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Universidad Michoacana de San Nicolás de Hidalgo, México
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Abstract. There is great interest for the development of semantic ge-
netic operators to improve the performance of genetic programming.
Semantic genetic operators have traditionally been developed employ-
ing experimentally or theoretically-based approaches. Our current work
proposes a novel semantic crossover developed amid the two traditional
approaches. Our proposed semantic crossover operator is based on the
use of the derivative of the error propagated through the tree. This pro-
cess decides the crossing point of the second parent. The results show
that our procedure improves the performance of genetic programming
on rational symbolic regression problems.
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1 Introduction

Semantic genetic operators have been proposed to improve the performance of
genetic programming. Semantic operators use the information of the phenotype
to create new individuals. There are two approaches to develop semantic opera-
tors, the first is experimentally-based, and the second is theoretically-based.

The experimentally-based approach produces a semantic crossover based on
either the fitness function or the behaviour of the trees. Blickle et al. [1] propose
to select as crossing points only those nodes that have an impact in the fitness
function, this is implemented using a flag on the nodes, that is set during the
evaluation of the tree. Nguyen et al. [2, 3] produce offspring that are seman-
tically different from its parents; this difference is measured by evaluating the
individuals in a set of random inputs.

On the other hand, following a theoretically-based approach, Beadle et al. [4,
5] propose a semantic operator that only accepts an offspring if it is semantically
non-equivalent to its parents. The non-equivalent property is verified by using a
reduced ordered binary decisions diagram, which is also employed to develop a
semantically different initial population (see [6]). In addition, Krawiec et al. [7]
develop an approximation of a geometric semantic crossover that is important
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because has the potential to convert the landscape into a cone. Furthermore,
Moraglio et al. [8] have shown the feasibility of creating a geometric semantic
crossover and mutation. The procedure proposed by Moraglio et al. to generate
the offspring is clean and easy to implement; however, it has the drawback that
the constructed offspring is always bigger than the sum of the lengths of its
parents which imposes a limitation for applicability. Nonetheless, Vanneschi et
al. [9] overcome this original limitation allowing the algorithm to be executed
with the traditional parameters used in GP.

Our current contribution proposes a semantic crossover for tree-based ge-
netic programming (GP) that is in-between the experimentally-based and the
theoretically-based approaches. The proposed semantic crossover is based on
the derivative of the error, i.e., the derivative of the fitness function f(p). In
symbolic regression problems, it is common to compute the fitness function as:
f(p) =

∑
(x,y)∈T (y − p(x))2, where T = {(xi, yi) : i = 1 . . .N} is the training

set, and p(x) represents the output of the individual p on input x.
The semantic crossover proposed here works by:

1. Computing ∂f
∂v equivalently to what backpropagation algorithm [10] does

to update the weights of an Artificial Neural Network.1 However, in our
procedure, v is a node randomly selected from the first parent, whereas in
backpropagation v is always a constants, i.e., a weight.

2. The result of ∂f
∂v is used to select the crossing point of the second parent.

3. The two points are used to perform a traditional subtree crossover.

The results illustrate, that GP enhanced with the proposed semantic crossover
statistically outperforms a GP with traditional crossover on 1,100 rational func-
tions used as testbed.

The current paper is organized as follows. Section 2 presents our novel seman-
tic crossover. Section 3 describes the procedure used to generate the symbolic
regression problems and the GP systems used to illustrate the effectiveness of
our approach. Section 4, conclusions and future directions are presented.

2 Semantic Crossover Based on Partial Derivative Error

The semantic crossover proposed is computed as follows: a) let v be a node
randomly selected from the first parent; b) given v, ∂f

∂v is computed; c) a node u
is selected from the second parent using the information of the partial derivative
with respect to v; and d) finally, it is performed a subtree crossover using as
crossing points v and u. The rest of the section contains a detailed description
of this procedure. Subsection 2.1 shows the procedure used to compute ∂f

∂v , i.e.,
it presents the backpropagation algorithm implemented in a tree structure; and
Subsection 2.2 describes the process to select u.

1 The use of backpropagation in GP has been previously proposed in [11–14].



Semantic Crossover Based on the Partial Derivative Error 39

2.1 Backpropagation

The first step, in order to describe the semantic crossover proposed, is to show the
process used to compute ∂f

∂v . As we mentioned, the backpropagation algorithm

can be used to obtain ∂f
∂v . Backpropagation can be easily explained using the

ideas presented on [10]. R. Rojas used a graphical representation to explain it
and this representation can be easily codified in a tree-based GP.

Let us describe backpropagation by computing the chain rule, i.e., ∂g(h(x))
∂x .

The first step is to compute g(h(x)), see upper part of Figure 1 and, note, that
each inner node is split in two part; the right part corresponds to the node’s
output and the left part stores the output of the operation shown in each node.
The flow of information is indicated by the arrows. The second and, final step,
is to traverse the tree backwards, see lower part of Figure 1. This backward
step is performed by supplying a constant to the root, in this case 1 and then
multiplying this constant by the value stored on the left side of each node. This
process recursively continues until a leaf is reached. It is observed, in the lower

part of the figure, that ∂g(h(x))
∂x is obtained at the end of this process.

(a) Forward step.

(b) Backward step.

Fig. 1. Computing the derivative in a graph

Continuing with the description of backpropagation, let us suppose that a leaf
node is a constant w, then, the process mentioned above computes ∂f

∂w . This can

be used to update w following the rule w = w − ν ∂f
∂w , where ν is the learning

factor. This update can be performed per training case, or for the whole training
set, the former is known as incremental learning and the later is batch learning.

In batch learning w is updated using the rule w = w − ν
∑|T |

i=1
∂fi
∂w , where fi

be the error in the ith case of the training set. In addition to this, the resilient
backpropagation (RPROP) [15] can be implemented using only the sign and a

different ν for the increase and decrease values, i.e., w = w− νx · sign(
∑|T |

i
∂fi
∂w ),

where x stands for decrease or increase learning rate.
In order to have a complete picture of how the process, Figure 2 presents an

example. In the left of the figure (a), it is illustrated a function represented as
a tree. In the right (b), we have the same tree is presented with the additional
information required to compute the derivatives. Note that two slots are needed
for the functions having two arguments. For example, in the product the first
part stores the second input, given that ∂x·y

∂x = y and the second part contains
the first input. We have illustrated that the sum nodes store ones which is the
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partial derivative with respect to each input. However, there is not need to store
information on the sum nodes and has been included only to ensure a clear
description of the example.

(a) Tradition tree on GP repre-
senting y(x) = ax2 + bx+ c.

(b) Tree with additional storage
to save the derivatives.

Fig. 2. Tree having an extra storage to compute the derivative

Figure 3 presents a complete example, in the left (a), it is shown that all the
constants have values, e.g., a = 0.2, b = −1.2 and c = 0.3, and that there are
two inputs x1 = −0.5 and x2 = 0.5. Furthermore, the sought function is y(x) =
0.5x2 − 2.25x+0.6 which leads to a training set F = {(−0.5, 1.85), (0.5,−0.4)}.
Under these circumstances the tree’s output is (0.95,−0.25). In the evaluation
process, i.e., the forward step, all the partial derivatives are computed and stored
in their respective nodes; this is shown in the lower part of each node (left of the
figure). The backward step requires to feed the node with a value, this value is the
derivative of the error, which depends on the function used to compute the error.
Let f(p) = (y− p)2 be the error function, then its derivative with respect to p is
−2(y−p). Given that y = (1.85,−0.4) is the desired output and p = (0.95,−0.25)
is the tree’s output, hence the value fed is −2(y− p) = (−1.8, 0.3). This value is
propagated through the tree until a constant is reached. Finally, this constant
is updated using the sign of all the values reach to that specific node. The
constants are decreased or increased depending on whether the sign is positive
or negative, respectively. In the case the value received by a constant is zero,
then that constant is not updated.

2.2 Selecting the Crossing Points

So far, we have described the backpropagation algorithm implemented in a tree.
This algorithm is recursive and in the backward step it stops when a leaf is
reached; however, nothing forbids to stop it at any particular node. Let us sup-
pose that the procedure is stopped at node v (v is randomly selected from the
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(a) Individual evaluated on x = −0.5 and
x = 0.5. The root node is the result of the
evaluation.

(b) Error propagation on the two fitness
cases. The root contains the error be-
tween y(x) and the individual’s output.

Fig. 3. Example of the use of back-propagation in a tree, when the sought function is
y(x) = 0.5x2−2.25x+0.6. The sum of the error on constant 0.2 is −0.375, on constant
−1.2 is 1.05 and on 0.3 is −1.5, indicating that the value of the constants must be
incremented, decremented and incremented, respectively.

first parent), then, at this point, it is obtained ∂f
∂v , which indicates whether the

values returned by v must be either decreased or increased depending on whether
∂f
∂v > 0 or ∂f

∂v < 0, respectively.
In order to select the crossing point of the second parent, the following pro-

cedure is performed. Let e be sign(∂f∂v ), ei corresponds the sign of the partial
derivative error in the ith training case and v correspond to the crossing point
of the first parent. In a tree-based GP v can be seen as a complete tree, i.e., one
can remove v from the parent and treat it as new individual. In this context let
pv be the output of v when it is evaluated with the inputs of T and pvi represents
the output of v in the ith training case. Equivalently, for the second parent, we
can compute the output of all the nodes, let sj represent the output of node j of
the second parent. Using e, p and s, we can find the crossing point of the second
parent, i.e., u, as:

u = argmax
j

∑

i

sign(pvi − sji ) · ei. (1)

In order to clarify Equation (1), let us analyse the two possible scenarios found
in the maximum of Equation (1). Firstly, in the case ei > 0, then sui is higher
than pvi consequently pni − smi is positive. On the other hand, ei < 0 implies that
pni − smi is negative; however, ei < 0 is also negative and the result is positive.
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Under this circumstances,
∑

i sign(p
v
i −sui ) ·ei equals |T |, given that pvi −sui and

ei have an equivalent sign.

3 Results

Our novel semantic crossover operator has been compared to a steady-state
GP system with tournament selection, henceforth referred as Standard2. This
Standard base system was enhanced with a simplification procedure, referred
as, Simplification. We also compared additional GP systems where RPROP was
applied to all the individuals generated (namely RPROP always) and another
one that RPROP was only applied to any new best individual (namely RPROP
only on best). The novel semantic crossover was incorporated in this latter sys-
tem referred as GP with partial derivative error (GPPDE). The details of the
parameters used in the GP systems are shown on Table 1 and the parameters
used in RPROP are shown in Table 2. The RPROP parameters were taken from
the Fast Artificial Neural Network Library (FANN) [17]

In our implementation, each epoch spent in RPROP was counted as an indi-
vidual generated and the maximum number of generated individuals was 50, 000.
In addition, only an individual that has been optimized with RPROP was kept
only if the individual was better than the original.

Table 1. Genetic Programming Parameters

Parameter Value

Function Set F = {+,−,×, /}
Terminal set (T) T = {x, �}

Random constants (i.e., �) 100 real value constants ∈ [−10, 10]
Max length 262143

Crossover rate 90%
Mutation rate 10%
Population size 1000

Number of Generations 50
Mutation depth random ∈ [1, 5]
Tournament size 2

Max. number of epochs without improvement 5

The simplification mechanism was used in all the GP systems except the
Standard GP. This simplification was applied to all the elements of the initial
population and to every new offspring. This procedure was very simple, it only
incorporated rules to reduce the tree in the following cases, where s stands for
any subtree, � is a constant and op represents any operation.

2 This is very similar to TinyGP [16], it is only modified to allow the evolution of
constants for each individual in the population.
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Table 2. RPROP’s parameters

Parameter Value

Increase Factor 1.2
Decrease Factor 0.5

Delta min 0.0
Delta max 50.0

Init previous step value 0.0001

– Replace (op � �) with the result of that operation.
– Replace (+ s 0) with s.
– Replace (− s s) with 0.
– Replace (∗ s 0) with 0.
– Replace (∗ s 1) with s.
– Replace (/ 0 s) with 0.
– Replace (/ s s) with 1.
– Replace (op op−1 s) with s.

Figure 4 shows an example of the simplification mechanism. For example, the
subtree (∗−3.01.2) is replaced by the constant −3.6 and the whole left subtree is
replaced by 1.0. The rules were applied recursively and as consequence it might
be a case in which an entire tree could be substituted by a constant.

(a) (b)

Fig. 4. Simplifying a tree, a) shows the original tree, and b) presents the tree after the
simplification

The problem employed as benchmark, was a continuous symbolic regression
problem on rational functions. We created 1,100 different rational functions us-
ing the following procedure. Two polynomials, W (x) and Q(x), were built by
randomly choosing the degree of each in the range 2 to 8, and then choosing ran-
dom real coefficients in the interval [−10, 10] for the powers of x up to the chosen

degree. A rational function in our training set is then given by y(x) = W (x)
Q(x) . Each
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of the rational functions in the set was then sampled at 21 points uniformly dis-
tributed in the interval [−1, 1]. This resulted in a target vector y ∈ �21. The
aforementioned procedure was previously used in [18] to test their approach.

For each y vector 30 independent runs were performed recording the out-
put of the best individual found, namely p. With this value, it was computed

|T |−1
∑|T |

i

√
(|ŷi− p̂i|), where ŷ = y−μ

σ and p̂ = p−μ
σ , μ is the mean of y and σ

is the standard deviation of y. Finally, this value was recorded for each of the 30
independent runs and the performance was the average of these values defined as
nBRF. Another measure of performance was used which is a normalize version

of the mean absolute error (nMAE), i.e., |T |−1
∑|T |

i |ŷi− p̂i|, where ŷ = my+ b
and p̂ = mp+ b. In this case, m and b were [0, 1], zero stands for the minimum
value of y and one for the maximum.

Table 3 presents the performance of the different GP systems. It includes
the performance of the standard GP, GP with the simplification procedure, GP
with RPROP applied to all the individuals (RPROP always), GP with RPROP
applied to every new best (RPROP only on best). GPPDE showed the best
performance in the two performance measures. In order to test whether the
differences in performance were statistically significant, a Wilcoxon signed-rank
test [19] were performed, the p values were well below 0.01 indicating that the
performance of GPPDE was better than the second best with a confidence of
99%.

A particular result of note was the nMAE’s performance of the GP with
simplification. The comparison of the performance using a Wilcoxon signed-
rank test showed a p = 0.2948 indicating not difference in performance. This
result was contrary to our expectations because GP with RPROP should be
better than GP with simplification because the former was used to optimize the
constants.

Table 3. Performance (BRF and nMAE) of the different GP systems on the rational
functions

GP systems nBRF nMAE Length

Standard 0.2492 ± 0.0857 0.0741 ± 0.0486 958.6116 ± 178.0225
Simplification 0.2450 ± 0.0853 0.0719 ± 0.0475 990.1021 ± 193.6305
RPROP always 0.5370 ± 0.1027 0.3063 ± 0.1042 61.8987 ± 11.7165

RPROP only on best 0.2394 ± 0.0852 0.0719 ± 0.0480 647.3761 ± 154.5169
GPPDE 0.1320 ± 0.0535 0.0251 ± 0.0263 6077.9015 ± 2178.9033

GPPDE showed the best performance; however, the average length of the
trees was considerable longer than those obtained with others GP systems. GP-
PDE generates trees that were on average more than 6 times longer than those
obtained with Simplification GP. On the other hand, when RPROP was applied
to all the generated individuals, the trees were short and this might be the cause
for the poor performance observed. The results indicate that RPROP should be
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used more carefully in order to allow more exploration of the search space, or
used a larger number of generations.

In order to complement the information presented in Table 3, the number of
times each algorithm presented the best performance was counted, the perfor-
mance measure used was nMAE. This procedure showed that Simplification GP
presented the best performance in 5 of the 1,100 problems and GPPDE has the
best performance in 1095 of the 1,100 problems.

Figure 5 presents the average output of Simplification GP and GPPDE on
one of the five problems in which GPPDE did not exhibit the best performance.
In this problem, Simplification GP had 0.0362 and GPPDE has 0.0464, these
two values were computed using nMAE. GPPDE did not reach the peaks as
closely as Simplification GP, although the behaviour of these two systems on
this problem was qualitatively equivalent.

Fig. 5. Average output of GP with simplification and GPPDE on a problem where
GPPDE does not have the best performance

The performance (nBRF) presented on Table 3 can be compared with the
performance of the different GP algorithms previously presented by Graff and
Poli [18]. The systems presented by Graff and Poli [18] include: generational GP
systems with roulette and tournament selection, steady-state GP systems with
tournament selection, generational gene expression programming (GEP) with
roulette and tournament selection, steady-state GEP with tournament selection
and different versions of stochastic iterated hill climber (SIHC). In total there
are 20 different GP systems. First our standard GP system correspond to the
steady-state GP system with tournament selection and 100% crossover. Our
implementation has a performance of 0.2492 and the performance previously
presented by our group [18] was 0.2535. These two values seems to be comparable
and the difference might be due to the random number generators or any other
minor modification.

The GPPDE showed the best performance overall the systems tested. Our
previous work [18] showed that SIHC system with subtree mutation and 25000
as the maximum number of mutations showed a performance of 0.2021 which
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is considerable higher than the performance obtained by GPPDE (0.0464). Un-
fortunately, it is not available the lengths of the tree generated by SIHC and
consequently the full performance cannot be compared.

4 Conclusions

Our work presents the development of a novel semantic crossover operator that
is based on the derivative of the errors. The results showed that choosing the
crossover point of the second parent according to Equation 1 improves consider-
ably the learning abilities of the GP systems. GPPDE showed the best perfor-
mance in almost all the problems tested (1095 out of 1100), and it also obtained
on average the best performance in comparison to the systems presented here,
and, also, to the 20 systems previously presented by our group [18].

The improvement presented needs plenty of computations performed on the
trees. That is, one needs to keep the output, and the derivative of the output,
for every node of every tree in the population. This may be a drawback because
the technique may be limited to small populations and/or small trees. However,
the full potential that this amount of information can provide has not been
properly explored. For example, in order to evaluate an offspring, it is only
needed to recalculate the nodes whose values have been changed, this would
make the algorithm faster. On the other hand, one can measure the fitness of each
node, and take decisions dynamically based on the fitness. Another limitation
with the proposed semantic crossover operator is that all the functions in the
function set need to be derivable. This may be a major drawback for some
problems; however, for symbolic regression problems it seems reasonable to use
only derivable functions.
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LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013)

10. Rojas, R.: Neural Networks: A Systematic Introduction, 1st edn. Springer (July
1996)

11. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient
search of numeric leaf values. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), pp. 155–162 (2001)

12. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming
using gradient descent. In: Proceedings of 2004 Asia-Pacific Workshop on Genetic
Programming (2004)

13. Zhang, M., Smart, W.: Genetic programming with gradient descent search for mul-
ticlass object classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg
(2004)

14. Graff, M., Pena, R., Medina, A.: Wind speed forecasting using genetic program-
ming. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 408–415
(2013)
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