
Behavioral Search Drivers
for Genetic Programing

Krzysztof Krawiec1,� and Una-May O’Reilly2

1 Poznan University of Technology, 60-965 Poznań, Poland
2 Computer Science and Artificial Intelligence Laboratory,

MIT, Cambridge, MA, USA

Abstract. Synthesizing a program with the desired input-output be-
havior by means of genetic programming is an iterative process that
needs appropriate guidance. That guidance is conventionally provided
by a fitness function that measures the conformance of program output
with the desired output. Contrary to widely adopted stance, there is no
evidence that this quality measure is the best choice; alternative search
drivers may exist that make search more effective. This study proposes
and investigates a new family of behavioral search drivers, which inspect
not only final program output, but also program behavior meant as the
partial results it arrives at while executed.

1 Introduction

A typical optimization problem can be formalized as p∗ = argminp∈P f(p),
where f is the objective function being optimized (minimized for the sake of this
paper), and P is the space of candidate solutions (programs in the case of ge-
netic programming, GP). When searching the entire space P is computationally
infeasible, a heuristic search algorithm is used to find a solution p̂ that brings
f(p̂) − f(p∗) as low as possible. The heuristic employs f to drive the search
process; in particular, in evolutionary computation it is common to use f as the
fitness function.

Employing the objective function in its original form as such search driver
appears natural, as it clearly defines the search goal. However, finding an opti-
mal solution is the ultimate goal of the algorithm, the reaching of which depends
on the decisions made in particular iterations of the search process. To succeed,
a search algorithm should make the right decisions in possibly all iterations.
Putting that into evolutionary terms, it should promote solutions that are evolv-
able, i.e. likely to turn into better solutions in subsequent iterations. However,
evolvable solutions are not necessarily preferred by the objective function, as it
typically has no insight into the prospective quality of a candidate solution.

We argue that using objective function as a search driver is not always de-
sirable and that better alternatives exist. In GP, additional information can be
gathered from program behavior, meant as partial outcomes it arrives at during
execution, and used to promote evolvable programs. In [1] we proposed a specific
� Work conducted as a visiting scientist at CSAIL, MIT.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 210–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Behavioral Search Drivers for Genetic Programing 211

variant of such behavioral evaluation, termed Pattern-Guided Genetic Program-
ming (PANGEA), and demonstrated its strengths on a set of benchmarks. Here,
we present a rationale for and detailed analysis of behavioral evaluation.

2 Background

A GP task is a set T of tests (fitness cases). A test is a pair (x, y), where x is
the input to be fed into a program, and y is the desired output. In general, xs
and ys can be arbitrary objects, however we limit our interest here to synthesis
of Boolean functions, so x is a vector of values of Boolean input variables, and
y is a Boolean desired output.

The fitness of a program p is a measure of the conformance of its output with
the desired outputs. For each test (x, y) ∈ T , p is provided with input x and
executed, returning output which we denote as p(x). We say that p solves test
(x, y) if p(x) = y. The fitness of a program is simply the number of tests it does
not solve, i.e.:

f(p) = |{(x, y) ∈ T : p(x) �= y}|. (1)

For Boolean problems we will prefer a more concise vector formulation. The
desired outputs of tests in T can be gathered into a vector called target t, and
the outputs produced by p for tests from T into its semantics s(p). Then, fitness
is the Hamming distance between program semantics and target:

f(p) = |s(p)− t|. (2)

The fitness defined in this way is obviously minimized fitness, and a program
p solves a task if f(p) = 0.

3 Motivation

A good search algorithm should be able to find an optimal solution (or a de-
cent suboptimal solution) given limited computational resources. To this aim,
the objective function it employs should convey the information about (e.g., be
proportional to) the number of steps required to reach the goal (an optimal so-
lution). By ‘step’ we will mean in the following a single application of a search
operator (here: mutation).

Unfortunately, conventional fitness functions used in GP (Eq. 2) do not meet
this expectation. To illustrate this, consider the example shown in Table 1. Col-
umn t defines the target of a 3-argument Boolean function synthesis task. The
next column presents the outputs (semantics) of a program p0 =(x1 and (x2 or
x3)) which happens to be an optimal solution to this problem. By mutating p0
(replacing the and instruction with the or instruction, as underlined) we ob-
tain program p1, which commits error 4 on this task (according to Hamming
distance). By mutating p1 again, we obtain p2, whose error amounts to 2.

Let us now revert this process and assume that p0 has not been found yet, and
p1 and p2 are two candidate solutions (e.g., individuals in a population in an evo-
lutionary run). Because p2 commits smaller error than p1, a conventional based

212 K. Krawiec and U.-M. O’Reilly

Table 1. An exemplary sequence of two mutants p1, p2 obtained from program p0 via
one-point mutations (marked in bold)

x1 x2 x3 t p0 p1 p2

(x1 and (x2 or x3)) (x1 or (x2 or x3)) (x1 or (x2 and x3))
0 0 0 0 0 0 0
0 0 1 0 0 1 0
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 0 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1
Objective function f : 0 4 2

fitness function will favor it over p1. This is unfortunate, because p2 requires two
mutations to reach p0, while for p1 one mutation is sufficient1.

The example illustrates the problem signaled in the Introduction. The objec-
tive function is by definition the right yardstick for assessing program quality.
However, in general it does not correlate well with the number of search steps to
the optimum, and so it is not necessarily the best means to predict the ‘prospec-
tive’ quality of a candidate solution and drive the search process. In the following
we demonstrate that, at least for domains like GP, alternative search drivers can
be defined that prove better in that respect.

4 Behavioral Evaluation of Programs in GP

Behavioral evaluation can be explained by starting with conventional fitness,
which is the discrepancy between program output (the value returned by the
root node in case of tree-based GP) and the desired output, aggregated over
the tests (Eq. 2). Behavioral evaluation, in contrast, takes into account not only
the final program output, but also program behavior meant as the intermediate
values returned by program subexpressions. In this paper we consider tree-based
GP2, so we collect the values calculated by the k topmost nodes of program tree,
i.e., the k first nodes when traversing the program tree in breadth-first order (if
the tree happens to be smaller, we use all tree nodes). These values, collected
for all tests in T , form a |T | × k table. The ith table column corresponds to the
ith node in the tree and thus forms a feature that describes program behavior
at that point of its execution. In particular, the first feature corresponds to the
root node and thus captures the output of entire program p(x).

We then extend this table by an extra column, which holds the search target t.
The extended table forms a training set that defines a task of supervised machine
learning from examples, with t serving as a decision attribute. A classifier v is
induced from this set and the properties of that classifier are used to define the
1 In general, another optimal solution p∗ �= p0, s(p

∗) = t may exist that can be reached
from p2 through a single mutation. This however does not invalidate this argument.
We will return to this issue when explaining our sampling procedure.

2 In [1], we employed an analogous procedure to gather behavioral features from linear
programs written in the Push language.

Behavioral Search Drivers for Genetic Programing 213

behavioral fitness of the evaluated program p. We then define behavioral fitness
as an aggregate of three components:
1. The conventional objective, i.e., the error committed by the program, f(p),
2. The complexity c(v(p)) of the classifier v(p) induced from the training set,
3. The error e(v(p)) the classifier v commits on the training set.

The rationale behind taking into account the latter two components is as follows.
The trained classifier maps (perfectly or not) the program behavior (captured in
the features) onto the desired program output. In an ideal case, its predictions
perfectly match the desired output and thus e(v) = 0. The closer that error is to
zero, the more we can claim that the features (and indirectly program behavior)
relate to the desired output.

However, classifier error does not tell the whole story about the relatedness
between program behavior and the desired output, because the classifier can
itself be more or less complex. Consider two programs for which the induced
classifiers commit the same error. If one of them is simpler than the other, then
we can claim that the behavior of the corresponding program is closer related to
the desired output. In the case of decision trees used in [1] and here, complexity
can be conveniently expressed as the number of decision tree nodes.

The key motivation for behavioral evaluation is that relatedness may convey
information about the prospective quality of a program. Low error and/or low
complexity indicate that program arrives at intermediate results (captured in
features) that can be mapped onto the desired output, and thus a small number
of transformations (e.g, mutations) can turn it into an optimal program. Con-
ventional fitness function is insensitive to this aspect of program characteristics,
as it observes only the final program outcome and measures only its direct match
with the desired output.

5 The Experiment

In following we examine several behavioral search drivers by considering the
particular measures defined in the previous section (f , c, e) separately and in
aggregation. We are primarily interested in how well a search driver correlates
with the expected number of search steps that a program p needs to undergo to
reach the search target t, i.e., to arrive at the descendant p′ such that s(p′) = t.

To avoid bias towards a specific set of GP tasks (e.g., commonly used bench-
marks), we consider a large sample of tasks. For Boolean tasks with tests enu-
merating all combinations of input variables, there is one-to-one correspondence
between tasks and targets, so we will use these terms interchangeably.

Sampling Procedure. To carry out the analysis, we would ideally consider a
sample of programs with known distances from a given target, where by distance
we mean the minimal number of mutations required to reach the optimum.
Obtaining such data is however computationally challenging, as distance is the
length of the shortest sequence of mutations, and the number of such sequences
grows exponentially with program size. Moreover, as we intend to consider many
targets, relying on distance becomes technically infeasible.

214 K. Krawiec and U.-M. O’Reilly

Algorithm 1. The pseudocode of the function generating a single random walk
in the space of programs. The result is a list of programs of length n+ 1, where
each program is a mutant of its predecessor.
1: function RandomWalk(n)
2: p0 ←RandomProgram()
3: walk ← (p0)
4: for i← 1 . . . n do
5: repeat
6: pi ←Mutate(pi−1)
7: until pi �= p0
8: walk ← append(walk, pi)

9: return walk
10: end function

Due to this limitation, we abandon the use of minimal number of steps in
favor of the expected number of steps. We generate a random program, assume
that it defines a target (GP task), and run a random walk from that program
using single-point mutation as a search operator. We chose this search operator
as it introduces minimal change possible (compared to, e.g., subtree-replacing
mutation). Such a random walk can be seen as a search process in reverse (albeit
not explicitly driven by any search driver).

The sampling procedure is shown in Algorithm 1. RandomWalk generates a
starting program p0 by calling the RandomProgram function (which is guar-
anteed to return a program with non-trivial, i.e., non-constant, semantics). The
program defines a target t = s(p0). p0 is then mutated n times, and the ordered
list of mutants representing the walk is returned by the function upon its com-
pletion. However, mutants are not allowed to be syntactically identical with the
starting program of the walk (i.e., a walk is not allowed to turn into a cycle; see
line 7 of the algorithm). Without this constraint, some walks would return to
the starting point, and regularities in the results would be harder to notice.3

RandomWalk does not guarantee that i is the smallest number of mutations
required to transform the starting program p0 into the ith program of the walk,
pi (and vice versa); a shorter sequence of mutations connecting p0 and pi may
exist. Also, RandomWalk does not ensure that i is the smallest number of
mutations that have to be applied to pi in order to reach the target t. A shorter
sequence of mutations may exist that transforms pi into a yet another program
p′ �= p0 such that s(p′) = s(p0) = t.

By relying on random walks (and thus on the expected rather than the mini-
mal number of mutations), in the following experiment we are able to consider
large programs composed of up to 255 tree nodes (tree depth limit 7), which
with four instructions leads to search space cardinality of the order of 4255.

3 Note however that we allow a walk to revisit any other search point except for the
target. This is our deliberate design choice to make the walks behave analogously to
a search process, which may cycle, however it terminates when it reaches the target.

Behavioral Search Drivers for Genetic Programing 215

Table 2. The parameters of experimental setup

Instruction set: nonterminals: and, or, nand, nor
Instruction set: terminals: up to 12 input variables
Program generation (RandomProgram) ramped half-and-half
Minimal tree size 23 (minimal binary tree using 12 variables)
Maximal tree size 255 (full binary tree of depth 7)
Mutation operator (Mutate) single point mutation
Walk length 16

Experimental Setup. We compare the characteristics of different search drivers
on the domain of Boolean function synthesis (Table 2). The search operator used
to generate our random walks is single point mutation, which selects a random
node in a program tree and replaces it with another instruction of the same
arity. We chose this operator as it introduces a minimal change in program code
and thus may be likened to single bitflip mutation in genetic algorithms. The
instruction set thus does not contain the ‘not’ instruction, because it cannot be
modified using single point mutation. Terminals are not mutated, so the set of
active variables and the target t remain unchanged in a given random walk.

The RandomWalk procedure (Algorithm 1) used to generate programs is
ramped half-and-half (RHH) with ramp set to depth 7. As all instructions are
binary, half of the programs in the sample (those generated by the ‘full’ part of
RHH) are full binary trees of depth 7, with 127 leaves, which makes them likely
to use all or almost all input variables. For the programs generated using the
‘grow’ case of RHH, we impose a lower size limit of 2∗12−1 = 23 nodes, so that
even the smallest programs have the chance to use all 12 input variables. This
limit is also essential for generating sufficiently long random walks (for small
trees, a walk generated using single point mutation is doomed to return to the
starting point quickly, when it exhausts all combinations of instructions).

The behavioral search drivers (Section 4) gather 15 features from program ex-
ecution and use J4.8 decision tree inducer to build a classifier [2][3] (an unpruned
tree is used, i.e., option -U). Note that this learning method is insensitive to the
ordering of attributes, so for instance swapping the arguments of a commutative
instruction in a program does not affect its behavioral evaluation.

A random walk’s starting program may happen to use all input variables, but
is not guaranteed to do so. The input variables that are absent in the starting
program become irrelevant for a walk. Thus, although the total number of vari-
ables is 12, even a one-variable task may occur in the sample (the zero-variable
trivial tasks are rejected at the spot). For every task we determine the number
of effective variables, and in the following we factor the results for tasks with
variable number varying from 6 to 12 (we assume that tasks with five or fewer
variables are too trivial to reveal the kind of regularities we search for). In this
way, we avoid aggregation over tasks with different numbers of variables, which
would make interpretation of results more difficult.

Absolute (raw) Values of Search Drivers. In this experiment we observe
how the search drivers vary along random walks. We compare the search drivers

216 K. Krawiec and U.-M. O’Reilly

0
5

10
15

20
25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

6 variables

0
20

40
60

80
10

0
12

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

8 variables

0
10

0
20

0
30

0
40

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

10 variables

0
50

0
10

00
15

00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

12 variables

Fig. 1. Search drivers as a function of the number of mutations, for tasks with 6, 8, 10,
and 12 relevant variables. f : program error, c: classifier complexity, e: classifier error.
Whiskers mark 10% of standard deviation.

presented in Section 4: program error (f), and the behavioral measures: the
complexity of the classifier induced from program behavior (c), and the classifier
error (e). We first build a sample of random walks by calling RandomWalk
100, 000 times. For every walk, we iterate over its elements (mutated programs),
and apply every search driver to them, assuming that the target is defined by
the first program in the walk (t = s(p0)). We factor the results by the number
of relevant variables in a problem.

Figure 1 presents the search drivers as functions of the number of mutations,
averaged over the walks in the sample. Let us emphasize that, while these aver-
aged curves are clearly monotonic, the search drivers for individual walks most
often are not: a subsequent mutation is likely to decrease the value of the driver
(as illustrated in the example in Section 3). Thus, the variance of the raw data
is very high: the whiskers show only 10% of standard deviation. Presenting in-
dividual walks would make the figures completely illegible.

As mutations accumulate, the features gathered from the behavior of a pro-
gram become less related to the target, so the classifier has to be more complex

Behavioral Search Drivers for Genetic Programing 217

(increasing c) to correctly predict the desired output, and it tends to commit
more errors (increasing e). Depending on problem size, the behavioral search
drivers grow simultaneously (which happens here for problems with 8 and 10
variables4), or individually: for the small problems (6 variables) the classifier
is often perfect (e = 0), while for the difficult ones (12 variables) building a
well-performing classifier becomes impossible so c levels-off. However, at least
one of them keeps rising with the subsequent mutations, and in this sense they
complement each other. This suggests that c and e can be aggregated to form
a compound search driver that would monotonically increase with the number
of mutations and avoid stagnation. Given the relative comparison of standard
deviations, there is a chance that such compound driver could be less prone to
leveling-off than the conventional fitness function f , but this analysis cannot be
deemed conclusive in this respect.

The decision tree classifiers are very small on average (search driver c), even
for tasks that involve more input variables. This can be explained by strong inter-
dependencies between features collected from GP subexpressions. For instance,
consider a program that contains a compound expression (p1 and p2), and that
this expression and its subexpressions p1, p2, are behavioral features used by
our approach. If a given decision tree node uses the compound expression, the
features p1 and p2 will be always true in the ‘positive’ branch of that node, and
the tree induction algorithm will not use them in that part of the tree.

Correlation Analysis. Above we analyzed the absolute values of search drivers.
However, what matters in practice is often only whether a search driver increases
or decreases with the expected number of mutations to target, particularly when
the search is driven by relative comparisons of candidate solutions (e.g., tourna-
ment selection). Thus, here we analyze how search drivers qualitatively correlate
with the number of accumulated mutations.

We use the sample of walks generated in the previous experiment. First, we
factor it with respect to the number of relevant variables. Next, we plot the
Spearman correlation coefficient between a search driver and the number of
mutations from all data points with up to l mutations, where l = 1..16. We
choose the Spearman coefficient as it relies on ranks and thus cares only about
the qualitative differences between values (as argued above). Effectively then,
a point with abscissa l in the graphs shows correlation coefficient for random
walks trimmed to length l.

The results, shown in Fig. 2, are partially consistent with the absolute values
shown in Fig. 1. As mutations accumulate, the correlation coefficients for f and c
deteriorate, as these search drivers tended to levels-off the most in Fig. 1 (except
for c for 6 variables). The classifier error e however maintains relatively stable
correlation along the walk, though it is rather low compared to the remaining
drivers (so low that for 6 variables the plot is out of plotting range). Overall, the
behavioral drivers start becoming competitive and often provide better correla-
tion than f , Interestingly, they frequently do so for long random walks, which

4 The growth of c is barely visible due to the range of vertical axis.

218 K. Krawiec and U.-M. O’Reilly

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

6 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

8 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

10 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
c
e

12 variables

Fig. 2. Spearman coefficient between the number of mutations in a walk and search
drivers, for walks of different total length (horizontal axis). Whiskers mark 0.99-
confidence intervals.

looks particularly attractive, as it suggest that they may provide better search
gradient far from the target.

The new result in comparison to Fig. 1 is that c and e are largely uncorrelated
(if they were, their plots would have to be similar). This suggests, even more
than Fig. 1, that c and e may complement each other in a nontrivial way.

Correlation Analysis for Compound Search Drivers. As the individual
search drivers saturate after a number of mutations (Fig. 1), we do not expect
any of them alone to be a useful search driver, so here we try to aggregate them.

Direct additive aggregation of our search drivers would be unjustified, as c is
the number of tree nodes, while f and e are expressed in tests (and c is typically
much smaller, see Fig. 1). To provide a common platform for these quantities, we
resort to information theory and attempt to estimate the amount of information
conveyed by these components. For simplicity, rather than calculating the exact
number of bits required to encode f , e, and c, we simply pass each of them

Behavioral Search Drivers for Genetic Programing 219

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
lg(f)+lg(c)
lg(f)+lg(e)
lg(c)+lg(e)
lg(f)+lg(c)+lg(e)

6 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
lg(f)+lg(c)
lg(f)+lg(e)
lg(c)+lg(e)
lg(f)+lg(c)+lg(e)

8 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
lg(f)+lg(c)
lg(f)+lg(e)
lg(c)+lg(e)
lg(f)+lg(c)+lg(e)

10 variables

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
lg(f)+lg(c)
lg(f)+lg(e)
lg(c)+lg(e)
lg(f)+lg(c)+lg(e)

12 variables

Fig. 3. Spearman correlation between the number of mutations in a walk and aggre-
gates of search drivers, for walks of different total length (horizontal axis). Whiskers
mark 0.99-confidence intervals.

through a logarithm, meant as a rough measure of information content (see,
e.g., [4] for considerations on exact formulas).

We consider compound measures constructed from all combinations of f , c,
and e, and show them in Fig. 3, with the plot for f repeated after Fig. 2 for ref-
erence5. Comparison of these plots to individual search drivers in Fig. 2 clearly
suggests that fusing the behavioral search drivers is beneficial. For all combi-
nations of components, correlation is not worse, and often better, than that for
conventional fitness f . In particular, the aggregate that consistently (i.e., for all
considered numbers of variables) provides the highest or close to the highest
correlation involves all components (lg(f) + lg(c) + lg(e)), which corroborates
the outcomes we obtained with PANGEA [1].

The 0.99-confidence intervals clearly indicate that the compound search drivers
are in most cases significantly better than the conventional fitness function f .
However, what can be the potential implications for the efficiency of a search
5 We skip the logarithmic transform for f , as it is monotonic so it cannot affect ranking,

and thus has no effect on Spearman correlation.

220 K. Krawiec and U.-M. O’Reilly

algorithm? A thorough answer to this question requires a separate investigation;
for Push programs behavioral evaluation dramatically improved search efficiency
[1]. Here we can demonstrate how the behavioral search drivers extend the reach
of effective learning gradient. For instance, for the 10-variables problems, fitness
function has correlation of 0.51 for walks of length 8, while lg(f) + lg(c) + lg(e)
provides roughly the same correlation for walks up to length 16. In other words,
the behavioral search driver maintains roughly the same capability of estimating
solution’s distance from the target for programs that are more than twice as far
from it. As the number of programs that can be reached by a random walk grows
exponentially with walk length, the ‘basins of attraction’ for behavioral search
drivers can be much greater than for the conventional fitness function.

The correlation coefficients for behavioral fitness functions are greater than
those for conventional fitness, yet still far from perfect. However, attaining full
correlation is unrealistic, as it requires the ability to perfectly predict the num-
ber of mutations required to reach the optimum. Nevertheless, all correlations
reported here are statistically significant: the control values obtained by permu-
tation testing are well below 0.1 (null hypothesis: no interrelationship).

6 Related Work
The approach presented here is novel in its attempt to exploit program’s internal
behavior for search efficiency. However, there are examples of using alternative,
non-behavioral search drivers in GP, the most notable being implicit fitness
sharing [5] and its extensions [6].

The way in which we investigated the various performance measures resembles
the studies on fitness-distance correlation (e.g., [7]). However, the performance
measures under scrutiny here included not only conventional fitness, but also
the behavioral drivers. Also, we relied on the expected number of search steps,
rather than a distance, as a measure of anticipated computational effort.

The MDL principle has been used in GP means of controlling the trade-off
between model complexity and accuracy. For instance, Iba et al. [8] used it to
prevent bloat in GP by taking into account the error committed by an individual
as well as the size of the program. A few later studies followed this research
direction (see, e.g. [9]).

By focusing mostly on the effects of program execution (the partial outcomes
reflected in trace features) rather than on syntax, behavioral evaluation can be
seen as following the recent trend of semantic GP, initiated in [10]. Interestingly,
it also resembles evolutionary synthesis of features for machine learning and
pattern/image analysis tasks [11]. However, here the classifier serves only as a
scaffolding for evolution; it is supposed to provide ‘gradient’ when the program
output alone is unable to do so.

7 Conclusion

We demonstrated that behavioral search drivers provide more reliable informa-
tion about the expected number of mutations needed to reach the optimum.

Behavioral Search Drivers for Genetic Programing 221

Given two candidate solutions, behavioral evaluation is more likely to predict
correctly which of them requires fewer modifications to reach the search tar-
get, which has obvious implications for search efficiency. Also, by providing a
more comprehensive information of program’s prospective quality, it extends the
effective learning gradient further from the target, and promotes evolvability.

The presented results characterize the domain of Boolean functions, and ab-
stract from any specific task in that domain. Given the analogous results ob-
tained with with a different program representation and for non-Boolean prob-
lems [1], we hypothesize that behavioral evaluation can be potentially leveraged
in different genres of GP.

Acknowledgments. The authors thank the reviewers for rich feedback and con-
structive suggestions. Both authors acknowledge support from the Li Ka Shing
Foundation, and K. Krawiec acknowledges support from the Polish-U.S. Ful-
bright Commission and from grants no. DEC-2011/01/B/ST6/07318 and 91507.

References

1. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Blem, C., et al.
(eds.) GECCO 2013: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, Amsterdam, The Netherlands, pp.
949–956. ACM (2013)

2. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann (1992)
3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
4. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description

length principle. Inf. Comput. 80(3), 227–248 (1989)
5. Smith, R., Forrest, S., Perelson, A.: Searching for diverse, cooperative populations

with genetic algorithms. Evolutionary Computation 1(2) (1993)
6. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic

effects in evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6239, pp. 492–501. Springer, Heidelberg (2010)

7. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance
correlation as a difficulty measure in genetic programming. Evolutionary Compu-
tation 13(2), 213–239 (2005)

8. Iba, H., Sato, T., de Garis, H.: System identification approach to genetic pro-
gramming. In: Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, Orlando, Florida, USA, vol. 1, pp. 401–406. IEEE Press (1994)

9. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic pro-
gramming. Evolutionary Computation 3(1), 17–38 (1995)

10. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

11. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE Transactions on Evolutionary Computation 11(5), 635–650 (2007)

	Behavioral Search Drivers for Genetic Programing
	1 Introduction
	2 Background
	3 Motivation
	4 Behavioral Evaluation of Programs in GP
	5 TheExperiment
	6 Related Work
	7 Conclusion
	References

