
Asynchronous Evolution

by Reference-Based Evaluation:
Tertiary Parent Selection and Its Archive

Tomohiro Harada1,2 and Keiki Takadama1

1 The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, Japan

2 Research Fellow of the Japan Society for the Promotion of Science DC, Japan
harada@cas.hc.uec.ac.jp, keiki@inf.uec.ac.jp

http://cas.hc.uec.ac.jp

Abstract. This paper proposes a novel asynchronous reference-based
evaluation (named as ARE) for an asynchronous EA that evolves indi-
viduals independently unlike general EAs that evolve all individuals at
the same time. ARE is designed for an asynchronous evolution by ter-
tiary parent selection and its archive. In particular, ARE asynchronously
evolves individuals through a comparison with only three of individuals
(i.e., two parents and one reference individual as the tertiary parent).
In addition, ARE builds an archive of good reference individuals. This
differ from synchronous evolution in EAs in which selection involves com-
parison with all population members. In this paper, we investigate the
effectiveness of ARE, by applying it to some standard problems used in
Linear GP that aim being to minimize the execution step of machine-code
programs. We compare GP using ARE (ARE-GP) with steady state (syn-
chronous) GP (SSGP) and our previous asynchronous GP (Tierra-based
Asynchronous GP: TAGP). The experimental results have revealed that
ARE-GP not only asynchronously evolves the machine-code programs,
but also outperforms SSGP and TAGP in all test problems.

Keywords: Genetic programming, asynchronous evolution, machine-
code program.

1 Introduction

In general Evolutionary Algorithms (EAs) typified as Genetic Algorithm (GA) [1]
and Genetic Programming (GP) [2] evolve individuals (solutions) by repeating a
generation step. This approach waits for evaluations of all individuals and gener-
ates a next population through the parent selection and the individual deletion.
This requires that all individuals are evaluated at the same time, i.e., it requires to
wait for the slowest evaluation of a certain individual when the evaluation time of
individuals differ from each other, which consumes a heavy computational time. To
tackle this problem, asynchronous approaches have recently been proposed [3][4],
that evolves individuals independently, i.e., individuals do not have to wait for the

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 198–209, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://cas.hc.uec.ac.jp

Asynchronous Evolution by Reference-Based Evaluation 199

evaluations of other individuals. As GP employing the asynchronous approach, we
have proposed TAGP (Tierra-based Asynchronous Genetic Programming) [5] as
one kind ofmachine-codeGP based on the idea of a biological simulator, Tierra [6].
The advantages employing the asynchronous approach for machine-code GP are
summarized as follows: (1) it can continue to evolve individuals (programs) even if
individuals cannot complete their evaluation (e.g., due to an infinite loop), because
it is not required to wait for the evaluation of all individuals, and (2) it increases
the chance of selecting quickly evaluated individuals by evolving them immediately
after completing their evaluations.

Our previous research [5] reported that TAGP can asynchronously evolve the
machine-code programs even if they include loop structure. However, TAGP has
the following two essential problems: (1) Unlike general EAs, TAGP cannot guar-
antee to select good individuals as the parents from a population, which prevents
performance improvements, (2) since TAGP selects individuals as the parents or
deletes them depending on a threshold based on an absolute evaluation, it is dif-
ficult to properly evolve individuals in the case that a proper threshold cannot be
determined.

Toovercome theseproblems, this paper proposesanovel asynchronous reference-
based evaluation (named as ARE) for an asynchronous EA by tertiary parent se-
lection and its archive, which not only inherits the advantage of TAGP but also
overcomes its weak points.

In particular, in ARE, an archive mechanism employed which preserves good
individuals to improve the performance. Parent are selected and individuals are
deleted asynchronously through a comparison of the two parents with the ter-
tiary parent that is randomly selected from an archive of good individuals. This
step checks whether two parents are bad individuals. This is called a reference-
based evaluation, a relative evaluation, which does not require a threshold as
an absolute evaluation like TAGP. To investigate the effectiveness of ARE, this
paper applies it to the Linear GP problems and compares GP using ARE (ARE-
GP) with steady-state GP (SSGP) [7] as the synchronous GP and with TAGP
as the asynchronous GP.

This paper is organized as follows. Section 2 introduces TAGP that we pro-
posed and explains its problems. Section 3 proposes the novel asynchronous
reference-based evaluation for an asynchronous EAs. Section 4 conducts the ex-
periments for comparing the results of ARE-GP with those of SSGP and TAGP,
and discuss their results. Finally, our conclusion is given in Section 5.

2 Tierra-Based Asynchronous Genetic Programming

2.1 Overview

TAGP(Tierra-basedAsynchronousGeneticProgramming) [5] is a kindofmachine-
code GP employing the asynchronous approach. TAGP is based on the idea of a bi-
ological simulator, Tierra [6]. It uses a system like Tierra to evolve programs that
solves given tasks. Unlike Tierra, TAGP introduces fitness and executes parent se-
lection and mechanisms that delete individuals based on fitness.

200 T. Harada and K. Takadama

Fig. 1. An illustration of TAGP

2.2 Algorithm

Fig 1 shows an illustration of TAGP, while Algorithm 1 explains it further. In
Algorithm 1, ind indicates an individual just after evaluation, ind.f and ind.facc
respectively indicate the fitness and a fitness accumulated through a repeated
evaluation process of ind, and MAX POP indicates the maximum population
size. All individuals are stored in a queue named as reaper queue. Firstly, each
individual is evaluated in (pseudo-)parallel (step 1), and it accumulates its fit-
ness to ind.facc, when its evaluation completes (step 2). If its accumulated fit-
ness exceeds a certain threshold (e.g., the maximum fitness in Algorithm 1),
the threshold is subtracted from the accumulated fitness and it generates off-
spring(step 3-6). For example, if the accumulated fitness of ind1 and ind3 exceed
the threshold (the maximum fitness), they generate offspring in the genetic op-
erators as shown in Fig. 1. And if ind has the maximum fitness and it is better
than the individual that previously has the maximum fitness, ind is replicated as
an elite individual without any genetic operations in order to preserve the good
individuals in the population (step 7-12). For example, if ind3 has the maximum
fitness, it is replicated as the elite individual as shown in Fig. 1. The position
of each individual in the queue changes depending on whether an individual can
generate offspring or not. If an individual generate offspring, its position in the
queue shifts toward lower (step 5), otherwise its position shifts toward upper
(step 17). For example, in Fig. 1, since ind1 and ind3 generate their offspring,
their positions in the queue shift toward lower, while since ind2 cannot gener-
ate offspring, its position shifts toward upper. If the population size exceeds the
maximum population size, the reaper queue mechanism removes the individual
located at the top in the reaper queue (step 13-14). For example, when three
offspring are added as shown in Fig 1, three individuals at the top of the reaper
queue is removed.

The main feature of TAGP is summarized as follows: (1) Each individual
in TAGP can be asynchronously evolved without waiting for other evaluation
because the parents are selected to evolve their offspring only depending on their
accumulated fitness, i.e., such parent selection is executed when the accumulated
fitness of an individual exceeds a certain threshold, and (2) the reaper queue
mechanism in TAGP can remove an individual that requires huge evaluation

Asynchronous Evolution by Reference-Based Evaluation 201

Algorithm 1. An algorithm of TAGP

1. Evaluating fitness of ind (ind.f)
2. ind.facc ← ind.facc + ind.f
3. if ind.facc ≥ fmax then
4. ind.facc ← ind.facc − fmax

5. Shifting the position of ind toward lower
6. Generating offspring of ind
7. if ind.f = fmax then
8. if ind.f is better than indelite.f then
9. Replicate ind without genetic operations

10. end if
11. indelite ← ind
12. end if
13. if Population size>MAX POP then
14. Removing the individual at the top of the queue
15. end if
16. else
17. Shifting the position of ind toward upper
18. end if

time or does not complete its evaluation (e.g., because of an infinite loop) before
completing its evaluation.

3 Asynchronous Reference-Based Evaluation

This paper proposes a novel asynchronous reference-based evaluation (named as
ARE) for an asynchronous EA, which not only inherits the advantages of TAGP
but also overcomes the problems of TAGP. In this section, we firstly explain the
main concept of ARE, and then its algorithm.

3.1 Concept

The main concept of ARE is based on (1) the preservation of good individu-
als (i.e., archive) and (2) the deletion of bad individuals with quick evaluation
with the relative evaluation which does not require a threshold as an absolute
evaluation like in TAGP. Regarding the first issue (i.e., the good individuals
preservation), it is generally difficult to guarantee to preserve the good individ-
ual in a population due to an asynchronous manner, which means that good
individuals are not always to be selected as parents for an evolution. To keep
good individuals, the archive is employed to preserve good individuals in ARE
while deleting the individuals that (a) have low fitness or (b) require a huge
evaluation time (or do not complete their evaluation). From the viewpoint of
the low fitness, if the individuals are worse than the reference individual (de-
scribed in the next paragraph), they become candidates for the deletion. From
the viewpoint of the huge evaluation time, on the other hand, the reaper queue

202 T. Harada and K. Takadama

Fig. 2. An illustration of ARE

is employed to determine the individual that should be deleted using the same
mechanism as TAGP.

Regarding the second issue (i.e., the deletion of bad individuals with quick
evaluation with the relative evaluation), what should be noted here is that, in
the asynchronous evaluation, the individuals that have high fitness are regarded
as good like the general EAs, while individuals that complete their evaluation
are also regarded as good. However, the individuals that quickly complete their
evaluation do not always have good fitness. Due to such a feature, the individ-
uals with quick evaluation are preferentially selected as parents regardless of
its fitness. This results in the population being filled with offspring generated
by such parent, and it is easy to fall into local optima through this kind of an
evolution. To avoid such a situation, all individuals are compared with a high
fitness individual that has already completed its evaluation. This is called the
tertiary or reference individual. If they are worse than the reference individual,
they are not selected as parents. This contributes to selecting the good individ-
uals by excluding bad individuals whose evaluation time is short. In ARE, an
evaluation based on a comparison with a reference individual is called as rela-
tive evaluation, which does not require a threshold as an absolute evaluation.
Concretely, the parent selection and the individual deletion are asynchronously
executed to evolve individuals through a comparison of the offspring with the
reference individual.

Finally, the main difference between ARE and TAGP is summarized as follows:
(1) TAGP requires the accumulated fitness and the selection threshold fmax,
while ARE does not require these conditions, i.e., any fitness function in ARE
can be employed like general EAs. This means that ARE can be applied to the
problems where an optimal solution is unknown, and (2) TAGP does not have
the archive mechanism, while ARE has it to guarantee to maintain the good
individuals in the archive. This mechanism increases the selection pressure for
better individuals by excluding bad individuals.

3.2 Algorithm

Fig. 2 shows an illustration of ARE, while Algorithm 2 explains it further. In
Algorithm 2, ind indicates an individual just after evaluation. All individuals

Asynchronous Evolution by Reference-Based Evaluation 203

Algorithm 2. An algorithm of ARE

1. Evaluating fitness of ind (ind.f)
2. S ← ind
3. if |S| = 2 then
4. Randomly selecting indref from archive
5. C ← S ∪ {indref}
6. Selecting two individuals from C and generating offspring
7. Adding offspring into the bottom of the reaper queue
8. Replacing indref with an individual in S that is better than indref
9. Removing individuals in S that is worse than indref in the probability Pd

10. if Population size>MAX POP then
11. Removing individuals depending on the reaper queue
12. end if
13. S ← φ
14. end if

are stored in either the reaper queue or the archive. Like TAGP, in ARE, the in-
dividuals are evaluated in (pseudo-)parallel (step 1), and the parent individuals
are selected when two individuals complete their evaluations (here we call them
temporally-selected individuals). One of the unique aspects of ARE, is that par-
ent selection is done by the tournament selection from the temporally-selected
individuals (S in Algorithm 2) and the reference individual (indref in Algo-
rithm 2) that is randomly selected from the archive (step 4-6) (Note that two
individuals (not three) are selected in TAGP). This mechanism guarantees that
individuals with high fitness will be mated with. After the parent selection, the
two offspring generated from the two selected parents are added into the bottom
of the reaper queue (step 7).

Other unique aspects of ARE are the use of an archive mechanism that pre-
serves good individuals and the deletion mechanism limit the archive size. In
order to determine the individuals that should be archived or should be deleted,
the temporally-selected individuals are compared with the reference individual.
If one of the temporally-selected individuals is better than the reference individ-
ual, it is archived and the reference individual change its position to the bottom
of the reaper queue alternatively (step 8). To maintain the diversity of the indi-
viduals in the archive, if the better temporally-selected individual already exists
in the archive and the reference individual is unique in the archive, they are not
replaced each other. For example, if ind1 is better than indref , ind1 is archived
and indref is added to the bottom of the reaper queue as shown in Fig. 2. This
mechanism guarantees to preserve the good individuals in the archive. On the
other hand, if the temporally-selected individuals are worse than the reference
individual, they are removed from the reaper queue with a certain probability Pd

(step 9) (This deletion is called fitness deletion, and the probability Pd is called
fitness deletion probability). For example, if ind2 is worse than indref , ind2 is
removed from the reaper queue with the probability Pd with the fitness deletion
as shown in Fig 2.

204 T. Harada and K. Takadama

If the temporally-selected individuals are not removed and the population size
exceeds the maximum population size, the reaper queue mechanism removes the
individual located at the top of the reaper queue (step 10-11) (Afterward this
deletion is called reaper deletion). For example, when two offspring are added
but only one individual (ind2) is removed as shown in Fig. 2, one individual at
the top of the reaper queue is additionally removed with the reaper deletion.

What should be noted here is that the fitness deletion probability Pd deter-
mines the ratio between the fitness deletion and the reaper deletion. In partic-
ular, when Pd is higher, the fitness deletion is increasingly executed, while the
reaper deletion is decreasingly executed. On the other hand, when Pd is lower,
the fitness deletion is decreasingly executed, while the reaper deletion is increas-
ingly executed. Since a lot of individuals are removed before their evaluations
completes if the reaper deletion increases, Pd can control how long the reaper
deletion waits for the individuals that require long evaluation time.

4 Experiment

4.1 Settings

To investigate the effectiveness of ARE, we apply ARE to Linear GP (LGP) [8][9]
using the machine code which we used in our previous research, and conduct ex-
periments to compare GP using ARE (ARE-GP) with steady-state GP (SSGP) [7]
as the asynchronous GP and TAGP as the asynchronous GP. The reason why we
employ LGP is that an individual (program) in LGP has variable length chro-
mosome and evaluation time of each individual generally differ from each other.
Furthermore, since a machine-code program has probability to include the loop
structure, individuals that include the infinite loop and do not complete their
evaluation can be generated.

Our machine-code programs use the instruction set of the PIC10 [10] embed-
ded processor developed by Microchip Technology Inc. It has 33, 12 bit instruc-
tions. These include addition, subtraction, Boolean logic, bitwise, and branch
instructions. It does not include multiplication. For this reason, multiplication
has to be achieved by repeating addition and bitwise operations in loop struc-
tures. A program can use any of 16 general purpose registers and one register
(named working register). Each register consists of 32bits.

Test problems in this experiment are shown in Table 1. The problems are clas-
sified two types, one is Arithmetic problems that requires numeric calculations,
and another is Boolean problem that requires logical calculation. In particu-
lar since Arithmetic problems require multiplication that is achieved with loop
structures, they has high probability to generate programs that include infinite
loops. In this experiment, the aim is to evolve program that minimize the time
taken by the execution step by starting from an initial program that completely
accomplishes the given task.

Asynchronous Evolution by Reference-Based Evaluation 205

Table 1. Test problems in this experiment

Arithmetic #data

A1 f(x) = x4 + x3 + x2 + x 16
A2 f(x) = x5 − 2x3 + x 16
A3 f(x) = x6 − 2x4 + x2 16
A4 f(x, y) = xy 25

Boolean #data

B1-2 {5,8}bit-Parity {32,256}
B3-4 {5,7}bit-DigitalAdder {32,128}
B5 6bit-Multiplexer 64
B6 7bit-Majority 128

Table 2. Parameters

Parameter value Parameter value

#evaluations 106 Crossover rate 0.7
Max. program size 256 Mutation rate 0.1

Pop. size 100 Insertion rate 0.1
fmax 100 Deletion rate 0.1

The following fitness functions are respectively employed for Arithmetic and
for Boolean:

farith = fmax − 1

n

n∑

i=1

|ŷi − y∗i | (1)

fbool = fmax − 2

n

n∑

i=1

δ(ŷi, y
∗
i), δ(x, y) =

{
1 x = y

0 x �= y
, (2)

where ŷi indicates the ith output value of a program, while y∗i indicates the ith

target value. Note that the reason why the sum of difference is subtracted from
fmax is that TAGP employs the parent selection depending on the accumulated
fitness. Although ARE-GP and SSGP do not require such transformation, this
experiment uses same fitness function. Individuals are compared in order of (1)
fitness, (2) execution step, and (3) program size.

Common parameters in all GPs are shown in Table 2. The crossover combines
two programs at two different crossover point, while the mutation randomly
changes one random instruction in a program. The instruction insertion inserts
one random instruction into random point, while the instruction deletion remove
one random instruction from a program. In SSGP, the maximum execution step
is set to 50, 000, and if a program does not complete in this limit, its fitness is
evaluated as −∞.

All experiments start from filling the population with an initial program. Each
experiment is conducted 30 independent trials, and we evaluate GPs regarding
the average execution step after the maximum number of evaluations.

4.2 Results

Table 3 shows the average execution step of the best program in the population
after the maximum number of evaluations. In Table 3, all results are normal-
ized by the average execution step of TAGP, i.e., the result of TAGP is 1 in

206 T. Harada and K. Takadama

Table 3. Averages of the minimum execution step after the maximum evaluations
(normalized by the result of TAGP). ARE-GP changes the archive size as {5, 10, 20,
30}.

Problem SSGP ARE-GP
archive size

5 10 20 30

A1 1.415 0.852 0.860 0.960 1.018
A2 1.429 0.881 0.883 0.964 1.120
A3 1.463 0.863 0.934 1.026 1.173
A4 0.976 0.881 0.872 0.919 0.903

Problem SSGP ARE-GP
archive size

5 10 20 30

B1 0.954 0.974 0.956 0.993 1.019
B2 1.007 0.991 0.979 0.986 1.023
B3 1.055 0.972 0.967 0.985 0.986
B4 1.024 0.965 0.953 0.965 0.968
B5 1.582 0.864 0.901 0.924 0.918
B6 1.174 0.891 0.909 0.820 0.990

Table 4. Averages of the minimum execution step after the maximum evaluations
(normalized by the result of TAGP). ARE-GP changes the fitness deletion probability
Pd as {0.1, 0.3, 0.5, 0.7, 0.9}, and the archive size is 5 (Pd = 0.5 is the same as Table. 3).

Problem ARE-GP
fitness deletion probability Pd

0.1 0.3 0.5 0.7 0.9

A1 2.273 0.880 0.852 0.817 0.868
A2 2.401 0.881 0.881 0.863 0.836
A3 2.607 0.886 0.863 0.862 0.880
A4 3.615 3.615 0.881 0.931 1.132

Problem ARE-GP
fitness deletion probability Pd

0.1 0.3 0.5 0.7 0.9

B1 0.974 0.976 0.974 0.954 0.942
B2 1.018 0.973 0.991 0.956 0.982
B3 0.977 0.973 0.972 0.988 0.979
B4 0.965 0.958 0.965 0.963 0.955
B5 0.857 0.883 0.864 0.887 0.891
B6 0.890 1.025 0.891 0.965 0.917

all problems, and the best result (the shortest execution step) in each prob-
lem is indicated as bold style. In ARE-GP, we confirm different archive sizes
5, 10, 20, and 30. From these results, it is easily confirmed that ARE-GP can
asynchronously evolve programs using only relative evaluation and without the
thresholds required in TAGP. Furthermore, it is revealed that ARE-GP outper-
forms TAGP in all problems. In particular small archive size such as 5 and 10
reliably gives better performance. The reason why large archive size such as 30
is not good is that since ARE avoids overlap of programs in the archive, low
fitness programs remain in the archive and the selection pressure depending on
the reference program decreases. From this fact, it is indicated that the archive
size should be set as small size.

To verify the effect of the difference of the fitness deletion probability Pd, we
confirm different probability 0.1, 0.3, 0.5, 0.7, and 0.9. Here the archive size is set
as 5, and Pd = 0.5 results the same as the previous one. The results are shown
in Table 4, where all results are also normalized by the result of TAGP, and the
best result in each problem is indicated as bold style.

From these results, it is revealed that high fitness deletion probability such
as Pd ≥ 0.5 is effective in most problems, while, in all Arithmetic problems,

Asynchronous Evolution by Reference-Based Evaluation 207

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

%
 o

f
th

e
fi

tn
es

s
de

le
tio

n

#evaluation (x1000)

pr=0.9
pr=0.7
pr=0.5
pr=0.3
pr=0.1

(a) Arithmetic 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

%
 o

f
th

e
fi

tn
es

s
de

le
tio

n

#evaluation (x1000)

pr=0.9
pr=0.7
pr=0.5
pr=0.3
pr=0.1

(b) Boolean 1

Fig. 3. Percentage of the fitness deletion, where the archive size is 5, and Pd = 0.5

small probability Pd = 0.1 is worse than the results of TAGP. Actually, these
cases hardly evolve programs from the initial program. Arithmetic problems
requires loop structures to achieve multiplication, in particular Arithmetic 2
include double loops to calculate xy. If the loop structures are broken with
the genetic operation, offspring lose the loops and they quickly complete their
evaluation. Such programs succumb to reaper deletion so most programs that
include loops are removed before their evaluation. To wait loop calculation and
to remove programs that are evaluated to quickly, we have found a high fitness
deletion probability to be effective.

As mentioned above, the fitness deletion probability Pd determines the ratio
between the fitness deletion and the reaper deletion. Fig. 3 shows the change of
the ratio of the fitness deletion that is calculated as %cp = #delcp/(#delcp +
#delrp), where pcp indicates the percentage of the fitness deletion, while #delcp
and #delrp respectively indicate the number of the fitness deletion and the reaper

208 T. Harada and K. Takadama

deletion in a certain evaluations. In Fig. 3, the horizontal axes show the number
of evaluations, while the vertical axes show the percentage of the fitness deletion.
Each line shows the average %cp in the case that Pd = {0.1, 0.3, 0.5, 0.7, 0.9}.
Note that although these figures only show the results of Arithmetic 1 and
Boolean 1, we confirm same trend in all other problems in each problem type.

From these results, the fitness deletion probability can controls the ratio of
two deletions. In particular, when the fitness deletion probability is low, the ratio
of the fitness deletion is low, while it is high, the ratio of the fitness deletion is
high. This indicates that ARE can consider how long the reaper queue deletion
waits for the individuals that require huge computational time by changing the
fitness deletion probability. In Arithmetic problems, the percentage of the fit-
ness deletion is lower in the early stage of evolution even if the fitness deletion
probability is high. At this stage, programs that are better than the archive is
easily evolved, so the replacement between a temporally-selected program and
an archived program often occurs. For this reason, even if the fitness deletion
probability is high, the reaper deletion is executed in the early evolution because
of decreasing the fitness deletion.

5 Conclusion

This paper proposed a novel asynchronous reference-based evaluation (named
as ARE) for an asynchronous EA that evolves individuals independently unlike
general EAs that evolve all individuals at the same time. ARE is designed for an
asynchronous evolution by tertiary parent selection and its archive. In particular,
ARE asynchronously evolve individuals through a comparison with only three of
individuals (i.e., two parents and one reference individual as the tertiary parent)
unlike synchronous evolution which involves a comparison with all population
members. ARE improves its performance by archiving good individuals as the
reference individual. To investigate the effectiveness of ARE, this paper applies
it to the Linear GP (LGP) problems. We have conducted experiments that aim
to minimize the execution step of machine-code programs. An experiment com-
parison of ARE-GP with steady-state GP (SSGP) as the synchronous GP and
our previous GP (Tierra-based asynchronous GP: TAGP) as the asynchronous
GP, produced the following implications: (1) ARE-GP asynchronously success-
fully evolved machine-code programs, showing that ARE-GP does not require
the thresholds of TAGP, (2) ARE-GP outperformed TAGP in all test problems,
in particular, smaller archive size in ARE-GP reliably gives better performance

What should be noticed here is that these results have only been obtained from
one type of problem, i.e., Linear GP. Therefore, further careful qualifications and
justification, such as an analysis of results using other general LGP problems such
as symbolic regression or classification problem, are needed to extend the range
of application of ARE to other EA domain. Such important directions must be
pursued in the near future in addition to the following future research: (1) the
parallelization under the ARE framework because the asynchronous approach is
suitable for the parallelization; and (2) an adaptation of the fitness deletion rate

Asynchronous Evolution by Reference-Based Evaluation 209

Pd and the archive size depending on the evolution degree or the diversity of the
population because these parameters gives a big influence to the performance of
ARE.

Acknowledgments. This work was supported by Grant-in-Aid for JSPS Fel-
lows Grant Number 249376.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

2. Koza, J.: Genetic Programming On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

3. Lewis, A., Mostaghim, S., Scriven, I.: Asynchronous multi-objective optimisation
in unreliable distributed environments. In: Lewis, A., Mostaghim, S., Randall,
M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 51–78.
Springer, Heidelberg (2009)

4. Glasmachers, T.: A natural evolution strategy with asynchronous strategy updates.
In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO 2013, pp. 431–438. ACM, New York (2013)

5. Harada, T., Takadama, K.: Asynchronous evaluation based genetic programming:
Comparison of asynchronous and synchronous evaluation and its analysis. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 241–252. Springer, Heidelberg (2013)

6. Ray, T.S.: An approach to the synthesis of life. Artificial Life II XI, 371–408 (1991)
7. Reynolds, C.W.: An evolved, vision-based behavioral model of coordinated group

motion. In: Proc. 2nd International Conf. on Simulation of Adaptive Behavior, pp.
384–392. MIT Press (1993)

8. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic programming: an
introduction: on the automatic evolution of computer programs and its applica-
tions. Morgan Kaufmann Publishers Inc., San Francisco (1998)

9. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, vol. 117. Springer
(2007)

10. Microchip Technology Inc.: PIC10F200/202/204/206 Data Sheet 6-Pin, 8-bit Flash
Microcontrollers. Microchip Technology Inc. (2007)

	Asynchronous Evolutionby Reference-Based Evaluation:Tertiary Parent Selection and Its Archive
	1 Introduction
	2 Tierra-Based Asynchronous Genetic Programming
	2.1 Overview
	2.2 Algorithm

	3 Asynchronous Reference-Based Evaluation
	3.1 Concept
	3.2 Algorithm

	4 Experiment
	4.1 Settings
	4.2 Results

	5 Conclusion
	References

