
The Best Things Don’t Always Come

in Small Packages:
Constant Creation in Grammatical Evolution

R. Muhammad Atif Azad and Conor Ryan

CSIS Department, University of Limerick, Ireland
{atif.azad,conor.ryan}@ul.ie

http://bds.ul.ie

Abstract. This paper evaluates the performance of various methods
to constant creation in Grammatical Evolution (GE), and validates the
results against those from Genetic Programming (GP). Constant cre-
ation in GE is an important issue due to the disruptive nature of ripple
crossover, which can radically remap multiple terminals in an individ-
ual, and we investigate if more compact methods, which are more simi-
lar to the GP style of constant creation (Ephemeral Random Constants
(ERCs), perform better.

The results are surprising. The GE methods all perform significantly
better than GP on unseen test data, and we demonstrate that the stan-
dard GE approach of digit concatenation does not produce individuals
that are any larger than those from methods which are designed to use
less genetic material.

Keywords: Grammatical Evolution, Constants, Symbolic Regression,
Genetic Programming, Digit Concatenation.

1 Introduction

Typically, symbolic regression finds a function to explain a given data set. In
traditional Machine Learning [1] this involves optimising the parameters of a pre-
defined objective function using an Artificial Neural Network (ANN), Support
Vector Machine (SVM) or some other numerical method. These methods work
efficiently partly because, with a known target function, they only explore the
parameter space to minimise the error between expected and predicted outputs.

Genetic Programming (GP) takes symbolic regression to another level: it ex-
plores both the space of functions and the associated parameters (constants)
simultaneously. Therefore, finding suitable numeric constants is essential to how
GP performs. However, GP typically does not involve specialised mechanisms
for optimising numeric constants. Instead, GP uses ephemeral random constants
(ERCs) [2], that randomly initialise numeric terminal nodes in a GP population.
Thereafter, genetic operators recombine and filter out (possibly erroneously)
these ERCs. The combined tasks of optimising structure and constants can be
very difficult: for example Keijzer [3] noted that given a target function of 100+x2

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 186–197, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://bds.ul.ie


Constant Creation in Grammatical Evolution 187

such that x ∈ [−1, 1], GP approximated the numeric constant 100 but lost the
genetic material to encode x2. To combat this, Keijzer proposed linear scaling,
a form of linear regression to optimise the slope and intercept of evolving GP
functions to assist GP. Other proposals include numerical methods [4][5] as well
as specialised mutation operators [6][7].

This paper investigates methods for evolving constants in Grammatical Evo-
lution (GE) [8] on a number of problems from the symbolic regression domain.
GE is a genetic programming system that maps a genotype, a linear string of 8
bit integers termed codons, to a functional expression from a language of choice,
which is defined by a context free grammar (CFG). Usually, GE uses digit con-
catenation [9] to evolve constants. In this method, a string of GE codons select
the constant defining rules from a grammar to yield the desired constant.

Since digit concatenation uses several codons to produce a number, that num-
ber can change when passed onto offspring, unlike a number encoded in a more
compact way, i.e. as in GP. This is due to the so-called ripple effect of GE
crossover, [10] which propagates changes to genetic material from left to right.
We compare digit concatenation to two other compact methods that do not
require several codons to encode a constant: these are, a GE version of ERCs
called persistent random constants (PRCs) [9] and a codon injection method that
directly converts a GE codon into a floating point value.

This work goes further than previous studies which focused on evolving so-
lutions which were a single constant [11–13], because, as [6] notes, optimising
constants alongside mathematical functions is a different challenge and, we be-
lieve, more relevant to the GP community. One early related work [9] showed
the utility of digit concatenation to a few instances of Binomial-3 problem [14];
here we also consider other problems. Moreover, we compare different methods
both with and without linear scaling and also compare against the benchmark
results from GP because GP is commonly used for symbolic regression. Finally,
previous work solely compared training results; instead, we also consider un-
seen test data as well as genome lengths of the individuals to ascertain if the
compact methods breed relatively more predictive and compact genomes.

The results show that GP consistently outperforms GE on training data;
however, on the test data, GE, regardless of the constant creating method, does
better. However, among themselves, the various GE methods perform equally
well on all the criteria. Notably, the genome lengths with digit concatenation are
no greater than those with the compact methods. Moreover, using GP-like PRCs
does not bridge the gap in training results of GP and GE, which suggests that
the key difference between GP and GE is how the respective genetic operators
behave. We also conclude that the compact methods are not effectively compact,
give our reasons for that and give directions for further work.

The rest of the paper is organised as follows: section 2 gives a background to
constant creating methods in GE and builds a motivation to this study; section 3
describes the experimental setup, presents the results and discusses the lessons
we can learn from these results; finally, section 4 concludes the paper.



188 R.M.A. Azad and C. Ryan

2 Background

Digit concatenation with GE [11] [9] requires a CFG with appropriate rules for
generating numeric constants. For example, with the grammars below and a rule
<expr> ::= <const> | -<const>, cat-UnLtd can, in theory, encode any real
constant, whereas cat-0-to-5 limits the values to the domain (−5, 5).

cat-UnLtd: cat-0-to-5:

<const> ::= <cat>.<cat> <const>::= <fdig>.<cat>

<cat> ::= <cat><digit>|<digit> <cat> ::= <cat><digit> | <digit>

<digit>::= 0 | 1 | 2 | 3 | 4 <fdig> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9 <digit> ::= 0 | 1 | 2 | ... | 9

This approach has some side effects. First, the number of codons GE takes
to encode a constant is equal to the number of digits in it. Later, crossover can
break the constant so that it does not pass on to the offspring intact. This is
unlike as in GP, where an ERC is atomic. Thus, a stronger causality exists in
GP, where offspring are likelier to resemble their parents. In fact, as noted in [6],
a small number of ERCs quickly dominate the population, with many appearing
multiple times in later generations. This is what initially motivated us to ask
if GE can benefit from a more GP-like approach, as it appears as though GP
first settles on the constants and then builds structure (functions) around them.
Second, GE is free to encode a greater number of digits than that allowed by
the underlying machine architecture, and as the machine ignores these additional
digits, they provide a bloating opportunity. Thus, the next question is: does digit
concatenation produce longer genomes than those with an ERC type approach?

To answer these questions we consider two compact representations for GE
constants. The first, termed persistent random constants (PRCs) [11] embeds
randomly generated constants (from a given range) inside the grammar as alter-
native choices. A single codon can pick a constant by selecting the corresponding
rule. Previously digit concatenation outperformed PRCs when the objective was
to evolve a single constant [11]. As the second method, we consider a codon injec-
tion method [15], whereby when the non-terminal <const> is read, the following
8 bit codon value is converted into a floating point value in a given range. As in
[12, 13], only a single codon produces a numeric constant.

While previous work investigated evolving a fixed constant, this paper con-
cerns the more traditional symbolic regression. We check if compact represen-
tations are effectively more compact: that is, whether these methods produce
higher fitness and smaller genomes. We also note results on unseen data to see
if any method produces better predictive models.

3 Experiments

For the best fit individual we note: score on training data (best fitness); score on
unseen (test) data; and genome length. We record genome lengths to compare
which method requires more genetic material. Digit concatenation takes multiple



Constant Creation in Grammatical Evolution 189

codons to create a single constant (unless the constant has just a single digit);
likewise, multiple PRCs may combine to create a constant. We record these
statistics every generation and present their mean values over 100 independent
runs. Moreover, we also record all the statistics with linear scaling.

Also, we use results for GP as a benchmark. Clearly, GP differs from GE in
many ways: the genetic representation and genetic operators differ; consequently,
we expect some difference in performance. However, since GP is more widely used
for symbolic regression, we consider its results to validate the performance of GE.
We want to see if the difference in performance is consistent (GP is always better
or worse than GE), and whether using a relatively more GP-like approach with
PRCs bridges the gap in performances of GP and GE.

We consider five different constant creating methods for GE. These are (leg-
ends in brackets): digit concatenation with constants from an infinite real do-
main (cat-UnLtd); digit concatenation with absolute values of constants limited
to (0, 5) (cat-0-to-5); 50 and 25 persistent random constants embedded in the
grammar (50-PRC-0-to-5 and 25-PRC-0-to-5) also derived from (0, 5); and the
codon injection method that directly decodes a GE codon into a numeric value
(codon-0-to-5). All these methods can also generate negative numbers.

The respective grammars incorporate problem specific input variables and
arithmetic operators in a prefix notation.

3.1 Problem Suite and Evolutionary Parameters

All experiments use a population size of 500, roulette wheel selection, steady
state replacement and crossover with a probability of 0.9. For GE, we use the
conventional [8][16] bit wise mutation with a probability of 0.01, while for GP,
we use point mutation with a standard probability value of 0.1 [2]. We use
ramped half and half initialisation for GP with an initial maximum tree depth
of 4; for GE we use the grammatical counterpart of this initialisation termed
sensible initialisation [16]. Sensible initialisation uses a context free grammar to
generate derivation trees for GE using a ramped half and half approach. We use
a maximum initial depth of derivation trees of 10 (which is larger than 4 for GP)
since a big derivation tree can still yield a small abstract syntax tree and GE
grows trees at a slower rate than with standard GP [9].

Although we do not constrain tree sizes or maximum depth for GP (and GE),
in the experiments reported here the average tree size for GP never exceeds 250;
this is well below the maximum size allowed by a commonly used maximum tree
depth of 17 for binary trees. Another side effect of a maximum tree depth is
that it can prohibit extremely deep skinny trees. Deep skinny trees can encode
a particularly non-linear behaviour which may promote overfitting the training
data if the functions set contains unary transcendental functions [17]; however,
we only use binary arithmetic functions in this study.

We use six different problems from the symbolic regression domain here. As
Keijzer [3] notes, choosing a good set of problems for testing symbolic regression
is difficult in the absence of an established set of benchmarks. Like Keijzer, we
use the following problems from previous work on symbolic regression.



190 R.M.A. Azad and C. Ryan

f(x) = 0.3xsin(2πx) (1)

f(x) = 1 + 3x+ 3x2 + x3 (2)

f(x, y) = 8/(2 + x2 + y2) (3)

f(x, y) = x4 − x3 + y2/2− y (4)

f(x, y) = x3/5 + y3/2− y − x (5)

f(x1, · · · , x10) = 10.59x1x2 + 100.5967x3x4 − 50.59x5x6 + 20x1x7x9 + 5x3x6x10(6)

(1) comes from [18]; (2), also termed as Binomial-3, is a scalably difficult problem
for GP [14] and has been investigated with GE [9]; (3), (4) and (5) come from
[4]; and (6), referred to as Poly-10 in the figures in this paper, is a version of a
difficult problem described in [19]. The dimensionality of these problems varies
between 1 and 10 and their difficulty to GP type approaches also varies as is
visible from the scales of the best fitness plotted in Fig. 1.

We use a variant of the standard one point crossover for GE termed effective
crossover [15]. Since the entire lengths of GE chromosomes may not be used
for mapping, the non-mapping regions in GE chromosomes can grow larger and
larger; this transforms crossover into a duplication operator as crossing over in
the non-mapping regions does not innovate in the phenotype space. Therefore,
the effective crossover restricts the crossover point to within the mapping regions.

As noted in [3], protected division (and protected operators in general) can
lead GP to producing models that do not generalise well to unseen data; there-
fore, we do not use protected division. Instead, in the case of a division by zero,
we penalise the offending individual by assigning it the worst fitness value of 0.0.

All the GE experiments use libGE [15], while the GP experiments use TinyGP1.
Evolutionary runs terminate after completing 50 generations.GPuses 50 constants
from the domain (−5, 5) and like GE, only uses arithmetic operators.

For each problem, we randomly initialise input variables between −1.5 and 1.5
and generate 100 data points. We randomly choose 50 data points for training
and an equal number of data points for testing on unseen data (test data).

3.2 Results

Figures 1-4 plot the results of the experiments. The x-axis consistently cor-
responds to 50 generations. The training and test scores are sums of squared
errors (SSE) normalised between 0.0 and 1.0 (1.0 being the ideal score) as fol-
lows: score = 1

1+SSE . Each sampled point in the plots depicts an average over
100 independent runs. As in [20], the 95% confidence limits of the error bars at
each point are computed as follows: X ± 1.96 σ√

n
, where X and σ are the mean

and standard deviation of n observations; n = 100 represents the number of runs
in this case. We can be 95% confident that the statistical population lies within
these limits, and that a lack of overlap with another error bar means that the
corresponding populations are different.

1 http://cswww.essex.ac.uk/staff/rpoli/TinyGP/

http://cswww.essex.ac.uk/staff/rpoli/TinyGP/


Constant Creation in Grammatical Evolution 191

 0.97

 0.972

 0.974

 0.976

 0.978

 0.98

 0.982

 0.984

 0.986

 0  10  20  30  40  50

0.3xsin(2pix): Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

F
itn

es
s

Binomial 3: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0  10  20  30  40  50

8 by 2+x2+y2: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50

F
itn

es
s

x4-x3+y2-y: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50

x3+y3-y-x: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0  10  20  30  40  50

F
itn

es
s

Poly-10: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 1. This figure plots mean of best fitness achieved per generation for all the prob-
lems. No GE setup wins or loses consistently. On four problems, GP is significantly
better than any GE method.

Figures 1-3 plot the results for experiments without using linear scaling. Fig.
1 plots the best fitness on training data and shows that none of the GE constant
creating setups stands out consistently. In fact, various GE methods do quite
similarly. Moreover, GP does at least as well as GE (and usually better). Also,
using the PRCs does not bring GE any closer to GP.

Of particular interest is cat-UnLtd: unlike all other methods, GE chooses
from an infinite domain of constants. Except for problem (6), a domain of [-5,5]
is suitable and even advantageous. However, cat_UnLtd does no worse than the



192 R.M.A. Azad and C. Ryan

other GE methods, suggesting that the larger range of constants available (and
the correspondingly larger search space) poses no extra difficulty.

For problem (6) we also tried a domain of [-49,49] to assist methods other
than cat-UnLtd in approximating important constants of 100 and 50 but even
that did not change the relative performances; owing to space constraints we
can not reproduce those results in this paper. Results also do not show that the
brittle nature of constants with digit concatenation when facing crossover is a
disadvantage any more than that with compact methods: both cat_UnLtd and
cat-0-to-5 perform competitively with respect to the compact methods.

Fig. 2 plots the results for the same individuals as in Fig. 1 on the unseen data.
Again, no single GE method stands out. GP, however, changes behaviour on the
unseen data: unlike on the training data where GP performed at least as well as
GE methods, it now performs only at most as well as GE methods, and some
times significantly worse. Again, using PRCs does not affect GE significantly.

Next, we check if digit concatenation costs more by requiring longer genomes.
Fig. 3 plots the genome lengths for the best fit individuals and shows that again
digit concatenation is no worse than the compact methods. Moreover, while GP
genomes clearly grow towards the end of the runs, the lengths of GE genomes
remain relatively stable after an initial growth or drop. Note that GE genomes
encode derivation trees instead of abstract syntax trees (ASTs) in GP. However,
the set of leaves of a GE derivation tree can be interpreted as an AST and this
AST can be much smaller than the corresponding derivation tree; hence, at the
end of the runs the ASTs encoded by GE derivation trees are smaller than those
produced by GP even when the genome lengths are similar.

Next, we consider results with linear scaling. Due to space restrictions, we
present results only on test data; we only summarise the results on training data
and omit those on genome lengths because their relative trends are quite similar
to those without linear scaling.

While, as expected, linear scaling helps improve best fitness for all the setups
during training, the relative performances of various GE methods remain mutu-
ally competitive. Also, with linear scaling, the gap in the performance of GP and
GE narrows towards the end of the run; however, again, none of the compact
methods performs consistently better or worse than digit concatenation.

The scores on test data in Fig. 4 are also similar to those without linear
scaling: again, all of the various GE setups perform competitively; similarly, GP
performs at most as well as GE on the unseen data.

3.3 Discussion

The results from section 3.2 show that with the given evolutionary parameters
and data sets, GE performs equally well with a variety of constant creating
methods; however, GE differs significantly from GP. We only compared with GP
to check if there is enough reason to improve GE so it can match the more widely
prevalent method, that is, GP. The best fitness results, particularly without
linear scaling, show that GP trains better than GE; however, it does so at the cost
of degrading test set results. This is not altogether surprising given the growing



Constant Creation in Grammatical Evolution 193

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

0.3xsin(2pix): Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50

sc
or

e

Binomial 3: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  10  20  30  40  50

8 by 2+x2+y2: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50

sc
or

e

x4-x3+y2-y: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

x3+y3-y-x: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0  10  20  30  40  50

sc
or

e

Poly-10: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 2. This figure plots mean of Test Score per generation corresponding to Best-Fit
individuals reported in Figure 1. No GE setup wins or loses consistently. On three
problems, performance consistently degrades for GP.

GP literature which aims to improve performance on unseen data [17] [18]. What
is surprising, however, is that GE does so much better, at least on these problems.

The real focus of this work, however, is on comparing various constant creating
methods with GE. Digit concatenation is natural and easy to implement with
GE; however, it can take many codons to encode a single constant. As a result,
GE has to find a right sequence of codons and then ensure that crossover does not
break that sequence. Moreover, with the ripple crossover [10] in GE, constants
can not always transfer intact from the parent to offspring. However, the results



194 R.M.A. Azad and C. Ryan

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50

0.3xsin(2pix): Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0  10  20  30  40  50

Le
ng

th

Binomial 3: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50

8 by 2+x2+y2: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50

Le
ng

th

x4-x3+y2-y: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50

x3+y3-y-x: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  10  20  30  40  50

Le
ng

th

Poly-10: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 3. This figure plots the mean genome lengths of the best fit individuals reported
in Figure 1. No GE setup maintains significantly different lengths.

here show that the compact methods (PRCs and codon injection) do not train
better than digit concatenation; this agrees with results in [9] [11]. However, on
a greater set of problems, we additionally find that compact methods produce
neither smaller genomes (surprisingly) nor better test set results.

The question then is: why does digit concatenation work as well as the other
methods? There can be two reasons. First, even with the compact methods if
the desired constant is not available, evolution combines various constants to get
the right one. Thus, PRCs, or ERCs in GP, are not always less breakable with
crossover. Secondly, [21, pp151-153] showed for a symbolic regression problem



Constant Creation in Grammatical Evolution 195

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50

0.3xsin(2pix): scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50

sc
or

e

Binomial 3: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50

8 by 2+x2+y2: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50

sc
or

e

x4-x3+y2-y: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  10  20  30  40  50

x3+y3-y-x: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0  10  20  30  40  50

sc
or

e

Poly-10: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 4. (With Linear Scaling): this figure plots mean of Test Score per generation for
the Best-Fit individuals. No GE setup wins or loses consistently.

that crossover mostly produces offspring with significantly worse fitness values.
Also, [6] showed that even with a careful numeric mutation that only slightly
changes the constants in a GP tree, crossover does no better than with random
mutation that uniformly replaces a constant from within a given range. Despite
that GP trains well in this paper. This suggests that passing constants from the
parents to offspring is not crucial to GP: after all, even a constant ideal for a
parent may be totally unsuitable for the offspring.

Therefore, to improve the performance of GE on symbolic regression there are
two ways forward. First, find a crossover operator that recombines individuals in



196 R.M.A. Azad and C. Ryan

a more favourable way, although this issue is not unique to just GE. The second
is to assist the genetic operators with numerical methods such as in [3] [4] [5].

4 Conclusions

This paper compares the so-called digit concatenation method of creating con-
stants in Grammatical Evolution with what this paper calls the compact meth-
ods to creating constants. The paper raises two questions: first, whether the
constants with digit concatenation are so brittle against crossover that taking a
more GP-like approach to constants with compact methods improves the perfor-
mance of GE; and second, whether digit concatenation breeds longer genomes
than those with compact methods. The results from the problems considered in
this paper suggest that the answer to both the aforementioned questions is a
resounding no. Because compact representations may also have to synthesise a
constant when a suitable one is not available, we hypothesise that these constants
are also not robust enough to outperform digit concatenation.

A fascinating result is that, although GP outperforms GE on training data,
GE actually does substantially better on unseen test data.

The next steps in this research will be to do further critical evaluation of the
performance of GE on test data, as well as its ability to generalise. In particular,
work such as [17] [18] should be added to GE to ascertain if GE enjoys the same
benefits that GP does from them. Finally, given that the desruptive nature of
GE’s crossover appears to be extremely valuable for generalisation, we propose
creating a GP equivalent, GPRipple, which will have the same operation.

References

1. Mitchell, T.M.: Machine learning. McGraw Hill, New York (1996)
2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)
3. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-

ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

4. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient
search of numeric leaf values. In: Spector, et al. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2001), July 7-11, pp. 155–
162. Morgan Kaufmann, San Francisco (2001)

5. McKay, B., Willis, M., Searson, D., Montague, G.: Non-linear continuum regres-
sion using genetic programming. In: Banzhaf, et al. (eds.) Proceedings of GECCO
1999, Orlando, Florida, USA, July 13-17, vol. 2, pp. 1106–1111. Morgan Kaufmann
(1999)

6. Ryan, C., Keijzer, M.: An analysis of diversity of constants of genetic programming.
In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 404–413. Springer, Heidelberg (2003)

7. Evett, M., Fernandez, T.: Numeric mutation improves the discovery of numeric con-
stants in genetic programming. In: Koza, et al. (eds.) Genetic Programming 1998:
Proceedings of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, July 22-25, pp. 66–71. Morgan Kaufmann (1998)



Constant Creation in Grammatical Evolution 197

8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

9. Byrne, J., O’Neill, M., Hemberg, E., Brabazon, A.: Analysis of constant creation
techniques on the binomial-3 problem with grammatical evolution. In: Tyrrell, et
al. (eds.) 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway,
May 18-21, pp. 568–573. IEEE Computational Intelligence Society, IEEE Press
(2009)

10. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genetic Programming and Evolvable Machines 4(1), 67–93 (2003)

11. Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolu-
tion. International Journal of Innovative Comput. and Applic. 1(1), 23–38 (2007)

12. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: Evolving nu-
merical constants in grammatical evolution with the ephemeral constant method.
In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 110–124.
Springer, Heidelberg (2011)

13. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: A new ap-
proach for generating numerical constants in grammatical evolution. In: Krasnogor,
et al. (eds.) GECCO 2011: Proceedings of the 13th Annual Conference Companion
on GECCO, Dublin, Ireland, July 12-16, pp. 193–194. ACM (2011)

14. Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A.,
Chaudhri, O.A., Polito II, J.A.: What makes a problem GP-hard? Analysis of
a tunably difficult problem in genetic programming. Genetic Programming and
Evolvable Machines 2(2), 165–191 (2001)

15. Nicolau, M., Slattery, D.: libGE - Grammatical Evolution Library (2006)
16. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry,

A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic
and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (July
2003)

17. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. on Evolutionary Computation 13(2), 333–349 (2009)

18. Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the
bias/variance tradeoff - introductory investigations. In: Poli, R., Banzhaf, W.,
Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS,
vol. 1802, pp. 76–90. Springer, Heidelberg (2000)

19. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa,
E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

20. Costelloe, D., Ryan, C.: On improving generalisation in genetic programming. In:
Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP
2009. LNCS, vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

21. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming –
An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco (1998)


	The Best Things Don’t Always Comein Small Packages:Constant Creation in Grammatical Evolution
	1 Introduction
	2 Background
	3 Experiments
	3.1 Problem Suite and Evolutionary Parameters
	3.2 Results
	3.3 Discussion

	4 Conclusions
	References




