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Abstract. The 3-versus-2 Keepaway soccer task represents a widely
used benchmark appropriate for evaluating approaches to reinforcement
learning, multi-agent systems, and evolutionary robotics. To date most
research on this task has been described in terms of developments to
reinforcement learning with function approximation or frameworks for
neuro-evolution. This work performs an initial study using a recently
proposed algorithm for evolving teams of programs hierarchically using
two phases of evolution: one to build a library of candidate meta policies
and a second to learn how to deploy the library consistently. Particular
attention is paid to diversity maintenance, where this has been demon-
strated as a critical component in neuro-evolutionary approaches. A new
formulation is proposed for fitness sharing appropriate to the Keepaway
task. The resulting policies are observed to benefit from the use of diver-
sity and perform significantly better than previously reported. Moreover,
champion individuals evolved and selected under one field size generalize
to multiple field sizes without any additional training.

Keywords: Policy search, Keepaway soccer, Symbiosis, Fitness sharing,
Diversity maintenance.

1 Introduction

Keepaway soccer was conceived as a simplification of the full RoboCup simulated
soccer task in which the objective is for K ‘keepers’ to maintain possession of
the ball for as long as possible from K − 1 ‘takers’ [1, 2]. The takers assume
a pre-specified policy whereas the keepers need to learn an appropriate policy.
Keepaway is implemented using the same RoboCup simulator as used for the
full game of soccer, but with additional constraints on the rules, boundary of the
field, and number of players. The Keepaway task is known to be non-Markovian
and has a wide range of results from reinforcement learning and neuro-evolution
(Section 2). However, to date, there has been little interest in applying genetic
programming (GP) to this task. The goal of this work is to make an initial
assessment of the capability of GP and the role of diversity maintenance in
identifying effective keeper policies under this domain. Previous results using
neuro-evolution have made use of genotypic diversity measures [3, 4]. While
genotypic diversity metrics have been proposed for canonical forms of GP (e.g.,
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[5]), their design is not necessarily obvious for the case of GP that supports
task decomposition through teaming. Thus, in this work we introduce a novel
formulation for phenotypic fitness sharing and empirically evaluate its effect on
hierarchical GP under the Keepaway task.

The GP framework assumed in this work takes the form of symbiotic bid-
based GP (hereafter SBB), where this has previously been illustrated under
various reinforcement learning tasks e.g., Rubik cube [6], Pin-ball [7] and Ac-
robot handstand [8]. In SBB, a control policy is defined by a team of simple
programs that are coevolved, each specializing on a subcomponent of the task.
Adopting a teaming approach to policy search implies that it is possible to start
from simple policies at initialization and incrementally introduce more complex-
ity as the task warrants. The utility of task decomposition in general has been
demonstrated under supervised [9] and reinforcement learning [10]. Previous re-
sults with SBB have also indicated that if an initial run does not identify suitably
general policies, then the contents of the initial population can be ‘cashed’ and
referred to as a library of ‘meta actions’ [6–8]. Individuals evolved in a second
independent run learn the context for deploying the previously evolved policies.
That is to say, SBB supports a mechanism through which hierarchical policies
may be incrementally constructed.

In this work, we are specifically interested in the role of diversity maintenance
in the development of such hierarchical policies. The underlying assumption is
that such diversity is necessary during the development of the initial population
of SBB individuals (meta actions), but not necessary when constructing poli-
cies from meta actions. More generally, the need for diversity and modularity is
frequently acknowledged, particularly in environments with dynamic properties
[11, 12]. Thus, under the guise of ensemble methods as applied to streaming data
tasks, diversity is seen to provide faster reaction times to a change, but does not
necessarily facilitate faster convergence to the new concept [13]. Under a neuro-
evolutionary setting in which solutions to the iterated prisoner’s dilemma are
coevolved, diversity is shown to support the development of a broader range
of policies across the population as a whole, but it is difficult to integrate this
diversity into a single individual [14]. Finally, the field of evolutionary robotics
frequently reports better performance when reward is given for both novel solu-
tions as well as optimizing fitness [15, 16]. However, it is also clear that defining
an appropriate diversity metric is as an open ended activity.

In addition to investigating the role of diversity, we are also interested in
discovering how a GP approach compares to the current state of the art under
the most widely considered K = 3 (3-versus-2) configuration of the Keepaway
task. As will be established in Section 2, progress on the Keepaway task has
been dominated by reinforcement learning and neuro-evolutionary methods.

2 Related Work

As noted in the introduction, the Keepaway task represents a benchmark for
both multi-agent and reinforcement learning / policy search in general [1–4].
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Given that a decision maker is necessary for each keeper, reinforcement learning
approaches have adopted a heterogeneous assignment of learners to keepers,
where this is a function of the overhead in attempting to update a single function
approximator w.r.t. multiple keepers [4]. Conversely, (evolutionary) policy search
generally assumes a homogeneous assignment, where this is a reflection of the
lack of specialization required in the keeper policies [17].

The original development of Keepaway defines the task of the decision maker
in terms of a pre-specified decision tree in which, should another keeper be in
possession of the ball, the free keepers assumes a “get open” behaviour. Other-
wise if the keeper is not in possession of the ball but can get there faster than
any other teammate, then the keeper approaches the ball. The task of the learn-
ing algorithm is to discover the appropriate strategy for the case of a keeper in
possession of the ball [1, 2]. When in possession of the ball there are a total of K
atomic actions, a; or a ∈ {HoldBall, Pass2ThenReceive, ..., PasskThenReceive};
where the PasskThenReceive action defines which keeper to pass the ball to,
with k indexing the nearest (k = 2) to most distant (k = K) keeper. This is
the most common formulation of the keepaway task, and will be assumed in the
work here.

Under reinforcement learning, the first obstacle to be addressed was how
to formulate the task such that credit assignment mechanisms such as SMDP
Sarsa(λ) could be applied [1, 2]. With this achieved, most emphasis has been
on the type of function approximation used to model Q-values. Thus, function
approximation based on tile coding [1, 2] has been superseded by the use of
Radial Basis Functions [4] or kernel methods [18].

Several approaches to neuro-evolution have been applied to the Keepaway
task, including NEAT [4, 19], EANT [3] and HyperNEAT [20]. All schemes make
extensive use of genotypic diversity for maintaining multiple species during a
run. These studies also adopt the result reporting framework established under
the reinforcement learning approaches cited above, making comparison between
different algorithms possible. The same approach is assumed here.

In the case of GP, we note that a layered learning approach has been adopted
in the past to facilitate the incremental evolution of tree structured GP, with
and without ADFs [21, 22]. However, these results are reported for a different
soccer simulator (TeamBots) and hence different atomic actions. Layered learn-
ing assumes that the task undergoes some prior decomposition with training
performed relative to the simpler tasks first. It was also necessary to enforce a
prior discretization of the state variables (i.e., a simplification of the task) and
limit the number of takers to 1 i.e., 3-versus-1 keepaway.

3 Hierarchical Symbiotic Policy Search

Frameworks for evolving teams of programs represent an alternative approach for
deriving modular solutions under GP. Bremeier and Banzhaf assumed a repre-
sentation in which a fixed number of programs were grouped (per team) and eval-
uated collectively, with variation operators switching programs between teams as
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well as modifying individual programs [23]. Thompson and Soule also assumed
fixed sized teams, but introduced orthogonal selection operators i.e., building
teams from the perspective of the program or team [24]. SBB explicitly sup-
ports ‘incremental complexification’ through the use of a symbiotic framework
for coevolving team membership (host) and programs (symbionts) cooperatively
[9]. Thus, host individuals define a team (host membership) by indexing some
subset of the available symbionts (programs). Assuming a variable length repre-
sentation for the hosts implies that the size of a team is free to evolve. Symbiosis
appears because host and symbiont individuals exist in independent populations
with fitness only evaluated at the host population.1

3.1 Symbiont

Symbiont programs take the form of bid-based GP [25]. Each symbiont repre-
sents a tuple consisting of a task specific discrete action, a, and a program, p.
Without loss of generality, we assume a linear GP representation [26]. The role
of a program is to define a bidding strategy. Thus, consider the case of a host
consisting of two symbionts 〈a1, p1〉 and 〈a2, p2〉. Given a set of state variables
describing the current state of the task domain, each symbiont associated with
the host executes its program. The symbiont with largest output, say p2, ‘wins’
the right to suggest its action at the current time step, or a2 in the case of this
example. Evaluation for the current host continues until an episodic end state
is encountered i.e., for each new state of the task, the symbiont programs are
executed and the winning symbiont suggests its action, in each case potentially
updating the state of the task.

3.2 Variation Operators

Variation operators are asexual and take the form of a set of mutation operators
applied to a host after it is cloned. Two mutation operators are used: remove
symbiont from the host, add a symbiont to the host. In addition, a third operator
can initiate the creation of a new symbiont. In this case a symbiont that is
currently a member of the host is cloned and the cloned symbiont’s action and
/ or program is modified (inserting / deleting instructions). For further details
of the variation operators see [9].

3.3 Selection Operator

Evolution is conducted under a breeding metaphor, thus post fitness evaluation,
the worst performing Hgap individuals are deleted. Any symbionts that are not
part at least one remaining team are assumed to be ineffective and therefore also
deleted. No attempt is made to derive symbiont fitness through, say, the average
of the host fitness in which it is a member. In effect we are assuming multi-level
selection in which an organism is only evaluated as a whole as opposed to the

1 Hereafter host / team and symbiont / program will be used interchangeably.
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sum of its parts [27]. One implication of this process is that the host population
is a fixed size, whereas the symbiont population ‘floats’ under the action of the
selection and variation operators.

3.4 Constructing Hierarchical Policies

Evolution will be performed in two distinct phases. During phase 1 symbionts
assume atomic actions taken from the task domain. This lasts for a fixed number
of generations and establishes a population of meta actions for use as actions
by the second phase of evolution. The goal of phase 2 is to discover under what
conditions to switch between different meta actions as identified during phase 1.
No further modification of individuals from phase 1 tasks place. As per phase
1, evaluating a host from phase 2 (h2

i ) results in the identification of a winning
symbiont (Section 3.1). However, at this point the action is a previously evolved
host, h1

j , as discovered during phase 1 i.e., a meta action. Thus, host h1
j is now

executed for the current state variables, with the winning symbiont this time
selecting an atomic action which is used to update the state of the game. Further
details regarding the evolution of hierarchical policies is available from [6–8].

3.5 Fitness and Diversity

In the specific case of the 3-versus-2 Keepaway task, the soccer simulator defines
the location of keepers and takers such that each keeper is stochastically initial-
ized in one of the three corners of a square field and all takers are initialized in
the fourth corner. The corners associated with keepers and takers do not vary,
but the precise initial location does. Likewise, the ball is initialized ‘near’ one of
the keepers, but this also varies. Unlike most episodic tasks, this means that it
is not possible to precisely control the initial configuration of the task. Hence,
during fitness evaluation, each host plays multiple games, but it is not possible
to replicate the initial conditions, or for that matter other stochastic events that
potentially occur during a game i.e., the soccer simulator adds noise to actions
and state variables. Each host will play P games per generation, thus fitness
of a host is merely the average total duration for a game as measured by the
simulator over at least P games. We naturally hope this averaging smooths out
some of the variation that is not explicitly due to the host’s policy.

In terms of diversity maintenance, previous researchers have assumed linear
combinations of fitness and novelty (e.g., [15]), Pareto multi-objective formula-
tions (e.g., [16]), or fitness sharing based on genotypic diversity (e.g., [3, 19]).
Each method varies with respect to the number of user-specified parameters and
their sensitivity. Furthermore, a function for measuring genotypic or phenotypic
distance between policies is typically required, where this can be task-specific or
generic. In the following we will adopt a phenotypic fitness sharing methodol-
ogy that incorporates a task-specific distance metric to select the most ‘similar’
game as played by other hosts. This is a significant departure from earlier for-
mulations for diversity (e.g., [6–8]). The motivation for this approach stems from
the observation that start states in the keepaway task are stochastic and both
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sensor readings and actuators are noisy. Thus, a policy’s phenotype cannot be
characterized solely by the reward received relative to a particular initial task
configuration. Instead, the property captured by fitness sharing will summarize
the configuration of the failure state. Thus, we reward diversity in failure, where
this is taken as an indicator of policy behaviour. With this in mind, the following
approach is taken to fitness sharing.

Let each host maintain a history of the end state and reward for the most
recent Phist games. State variables in keepaway are ego-centric, hence translation
and rotation independent. This reduces the number of trivial differences that
might appear in the end state of a game. Thus, for each of the last Phist games
we record the ego-centric state variables relative to the keeper initialized in the
upper-left corner of the field. Our use of homogeneous keepers is taken to imply
that a single keeper perspective is sufficient to characterize team behaviour. Each
host plays P games per generation, overwriting the P oldest entries in that host’s
history. The actual size of a host’s historical record will therefore range between
P and Phist depending on age. A host’s shared fitness score, si, discounts the
reward for each historical game as follows:

si =
1

hhist

∑

j∈hhist

(
G(hi, ej)∑

k �=i(1 − dist(ej, ehist))G(hk, ehist)

)
(1)

where G(hi, ej) is the reward host i received for game j, the denominator sum-
mation

∑
k �=i is over all other hosts in the same population, ehist is the game

failure state from the historical record of host k that most closely matches ej ,
with the corresponding reward G(hk, ehist), and dist(ej , ehist) is a Euclidean
distance metric, normalized to the unit interval, with 1 denoting least similarity.
hhist represents all games currently stored in the historical record for host i.

In short, Eqn. (1) re-weights the reward that host i receives on game j relative
to the historical record available for other hosts on the game they played with
the most similar failure state. We also limit the estimation of final game state to
that of the keeper positions alone. Hence, under the 3-versus-2 Keepaway task a
total of 5 state variables are used to characterize the final state of a game. Given
that evolution is applied in two distinct phases in order to construct explicitly
hierarchical SBB policies (Section 3.4), fitness sharing is only applied during
the first phase. In phase 2 the objective is explicitly exploitive, hence no fitness
sharing will be deployed.

4 Results

As a guide to parameterizing SBB we note from Whiteson et al. [4], that NEAT
utilized 6,000 evaluations per generation with 50 to 60 generations (the latter was
not explicitly reported), implying that between 300,000 to 360,000 evaluations
were performed per run. Under the SBB parameterization from Table 1, the
corresponding total evaluation count is defined as: tmax × H × P = 200, 000.
However, there are two phases of evolution in order to construct hierarchical
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policies (Section 3.4), thus 400,000 evaluations in total. The publicly available
code distribution provided the initial implementation for SBB2, from which the
necessary modifications were made to provide the new formulation for fitness
sharing and interface to the Robocup Soccer Server3. Supporting code from the
designers of the keepaway task4, provides a full implementation of the keepaway
environment. This work uses version 1.15.1 and 0.6 of the soccer server and
keepaway code respectively.

Table 1. SBB Parameterization per phase of evolution (Section 3.4). tmax is the total
generation limit; ωmax is the maximum number of symbionts a host may support
under a variable length representation; H is the host population size; P is the number
of games played by each host per generation; Phist is the maximum number of games
stored in each host’s historical record; Hgap is the number of individuals replaced
during breeding in the host population; pxx denote the frequency with which different
search operators are applied; numRegisters and maxProgSize represent the number of
registers and maximum instruction count for (symbiont) programs.

Host (teams) Symbiont (programs)

Parameter Value Parameter Value Parameter Value

tmax 250 ωmax 15 numRegisters 8

H 80 Hgap 40 maxProgSize 48

P 10 Phist 100 pdelete, padd 0.5

pmd 0.7 pma 0.7 pmutate, pswap 1.0

pmm 0.2 pmn 0.1

As per established practice on the Keepaway task, reporting of performance
will be conducted throughout the evolutionary cycle. Thus, at every 125 gener-
ations we let each host play 100 games and then have the champion host play
1,000 games. No fitness sharing is deployed during champion identification. A
total of 12 independent runs are performed. Results from previous research are
summarized in Table 2, where these are generally the result of 5 independent
runs. Two experiments will be performed: hierarchical SBB without fitness shar-
ing versus hierarchical SBB with fitness sharing (during phase 1 of constructing
the hierarchy). In all cases a field size of 20× 20 meters is assumed.

Figure 1 reports test performance of the champion individual at three points
through each of the two phases necessary to develop the hierarchical SBB policy.
Generation 1 corresponds to the champion individual at initialization. Genera-
tion 125 and 250 correspond to the performance of the champion individual half
way and at the final generation. As there are two distinct phases of evolution

2 http://web.cs.dal.ca/~mheywood/Code/SBB/
3 http://sourceforge.net/apps/mediawiki/sserver
4 http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

http://web.cs.dal.ca/~mheywood/Code/SBB/
http://sourceforge.net/apps/mediawiki/sserver
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/
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the generation count cycles from 1 to 250 twice. The ‘simulation hours’ reflects
the total accumulated number of hours of simulated play on the soccer server.

Table 2. Summary of keeper possession times for 3-versus-2 Keepaway. Averages reflect
1,000 test games for a champion policy. Simulated hours represents the total number
of simulation hours necessary to return the champion policy.

Algorithm Avg. keeper possession time Simulated hrs. (of play)

HyperNEAT [20] 15.4 sec unknown

EANT [3] 14.9 sec ≈ 200

NEAT [4, 19] 14.1 sec ≈ 800

Sarsa with RBF [4, 19] 12.5 sec ≈ 50

Comparing the average values reported for test performance during the hier-
archical SBB runs in Figure 1 with the previously reported best test performance
(Table 2) it is apparent that both forms of SBB provide significant improvements
by the end of the first phase of evolution. This is achieved with 286 (with di-
versity) to 650 (no diversity) simulation hours, which is comparable or better
than either of the neuro-evolutionary methods. The second phase of evolution,
in which the second level of the hierarchical policy is built, emphasizes consis-
tency (fitness sharing is disabled). This focuses the performance of champion
individuals such that there is less variation between different runs. Additional
experiments with fitness sharing applied during both phases of evolution did not
reach this level of performance or consistency.

A further post training test of generalization is performed as follows. At the
last generation, the champion individual is identified (as reported in the last
column of Figure 1). Such a champion has been evolved and selected with respect
to a field size of 20×20 meters. This same champion individual is then deployed
on three other field sizes without any additional modification, Figure 2. Naturally,
the task becomes easier on larger field sizes. Such an experiment was previously
performed relative to Sarsa under a tile coded representation [1]. In the case of
the Sarsa–tile coding result, performance was very sensitive to the configuration
on which training was performed e.g., even when trained on a more difficult
field size, performance on the easier field size was worse. Conversely, both SBB
configurations perform better on the easier field sizes and exceed any of the
default behaviours under the most difficult field size. Similar general trends were
reported for HyperNEAT, albeit with a much lower overall level of performance
[20]. It is also clear that for each field size, SBB with diversity provides improved
generalization e.g., the difference between mean game times for each field size
is: 1.1, 2.5, 5.6, 0.5 seconds respectively. In comparison, note that a total of
1.3 seconds of game time separates the ranking of all three neuro-evolutionary
methods applied to the 3-versus-2 Keepaway task (Table 2).
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Fig. 1. Average performance of champion policy against 1,000 test games. Two level
hierarchical policy with 250 generations per level. Box plot reflects the quartile distri-
bution and scatter plot the actual performance points from 12 runs. Numerical value
reports the median of the 12 runs.
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Fig. 2. Generalization of champion policy against multiple field sizes. Champions
evolved and identified w.r.t. 20× 20 meter field. ‘Hand tuned’, ‘Random’ and ‘Always
hold’ represent baseline policies provided in the Keepaway code base [2].
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5 Conclusion

The most popular form of the Keepaway soccer task (3-versus-2) has been re-
visited using a recently proposed scheme for evolving teams of programs hier-
archically [6–8]. To do so, particular attention was applied to the definition of
diversity maintenance. Specifically, a fitness sharing formulation was proposed,
where this avoids the need to specify the relative weight of diversity to fitness.
Including diversity results in the discovery of policies with an additional ≈ 3
seconds of play w.r.t. the field size for which evolution is performed and an ad-
ditional 0.5 to 2.5 seconds of play when testing the same policy against games
held on different field sizes. Moreover, when diversity is included, the policies
provide games that last ≈ 3 seconds longer than previously published results.

Future research will investigate task-independent phenotypic and genotypic
diversity measures as well as consider other formulations of the task domain,
such as the more difficult 4-versus-3 configuration. Other properties of interest
could include varying the players’ field of view from 360 deg to more limited
ranges or the ultimate objective of evolving entire soccer teams.
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