
Generalisation Enhancement via Input Space
Transformation: A GP Approach

Ahmed Kattan1, Michael Kampouridis2, and Alexandros Agapitos3

1 Um Al Qura University, AI Real-World Applications Lab, Department of Computer Science,
Kingdom of Saudi Arabia
ajkattan@uqu.edu.sa

2 University of Kent, School of Computing, UK
M.Kampouridis@kent.ac.uk

3 Complex and Adaptive Systems Laboratory, School of Computer Science and Informatics,
University College Dublin, Ireland

alexandros.agapitos@ucd.ie

Abstract. This paper proposes a new approach to improve generalisation of
standard regression techniques when there are hundreds or thousands of input
variables. The input space X is composed of observational data of the form
(xi, y(xi)), i = 1...n where each xi denotes a k-dimensional input vector of
design variables and y is the response. Genetic Programming (GP) is used to
transform the original input space X into a new input space Z = (zi, y(zi))
that has smaller input vector and is easier to be mapped into its corresponding
responses. GP is designed to evolve a function that receives the original input
vector from each xi in the original input space as input and return a new vec-
tor zi as an output. Each element in the newly evolved zi vector is generated
from an evolved mathematical formula that extracts statistical features from the
original input space. To achieve this, we designed GP trees to produce multi-
ple outputs. Empirical evaluation of 20 different problems revealed that the new
approach is able to significantly reduce the dimensionality of the original input
space and improve the performance of standard approximation models such as
Kriging, Radial Basis Functions Networks, and Linear Regression, and GP (as a
regression techniques). In addition, results demonstrate that the new approach is
better than standard dimensionality reduction techniques such as Principle Com-
ponent Analysis (PCA). Moreover, the results show that the proposed approach
is able to improve the performance of standard Linear Regression and make it
competitive to other stochastic regression techniques.

Keywords: Genetic Programming, Symbolic Regression, Approximation Mod-
els, Surrogate, Dimensionality Reduction.

1 Introduction

Science and engineering design problems oftentimes require the construction of a model
f̂ (referred to as meta-model, response surface model, or surrogate) that emulates the
response of some black-box f which comes from some process. These black-box prob-
lems, i.e., whose problem class is unknown, are possibly mathematically ill-behaved

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 61–74, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

62 A. Kattan, M. Kampouridis, and A. Agapitos

(e.g., discontinuous, non-linear, non-convex). Generally, the model f(x) represents
some continuous quality or performance measure of a process defined by k-vector de-
sign variables x ∈ X ⊂ Rk. In the remainder of this paper we will refer to X as the
input space. Normally, the only insight available about the model f(x) is through some
discrete samples (xi, y(xi)), i = 1...n where each xi denotes a k-dimensional input
vector of design variables and y is the response. The task here is to construct an ap-
proximation model ˆf(x) to map any unseen x ∈ X to its response with a reasonable
accuracy.

It should be noted that reliable approximation models in the field of Machine Learn-
ing (ML) revolve around the fundamental property of generalisation. This ensures that
the induced model is a concise approximation of a data-generating process and per-
forms correctly when presented with data that has not been utilised during the learning
process. To this end, it is desirable to avoid complexity of approximation models to
maintain good generalisation. Thus, it is intuitively obvious that a higher number of
design variables in a modelling problem will increase the complexity of objective func-
tion measuring locations of sampled variables in the input space and subsequently effect
the generalisation ability. Moreover, the high number of design variables often requires
more samples to build a reasonable accurate approximation model and, thus, increases
the learner’s complexity and may reduce its generalisation. This problem is referred to
as curse of dimensionality [3]. To this end, many data-centric approximation method-
ologies in the ML literature that have been used to construct approximation models
yield poor performance when the number of design variables is high.

One way to mitigate the curse of dimensionality problem is by reducing the number
of design variables using some dimensionality reduction technique such as Principle
Component Analysis (PCA) or Factor Analysis (FA) (e.g., see [8]). However, variables
reduction is reasonable only when the significant variables are just a fraction of the
overall set of variables. Variable reduction, some times, can increase the difficulty of
the problem in cases where all variables have similar influence on the model response.
Another way to deal with the curse of dimensionality is to construct a new input space
that can be mapped to the original input space and is easer to approximate [13].

This paper proposes a model to improve the generalisation performance of standard
regression models when the number of design variables is high. The main idea is to use
Genetic Programming (GP) [11] to evolve a transformation function that transforms the
original input space X into a new input space Z that has smaller number of variables
and is easier to approximate to their corresponding responses. To this end, GP individ-
uals (represented as trees) receives the design variables from the original input space
as inputs and return a vector of outputs.1 The evolution of the transformation function
is guided by a fitness measure that drives search toward performance improvement of
standard approximation models. For this task, GP is supplied with a function set that al-
lows the extraction of statistical features from the original input space (details in Section
3).

The contribution of this paper is twofold. First, we show that it is possible to improve
the generalisation of approximation models just by transforming the input space without

1 We used a design similar to modi GP proposed by Zhang et. al. in [14] to allow GP trees
produce multiple outputs.

Generalisation Enhancement via Input Space Transformation 63

changing anything in the approximation models themselves or in their objective func-
tions. Second, we show that our approach can boost the performance of a simple linear
regression and make it competitive to other state-of-the-art approximation techniques.

The reader’s guide to the rest of the paper is as follows. Section 2 presents related
work from the literature. Section 3 presents the proposed approach in details followed
by experimental results and their analysis in Section 4. Finally, this paper concludes in
Section 5.

2 Related Works

Dimensionality reduction techniques to mitigate the curse of dimensionality problem
is a well explored topic. Many techniques have been developed and used with feature
selection and classification problems (e.g., [12], [2]). However, the idea of reducing
the number of design variables in the regression problems to improve generalisation of
standard ML approaches is relatively little explored thus far. In this section we focus the
review on dimensionality reduction approaches for models approximation since these
are directly relevant to the work reported in this paper.

Sobester and Nair in [13] presented a GP approach for generating functions in closed
analytic form that map the input space of a complex function approximation problem
into one where the output is more amenable to linear regression. To achieve this, the
authors used a co-evolutionary approach where multiple populations are evolved in
parallel. However, the authors claimed that their results are not conclusive and they are
merely serve as proof of concept. In addition, the new transformed input vector z has
the same dimensionality as the original vector.

In [8] the authors proposed a technique based on latent variables, non-linear sensitiv-
ity analysis, and GP to manage approximation problems when the number of input vari-
ables is high. The proposed technique was tested with 340 input variable problems. The
proposed approach was designed to consider problems where all input variables have
similar influence on the model’s output. Thus, standard variable pruning techniques are
not applicable.

McConaghy [9] presented a deterministic technique, referred to as Fast Function Ex-
traction (FFX), for solving a symbolic regression problem that achieves higher approx-
imation accuracy than standard GP and several state-of-the-art regression techniques.
Later, Icke and Bongard [5] hybridised FFX and GP to create an improved learner for
symbolic regression problems. In this work, the authors showed that a hybrid deter-
ministic/GP for symbolic regression outperforms GP alone and several state-of-the-art
deterministic regression techniques alone on a set of multivariate polynomial symbolic
regression tasks. The proposed approach was tested to approximate data-sets of differ-
ent dimensionality, ranging from 1 to 25 dimensions.

As it can be seen, most of previous work tried to mitigate the curse of dimension-
ality problem by transforming the input space into a new input space. In this paper we
show that it is possible to mitigate the curse of dimensionality problem and improve
the generalisation of approximation models just by transforming the input space into
new space that holds similar features. Unlike other works, our approach builds a trans-
formation function for the input space based on its statistical features. This allows the

64 A. Kattan, M. Kampouridis, and A. Agapitos

Table 1. GP Function set

Function Arity Input Output

+, -, /, * 2 Real Number Real Number
Mean, Median,
StD, Variance,
Average Div, Min,
Max

1 Randomly selected
variables from each
xi

Real Number

Constants 1-6 0 N/A Real Number
*StD is Standard Deviation, and Average Div is Average Deviation.

transformation function to significantly reduce the number of design variables and relax
the learners’ performance.

3 Proposed Approach

The proposed approach uses GP as the main engine to transform the original input space
into a new one. GP individuals are designed to receive the training samples from X as
inputs and return a transformed samples as an output. This can be represented formally
as follows: let the original input space be denoted as X ⊂ Rk where k is the dimen-
sionality of the input samples. Normally, the input space is represented with a set of n
discrete and possibly sparse samples X = {x0, x1, ..., xn}. The aim is to evolve a trans-
formation function T (X) ⇒ Z where Z ⊂ Rq and q < k. The set Z = {z0, ..., zn}
where each zi represent the xi after being transformed fromX ⇒ Z . The newly evolved
Z set has to be easier to approximate and support the learner’s generalisation. To this
end, GP starts by randomly initialising a population of trees using ramped half-and-half
approach [11]. We supplied GP with a function set, as illustrated in Table 1, to extract
statistical features from the design variables of each sample in original input space. For
each tree in the GP population, each node that holds a statistical function will be asso-
ciated with a randomly selected sub-set of variables (up to k variables). For example,
say k = 10, a tree could calculate the Mean function for variables {1, 2, 5, 6, 7} while
another tree (or even another node in the same tree) could calculate the Mean function
for variables {9, 10}. We let the system picks up uniformly the number d of variables in
[1, k], and then uniformly choose the d variables among all variables. Once the system
allocates a randomly selected sub-set of design variables to a node that holds a statisti-
cal function, it maintains the same sub-set for that node during its life cycle. Thus, all
nodes that hold statistical functions maintain their selected sub-sets of variables after
crossover or reproduction.

The next sub-section will explain the design used for GP trees to allow them to
produce multiple outputs.

3.1 Trees Return Multiple Outputs

Standard GP tree representation proposed by Koza [7] utilises the evolved functions to
perform a many-to-one mapping from inputs to an output. However, some problems,

Generalisation Enhancement via Input Space Transformation 65

such as the one presented in this paper, raise a need to evolve functions that perform
a many-to-many mapping between inputs and outputs. The idea of evolving trees with
multiple outputs has been proposed by Zhang et. al. in [14]. In this work the authors
proposed a new representation called modi trees to produce multiple outputs. Here, our
design is inspired by modi trees, however, the difference is that modi was presented to
evolve a fixed size vector of outputs while our approach can evolve a vector of any size.
Similar to modi, our tree design consists of two main types of nodes: (a) standards
nodes that pass their outputs to their parents, and (b) outputs nodes that append their
output to a vector associated with the tree. As illustrated in Figure 1, for each tree, we
let the system randomly selects some nodes and label them as output nodes. Thus, the
size of the output vector of each tree is equal to the number of its output nodes. Also,
once the system labels a node in any tree as an output node, it maintains its type during
its life cycle (i.e., after crossover or reproduction). When evaluating trees, the system
ensures to maintain the same traverse order, thus, the same tree will always produce the
same output vector.

Using this representation allows the outputs of the evolved zi vectors to be generated
from different sub-trees or leaf nodes. Hence, any element in the generated output vector
can be the result of a simple statistical feature for a sub-set of the design variables or
the result of a linear function that combines several statistical features.

StD (7,6,5)
output

Mean(8,9,1) Median
(6,7,9)

) Mean(8,9,1))

Output vector

Fig. 1. GP tree representation to produce multiple outputs inspired by modi

3.2 Fitness Measure

As mentioned previously, the aim of the transformation function is to improve the gener-
alisability of standard learners (or model approximation techniques). This is a challeng-
ing problem because the fitness measure needs to be aware of the generalisation level
induced by the transformed space. In addition, the evolved transformation function has
to be applicable to several learners without making any prior assumptions about which
learner will be used to solve the approximation problem. One simple way to test the
quality of the transformation function is to use the transformed input samples to train a
single learner, e.g., Radial Basis Function Networks (RBFN), and then test this learner
with unseen data (i.e., validation set). Although the simplicity of this idea is intuitively

66 A. Kattan, M. Kampouridis, and A. Agapitos

appealing, one problem would lie in the selection of the learner that will be used as
fitness measure. As demonstrated in preliminary experiments, GP tunes the input space
quickly in such a way to allow the learner to over-fit samples of the transformed input
space. Thus, the learner loses its generalisation property. In fact, when we used predic-
tion errors of RBFN as fitness measure, in preliminary experiments, we found that GP
evolves a transformation functions that allows RBFN to over-fit the training set easily.
Hence, the fitness value keeps improving, which gives an indication that RBFN is doing
well on the transformed input space. However, when testing the RBFN on a transformed
validation set results show very poor performance.

To avoid pathologies of this kind, another idea to evaluate the quality of the evolved
transformation functions is to use multiple learners and solve the problem as multi-
objectives optimisation, where the system is trying to reduce the prediction error of all
learners simultaneously. Then the best evolved transformation function, at each gener-
ation, is evaluated against a validation set. In preliminary experiments, we found that
this idea worked well to some extent, however, its main drawback is emphasised in the
large computational cost required to train each learner using the transformed samples
induced by each individual in the GP population. Hence, we reduced the number of
learners (used as a fitness measure) gradually and explored different permutations of
learners to balance between computational cost and solutions’ quality.

After several experiments, based on trial and error, we used two learners as a fitness
measure; RBFN and Linear Regression (LR). Generally, RBFN shows its best perfor-
mance when the landscape of input space is smooth [6]. Thus, using prediction errors
of RBFN as fitness measure, in principle, will guide GP to evolve smooth transformed
input space in such a way to reduce the prediction errors of RBFN. However, if the
transformed training samples became congregated in a small area at the transformed
input space then it is most likely that RBFN will over-fit the training samples. Here, we
also use the LR model to mitigate this problem. In LR, data are modelled using linear
predictor functions. LR shows its best performance when the input samples are linearly
correlated with their outputs. Also, LR performance significantly decreases when the
number of design variables increases. With these properties, LR can encourage GP to
linearly align the transformed samples to their corresponding outputs and reduce the
number of input variables. To this end, LR and RBFN are selected to guide the fitness
measure of GP. In addition, they both are relatively fast algorithms which will result
in a reasonable computational cost when evaluating GP individuals. More formally, the
fitness measure can be denoted as follows:

Fitness =

∑n
i=0 |LR(zi)− yi|

n
+

∑n
i=0 |RBFN(zi)− yi|

n
(1)

where LR(zi) and RBFN(zi) represent the predictions of LR and RBFN given the
transformed point zi. The n is the number of the transformed input samples and yi is
the ith output.

GP evolves individuals as described in Section 3.1 where each individual produces
a zi ∈ Z output vector for each input sample xi ∈ X . Remember that we assume each
xi denotes a k-dimensional input vector of design variables. The set Z = {z0, ..., zi}
is used to train RBFN and LR using 2-fold cross-validation technique. The prediction
error is calculated as described in Equation 1 to rank individuals. The best individual

Generalisation Enhancement via Input Space Transformation 67

of each generation is further tested with an unseen transformed validation set. The best
individual across the whole run (that produced the best performance on the validation
set) is used as the final transformation function that can be used to transform the input
space.

4 Experiments and Analysis

4.1 Experimental Settings

A set of experiments have been conducted to evaluate the proposed approach. We tested
the effects of the transformation function on four regression models, namely, RBFN,
Kriging, LR, and GP (used as a regression model). These models were selected because
they are some of the most important techniques in the literature. In addition, to compare
the proposed approach against standard dimensionality reduction technique we included
Principle Component Analysis (PCA) [1] in the experiments.

Experiments included the following 5 benchmark functions; Rastrigin, Schwefel,
Michalewicz, Sphere, and Dixon & Price [10]. For each test function, we trained all
approximation models to approximate the given function when the number of variables
is 100, 500, 700 and 1000. The total number of test problems is 20 (i.e., 5 test functions
×4 different variables sizes). For all test problems, we randomly generated three dis-
joint sets; a training set of 100 points, a validation set of 50 points, and a testing set of
150 points from the interval [−5, 5]. All techniques have been compared based on the
average of absolute errors on the testing set.

For each function-variables combination, each approximation model has been tested
three times; without and with PCA and our proposed approach (we will call it the Z
set). In the experiments, some models are deterministic so we tested them only once
with each problem. These, in particular, are RBFN, Kriging, and LR, with and without
PCA. However, because the generation of the transformation function is based on an
evolutionary process, we evolved 30 different transformation functions and tested them
with each approximation model for each problem and reported the mean, median, best,
and standard deviation. To evolve the transformation function, we used generational
GP with the following settings; population size is 100, number of generations 100,
maximum allowed size for trees is 300 nodes, elitism rate 0.01, crossover and mutation
rates 0.7 and 0.3, respectively.

For the GP engine that has been used to solve the approximation problems, we used
the same settings described previously. To assure fair comparison, we tested standard
GP with and without PCA in 30 different runs and reported the same results.

4.2 Results

Tables 2, 3, and 4 summarise the results of 1200 GP runs and 60 RBFN, Kriging, and
LR runs. In Table 2, it is clear that the Z set has improved all approximation techniques
to obtain the best error in all four variables sizes (denoted by bold fonts in any column
with a title starting with “Z set”). In addition, the Z set improved the GP performance
in terms of mean in 7 out of 8 test cases and in terms of median in 5 cases (see again

68 A. Kattan, M. Kampouridis, and A. Agapitos

the numbers in bold fonts in the column entitled “Z set+SGP”). We also, noted that the
Z set improved the performance of LR significantly by several orders of magnitude.
In fact, LR obtained the best overall approximation for 6 out of 8 cases (denoted by
underlined fonts). These are remarkable results given that LR simply uses a linear func-
tion to make predictions. The results suggest that the evolved transformation function
has aligned the transformed input variables to be linearly correlated with their outputs.

Similarly, in Table 3, the Z set has improved all approximation techniques in terms
of best results. Also, the Z set improved the GP performance in terms of mean in 7
out of 8 test cases and in terms of median in 4 cases. The LR obtained the best overall
approximation for 6 out of 8 cases. Finally, in Table 4 results follow the same pattern2.
The Z set again leads to consistently improved results in terms of best values. It also
improved the mean and median results in all 4 cases. Lastly, the combination of the
Z set with LR was again the champion, having the best overall approximation in all 4
cases.

To further verify the significance of the non-deterministic results on the GP, we used
the non-parametric Friedman test to rank the three algorithms tested, namely SGP, Z
set+SGP, and PCA+SGP. As we can observe from Table 5, the SGP approximation that
uses the Z set was ranked first in 16 out of the 20 test cases; in addition, Holm’s post-
hoc test [4] showed that 12 out of these 16 first ranking were statistically significant at
5% or 10% level. It should also be noted that none of the other two algorithms (SGP,
PCA+SGP) has managed to be ranked first at a statistical significance level of 5%.
This once again demonstrates the improvement brought by the Z set to GP with these
benchmark functions.

Overall, results show that the transformed input space has managed to improve
the generalisation of all approximation techniques in the comparison. Thus, when the
evolved Z set is applied, we can expect to have an improvement in the approximation
error. In addition, results also show that our approach is better than a standard dimen-
sionality reduction technique, such as PCA. Moreover, the transformed input space has
significantly improved the LR in most of the test cases and make it competitive to other
stochastic approximation techniques. In fact, LR has outperformed all of its competitors
in most of the cases and it is not too far behind when it loses the comparison.

To have a closer look at LR improvement with the Z set, Figure 3 depicts the approx-
imation of Sphere function (i.e., function 4), with 2 variables, of all models included
in the comparison. It is interesting to visually see that LR can accurately approximate
a non-linear function only by transforming the input space. In addition to this, the LR
with the Z set approximation had the lowest error (0.0445021) among all 12 algorithms.

Despite the good improvements obtained by using the Z set, it is fair to report that the
main disadvantage of the proposed approach that it requires extra computational cost
and time to transform the input space. Also, in some cases the improvements are not
significant and, thus, can not justify the extra costs. However, as demonstrated by the
results, in some cases the margins of improvement can be several orders of magnitude
(e.g., Functions 3 and 4) which justifies the extra computational costs in return of higher

2 Due to space limitation we did not report the results of the RBFN (with and without PCA and
the Z set) in Table 4. However, in our experiments we found that the Z set has also improved
RBFN.

Generalisation Enhancement via Input Space Transformation 69

Ta
bl

e
2.

Su
m

m
ar

y
re

su
lt

s
fo

r
fu

nc
ti

on
s
1

an
d
2

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

10
0

SG
P

Z
se

t+
SG

P
PC

A
+

SG
P

R
B

FN
Z

se
t+

R
B

FN
PC

A
+

R
B

FN
K

ri
gi

ng
Z

se
t+

K
ri

gi
ng

PC
A

+
K

ri
gi

ng
L

R
Z

se
t+

L
R

PC
A

+
L

R
M

ea
n

75
24

86
8.

16
73

.6
7

15
9.

83
90

.1
0

73
.6

7
76

.5
5

B
es

t
75

.3
7

73
.5

2
73

.6
5

82
.1

9
73

.7
2

82
.4

8
73

.6
8

73
.5

2
73

.6
8

72
74

0.
90

59
.7

6
M

ed
ia

n
90

.8
1

73
.6

8
91

.2
9

88
.6

8
73

.6
8

70
.8

1

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

50
0

M
ea

n
10

01
.5

4
20

9.
01

91
6.

14
21

0.
75

18
4.

92
22

61
8.

21
B

es
t

17
4.

04
13

0.
82

16
9.

12
18

5.
74

16
2.

89
18

5.
82

18
0.

56
17

6.
93

18
0.

56
1.

54
E

+
07

14
8.

69
M

ed
ia

n
21

3.
37

18
2.

00
21

5.
46

20
9.

07
18

0.
56

16
7.

80

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

70
0

M
ea

n
26

66
.2

5
38

24
.5

3
57

2.
18

26
9.

65
20

7.
42

10
23

42
.8

9
B

es
t

22
0.

82
17

4.
74

20
8.

36
21

6.
14

21
1.

43
21

6.
15

20
7.

39
20

6.
43

20
7.

39
4.

07
E

+
07

17
6.

47
M

ed
ia

n
25

6.
34

25
2.

04
24

0.
69

26
2.

31
20

7.
39

22
6.

80

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

10
00

M
ea

n
26

24
.3

0
28

92
.2

2
41

1.
94

27
6.

75
24

1.
54

13
54

62
.4

0
B

es
t

22
7.

57
19

5.
21

23
2.

02
22

4.
87

21
3.

65
22

4.
90

22
6.

37
22

6.
37

22
6.

37
3.

42
E

+
08

18
4.

20
M

ed
ia

n
30

5.
58

28
5.

32
27

3.
02

25
6.

83
22

6.
37

24
3.

05

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

10
0

M
ea

n
13

07
2.

65
41

52
.9

8
92

04
.9

7
29

27
.3

0
21

68
1.

90
23

84
.7

1
B

es
t

34
83

.6
8

20
83

.8
0

34
71

.4
9

41
16

.4
5

24
08

.6
4

41
00

.5
4

34
42

.9
7

34
13

.2
5

34
42

.9
7

4.
43

E
+

06
18

08
.1

5
1.

04
E

+
06

M
ed

ia
n

41
98

.0
8

28
32

.1
0

40
29

.3
2

28
80

.1
6

34
60

.2
6

23
25

.1
3

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

50
0

M
ea

n
11

84
26

7.
92

12
36

39
.3

2
13

78
45

1.
65

36
67

8.
20

75
87

4.
60

28
63

3.
29

B
es

t
38

12
6.

30
22

71
1.

60
37

87
2.

80
39

84
1.

60
26

81
2.

60
39

84
4.

80
38

25
8.

00
37

87
5.

30
38

25
8.

00
1.

74
E

+
08

22
19

7.
20

3.
74

E
+

08
M

ed
ia

n
52

33
1.

65
36

96
1.

20
48

51
5.

85
36

36
3.

70
38

27
5.

65
27

40
7.

05

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

70
0

M
ea

n
18

92
19

91
.6

3
21

42
83

.0
0

19
13

21
5.

34
51

67
3.

54
24

46
32

.3
4

37
00

21
4.

70
B

es
t

65
71

3.
60

31
52

3.
20

67
55

4.
90

65
55

3.
50

37
17

6.
90

65
58

3.
20

64
03

7.
20

63
65

8.
60

26
73

18
0.

00
5.

70
E

+
08

30
85

2.
70

1.
66

E
+

09
M

ed
ia

n
89

01
1.

40
61

95
2.

60
83

37
1.

25
48

64
7.

55
64

18
2.

30
39

20
1.

25

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

10
00

M
ea

n
74

44
25

9.
17

11
86

43
9.

44
12

55
37

54
.3

3
10

53
27

.9
9

36
85

05
22

5.
77

24
27

13
39

.3
0

B
es

t
11

65
43

.0
0

68
88

4.
00

11
50

53
.0

0
11

90
38

.0
0

69
36

5.
30

11
90

56
.0

0
11

74
84

.0
0

11
69

87
.0

0
11

74
84

.0
0

1.
21

E
+

10
61

20
9.

80
2.

40
E

+
09

M
ed

ia
n

40
78

83
0.

00
18

19
29

.0
0

13
97

70
.5

0
97

15
3.

70
11

74
84

.0
0

72
80

1.
55

*
B

ol
d

nu
m

be
rs

ar
e

th
e

lo
w

es
ti

n
ea

ch
gr

ou
p

an
d

un
de

rl
in

ed
nu

m
be

rs
ar

e
th

e
lo

w
es

ti
n

al
lg

ro
up

s.

70 A. Kattan, M. Kampouridis, and A. Agapitos

Ta
bl

e
3.

Su
m

m
ar

y
re

su
lt

s
fo

r
fu

nc
ti

on
s
3

an
d
4

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
10

0
SG

P
Z

se
t+

SG
P

PC
A

+
SG

P
R

B
FN

Z
se

t+
R

B
FN

PC
A

+
R

B
FN

K
ri

gi
ng

Z
se

t+
K

ri
gi

ng
PC

A
+

K
ri

gi
ng

L
R

Z
se

t+
L

R
PC

A
+

L
R

M
ea

n
1.

07
E

+
04

5.
26

E
+0

6
3.

99
E

+
03

6.
07

18
4.

12
3.

46
B

es
t

19
.1

8
2.

89
20

.6
1

15
.7

4
2.

65
15

.7
2

20
.7

4
20

.6
2

20
.7

4
9.

47
E

+
05

1.
39

6.
28

E
+

05
M

ed
ia

n
28

.6
6

43
.7

2
24

.8
9

5.
04

25
.3

2
2.

05

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
50

0
M

ea
n

1.
89

E
+

04
2.

20
E

+
05

1.
52

E
+0

4
58

77
43

3.
82

5.
88

E
+

06
10

.4
2

B
es

t
48

.8
9

9.
15

48
.7

9
48

.5
5

49
.3

3
48

.5
8

49
.4

0
49

.3
3

49
.4

0
4.

89
E

+
08

4.
13

9.
00

E
+

07
M

ed
ia

n
55

.9
9

62
.0

0
54

.7
8

11
0.

23
11

0.
23

7.
46

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
70

0
M

ea
n

8.
71

E
+

04
2.

58
E

+0
4

5.
60

E
+

04
16

.4
2

1.
91

E
+

07
9.

35
B

es
t

52
.4

1
9.

12
52

.1
1

50
.9

1
7.

04
50

.8
9

52
.4

3
49

.2
3

52
.4

3
1.

04
E

+
08

4.
73

2.
54

E
+

08
M

ed
ia

n
13

3.
01

16
25

.7
0

62
.0

3
14

.9
3

16
8.

26
7.

48

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
10

00
M

ea
n

1.
34

E
+

05
1.

05
E

+0
5

6.
04

E
+

04
32

.2
0

2.
00

E
+

08
6.

50
E

+
04

B
es

t
69

.8
4

9.
11

69
.6

5
67

.6
1

9.
87

67
.6

4
69

.1
3

68
.9

2
38

97
.6

0
1.

59
E

+
08

6.
80

4.
20

E
+

08
M

ed
ia

n
29

6.
60

23
5.

04
79

.5
1

23
.2

0
98

.9
9

14
.0

7

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

10
0

M
ea

n
61

.0
6

22
.7

9
61

.5
8

11
.2

8
1.

56
E

+
08

11
.1

7
B

es
t

49
.7

9
9.

57
48

.6
7

55
.6

5
0.

02
56

.5
1

48
.9

8
48

.0
9

48
.9

8
3.

10
E

+
04

6.
29

3.
10

E
+

04
M

ed
ia

n
58

.4
1

16
.0

7
54

.6
3

12
.5

2
94

.3
2

10
.2

6

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

50
0

M
ea

n
50

3.
80

13
2.

65
17

2.
44

27
.8

0
1.

31
E

+
04

18
.7

4
B

es
t

14
4.

81
11

.7
4

14
5.

18
14

6.
93

0.
21

14
7.

12
14

6.
31

14
5.

52
14

6.
31

1.
71

E
+

07
8.

84
1.

44
E

+
06

M
ed

ia
n

15
7.

77
71

.3
3

15
4.

52
29

.1
2

14
6.

58
19

.7
0

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

70
0

M
ea

n
65

3.
16

73
.1

2
25

6.
48

32
.5

6
4.

41
E

+
10

16
.5

6
B

es
t

14
2.

39
13

.0
0

14
4.

92
14

8.
94

8.
56

14
8.

99
14

7.
31

14
3.

35
81

39
.3

8
1.

46
E

+
06

7.
08

2.
63

E
+

06
M

ed
ia

n
17

8.
88

50
.8

9
16

0.
93

27
.8

9
57

18
.5

9
15

.5
7

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

50
0

M
ea

n
24

20
.1

4
83

.7
1

57
2.

57
34

.7
2

2.
48

E
+

10
18

.3
2

B
es

t
17

2.
42

9.
74

18
0.

50
17

6.
93

9.
08

17
6.

93
17

7.
25

17
5.

56
17

7.
25

4.
50

E
+

07
6.

83
1.

53
E

+
07

M
ed

ia
n

23
3.

90
71

.1
3

21
9.

29
32

.7
2

1.
33

E
+

04
18

.9
9

*
B

ol
d

nu
m

be
rs

ar
e

th
e

lo
w

es
ti

n
ea

ch
gr

ou
p

an
d

un
de

rl
in

ed
nu

m
be

rs
ar

e
th

e
lo

w
es

ti
n

al
lg

ro
up

s.

Generalisation Enhancement via Input Space Transformation 71

Table 4. Summary results for function 5 Function 5 (Dixson& Price)

Dimensions 100
SGP Z

set+SGP
PCA+SGP Kriging Z set+

Kriging
PCA+
Kriging

LR Z set+ LR PCA+ LR

Mean 4.9E+07 7.4E+05 2.9E+06 1.2E+05 2.2E+05
Best 5.3E+05 3.3E+05 5.3E+05 4.3E+05 2.6E+05 4.3E+05 2.0E+07 1.8E+05 4.2E+06

Median 6.0E+05 5.0E+05 6.2E+05 2.3E+05 2.16E+05

Dimensions 500
Mean 5.8E+07 2.8E+07 3.9E+07 2.9E+06 2.4E+06
Best 6.1E+06 3.7E+06 6.3E+06 3.72E+06 2.3E+06 3.7E+06 2.4E+10 2.1E+06 1.7E+10

Median 7.2E+06 6.3E+06 7.1E+06 2.9E+06 2.3E+06

Dimensions 700
Mean 4.7E+07 4.3E+07 6.3E+07 5.3E+06 9.1E+06
Best 1.0E+07 6.2E+06 1.0E+07 6.5E+06 4.1E+06 6.5E+06 2.6E+10 3.65E+06 7.41E+10

Median 1.21E+07 9.1E+06 1.4E+07 5.0E+06 4.07E+06

Dimensions 1000
Mean 3.6E+08 1.1E+08 2.1E+08 9.7E+06 7.10E+06
Best 1.7E+07 1.0E+07 1.7E+07 9.7E+06 7.0E+06 9.7E+06 1.2E+12 6.0E+06 1.2E+11

Median 1.8E+08 1.7E+07 3.4E+07 9.5E+06 6.87E+06
* Bold numbers are the lowest in each group and underlined numbers are the lowest in all groups.

accuracy. Lastly, it is also worth noting that the results seem to worsen as the number
of dimensions increases.

Fig. 2. The original Function 4 (Sphere function)

One last contribution of our work is the significant dimensionality reduction. Table 6
illustrates these reductions in each test problem. As can be seen, the proposed approach
has generated a new input that has more than 50% smaller number of design variables.
We believe the great amount of reduction is largely attributed to the fact that the new
input space is based on statistical features extracted from the original space. Thus, in a
sense, each design variable in the new transformed space is a result of several variables
from the original space. To this end, both input spaces (the original and transformed)
have similar statistical features.

However, an observation one could make is that the number of dimensions in the
new input space does not seem to be correlated with the number of dimensions from
the original input space; in fact, while the mean number of variables varies from 10.27
(F4) to 23.30 when Dimensions = 100, this mean range only slightly increases for Di-
mensions = 1000 (11.83 (F4) to 31.20 (F1)). This is very interesting and it could be an

72 A. Kattan, M. Kampouridis, and A. Agapitos

Table 5. Friedman statistical significance test. Values that are in bold font denote that the respec-
tive algorithm’s ranking is statistically better than one other algorithm (at 5% significance level).
Values that are both in bold font and underlined denote that the algorithm has a statistically better
ranking than both of the other two algorithms (at 5% significance level). Lastly, when a value has
a star (*) next to it, this means that the respective algorithm has a statistically significant ranking
at 10% level.

Function F1 F2 F3 F4 F5
Dimension Algorithm Ranking

100 SGP 2.3 2.56 2.13 2.6 2.16
Z set+SGP 1.63* 1.23 2 1.06 1.36
GP+PCA 2.06 2.2 1.86 2.33 2.46

500 SGP 2.2 2.2 2.16 2.53 2.16
Z set+SGP 1.53 1.73 1.76 1.2 1.7
GP+PCA 2.26 2.06 2.06 2.26 2.13

700 SGP 2.23 2.23 2.06 2.4 2.20
Z set+SGP 2 1.33 1.93 1.2 1.40
GP+PCA 1.76 2.43 2 2.4 2.40

1000 SGP 2.23 2.18 2.36 2.46 2.40
Z set+SGP 2.03 1.96 1.8* 1.1 1.43
GP+PCA 1.73 1.85 1.83 2.43 2.16

explanation as to why the approximation results are poorer for higher number of dimen-
sions. As explained earlier in Section 3.1, our multiple-outputs GP approach can evolve
an output vector of any size. However, as we see in practice this size is not proportionate
to the size of the original dimension of the X vector. It would thus be worth investi-
gating in a future work if approximation results can be improved when the number of
variables in the transformed input space is higher.

Table 6. Summary of dimensions produced by the evolved Z set. The table summaries the mean
results of 30 independent runs for each test problem.

Dimensions F1 F2 F3 F4 F5
100 14.97 14.27 12.27 10.27 23.30
500 21.97 14.43 14.37 12.77 25.20
700 33.67 17.30 12.73 11.23 25.30

1000 31.20 26.63 16.60 11.83 23.26

Generalisation Enhancement via Input Space Transformation 73

Fig. 3. Approximation of Sphere function (Function 4) with 2 variables. Each model (Kriging-
1st row, Linear Regression-2nd row, RBFN-3rd row, SGP-4th row) was tested without (left) and
with PCA (middle) and the Z set (right).

5 Conclusions

To summarise, this paper proposed a new approach to improve generalisation of stan-
dard regression techniques when dealing with hundreds or thousands of input vari-
ables. We used GP to transform the original input space X into a new input space
Z = (zi, y(zi)), where Z has a smaller input vector and is thus easier to be mapped.
We tested the effectiveness of our proposed approach over 5 different functions and over
4 different dimensionality sizes. Results over the above 20 problems showed that our
approach leads to a remarkable dimensionality reduction of the original input space,
thus making the problem at hand a less complex one. Furthermore, the transformed
input space was able to lead to consistently improved performance of the standard ap-
proximation models tested in this paper, i.e. Kriging, RBFN, Linear Regression and
GP. Moreover, our findings also demonstrated that our approach consistently outper-
forms a standard dimensionality reduction technique, such as the Principle Component
Analysis. Lastly, another important result was that our proposed approach was able to
significantly improve the performance of the standard Linear Regression, and actually
make it the best performing technique in the majority of the cases tested in this paper.

74 A. Kattan, M. Kampouridis, and A. Agapitos

A disadvantage of the proposed approach is that it requires extra computational cost
to evolve a transformation function. This cost does not bring a guarantee that the im-
provements margins will be significant. However, as demonstrated by the results, in
most cases the approximation improvements are significant thus justify the extra com-
putational cost.

For future work, we will explore options to reduce the computational cost of the
evolutionary process. Also, we will study the distribution of the transformed inputs on
the new space. Moreover, we would like to test the approach with real-world problems.

References

1. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 1. Springer,
New York (2006)

2. Estébanez, C., Aler, R., Valls, J.M.: Genetic programming based data projections for classi-
fication tasks. World Academy of Science, Engineering and Technology (2005)

3. Forrester, A., Sóbester, A., Keane, A.: Engineering design via surrogate modelling: a practi-
cal guide. John Wiley & Sons (2008)

4. Garcı́a, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple
data sets for all pairwise comparisons. Journal of Machine Learning Research 9(66), 2677–
2694 (2008)

5. Icke, I., Bongard, J.: Improving genetic programming based symbolic regression using de-
terministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation (CEC),
pp. 1763–1770 (2013)

6. Kattan, A., Galvan, E.: Evolving radial basis function networks via gp for estimating fit-
ness values using surrogate models. In: 2012 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–7 (2012)

7. Koza, J.R.: Genetic Programming: On the programming of computers by means of natural
selection, vol. 1. MIT Press (1992)

8. McConaghy, T.: Latent variable symbolic regression for high-dimensional inputs. In: Genetic
Programming Theory and Practice VII, pp. 103–118. Springer (2010)

9. McConaghy, T.: Ffx: Fast, scalable, deterministic symbolic regression technology. In: Ge-
netic Programming Theory and Practice IX, pp. 235–260. Springer (2011)

10. Molga, M., Smutnick, C.: Test functions for optimization needs (2005)
11. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming.

Lulu.com (2008)
12. Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., Kotanchek, M.: Variable selection in

industrial datasets using pareto genetic programming. In: Yu, T., Riolo, R.L., Worzel, B.
(eds.) Genetic Programming Theory and Practice III, Genetic Programming, May 12-14,
vol. 9, ch. 6, pp. 79–92. Springer, Ann Arbor (2005)

13. Sobester, A., Nair, P., Keane, A.: Evolving intervening variables for response surface approx-
imations. In: Proceedings of the 10th AIAA/ISSMO Multi-disciplinary Analysis and Opti-
mization Conference, pp. 1–12. American Institute of Aeronautics and Astronautics (2004),
http://eprints.soton.ac.uk/22962/, aIAA 2004-4379

14. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic program-
ming. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of the Second Asian-Pacific
Workshop on Genetic Programming, Cairns, Australia, December 6-7, p. 12 (2004),
http://www.mcs.vuw.ac.nz/˜mengjie/papers/yun-meng-apwgp04.pdf

http://eprints.soton.ac.uk/22962/
http://www.mcs.vuw.ac.nz/~mengjie/papers/yun-meng-apwgp04.pdf

	Generalisation Enhancement via Input Space Transformation: A GP Approach
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Trees Return Multiple Outputs
	3.2 FitnessMeasure

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Results

	5 Conclusions
	References

