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Abstract. Classification problems are of profound interest for the machine learn-
ing community as well as to an array of application fields. However, multi-class
classification problems can be very complex, in particular when the number of
classes is high. Although very successful in so many applications, GP was never
regarded as a good method to perform multi-class classification. In this work, we
present a novel algorithm for tree based GP, that incorporates some ideas on the
representation of the solution space in higher dimensions. This idea lays some
foundations on addressing multi-class classification problems using GP, which
may lead to further research in this direction. We test the new approach on a
large set of benchmark problems from several different sources, and observe its
competitiveness against the most successful state-of-the-art classifiers.

1 Introduction

In the last two decades, Genetic Programming (GP) [1] has established itself as a solid
research field, not only because of the numerous practical successes that have been
reported in many different application domains [2], but also due to the strengthening
of the theoretical foundations [3], and the several attempts to bridge theory and prac-
tice [4]. Nevertheless, various references report on the poor performance of GP in multi-
class classification (intended here, as opposite to binary classification, as the supervised
learning task of partitioning data into a number of classes larger than two) when com-
pared to other state-of-the-art classifiers (see for instance [5]).

With the objective of attenuating this possible weakness of GP, in this paper we pro-
pose a new GP framework called Multi-dimensional Multi-class Genetic Programming
(M,GP). Several ideas have inspired the definition of this framework. First of all, we
hypothesize that single expressions, being represented as trees or any other existing
flavors of GP, are not an informative enough representation to effectively solve multi-
class classification tasks. For this reason M,GP uses a multi-expression representation
of individuals. Although the idea is not new [6], we present it in a different light by
integrating multiple expressions into a single tree. This makes the representation more
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compact and allows us to implement M, GP with very few modifications to standard GP.
Secondly, we do not prefix any explicit connection between the different expressions
represented in an individual and the classes. This relationship is free to evolve and al-
lows a higher effectiveness of the algorithm. Thirdly, we present a new algorithm that
tends to cluster the numeric values returned by the expressions belonging to a class,
minimizing their dispersion. Also this not being a new idea [7,8], M,GP presents it un-
der a new light by introducing a new fitness function. Finally, M, GP returns an enriched
data model, including not only the set of expressions that compose the best individual,
but also other information that is useful for the evaluation of new data.

The paper is structured as follows: Section 2 discusses some previous work in multi-
class classification with GP. Section 3 introduces M, GP, motivating the choices that led
us to the definition of the proposed algorithm. Section 4 presents the M, GP algorithm.
Section 5 contains our experimental study, where the test problems are presented, the
experimental settings are specified and the results are shown and discussed. Finally,
Section 6 concludes the paper and suggests possible future research.

2 Related Work

In this section, we outline several methods that have been proposed in order to tackle
multi-class classification problems using GP. The section only presents a restricted sub-
set of the most important and recent contributions in this area. For a more complete
survey on this topic the reader is referred to [9].

Several works [10,11,12,13,14] in this area are based on a common and straightfor-
ward approach that consists in evolving a single rule in each GP run. In particular, c runs
are performed for a c-class classification problem. In this way, the final classifier has
a single rule for each class. All these works evolve multiple comprehensible IF-THEN
classification rules.

However, the focus of this short literature review is on another common approach,
which consists in evolving a discriminant function. In this case the two main approaches
are (1) range selection methods and (2) binary decomposition methods. Range selec-
tion methods are applicable to GP classifiers that output numerical values. The method
works by declaring ¢ — 1 thresholds for c-class classification problems. To select op-
timal thresholds, several mechanisms have been proposed, including static thresholds
selection [15,7], dynamic thresholds [8,16] and slotted thresholds [8]. In binary decom-
position methods, one classifier is trained to recognize samples belonging to a particular
class and reject all other samples. This results in ¢ classifiers for a c-class classification
problem. A well-known drawback of this approach is related to the fact that the multiple
classifiers may result in conflicts, whose number usually grows up proportionally to the
number of classes. Hence, this approach produces an increased classification error as
the number of classes gets larger. Binary decomposition methods have been explored
in [17,18,19]. The two approaches for multi-class classification, constructing a single
classification function or c binary classifiers, are compared in [20], by considering a
hand-written digit recognition problem. As reported in [9], when a single function is
evolved, able to discriminate all the classes, the function directly outputs the numeric
value of the predicted class, since each class is an integer digit. In both cases, the fitness
function is based on classification accuracy.
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In [6] the authors proposed a GP-based approach to multi-class classification in
which each individual is a multi-tree structure made of c¢ trees, where ¢ is the num-
ber of classes. Each of these ¢ trees (1%, --- ,7T.) encodes a threshold function for a
particular class. The system considers that a data instance = belonging to class ¢ is cor-
rectly classified if T;(z) > 0 and Tj(z) < O, for all j # i. The fitness function is
computed as the classification accuracy. A similar system evolving a multiple-threshold
discriminant function is described in [21], where a fitness function based on the sum of
squared errors is employed.

One of the most recent contributions of GP for multi-class classification is found
in [22]. In this work, the authors propose a two-stage strategy for multi-class classifica-
tion problems, which is an improvement of a traditional binary decomposition method.

3 Formulation of Multi-dimensional GP
This section introduces the novel ideas we have explored and adopted to tackle the
problem of efficient classification of multi-class data sets. Although this work focuses
on tree based GP [1], it can be generalized for other types of GP.
Solution Tree. For classification tasks, tree based GP generally uses parse trees for
representing the individuals, where the root node and all other non-terminal nodes be-
long to a set O of predefined operations (e.g., O = {+, —,*,/}), and the terminal
nodes/leaves belong to the given attribute set A for the given data set. At the end of the
search process, the solution is available at the root of the best tree, which is a readily
interpretable function that is used for the task of classification.

In our approach, we slightly modify the representation of each parse tree by adding
a root node () of arity d (d > 1), as shown in Figure 1. Thus, the root node () shall
have d branches, 77, . . ., Ty, each one of them being a normal GP tree, created accord-
ing to the regular settings discussed in Section 5.2. Once the evolution terminates, GP
individuals can still be evaluated at the root node (r), as before; but instead of one solu-
tion, we obtain d different solutions, which we use/explore later to perform the task of
classification. For any data set, the value of d is independent of any parameters (e.g., the
number of classes/attributes) and we will discuss its choice in Section 5.2. The genetic
operators (e.g., mutation, crossover) are used normally, with the only restriction that the
mutation and crossover points must be chosen below the root node (¢). In this way, all
the GP individuals will be rooted in (T) during the whole evolution.
Solution Space. Let X = {xi,X2,...,X,} be the training data with n number of
samples and |.A| number of attributes. Each sample x; corresponds to any class value

Fig. 1. Representation of a solution tree
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E; € C, where C is the unique set of all the classes. In the usual single tree representa-
tion, where we obtain a single function f at the root node, solutions can be mapped in
a space (that we call solution space from now on) of 1-dimension, because the output
is a scalar numeric value. It is normally in this mono-dimensional solution space that
GP is required to perform the task of classification. However, now that individuals are
represented by d different functions F = {fi, fa,..., fa}, they can be mapped in a
d-dimensional solution space. Thus, any individual represented by a tree with a d-arity
root node (), can be represented in a d-dimensional space.

4 Algorithm

With the formulation of multi-dimensional GP, we now propose the algorithm called
Multi-dimensional Multi-class GP (M,GP).

Algorithm 1. M,GP - Training Module

1 IneuT: X, E, d
2 forgel...Gdo

3 GENERATE: F = {f1, f2,..., fa} - setof d solutions
4 EVALUATE: Zs = Eval(fs(X)) foralls € 1,...,d
5 CLUSTER: Z¥ € Zforallk € 1,...,|C|
6 fork € 1...|C|do
7 ¢k = covar(Z*),ad x d co-variance matrix % C* must be non-singular %
8 MFE = centroid(Z*),a1 x d centroid vector
9 DF = \/(Zi — MF) . (CF)=1 . (Z; — MF)T Vi =1,2,....n % Mahalanobis distance %
10 % where n is the number of samples in the training set %
1 Vi=1,2,..,n: Pred; = h suchthat D} = min(D}, D?,..., D)
12 Vi=1,2,...,n: Matched; =1 if Pred; = E;

MAXIMIZE: }L Z Matched;; % fitness function %
13 i€n

14 RETURN: F,C, M

Training Phase. The training module is run for G generations as described by Algo-
rithm 1. The goal of M,GP is to maximize the percentage of correctly classified sam-
ples, i.e., the classification accuracy (line 13). As M,GP iterates over the generations,
solutions with better training accuracy should be generated. In every generation, a pop-
ulation of new sets of functions F is generated. The training data is evaluated by every
function solution to obtain the mapped data Z = F(X), where Z represents the mapped
data in the d-dimensional solution space. Since we are using the training data, and we
know the class value for each mapped sample, we cluster/group the mapped samples Z
according to their corresponding class values (line 5). Then we calculate the distance
D, between every mapped training sample Z; and the centroid of the clustered mapped
data ZF for each class k € |C| (line 6-9).! Any mapped sample is predicted to belong
to class k if it has the minimum Mahalanobis distance measured against the centroid of

! To calculate the Mahalanobis distance, one needs to calculate the inverse of co-variance matrix
C k, and hence C* should be non-singular.
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Algorithm 2. M,GP - Classification Module

INrUT: U, F,C, M, d
OUuUTPUT: Pred - Predicted classes
EVALUATE: Zg = Ewval(fs(U)),Vs=1,2,...,d
forke€1...|C|do
DF = /(Zi = MF) . (C*)=1 . (Z; — MF)T Vi=1,2,...,n % Mahalanobis distance %
% where n is the number of samples in the test set %

= QAU B W -

RETURN: Pred; = h suchthat D = min(D}, D2,..., D), vi=1,2,...,n;

the k*" |C|-clustered mapped data Z (line 11), which is then used to maximize the fit-
ness function. The importance/usefulness of the Mahalanobis distance, and the choice
of dimension d - an important input for M,GP - will be discussed in Section 5.2. After
training for G generations, we return a classification model S = {F,C, M}, compris-
ing of 3 components: F - a set of d solutions, C - a set of |C| co-variance matrices of
size d x d, and M - a set of |C| centroid vectors of size 1 x d.

Testing phase. To verify the performance of the classification model and to check its
generalization ability, we use the evolved model S to predict the classes for the test data
set U. Algorithm 2 describes the procedure to classify the test data set U.

5 Experimental Analysis

5.1 Data Sets

We have used a variety of data sets to test the performance of M,GP. Table 1 lists the
pool of data sets that encompass both real world and synthetic data, having integer
and real data types, with varying number of attributes, classes and samples. The ‘Heart’
(HRT), ‘Segment’ (SEG), ‘Vowel’ (VOW), ‘Yeast’ (YST) and ‘movement-libras’ (M-L)
data sets can be found at KEEL? [23], whereas the ‘Waveform’ (WAV) data set is avail-
able at [24]. ‘IM-3’ and ‘IM-10’ are the landsat satellite data sets that were used in [25].
All the data sets we have used have no missing values. We have partitioned each data
set with the training and test data ratio of 70:30. In order to maintain consistency in the
results and perform fair comparisons, we have generated 30 different random partitions
for each data set, to be used henceforth.

Table 1. Data sets used for the experimental analysis

Data Set HRT IM-3 WAV SEG IM-10 YST VOW M-L
No. of classes 2 3 3 7 10 10 11 15
No. of attributes 13 6 40 19 6 8 13 90
No. of samples 270 322 5,000 2310 6,798 1484 990 360

2 KEEL - dataset repository, http://keel.es/datasets.php
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Fig. 2. Percentage accuracy for Euclidean and Mahalanobis distance. For IM-3, dimension d=1;
for IM-10, number of generations g=>50.

5.2 Experiments with GP Classifiers

Tools and Settings. We have used a modified version of GPLAB? [26], version 3
(latest) to conduct all the GP experiments. The GPLAB settings, subject to minimum
tuning, are listed next. The remaining GPLAB settings were the ones set by default on
the software. Generations = 50 (for analysis) and 100 (for final results - Table 4); Pop-
ulation size = 500 individuals; Crossover / Mutation Rate = 0.9 / 0.1; Function set (O)
= {+,-,*,/ (division protected as in [1])}; Terminal set = one variable for each attribute
in the data set, plus ephemeral random constants (as in [1]), randomly generated with
uniform probability from the interval [0, 1]; Tree Initialization: Ramped Half-and-Half
with the ratio of 75:25 between the Full and Grow methods.

Importance of Distance Measure. Since one of the crucial steps in M,GP is to cal-
culate the distance between the sample and the centroid of each class clusters, we have
compared two distance measures - Euclidean and Mahalanobis. Figure 2 shows exam-
ples of the performance of both distance measures for the data sets IM-3 and IM-10. For
IM-3, we plot the mean of 30 different runs for d = 1 (which is equivalent to standard
GP in terms of solution representation), in order to prevent the effect of using higher
dimensions. For IM-10, we plot the mean of 3 different runs for each number of dimen-
sions from 1 to |C'|. The results were highly consistent, with very low dispersion among
the different runs. From these plots we claim that the distance measure indeed plays a
significant role in the performance of M,GP, especially in the higher dimensional solu-
tion spaces. Unlike the Euclidean distance, the Mahalanobis distance not only is able to
capture the physical distance between the test sample and the class clustered data sets,
but also considers the statistical correlation between them, thereby reasserting the work
of [27].

Effect of Augmenting Dimensions. As already explained in Algorithm 1, we are rep-
resenting the mapped input sample Z (evaluated with the help of d-function solutions)
in a d-dimensional solution space. Now, with the help of various data sets, we analyze

3 GPLAB - A Genetic Programming Toolbox for MATLAB,
http://gplab.sourceforge.net/



54 V. Ingalalli et al.

WAV SEG
90 100
85 t 90
80, 80
g q
75 70 60
5 10 15 5 10 15 5 10 15
T YST VOW M-L
g 80 100 100
3 80 80 qu%sees
Q
< 60 60 60 +
= i 20 —©&— Training Data 0
S —*— Test Data
© 40 20 20
8 o 10 20 0 10 20 0 10 20

Number of Dimensions —

Fig. 3. Variation of accuracy values with increasing number of dimensions for various data sets

the effect of increasing the number of dimensions d. Figure 3 shows plots of accuracy
(final values after 50 generations) against the increasing number of dimensions. The
plots show the mean values obtained in 10 different runs, randomly chosen from the set
of 30 different partitions. Looking at the training lines, we observe two distinct phases
as we add dimensions in M,GP, that we call progressive learning and regressive learn-
ing. In the progressive learning phase, the training accuracy improves with increasing
dimensions. Progressive learning can be observed in the lower dimensions for all the
data sets. If we observe the test lines in the progressive learning phase, we can infer
that the classifiers perform the best during this phase, also in terms of generalization.
WAV, SEG, YST and VOW enjoy this progressive phase almost until the end of their re-
spective plots. For other data sets, this phase is followed by a regressive learning phase
where accuracy degrades with increasing dimensions, as clearly visible in IM-10 and
M-L. We hypothesize that a strong regressive learning would be observed for all data
sets at much higher dimensions, depending on the complexity of the data set - which in
turn depends on n, A and C'. Additionally, it is interesting to observe that the beginning
of the regressive phase is always greater than the number of classes for that particular
data set, except in the case of M-L. We are regarding M-L as a special category of data
set, since it is the only one where n << |A| - |C|, owing to its small sample size. It
is also the only data set where the test accuracy decreases substantially during the pro-
gressive phase, suggesting strong overfitting. We regard M-L as a challenging data set,
in particular when it comes to choosing the best dimension to use.

Choice of Dimension d. In Figure 4, we can observe the evolution of the accuracy on
both training and test data, for a selected number of dimensions (d = 1, 2, 12, 13) on
the IM-10 data set. Looking at the training plot we observe that the accuracy curves of
different dimensions remain almost parallel to each other, from the initial generation
to the final generation, even when the switch between progressive and regressive phase
happens (from d=12 to d=13). This pattern suggests that, if we look at the accuracy val-
ues obtained in the initial generation for various dimensions, we will be able to predict
which value of d will achieve the best accuracy in the final generation. Indeed, there
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Table 2. Automatically chosen dimension d

IM-3 WAV SEG IM-10 YST VOW M-L
C=3 C=3 C=7 C=10 C=10 C=11 C=15
Mean 347 550 453 7.23 6.10 9.27 1037
Std.Dev. 1.07 226 1.17 1.52 2.98 2.90 1.30

exists a very strong correlation of 0.95 = 0.04 between the initial and the final accuracy
values on the training data, when measured for all the data sets from Figure 3, consid-
ering their respective set of d values. This helps us choose an appropriate dimension for
a particular data set, just by looking at the accuracy values obtained in the initial gen-
eration. If we look at the test plots, similar patterns are observed, provided that M, GP
is good with generalization for all d. However this may not be the case, as already ob-
served for M-L in Figure 3. Nevertheless, leaving room for improvement in the future
(see Section 6) we adopt a simple procedure to automatically choose the dimension d,
described next.

For any given data set, we adopt the best d of the progressive phase. To do this, we
keep increasing the number of dimensions as long as the accuracy obtained with the
initial generation keeps improving, and adopt as d the value used right before the first
degradation occurs. For each problem, the choice of d may be different for different
runs. We remark that MoGP performs best when d = 1 for the binary classification
data set, and for the remaining data sets we have recorded the chosen d for the 30 runs
and obtained the values in Table 2. To validate the appropriateness of these choices, we
present in Figure 5 the results on the test set of 30 runs using the automatically chosen
d (a-d in the figure) side by side with the results obtained with d = 1 and with d = |C|
(respectively 1-d and c-d in the figure).

Looking at Figure 5, firstly we observe that in most data sets M,GP largely improves
its performance from 1-d to c-d or a-d. However, deciding the winner between c-d
and a-d is not trivial, since their relative performance varies depending on the data set.
Choosing d = |C'| usually results in a d higher than choosing d automatically (see Ta-
ble 2), however this does not necessarily translate into a better accuracy. The M-L data

> IM-10: Training data > IM-10: Test data
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of the evolved solutions
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Table 3. Mean solution size for 1-d, c-d and a-d

IM-3 WAV  SEG IM-10 YST VOW M-L
1-d 29.37 107.66 70.57 84.10 5693 4623  28.53
c-d 37.03 80.67 39.60 90.27 189.23 40.57 291.06
a-d 2430 13197 4287 12330 152.06 47.66  42.83

set is the most obvious case where d = |C| is not a good choice when compared to the
automatically chosen d. We recall from Figure 3 that on this data set the procedure to
automatically choose d does not even do a good job, since the test accuracy starts de-
grading early in the progressive phase. Still, it is much better than using d = |C|. All in
all, at least in terms of accuracy, it seems fairly reliable to always use the automatically
chosen d.

Size of the Individuals. Here we observe the effect of increasing the number of di-
mensions on the size of the individuals, i.e. the number of nodes of its tree, including
any possible amount of redundant code. Table 3 reports the mean size of 30 different
final solutions for each data set and each choice of d (excluding HRT that always uses
d=1). We can observe that the increase in solution size from 1-d to ¢-d or a-d is not so
prominent, and in many cases the size is indeed reduced. Therefore, also in terms of
solution size the automatically chosen d seems to be a fair choice.

Comparison among GP Classifiers. With the goal of comparing the performance of
M, GP (using the automatically chosen d) with the performance of other GP systems,
we chose the ‘range selection method with static threshold selection’ mentioned in Sec-
tion 2 [8,16] as the benchmark for comparison, since it is a fairly standard way of
performing multi-class classification with GP. However, in data sets with a higher num-
ber of classes we immediately observed the often reported inadequacy of this standard
GP method to perform multi-class classification. It was losing the race too quickly, so
we abandoned any further comparison. Just to provide some numbers, on the WAV and
SEG data sets M, GP improved the accuracy upon the standard method in approximately
25 and 55 percentual points, respectively.

1-d c-d a-d 1-d c-d a-d 1-d ¢c-d a-d 1-d c-d a-d 1-d c-d a-d 1-d c-d a-d
> 100 T T p—— T T T T T T T =
T
% ole = = | | - | | = %1 \ |
2 \ T \ % \ \ \ é
o 60+ | _ o

S I I I = % I é} T

©
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Fig. 5. Percentage accuracy of M>GP for 3 settings of choosing d, for various data sets
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5.3 Comparison with Various Classifiers

We now compare M,GP with a number of classifiers available in Weka?, version 3.6.10
(latest). Random Forests (RF) and Decision Trees (J48) are tree based classifiers; Ran-
dom Subspace (RS) and Multi-Class Classifier (MCC) are meta classifiers; Multi-Layer
Perceptron (MLP) and Support Vector Machines (SVM) are function based classifiers.
For M,GP, we set the number of generations to 100; we set dimension d = 1 for the
binary class data set (HRT), and for the multi-class data sets we choose d automatically
during the process of initialization, as already explained. For the rest of the classifiers,
we use default settings from Weka. SVM uses the “one-against-one” approach to multi-

Table 4. Comparison among various classifiers. Median accuracy value and Best accuracy value
on the test data set for 30 runs are reported. For each problem, the best values among the classifiers
are in bold (if more than one, it means there is no statistically significant difference between their
medians) and the worst values are in italics (the same). For each problem, a highlighted value
means the classifier is significantly better than M>GP values, while an underlined value means
the classifier is significantly worse than Mo GP.

— Data Set HRT 1IM-3 WAV SEG IM-10 YST VoW M-L
J Classifiers C=2 C=3 C=3 Cc=7 C=10 C=10 C=11 C=15
Median 55.556 93.814  86.3 55.844  90.363  41.124  81.818  14.352
SVM Best 65.432 97.938 88.067 61.616 92.055 46.067 85.859 24.074
Median 79.630 93.814 74800 96.104 94.654 55.169 75926 63.426
J48  Best 85.185 98.969 78 97.691 95537 57977 83.838  75.000
Median 80.247 94.845 81.500 97.258 96.861 57.528 89.394 71.759
RF  Best 87.654 98.969 83.067 98.557 97.744 61.124 93.266  76.852
Median 81.481 92.784 82.200 95960 93919 56.629 82.828  65.741
RS  Best 90.124 97.938 84400 97.403 95.096 60.674 88.216 74.074
Median 80.247 95.876 83.333 96.320 90.216 57.977 82.492  75.926
MLP Best 87.654 97.938 85200 97.403 91.319 62921 87.542  84.259
Median 83.951 95361 86.800 92.424 81.829 57.977 57.576 60.648
MCC Best 90.124 97.938 88.267 94.228 83.865 62247 65.657 72222

Median 82.099 94.845 84.867 95599 90.191 53.82 85.859 62.963
M>GP Best 88.889 98.969 86.467 97.403 92545 60.225 94.613 74.074

class classification, which has comparable performance to “one-against-all” while re-
quiring less training time [28]. Table 4 contains the median and the best accuracy values
of the 30 different runs for the test data sets. We have used the same set of 30 differ-
ent partitions to perform 30 different runs with all the classifiers listed in Table 4. To
test for statistical significance of the results, the non-parametric Kruskal-Wallis with
Bonferroni correction has been used under the alternative hypothesis that the accuracy
values of the different classifiers do not have equal medians.

Table 4 has many things to reveal. First of all, on the IM-3 data set all the classifiers
obtained median accuracy values that are not statistically different from each other.

* Weka — Waikato Environment for Knowledge Analysis,
http://www.cs.waikato.ac.nz/ml/weka/
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In terms of best accuracy, on this data set M,GP was one of the classifiers achieving
the best value (in bold). Also in the VOW data set M,GP achieved the best accuracy.
Regarding the median accuracy values, M,GP was one of the best classifiers on HRT
(in bold), and never one of the worst classifiers on any of the data sets (in italics).
On data sets WAV, YST and VOW, only the best classifiers were able to outperform
M, GP (highlighted values), whereas M, GP was able to outperform many other classi-
fiers (underlined values), at least one on each data set except IM-3. Recall that on the
M-L data set M,GP was not able to choose the ideal d, otherwise it would probably
outperform more classifiers. Regarding the comparison with the other function based
classifiers (MLP and SVM), M,GP was clearly superior to SVM in almost all prob-
lems, and fairly competitive with MLP, which together with MCC was one of the best
classifiers. RF was, however, the clear winner, in particular on the data sets with a higher
number of classes.

6 Conclusions and Future Directions

We have proposed a novel approach for representing solutions, both in terms of solution
tree and solution space, to address multi-class classification problems with GP. At the
core, we have experimentally analyzed the effect of increasing the number of dimen-
sions used to represent the solution space, and we have proposed a simple yet effective
and relatively cheap way of choosing an appropriate dimension.

From the idea of multi-dimensional solution representation, we have proposed an
efficient classification algorithm - M,GP - and compared its performance with many
of the best state-of-the-art methods for multi-class classification. We have shown that
M,GP offers competitive results on a large variety of data sets. We have also realized
that being able to improve the choice of the number of dimensions would allow us to
improve the competitiveness of M,GP even further.

Naturally, we will focus our future work on better choosing the number of dimen-
sions of the solution space. In fact, we will explore the idea that the number of dimen-
sions does not have to be a parameter of M,GP, and instead can be implicitly evolved
together with the solution itself. The issue of overfitting should be taken into account
in these future studies, and we also want to perform detailed analyses of diversity and
bloat, with a strong focus on the interpretability of the M, GP solutions.

Although still in its infancy, this new approach has already been able to elevate GP
to a competitive method for multi-class classification, and we believe it represents the
first step towards a general framework for multi-class classification with GP.
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