binary pso and rough set theory. In: Middendorf, M., Blum, C. (eds.) EvoCOP
2013. LNCS, vol. 7832, pp. 25–36. Springer, Heidelberg (2013)

8. Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis.
Technical report (2005)

9. Pledger, S., Arnold, R.: Multivariate methods using mixtures: correspondence analy-
sis, scaling and pattern detection. Computational Statistics and Data Analysis (2013),
http://dx.doi.org/10.1016/j.csda.2013.05.013

10. Matechou, E., Liu, I., Pledger, S., Arnold, R.: Biclustering models for ordinal data. Presen-
tation at the NZ Statistical Assn. Annual Conference, University of Auckland (2011)

http://dx.doi.org/10.1016/j.csda.2013.05.013

144 M.C. Lane et al.

11. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: IEEE
International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, vol. 5, pp. 4104–4108 (1997)

12. Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection in clas-
sification: A multi-objective approach. IEEE Transactions on Cybernetics 43(6), 1656–1671
(2013)

13. Zhu, Z.X., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic
framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 37(1), 70–76 (2007)

14. Neshatian, K., Zhang, M., Andreae, P.: Genetic programming for feature ranking in classifi-
cation problems. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A.,
Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008.
LNCS, vol. 5361, pp. 544–554. Springer, Heidelberg (2008)

15. Kanan, H.R., Faez, K.: An improved feature selection method based on ant colony optimiza-
tion evaluated on face recognition system. Applied Mathematics and Computation 205(2),
716–725 (2008)

16. He, X., Zhang, Q., Sun, N., Dong, Y.: Feature selection with discrete binary differential evo-
lution. In: International Conference on Artificial Intelligence and Computational Intelligence
(AICI 2009), vol. 4, pp. 327–330 (2009)

17. Al-Ani, A., Alsukker, A., Khushaba, R.N.: Feature subset selection using differential evo-
lution and a wheel based search strategy. Swarm and Evolutionary Computation 9, 15–26
(2013)

18. Xue, B., Zhang, M., Browne, W.: Novel initialisation and updating mechanisms in pso for
feature selection in classification. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013.
LNCS, vol. 7835, pp. 428–438. Springer, Heidelberg (2013)

19. Wang, X., Yang, J., Teng, X., Xia, W.: Feature selection based on rough sets and particle
swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)

20. Fdhila, R., Hamdani, T., Alimi, A.: Distributed mopso with a new population subdivision
technique for the feature selection. In: International Symposium on Computational Intelli-
gence and Intelligent Informatics, pp. 81–86 (2011)

21. Yang, C.S., Chuang, L.Y., Li, J.C.: Chaotic maps in binary particle swarm optimization for
feature selection. In: IEEE Conference on Soft Computing in Industrial Applications (SM-
CIA 2008), pp. 107–112 (2008)

22. Xue, B., Zhang, M., Browne, W.N.: Multi-objective particle swarm optimisation (pso) for
feature selection. In: Genetic and Evolutionary Computation Conference (GECCO 2012),
Philadelphia, PA, USA, pp. 81–88. ACM (2012)

23. Javani, M., Faez, K., Aghlmandi, D.: Clustering and feature selection via pso algorithm. In:
International Symposium on Artificial Intelligence and Signal Processing, pp. 71–76 (2011)

24. Jakub Segen, J.: Feature selection and constructive inference. In: Proceedings of Seventh
International Conference on Pattern Recognition, pp. 1344–1346 (1984)

25. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Assorted Conferences
and Workshops, pp. 249–256 (1992)

26. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)
27. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers.

In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2009), pp.
332–339 (2009)

28. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann (2005)

Global Optimization

of Multimodal Deceptive Functions

David Iclănzan

HEC Lausanne, Quartier UNIL-Dorigny,
Bâtiments Internef, 1015 Lausanne, Switzerland

david.iclanzan@gmail.com

Abstract. Local search algorithms operating in high-dimensional and
multimodal search spaces often suffer from getting trapped in a local
optima, therefore requiring many restarts. Even with multiple restarts,
their search efficiency critically depends on the choice of the neighbor-
hood structure. In this paper we propose an approach in which the need
for the restarts is exploited to improve the neighborhood definitions.
Namely, a graph clustering based linkage detection method is used to
mine the information from several runs, in order to extract variable de-
pendencies and update the neighborhood structure, variation operators
accordingly. We show that the adaptive neighborhood structure approach
enables the efficient solving of challenging global optimization problems
that are both deceptive and multimodal.

1 Introduction

Generic stochastic optimization methods like evolutionary algorithms, swarm al-
gorithms, stochastic hill climbing, simulated and quantum annealing, tabu search
etc. are often used for locating in reasonable time a good approximation of the
global optimum of hard problems, defined over large search spaces and/or ex-
hibiting multimodality, deceptiveness.

However, these methods are not always applicable as there are problems that
are intractable using fixed, problem independent operators and representations [1].
Efficient solving of such problems requires methods that can learn the structure of
a problem on the fly and use operators that adapt the linkage between variables.
In the case of population based methods the sampling offered by the elements of
the population opens the way for inferring valuable statistical information. For
these methods, the replacement of operators like crossover andmutation with a re-
peated selection – model-building – sampling process, enables the required adapt-
ability of the neighborhood structures and adequate performance.

The family of these methods, often called competent evolutionary algorithms
[2] include such examples as the fast messy genetic algorithm [3], the linkage
learning genetic algorithm [4], the extended compact genetic algorithm [5], the
Bayesian Optimization Algorithm (BOA) [6], SEAM [7], DevRep [8], Compact
Genetic Codes [9], Hierarchical Genetic Algorithm [10], hBOA [11] and DS-
GMA++ [12].

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 145–156, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

146 D. Iclănzan

Incorporating statistical models in trajectory based methods like stochastic
hill climbing, simulated and quantum annealing, tabu search etc. is not straight-
forward as these methods sample just one point of the search space at each step.
However, being more lightweight and prone to premature convergence, these
methods are used in conjunction with a a random restart mechanism that facili-
tates a better balance between exploration and exploitation of the search space.
Therefore, we apply learning to the results obtained from several runs, extracting
linkages and providing properly adapted search operators for future runs.

In this paper we extend the simulated annealing trajectory based stochastic
optimizer with a graph clustering based linkage detection method. We investigate
the proposed method performance on the concatenated trap function, a problem
designed to test a global optimization method’s ability to handle deceptiveness
and multiomdality.

The next Section presents and discuss some preliminary notions. The proposed
method is detailed in Section 3. Section 4 describes the experimental setup,
followed by a discussion of the results in Section 5. Finally, the paper concludes
in Section 6.

2 Preliminaries

2.1 Simulated Annealing

Simulated annealing is a generic stochastic global optimization metaheuristic
[13], inspired from the annealing process, which involves heating and controlled
cooling of solids in order to increase the size of their crystals and reduce their
defects due to the changes in internal structure .

The simulated annealing algorithm makes an analogy between the thermody-
namic free energy and the objective function. In the annealing process, a slower
rate of cooling produces a bigger decrease in energy. The simulated slow, con-
trolled cooling, effects the probability that the simulated annealing accepts a
worse solution, decreasing it over time.

In the beginning, when the artificial temperature is high the algorithm will
often accept solutions that are worse than the current solution, encouraging ex-
ploration, facilitating the escape from the basin of attraction of local optima.
As the temperature is reduced the probability of accepting worse solutions de-
creases, focusing the search more on exploitation. The balance provided by the
controlled, gradually decreasing artificial cooling enables the simulated anneal-
ing algorithm to perform well on large search spaces. The pseudo-code of the
method is presented in Alg. 1.

The simulated annealing as many other generic metaheuristics uses a fixed
neighborhood structure which can severely hinder its performance in problems
that require the discovery and efficient mixing of partial sub-solutions, building-
blocks. At each temperature the algorithm performs a number of iterations that
is controlled by a positive parameter nrtries. The algorithms terminates when
it finds a good enough solution, or when there are no improvements over the last
limitNI iterations.

Global Optimization of Multimodal Deceptive Functions 147

Algorithm 1. Simulated annealing

1 Define an initially high temperature T ;
2 Define a cooling schedule cooling(T);
3 Define an energy function E(state);

/* Start from a random point */

4 x ← RandomState();
5 while not converged and noimprovementcount < limitNI do
6 for i ← 1 : nrtries do
7 x new ← neighboor(x);
8 Δ ← E(x new)− E(x);
9 if Δ < 0 then

10 x ← x new;
11 else

/* Evaluate if the worse state is to be accepted */

12 if rand < e−
Δ
T then

13 x ← x new;

/* Decrease the temperature according to the cooling schedule */

14 T ← cooling(T);

2.2 Graph Clustering Based Model Building

Dependent variables are detected by applying a maximum flow clustering algo-
rithms to an adjacency matrix which contains the pairwise interactions between
variables. Therefore, the method is model evaluation free, fast, scalable and eas-
ily parallelizable.

Maximum flow clustering algorithms simulate a special flow within a graph,
which promotes flow where the current is strong whilst reducing flow where the
current is weak. These procedure reveal the cluster structure within the graph,
as the flow across borders between different groups diminish with time, while it
increases within the group.

Simulation of flow through a graph is easily done by transforming the adja-
cency matrix into a column-stochastic square matrix, where each column sums
to 1. This matrix, denoted by M , can be interpreted as the matrix of the tran-
sition probabilities of a random walk (or a Markov chain) defined on the graph,
where M(j, i) represents the probability (stochastic flow) of a transition from
vertex vi to vj . Flow expansion can be simulated by computing powers of the
flow (Markov) matrix M.

One of the most well known and used maximum flow based graph cluster-
ing algorithm is the Markov Clustering Algorithm (MCL) [14]. It offers several
advantages, like a simple, elegant mathematical formulation, robustness to topo-
logical noise [15], support for easy paralellization and adaptation via a simple
parameter enables the obtaining of clusters of different granularity.

148 D. Iclănzan

MCL iteratively simulates random walks within a graph by applying two op-
erators called expansion and inflation, until convergence occurs. At the end of
each inflation step a pruning step is also performed, in order to reduce the com-
putational complexity by making M sparse. The MCL process may be regarded
as alternative expansion and contraction of the flow in the graph. The expansion
step is responsible in spreading the flow out of a vertex to potentially new ver-
tices and with the strengthening of the flow to those vertices which are reachable
by multiple paths. This has the effect of enhancing within-cluster flows as there
are more paths between the nodes belonging to the same cluster. The inflation
operator is responsible for both strengthening intra-cluster flow and weakening
inter-cluster flow of current and by this, introducing a non-linearity in the dis-
tribution of the flows. At the beginning the flow distribution is relatively smooth
and uniform, but with each iteration it becomes more and more peaked. In the
end, all the nodes within a tightly-linked group of nodes will start to flow to-
wards one node within the group, forming star sub-graphs associated with the
MCL limits.

The idealized Markov Cluster process, consisting just from the expansion and
inflation operators is known to converge quadratically in the neighborhood of so
called doubly idempotent matrices [14]. In practice, the numbers of epochs until
convergence is reported to be nearly always far below 100.

While several types of models can be extracted from the MCL iterants [16],
here we choose a simple approach, which extracts the linkage groups from
the clusters obtained after convergence of the MCL. Here, the nodes have found
one “attractor” node to which all of their flow is directed, corresponding to only
one non-zero entry per column in M . Nodes sharing the same “attractor” node
are grouped in clusters and their corresponding variables form a linkage group
that can be used by the modified simulated annealing algorithm.

3 Extended Simulated Annealing

The extended simulated annealing has two phases that are alternatively applied.
In the first phase, several runs of simulated annealing are performed according
to the current linkage model and the obtained result are collected in a memory.
In the second phase this accumulated search experience is exploited in order to
learn which variables are linked and the model is updated accordingly. Then
the optimization procedure continues again with the first phase but now using
a model that is more suited to the particular optimization problem. The details
of these two phases are outlined in Algorithm 2.

The parameters of the algorithm are n - number of variables, nS - num-
ber of simulated annealing runs in the search experience accumulation phase,
@stopping cond - stopping criteria which usually places a bound on the quality
of the found solution and/or time, number of objective function evaluations.

R ← corrcoef(memory) returns a matrix R of correlation coefficients calcu-
lated from an input matrixmemory whose columns are variables and whose rows
are the bits of the solution found by the particular simulated annealing runs.

Global Optimization of Multimodal Deceptive Functions 149

Algorithm 2. Extended simulated annealing

Input: n, nS

/* Initially each variable is independent */

1 M ← 1 : n;
2 while not @stopping cond do

/* Phase I - accumulate search experience */
3 for i = 1, nS do

/* Apply the simulated annealing algorithm */

4 Define an initially high temperature T ;
5 Define a cooling schedule cooling(T);
6 Define an energy function E(state);

/* Start from a random point */

7 x ← RandomState();
8 while not converged and noimprovementcount < limitNI do

/* Perturbation according to the model M */

9 x new ← neighboor(x,M);
10 Δ ← E(x new)− E(x);
11 if Δ < 0 then
12 x ← x new;
13 else

/* Evaluate if the worse state is to be accepted */

14 if rand < e−
Δ
T then

15 x ← x new;

/* Decrease the temperature */

16 T ← cooling(T);

17 memory[i] ← x;

/* Phase II - update the model */
/* Calculate correlation coefficients between variables */

18 R ← corrcoef(memory);
/* Apply MCL to extract groups of dependent variables */

19 M ← MCL(R);

The matrix R ← corrcoef(memory) is obtained from the covariance matrix
C ← cov(memory) according to the formula

R(i, j) =
C(i, j)√

C(i, i)C(j, j)
(1)

The essence and capabilities of the proposed method lies in that the pertur-
bation for obtaining x new operates over a linkage model that is continuously
adapted. Variables that are found to be connected are always altered together.

In the beginning each variable forms a separate linkage group, for an 8 variable
problem, the initial model would be M = {[x1], [x2], . . . [x8]}. With this model
the method is equivalent to the standard simulated annealing, when generating
x new each variable is perturbed according to a mutation probability p mut.

150 D. Iclănzan

However, if from several runs it can be determined for example that the first
four, respectively the last two variables are correlated, the model is updated to
reflect this knowledge:M = {[x1, x2, x3, x4], [x5], [x6], [x7, x8]}. In the subsequent
runs the simulate annealing will perturb states respecting these dependencies,
always altering the clustered variables together, thus eliminating sub-solution
disruption and facilitating the mixing of these building-blocks.

4 Experiments

Deceptive functions are among the most challenging problems as they exhibit
one or more deceitful optima located far away from the global optimum. The
basins of attraction of the local-optima are much bigger than the attraction
area of the optimal solutions, thus following the objective function gradient is
misleading on average.

Order k deceptive trap function or simply k-Trap, is a function of unitation
(its value depends only on the numbers of 1’s in the input string), based on two
parameters fhigh and flow which define the degree of deception and the fitness
signal-to-noise ratio. The input that contains all but ones is maximally rewarded;
for the other cases, the fitness of the block is directly proportional to the number
of zeros, the string of all zeros being a strong local optima.

Let u be the unitation of the binary input string. The k-trap function is
defined as:

trapk(u) =

{
fhigh , if u = k;
flow − u+1

k , otherwise.
(2)

Concatenating m copies of this trap function [17] gives a global additively
separable, boundedly deceptive function over binary strings:

CTF (x) = −
m−1∑
i=0

trapk

⎛⎝ki+k−1∑
j=ki

xj

⎞⎠ (3)

In this paper we operate over 120 bit length CTF problems, concatenating
m = 20 k-Trap functions based on k = 6, fhigh = flow = 1. For this setup, the
test function have 240 local optima. The global optima, the string of all ones,
has a value of -20.

In a first experiment, we tested how the simple simulated annealing performs
on this 120 bit CTF function. The performance of a stochastic search method
can severely depend on its parametrizations. As there are no definite guidelines
on how to achieve the best configuration, we decided to test a comprehensive
range of parametrizations over 20000 runs. For each run we randomly determined
values for the perturbation probability (p mut ∈ [0.01, 0.25]), the number of
maximum allowed consecutive rejections (1000 ≤ limitNI ≤ 20000) and the
number of tries per temperature (100 ≤ nrtries ≤ 2000).

In the second experiment we tested the performance of the extended method
averaged over 100 runs, using a perturbation probability p mut of 0.05, the al-
lowed maximum number of rejections limitNI was set to 2000 and we performed

Global Optimization of Multimodal Deceptive Functions 151

500

1000

1500

2000

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
2

x 10
4

0.05

0.1

0.15

0.2

0.25

Maximum # of tries

Parametrization of the SA runs with performance >= −15.00 (8.46% of runs)

Maximum # of rejections

P
er

tu
rb

at
io

n
pr

ob
ab

ili
ty

 p

Fig. 1. Parametrizations leading to worst performance of the classical simulated
annealing

just on iteration per temperature. In the search experience accumulation phase,
the simulated annealing is run nS = 100 times.

For both methods the cooling schedule was set to Tk+1 = 0.9Tk.

5 Results

5.1 Performance of the Classical Simulated Annealing

The simple simulated annealing spent 567980353 functions evaluations in the
20000 runs. Despite the high number of trials, it was never able to find the global
optimum, always being mislead by the strong deceptiveness and multimodality
of the CTF.

Figure 1 depicts the parameter configurations which resulted in very poor
performance for the classical simulated annealing, with objective function val-
ues greater than -15. As seen, this corresponds to parametrizations where the
mutation probability is very high or both the number of allowed rejections and
trials per temperature is low.

The parametrizations leading to the best performances for the classical method
are shown in Figure 2. The plots in the parameter space reveal opposite trends,
namely that the method requires high values for the number of allowed rejec-
tions and trials per temperature. Surprisingly, the values of the perturbation
rates cover a wide spectrum, varying between 0.02 and 0.15. Represented by a
dot, this figure also shows the best solution found, which had a value of -18.5.
This value corresponds to solutions for which the method found the optimal

152 D. Iclănzan

500

1000

1500

2000

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
2

x 10
4

0.05

0.1

0.15

0.2

0.25

Maximum # of tries

Parametrization of the SA runs with performance <= −18.00 (0.24% of runs)

Maximum # of rejections

P
er

tu
rb

at
io

n
pr

ob
ab

ili
ty

 p

Fig. 2. Parametrizations leading to best performance of the classical simulated anneal-
ing, where the method managed to correctly identify 8-11 trap functions out of the 20.
The dot denotes the best solution found, corresponding to the -18.5 fitness value.

setting of all ones for 11 k-trap sub-functions out of 20 (discovering 55% of the
correct subsolutions) while converging to the deceptive optima of all zeros on
the remaining 9 sub-functions.

Figure 3 depicts the histogram of the results obtained from the 20000 runs.
With moderate settings for the perturbation probability the classical simulated
annealing surpasses the solution of all zeros (which has a value of -16.6666) but
is rarely able to resolve - find the optimal setting of all ones for half or more of
the m = 20 k-trap sub-functions (values of -18.3333 or lower). These empirical
results confirm that classical simulated annealing is not a suitable solver for the
the CTF as this function requires the efficient mixing of building-blocks with
deceptive intra-block gradient.

5.2 Performance of the Extended Simulated Annealing

In contrast, in our second experiment the proposed extended simulated annealing
found the global optima in every single run. Figure 4 depicts the juxtaposition
of the evolution of these 100 runs, their line style signaling how many learning
cycles, model updates they required until convergence to the global optima.
The solid lines, accounting for 95% of the cases, corresponds to runs where
global optima was found after just one linkage learning phase. The remaining
5% of cases, depicted with dashed lines, corresponds to the cases where 2 or 3
neigborhood structure updates were required before convergence.

Global Optimization of Multimodal Deceptive Functions 153

−20 −19 −18 −17 −16 −15 −14 −13 −12
0

500

1000

1500

2000

2500

Best fitness found by the classical SA on the CTF (k=6, m=20)

Fitness on CTF

C
as

e
#

Fig. 3. Histogram of the results obtained from 20000 runs of the classical simulated
annealing on CTF with k = 6, m = 20

In the first 100 epochs, when the model is the trivial one with every vari-
able independently perturbed, the search is equivalent to the classical simulated
annealing. Therefore, as expected, the performance is mediocre, the search never
reaching the -18 fitness threshold.

After the first 100 runs, when the first round a linkage learning is applied
we can see a huge qualitative change in performance. 95% of the time, through
epochs 101-200 the search repeatedly founds the global optimum, which has
the fitness value -20. This sharp performance gain is due to the adapted neigh-
borhood structure, linkage based perturbation which maximizes the chances of
solving k-trap sub-functions while also preventing the disruption of already con-
verged sub-solutions.

However, Figure 4 also reveals that in a few instances, on the same epoch range
severely degenerates. This happens in cases when the learnt model is not accu-
rate, containing many spurious, false linkages. Following through epochs 200-400
we can observe that even in this cases, the method recovers each time, eventu-
ally learning an accurate model and converging to the global optima. Algorithms
using probabilistic models had been long prone to the issue of premature con-
vergence, where the methods can not recover from an inadequate model derived
in the early phases from a biased sample due insufficient sampling. As the ob-
served runs suggest, the continuous cycling and transition between exploration
and exploitation provided by the simulated annealing search strategy seem to
alleviate this problem.

154 D. Iclănzan

Fig. 4. Juxtaposition of the 100 runs of the extended simulated annealing on CTF
with k = 6, m = 20

Fig. 5. Evolution of the average performance of the extended simulated annealing
on CTF with k = 6, m = 20. After epoch 100, following the linkage adaptation,
we observe a huge qualitative increase in the average performance, while standard
deviation remains the same.

For the runs requiring just one linkage learning round, the average conver-
gence rate along with its standard deviation is depicted in Figure 5. Again, the
huge gain in performance can be observed immediately after epoch 100, when
the neighborhood structure is adapted according to the linkage groups revealed
by the graph clustering algorithm. Aside from the greatly shifted average per-
formance, the extended simulated annealing exhibits the same search dynamics
(stable, almost constant average, same standard deviation) before and after the
neighborhood adaptation.

Figure 6 depicts the required number of objective function evaluations until
convergence of the proposed method. The cases above the box are the out-
liers, where the method required more than one model update due to the spu-
rious linkages incorporated in the first model. The average on the figure is
located at 665702.35 evaluations, with a standard deviation of 229118.249553.
The quickest convergence took 579841 evaluations while the longest one required
1872947.

Global Optimization of Multimodal Deceptive Functions 155

0

2

4

6

8

10

12

14

16

18

x 10
5

1

Box plot of the # of obj. fun. evals.

of

 o
bj

. f
un

. e
va

ls

Fig. 6. Box-plot of the required number of CTF evaluations by the extended simulated
annealing

6 Conclusions

Problems requiring the discovery and mixing of sub-solutions often can not be
solved by problem independent search operators that while optimizing one sub-
problem may disrupt already converged sub-solutions.

In this paper we extended the simulated annealing stochastic optimizer with
a neighborhood structure adapting mechanism, linkage based perturbation. The
linkages, groups of dependent variables are extracted from a correlation coeffi-
cient matrix, describing the pairwise dependencies between variables by means of
MCL, a maximum flow based graph clustering algorithm. The proposed method
showed a very robust behavior, 100% success rate on a problem used to test
a method ability to overcome deceptiveness and multimodality. Comprehensive
test runs showed that the same problem can not be solved by a simulated an-
nealing using fixed neighborhood structure.

Also, the experiments revealed a very promising phenomena, namely that
the extended simulated annealing, by alternating exploration and exploitation
phases can recover from erroneous linkage models. This opens the way to study
problems where other model based search methods struggle with the issue of
premature convergence as they can not reco.

Future work will also experiment with the incorporation of richer, probabilistic
models and will address other classes of optimization problems.

Acknowledgments. We acknowledge the support of the Sapientia Institute for
Research Programs (KPI).

156 D. Iclănzan

References

1. Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new genera-
tion of evolutionary algorithms. Springer (2005)

2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell (2002)

3. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. In: Proceedings of the
Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 56–64.
Morgan Kaufman (1993)

4. Harik, G.R., Goldberg, D.E.: Learning linkage. In: Belew, R.K., Vose, M.D. (eds.)
FOGA, pp. 247–262. Morgan Kaufmann (1996)

5. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE-
EC 3(4), 287 (1999)

6. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization al-
gorithm. In: Banzhaf, W., et al. (eds.) GECCO 1999, Orlando, FL, July 13-17,
vol. I, pp. 525–532. Morgan Kaufmann Publishers, San Fransisco (1999)

7. Watson, R.A., Pollack, J.: A computational model of symbiotic composition in evo-
lutionary transitions. Biosystems 69(2-3), 187–209 (2003), Special Issue on Evolv-
ability, ed. Nehaniv

8. de Jong, E.D.: Representation Development from Pareto-Coevolution. In: Cantú-
Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 262–273. Springer, Hei-
delberg (2003)

9. Toussaint, M.: Compact Genetic Codes as a Search Strategy of Evolutionary Pro-
cesses. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA
2005. LNCS, vol. 3469, pp. 75–94. Springer, Heidelberg (2005)

10. de Jong, E.D., Thierens, D., Watson, R.A.: Hierarchical genetic algorithms. In: Yao,
X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 232–241. Springer, Heidelberg
(2004)

11. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic
algorithms. In: Spector, L., et al. (eds.) GECCO 2001, July 7-11, pp. 511–518.
Morgan Kaufmann, San Francisco (2001)

12. Yu, T.L., Goldberg, D.E.: Conquering hierarchical difficulty by explicit chunking:
substructural chromosome compression. In: GECCO 2006, pp. 1385–1392. ACM
Press, NY (2006)

13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

14. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, U. of Utrecht
(2000)

15. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinformatics 7, 488 (2006)

16. Iclănzan, D., Dumitrescu, D.: Graph clustering based model building. In: Schaefer,
R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp.
506–515. Springer, Heidelberg (2010)

17. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.
(ed.) Foundations of Genetic Algorithms 2, San Mateo, pp. 93–108. Morgan Kauf-
mann (1993)

Learning Inherent Networks

from Stochastic Search Methods

David Iclănzan, Fabio Daolio, and Marco Tomassini

Faculty of Business and Economics, University of Lausanne, Switzerland
david.iclanzan@gmail.com, {fabio.daolio,marco.tomassini}@unil.ch

Abstract. Analysis and modeling of search heuristics operating on com-
plex problems is a difficult albeit important research area. Inherent net-
works, i.e. the graphs whose vertices represent local optima and the edges
describe the weighted transition probabilities between them, enable a
network characterization of combinatorial fitness landscapes. Methods
revealing such inherent structures of the search spaces in relation to de-
terministic move operators, have been recently developed for small prob-
lem instances. This work proposes a more general, scalable, data-driven
approach, that extracts the transition probabilities from actual runs of
metaheuristics, capturing the effect and interplay of a broader spectrum
of factors. Using the case of NK landscapes, we show that such an unsu-
pervised learning approach is successful in quickly providing a coherent
view of the inherent network of a problem instance.

1 Introduction

Knowledge of the fitness landscape structure of hard problem instances, also
called the search space, is an important issue in approximately solving those
problems since the performance of metaheuristics on the problem crucially de-
pends on this structure [1]. Empirical evaluation of the search space properties
is usually carried out by means of simple metrics such as fitness-distance corre-
lation or autocorrelation length. However, as each of those only captures a single
facet of the fitness landscape, recent efforts are targeted on developing richer,
more expressive models (see e.g. [2]).

The search space is fully defined by giving the (finite) set S of admissible
solutions, an objective or fitness function that measures the quality of the so-
lutions, and a neighborhood structure that, for each x ∈ S, tells which are the
solutions that can be reached from x by the application of a pre-defined move
operator. In previous work [3,4], attempts have been made to provide a compact
view of the complexity of the search space by defining a derived directed network
whose nodes are the optima of the search space and whose edges are approximate
transition probabilities between those optima and thus, implicitly, between the
corresponding basins of attraction. These networks have been variously called
“inherent networks” or “local optima networks” (LONs) and have their origins in
Monte Carlo studies of the energy of molecular clusters and macromolecules [5].

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 157–169, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

158 D. Iclănzan, F. Daolio, and M. Tomassini

In contrast to energy landscape, though, in combinatorial spaces the mapping
of states to energy levels is not continuous, thus the notions of minima and tran-
sitions have been readapted. In all previous work about LONs, local optima are
defined according to one-move hill-climbers. Transitions, then, can be defined
by exhaustively sampling all the solutions in a basin of attraction and looking
at the basin of their one-mutant neighbors (basin-transition edges [3,4]), or by
performing a number of kick-moves from a local optimum and looking at the
basin of the corresponding new solutions (escape edges [6]). Both models pro-
vide a compressed description of the combinatorial landscape that is relevant
for local search heuristics. It has been shown that some statistical features of
these complex networks correlate with problem difficulty, especially their mean
path lengths, the out-degree, and the lengths of paths to the global optimum,
which help to determine whether a given search heuristic will perform well on
them [7].

While the relevance of inherent networks analysis has been assessed, the cur-
rent LON extraction methods have some limitations we wish to address:

Scalability: the computation of the basin-transition and escape edges have ex-
ponential running times, which limit the applicability of the approach built
upon them to smaller problem dimensions.

Generality: these above methods computed transitions, built the inherent net-
work in relation with well-defined neighborhood structures resulting from
simple deterministic move operators (1 or 2-bit flip). With stochastic op-
erators, though, the notion of basin adjacency is not well-defined. Popular
metaheuristics often use several stochastic move operators that induce com-
plex neighborhood structures.

Abstraction Level: as recent results showed [8], search heuristics using the
same move operator but slightly different exploitation strategies (first im-
provement hill-climbing versus best improvement hill-climbing), result in
different inherent networks. This strongly suggests that inherent network
modeling is more suited at the metaheuristics-problem instance level rather
than at the move operator-problem instance one.

For these reasons, we depart towards a data-driven approach that extracts the
inherent network from many runs of a stochastic search method. We use a Self
Organizing Map to obtain a compressed view of the search space, which fa-
cilitates the monitoring of the approximate regions visited by the metaheuris-
tic. By mapping and tracking the sequence in which nodes are visited, we
obtain an approximation of the transition probabilities characterizing the
inherent network.

The paper is organized as follows: Section 2 gives the details of the pro-
posed method. Section 3 describes the experimental setup, while results are re-
ported in Section 4. Section 5 concludes the paper, also outlining future lines of
research.

Learning Inherent Networks from Stochastic Search Methods 159

Algorithm 1. Stochastic hill-climber

Input: N , maxnoimprovement, D
Output: state

1 state ← RandomBinaryState(N);
2 noimprovement ← 0;
3 epoch ← 0;
4 while noimprovement < maxnoimprovement do
5 epoch ← epoch+ 1;
6 newstate ← state;
7 for i=1:N do
8 if rand < 1/N then
9 bitflip(newstate[i]);

/* call needed for basin adjacency computation */

10 updateAdjacencyMatrix(state, epoch, D);
11 if Energy(newstate) > Energy(state) then
12 state ← newstate;
13 noimprovement ← 0;

14 else
15 noimprovement ← noimprovement+ 1;

2 Methods

2.1 Studied Problem and Search Heuristic

For easy comparison purposes, we use the same 18-bit NK landscape model as
in previous work on this topic [3,4,6,7]. NK landscapes are a model of stochastic
binary landscapes that can be tuned from smooth to rugged according to a single
parameter K that defines the problem non-linearity [9]. In the model, N refers
to the length of the bit strings; each bit of the N sites on a string contributes to
its fitness value but the value of each contribution depends on K other positions
from the bit-string. For K = 0 we have an “easy”, unimodal landscape; for
K = N − 1 a “hard”, highly-rugged and completely uncorrelated one.

In order to be able to compare with [6], as a search heuristic we use a simple
stochastic hill-climber, which at each iteration flips the bits of the actual state
with a probability of 1/N , where N is the dimensionality of the search space.
The newly generated state is accepted only if it improves the current state. The
search stops after a predefined number of consecutive trials without improve-
ment. The pseudocode of the stochastic hill-climber is outlined in Algorithm 1.
The role of the input matrix D and the procedure call from line 10, are partic-
ular to our proposed method and are later detailed in Section 2.4 in Procedure
updateAdjacencyMatrix. Except for those, Algorithm 1 is the much general
(1 + 1)ES with 1/N mutation that is widely used in theoretical studies.

Mapping the search dynamics of metaheuristics over combinatorial landscapes
to networks, requires the following components: (i) a way to determine the set of
nodes; (ii) a method that can approximate the search progress through the basins

160 D. Iclănzan, F. Daolio, and M. Tomassini

of attractions corresponding to the nodes; (iii) measurement and quantification
of the transfer probabilities between basins of attraction. We detail these steps
in the following.

2.2 Monitoring the Search Dynamics

Stochastic metaheuristics dynamics are hard to follow due to their ergodic na-
ture. Usually in each step they can theoretically reach an exponential number
of states, making an exact tracking infeasible.

In order to obtain a reduction in dimensionality, our proposed approach uses
Self-OrganizingMaps (SOM) [10] to follow and mine data from the search process
of metaheuristics. SOM develop a topology-preserving, discrete, low-dimensional
representation of a higher-dimensional space through unsupervised learning.
SOM have been successfully applied in a wide range of research areas cover-
ing data mining, pattern recognition, analysis and control of complex systems.
In the field of metaheuristics, SOM have been used to visualize the trajectory of
an individual in the search space [11], and to map algorithm performance in the
space of problem instances [12]. In relation to binary search spaces, SOM have
been successfully applied in genetic algorithms to mine information about the
search dynamics [13]. In that work, the information provided by the map was
used to intelligently balance exploration and exploitation in these stochastic,
population-based methods.

In this paper, the SOM enables to track the search trajectory across points
of interests, the basins of local optima. After preliminary tests, a SOM of 4096
neurons arranged on a 64 by 64 grid was employed. Its training still limits the
scalability of the approach, but has to be carried out only once for all the in-
stances of the same size. We used 3000 training epochs, in each epoch presenting
to the network in random order the entire 18-bit binary input space. After train-
ing, each one of the 4096 neurons maps a particular region of the 18-bit solution
space, providing a compressed view.

The trained SOM is used to build a simple function that approximates if a
solution belongs to the basin of a local optimum of interest. The idea is that
if two solutions resemble topologically, matching to the same SOM neuron, and
their energy difference is small, being under a predefined threshold, then there
is a high probability that they belong to the same basin of attraction. With the
help of this function we can efficiently monitor the search process in relation
to basins of attraction it passes through with time, being able to record the
sequence and the frequency with which basins of attractions are visited.

The pseudocode of the identification is presented in the Function named
isBasinOf. The approximation is noisy, i.e. the basin identifying function can
give false positives. To address this issue, we sample a large number of search
trajectories. This helps to reduce the effect of the noise and correctly highlights
the trends in which basins of attraction tend to follow each other.

Learning Inherent Networks from Stochastic Search Methods 161

Function isBasinOf(node, state, energythreshold)

Result: boolean
/* compute the best matching units (bmu) of the target node and

current state */

1 bmu node ← SOM(node);
2 bmu state ← SOM(state);

/* compute the energy delta */

3 Δ ← Energy(node) - Energy(state);
4 if (bmu node = bmu state) and (Δ < energythreshold) then
5 return true;
6 else
7 return false;

2.3 The Nodes

Transition frequencies can be measured over arbitrary set of solutions. However,
following the analogy with inherent networks of energy landscapes, solutions
corresponding to network nodes should be strong solutions, possibly local optima
relative to the search heuristic. The source of these points can be external,
known good solutions provided by human experts or reported by other search
methods. If this is not available, they can be determined internally by running the
heuristics many times and choosing the best points where the search plateaued.

To allow for a direct comparison, in this paper we use as nodes the local
optima reported and analysed in previous work [7]. For each studied problem
instance, we restrict our analysis to the top local optima that map to different
neurons in the trained SOM. For high K, the NK landscape has an exponential
number of local optima. For these instances we cap the number of nodes to the
top 1024 local optima in order to maintain a minimum ratio of 1:4 between the
nodes of the inherent networks and the neurons from the trained SOM.

2.4 The Edges

With the help of the above described isBasinOf Function, in each step of the
stochastic hill-climber we check if the newly generated state belongs to a basin
of attraction of one of the nodes. If yes, for all the other basins that have been
visited before, the adjacency matrix describing the empirical transfer frequencies
between basins of different local optima is updated. The amount of update is
proportional to the number of epochs elapsed between the visits, being 1 for
consecutive visits and tending to 0 as the length of elapsed epochs is closer to
the maxnoimprovement threshold. The update process is outlined in Procedure
updateAdjacencyMatrix.

As seen in line 1 in Procedure updateAdjacencyMatrix, we use an arbi-
trarily value of 0.01 for the energythreshold variable in Function isBasinOf,
which accounts for 2% to 10% of the fitness variance, depending on the instance.

162 D. Iclănzan, F. Daolio, and M. Tomassini

Procedure updateAdjacencyMatrix(state, epoch, D)

1 energythreshold ← 0.01;
2 for b ← 1 : nrOfNodes do

/* check if the current search state maps to any basin b */

3 if isBasinOf(nodes[b], state, energythreshold) then
4 for i ← 1 : nrOfNodes do
5 l ← lastT imeV isted(nodes[i]);

/* if other basins i have been visited before, update the

adjacency matrix */

6 if l > 0 then
/* the update is weighted with the elapsed epochs

between the visits */

7 t ← min(epoch− l,maxnoimprovement);

8 D(i, b) ← D(i, b) + maxnoimprovement−t+1
maxnoimprovement

;

The data-driven approach needs many runs in order to have time to discover
and reinforce (thus, diminish the impact of false positives) true basin adjacency
trends. For each studied NK landscape instance, first we initialize the adjacency
matrix D to all zeros, then we perform 10000 stochastic hill-climber runs as
defined in Algorithm 1 to mine and accumulate the transfer frequencies into D.

In the last step we normalize D by dividing each non-zero D(i, j) entry by
the sum of the elements on the ith row. This results in a stochastic adjacency
matrix where the D(i, j) entries describe the probability that the search will
move from the basin of attraction corresponding to the ith node to the basin
of the jth node. Note that, from Procedure updateAdjacencyMatrix, such
transitions need not to be direct jumps as in [6], rather they can be interpreted
as conditional probabilities that the search might end up in the jth node some
time after having visited the ith node, with transition weight relating to the time
interval between visits.

3 Experiments

With N fixed to 18, as in previous studies, the ruggedness of the NK landscape
was increased from K = 2 to K = 16 by steps of 2. For statistical significance,
for each K we generated 100 different random NK landscape instances. On each
landscape we ran the classical 2-bit flip analysis [6,7] for baseline comparison
and the proposed method with 3 different parametrizations of the stochastic
hill-climber, which had the maxnoimprovement condition set to 180, 640, and
finally 1440 steps. This parameter regulates how much exploration time the
method has; with an increased value it is expected that the hill-climber is able
to reach basins of attraction that are further away in a Hamming distance sense.

The previous and the present methods used for deriving the inherent net-
works significantly differ, the first being based on deterministic move operators

Learning Inherent Networks from Stochastic Search Methods 163

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16
K

2D
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

steps

 180

 640

1440

Adjacency matrix correlation after 10'000 runs

Fig. 1. Correlation between normalized adjacency matrices corresponding to inher-
ent networks obtained by the deterministic method mentioned in Section 1 and our
proposed data-driven approach. Results are averaged on 100 independent landscapes,
shaded areas (where visible) give the standard error on the mean. Line type and color
refer to the stopping criterion of the stochastic hill-climber (see legend on the right).

[6,7] while the second extracts the network from stochastic search trajectories.
However, as both approaches tend to sample close points in a Hamming distance
sense, for a first assessment we performed a direct comparison: the obtained tran-
sition matrices were normalized (non-zero entries are divided by the row sum)
and their corresponding Pearson 2D matrix correlation coefficient were com-
puted. In a second stage we analyzed how the inherent networks obtained by
our method correlate with the parametrized non-linearity of the NK landscapes.

4 Results

4.1 Comparative and Convergence Analysis of the Inherent
Networks

The results of the direct comparison are depicted in Figure 1. The inherent net-
works obtained by the data-driven approach from 10000 stochastic hill-climber
runs, significantly correlate with the deterministic approach for all K. The re-
sults are very similar in all the 100 different runs for each K, resulting in very
small standard errors of the mean. As seen in the figure, the correlation is weaker
for smaller K, as in these problem instances the landscape is smoother and with
fewer basins of attraction. Here, the stochastic hill-climber is often able to es-
cape basins of attraction, moving towards stronger solutions. The discrepancy is
directly proportional to the exploration time, value of the maxnoimprovement
parameter, entitled to the stochastic hill-climber. For high values of K, the land-
scapes are highly uncorrelated, with an exponential number of local optima. As
it is much harder to find better basins of attraction, the correlation increases and
statistics are almost the same for all stochastic hill-climber parametrizations.

Next, we evaluated how the correlation changes with the number of restarts
used for mining the transition probabilities between the nodes. Figure 2 depicts

164 D. Iclănzan, F. Daolio, and M. Tomassini

0.5

0.6

0.7

0.8

0.9

1.0

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of runs

2D
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

steps

 180

 640

1440

Evolution of correlation for K=2

0.5

0.6

0.7

0.8

0.9

1.0

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of runs

2D
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

steps

 180

 640

1440

Evolution of correlation for K=8

0.5

0.6

0.7

0.8

0.9

1.0

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of runs

2D
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

steps

 180

 640

1440

Evolution of correlation for K=16

Fig. 2. Evolution of the correlation coefficient between adjacency matrices, as a func-
tion of the number of restarts of the stochastic hill-climber, for different values of K

this evolution as more restarts are used for K = {2, 8, 16}. The empirical data
suggest that more restarts are needed with increasing K - diminishing land-
scape structure for all hill-climber parametrizations. For the most rugged NK
landscape, having K = 16, the asymptotic increase in correlation is reached af-
ter 4000-5000 restarts. Further number of restarts increase the correlation at a
diminished rate of returns.

Learning Inherent Networks from Stochastic Search Methods 165

Results of the direct comparison suggest that the data-driven approach is
able to extract transition probabilities that are resembling those obtained in
the literature by the deterministic operator-move based approach, without the
need to systematically process the entire search space. In the followings we take
a closer look on how the learnt inherent-networks capture increasing problem
hardness, taking into account that we limit the size of the inherent network to
at most 1024 nodes.

4.2 Structure of the Inherent Networks

Often times data visualization can provide insights into phenomena that ag-
gregate, descriptive statistics might fail to reveal. Figure 3 shows the inherent
networks that are mined from an NK landscape instance with N = 18 and
K = 2 by our proposed method. The different plots present the cumulated
search trajectories of Algorithm 1 that stops, respectively, after 180, 640, and
1440 maxnoimprovement steps. It is evident by the number and thickness of
the arcs in the graphs that the more exploration allowed, the higher the density
of transitions in the inherent networks. Accordingly, when the local searcher is
allowed less trials without improving, it ends up more often in the same basin
of departure, whereas with a larger budget of trials, it has more chances to es-
cape weaker maxima. This can be visually appreciated from Fig. 3 considering
that nodes sizes are depicted proportional to self-loop transition weights (i.e.
chances of revisiting the same basin), and node color proportional to fitness: for
maxnoimprovement = 1440, the rate with which some maxima are revisited
has shrunk, whereas other maxima are left to dominate the search dynamics.

In order to back up such visual intuitions and to check whether the proposed
method builds inherent networks whose structure correlates with the search
space complexity, which for the NK landscapes is determined by the value of
K, we report in Figure 4 an overview of the main network features with respect
to K. Figures 4a and 4c confirm the phenomena already depicted in Fig. 3,
namely that there are more connections out of node and the self-loops are less
prominent when the stochastic hill-climber stops after a higher number of trials
without improvement. Figures 4a and 4c present a reversal in trend after K = 6,
which is due to the fact that the nodes of the inherent network are capped to the
top 1024 local optima. For higher values of K the landscapes become more and
more rugged and disordered, therefore it is harder for the local search to reach
another basin of attraction (decreasing trend in average out-degree), tending to
revisit the same basin (increasing trend in self-loops). The same trend reversal is
exhibited by the escape edges model also, when considering only the transitions
among the top 1024 local optima.

Figure 4b shows that, for all used parametrizations of the local searcher,
the density of transitions steadily decreases with K, i.e. the search trajectory
covers a smaller and smaller fraction of the number of possible transitions,
which is expected to grow exponentially with the multimodality of the land-
scape. This agrees with previous findings about the local optima networks of
NK landscapes [6]. The most important result is in Fig. 4d: the average length

166 D. Iclănzan, F. Daolio, and M. Tomassini

Fig. 3. Inherent networks for a typical NK instance with N = 18 and K = 2, from
a stochastic hill-climber that stops after 180 (top), 640 (middle), and 1440 (bottom)
steps without improvement. The size of the nodes is drawn proportional to the weight of
self-loop transitions, the thickness of edges to the weight of out-going transitions. The
darker the color of a node, the higher the energy value of the corresponding maximum.

Learning Inherent Networks from Stochastic Search Methods 167

0

10

20

30

40

2 4 6 8 10 12 14 16
K

A
ve

ra
ge

 O
ut

-D
eg

re
e steps

 180
 640
1440

(a) number of transitions out of a node

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12 14 16
K

N
et

w
or

k
D

en
si

ty

steps
 180
 640
1440

(b) density of transitions

0.4

0.6

0.8

2 4 6 8 10 12 14 16
K

A
ve

ra
ge

 w
ei

gh
t o

f s
el

f-
lo

op
s

steps
 180
 640
1440

(c) weight of self-loop transitions

101

101.5

102

102.5

103

103.5

104

2 4 6 8 10 12 14 16
K

A
ve

ra
ge

 P
at

h
Le

ng
th

steps
 180
 640
1440

(d) average path length

Fig. 4. Main features of the inherent networks with respect to the landscape non-
linearity. Lines give the average on the 100 independent instances, shaded areas (where
visible) show the standard error on the mean. Plot 4d is on a semi-log scale.

of paths between local maxima, which is known to be a good predictor of prob-
lem hardness for local search heuristics, scales exponentially with the problem
non-linearity, thus revealing at the inherent-network level the ruggedness of the
underlying fitness landscape. This evidence confirms that, despite a limitation
on the number of nodes, the proposed method can capture relevant features of
the search space.

5 Conclusions

This paper proposes a data-driven approach to the off-line characterization of
a combinatorial fitness landscapes by learning its inherent network from ac-
tual metaheuristic runs. Initial, classical definitions for these inherent-networks
required the enumeration of the search space. Our method implies a costly com-
pression of the input space, i.e. the training of the SOM, but such a training is
to be done only once for all the instances sharing the same set and coding of
solutions, and the size of the map has to be adapted to the number of nodes of
the inherent network rather than to the size of the search space. Thus our results
suggest that inherent networks capturing the problem instance characteristics,
with the same or better descriptive power as previous methods, can be derived

168 D. Iclănzan, F. Daolio, and M. Tomassini

in a much more scalable way. However the relationship between the problem size
and the number of restarts of the metaheuristic needs to be further investigated.

The main contribution of the proposed method lies in its generality. This ap-
proach shifts the analysis at the search method - problem instance level, covering
multiple facets of the search process, like the selection mechanism, exploration
vs. exploitation balance, operators interplay etc. In particular, the method en-
ables the quantification of stochastic, ergodic search operators for which defining
an exact and crisp neighborhood structure is not possible.

While unexplored in this paper, the proposed data-driven approach offers the
ability to capture aspects regarding the evolution in time of the search dynam-
ics. In future work we would like to study how the change in balance between
exploration and exploitation, for example in Simulated Annealing or applying a
reseed procedure in an Evolutionary Algorithm, reflects short and long-term in
the derived inherent-networks. Also, future work will concentrate on scaling on
bigger problem instances and analysis of methods with multiple search operators
as exhibited in more complex metaheuristics.

Acknowledgments. This research is supported by the Sciex Fellowship
nr. 12.061.

References

1. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2005)

2. Watson, J.P.: An introduction to fitness landscape analysis and cost models for
local search. In: Handbook of Metaheuristics, pp. 599–623. Springer (2010)

3. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial
spaces: The NK landscape case. Physical Review E 78(6), 066114 (2008)

4. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Transactions on Evolutionary Computation 15(6), 783–797 (2011)

5. Doye, J.P.K.: The network topology of a potential energy landscape: a static scale-
free network. Phys. Rev. Lett. 88, 238701 (2002)

6. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with es-
cape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E.,
Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg
(2012)

7. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the
performance of iterated local search. In: GECCO, pp. 369–376. ACM (2012)

8. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. Best-improvement lo-
cal optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg
(2010)

9. Kauffman, S.: The origins of order: Self organization and selection in evolution.
Oxford University Press (1993)

Learning Inherent Networks from Stochastic Search Methods 169

10. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn.
Springer-Verlag New York, Inc., Secaucus (2001)

11. Romero, G., Arenas, M.G., Castillo, P., Merelo, J.: Visualization of neural net
evolution. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp.
534–541. Springer, Heidelberg (2003)

12. Smith-Miles, K., Lopes, L.: Generalising algorithm performance in instance space:
A timetabling case study. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp.
524–538. Springer, Heidelberg (2011)

13. Amor, H.B., Rettinger, A.: Intelligent exploration for genetic algorithms: using self-
organizing maps in evolutionary computation. In: GECCO, pp. 1531–1538. ACM
(2005)

Metaheuristics for the Pick-Up

and Delivery Problem with Contracted Orders

Philip Mourdjis1, Peter Cowling1, and Martin Robinson2

1 York Center for Complex Systems Analysis (YCCSA)
and Department of Computer Science, University of York, York, UK

{pjm515,peter.cowling}@york.ac.uk
2 Transfaction Ltd., Suffolk, UK

martin.robinson@transfaction.com

Abstract. Contracted orders represent a novel extension to the Pick-up
and Delivery Problem (PDP) with soft time windows. This extension to
the multiple depot problem has depots managed by separate, competing
haulage companies “carriers”. Orders may be assigned to a specific car-
rier “contracted”, “allocated” to a specific carrier but allowed to swap
if this improves the solution or free to use any carrier “spot hired”. Soft
time windows lead to a multi-objective problem of minimising distance
travelled and delay incurred. In this paper we use real order data sup-
plied by 3 large distributors and 220 carriers. Additional, randomised,
orders are generated to match the distributions observed in this data,
representing backhaul orders for which no data is available. We com-
pare a manual scheduling technique based on discussions with industry
partners to popular metaheuristics for similar problems namely Tabu
Search (TS), Variable Neighbourhood Search (VNS) and Hybrid Vari-
able Neighbourhood Tabu Search (HVNTS), using our modified local
search operators. Results show that VNS and HVNTS produce results
which are 50% shorter than greedy approaches across test instances of
300 orders in a one week period.

1 Introduction

The purpose of this paper is to compare the effectiveness of a number of heuristic
methods on a specific real world Vehicle Routing Problem (VRP), specifically a
multi-depot VRP with pick up and delivery and soft time windows. Our research
focusses on medium to long distance deliveries made from point to point within
the UK. By considering sample orders from 3 large distributors and 220 haulage
companies “carriers” we aim to reduce transportation costs and carbon emissions
through the intelligent coordination of logistics activities. We are particularly
interested in the gains possible through the re-assignment of orders between
carriers. We note that there are currently 3 ways an order can be specified to
carriers:

Contracted orders must be serviced by a specified carrier, the order may be
re-allocated only between trucks belonging to this carrier.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 170–181, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Metaheuristics for the PDP with Contracted Orders 171

Allocated orders are assigned to specific carriers but may be re-allocated by
that carrier to sub-contracted carriers.

Spot hired orders may be assigned to any truck belonging to any carrier and
re-assigned any number of times to any truck.

The remainder of this paper is organised as follows. Section 2 introduces the
ideas, models and concepts that we build upon in this paper. Section 3 sets
out our model. Section 4 presents the local search operators used including our
modification of GENI and describes the various metaheuristic methods chosen for
experimentation along with the changes made to them to fit our model. Section
5 details the parameters used in our experiments, how randomised orders were
generated from our existing data and compares the effectiveness of the introduced
metaheuristics with varying levels of contracted and allocated orders. Section 6
presents conclusions and results analysis. Finally, we present an outline of areas
for future research work.

2 Related Work

The work we have undertaken builds on VRPs with Time Windows (VRPTW),
where orders must be fulfilled between a given earliest and latest time. These
problems are summarised with an overview of exact algorithms and optimisation
methods by Desrosiers et al. [1] and more recently with local search algorithms
and metaheuristic approaches by Bräysy and Gendreau [2,3]. We also build upon
research into Pick-up and Delivery Problems (PDPs) recently classified and sum-
marised by Berbeglia et al. [4] and Parragh et al. [5]. The combination of these
two areas is the PDP with Time Windows (PDPTW) [6] and still represents
a lesser researched area than either of its parents. Ropke et al. [7] proposes an
exact solution for the PDPTW while Malca and Semet [8] present a Tabu Search
(TS) approach. Gendreau et al. [9] present neighbourhood searches for the dy-
namic version of this problem. For our real world problem we considered local
search neighbourhoods and metaheuristics that have proved strong in the re-
lated VRPTW and tailor their methods to our specific needs. Taillard et al. [10]
and Cordeau et al. [11,12] present techniques for implementing TS algorithms
similar to those we use in this paper. Variable Neighbourhood Search (VNS)
originally introduced by Mladenovic and Hansen [13] is a very good, general
purpose, search metaheuristic capable of adapting to a wide variety of applica-
tions [14]. VNS has since been successfully applied to the VRPTW by Bräysy
[15] and the multi-depot VRPTW by Polecek et al. [16]. The recent Hybrid
Variable Neighbourhood Tabu Search (HVNTS) method of Belhaiza et al. [17]
is tailored to the VRP with multiple time windows and was found to compare
favourably to an ant colony optimisation on instances of the problem studied
there.

172 P. Mourdjis, P. Cowling, and M. Robinson

3 Problem Definition

The PDP with contracted orders is defined on a directed graph G = (V,A)
where A is the arc set and V = {B,N} is the vertex set split into B base-depot
locations and N customer locations. A carrier is defined as a base location bi ∈ B
and a set of trucks Ti = {T 0

i , . . . , T
Mi

i } where Mi is the number of trucks for
carrier i. An order i consists of a collection location ci ∈ N and a final delivery
location di ∈ N . In reality there are often several delivery locations as shown in
Fig. 1a but at present we treat these orders as atomic, with the complexity of
additional delivery locations abstracted away as in Fig. 1b for simplicity. The
problem involves routing n orders into m routes, allowing for zero cost empty
routes. Minimising m is not considered as part of this problem though it is kept
low as a side effect of the heuristics used.

b

c1 d1,1

d1,2
d1,3

c2
d2,1

d2,2

d2,3

(a) Real

b

c1

d1

c2

d2
b

(b) Representation

Fig. 1. Route abstraction

Distance Model. We denote ci,j as the cost of travelling from order i to order
j, due to the route abstraction shown in Fig. 1 these costs are asymmetric such
that ci,j �= cj,i. the straight line distance travelled while empty between the last
delivery of the previous order and the current orders collection is used as the
cost (Thus if a truck has no orders it has no associated cost). Each route is
terminated at both ends by a dummy order located at the specified trucks base
depot, thus a route j with k orders has dummy orders at 0 and k+1, its empty
distance cost, dj , is shown in equation 1, constrained by MaxD, the maximum
distance a truck is permitted to drive in a week.

dj =

k∑
i=0

ci,i+1.where dj < MaxD (1)

Any change to the solution can be mapped to a series of insertion and removal
operations. As the orders themselves are present in both solutions (before and
after any change) the only aspects that need to be considered are the legs between
orders, shown in Fig. 2. Denoting či as the insertion cost of an order i between
two pre-existing orders x and y, the change caused by inserting an order is
calculated as shown in equation 2.

či = cx,i + ci,y − cx,y. (2)

Metaheuristics for the PDP with Contracted Orders 173

cx cy

ci

cx,y

cx,i ci,y

Fig. 2. Route alteration

Similarly the removal cost ĉi of an order is as shown in equation 3:

ĉi = cx,y − cx,i − ci,y. (3)

A key point to note is that both ĉi and c̆i may be positive or negative with pos-
itive costs indicating an increase in empty distance and negative costs indicating
a decrease.

3.1 Time Window Model

Figure 3 shows a number of collection time windows. ei is the earliest time a
truck may service customer ci and li is the latest time, there is no penalty for
arriving at a location early, though the truck will have to wait until the specified
earliest time to be serviced. If the truck arrives after li the order is said to be
delayed by ti− li where ti is the actual time customer i is serviced. Not shown in
Fig. 3 is the service time required for loading / unloading at a customer location,
this is denoted by si. Tardiness is calculated based on the vehicles arrival time
at a location thus if a vehicle arrives at the latest arrival time the tardiness is 0
even though the truck will not leave until si + li (after the latest time li). The
tardiness of a vehicle tV is simply the sum of the individual delays experienced
at each location in its route. Orders are always inserted as early as possible
at the chosen insertion point and changes to a route force an update of delay
parameters for each subsequent location.

Note, that since a collection node must occur before its delivery node, revers-
ing a section of a route will significantly alter the distance, time windows are
also usually tight enough such that one or more orders will be rendered signif-
icantly delayed. Methods relying on partial route inversions such as GENI [18]
and iCROSS [15] will therefore not work well without alteration.

3.2 Objective

Our optimisation procedure seeks to fulfil all orders in such a way as to reduce
the total travel cost whilst keeping tardiness to a minimum. The fitness of a
vehicles route, fV , is given in equation 4. Here α represents a tunable parameter
between 0 and 1 determining the relative importance of tardiness and distance
respectively. DV and TV represent the total distance and time of a vehicles route

174 P. Mourdjis, P. Cowling, and M. Robinson

TWi TWj

tei li ej lj

b

ci cj

ck

b

(a) Before

TWi TWk TWj

tei li ek lk ej lj

b

ci cjck

b

(b) After

Fig. 3. Tardiness - Two orders ci and cj are currently scheduled and only ci is delayed.
If another order (ck) were placed between the two existing orders, ci would remain at
its current time while cj may have to occur later, potentially becoming delayed.

respectively, dividing by these gives relative empty miles and relative tardiness,
allowing comparisons to be made between the two metrics which would otherwise
be orders of magnitude different.

fV = α

(
dV
DV

)
+ (1− α)

(
tV
TV

)
(4)

Since the impact of both of these upon a carrier is in additional cost (or lost
profits) we combine them into a single objective function. α therefore determines
the relative cost of driving additional miles versus late delivery penalties. The
fitness of a solution is the sum of the individual fitnesses of all its vehicles as
shown in equation 5.

FS =

m∑
j=1

fj . (5)

4 Solution Methods

4.1 Local Search Operators

For hundreds of carriers and thousands of orders it is computationally intensive
to calculate a fitness from a solution. We use local moves to make incremental
changes to the current solution instead and measure changes in fitness. These
are much easier to compute and over successive iterations we can make large
changes to the solution.

A number of local search operators are used including cross [10], relocate [2],
swap [2] and a modification of GENI [18]. Each of these local moves is intended

Metaheuristics for the PDP with Contracted Orders 175

b

i+ 1i− 1

i

b

Before

b

i+ 1i− 1

i

b

After

(a) Intra route relocate [2]

b

i− 1

i

j

j + 1

b

Before

b

i− 1

i

j

j + 1

b

After

(b) Inter route relocate [2]

b

i− 1

i

i+ 1

j − 1

j

j + 1

b

Before

b

i− 1

i

i+ 1

j − 1

j

j + 1

b

After

(c) Swap operator [2]

b

i− 1

i

k

k + 1

j − 1

j

l

l + 1

b

Before

b

i− 1

i

k

k + 1

j − 1

j

l

l + 1

b

After

(d) Cross exchange [10]

Fig. 4. Local moves

to preserve existing orderings as much as possible. Our modification of GENI is
presented below and the other operators used are summarised in Fig. 4. They
represent restricted 3- and 4-opt operators which preserve the order of nodes.

GENI - Preserve Ordering. A local move, similar in spirit to the generalized
insertion (GENI) procedure of Gendreau et al. [18] was devised as follows, for a
given order to be inserted into a chosen target route, for each pair of nodes in the
target route, calculate the two insertion costs as shown in Fig. 5b using equation
2. In comparison to GENI, Fig. 5a, GENI-PO does not reverse the traversal of
any existing arcs of the solution and should be more suitable for this real world
problem with time windows.

4.2 Metaheuristics

We sought to make comparisons between popular and contemporary metaheuris-
tics from the literature and a greedy assignment without optimisation. We use
simple versions of TS [19,10], VNS [13,14] and HVNTS [17] for our experiments,
adapted such that they are effective for our problem and a fair comparison can be
made between them. To this end a number of differences to the original methods
have been made.

1. We have adapted each procedure to use the same set of local search operators,
namely intra- and inter-route relocate, swap, cross and GENI-PO introduced
in Section 4.1. When optimising routes, we check if the order we want to
move is contracted, if it is, we can still move the order between vehicles but

176 P. Mourdjis, P. Cowling, and M. Robinson

b
i i+ 1 j j + 1 k − 1 k k + 1 l − 1 l

v

b

Before

b
i i+ 1 j j + 1 k − 1 k k + 1 l − 1 l

v

b

After: type 1

b
i i+ 1 j j + 1 k − 1 k k + 1 l − 1 l

v

b

After: type 2

(a) Geni-Exchange

b
i j

v

b

Before

b
i j

v

b

After: type 1

b
i j

v

b

After: type 2

(b) Geni-Preserve Ordering

Fig. 5. GENI and GENI-PO local moves

the search space becomes restricted to only those vehicles belonging to the
contracted carrier.

2. In each case a greedy insertion method is used to generate an initial solution.
This method takes a random list of orders and inserts each in its lowest cost
insertion location given already scheduled orders. For each insertion location,
the lowest insertion cost min (či) is determined by using equation 2 for each
valid insertion point. The greedy insertion method is used as a baseline
for the comparison after discussions with our sponsor, Transfaction, as a
technique which closely mimics current manual/semi-automatic approaches
to scheduling.

3. Once an initial solution has been generated the three methods are each given
50 CPU seconds to generate a result, allowing fast iterating techniques to
run more iterations. As the heuristics use differing amounts of CPU time
to process one iteration comparing the heuristics with a fixed number of
iterations would not be fair. In the extreme a heuristic approach may be
“beaten” by an exhaustive style search if the same iterations of each were
performed but would take substantially (thousands of times) longer to run.
We feel that keeping CPU time constant is a fair way to evaluate these
methods [20]. All tests were carried out on aWindows 7 SP1 desktop machine
running C� code on a 2.8Ghz Intel core i5-2300 processor with 8Gb of RAM.

5 Computational Experiments

5.1 Generating Orders

At present we have access to one week’s worth of order data for 3 large distrib-
utors and 220 hauliers. To more thoroughly test our heuristics and to ensure
we are not overfitting to our sample data we generate additional randomised

Metaheuristics for the PDP with Contracted Orders 177

orders in the form of backhauls [4]. These are derived from existing orders where
collection locations are picked from real delivery locations and delivery locations
are picked from real collection locations1. We use a set of uniform and Poisson
distributions with parameters tuned to approximate the orders for which we
have data.

5.2 Speed and Travel Parameters

Each collection and delivery location used is based on UK postcodes which are
translated to standard eastings and northings. Between locations, straight line
distances are used and it is assumed that trucks travel at a constant 35 Kph
as this is the average value derived from our massive data set. We set MaxD at
1650 km as at 35 Kph this is the limit for the number of hours a long haul driver
is allowed to drive in a week.

5.3 Aims

To investigate the effect of contracted and allocated orders, we conducted 5 sets
of experiments, in each set, orders were defined with: 100% contracted; 30%
contracted, 60% allocated & 10% spot hired; 30% contracted & 70% spot hired;
60% allocated & 40% spot hired and all spot hired respectively. In each case 10
seeded randomised runs were performed for each heuristic. For each run, 200 real
orders were selected from a database of orders and a further 100 were generated
as described in Section 5.1.

5.4 Findings

To easily display the large numbers of results generated, groups of four box
plots have been used to represent the four techniques compared. Each box plot
represents the min / max and quartiles of the 10 runs. Figure 6 presents this
information along with the order of the heuristics used in the following charts.
Here “Greedy” represents the initial solution before optimisation, VNS, TS and
HVNTS represent the results from our modified heuristics after optimisation.
Figures 7 and 8 present the empty miles and delay for all heuristics across the
range of scenarios introduced above. We can see that there is a clear trend
towards shorter distances as we allow orders more freedom in carrier choice.
This trend is amplified by our metaheuristics which produce little benefit in a
fully contracted model but produce benefits of approximately 50% in the spot
model.

Of the three heuristic approaches investigated, VNS and HVNTS can be seen
to produce the shortest routes across multiple runs of our experiments when
orders are spot hired. When all orders are contracted to a specific carrier there
is much less variation in the results observed, note that there is still a large

1 We know backhaul orders of this kind exist but have no data for them, since they
are often requested by small distributors.

178 P. Mourdjis, P. Cowling, and M. Robinson

Greedy VNS Tabu HVNTS

Low
Lower 25%

Median
Upper 25%

High

Methods in each α - value column

Fig. 6. Key

100% cont. 30% cont.
60% alloc.
10% spot.

30% cont.
70% spot.

60% alloc.
40% spot.

100% spot.
0

2

4

6

·104

E
m
p
ty

m
il
es

Fig. 7. Empty miles - lower is better

100% cont. 30% cont.
60% alloc.
10% spot.

30% cont.
70% spot.

60% alloc.
40% spot.

100% spot.
0

200

400

600

D
el
ay

Fig. 8. Delay - lower is better

Metaheuristics for the PDP with Contracted Orders 179

100% cont. 30% cont.
60% alloc.
10% spot.

30% cont.
70% spot.

60% alloc.
40% spot.

100% spot.
0%

20%

40%

60%

80%

100%
P
ro
fi
ta
b
il
it
y

Fig. 9. Average carrier profitability - higher is better

0

50

100

U
n
u
se
d

4
0
-5
0
%

5
0
-6
0
%

6
0
-7
0
%

7
0
-8
0
%

8
0
-9
0
%

9
0
-1
0
0
%

91

2
9

33

5
0 0

N
u
m
b
er

o
f
tr
u
ck
s
(A

v
er
a
g
e)

(a)

Greedy search

100% contracted

U
n
u
se
d

4
0
-5
0
%

5
0
-6
0
%

6
0
-7
0
%

7
0
-8
0
%

8
0
-9
0
%

9
0
-1
0
0
%

11
0 0

35

58

29

7

(b)
VNS

100% spot hired

Fig. 10. Route profitability breakdown

solution set to evaluate in this case as even when contracted to a carrier there
remains a choice of delivery vehicle and ordering. We feel that due to time
order constraints the greedy insertion heuristic used in the entirely contracted
examples is able to produce routes that are close to optimal and do not leave
room for our heuristic techniques to improve upon.

Figure 9 shows that the average profit a carrier attains under any heuristic
increases as the proportion of spot hired orders increases. Here profitability is
the percentage of distance travelled that is spent on delivery, between pick-up
and delivery.

We also observed that the fully contracted scenario using greedy scheduling
produced an unfair distribution of orders between carriers such that many were

180 P. Mourdjis, P. Cowling, and M. Robinson

left without any orders (Fig. 10a). Moving to the other end of the spectrum,
VNS on the fully spot hired scenario produces higher rates of profitability which
are consistent across many more carriers (Fig. 10b), yielding a more sustainable
situation from the point of view of the carriers.

6 Conclusions and Future Work

Conclusions. From our results it is clear to see that the shortest routes are
achieved when all orders are spot hired, free to be assigned to any carrier, and
that these routes offer no significant change in the overall delay of the solution.
We note that pre-allocating orders to preferred carriers, though better than being
contracted, still produces relatively long routes with the optimisation procedures
we have used here. Also of interest is that our optimisation strategies produce
far greater benefits over the initial solution when there are no contracted or allo-
cated orders. This can likely be attributed to the larger solution space available
to explore.

We believe that since spot hired orders are more efficient for carriers to handle,
they can be delivered more cheaply. A coordinating body such as our industrial
partner, Transfaction, therefore has the potential to deliver on its promises of in-
creasing carrier profits, reducing distributor costs and reducing carbon emissions
in the delivery chain.

As we increase the number of orders from 300, we expect the efficiency
gains from allowing more freedom in scheduling (through more spot orders)
and through the use of effective heuristics will be even higher.

Future Work. We aim to adapt the current model and techniques of our prob-
lem to a dynamic environment where orders arrive in real time, in this case the
most suitable heuristic may change and further alterations to our model, local
move operators and metaheuristic approaches may be needed. Also the heuristics
and local search operators need to be significantly sped up. Further research in-
tends to investigate the effects of combining orders where possible, for example,
truck capacity may allow more than one order to be collected before deliveries
commence.

Acknowledgements. This work has been funded by the Large Scale Complex
IT Systems (LSCITS) EngD EPSRC initiative in the Department of Computer
Science at the University of York and by Transfaction Ltd.

References

1. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time Constrained Routing
and Scheduling. Handbooks in Operations Research and Management Science 8,
35–139 (1995)

2. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows, Part I:
Route Construction and Local Search Algorithms. Transportation Science 39(1),
104–118 (2005)

Metaheuristics for the PDP with Contracted Orders 181

3. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows, Part II:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

4. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and de-
livery problems: a classification scheme and survey. TOP 15(1), 1–31 (2007)

5. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. Journal für Betriebswirtschaft 58(2), 81–117 (2008)

6. Dumas, Y., Desrosiers, J., Soumis, F.: The pickup and delivery problem with time
windows. European Journal of Operational Research 54, 7–22 (1991)

7. Ropke, S., Pisinger, D.: An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transportation Science 40(4),
455–472 (2005)

8. Malca, F., Semet, F.: A tabu search heuristic for the pickup and delivery problem
with time windows and a fixed size fleet, 1–5 (2003) (unpublished manuscript)

9. Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood Search Heuris-
tics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries.
Transportation Research Part C: Emerging Technologies 14(3), 157–174 (2006)

10. Taillard, E.D., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows. Transporta-
tion Science 31(2), 170–186 (1997)

11. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for ve-
hicle routing problems with time windows. Journal of the Operational Research
Society 52(8), 928–936 (2001)

12. Cordeau, J.F., Laporte, G., Mercier, A.: Improved tabu search algorithm for the
handling of route duration constraints in vehicle routing problems with time win-
dows. Journal of the Operational Research Society 55(5), 542–546 (2004)

13. Mladenović, N., Hansen, P.: Variable Neighbourhood Search. Computers & Oper-
ations Research 24(1), 1097–1100 (1997)

14. Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable Neighbourhood Search:
Methods and Applications. Annals of Operations Research 175(1), 367–407 (2009)

15. Bräysy, O.: A Reactive Variable Neighborhood Search for the Vehicle-Routing
Problem with Time Windows. INFORMS Journal On Computing 15(4), 347–368
(2003)

16. Polacek, M., Hartl, R.F., Doerner, K.F.: A Variable Neighborhood Search for the
Multi Depot Vehicle Routing Problem with Time Windows. Journal of Heuris-
tics 10, 613–627 (2004)

17. Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search
heuristic for the vehicle routing problem with multiple time windows. Computers
& Operations Research (August 2013)

18. Gendreau, M., Hertz, A., Laporte, G.: New Insertion and Post Optimization Proce-
dures for the Traveling Salesman Problem. Operations Research 40(6), 1086–1095
(1992)

19. Glover, F.: Artificial Intelligence, Heuristic Frameworks and Tabu Search. Man-
agerial and Decision Economics 11(5), 365–375 (1990)

20. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing
and Reporting on Computational Experiments with Heuristic Methods. Journal of
Heuristics 1(1), 9–32 (1995)

Modeling an Artificial Bee Colony

with Inspector for Clustering Tasks

Cosimo Birtolo, Giovanni Capasso, Davide Ronca, and Gennaro Sorrentino

Poste Italiane – Information Technology,
S - FSTI - R&D Center – Piazza Matteotti 3 – 80133 Naples, Italy
{birtoloc,capass56,roncadav,sorre137}@posteitaliane.it

Abstract. Artificial Bee Colony (ABC) is a recent meta-heuristic ap-
proach. In this paper we face the problem of clustering by ABC and
we model a further bee role in the colony, performed by inspector bee.
This model conforms with real honey bee colony, indeed, in nature some
bees among the foraging ones are called inspectors because they preserve
the colony’s history and historical information related to food sources.
We experiment inspector behavior in ABC and compare the solution
to traditional clustering algorithm. Finally, the effect of colony size is
investigated and experimental results are discussed.

Keywords: Artificial Bee Colony, Soft Computing, Clustering, Inspec-
tor, Data Mining.

1 Introduction

Clustering algorithms play a relevant role in understanding and exploring a
dataset. Interest in clustering algorithm is proved by the need of knowledge
extraction processes in a huge amount of data in several domains: from bioinfor-
matics to web usage mining, from image segmentation to information retrieval.

Clustering aims at minimizing the dissimilarity between data assigned to the
same cluster and is a powerful tool which can arise interesting information in
the area it is applied. Moreover, clustering can be considered one of the most
difficult and challenging problems in machine learning, particulary due to its
unsupervised nature.

Clustering problems have been solved using various techniques, even if
K-means, independently discovered in different scientific studies in the 60’s [1], is
one of the most popular algorithms due to its simplicity and efficiency. However,
the clusters resulting from the K-means algorithm are very sensitive to positions
of the initial centroids in the problem space and the algorithm can converge to a
local optimum. Recently, meta-heuristic approaches have been proposed to solve
clustering problems [2] and in particular some Artificial Bee Colony have been
adopted for this task [3].

In this paper, we experiment ABC approach to clustering tasks by means
of different datasets. The merits of this contribution are: (i) the introduction
and the modeling of a new role in the colony, i.e., the inspector bee in an ABC

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 182–193, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 183

algorithm, and (ii) the experimentation on the way the colony size and its com-
position can influence the algorithm’s results.

The remainder of this paper is organized as follows: Section 2 introduces the
clustering; Section 3 describes Artificial Bee Colony (ABC); Section 4 depicts
the proposed formulation of ABC; Section 5 describes the algorithm structure,
Section 6 provides experimental results; and Section 7 outlines conclusions and
future directions.

2 The Clustering Problem

Clustering algorithms aim at grouping data into a number of clusters. Data in the
same cluster share a high degree of similarity while they are very dissimilar from
data of other clusters. Partitional clustering algorithms aim at partitioning the
population into a fixed number k of classes, each of those being represented by
an average item named centroid. The traditional partitional clustering algorithm
is K-means [1] which has been applied to a wide range of problems in different
domains. However, K-means is sensitive to the initial states and can converge
to the local optimum solution. Recently, many methods have been proposed in
order to overcome this drawback.

The clustering problem can be stated as the minimization of the sum of Eu-
clidean squared distance between each object xi and the center of the cluster cj
to which it belongs (i.e., centroids). The objective function to be minimized can
be expressed by Eq.1:

J(w, c) =

N∑
i=1

K∑
j=1

D∑
d=1

wij ‖xi,d − cj,d‖2 (1)

where K is the number of clusters, N is the number of objects, wij is the
association weight of objects xi in cluster j, i.e., wi,j is 1 if object i is allocated
to cluster j, and 0 if it is not. Each data instance xi and each cluster center
cj is defined by a vector of D values, where D is the number of features. The
center of each of the j cluster cj = {cj,1, cj,2, . . . , cj,D} is the set of the mean of
each dimension across all the objects assigned to the jth cluster and it can be
calculated by Eq.2 below

cj,d =
1

Nj

N∑
i=1

wi,jxi,d (2)

where Nj is the number of objects in the jth cluster.
Different evolutionary approaches are adopted to address clustering tasks (i.e.,

fixed or variable number of clusters, centroid-based, medoid-based, label-based,
tree-based or graph-based representation) as described by Hruschka et al.[2], but
recently some swarm intelligence techniques are proposed [3,4].

184 C. Birtolo et al.

3 Artificial Bee Colony

Artificial Bee Colony (ABC) Algorithm is a recent swarm intelligence algorithm
based on the intelligent behavior of honey bee foraging. It was proposed by
Karaboga [5] in 2005 and performances are analyzed in 2008 [6]. ABC is based
on modeling the behaviors of real bees on finding nectar amounts and sharing
the information of food sources to the other bees in the hive.

Honey bees are social insects and live in large organized communities. Each
bee has specific skills and carries out determined works with the aim of facilitat-
ing the survival of the colony. The provision of the food is one of the major activi-
ties within a colony. This activity involves specific worker bees which collaborate
among each other: the “employed bees”, which research and communicate where
the food sources are; the “onlooker bees” which extract and carry the food. The
main task of an employed bee is to look for food. When the food source has been
found, the bee memorizes the spatial coordinates and communicates the position
and the quality of the source through a dance around the hive. The dance and
the research activity alternate each other. The main task of an onlooker bee is
observing the employed bees dance outside the hive. On the basis of the message
expressed by the dance, the onlooker bee chooses the food source that best fits
its needs. After the choice, the onlooker bee reaches the source to extract the
food and carry it to the hive. On the way to the food source, the onlooker bee
may discover a better food source than the chosen one. In this case, when the
onlooker bee goes back to the hive communicates the position of the new food
source to the employed bee. When a food source is finished by onlooker bees,
the employed bee, that was communicating that source’s position, forgets those
coordinates and looks for a new source.

Taking inspiration from the nature, Karaboga models three bee behaviors in
the colony: (i) The Employed Bee, (ii) The Onlooker Bee, and (iii) The Scout
Bee. The employed bees are associated with the specific food sources, onlooker
bees watch the dance of employed bees within the hive to choose a food source,
and scout bees look for food sources randomly [5].

In nature, the employed bee whose food source has been exhausted becomes
a scout bee to look for the further food sources. In ABC, the solutions represent
the food sources and the nectar quantity of the food sources corresponds to
the fitness of the associated solution. Employed bees whose solutions was not
improved after a fixed number of trials, defined limit, become scouts and their
solutions are abandoned.

In other words, the general formulation of the ABC algorithm can be described
by the following phases: (i) Bee Initialization, (ii) Employed Bee Phase (iii) On-
looker Bee Phase (iv) Scout Bee Phase (v) Memorization of the best solution
found. These last four phases are iterated until the stop criteria is met. Com-
monly the algorithm stops when a fixed maximum number of cycles is reached.

Nowadays, different real world applications of ABC algorithm [7] have been
investigated. In 2011, Karaboga and Ozturk [3] firstly introduced ABC for clus-
tering tasks, showing how ABC formulation outperformed Particle Swarm Opti-
mization (PSO) algorithm. Moreover the authors experimented ABC in

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 185

classification tasks, comparing it with traditional classification algorithms such
as Neural Networks (Multi Layer Perceptron), Bayesian Network, Radial Basis
Function (RBF) proving the benefits of bee colony. A first hybrid approach is
proposed by Yan et al. [4] who present a Hybrid Artificial Bee Colony algorithm.
The authors consider a social learning between bees by means of cross-over op-
erators of Genetic Algorithm and apply the proposed algorithm to some clas-
sification tasks proving some benefits despite of traditional k-means, ABC and
PSO algorithm.

4 Inspector Bee in the Colony

Our proposed algorithm is inspired by the Simple ABC given by Karaboga [6],
but it extends the colony modeling a forth bee behavior, i.e., Inspector Bee.

In a real bee colony, inspection role was modeled by Biesmeijer and de Vries
[8], who introduced additional behavioral states for forager bees. The authors
defined 7 different bee behaviors and the transitions between them: (i) novice
forager, (ii) scout, (iii) recruit, (iv) employed forager, (v) unemployed experi-
enced forager, (vi) inspector, and (vii) reactivated forager. In their work they
define the inspectors as foragers that retire from an unprofitable food source but
continue to make occasional trips to it, while reactivated foragers are bees that
stop inspecting after a certain period of time and return to wait for dances to
follow at the nest.

Granovskiy et al. [9] studied the role of inspector bees. Their experiments
show that a bee colony is able to successfully reallocate its foraging resources in
dynamic environments even when dance language information is limited. Accord-
ing to the authors, it remains unclear in what foraging situations reactivation
and inspection are important and in what cases the dance language is the pri-
mary mechanism for communicating memory. The ability of the colony to react
to rapid changes in their environment can be justified by the inspector bees that
act as the colony’s short-term memory [8]. So that, these bees allow the colony
to quickly begin utilizing previously abandoned food sources once they become
profitable again.

Inspection can be considered an important mechanism for reallocating foragers
when food sources are hard to find: for these reasons we introduce inspector in
the proposed Artificial Bee Colony. In our model, the Inspector Bee memorizes
the best solution across the different cycles, so that if a solution is abandoned by
bees and is not considered as the best solution for the next cycle, the inspector
preserves this information.

5 Algorithm Structure and Fitness Function

Pseudo-code of our Artificial Bee Colony with Inspector behavior (ABCi) is
outlined by Algorithm 1. The parameters of the proposed ABC algorithm as
well as Karaboga’s formulation are: the number of food sources (i.e., SN), the

186 C. Birtolo et al.

Algorithm 1. ABCi: algorithm’s pseudo-code

1: Load training samples
2: Set the number of employed bees and onlooker bees
3: Generate the initial population zs, s = 1..SN with trial counter ts = 0
4: Evaluate the nectar amount (fitness function) of the food sources (∀s)
5: Inspector bee moves to the best food source
6: Set cycle to 1
7: repeat
8: for all employed bee assigned to solution s do
9: Produce new solution vs with ts = 0
10: Evaluate the fitness of the new solution vs
11: Apply greedy selection process for the identification of new population zs
12: end for
13: Calculate the probability values ps for the solutions zs, s = 1..SN
14: for all onlooker bee do
15: Select a solution zs depending on ps
16: Produce new solution vs with ts = 0
17: Evaluate the fitness of the new solution vs
18: Apply greedy selection process for the identification of new population zs
19: if greedy selection process preserves old solution then
20: Increment the trial counter ts associated to the solution zs
21: end if
22: end for
23: Inspector bee moves to the best food source and memorize it
24: if there is a solution with t > limit (scout bee) then
25: Generate a new solution according a randomized process
26: Memorize the new solution, replacing the abandoned one
27: end if
28: cycle = cycle+ 1
29: until cycle = MCN

number of employed and onlooker bees, the value of the limit, and the maximum
cycle number (MCN).

In clustering problem the food sources are the cluster centroids, while the
solution is the position of food source which maximizes the nectar amount (the
position of centroids which minimizes the fitness function).

In the initialization phase, the algorithm generates randomly a group of food
sources corresponding to the solutions in the search space. According to Eq.3,
the fitness of food sources is evaluated and for each food source a counter which
stores the number of trials of each bee is set to 0 in this phase.

fitness(s) =

N∑
i=1

K∑
j=1

wi,j ‖xi − cj‖2 (3)

where K is the number of clusters, N is the number of objects, xi is a generic
input to be clustered, cj is the jth centroid, and s is the solution (the position
of K centroids).

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 187

In the employed bees’ phase (see lines 8-13 in algorithm’s pseudo-code), each
employed bee is sent to the food source and finds a neighboring food source. The
neighboring food source is produced according to Eq.4 as follows:

vi,j = zi,j + φ (zi,j − zk,j) (4)

where k is a randomly selected food source different from i, j is a randomly
chosen centroid. φ is a random number between [-1,1]. The new food source v is
determined by changing randomly one dimension on jth centroid. If the produced
value exceeds its predetermined boundary, it will set to be equal to the boundary.
Then the new food source is evaluated. Therefore, a greedy selection is applied. In
other words, the employed bee produces a modification in the position (i.e. solu-
tion) and checks the nectar amount (fitness value) of that source (solution). The
employed bee evaluates this nectar information (fitness value) and then assigns to
the food source a probability related to its fitness value according to the Eq.5.

p(s) = f(s)

/
K∑
j=1

fj (5)

where K is the number of food sources and f(s) = 1
1+fitness(s)

In the onlooker bees’ phase (see lines 14-23 in algorithm’s pseudo-code), the
onlooker bee selects a food source based on a probability of a source explored
by employed bees. Once the food sources have been selected, each onlooker bee
finds a new food source similarly to the employed bee (see Eq.4) and the greedy
selection process select the new source. If this process preserves old solution, the
value of counter, which is associated to the employed bee, increases.

In scout bees’ phase (see lines 24-27 in algorithm’s pseudo-code), when the
value of the counter t of a food source is greater than limit, the food source
is abandoned, the inspector bee memorizes the source and the employed bee
becomes a scout. The scout bee generates a new solution according to Eq.6 and
sets the value of counter equal to 0, so that the bee memorizes the new solution
replacing the abandoned one.

zj,d =
N
min
i=1

(xi,d) + rand(0, 1) ·
(

N
max
i=1

(xi,d)−
N
min
i=1

(xi,d)

)
(6)

where j = 1, 2, ...K and d = 1, 2, ..., D. N is the number of objects, K is the
number of clusters, and D is the number of features. xi,d represents the d-th
feature of the input data xi.

6 Experimental Results

In this section we experiment the proposed ABC algorithm for some clustering
problems and for an application in Transportation System.

188 C. Birtolo et al.

In order to evaluate the performance of the proposed ABC approach, we com-
pare the results of the K-means, ABC, and the proposed ABC for a clustering
task by comparing four different datasets. These datasets are selected from the
UCI machine learning repository (Breast Cancer Wisconsis, Credit Approval,
Dermatology and Iris datasets) [10]. An additional dataset, which have been
extracted from a real-world clustering problem in Poste Italiane domain, is con-
sidered as an example of application.

Iris data was collected by Anderson in 1935 and consists of 150 random sam-
ples of flowers from the iris species setosa, versicolor, and virginica. From each
species there are 50 observations for sepal length, sepal width, petal length, and
petal width in cm.

Wisconsin Breast Cancer consists of 683 objects characterized by 9 features:
clump thickness, cell size uniformity, cell shape uniformity, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses. There are two categories in the data: malignant (444 objects) and benign
(239 objects).

Credit Approval dataset contains 690 samples, which are different credit card
applications, with 15 attributes. This dataset has a good mix of attributes (con-
tinuous, nominal with small numbers of values, and nominal with larger numbers
of values) and data can be grouped either in approved or not approved.

Dermatology consists of 366 samples characterized by 34 features which are
12 patient clinical attributes and 22 histopathological features. The values of the
histopathological features are determined by an analysis of the samples under
a microscope. The diseases in this group can be one of the following six: psori-
asis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and
pityriasis rubra pilaris.

6.1 Convergence Analysis

We run the algorithm several times with different value of limit in order to
study quantitatively the convergence of the two different ABC formulations. We
consider the four datasets from UCI database as benchmark data.

The parameters in an ABC approach are the limit and the colony size [11],
so that we study algorithm’s performance as long as the parameters change.

We repeated 20 runs for different problem configurations. First of all, cycle
after cycle, we report the average of best fitness with different abandonment
behavior of a nectar source (limit is equals to 0, 5, 10, 20, 50, 100, 1000) when
a colony of 20 bees is considered.

To find a better solution, one may search the largely unknown region (ex-
ploration) or search around the current solution (exploitation). The tradeoff
between exploration and exploitation is represented by the limit. Indeed, higher
values of limit emphasize exploitation behavior of the algorithm, while lower
values of limit foster exploration phase.

Best solutions occurs when limit increases, as the exploitation behavior be-
comes more relevant. On the other hand, very high value (i.e., 1000) of limit
holds algorithm back for exploration of new solutions. However, we can notice

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 189

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s

va
lu

e

limit 0
limit 5
limit 20
limit 50
limit 1000
limit 10
limit 100

(a) Inspector is not considered

10
0

10
1

10
2

10
3

2000

2500

3000

3500

Number of cycles

F
itn

es
s

va
lu

e

limit 20
limit 100
limit 1000
limit 5
limit 50
limit 10
limit 0

(b) Inspector is considered

Fig. 1. Dermatology dataset: Average fitness behavior by varying the limit. Colony
size equals 110.

Table 1. Wilcoxon paired test on Iris dataset: Average fitness and p-values

Limit
Average Best Fitness p-value

ABC ABCi k-Means ABC vs. ABCi ABC vs. k-Means ABCi vs. k-Means

0 214.278 140.450

99.990

7.254e-12 7.562e-09 7.562e-09

5 139.540 101.306 7.254e-12 9.637e-08 3.016e-06

10 111.508 97.461 1.451e-11 1.006e-06 1.709e-01

20 97.956 96.698 3.685e-09 1.709e-01 1

50 96.675 96.656 1.066e-01 1 1

100 96.659 96.655 1.024e-02 1 1

1000 96.655 96.655 8.318e-01 1 1

how ABCi’s convergence is not heavily affected by limit value if they ranges
between 20 and 100, thus resulting algorithm to be robust to this situation.

Furthermore, limit equals to 50 (black curve) could be a good tradeoff, even
if the optimal parameter value depends on the particular problem. Indeed, the
Dermatology dataset (see Fig.3) seems not to converge with limit equal to 0,
5 and 1000. Moreover this dataset presents high convergence time with other
values. The problem is the colony size which must be incremented as proved in
Fig.1 when we repeat the 20 different runs with 100 onlookers and 10 employers.

Investigating these results more deeply, we consider Mann-Whitney-Wilcoxon
test, reporting results in Table 1, where the average value of best fitness of 20
different trials per technique (i.e., ABC, ABC with inspector, k-means). The
null hypothesis is: the investigated techniques provide solutions which belong
to the same population entailing a comparable clustering performance, and the
alternative hypothesis is: (i) ABC fitness is greater than ABCi one, (ii) ABC
fitness is greater than k-means, and (iii) ABCi fitness is greater than k-means.

Assuming 0.05 as upper bound to reject the null hypothesis, we can affirm
that there is statistical difference between ABC and ABCi. We prove that ABCi
outperforms ABC because ABCi provides a lower fitness value in most of the
cases. We cannot reject the null hypothesis with higher value of limit (i.e., limit

190 C. Birtolo et al.

Table 2. Wilcoxon paired test on Breast Cancer dataset: Average fitness and p-values

Limit
Average Best Fitness p-value

ABC ABCi k-Means ABC vs. ABCi ABC vs. k-Means ABCi vs. k-Means

0 7254.312 4645.158

3061.098

7.254e-12 4.003e-09 4.003e-09

5 4860.267 3280.301 3.265e-10 4.003e-09 4.003e-09

10 3462.931 3044.500 2.176e-10 1.996e-06 1

20 3165.311 3035.615 1.183e-04 1 1

50 3037.424 3035.571 5.658e-01 1 1

100 3035.571 3035.571 8.367e-01 1 1

1000 3035.571 3035.571 3.088e-01 1 1

Table 3.Wilcoxon paired test on Credit Approval dataset: Average fitness and p-values

Limit
Average Best Fitness p-value

ABC ABCi k-Means ABC vs. ABCi ABC vs. k-Means ABCi vs. k-Means

0 4.399e+06 5.958+05

8.087e+05

7.254e-12 4.003e-09 1

5 1.617e+06 5.731e+05 8.705e-11 1.267e-01 1

10 6.183e+05 5.624e+05 7.254e-12 1 1

20 5.614e+05 5.571e+05 6.673e-06 1 1

50 5.570e+05 5.568e+05 9.328e-01 1 1

100 5.570e+05 5.568e+05 7.858e-02 1 1

1000 5.568e+05 5.568e+05 9.214e-01 1 1

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s

va
lu

e

100 50 1520
10

5

1

2001000

(a) Inspector is not considered

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s

va
lu

e

501002001000

15

1

10
5

20

(b) Inspector is considered

Fig. 2. Dermatology dataset: Average fitness behavior by varying the number of on-
lookers (10 employers)

greater than 100) and ABC and ABCi performance are comparable. Indeed,
considering a higher value of limit, the abandonment behavior of an employed
bee decreases and the benefit of an inspector bee is not estimable.

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 191

10
0

10
1

10
2

10
3

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Number of cycles

F
itn

es
s

va
lu

e

limit 0
limit 5
limit 50
limit 1000
limit 20
limit 10
limit 100

(a) Breast dataset - ABC

10
0

10
1

10
2

10
3

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Number of cycles

F
itn

es
s

va
lu

e

limit 50
limit 1000
limit 10
limit 20
limit 100
limit 0
limit 5

(b) Breast dataset - ABCi

10
0

10
1

10
2

10
3

80

100

120

140

160

180

200

220

240

Number of cycles

F
itn

es
s

va
lu

e

limit 50
limit 0
limit 100
limit 20
limit 1000
limit 5
limit 10

(c) Iris dataset - ABC

10
0

10
1

10
2

10
3

80

100

120

140

160

180

200

220

240

Number of cycles

F
itn

es
s

va
lu

e

limit 100
limit 20
limit 10
limit 0
limit 50
limit 1000
limit 5

(d) Iris dataset - ABCi

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
x 10

6

Number of cycles

F
itn

es
s

va
lu

e

limit 0
limit 10
limit 50
limit 20
limit 5
limit 100
limit 1000

(e) Credit dataset - ABC

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
x 10

6

Number of cycles

F
itn

es
s

va
lu

e

limit 20
limit 1000
limit 100
limit 10
limit 5
limit 50
limit 0

(f) Credit dataset - ABCi

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s

va
lu

e

limit 20
limit 1000
limit 10
limit 100
limit 50
limit 5
limit 0

(g) Dermatology dataset - ABC

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s

va
lu

e

limit 1000
limit 20
limit 100
limit 5
limit 10
limit 50
limit 0

(h) Dermatology dataset - ABCi

Fig. 3. Average fitness behavior by varying the limit. Colony size equals to 20.

192 C. Birtolo et al.

Instead, comparing k-means with ABC approach, we prove how a bee
colony can outperform with limit greater than 20. Low values of limit penalizes
exploitation behavior, while ABCi with limit equal to 20 or 50 is able to provide
promising results in clustering problem, improving k-means results.

The same findings arise from Breast Cancer dataset (e.g., see Tab.2), con-
firming the importance of limit and the benefits of inspector bee within the
colony.

Taking into account Credit Approval dataset (see Tab.3), ABCi formulation
is confirmed to improve ABC’s results when the limit is lesser than 50, no sta-
tistical evidence when limit value increases. Comparing ABCi with k-means we
prove better results of honey bee approaches. Moreover, considering Dermatol-
ogy dataset as depicted in Fig.3, we can observe how limit ranging between 20
and 50 represents the best choice even if ABC approach does not outperform
k-means due to the colony size which need to be increased as proved in Fig.1.

Finally, in order to study the effect of the number of onlookers for algorithm’s
convergence speed, we show in Fig.2 the average fitness behavior of 20 different
runs. As we expected, the more number of onlookers increases, the more quickly
the algorithm converges.

As an example of application in Transportation domain, we consider the prob-
lem of vehicle clustering. The purpose of the analysis is to group together Poste
Italiane vehicle with the same features, i.e., the average monthly fuel consump-
tion index and the average monthly vehicle route. In particular, fuel consumption
index measures the vehicle’s cost and identify at the same time the vehicle’s per-
formance. Indeed, it considers the fuel demand related to the followed route.

Starting with a set of 10984 Poste Italiane cars which supply postal items to
the national addressees, we adopt ABC clustering in order to group together
in a same cluster those cars with the same delivery behavior and the same fuel
consumption index. The ABC algorithm is setup with following parameters:
MCN = 1000, colony size = 61 (50 onlooker bees, 10 employed bees and 1
inspector), limit = 50.

Analyzing the results, we can state that the cars are properly grouped in
clusters which are suitable for knowledge extraction process and are useful to
understand the reason of the provided cars’ performances.

7 Conclusions and Future Work

In this paper we presented a bee colony algorithm for clustering problem. Start-
ing from the experiment conducted by Granovskiy regarding the role of inspector
bee within a colony, we modeled and proposed a bee colony with inspector. Our
experimentation showed the impact in adopting this bee within the colony, and
the benefit is proved.

Comparing bee colony with other evolutionary techniques as genetic algo-
rithms, the role of inspector in the convergence can be compared to the role of
elitism in genetic approach.

We adopted bee colony for different clustering tasks from biomedical to in-
dustrial domain and experimentation provided very encouraging results, proving

Modeling an Artificial Bee Colony with Inspector for Clustering Tasks 193

the ability of a ABC algorithm in converging towards solutions with high fitness,
also in presence of different features (e.g., Dermatology dataset) and different
input. Moreover, the algorithm has been proven to provide better results increas-
ing the colony size and exploration and exploitation behavior is investigated as
long as the limit changes.

However, we aim to investigate two main directions in the future. The first is
how to improve performance in algorithm’s computational time. Parallel ABC
colony seems to be a promising solution. The second direction is to investigate
other real-world optimization problems with ABC as the vehicle routing problem.
In this case, ABC poses additional interesting questions and can be a valid
solution in Intelligent Transport System domain.

References

1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognition Let-
ters 31(8), 651–666 (2010)

2. Hruschka, E., Campello, R.J.G.B., Freitas, A., De Carvalho, A.C.P.L.F.: A survey
of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 39(2), 133–155 (2009)

3. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial bee colony (ABC)
algorithm. Applied Soft Computing 11(1), 652–657 (2011)

4. Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using
hybrid artificial bee colony algorithm. Neurocomput. 97, 241–250 (2012)

5. Karaboga, D.: An idea based on Honey Bee Swarm for Numerical Optimization.
Technical Report TR06, Erciyes University (October 2005)

6. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 8(1), 687–697 (2008)

7. Abu-Mouti, F., El-Hawary, M.: Overview of artificial bee colony (ABC) algorithm
and its applications. In: 2012 IEEE International Systems Conference (SysCon),
pp. 1–6 (2012)

8. Biesmeijer, J.C., de Vries, H.: Exploration and exploitation of food sources by
social insect colonies: a revision of the scout-recruit concept. Behavioral Ecology
and Sociobiology 49(2-3), 89–99 (2001)

9. Granovskiy, B., Latty, T., Duncan, M., Sumpter, D.J.T., Beekman, M.: How danc-
ing honey bees keep track of changes: the role of inspector bees. Behavioral Ecol-
ogy 23(3), 588–596 (2012)

10. Bache, K., Lichman, M.: UCI machine learning repository (2013)
11. Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm.

In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796,
pp. 608–619. Springer, Heidelberg (2009)

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 194–205, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Personalized Multi-day Trips to Touristic Regions:
A Hybrid GA-VND Approach

Ali Divsalar1,2, Pieter Vansteenwegen1, Masoud Chitsaz1,
Kenneth Sörensen3, and Dirk Cattrysse1

1 KU Leuven, Center for Industrial Management, Leuven, 3001, Belgium
{Ali.Divsalaer,Pieter.Vansteenwegen,
Dirk.Cattrysse}@cib.kuleuven.be,
Masoud.Chitsaz@student.kuleuven.be

2 Faculty of Mechanical Engineering,
Babol University of Technology, Babol, Mazandaran, Iran

kenneth.sorensen@ua.ac.be
3 University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium

Abstract. When a tourist is visiting a large region with many attractions,
frequently there is not enough time to reach all of them. Moreover when the
journey takes more than a day, at the end of each day an accomodation place
should be selected to continue the trip the next day. In this research, we
introduce the Orienteering Problem with Hotel Selection and Time Windows
(OPHS-TW) in order to model this real application. A set of 395 benchmark
instances with known optimal solution are created and a hybrid Genetic
Algorithm with a Variable Neighborhood Descent (GA-VND) phase is
developed to efficiently solve the instances in a reasonable time.

Keywords: Orienteering problem, Hotel selection, Time windows, Genetic
algorithm, Variable neighborhood descent.

1 Introduction

Imagine a tourist who wants to visit a large touristic region such as a part of a country
or, for instance, Europe in a couple of days. In this case, in each day some of the poss-
ible attractions should be selected to visit and also an accommodation place should be
chosen to stay each night. Obviously, the location of the accommodation has influ-
ence on which possible attractions can be visited during the day. This application of
tourist trip planning is modeled as the Orienteering Problem with Hotel Selection
(OPHS) in the literature [1][2]. In practice, points of interests (POI) have limited visit-
ing hours. Therefore, we add an opening and closing time for every POI. This leads to
a new variant of the OPHS which we call the Orienteering Problem with Hotel Selec-
tion and Time Windows (OPHS-TW).

In the OPHS-TW, two sets of nodes are available, and . The set of hotels, ,
contains hotels including the initial and the final hotels. The set of POIs contains

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 195

nodes, each with a score, . The time needed to travel between each pair of nodes
, , is given. The whole multi-day visit plan of the POIs starts from and

ends in the given initial and final hotels. This is called a “tour” and is composed of
some daily plans each called a “trip”. Each trip starts and ends in one of the available
hotels and is limited by a maximum available time, . Each POI is assigned a time
window, , . A score is only collected if a POI is visited during its time window.
In this case, the arrival at a certain POI after will not lead to a score and an early
arrival will lead to a waiting time, . Each POI score can be collected at most once.
The goal is to maximize the sum of the collected scores in the tour composed of a
given number of trips. In our formulation of the OPHS-TW, the time spent at each
POI (service time) is not considered. During the modeling of a real problem this time
can easily be included in , .

Several applications of the OPHS are introduced in the literature[1][2] such as
tourist trip planning, a military reconnaissance activity composed of consecutive mis-
sions between multiple save zones, truck drivers with limited driving time considering
the need to find an appropriate parking space at the end of each day. All these can be
modeled more realistically by considering time windows.

In this paper, a hybrid Genetic algorithm with an embedded Variable Neighbor-
hood Descent (GA-VND) algorithm is designed to deal with the two levels of the
OPHS-TW: a main level of finding the sequence of hotels to stay at the end of each
day/trip, and the sub level of finding a sequence of POIs to be visited in each trip. The
GA-VND uses two crossovers and one mutation operator to efficiently find a good
sequence of hotels in the tour. The VND part, containing five local search moves, is
applied in different steps of the algorithm to find good sequences of POIs between the
hotels.

The main contributions of this paper are the introduction of the first method to
solve the OPHS-TW as well as the creation of benchmark instances with known op-
timal solution for this problem. The GA-VND has the same structure of the memetic
algorithm developed in [2] to solve the OPHS, but the algorithm is adapted for the
version with time windows (OPHS-TW).

The remainder of this paper is organized as follows: A brief literature review is
presented in Section 2. The proposed algorithm is discussed in Section 3. Section 4
describes how the instance generation procedure was designed and presents the com-
putational experiments. Section 5 concludes this paper.

2 Related Literature

Although this is the first paper on the OPHS-TW, the OPHS has recently been intro-
duced by Divsalar et al.[1][2]. A Skewed Variable Neighborhood Search (SVNS)
method as well as a Memetic Algorithm (MA) which combines a genetic algorithm
with a variable neighborhood descent are tested on benchmark instances with known
optimal solution. Moreover, the (Team) Orienteering Problem, (T)OP, with time win-
dows ((T)OPTW) is considered in a large number of publications. An iterative three
component heuristic for the TOPTW is introduced in [3]. In this method, first a varia-
ble neighborhood search (VNS) and a simulated annealing (SA) create a pool of

196 A. Divsalar et al.

routes. Then, a set packing problem is solved to make a tour over the created routes.
In [4] a genetic algorithm is developed to tackle the OPTW. Their genetic algorithm
uses a specific mutation based on the idea of insertion and shake introduced by Vans-
teenwegen et al. [5]. Labadie et al. [6] developed an LP-based granular VNS for the
TOPTW. The idea is to increase the efficiency of neighborhood exploring by a pre
network analysis called granularity based on the idea of Toth & Vigo [7] on the Ve-
hicle Routing Problem (VRP). An Ant Colony System (ACS) is introduced by
Montemanni & Gambardella [8] for the TOPTW. For more literature on the OP and
its variants we refer to a recent survey by Vansteenwegen et al. [9]. Other tourist
applications modeled by the OP can be found, for instance, in [10] and [11].

Another group of related works to the OPHS(-TW) is mainly called the Vehicle
Routing Problems with Intermediate Facilities (VRP-IF) in the literature [12]. An
extensive literature survey on this class of problems can be found in [2]. The concept
of intermediate facilities is also used in the context of Electric Vehicle Routing Prob-
lem (EVRP) when considering the recharging stations as intermediate facilities[13].

3 The Proposed Algorithm

Considering the two-level structure of the OPHS-TW, a two-level algorithm of GA-
VND is developed in this paper. In the proposed algorithm, the upper level, genetic
algorithm, includes two crossover and one mutation operator, and mainly focuses on
creating a good sequence of hotels in the solution. A variable neighborhood descent
(VND) is the lower level of the proposed algorithm. This VND is composed of five
local search moves designed for finding a good sequence of POIs in each trip taking
care of the time window constraints and considering the POIs visited in other trips. To
perform these moves efficiently, for every included POI in the tour, its arrival time,

, service start time, and are stored in memory. The concept of
MaxShift (the maximum time that the visit to a POI can be delayed without violating
any time window or the trip length) is introduced by Vansteenwegen et al. [5] for the
TOPTW. In fact, keeping track of the MaxShift for each POI, makes the feasibility
evaluation of an insertion efficient. Also the waiting time, , of each POI, which is
calculated by equation (1), is recorded for every visited POI.

 max 0, (1)

3.1 General Structure of the Algorithm

The general structure of the proposed GA-VND is presented in Algorithm 1. The
algorithm includes two main phases: the initialization and the main-loop. In the initia-
lization phase, the initial population is created after performing a preprocessing step.
Then, in each iteration of the main-loop, a pool of individuals (Pool) is filled using the
GA operators, and the new population is selected from the Pool. The main-loop is
stopped only if a maximum number of iterations is reached (MaxIteration).

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 197

Algorithm 1. General structure of the GA-VND
1: Initialization
2: Main-loop:
3: 1
4: While () Do
5: | Fill the Pool
6: | Sort the Pool according to their fitness
7: | Save the “ ”
8: | Select from the Pool:
9: | 1
10: End
11: Output: “ ”

3.2 Initialization

In this phase, a preprocessing step is done to have an idea about the appropriate hotel
selection at the end of each trip. Then, using this information, the initial population is
generated.

Matrices of Pairs of Hotels
For each possible pair of hotels for each trip, a regular orienteering problem is

solved applying a very fast “best-insertion” algorithm. The insertion move here is the
Insert move explained in Section 3.4. In fact, this move is applied as long as a POI is
added to the OP solution. Then, the results are stored in two three-dimensional ma-
trices. Afterwards, for each hotel in each trip, the possible end hotels are sorted based
on their score. This sorted list is used in the later steps of the algorithm.

Initial Population
To create each individual for the initial population, first a feasible sequence of ho-

tels is constructed. A recursive function is used which starts from the initial hotel and
randomly selects a hotel from the sorted list of possible end hotels considering their
score in the matrix of pairs of hotels. After that, the VND is applied on the sequence
of hotels to make a complete OPHS-TW solution. This process is the same as what is
done in [2] to create the initial population, but in here the moves are adapted to con-
sider the time windows.

3.3 Genetic Algorithm

After creating the initial population, it is used as the current population and the GA is
performed to create a pool of individuals out of it (Pool). The Size of this pool is
twice the population size (PopSize). In fact, the Pool contains the current population
as well as new individuals created by applying the GA operators on the current popu-
lation. At the end, the new population is selected from the Pool.

Solution Representation
The GA chromosome representing the OPHS-TW solution is only a list of numbers

representing the sequence of hotels in the tour. The fitness of an individual is the total
score of the solution, also taking into account the visited POIs.

198 A. Divsalar et al.

Genetic Operators
To create new individuals for the Pool, parents are selected from the current popu-

lation and two crossover and one mutation operator are designed to make offspring
out of the parents. Algorithm 2 shows the process of filling the Pool, including the
corresponding parameters. These operators are discussed in the following sections.
Each parent is selected using a roulette wheel selection method.

Algorithm 2. Fill the Pool
1: Pool
2: 1
3: While (_) Do
4: | Select individuals and from the (Roulette Wheel)
5: | Apply Crossover Ι
6: | Apply Local Search on
7: | Pool
8: | 1
9: End
10: 1
11: While _) Do
12: | Select individuals and from the (Roulette Wheel)
13: | Apply Crossover ΙΙ
14: | Apply Local Search on
15: | Pool
16: | 1
17: End
18: 1
19: While (_ _) Do
20: | Select individual " from the (Roulette Wheel)
21: | Apply Mutation "
22: | Apply Local Search on "
23: | Pool "
24: | 1
25: End

Crossovers
There are two crossover operators used in the GA. Both of them are basically

creating new sequences of hotels to make two offspring by combining the sequences
of hotels in the selected parents. This part in both crossovers is the same and is a one
point crossover in which one trip in one parent is randomly selected (pivot trip). If it
is feasible to reach from the initial hotel of the pivot trip in the first parent the final
hotel of the same trip in the second parent, this combination is performed to have a
new sequence of hotels in the offspring. The same process is done for the second
parent to be combined with the first parent using a possibly different pivot trip. In the
second part of the crossovers different strategies are applied on the POIs inside the
trips.

In Crossover I, a move called “hotel-exchange” is applied on the sequence of ho-
tels in the offspring. This move changes the order of the hotels in the offspring to their
best order according to their score in the matrix of pairs of hotels. Then the VND is
applied on it to make a complete OPHS-TW solution. Therefore, in Crossover I, basi-
cally no information of the visited POIs between the hotels is inherited from the
parents.

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 199

In Crossover II, the POIs between the hotels in the parents are also used in the
offspring. To do that, all the trips until, and including, the pivot trip are copied from
the first parent to the offspring. The last hotel of the pivot trip and the remaining
trips comes from the second parent. This may cause an infeasibility, in terms of vi-
olating the pivot trip length. To repair the trip, the POIs are removed one by one to
meet the trip length constraint. The POI with the lowest value of rational score is
removed from the pivot trip before the others. The rational score, for POI is
calculated using equations (2) and (3). In equation (3), displays the waiting time
for POI in its current situation, and is the waiting time of POI after remov-
ing POI .

 (2)

 , , , (3)

At the end, the VND is applied on each offspring for further improvements.

Mutation
Each time Mutation is applied on one selected parent from the current population,

one or two of its hotels are changed to create a different sequence of hotels. To do
this, a trip is randomly selected from the parent (pivot). The final hotel of the pivot
trip is updated using the list of possible end hotels of its starting hotel. If using this
hotel leads to an infeasible pair of hotels for the trip after the pivot, the ending hotel
of that trip is also considered for updating using the same procedure. This process
does not go any deeper. To avoid from tapping in a loop of selecting the same ending
hotels for a trip, for each trip a number of recently selected hotels are made tabu. This
number called TabuSize, is a parameter of the algorithm. After updating the hotels,
first the POIs in the two/three affected trips are removed and filled with the solution
saved for the corresponding trip in the matrix of pairs of hotel. Then, the duplicated
POIs in each trip are removed, first from the affected trips and then from the other
trips. Removing each POI from a trip needs an update in the arrival time and service
start of the following POIs as well as an update in MaxShift of all POIs in the trip.

Selection from the Pool
In this step, the individuals are selected from the Pool to compose the new popula-

tion. The individuals are selected under three different strategies to keep both high
quality and diverse solutions in the population. In the beginning, the individuals in the
Pool are sorted based on their fitness. Then, a number of them with the highest fitness
are transferred to the new population. This number is equal to _ 2

, in which, BestSel_R is the percentage of the best individuals in the Pool and
is a parameter of the algorithm. PopSize shows the population size and is another
parameter of the algorithm. After that, from the other individuals of the Pool, only the
ones with a different sequence of hotels from the already selected individuals are
chosen. If by using this strategy the number of selected individuals for the new popu-
lation is less than the population size, the remaining individuals are selected from the
individuals with the lowest fitness, in order to maintain diversity.

200 A. Divsalar et al.

3.4 Variable Neighborhood Descent

The VND part of the algorithm is composed of five local search moves designed to
find a good sequence of POIs between the hotels in the tour. Among them, Insert,
Extract-Insert and Extract2-Insert are performed to increase the score of the solution.
Re-locate and Two-Opt are decreasing the travel time in the tour in order to increase
the chance of adding more POIs to the tour. The order of applying the moves and the
structure of the VND is presented in Algorithm 3.

Algorithm 3. Local Search
1: : The incumbent solution of the Local Search
2: Set of five neighborhood structures ():
3: Insert, Re-locate, Two-Opt, Extract-Insert, Extract2-Insert;
4: 0
5: While (5) Do
6: | Apply neighborhood structure on
7: | If is better than then
8: | | ’
9: | | 0
10: | Else
11: | | 1
12: | End

13: End

Insert
This is a best-improvement move in which for every non-included POI, the posi-

tion with the minimum increase in trip length () is determined and only the POI

with the highest ratio of is inserted in its best position. To evaluate the feasibili-

ty of insertionPOI between POI and POI , is efficiently calculated using
the method introduced in [5]: , , , . Then, the node
can be inserted between nodes and 1 if the inequality

 is satisfied.

Re-Locate
For every POI in the trip, it is checked if there is a better position in the whole tour

that can lead to less travel time for the considering trip(s). For every possible move of POI from its current position (between visiting POI and POI) to a position after POI , a feasibility evaluation is performed. This evaluation is not straightforward due
to the time windows, but can be performed efficiently thanks to the recording of Wait
and MaxShift. When POI and POI are in the same trip (intra Re-Locate), Algo-
rithm 4 shows the necessary steps for this feasibility evaluation and if the POIs are in
different trips (inter Re-Locate) the calculations are shown by Algorithm 5. In this
neighborhood search, only the POI with the highest value for is moved.

 is calculated using equation (4).

 , , , , , , (4)

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 201

Algorithm 4. Feasibility evaluation in Intra Re-Locate
1: AT ST t ,
2: W max 0, O AT
3: ST AT W
4: For (j = i+2 to j = k)
5: | AT ST t ,
6: | W max 0, O AT
7: | ST AT W
8: | If (ST ST Break
9: End
10: AT ST t ,
11: If (AT C
12: | W max 0, O AT
13: | ST AT W
14: | AT ST t ,
15: | W max 0, O AT
16: | ST AT W
17: | If (ST ST MaxShift)
18: | | The move is feasible
19: | | Save the necessary information
20: | End
21: End

Two-Opt
To apply this move, the first-improvement strategy is used. Starting from the first

trip, for each pair of visited POIs, if an inversion in the visit order of POIs between
them leads to a saving in travel time and the move is feasible, then it is performed.
Due to the time windows, the feasibility evaluation is done in O n in its worst case.

Extract-Insert
For every POI in every trip, starting from the first visited POI in the first trip, if by

excluding this POI and inserting as many POIs as possible in the same trip, it is possi-
ble to increase the total score, the move is performed and the next POI is considered.

To do the feasibility evaluation, after removing a POI from a trip, all the modified
time window characteristics of all the POIs in the same trip are calculated once. Then,
Insert is evaluated and applied as many times as possible using the same algorithm
explained above.

Extract2-Insert
This move is similar to Extract-Insert considering that each time two consecutive

POIs are selected for exclusion.

Algorithm 5. Feasibility evaluation in Inter Re-Locate
1: AT ST t ,
2: If (AT C
3: | W max 0, O AT
4: | ST AT W
5: | AT ST t ,
6: | W max 0, O AT
7: | ST AT W
8: | If (ST ST MaxShift)
9: | | The move is feasible
10: | | Save the necessary information
11: | End
12: End

202 A. Divsalar et al.

4 Computational Experiments

First we explain how the benchmark instances are created and then the computational
results are presented and discussed in detail.

4.1 Benchmark Instances

In [1][2] it is explained how benchmark instances of OPHS with known optimal solu-
tions are created based on optimal solutions of OP instances. Adding time windows to
these benchmark instances, a set of 395 OPHS-TW instances are created. To create
these new OPHS-TW instances from the OPHS benchmark instances, the set of POIs
in the OPHS, , are divided into two subsets: POIs which are visited in the OPHS
optimal solution, , and the ones not included in the optimal solution, . For
each POI , the arrival time, , in the optimal solution is determined. .Then,
the and are calculated using equations (5) and (6) in which and are two
uniformly generated random numbers in 0,1 .

 0; 0.05 0.2 10.05 0.2 ; (5)

 1; 0.05 0.2 10.05 0.2 ; (6)

To create random time window for a POI , first and are calculated
using the equation (7) and (8). Then, equations (9) and (10) are used to calculate the

 and for these POIs.

∑

 (7)

 (8)

 0; 0.05 0.2 10.05 0.2 ; (9)

 1; 0.05 0.2 10.05 0.2 ; (10)

, and are also uniformly generated random numbers in 0,1 .
In this way, the optimal solution of the OPHS instance remains optimal also for the

OPHS-TW instance. This results from the fact that adding extra constraints (time
windows in this case) to an optimization problem can never result in a better solution.
Moreover, we added the time windows to an OPHS instance in such a way that its
optimal solution is still feasible for the created OPHS-TW instance. Therefore, it is
not possible for the OPHS-TW to find a better solution than the optimal solution of
the OPHS. The instances and the detailed results of applying the GA-VND are availa-
ble at http://www.mech.kuleuven.be/en/cib/op.

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 203

4.2 Results

All computations are carried out on a Intel Core 2 desktop with 3.00 GHz processor
and 4.00 GB RAM. The parameters of our algorithm are tuned using a number of
preliminary experiments and set to MaxIteration= 100, PopSize= 30, CRI_R= 30%,
CRII_R= 40% , BestSel_R= 25% and TabuSize=33% of .

The benchmark instances are categorized into 16 sets based on the number of ho-
tels as well as the number of trips in the tour. Due to randomness in the algorithm, the
GA-VND is applied three times to each instance and its best and average results are
recorded. Then, to present the results in Table 1, for each set, the average gap and the
maximal gap for both the average and the best results out of three runs are presented
in columns 5 to 8. Columns 1 to 4 in Table 1 present the set number, the number of
“intermediate” hotels (excluding the initial and final hotel), the number of trips in
each instance and the total number of instances in each set.

Table 1. The results of the experiments

Set Name Number
of

instances

Average Gap Maximum Gap

Avg CPU
Set number

Intermediat
e hotels

Trips Best Avg Best Avg

1 1 2 35 1.83 2.33 27.76 27.76 0.77

2 2 3 35 0.46 0.72 4.88 7.08 0.54

3 5 3 35 0.51 0.77 4.11 7.72 0.53

4 3 4 35 0.66 0.75 7.51 7.51 0.43

5 6 4 35 0.44 0.61 4.67 4.67 0.43

6 10 4 22 0.72 0.92 3.65 4.27 2.03

7 10 5 22 0.78 1.11 4.61 4.61 1.60

8 10 6 22 0.82 1.37 4.79 7.69 1.31

9 12 4 22 0.47 0.75 3.16 3.16 2.01

10 12 5 22 0.59 1.49 4.61 6.25 1.64

11 12 6 22 0.89 1.81 3.90 6.74 1.33

12 15 4 22 0.53 1.22 3.16 4.18 2.04

13 15 5 22 0.59 1.77 4.61 5.88 1.58

14 15 6 22 0.73 1.69 3.90 6.26 1.34

15 15 8 13 3.48 5.99 8.88 9.98 1.33

16 15 10 9 2.58 6.23 9.08 12.96 1.32

Total 395 1.00 1.84 27.76 27.76 1.26

Since the presented algorithm is the first to deal with the OPHS-TW, the results are

compared with the optimal solution.
The average Best gap over all the instances considering the best out of three runs, is on-

ly 1.00 % and the average computational time (per run) is 1.26 seconds which is both
reasonable in case of the tourist application. Looking at the results, it is evident that the
worst gap happens when the number of possible sequences of hotels is very low. This can
be explained by the structure of the GA-VND. A lot of effort goes to finding the best

204 A. Divsalar et al.

sequence of hotels, which is rather useless for these small instances. Only limited efforts
go to solving the combination of OPs which is very important for these small instances.
On the other hand, generally, when the number of intermediate hotels as well as the num-
ber of trips are increased (for instance in set 15 and 16), finding a good sequence of hotels
gets more difficult and therefore the OPHS-TW instances become more difficult to solve.

5 Conclusion

In this paper, the OPHS-TW is introduced. A Set of 395 instances with known optim-
al solutions are created and a hybrid genetic algorithm (GA-VND) is developed.
The computational results show that the algorithm is able to solve the OPHS-TW
instances effectively in an acceptable time for a tourist application. The two-level
structure of the algorithm perfectly fits to the two-level structure of the problem.
Moreover, integrating diversification in designing crossovers and mutation operators
makes the algorithm able to solve the combination of OPs between the hotels effec-
tively. In designing the neighborhood moves, the concept of MaxShift and Waiting
time is used to make the algorithm computationally efficient.

For the future work, another framework should be developed in order to better
solve the larger instances and to solve other variants of OPHS-TW, for instance, when
the hotels and/or arcs also have a score. Furthermore, although we can evaluate the
performance of our algorithm by comparing our results with available optimal
solutions, implementing another solution framework could give extra insight in the
difficulty of the OPHS-TW instances we created.

References

1. Divsalar, A., Vansteenwegen, P., Cattrysse, D.: A Variable Neighborhood Search Method
for the Orienteering Problem with Hotel Selection. Int. J. Prod. Econ. 145, 150–160 (2013)

2. Divsalar, A., Vansteenwegen, P., Sörensen, K., Cattrysse, D.: A Memetic Algorithm for
the Orienteering Problem with Hotel Selection. Eur. J. Oper. Res. (2014)

3. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem
with time windows. Eur. J. Oper. Res. 232, 276–286 (2014)

4. Koszelew, J., Ostrowski, K.: A Genetic Algorithm with Multiple Mutation which Solves
Orienteering Problem in Large Networks. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M.
(eds.) ICCCI 2013. LNCS, vol. 8083, pp. 356–366. Springer, Heidelberg (2013)

5. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local
search for the team orienteering problem with time windows. Comput. Oper. Res. 36,
3281–3290 (2009)

6. Labadie, N., Mansini, R., Melechovsky, J., Wolfler Calvo, R., Melechovský, J.: The Team
Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood
Search. Eur. J. Oper. Res. 220, 15–27 (2012)

7. Toth, P., Vigo, D.: The Granular Tabu Search and Its Application to the Vehicle-Routing
Problem. INFORMS J. Comput. 15, 333–346 (2003)

8. Montemanni, R., Gambardella, L.M.: AN Ant Colony System for Team Orienteering Prob-
lems with Time Windows. Found. Comput. Decis. Sci. 34, 287–306 (2009)

 Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach 205

9. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: A sur-
vey. Eur. J. Oper. Res. 209, 1–11 (2011)

10. Schilde, M., Doerner, K.F., Hartl, R.F., Kiechle, G.: Metaheuristics for the bi-objective
orienteering problem. Swarm Intell. 3, 179–201 (2009)

11. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: The City
Trip Planner: An expert system for tourists. Expert Syst. Appl. 38, 6540–6546 (2011)

12. Angelelli, E., Speranza, M.G.: The periodic vehicle routing problem with intermediate fa-
cilities. Eur. J. Oper. Res. 137, 233–247 (2002)

13. Schneider, M., Stenger, A., Goeke, D.: The Electric Vehicle Routing Problem with Time
Windows and Recharging Stations. Kaiserslautern (2012)

Phase Transition and Landscape Properties

of the Number Partitioning Problem

Khulood Alyahya and Jonathan E. Rowe

School of Computer Science
University of Birmingham, B15 2TT, UK

Abstract. This paper empirically studies basic properties of the fitness
landscape of random instances of number partitioning problem, with a fo-
cus on how these properties change with the phase transition. The prop-
erties include number of local and global optima, number of plateaus,
basin size and its correlation with fitness. The only two properties that
were found to change when the problem crosses the phase transition are
the number of global optima and the number of plateaus, the rest of the
properties remained oblivious to the phase transition. This paper, also,
studies the effect of different distributions of the weights and different
neighbourhood operators on the problem landscape.

Keywords: combinatorial optimisation, phase transition, partitioning
problem, makespan scheduling, fitness landscape.

1 Introduction

Many NP-hard problems, like satisfiability (SAT) and graph-colouring problems,
have been shown to have a phase transition, which is an analogy to the transi-
tions observed in thermodynamic systems. A phase transition phenomenon in a
physical system can be described as an abrupt change of its macroscopic prop-
erties at a certain value of the control parameter [6]. A simple example is the
transition from ice to water at a specific temperature value. Similar behaviour
has been observed in combinatorial problems where a small change in the con-
trol parameter introduces a change in the problem properties. In graph-colouring
problem, for instance, a small change in the average node degree causes changes
in the graph connectivity.

There has been much interest in using the phase transition as a paradigm
to study and describe problem difficulty [6]. The most notable example of a
well-studied phase transition is the transition in SAT problem, which has an
easy-hard-easy phase transition. Problem instances below the threshold where
there are few constraints are almost always soluble, while problem instances
above the threshold where there are too many constraints are almost always
insoluble. The most difficult problem instances lie in the threshold of the phase
transition between under-constrained and over-constrained. For Max-Sat, the
optimisation version of the satisfiability problem, the instances get harder at the
threshold and stay hard above the threshold [6].

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 206–217, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Phase Transition and Landscape Properties of the NPP 207

Such changes in problem difficulty are often accompanied with changes in
the structure of the landscape which demonstrates that instances belonging to
the same class could have very different landscape structures. In k-SAT, for
example, it has been shown that in the hard phase of the problem, the local
optima are grouped into different clusters which are far away from each other
[10]. It also has been shown that around the phase transition of Max-Sat, there
exist large regions of plateau which were found to significantly slow down local
search algorithms [14].

A similar phase transition has been identified in the number partitioning
problem. In the literature, the effect of this phase transition has been shown in
the computational complexity of exact solvers such as the complete Karmarkar-
Karp differencing algorithm [9]. In this paper we are interested to see whether
the landscape properties of number partitioning problem change with the phase
transition. We are also interested to see if similar changes in the computational
complexity occur in the performance of local search algorithms. The effect of
different distributions of the weights and different neighbourhood operators on
the problem landscape were also studied.

2 Number Partitioning Problem

2.1 Problem Definition

The number partitioning problem (NPP) is defined as follows: given a set A =
{a1, . . . , an} of positive integers drawn at random from the set {1, 2, ..,M}, the
goal is to partition A into two disjoint subsets S, S′ such that the discrepancy
between them |

∑
ai∈S ai−

∑
ai∈S′ ai| is minimised. A partition is called perfect,

if the discrepancy between the two subsets is, 0 when the sum of the original set
is even, or 1 when the sum is odd. Equivalently, the problem can be viewed as
minimising the maximum sum over the two subsets.

Let x ∈ {0, 1}n, the fitness function to be minimised can be defined as:

f(x) = max

{∑
ai∈A

aixi,
∑
ai∈A

ai(1− xi)

}
(1)

Partitioning is a classical problem in theoretical computer science and it is
one of Garey and Johnson’s six basic NP-complete problems [4]. Throughout
this paper we interchangeably use numbers and weights to refer to the integers
in the set.

2.2 Phase Transition in NPP

NPP undergoes a sudden phase transition from “hard” to “easy” regimes, deter-
mined by the control parameter k = log2M/n, which corresponds to the number
of the bits required to encode the numbers in the set divided by the size of
the set. For log2M and n tending to infinity, the transition occurs at the critical

208 K. Alyahya and J.E. Rowe

value of kc = 1, such that for k < 1, there are many perfect partitions with prob-
ability tending to 1, whereas for k > 1, the number of perfect partitions drops
to zero with probability tending to 1 [1]. A more detailed parameterisation of
the critical value of the control parameter is given by the following1 [9]:

kc = 1−
ln(π6n)

2n ln 2
(2)

The problem experiences an easy regime when k < kc and a hard regime when
k > kc.

Gent and Walsh were the first to verify the existence of a phase transition in
NPP and they have shown an empirical evidence of it in their paper through nu-
merical simulations. They introduced the control parameter k and estimated the
transition point to occur around kc = 0.96 [5]. Previously, Fu [3] used statistical
mechanics to analyse the problem and concluded incorrectly that NPP does not
undergo a phase transition. Mertens [9,8] used the same method from statistical
physics and the parameterisation of Gent and Walsh to obtain non-rigorous an-
alytical results of the phase transition in NPP. Borgs et al. [1] then performed
a rigorous analysis of the problem and showed the mathematical proofs for the
existence of phase transition in NPP.

3 Landscape of NPP

We are interested in finding what makes NPP difficult in the hard phase for local
search algorithms. In particular, we want to check if some of the properties of
the fitness landscape that have been conjectured to be related to the problem
difficulty such as the number of local optima, the size of the global and local
basins and the correlation between the basin size and fitness [11,7], change as we
go from the easy phase to the hard phase. We are also interested in whether the
distribution of the weights has any effect on the problem landscape. Two different
neighbourhood operators will be investigated as well, to get an intuition of what
could be a more suitable neighbourhood structure.

The first part of this section gives definitions of some of the concepts used in
this study and describes the experimental settings. The results of experiments
are presented and discussed in the second part.

3.1 Definitions and Experimental Setup

A fitness landscape [13] of a combinatorial optimisation problem is a triple
(X,N, f), where X is the finite set of all the admissible solutions, f is the
objective function f : X → R, andN is the neighbourhood operator function
N : X → P (X). The neighbourhood operator defines how the solutions are
connected in the landscape, and how one can move from one solution to
another.

1 A more rigorous derivation of the transition point can be found in [1].

Phase Transition and Landscape Properties of the NPP 209

Optima and Plateaus. A point x ∈ X is a local optimum iff ∀y ∈ N(x), f(y) ≥
f(x). A point x ∈ X is a strict local optimum iff ∀y ∈ N(x), f(y) > f(x).
A local optimum x is a global optimum iff ∀y ∈ X, f(x) ≤ f(y). A group of
connected local optima form a closed plateau [2].

Basin of Attractions. For an optimum x∗ ∈ X, its basin of attraction B(x∗)
is the set of points that leads to it after applying local search algorithm to
them, B(x∗) = {x ∈ X |localsearch(x) = x∗}. The local search algorithm to
determine the basin of attraction is given in Algorithm 1. If there is more
than one neighbour with the best improving move, the first one is always
selected.

Algorithm 1. Steepest Descent

for x ∈ X
repeat

choose x′ ∈ N(x), such that f(x′) = miny∈N(x)f(y)
replace x with x′ if f(x′) < f(x)

until
x is a strict local optimum or a local optimum

In the experiments, instances from small problem size were considered to allow
exhaustive enumeration of the entire search space, the problem size considered
is n = 20. Since the studied problem is a pseudo-Boolean function the search
space size is 2n. The binary representation of NPP creates a symmetry in the
search space, in the sense that a solution and its bitwise complement have the
same fitness value. The number of unique solutions is thus 2n−1.

In this paper, we considered two different neighbourhood operators. The 1
hamming operator (H1), the neighbourhood using this operator is the set of
points that are reached by 1-bit flip mutation of the current solution, hence the
neighbourhood size is |N(x)| = n. The second operator is the 1+2 hamming
operator (H1+2), the neighbourhood here includes the hamming one neighbours
plus the hamming two neighbours of the current solution which can be reached
by 2-bits flip mutation, the neighbourhood size for this operator is |N(x)| =
n+(n(n− 1)/2). 30 instances were generated randomly for each combination of
the following experimental settings:

Phase Transition. To study the effect of phase transition on the properties of
NPP landscape, the control parameter k was varied between 0.4 to 1.3 with
0.1 step interval.

Different Distributions. Here we are interested in how the distributions of
the weights might affect the structure of the problem landscape. Problem
instances were generated with weights drawn randomly from five different
discrete probability distributions: uniform, normal, negatively skewed, pos-
itively skewed and bimodal distribution with peaks at both ends (figure 1
shows example distributions).

210 K. Alyahya and J.E. Rowe

negatively skewed positively skewed normal two peaks uniform
0

0.05

0.1

0.15

0.2

0.25
pr

ob
ab

ili
ty

Fig. 1. Illustration of the probability mass functions (pmfs) of the considered distri-
butions of the weights

3.2 Experimental Results

Number of Global Optima and Plateaus. Figure 2 shows the number of
global optima for the randomly generated instances of NPP. The figure shows
that for all the distributions, the number of global optima decreases as we ap-
proach the phase transition point and keep decreasing as we cross the phase
transition to only two. There are some variations in the number of global op-
tima between the different distributions in the easy phase, with instances drawn
from the positively skewed distribution having the highest number of global op-
tima and instances drawn from the negatively skewed distribution having the
lowest number of global optima. Similar results have been observed for the num-
ber of points in closed plateaus as figure 3 shows. The figure shows that the
number starts to decrease as we approach the phase transition until it becomes
zero in the hard phase.

10
1

10
2

10
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

N
u

m
b

er
 o

f
G

lo
b

al
 O

p
ti

m
a

Kc

Fig. 2. Number of global optima versus the phase transition control parameter k, for
all the different distributions of the weights. Each box represents the number of global
optima found in 30 random instances of size n = 20. The dotted line is given by kc
from Eq. (2).

Phase Transition and Landscape Properties of the NPP 211

10
0

10
2

H1

10
0

10
2

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

N
u

m
b

er
 o

f
P

o
in

ts
 in

 P
la

te
au

s

H1+2

0

2000

4000

6000

0

2000

4000

6000

Kc

Fig. 3. Number of points in closed plateaus versus the phase transition control param-
eter k, for all the different distributions of the weights. Each box represents the number
of points in plateaus found in the 30 random instances of size n = 20. This is shown
for both neighbourhood operators H1 and H1+2. The dotted line is given by kc from
Eq. (2).

Number of Local Optima. Figure 4 shows the number of strict local op-
tima (excluding global optima) found in the randomly generated instances of
NPP. There is a very clear difference in the number of local optima across in-
stances generated from the different distributions. In the landscapes induced
by the H1 operator, instances drawn from normal distribution have the highest
number of local optima (around 15% of the search space). Instances generated
from negatively skewed distribution have a quite high number of local optima
as well (around 8% of the search space) but the number varies a lot between
the randomly drawn instances from this distribution. Instances drawn from the
uniform distribution have less number of local optima (around 3% of the search
space), while the lowest number of local optima is seen in instances drawn from
both positively skewed and two peaks distributions (representing around 1% of
the search space). Figure 4, also, shows that the number of local optima does
not change very much between the easy and the hard phase regardless of the
distribution from which the weights are chosen.

Number of local optima can be used as a measure of the ruggedness of the land-
scape [13]. Thus, the results found indicate that instances with weights drawn
from normal and negatively skewed distributions have more rugged landscapes
than instance drawn form uniform, positively skewed and two peaks distribu-
tions which seem to have much less rugged landscapes. Other features such as
the distribution of local optima could be studied in the future to support this
observation.

For the landscapes induced by H1+2 operator, the number of local optima
drops for all the different distributions compared to their H1 landscapes. It seems
that the largest drop occurs in instances drawn from normal and negatively

212 K. Alyahya and J.E. Rowe

0

5

10

15

x 10
4

H1

0

2000

4000

6000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

N
u

m
b

er
 o

f
L

o
ca

l O
p

ti
m

a

H1+2

Kc

Fig. 4. Number of strict local optima versus the phase transition control parameter
k, for all the different distributions of the weights. Each box represents the number of
local optima found in the 30 random instances of size n = 20. This is shown for both
neighbourhood operators H1 and H1+2. The dotted line is given by kc from Eq. (2).

skewed distributions. As in the H1 landscapes, the number of local optima does
not seem to change much between the easy and the hard phase except for very
small values of k (0.4 and 0.5) and this could be due to the slightly higher
number of points that are part of closed plateaus in the H1+2 landscapes of
those instances.

Basin Size and Its Correlation with Fitness. Here we look at another
feature of the fitness landscape of NPP, that is, the basins of attraction. Although
the number of local optima was found to be insensitive to the phase transition,
we are interested here to see if the size of the local optima basins becomes larger
in the hard phase resulting in the size of the global basins to shrink, which could
be one of the reasons for the problem to be difficult in the hard phase. Figures 5
and 6 show the average basin sizes of the global and local optima respectively.
In the H1+2 landscape, there is a large increase in the average basin size in
comparison to the H1 landscape. This increase is in accordance with the decrease
in the number of local optima for all the different distributions and for all the
different values of k, in H1+2 landscape compared to H1 landscape. The figures,
also, show that there is not much difference between the average basin sizes in
the easy phase and the hard phase for all the different distributions and for both
H1 and H1+2 landscapes, given evidence that even the size of the basins seems
to be insensitive to the phase transition.

Another important aspect of the fitness landscape is the correlation between
the basin size and the fitness of the optimum. Previous studies have shown that
in general, fitter optima have larger basins [13]. Here we want to examine if this
is also the case in NPP. Figure 7 shows that for the H1 landscape, all instances
with weights generated from all the distributions, have negative correlations

Phase Transition and Landscape Properties of the NPP 213

100

200

300
H1

0

2000

4000

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

A
ve

ra
g

e
S

iz
e

o
f

G
lo

b
al

 B
as

in
s

H1+2

Kc

Fig. 5. Average basin size of global optima versus the phase transition control pa-
rameter k, for all the different distributions of the weights. Each box represents data
from the 30 random instances of size n = 20. This is shown for both neighbourhood
operators H1 and H1+2. The dotted line is given by kc from Eq. (2).

between the basin size and fitness, indicating that fitter optima tend to have
bigger basins. This, again, does not seem to change very much across the differ-
ent values of k. For the H1+2 landscape, the negative correlation seems to remain
the same for all the distributions except for instances generated from normal and
positively skewed distributions. In the normal distributions the correlation fluc-
tuates between positive and negative values, while for instances generated from
the positively skewed distribution the correlation occasionally becomes positive.

Cost of Local Search. To examine how the cost of finding the optimal solutions
varies from the easy phase to the hard phase, steepest descent with random
restart algorithm (Algorithm 2 below) was run with the two neighbourhood
operators for 100 times for each instance. The cost of finding the global optima
is then calculated using the number of used fitness evaluations.

Algorithm 2. Steepest Descent with Random Restarts
repeat

Chose x ∈ {0, 1}n, uniformly at random
repeat

choose x′ ∈ N(x), such that f(x′) = miny∈N(x)f(y)
replace x with x′ if f(x′) < f(x)

until
x is a strict local optimum or a local optimum

until
x is a global optimum

214 K. Alyahya and J.E. Rowe

0

50

100

150

200
H1

0

1000

2000

3000

4000

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

A
ve

ra
g

e
 S

iz
e

o
f

L
o

ca
l B

as
in

s

H1+2

Kc

Fig. 6. Average basin size of local optima versus the phase transition control parameter
k, for all the different distributions of the weights. Each box represents data from the
30 random instances of size n = 20. This is shown for both neighbourhood operators
H1 and H1+2. The dotted line is given by kc from Eq. (2).

−0.8

−0.6

−0.4

−0.2

0

0.2
H1

−0.5

0

0.5

1

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
1

1.
2

1.
3

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

u
n

if
o

rm
n

o
rm

al
p

o
s.

 S
ke

w
n

eg
. S

ke
w

tw
o

 P
ea

ks

k

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

b
et

w
ee

n
 B

as
in

 S
iz

e
an

d
 F

it
n

es
s

H1+2

Kc

Fig. 7. Correlation coefficient between fitness and basin size versus the phase transi-
tion control parameter k, for all the different distributions of the weights. Each box
represents data from the 30 random instances of size n = 20. This is shown for both
neighbourhood operators H1 and H1+2. The dotted line is given by kc from Eq. (2).

Figure 8 shows the results of the algorithm runs with the H1 and the H1+2
operators. The results were averaged over the 30 problem instances. The Stu-
dent’s t-test was used to determine if the difference between the performance of
the H1 and the H1+2 operators is significantly different. In most of the cases,
the difference between the performance of the two operators was found to be
statistically significant (p<0.05).

Phase Transition and Landscape Properties of the NPP 215

0

5

10
x 10

5

fit
ne

ss
 e

va
lu

at
io

ns

Uniform

0

5

10

15
x 10

5

fit
ne

ss
 e

va
lu

at
io

ns

Normal

0

5

10
x 10

5

Positively Skewed

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

5

10

15
x 10

5

k

Negatively Skewed

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

5

10
x 10

5

k

Two Peaks

H1

H1+2

Kc

Kc

Kc

Kc

Kc

Fig. 8. Average number of fitness evaluations used to find the global optimum, plotted
against the phase transition control parameter k. This is shown for all the considered
distributions of the weights and for both neighbourhood operators H1 and H1+2. Each
data point represents the average over the 30 instances of size n = 20 and 100 runs of the
steepest descent algorithm per instance. The dotted line is given by kc from Eq. (2).

For all the different distributions the figure shows that the average number
of fitness evaluations used to find the global optima increases as we approach
the phase transition point and keep increasing as we cross the phase transition.
This is expected due to the drastic decrease in the number of global optima in
the hard phase. In the easy phase, the algorithm usually finds quickly one of the
many global optima while it struggles to find the single (two if we considered
the symmetry) global optimum in the hard phase.

The number of used fitness evaluations varies across the different distribu-
tions, instances drawn form positively skewed and two peaks distributions have
the lowest number of fitness evaluations, which is unsurprising due to the low
number of local optima in the landscape of both cases. For instances drawn from
normal and negatively skewed distributions the performance of the H1+2 oper-
ator was much better than the performance of the H1 operator. This can be
explained by the very big difference between the number of local optima in the
H1+2 landscape compared to the H1 landscape which has far more local optima,
suggesting that the algorithm probably had to do far less restarts when using
the H1+2 operator. For the rest of the distributions, the H1 operator seems to
have a better performance even though the number of local optima is less in the
landscapes induced by the H1+2 operator. This perhaps can be explained by
the number of fitness evaluations needed to explore the much larger neighbour-
hood of the H1+2 operator, which might have offset the advantage of having
less number of local optima.

216 K. Alyahya and J.E. Rowe

4 Conclusions

In this paper, we looked at some of the landscape properties of the number
partitioning problem. We found that the only two properties that change when
the problem crosses the phase transition are the number of global optima and the
number of plateaus. The number of local optima, the size of the global and local
basins and the correlation between basin size and fitness seem to be oblivious to
the phase transition. These results are in agreement with the results obtained by
Stadler et al. [12], in which they found that the features of NPP landscape that
have been mapped into barriers trees are insensitive to the phase transition.

The performance of local search algorithms was found to be affected by the
phase transition in NPP, as shown by the considerable increase in the cost of
locating the global solution in the hard phase. We also found that instances
with weights drawn from different distributions have very different landscapes
in terms of the above mentioned properties, which seems to have an effect on
the problem difficulty for local search algorithms. This has been shown in the
number of fitness evaluations used by local search to find the global optima
in problem instances with weights randomly drawn from different distributions.
Two neighbourhood operators were investigated to get an intuition of what could
be a more suitable neighbourhood structure for a given problem instance. The re-
sults show that local search algorithm with H1 neighbourhood operator preforms
better than with H1+2 operator for instances drawn form uniform, positively
skewed and two peaks distributions, while the H1+2 operator preformed better
for instances with weights drawn from negatively skewed and normal distribu-
tions. The results could be used for devising suitable and effective neighbour-
hood operators depending on the distribution of the weights in a given problem
instance.

References

1. Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the
integer partitioning problem. Random Structures & Algorithms 19(3-4), 247–288
(2001)

2. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology.
Journal of Artificial Intelligence Research 7, 249–281 (1997)

3. Fu, Y.: The use and abuse of statistical mechanics in computational complexity.
In: Stein, D.L. (ed.) Lectures in the Sciences of Complexity, vol. 1, pp. 815–826.
Addison-Wesley, Reading (1989)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of books in the mathematical sciences. W.H. Freeman
(1979)

5. Gent, I.P., Walsh, T.: Analysis of heuristics for number partitioning. Computa-
tional Intelligence 14(3), 430–451 (1998)

6. Hartmann, A.K., Weigt, M.: Phase Transitions in Combinatorial Optimization
Problems. John Wiley & Sons (2006)

7. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search
landscapes. Theoretical Aspects of Evolutionary Computing, 175–206 (2001)

Phase Transition and Landscape Properties of the NPP 217

8. Mertens, S.: Phase transition in the number partitioning problem. Physical Review
Letters 81(20), 4281–4284 (1998)

9. Mertens, S.: A physicist’s approach to number partitioning. Theoretical Computer
Science 265(1-2), 79–108 (2001)

10. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfi-
ability problem. Physical Review Letters 94, 197205 (2005)

11. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analy-
sis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in
Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg
(2012)

12. Stadler, P.F., Hordijk, W., Fontanari, J.F.: Phase transition and landscape statis-
tics of the number partitioning problem. Physical Review E 67(5), 056701 (2003)

13. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments on The-
oretical Biology 8(4-5), 389–431 (2002)

14. Tayarani, M., Prugel-Bennett, A.: On the landscape of combinatorial optimisation
problems. IEEE Transactions on Evolutionary Computation PP(99) (2013)

The Firefighter Problem: Application

of Hybrid Ant Colony Optimization Algorithms�

Christian Blum1,2, Maria J. Blesa3, Carlos Garćıa-Mart́ınez4,
Francisco J. Rodŕıguez5, and Manuel Lozano5

1 Dept. of Computer Science and Artifical Intelligence, Univ. of the Basque Country
UPV/EHU, San Sebastian, Spain

christian.blum@ehu.es
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3 ALBCOM Research Group, Univ. Politécnica de Catalunya, Barcelona, Spain
mjblesa@lsi.upc.edu

4 Dept. of Computing and Numerical Analysis, Univ. of Córdoba, Spain
cgarcia@uco.es

5 Dept. of Computer Science and Artificial Intelligence, Univ. of Granada, Spain
fjrodriguez@decsai.ugr.es, lozano@decsai.ugr.es

Abstract. The firefigther problem is a deterministic discrete-time model
for the spread (and the containment) of fire on an undirected graph. As-
suming that the fire breaks out at a predefined set of vertices, the goal is
to save as many vertices as possible from burning. The same model has
also been used in the literature for the simulation of the spreading of de-
seases. In this work we present, to our knowledge, the first metaheuristics
for tackling this problem. In particular, a pure ant colony optimization
approach and a hybrid variant of this algorithm are proposed. The re-
sults show that the hybrid ant colony optimization variant is superior
to the pure ant colony optimization version and to a mathematical pro-
gramming solver, especially when the graph size and density grows.

1 Introduction

The firefighter problem was initially proposed in 1995 by Hartnell [21] as a
deterministic discrete-time model for the spread (and containment) of fire. Since
then it has also been used, for example, to model the spreading of deseases and
the containment of floods. The firefighter problem has been subject to a wide
variety of research during the last 10-20 years. However, most of this research was
focused on obtaining theoretical results for specific types of graphs and specific
problem cases. Surprisingly, not a single metaheuristic approach has been applied
so far—to our knowledge—in order to tackle the problem from a practical point
of view. This was our main motivation for the development of an ant colony
optimization algorithm, and a hybrid variant of the algorithm that makes use
of a mathematical programming solver. In the following we provide a technical
description of the firefighter problem, as well as an overview on related work.

� This work was supported by grant TIN2012-37930 of the Spanish Government, and
project 2009-SGR1137 of the Generalitat de Catalunya.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 218–229, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Firefighter Problem: Application of Hybrid ACO Algorithms 219

Problem Description. Given is an undirected graph G = (V,E). Each vertex of
the graph is initally labelled as untouched. At time t = 0, the fire breaks out
at a pre-defined set Binit ⊆ V of vertices. These vertices are labelled as burnt.
Then, at time step t = 1, each member of a set of D firefighters (where D is a
fixed input parameter of the problem) may choose a vertex from G. These D
vertices are then labelled as defended. Moreover, these vertices may, of course,
only be chosen from the set of vertices that are still labelled untouched. Time
step t = 1 finishes by the fire propagating from the vertices labelled as burnt
to all neighboring vertices that are labelled untouched. All these vertices change
their label to burnt. This process proceeds (t = 2, 3, . . .) until the fire cannot
spread any further, that is, until the fire is contained. The optimization objective
considered in this paper concerns the choice of the D defended vertices at each
time step such that, when the fire is contained, the number of saved vertices is
maximal. Note that a vertex is called saved if it is either labelled defended or
untouched once the fire is contained.

In [11] was proposed a linear integer programming model of this problem. The
model is based on two sets of binary variables. The first set consists of a binary
variable bv,t for each vertex v ∈ V and each time step 0 ≤ t ≤ T , where T is an
upper bound for the fire containment process, which must be appropriately set.
A setting of bv,t = 1 means that vertex v is labelled burnt at time step t, while
the opposite is the case otherwise. The second set of variables contains a binary
variable dv,t for each vertex v ∈ V and each time step 0 ≤ t ≤ T . A setting
of dv,t = 1 means that vertex v is labelled defended at time step t, while the
opposite is the case otherwise. The model may then be stated as follows.

max|V | −
∑
v∈V

bv,T

subject to:

bv,t + dv,t − bv′,t−1 ≥ 0 for v ∈ V, v′ ∈ N(v), and 1 ≤ t ≤ T

bv,t + dv,t ≤ 1 for v ∈ V and 1 ≤ t ≤ T

bv,t − bv,t−1 ≥ 0 for v ∈ V and 1 ≤ t ≤ T

dv,t − dv,t−1 ≥ 0 for v ∈ V and 1 ≤ t ≤ T∑
v∈V

(dv,t − dv,t−1) ≤ D for 1 ≤ t ≤ T

bv,0 = 1 for v ∈ Binit

bv,0 = 0 for v ∈ V \Binit

dv,0 = 0 for v ∈ V

bv,t, dv,t ∈ {0, 1} for v ∈ V and 1 ≤ t ≤ T

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Hereby, constraints (2) ensure the spread of the fire while respecting defended
vertices. Note, in this context, that the notation N(v) refers to the neighboring
vertices of a vertex v ∈ V . Constraints (3) prevent a firefighter from defend-
ing a burnt vertex and the fire from burning a defended vertex. Furthermore,

220 C. Blum et al.

constraints (4) ensure that a burnt vertex remains burnt, while constraints (5)
ensure that a defended vertex remains defended. Finally, constraints (6) limit
the number of firefighters per time step to D, and constraints (7-9) fix the initial
conditions for time step t = 0, that is, the vertices from Binit are declared as
burnt, and none of the vertices is declared as defended.

Related Work. The existing literature on the firefighter problem is focused on
theoretical analysis [15]. The decision variant of the problem, saving just one
vertex per time unit, was proved NP-complete for bipartite graphs in 2003 [25].
Stronger results appeared afterwards for cubic graphs [24] and graphs with de-
gree three [14]. More recently, Cygan et al. analyzed the complexity of different
parameterized versions of the problem on general graphs [10], and Bazgan et
al. [3] and Costa et al. [9] analyzed the case with more than one firefighter.

In 2000, the greedy algorithm for trees, which saves the vertex v that maxi-
mizes the number of vertices that will be saved if v is protected, was proved to be
a 1/2-approximation algorithm [22]. A linear programming relaxation for trees
that supposedly gives a c-approximation algorithm was presented in 2006 [20],
and a subexponential (1− 1/e)-approximation method in 2008 [7]. These results
have been improved in 2011 [23]. On the other hand, exact polynomial solutions
exist for caterpillar and P-trees [15,19,25].

First approaches for grids of dimension 2 and 3 were provided in 2002 [17,28],
and then generalized in 2007 [11]. These studies concluded that two firefighter
were needed to contain the fire in an infinite 2-dimensional square grid, and 2d−1
in a d-dimensional one with d ≥ 3. There exist specific results for triangular,
strong, and hexagonal grids [17,26,27], and for other graph classes [18].

The surviving rate of a graph is defined as the average percentage of vertices
that can be saved when f fires break out at random vertices of the graph [6]. The
study of this concept has become very fruitful in the literature and the evidence
is the existence of many works on the subject for different graph structures
(see [8,5,12], just to name a few).

Finally, variants of the firefighter problem are the fractional firefighter prob-
lem [17], the spreading vaccinations model [1,2,16], the non-constant firefighter
problem [13,29], as well as other problem variants described in Section 8 of [15].

Outline of the Paper. The outline of the remaining part of the paper is as follows.
The algorithms are described in Section 2. A description of the problem instance,
the tuning process, and the experimental results are given in Section 3. Finally,
conclusions and an outlook to future work are provided in Section 4.

2 The Proposed Algorithms

The algorithms proposed in this work for the firefighter problem are based on
aMAX –MIN Ant System (MMAS) implemented in the Hyper-Cube Frame-
work (HCF) [30,4]. In the following, we first provide a description of this pure
approach, henceforth labelled ACO. Afterwards, a hybrid algorithm which com-
bines the pure ACO approach with an integer programming solver is presented.

The Firefighter Problem: Application of Hybrid ACO Algorithms 221

2.1 Solution Representation and Pheromone Model

Before being able to delve into the algorithm description, we must first deal
with some basic aspects of the algorithm. A crucial aspect for any metaheuristic
concerns the representation of valid solutions to the tackled problem. A valid
solution in the case of the firefighter problem consists of the D vertices to be
defended at each time step t ≥ 1. Remember that only untouched vertices may
be defended, that is, vertices that are neither burnt nor already defended. Note
that any permutation π of all the vertices in V can be seen in the following
way as a valid solution to the problem. In order to evaluate a solution given in
the form of a permutation, the fire spreading process is simulated starting with
the initial situation in which only the vertices from Binit are declared as burnt.
For t = 1, the D vertices to be defended are derived by scanning π from left to
right, starting at the left-most position. The scanning process accepts any vertex
which is not already burnt. In case an already burnt vertex is encountered, the
scanning process simply moves to the vertex at the next position to the right.
At each time step t, the scanning process proceeds until D feasible vertices are
found (or the end of the permutation is reached). Moreover, assuming that the
scanning process has stopped at a position j of π at time step t, the scanning
process for t = 1 is started at position j + 1. This process is continued as long
as the fire may spread further. The output of the process—that is, the objective
function value f(π)—is determined as the number of vertices that are not burnt.

A second crucial aspect, this time specific to ACO algorithms, concerns the
definition of the pheromone model. We decided for the standard pheromone
model which is used when solutions are represented as permutations. More
specifically, the pheromone model T contains a pheromone value τv,j for each
combination of a vertex v and a position 1 ≤ j ≤ |V | of a permutation.

2.2 ACO: A Pure MMAS Approach

A MMAS implemented in the HCF works as follows (see also Algorithm 1).
First, na solutions are probabilistically generated, based on pheromone and
greedy information. Second, the pheromone values are modified using (at most)
three solutions: (1) the iteration-best solution πib, (2) the restart-best solution
πrb, and (3) the best-so-far solution πbs. The general aim of the pheromone up-
date is to focus the search on areas of the search space containing high-quality
solutions. Moreover, the algorithm performs restarts—that is, re-initializations
of the pheromone values—upon convergence. More specifically, restarts are con-
trolled by the so-colled convergence factor (cf) and a Boolean control variable
called bs update. A detailed description of all algorithmic components is pro-
vided in the following.

Construct Solution(): A solution π—that is, a permutation of all nodes of V—is
probabilistically generated from left to right by simulating the fire spreading
process just like in the case of a solution evaluation. The position counter i
is initialized to 1. Moreover, in the initial situation (at t = 0) all vertices are

222 C. Blum et al.

Algorithm 1. Pure ACO for the firefighter problem

1. input: an undirected graph G = (V,E), a set Binit, and parameter D
2. πbs := null, πrb := null, cf := 0, bs update := false
3. τv,j := 0.5 for all τv,j ∈ T
4. while termination conditions not met do
5. for cnt = 1, . . . , na do πcnt := Construct Solution() end for
6. πib := argmin{f(πcnt) | cnt = 1, . . . , na}
7. if f(πib) > f(πrb) then πrb := πib

8. if f(πib) > f(πbs) then πbs := πib

9. ApplyPheromoneUpdate(cf ,bs update ,T ,πib,πrb,πbs)
10. cf := ComputeConvergenceFactor(T)
11. if cf > 0.99 then
12. if bs update = true then
13. τv,j := 0.5 for all τv,j ∈ T , πrb := null, and bs update := false
14. else
15. bs update := true
16. end if
17. end if
18. end while
19. output: πbs, the best solution found by the algorithm

labelled untouched, apart from the vertices in Binit which are declared as burnt.
For each t > 1, at most D vertices are chosen from the set of untouched vertices.
Let us henceforth refer to this set as U ⊂ V . The probability to choose a vertex
v ∈ U is defined as follows:

p(v) :=
τv,i · ηv,i∑

v′∈U τv′,i · ηv′,i
, (10)

where the pheromone value τv,i indicates the desirability to place vertex v at
position i of solution/permuation π, while ηv,i is the heuristic information for
doing so. This heuristic information is defined as follows. Let πη be the sequence
in which the vertices of V are sorted increasingly according to their distance
(in terms of the length of the shortest path) to the closest vertex from Binit.
The degree of the vertices is hereby used to break ties, that is, vertices with
higher degrees are preferred. Furthermore, the position of a vertex v ∈ V in πη

is henceforth denoted by pos(v, πη). The heuristic information ηv,i to place a
vertex v at position i of a solution π is then defined as:

ηv,i := |V | −
|i− pos(v, πeta)|

|V | (11)

In words, the heuristic information for a vertex v (in conjunction with the cur-
rent position i) decreases with increasing distance from pos(v, πη). Given the
probabilities from Eqn. (10), a vertex v ∈ U is chosen in the following way. First
a value 0 ≤ r ≤ 1 is drawn uniformly at random. In case r ≤ q0, the vertex with
the highest probability is chosen deterministically. Otherwise, a vertex is chosen

The Firefighter Problem: Application of Hybrid ACO Algorithms 223

Table 1. Setting of κib, κrb, and κbs depending on the convergence factor cf and the
Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

randomly according to the probabilities. Hereby, the determinism rate q0 ≤ 1 is
a parameter of the algorithm.

Upon choosing a vertex v with respect to the probabilities shown in Eqn. (10),
v is placed at position i of π, the position counter i is incremented, and v is de-
clared as defended. After having selected D vertices in this way, t is incremented
and the fire propagates from burnt nodes to all neighboring nodes which are
still untouched. This process stops once the fire is contained. In a last step, π
is completed by adding all vertices that are burnt or untouched in an arbitrary
order to the free positions of π.

ApplyPheromoneUpdate(cf ,bs update,T ,πib,πrb,πbs): The three solutions πib, πrb,
and πbs (as described at the beginning of this section) are used for the pheromone
update. Their influence on the pheromone update depends on the current value
of the convergence factor cf and on the value of the Boolean control variable
bs update as outlined in Table 1. Each pheromone value τv,j ∈ T is updated
as follows: τv,j := τv,j + ρ · (ξv,j − τv,j), where ξv,j := κib · Δ(πib, v, j) + κrb ·
Δ(πrb, v, j) + κbs ·Δ(πbs, v, j). Hereby, κib is the weight of solution πib, κrb the
one of solution πrb, and κbs the one of solution πbs. Moreover, Δ(π, v, j) eval-
uates to 1 if and only if vertex v is at position j in solution π. Otherwise, the
function evaluates to 0. Note also that the three weights must be chosen such
that κib + κrb + κbs = 1. After the pheromone update, pheromone values that
exceed τmax = 0.99 are set back to τmax, and pheromone values that have fallen
below τmin = 0.01 are set back to τmin. This prevents the algorithm from reach-
ing the state of convergence.

ComputeConvergenceFactor(T): The convergence factor cf is computed on the
basis of the pheromone values (see also [4]):

cf := 2

⎛⎜⎝
⎛⎜⎝

∑
τv,j∈T

max{τmax − τv,j , τv,j − τmin}

|T | · (τmax − τmin)

⎞⎟⎠− 0.5

⎞⎟⎠
This results in cf = 0 when all pheromone values are set to 0.5. On the other
side, when all pheromone values have either value τmin or τmax, then cf = 1. In
all other cases, cf has a value between 0 and 1. This completes the description
of all components of the proposed algorithm.

224 C. Blum et al.

2.3 HyACO: A Hybrid ACO Variant

The hybrid algorithm that we propose in this paper is based on a combination of
the pure ACO approach—as outlined in the previous section—and mathemat-
ical programming. More specifically, the hybrid algorithm (henceforth labelled
HyACO) is a sequential approach that works as follows. First, pure ACO is ap-
plied with a certain computation time limit. Then, the best solution obtained by
pure ACO is given to CPLEX as a starting solution (see, for example, page 531
of the IBM ILOG CPLEX V12.1 user manual: Starting from a Solution: MIP
Starts). CPLEX is then used to apply solution polishing for a certain amount
of CPU time to the given starting solution (see, for example, page 521 of the
IBM ILOG CPLEX V12.1 user manual: Solution polishing). Solution polishing
can be seen as a black box local search based on branch & cut, with the aim
to improve a solution, rather than proving optimality. The best solution found
after this phase is provided by HyACO as output.

3 Experimental Evaluation

We implemented the proposed algorithms in ANSI C++ using GCC 4.7.3 for
compiling the software. Moreover, the mathematical program outlined in Sec-
tion 1 was solved with IBM ILOG CPLEX V12.1. The same version of CPLEX
was used within HyACO. The experimental results that we outline in the fol-
lowing were obtained on a cluster of PCs with ”Intel(R) Xeon(R) CPU 5130”
CPUs of 4 nuclii of 2 GHz and 4 Gigabyte of RAM.

Problem Instances. A random graph may be generated by choosing a fixed num-
ber of vertices (n) and a so-called edge probability (pe). In the process of gen-
erating a random graph G = (V,E) with n vertices, the edge probability pe is
used to determine for each possible edge e = (v, v′) between two vertices v ∈ V
and v′ ∈ V , if e is added to E or not. For the purpose of evaluating the pro-
posed algorithms, the following benchmark set of random graphs was generated.
The number of vertices n was chosen to be from {50, 100, 500, 1000}. In the
case of n = 50, edge probabilities {0.1, 0.15, 0.2} were considered. In the case
of n = 100, we considered edge probabilities {0.05, 0.075, 0.1}. In the case of
n = 500, edge probabilities from {0.015, 0.02, 0.025} were considered. Finally, in
the case of n = 1000, we made use of edge probabilities {0.0075, 0.01, 0.0125}.
For each combination of n and pe we generated 10 random graphs, that is, in
total 120 random graphs were generated. Note that different edge probabilities
were considered in order to generate graphs of different densities. The average
number of edges for the 10 graphs of each combination of n and pe is shown in
Table 2.

Parameter Setting and Tuning. In general, we assumed a standard parameter
setting for the ACO algorithm. More specifically, the number of ants (na) was set
to 10 per iteration, and the learning rate (ρ) was set to 0.1. Moreover, all tests
carried out in this paper assume that Binit, the set of vertices in which the fire

The Firefighter Problem: Application of Hybrid ACO Algorithms 225

Table 2. Average number of edges for each combination of n and pe. The table contains
the before-mentioned combinations in the form (n, pe). The average number of edges
is indicated underneath.

(50, 0.1) (50, 0.15) (50, 0.2) (100, 0.05) (100, 0.075) (100, 0.1)

122.6 180.0 245.5 249.6 373.6 495.7

(500, 0.015) (500, 0.02) (500, 0.025) (1000, 0.0075) (1000, 0.01) (1000, 0.0125)

1865.0 2470.7 3128.3 3753.0 5003.6 6248.2

breaks out, only contains the vertex with index 0. The most crucial parameter
of the proposed ACO algorithm is the determinism rate q0, which determines
the greediness of the solution construction process. Therefore, this parameter
was chosen to be subject of tuning. For this purpose we selected for each com-
bination of n and pe the first one of the 10 random graphs and applied the pure
ACO algorithm for q0 ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} exactly once
to each of the selected graphs. As a computation time limit we used n/2 CUP
seconds. Moreover, all runs were performed for different values of D, which is
the upper bound of vertices that may be saved at each iteration of the fire prop-
agation process. More specifically, we used D ∈ {1, . . . , 10}. The results for each
combination of a graph and a value for D were ranked. These ranks are shown in
Figure 1, in the following way. The graphic contains a grid of barplots. The rows
in this grid refer to different settings of D, and the columns refer to the edge
probabilities used to generate the correspondings graphs. Hereby, sparse refers
to the smallest one of the three edge probabilities for each n, medium to the
second one, and dense to the largest one. The height of the bars of each barplot
indicates the average rank of the experiments. The leftmost bar corresponds to
the experiments with q0 = 0.0, and the rightmost bar corresponds to the exper-
iments with q0 = 0.9. In general, the results indicate that when D is small the
determinism rate should not be too high. However, with growing D the value
for the determinism rate should grow. As a compromise we chose the following
setting for q0 for the final experiments. For D ∈ {1, 2, 3}, q0 is set to 0.5. For
D ∈ {4, 5, 6}, q0 is set to 0.7, and for the rest of the values of D, q0 is set to 0.9.

Results. ACO and HyACO were both applied exactly once to each of the 120
graphs of the benchmark set. The computation time limit for ACO was chosen
to be n/2. The computation time limit for the first phase of HyACO (in which
the pure ACO is applied) was chosen to be n/4, and the computation time
limit for the second phase of HyACO (in which solution polishing is applied by
CPLEX) was equally chosen to be n/4. In this way, the computation time limits
for ACO and HyACO are exactly the same. Finally, CPLEX was used to solve
the mathematical program with the same computation time limit as the one
used for ACO and HyACO.

The results are provided in Table 3, separated into four subtables correspond-
ing to graph size. Each subtable presents the results in 10 rows, one for each of
the 10 possible values of D. For each algorithm is shown the average result over
the corresponding 10 random graphs. For example, the average result of CPLEX
for graphs with n = 50 and pe = 0.1 (when D = 1) is 7.4. Remember that this

226 C. Blum et al.

Table 3. Numerical results of ACO, HyACO, and CPLEX

(a) Results for graphs with 50 vertices.

D Edge probability pe = 0.1 Edge probability pe = 0.15 Edge probability pe = 0.2
CPLEX ACO HyACO CPLEX ACO HyACO CPLEX ACO HyACO

1 7.4 (10/10) 7.4 7.4 4.5 (10/10) 4.5 4.5 3.1 (10/10) 3.1 3.1
2 26.6 (10/10) 26.4 26.5 9.7 (10/10) 9.7 9.7 7.2 (10/10) 7.2 7.2
3 41.8 (10/10) 40.9 41.6 18.8 (10/10) 16.5 18.5 11.2 (10/10) 11.1 11.2
4 47.9 (10/10) 47.8 47.9 31.2 (10/10) 30.5 30.9 17.5 (10/10) 16 17.2
5 48.5 (10/10) 48.5 48.5 39.1 (10/10) 36.1 39.1 27.7 (10/10) 26.1 27.6
6 48.8 (10/10) 48.8 48.8 43.7 (10/10) 42.7 43.7 33 (10/10) 31.4 33
7 49 (10/10) 49 49 46.3 (10/10) 45.4 46.3 37.5 (10/10) 35.7 37.5
8 49 (10/10) 49 49 48.1 (10/10) 46.8 48.1 42.7 (10/10) 40.3 42.6
9 49 (10/10) 49 49 48.6 (10/10) 48.2 48.6 46.1 (10/10) 44.4 46.1
10 49 (10/10) 49 49 48.8 (10/10) 48.8 48.8 47.5 (10/10) 47.1 47.5

(b) Results for graphs with 100 vertices.

D Edge probability pe = 0.05 Edge probability pe = 0.075 Edge probability pe = 0.1
CPLEX ACO HyACO CPLEX ACO HyACO CPLEX ACO HyACO

1 9.2 (10/10) 9.1 9.2 5.4 (10/10) 5.4 5.4 3.9 (10/10) 3.9 3.9
2 26.9 (4/10) 25.7 27.6 11.3 (2/10) 11.2 11.3 8.5 (5/10) 8.3 8.7
3 62.8 (5/10) 54.6 62.7 41.5 (3/10) 41 41.6 21.4 (1/10) 21 21.3
4 85.3 (8/10) 66.3 85.5 53.7 (4/10) 52.4 53.3 25.5 (1/10) 24.5 25.5
5 97.3 (10/10) 92.3 97.3 65.7 (5/10) 63.5 65.9 30.2 (1/10) 29.1 29.5
6 98.5 (10/10) 98.3 98.5 87.5 (8/10) 75.1 87.3 41.8 (2/10) 33.9 41
7 98.8 (10/10) 98.8 98.8 98.1 (10/10) 87.9 98.1 58.7 (3/10) 46.4 56.3
8 98.9 (10/10) 98.9 98.9 98.6 (10/10) 93.5 98.6 74.8 (6/10) 62 74
9 99 (10/10) 99 99 98.8 (10/10) 98.8 98.8 89.2 (8/10) 77.3 88
10 99 (10/10) 99 99 99 (10/10) 99 99 94.7 (9/10) 85.9 94.4

(c) Results for graphs with 500 vertices.

D Edge probability pe = 0.015 Edge probability pe = 0.02 Edge probability pe = 0.025
CPLEX ACO HyACO CPLEX ACO HyACO CPLEX ACO HyACO

1 7.6 (0/10) 7.5 7.8 5.3 (0/10) 5.2 5.6 4.2 (0/10) 4.3 4.4
2 5.6 (0/10) 13 13.6 10.6 (0/10) 10.4 11.2 9.1 (0/10) 8.5 9
3 3.1 (0/10) 18.8 21.3 60.3 (1/10) 63.1 63.6 12.8 (0/10) 12.7 13.8
4 150.2 (3/10) 119.9 168.3 69.5 (1/10) 67.6 70.4 17.7 (0/10) 16.9 18.6
5 250.5 (5/10) 218.9 265.9 54.6 (1/10) 72.7 74.6 6.5 (0/10) 21.6 22.4
6 349.1 (7/10) 268.8 363 102.4 (2/10) 123.8 126.5 25.6 (0/10) 26.3 33.8
7 448.9 (9/10) 407.6 453.5 102.7 (2/10) 128.1 130.1 78.1 (1/10) 77.6 93
8 449.1 (9/10) 453.9 455 299 (6/10) 135.8 315.6 154.2 (3/10) 127.6 173.5
9 449.1 (9/10) 454.7 456.6 349 (7/10) 317.5 363.8 223.3 (3/10) 221.8 225.4
10 498.8 (10/10) 455.5 498.8 409.2 (8/10) 321.1 410.2 221.5 (4/10) 225.1 229.6

(d) Results for graphs with 1000 vertices.

D Edge probability pe = 0.0075 Edge probability pe = 0.01 Edge probability pe = 0.0125
CPLEX ACO HyACO CPLEX ACO HyACO CPLEX ACO HyACO

1 105.2 (1/10) 107.4 107.8 4.9 (0/10) 5.7 6 4 (0/10) 4.9 4.7
2 107.9 (1/10) 112.7 115 4.4 (0/10) 10.9 10.6 8 (0/10) 9.4 10.1
3 101.7 (1/10) 118 118 13.7 (0/10) 15.9 17 4.6 (0/10) 14.3 13.9
4 399.4 (4/10) 318.3 415.7 14.8 (0/10) 21.4 24.1 99.9 (1/10) 116.6 116.5
5 399.6 (4/10) 419 421.2 104.3 (1/10) 27.1 123.6 103.3 (1/10) 120.8 120.9
6 598.8 (6/10) 423.6 614.2 201.5 (2/10) 129.1 226 99.9 (1/10) 125.5 126.2
7 898.1 (9/10) 523.5 902.5 299.7 (3/10) 325.5 325.2 199.8 (2/10) 226.7 226.6
8 998.2 (10/10) 528.6 998.2 399.5 (4/10) 329.7 424.4 218.7 (2/10) 231.1 234.8
9 998.9 (10/10) 905.6 998.9 399.6 (4/10) 427.9 427.7 301 (3/10) 236.2 332.1
10 999 (10/10) 999 999 499.4 (5/10) 432.6 528.4 602.2 (6/10) 335.3 620.5

The Firefighter Problem: Application of Hybrid ACO Algorithms 227

sparse medium dense

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

D
=1

D
=2

D
=3

D
=4

D
=5

D
=6

D
=7

D
=8

D
=9

D
=10

V
al

ue

Fig. 1. Tuning results. The meaning of the barplots is outlined in the text.

value refers to the average number of vertices that could be saved from being
burnt in the 10 corresponding random graphs. Therefore, the higher this value
the better. The best result obtained by CPLEX, ACO and HyACO is always
indicated in bold font. Moreover, in the case of CPLEX additional information is
given in the form (x/y). Hereby, x indicates the number of cases (out of y = 10)
that CPLEX could provenly solve to optimality within the given CPU time limit.

Several observations can be made. First, CPLEX is able to solve all cases
with n = 50 to optimality. Not surprisingly, the difficulty for CPLEX grows
with increasing graph size and increasing graph density. Moreover, the difficulty
for CPLEX seems to decrease with increasing values of D. Concerning the ACO
algorithms we can observe that the hybrid version (HyACO) is clearly superior to
the pure ACO version. Concerning the comparison to CPLEX we can state that

228 C. Blum et al.

the pure ACO version is clearly inferior to CPLEX for what concerns rather small
graphs (n ∈ {50, 100}). However, with growing graph size and graph density
ACO achieves to outperform CPLEX especially for smaller values of D (observe,
for example, the results for n = 1000 and pe = 0.0125). The hybrid ACO variant,
on the other side, generally outperforms both CPLEX and ACO when n ∈
{500, 1000}. Moreover, concerning the graphs with n ∈ {50, 100}, HyACO often
matches the results of CPLEX, and is only slightly inferior in the remaining cases.
In summary, we can say that CPLEX is the recommended solution method for
rather small graphs, while HyACO is the recommended solution method when
graph size and density increase.

4 Conclucions and Future Work

In this work we presented the first metaheuristics for the so-called firefighter
problem. In particular, we proposed a pure ACO approach and a hybrid ACO
variant that makes use of a mathematical programming solver (in our case:
CPLEX). The results show that CPLEX obtains the best results for rather
small graphs, while the hybrid technique is superior to CPLEX and the pure
ACO approach for larger graphs.

The main line of research for future work concerns the application of the
proposed algorithms to different families of graphs, such as, for example, random
geometric graphs and small world networks.

References

1. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximation Algorithms
for the Firefighter Problem: Cuts over Time and Submodularity. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 974–983. Springer,
Heidelberg (2009)

2. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the
Firefighter Problem. Algorithmica 62(1-2), 520–536 (2010)

3. Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one
firefighter on trees. Discrete Applied Mathematics 161(7-8), 899–908 (2013)

4. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Trans. on Man, Systems and Cybernetics – Part B 34(2), 1161–1172 (2004)

5. Bonato, A., Messinger, M.E., Pra�lat, P.: Fighting constrained fires in graphs. The-
oretical Computer Science 434, 11–22 (2012)

6. Cai, L., Cheng, Y., Verbin, E., Zhou, Y.: Surviving Rates of Graphs with Bounded
Treewidth for the Firefighter Problem. SIAM Journal on Discrete Mathemat-
ics 24(4), 1322–1335 (2010)

7. Cai, L., Verbin, E., Yang, L.: Firefighting on Trees (1 − 1/e)–Approximation,
Fixed Parameter Tractability and a Subexponential Algorithm. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008)

8. Cai, L., Wang, W.: The Surviving Rate of a Graph for the Firefighter Problem.
SIAM Journal on Discrete Mathematics 23(4), 1814–1826 (2010)

The Firefighter Problem: Application of Hybrid ACO Algorithms 229

9. Costa, V., Dantas, S., Dourado, M.C., Penso, L., Rautenbach, D.: More fires and
more fighters. Discrete Applied Mathematics 161(16-17), 2410–2419 (2013)

10. Cygan, M., Fomin, F.V., van Leeuwen, E.J.: Parameterized Complexity of Fire-
fighting Revisited. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112,
pp. 13–26. Springer, Heidelberg (2012)

11. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Applied Mathematics 155(17), 2257–2268 (2007)

12. Esperet, L., van den Heuvel, J., Maffray, F., Sipma, F.: Fire Containment in Planar
Graphs. Journal of Graph Theory 73(3), 267–279 (2013)

13. Feldheim, O.N., Hod, R.: 3/2 Firefighters Are Not Enough. Discrete Applied Math-
ematics 161(1-2), 301–306 (2013)

14. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discrete Mathematics 307(16), 2094–2105 (2007)

15. Finbow, S., Science, C., Scotia, N., Macgillivray, G.: The Firefighter Problem: A
survey of results, directions and questions. Australian Journal of Combinatorics 43,
57–77 (2009)

16. Floderus, P., Lingas, A., Persson, M.: Towards more efficient infection and fire fight-
ing. In: CATS 2011 Proceedings of the Seventeenth Computing: The Australasian
Theory Symposium, pp. 69–74 (2011)

17. Fogarty, P.: Catching the fire on grids. Master’s thesis, Department of Mathematics.
University of Vermont, USA (2003)

18. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: Making life easier for firefighters.
In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp.
177–188. Springer, Heidelberg (2012)

19. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer (1988)

20. Hartke, S.G.: Attempting to Narrow the Integrality Gap for the Firefighter Problem
on Trees. In: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 225–231 (2006)

21. Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on
Numerical Mathematics and Computing (1995)

22. Hartnell, B., Li, Q.: Firefighting on trees: How bad is the greedy algorithm? In:
Proc. of the Thirty-first Southeastern International Conference on Combinatorics,
Graph Theory and Computing, pp. 187–192 (2000)

23. Iwaikawa, Y., Kamiyama, N., Matsui, T.: Improved Approximation Algorithms for
Firefighter Problem on Trees. IEICE Transactions on Information and Systems
E94-D(2), 196–199 (2011)

24. King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Math-
ematics 310(3), 614–621 (2010)

25. MacGillivray, G., Wang, P.: On the firefighter problem. Journal of Combinatorial
Mathematics and Combinatorial Computing 47, 83–96 (2003)

26. Messinger, M.E., Scotia, N.: Firefighting on the Triangular Grid. Journal of Com-
binatorial Mathematics and Combinatorial Computing 63, 3–45 (2007)

27. Messinger, M.E.: Firefighting on Infinite Grids. Master’s thesis, Department of
Mathematics and Statistics, Dalhousie University, Halifax, Canada (2004)

28. Moeller, S., Wang, P.: Fire Control on graphs. Journal of Combinatorial Mathe-
matics and Combinatorial Computing 41, 19–34 (2002)

29. Ng, K., Raff, P.: A generalization of the firefighter problem on. Discrete Applied
Mathematics 156(5), 730–745 (2008)

30. Stützle, T., Hoos, H.H.: MAX -MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

The Influence of Correlated Objectives

on Different Types of P-ACO Algorithms

Ruby L.V. Moritz�, Enrico Reich, Matthias Bernt, and Martin Middendorf

Parallel Computing and Complex Systems Group, Institute of Computer Science,
University of Leipzig, Germany

{ruby.moritz,bernt,middendorf}@informatik.uni-leipzig.de

Abstract. The influence of correlated objectives on different types of
P-ACO algorithms for solutions of multi objective optimization problems
is investigated. Therefore, a simple method to create multi objective op-
timization problems with correlated objectives is proposed. Theoretical
results show how certain correlations between the objectives can be ob-
tained. The method is applied to the Traveling Salesperson problem. The
influence of the correlation type and strength on the optimization behav-
ior of different P-ACO algorithms is analyzed empirically. A particular
focus is given on P-ACOs with ranking methods.

1 Introduction

In many practical multi objective optimization problems (MOPs) the different
objectives are not independent from each other but correlated (e.g. [1]). Thus, it
is interesting to investigate the influence of correlations between the objectives
on the performance of different metaheuristics or other types of search algo-
rithms, e.g. local search. The performance of metaheuristics is typically tested
on randomly created problem instances or on instances from benchmark libraries.
Often in these cases the objectives are independent (in particular when random
instances are used) or the correlation has not been investigated. Some authors
have investigated the effect of correlations between the objectives of MOPs on
algorithms in recent years.

It has been pointed out in [2] that if the objectives of a MOP are not posi-
tively correlated their optima will, in general, be very different. This could be a
problem for genetic algorithms (GAs) because it suggests that recombination of
solutions that are good for different objectives is unlikely to yield good offspring.
In a preliminary study it was argued in [3] that correlation between objectives
might have an influence on the correlation between optima. It was shown in [4]
that the performance of local search operators for MOPs is strongly influenced
by the strength of the correlation between the objectives. In [5] it was shown

� This work has been supported by the European Social Fund (ESF) and the Free
State of Saxony within Nachwuchsforschergruppe “Schwarm-inspirierte Verfahren
zur Optimierung, Selbstorganisation und Ressourceneffizienz”.

C. Blum and G. Ochoa (Eds.): EvoCOP 2014, LNCS 8600, pp. 230–241, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Influence of Correlated Objectives on Different Types 231

that the performance of hybrid algorithms might be less influenced by correla-
tion effects. For ant colony optimization (ACO) algorithms the conclusion of [6]
was that for highly positively correlated instances “less aggressive” ACO strate-
gies (e.g. iteration-best instead of best-so-far pheromone update) perform better.
On instances with weakly or negatively correlated objectives this does not hold.
Garret et al. [7] studied the influence of correlation on the relative performance
of two hybrid metaheuristics. Verel et al. [8] showed that if the objective cor-
relation for NK-landscapes is negative the number of Pareto optimal solutions
is large . In contrast, when the objective correlation is positive, the number of
Pareto optimal solutions is small and a metaheuristic might be able to find a
large fraction of them. The co-influence of objective correlation, objective space
dimension, and the degree of non-linearity on the number of Pareto optimal so-
lutions was investigated in [9]. Shi et al. [10] studied community detection in
networks as a MOP. They divided the relations between any two objective func-
tions into three categories: positively correlated, independent, and negatively
correlated. Then they compared the performance of the GA NSGA-Net for pairs
of objective functions from the different categories to a single objective optimiza-
tion based approach optimizing the original single objectives. The results show
that NSGA-Net remarkably improves the performance for pairs of negatively
correlated objectives, but not with a pair of positively correlated or independent
objectives.

Ishibuchi et al. [11,12,13] investigated the influence of correlated objectives
on evolutionary multi objective algorithms (EMOs) for the multi objective 0/1
Knapsack problem. One conclusion was that the performance of NSGA-II and
SPEA2 (MOEA/D) was not (respectively was) severely degraded by an increase
in the number of objectives when they were highly correlated [11]. Hence, Pareto
dominance-based EMOs which typically have problems with a large number of
objectives can profit from positive correlation. Thus, the difficulty of MOPs
depends on the specific EMO algorithm as well as on the correlation between
the objectives. NSGA-II and SPEA2, for instance, worked well on MOPs with
highly correlated objectives [12]. The search of the hypervolume-based SMS-
EMOA is biased toward the region of the Pareto front with good values for
duplicated objectives [13]. Several authors pointed out that positive correlations
between objectives of MOPs could be used for dimensionality reduction which
can be exploited by metaheuristics [14,15]. Correlation may also be used to define
groups of objectives that can be aggregated [16].

In this paper we propose a simple method to create MOP instances with dif-
ferent types of correlations between the objectives. Theoretical results show how
certain correlations between the objectives can be obtained with this method.
The influence of different correlations between the objectives on Population-
based ACO (P-ACO) algorithms [17] using different ranking methods for select-
ing good non dominated solutions is studied empirically for the multi objective
Traveling Salesperson problem. In the next section we give a short overview on
methods to create instances of MOPs with correlated objectives and propose our
new generation method.

232 R.L.V. Moritz et al.

2 MOPs with Correlated Objectives

The first problem generator for MOPs with correlated objectives was proposed
for the multi objective quadratic assignment problem (QAP) with m flow ma-
trices that define the different objectives [3,18]. The problem instance generator
starts with a given flow matrix, e.g. from a real world instance. The other flow
matrices are then generated such that an entry in the jth matrix, j ∈ [2 : k],
is a random variable that is correlated with the corresponding value in the first
matrix. The degree of correlation can be defined for the jth matrix by a param-
eter αj ∈ [−1, 1]. Furthermore, the ratio of random and correlated entries in the
generated matrix may be set. Several authors have used the QAP generator to
study the influence of correlation – mostly for bi-objective problems – on the
optimization behavior of metaheuristics and local search operators [4,6,5,7,19].

The creation of instances of the multi objective Traveling Salesperson problem
(TSP) with correlated objectives was covered by [20]. For each pair of cities (i, j)
k distance values dh(i, j), h ∈ [2 : k] were created as

dh(i, j) = c · dh−1(i, j) + (1− c) · rand (1)

where the values d1(i, j) are chosen uniformly at random from [0, 1], c ∈ [−1, 1]
is a “correlation parameter”, and rand is a uniform random number from [0, 1].
Observe, that Eq. (1) proposed by [20] can be somewhat problematic: i) the
distance values can become > 1 for c < 0 even for original distance values
from [0, 1] which might lead to an uneven influence of different objectives on the
behavior of metaheuristics, ii) the distance values are randomized to a different
extent for c and −c.

Verel et al. [8] recently argued that only very few benchmark sets take the
correlation of objectives into account (and that to the best of their knowledge,
the QAP should be the only one). Therefore, they proposed a method to design
MOPs where the correlation between the objectives is defined by a correlation
matrix. In particular, NK-landscapes have been investigated but the method can
also be applied more generally (see [8]). For their empirical investigations the
same correlation strength was used for each pair of objectives.

The influence of correlated objectives on EMOs was studied in [11,12,13] for
the multi objective n-item 0/1 Knapsack problem. Given are n items, k knap-
sacks with capacity cj, and for each pair (i, j) a weight wij and a profit pij ,
i ∈ [1 : n], j ∈ [1 : k]. The problem is to find a solution x = (x1, . . . , xk) ∈ {0, 1}k
such that f = (f1, . . . , fk) is maximized where fj =

∑n
i=1 pijxi is subject to

the constraint that
∑n

i=1 wijxi ≤ cj for j ∈ [1 : k]. For even k correlated
objective functions g = (g1, . . . , gk) have been defined as g1 = f1, g2 = f2,
g2h+1 = αf2h+1 +(1−α)f1, and g2h+2 = αf2h+2 +(1−α)f2 for h ∈ [1, k/2− 1]
and parameter α ∈ (0, 1). A second type of correlated objective functions (called
depended) g′ = (g′1, . . . , g

′
10) have been defined as g′1 = f1, g

′
2 = f2, g

′
3 = f1+αf2,

g′4 = f2 + αf1, g
′
5 = f1 − αf2, g

′
6 = f2 − αf1, g

′
7 = f1 + βf2, g

′
8 = f2 + βf1,

g′9 = f1 − βf2, g
′
10 = f2 − βf1 for parameters α, β ∈ (0, 1). An extreme case

of correlated, i.e. duplicated, objectives has been investigated in [13] (the test
problems were (f1, f2, f2), (f1, f2, f2, f2), and (f1, f2, f2, f2, f2)).

The Influence of Correlated Objectives on Different Types 233

Most of the above mentioned problem generation methods ([20,11,3]) gener-
ate problem instances with an inhomogeneous correlation structure, i.e. different
strengths of pairwise correlations occur between the objectives. In the method
of [3] each of the objectives 2 to k has a defined correlation with objective 1.
But the correlation between two of the objectives 2 to k might be different. In
the method used in [20] objective h, h ∈ [2 : k] has a defined correlation with
objective h− 1. But there are many different pairwise correlations between ob-
jectives i and j with |i − j| ≥ 2. Also, for each of the problems created by the
methods of [11,12,13] different pairwise correlations occur. The only MOPs with
homogeneous correlation structure, i.e. where all pairwise correlations between
different objectives are equal, are the NK-landscape instances from [8]. Surpris-
ingly homogeneous correlation structures have to the best of our knowledge not
yet been investigated for application oriented MOPs.

We consider a homogeneous correlation structure as the most basic case for the
investigation of the influence of correlations on certain properties of the fitness
landscape and on the performance of metaheuristics. Therefore, we propose a
simple method to create homogeneous or only slightly heterogeneous problem
instances and apply it to the TSP. Given is a set of n cities C and k distance
functions dh such that dh(i, j) is the h-distance between cities i and j (or in
other words is the h-length of the edge (i, j), i �= j). The problem is to find
a Hamiltonian path such that the total h-length of the path is minimal with
respect to each objective h, i.e. the sum of the h-lengths of the edges on the
path should be minimal for h ∈ [1 : k].

The creation of a multi objective TSP instance is done here starting with a
single objective TSP instance (a set of cities C and distance function d) which
can be taken from a standard benchmark library, e.g. the TSPLIB, from an
application scenario, or it can be created artificially. We assume here that all
distance values are from [0, 1] which can be achieved by normalization. Distance
d is used to create k distance functions d1, . . . , dk. For a correlation factor c ∈
[−1, 1] the distance function dh is defined by

dh(i, j) =

{
c · d(i, j) +(1− c) · rand for 0 ≤ c ≤ 1
|c| · (1− d(i, j)) +(1− |c|) · rand for − 1 ≤ c < 0

(2)

Observe, that this solves the two problems of Eq. (1).

3 Ranking Methods for MOPs and P-ACO

A common principle of many metaheuristics is to select the good solutions from a
set of solutions. For MOPs the dominance criterion is often used for the selection.
Formally, a MOP is defined by a set of solutionsX and a vector of objective func-
tions f (a) = (f1(a), . . . , fd(a)), fi : X �→ R. The aim is to find solutions from X
that minimize the objectives, i.e. mina∈X f(a) = mina∈X(f1(a), . . . , fd(a)). For
a, b ∈ X , solution a dominates b if a ≺ b ⇐⇒ ∀i ∈ [1 : d] : fi(a) ≤ fi(b)∧f (a) �=
f(b). A solution a ∈ X is called pareto optimum if �b ∈ X : b ≺ a. A solution
a ∈ X is called non dominated solution with respect to a subset X ′ ⊂ X if

234 R.L.V. Moritz et al.

Algorithm 1. Multi objective P-ACO with ranking

1 P ← {};
2 Initialize pheromone matrix [τij];
3 repeat
4 L ← {};
5 foreach of the l ants do
6 Construct a solution S using pheromone matrix [τij];
7 L ← L ∪ {S};
8 Sort the solutions in L ∪ P with a ranking method;
9 Let P be the set of p best solutions from L ∪ P ;

10 Compute a pheromone matrix [τij] from P ;

11 until t iterations done;
12 return non dominated solutions in L ∪ P

�b ∈ X ′ : b ≺ a. The pareto set is the set of all pareto optimal solutions from X .
The corresponding set of objective values in Rd is called the pareto front of X .

For MOPs with a large number of objectives metaheuristics often have the
problem that the fraction of non dominated solutions within a set of solutions is
typically very large. Then, the selection of good solutions cannot be solely based
on the pareto dominance relation. Therefore, several ranking methods have been
proposed for selecting the good solutions from a set of non dominated solutions
(see [21,22,23] on their influence within a GA for MOPs with many objectives).

Several variants of the pareto dominance relation have been proposed (see [24]
for an overview). Here relation favour is relevant [25]. It compares two solutions
with respect to the number of objectives in which one solution is better than
the other solution. Based on relation favour two relations have been introduced
in [24] that are also considered here. The WL relation is based on the number
of won comparisons and lost comparisons with respect to relation favour. For
A ⊆ X define a ≺WL

A b iff either a is favoured over more solutions in A than
b or a and b are each favoured over the same number of solutions in A and
the number of solutions in A that are favoured over a is less or equal than the
corresponding number for b.

Relation Points tries to solve a potential problem of relation WL, namely that
it ignores ties. A scoring scheme is defined by the point score S(a,A) of a solution
a ∈ X with respect to a set of solutions A ⊆ X such that S(a,A) is w times the
number of solutions x ∈ A where a is favoured over x plus the number of solutions
y ∈ A where neither a is favoured over y nor y over a. Parameter w ≥ 1 is a
constant that specifies how many points are attributed to a won comparison. The
Points relation is then defined by a ≺Pt

A b ⇐⇒ S(a,A) ≥ S(b, A). The favour,
points, and WL relation are refinements of the pareto dominance relation [24]. It
should be noted that other ranking methods exist (see [26,27] for an overview).

The P-ACO uses a population P of p solutions that is transferred from one
iteration to the next [17]. The pheromone information is computed from the
solutions that are currently in P . As in traditional ACO algorithms the ants use

The Influence of Correlated Objectives on Different Types 235

the pheromone information to compute a set of new solutions L. For the TSP
with n cities the pheromone information is stored in a pheromone matrix τij ,
i, j ∈ [1 : n]. The pheromone values are τij = tinit + δ · k where τinit and δ are
parameters of the algorithm and k is the number of tours in P that have city
j after city i. Based on the ranking relations a population update method was
proposed [24] (Algorithm 1). The solutions in L ∪ P are sorted with a ranking
method and the best p solutions form the population of the next iteration. It
was shown empirically that the P-ACOs with the new ranking schemes can profit
from the ranking methods when compared to a Crowding P-ACO [28].

For the experimental evaluation we also used two ranking methods that are
based on a relatively direct evaluation of the objective values. The first method
“Rel” is based on function R(a, b) =

∑d
i=1 fi(a)/fi(b) for two solutions a, b ∈ X

where d is the number of objectives. Rel is defined by a ≺Rel b iff R(a, b) < d.
The second method “W” uses the weighted sum of the objectives. Here, random
weights wi with i ∈ [1 : d] and

∑d
i=1 wi = 1 are used. The weights are chosen

uniformly at random for each ant in each iteration anew and are averaged with
those of the previous iteration to change the weights more smoothly. The score
of a solution for the ranking is computed with the current weighting scheme of
the ant that constructed the solution.

The P-ACOs with the ranking methods are compared to: i) the Standard P-
ACO (STD-P-ACO) [29] and ii) the Crowding P-ACO (CR-P-ACO) [28]. The
STD-P-ACO computes in every iteration the non dominated front from the solu-
tions in P ∪L. The new population for the next iteration consists of a randomly
chosen solution s from the non dominated front plus the p− 1 solutions that are
closest to s in the objective space. In the CR-P-ACO the amount of updated
pheromone is inversely proportional to the dominance depth of the correspond-
ing solution (see [30]). Population update is done by a crowding scheme: One of
the newly generated solutions replaces the most similar solution of a randomly
chosen subset of the current population if it dominates it. Similarity is measured
in the solution space as the number of common adjacent cities.

All results are averages over 10 experiments. The same parameters as in [24]
are used for P-ACO, i.e. each run was for t = 2500 iterations with population
size p = 5 and l = 25 new solutions were created at every iteration. To improve
the comparability with CR-P-ACO its population size and number of ants are
set to l = p = 25 and the size of the random subsets is set to 5. Pheromone
update of the P-ACOs is done with τinit = 1/(n − 1) and δ = 1/(p + n). A
combined non dominated front is computed as the union of the non dominated
fronts of all runs. Since there is no standard heuristic for multiobjective TSP
and to make our analysis no dependent on a specific heuristic the algorithms are
used without heuristic.

The TSP test instances have d = 5 objectives. The single objective instances
that were used to create the multi objective instances are symmetric TSP in-
stances from the TSPLIB: ulysses22, att48, eil51, bier127, gr137, and rat195.
Two types of multi objective test instances were created: i) homogeneous test
instances: all objectives are positively correlated with the initial distance matrix

236 R.L.V. Moritz et al.

M and ii) heterogeneous test instances: only four objectives are positively cor-
related with M and the fifth objective is negatively correlated. For one test each
objective was created with the same absolute correlation factor, i.e. c or −c.
Different values of |c| ∈ {0.2, 0.4, 0.6, 0.8, 0.9} were used.

4 Results

4.1 Expected Correlation

In the following we derive a formula for the expected Pearson correlation between
the objectives for the method proposed in Section 2. We assume here that the
initial problem is given in form of a matrixM = [mij] ∈ [0 : 1]n1×n2 . The random
influence is given as an n1×n2 random matrix R = [randij] ∈ [0, 1]n1×n2 where
randij is chosen uniformly at random from [0, 1]. In case of the TSP n1 = n2 = n,
M = [dij] is the distance matrix, and for R randij is chosen uniformly at random
from [0, 1] for i �= j and randii = 0. For a symmetric TSP additionally dij = dji
and randij = randji. R ∈ [0 : 1]n1×n2 is uniformly distributed, i.e. expectation
E(R) = 1

2 and variance V ar(R) = 1
12 . The distribution of M ∈ [0 : 1]n1×n2 is

unknown with the expected value E(M) and variance V ar(M).

0 0.25 0.5 0.75 1 0
0.25

0.5
0.75

1
-1

-0.5
0

0.5

c

Var(M)

-0.6
-0.4
-0.2
0
0.2
0.4
0.6

0 0.25 0.5 0.75 1 0
0.25

0.5
0.75

1
-1

-0.5

0

0.5

c

Var(M)

-0.6
-0.4
-0.2
0
0.2
0.4
0.6

Fig. 1. Pearson correlation coefficient r(M,M ′)− c (left) and r(M1,M2)− c (right)

The generated problem matrix M+ = cM + (1 − c)R ∈ [0 : 1]n1×n2 for
the correlation factor c ∈ [0 : 1] is positively correlated with M and M− =
|c|(1 −M) + (1 − |c|)R ∈ [0 : 1]n1×n2 for c ∈ [−1 : 0] is negatively correlated
with M . To derive the expected correlation between two matrices the Pearson
correlation coefficient r is applied It can be shown that for M ′ ∈ {M+,M−}
(due to limited space we omit the details of all computations in this section)

r(M,M ′) =

∑
(mij −m)(m′

ij −m′)√∑
(mij −m)2

∑
(m′

ij −m′)2
=

cV ar(M)√
c2V ar(M)2 + (1−|c|)2V ar(M)

12

(3)
The last equation can be obtained after deriving the following equationsE(M ′) =
cE(M)+(1−c)/2, V ar(M ′) = c2V ar(M)+(1−c)2/12, E(MM ′) = c(V ar(M)+

The Influence of Correlated Objectives on Different Types 237

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
c

Var(M) = 0.0443
Var(M) = 0.0833

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1
c

Var(M) = 0.0443
Var(M) = 0.0833

Fig. 2. Expected Pearson correlation coefficient r(M,M ′)− c (left) and r(M1,M2)− c
(right) for two different variances of M

E(M)2) + (1 − c)E(M)/2, and by the fact that cov(M,R) = 0. Fig. 1 (left) vi-
sualizes the difference of the expected Pearson correlation coefficient with c, i.e.
r(M,M ′)− c, for different values of V ar(M) and c ∈ [0, 1]. For the special case
that M is uniformly distributed in [0, 1], i.e. E(M) = 1/2 and V ar(M) = 1/12,
this gives r(M,M ′) = c/

√
c2 + (1− c)2. Fig. 2 (left) shows how the difference

of the expected Pearson correlation coefficient with c, i.e. r(M,M ′)− c, changes
with c for the variance of the test instances used and for uniformly at random
distributed matrices with V ar(M) = 1/12 ≈ 0.0833. In order to obtain a specific
Pearson correlation coefficient r(M,M ′) = r the correlation factor c has to be
chosen as c = 1/(1 + 2

√
3
√
(1/r − 1)V ar(M)).

Now the question is, what is the Pearson correlation between different objec-
tives for instances generated with the method proposed in Section 2, i.e. what
is the correlation between two matrices that have been derived from M . We
consider two cases. In the first case M1 and M2 have been generated from ma-
trix M with the same correlation c. In the second case matrix M1 is positively
correlated with M and M2 is negatively correlated with M . For the first case it
can be shown that r(M1,M2) = c2V ar(M)/(c2V ar(M) + (1 − |c|)2/12). In the
second case r(M1,M2) = −c2V ar(M)/(c2V ar(M)+(1−|c|)2/12). Fig. 1 (right)
shows r(M,M ′)− c for the first case and different values of V ar(M) and c. Fig-
ure 2 (right) shows how r(M1,M2) − c changes in the first case with c for two
exemplary chosen variances for M . To obtain a specific Pearson correlation co-
efficient r(M1,M2) = r for M1 and M2 the correlation factor c has to be chosen
as c = ±1/(1 +

√
12V ar(M)(1 − r(M1,M2))/r(M1,M2)).

4.2 Experimental Results

In the first experiment it is shown that iterative correlation methods were objec-
tive i is correlated with objective i− 1 have the effect that a strong correlation
occurs only for neighbored (with respect to the numbering) objectives. Fig. 3
shows the Pearson correlation that was measured between M and Mi when our
method from Section 2 is applied iteratively, i.e. matrix Mi was created from
matrix Mi−1, i ≥ 1 and M0 = M as in [20]. Here M contains values chosen uni-
formly at random from [0, 1]. For c < 0 the average correlation between matrices

238 R.L.V. Moritz et al.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
distance

av
_c

or
c =

0.2
0.4
0.6
0.8
0.9

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
distance

av
_c

or

c =
−0.2
−0.4
−0.6
−0.8
−0.9

Fig. 3. Average Pearson correlation between matrix Mi+d and Mi for different dis-
tances d, positive correlation c > 0 (left) and negative correlation c < 0 (right)

Table 1. Average size of non dominated front and fraction of solutions in the common
non dominated front; numbers are averaged over the five TSP instances; homogeneous
case (upper part) heterogeneous case (bottom part)

average size fraction (in %)
|c| Pt WL W Rel CR STD Pt WL W Rel CR STD

0.2 8.6 8.3 6.9 7.0 16.3 19.2 16.6 19.5 30.8 32.7 0.2 0.2
0.4 6.4 6.3 5.9 5.9 13.8 16.2 17.3 21.1 29.7 31.8 0.1 0.1
0.6 4.8 5.1 5.1 5.1 8.8 9.8 21.1 22.9 26.4 29.3 0.0 0.3
0.8 4.0 4.2 4.3 4.3 3.6 4.5 22.2 22.5 21.9 22.1 0.0 11.3
0.9 3.0 3.0 3.0 3.0 1.9 3.2 14.7 21.9 20.9 18.8 0.0 23.7

0.2 9.3 8.9 7.2 7.5 16.8 19.6 16.5 19.6 31.0 32.5 0.2 0.2
0.4 9.6 9.1 7.6 8.7 16.4 19.3 17.0 20.2 30.7 31.5 0.3 0.4
0.6 14.7 14.5 12.8 15.7 16.2 19.1 18.7 20.9 27.3 26.8 2.5 3.7
0.8 22.2 22.3 22.1 22.4 17.8 20.8 19.2 19.5 20.9 19.3 9.0 12.2
0.9 24.8 24.9 24.9 24.9 20.4 24.0 18.4 18.2 18.5 17.9 11.8 15.2

with uneven distance is negative. It can be seen that for small correlation values
|c| ≤ 0.4 the correlation between Mi+5 and Mi is already close to zero. Hence,
one has to be careful when observing that a metaheuristic is robust against
correlated objectives for test instances of an iterative generation method.

Table 1 shows the influence of correlation between the objectives on the rank-
ing methods and the different P-ACOs. It can be seen for all algorithms that the
size of the non dominated front shrinks (increases) in the homogeneous (hetero-
geneous) case when the correlation increases. Though this trend can be observed
for all algorithms the extent is different. The decrease in the homogeneous case
is strongest for CR-P-ACO and STD-P-ACO. The ranking methods seem to
help the other algorithms to keep their non dominated front small even when
the correlation is low. Opposite to the homogeneous case, the increase in the
heterogeneous case is strongest for the algorithms with ranking.

The relative performance of the algorithms can be seen by the fraction their
solutions make up of the common non dominated front. Algorithms CR-P-ACO

The Influence of Correlated Objectives on Different Types 239

Table 2. Fraction of solutions from specific algorithm among the top 10% of all so-
lutions concerning a single objective (averaged over the five objectives); homogeneous
case (left) heterogeneous case (right)

|c| Pt WL W Rel CR STD Pt WL W Rel CR STD

0.2 13.8 16.6 31.7 37.3 0.3 0.3 14.0 16.0 32.5 37.0 0.3 0.2
0.4 15.4 18.0 31.5 34.9 0.1 0.1 15.1 16.9 32.1 34.8 0.6 0.5
0.6 19.8 21.3 26.8 31.7 0.0 0.4 17.2 19.8 26.0 31.3 2.5 3.2
0.8 22.5 23.7 21.6 21.0 0.0 11.2 22.7 23.6 23.7 23.1 3.1 3.7
0.9 14.3 21.0 23.0 17.3 0.0 24.3 23.4 22.6 22.2 24.7 3.0 4.0

and STD-P-ACO are clearly the worst for small and medium correlation c ≤ 0.6.
CR-P-ACO is also the worst for high correlation but in the heterogeneous case
its performance improves. STD-P-ACO profits from a high correlation in both
cases. In the homogeneous case it is the best algorithm for c = 0.9. In contrast,
algorithms W-P-ACO and Rel-P-ACO which are the strongest for small and
medium correlation c ≤ 0.6 only have average performance for c ≥ 0.8. Inter-
estingly, the relative performance of the P-ACOs with Pt and WL are relatively
robust against changes of the correlation strength. One possible explanation uses
the results mentioned in the Introduction that showed how small and medium
correlation increase the size of the Pareto front. Our results imply that the P-
ACOs with ranking can handle the larger Pareto fronts better than CR-P-ACO
and STD-P-ACO. The results are similar with respect to the best values that
were found for one of the objectives (Tab. 2). The main difference is that STD-
P-ACO profits from high correlation only for the homogeneous case.

5 Conclusion

The influence of correlation between objectives of multi objective optimization
problems (MOPs) on different types of P-ACO algorithms has been analyzed. A
simple method to create MOPs with correlated objectives was proposed and ap-
plied to the TSP. Theoretically it was shown how Pearson correlations between
the objectives can be obtained. It was argued that simple homogeneous cases
of correlations between the objectives should be studied for application relevant
problems. Experimentally it was shown how different types of correlations be-
tween the objectives influence different types of P-ACO algorithms. The results
show that ranking methods seem to help algorithms to keep their non dominated
front small even when the correlation is low and can make them relatively robust
against changes of the correlation strength.

References

1. Xu, Y., Qu, R., Li, R.: A simulated annealing based genetic local search algorithm
for multi-objective multicast routing problems. Ann. Oper. Res. 206(1), 527–555
(2013)

240 R.L.V. Moritz et al.

2. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimiza-
tion. European Journal of Operational Research 137(1), 50–71 (2002)

3. Knowles, J.D., Corne, D.: Towards landscape analyses to inform the design of
hybrid local search for the multiobjective quadratic assignment problem. HIS 87,
271–279 (2002)

4. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biob-
jective QAPwith correlated flowmatrices. Eur. J. Oper. Res. 169(3), 943–959 (2006)

5. López-Ibánez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for
the bi-objective quadratic assignment problem. Journal of Mathematical Modelling
and Algorithms 5(1), 111–137 (2006)

6. López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biob-
jective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172,
pp. 214–225. Springer, Heidelberg (2004)

7. Garrett, D., Dasgupta, D., Vannucci, J., Simien, J.: Applying hybrid multiobjective
evolutionary algorithms to the sailor assignment problem. In: Jain, L.C., Palade,
V., Srinivasan, D. (eds.) Advances in Evolutionary Computing for System Design.
SCI, vol. 66, pp. 269–301. Springer, Heidelberg (2007)

8. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objective
correlation on the efficient set of MNK-landscapes. In: Coello Coello, C.A. (ed.)
LION 5. LNCS, vol. 6683, pp. 116–130. Springer, Heidelberg (2011)

9. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Pareto local optima of multi-
objective NK-landscapes with correlated objectives. In: Merz, P., Hao, J.K. (eds.)
EvoCOP 2011. LNCS, vol. 6622, pp. 226–237. Springer, Heidelberg (2011)

10. Shi, C., Yu, P., Yan, Z., Huang, Y., Wang, B.: Comparison and selection of objective
functions in multiobjective community detection. Computational Intelligence (to
appear, 2013)

11. Ishibuchi, H., Akedo, N., Ohyanagi, H., Nojima, Y.: Behavior of EMO algorithms
on many-objective optimization problems with correlated objectives. In: 2011 IEEE
Congress on Evolutionary Computation (CEC), pp. 1465–1472. IEEE (2011)

12. Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing
function inMOEA/D for many-objective knapsack problems. In: Nicosia, G., Parda-
los, P. (eds.) LION 7. LNCS, vol. 7997, pp. 231–246. Springer, Heidelberg (2013)

13. Ishibuchi, H., Yamane, M., Nojima, Y.: Effects of duplicated objectives in many-
objective optimization problems on the search behavior of hypervolume-based evo-
lutionary algorithms. In: 2013 IEEE Symposium on Computational Intelligence in
Multi-Criteria Decision-Making (MCDM), pp. 25–32. IEEE (2013)

14. Brockhoff, D., Saxena, D., Deb, K., Zitzler, E.: On handling a large number of
objectives a posteriori and during optimization. Natural Computing Series, pp.
377–403. Springer (2008)

15. Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.:
Response surface approximation of pareto optimal front in multi-objective opti-
mization. Comput. Method. Appl. M. 196(4), 879–893 (2007)

16. Murata, T., Taki, A.: Examination of the performance of objective reduction us-
ing correlation-based weighted-sum for many objective knapsack problems. In: 10th
International Conference on Hybrid Intelligent Systems (HIS), pp. 175–180. IEEE
(2010)

The Influence of Correlated Objectives on Different Types 241

17. Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni,
S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002.
LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)

18. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective
quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb,
K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg
(2003)

19. Liefooghe, A., Paquete, L., Simões, M., Figueira, J.R.: Connectedness and local
search for bicriteria knapsack problems. In: Merz, P., Hao, J.K. (eds.) EvoCOP
2011. LNCS, vol. 6622, pp. 48–59. Springer, Heidelberg (2011)

20. Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some
nondominated points are better than others. In: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, pp. 773–780. ACM (2007)

21. Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scal-
ability improvement attempts on the performance of NSGA-II for many-objective
problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolu-
tionary Computation, pp. 649–656. ACM (2008)

22. Lopez Jaimes, A., Santa Quintero, L., Coello Coello, C.A.: Study of preference
relations in many-objective optimization. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 611–618. ACM (2009)

23. Lopez Jaimes, A., Coello Coello, C.A.: Study of preference relations in many-
objective optimization. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 611–618. ACM (2009)

24. Moritz, R., Reich, E., Schwarz, M., Bernt, M., Middendorf, M.: Refined ranking
relations for multi objective optimization and application to P-ACO. In: Proceeding
of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference, pp. 65–72. ACM (2013)

25. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on
relation favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.
(eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)

26. Garza-Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Ranking methods for
many-objective optimization. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.)
MICAI 2009. LNCS, vol. 5845, pp. 633–645. Springer, Heidelberg (2009)

27. Garza Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Alternative fitness as-
signment methods for many-objective optimization problems. In: Collet, P., Mon-
marché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS,
vol. 5975, pp. 146–157. Springer, Heidelberg (2010)

28. Angus, D.: Crowding population-based ant colony optimisation for the multi-
objective travelling salesman problem. In: IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making, pp. 333–340. IEEE (2007)

29. Guntsch, M., Middendorf, M.: Solving multi-criteria optimization problems with
population-based ACO. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K.,
Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 464–478. Springer, Heidelberg
(2003)

30. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

Author Index

Abreu, Salvador 13
Alyahya, Khulood 206
Arroyo, José Eĺıas C. 61

Bernt, Matthias 230
Birtolo, Cosimo 182
Blesa, Maria J. 218
Blum, Christian 1, 218
Bouvry, Pascal 85

Capasso, Giovanni 182
Cattrysse, Dirk 194
Chen, Yujie 109
Chicano, Francisco 121
Chitsaz, Masoud 194
Codognet, Philippe 13
Consoli, Pietro 97
Cowling, Peter 109, 170

Danoy, Grégoire 85
Daolio, Fabio 157
Diaz, Daniel 13
Divsalar, Ali 194
dos Santos, André Gustavo 61

Fernandes, Carlos M. 85
Festa, Paola 1

Garćıa-Mart́ınez, Carlos 218

Hu, Bin 73

Iclănzan, David 145, 157

Jiménez Laredo, Juan Luis 85
John, Matthew P. 49

Kloimüllner, Christian 73

Lane, Mitchell C. 133
Lewis, Rhyd 49

Liu, Ivy 133
López-Ibáñez, Manuel 37
Lozano, Manuel 218

Middendorf, Martin 230
Moritz, Ruby L.V. 230
Mourdjis, Philip 170
Mumford, Christine L. 49
Munera, Danny 13

Nielsen, Sune S. 85

Papazek, Petrina 73
Pérez Cáceres, Leslie 37

Raidl, Günther R. 73
Reich, Enrico 230
Remde, Stephen 109
Rimmel, Arpad 25
Robinson, Martin 170
Rodŕıguez, Francisco J. 218
Ronca, Davide 182
Rowe, Jonathan E. 206

Sörensen, Kenneth 194
Sorrentino, Gennaro 182
Stützle, Thomas 37

Teytaud, Fabien 25
Tomassini, Marco 157

Vansteenwegen, Pieter 194
Villadiego, Harlem M.M. 61

Whitley, Darrell 121

Xue, Bing 133

Yao, Xin 97

Zhang, Mengjie 133

	Preface
	Organization
	Table of Contents
	A Hybrid Ant Colony Optimization Algorithmfor the Far From Most String Problem
	1 Introduction
	1.1 Notation
	1.2 Problem Definition
	1.3 Related Work
	1.4 Organization of the Paper

	2 A Linear Integer Programming Model
	3 The Proposed Approach
	3.1 Preliminaries
	3.2 Algorithmic Framework
	3.3 The ACO Phase

	4 Experimental Evaluation
	4.1 Problem Instances
	4.2 Results

	5 Conclusions and Future Work
	References

	A Parametric Frameworkfor Cooperative Parallel Local Search
	1 Introduction
	2 Local Search and Parallelism
	3 Cooperative Search Framework
	3.1 Framework Design
	3.2 Ensuring Diversification
	3.3 Ensuring Intensification

	4 An X10 Implementation
	5 Results and Analysis
	6 Conclusion and Further Work
	References

	A Survey of Meta-heuristicsUsed for Computing Maximin Latin Hypercube
	1 Introduction
	2 Algorithm Descriptions
	2.1 Genetic Algorithms
	2.2 Simulated Annealing
	2.3 Iterated Local Search

	3 Mutations
	4 Evaluation Functions
	5 Experiments
	5.1 Effect of Algorithm Parameters
	5.2 Effect of the Mutations
	5.3 Effect of the Evaluation Function
	5.4 Scalability of the Algorithms

	6 HighScores
	7 Conclusion
	References

	An Analysis of Parameters of irace
	1 Introduction
	2 The irace Procedure
	3 Experimental Setup
	3.1 Configuration Scenarios
	3.2 Training Set Analysis
	3.3 Experimental Setup

	4 Experiments
	5 Final Remarks and Future Work
	References

	An Improved Multi-objective Algorithmfor the Urban Transit Routing Problem
	1 Introduction
	2 Problem Description
	3 Methodology
	3.1 NSGAII
	3.2 Heuristic Construction
	3.3 Genetic Operators

	4 Results
	5 Conclusion
	References

	An Iterated Greedy Heuristicfor Simultaneous Lot-Sizing and SchedulingProblem in Production Flow Shop Environments
	1 Introduction
	2 Problem Description
	3 Iterated Greedy Heuristic for the LSSPFS
	3.1 Solution Representation
	3.2 Construction of an Initial Solution
	3.3 Destruction and Construction Procedures
	3.4 Local Search
	3.5 Lot-sizing Improvement

	4 Computational Experiments
	4.1 Calibration of the IG Heuristic
	4.2 Results and Comparisons
	4.3 Analysis of the Computational Times

	5 Conclusion
	References

	Balancing Bicycle Sharing Systems:An Approach for the Dynamic Case
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Modeling the Dynamic Scenario
	4.1 Segments and Events
	4.2 Expected Number of Bikes at Stations
	4.3 Classification of Stations
	4.4 Restrictions on Loading Instructions

	5 Greedy Construction Heuristic
	6 Metaheuristic Approaches
	7 Computational Results
	8 Conclusions and Future Work
	References

	Cooperative Selection:Improving Tournament Selection via Altruism
	1 Introduction
	2 Cooperative Selection
	2.1 Scheme Description
	2.2 Properties and Tuning of Parameters

	3 Validating Cooperative Selection in a Noisy Real Problem
	3.1 Estimated Secondary Structure Similarity (ESSS)
	3.2 Experimental Setup
	3.3 Analysis of Results

	4 Conclusions and Future Works
	References

	Diversity-Driven Selectionof Multiple Crossover Operatorsfor the Capacitated Arc Routing Problem
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 MAENS
	2.3 Approximation Algorithms

	3 A Distance Measure for the CARP
	3.1 Measuring the Average Diversity of the Population
	3.2 A Revised Distance Measure Based on Neighbour Tasks
	3.3 Diversity-Driven Stochastic Ranking

	4 Operator Selection
	4.1 Crossover Operators
	4.2 Adaptive Operator Selection

	5 Experimental Studies
	6 Conclusions
	References

	Dynamic Period Routingfor a Complex Real-World System:A Case Study in Storm Drain Maintenance
	1 Introduction
	2 Related Works
	3 Storm Drains Maintenance Problem
	4 Adaptive Planning Heuristic (APH)
	4.1 Routing Stage
	4.2 Adaptive Planning Stage

	5 Computational Results
	6 Conclusion
	References

	Elementary Landscape Decomposition of theHamiltonian Path Optimization Problem
	1 Introduction
	2 Background on Landscape Theory
	3 Hamiltonian Path Optimization Problem
	4 Landscape for Reversals
	4.1 Component Model
	4.2 Proof of Elementariness

	5 Landscape Structure for Swaps
	5.1 Previous Results for QAP
	5.2 Elementary Landscape Decomposition of the HPO

	6 Conclusions and Future Work
	References

	Gaussian Based Particle Swarm Optimisation and Statistical Clustering for Feature Selection
	1 Introduction
	1.1 Goals

	2 Background
	2.1 Particle Swarm Optimisation (PSO)
	2.2 Related Work on Feature Selection

	3 The Proposed Approach
	3.1 Determine the Number of Features Selected
	3.2 How to Select Features

	4 Experimental Design
	5 Results and Discussions
	5.1 Results of GPSO
	5.2 Comparisons on Computational Time
	5.3 Further Comparisons with Traditional Methods

	6 Conclusions and Future Work
	References

	Global Optimizationof Multimodal Deceptive Functions
	1 Introduction
	2 Preliminaries
	2.1 Simulated Annealing
	2.2 Graph Clustering Based Model Building

	3 Extended Simulated Annealing
	4 Experiments
	5 Results
	5.1 Performance of the Classical Simulated Annealing
	5.2 Performance of the Extended Simulated Annealing

	6 Conclusions
	References

	Learning Inherent Networksfrom Stochastic Search Methods
	1 Introduction
	2 Methods
	2.1 Studied Problem and Search Heuristic
	2.2 Monitoring the Search Dynamics
	2.3 The Nodes
	2.4 The Edges

	3 Experiments
	4 Results
	4.1 Comparative and Convergence Analysis of the Inherent Networks
	4.2 Structure of the Inherent Networks

	5 Conclusions
	References

	Metaheuristics for the Pick-Upand Delivery Problem with Contracted Orders
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Time Window Model
	3.2 Objective

	4 Solution Methods
	4.1 Local Search Operators
	4.2 Metaheuristics

	5 Computational Experiments
	5.1 Generating Orders
	5.2 Speed and Travel Parameters
	5.3 Aims
	5.4 Findings

	6 Conclusions and Future Work
	References

	Modeling an Artificial Bee Colonywith Inspector for Clustering Tasks
	1 Introduction
	2 The Clustering Problem
	3 Artificial Bee Colony
	4 Inspector Bee in the Colony
	5 Algorithm Structure and Fitness Function
	6 Experimental Results
	6.1 Convergence Analysis

	7 Conclusions and Future Work
	References

	Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach
	1 Introduction
	2 Related Literature
	3 The Proposed Algorithm
	3.1 General Structure of the Algorithm
	3.2 Initialization
	3.3 Genetic Algorithm
	3.4 Variable Neighborhood Descent

	4 Computational Experiments
	4.1 Benchmark Instances
	4.2 Results

	5 Conclusion
	References

	Phase Transition and Landscape Propertiesof the Number Partitioning Problem
	1 Introduction
	2 Number Partitioning Problem
	2.1 Problem Definition
	2.2 Phase Transition in NPP

	3 Landscape of NPP
	3.1 Definitions and Experimental Setup
	3.2 Experimental Results

	4 Conclusions
	References

	The Firefighter Problem: Applicationof Hybrid Ant Colony Optimization Algorithms
	1 Introduction
	2 The Proposed Algorithms
	2.1 Solution Representation and Pheromone Model
	2.2 ACO: A Pure MMAS Approach
	2.3 HyACO: A Hybrid ACO Variant

	3 Experimental Evaluation
	4 Conclucions and Future Work
	References

	The Influence of Correlated Objectiveson Different Types of P-ACO Algorithms
	1 Introduction
	2 MOPs with Correlated Objectives
	3 Ranking Methods for MOPs and P-ACO
	4 Results
	4.1 Expected Correlation
	4.2 Experimental Results

	5 Conclusion
	References

	Author Index

