
Genetically Improved CUDA C++ Software

William B. Langdon and Mark Harman

CREST, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

W.Langdon@cs.ucl.ac.uk

http://crest.cs.ucl.ac.uk/

Abstract. Genetic Programming (GP) may dramatically increase the
performance of software written by domain experts. GP and autotuning
are used to optimise and refactor legacy GPGPU C code for modern
parallel graphics hardware and software. Speed ups of more than six
times on recent nVidia GPU cards are reported compared to the original
kernel on the same hardware.

1 Introduction

Genetic Programming (GP) [1] is increasingly being used in Software Engineer-
ing [2]. We are using GP to make software more adaptable [3] and are particularly
interested in GP to generate code [4,5], for bug fixing [6] and for improving exist-
ing code [7,8,9,10,11,12,13]. With increasing use of embedded and mobile devices
there is a growing need to cheaply generate software which meets multiple inter-
acting performance constraints, such as memory limits, energy consumption and
real-time response [14,8]. Similarly there is increasing use of parallelism both

Fig. 1. For each pixel we calculate the sum of squared differences (SSD) between 11×11
regions centred on the pixel in the left image and the same pixel in the right hand image.
The right hand 11×11 region is moved one place to the left and new SSD is calculated
This is repeated 50 times. Each time a smaller SSD is found, it is saved.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 87–99, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://crest.cs.ucl.ac.uk/

88 W.B. Langdon and M. Harman

Table 1. GPU Hardware. Year each was announced by nVidia in column 2. Third col-
umn is CUDA compute capability level. Each GPU chip contains a number of identical
and more or less independent multiprocessors (column 4). Each MP contains a number
of stream processors (cores, column 5) whose speed is given in column 7. Measured
data rate (ECC on) between the GPU and its on board memory in last column.

Name Capability MP × cores Clock Caches Bandwidth
GHz L1 L2 GB/s

Quadro NVS 290 2007 1.1 2 × 8 = 16 0.92 none 4
GeForce GTX 295 2009 1.3 30 × 8 = 240 1.24 none 92
Tesla T10 2009 1.3 30 × 8 = 240 1.30 none 72
Tesla C2050 2010 2.0 14 × 32 = 448 1.15 16/48KB 0.75 MB 101
GeForce GTX 580 2010 2.0 16 × 32 = 512 1.54 16/48KB 0.75 MB 161
Tesla K20c 2012 3.5 13 × 192 = 2496 0.71 16/32/48KB 1.25 MB 140

in conventional computing but also in mobile applications. At present the epit-
ome of parallelism are dedicated multi-core machines based on gaming graphics
cards (GPUs). Although originally devised for the consumer market, they are
increasingly being used for general purpose computing on GPUs (GPGPU) [15]
with several of today’s fastest peta flop super computers being based on GPUs.
However, although support tools are improving, programming parallel comput-
ers continues to be a challenge and simply leaving code generation to parallel
compilers is often insufficient. Instead experts, e.g. [16], have advocated writing
highly parametrised parallel code which can then be automatically tuned. Un-
fortunately this throws the load back on to the coder [17]. Here we demonstrate
that genetic programming can work with an auto-tuner to adapt human writ-
ten code to new circumstances and different hardware. In total we consider six
types of hardware of differing ages, architectures and very different performance
(Table 1). GP can give more than a six fold performance increase relative to the
original system on the same hardware (Table 4).

2 Source Code: StereoCamera

The StereoCamera system was written by nVidia’s stereo image processing ex-
pert Joe Stam [18] for the first version of CUDA. V1.0b is available from Source-
Forge but, despite Moore’s Law [19], and except for my bugfix, it has not been
updated since 2008.

For each pixel in the left image, GPU code stereoKernel reports the number
of pixels the right image has to be shifted to get maximal local alignment (see
Figure 1). It does this by minimising the sum of squares of the difference (SSD)
between the left and right images in a 11×11 area around each pixel. Once SSD
has been calculated, the grid in the right hand image is displaced one pixel to the
left and the calculation is repeated. SSD is calculated for 0 to 50 displacements
and the one with the smallest SSD is reported.

Considerable savings can be made by reducing the total number of calculations
by sharing intermediate calculations [18, Fig. 3]. Each SSD calculation involves

Genetically Improved CUDA C++ Software 89

summing 11 columns (each of 11 squared discrepancy values). By saving the
column sums in shared memory adjacent computational threads can calculate
just their own column and then read the remaining ten column values calculated
by their neighbouring threads.

After one row of pixel SSDs have been calculated, when calculating the SSD of
the pixels immediately above, ten of the eleven rows of SSD values are identical.
The SSD for the pixel above is then the total SSD plus the contribution for the
new rowminus the contribution from the lowest row (which is no longer included
in the 11× 11 area). The more rows which share their partial results, the more
efficient is the calculation but then there is less scope for performing calculations
in parallel. Ideally all the image data for both left and right images (including
halos and discrepancy offsets) should fit within the GPU’s texture caches. The
macro ROWSperTHREAD (40) determines how many rows are calculated together
in series. The macro BLOCK W (64) determines how the image is partitioned hori-
zontally. In practise all these factors interact in non-obvious hardware dependent
ways.

3 Example Stereo Pairs from Microsoft’s I2I Database

Microsoft’s I2I database contains 3010 stereo images. Figure 1 (top) is a typical
example. Many of these are in the form of movies taken in an office environment.
Almost images all are 320×240 pixels. We took the first 200 pairs for training
leaving 2810 for validation. Notice we are asking the GP to create a new version
of the CUDA stereoKernel GPU code which is tuned to pairs of images of this
type. As we shall see (in Section 8) the improved GPU code is indeed tuned to
320×240 images but still works well on the other I2I stereo pairs.

4 Pre- and Post- Evolution Tuning and
Post Evolution Minimisation of Code Changes

In initial genetic programming runs, it became apparent that there are two
parameters which have a large impact on run time but whose default settings
are not suitable for the GPUs now available. It is feasible to run StereoCamera
on all reasonable combinations and simply choose the best for each GPU. Hence
the revised strategy is to tune ROWSperTHREAD and BLOCK W before running the
GP. (DPER, Section 5.2, is not initially enabled.) As with [6] and our GISMOE
approach [10], after GP has run the best GP individual from the last generation
is minimised. Finally ROWSperTHREAD, BLOCK W and DPER are tuned again. (Often
no further changes were needed.)

For each combination of parameters, the kernel is compiled and run. By re-
compiling rather than using run time argument passing, the nVidia nvcc C++
compiler is given the best chance of optimising the code (e.g. loop unrolling) for
these parameters and the particular GPU.

BLOCK W values were based on sizes of thread blocks used by nVidia in the
examples supplied with CUDA 5.0. (They were 8, 32, 64, 128, 192, 256, 384

90 W.B. Langdon and M. Harman

and 512.) All small ROWSperTHREAD values or values which divide into the image
height (240) were tested. (I.e., 1, . . . 18, 20, 21, 24, 26, 30, 34, 40, 48, 60, 80,
120 and 240.) Except for the NVS 290, which has only two multiprocessors,
autotuning reduced ROWSperTHREAD from 40 to 5 before the GP was run. In
many cases this gave a big speed up (see middle and last columns of Table 4).

The best GP individual in the last generation is minimised by starting at its
beginning and progressively removing each individual mutation and comparing
the performance of the new kernel with the evolved one. For simplicity this is
done on the last training stereo image pair. Unless the new kernel is worse the
mutation is excluded permanently. To encourage removal of mutations with little
impact, those that make less than 1% difference to the kernel timing are also
removed.

5 Alternative Implementations

5.1 Avoiding Reusing Threads: XHALO

Each row of pixels is extended by five pixels at both ends. The original code
reused the first ten threads of each block to calculate these ten halo values.
Much of the kernel code is duplicated to deal with the horizontal halo. GPUs
use SIMD parallel architectures, which means many identical operations can
be run in parallel but if the code branches in different directions part of the
hardware becomes idle. Thus diverting ten threads to deal with the halo causes
all the remaining threads to become idle. Option XHALO allows GP to use ten
additional threads which are dedicated to the halo. Thus each thread only deals
with one pixel. In practise the net effect of XHALO is to disable the duplicated
code so that instead of each block processing vertical stripes of 64 pixels, each
block only writes stripes 54 pixels wide.

5.2 Parallel of Discrepancy Offsets: DPER

The original code (Section 2) steps through sequentially 51 displacements of the
right image with respect to the left. Modern GPUs allow many more threads
and often it is best to use more threads as it allows greater parallelism and may
improve throughput by increasing the overlap between computation and I/O.
Instead of stepping sequentially one at a time through the for loop controlling
the displacement, the DPER option allows SSD values for multiple (e.g. 2, 3
or 4) displacements to be calculated in parallel. So instead of increasing the for
loop control variable by one, it is incremented by the same amount (e.g. 2, 3
or 4). As well as increasing the number of threads, the amount of shared memory
needed is also increased by the same factor. Nevertheless only one (the smallest)
SSD value need be compared with the current smallest, so saving some I/O.

6 Parameters Accessible to Evolution

The GISMOE GP system [10] was extended to allow not only code changes
but also changes to C macro #defines. The GP puts the evolved values in a

Genetically Improved CUDA C++ Software 91

Table 2. Evolvable configuration macros and constants

Name Default Options Purpose

Cache preference None None, Shared, L1, Equal L1 v. shared memory
-Xptxas -dlcm ‘ ’, ca, cg, cs, cv nvcc cache options
OUT TYPE float float, int, short int, unsigned char

STORE Pixel GLOBAL GLOBAL, SHARED, LOCAL
STORE MinSSD GLOBAL GLOBAL, SHARED, LOCAL
DPER disabled Section 5.2
XHALO disabled Section 5.1
mul24(a,b) mul24 mul24, * fast 24-bit multiply

GPtexturereadmode Normalized
Float

NormalizedFloat,
ElementType, no Textures

Section 6.1

texturefilterMode Linear Linear, Point
textureaddressMode Clamp, Mirror, Wrap
texturenormalized 0, 1

C #include .h file, which is complied along with the GP modified kernel code
and the associated (fixed) host source code.

Table 2 shows the twelve configuration parameters. Every GP individual chro-
mosome starts with these 12 which are then followed by zero or more changes
to the code.

6.1 Fixed Configuration Parameters

OUT TYPE. The return value should be in the range -1 to 50. Originally this
is coded as a float. OUT TYPE gives GP the option of trying other types.

STORE disparityPixel and STORE disparityMinSSD. disparityPixel and
disparityMinSSD are major arrays in the kernel. Stam coded them to lie in the
GPU’s slow off chip global memory. These configuration options give evolu-
tion the possibility of trying to place them in either shared memory or in local
memory. Where the compiler can resolve local array indexes, e.g. as a result of
unrolling loops, it can use fast registers in place of local memory.

mul24. For addressing purposes, older GPU’s included a fast 24 bit multi-
ply instruction, which is heavily used in the original code. It appears that in
the newer GPUs mul24 may actually be slower than ordinary (32 bit) integer
multiply. Hence we give GP the option of replacing mul24.

Textures. CUDA textures are intimately linked with the GPU’s hardware and
provide a wide range of data manipulation facilities (normalisation, default val-
ues, control of boundary effects and interpolation) which the original code does
not need but is obliged to use. The left and right image textures are principally
used because they provide caching (which was not otherwise available on early
generation GPUs.) We allowed the GP to investigate other texture options. In-
cluding not using textures. Some combinations are illegal but the host code gives
sensible defaults in these cases.

92 W.B. Langdon and M. Harman

7 Evolvable Code

Following the standard GISMOE approach [10], a grammar describing the legal
changes to the kernel source code was automatically created from the human
written source code. Due to the way Stam wrote his kernel (with all variables
declared at the start) no mutation moves variables out of scope. Thus almost
all GP created kernels compile, link and run. The only exception being two
cases where GP created legal source code which provoked bugs in the nvcc 5.0
compiler. It is believed these bugs have been fixed in 5.5.

The source code, including XHALO and DPER (Sections 5.1 and 5.2), is
automatically translated line by line into a BNF grammar (see Figure 2). Notice
the grammar is not generic, it represents only one program, stereoKernel, and
variants of it. The grammar contains 424 rules, 277 represent fixed lines of C++
source code. There are 55 variable lines, 27 IF and 10 of each of the three parts
of C for loops. There are also five CUDA specific types:

pragma allows GP to control the nvcc compiler’s loop unrolling. pragma rules
are automatically inserted before each for loop but rely on GP to enable
and set their values. Using the type constraints GP can either: remove it, set
it to #pragma unroll, or set it to #pragma unroll n (where n is 1 to 11).

optvolatile CUDA allows shared data types to be marked as volatile which
influences the compiler’s optimisation. As required by the CUDA compiler,
the grammar automatically ensures all shared variables are either flagged
as volatile or none are. The remaining three CUDA types apply to the
kernel’s header.

optconst Each of kernel’s scalar inputs can be separately marked as const.
optrestrict All of the kernel’s arrayarguments can bemarkedwith restrict .

This potentially helps the compiler to optimise the code. On the newest GPUs
(SM 3.5) optrestrict allows the compiler to access read only arrays via a read
only cache. Since both only apply if all arrays are marked restrict , the
grammar ensures they all are or none are.

launchbounds is again a CUDA specific aid to code optimisation. By de-
fault the compiler must generate code that can be run with any numbers
of threads. Since GP knows how many threads will be used, specifying it
via launch bounds gives the compiler the potential of optimising the
code. launch bounds takes an optional second argument. How it is used
is again convoluted, but the grammar allows GP to omit it, or set it to 1, 2,
3, 4 or 5.

7.1 Initial Population

Each member of the initial population is unique. They are each created by select-
ing at random one of the 12 configuration constants (Table 2) and setting it at
random to one of its non-default values. As the population is created it becomes
harder to find unique mutations and so random code changes are included as
well as the configuration change. Table 3 summarises the GP parameters.

Genetically Improved CUDA C++ Software 93

<KStereo.cuh_159> ::= "{\n"

<KStereo.cuh_160> ::= "" <_KStereo.cuh_160> "\n"

<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"

<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"

<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"

Fig. 2. Fragments of BNF grammar used by GP. Most rules are fixed but rules starting
with < , <IF , <for1 , <pragma , etc. can be manipulated using rules of the same type
to produce variants of stereoKernel.

7.2 Weights

Normally each line of code is equally likely to be modified. However, only as
part of creating the initial population, the small number of rules in the kernel
header (i.e. launchbounds, optrestrict, optconst and optvolatile) are 1000 times
more likely to be changed than the other grammar rules. (Forcing each member
of the GP population to be unique is only done in the initial population.)

7.3 Mutation

Half of mutations are made to the configuration parameters (Table 2). In which
case one of the 12 is chosen uniformly at random and its current value is replaced
by another of its possible values again chosen uniformly at random. For the code,
we use the three GISMOE mutations: delete a line of code, replace a line and
insert a line [10]. The additional lines of code are not random but are copied
from stereoKernel itself. This is like [6] except we use the grammar.

7.4 Crossover

As in the GISMOE frame work [10], crossover creates a new GP individual
from two different members of the better half of the current population. The
child inherits each of the 12 fixed parameters (Table 2) at random from either
parent (uniform crossover [20]). Whereas in [10] we used append crossover, which
deliberately increases the size of the offspring, here, on the variable length part of
the genome, we use an analogue of Koza’s tree GP crossover [21]. Two crossover
points are chosen uniformly at random. The part between the 2 crossover points
of the first parent is replaced by the mutations between the two crossover points
of the second parent to give a single child. On average, this gives no net change
in length.

7.5 Fitness

To avoid over fitting and to keep run times manageable, each generation one of
the two hundred training images pairs is chosen [22]. Each GP modified kernel
in the population is tested on that image pair.

94 W.B. Langdon and M. Harman

CUDA Memcheck and Loop Overruns. Normally each GP modified kernel
is run twice. The first time it is run with CUDA memcheck and with loop over
run checks enabled. If no problems are reported by CUDA memcheck and the
kernel terminates normally (i.e. without exceeding the limit on loop iterations)
it is run a second time without these debug aids. Both memcheck and counting
loop iterations impose high overheads which make timing information unusable.
Only in the second run are the timing and error information used as part of
fitness. If the GP kernel fails in either run, it is given such a large penalty, that
it will not be a parent for the next generation.

When loop timeouts are enabled, the GP grammar ensures that each time a
C++ for loop iterates a per thread global counter is incremented. If the counter
exceeds the limit, the loop is aborted and the kernel quickly terminates. If any
thread reaches its limit, the whole kernel is treated as if it had timed out. The
limit is set to 100× the maximum reasonable value for a good kernel.

Timing. Each of the Multiprocessors (MPs) within the GPU chip has its own
independent clock. To get a robust timing scheme, each kernel block records
both its own start and end times and the MP unit it is running on. After the
kernel has finished, for each MP, the end time of the last block to use it and the
start time of the first block to use it are subtracted to give the accurate duration
of usage for each MP. The total duration of the kernel is the longest time taken
by any of the MPs used.

Error. For each pixel in the left image the value returned by the GP modified
kernel is compared with that given by the un-modified kernel. If they are different
a per pixel penalty is added to the total error.

If the unmodified kernel did not return a value the value returned by the GP
kernel is also ignored. Otherwise, if the GP failed to set a value for a pixel, it
gets a penalty of 200. If the GP value is infinite or otherwise outside the range
of expected values (0..50) it attracts a penalty of 100. Otherwise the per pixel
penalty is the absolute difference between the original value and the GP’s value.

7.6 Selection

As with the GISMOE framework [10] at the end of each generation we compare
each mutant with the original kernel’s performance on the same test case and
only allow it to be a parent if it does well. In detail, it must be both faster and
be, on average, not more than 6.0 per pixel different from the original code’s
answer. However mostly the evolved code passes both tests. At the end of each
generation the population is sorted first by their error and then by their speed.
The top 50% are selected to be parents of the next generation. Each selected
parent creates one child by mutation (Section 7.3) and another by crossover
with another selected parent (Section 7.4). The complete GP parameters are
summarised in Table 3.

Genetically Improved CUDA C++ Software 95

Table 3. Genetic programming parameters for improving stereoKernel

Representation: Fixed list of 12 parameter values (Table 2) followed by variable list of
replacements, deletions and insertions into BNF grammar

Fitness: Run on a randomly chosen 320×240 monochrome stereo image pair.
Compare answer & run time with original.

Population: Panmictic, non-elitist, generational. 100 members.
Parameters: Initial population of random single mutants heavily weighted towards

the kernel header and shared variables. 50% truncation selection.
50% crossover, 50% mutation. No size limit. 50 generations.

Table 4. Mean speed across all 2516 I2I 320×240 stereo image pairs. ± is standard
deviation. Times in microseconds. In all cases tuning leaves BLOCK W as 64. Tuning
NVS 290 increases ROWSperTHREAD from 40 to 120, otherwise pretuning reduces it to 5.
Post GP tuning leaves ROWSperTHREAD as 5, except C2050 (14) and GTX 580 (15).

GPU name Original Pretuned Ratio GP Speedup

Quadro NVS 290 27402±116 26019±152 1.053±0.01
GeForce GTX 295 5448± 14 1518± 4 3.589±0.01
Tesla T10 5256± 12 1436± 3 3.661±0.01 1359±38 3.861±0.11
Tesla C2050 4632± 25 3017± 15 1.535±0.01 1130± 5 4.099±0.02
GeForce GTX 580 3077± 21 1650± 6 1.865±0.01 722±29 4.248±0.17
Tesla K20c 4362± 21 1839± 18 2.373±0.03 638± 1 6.837±0.04

8 Results

Table 4 gives the speed up for six types of GPUs. By reducing ROWSperTHREAD

from the original 40 to 5, pretuning (Section 4) itself gave considerable speed
ups (columns 4-5 in Table 4). However for NVS 290, tuning ROWSperTHREAD

increased it from 40 to 120 but only gave a modest improvement (last columns
in Table 4). In all cases the original value of BLOCK W (64) was optimal.

With CUDA 5.0 memcheck (Section 7.5), it proved impossible to keep the
NVS 290 and GTX 295 operational for a complete GP run. Despite hardware
monitoring, the problem remained non-reproducible. It is thought with more
recent hardware, memcheck is able to catch and prevent problems caused by
incorrect array indexes but on the NVS 290 and GTX 295 GPUs (with nVidia
driver 310.40) incorrect program operation eventually lead to hardware lock up.
This is at odds with our earlier successful use of GP on the GTX 295, where we
had explicitly caught out-of-range indexes [4]. Hence it might have been better
to provide our own array bounds index checking. In Table 4 the “GP” columns
for the NVS 290 and GTX 295 rows are blank and the last column refers to the
speed up achieved by tuning ROWSperTHREAD and BLOCK W.

With the four more modern GPUs, the best individual from the last genera-
tion (50) was minimised to remove unneeded mutations and retuned (Section 4).
This resulted in reductions in length: T10 31→14, C2050 17→10, GTX580
26→13 and K20c 29→10. The speeds of the re-tuned kernels are given in Table 4

96 W.B. Langdon and M. Harman

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 500 1000 1500 2000 2500 3000

S
pe

ed
 u

p
of

 C
U

D
A

 5
 k

er
ne

l K
20

c
T

es
la

I2I Database

Training

 240x320

 Chairs 640x480

Toys 500x140

Plant

 Book 506x380

320x240
240x320
640x480

Fig. 3. Performance of GP improved K20c Tesla kernel on all 3010 stereo pairs in
Microsoft’s I2I database relative to original kernel on the same image pair on the same
GPU. Fifty of first 200 pairs used in training. The evolved kernel is always much better,
especially on images of the same size and shape as it was trained on.

under heading “GP”. In each case this gave a significant speed up (last column
of Table 4) compared to both the original kernel and the original kernel with
the best ROWSperTHREAD setting. The speedup of the improved K20c kernel on
all of the I2I stereo images is given in Figure 3. The speed up for the other five
GPUs varies in a similar way to the K20c. Finally, notice typically there is very
little difference in performance across the images of the same size and shape as
the training data (see ± columns in Table 4).

8.1 GP Better Than Random Search

In the case of the K20c Tesla, the GP was run again for the same number of
evaluations, the same population size, the same number of generations but with
random selection of parents. The best in the whole run of 50 generations of ran-
dom search is exceeded by the best in the third and subsequent GP generations.

9 Evolved Tesla K20c CUDA Code

The best of generation 50 individual changes 6 of the 12 fixed configuration
parameters (Table 2) and includes 23 grammar rule changes. After removing
less useful components (Section 4) four configuration parameters were changed
and there were six code changes. See Figures 4 and 5.

DPER is enabled and the new kernel calculates two disparity values in parallel,
Section 5.2. disparityPixel and disparityMinSSD are stored in shared memory,
Section 6.1 and XHALO is enabled, Section 5.1.

Genetically Improved CUDA C++ Software 97

Table 5. Numbers of most popular of each of the evolvable configuration macros and
constants (Table 2) in the last breeding population

Fixed mutation Tesla T10 Tesla C2050 GTX 580 Tesla K20c

Cache None 62 L1 52 L1 66 None 48
-Xptxas -dlcm ca 84 not used 50 cg 42 not used 32
OUT TYPE float 100 float 74 float 76 float 48
STORE Pixel LOCAL 100 LOCAL 100 LOCAL 76 GLOBAL 70
STORE MinSSD SHARED 100 SHARED 100 SHARED 56 SHARED 76
DPER disabled 100 disabled 100 used 100 used 100
XHALO disabled 100 used 100 used 100 used 100
mul24(a,b) mul24 100 * 100 * 70 mul24 98

GPtexturereadmode Normalized 100 Normalized 100 Normalized 100 Normalized 100
texturefilterMode Linear 100 Linear 100 Linear 100 Linear 100
texturenormalized default 82 default 80 default 72 default 72
textureaddressMode Wrap 40 Clamp 66 Mirror 42 Mirror 48

The final code changes, Figure 5, are:

– disable volatile, Section 7.
– insert #pragma unroll 11 before the for loop that steps through the

ROWSperTHREAD - 1 other rows (Section 2).
– insert #pragma unroll 3 before the for loop that writes each of the ROWS

perTHREAD rows of disparityPixel from shared to global memory. Its not clear
why evolution chose to ask the nvcc compiler to unroll this loop (which is
always executed 5 times) only 3 times. But then when nvcc decides to do
loop unrolling is obscure anyway.

– Mutation < KStereo.cuh 161>+< KStereo.cuh 224> causes line 224 to be
inserted before line 161. Line 224 potentially updates local variable ssd,
however ssd is not used before the code which initialises it. It is possible
that compiler spots that the mutated code cannot affect anything outside
the kernel and simply optimises it away. During minimisation removing it
gave a kernel whose run time was exactly on the removal threshold.

– Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces
X < width && Y < height by dblockIdx==0. This replace a complicated
expression by a simpler one, which itself has no effect on the logic since both
are always true. In fact, given the way if(dblockIdx==0) is nested inside
another if, the compiler may optimise it away entirely.

– delete syncthreads() on line 348. syncthreads() forces all threads to
stop and wait until all reach it. Line 348 is at the end of code which may
update shared variables disparityPixel and disparityMinSSD. In effect GP
has discovered it is safe to let other threads proceed since they will not use
the same shared variables before meeting other syncthreads().

10 Conclusions

Correctly tuning one (originally hard coded) constant immediately gave speed
ups of between 5% and a factor or 3.6 (median 2.1) (see Table 4). In all cases,

98 W.B. Langdon and M. Harman

DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED

<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>

< KStereo.cuh 348> <optvolatile KStereo.cuh 86>

<pragma KStereo.cuh 262><pragma K11> <IF KStereo.cuh 326><IF KStereo.cuh 154>

Fig. 4. Best GP individual in generation 50 of K20c Tesla run after minimising, Sec-
tion 4, removed less useful components. (Auto-tuning made no further improvements.)

int * restrict disparityMinSSD, //Global disparityMinSSD not kernel argument
volatile extern __attribute__((shared)) int col_ssd[];

volatile int* const reduce_ssd = &col_ssd[(64)*2 -64];

#pragma unroll 11

if(X < width && Y < height) replaced by if(dblockIdx==0)

syncthreads();
#pragma unroll 3

Fig. 5. Evolved changes to K20c Tesla StereoKernel. (Produced by GP grammar
changes in Figure 4). Highlighted code is inserted. Code in italics is removed. For
brevity, except for the kernel’s arguments, disparityPixel and disparityMinSSD changes
from global to shared memory are omitted.

where genetic programming was able to run, it was able to build on this. Not
only are the newer GPUs faster in themselves but the speed up achieved by GP
was also larger on the newer GPUs. With final speed up varying from 5% for
the oldest (which was contemporary with the original code) to a factor of more
than 6.8 for the newest (median 4.0).

Future new requirements of StereoCamera might be dealing with: colour, mov-
ing images (perhaps with time skew), larger images, greater frame rates and
running on mobile robots, 3D telephones, virtual reality gamesets or other low
energy portable devices. We can hope our GP system could be used to automat-
ically create new versions tailored to new demands and new hardware.

Acknowledgments. I am grateful for the assistance of njuffa, Istvan Reguly,
vyas of nVidia, Ted Baker, and Allan MacKinnon. The grammar based genetic
programming system is available via ftp.cs.ucl.ac.uk file genetic/gp-code/
StereoCamera 1 1.tar.gz

GPUs were given by nVidia. Funded by EPSRC grant EP/I033688/1.

References

1. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming,
http://www.gp-field-guide.org.uk

2. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering. In: WCRE 2013, Koblenz, Germany. IEEE (2013) (Invited Keynote)

3. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge. In: ASE 2012, Essen, Germany, pp. 1–14. ACM (2012)

4. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: WCCI 2010, Barcelona, pp. 2376–2383. IEEE (2010)

http://www.cs.fsu.edu/~baker/
https://gist.github.com/allanmac
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz
http://www.nvidia.com
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I033688/1
http://www.gp-field-guide.org.uk

Genetically Improved CUDA C++ Software 99

5. Archanjo, G.A., Von Zuben, F.J.: Genetic programming for automating the devel-
opment of data management algorithms in information technology systems. Ad-
vances in Software Engineering (2012)

6. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Trans. on Soft. Eng. 38(1), 54–72 (2012)

7. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Trans. on Graphics 30(6), article:152 (2011)

8. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Trans. on EC 15(4), 515–538 (2011)

9. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Trans. on EC 15(2), 166–182 (2011)

10. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Trans. on EC (accepted)

11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nico-
lau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo,
J.J., Santos, V.M.R., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 132–143.
Springer, Heidelberg (2014)

12. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming framework.
In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP
2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012)

13. Cody-Kenny, B., Barrett, S.: The emergence of useful bias in self-focusing genetic
programming for software optimisation. In: Ruhe, G., Zhang, Y. (eds.) SSBSE
2013. LNCS, vol. 8084, pp. 306–311. Springer, Heidelberg (2013)

14. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: A first step
towards software power minimization. IEEE Trans. on VLSI 2(4), 437–445 (1994)

15. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proceedings of the IEEE 96(5), 879–899 (2008) (Invited paper)

16. Merrill, D., Garland, M., Grimshaw, A.: Policy-based tuning for performance porta-
bility and library co-optimization. In: InPar. IEEE (2012)

17. Langdon, W.B.: Graphics processing units and genetic programming: An overview.
Soft Computing 15, 1657–1669 (2011)

18. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)
19. Moore, G.E.: Cramming more components onto integrated circuits. Electron-

ics 38(8), 114–117 (1965)
20. Syswerda, G.: Uniform crossover in genetic algorithms. In: ICGA 1989, pp. 2–9

(1989)
21. Koza, J.R.: Genetic Programming. MIT Press (1992)
22. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In:

Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 146–158. Springer, Heidelberg (2010)

	Genetically Improved CUDA C++ Software
	1 Introduction
	2 Source Code: StereoCamera
	3 Example Stereo Pairs from Microsoft’s I2I Database
	4 Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes
	5 Alternative Implementations
	5.1 Avoiding Reusing Threads: XHALO
	5.2 Parallel of Discrepancy Offsets: DPER

	6 Parameters Accessible to Evolution
	6.1 Fixed Configuration Parameters

	7 Evolvable Code
	7.1 Initial Population
	7.2 Weights
	7.3 Mutation
	7.4 Crossover
	7.5 Fitness
	7.6 Selection

	8 Results
	8.1 GP Better Than Random Search

	9 Evolved Tesla K20c CUDA Code
	10 Conclusions
	References

