
Miguel Nicolau Krzysztof Krawiec
Malcolm I. Heywood Mauro Castelli
Pablo García-Sánchez Juan J. Merelo
Victor M. Rivas Santos Kevin Sim (Eds.)

 123

LN
CS

 8
59

9

17th European Conference, EuroGP 2014
Granada, Spain, April 23–25, 2014
Revised Selected Papers

Genetic
Programming

Lecture Notes in Computer Science 8599
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Miguel Nicolau Krzysztof Krawiec
Malcolm I. Heywood Mauro Castelli
Pablo García-Sánchez Juan J. Merelo
Victor M. Rivas Santos Kevin Sim (Eds.)

Genetic
Programming
17th European Conference, EuroGP 2014
Granada, Spain, April 23-25, 2014
Revised Selected Papers

13

Volume Editors

Miguel Nicolau, University College Dublin, Ireland
E-mail: miguel.nicolau@ucd.ie

Krzysztof Krawiec, Poznan University of Technology, Poznań, Poland
E-mail: krawiec@cs.put.poznan.pl

Malcolm I. Heywood, Dalhousie University, Halifax, NS, Canada
E-mail: mheywood@cs.dal.ca

Mauro Castelli, Universidade Nova de Lisboa, Portugal
E-mail: mcastelli@isegi.unl.pt

Pablo García-Sánchez, Universidad de Granada, Spain
E-mail: pablogarcia@ugr.es

Juan J. Merelo, Universidad de Granada, Spain
E-mail: jmerelo@geneura.ugr.es

Victor M. Rivas Santos, Universidad de Jaén, Spain
E-mail: vrivas@ujaen.es

Kevin Sim, Edinburgh Napier University, UK
E-mail: k.sim@napier.ac.uk

Cover illustration designed by Laura Pirovano.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44302-6 e-ISBN 978-3-662-44303-3
DOI 10.1007/978-3-662-44303-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014944310

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 17th European Conference on Genetic Programming (EuroGP) took place
during April 23 and 25, 2015. Granada, Spain, home to ‘The Alhambra’
UNESCO World Heritage Site provided the setting, with the Universidad de
Granada, Departamento de Arquitectura y Tecnoloǵıa de los Computadores rep-
resenting the venue. EuroGP represents the only conference exclusively devoted
to the evolutionary generation of computer programs and attracts scholars from
all over the world. The maturity of the event is in part reflected by the fact that
‘Google scholar’ now lists EuroGP as one of the top 20 venues in Evolutionary
Computation with an h5 index and median of 14 and 26 respectively.1 Collec-
tively, over 9000 articles now appear in the online GP bibliography maintained
by William B. Langdon.2

The unique character of genetic programing has been recognized from its
very beginning. EuroGP has had an essential impact on the success of the
field, by serving as an important forum for expressing new ideas, meeting fellow
researchers, and starting collaborations. Indeed, EuroGP represents the single
largest venue at which genetic programing results are published. Many success
stories have been witnessed by the now 17 editions of EuroGP. To date, genetic
programing is essentially the only approach that has demonstrated the ability
to automatically generate, repair, and improve computer code in a wide va-
riety of problem areas. It is also one of the leading methodologies that can be
used to ‘automate’ science, helping researchers to induce hidden complex models
from observed phenomena. Furthermore, genetic programing has been applied to
many problems of practical significance, and has produced human-competitive
solutions.

EuroGP 2014 received 40 submissions from 20 different countries across 5
continents. The papers underwent a rigorous double-blind peer review process,
each being reviewed by at least three members of the international Program
Committee from 23 countries. The selection process resulted in this volume,
with 15 papers accepted for oral presentation (37.5% acceptance rate) and 5 for
poster presentation (50% global acceptance rate for talks and posters combined).
The wide range of topics in this volume reflects the current state of research in
the field. Thus, we see topics as diverse as search-based software engineering,
image analysis, dynamical systems, evolutionary robotics and operational re-
search to the foundations of search as characterized through semantic variation
operators.

1 http://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_

evolutionarycomputation
2 http://www.cs.bham.ac.uk/~wbl/biblio/

VI Preface

Together with 4 other co-located evolutionary computation conferences (Evo-
BIO 2014, EvoCOP 2014, EvoMusArt 2014, and EvoApplications 2014), EuroGP
2014 was part of the Evo* 2014 event. This meeting could not have taken place
without the help of many people.

First to be thanked is the great community of researchers and practitioners
who contributed to the conference by both submitting their work and reviewing
others’ as part of the Program Committee. Their hard work, in evolutionary
terms, provided both variation and selection, without which progress in the field
would not be possible!

The papers were submitted, reviewed and selected using the MyReview con-
ference management software. We are sincerely grateful to Marc Schoenauer of
Inria, France, for his great assistance in providing, hosting, and managing the
software.

We would like to thank the local organising team: Juan Julián Merelo Guervós,
Victor M. Rivas Santos, Pedro A. Castillo Valdivieso, Maŕıa Isabel Garćıa Are-
nas, Antonio M. Mora Garćıa, Pablo Garćıa-Sánchez, Antonio Fernández Ares,
and Javier Asensio. Moreover, this was the first year in which the proceedings
were produced post conference. We are therefore very grateful to the local orga-
nizers for taking on the additional role of constructing the web site to host the
camera ready papers for distribution to the participants during the event.

We thank Kevin Sim from the Institute for Informatics & Digital Information,
Edinburgh Napier University for creating and maintaining the official Evo* 2014
website, and Pablo Garćıa-Sánchez (Universidad de Granada, Spain) and Mauro
Castelli (Universidade Nova de Lisboa, Portugal) for being responsible for Evo*
2014 publicity.

We would also like to express our sincerest gratitude to our invited speak-
ers, who gave the inspiring keynote talks: Professor Thomas Schmickl of the
University of Karl-Franzens University, Graz, Austria, Professor Federico Moran
of University Complutense Madrid, Spain, and Professor Susan Stepney of the
University of York, UK.

We especially want to express our genuine gratitude to Jennifer Willies of the
Institute for Informatics and Digital Innovation at Edinburgh Napier University,
UK. Her dedicated and continued involvement in Evo* since 1998 has been and
remains essential for building the image, status, and unique atmosphere of this
series of events.

April 2014 Miguel Nicolau
Krzysztof Krawiec

Malcolm I. Heywood
Mauro Castelli

Pablo Garćıa-Sánchez
Juan J. Merelo

Victor M. Rivas Santos
Kevin Sim

Organization

Administrative details were handled by Jennifer Willies, Edinburgh Napier Uni-
versity, Institute for Informatics and Digital Innovation, Scotland, UK.

Organizing Committee

Program Co-chairs

Miguel Nicolau University College Dublin, Ireland
Krzysztof Krawiec Poznan University of Technology, Poland

Publication Chair

Malcolm I. Heywood Dalhousie University, Canada

Publicity Chairs

Mauro Castelli Universidade Nova de Lisboa, Portugal
Pablo Garćıa-Sánchez Universidad de Granada, Spain

Local Chairs

J.J. Merelo Universidad de Granada, Spain
Victor Manuel Rivas Santos Universidad de Jaén, Spain

Webmaster

Kevin Sim Edinburgh Napier University, UK

Program Committee

Alexandros Agapitos University College Dublin, Ireland
Lee Altenberg University of Hawaii at Manoa, USA
R. Muhammad Atif Azad University of Limerick, Ireland
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Mohamed Bahy Bader University of Portsmouth, UK
Helio Barbosa LNCC/UFJF, Brazil
Anthony Brabazon University College Dublin, Ireland
Nicolas Bredeche Université Pierre et Marie Curie, France
Stefano Cagnoni University of Parma, Italy
Ernesto Costa University of Coimbra, Portugal
Luis Da Costa Université Paris-Sud XI, France
Antonio Della Cioppa University of Salerno, Italy

VIII Organization

Federico Divina Pablo de Olavide University, Spain
Marc Ebner Ernst-Moritz-Arndt Universität Greifswald,

Germany
Aniko Ekart Aston University, UK
Daryl Essam University of New South Wales @ ADFA,

Australia
Francisco Fernandez de Vega Universidad de Extremadura, Spain
Gianluigi Folino ICAR-CNR, Italy
James A. Foster University of Idaho, USA
Christian Gagné Université Laval, Québec, Canada
Steven Gustafson GE Global Research, USA
Jin-Kao Hao LERIA, University of Angers, France
Inman Harvey University of Sussex, UK
Erik Hemberg MIT, USA
Malcolm I. Heywood Dalhousie University, Canada
Ting Hu Dartmouth College, USA
David Jackson University of Liverpool, UK
Colin Johnson University of Kent, UK
Tatiana Kalganova Brunel University, UK
Ahmed Kattan Um Al Qura University, Saudi Arabia
Graham Kendall University of Nottingham, UK
Michael Korns Korns Associates, USA
Jan Koutnik IDSIA, Switzerland
Krzysztof Krawiec Poznan University of Technology, Poland
Jiri Kubalik Czech Technical University in Prague,

Czech Republic
William B. Langdon University College London, UK
Kwong Sak Leung The Chinese University of Hong Kong, China
John Levine University of Strathclyde, UK
Evelyne Lutton Inria, France
Penousal Machado University of Coimbra, Portugal
Radek Matousek Brno University of Technology, Czech Republic
James McDermott University College Dublin, Ireland
Bob McKay Seoul National University, Korea
Jorn Mehnen Cranfield University, UK
Julian Miller University of York, UK
Alberto Moraglio University of Exeter, UK
Xuan Hoai Nguyen Hanoi University, Vietnam
Miguel Nicolau University College Dublin, Ireland
Julio Cesar Nievola Pontificia Universidade Catolica do Parana,

Brazil
Michael O’Neill University College Dublin, Ireland
Una-May O’Reilly MIT, USA
Fernando Otero University of Kent, UK
Ender Ozcan University of Nottingham, UK

Organization IX

Andrew J. Parkes University of Nottingham, UK
Clara Pizzuti Institute for High Performance Computing and

Networking, Italy
Gisele Pappa Federal University of Minas Gerais, Brazil
Thomas Ray University of Oklahoma, USA
Denis Robilliard Université Lille Nord de France, France
Conor Ryan University of Limerick, Ireland
Marc Schoenauer Inria, France
Lukas Sekanina Brno University of Technology, Czech Republic
Yin Shan Medicare, Australia
Sara Silva INESC-ID Lisboa, Portugal
Moshe Sipper Ben-Gurion University, Israel
Alexei N. Skurikhin Los Alamos National Laboratory, USA
Terence Soule University of Idaho, USA
Lee Spector Hampshire College, USA
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Jorge Tavares Microsoft, Germany
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal, and

University of Milano-Bicocca, Italy
Man Leung Wong Lingnan University, China
Lidia Yamamoto University of Strasbourg, France
Mengjie Zhang Victoria University of Wellington, New Zealand

Table of Contents

Oral Presentations

Higher Order Functions for Kernel Regression . 1
Alexandros Agapitos, James McDermott, Michael O’Neill,
Ahmed Kattan, and Anthony Brabazon

Flash: A GP-GPU Ensemble Learning System for Handling Large
Datasets . 13

Ignacio Arnaldo, Kalyan Veeramachaneni, and Una-May O’Reilly

Learning Dynamical Systems Using Standard Symbolic Regression 25
Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton,
and Alberto Tonda

Semantic Crossover Based on the Partial Derivative Error 37
Mario Graff, Ariel Graff-Guerrero, and Jaime Cerda-Jacobo

A Multi-dimensional Genetic Programming Approach for Multi-class
Classification Problems . 48

Vijay Ingalalli, Sara Silva, Mauro Castelli, and Leonardo Vanneschi

Generalisation Enhancement via Input Space Transformation:
A GP Approach . 61

Ahmed Kattan, Michael Kampouridis, and Alexandros Agapitos

On Diversity, Teaming, and Hierarchical Policies: Observations
from the Keepaway Soccer Task . 75

Stephen Kelly and Malcolm I. Heywood

Genetically Improved CUDA C++ Software . 87
William B. Langdon and Mark Harman

Measuring Mutation Operators’ Exploration-Exploitation Behaviour
and Long-Term Biases . 100

James McDermott

Exploring the Search Space of Hardware / Software Embedded Systems
by Means of GP . 112

Milos Minarik and Lukáš Sekanina

Enhancing Branch-and-Bound Algorithms for Order Acceptance
and Scheduling with Genetic Programming . 124

Su Nguyen, Mengjie Zhang, and Mark Johnston

XII Table of Contents

Using Genetic Improvement and Code Transplants to Specialise a C++
Program to a Problem Class . 137

Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer

ESAGP – A Semantic GP Framework Based on Alignment in the Error
Space . 150

Stefano Ruberto, Leonardo Vanneschi, Mauro Castelli,
and Sara Silva

Building a Stage 1 Computer Aided Detector for Breast Cancer Using
Genetic Programming . 162

Conor Ryan, Krzysztof Krawiec, Una-May O’Reilly,
Jeannie Fitzgerald, and David Medernach

NEAT, There’s No Bloat . 174
Leonardo Trujillo, Luis Muñoz, Enrique Naredo,
and Yuliana Mart́ınez

Posters

The Best Things Don’t Always Come in Small Packages: Constant
Creation in Grammatical Evolution . 186

R. Muhammad Atif Azad and Conor Ryan

Asynchronous Evolution by Reference-Based Evaluation:
Tertiary Parent Selection and Its Archive . 198

Tomohiro Harada and Keiki Takadama

Behavioral Search Drivers for Genetic Programing . 210
Krzysztof Krawiec and Una-May O’Reilly

Cartesian Genetic Programming: Why No Bloat? . 222
Andrew James Turner and Julian Francis Miller

On Evolution of Multi-category Pattern Classifiers Suitable
for Embedded Systems . 234

Zdenek Vasicek and Michal Bidlo

Author Index . 247

Higher Order Functions for Kernel Regression

Alexandros Agapitos1, James McDermott2, Michael O’Neill1,
Ahmed Kattan3, and Anthony Brabazon2

1 School of Computer Science and Informatics, University College Dublin, Ireland
{alexandros.agapitos,m.oneill,anthony.brabazon}@ucd.ie

2 School of Business, University College Dublin, Ireland
jmmcd@jmmcd.net

3 Um Al Qura University, Dept. of Computer Science, Kingdom of Saudi Arabia
ajkattan@uqu.edu.sa

Abstract. Kernel regression is a well-established nonparametric
method, in which the target value of a query point is estimated using a
weighted average of the surrounding training examples. The weights are
typically obtained by applying a distance-based kernel function, which
presupposes the existence of a distance measure.This paper investigates
the use of Genetic Programming for the evolution of task-specific dis-
tance measures as an alternative to Euclidean distance. Results on seven
real-world datasets show that the generalisation performance of the pro-
posed system is superior to that of Euclidean-based kernel regression and
standard GP.

1 Introduction

One of the oldest and most commonly used nonparametric methods for function
estimation is kernel regression [12]. It achieves flexibility in estimating a regres-
sion function F (x) over the domain R

d by fitting a different, local model at each
query point x0. This is achieved by using only those observations close to x0

in such a way that the resulting estimated function F (x) is smooth in R
d. The

value of F (x0) is then computed as a weighted average of the function values
observed at training inputs.

We note three substantial drawbacks of standard methods for kernel regres-
sion. First, they require an a priori well-defined distance metric on the input
space, which may preclude their usage in datasets where such metrics are not
meaningful. For example, the well-known Boston housing dataset [5] contains
13 input features representing completely disparate quantities such as popula-
tion levels, crime rates, pupil-teacher ratios, etc. Similar difficulties can arise in
cases of a mixture of qualitative, ordinal and numerical features. Secondly, a
pre-defined distance metric may not be particularly relevant to the regression
task at hand. The typical Euclidean distance is calculated on all features defin-
ing a point in R

d. In a high-dimensional input space, the distance metric may
become dominated by a large number of irrelevant features, as it ascribes to
them identical weight to that of the most significant ones. The irrelevant fea-
tures ideally should not contribute at all to the distance calculation. Thirdly, in

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 A. Agapitos et al.

cases of input spaces of high-dimensionality, most neighbours of a point can be
very far away, causing bias and degrading the performance of the kernel func-
tion. As a simple example [4] (Figure 1.22, page 36), consider a sphere of radius
r = 1 in a space of D dimensions, and ask what is the fraction of a volume of
the sphere that lies between radius r = 1 − ε and r = 1. It is shown that as D
grows (i.e. D > 20), most of the volume of the sphere is concentrated in a thin
shell near the surface. This causes most of the points in the feature space to be
neighbours, and renders the determination of the kernel width problematic. An
additional manifestation of the curse of the dimensionality for kernel regression
is that it is impossible to maintain localness (low bias) and a sizeable sample in
the neighbourhood (low variance) as D increases, without the training sample
size increasing exponentially in D [12].

We propose a novel method to learn a problem-specific distance measure over
an input space in which small distances between two vectors imply similar target
values, and so we can exploit local interpolation-like techniques to allow us to
make predictions of the target variables for new values of the input variables.
We employ Genetic Programming (GP) [10] to learn such distance measures
by searching the space of programs composed of general-purpose higher-order
functions, which allow for implicit iteration over lists of feature values. Typical
distance functions, such as Euclidean and other lp distances, involve iteration
over the multiple dimensions of the pair of input points. This feature is likely to
be useful in new evolved distances also. Including the ability to iterate in our GP
language makes it far more general than the constant-time numerical language
typical of GP symbolic regression. Success or failure in our work therefore has
implications for the broader project of evolutionary synthesis of general computer
programs. It also raises the issue of halting, to be addressed by our choice of
language.

The reader’s guide to the rest of the paper is as follows. Section 2 formalises
the method of kernel regression. Section 3 introduces the higher-order functions
that will be used in the experiments. Section 4 presents the proposed method
and details the experiment design. Section 5 analyses the empirical results, and
finally Section 6 wraps up and sketches future research directions.

2 Kernel Regression

In the general function estimation problem, one is given a set of training examples
{xi, yi}, i = {1, . . . , N}, where y is the response variable and x ∈ R

d is a vector
of explanatory variables. The goal is to find a function F ∗(x) that maps x to y,
such that over the joint distribution P (x, y) the expected value of some specified
loss function L(y, F (x)) is minimised:

F ∗(x) = argmin
F (x)

Ex,y[L(y, F (x))] (1)

Higher Order Functions for Kernel Regression 3

Kernel regression or kernel smoothing [12] (page 192) uses the so called Nadaraya-
Watson kernel-weighted average to fit a constant locally as follows:

F ∗(x0) =

∑N
i=1 Kλ(x0, xi)yi

∑N
i=1 Kλ(x0, xi)

(2)

with a kernel Kλ, which is typically a probability density function, defined as:

Kλ(x0, x) = D

(||x − x0||
λ

)

(3)

where || · || is the Euclidean norm, and λ is the smoothing parameter called
the kernel width. The smoothing parameter λ determines the width of the local
neighbourhood and is usually set by means of cross-validation. Large λ implies
lower variance (averages over more observations) but higher bias. Constant val-
ues for λ tend to keep the bias of the estimate constant, while the variance is
inversely proportionate to the local density.

The function D(·) is typically a positive real-valued function, which decays
with increasing distance between x0 and x. The optimal rate of decay depends
on the noisiness and smoothness of the target function, the density of training
examples, and the scale of the input features. A wide variety of kernel functions
can be found in statistics, see [1].

The application of kernel regression to model a noisy sinusoidal function (green
curve) is illustrated in Figure 1. The example uses the Epanechnikov kernel with
λ set to 0.2. The fitted function (red curve) is continuous and quite smooth.
As we move the target from left to right, points enter in the neighbourhood
initially with weight zero, and then their contribution to the weighted average
of Equation 2 slowly increases.

A general approach for constructing a task-specific distance metric in order
to overcome some of the difficulties outlined in the introductory section is to use
a Mahalanobis metric instead of the Euclidean norm in Equation 5, in which the
distance between vectors x and x0 is defined as:

d(x0, x) =
√

(x− x0)TA(x− x0) (4)

where A can be any symmetric positive semi-definite matrix (setting A to iden-
tity results in the standard Euclidean distance). A is then used to weight differ-
ent features [12]. Entire coordinates can be downgraded or omitted by impos-
ing appropriate restrictions on A. For example, if A is diagonal, then we can
increase or decrease the influence of individual features xj by increasing or de-
creasing Ajj . Various methods for adapting A in the Mahalanobis distance are
presented in the studies of [6,7,8,11,13]. An additional method for adapting the
feature weights in the calculation of Euclidean distance was originally developed
for nearest-neighbour classification [3], and can be directly applied to kernel
regression.

4 A. Agapitos et al.

Fig. 1. Example of kernel smoothing. Ŷ (x0) is the fitted constant (calculated us-
ing Equation 2), and the red circles indicate those observations contributing to
the fit at x0. The solid yellow region indicates the weights assigned to observa-
tions. The green curve is the resulting kernel-weighted average using an Epanech-
nikov kernel with λ = 0.2. The figure is adapted from the one found in http :
//en.wikipedia.org/wiki/Kernel smoother.

.

3 Higher Order Functions

This paper adopts a different approach to the work cited in the previous sec-
tion for adapting the metric used in the kernel function. There, the underly-
ing structure of the metric remains fixed. That is, the overall distance between
two multi-dimensional input vectors is based on the sum of weighted squared
pair-wise distances for each dimension, with the adaptation concerning only the
weights. Herein, our aim is to simultaneously learn the underlying computation
of similarity as well as the weighting of different features for a particular prob-
lem. He have hypothesised that the ability to iterate over the multiple dimensions
of an input vector is essential to the evolution of similarity measures, thus we
will allow GP to search the space of programs populated by high-level iteration
constructs, named higher-order functions.

Higher-order functions are functions that take other functions as arguments or
produce other functions as results. They are a powerful method of abstraction
and re-use, and have been the subject of research in GP for evolving even-n-
parity programs [14], music and architectural designs [9], and recursive sorting
algorithms [2]. Higher-order functions can be used as general iteration schemata
that are bound to a finite-sized list of elements. The iterative behaviour is encap-
sulated within the body of the function, bypassing the problem of non-halting
programs that arises when GP operates on a search space of programs with
unbounded iteration/recursion capabilities. Bellow we present the higher-order
functions Reduce, Mapcar, and Filter.

Reduce(list, body). It is a function that uses a combining operation to re-
cursively process the constituent elements of an argument list, building up

Higher Order Functions for Kernel Regression 5

a return value. It requires two expression-trees as arguments; the first being
of type list, whereas the second being of type double. It returns a scalar
value of type double. The body argument is repeatedly evaluated, once per
element of the list argument. The result returned after each evaluation of the
body is stored as the value of a local variable, and when the list is exhausted,
the value of this local variable is returned as the value of Reduce.
Bellow is an example of a function that computes the sum of double elements
of listA. res_var_listX is the result local variable that is returned once
the argument list is exhausted. elt_var_listX is a local variable that is
bound to the current element of the argument list throughout iteration.

(Reduce (listA)
(+ res_var_listA elt_var_listA))

Mapcar(list, body). It is a higher-order function that applies a given opera-
tion to each element of the argument list, returning a list of results. It accepts
two arguments, the first being of type list, and the second being of type
double. It returns a list of elements of the same size as the argument list.
As an example:

(Mapcar (listA)
(* elt_var_listA elt_var_listA))

returns a list of elements, where each element is the respective element of
listA raised to the power of two.

Filter(list, body). This higher-order function applies the body expression-
tree, which is a predicate expression (i.e. returns a boolean value) to each
element of the list argument to return a list containing items that satisfy
the predicate expression. The size of the returned list is less than or equal
to the size of the argument list. For example:

(Filter (listA)
(> elt_var_listA 0))

returns a list containing only the positive elements of listA.

4 Method

4.1 Wrapper Approach to the Evolution of Distance Measures

The proposed method for evolving a task-specific distance measure is based on
a wrapper approach, in which kernel regression is wrapped around an evolved
distance measure, with the mean squared error (MSE) that accrues from the
regression serving as the fitness of the distance measure.

While kernel regression can be performed with many types of kernel functions,
we hereafter focus our research on a particular instance of a logistic kernel that
takes the following form:

Kλ(x0, x) = D (evo(x0, x)) (5)

6 A. Agapitos et al.

where width λ is absorbed in the evolved distance measure evo(x0, x), with

D(t) =
1

et + 2 + e−t
(6)

We decided on the use of the logistic kernel after some initial runs with a range
a different kernel functions. Table 1 presents the strongly-typed representation
language that was designed for the experiments. The signature of an evolved
program is double measure(list x, list x0). The function zip is a standard
Lisp function that takes two lists and creates a list of pairs, i.e. zip({1, 2, 3},
{4, 5, 6}) returns {{1, 4}, {2, 5}, {3, 6}}. In our version, zip is defined to return
its first argument if not both of its arguments are lists of double elements.

Table 1. Representation Language

Function set
Function Argument(s) type Return type
Reduce list, double double
Mapcar list, double list
Filter list, boolean list
zip list, list list
add, sub, mul double, double double
exp, log, sqrt, sin double double

|a − b|, (a − b)2 double, double double
≥, < double, double boolean

Terminal set
Terminal Type
x0, x list
local vars (used in higher-order funcs) double
random constants ∈ [0.0, 1.0] double
input features (in case of standard GP) double

4.2 Experiment Design

In this study we use seven real-world datasets obtained from the UCI Machine
Learning repository [5], and the Dow Chemical dataset which was the subject
of the Symbolic Regression EvoCompetitions event of the 2010 EvoStar confer-
ence 1. Table 3 presents the details of the benchmarks. In all datasets, feature
values were standardised to have zero mean and unit variance. Each dataset
was randomly split into training and test sets with proportions of 70%-30%.
Currently, no validation set is used to select the best-of-run individual.

We perform a comparison between standard Euclidean-based kernel regres-
sion using different kernels found in [1], the method of evolutionary-distance-
based kernel regression (KernelGP) presented in Section 4.1, and standard GP
(StdGP) that evolves a multi-variate model to predict a response variable. In
the case of Euclidean-based kernel regression, width λ is set via 10-fold cross-
validation performed on the training set. We cross-validated 2, 000 values for λ
in the range of {0.01, . . . , 20.0} with a step-size of 0.01. Tables 2 and 4 show
the setup of the evolutionary systems. Previous research has shown generalisa-
tion improvements accruing from the use of small, dynamically-sampled sets of

1 http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

Higher Order Functions for Kernel Regression 7

training examples, thus for KernelGP training is based on 20 cases drawn at
random from the complete training set in each generation. For StdGP we tried
two different variations; StdGP(N=20) trains using 20 random cases dynamically
drawn in every generation similarly to KernelGP , whereas StdGP(N=all) uses
the complete training set.

Table 2. GP systems under comparison

Name Primitives Constraints Max. Fitness
depth function

KernelGP1 Reduce, zip, add, sub, mul, exp, 1) Reduce at the root 6 MSE of
log, sqrt, sin, |a − b|, (a − b)2, 2) No nesting of Reduce kernel regression
x0, x, local vars, constants

KernelGP2 Reduce, Mapcar, Filter, zip, add, n/a 6 MSE of
sub, mul, exp, log, sqrt, sin, |a − b|, kernel regression
(a − b)2, x0, x, local vars, constants

StdGP add, sub, mul, exp, n/a 10 MSE of
log, sqrt, sin, evolved program
features, constants

Since the iterations performed implicitly in the higher-order functions are
bounded by the size of the argument lists, we do not have to worry about non-
halting programs, however it is reasonable to anticipate programs with deep
nesting of higher-order functions. Preliminary runs devoted to configure the pa-
rameters of the evolutionary systems suggested that in the case of KernelGP2

configuration, a constraint on the depth of the expression-tree was not enough
to keep the run-time within a reasonable frame. We thus decided to impose an
iteration-monitor for fitness evaluation. This is simply a counter on the num-
ber of times a higher-order function is called within an expression-tree. When
the limit of this monitor is exceeded, an individual is assigned a high error and
its evaluation is abandoned. In these experiments we used the limit of 10, 000
higher-order function calls. To put this number into context, two nested Reduce

functions would result in 3, 249 Reduce function calls in the case of the Dow
Chemical dataset of dimensionality 57.

Table 3. Datasets

Dataset Training set size Test set size Dimensionality
Dow Chemical 747 319 57
Concrete compressive strength 721 309 8
Energy efficiency (heating load) 538 230 8
Parkinsons (motor UPDRS) 4,113 1,762 16
Wine quality (red) 1,120 479 11
Yacht hydrodynamics 216 92 6
Boston housing (price) 355 151 13

In addition to performing regression, we analyse the fitness landscape. To
this end, we perform a perturbation analysis, in which random walks (using

8 A. Agapitos et al.

subtree mutation) are taken from a fit individual, plotting the average Canberra
distance (between targets and predictions) of consecutive neighbours versus the
number of mutations. Given a model F and a training example {xi, yi}, the
Canberra distance (CD) between prediction F (xi) and target yi is given by
|F (xi) − yi|/(|F (xi)| + |yi|), which is implicitly normalised within the [0.0, 1.0]
interval. Its average is simply calculated onN examples in the respective training
dataset. For this type of analysis, CD was preferred over MSE because it is
bounded (a very bad individual can be clearly indicated), and it makes the
results of different random walks and different datasets directly comparable.

Table 4. Setup shared by all GP systems

Evolutionary algorithm elitist (k=1), generational, expression-tree representation
No. of generations 51
Population size 1,000
Tournament size 4
Tree creation ramped half-and-half (depths of 2 to 4)
Subtree crossover 20% (90% inner-nodes, 10% leaf-nodes)
Subtree mutation 50% (max. depth of subtree: uniform randomly in [1, 4])
Point mutation 30% (probability of a node to be mutated: 10% or 30% or 40%)

5 Results Analysis

We performed 50 independent runs for each evolutionary system. Table 6 com-
pares the test-set MSE. Each best-of-50-runs individual is determined as the one
out of 50 final-generation elitists having the lowest training MSE, then its test-set
MSE is shown in Table 6. Mean MSE is similarly calculated on 50 final-generation
elitists. In every dataset, we used the best-of-50-runs individuals in order to com-
pare the evolutionary methods against the deterministic, Euclidean-based kernel
regression. Results suggest that the evolutionary-distance based kernel regres-
sion is outperforming the euclidean-based one in all datasets. We also note that
the exponential kernels (Gaussian, Logistic) based on the Euclidean distance
consistently performed the best.

Comparing Euclidean-based kernel regression against standard GP, we ob-
serve that StdGP(N=20) outperforms the former in 1 out of 7 datasets, with
the opposite being the case in 4 datasets. On the other hand, StdGP(N=all)

outperforms standard kernel regression in 4 out of 7 datasets. Interestingly, a
comparison between the two different StdGP setups suggests that the complex
evolved models trained on all available data consistently generalised better than
those trained on random data samples, a result that is inline with theoretical
results in the ML field about matching the model complexity with the amount of
training resources available. We identified pathologies (MSE ≥ 1,000 and MSE
= ∞) in final-generation individuals, and calculated the percentage of these in-
dividuals in 50 runs. We observe that the MSE loss function can lead to severe
pathologies partly indicative of overfitting in case where complex models are
trained on small-sized, even dynamically samples, sets of examples. In the case
of StgGP(N=all) no pathologies were observed.

Higher Order Functions for Kernel Regression 9

Table 5. Best-of-50-runs simplified distance measures using KernelGP1 configuration

Boston housing Parkinsons Concrete

(Reduce
(zip

x0
x

)
(+

(sin
(sqrt

(exp
elt_var_x0

)
)

)
(+

(+
0.577
res_var

)
(absdiff

elt_var_x
elt_var_x0

)
)

)
)

(Reduce
(zip

x0
x

)
(-

(-
(+

(log
res_var

)
res_var

)
(absdiff

elt_var_x0
elt_var_x

)
)
(absdiff

elt_var_x0
elt_var_x

)
)

)

(Reduce
(zip

x0
x

)
(+

(sqrdiff
(-

-0.962
(absdiff

elt_var_x
elt_var_x0

)
)
(exp

(absdiff
elt_var_x0
elt_var_x

)
)

)
(*

res_var
0.524

)
)

)

It is interesting to note that despite the fact that KernelGP uses the same
training examples sampling configuration as StdGP(N=20), there were no patholo-
gies in the final-generation models. The synergy between the evolved-distance-
based kernel and the kernel-weighted average seems to have created a fitness
landscape, where search was able to locate models with relatively smooth re-
sponse surfaces – even in the case where search was guided by a kernel regression
MSE estimate based on a limited-sized set of examples. There is a clear superior-
ity in the out-of-sample performance of KernelGP as opposed to StdGP(N=20).
Compared against StdGP(N=all), KernelGP generalises better, and in most
problems the differences in out-of-sample performance are statistically signifi-
cant.

Figure 5 presents the simplified best-of-50-runs evolved distances for the
Boston, Parkinsons and Concrete datasets, using the KernelGP1 configuration.
The evolved solutions are quite neat and comprehensible. All of them are using
the |a−b| primitive (shown as absdiff in Table 5) operating on the returned list
of pairs from the zip function. Also, they all rely on some kind of transformation
of the result_var or element_var that is linearly combined with the output of
|a− b| to update the result_var is each iteration of Reduce.

Finally, Figure 2 presents the results of the perturbation analysis for two of
the problems. The graphs for the rest of the problems are omitted, but exhibit
the same trend. It is evident that higher-order functions craft a neighbourhood
in which very bad individuals (avg. CD of approx. 1.0) can be reached using a
single mutation step. This is the case in all problems, and it becomes particularly

10 A. Agapitos et al.

pronounced in the Energy dataset (Figures 2(c), 2(d)), where the performance
of a fit individual can be severely degraded during the first step of the random
walk. This indicates that while higher-order functions are a powerful addition
to the GP paradigm, they can result in very difficult to search program spaces,
where gradient quickly diminishes and gradient-based methods are left hopeless.
We suspect that it was the implicit parallelism of the evolutionary algorithm
that enabled search to counteract this issue to some degree, and allowed for the
induction of good-performing individuals. Also, an observation that is consistent
across all problems is that on average there is more gradient in the space of
programs that is based on all three higher order functions, than there is in the
space of programs composed of a single Reduce function serving as the root-node
of an expression-tree. This can be seen by comparing Figure 2(a) (using Reduce

at the root) and Figure 2(b) (using all three higher-order functions).

Table 6. Test-set MSE of different regression methods. λ values in parentheses for stan-
dard Euclidean-based kernel regression. Statistics for the evolutionary methods were
calculated on 50 runs. Std. deviation in parentheses for mean. An asterisk * indicates
that the difference in mean values between KernelGP and StdGPN=all are statistically
significant at the 5% level (two-tailed Student’s t-test, 98 degrees of freedom).

Boston Concrete Dow Energy Parkinsons Wine Yacht
Euclidean-based kernel regression
Biweight 0.39 (2.82) 0.36 (2.13) 0.38 (5.61) 0.05 (1.46) 0.98 (0.23) 0.68 (3.10) 0.43 (2.07)
Cosine 0.34 (2.61) 0.38 (2.13) 0.40 (5.61) 0.05 (1.34) 0.98 (0.23) 0.69 (3.09) 0.44 (1.81)
Epanechnikov 0.35 (2.61) 0.39 (2.13) 0.40 (5.61) 0.05 (1.34) 0.98 (0.23) 0.69 (3.08) 0.44 (1.81)
Gaussian 0.27 (0.63) 0.33 (0.58) 0.26 (1.47) 0.05 (0.40) 0.97 (3.75) 0.66 (0.95) 0.22 (0.28)
Logistic 0.27 (0.19) 0.32 (0.17) 0.24 (0.30) 0.05 (0.13) 0.97 (2.08) 0.61 (0.37) 0.19 (0.05)
Triangular 0.41 (2.76) 0.37 (2.13) 0.39 (5.61) 0.05 (1.34) 0.98 (0.23) 0.68 (3.10) 0.41 (1.81)
Tricube 0.39 (2.82) 0.37 (2.30) 0.38 (5.61) 0.05 (1.49) 0.98 (0.23) 0.69 (3.10) 0.44 (2.07)
Triweight 0.38 (3.93) 0.38 (2.76) 0.36 (5.61) 0.05 (1.49) 0.98 (0.23) 0.67 (3.10) 0.40 (2.07)
Evolutionary-distance-based kernel regression
KernelGP1

best-of-50 0.24 0.18 0.22 0.002 0.68 0.55 0.007
mean 0.37 *0.24 *0.31 *0.009 *0.89 *0.62 *0.01

(0.14) (0.04) (0.08) (0.007) (0.25) (0.07) (0.007)
KernelGP2

best-of-50 0.26 0.19 0.22 0.003 0.90 0.61 0.007
mean 0.30 (0.06) 0.38 (0.14) 0.44 (0.20) 0.04 (0.07) 0.94 (0.05) 0.79 (0.22) 0.02 (0.04)

Standard GP
StdGP(N=20)

best-of-50 0.31 0.36 0.60 0.05 0.97 0.72 0.12
mean 0.58 (0.51) 0.77 (1.11) 0.84 (0.18) 0.13 (0.04) 97.25 (577.4) 1.09 (0.47) 0.07 (0.09)

Pathologies:
MSE ≥ 1, 000 0% 0% 0% 0% 4% 0% 0%

MSE = ∞ 0% 0% 2% 0% 6% 2% 0%
StdGP(N=all)

best-of-50 0.25 0.28 0.35 0.05 0.88 0.67 0.009
mean 0.45 (0.74) 0.38 (0.04) 0.54 (0.09) 0.08 (0.02) 0.95 (0.01) 0.72 (0.02) 0.06 (0.01)

Higher Order Functions for Kernel Regression 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of mutations

av
er

ag
e

ca
nb

er
ra

 d
is

ta
nc

e

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of mutations

av
er

ag
e

ca
nb

er
ra

 d
is

ta
nc

e

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of mutations

av
er

ag
e

ca
nb

er
ra

 d
is

ta
nc

e

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of mutations

av
er

ag
e

ca
nb

er
ra

 d
is

ta
nc

e

(d)

Fig. 2. Random walks. We start from a best-of-50-runs individual and perform 50
different random walks of length 15 – average shown in bold. (a) DowChem KernelGP1;
(b) DowChem KernelGP2; (c) Energy KernelGP1; (d) Energy KernelGP2.

6 Conclusion and Future Work

The generalisation performance of interpolation-like function estimation meth-
ods can be significantly improved when the distance measure utilised in the
kernel function is adapted to the data. We presented a successful, hybrid ML
technique that combines kernel regression with the evolutionary learning of the
distance measure used in the kernel function. As an additional advantage, the
width of the kernel is absorbed in the evolved distance, thus there is no need to
set this parameter via cross-validation.

There are a number of avenues for extending this research. First, the use
of a validation set to designate a best-of-run individual is believed to further
boost the out-of-sample performance of the system. In addition, we plan to
perform experiments using the complete set of training examples. Secondly, we
note that the configuration of KernelGP2 is of greater generality that the one of
KernelGP1. However the performance of the former was somewhat dissatisfying
in the sense that it did not outperform the latter. We suspect that this is due
to an insufficient search effort devoted in KernelGP2, and expect that a new
experiment based on a more extended search will reveal the true potential of
spaces populated by programs composed of these high-level iteration constructs.

12 A. Agapitos et al.

The evolution of general computer programs that maintain state and utilise
iteration/recursion is still an under-explored area in GP. We wish to stimulate
interest in this exciting niche of research.

Acknowledgments. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

1. http://en.wikipedia.org/wiki/Kernelstatistics

2. Agapitos, A., Lucas, S.M.: Evolving efficient recursive sorting algorithms. In: Pro-
ceedings of the 2006 IEEE Congress on Evolutionary Computation, July 6-21, pp.
9227–9234. IEEE Press, Vancouver (2006)

3. Agapitos, A., O’Neill, M., Brabazon, A.: Adaptive distance metrics for nearest
neighbour classification based on genetic programming. In: Krawiec, K., Moraglio,
A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp.
1–12. Springer, Heidelberg (2013)

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
5. Frank, A., Asuncion, A.: UCI machine learning repository (2010),

http://archive.ics.uci.edu/ml

6. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood com-
ponents analysis. In: Advances in Neural Information Processing Systems 17, pp.
513–520. MIT Press (2004)

7. Goutte, C., Larsen, J.: Adaptive metric kernel regression. Journal of VLSI Signal
Processing (26), 155–167 (2000)

8. Huang, R., Sun, S.: Kernel regression with sparse metric learning. Journal of In-
telligent and Fuzzy Systems 24(4), 775–787 (2013)

9. McDermott, J., Byrne, J., Swafford, J.M., O’Neill, M., Brabazon, A.: Higher-order
functions in aesthetic EC encodings. In: 2010 IEEE World Congress on Compu-
tational Intelligence, July 18-23, pp. 2816–2823. IEEE Computation Intelligence
Society, IEEE Press, Barcelona, Spain (2010)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

11. Takeda, H., Farsiu, S., Milanfar, P.: Robust kernel regression for restoration and re-
construction of images from sparse, noisy data. In: Proceeding of the International
Conference on Image Processing (ICIP), pp. 1257–1260 (2006)

12. Trevor, H., Robert, T., Jerome, F.: The Elements of Statistical Learning, 2nd edn.
Springer (2009)

13. Weinberger, K.Q., Tesauro, G.: Metric learning for kernel regression. In: Eleventh
International Conference on Artificial Intelligence and Statistics, pp. 608–615
(2007)

14. Yu, T.: Hierachical processing for evolving recursive and modular programs us-
ing higher order functions and lambda abstractions. Genetic Programming and
Evolvable Machines 2(4), 345–380 (2001)

http://en.wikipedia.org/wiki/Kernelstatistics
http://archive.ics.uci.edu/ml

Flash: A GP-GPU Ensemble Learning System

for Handling Large Datasets

Ignacio Arnaldo, Kalyan Veeramachaneni, and Una-May O’Reilly

MIT, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
iarnaldo@mit.edu, {kalyan,unamay}@csail.mit.edu

Abstract. The Flash system runs ensemble-based Genetic Program-
ming (GP) symbolic regression on a shared memory desktop. To sig-
nificantly reduce the high time cost of the extensive model predictions
required by symbolic regression, its fitness evaluations are tasked to the
desktop’s GPU. Successive GP “instances” are run on different data sub-
sets and randomly chosen objective functions. Best models are collected
after a fixed number of generations and then fused with an adaptive,
output-space method. New instance launches are halted once learning
is complete. We demonstrate that Flash’s ensemble strategy not only
makes GP more robust, but it also provides an informed online means of
halting the learning process. Flash enables GP to learn from a dataset
composed of 370K exemplars and 90 features, evolving a population of
1000 individuals over 100 generations in as few as 50 seconds.

Keywords: Genetic Programming, GPGPU computing, Ensembles.

1 Introduction

The fitness evaluation component of Genetic Programming (GP) symbolic re-
gression (GPSR) dominates its cost because, at every generation, each model has
to be evaluated on multiple fitness cases, i.e. the dataset. If the dataset does not
saturate the memory of a single node, it can be replicated across nodes and the
algorithm can be parallelized by splitting the population across them as islands
with migration. On each node/island, “local” fitness evaluation is parallelized
via multi-threading. If the dataset size exceeds single node memory capacity,
data-level parallel approaches evolve models locally on each node with a subset
of the data, then a meta model is built that fuses outputs from several of these
models. Such ensemble strategies provide robustness to the learning process [8].
The population-parallel and data-parallel approaches are ideal if one has access
to a cloud or cluster [18]. However some scenarios may prevent their adoption:

– Privacy and security policies around data may require that the machine learn-
ing and data mining be carried out locally.

– Large data transfers may be prohibitively expensive or require too extensive
a prior setup.

– A scientist may wish to use GPSR as an exploratory tool, tightly integrated
into a desktop workflow that requires timely delivery of models.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

Flash serves this class of scenarios wherein desktop computing is necessary or
desired but the dataset is larger than the desktop’s memory capacity. It is a serial,
desktop alternative to a cloud-based GPSR ensemble system. Rather than node-
based learning in parallel on different subsets of data and different parameter
sets, the Flash GP learner is invoked sequentially; each time with a different
subset of data and a different set of parameters. Because it exploits General
Purpose GPUs to reduce the time cost of model evaluation, it is able to replicate
GPSR ensemble functionality within a single desktop and still obtain reduced
learning times, despite datasets sizes that are larger than the desktop’s memory
capacity. Flash comprises:

– GPU-optimized GPSR: Flash exploits different fitness functions that are
well suited to run on the GPU. In particular, it uses the correlation between
target values and predictions to drive GPSR. Diverse models are combined
with the algorithm Adaptive Regression by Mixing [20].

– Incremental Learning: Flash, as opposed to cloud-based GPSR ensembles
in which all the GP instances are run in a single batch of a preset size, decides
after each run whether to run an additional instance or to stop learning.

– High speed GPSR with large datasets: Flash implements fitness evalu-
ation in CUDA for execution in a low-cost gaming card, namely a NVIDIA
Geforce GTX 690. The card has two GPUs and allows concurrent kernel ex-
ecutions. Our implementation enables GP to learn from a dataset composed
of 370K exemplars and 90 features, evolving a population of 1000 individuals
during 100 generations in as less as 50 seconds.

We proceed as follows: Section 2 reviews existing GPU implementations of GP
algorithms. Section 3 presents the GPU specialized fitness functions. Section 4
describes Flash’s ensemble approach. Section 5 describes the experimental setup
while Section 6 presents the results. Section 7 concludes.

2 Related Work: Accelerating GP with GPUs

The capability of GPUs to speed up Genetic Programming has not escaped
the attention of researchers. Table 1 summarizes the experimental conditions
of significant contributions. In a nutshell, there are two recurrent approaches:
compiling the population at each generation and executing the resulting program
or creating an optimized interpreter of GP individuals.

Population Compilation This approach has its roots in GP scenarios targeting
the automatic generation of executable programs where the compilation step
verifies the feasibility of candidate solutions. However it can be applied to GP
problems in general for execution speed. Compiled expressions are expected to
execute faster since compiled code is optimized (code reordering, removal of
useless or redundant operations). This advantage must be balanced with the
overhead of compilation however.

Interpretation An interpreter that is capable of evaluating the GP “language”
of a given GP problem is implemented in the GPU. This approach waives com-
pilation and its overhead. It exploits evaluation parallelism at the individual

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 15

Table 1. Experiment conditions of closely related work and reported speedup

Contribution Pop. size Test Cases Approach Speedup As compared to
Harding-2007 [5] 100 65536 Pop. compilation 7351.06 Tree traversal
Chitty-2007 [3] 40000 Pop. compilation 29.98 CPU equivalent
Langdon-2008[9] 204800 1200 Interpreter 12.00 CPU equivalent
Banzhaf-2008 [1] 494021 Pop. compilation 7.40 CPU equivalent
Robilliard-2008 [16] 12500 2048 Interpreter 80.00 CPU equivalent
Wilson-2008 [19] 4000 251 Interpreter 2.51 Xbox CPU
Harding-2009 [7] 2048 10023300 Pop. compilation 55.00 Single GPU
Langdon-2009 [10] 262144 8192 Interpreter 34.00 CPU equivalent
Robilliard-2009 [17] 12500 100000 Interpreter 111.40 CPU equivalent
Lewis-2009 [12] 400 512 Interpreter 1259.57 CPU equivalent
Maitre-2010 [14] 1200 Interpreter 50.00 CPU equivalent
Langdon-2010 [11] 262144 8192 Interpreter - Never done in CPU
Maitre-2010b [13] 65536 65536 Interpreter 140.00 CPU equivalent
Harding-2011[6] 2000000 Interpreter - Never done in CPU

and fitness case level and suits GP scenarios with a small number of test cases.
Because threads in charge of evaluating short expressions will be idle waiting for
longer expressions to finish their execution, some resources are wasted.

Preliminary Analysis We compare the speedup obtained with the compilation
and interpretation approaches against a standard tree traversal evaluation. We
generate 5 random datasets composed of and 5,10,20,50, and 100 explanatory
variables respectively and a million exemplars. For each of the five resulting
datasets, we generate a population of 1000 individuals with a ramped half-and-
half strategy. The time per population evaluation of these two approaches is
shown in Figure 1. The comparative analysis shows that the interpreter approach
obtains faster evaluations. As shown in Table 1b, the compilation time severely
impacts the speedup obtained with the compilation approach. Therefore, we
adopt the interpreter approach in our work.

(a) Interpreter vs. Population Compilation

Step % runtime

traversals 0.48%
code 0.30%
compile 86.90%
run 12.32%

(b) Population compila-
tion profiling

Fig. 1. Speedup obtained with the CUDA interpreter (80×) and compiling (14×) ap-
proaches with different data dimensionality and size as compared to a standard CPU-
based evaluation, and profiling of the compilation approach

16 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

3 The Core GP Learner

We now present the core GP learner that uses the GPU. Most of the steps in
the GP learning algorithm, like other approaches are carried out in the CPU.
Fitness function evaluation, which is biggest bottleneck and scales with the data
size is carried out on a GPU. To support ensemble learning we developed a
library of interpreter approach based fitness evaluation functions. We then allow
the flexibility to a choose a fitness function by the ensemble learning system. We
illustrate how we implement two fitness functions on GPU: Mean Squared Error
and Pearson Correlation coefficient between model output and target values
computed as follows:

MSE =
1

n

n∑

i=1

(Ŷi − Yi)
2 r =

∑n
i=1(Ŷi − Ŷ)(Yi − Y)

√
∑n

i=1(Ŷi − Ŷ)2
√∑n

i=1(Yi − Y)2

where Y is the target vector and Ŷ is the model output or predictions. These
two functions are embedded in a multi-objective GP based on NSGA-II targeting
both accuracy and Subtree Complexity. The fixed structure of NSGA-II allows to
evaluate the population in fixed-sized batches, which is useful for GPU execution.

3.1 Mean Squared Error and Pearson Correlation on GPUs

The computation required to score a model is broken in several steps. Note that,
in Genetic Programming-based Symbolic Regression, it is typical to set the tar-
get and prediction values in the same range (see Step 0 and Step 3) prior to the
computation of the error. This approach is meant to focus the search process to
capture the shape of the curve rather than its scale.

Step 0: Normalization of the target values In this step, performed before
the start of the GP algorithm, the target vector Y is normalized according to
the minimum (Ymin) and maximum (Ymax) values.

Step 1: Evaluation of non linear model with GPUs In this step, non-
linear model f(X̄) is evaluated for the n data points in DT resulting in y1...n.
We implement a GPU interpreter capable of evaluating any possible arithmetic
expression in postfix notation [9] [16] [19]. As depicted in Figure 2, several steps
are required to obtain the postfix expression from a GP tree. We first traverse the
tree in a depth-first in-order manner to generate the respective infix expression.
We then apply Dijkstra’s Shunting Yard algorithm [4] to obtain the postfix
notation. The interpreter will evaluate the expression and produce an output
value for each data point in the dataset. This task is computed via GPUs for
datasets of size hundreds of thousands or even millions of independent test cases.
In our GPU implementation, a CUDA thread is declared for each data point in
the dataset. Thus multiple CUDA threads will execute the interpreter function
shown in Figure 2 simultaneously on different data points, ensuring that all
threads follow the exact same execution path. Note that conditional instructions
such as if or while statements are pernicious for the performance of CUDA

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 17

function CUDAInt(Epostfix)

loadVariablesX(threadId)
while not end of expression do

read token from expression
if token is a variable then

push
else if token is operator then

pop right operand
if unary operator then

evaluate(right)
else if binary operator then

pop left operand
evaluate(left,right)

end if
push result

end if
end while
pop result
output[threadId] = result

end function

Fig. 2. GP Tree and corresponding infix, and postfix expressions (left) and pseudocode
of the postfix interpreter (right)

programs only when they trigger a divergence in the execution of threads within
a warp (see [15]). In such case, their execution is serialized. To benefit from
coalesced memory accesses, we transpose the input matrix before storing it in
global memory in such way that exemplars are displayed in columns while each
line corresponds to an explanatory variable. This way, contiguous threads will
access adjacent memory positions, thus reducing the number of expensive global
memory accesses. At the end of this step we obtain the output of the model
Ŷ1...n for all the n data points in DT .

Step 2: retrieval of Ŷmin and Ŷmax A CUDA parallel reduction is employed to
retrieve the maximum and minimum values of the model’s output.

Step 3: normalization of the predictions Ŷ We normalize the model’s out-
put according to minimum (Ŷmin) and maximum (Ŷmax) predictions.

The remaining steps are different for the computation of the Mean Squared Er-
ror (MSE) and the Pearson correlation coefficient (CORR):

MSE-Step 4: With both the target and prediction values in the same range,
we compute the sum of the squared differences

∑n
1 (Ŷ−Y)2 with a CUDA parallel

reduction sum.
MSE-Step 5: The result of the sum is averaged over the number of exemplars
of the dataset in CPU and assigned as fitness of the individual.

CORR-Step 4: We employ a CUDA parallel reduction sum to compute the
mean of targets Y as well as the mean of the predictions Ŷ

CORR-Step 5: Once again a CUDA parallel reduction sum is employed to com-

pute the denominator
∑n

i=1(Ŷi−Ŷ)(Yi−Y) and the numerator terms
√

∑
n
i=1(Ŷi−Ŷ)2

and
√∑n

i=1(Yi−Y)2

18 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

CORR-Step 6: The Pearson correlation coefficient is computed in CPU and
assigned as fitness of the individual.

3.2 Individual Level Parallelism

Modern CUDA compatible GPUs provide concurrent kernel execution, i.e. it is
possible to execute several GPU functions at the same time. This allows us to
parallelize GP at the individual level in a clean and easy way. Moreover, GPUs
composed of two independent GPUs such as the employed NVIDIA GeForce
GTX 690 are more and more frequent, granting further degrees of parallelism.
As depicted in Figure 3a, the population is split into 4 different subsets. A CPU
thread is declared for each subpopulation that calls the GPU evaluation function
sequentially for each individual of the subset. The two first threads will employ
the first GPU while the third and fourth threads employ the second GPU. The
memory space of each of the two GPUs is independent, therefore data is copied
to the Global Memory of both GPUs.

4 Flash - The GP-GPU Ensemble Learning System

Having designed a flexible core GP-GPU learner, we adopt an ensemble strategy
in which several GP instances are run sequentially with different data subsets
and parameters (such as fitness functions). In a step prior to the machine learn-
ing process, the targeted data D is split into training set DT , cross-validation set
DCV , and test set DTEST . GP instances learn from DT while DCV is employed
to train the fused model. Finally, DTEST is reserved to test the accuracy of the
retrieved models. Figure 3b presents the Flash-GP approach: a subset of data
is randomly selected and the objective function for the GP algorithm is picked
randomly. The core GP learner is then executed with these parameters. After a
fixed number of generations the best model is selected. The fusion module gen-
erates the fused model by training the weights within the “Adaptive Regression
by Mixing” methodology using DCV . A decision is made whether to continue
the learning or not and the loop is repeated.

4.1 GP Instances

Factorization. As depicted in Figure 3b, each GP instance learns from a sub-
sample of the exemplars and explanatory variables of DT .
Exemplars: Each GP instance samples from the test cases of the training data
DT which will speed up model fitness evaluation and result in diverse model
results across the sequential GP instances.
Explanatory Variables: Sampling from different explanatory variables reduces
the dimensionality of the targeted dataset. On the other hand, the evolved mod-
els might exhibit low accuracy if the sampled variables can’t sufficiently relate
to the target values Y .

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 19

(a) Individual-level parallelism

(b) Ensemble loop

Fig. 3. The evaluation is parallelized at the individual level by exploiting concurrent
kernel executions in two GPUs. Flash-GP: GP instances learn from different samples
of the data and the retrieved models are fused in a later step.

Best Model per GP Instance. GP instances learn from the sampled data and
are executed with a time or computational budget. At each generation, we store
the model exhibiting the highest fitness value (MSE or correlation) with respect
to DT . The motivation to save the best model per generation is that models from
advanced generations might overfit the data while some of the models obtained
earlier might exhibit better generalization capability, i.e. a better accuracy with
respect to unseen data. Once the GP run is finished, the stored models (best
per generation) are evaluated against DCV to obtain their MSE. The model
exhibiting the lowest error with respect to the validation set is then selected as
the best model of the run and will be used in the fusion process.

4.2 Generating a Fused Model

We employ the algorithm Adaptive Regression by Mixing (ARM) [20] that allows
to fuse a set of models M according to an estimation of their accuracy. The fused
model z obtained with ARM is a linear combination of the modelsm ∈ M . Given
a test sample Xj, the prediction ẑj issued by the fused model is the weighted
average of model predictions ẑj=

∑o
m=1 WmŶmj. Thus, the fusion process consists

of learning the weight Wm for each model. Let r = |DCV | be the size of the
fusion training set, and o = |M| be the number of models in the ensemble. Here,
we assume that the errors for each model are normally distributed. We use the
variance in these errors to identify the weights by executing the following steps:

Step 1: Split DCV randomly into two equally sized subsets D
(1)
CV and D

(2)
CV .

Step 2: Evaluate σ2
m which is the maximum likelihood estimate of the variance

of the errors, em={Ŷmj−Yj |Xj ,Yj∈D
(1)
CV }. Compute the sum of squared errors on

D(2), βm=
∑r

j= r
2
+1(Ŷmj−Yj)

2.

Step 3: Estimate the weights using: Wm =
(σm)−r/2exp(−σ−2

m βm/2)
∑o

j=1(σj)−r/2exp(−σ−2
j βj/2)

Step 4: Repeat steps 1-3 for a fixed number of times. Average the weights from
each iteration to get the final weights for the models.

20 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

5 Experimental Setup

5.1 Million Song Dataset Year Prediction Challenge

The proposed approach is demonstrated with the Million Song Dataset (MSD)
year prediction challenge [2], a regression problem in which the goal is to predict
the year in which a given song was released. The dataset has 515K songs, each
described with 90 features and a year label. The dataset is divided into DT ,
DCV , and DTEST accounting for 70%, 10%, and 20% of the data respectively
(see Table 2). In addition, we generate 20 subsets Df1

T ...Df20
T by sampling half

the exemplars from the training set DT . Note that the producer effect issue [2]
has been taken into account to perform all the splits.

5.2 Ensemble Configurations

We set up different configurations of Flash by selecting different objective func-
tions and choosing whether or not to factor the data. We select from three
objective combinations:
1. MSE: Mean Squared Error + Subtree Complexity
2. CORR: Pearson correlation coefficient + Subtree Complexity
3. MSE-CORR: MSE + Pearson correlation coefficient + Subtree Complexity
All the studied configurations are multi-objective and all use the Subtree

Complexity measure to prevent bloating issues. We compare two data strategies:
1. The complete training set DTR is considered in each of the GP instances of

the ensemble
2. Data factoring: each GP instance of the ensemble randomly selects a set

Dfi
TR, where i ∈ [1; 20]. Additionally, each instance randomly selects v ex-

planatory variables of Dfi
TR, where v ∈ {5, 10, 20, 40, 60, 80, 90}. The f (as

in factoring) suffix is appended to the name of the configuration when this
data strategy is adopted.

The 6 resulting configurations: MSE, MSEf , CORR, CORRf , MSE-CORR, and
MSE-CORRf are summarized in Table 3. The following settings are fixed in all
the experiments. Each GP instance is run for 100 generations with a population
of 1000 individuals. A time budget of an hour is imposed on the GP ensembles.
Finally, the number of iterations of the ARM fusion process is set to 100. We
perform 20 replicas of each of the ensemble configurations. Thus, in summary,
we perform a total of: 6(configurations)×20(replicas)=120 ensemble runs. All
the experiments are run on the same computer, equipped with an Intel Core-
i7-3930K composed of 6 cores with hyper-threading running at 3.20GHz and a
NVIDIA Geforce GTX 690 that counts two GPUs, each with 1536 CUDA cores.
The GPU postifx interpreter (see Figure 2) is compiled with the fast-math flag.

6 Results

6.1 Prediction Error Analysis

A key question is whether the objective function designed to suit GPU usage
and a strategy of learning with less data compromises quality. Our first merit of

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 21

Table 2. MSD splits

D DT Dfi
T DCV DTEST

100% 70% 35% 10% 20%
515K 362K 181K 51K 102K

Table 3. Configuration of the compared ensembles

Configuration Fitness Functions Factor Data
MSE MSE, Subtree Comp no
MSEf MSE, Subtree Comp yes
CORR P. Corr, Subtree Comp no
CORRf P. Corr, Subtree Comp yes

MSE-CORR MSE, P. Corr, Subtree Comp no
MSE-CORRf MSE, P. Corr, Subtree Comp yes

quality will be prediction error with respect to Mean Squared Error of the unseen
data DTEST . Figure 4a shows the boxplots generated with the MSETEST errors
corresponding to the 20 replicas of the runs. First, we observe that, independent
of the objective functions, the data factoring strategy leads to a better accuracy.
Second, we observe that the maximization of the Pearson correlation coefficient
outperforms the standard MSE approach.

To statistically validate these observations, we perform a pairwise Anova test
and multiple testing using the Tukey-Kramer or also known as Tukey’s honestly
significant difference (HSD) method for the prediction errors MSETEST of the
different ensemble configurations. The results are shown in Table 4 where each
row presents a test result and the two entries [xl, xu] represent the 95% confidence
interval between true differences of the mean. Any time the confidence interval
does not enclose 0 the difference is significant at α = 0.05. The table verifies that
factoring is a statistically superior configuration, regardless of objective function:
MSEf , CORRf , and MSE-CORRf respectively outperform MSE, CORR, and
MSE-CORR. The superior prediction accuracy of CORRf versus the remaining
approaches is statistically significant.

6.2 Prediction Error vs. GP Instances

We study the impact of the number of GP instances forming the ensemble in
the accuracy of the fused model. In Figure 5, we plot the average and stan-
dard deviation of the MSETEST of the fused model when the number of GP
instances increases. In all the studied cases, the prediction error of the fused
model decreases when a higher number of GP runs are performed. However,
a high variability can be observed in the cases where the factoring strategy is
employed. It is due to the fact that a fraction of the GP instances learn from a

MSE MSEf CORR CORRf MSE−CORR MSE−CORRf

90

95

100

105

110

M
S

E
 T

E
S

T

(a) Test MSE

MSE MSEf CORR CORRf MSE−CORR MSE−CORRf
50

100

150

200

250

300

350

400

T
IM

E
 P

E
R

 G
P

 R
U

N
 (

s)

(b) Time per GP run in seconds

Fig. 4. Accuracy (a) and time per GP run in seconds (b) of the 6 ensemble configurations

22 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

Table 4. Pairwise MSE comparison with ANOVA test

MSE MSEf CORR CORRf MSE-CORR

MSE -
MSEf [1.08;6.26] -
CORR [6.02;11.20] [2.35;7.53] -
CORRf [9.72;14.90] [6.05;11.23] [1.11;6.29] -
MSE-CORR [2.59;7.77] [-1.08;4.10] [-6.02;-0.84] [-9.72;-4.54] -
MSE-CORRf [6.98;12.16] [3.31;8.49] [-1.64;3.55] [-5.34;-0.16] [1.80;6.98]

Fig. 5. Average MSE of the fused model with an increasing number of GP instances
for the 6 different ensemble configurations

reduced set of non representative variables and achieve poor predictions. How-
ever, as more GP instances are considered, the average accuracy increases and
the variability decreases. Therefore, ensemble approaches adopting the data fac-
toring strategy need to consider a larger number of GP instances to minimize
the variability in the prediction accuracy.

6.3 Runtime Analysis

We analyze whether the data factoring strategies lead to shorter runtimes. The
time per GP instance of the compared approaches is shown in Figure 4b. It
can be seen that the time necessary to evolve 1000 GP individuals during 100
generation varies from 50 seconds to approximately 400 seconds. To compare
the different runtimes, we perform a pairwise Anova test and multiple testing
using the Tukey-Kramer or also known as Tukey’s honestly significant difference
(HSD) method for the time per GP instance retrieved from the 20 replicas of
the ensemble runs. The analysis presented in Table 5 shows that MSEf and
MSE-CORRf are respectively faster than MSE and MSE-CORR. However, the
runtime of the CORR and CORRf approaches is not statistically different.

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 23

Table 5. Pairwise time per GP instance comparison with ANOVA test

MSE MSEf CORR CORRf MSE-CORR
MSE -
MSEf [6.77;22.33] -
CORR [-23.98;-7.57] [-38.33;-22.33] -
CORRf [-28.61;-12.04] [-42.95;-26.79] [-13.04;3.95] -
MSE-CORR [-157.74;-138.17] [-172.11;-152.89] [-142.14;-122.22] [-137.65;-117.61] -
MSE-CORRf [-126.21;-107.09] [-140.58;-121.82] [-110.61;-91.14] [-106.13;-86.52] [20.20;42.40]

7 Conclusions and Future Work

We have presented a GPU-based implementation of a GP ensemble strategy
where different GP instances are run sequentially on a single desktop, and the
models retrieved from the different runs are fused with Adaptive Regression by
Mixing. Our approach is demonstrated with the Million Song Dataset year pre-
diction challenge, a symbolic regression problem that has 515K exemplars. The
execution of the evaluation step in a dual-GPU with concurrent kernels allows
GP instances with 1000 individuals to run for 100 generations in as few as 50
seconds. The experimental work shows that the implementation of a data reduc-
tion strategy in which each GP instance of the ensemble samples a subset of the
exemplars and explanatory variables of the data outperforms the standard strat-
egy that considers the whole dataset. It also shows that employing the Pearson
correlation coefficient between predictions and targets to drive the search leads
to a higher accuracy than the generally used Mean Squared Error metric.

Acknowledgments. The ALFA group gratefully recognizes the financial sup-
port of the Li Ka Shing Foundation and the G.E. Global Research Center. Any
opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of G.E.

References

1. Banzhaf, W., Harding, S., Langdon, W., Wilson, G.: Accelerating genetic pro-
gramming through graphics processing units. In: Genetic Programming Theory
and Practice VI. Genetic and Evolutionary Computation, pp. 1–19. Springer US
(2009)

2. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset.
In: Proceedings of the 12th International Conference on Music Information Re-
trieval, ISMIR 2011 (2011)

3. Chitty, D.M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: Proceedings of the 9th Annual GECCO Con-
ference, GECCO 2007, pp. 1566–1573. ACM, New York (2007)

4. Dijkstra, E.W.: Algol 60 translation. Supplement, Algol 60 Bulletin 10 (1960)

5. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

24 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

6. Harding, S., Banzhaf, W.: Implementing cartesian genetic programming classifiers
on graphics processing units using GPU.NET. In: Proceedings of the 13th GECCO
Conference, GECCO 2011, pp. 463–470. ACM, New York (2011)

7. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using
CUDA. In: Hidalgo, I., Fernandez, F., Lanchares, J. (eds.) PABA Workshop,
Raleigh, NC, USA, September 13, pp. 1–10 (2009)

8. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models:
using ensembles, interval arithmetic and pareto fronts to develop robust and trust-
aware models. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming
Theory and Practice V. Genetic and Evolutionary Computation Series, pp. 201–
220. Springer US (2008)

9. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming
on GPU graphics cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia
Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008.
LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)

10. Langdon, W.: A CUDA SIMT interpreter for genetic programming. Tech. Rep.
TR-09-05, Department of Computer Science, Strand (June 2009) (revised)

11. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 146–158. Springer, Heidelberg (2010)

12. Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic
graph based genetic programming with GPUs. In: Proceedings of the 11th GECCO
Conference, GECCO 2009, pp. 1379–1386. ACM, New York (2009)

13. Maitre, O., Querry, S., Lachiche, N., Collet, P.: EASEA parallelization of tree-
based Genetic Programming. In: 2010 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1–8 (2010)

14. Maitre, O., Lachiche, N., Collet, P.: Fast evaluation of GP trees on GPGPU
by optimizing hardware scheduling. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva,
S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 301–312.
Springer, Heidelberg (2010)

15. NVIDIA Corporation: NVIDIA CUDA C programming guide, version 3.2 (2010)
16. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Population parallel GP on the G80

GPU. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 98–109. Springer, Heidelberg (2008)

17. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Genetic programming on graphics
processing units. Genetic Programming and Evolvable Machines 10(4), 447–471
(2009)

18. Veeramachaneni, K., Derby, O., Sherry, D., O’Reilly, U.M.: Learning regression en-
sembles with genetic programming at scale. In: Proceeding of the Fifteenth GECCO
Conference, GECCO 2013, pp. 1117–1124. ACM, New York (2013)

19. Wilson, G., Banzhaf, W.: Linear genetic programming GPGPU on Microsoft Xbox
360. In: IEEE Congress on Evolutionary Computation, pp. 378–385 (2008)

20. Yang, Y.: Adaptive regression by mixing. Journal of the American Statistical As-
sociation 96(454), 574–588 (2001)

Learning Dynamical Systems

Using Standard Symbolic Regression�

Sébastien Gaucel1, Maarten Keijzer2, Evelyne Lutton1, and Alberto Tonda1

1 INRA UMR 782 GMPA, 1 Av. Brétignières, 78850, Thiverval-Grignon, France
{sebastien.gaucel,evelyne.lutton,alberto.tonda}@grignon.inra.fr

2 Pegasystems Inc., Amsterdam, Netherlands
maarten.keijzer@pega.com

Abstract. Symbolic regression has many successful applications in
learning free-form regular equations from data. Trying to apply the same
approach to differential equations is the logical next step: so far, how-
ever, results have not matched the quality obtained with regular equa-
tions, mainly due to additional constraints and dependencies between
variables that make the problem extremely hard to tackle. In this paper
we propose a new approach to dynamic systems learning. Symbolic re-
gression is used to obtain a set of first-order Eulerian approximations of
differential equations, and mathematical properties of the approximation
are then exploited to reconstruct the original differential equations. Ad-
vantages of this technique include the de-coupling of systems of differen-
tial equations, that can now be learned independently; the possibility of
exploiting established techniques for standard symbolic regression, after
trivial operations on the original dataset; and the substantial reduction
of computational effort, when compared to existing ad-hoc solutions for
the same purpose. Experimental results show the efficacy of the proposed
approach on an instance of the Lotka-Volterra model.

Keywords: Differential Equations, Dynamic Systems, Evolutionary Al-
gorithms, Genetic Programming, Symbolic Regression.

1 Introduction

In recent years, Genetic Programming (GP) gained popularity as an effective op-
timization technique [1], and its capabilities of automatically uncovering hidden
relationships in datasets and producing rules to control complex systems haves
been proved in several real-world applications [2] [3].

Differential equations are mathematical equations for an unknown function
of one or several variables that relates the values of the function itself and its
derivatives of various orders: they play a prominent role in engineering, physics,
economics, biology, and other disciplines.

The idea of using symbolic regression to learn differential equations is present
since the beginnings of GP [4]: given the great interest towards this topic, several

� All authors contributed equally and their names are presented in alphabetical order.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 25–36, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

26 S. Gaucel et al.

research lines have followed. Babovic and Keijzer [5] propose a dimensionally-
aware GP to learn dynamic systems in hydraulic engineering. Cao et al. [6]
present a GP-based technique where an individual is a set of trees, representing
a system of equations. Coefficients of the equations are optimized via a Genetic
Algorithm, then the system is solved through a numerical integration method
and the resulting equations are finally evaluated against training data. Iba [7]
proposes an improvement over the previous approach, where coefficients are op-
timized through a least mean square technique, and a Runge-Kutta method of
4th order is used to build a solution. Bernardino and Barbos [8] use Grammar-
Based Immune Programming to tackle the problem. It is important to notice
that, while quite effective, all these concepts rely upon the use of ad-hoc individ-
ual construction, and significant computational costs to first solve the candidate
equations and then compare them to experimental data.

We investigate a novel methodology for learning ordinary differential equa-
tions (ODE) through symbolic regression, whose original idea stems from an
invited talk given by Maarten Keijzer during the GECCO conference in 2013
[9]. Given a system of ODEs, we show how the problem can be reduced to find-
ing the first-order approximation of each ODE.We then apply the subsequent
steps:

1. For each equation, standard symbolic regression is used to obtain a small
group of candidate solutions that represent a trade-off between complexity
and fitting;

2. A simple derivation procedure, following the properties of the first-order ap-
proximation of an ODE, is applied to each candidate solution, transforming
them in ODEs;

3. Finally, corresponding equations are coupled in systems and examined with
respect to dynamical behavior and fitting on the original data. The best
system is returned to the user as the solution for the original problem.

Important advantages of our method are the possibility of learning differential
equations using established symbolic regression techniques, instead of devising
ad-hoc individual representations and fitness functions; the greatly reduced com-
putational cost, since the most expensive procedures are performed a posteriori
on a reduced set of candidate solutions; and the possibility of separately learning
each differential equation in a target system, since the first-order approximation
removes dependencies between variables.

Using the Lotka-Volterra model as a case study, we show the applicability of
the proposed methodology through experimental validation. We find that the
described approach is able to regularly find the correct structure of the original
model, even in presence of noise. Results are discussed, and future works outlined.

The rest of the paper is structured as follows: Section 2 recalls a few necessary
concepts related to symbolic regression and differential equations. The proposed
approach is outlined in Section 3. The case study is presented in Section 4, while
the experimental evaluation is described in Section 5. Results are discussed in
Section 6, and finally Section 7 draws the conclusions and prospects future works.

Learning Dynamical Systems Using Standard Symbolic Regression 27

2 Background

2.1 Genetic Programming and Symbolic Regression

Symbolic regression is an evolutionary technique able to extract free-form equa-
tions that correlate data from a given experimental dataset. The original idea is
presented in [4]. Candidate solutions are encoded as trees, with terminal nodes
corresponding to constants and variables of the problem, while intermediate
nodes encode mathematical functions such as {+,−, ∗, /, ...}. The fitness function
is usually proportional to the absolute or squared error between experimental
data, with parsimony corrections to favor more compact solutions. An example
of an individual for a symbolic regression problem is presented in Figure 1.

*

-
0.2 /

x +

ln

*

f(x) = [0.2 – (x/42)] * ln(x)

Genotype Phenotype Fitness

40 2

x

y

x

y

1 x

Fitness = abs(f(xi) –g(xi))

Fig. 1. A candidate solution in a typical symbolic regression problem. The internal
representation (genotype) is a binary tree. The phenotype is the corresponding func-
tion, while the fitness to minimize is usually the absolute or squared error with respect
to experimental points.

2.2 Differential Equations and First-Order Approximation

In order to clarify the scope of our work, we briefly summarize a few basic con-
cepts related to differential equations that will be extensively used in the follow-
ing. A differential equation is defined as an equation containing the derivatives of
one or more dependent variables, with respect to one of more independent vari-
ables [10]. We will focus on ordinary differential equations (ODE), that contain
derivatives as a function of a single variable (e.g. the time). A classical example
of a differential equation is the first-order ordinary differential equation :

y′(t) = f(t, y(t)) y(t0) = y0 (1)

where y(t) is a function and y0 is an initial condition.
The (Explicit) Euler method [11] is a first-order numerical procedure for solv-

ing ordinary differential equations with a given initial value: it is the most basic

28 S. Gaucel et al.

explicit method for numerical integration of ordinary differential equations. With
reference to Equation 1, we use the finite difference formula to approximate y′(t):

y′(tn) = lim
Δt→0

y(tn +Δt)− y(tn)

Δt

∼= y(tn +Δt)− y(tn)

Δt
(2)

Choosing a value Δt for the size of every step and setting tn = t0 + n ·Δt, one
step of the Euler method from tn to tn+Δt = tn +Δt is:

yn+Δt = yn +Δt · f(tn, yn) (3)

where the value of yn is an approximation of the solution to the ODE at time
tn, so that yn ≈ y(tn). The error per step of this method is proportional to the
square of the step size, while its error at a given time is proportional to the step
size. It is important to notice how the selection of the step size plays a crucial
role in the quality of the results.

A remarkable property of the Euler approximation is the possibility of re-
constructing the initial ODE, under specific conditions. In particular, one can
rewrite Equation 3 as follows:

yn+Δt − yn = F (tn, yn, Δt) (4)

where F is a function which allows to evaluate yn+Δt for any value Δt. From
Equation 4 and looking at the derivative according to Δt around 0, we obtain

lim
Δt→0

yn+Δt − yn
Δt

= lim
Δt→0

F (tn, yn, Δt)− F (tn, yn, 0)

Δt
(5)

which can be rewritten as

f(t, y(t)) = y′(t) =
∂F (tn, yn, Δt)

∂Δt

∣
∣
∣
∣
Δt=0

(6)

going back to Equation 1.
In a practical scenario, Equation 4 can be used to iteratively build the approxi-
mate solution of Equation 1. At the opposite, assuming that an analytical form
of the approximate solution of Equation 1 is available, Equation 6 can be used
to obtain function f .

3 Proposed Approach

From Equation 6, we see how it is possible to return to the original ODE starting
from the first-order approximation given in Equation 4. It is sufficient to find
the classical function F in Equation 4.

Learning Dynamical Systems Using Standard Symbolic Regression 29

In order to find F , additional data must be computed. Given a standard
dataset with values of y for different values of time t, we need to add information
to each line yn, tn, by computing the values of Δt and yn + 1: in fact, in a real-
world dataset, it is not given that Δt = tn+1 − tn will be constant for every n.
Nevertheless, the procedure is trivial: an example is reported in Table 1. Once
the new data are obtained, symbolic regression can be straightforwardly applied
to the new dataset, to learn F .

Table 1. An example on how the values of the additional variables (right) can be
easily produced starting from the original dataset (left). In this case, for each line, we
computed the values of Δt and F to the next point, only.

t y

0 20

1.8 16.1

3.5 13.2

5.4 10.9

7.4 8.8

... ...

=⇒

t y Δt F = yn+Δt − yn

0 20 0 0
0 20 1.8 -3.9

1.8 16.1 0 0
1.8 16.1 1.7 -2.9

3.5 13.2 0 0
3.5 13.2 1.9 -2.3

5.4 10.9 0 0
5.4 10.9 2.0 -2.1

...

One of the known issues of symbolic regression and GP in general is the so-
called overfitting: solutions that closely approximate training data often exploit
exclusive features of the dataset, for example by including terms that model the
noise as well. This leads to poor performances on validation sets. Overfitting is
sometimes associated with bloating, that is, the tendency of GP algorithms to
produce bigger and bigger solutions as the evolution goes on. Connections be-
tween overfitting and bloating are still being investigated [12] [13], but empirical
evidence shows how it can be beneficial to add parsimony measurements in the
fitness function or preserve solutions of different complexity, in order to contain
the phenomenon.

While overfitting is always undesired, it is particularly deleterious for the
proposed approach: even if the F found through symbolic regression performed
reasonably well on validation data, when using our procedure to go back to
the original ODE, terms with a limited influence on F could create degenerate
solutions. For this reason, instead of just using the best solution obtained at the
end of the process, we prefer to have a set of candidate equations, each one a
different compromise on a Pareto front between complexity and fitting on data.

Dynamic systems are usually represented by a set of ODEs and our approach
allows the user to run a symbolic regression algorithm independently on each
equation: however, since we prefer to work with a set of candidate solutions for
each equation, we need an extra step to choose the best combination to represent
the original system. Thus, we apply the procedure described in Equation 6 to
every candidate solution of each set; we generate a set of n-uples, where n is the

30 S. Gaucel et al.

number of equations in the original system, by permuting solutions in all sets;
we discard degenerate n-uples, showing a behavior dissimilar from the original
data; and finally we choose the n-uple with the least absolute error with regards
to the training data. The whole procedure is summarized in Figure 2.

X X … X

f1
g1
…
z1

f1
g2
…
z1

f1
g1
…
z2

f1
g3
…
z1

f1
g1
…
z3

fn
gm
…
zk

fn
gm
…
zk-1

fn
gm
…
z3

f2
g2
…
z2

…
fn
gm
…
z2

fn
gm
…
z1

f4
gm-2
…
z1

Step I

Step II

Step III

z1
z2
…
zk

f1
f2
…
fn

g1
g2
…
gm

F Symbolic
Regression

… F1 F2 … Fn

G1 G2 … Gn

Z1 Z2 … Zn

G Symbolic
Regression

Z Symbolic
Regression

Fig. 2. Summary of the proposed approach. In Step I, standard symbolic regression
is executed independently on each equation of the original dynamic system: each run
returns a set of candidate solutions of variable size, representing different compromises
between complexity and fitting on training data. During Step II, the obtained sets are
transformed into sets of ODEs, following our methodology, and then permuted. Finally,
in Step III, the resulting set of systems of ODEs is pruned of degenerate equations,
the remaining candidate solutions are sorted by fitting on the original data, and the
best solution is returned to the user.

4 Case Study

In order to attest the viability of our approach, we choose the Lotka-Volterra
model [14] as a case study. This model, also known as predator-prey equations, is
a system composed of two first-order, non-linear, differential equations frequently
used to describe the dynamics of biological systems in which two species interact,
one as a predator and the other as prey. The equations have been extensively
used in biology and other fields, such as economic theory [15]. Their form is:

{
dx
dt = x(α − βy)
dy
dt = −y(γ − δx)

(7)

Learning Dynamical Systems Using Standard Symbolic Regression 31

where x is the number of prey, y is the number of predators, t represents time,
dx
dt and dy

dt represent the growth rates of the two populations over time. α, β, γ
and δ are parameters that describe the interaction between the two species.

We focus on a particular configuration of the Lotka-Volterra model, where the
parameters’ values have been chosen so that no population goes extinct, leading
to periodic solutions: α = 0.04, β = 0.0005, γ = 0.2 and δ = 0.004. Initial
populations were taken as x0 = y0 = 20. A plot of the chosen configuration is
reported in Figure 3.

Fig. 3. Plots of the Lotka-Volterra model with parameters used in the experiments.
On the left, the variation of the two population with respect to time (x in black, y in
blue/light grey). On the right, the state plane with x on the horizontal axis and y on
the vertical axis.

Following Equation 4, we are then interested in finding the two functions F
and G, first-order approximations of the first and second differential equation of
the Lotka-Volterra model, respectively:

xn+Δt − xn = F (Δt, xn, yn) (8)

yn+Δt − yn = G(Δt, xn, yn) (9)

A major feature of the proposed approach is the ability to learn the two
functions in two separate and independent runs of the symbolic regression algo-
rithm. Indeed, the reciprocal dependency of the Lotka-Volterra system has been
removed.

5 Experimental Results

Since one of the main advantages of the proposed approach is the possibility
of exploiting existing tools for standard symbolic regression, for our study we
choose Eureqa Formulize1 [1], considered a state-of-the-art software in the field.
Eureqa has one feature of particular interest for our purpose: instead of returning
a single solution per run, it presents the user a group of solutions that represent
a Pareto front for the objectives of fitting and complexity: see Figure 5 for an

1 http://formulize.nutonian.com/

http://formulize.nutonian.com/

32 S. Gaucel et al.

example. In Eureqa, each symbol that can appear in a GP tree is associated with
a weight, and the complexity of a candidate solution is simply the sum of all
weights of terms appearing in it; fitting is computed with respect to the squared
error with regards to the training data. It must be noted that, in principle, any
GP-based technique able to preserve individuals of different complexity in the
final population could be used for our methodology.

Each dataset is modified following the procedure described in Section 3: we
use 200 points for the training set. We are interested in exploring the influence
of noise and regularity of sampling on the quality of the final results, so for each
experiment we use a first dataset sampled every 2 s, and a second one, where
every point of data is sampled between 1.5 and 2.5 s from the previous one,
following a uniform probability. Eureqa is configured to employ its Basic set
of functions {+,-,*,/,negation} and terminal symbols {integer constant,

float constant, variable}. In each experiment Eureqa is run once to stagna-
tion, that is, until the index for the maturity of the population hits the threshold
value of 90%. On the machine used for the experiments, a laptop with an Intel
i5-2430M CPU (2 cores, 2 threads per core) at 2.40 GHz and 4 GB of RAM, run-
ning to stagnation takes 15-20 minutes, and around 1010 total fitness evaluations.
After each run, Eureqa typically returns about 20 solutions on its Pareto front.
In many real-world scenarios, it is almost impossible to make assumptions on
the type of noise affecting the measurements, so we chose to try our approach in
different conditions. The following experiments consider the same dataset, first
noise-free, then with absolute and relative noise of different magnitude added to
the original data.

5.1 Noise-Free Data

In the simplest scenario, we use datasets with no noise added. The first run,
with data regularly sampled, returns 20 candidate solutions for F and 20 candi-
date solutions for G. Each equation is transformed into an ODE, following our
proposed approach. The resulting 400 systems are then pruned of degenerate
solutions, that is, solutions that converge towards a point in the x, y plane (see
Figure 4 for an example). The remaining systems of ODEs are finally sorted by
fitting on the original unmodified training data. The same procedure is followed
for the dataset with irregular sampling. This time, 21 candidate solutions are
produced for F and 25 for G. The best ODE systems are:

{
dx
dt = 0.04114x− 0.0004946xy
dy
dt = 0.00367xy− 0.1861y

{
dx
dt = 0.04116x− 0.0004924xy
dy
dt = 0.003599xy− 0.1826y

(10)

with the result for regular sampling on the left, and the result for irregular
sampling on the right. Both show the same form of the original Lotka-Volterra
model, and a remarkable approximation of the parameters’ values. As a compari-
son, in Figure 4 the two systems found with the proposed approach are compared
to the systems obtained by simply coupling the best fitting-wise candidate solu-
tions produced in each run.

Learning Dynamical Systems Using Standard Symbolic Regression 33

(a) Regular sampling, noise-free (b) Irregular sampling, noise-free

Fig. 4. Side-by-side comparison on the noise-free dataset, of the best system found
through the proposed approach (left), and the system obtained by pairing the two
fitting-wise best solutions of each run (right). It is easy to notice how simply pairing
the best candidate solutions leads to degenerate forms or to a lowest fitting on the
original training data.

5.2 Absolute Noise

In a second trial, random noise (selected from the interval (−5, 5) with uniform
probability) is added to the x and y outputs of the model. On the regularly
sampled dataset, Eureqa finds 17 candidate solutions for F and 20 for G. On
the irregularly sampled dataset, 13 solutions for F and 19 for G are obtained.
The best resulting systems are:

{
dx
dt = 0.03992x− 0.0005548xy
dy
dt = 0.003525xy− 0.1916y

{
dx
dt = 0.03946x− 0.0005354xy
dy
dt = 0.003662xy− 0.1948y

(11)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

5.3 Noise 5%

In the third experimental run we add random noise proportional to the output
value, ranging from -5% to +5% with uniform probability. On the regularly
sampled dataset, Eureqa returns 16 candidate solutions for F and 15 for G. On
the irregularly sampled dataset, we obtain 16 candidate solutions for F and 16
for G. The best resulting systems are:

{
dx
dt = 0.03947x− 0.0004883xy
dy
dt = 0.003706xy− 0.1902y

{
dx
dt = 0.03743x− 0.0004522xy
dy
dt = 0.003707xy− 0.1916y

(12)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

5.4 Noise 10%

In the last experiment, we add random noise proportional to the output value,
ranging from -10% to +10% with uniform probability. On the regularly sampled

34 S. Gaucel et al.

dataset, 23 candidate solutions for F and 20 for G are obtained. On the irregu-
larly sampled dataset, Eureqa finds 17 candidate solutions for F and 18 for G.
The best systems are:

{
dx
dt = 0.0362x− 0.0004797xy
dy
dt = 0.003306xy− 0.1841y

{
dx
dt = 0.03874x− 0.0004959xy
dy
dt = 0.003587xy− 0.1898y

(13)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

6 Results Discussion

The proposed approach is able to find the correct model for the Lotka-Volterra
function during each run, even if the parameters (α, β, γ, δ) might slightly
differ, especially when dealing with noise. Remarkably, the irregularity of the
sampling for the training set does not seem to influence the final outcome; while
the presence of noise predictably returns results of lower quality.

From the experimental evaluation, we can see how Eureqa consistently returns
a set of candidate solutions in the order of 101: since there are only two differen-
tial equations in the model, the search space for coupling the candidate solutions
and assessing the results in the second step of our process explores a search space
of 102. However, when dealing with huge systems of differential equations, the

(a) Noise-free dataset, regular sampling: Pareto fronts
for F (left) and G (right).

(b) Noise-free dataset, irregular sampling: Pareto
fronts for F (left) and G (right).

(c) Dataset with absolute noise, regular sampling:
Pareto fronts for F (left) and G (right).

(d) Dataset with absolute noise, irregular sampling:
Pareto fronts for F (left) and G (right).

(e) Dataset with 5% noise, regular sampling: Pareto
fronts for F (left) and G (right).

(f) Dataset with 5% noise, irregular sampling: Pareto
fronts for F (left) and G (right).

Fig. 5. Pareto fronts of the solutions found by Eureqa during some of the experiments.
The individual with the correct form of the Lotka-Volterra function is highlighted in
red, and it is noticeable how it almost always lies in the middle of the Pareto front,
often showing the biggest improvement over the previous step.

Learning Dynamical Systems Using Standard Symbolic Regression 35

complexity quickly explodes: if the GP routinely returns n solutions, the search
space of possible systems of m equations would become O(nm). Thus, it would
be beneficial to reduce the number of viable equations in each set before the cou-
pling process. For example, all equations that, after the derivation process from
Equation 6, are reduced to a constant, can be dismissed. This subset, however,
includes only 1-2 candidate solutions per set: other methods to prune the Pareto
front from uninteresting models should be explored. From the experimental re-
sults, we observe how most of the exact forms for the Lotka-Volterra equations
always lie in the middle part of the Pareto front fitting/complexity provided
by Eureqa (see Figure 5). It would be interesting to investigate whether this
property can be generalized to all problems: in that case, the extremes of the
Pareto front could be excluded; also, from the Pareto fronts, it looks that often
the correct solution shows the biggest improvement with regards to the previous
one. These considerations could be included in a heuristic coupling to reduce the
number of associations.

7 Conclusions and Future Works

In this paper, we presented a GP-based methodology to learn ordinary differen-
tial equations starting from experimental data. The basic idea is reducing the
problem to finding Euler’s first-order approximation of an ODE, that is, a regu-
lar equation. Once the starting dataset is modified accordingly, we can apply a
standard symbolic regression technique, obtaining a group of candidate solutions
that represent a trade-off between complexity and fitting to data. Through an
inverse procedure to reconstruct an ODE starting from its first-order approxi-
mation, used on the whole group of candidate solutions, we acquire a group of
ODEs. Finally, by coupling the ODEs obtained, discarding degenerate solutions,
and sorting the remaining ones by fitting on the training data, we are able to
find a system of ODEs that solves the initial problem.

From the preliminary experiments, it is clear that the coupling step might
lead to a combinatorial explosion for the systems to evaluate. Future works
will explore an automated coupling of candidate solutions, using theoretical and
heuristic measurements to return the best set of solutions. We are currently
working on the application of the proposed methodology to a real-world problem
for the modelling of processes in the food industry.

Acknowledgments.The authors would like to thank Luuk van Dijk for provid-
ing the original idea underlying this work.

References

1. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

2. Pickardt, C., Branke, J., Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Generating
dispatching rules for semiconductor manufacturing to minimize weighted tardiness.
In: Proceedings of the 2010 Winter Simulation Conference (WSC), pp. 2504–2515.
IEEE (2010)

36 S. Gaucel et al.

3. Soule, T., Heckendorn, R.B.: A practical platform for on-line genetic programming
for robotics. In: Genetic Programming Theory and Practice X, pp. 15–29. Springer
(2013)

4. Koza, J.R.: Genetic Programming: On the programming of computers by means
of natural selection, vol. 1. MIT Press (1992)

5. Babovic, V., Keijzer, M., Aguilera, D.R., Harrington, J.: An evolutionary approach
to knowledge induction: Genetic programming in hydraulic engineering. In: Pro-
ceedings of the World Water and Environmental Resources Congress, vol. 111, p.
64 (2001)

6. Cao, H., Kang, L., Chen, Y., Yu, J.: Evolutionary modeling of systems of ordi-
nary differential equations with genetic programming. Genetic Programming and
Evolvable Machines 1(4), 309–337 (2000)

7. Iba, H.: Inference of differential equation models by genetic programming. Infor-
mation Sciences 178(23), 4453–4468 (2008)

8. Bernardino, H.S., Barbosa, H.J.C.: Inferring systems of ordinary differential equa-
tions via grammar-based immune programming. In: Liò, P., Nicosia, G., Stibor, T.
(eds.) ICARIS 2011. LNCS, vol. 6825, pp. 198–211. Springer, Heidelberg (2011)

9. Keijzer, M.: Inducing differential/flow equations. Invited talk to the GECCO Con-
ference (July 2013)

10. Zill, D.G.: A First Course in Differential Equations: With Modeling Applications.
Cengage Learning (2008)

11. Euler, L.: Institutionum calculi integralis. Imp. Acad. imp. Saènt, vol. 1 (1768)
12. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional

complexity in genetic programming. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pp. 877–884. ACM (2010)

13. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic pro-
gramming. Genetic Programming and Evolvable Machines 11(3-4), 339–363 (2010)

14. Lotka, A.J.: Contribution to the theory of periodic reactions. The Journal of Phys-
ical Chemistry 14(3), 271–274 (1910)

15. Goodwin, R.M.: A growth cycle. In: Socialism, Capitalism and Economic Growth,
pp. 54–58 (1967)

Semantic Crossover

Based on the Partial Derivative Error

Mario Graff1, Ariel Graff-Guerrero2, and Jaime Cerda-Jacobo1

1 Division de Estudios de Posgrado
Facultad de Ingenieria Eléctrica

Universidad Michoacana de San Nicolás de Hidalgo, México
mgraffg@dep.fie.umich.mx, jcerda@umich.mx

2 PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
Ariel graff@yahoo.com.mx

Abstract. There is great interest for the development of semantic ge-
netic operators to improve the performance of genetic programming.
Semantic genetic operators have traditionally been developed employ-
ing experimentally or theoretically-based approaches. Our current work
proposes a novel semantic crossover developed amid the two traditional
approaches. Our proposed semantic crossover operator is based on the
use of the derivative of the error propagated through the tree. This pro-
cess decides the crossing point of the second parent. The results show
that our procedure improves the performance of genetic programming
on rational symbolic regression problems.

Keywords: Semantic Crossover, Symbolic Regression.

1 Introduction

Semantic genetic operators have been proposed to improve the performance of
genetic programming. Semantic operators use the information of the phenotype
to create new individuals. There are two approaches to develop semantic opera-
tors, the first is experimentally-based, and the second is theoretically-based.

The experimentally-based approach produces a semantic crossover based on
either the fitness function or the behaviour of the trees. Blickle et al. [1] propose
to select as crossing points only those nodes that have an impact in the fitness
function, this is implemented using a flag on the nodes, that is set during the
evaluation of the tree. Nguyen et al. [2, 3] produce offspring that are seman-
tically different from its parents; this difference is measured by evaluating the
individuals in a set of random inputs.

On the other hand, following a theoretically-based approach, Beadle et al. [4,
5] propose a semantic operator that only accepts an offspring if it is semantically
non-equivalent to its parents. The non-equivalent property is verified by using a
reduced ordered binary decisions diagram, which is also employed to develop a
semantically different initial population (see [6]). In addition, Krawiec et al. [7]
develop an approximation of a geometric semantic crossover that is important

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 37–47, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

38 M. Graff, A. Graff-Guerrero, and J. Cerda-Jacobo

because has the potential to convert the landscape into a cone. Furthermore,
Moraglio et al. [8] have shown the feasibility of creating a geometric semantic
crossover and mutation. The procedure proposed by Moraglio et al. to generate
the offspring is clean and easy to implement; however, it has the drawback that
the constructed offspring is always bigger than the sum of the lengths of its
parents which imposes a limitation for applicability. Nonetheless, Vanneschi et
al. [9] overcome this original limitation allowing the algorithm to be executed
with the traditional parameters used in GP.

Our current contribution proposes a semantic crossover for tree-based ge-
netic programming (GP) that is in-between the experimentally-based and the
theoretically-based approaches. The proposed semantic crossover is based on
the derivative of the error, i.e., the derivative of the fitness function f(p). In
symbolic regression problems, it is common to compute the fitness function as:
f(p) =

∑

(x,y)∈T (y − p(x))2, where T = {(xi, yi) : i = 1 . . .N} is the training

set, and p(x) represents the output of the individual p on input x.
The semantic crossover proposed here works by:

1. Computing ∂f
∂v equivalently to what backpropagation algorithm [10] does

to update the weights of an Artificial Neural Network.1 However, in our
procedure, v is a node randomly selected from the first parent, whereas in
backpropagation v is always a constants, i.e., a weight.

2. The result of ∂f
∂v is used to select the crossing point of the second parent.

3. The two points are used to perform a traditional subtree crossover.

The results illustrate, that GP enhanced with the proposed semantic crossover
statistically outperforms a GP with traditional crossover on 1,100 rational func-
tions used as testbed.

The current paper is organized as follows. Section 2 presents our novel seman-
tic crossover. Section 3 describes the procedure used to generate the symbolic
regression problems and the GP systems used to illustrate the effectiveness of
our approach. Section 4, conclusions and future directions are presented.

2 Semantic Crossover Based on Partial Derivative Error

The semantic crossover proposed is computed as follows: a) let v be a node
randomly selected from the first parent; b) given v, ∂f

∂v is computed; c) a node u
is selected from the second parent using the information of the partial derivative
with respect to v; and d) finally, it is performed a subtree crossover using as
crossing points v and u. The rest of the section contains a detailed description
of this procedure. Subsection 2.1 shows the procedure used to compute ∂f

∂v , i.e.,
it presents the backpropagation algorithm implemented in a tree structure; and
Subsection 2.2 describes the process to select u.

1 The use of backpropagation in GP has been previously proposed in [11–14].

Semantic Crossover Based on the Partial Derivative Error 39

2.1 Backpropagation

The first step, in order to describe the semantic crossover proposed, is to show the
process used to compute ∂f

∂v . As we mentioned, the backpropagation algorithm

can be used to obtain ∂f
∂v . Backpropagation can be easily explained using the

ideas presented on [10]. R. Rojas used a graphical representation to explain it
and this representation can be easily codified in a tree-based GP.

Let us describe backpropagation by computing the chain rule, i.e., ∂g(h(x))
∂x .

The first step is to compute g(h(x)), see upper part of Figure 1 and, note, that
each inner node is split in two part; the right part corresponds to the node’s
output and the left part stores the output of the operation shown in each node.
The flow of information is indicated by the arrows. The second and, final step,
is to traverse the tree backwards, see lower part of Figure 1. This backward
step is performed by supplying a constant to the root, in this case 1 and then
multiplying this constant by the value stored on the left side of each node. This
process recursively continues until a leaf is reached. It is observed, in the lower

part of the figure, that ∂g(h(x))
∂x is obtained at the end of this process.

(a) Forward step.

(b) Backward step.

Fig. 1. Computing the derivative in a graph

Continuing with the description of backpropagation, let us suppose that a leaf
node is a constant w, then, the process mentioned above computes ∂f

∂w . This can

be used to update w following the rule w = w − ν ∂f
∂w , where ν is the learning

factor. This update can be performed per training case, or for the whole training
set, the former is known as incremental learning and the later is batch learning.

In batch learning w is updated using the rule w = w − ν
∑|T |

i=1
∂fi
∂w , where fi

be the error in the ith case of the training set. In addition to this, the resilient
backpropagation (RPROP) [15] can be implemented using only the sign and a

different ν for the increase and decrease values, i.e., w = w− νx · sign(
∑|T |

i
∂fi
∂w),

where x stands for decrease or increase learning rate.
In order to have a complete picture of how the process, Figure 2 presents an

example. In the left of the figure (a), it is illustrated a function represented as
a tree. In the right (b), we have the same tree is presented with the additional
information required to compute the derivatives. Note that two slots are needed
for the functions having two arguments. For example, in the product the first
part stores the second input, given that ∂x·y

∂x = y and the second part contains
the first input. We have illustrated that the sum nodes store ones which is the

40 M. Graff, A. Graff-Guerrero, and J. Cerda-Jacobo

partial derivative with respect to each input. However, there is not need to store
information on the sum nodes and has been included only to ensure a clear
description of the example.

(a) Tradition tree on GP repre-
senting y(x) = ax2 + bx+ c.

(b) Tree with additional storage
to save the derivatives.

Fig. 2. Tree having an extra storage to compute the derivative

Figure 3 presents a complete example, in the left (a), it is shown that all the
constants have values, e.g., a = 0.2, b = −1.2 and c = 0.3, and that there are
two inputs x1 = −0.5 and x2 = 0.5. Furthermore, the sought function is y(x) =
0.5x2 − 2.25x+0.6 which leads to a training set F = {(−0.5, 1.85), (0.5,−0.4)}.
Under these circumstances the tree’s output is (0.95,−0.25). In the evaluation
process, i.e., the forward step, all the partial derivatives are computed and stored
in their respective nodes; this is shown in the lower part of each node (left of the
figure). The backward step requires to feed the node with a value, this value is the
derivative of the error, which depends on the function used to compute the error.
Let f(p) = (y− p)2 be the error function, then its derivative with respect to p is
−2(y−p). Given that y = (1.85,−0.4) is the desired output and p = (0.95,−0.25)
is the tree’s output, hence the value fed is −2(y− p) = (−1.8, 0.3). This value is
propagated through the tree until a constant is reached. Finally, this constant
is updated using the sign of all the values reach to that specific node. The
constants are decreased or increased depending on whether the sign is positive
or negative, respectively. In the case the value received by a constant is zero,
then that constant is not updated.

2.2 Selecting the Crossing Points

So far, we have described the backpropagation algorithm implemented in a tree.
This algorithm is recursive and in the backward step it stops when a leaf is
reached; however, nothing forbids to stop it at any particular node. Let us sup-
pose that the procedure is stopped at node v (v is randomly selected from the

Semantic Crossover Based on the Partial Derivative Error 41

(a) Individual evaluated on x = −0.5 and
x = 0.5. The root node is the result of the
evaluation.

(b) Error propagation on the two fitness
cases. The root contains the error be-
tween y(x) and the individual’s output.

Fig. 3. Example of the use of back-propagation in a tree, when the sought function is
y(x) = 0.5x2−2.25x+0.6. The sum of the error on constant 0.2 is −0.375, on constant
−1.2 is 1.05 and on 0.3 is −1.5, indicating that the value of the constants must be
incremented, decremented and incremented, respectively.

first parent), then, at this point, it is obtained ∂f
∂v , which indicates whether the

values returned by v must be either decreased or increased depending on whether
∂f
∂v > 0 or ∂f

∂v < 0, respectively.
In order to select the crossing point of the second parent, the following pro-

cedure is performed. Let e be sign(∂f∂v), ei corresponds the sign of the partial
derivative error in the ith training case and v correspond to the crossing point
of the first parent. In a tree-based GP v can be seen as a complete tree, i.e., one
can remove v from the parent and treat it as new individual. In this context let
pv be the output of v when it is evaluated with the inputs of T and pvi represents
the output of v in the ith training case. Equivalently, for the second parent, we
can compute the output of all the nodes, let sj represent the output of node j of
the second parent. Using e, p and s, we can find the crossing point of the second
parent, i.e., u, as:

u = argmax
j

∑

i

sign(pvi − sji) · ei. (1)

In order to clarify Equation (1), let us analyse the two possible scenarios found
in the maximum of Equation (1). Firstly, in the case ei > 0, then sui is higher
than pvi consequently pni − smi is positive. On the other hand, ei < 0 implies that
pni − smi is negative; however, ei < 0 is also negative and the result is positive.

42 M. Graff, A. Graff-Guerrero, and J. Cerda-Jacobo

Under this circumstances,
∑

i sign(p
v
i −sui) ·ei equals |T |, given that pvi −sui and

ei have an equivalent sign.

3 Results

Our novel semantic crossover operator has been compared to a steady-state
GP system with tournament selection, henceforth referred as Standard2. This
Standard base system was enhanced with a simplification procedure, referred
as, Simplification. We also compared additional GP systems where RPROP was
applied to all the individuals generated (namely RPROP always) and another
one that RPROP was only applied to any new best individual (namely RPROP
only on best). The novel semantic crossover was incorporated in this latter sys-
tem referred as GP with partial derivative error (GPPDE). The details of the
parameters used in the GP systems are shown on Table 1 and the parameters
used in RPROP are shown in Table 2. The RPROP parameters were taken from
the Fast Artificial Neural Network Library (FANN) [17]

In our implementation, each epoch spent in RPROP was counted as an indi-
vidual generated and the maximum number of generated individuals was 50, 000.
In addition, only an individual that has been optimized with RPROP was kept
only if the individual was better than the original.

Table 1. Genetic Programming Parameters

Parameter Value

Function Set F = {+,−,×, /}
Terminal set (T) T = {x, �}

Random constants (i.e., �) 100 real value constants ∈ [−10, 10]
Max length 262143

Crossover rate 90%
Mutation rate 10%
Population size 1000

Number of Generations 50
Mutation depth random ∈ [1, 5]
Tournament size 2

Max. number of epochs without improvement 5

The simplification mechanism was used in all the GP systems except the
Standard GP. This simplification was applied to all the elements of the initial
population and to every new offspring. This procedure was very simple, it only
incorporated rules to reduce the tree in the following cases, where s stands for
any subtree, � is a constant and op represents any operation.

2 This is very similar to TinyGP [16], it is only modified to allow the evolution of
constants for each individual in the population.

Semantic Crossover Based on the Partial Derivative Error 43

Table 2. RPROP’s parameters

Parameter Value

Increase Factor 1.2
Decrease Factor 0.5

Delta min 0.0
Delta max 50.0

Init previous step value 0.0001

– Replace (op � �) with the result of that operation.
– Replace (+ s 0) with s.
– Replace (− s s) with 0.
– Replace (∗ s 0) with 0.
– Replace (∗ s 1) with s.
– Replace (/ 0 s) with 0.
– Replace (/ s s) with 1.
– Replace (op op−1 s) with s.

Figure 4 shows an example of the simplification mechanism. For example, the
subtree (∗−3.01.2) is replaced by the constant −3.6 and the whole left subtree is
replaced by 1.0. The rules were applied recursively and as consequence it might
be a case in which an entire tree could be substituted by a constant.

(a) (b)

Fig. 4. Simplifying a tree, a) shows the original tree, and b) presents the tree after the
simplification

The problem employed as benchmark, was a continuous symbolic regression
problem on rational functions. We created 1,100 different rational functions us-
ing the following procedure. Two polynomials, W (x) and Q(x), were built by
randomly choosing the degree of each in the range 2 to 8, and then choosing ran-
dom real coefficients in the interval [−10, 10] for the powers of x up to the chosen

degree. A rational function in our training set is then given by y(x) = W (x)
Q(x) . Each

44 M. Graff, A. Graff-Guerrero, and J. Cerda-Jacobo

of the rational functions in the set was then sampled at 21 points uniformly dis-
tributed in the interval [−1, 1]. This resulted in a target vector y ∈ �21. The
aforementioned procedure was previously used in [18] to test their approach.

For each y vector 30 independent runs were performed recording the out-
put of the best individual found, namely p. With this value, it was computed

|T |−1
∑|T |

i

√

(|ŷi− p̂i|), where ŷ = y−μ
σ and p̂ = p−μ

σ , μ is the mean of y and σ
is the standard deviation of y. Finally, this value was recorded for each of the 30
independent runs and the performance was the average of these values defined as
nBRF. Another measure of performance was used which is a normalize version

of the mean absolute error (nMAE), i.e., |T |−1
∑|T |

i |ŷi− p̂i|, where ŷ = my+ b
and p̂ = mp+ b. In this case, m and b were [0, 1], zero stands for the minimum
value of y and one for the maximum.

Table 3 presents the performance of the different GP systems. It includes
the performance of the standard GP, GP with the simplification procedure, GP
with RPROP applied to all the individuals (RPROP always), GP with RPROP
applied to every new best (RPROP only on best). GPPDE showed the best
performance in the two performance measures. In order to test whether the
differences in performance were statistically significant, a Wilcoxon signed-rank
test [19] were performed, the p values were well below 0.01 indicating that the
performance of GPPDE was better than the second best with a confidence of
99%.

A particular result of note was the nMAE’s performance of the GP with
simplification. The comparison of the performance using a Wilcoxon signed-
rank test showed a p = 0.2948 indicating not difference in performance. This
result was contrary to our expectations because GP with RPROP should be
better than GP with simplification because the former was used to optimize the
constants.

Table 3. Performance (BRF and nMAE) of the different GP systems on the rational
functions

GP systems nBRF nMAE Length

Standard 0.2492 ± 0.0857 0.0741 ± 0.0486 958.6116 ± 178.0225
Simplification 0.2450 ± 0.0853 0.0719 ± 0.0475 990.1021 ± 193.6305
RPROP always 0.5370 ± 0.1027 0.3063 ± 0.1042 61.8987 ± 11.7165

RPROP only on best 0.2394 ± 0.0852 0.0719 ± 0.0480 647.3761 ± 154.5169
GPPDE 0.1320 ± 0.0535 0.0251 ± 0.0263 6077.9015 ± 2178.9033

GPPDE showed the best performance; however, the average length of the
trees was considerable longer than those obtained with others GP systems. GP-
PDE generates trees that were on average more than 6 times longer than those
obtained with Simplification GP. On the other hand, when RPROP was applied
to all the generated individuals, the trees were short and this might be the cause
for the poor performance observed. The results indicate that RPROP should be

Semantic Crossover Based on the Partial Derivative Error 45

used more carefully in order to allow more exploration of the search space, or
used a larger number of generations.

In order to complement the information presented in Table 3, the number of
times each algorithm presented the best performance was counted, the perfor-
mance measure used was nMAE. This procedure showed that Simplification GP
presented the best performance in 5 of the 1,100 problems and GPPDE has the
best performance in 1095 of the 1,100 problems.

Figure 5 presents the average output of Simplification GP and GPPDE on
one of the five problems in which GPPDE did not exhibit the best performance.
In this problem, Simplification GP had 0.0362 and GPPDE has 0.0464, these
two values were computed using nMAE. GPPDE did not reach the peaks as
closely as Simplification GP, although the behaviour of these two systems on
this problem was qualitatively equivalent.

Fig. 5. Average output of GP with simplification and GPPDE on a problem where
GPPDE does not have the best performance

The performance (nBRF) presented on Table 3 can be compared with the
performance of the different GP algorithms previously presented by Graff and
Poli [18]. The systems presented by Graff and Poli [18] include: generational GP
systems with roulette and tournament selection, steady-state GP systems with
tournament selection, generational gene expression programming (GEP) with
roulette and tournament selection, steady-state GEP with tournament selection
and different versions of stochastic iterated hill climber (SIHC). In total there
are 20 different GP systems. First our standard GP system correspond to the
steady-state GP system with tournament selection and 100% crossover. Our
implementation has a performance of 0.2492 and the performance previously
presented by our group [18] was 0.2535. These two values seems to be comparable
and the difference might be due to the random number generators or any other
minor modification.

The GPPDE showed the best performance overall the systems tested. Our
previous work [18] showed that SIHC system with subtree mutation and 25000
as the maximum number of mutations showed a performance of 0.2021 which

46 M. Graff, A. Graff-Guerrero, and J. Cerda-Jacobo

is considerable higher than the performance obtained by GPPDE (0.0464). Un-
fortunately, it is not available the lengths of the tree generated by SIHC and
consequently the full performance cannot be compared.

4 Conclusions

Our work presents the development of a novel semantic crossover operator that
is based on the derivative of the errors. The results showed that choosing the
crossover point of the second parent according to Equation 1 improves consider-
ably the learning abilities of the GP systems. GPPDE showed the best perfor-
mance in almost all the problems tested (1095 out of 1100), and it also obtained
on average the best performance in comparison to the systems presented here,
and, also, to the 20 systems previously presented by our group [18].

The improvement presented needs plenty of computations performed on the
trees. That is, one needs to keep the output, and the derivative of the output,
for every node of every tree in the population. This may be a drawback because
the technique may be limited to small populations and/or small trees. However,
the full potential that this amount of information can provide has not been
properly explored. For example, in order to evaluate an offspring, it is only
needed to recalculate the nodes whose values have been changed, this would
make the algorithm faster. On the other hand, one can measure the fitness of each
node, and take decisions dynamically based on the fitness. Another limitation
with the proposed semantic crossover operator is that all the functions in the
function set need to be derivable. This may be a major drawback for some
problems; however, for symbolic regression problems it seems reasonable to use
only derivable functions.

Acknowledgments. This project would not be possible without the use of the
CAMH Specialized Computing Cluster (SCC).

We would like to anonymous reviewers for their fair and useful comments and
ideas. The paper has been considerably strengthened thanks to their feedback.

References

1. Blickle, T., Thiele, L.: Genetic programming and redundancy. Choice 1000, 2 (1994)
2. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic

programming: The case for real-valued function regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

3. Uy, N.Q., Hoai, N.X., ONeill, M., McKay, R.I., Galvn-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic re-
gression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2010)

4. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In:
IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress
on Computational Intelligence), pp. 111–116 (2008)

5. Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming. In:
IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1336–1342 (2009)

Semantic Crossover Based on the Partial Derivative Error 47

6. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in ge-
netic programming. Genetic Programming and Evolvable Machines 10(3), 307–337
(2009)

7. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2009, pp. 987–994. ACM, New York (2009)

8. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

9. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of ge-
ometric semantic GP and its application to problems in pharmacokinetics. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013)

10. Rojas, R.: Neural Networks: A Systematic Introduction, 1st edn. Springer (July
1996)

11. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient
search of numeric leaf values. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), pp. 155–162 (2001)

12. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming
using gradient descent. In: Proceedings of 2004 Asia-Pacific Workshop on Genetic
Programming (2004)

13. Zhang, M., Smart, W.: Genetic programming with gradient descent search for mul-
ticlass object classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg
(2004)

14. Graff, M., Pena, R., Medina, A.: Wind speed forecasting using genetic program-
ming. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 408–415
(2013)

15. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algo-
rithms. Neurocomputing 50, 105–123 (2003)

16. Poli, R.: TinyGP. See Genetic and Evolutionary Computation Conference (GECCO
2004) (June 2004), competition at
http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html

17. Nissen, S.: Implementation of a fast artificial neural network library (fann). Tech-
nical report, Department of Computer Science University of Copenhagen, DIKU
(2003), http://fann.sf.net

18. Graff, M., Poli, R.: Practical performance models of algorithms in evolutionary
program induction and other domains. Artificial Intelligence 174(15), 1254–1276
(2010)

19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80 (1945)

http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html
http://fann.sf.net

A Multi-dimensional Genetic Programming Approach
for Multi-class Classification Problems

Vijay Ingalalli1,2,3, Sara Silva1,4,5, Mauro Castelli6, and Leonardo Vanneschi6

1 INESC-ID, Lisbon, Portugal
2 LIRMM, Montpellier, France
3 IRSTEA, Montpellier, France

4 LabMAg, FCUL, University of Lisbon, 1749-016 Lisbon, Portugal
5 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal
6 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal

{vijay.ingalalli,castelli.mauro}@gmail.com, sara@fc.ul.pt,
lvannesc@gmail.com

Abstract. Classification problems are of profound interest for the machine learn-
ing community as well as to an array of application fields. However, multi-class
classification problems can be very complex, in particular when the number of
classes is high. Although very successful in so many applications, GP was never
regarded as a good method to perform multi-class classification. In this work, we
present a novel algorithm for tree based GP, that incorporates some ideas on the
representation of the solution space in higher dimensions. This idea lays some
foundations on addressing multi-class classification problems using GP, which
may lead to further research in this direction. We test the new approach on a
large set of benchmark problems from several different sources, and observe its
competitiveness against the most successful state-of-the-art classifiers.

1 Introduction

In the last two decades, Genetic Programming (GP) [1] has established itself as a solid
research field, not only because of the numerous practical successes that have been
reported in many different application domains [2], but also due to the strengthening
of the theoretical foundations [3], and the several attempts to bridge theory and prac-
tice [4]. Nevertheless, various references report on the poor performance of GP in multi-
class classification (intended here, as opposite to binary classification, as the supervised
learning task of partitioning data into a number of classes larger than two) when com-
pared to other state-of-the-art classifiers (see for instance [5]).

With the objective of attenuating this possible weakness of GP, in this paper we pro-
pose a new GP framework called Multi-dimensional Multi-class Genetic Programming
(M2GP). Several ideas have inspired the definition of this framework. First of all, we
hypothesize that single expressions, being represented as trees or any other existing
flavors of GP, are not an informative enough representation to effectively solve multi-
class classification tasks. For this reason M2GP uses a multi-expression representation
of individuals. Although the idea is not new [6], we present it in a different light by
integrating multiple expressions into a single tree. This makes the representation more

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 48–60, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Multi-dimensional GP Approach for Multi-class Classification Problems 49

compact and allows us to implement M2GP with very few modifications to standard GP.
Secondly, we do not prefix any explicit connection between the different expressions
represented in an individual and the classes. This relationship is free to evolve and al-
lows a higher effectiveness of the algorithm. Thirdly, we present a new algorithm that
tends to cluster the numeric values returned by the expressions belonging to a class,
minimizing their dispersion. Also this not being a new idea [7,8], M2GP presents it un-
der a new light by introducing a new fitness function. Finally, M2GP returns an enriched
data model, including not only the set of expressions that compose the best individual,
but also other information that is useful for the evaluation of new data.

The paper is structured as follows: Section 2 discusses some previous work in multi-
class classification with GP. Section 3 introduces M2GP, motivating the choices that led
us to the definition of the proposed algorithm. Section 4 presents the M2GP algorithm.
Section 5 contains our experimental study, where the test problems are presented, the
experimental settings are specified and the results are shown and discussed. Finally,
Section 6 concludes the paper and suggests possible future research.

2 Related Work

In this section, we outline several methods that have been proposed in order to tackle
multi-class classification problems using GP. The section only presents a restricted sub-
set of the most important and recent contributions in this area. For a more complete
survey on this topic the reader is referred to [9].

Several works [10,11,12,13,14] in this area are based on a common and straightfor-
ward approach that consists in evolving a single rule in each GP run. In particular, c runs
are performed for a c-class classification problem. In this way, the final classifier has
a single rule for each class. All these works evolve multiple comprehensible IF-THEN
classification rules.

However, the focus of this short literature review is on another common approach,
which consists in evolving a discriminant function. In this case the two main approaches
are (1) range selection methods and (2) binary decomposition methods. Range selec-
tion methods are applicable to GP classifiers that output numerical values. The method
works by declaring c − 1 thresholds for c-class classification problems. To select op-
timal thresholds, several mechanisms have been proposed, including static thresholds
selection [15,7], dynamic thresholds [8,16] and slotted thresholds [8]. In binary decom-
position methods, one classifier is trained to recognize samples belonging to a particular
class and reject all other samples. This results in c classifiers for a c-class classification
problem. A well-known drawback of this approach is related to the fact that the multiple
classifiers may result in conflicts, whose number usually grows up proportionally to the
number of classes. Hence, this approach produces an increased classification error as
the number of classes gets larger. Binary decomposition methods have been explored
in [17,18,19]. The two approaches for multi-class classification, constructing a single
classification function or c binary classifiers, are compared in [20], by considering a
hand-written digit recognition problem. As reported in [9], when a single function is
evolved, able to discriminate all the classes, the function directly outputs the numeric
value of the predicted class, since each class is an integer digit. In both cases, the fitness
function is based on classification accuracy.

50 V. Ingalalli et al.

In [6] the authors proposed a GP-based approach to multi-class classification in
which each individual is a multi-tree structure made of c trees, where c is the num-
ber of classes. Each of these c trees (T1, · · · , Tc) encodes a threshold function for a
particular class. The system considers that a data instance x belonging to class i is cor-
rectly classified if Ti(x) ≥ 0 and Tj(x) < 0, for all j �= i. The fitness function is
computed as the classification accuracy. A similar system evolving a multiple-threshold
discriminant function is described in [21], where a fitness function based on the sum of
squared errors is employed.

One of the most recent contributions of GP for multi-class classification is found
in [22]. In this work, the authors propose a two-stage strategy for multi-class classifica-
tion problems, which is an improvement of a traditional binary decomposition method.

3 Formulation of Multi-dimensional GP
This section introduces the novel ideas we have explored and adopted to tackle the
problem of efficient classification of multi-class data sets. Although this work focuses
on tree based GP [1], it can be generalized for other types of GP.
Solution Tree. For classification tasks, tree based GP generally uses parse trees for
representing the individuals, where the root node and all other non-terminal nodes be-
long to a set O of predefined operations (e.g., O = {+,−, ∗, /}), and the terminal
nodes/leaves belong to the given attribute set A for the given data set. At the end of the
search process, the solution is available at the root of the best tree, which is a readily
interpretable function that is used for the task of classification.

In our approach, we slightly modify the representation of each parse tree by adding
a root node r© of arity d (d ≥ 1), as shown in Figure 1. Thus, the root node r© shall
have d branches, T1, . . . , Td, each one of them being a normal GP tree, created accord-
ing to the regular settings discussed in Section 5.2. Once the evolution terminates, GP
individuals can still be evaluated at the root node r©, as before; but instead of one solu-
tion, we obtain d different solutions, which we use/explore later to perform the task of
classification. For any data set, the value of d is independent of any parameters (e.g., the
number of classes/attributes) and we will discuss its choice in Section 5.2. The genetic
operators (e.g., mutation, crossover) are used normally, with the only restriction that the
mutation and crossover points must be chosen below the root node r©. In this way, all
the GP individuals will be rooted in r© during the whole evolution.
Solution Space. Let X = {x1,x2, . . . ,xn} be the training data with n number of
samples and |A| number of attributes. Each sample xi corresponds to any class value

 T1 T2 Td

r

Fig. 1. Representation of a solution tree

A Multi-dimensional GP Approach for Multi-class Classification Problems 51

Ei ∈ C, where C is the unique set of all the classes. In the usual single tree representa-
tion, where we obtain a single function f at the root node, solutions can be mapped in
a space (that we call solution space from now on) of 1-dimension, because the output
is a scalar numeric value. It is normally in this mono-dimensional solution space that
GP is required to perform the task of classification. However, now that individuals are
represented by d different functions F = {f1, f2, . . . , fd}, they can be mapped in a
d-dimensional solution space. Thus, any individual represented by a tree with a d-arity
root node r©, can be represented in a d-dimensional space.

4 Algorithm

With the formulation of multi-dimensional GP, we now propose the algorithm called
Multi-dimensional Multi-class GP (M2GP).

Algorithm 1. M2GP - Training Module
INPUT: X, E, d1
for g ∈ 1 . . .G do2

GENERATE: F = {f1, f2, . . . , fd} - set of d solutions3
EVALUATE: Zs = Eval(fs(X)) for all s ∈ 1, . . . , d4
CLUSTER: Zk ∈ Z for all k ∈ 1, . . . , |C|5
for k ∈ 1 . . . |C| do6

Ck = covar(Zk), a d × d co-variance matrix % Ck must be non-singular %7
Mk = centroid(Zk), a 1 × d centroid vector8

Dk
i =

√
(Zi − Mk) · (Ck)−1 · (Zi − Mk)T , ∀i = 1, 2, ..., n % Mahalanobis distance %9

% where n is the number of samples in the training set %10

∀i = 1, 2, ..., n : Predi = h such that Dh
i = min(D1

i ,D2
i , ...,D|C|

i)11
∀i = 1, 2, ..., n : Matchedi = 1 if Predi = Ei12

MAXIMIZE: 1
n

∑

i∈n

Matchedi; % fitness function %
13

RETURN: F , C, M14

Training Phase. The training module is run for G generations as described by Algo-
rithm 1. The goal of M2GP is to maximize the percentage of correctly classified sam-
ples, i.e., the classification accuracy (line 13). As M2GP iterates over the generations,
solutions with better training accuracy should be generated. In every generation, a pop-
ulation of new sets of functions F is generated. The training data is evaluated by every
function solution to obtain the mapped data Z = F(X), where Z represents the mapped
data in the d-dimensional solution space. Since we are using the training data, and we
know the class value for each mapped sample, we cluster/group the mapped samples Z
according to their corresponding class values (line 5). Then we calculate the distance
Di between every mapped training sample Zi and the centroid of the clustered mapped
data Zk for each class k ∈ |C| (line 6-9).1 Any mapped sample is predicted to belong
to class k if it has the minimum Mahalanobis distance measured against the centroid of

1 To calculate the Mahalanobis distance, one needs to calculate the inverse of co-variance matrix
Ck, and hence Ck should be non-singular.

52 V. Ingalalli et al.

Algorithm 2. M2GP - Classification Module
INPUT: U, F , C, M, d1
OUTPUT: Pred - Predicted classes2
EVALUATE: Zs = Eval(fs(U)), ∀s = 1, 2, ..., d3
for k ∈ 1 . . . |C| do4

Dk
i =

√
(Zi − Mk) · (Ck)−1 · (Zi − Mk)T , ∀i = 1, 2, ..., n % Mahalanobis distance %5

% where n is the number of samples in the test set %6

RETURN: Predi = h such that Dh
i = min(D1

i ,D2
i , ...,D|C|

i), ∀i = 1, 2, ..., n;7

the kth |C|-clustered mapped data Z (line 11), which is then used to maximize the fit-
ness function. The importance/usefulness of the Mahalanobis distance, and the choice
of dimension d - an important input for M2GP - will be discussed in Section 5.2. After
training for G generations, we return a classification model S = {F , C,M}, compris-
ing of 3 components: F - a set of d solutions, C - a set of |C| co-variance matrices of
size d× d, and M - a set of |C| centroid vectors of size 1× d.

Testing phase. To verify the performance of the classification model and to check its
generalization ability, we use the evolved model S to predict the classes for the test data
set U. Algorithm 2 describes the procedure to classify the test data set U.

5 Experimental Analysis

5.1 Data Sets

We have used a variety of data sets to test the performance of M2GP. Table 1 lists the
pool of data sets that encompass both real world and synthetic data, having integer
and real data types, with varying number of attributes, classes and samples. The ‘Heart’
(HRT), ‘Segment’ (SEG), ‘Vowel’ (VOW), ‘Yeast’ (YST) and ‘movement-libras’ (M-L)
data sets can be found at KEEL2 [23], whereas the ‘Waveform’ (WAV) data set is avail-
able at [24]. ‘IM-3’ and ‘IM-10’ are the landsat satellite data sets that were used in [25].
All the data sets we have used have no missing values. We have partitioned each data
set with the training and test data ratio of 70:30. In order to maintain consistency in the
results and perform fair comparisons, we have generated 30 different random partitions
for each data set, to be used henceforth.

Table 1. Data sets used for the experimental analysis

Data Set HRT IM-3 WAV SEG IM-10 YST VOW M-L
No. of classes 2 3 3 7 10 10 11 15
No. of attributes 13 6 40 19 6 8 13 90
No. of samples 270 322 5,000 2,310 6,798 1484 990 360

2 KEEL - dataset repository, http://keel.es/datasets.php

A Multi-dimensional GP Approach for Multi-class Classification Problems 53

0 10 20 30 40 50

88

90

92

94

IM−3

Number of Generations

P
e
rc

e
n
ta

g
e
 A

c
c
u
ra

c
y

Euclidean

Mahalanobis

2 4 6 8 10
60

70

80

90

100
IM−10

Number of Dimensions

P
e
rc

e
n
ta

g
e
 A

c
c
u
ra

c
y

Euclidean

Mahalanobis

Fig. 2. Percentage accuracy for Euclidean and Mahalanobis distance. For IM-3, dimension d=1;
for IM-10, number of generations g=50.

5.2 Experiments with GP Classifiers

Tools and Settings. We have used a modified version of GPLAB3 [26], version 3
(latest) to conduct all the GP experiments. The GPLAB settings, subject to minimum
tuning, are listed next. The remaining GPLAB settings were the ones set by default on
the software. Generations = 50 (for analysis) and 100 (for final results - Table 4); Pop-
ulation size = 500 individuals; Crossover / Mutation Rate = 0.9 / 0.1; Function set (O)
= {+,-,*,/ (division protected as in [1])}; Terminal set = one variable for each attribute
in the data set, plus ephemeral random constants (as in [1]), randomly generated with
uniform probability from the interval [0, 1]; Tree Initialization: Ramped Half-and-Half
with the ratio of 75:25 between the Full and Grow methods.

Importance of Distance Measure. Since one of the crucial steps in M2GP is to cal-
culate the distance between the sample and the centroid of each class clusters, we have
compared two distance measures - Euclidean and Mahalanobis. Figure 2 shows exam-
ples of the performance of both distance measures for the data sets IM-3 and IM-10. For
IM-3, we plot the mean of 30 different runs for d = 1 (which is equivalent to standard
GP in terms of solution representation), in order to prevent the effect of using higher
dimensions. For IM-10, we plot the mean of 3 different runs for each number of dimen-
sions from 1 to |C|. The results were highly consistent, with very low dispersion among
the different runs. From these plots we claim that the distance measure indeed plays a
significant role in the performance of M2GP, especially in the higher dimensional solu-
tion spaces. Unlike the Euclidean distance, the Mahalanobis distance not only is able to
capture the physical distance between the test sample and the class clustered data sets,
but also considers the statistical correlation between them, thereby reasserting the work
of [27].

Effect of Augmenting Dimensions. As already explained in Algorithm 1, we are rep-
resenting the mapped input sample Z (evaluated with the help of d-function solutions)
in a d-dimensional solution space. Now, with the help of various data sets, we analyze

3 GPLAB – A Genetic Programming Toolbox for MATLAB,
http://gplab.sourceforge.net/

54 V. Ingalalli et al.

5 10 15
75

80

85

90
WAV

5 10 15
70

80

90

100
SEG

5 10 15
60

80

100
IM−10

0 10 20
40

60

80
YST

P
e

rc
e

n
ta

g
e

 A
c
c
u

ra
c
y
 →

0 10 20
20

40

60

80

100
VOW

Number of Dimensions →

Training Data

Test Data

0 10 20
20

40

60

80

100
M−L

Fig. 3. Variation of accuracy values with increasing number of dimensions for various data sets

the effect of increasing the number of dimensions d. Figure 3 shows plots of accuracy
(final values after 50 generations) against the increasing number of dimensions. The
plots show the mean values obtained in 10 different runs, randomly chosen from the set
of 30 different partitions. Looking at the training lines, we observe two distinct phases
as we add dimensions in M2GP, that we call progressive learning and regressive learn-
ing. In the progressive learning phase, the training accuracy improves with increasing
dimensions. Progressive learning can be observed in the lower dimensions for all the
data sets. If we observe the test lines in the progressive learning phase, we can infer
that the classifiers perform the best during this phase, also in terms of generalization.
WAV, SEG, YST and VOW enjoy this progressive phase almost until the end of their re-
spective plots. For other data sets, this phase is followed by a regressive learning phase
where accuracy degrades with increasing dimensions, as clearly visible in IM-10 and
M-L. We hypothesize that a strong regressive learning would be observed for all data
sets at much higher dimensions, depending on the complexity of the data set - which in
turn depends on n, A and C. Additionally, it is interesting to observe that the beginning
of the regressive phase is always greater than the number of classes for that particular
data set, except in the case of M-L. We are regarding M-L as a special category of data
set, since it is the only one where n << |A| · |C|, owing to its small sample size. It
is also the only data set where the test accuracy decreases substantially during the pro-
gressive phase, suggesting strong overfitting. We regard M-L as a challenging data set,
in particular when it comes to choosing the best dimension to use.

Choice of Dimension d. In Figure 4, we can observe the evolution of the accuracy on
both training and test data, for a selected number of dimensions (d = 1, 2, 12, 13) on
the IM-10 data set. Looking at the training plot we observe that the accuracy curves of
different dimensions remain almost parallel to each other, from the initial generation
to the final generation, even when the switch between progressive and regressive phase
happens (from d=12 to d=13). This pattern suggests that, if we look at the accuracy val-
ues obtained in the initial generation for various dimensions, we will be able to predict
which value of d will achieve the best accuracy in the final generation. Indeed, there

A Multi-dimensional GP Approach for Multi-class Classification Problems 55

Table 2. Automatically chosen dimension d

IM-3 WAV SEG IM-10 YST VOW M-L
C=3 C=3 C=7 C=10 C=10 C=11 C=15

Mean 3.47 5.50 4.53 7.23 6.10 9.27 10.37
Std.Dev. 1.07 2.26 1.17 1.52 2.98 2.90 1.30

exists a very strong correlation of 0.95± 0.04 between the initial and the final accuracy
values on the training data, when measured for all the data sets from Figure 3, consid-
ering their respective set of d values. This helps us choose an appropriate dimension for
a particular data set, just by looking at the accuracy values obtained in the initial gen-
eration. If we look at the test plots, similar patterns are observed, provided that M2GP
is good with generalization for all d. However this may not be the case, as already ob-
served for M-L in Figure 3. Nevertheless, leaving room for improvement in the future
(see Section 6) we adopt a simple procedure to automatically choose the dimension d,
described next.

For any given data set, we adopt the best d of the progressive phase. To do this, we
keep increasing the number of dimensions as long as the accuracy obtained with the
initial generation keeps improving, and adopt as d the value used right before the first
degradation occurs. For each problem, the choice of d may be different for different
runs. We remark that M2GP performs best when d = 1 for the binary classification
data set, and for the remaining data sets we have recorded the chosen d for the 30 runs
and obtained the values in Table 2. To validate the appropriateness of these choices, we
present in Figure 5 the results on the test set of 30 runs using the automatically chosen
d (a-d in the figure) side by side with the results obtained with d = 1 and with d = |C|
(respectively 1-d and c-d in the figure).

Looking at Figure 5, firstly we observe that in most data sets M2GP largely improves
its performance from 1-d to c-d or a-d. However, deciding the winner between c-d
and a-d is not trivial, since their relative performance varies depending on the data set.
Choosing d = |C| usually results in a d higher than choosing d automatically (see Ta-
ble 2), however this does not necessarily translate into a better accuracy. The M-L data

0 10 20 30 40 50
50

60

70

80

90

IM−10: Training data

Number of Generations

P
e

rc
e

n
ta

g
e

 A
c
c
u

ra
c
y

0 10 20 30 40 50
50

60

70

80

90

IM−10: Test data

Number of Generations

P
e

rc
e

n
ta

g
e

 A
c
c
u

ra
c
y

d=1

d=2

d=12

d=13

Fig. 4. Witnessing the correlation between the accuracy of the initial solutions and the accuracy
of the evolved solutions

56 V. Ingalalli et al.

Table 3. Mean solution size for 1-d, c-d and a-d

IM-3 WAV SEG IM-10 YST VOW M-L
1-d 29.37 107.66 70.57 84.10 56.93 46.23 28.53
c-d 37.03 80.67 39.60 90.27 189.23 40.57 291.06
a-d 24.30 131.97 42.87 123.30 152.06 47.66 42.83

set is the most obvious case where d = |C| is not a good choice when compared to the
automatically chosen d. We recall from Figure 3 that on this data set the procedure to
automatically choose d does not even do a good job, since the test accuracy starts de-
grading early in the progressive phase. Still, it is much better than using d = |C|. All in
all, at least in terms of accuracy, it seems fairly reliable to always use the automatically
chosen d.

Size of the Individuals. Here we observe the effect of increasing the number of di-
mensions on the size of the individuals, i.e. the number of nodes of its tree, including
any possible amount of redundant code. Table 3 reports the mean size of 30 different
final solutions for each data set and each choice of d (excluding HRT that always uses
d=1). We can observe that the increase in solution size from 1-d to c-d or a-d is not so
prominent, and in many cases the size is indeed reduced. Therefore, also in terms of
solution size the automatically chosen d seems to be a fair choice.

Comparison among GP Classifiers. With the goal of comparing the performance of
M2GP (using the automatically chosen d) with the performance of other GP systems,
we chose the ‘range selection method with static threshold selection’ mentioned in Sec-
tion 2 [8,16] as the benchmark for comparison, since it is a fairly standard way of
performing multi-class classification with GP. However, in data sets with a higher num-
ber of classes we immediately observed the often reported inadequacy of this standard
GP method to perform multi-class classification. It was losing the race too quickly, so
we abandoned any further comparison. Just to provide some numbers, on the WAV and
SEG data sets M2GP improved the accuracy upon the standard method in approximately
25 and 55 percentual points, respectively.

WAV (C=3) SEG (C=7) IM−10 (C=10) YST (C=10) VOW (C=11) M−L (C=15)
20

40

60

80

100

P
e

rc
e

n
ta

g
e

 A
c
c
u

ra
c
y

1−d c−d a−d 1−d c−d a−d 1−d c−d a−d 1−d c−d a−d 1−d c−d a−d 1−d c−d a−d

Fig. 5. Percentage accuracy of M2GP for 3 settings of choosing d, for various data sets

A Multi-dimensional GP Approach for Multi-class Classification Problems 57

5.3 Comparison with Various Classifiers

We now compare M2GP with a number of classifiers available in Weka4, version 3.6.10
(latest). Random Forests (RF) and Decision Trees (J48) are tree based classifiers; Ran-
dom Subspace (RS) and Multi-Class Classifier (MCC) are meta classifiers; Multi-Layer
Perceptron (MLP) and Support Vector Machines (SVM) are function based classifiers.
For M2GP, we set the number of generations to 100; we set dimension d = 1 for the
binary class data set (HRT), and for the multi-class data sets we choose d automatically
during the process of initialization, as already explained. For the rest of the classifiers,
we use default settings from Weka. SVM uses the “one-against-one” approach to multi-

Table 4. Comparison among various classifiers. Median accuracy value and Best accuracy value
on the test data set for 30 runs are reported. For each problem, the best values among the classifiers
are in bold (if more than one, it means there is no statistically significant difference between their
medians) and the worst values are in italics (the same). For each problem, a highlighted value
means the classifier is significantly better than M2GP values, while an underlined value means
the classifier is significantly worse than M2GP.

→ Data Set HRT IM-3 WAV SEG IM-10 YST VOW M-L
↓ Classifiers C=2 C=3 C=3 C=7 C=10 C=10 C=11 C=15

Median 55.556 93.814 86.3 55.844 90.363 41.124 81.818 14.352
SVM Best 65.432 97.938 88.067 61.616 92.055 46.067 85.859 24.074

Median 79.630 93.814 74.800 96.104 94.654 55.169 75.926 63.426
J48 Best 85.185 98.969 78 97.691 95.537 57.977 83.838 75.000

Median 80.247 94.845 81.500 97.258 96.861 57.528 89.394 71.759
RF Best 87.654 98.969 83.067 98.557 97.744 61.124 93.266 76.852

Median 81.481 92.784 82.200 95.960 93.919 56.629 82.828 65.741
RS Best 90.124 97.938 84.400 97.403 95.096 60.674 88.216 74.074

Median 80.247 95.876 83.333 96.320 90.216 57.977 82.492 75.926
MLP Best 87.654 97.938 85.200 97.403 91.319 62.921 87.542 84.259

Median 83.951 95.361 86.800 92.424 81.829 57.977 57.576 60.648
MCC Best 90.124 97.938 88.267 94.228 83.865 62.247 65.657 72.222

Median 82.099 94.845 84.867 95.599 90.191 53.82 85.859 62.963
M2GP Best 88.889 98.969 86.467 97.403 92.545 60.225 94.613 74.074

class classification, which has comparable performance to “one-against-all” while re-
quiring less training time [28]. Table 4 contains the median and the best accuracy values
of the 30 different runs for the test data sets. We have used the same set of 30 differ-
ent partitions to perform 30 different runs with all the classifiers listed in Table 4. To
test for statistical significance of the results, the non-parametric Kruskal-Wallis with
Bonferroni correction has been used under the alternative hypothesis that the accuracy
values of the different classifiers do not have equal medians.

Table 4 has many things to reveal. First of all, on the IM-3 data set all the classifiers
obtained median accuracy values that are not statistically different from each other.

4 Weka – Waikato Environment for Knowledge Analysis,
http://www.cs.waikato.ac.nz/ml/weka/

58 V. Ingalalli et al.

In terms of best accuracy, on this data set M2GP was one of the classifiers achieving
the best value (in bold). Also in the VOW data set M2GP achieved the best accuracy.
Regarding the median accuracy values, M2GP was one of the best classifiers on HRT
(in bold), and never one of the worst classifiers on any of the data sets (in italics).
On data sets WAV, YST and VOW, only the best classifiers were able to outperform
M2GP (highlighted values), whereas M2GP was able to outperform many other classi-
fiers (underlined values), at least one on each data set except IM-3. Recall that on the
M-L data set M2GP was not able to choose the ideal d, otherwise it would probably
outperform more classifiers. Regarding the comparison with the other function based
classifiers (MLP and SVM), M2GP was clearly superior to SVM in almost all prob-
lems, and fairly competitive with MLP, which together with MCC was one of the best
classifiers. RF was, however, the clear winner, in particular on the data sets with a higher
number of classes.

6 Conclusions and Future Directions

We have proposed a novel approach for representing solutions, both in terms of solution
tree and solution space, to address multi-class classification problems with GP. At the
core, we have experimentally analyzed the effect of increasing the number of dimen-
sions used to represent the solution space, and we have proposed a simple yet effective
and relatively cheap way of choosing an appropriate dimension.

From the idea of multi-dimensional solution representation, we have proposed an
efficient classification algorithm - M2GP - and compared its performance with many
of the best state-of-the-art methods for multi-class classification. We have shown that
M2GP offers competitive results on a large variety of data sets. We have also realized
that being able to improve the choice of the number of dimensions would allow us to
improve the competitiveness of M2GP even further.

Naturally, we will focus our future work on better choosing the number of dimen-
sions of the solution space. In fact, we will explore the idea that the number of dimen-
sions does not have to be a parameter of M2GP, and instead can be implicitly evolved
together with the solution itself. The issue of overfitting should be taken into account
in these future studies, and we also want to perform detailed analyses of diversity and
bloat, with a strong focus on the interpretability of the M2GP solutions.

Although still in its infancy, this new approach has already been able to elevate GP
to a competitive method for multi-class classification, and we believe it represents the
first step towards a general framework for multi-class classification with GP.

Acknowledgments. The authors acknowledge projects EnviGP (PTDC/EIA-CCO/
103363/ 2008) and MaSSGP (PTDC/EEI-CTP/2975/2012), FCT, Portugal.

References

1. Koza, J.R.: Genetic Programming: On the programming of computers by means of natural
selection, vol. 1. MIT Press (1992)

2. Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming (March 2008)
3. Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer (2002)

A Multi-dimensional GP Approach for Multi-class Classification Problems 59

4. Special issue on bridging the gap between theory and practice in evolutionary algorithms
research. Evolutionary Computation 15(4) (2007)

5. Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vasconcelos, M.J., Catarino, L., Carreiras,
J.M.B.: Land cover/Land use multiclass classification using GP with geometric semantic
operators. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 334–
343. Springer, Heidelberg (2013)

6. Muni, D., Pal, N., Das, J.: A novel approach to design classifiers using genetic programming.
IEEE Transactions on Evolutionary Computation 8(2), 183–196 (2004)

7. Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detection. In: Foo,
N.Y. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 180–192. Springer, Heidelberg (1999)

8. Zhang, M., Smart, W.: Multiclass object classification using genetic programming. In: Raidl,
G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 369–378. Springer, Heidelberg
(2004)

9. Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic programming to
classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews 40(2), 121–144 (2010)

10. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Genetic programming for knowledge discovery
in chest-pain diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 38–44
(2000)

11. Sakprasat, S., Sinclair, M.: Classification rule mining for automatic credit approval using
genetic programming. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 548–
555 (2007)

12. Shen, S., Sandham, W., Granat, M., Dempsey, M.F., Patterson, J.: A new approach to brain
tumour diagnosis using fuzzy logic based genetic programming. In: Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
vol. 1, pp. 870–873 (2003)

13. Falco, I.D., Cioppa, A.D., Tarantino, E.: Discovering interesting classification rules with
genetic programming. Applied Soft Computing 1(4), 257–269 (2002)

14. Tan, K.C., Tay, A., Lee, T., Heng, C.M.: Mining multiple comprehensible classification rules
using genetic programming. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation, CEC 2002, vol. 2, pp. 1302–1307 (2002)

15. Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In: Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pp. 303–311. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

16. Li, X.M., Wang, M., Cui, L.J., Huang, D.M.: A new classification arithmetic for multi-image
classification in genetic programming. In: 2007 International Conference on Machine Learn-
ing and Cybernetics, vol. 3, pp. 1683–1687 (2007)

17. Kishore, J.K., Patnaik, L., Mani, V., Agrawal, V.K.: Application of genetic programming for
multicategory pattern classification. IEEE Transactions on Evolutionary Computation 4(3),
242–258 (2000)

18. Silva, S., Tseng, Y.-T.: Classification of seafloor habitats using genetic programming. In:
Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 315–324. Springer,
Heidelberg (2008)

19. Lin, J.Y., Ke, H.R., Chien, B.C., Yang, W.P.: Classifier design with feature selection and fea-
ture extraction using layered genetic programming. Expert Systems With Applications 34(2),
1384–1393 (2008)

20. Teredesai, A., Govindaraju, V.: Issues in evolving gp based classifiers for a pattern recogni-
tion task. In: Congress on Evolutionary Computation, CEC 2004, vol. 1, pp. 509–515 (2004)

21. Winkler, S., Affenzeller, M., Wagner, S.: Advanced genetic programming based machine
learning. Journal of Mathematical Modelling and Algorithms 6(3), 455–480 (2007)

60 V. Ingalalli et al.

22. Jabeen, H., Baig, A.R.: Two-stage learning for multi-class classification using genetic pro-
gramming. Neurocomputing 116, 311–316 (2013)

23. Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garcia, S., Sanchez, L., Herrera, F.:
Keel data-mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17(2-3),
255–287 (2011)

24. Bache, K., Lichman, M.: (uci) machine learning repository, university of California, Irvine,
school of information and computer sciences (2013),
http://archive.ics.uci.edu/ml

25. U.S. geological survey (usgs) earth resources observation systems (eros) data center (edc),
http://glovis.usgs.gov/

26. Silva, S., Almeida, J.: GPLAB - A Genetic Programming Toolbox for MATLAB. In: Proc.
of the Nordic MATLAB Conference, NMC 2003, pp. 273–278 (2005)

27. Xiang, S., Nie, F., Zhang, C.: Learning a mahalanobis distance metric for data clustering and
classification. Pattern Recognition 41(2), 3600–3612 (2008)

28. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

http://archive.ics.uci.edu/ml
http://glovis.usgs.gov/

Generalisation Enhancement via Input Space
Transformation: A GP Approach

Ahmed Kattan1, Michael Kampouridis2, and Alexandros Agapitos3

1 Um Al Qura University, AI Real-World Applications Lab, Department of Computer Science,
Kingdom of Saudi Arabia
ajkattan@uqu.edu.sa

2 University of Kent, School of Computing, UK
M.Kampouridis@kent.ac.uk

3 Complex and Adaptive Systems Laboratory, School of Computer Science and Informatics,
University College Dublin, Ireland

alexandros.agapitos@ucd.ie

Abstract. This paper proposes a new approach to improve generalisation of
standard regression techniques when there are hundreds or thousands of input
variables. The input space X is composed of observational data of the form
(xi, y(xi)), i = 1...n where each xi denotes a k-dimensional input vector of
design variables and y is the response. Genetic Programming (GP) is used to
transform the original input space X into a new input space Z = (zi, y(zi))
that has smaller input vector and is easier to be mapped into its corresponding
responses. GP is designed to evolve a function that receives the original input
vector from each xi in the original input space as input and return a new vec-
tor zi as an output. Each element in the newly evolved zi vector is generated
from an evolved mathematical formula that extracts statistical features from the
original input space. To achieve this, we designed GP trees to produce multi-
ple outputs. Empirical evaluation of 20 different problems revealed that the new
approach is able to significantly reduce the dimensionality of the original input
space and improve the performance of standard approximation models such as
Kriging, Radial Basis Functions Networks, and Linear Regression, and GP (as a
regression techniques). In addition, results demonstrate that the new approach is
better than standard dimensionality reduction techniques such as Principle Com-
ponent Analysis (PCA). Moreover, the results show that the proposed approach
is able to improve the performance of standard Linear Regression and make it
competitive to other stochastic regression techniques.

Keywords: Genetic Programming, Symbolic Regression, Approximation Mod-
els, Surrogate, Dimensionality Reduction.

1 Introduction

Science and engineering design problems oftentimes require the construction of a model
f̂ (referred to as meta-model, response surface model, or surrogate) that emulates the
response of some black-box f which comes from some process. These black-box prob-
lems, i.e., whose problem class is unknown, are possibly mathematically ill-behaved

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 61–74, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

62 A. Kattan, M. Kampouridis, and A. Agapitos

(e.g., discontinuous, non-linear, non-convex). Generally, the model f(x) represents
some continuous quality or performance measure of a process defined by k-vector de-
sign variables x ∈ X ⊂ Rk. In the remainder of this paper we will refer to X as the
input space. Normally, the only insight available about the model f(x) is through some
discrete samples (xi, y(xi)), i = 1...n where each xi denotes a k-dimensional input
vector of design variables and y is the response. The task here is to construct an ap-
proximation model ˆf(x) to map any unseen x ∈ X to its response with a reasonable
accuracy.

It should be noted that reliable approximation models in the field of Machine Learn-
ing (ML) revolve around the fundamental property of generalisation. This ensures that
the induced model is a concise approximation of a data-generating process and per-
forms correctly when presented with data that has not been utilised during the learning
process. To this end, it is desirable to avoid complexity of approximation models to
maintain good generalisation. Thus, it is intuitively obvious that a higher number of
design variables in a modelling problem will increase the complexity of objective func-
tion measuring locations of sampled variables in the input space and subsequently effect
the generalisation ability. Moreover, the high number of design variables often requires
more samples to build a reasonable accurate approximation model and, thus, increases
the learner’s complexity and may reduce its generalisation. This problem is referred to
as curse of dimensionality [3]. To this end, many data-centric approximation method-
ologies in the ML literature that have been used to construct approximation models
yield poor performance when the number of design variables is high.

One way to mitigate the curse of dimensionality problem is by reducing the number
of design variables using some dimensionality reduction technique such as Principle
Component Analysis (PCA) or Factor Analysis (FA) (e.g., see [8]). However, variables
reduction is reasonable only when the significant variables are just a fraction of the
overall set of variables. Variable reduction, some times, can increase the difficulty of
the problem in cases where all variables have similar influence on the model response.
Another way to deal with the curse of dimensionality is to construct a new input space
that can be mapped to the original input space and is easer to approximate [13].

This paper proposes a model to improve the generalisation performance of standard
regression models when the number of design variables is high. The main idea is to use
Genetic Programming (GP) [11] to evolve a transformation function that transforms the
original input space X into a new input space Z that has smaller number of variables
and is easier to approximate to their corresponding responses. To this end, GP individ-
uals (represented as trees) receives the design variables from the original input space
as inputs and return a vector of outputs.1 The evolution of the transformation function
is guided by a fitness measure that drives search toward performance improvement of
standard approximation models. For this task, GP is supplied with a function set that al-
lows the extraction of statistical features from the original input space (details in Section
3).

The contribution of this paper is twofold. First, we show that it is possible to improve
the generalisation of approximation models just by transforming the input space without

1 We used a design similar to modi GP proposed by Zhang et. al. in [14] to allow GP trees
produce multiple outputs.

Generalisation Enhancement via Input Space Transformation 63

changing anything in the approximation models themselves or in their objective func-
tions. Second, we show that our approach can boost the performance of a simple linear
regression and make it competitive to other state-of-the-art approximation techniques.

The reader’s guide to the rest of the paper is as follows. Section 2 presents related
work from the literature. Section 3 presents the proposed approach in details followed
by experimental results and their analysis in Section 4. Finally, this paper concludes in
Section 5.

2 Related Works

Dimensionality reduction techniques to mitigate the curse of dimensionality problem
is a well explored topic. Many techniques have been developed and used with feature
selection and classification problems (e.g., [12], [2]). However, the idea of reducing
the number of design variables in the regression problems to improve generalisation of
standard ML approaches is relatively little explored thus far. In this section we focus the
review on dimensionality reduction approaches for models approximation since these
are directly relevant to the work reported in this paper.

Sobester and Nair in [13] presented a GP approach for generating functions in closed
analytic form that map the input space of a complex function approximation problem
into one where the output is more amenable to linear regression. To achieve this, the
authors used a co-evolutionary approach where multiple populations are evolved in
parallel. However, the authors claimed that their results are not conclusive and they are
merely serve as proof of concept. In addition, the new transformed input vector z has
the same dimensionality as the original vector.

In [8] the authors proposed a technique based on latent variables, non-linear sensitiv-
ity analysis, and GP to manage approximation problems when the number of input vari-
ables is high. The proposed technique was tested with 340 input variable problems. The
proposed approach was designed to consider problems where all input variables have
similar influence on the model’s output. Thus, standard variable pruning techniques are
not applicable.

McConaghy [9] presented a deterministic technique, referred to as Fast Function Ex-
traction (FFX), for solving a symbolic regression problem that achieves higher approx-
imation accuracy than standard GP and several state-of-the-art regression techniques.
Later, Icke and Bongard [5] hybridised FFX and GP to create an improved learner for
symbolic regression problems. In this work, the authors showed that a hybrid deter-
ministic/GP for symbolic regression outperforms GP alone and several state-of-the-art
deterministic regression techniques alone on a set of multivariate polynomial symbolic
regression tasks. The proposed approach was tested to approximate data-sets of differ-
ent dimensionality, ranging from 1 to 25 dimensions.

As it can be seen, most of previous work tried to mitigate the curse of dimension-
ality problem by transforming the input space into a new input space. In this paper we
show that it is possible to mitigate the curse of dimensionality problem and improve
the generalisation of approximation models just by transforming the input space into
new space that holds similar features. Unlike other works, our approach builds a trans-
formation function for the input space based on its statistical features. This allows the

64 A. Kattan, M. Kampouridis, and A. Agapitos

Table 1. GP Function set

Function Arity Input Output

+, -, /, * 2 Real Number Real Number
Mean, Median,
StD, Variance,
Average Div, Min,
Max

1 Randomly selected
variables from each
xi

Real Number

Constants 1-6 0 N/A Real Number
*StD is Standard Deviation, and Average Div is Average Deviation.

transformation function to significantly reduce the number of design variables and relax
the learners’ performance.

3 Proposed Approach

The proposed approach uses GP as the main engine to transform the original input space
into a new one. GP individuals are designed to receive the training samples from X as
inputs and return a transformed samples as an output. This can be represented formally
as follows: let the original input space be denoted as X ⊂ Rk where k is the dimen-
sionality of the input samples. Normally, the input space is represented with a set of n
discrete and possibly sparse samples X = {x0, x1, ..., xn}. The aim is to evolve a trans-
formation function T (X) ⇒ Z where Z ⊂ Rq and q < k. The set Z = {z0, ..., zn}
where each zi represent the xi after being transformed fromX ⇒ Z . The newly evolved
Z set has to be easier to approximate and support the learner’s generalisation. To this
end, GP starts by randomly initialising a population of trees using ramped half-and-half
approach [11]. We supplied GP with a function set, as illustrated in Table 1, to extract
statistical features from the design variables of each sample in original input space. For
each tree in the GP population, each node that holds a statistical function will be asso-
ciated with a randomly selected sub-set of variables (up to k variables). For example,
say k = 10, a tree could calculate the Mean function for variables {1, 2, 5, 6, 7} while
another tree (or even another node in the same tree) could calculate the Mean function
for variables {9, 10}. We let the system picks up uniformly the number d of variables in
[1, k], and then uniformly choose the d variables among all variables. Once the system
allocates a randomly selected sub-set of design variables to a node that holds a statisti-
cal function, it maintains the same sub-set for that node during its life cycle. Thus, all
nodes that hold statistical functions maintain their selected sub-sets of variables after
crossover or reproduction.

The next sub-section will explain the design used for GP trees to allow them to
produce multiple outputs.

3.1 Trees Return Multiple Outputs

Standard GP tree representation proposed by Koza [7] utilises the evolved functions to
perform a many-to-one mapping from inputs to an output. However, some problems,

Generalisation Enhancement via Input Space Transformation 65

such as the one presented in this paper, raise a need to evolve functions that perform
a many-to-many mapping between inputs and outputs. The idea of evolving trees with
multiple outputs has been proposed by Zhang et. al. in [14]. In this work the authors
proposed a new representation called modi trees to produce multiple outputs. Here, our
design is inspired by modi trees, however, the difference is that modi was presented to
evolve a fixed size vector of outputs while our approach can evolve a vector of any size.
Similar to modi, our tree design consists of two main types of nodes: (a) standards
nodes that pass their outputs to their parents, and (b) outputs nodes that append their
output to a vector associated with the tree. As illustrated in Figure 1, for each tree, we
let the system randomly selects some nodes and label them as output nodes. Thus, the
size of the output vector of each tree is equal to the number of its output nodes. Also,
once the system labels a node in any tree as an output node, it maintains its type during
its life cycle (i.e., after crossover or reproduction). When evaluating trees, the system
ensures to maintain the same traverse order, thus, the same tree will always produce the
same output vector.

Using this representation allows the outputs of the evolved zi vectors to be generated
from different sub-trees or leaf nodes. Hence, any element in the generated output vector
can be the result of a simple statistical feature for a sub-set of the design variables or
the result of a linear function that combines several statistical features.

StD (7,6,5)
output

Mean(8,9,1) Median
(6,7,9)

) Mean(8,9,1))

Output vector

Fig. 1. GP tree representation to produce multiple outputs inspired by modi

3.2 Fitness Measure

As mentioned previously, the aim of the transformation function is to improve the gener-
alisability of standard learners (or model approximation techniques). This is a challeng-
ing problem because the fitness measure needs to be aware of the generalisation level
induced by the transformed space. In addition, the evolved transformation function has
to be applicable to several learners without making any prior assumptions about which
learner will be used to solve the approximation problem. One simple way to test the
quality of the transformation function is to use the transformed input samples to train a
single learner, e.g., Radial Basis Function Networks (RBFN), and then test this learner
with unseen data (i.e., validation set). Although the simplicity of this idea is intuitively

66 A. Kattan, M. Kampouridis, and A. Agapitos

appealing, one problem would lie in the selection of the learner that will be used as
fitness measure. As demonstrated in preliminary experiments, GP tunes the input space
quickly in such a way to allow the learner to over-fit samples of the transformed input
space. Thus, the learner loses its generalisation property. In fact, when we used predic-
tion errors of RBFN as fitness measure, in preliminary experiments, we found that GP
evolves a transformation functions that allows RBFN to over-fit the training set easily.
Hence, the fitness value keeps improving, which gives an indication that RBFN is doing
well on the transformed input space. However, when testing the RBFN on a transformed
validation set results show very poor performance.

To avoid pathologies of this kind, another idea to evaluate the quality of the evolved
transformation functions is to use multiple learners and solve the problem as multi-
objectives optimisation, where the system is trying to reduce the prediction error of all
learners simultaneously. Then the best evolved transformation function, at each gener-
ation, is evaluated against a validation set. In preliminary experiments, we found that
this idea worked well to some extent, however, its main drawback is emphasised in the
large computational cost required to train each learner using the transformed samples
induced by each individual in the GP population. Hence, we reduced the number of
learners (used as a fitness measure) gradually and explored different permutations of
learners to balance between computational cost and solutions’ quality.

After several experiments, based on trial and error, we used two learners as a fitness
measure; RBFN and Linear Regression (LR). Generally, RBFN shows its best perfor-
mance when the landscape of input space is smooth [6]. Thus, using prediction errors
of RBFN as fitness measure, in principle, will guide GP to evolve smooth transformed
input space in such a way to reduce the prediction errors of RBFN. However, if the
transformed training samples became congregated in a small area at the transformed
input space then it is most likely that RBFN will over-fit the training samples. Here, we
also use the LR model to mitigate this problem. In LR, data are modelled using linear
predictor functions. LR shows its best performance when the input samples are linearly
correlated with their outputs. Also, LR performance significantly decreases when the
number of design variables increases. With these properties, LR can encourage GP to
linearly align the transformed samples to their corresponding outputs and reduce the
number of input variables. To this end, LR and RBFN are selected to guide the fitness
measure of GP. In addition, they both are relatively fast algorithms which will result
in a reasonable computational cost when evaluating GP individuals. More formally, the
fitness measure can be denoted as follows:

Fitness =

∑n
i=0 |LR(zi)− yi|

n
+

∑n
i=0 |RBFN(zi)− yi|

n
(1)

where LR(zi) and RBFN(zi) represent the predictions of LR and RBFN given the
transformed point zi. The n is the number of the transformed input samples and yi is
the ith output.

GP evolves individuals as described in Section 3.1 where each individual produces
a zi ∈ Z output vector for each input sample xi ∈ X . Remember that we assume each
xi denotes a k-dimensional input vector of design variables. The set Z = {z0, ..., zi}
is used to train RBFN and LR using 2-fold cross-validation technique. The prediction
error is calculated as described in Equation 1 to rank individuals. The best individual

Generalisation Enhancement via Input Space Transformation 67

of each generation is further tested with an unseen transformed validation set. The best
individual across the whole run (that produced the best performance on the validation
set) is used as the final transformation function that can be used to transform the input
space.

4 Experiments and Analysis

4.1 Experimental Settings

A set of experiments have been conducted to evaluate the proposed approach. We tested
the effects of the transformation function on four regression models, namely, RBFN,
Kriging, LR, and GP (used as a regression model). These models were selected because
they are some of the most important techniques in the literature. In addition, to compare
the proposed approach against standard dimensionality reduction technique we included
Principle Component Analysis (PCA) [1] in the experiments.

Experiments included the following 5 benchmark functions; Rastrigin, Schwefel,
Michalewicz, Sphere, and Dixon & Price [10]. For each test function, we trained all
approximation models to approximate the given function when the number of variables
is 100, 500, 700 and 1000. The total number of test problems is 20 (i.e., 5 test functions
×4 different variables sizes). For all test problems, we randomly generated three dis-
joint sets; a training set of 100 points, a validation set of 50 points, and a testing set of
150 points from the interval [−5, 5]. All techniques have been compared based on the
average of absolute errors on the testing set.

For each function-variables combination, each approximation model has been tested
three times; without and with PCA and our proposed approach (we will call it the Z
set). In the experiments, some models are deterministic so we tested them only once
with each problem. These, in particular, are RBFN, Kriging, and LR, with and without
PCA. However, because the generation of the transformation function is based on an
evolutionary process, we evolved 30 different transformation functions and tested them
with each approximation model for each problem and reported the mean, median, best,
and standard deviation. To evolve the transformation function, we used generational
GP with the following settings; population size is 100, number of generations 100,
maximum allowed size for trees is 300 nodes, elitism rate 0.01, crossover and mutation
rates 0.7 and 0.3, respectively.

For the GP engine that has been used to solve the approximation problems, we used
the same settings described previously. To assure fair comparison, we tested standard
GP with and without PCA in 30 different runs and reported the same results.

4.2 Results

Tables 2, 3, and 4 summarise the results of 1200 GP runs and 60 RBFN, Kriging, and
LR runs. In Table 2, it is clear that the Z set has improved all approximation techniques
to obtain the best error in all four variables sizes (denoted by bold fonts in any column
with a title starting with “Z set”). In addition, the Z set improved the GP performance
in terms of mean in 7 out of 8 test cases and in terms of median in 5 cases (see again

68 A. Kattan, M. Kampouridis, and A. Agapitos

the numbers in bold fonts in the column entitled “Z set+SGP”). We also, noted that the
Z set improved the performance of LR significantly by several orders of magnitude.
In fact, LR obtained the best overall approximation for 6 out of 8 cases (denoted by
underlined fonts). These are remarkable results given that LR simply uses a linear func-
tion to make predictions. The results suggest that the evolved transformation function
has aligned the transformed input variables to be linearly correlated with their outputs.

Similarly, in Table 3, the Z set has improved all approximation techniques in terms
of best results. Also, the Z set improved the GP performance in terms of mean in 7
out of 8 test cases and in terms of median in 4 cases. The LR obtained the best overall
approximation for 6 out of 8 cases. Finally, in Table 4 results follow the same pattern2.
The Z set again leads to consistently improved results in terms of best values. It also
improved the mean and median results in all 4 cases. Lastly, the combination of the
Z set with LR was again the champion, having the best overall approximation in all 4
cases.

To further verify the significance of the non-deterministic results on the GP, we used
the non-parametric Friedman test to rank the three algorithms tested, namely SGP, Z
set+SGP, and PCA+SGP. As we can observe from Table 5, the SGP approximation that
uses the Z set was ranked first in 16 out of the 20 test cases; in addition, Holm’s post-
hoc test [4] showed that 12 out of these 16 first ranking were statistically significant at
5% or 10% level. It should also be noted that none of the other two algorithms (SGP,
PCA+SGP) has managed to be ranked first at a statistical significance level of 5%.
This once again demonstrates the improvement brought by the Z set to GP with these
benchmark functions.

Overall, results show that the transformed input space has managed to improve
the generalisation of all approximation techniques in the comparison. Thus, when the
evolved Z set is applied, we can expect to have an improvement in the approximation
error. In addition, results also show that our approach is better than a standard dimen-
sionality reduction technique, such as PCA. Moreover, the transformed input space has
significantly improved the LR in most of the test cases and make it competitive to other
stochastic approximation techniques. In fact, LR has outperformed all of its competitors
in most of the cases and it is not too far behind when it loses the comparison.

To have a closer look at LR improvement with the Z set, Figure 3 depicts the approx-
imation of Sphere function (i.e., function 4), with 2 variables, of all models included
in the comparison. It is interesting to visually see that LR can accurately approximate
a non-linear function only by transforming the input space. In addition to this, the LR
with the Z set approximation had the lowest error (0.0445021) among all 12 algorithms.

Despite the good improvements obtained by using the Z set, it is fair to report that the
main disadvantage of the proposed approach that it requires extra computational cost
and time to transform the input space. Also, in some cases the improvements are not
significant and, thus, can not justify the extra costs. However, as demonstrated by the
results, in some cases the margins of improvement can be several orders of magnitude
(e.g., Functions 3 and 4) which justifies the extra computational costs in return of higher

2 Due to space limitation we did not report the results of the RBFN (with and without PCA and
the Z set) in Table 4. However, in our experiments we found that the Z set has also improved
RBFN.

Generalisation Enhancement via Input Space Transformation 69

Ta
bl

e
2.

Su
m

m
ar

y
re

su
lt

s
fo

r
fu

nc
ti

on
s
1

an
d
2

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

10
0

SG
P

Z
se

t+
SG

P
PC

A
+

SG
P

R
B

FN
Z

se
t+

R
B

FN
PC

A
+

R
B

FN
K

ri
gi

ng
Z

se
t+

K
ri

gi
ng

PC
A

+
K

ri
gi

ng
L

R
Z

se
t+

L
R

PC
A

+
L

R
M

ea
n

75
24

86
8.

16
73

.6
7

15
9.

83
90

.1
0

73
.6

7
76

.5
5

B
es

t
75

.3
7

73
.5

2
73

.6
5

82
.1

9
73

.7
2

82
.4

8
73

.6
8

73
.5

2
73

.6
8

72
74

0.
90

59
.7

6
M

ed
ia

n
90

.8
1

73
.6

8
91

.2
9

88
.6

8
73

.6
8

70
.8

1

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

50
0

M
ea

n
10

01
.5

4
20

9.
01

91
6.

14
21

0.
75

18
4.

92
22

61
8.

21
B

es
t

17
4.

04
13

0.
82

16
9.

12
18

5.
74

16
2.

89
18

5.
82

18
0.

56
17

6.
93

18
0.

56
1.

54
E

+
07

14
8.

69
M

ed
ia

n
21

3.
37

18
2.

00
21

5.
46

20
9.

07
18

0.
56

16
7.

80

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

70
0

M
ea

n
26

66
.2

5
38

24
.5

3
57

2.
18

26
9.

65
20

7.
42

10
23

42
.8

9
B

es
t

22
0.

82
17

4.
74

20
8.

36
21

6.
14

21
1.

43
21

6.
15

20
7.

39
20

6.
43

20
7.

39
4.

07
E

+
07

17
6.

47
M

ed
ia

n
25

6.
34

25
2.

04
24

0.
69

26
2.

31
20

7.
39

22
6.

80

F
un

ct
io

n
1

(R
as

tr
ig

in
)

D
im

en
si

on
s

10
00

M
ea

n
26

24
.3

0
28

92
.2

2
41

1.
94

27
6.

75
24

1.
54

13
54

62
.4

0
B

es
t

22
7.

57
19

5.
21

23
2.

02
22

4.
87

21
3.

65
22

4.
90

22
6.

37
22

6.
37

22
6.

37
3.

42
E

+
08

18
4.

20
M

ed
ia

n
30

5.
58

28
5.

32
27

3.
02

25
6.

83
22

6.
37

24
3.

05

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

10
0

M
ea

n
13

07
2.

65
41

52
.9

8
92

04
.9

7
29

27
.3

0
21

68
1.

90
23

84
.7

1
B

es
t

34
83

.6
8

20
83

.8
0

34
71

.4
9

41
16

.4
5

24
08

.6
4

41
00

.5
4

34
42

.9
7

34
13

.2
5

34
42

.9
7

4.
43

E
+

06
18

08
.1

5
1.

04
E

+
06

M
ed

ia
n

41
98

.0
8

28
32

.1
0

40
29

.3
2

28
80

.1
6

34
60

.2
6

23
25

.1
3

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

50
0

M
ea

n
11

84
26

7.
92

12
36

39
.3

2
13

78
45

1.
65

36
67

8.
20

75
87

4.
60

28
63

3.
29

B
es

t
38

12
6.

30
22

71
1.

60
37

87
2.

80
39

84
1.

60
26

81
2.

60
39

84
4.

80
38

25
8.

00
37

87
5.

30
38

25
8.

00
1.

74
E

+
08

22
19

7.
20

3.
74

E
+

08
M

ed
ia

n
52

33
1.

65
36

96
1.

20
48

51
5.

85
36

36
3.

70
38

27
5.

65
27

40
7.

05

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

70
0

M
ea

n
18

92
19

91
.6

3
21

42
83

.0
0

19
13

21
5.

34
51

67
3.

54
24

46
32

.3
4

37
00

21
4.

70
B

es
t

65
71

3.
60

31
52

3.
20

67
55

4.
90

65
55

3.
50

37
17

6.
90

65
58

3.
20

64
03

7.
20

63
65

8.
60

26
73

18
0.

00
5.

70
E

+
08

30
85

2.
70

1.
66

E
+

09
M

ed
ia

n
89

01
1.

40
61

95
2.

60
83

37
1.

25
48

64
7.

55
64

18
2.

30
39

20
1.

25

F
un

ct
io

n
2

(S
ch

w
ef

el
)

D
im

en
si

on
s

10
00

M
ea

n
74

44
25

9.
17

11
86

43
9.

44
12

55
37

54
.3

3
10

53
27

.9
9

36
85

05
22

5.
77

24
27

13
39

.3
0

B
es

t
11

65
43

.0
0

68
88

4.
00

11
50

53
.0

0
11

90
38

.0
0

69
36

5.
30

11
90

56
.0

0
11

74
84

.0
0

11
69

87
.0

0
11

74
84

.0
0

1.
21

E
+

10
61

20
9.

80
2.

40
E

+
09

M
ed

ia
n

40
78

83
0.

00
18

19
29

.0
0

13
97

70
.5

0
97

15
3.

70
11

74
84

.0
0

72
80

1.
55

*
B

ol
d

nu
m

be
rs

ar
e

th
e

lo
w

es
ti

n
ea

ch
gr

ou
p

an
d

un
de

rl
in

ed
nu

m
be

rs
ar

e
th

e
lo

w
es

ti
n

al
lg

ro
up

s.

70 A. Kattan, M. Kampouridis, and A. Agapitos

Ta
bl

e
3.

Su
m

m
ar

y
re

su
lt

s
fo

r
fu

nc
ti

on
s
3

an
d
4

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
10

0
SG

P
Z

se
t+

SG
P

PC
A

+
SG

P
R

B
FN

Z
se

t+
R

B
FN

PC
A

+
R

B
FN

K
ri

gi
ng

Z
se

t+
K

ri
gi

ng
PC

A
+

K
ri

gi
ng

L
R

Z
se

t+
L

R
PC

A
+

L
R

M
ea

n
1.

07
E

+
04

5.
26

E
+0

6
3.

99
E

+
03

6.
07

18
4.

12
3.

46
B

es
t

19
.1

8
2.

89
20

.6
1

15
.7

4
2.

65
15

.7
2

20
.7

4
20

.6
2

20
.7

4
9.

47
E

+
05

1.
39

6.
28

E
+

05
M

ed
ia

n
28

.6
6

43
.7

2
24

.8
9

5.
04

25
.3

2
2.

05

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
50

0
M

ea
n

1.
89

E
+

04
2.

20
E

+
05

1.
52

E
+0

4
58

77
43

3.
82

5.
88

E
+

06
10

.4
2

B
es

t
48

.8
9

9.
15

48
.7

9
48

.5
5

49
.3

3
48

.5
8

49
.4

0
49

.3
3

49
.4

0
4.

89
E

+
08

4.
13

9.
00

E
+

07
M

ed
ia

n
55

.9
9

62
.0

0
54

.7
8

11
0.

23
11

0.
23

7.
46

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
70

0
M

ea
n

8.
71

E
+

04
2.

58
E

+0
4

5.
60

E
+

04
16

.4
2

1.
91

E
+

07
9.

35
B

es
t

52
.4

1
9.

12
52

.1
1

50
.9

1
7.

04
50

.8
9

52
.4

3
49

.2
3

52
.4

3
1.

04
E

+
08

4.
73

2.
54

E
+

08
M

ed
ia

n
13

3.
01

16
25

.7
0

62
.0

3
14

.9
3

16
8.

26
7.

48

F
un

ct
io

n
3

(M
ic

ha
le

w
ic

z)
D

im
en

si
on

s
10

00
M

ea
n

1.
34

E
+

05
1.

05
E

+0
5

6.
04

E
+

04
32

.2
0

2.
00

E
+

08
6.

50
E

+
04

B
es

t
69

.8
4

9.
11

69
.6

5
67

.6
1

9.
87

67
.6

4
69

.1
3

68
.9

2
38

97
.6

0
1.

59
E

+
08

6.
80

4.
20

E
+

08
M

ed
ia

n
29

6.
60

23
5.

04
79

.5
1

23
.2

0
98

.9
9

14
.0

7

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

10
0

M
ea

n
61

.0
6

22
.7

9
61

.5
8

11
.2

8
1.

56
E

+
08

11
.1

7
B

es
t

49
.7

9
9.

57
48

.6
7

55
.6

5
0.

02
56

.5
1

48
.9

8
48

.0
9

48
.9

8
3.

10
E

+
04

6.
29

3.
10

E
+

04
M

ed
ia

n
58

.4
1

16
.0

7
54

.6
3

12
.5

2
94

.3
2

10
.2

6

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

50
0

M
ea

n
50

3.
80

13
2.

65
17

2.
44

27
.8

0
1.

31
E

+
04

18
.7

4
B

es
t

14
4.

81
11

.7
4

14
5.

18
14

6.
93

0.
21

14
7.

12
14

6.
31

14
5.

52
14

6.
31

1.
71

E
+

07
8.

84
1.

44
E

+
06

M
ed

ia
n

15
7.

77
71

.3
3

15
4.

52
29

.1
2

14
6.

58
19

.7
0

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

70
0

M
ea

n
65

3.
16

73
.1

2
25

6.
48

32
.5

6
4.

41
E

+
10

16
.5

6
B

es
t

14
2.

39
13

.0
0

14
4.

92
14

8.
94

8.
56

14
8.

99
14

7.
31

14
3.

35
81

39
.3

8
1.

46
E

+
06

7.
08

2.
63

E
+

06
M

ed
ia

n
17

8.
88

50
.8

9
16

0.
93

27
.8

9
57

18
.5

9
15

.5
7

F
un

ct
io

n
4

(S
ph

er
e)

D
im

en
si

on
s

50
0

M
ea

n
24

20
.1

4
83

.7
1

57
2.

57
34

.7
2

2.
48

E
+

10
18

.3
2

B
es

t
17

2.
42

9.
74

18
0.

50
17

6.
93

9.
08

17
6.

93
17

7.
25

17
5.

56
17

7.
25

4.
50

E
+

07
6.

83
1.

53
E

+
07

M
ed

ia
n

23
3.

90
71

.1
3

21
9.

29
32

.7
2

1.
33

E
+

04
18

.9
9

*
B

ol
d

nu
m

be
rs

ar
e

th
e

lo
w

es
ti

n
ea

ch
gr

ou
p

an
d

un
de

rl
in

ed
nu

m
be

rs
ar

e
th

e
lo

w
es

ti
n

al
lg

ro
up

s.

Generalisation Enhancement via Input Space Transformation 71

Table 4. Summary results for function 5 Function 5 (Dixson& Price)

Dimensions 100
SGP Z

set+SGP
PCA+SGP Kriging Z set+

Kriging
PCA+
Kriging

LR Z set+ LR PCA+ LR

Mean 4.9E+07 7.4E+05 2.9E+06 1.2E+05 2.2E+05
Best 5.3E+05 3.3E+05 5.3E+05 4.3E+05 2.6E+05 4.3E+05 2.0E+07 1.8E+05 4.2E+06

Median 6.0E+05 5.0E+05 6.2E+05 2.3E+05 2.16E+05

Dimensions 500
Mean 5.8E+07 2.8E+07 3.9E+07 2.9E+06 2.4E+06
Best 6.1E+06 3.7E+06 6.3E+06 3.72E+06 2.3E+06 3.7E+06 2.4E+10 2.1E+06 1.7E+10

Median 7.2E+06 6.3E+06 7.1E+06 2.9E+06 2.3E+06

Dimensions 700
Mean 4.7E+07 4.3E+07 6.3E+07 5.3E+06 9.1E+06
Best 1.0E+07 6.2E+06 1.0E+07 6.5E+06 4.1E+06 6.5E+06 2.6E+10 3.65E+06 7.41E+10

Median 1.21E+07 9.1E+06 1.4E+07 5.0E+06 4.07E+06

Dimensions 1000
Mean 3.6E+08 1.1E+08 2.1E+08 9.7E+06 7.10E+06
Best 1.7E+07 1.0E+07 1.7E+07 9.7E+06 7.0E+06 9.7E+06 1.2E+12 6.0E+06 1.2E+11

Median 1.8E+08 1.7E+07 3.4E+07 9.5E+06 6.87E+06
* Bold numbers are the lowest in each group and underlined numbers are the lowest in all groups.

accuracy. Lastly, it is also worth noting that the results seem to worsen as the number
of dimensions increases.

Fig. 2. The original Function 4 (Sphere function)

One last contribution of our work is the significant dimensionality reduction. Table 6
illustrates these reductions in each test problem. As can be seen, the proposed approach
has generated a new input that has more than 50% smaller number of design variables.
We believe the great amount of reduction is largely attributed to the fact that the new
input space is based on statistical features extracted from the original space. Thus, in a
sense, each design variable in the new transformed space is a result of several variables
from the original space. To this end, both input spaces (the original and transformed)
have similar statistical features.

However, an observation one could make is that the number of dimensions in the
new input space does not seem to be correlated with the number of dimensions from
the original input space; in fact, while the mean number of variables varies from 10.27
(F4) to 23.30 when Dimensions = 100, this mean range only slightly increases for Di-
mensions = 1000 (11.83 (F4) to 31.20 (F1)). This is very interesting and it could be an

72 A. Kattan, M. Kampouridis, and A. Agapitos

Table 5. Friedman statistical significance test. Values that are in bold font denote that the respec-
tive algorithm’s ranking is statistically better than one other algorithm (at 5% significance level).
Values that are both in bold font and underlined denote that the algorithm has a statistically better
ranking than both of the other two algorithms (at 5% significance level). Lastly, when a value has
a star (*) next to it, this means that the respective algorithm has a statistically significant ranking
at 10% level.

Function F1 F2 F3 F4 F5
Dimension Algorithm Ranking

100 SGP 2.3 2.56 2.13 2.6 2.16
Z set+SGP 1.63* 1.23 2 1.06 1.36
GP+PCA 2.06 2.2 1.86 2.33 2.46

500 SGP 2.2 2.2 2.16 2.53 2.16
Z set+SGP 1.53 1.73 1.76 1.2 1.7
GP+PCA 2.26 2.06 2.06 2.26 2.13

700 SGP 2.23 2.23 2.06 2.4 2.20
Z set+SGP 2 1.33 1.93 1.2 1.40
GP+PCA 1.76 2.43 2 2.4 2.40

1000 SGP 2.23 2.18 2.36 2.46 2.40
Z set+SGP 2.03 1.96 1.8* 1.1 1.43
GP+PCA 1.73 1.85 1.83 2.43 2.16

explanation as to why the approximation results are poorer for higher number of dimen-
sions. As explained earlier in Section 3.1, our multiple-outputs GP approach can evolve
an output vector of any size. However, as we see in practice this size is not proportionate
to the size of the original dimension of the X vector. It would thus be worth investi-
gating in a future work if approximation results can be improved when the number of
variables in the transformed input space is higher.

Table 6. Summary of dimensions produced by the evolved Z set. The table summaries the mean
results of 30 independent runs for each test problem.

Dimensions F1 F2 F3 F4 F5
100 14.97 14.27 12.27 10.27 23.30
500 21.97 14.43 14.37 12.77 25.20
700 33.67 17.30 12.73 11.23 25.30

1000 31.20 26.63 16.60 11.83 23.26

Generalisation Enhancement via Input Space Transformation 73

Fig. 3. Approximation of Sphere function (Function 4) with 2 variables. Each model (Kriging-
1st row, Linear Regression-2nd row, RBFN-3rd row, SGP-4th row) was tested without (left) and
with PCA (middle) and the Z set (right).

5 Conclusions

To summarise, this paper proposed a new approach to improve generalisation of stan-
dard regression techniques when dealing with hundreds or thousands of input vari-
ables. We used GP to transform the original input space X into a new input space
Z = (zi, y(zi)), where Z has a smaller input vector and is thus easier to be mapped.
We tested the effectiveness of our proposed approach over 5 different functions and over
4 different dimensionality sizes. Results over the above 20 problems showed that our
approach leads to a remarkable dimensionality reduction of the original input space,
thus making the problem at hand a less complex one. Furthermore, the transformed
input space was able to lead to consistently improved performance of the standard ap-
proximation models tested in this paper, i.e. Kriging, RBFN, Linear Regression and
GP. Moreover, our findings also demonstrated that our approach consistently outper-
forms a standard dimensionality reduction technique, such as the Principle Component
Analysis. Lastly, another important result was that our proposed approach was able to
significantly improve the performance of the standard Linear Regression, and actually
make it the best performing technique in the majority of the cases tested in this paper.

74 A. Kattan, M. Kampouridis, and A. Agapitos

A disadvantage of the proposed approach is that it requires extra computational cost
to evolve a transformation function. This cost does not bring a guarantee that the im-
provements margins will be significant. However, as demonstrated by the results, in
most cases the approximation improvements are significant thus justify the extra com-
putational cost.

For future work, we will explore options to reduce the computational cost of the
evolutionary process. Also, we will study the distribution of the transformed inputs on
the new space. Moreover, we would like to test the approach with real-world problems.

References

1. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 1. Springer,
New York (2006)

2. Estébanez, C., Aler, R., Valls, J.M.: Genetic programming based data projections for classi-
fication tasks. World Academy of Science, Engineering and Technology (2005)

3. Forrester, A., Sóbester, A., Keane, A.: Engineering design via surrogate modelling: a practi-
cal guide. John Wiley & Sons (2008)

4. Garcı́a, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple
data sets for all pairwise comparisons. Journal of Machine Learning Research 9(66), 2677–
2694 (2008)

5. Icke, I., Bongard, J.: Improving genetic programming based symbolic regression using de-
terministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation (CEC),
pp. 1763–1770 (2013)

6. Kattan, A., Galvan, E.: Evolving radial basis function networks via gp for estimating fit-
ness values using surrogate models. In: 2012 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–7 (2012)

7. Koza, J.R.: Genetic Programming: On the programming of computers by means of natural
selection, vol. 1. MIT Press (1992)

8. McConaghy, T.: Latent variable symbolic regression for high-dimensional inputs. In: Genetic
Programming Theory and Practice VII, pp. 103–118. Springer (2010)

9. McConaghy, T.: Ffx: Fast, scalable, deterministic symbolic regression technology. In: Ge-
netic Programming Theory and Practice IX, pp. 235–260. Springer (2011)

10. Molga, M., Smutnick, C.: Test functions for optimization needs (2005)
11. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming.

Lulu.com (2008)
12. Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., Kotanchek, M.: Variable selection in

industrial datasets using pareto genetic programming. In: Yu, T., Riolo, R.L., Worzel, B.
(eds.) Genetic Programming Theory and Practice III, Genetic Programming, May 12-14,
vol. 9, ch. 6, pp. 79–92. Springer, Ann Arbor (2005)

13. Sobester, A., Nair, P., Keane, A.: Evolving intervening variables for response surface approx-
imations. In: Proceedings of the 10th AIAA/ISSMO Multi-disciplinary Analysis and Opti-
mization Conference, pp. 1–12. American Institute of Aeronautics and Astronautics (2004),
http://eprints.soton.ac.uk/22962/, aIAA 2004-4379

14. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic program-
ming. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of the Second Asian-Pacific
Workshop on Genetic Programming, Cairns, Australia, December 6-7, p. 12 (2004),
http://www.mcs.vuw.ac.nz/˜mengjie/papers/yun-meng-apwgp04.pdf

http://eprints.soton.ac.uk/22962/
http://www.mcs.vuw.ac.nz/~mengjie/papers/yun-meng-apwgp04.pdf

On Diversity, Teaming, and Hierarchical Policies:

Observations from the Keepaway Soccer Task

Stephen Kelly and Malcolm I. Heywood

Dalhousie University, Halifax, NS, Canada
{skelly,mheywood}@cs.dal.ca

Abstract. The 3-versus-2 Keepaway soccer task represents a widely
used benchmark appropriate for evaluating approaches to reinforcement
learning, multi-agent systems, and evolutionary robotics. To date most
research on this task has been described in terms of developments to
reinforcement learning with function approximation or frameworks for
neuro-evolution. This work performs an initial study using a recently
proposed algorithm for evolving teams of programs hierarchically using
two phases of evolution: one to build a library of candidate meta policies
and a second to learn how to deploy the library consistently. Particular
attention is paid to diversity maintenance, where this has been demon-
strated as a critical component in neuro-evolutionary approaches. A new
formulation is proposed for fitness sharing appropriate to the Keepaway
task. The resulting policies are observed to benefit from the use of diver-
sity and perform significantly better than previously reported. Moreover,
champion individuals evolved and selected under one field size generalize
to multiple field sizes without any additional training.

Keywords: Policy search, Keepaway soccer, Symbiosis, Fitness sharing,
Diversity maintenance.

1 Introduction

Keepaway soccer was conceived as a simplification of the full RoboCup simulated
soccer task in which the objective is for K ‘keepers’ to maintain possession of
the ball for as long as possible from K − 1 ‘takers’ [1, 2]. The takers assume
a pre-specified policy whereas the keepers need to learn an appropriate policy.
Keepaway is implemented using the same RoboCup simulator as used for the
full game of soccer, but with additional constraints on the rules, boundary of the
field, and number of players. The Keepaway task is known to be non-Markovian
and has a wide range of results from reinforcement learning and neuro-evolution
(Section 2). However, to date, there has been little interest in applying genetic
programming (GP) to this task. The goal of this work is to make an initial
assessment of the capability of GP and the role of diversity maintenance in
identifying effective keeper policies under this domain. Previous results using
neuro-evolution have made use of genotypic diversity measures [3, 4]. While
genotypic diversity metrics have been proposed for canonical forms of GP (e.g.,

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 75–86, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

76 S. Kelly and M.I. Heywood

[5]), their design is not necessarily obvious for the case of GP that supports
task decomposition through teaming. Thus, in this work we introduce a novel
formulation for phenotypic fitness sharing and empirically evaluate its effect on
hierarchical GP under the Keepaway task.

The GP framework assumed in this work takes the form of symbiotic bid-
based GP (hereafter SBB), where this has previously been illustrated under
various reinforcement learning tasks e.g., Rubik cube [6], Pin-ball [7] and Ac-
robot handstand [8]. In SBB, a control policy is defined by a team of simple
programs that are coevolved, each specializing on a subcomponent of the task.
Adopting a teaming approach to policy search implies that it is possible to start
from simple policies at initialization and incrementally introduce more complex-
ity as the task warrants. The utility of task decomposition in general has been
demonstrated under supervised [9] and reinforcement learning [10]. Previous re-
sults with SBB have also indicated that if an initial run does not identify suitably
general policies, then the contents of the initial population can be ‘cashed’ and
referred to as a library of ‘meta actions’ [6–8]. Individuals evolved in a second
independent run learn the context for deploying the previously evolved policies.
That is to say, SBB supports a mechanism through which hierarchical policies
may be incrementally constructed.

In this work, we are specifically interested in the role of diversity maintenance
in the development of such hierarchical policies. The underlying assumption is
that such diversity is necessary during the development of the initial population
of SBB individuals (meta actions), but not necessary when constructing poli-
cies from meta actions. More generally, the need for diversity and modularity is
frequently acknowledged, particularly in environments with dynamic properties
[11, 12]. Thus, under the guise of ensemble methods as applied to streaming data
tasks, diversity is seen to provide faster reaction times to a change, but does not
necessarily facilitate faster convergence to the new concept [13]. Under a neuro-
evolutionary setting in which solutions to the iterated prisoner’s dilemma are
coevolved, diversity is shown to support the development of a broader range
of policies across the population as a whole, but it is difficult to integrate this
diversity into a single individual [14]. Finally, the field of evolutionary robotics
frequently reports better performance when reward is given for both novel solu-
tions as well as optimizing fitness [15, 16]. However, it is also clear that defining
an appropriate diversity metric is as an open ended activity.

In addition to investigating the role of diversity, we are also interested in
discovering how a GP approach compares to the current state of the art under
the most widely considered K = 3 (3-versus-2) configuration of the Keepaway
task. As will be established in Section 2, progress on the Keepaway task has
been dominated by reinforcement learning and neuro-evolutionary methods.

2 Related Work

As noted in the introduction, the Keepaway task represents a benchmark for
both multi-agent and reinforcement learning / policy search in general [1–4].

On Diversity, Teaming, and Hierarchical Policies 77

Given that a decision maker is necessary for each keeper, reinforcement learning
approaches have adopted a heterogeneous assignment of learners to keepers,
where this is a function of the overhead in attempting to update a single function
approximator w.r.t. multiple keepers [4]. Conversely, (evolutionary) policy search
generally assumes a homogeneous assignment, where this is a reflection of the
lack of specialization required in the keeper policies [17].

The original development of Keepaway defines the task of the decision maker
in terms of a pre-specified decision tree in which, should another keeper be in
possession of the ball, the free keepers assumes a “get open” behaviour. Other-
wise if the keeper is not in possession of the ball but can get there faster than
any other teammate, then the keeper approaches the ball. The task of the learn-
ing algorithm is to discover the appropriate strategy for the case of a keeper in
possession of the ball [1, 2]. When in possession of the ball there are a total of K
atomic actions, a; or a ∈ {HoldBall, Pass2ThenReceive, ..., PasskThenReceive};
where the PasskThenReceive action defines which keeper to pass the ball to,
with k indexing the nearest (k = 2) to most distant (k = K) keeper. This is
the most common formulation of the keepaway task, and will be assumed in the
work here.

Under reinforcement learning, the first obstacle to be addressed was how
to formulate the task such that credit assignment mechanisms such as SMDP
Sarsa(λ) could be applied [1, 2]. With this achieved, most emphasis has been
on the type of function approximation used to model Q-values. Thus, function
approximation based on tile coding [1, 2] has been superseded by the use of
Radial Basis Functions [4] or kernel methods [18].

Several approaches to neuro-evolution have been applied to the Keepaway
task, including NEAT [4, 19], EANT [3] and HyperNEAT [20]. All schemes make
extensive use of genotypic diversity for maintaining multiple species during a
run. These studies also adopt the result reporting framework established under
the reinforcement learning approaches cited above, making comparison between
different algorithms possible. The same approach is assumed here.

In the case of GP, we note that a layered learning approach has been adopted
in the past to facilitate the incremental evolution of tree structured GP, with
and without ADFs [21, 22]. However, these results are reported for a different
soccer simulator (TeamBots) and hence different atomic actions. Layered learn-
ing assumes that the task undergoes some prior decomposition with training
performed relative to the simpler tasks first. It was also necessary to enforce a
prior discretization of the state variables (i.e., a simplification of the task) and
limit the number of takers to 1 i.e., 3-versus-1 keepaway.

3 Hierarchical Symbiotic Policy Search

Frameworks for evolving teams of programs represent an alternative approach for
deriving modular solutions under GP. Bremeier and Banzhaf assumed a repre-
sentation in which a fixed number of programs were grouped (per team) and eval-
uated collectively, with variation operators switching programs between teams as

78 S. Kelly and M.I. Heywood

well as modifying individual programs [23]. Thompson and Soule also assumed
fixed sized teams, but introduced orthogonal selection operators i.e., building
teams from the perspective of the program or team [24]. SBB explicitly sup-
ports ‘incremental complexification’ through the use of a symbiotic framework
for coevolving team membership (host) and programs (symbionts) cooperatively
[9]. Thus, host individuals define a team (host membership) by indexing some
subset of the available symbionts (programs). Assuming a variable length repre-
sentation for the hosts implies that the size of a team is free to evolve. Symbiosis
appears because host and symbiont individuals exist in independent populations
with fitness only evaluated at the host population.1

3.1 Symbiont

Symbiont programs take the form of bid-based GP [25]. Each symbiont repre-
sents a tuple consisting of a task specific discrete action, a, and a program, p.
Without loss of generality, we assume a linear GP representation [26]. The role
of a program is to define a bidding strategy. Thus, consider the case of a host
consisting of two symbionts 〈a1, p1〉 and 〈a2, p2〉. Given a set of state variables
describing the current state of the task domain, each symbiont associated with
the host executes its program. The symbiont with largest output, say p2, ‘wins’
the right to suggest its action at the current time step, or a2 in the case of this
example. Evaluation for the current host continues until an episodic end state
is encountered i.e., for each new state of the task, the symbiont programs are
executed and the winning symbiont suggests its action, in each case potentially
updating the state of the task.

3.2 Variation Operators

Variation operators are asexual and take the form of a set of mutation operators
applied to a host after it is cloned. Two mutation operators are used: remove
symbiont from the host, add a symbiont to the host. In addition, a third operator
can initiate the creation of a new symbiont. In this case a symbiont that is
currently a member of the host is cloned and the cloned symbiont’s action and
/ or program is modified (inserting / deleting instructions). For further details
of the variation operators see [9].

3.3 Selection Operator

Evolution is conducted under a breeding metaphor, thus post fitness evaluation,
the worst performing Hgap individuals are deleted. Any symbionts that are not
part at least one remaining team are assumed to be ineffective and therefore also
deleted. No attempt is made to derive symbiont fitness through, say, the average
of the host fitness in which it is a member. In effect we are assuming multi-level
selection in which an organism is only evaluated as a whole as opposed to the

1 Hereafter host / team and symbiont / program will be used interchangeably.

On Diversity, Teaming, and Hierarchical Policies 79

sum of its parts [27]. One implication of this process is that the host population
is a fixed size, whereas the symbiont population ‘floats’ under the action of the
selection and variation operators.

3.4 Constructing Hierarchical Policies

Evolution will be performed in two distinct phases. During phase 1 symbionts
assume atomic actions taken from the task domain. This lasts for a fixed number
of generations and establishes a population of meta actions for use as actions
by the second phase of evolution. The goal of phase 2 is to discover under what
conditions to switch between different meta actions as identified during phase 1.
No further modification of individuals from phase 1 tasks place. As per phase
1, evaluating a host from phase 2 (h2

i) results in the identification of a winning
symbiont (Section 3.1). However, at this point the action is a previously evolved
host, h1

j , as discovered during phase 1 i.e., a meta action. Thus, host h1
j is now

executed for the current state variables, with the winning symbiont this time
selecting an atomic action which is used to update the state of the game. Further
details regarding the evolution of hierarchical policies is available from [6–8].

3.5 Fitness and Diversity

In the specific case of the 3-versus-2 Keepaway task, the soccer simulator defines
the location of keepers and takers such that each keeper is stochastically initial-
ized in one of the three corners of a square field and all takers are initialized in
the fourth corner. The corners associated with keepers and takers do not vary,
but the precise initial location does. Likewise, the ball is initialized ‘near’ one of
the keepers, but this also varies. Unlike most episodic tasks, this means that it
is not possible to precisely control the initial configuration of the task. Hence,
during fitness evaluation, each host plays multiple games, but it is not possible
to replicate the initial conditions, or for that matter other stochastic events that
potentially occur during a game i.e., the soccer simulator adds noise to actions
and state variables. Each host will play P games per generation, thus fitness
of a host is merely the average total duration for a game as measured by the
simulator over at least P games. We naturally hope this averaging smooths out
some of the variation that is not explicitly due to the host’s policy.

In terms of diversity maintenance, previous researchers have assumed linear
combinations of fitness and novelty (e.g., [15]), Pareto multi-objective formula-
tions (e.g., [16]), or fitness sharing based on genotypic diversity (e.g., [3, 19]).
Each method varies with respect to the number of user-specified parameters and
their sensitivity. Furthermore, a function for measuring genotypic or phenotypic
distance between policies is typically required, where this can be task-specific or
generic. In the following we will adopt a phenotypic fitness sharing methodol-
ogy that incorporates a task-specific distance metric to select the most ‘similar’
game as played by other hosts. This is a significant departure from earlier for-
mulations for diversity (e.g., [6–8]). The motivation for this approach stems from
the observation that start states in the keepaway task are stochastic and both

80 S. Kelly and M.I. Heywood

sensor readings and actuators are noisy. Thus, a policy’s phenotype cannot be
characterized solely by the reward received relative to a particular initial task
configuration. Instead, the property captured by fitness sharing will summarize
the configuration of the failure state. Thus, we reward diversity in failure, where
this is taken as an indicator of policy behaviour. With this in mind, the following
approach is taken to fitness sharing.

Let each host maintain a history of the end state and reward for the most
recent Phist games. State variables in keepaway are ego-centric, hence translation
and rotation independent. This reduces the number of trivial differences that
might appear in the end state of a game. Thus, for each of the last Phist games
we record the ego-centric state variables relative to the keeper initialized in the
upper-left corner of the field. Our use of homogeneous keepers is taken to imply
that a single keeper perspective is sufficient to characterize team behaviour. Each
host plays P games per generation, overwriting the P oldest entries in that host’s
history. The actual size of a host’s historical record will therefore range between
P and Phist depending on age. A host’s shared fitness score, si, discounts the
reward for each historical game as follows:

si =
1

hhist

∑

j∈hhist

(

G(hi, ej)
∑

k �=i(1 − dist(ej, ehist))G(hk, ehist)

)

(1)

where G(hi, ej) is the reward host i received for game j, the denominator sum-
mation

∑

k �=i is over all other hosts in the same population, ehist is the game
failure state from the historical record of host k that most closely matches ej ,
with the corresponding reward G(hk, ehist), and dist(ej , ehist) is a Euclidean
distance metric, normalized to the unit interval, with 1 denoting least similarity.
hhist represents all games currently stored in the historical record for host i.

In short, Eqn. (1) re-weights the reward that host i receives on game j relative
to the historical record available for other hosts on the game they played with
the most similar failure state. We also limit the estimation of final game state to
that of the keeper positions alone. Hence, under the 3-versus-2 Keepaway task a
total of 5 state variables are used to characterize the final state of a game. Given
that evolution is applied in two distinct phases in order to construct explicitly
hierarchical SBB policies (Section 3.4), fitness sharing is only applied during
the first phase. In phase 2 the objective is explicitly exploitive, hence no fitness
sharing will be deployed.

4 Results

As a guide to parameterizing SBB we note from Whiteson et al. [4], that NEAT
utilized 6,000 evaluations per generation with 50 to 60 generations (the latter was
not explicitly reported), implying that between 300,000 to 360,000 evaluations
were performed per run. Under the SBB parameterization from Table 1, the
corresponding total evaluation count is defined as: tmax × H × P = 200, 000.
However, there are two phases of evolution in order to construct hierarchical

On Diversity, Teaming, and Hierarchical Policies 81

policies (Section 3.4), thus 400,000 evaluations in total. The publicly available
code distribution provided the initial implementation for SBB2, from which the
necessary modifications were made to provide the new formulation for fitness
sharing and interface to the Robocup Soccer Server3. Supporting code from the
designers of the keepaway task4, provides a full implementation of the keepaway
environment. This work uses version 1.15.1 and 0.6 of the soccer server and
keepaway code respectively.

Table 1. SBB Parameterization per phase of evolution (Section 3.4). tmax is the total
generation limit; ωmax is the maximum number of symbionts a host may support
under a variable length representation; H is the host population size; P is the number
of games played by each host per generation; Phist is the maximum number of games
stored in each host’s historical record; Hgap is the number of individuals replaced
during breeding in the host population; pxx denote the frequency with which different
search operators are applied; numRegisters and maxProgSize represent the number of
registers and maximum instruction count for (symbiont) programs.

Host (teams) Symbiont (programs)

Parameter Value Parameter Value Parameter Value

tmax 250 ωmax 15 numRegisters 8

H 80 Hgap 40 maxProgSize 48

P 10 Phist 100 pdelete, padd 0.5

pmd 0.7 pma 0.7 pmutate, pswap 1.0

pmm 0.2 pmn 0.1

As per established practice on the Keepaway task, reporting of performance
will be conducted throughout the evolutionary cycle. Thus, at every 125 gener-
ations we let each host play 100 games and then have the champion host play
1,000 games. No fitness sharing is deployed during champion identification. A
total of 12 independent runs are performed. Results from previous research are
summarized in Table 2, where these are generally the result of 5 independent
runs. Two experiments will be performed: hierarchical SBB without fitness shar-
ing versus hierarchical SBB with fitness sharing (during phase 1 of constructing
the hierarchy). In all cases a field size of 20× 20 meters is assumed.

Figure 1 reports test performance of the champion individual at three points
through each of the two phases necessary to develop the hierarchical SBB policy.
Generation 1 corresponds to the champion individual at initialization. Genera-
tion 125 and 250 correspond to the performance of the champion individual half
way and at the final generation. As there are two distinct phases of evolution

2 http://web.cs.dal.ca/~mheywood/Code/SBB/
3 http://sourceforge.net/apps/mediawiki/sserver
4 http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

http://web.cs.dal.ca/~mheywood/Code/SBB/
http://sourceforge.net/apps/mediawiki/sserver
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

82 S. Kelly and M.I. Heywood

the generation count cycles from 1 to 250 twice. The ‘simulation hours’ reflects
the total accumulated number of hours of simulated play on the soccer server.

Table 2. Summary of keeper possession times for 3-versus-2 Keepaway. Averages reflect
1,000 test games for a champion policy. Simulated hours represents the total number
of simulation hours necessary to return the champion policy.

Algorithm Avg. keeper possession time Simulated hrs. (of play)

HyperNEAT [20] 15.4 sec unknown

EANT [3] 14.9 sec ≈ 200

NEAT [4, 19] 14.1 sec ≈ 800

Sarsa with RBF [4, 19] 12.5 sec ≈ 50

Comparing the average values reported for test performance during the hier-
archical SBB runs in Figure 1 with the previously reported best test performance
(Table 2) it is apparent that both forms of SBB provide significant improvements
by the end of the first phase of evolution. This is achieved with 286 (with di-
versity) to 650 (no diversity) simulation hours, which is comparable or better
than either of the neuro-evolutionary methods. The second phase of evolution,
in which the second level of the hierarchical policy is built, emphasizes consis-
tency (fitness sharing is disabled). This focuses the performance of champion
individuals such that there is less variation between different runs. Additional
experiments with fitness sharing applied during both phases of evolution did not
reach this level of performance or consistency.

A further post training test of generalization is performed as follows. At the
last generation, the champion individual is identified (as reported in the last
column of Figure 1). Such a champion has been evolved and selected with respect
to a field size of 20×20 meters. This same champion individual is then deployed
on three other field sizes without any additional modification, Figure 2. Naturally,
the task becomes easier on larger field sizes. Such an experiment was previously
performed relative to Sarsa under a tile coded representation [1]. In the case of
the Sarsa–tile coding result, performance was very sensitive to the configuration
on which training was performed e.g., even when trained on a more difficult
field size, performance on the easier field size was worse. Conversely, both SBB
configurations perform better on the easier field sizes and exceed any of the
default behaviours under the most difficult field size. Similar general trends were
reported for HyperNEAT, albeit with a much lower overall level of performance
[20]. It is also clear that for each field size, SBB with diversity provides improved
generalization e.g., the difference between mean game times for each field size
is: 1.1, 2.5, 5.6, 0.5 seconds respectively. In comparison, note that a total of
1.3 seconds of game time separates the ranking of all three neuro-evolutionary
methods applied to the 3-versus-2 Keepaway task (Table 2).

On Diversity, Teaming, and Hierarchical Policies 83

●
●

5

10

15

20

6.9 ●●

●

●

●
●
●

●

●

●

●
●●

5

10

15

20

12.8

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

15.9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

15.1 ●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

15

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

15.5

●

●

●

●

●

●

●

●

●

●

●

●

●

1 125 250 1 125 250

1 283 650 653 1066 1512

Generation

Simulation hours

5

10

15

20

M
e
a
n
 e

p
is

o
d
e
 l
e
n
g
th

 (
s
e
c
o
n
d
s
)

(a) No diversity

●

5

10

15

20

6.9
●

●
●●
●●

●●
●

●

●

5

10

15

20

17.3

●

●

●

●

●

●

●

●

●

●

●
●

5

10

15

20

18.7

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

18.8

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

17.8 ●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

18.6

●

●

●

●

●

●

●

●

●

●

●

1 125 250 1 125 250

1 286 696 700 1222 1739

Generation

Simulation hours

5

10

15

20

M
e
a
n
 e

p
is

o
d
e
 l
e
n
g
th

 (
s
e
c
o
n
d
s
)

(b) With diversity

Fig. 1. Average performance of champion policy against 1,000 test games. Two level
hierarchical policy with 250 generations per level. Box plot reflects the quartile distri-
bution and scatter plot the actual performance points from 12 runs. Numerical value
reports the median of the 12 runs.

84 S. Kelly and M.I. Heywood

10

20

30

40

10

●

●

●

●
●

●
●

●

●

●

●

●

●

10

20

30

40

16.7 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

21.5

●

●

●

●

●

●
●

●

●

●

●

●
●

10

20

30

40

31.2

●

●

●

●

●

●

●

●

●

●

●

●

●

Hand Tuned

Random

Always Hold

15x15 20x20 25x25 30x30Field size

10

20

30

40

M
e

a
n

 e
p

is
o

d
e

 l
e

n
g

th
 (

s
e

c
o

n
d

s
)

(a) No diversity

10

20

30

40

11.1

●

●

●

●

●

●

●

●

●
●10

20

30

40

19.2 ●

●

●

●

●

●

●

●

●

●

10

20

30

40

27.1

●

●

●

●

●

●

●

●

●

●

●10

20

30

40

31.7
●

●

●

●

●

●

●

●

●

●

Hand Tuned

Random

Always Hold

15x15 20x20 25x25 30x30Field size

10

20

30

40

M
e
a
n
 e

p
is

o
d
e
 l
e
n
g
th

 (
s
e
c
o
n
d
s
)

(b) With diversity

Fig. 2. Generalization of champion policy against multiple field sizes. Champions
evolved and identified w.r.t. 20× 20 meter field. ‘Hand tuned’, ‘Random’ and ‘Always
hold’ represent baseline policies provided in the Keepaway code base [2].

On Diversity, Teaming, and Hierarchical Policies 85

5 Conclusion

The most popular form of the Keepaway soccer task (3-versus-2) has been re-
visited using a recently proposed scheme for evolving teams of programs hier-
archically [6–8]. To do so, particular attention was applied to the definition of
diversity maintenance. Specifically, a fitness sharing formulation was proposed,
where this avoids the need to specify the relative weight of diversity to fitness.
Including diversity results in the discovery of policies with an additional ≈ 3
seconds of play w.r.t. the field size for which evolution is performed and an ad-
ditional 0.5 to 2.5 seconds of play when testing the same policy against games
held on different field sizes. Moreover, when diversity is included, the policies
provide games that last ≈ 3 seconds longer than previously published results.

Future research will investigate task-independent phenotypic and genotypic
diversity measures as well as consider other formulations of the task domain,
such as the more difficult 4-versus-3 configuration. Other properties of interest
could include varying the players’ field of view from 360 deg to more limited
ranges or the ultimate objective of evolving entire soccer teams.

Acknowledgments. The authors gratefully acknowledge funding provided by
the NSERC Discovery grant program (Canada).

References

1. Stone, P., Sutton, R.S.: Scaling reinforcement learning toward robocup soccer. In:
The Eighteenth International Conference on Machine Learning, pp. 537–544 (2001)

2. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup soccer
keepaway. Adaptive Behavior 13(3), 165–188 (2005)

3. Metzen, J.H., Edgington, M., Kassahun, Y., Kirchner, F.: Analysis of an evolution-
ary reinforcement learning method in a multiagent domain. In: Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 291–298 (2008)

4. Whiteson, S., Taylor, M.E., Stone, P.: Critical factors in the empirical performance
of temporal difference and evolutionary methods for reinforcement learning. Au-
tonomous Agents and Multi-Agent Systems 21(1), 1–35 (2009)

5. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolu-
tionary Computation 8(1), 47–62 (2004)

6. Lichodzijewski, P., Heywood, M.I.: The Rubik cube and GP temporal sequence
learning: an initial study. In: Genetic Programming Theory and Practice VIII, pp.
35–54. Springer (2011)

7. Kelly, S., Lichodzijewski, P., Heywood, M.I.: On run time libraries and hierarchical
symbiosis. In: IEEE Congress on Evolutionary Computation, pp. 3245–3252 (2012)

8. Doucette, J.A., Lichodzijewski, P., Heywood, M.I.: Hierarchical task decomposition
through symbiosis in reinforcement learning. In: Proceedings of the ACM Genetic
and Evolutionary Computation Conference, pp. 97–104 (2012)

9. Lichodzijewski, P., Heywood, M.I.: Symbiosis, complexification and simplicity un-
der GP. In: Proceedings of the ACM Genetic and Evolutionary Computation Con-
ference, pp. 853–860 (2010)

86 S. Kelly and M.I. Heywood

10. Calabretta, R., Nolfi, S., Parisi, D., Wagner, G.P.: Duplication of modules facili-
tates the evolution of functional specialization. Artificial Life 6(1), 69–84 (2000)

11. Watson, R.A., Pollack, J.B.: Modular interdependency in complex dynamical sys-
tems. Artificial Life 11(4), 445–458 (2005)

12. Dempsey, I., O’Neill, M., Brabazon, A.: Survey of EC in dynamic environments. In:
Foundations in Grammatical Evolution for Dynamic Environments. SCI, vol. 194,
pp. 25–54. Springer, Heidelberg (2009)

13. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Transactions on Knowledge and
Data Engineering 22(5), 730–742 (2010)

14. Chong, S.Y., Tino, P., Yao, X.: Relationship between generalization and diversity
in coevolutionary learning. IEEE Transactions on Computational Intelligence and
AI in Games 1(3), 214–232 (2009)

15. Cuccu, G., Gomez, F.: When novelty is not enough. In: Di Chio, C., et al. (eds.)
EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg
(2011)

16. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: an empirical study. Evolutionary Computation 20(1), 91–133 (2012)

17. Waibel, M., Keller, L., Floreano, D.: Genetic team composition and level of selec-
tion in the evolution of cooperation. IEEE Transactions on Evolutionary Compu-
tation 13(3), 648–660 (2009)

18. Jung, T., Polani, D.: Learning robocup-keepaway with kernels. In: JMLR: Work-
shop and Conference Proceedings – Gaussian Processes in Practice, pp. 33–57
(2007)

19. Taylor, M.E., Whiteson, S., Stone, P.: Comparing evolutionary and temporal dif-
ference methods in a reinforcement learning domain. In: Proceedings of the ACM
Genetic and Evolutionary Computation Conference, pp. 1321–1328 (2006)

20. Verbancsics, P., Stanley, K.O.: Evolving static representations for task transfer.
The Journal of Machine Learning Research 99, 1737–1769 (2010)

21. Gustafson, S.M., Hsu, W.H.: Layered learning in genetic programming for a co-
operative robot soccer problem. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan,
C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp.
291–301. Springer, Heidelberg (2001)

22. Hsu, W.H., Harmon, S.J., Rodriguez, E., Zhong, C.: Empirical comparison of in-
cremental reuse strategies in genetic programming for keep-away soccer. In: Late
Breaking Papers at the Genetic and Evolutionary Computation Conference (2004)

23. Brameier, M., Banzhaf, W.: Evolving teams of predictors with linear genetic pro-
gramming. Genetic Programming and Evolvable Machines 2(4), 381–407 (2001)

24. Thomason, R., Soule, T.: Novel ways of improving cooperation and performance in
ensemble classifiers. In: Proceedings of the ACM Genetic and Evolutionary Com-
putation Conference, pp. 1708–1715 (2007)

25. Lichodzijewski, P., Heywood, M.I.: Pareto-coevolutionary Genetic Programming
for problem decomposition in multi-class classification. In: Proceedings of the ACM
Genetic and Evolutionary Computation Conference, pp. 464–471 (2007)

26. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)
27. Okasha, S.: Multilevel selection and the major transitions in evolution. Philosophy

of Science 72, 1013–1025 (2005)

Genetically Improved CUDA C++ Software

William B. Langdon and Mark Harman

CREST, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

W.Langdon@cs.ucl.ac.uk

http://crest.cs.ucl.ac.uk/

Abstract. Genetic Programming (GP) may dramatically increase the
performance of software written by domain experts. GP and autotuning
are used to optimise and refactor legacy GPGPU C code for modern
parallel graphics hardware and software. Speed ups of more than six
times on recent nVidia GPU cards are reported compared to the original
kernel on the same hardware.

1 Introduction

Genetic Programming (GP) [1] is increasingly being used in Software Engineer-
ing [2]. We are using GP to make software more adaptable [3] and are particularly
interested in GP to generate code [4,5], for bug fixing [6] and for improving exist-
ing code [7,8,9,10,11,12,13]. With increasing use of embedded and mobile devices
there is a growing need to cheaply generate software which meets multiple inter-
acting performance constraints, such as memory limits, energy consumption and
real-time response [14,8]. Similarly there is increasing use of parallelism both

Fig. 1. For each pixel we calculate the sum of squared differences (SSD) between 11×11
regions centred on the pixel in the left image and the same pixel in the right hand image.
The right hand 11×11 region is moved one place to the left and new SSD is calculated
This is repeated 50 times. Each time a smaller SSD is found, it is saved.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 87–99, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://crest.cs.ucl.ac.uk/

88 W.B. Langdon and M. Harman

Table 1. GPU Hardware. Year each was announced by nVidia in column 2. Third col-
umn is CUDA compute capability level. Each GPU chip contains a number of identical
and more or less independent multiprocessors (column 4). Each MP contains a number
of stream processors (cores, column 5) whose speed is given in column 7. Measured
data rate (ECC on) between the GPU and its on board memory in last column.

Name Capability MP × cores Clock Caches Bandwidth
GHz L1 L2 GB/s

Quadro NVS 290 2007 1.1 2 × 8 = 16 0.92 none 4
GeForce GTX 295 2009 1.3 30 × 8 = 240 1.24 none 92
Tesla T10 2009 1.3 30 × 8 = 240 1.30 none 72
Tesla C2050 2010 2.0 14 × 32 = 448 1.15 16/48KB 0.75 MB 101
GeForce GTX 580 2010 2.0 16 × 32 = 512 1.54 16/48KB 0.75 MB 161
Tesla K20c 2012 3.5 13 × 192 = 2496 0.71 16/32/48KB 1.25 MB 140

in conventional computing but also in mobile applications. At present the epit-
ome of parallelism are dedicated multi-core machines based on gaming graphics
cards (GPUs). Although originally devised for the consumer market, they are
increasingly being used for general purpose computing on GPUs (GPGPU) [15]
with several of today’s fastest peta flop super computers being based on GPUs.
However, although support tools are improving, programming parallel comput-
ers continues to be a challenge and simply leaving code generation to parallel
compilers is often insufficient. Instead experts, e.g. [16], have advocated writing
highly parametrised parallel code which can then be automatically tuned. Un-
fortunately this throws the load back on to the coder [17]. Here we demonstrate
that genetic programming can work with an auto-tuner to adapt human writ-
ten code to new circumstances and different hardware. In total we consider six
types of hardware of differing ages, architectures and very different performance
(Table 1). GP can give more than a six fold performance increase relative to the
original system on the same hardware (Table 4).

2 Source Code: StereoCamera

The StereoCamera system was written by nVidia’s stereo image processing ex-
pert Joe Stam [18] for the first version of CUDA. V1.0b is available from Source-
Forge but, despite Moore’s Law [19], and except for my bugfix, it has not been
updated since 2008.

For each pixel in the left image, GPU code stereoKernel reports the number
of pixels the right image has to be shifted to get maximal local alignment (see
Figure 1). It does this by minimising the sum of squares of the difference (SSD)
between the left and right images in a 11×11 area around each pixel. Once SSD
has been calculated, the grid in the right hand image is displaced one pixel to the
left and the calculation is repeated. SSD is calculated for 0 to 50 displacements
and the one with the smallest SSD is reported.

Considerable savings can be made by reducing the total number of calculations
by sharing intermediate calculations [18, Fig. 3]. Each SSD calculation involves

Genetically Improved CUDA C++ Software 89

summing 11 columns (each of 11 squared discrepancy values). By saving the
column sums in shared memory adjacent computational threads can calculate
just their own column and then read the remaining ten column values calculated
by their neighbouring threads.

After one row of pixel SSDs have been calculated, when calculating the SSD of
the pixels immediately above, ten of the eleven rows of SSD values are identical.
The SSD for the pixel above is then the total SSD plus the contribution for the
new rowminus the contribution from the lowest row (which is no longer included
in the 11× 11 area). The more rows which share their partial results, the more
efficient is the calculation but then there is less scope for performing calculations
in parallel. Ideally all the image data for both left and right images (including
halos and discrepancy offsets) should fit within the GPU’s texture caches. The
macro ROWSperTHREAD (40) determines how many rows are calculated together
in series. The macro BLOCK W (64) determines how the image is partitioned hori-
zontally. In practise all these factors interact in non-obvious hardware dependent
ways.

3 Example Stereo Pairs from Microsoft’s I2I Database

Microsoft’s I2I database contains 3010 stereo images. Figure 1 (top) is a typical
example. Many of these are in the form of movies taken in an office environment.
Almost images all are 320×240 pixels. We took the first 200 pairs for training
leaving 2810 for validation. Notice we are asking the GP to create a new version
of the CUDA stereoKernel GPU code which is tuned to pairs of images of this
type. As we shall see (in Section 8) the improved GPU code is indeed tuned to
320×240 images but still works well on the other I2I stereo pairs.

4 Pre- and Post- Evolution Tuning and
Post Evolution Minimisation of Code Changes

In initial genetic programming runs, it became apparent that there are two
parameters which have a large impact on run time but whose default settings
are not suitable for the GPUs now available. It is feasible to run StereoCamera
on all reasonable combinations and simply choose the best for each GPU. Hence
the revised strategy is to tune ROWSperTHREAD and BLOCK W before running the
GP. (DPER, Section 5.2, is not initially enabled.) As with [6] and our GISMOE
approach [10], after GP has run the best GP individual from the last generation
is minimised. Finally ROWSperTHREAD, BLOCK W and DPER are tuned again. (Often
no further changes were needed.)

For each combination of parameters, the kernel is compiled and run. By re-
compiling rather than using run time argument passing, the nVidia nvcc C++
compiler is given the best chance of optimising the code (e.g. loop unrolling) for
these parameters and the particular GPU.

BLOCK W values were based on sizes of thread blocks used by nVidia in the
examples supplied with CUDA 5.0. (They were 8, 32, 64, 128, 192, 256, 384

90 W.B. Langdon and M. Harman

and 512.) All small ROWSperTHREAD values or values which divide into the image
height (240) were tested. (I.e., 1, . . . 18, 20, 21, 24, 26, 30, 34, 40, 48, 60, 80,
120 and 240.) Except for the NVS 290, which has only two multiprocessors,
autotuning reduced ROWSperTHREAD from 40 to 5 before the GP was run. In
many cases this gave a big speed up (see middle and last columns of Table 4).

The best GP individual in the last generation is minimised by starting at its
beginning and progressively removing each individual mutation and comparing
the performance of the new kernel with the evolved one. For simplicity this is
done on the last training stereo image pair. Unless the new kernel is worse the
mutation is excluded permanently. To encourage removal of mutations with little
impact, those that make less than 1% difference to the kernel timing are also
removed.

5 Alternative Implementations

5.1 Avoiding Reusing Threads: XHALO

Each row of pixels is extended by five pixels at both ends. The original code
reused the first ten threads of each block to calculate these ten halo values.
Much of the kernel code is duplicated to deal with the horizontal halo. GPUs
use SIMD parallel architectures, which means many identical operations can
be run in parallel but if the code branches in different directions part of the
hardware becomes idle. Thus diverting ten threads to deal with the halo causes
all the remaining threads to become idle. Option XHALO allows GP to use ten
additional threads which are dedicated to the halo. Thus each thread only deals
with one pixel. In practise the net effect of XHALO is to disable the duplicated
code so that instead of each block processing vertical stripes of 64 pixels, each
block only writes stripes 54 pixels wide.

5.2 Parallel of Discrepancy Offsets: DPER

The original code (Section 2) steps through sequentially 51 displacements of the
right image with respect to the left. Modern GPUs allow many more threads
and often it is best to use more threads as it allows greater parallelism and may
improve throughput by increasing the overlap between computation and I/O.
Instead of stepping sequentially one at a time through the for loop controlling
the displacement, the DPER option allows SSD values for multiple (e.g. 2, 3
or 4) displacements to be calculated in parallel. So instead of increasing the for
loop control variable by one, it is incremented by the same amount (e.g. 2, 3
or 4). As well as increasing the number of threads, the amount of shared memory
needed is also increased by the same factor. Nevertheless only one (the smallest)
SSD value need be compared with the current smallest, so saving some I/O.

6 Parameters Accessible to Evolution

The GISMOE GP system [10] was extended to allow not only code changes
but also changes to C macro #defines. The GP puts the evolved values in a

Genetically Improved CUDA C++ Software 91

Table 2. Evolvable configuration macros and constants

Name Default Options Purpose

Cache preference None None, Shared, L1, Equal L1 v. shared memory
-Xptxas -dlcm ‘ ’, ca, cg, cs, cv nvcc cache options
OUT TYPE float float, int, short int, unsigned char

STORE Pixel GLOBAL GLOBAL, SHARED, LOCAL
STORE MinSSD GLOBAL GLOBAL, SHARED, LOCAL
DPER disabled Section 5.2
XHALO disabled Section 5.1
mul24(a,b) mul24 mul24, * fast 24-bit multiply

GPtexturereadmode Normalized
Float

NormalizedFloat,
ElementType, no Textures

Section 6.1

texturefilterMode Linear Linear, Point
textureaddressMode Clamp, Mirror, Wrap
texturenormalized 0, 1

C #include .h file, which is complied along with the GP modified kernel code
and the associated (fixed) host source code.

Table 2 shows the twelve configuration parameters. Every GP individual chro-
mosome starts with these 12 which are then followed by zero or more changes
to the code.

6.1 Fixed Configuration Parameters

OUT TYPE. The return value should be in the range -1 to 50. Originally this
is coded as a float. OUT TYPE gives GP the option of trying other types.

STORE disparityPixel and STORE disparityMinSSD. disparityPixel and
disparityMinSSD are major arrays in the kernel. Stam coded them to lie in the
GPU’s slow off chip global memory. These configuration options give evolu-
tion the possibility of trying to place them in either shared memory or in local
memory. Where the compiler can resolve local array indexes, e.g. as a result of
unrolling loops, it can use fast registers in place of local memory.

mul24. For addressing purposes, older GPU’s included a fast 24 bit multi-
ply instruction, which is heavily used in the original code. It appears that in
the newer GPUs mul24 may actually be slower than ordinary (32 bit) integer
multiply. Hence we give GP the option of replacing mul24.

Textures. CUDA textures are intimately linked with the GPU’s hardware and
provide a wide range of data manipulation facilities (normalisation, default val-
ues, control of boundary effects and interpolation) which the original code does
not need but is obliged to use. The left and right image textures are principally
used because they provide caching (which was not otherwise available on early
generation GPUs.) We allowed the GP to investigate other texture options. In-
cluding not using textures. Some combinations are illegal but the host code gives
sensible defaults in these cases.

92 W.B. Langdon and M. Harman

7 Evolvable Code

Following the standard GISMOE approach [10], a grammar describing the legal
changes to the kernel source code was automatically created from the human
written source code. Due to the way Stam wrote his kernel (with all variables
declared at the start) no mutation moves variables out of scope. Thus almost
all GP created kernels compile, link and run. The only exception being two
cases where GP created legal source code which provoked bugs in the nvcc 5.0
compiler. It is believed these bugs have been fixed in 5.5.

The source code, including XHALO and DPER (Sections 5.1 and 5.2), is
automatically translated line by line into a BNF grammar (see Figure 2). Notice
the grammar is not generic, it represents only one program, stereoKernel, and
variants of it. The grammar contains 424 rules, 277 represent fixed lines of C++
source code. There are 55 variable lines, 27 IF and 10 of each of the three parts
of C for loops. There are also five CUDA specific types:

pragma allows GP to control the nvcc compiler’s loop unrolling. pragma rules
are automatically inserted before each for loop but rely on GP to enable
and set their values. Using the type constraints GP can either: remove it, set
it to #pragma unroll, or set it to #pragma unroll n (where n is 1 to 11).

optvolatile CUDA allows shared data types to be marked as volatile which
influences the compiler’s optimisation. As required by the CUDA compiler,
the grammar automatically ensures all shared variables are either flagged
as volatile or none are. The remaining three CUDA types apply to the
kernel’s header.

optconst Each of kernel’s scalar inputs can be separately marked as const.
optrestrict All of the kernel’s arrayarguments can bemarkedwith restrict .

This potentially helps the compiler to optimise the code. On the newest GPUs
(SM 3.5) optrestrict allows the compiler to access read only arrays via a read
only cache. Since both only apply if all arrays are marked restrict , the
grammar ensures they all are or none are.

launchbounds is again a CUDA specific aid to code optimisation. By de-
fault the compiler must generate code that can be run with any numbers
of threads. Since GP knows how many threads will be used, specifying it
via launch bounds gives the compiler the potential of optimising the
code. launch bounds takes an optional second argument. How it is used
is again convoluted, but the grammar allows GP to omit it, or set it to 1, 2,
3, 4 or 5.

7.1 Initial Population

Each member of the initial population is unique. They are each created by select-
ing at random one of the 12 configuration constants (Table 2) and setting it at
random to one of its non-default values. As the population is created it becomes
harder to find unique mutations and so random code changes are included as
well as the configuration change. Table 3 summarises the GP parameters.

Genetically Improved CUDA C++ Software 93

<KStereo.cuh_159> ::= "{\n"

<KStereo.cuh_160> ::= "" <_KStereo.cuh_160> "\n"

<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"

<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"

<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"

Fig. 2. Fragments of BNF grammar used by GP. Most rules are fixed but rules starting
with < , <IF , <for1 , <pragma , etc. can be manipulated using rules of the same type
to produce variants of stereoKernel.

7.2 Weights

Normally each line of code is equally likely to be modified. However, only as
part of creating the initial population, the small number of rules in the kernel
header (i.e. launchbounds, optrestrict, optconst and optvolatile) are 1000 times
more likely to be changed than the other grammar rules. (Forcing each member
of the GP population to be unique is only done in the initial population.)

7.3 Mutation

Half of mutations are made to the configuration parameters (Table 2). In which
case one of the 12 is chosen uniformly at random and its current value is replaced
by another of its possible values again chosen uniformly at random. For the code,
we use the three GISMOE mutations: delete a line of code, replace a line and
insert a line [10]. The additional lines of code are not random but are copied
from stereoKernel itself. This is like [6] except we use the grammar.

7.4 Crossover

As in the GISMOE frame work [10], crossover creates a new GP individual
from two different members of the better half of the current population. The
child inherits each of the 12 fixed parameters (Table 2) at random from either
parent (uniform crossover [20]). Whereas in [10] we used append crossover, which
deliberately increases the size of the offspring, here, on the variable length part of
the genome, we use an analogue of Koza’s tree GP crossover [21]. Two crossover
points are chosen uniformly at random. The part between the 2 crossover points
of the first parent is replaced by the mutations between the two crossover points
of the second parent to give a single child. On average, this gives no net change
in length.

7.5 Fitness

To avoid over fitting and to keep run times manageable, each generation one of
the two hundred training images pairs is chosen [22]. Each GP modified kernel
in the population is tested on that image pair.

94 W.B. Langdon and M. Harman

CUDA Memcheck and Loop Overruns. Normally each GP modified kernel
is run twice. The first time it is run with CUDA memcheck and with loop over
run checks enabled. If no problems are reported by CUDA memcheck and the
kernel terminates normally (i.e. without exceeding the limit on loop iterations)
it is run a second time without these debug aids. Both memcheck and counting
loop iterations impose high overheads which make timing information unusable.
Only in the second run are the timing and error information used as part of
fitness. If the GP kernel fails in either run, it is given such a large penalty, that
it will not be a parent for the next generation.

When loop timeouts are enabled, the GP grammar ensures that each time a
C++ for loop iterates a per thread global counter is incremented. If the counter
exceeds the limit, the loop is aborted and the kernel quickly terminates. If any
thread reaches its limit, the whole kernel is treated as if it had timed out. The
limit is set to 100× the maximum reasonable value for a good kernel.

Timing. Each of the Multiprocessors (MPs) within the GPU chip has its own
independent clock. To get a robust timing scheme, each kernel block records
both its own start and end times and the MP unit it is running on. After the
kernel has finished, for each MP, the end time of the last block to use it and the
start time of the first block to use it are subtracted to give the accurate duration
of usage for each MP. The total duration of the kernel is the longest time taken
by any of the MPs used.

Error. For each pixel in the left image the value returned by the GP modified
kernel is compared with that given by the un-modified kernel. If they are different
a per pixel penalty is added to the total error.

If the unmodified kernel did not return a value the value returned by the GP
kernel is also ignored. Otherwise, if the GP failed to set a value for a pixel, it
gets a penalty of 200. If the GP value is infinite or otherwise outside the range
of expected values (0..50) it attracts a penalty of 100. Otherwise the per pixel
penalty is the absolute difference between the original value and the GP’s value.

7.6 Selection

As with the GISMOE framework [10] at the end of each generation we compare
each mutant with the original kernel’s performance on the same test case and
only allow it to be a parent if it does well. In detail, it must be both faster and
be, on average, not more than 6.0 per pixel different from the original code’s
answer. However mostly the evolved code passes both tests. At the end of each
generation the population is sorted first by their error and then by their speed.
The top 50% are selected to be parents of the next generation. Each selected
parent creates one child by mutation (Section 7.3) and another by crossover
with another selected parent (Section 7.4). The complete GP parameters are
summarised in Table 3.

Genetically Improved CUDA C++ Software 95

Table 3. Genetic programming parameters for improving stereoKernel

Representation: Fixed list of 12 parameter values (Table 2) followed by variable list of
replacements, deletions and insertions into BNF grammar

Fitness: Run on a randomly chosen 320×240 monochrome stereo image pair.
Compare answer & run time with original.

Population: Panmictic, non-elitist, generational. 100 members.
Parameters: Initial population of random single mutants heavily weighted towards

the kernel header and shared variables. 50% truncation selection.
50% crossover, 50% mutation. No size limit. 50 generations.

Table 4. Mean speed across all 2516 I2I 320×240 stereo image pairs. ± is standard
deviation. Times in microseconds. In all cases tuning leaves BLOCK W as 64. Tuning
NVS 290 increases ROWSperTHREAD from 40 to 120, otherwise pretuning reduces it to 5.
Post GP tuning leaves ROWSperTHREAD as 5, except C2050 (14) and GTX 580 (15).

GPU name Original Pretuned Ratio GP Speedup

Quadro NVS 290 27402±116 26019±152 1.053±0.01
GeForce GTX 295 5448± 14 1518± 4 3.589±0.01
Tesla T10 5256± 12 1436± 3 3.661±0.01 1359±38 3.861±0.11
Tesla C2050 4632± 25 3017± 15 1.535±0.01 1130± 5 4.099±0.02
GeForce GTX 580 3077± 21 1650± 6 1.865±0.01 722±29 4.248±0.17
Tesla K20c 4362± 21 1839± 18 2.373±0.03 638± 1 6.837±0.04

8 Results

Table 4 gives the speed up for six types of GPUs. By reducing ROWSperTHREAD

from the original 40 to 5, pretuning (Section 4) itself gave considerable speed
ups (columns 4-5 in Table 4). However for NVS 290, tuning ROWSperTHREAD

increased it from 40 to 120 but only gave a modest improvement (last columns
in Table 4). In all cases the original value of BLOCK W (64) was optimal.

With CUDA 5.0 memcheck (Section 7.5), it proved impossible to keep the
NVS 290 and GTX 295 operational for a complete GP run. Despite hardware
monitoring, the problem remained non-reproducible. It is thought with more
recent hardware, memcheck is able to catch and prevent problems caused by
incorrect array indexes but on the NVS 290 and GTX 295 GPUs (with nVidia
driver 310.40) incorrect program operation eventually lead to hardware lock up.
This is at odds with our earlier successful use of GP on the GTX 295, where we
had explicitly caught out-of-range indexes [4]. Hence it might have been better
to provide our own array bounds index checking. In Table 4 the “GP” columns
for the NVS 290 and GTX 295 rows are blank and the last column refers to the
speed up achieved by tuning ROWSperTHREAD and BLOCK W.

With the four more modern GPUs, the best individual from the last genera-
tion (50) was minimised to remove unneeded mutations and retuned (Section 4).
This resulted in reductions in length: T10 31→14, C2050 17→10, GTX580
26→13 and K20c 29→10. The speeds of the re-tuned kernels are given in Table 4

96 W.B. Langdon and M. Harman

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 500 1000 1500 2000 2500 3000

S
p

e
e

d
 u

p
 o

f
C

U
D

A
 5

 k
e

rn
e

l
K

2
0

c
 T

e
s
la

I2I Database

Training

 240x320

 Chairs 640x480

Toys 500x140

Plant

 Book 506x380

320x240
240x320
640x480

Fig. 3. Performance of GP improved K20c Tesla kernel on all 3010 stereo pairs in
Microsoft’s I2I database relative to original kernel on the same image pair on the same
GPU. Fifty of first 200 pairs used in training. The evolved kernel is always much better,
especially on images of the same size and shape as it was trained on.

under heading “GP”. In each case this gave a significant speed up (last column
of Table 4) compared to both the original kernel and the original kernel with
the best ROWSperTHREAD setting. The speedup of the improved K20c kernel on
all of the I2I stereo images is given in Figure 3. The speed up for the other five
GPUs varies in a similar way to the K20c. Finally, notice typically there is very
little difference in performance across the images of the same size and shape as
the training data (see ± columns in Table 4).

8.1 GP Better Than Random Search

In the case of the K20c Tesla, the GP was run again for the same number of
evaluations, the same population size, the same number of generations but with
random selection of parents. The best in the whole run of 50 generations of ran-
dom search is exceeded by the best in the third and subsequent GP generations.

9 Evolved Tesla K20c CUDA Code

The best of generation 50 individual changes 6 of the 12 fixed configuration
parameters (Table 2) and includes 23 grammar rule changes. After removing
less useful components (Section 4) four configuration parameters were changed
and there were six code changes. See Figures 4 and 5.

DPER is enabled and the new kernel calculates two disparity values in parallel,
Section 5.2. disparityPixel and disparityMinSSD are stored in shared memory,
Section 6.1 and XHALO is enabled, Section 5.1.

Genetically Improved CUDA C++ Software 97

Table 5. Numbers of most popular of each of the evolvable configuration macros and
constants (Table 2) in the last breeding population

Fixed mutation Tesla T10 Tesla C2050 GTX 580 Tesla K20c

Cache None 62 L1 52 L1 66 None 48
-Xptxas -dlcm ca 84 not used 50 cg 42 not used 32
OUT TYPE float 100 float 74 float 76 float 48
STORE Pixel LOCAL 100 LOCAL 100 LOCAL 76 GLOBAL 70
STORE MinSSD SHARED 100 SHARED 100 SHARED 56 SHARED 76
DPER disabled 100 disabled 100 used 100 used 100
XHALO disabled 100 used 100 used 100 used 100
mul24(a,b) mul24 100 * 100 * 70 mul24 98

GPtexturereadmode Normalized 100 Normalized 100 Normalized 100 Normalized 100
texturefilterMode Linear 100 Linear 100 Linear 100 Linear 100
texturenormalized default 82 default 80 default 72 default 72
textureaddressMode Wrap 40 Clamp 66 Mirror 42 Mirror 48

The final code changes, Figure 5, are:

– disable volatile, Section 7.
– insert #pragma unroll 11 before the for loop that steps through the

ROWSperTHREAD - 1 other rows (Section 2).
– insert #pragma unroll 3 before the for loop that writes each of the ROWS

perTHREAD rows of disparityPixel from shared to global memory. Its not clear
why evolution chose to ask the nvcc compiler to unroll this loop (which is
always executed 5 times) only 3 times. But then when nvcc decides to do
loop unrolling is obscure anyway.

– Mutation < KStereo.cuh 161>+< KStereo.cuh 224> causes line 224 to be
inserted before line 161. Line 224 potentially updates local variable ssd,
however ssd is not used before the code which initialises it. It is possible
that compiler spots that the mutated code cannot affect anything outside
the kernel and simply optimises it away. During minimisation removing it
gave a kernel whose run time was exactly on the removal threshold.

– Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces
X < width && Y < height by dblockIdx==0. This replace a complicated
expression by a simpler one, which itself has no effect on the logic since both
are always true. In fact, given the way if(dblockIdx==0) is nested inside
another if, the compiler may optimise it away entirely.

– delete syncthreads() on line 348. syncthreads() forces all threads to
stop and wait until all reach it. Line 348 is at the end of code which may
update shared variables disparityPixel and disparityMinSSD. In effect GP
has discovered it is safe to let other threads proceed since they will not use
the same shared variables before meeting other syncthreads().

10 Conclusions

Correctly tuning one (originally hard coded) constant immediately gave speed
ups of between 5% and a factor or 3.6 (median 2.1) (see Table 4). In all cases,

98 W.B. Langdon and M. Harman

DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED

<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>

< KStereo.cuh 348> <optvolatile KStereo.cuh 86>

<pragma KStereo.cuh 262><pragma K11> <IF KStereo.cuh 326><IF KStereo.cuh 154>

Fig. 4. Best GP individual in generation 50 of K20c Tesla run after minimising, Sec-
tion 4, removed less useful components. (Auto-tuning made no further improvements.)

int * restrict disparityMinSSD, //Global disparityMinSSD not kernel argument
volatile extern __attribute__((shared)) int col_ssd[];

volatile int* const reduce_ssd = &col_ssd[(64)*2 -64];

#pragma unroll 11

if(X < width && Y < height) replaced by if(dblockIdx==0)

syncthreads();
#pragma unroll 3

Fig. 5. Evolved changes to K20c Tesla StereoKernel. (Produced by GP grammar
changes in Figure 4). Highlighted code is inserted. Code in italics is removed. For
brevity, except for the kernel’s arguments, disparityPixel and disparityMinSSD changes
from global to shared memory are omitted.

where genetic programming was able to run, it was able to build on this. Not
only are the newer GPUs faster in themselves but the speed up achieved by GP
was also larger on the newer GPUs. With final speed up varying from 5% for
the oldest (which was contemporary with the original code) to a factor of more
than 6.8 for the newest (median 4.0).

Future new requirements of StereoCamera might be dealing with: colour, mov-
ing images (perhaps with time skew), larger images, greater frame rates and
running on mobile robots, 3D telephones, virtual reality gamesets or other low
energy portable devices. We can hope our GP system could be used to automat-
ically create new versions tailored to new demands and new hardware.

Acknowledgments. I am grateful for the assistance of njuffa, Istvan Reguly,
vyas of nVidia, Ted Baker, and Allan MacKinnon. The grammar based genetic
programming system is available via ftp.cs.ucl.ac.uk file genetic/gp-code/
StereoCamera 1 1.tar.gz

GPUs were given by nVidia. Funded by EPSRC grant EP/I033688/1.

References

1. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming,
http://www.gp-field-guide.org.uk

2. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering. In: WCRE 2013, Koblenz, Germany. IEEE (2013) (Invited Keynote)

3. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge. In: ASE 2012, Essen, Germany, pp. 1–14. ACM (2012)

4. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: WCCI 2010, Barcelona, pp. 2376–2383. IEEE (2010)

http://www.cs.fsu.edu/~baker/
https://gist.github.com/allanmac
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz
http://www.nvidia.com
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I033688/1
http://www.gp-field-guide.org.uk

Genetically Improved CUDA C++ Software 99

5. Archanjo, G.A., Von Zuben, F.J.: Genetic programming for automating the devel-
opment of data management algorithms in information technology systems. Ad-
vances in Software Engineering (2012)

6. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Trans. on Soft. Eng. 38(1), 54–72 (2012)

7. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Trans. on Graphics 30(6), article:152 (2011)

8. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Trans. on EC 15(4), 515–538 (2011)

9. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Trans. on EC 15(2), 166–182 (2011)

10. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Trans. on EC (accepted)

11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nico-
lau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo,
J.J., Santos, V.M.R., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 132–143.
Springer, Heidelberg (2014)

12. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming framework.
In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP
2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012)

13. Cody-Kenny, B., Barrett, S.: The emergence of useful bias in self-focusing genetic
programming for software optimisation. In: Ruhe, G., Zhang, Y. (eds.) SSBSE
2013. LNCS, vol. 8084, pp. 306–311. Springer, Heidelberg (2013)

14. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: A first step
towards software power minimization. IEEE Trans. on VLSI 2(4), 437–445 (1994)

15. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proceedings of the IEEE 96(5), 879–899 (2008) (Invited paper)

16. Merrill, D., Garland, M., Grimshaw, A.: Policy-based tuning for performance porta-
bility and library co-optimization. In: InPar. IEEE (2012)

17. Langdon, W.B.: Graphics processing units and genetic programming: An overview.
Soft Computing 15, 1657–1669 (2011)

18. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)
19. Moore, G.E.: Cramming more components onto integrated circuits. Electron-

ics 38(8), 114–117 (1965)
20. Syswerda, G.: Uniform crossover in genetic algorithms. In: ICGA 1989, pp. 2–9

(1989)
21. Koza, J.R.: Genetic Programming. MIT Press (1992)
22. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In:

Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 146–158. Springer, Heidelberg (2010)

Measuring Mutation Operators’

Exploration-Exploitation Behaviour
and Long-Term Biases

James McDermott1,2

1 Natural Computing Research and Applications Group,
Complex and Adaptive Systems Lab, University College Dublin, Ireland

2 Management Information Systems, Lochlann Quinn School of Business,
University College Dublin, Ireland

jmmcd@jmmcd.net

Abstract. We propose a simple method of directly measuring a mu-
tation operator’s short-term exploration-exploitation behaviour, based
on its transition matrix. Higher values for this measure indicate a more
exploitative operator. Since operators also differ in their degree of long-
term bias towards particular areas of the search space, we propose a
simple method of directly measuring this bias, based on the Markov
chain stationary state. We use these measures to compare numerically
the behaviours of two well-known mutation operators, the genetic algo-
rithm per-gene bitflip mutation and the genetic programming subtree
mutation.

Keywords: genetic programming, mutation, transition probability,
Markov chain, stationary distribution, operator bias.

1 Introduction

In evolutionary algorithms, search is biased towards areas of high fitness. The
strength of the bias is influenced by several parameters, including the selection
method and mutation rate. The design of the mutation operator itself also has
an effect. Some operators are more highly biased, i.e. more exploitative; others
more explorative.

Although it is common to discuss the behaviour of different algorithms in
these terms, a numerical measure of exploration-exploitation behaviour would be
useful because it would allow research into which operators have an appropriate
level of exploration for a particular search space. It would also allow direct
comparison between operators.

However, exploration-exploitation behaviour is not the full story. Two oper-
ators which are equally explorative can differ in their long-term behaviour. An
operator can exhibit a long-term bias towards particular areas of the search
space, even without a selection pressure towards those areas. In the absence
of any a priori assumptions on which regions are most fit, such bias might be

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 100–111, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 101

regarded as a deficiency of the operator. Although rare in many common encod-
ings, this type of bias does arise in tree-based genetic programming (GP) [8].
Again, a numerical measure of the bias would be useful. For example, it would
allow research into how strong a selection pressure is required to overcome the
effect of an operator of given bias.

We propose to measure these aspects of a mutation operator using simple
statistics. First, for measuring an operator’s exploration-exploitation behaviour,
we propose a measure based on the non-uniformity within the rows of the op-
erator’s matrix of transition probabilities. Uniform rows mean that search is
unbiased by fitness, i.e. purely explorative; highly non-uniform rows mean that
search is highly biased towards near neighbours of good individuals already en-
countered, i.e. highly exploitative.

Second, for measuring an operator’s long-term bias, we use the non-uniformity
of the Markov chain stationary state. An operator free of bias towards particular
areas of the search space will have a uniform stationary distribution. A uniform
stationary distribution does not correspond to uniform transition probabilities.
Indeed, uniform transition probabilities are undesirable, since that would reduce
the evolutionary search to a random search.

We demonstrate the use of these measures in very small genetic algorithm
(GA) and GP spaces. The measures allow fair comparison between operators
defined on these very different spaces, and a transfer of knowledge from the
setting of the GA to that of GP.

1.1 Reader’s Guide

Sect. 2, next, describes some related work. Definitions of the key statistical quan-
tities are given in Sect. 3, and Sect. 4 demonstrates the use of the quantities in
random-walk and hill-climbing scenarios. Sect. 5.1 gives discussion, while con-
clusions and future work are in Sect. 5.

2 Related Work

Our setting is the standard tree-based GP of Koza [8].
Markov chains [7] have long been used to study the behaviour of evolutionary

algorithms and similar algorithms. It is worthwhile to divide this type of work
into two groups: one particularly common in hill-climbing scenarios, where the
Markov chain states correspond to individuals [e.g. 1]; and one where the states
correspond to entire populations [e.g. 4, 15]. In our paper, states correspond to
individuals.

Hu et al. [6] estimate the visit frequency of genotypes, effectively the same
thing as the stationary distribution, using a long random walk. However, they
restrict the walk to a neutral network, i.e. a set of genotypes giving the same
phenotype. They find strong non-uniformity in the visit frequency in the neu-
tral network. Because of the restriction to the neutral network, their result is
not directly comparable to ours, which considers the entire space. Indeed, the

102 J. McDermott

description of the linear GP encoding and mutation operator they use is suffi-
cient to show that their stationary distribution is uniform. The measures which
are the focus of their work, including accessibility, evolvability and robustness of
genotypes, phenotypes, and fitness values, are complementary to ours but not
directly comparable.

The measures proposed by Moritz et al. [11] are not dissimilar to ours. They
are based purely on sampling by random walks of varying lengths, whereas ours
are based on calculation and first principles (we run random walks as demon-
strations only). They require a distance function defined on the search space
independent of the operator. That is, the distance function is not intended to
reflect mutual accessibility of individuals via operator steps, but rather inher-
ent or syntactic properties of the individuals. Given the distance function, short
random walks are used to measure locality: short random walks which do not
produce too much diversity (measured in terms of the distance function) indicate
an operator of high locality. Long random walks are used to measure unbiased-
ness: long random walks which produce plenty of diversity indicate an operator
of high unbiasedness. The motivation and experiments in this work accord with
our approach to understanding search spaces. However there are two potential
shortcomings. One is a requirement for a distance function defined on the search
space independent of the operator. The definition of such a distance is simple
in the bitstring space used in their experiments, but is not uncontroversial in
some spaces, such as the space of trees. The other is the arbitrary threshold
used to distinguish between short and long random walks. We claim that the
theoretically-motivated stationary distribution of the Markov chain is a better
approach to understanding long-term behaviour.

3 Statistics on Markov Chains

Given a vector x, we will use the notation μ(x) for the mean of x and σ(x) for the
standard deviation. Given a two-dimensional matrix p the notation σr(p) will
mean the vector composed of standard deviations over rows. In what follows,
p will mean the operator’s transition matrix: the matrix whose (i, j)th entry is
the probability that, starting at element i of the search space, the operator will
transition to element j in a single step.

An operator is fully characterised by its transition matrix. A row represents
the outward transition probabilities from a single element of the search space.
Highly non-uniform row vectors indicate a highly exploitative operator, while
uniform row vectors indicate random search, i.e. a highly explorative operator.
Therefore, we will measure short-term exploration-exploitation behaviour of an
operator as μ(σr(p)). Higher values mean more exploitation. Values near zero
are undesirable, since that would reduce the evolutionary search to a random
search. μ(σr(p)) differs from other exploration-exploitation parameters, such as
mutation rate, or selection tournament size, in that it is a consequence of the
design of the operator, rather than a user-tunable parameter (an exception,
where it is artificially controlled for a small space, is introduced in Sect. 4.1).

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 103

We will measure differences in exploration-exploitation behaviour between
individuals as σ(σr(p)). Higher values mean that search is asymmetric: it tends
to become more explorative when it hits some individuals, but more exploitative
when it hits others.

According to Kemeny and Snell [7] (p. 218–219), “A finite Markov chain is
ergodic if from any state it is possible to reach every other state. [. . .] Such a
Markov chain has an equilibrium, i.e., a probability vector α such that αp = α.
And α is strictly positive.” Here p is the transition matrix. The equilibrium α
is an eigenvector of the transition matrix. It expresses the probability that the
chain will be in each state after it has reached equilibrium – informally, after it
has “forgotten where it started”.

We note in passing that ergodicity is the equivalent, in the language of Markov
chains, of the exhaustiveness property of Moritz et al. [11]. In practice, ergodicity
is easy to test from first principles rather than experiment, and it either holds
(e.g. for a per-gene bit-flip operator) or fails very strongly (e.g. for single-node
mutation in GP). That is, intermediate values of exhaustiveness occur only by
construction of artificial operators such as the 3-fix operator of Moritz et al. [11]
which never flips the first 3 bits of a bitstring.

Any hill-climbing algorithm will use a mutation operator which gives an er-
godic chain, and thus will have an equilibrium. We will call the equilibrium the
stationary distribution, s.

The most important fact about the stationary distribution for our purposes
is its uniformity or otherwise. A non-uniform stationary distribution reveals
an asymmetric search. That is, it reveals a bias on the areas searched by the
operator, in the long term, even in the absence of selection pressure. We will
measure this bias as σ(s). Higher values indicate greater bias.

How long a chain takes to reach equilibrium is an important research question.
Various criteria have been proposed for defining the mixing time [9]. We will
avoid this issue by making the conservative assumption that walks of 50 steps,
in our small spaces, are more than enough to reach equilibrium.

In these definitions we are ignoring the effect of fitness and selection. This is
deliberate, as follows. A common scenario in GP is to define a language and a
set of operators, and then to use that as the representation for multiple prob-
lems. For example, we might define a language suitable for symbolic regression,
and operators such as subtree crossover and subtree mutation. We might then
choose a suite of datasets from some real-world source, to be regressed, or for
test purposes a suite of known target functions involving logs, square roots,
powers, and so on, or a suite of randomly-generated polynomials as targets. In
each of these three examples, we have a single search space in which we will
search for several different points in different runs. If we want to make general
statements about GP, such as “mutation operator 1 is more suited to symbolic
regression problems than mutation operator 2”, then we must be able to study
the structure of the space, and the behaviour of operators, without reference
to the particular fitness function in use. This is the motivation for defining

104 J. McDermott

measures of exploration-exploitation behaviour and long-term bias which ignore
the effect of fitness and selection.

4 Experiments

We have argued from first principles that μ(σr(p)), the mean of standard devia-
tions over rows of the transition matrix, functions as a simple measure of operator
exploration-exploitation behaviour. Our first set of experiments (Sects. 4.3–4.4)
aims to demonstrate this in random-walk and hill-climbing scenarios. We have
also argued that σ(s), the standard deviation of the stationary distribution, func-
tions as a simple measure of long-term bias in the operator. Our second set of
experiments (Sect. 4.5) aims to demonstrate this. We begin with experimental
setup (Sect. 4.1) and statistical measures (Sect. 4.2).

4.1 Experimental Setup

Two representations are used:

– The GA-10 representation uses length-10 bitstrings, giving a search space of
1024 elements. The mutation operator is per-gene with mutation probability
0.1. When fitness is used, it is the OneMax problem, or a noisy variant. The
OneMax problem has been well-studied theoretically. The expected time
required to find the optimum is known to be of the order of n log(n), where
n is the bitstring length [3, 5]. However, the author is unaware of a similar
theoretical result giving the fitness expected to be achieved as a function
of the bitstring length, mutation rate, number of generations, and degree of
noise. Therefore, experimental methods rather than theoretical will be used.

– The GP-2 representation uses an alphabet of +, -, *, /, x, y, with maximum
depth 2 (counting the root as depth 0), giving a search space of 1298 ele-
ments. The mutation operator is subtree mutation, where the subtree “cut”
can take place at any node, including the root. Division is interpreted as
the analytic quotient operator Q(x, y) = x/

√

1 + y2 to avoid divide-by-zero
errors [12].
When GP fitness is used, it is defined as fitness on the Pagie-2d problem [14].
This is a symbolic regression problem with target function:

f(x, y) =
1

1 + x−4
+

1

1 + y−4

which is evaluated over the space −5 ≤ x ≤ 5,−5 ≤ y ≤ 5 in a grid of
spacing 0.4, giving 676 points of training data. There is no separate test
data set.

An operator is fully characterised by its transition matrix. In order to test
our measures of operator behaviour, we introduce a family of mutation opera-
tors defined by artificially altering an existing operator’s transition matrix. The

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 105

idea is to artificially control μ(σr(p)) and study the behaviour of the resulting
operator. Given an operator defined by a matrix p with generic entry p(i, j),
and given a positive numerical parameter a, a new mutation operator is defined
by the transition matrix with generic entry p(i, j)a/

∑

k p(i, k)
a. That is, each

entry in the matrix is raised to the power of a. Within each row, the ordering
of individuals from most probable outcome to least probable is unaffected by
this. However, after raising to the power of a, each row does not sum to 1. Each
row of the new matrix is therefore scaled so that it sums to 1, hence it is a
valid transition matrix. Values of a less than 1 give new operators in which each
row is more uniform than before, i.e. each individual’s bias towards its neigh-
bours is reduced. Values of a greater than 1 give new operators in which each
row is less uniform than before, i.e. each individual’s bias towards its neighbours
is increased.

In experiments, we use values a ∈ {1/10, 1/2, 3/4, 9/10, 1, 10/9, 4/3, 2, 10}.
The corresponding values of μ(σr(p)) for GA and GP spaces can be found later
as the x-values in Fig. 1.

This method of artificially controlling μ(σr(p)) will fail in the case where the
goal is to reduce an individual’s bias towards its neighbours, if it has a zero
probability of transitioning to some other individuals. Raising zero to any power
will not change it. A possible solution is to add a small constant to all zero values
before applying the above method. This is not necessary in the current work since
in both the GA and GP cases, the mutation operator gives a transition matrix
which is nowhere zero. In any case, this method can only work in spaces small
enough to allow explicit construction of the transition matrix.

4.2 Measuring Exploration-Exploitation Behaviour

For subtree mutation in the GP space, μ(σr(p)) = 0.0092, and σ(σr(p)) = 0.0007.
For per-gene mutation in the GA space, μ(σr(p)) = 0.0115, and σ(σr(p)) = 0.

Comparing the μ(σr(p)) values shows that a GA per-gene mutation with mu-
tation probability of 0.1 in a 10-bit space is slightly more exploitative than subtree
mutation in depth-2 GP. This is an interesting result because it is a direct and
fair comparison between operators in different spaces. Using a GA mutation
probability of 1 divided by the bitstring length – here, 0.1 – gives an expectation
of one bitflip per individual. This is a common value. GP subtree mutation is
regarded as being quite randomising. Our results confirm that it is more explo-
rative in its behaviour than the GA mutation operator, but the difference is not
very large.

The non-zero value for σ(σr(p)) for GP shows that the outward transition
probabilities are more uniform from some elements of the space than others.
These more uniform elements behave as randomisers or “portals” – search be-
comes relatively more random when they are encountered. Mutation is less ex-
ploitative from these elements than from others. The quantity min(σr(p)) might
be used as a measure of how randomising the most randomising element is.

The zero for σ(σr(p)) for the GA illustrates the fact that a GA, with a stan-
dard per-gene mutation operator, is a symmetric space.

106 J. McDermott

4.3 Exploration-Exploitation Behaviour and Search Space Coverage

In order to demonstrate that μ(σr(p)) functions as a measure of exploration-
exploitation behaviour, we define a simple measure of the exploration done by
a random walk: the proportion of unique individuals encountered. This is based
on the idea that highly exploitative behaviour will tend to focus search on a
small area of the space, and hence to encounter the same individual more than
once. Real-world EC algorithms use specific measures to avoid encountering an
individual more than once. However, in this setting, no such measure is used, so
the method is informative.

Fig. 1. Exploration behaviour versus μ(σr(p)). Exploration is measured as the pro-
portion of unique individuals visited in random walks of length 50. Errorbars indicate
standard deviation of exploration value over 50 independent walks.

As shown in Fig. 1, there is a very strong μ(σr(p)) effect. The “uniformified”
operators, which have lower values of μ(σr(p)), encounter more unique indiviuals.

4.4 Exploration-Exploitation Behaviour and Performance

In this section, we use experimental runs to study the relationship between per-
formance, noise in the fitness landscape, and exploration-exploitation behaviour.

A difficulty in carrying out this type of study is that the effect of an operator’s
exploration-exploitation behaviour on performance (measured by best fitness
achieved) depends not only on fitness landscape features such as ruggedness,
but also on its long-term bias towards certain areas of the search space. Even if
an operator has the “best” level of exploitation for a particular fitness landscape,
it may also have a long-term bias away from the area of the search space where
the optimum is. In this scenario, experiments to demonstrate the best value of
μ(σr(p)) will be misled: a more explorative version of the same operator will
have a less damaging long-term bias, will perform better, and so will lead to a
false conclusion concerning the “best” level of exploitation.

Therefore, to disentangle the two effects (fitness landscape, and stationary
distribution), we will run a set of experiments in which there is no long-term
bias towards any area of the search space. This is the case in the GA space, which
by symmetry has a uniform stationary distribution, i.e. σ(s) = 0 (see Sect. 4.5,

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 107

next, for results on spaces of nonzero bias). We are then free to study just the
interaction of exploration-exploitation and fitness landscape features.

We start with a GA OneMax problem. Fitness is the number of on-bits in the
genotype. We add a tunable amount of noise by performing k swaps between
pairs of individuals’ fitness values. For k ∈ {0, 1, 10, 100, 1000} we achieve pro-
gressively noisier landscapes. We then use hill-climbing with each version of the
GA operator to search each landscape.

Fig. 2 shows the results. For a noiseless OneMax problem, low values of
μ(σr(p)) (almost random search) and high values (over-exploitation) are worse
than intermediate values. As noise increases, individuals effectively give no infor-
mation about their neighbours, and any attempt at exploitation becomes useless.
Random search (low μ(σr(p))) becomes the best option.

Fig. 2. Performance versus μ(σr(p)). Fitness is that of the best individual found in
a 50-step hill-climb on the GA space. Errorbars indicate standard deviation of fitness
over 50 independent climbs.

4.5 Stationary Distributions

The ith component of the stationary distribution vector s is the probability
that a random walk will be in state i (that is, a random walk will be currently
at individual i) at a random time-step sometime after many steps. It can be
calculated using the method of Kemeny and Snell [7].

108 J. McDermott

The GA space gives a uniform stationary distribution vector, by symmetry.
The stationary distribution vector for the GP space is given in Fig. 3. The 1298
trees of the space correspond to positions in the horizontal axis and are ordered
in a natural way: x, y, (* x x), (* x y), (+ x x), . . . (/ (/ y y) (/ y y)).

Fig. 3. Stationary distribution and normalised in-degree for the GP space. The hori-
zontal axes contain the individuals of the space, ordered as described in the text.

The stationary distribution is highly non-uniform, as shown in Fig. 3. The
vertical scale is logarithmic, so the most common individuals are two orders of
magnitude more common than the most rare.

The non-uniformity can also be measured as σ(s) = 0.0016. The corresponding
figure for a GA is 0, again by symmetry.

Fig. 3 also shows the normalised in-degree. That is, for each element j of the
space, the sum of transition probabilities

∑

i p(i, j) was calculated, and the re-
sulting vector was normalised to sum to 1 to make it comparable to the stationary
distribution. The resulting pattern is similar to that of the stationary distribu-
tion, though the non-uniformity is less pronounced. The in-degree measures the
short-term probability of reaching a node, whereas the stationary distribution
measures the long-term probability. In both cases, no starting-point is specified.
The stationary distribution is therefore more appropriate for understanding op-
erator bias, but cases in which the two are very different are likely rare except
by construction.

Next, simulations are run to test the effect of the stationary distribution. Two
individuals are chosen as being “of interest”. Their statistics are summarised in
Table 1. The individual x (the first element in the horizontal axis of Fig. 3) has
a larger stationary distribution probability than the individual (/ (/ y y) (/

y y)) (the last element), by two orders of magnitude. The simulations confirm
the expected result: the individual x is far more likely to be encountered than (/

(/ y y) (/ y y)), in a random walk. The same is true in a hill-climb, despite
the much higher fitness of the individual x.

The non-uniformity of the GP stationary distribution under the subtree muta-
tion operator has implications for search. A non-uniform stationary distribution
amounts to a bias towards exploring some areas of the space more than oth-
ers, even in the absence of selection pressure. The worst-case time to find the
optimum occurs when the optimum is in a low-probability area of the station-
ary distribution. If our prior expectation of fitness is uniform over trees, then a

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 109

Table 1. Results from hill-climbs and random walks on the GP space. The probabilities
of encountering two individuals of differing fitness values and stationary distribution
probabilities are shown, for hill-climbs (HC) and random walks (RW).

Individual fitness stationary prob encounter prob encounter
distribution HC RW

x 0.29 0.04 0.08 0.8
(/ (/ y y) (/ y y)) 0.57 0.0005 0.01 0.03

non-uniform stationary distribution runs this risk. Therefore it is better to use
a search operator without long-term bias.

On the other hand, a non-uniform stationary distribution could be good for
search if we have a specific type of non-uniform prior. In the case of the subtree
mutation operator, the stationary distribution depends only on tree shape. Fig. 3
shows that there is a bias towards the trees of a single node (values above 10−2),
followed by trees of three nodes (values well above 10−3), followed by trees of
5 nodes (values close to 10−3), with the full trees of 7 nodes (values well below
10−3) being the least likely to be encountered in the stationary distribution.
Although each individual tree of 7 nodes is rare in the stationary distribution,
the large number of such trees means that search still spends a good deal of time
among the trees of 7 nodes. If our prior expectation is that good trees are more
likely to occur among the shallow trees, then the demonstrated non-uniformity
of the stationary distribution may be beneficial to search. A uniform stationary
distribution might give too much weight to the fuller trees, because there are
so many of them: it would effectively result in a strong bias towards choosing a
full tree. This point of view amounts to considering bias between tree shapes, or
tree depths, rather than just between individuals.

5 Conclusions

We have proposed measures of mutation operators’ short-term exploration-
exploitation behaviour and long-term biases using transition probabilities and
the Markov chain stationary distribution.

An appealing feature of the measures is their generality. The transition matrix
abstracts all representation-specific features away, allowing comparison between
operators on different spaces. Because it is relatively easy to visualise the be-
haviour of the GA mutation operator, this property provides a useful point of
reference when reasoning about the behaviour of GP subtree mutation.

We have found that GP subtree mutation, generally regarded as a highly ran-
domising operator, is only slightly more explorative than GA per-gene mutation
with a typical mutation rate.

Using the stationary distribution of the GP space, we have found a strong bias
related to program depth: shorter programs are over-sampled. This result agrees
with the conclusions of Dignum and Poli [2] and other work in the operator bias
literature.

110 J. McDermott

The similarity in the GP space between the stationary distribution and the in-
degree strongly suggests that these measures are capturing an important aspect
of the structure of the space.

5.1 Limitations

Our measures are impractical in that they depend on calculations which are in-
feasible for search spaces of realistic size. However, they still give useful insight.
Our results with subtree mutation in a depth-2 GP space will remain qualita-
tively true in a larger space. The same long-term bias will arise, differing only
in degree.

It is possible to construct a counter-example to the measure of exploration-
exploitation behaviour. Consider an operator with this transition matrix:

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠

This operator appears very exploitative: each row will have a high standard
deviation, so μ(σr(p)) will be large. However, this operator will never encounter
the same individual twice, until it covers the whole space, so it might also be said
to be quite explorative. The anomaly arises because of the strongly asymmetric
probabilities, which destroy our intuitive concept of nearby individuals. The
anomaly remains even after the forced mutation, which does not occur with
real-world operators, is removed by setting all zeros to small non-zero values
and normalising by row.

5.2 Future Work

Our work has considered mutation only. Integrating crossover into the Markov
chain picture is possible but is postponed for future work. On the other hand,
hill-climbing (a mutation-only algorithm) works surprisingly well in GP repre-
sentations both old [13] and new [10].

In this context we note that with an operator like subtree mutation, there are
no local optima, since there are no zero elements in the transition matrix. Hence
hill-climbing might be expected to work well. However, there are many local
pseudo-optima, i.e. individuals with vanishingly low probabilities of transitioning
to anywhere better in a single step. New research measuring the strength and
effect of local pseudo-optima is indicated.

All code used in this study is available for download from https://github.

com/jmmcd/GPDistance .

https://github.com/jmmcd/GPDistance
https://github.com/jmmcd/GPDistance

Mutation Operators’ Exploration-Exploitation Behaviour and Biases 111

References

[1] Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Statistical Science, 10–15 (1993)
[2] Dignum, S., Poli, R.: Crossover, sampling, bloat and the harmful effects of size

limits. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 158–169. Springer, Heidelberg (2008)

[3] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276(1), 51–81 (2002)

[4] Eiben, A.E., Aarts, E.H.L., Hee, K.M.V.: Global convergence of genetic algo-
rithms: A Markov chain analysis. In: Schwefel, H.-P., Männer, R. (eds.) PPSN
1990. LNCS, vol. 496, pp. 3–12. Springer, Heidelberg (1991)

[5] Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary muta-
tions. Evolutionary Computation 7(2), 173–203 (1999)

[6] Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multi-
ple scales: a quantitative analysis of the interplay between genotype, phenotype,
and fitness in linear genetic programming. Genetic Programming and Evolvable
Machines 13(3), 305–337 (2012)

[7] Kemeny, J.G., Snell, J.L.: Finite Markov chains, vol. 210. Springer, New York
(1976)

[8] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

[9] Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. AMS
Bookstore (2009), http://pages.uoregon.edu/dlevin/MARKOV/

[10] Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg
(2012)

[11] Moritz, R., Ulrich, T., Thiele, L., Buerklen, S.: Mutation operator characteriza-
tion: Exhaustiveness, locality, and bias. In: Congress on Evolutionary Computa-
tion. IEEE, New Orleans (2011)

[12] Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in
genetic programming. Transactions on Evolutionary Computation 17(1) (2013)

[13] O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length
representation: Genetic programming, simulated annealing and hill climbing. In:
Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp.
397–406. Springer, Heidelberg (1994),
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-58484-6

[14] Pagie, L., Hogeweg, P.: Evolutionary Consequences of Coevolving Targets. Evolu-
tionary Computation 5, 401–418 (1997)

[15] Poli, R., McPhee, N.F., Rowe, J.E.: Exact schema theory and Markov chain models
for genetic programming and variable-length genetic algorithms with homologous
crossover. Genetic Programming and Evolvable Machines 5(1), 31–70 (2004)

http://pages.uoregon.edu/dlevin/MARKOV/
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-58484-6

Exploring the Search Space of Hardware /

Software Embedded Systems by Means of GP

Milos Minarik and Lukáš Sekanina

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Božetěchova 2, 612 66 Brno, Czech Republic
iminarikm@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract. This paper presents a new platform for development of small
application-specific digital embedded architectures based on a data path
controlled by a microprogram. Linear genetic programming is extended
to evolve a program for the controller together with suitable hardware
architecture. Experimental results show that the platform can automat-
ically design general solutions as well as highly optimized specialized
solutions to benchmark problems such as maximum, parity or iterative
division.

1 Introduction

A general research problem, practically untouched by the genetic programming
community, is whether it is possible to concurrently evolve hardware and soft-
ware for a given task and whether the evolutionary system can discover general
solutions to the problem (under some constraints) or highly optimized solutions
to the same problem under other constraints. For example, in the case of the
n-input parity problem, one evolved solution would be a general program se-
quentially performing the XOR operation over the intermediate result and the
incoming bit (no constrains on the execution time are formulated, but the hard-
ware size is constrained), while another solution would be an n-bit parity tree
calculating the parity in parallel (no constrains on the hardware size are given,
but the execution time is constrained).

This type of problems can be investigated using a platform [1] that we have
developed for design and optimization of small HW/SW embedded systems,
in which it is impossible to employ a general purpose processor because of its
relatively high cost. The platform consists of an application specific data path
controlled by a programmable logic controller which is programmed using the
so-called microprograms. The overall architecture as well as the microprogram
are highly optimized in order to minimize area, delay and power consumption.
The designer has to determine the number of registers and their bit width, the
number of ALUs, the set of functions supported by each ALU, interconnection
options (allowed by, for example, multiplexers), instruction set etc.

Our framework allows the designer to describe the hardware part, create a
program for the logic controller, generate external stimuli and collect and analyze

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 112–123, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Exploring the Search Space of Embedded Systems by GP 113

the outputs of the system [1]. As the framework is fully programmable and
configurable, a suitable search algorithm can be utilized either to optimize or
even automatically design not only the program for the controller but also the
hardware architecture. The goal of research, which is reported in this paper, was
to remove some constrains given on the hardware modules in the original version
of the framework, and demonstrate that more general problems can be solved.
The proposed solution is based on extending linear genetic programming (LGP)
to concurrently evolve the program for the logic controller and the hardware
architecture.

The proposed approach can be classified as a combination of genetic program-
ming and evolvable hardware. We believe that our approach is new and unique;
however, some common features can be identified with conventional hardware/
software co–design based on evolutionary algorithms [2,3,4], co-evolution of pro-
grams and cellularMOVEprocessors [5], and genetic parallel programming (GPP)
[6]. While GPP enables to automatically map a problem on parallel resources
(multiple ALUs) in order to evolve efficient parallel programs, our method is more
hardware oriented which allows for optimizing low-level properties of the under-
lying digital circuits.

In summary, the main contributions of this paper are as follows: (1) We pro-
pose an extension of our previous framework [1] in which a more general reconfig-
urable hardware architecture is supported. (2) We validate the proposed method
of HW/SW concurrent evolution using 3 test problems. (3) We show that both
general purpose solutions and application specific solutions can automatically
be evolved on the proposed platform when suitable constrains are formulated.

The rest of the paper is organized as follows. Section 2 presents main fea-
tures of the evolvable HW/SW platform. Section 3 is devoted to extending our
platform by new features, particularly by relaxing some constraints on the or-
ganization of hardware modules. In Section 4, test problems are formulated,
experimental setup is defined, and finally, obtained results are presented. Con-
clusions are given in Section 5.

2 Previous Work

In our previous work [1], we proposed a framework capable of concurrent evo-
lution of HW and SW for application specific microprogrammed systems. This
section will briefly summarize some basic terms so they could be used in the fol-
lowing sections. The framework is responsible for evolving the HW architecture
and appropriate SW part as well as for providing the interconnections of the
architecture with environment by providing inputs and consuming outputs.

2.1 Hardware

As can be seen in Fig. 1, the HW part is composed of a configurable datapath
which is controlled by a microprogram. The components drawn in gray are re-
sponsible for instructions decoding and instruction pointer manipulation. This

114 M. Minarik and L. Sekanina

part is fixed and does not udergo the evolution. The parts affected by the evolu-
tion are the registers and the modules. The registers are connected to modules
by a set of multiplexers composed in such way that every register can be con-
nected to every module. The connections from module outputs to the registers
are realized by a set of decoders.

Microinstr.
decoder and

controller

D
ec

od
er

M
U

X
s

Modules
Reg1

Regn

IN

OUT

Reg2

... ...

Program
memory

Counter

Fig. 1. HW architecture

Registers. The number of registers available in the architecture remains con-
stant during the evolution. Their bit widths, however, can be changed by the
genetic operators. Thus the width of the register can vary from 0 to a maximal
value specified by the user. When the bit width of the register is set to zero, the
register is considered unused, because it does not affect program execution.

Modules. Modules can be thought of as black boxes with inputs and outputs
realizing an arbitrary function. Formally the module is defined as a 6–tuple

M =< ni, no, a, p, d, fo >, (1)

where ni is the number of module inputs, no is the number of outputs, a is the
area used by the module, p is its power consumption, d : Dni → D is the function
specifying the processing delay and fo : Dni ×Q → Dno is the output function.
D denotes a user chosen data type and Q is the set of module’s possible internal
states. The whole HW part is described by the following components:

i the number of inputs
o the number of outputs
R = {r1, r2, ...rr} a set of registers
w : R→ N a funcion setting widths of the registers
A = {M1,M2, ...Mm} a set of available modules
u : A→ {0, 1} a function specifying module utilization

Exploring the Search Space of Embedded Systems by GP 115

2.2 Software

Each program is composed of instructions i1, i2, ..., is, where s is the program
size. An instruction can be composed of several microinstructions which get
executed in order in which they are specified in the instruction. The internal
representation of the microinstruction is depicted in Fig. 2. The header con-
tains an operation code specifying the type of the microinstruction and a mask
defining the module usage. Then a constant may be specified, which is used
by certain types of microinstructions. Finally, there are input connections (Ik,l)
and output connections (Ok,l) specifications for individual modules used by the
microinstruction. More detailed information can be found in the aforementioned
article [1].

HEADER CONST I11 I12 I13 O11 O12 I21 I22 O21

0 31 63 71 79 ...

MOV JMP LOAD MODULES

0 1 3 7 31

CONST
FLAG

INDEX/CONST

0 1 7

Fig. 2. Microinstruction format

3 Proposed Extensions

The architecture described in previous section had several limitations that didn’t
allow the evolution to create all useful compositions of modules. As the modules
were arranged in parallel to each other, the only possible way of using the out-
puts of one module in another module was storing the results of one module in
registers and passing them to another module in the following instruction. Al-
though this method allowed the modules to use the outputs of previous modules,
such connection was quite resource consuming because of the registers needed.
Therefore, the need to pass the values between modules directly arose. Another
issue we came across was the inability of the framework to process the inputs
sequentially by one individual and in parallel by another individual. This issue
has been addressed by introducing a new type of module that can be involved in
instruction processing and allows the architecture to load virtually an arbitrary
number of inputs inside one instruction.

3.1 Evolvable Hardware Topology Related Changes

There are several possible ways of implementing this functionality. At first,
the possibility to create hardwired connection between modules was considered.
However, such solution would limit the evolved architectures so that one fixed
architecture would be used during the whole program execution. Therefore, the
decision to let the instructions choose the interconnections between modules was

116 M. Minarik and L. Sekanina

made. Such a solution allows the HW architecture to vary during the program
execution to fulfill current needs.

Then it was crucial to choose a suitable encoding of variable topology. The
proposed solution exploits the encoding used in Cartesian Genetic Programming
(CGP).

Modules Order Encoding. Similarly to CGP, the modules are organized in
one row and nc columns, where nc = m. As the order of modules is not defined,
it is necessary to introduce the ordering into the chromosome, in our case by
permutation µ of the set {1, 2, ...,m}.

There are many ways to encode such a permutation in the chromosome (e.g.
[7]). Finally the encoding proposed in [8] has been chosen due to its properties
regarding genetic operators usage and fast evaluation.

This encoding represents the permutation i1, i2, ..., im of the set {1, 2, ...,m}
by an inversion sequence a1, a2, ..., am. In this sequence, each aj denotes the
number of integers in the permutation which precede j, but are greater than
j. For example, if the original permutation is 3, 2, 4, 1, the inversion sequence
would be 3, 1, 0, 0. In this case the value 3 at the 1st position in the inversion
sequence means that there are 3 values in the original permutation that precede
the value 1 and are greater than the value 1. After generating the inversion
sequence the genetic operators can be applied on it in common manner and
then the new prescription for module ordering can be easily generated from the
inversion sequence. More details can be found in [8].

Instructions Related Changes. The changes of the HW part of the archi-
tecture require some additional changes in the SW part. The changes are in
allowed ranges of inputs and outputs during their initial random generation or
mutations. In the previous version of the framework, the inputs were allowed
to be constants or register indices. To support the interconnections between
individual modules the latter one has to be changed, in order to enable the con-
nection of the input either to a specific register or to an output of a module
which precedes the current module in the module order specified by the HW
part. Therefore, the parameter nin ∈ N specifying the connection is generated
from the interval < 0, navail). The number of available connections navail for an
input of module Mi can be computed as

navail = r +

i∑

j=1

noj , (2)

where r is the registers count and noj is the number of outputs of module Mj .
This change in generating of the connections imposes also the change in instruc-
tion execution. When the instruction is executed, used modules are evaluated
one by one in order specified by the chromosome. During the module execution
the available inputs are limited to registers and outputs of preceding modules. If
any of the preceding modules used by the instruction is disabled, the parameter

Exploring the Search Space of Embedded Systems by GP 117

specifying the input connection can be greater than the number of inputs actu-
ally available. This issue is addressed by performing the modulo operation using
the actual number of available inputs. That means the instruction stays valid
even after one of the modules used is disabled (e.g. by mutation). However, the
connection will probably point to another module output or register. This way
of instruction execution also ensures program validity when the order of modules
is changed.

The last change imposed by the change of the framework is related to the out-
puts. In previous version of the framework, module outputs had to be connected
to registers. Considering the possibility to connect the module output directly
to another module input, there is no need for the output to be connected to
a register. It is now possible for an output to be specified as ’no reg’, which
ensures the output value can be used by other modules, but will not be stored
to a register.

3.2 Input Modules

As stated above, the previous version of the framework did not support the si-
multaneous evolution of individuals with sequential and parallel processing of
the inputs. This was due to the fact that the number of inputs had to be con-
stant. However, we came across some experiments, where this constraint imposed
serious limitations. For example, when there was a possible solution, that could
process four input values at once, and there were only two inputs available, the
four values had to be loaded into registers before they could be processed. In-
creasing the number of inputs would not help in this case as e.g. a sequential
solution using only two inputs would not be possible.

This issue has been addressed by introducing a new module type. According
to the convention specified by formula 1, the input module is defined as

Mi =< 0, 1, 0, 0, din, fo > . (3)

As each input module represents one input, k–input system could be modeled
by instantiation of k such modules.

The user can create several input modules and group them to form a specified
number of input groups. Then the sequences of the input values have to be
supplied for individual groups. After that the framework will set all the input
modules to point to the first input value of a respective input group sequence
and when the input module is executed, all modules of the same input group
are updated to point to the next input value. When all the inputs from a given
input group are already processed during the simulation and an input module
from such an input group is executed, it returns the default value specified for
this input group (e.g. 0).

3.3 Problem Encoding and Search Method

A candidate solution is represented in the chromosome as a string of integers.
The first part of the chromosome is devoted to the program which is encoded in

118 M. Minarik and L. Sekanina

the LGP-like style [9] as a sequence of instructions, each of which consisting of
several microinstructions (Fig. 2). The second part of the chromosome defines
the hardware—the usage and bit widths of the registers, the usage of the modules
and the µ permutation. It is ensured that the program stays valid independently
of the HW architecture changes.

The initial population is generated randomly. The fitness is represented by
a vector of components containing functionality, area and speed. The NSGA-II
algorithm [10] is utilized because it allows for non-dominated sorting of candidate
solutions and a multiobjective optimization is naturally supported. Selection is
performed by a tournament method with base 2. A two-point crossover operates
at the level of (micro)instructions in the software part and at the level of modules
in the hardware part. Mutation modifies the specification of registers, modules
or the program (microinstruction type and parameters).

4 Experimental Results

Several experiments were carried out to evaluate the proposed method. It is
important to keep in mind that comparison with other methods can serve only
as a rough assessment of how fast the proposed method is, because the pro-
posed method evolves HW and SW part simultaneously and has, therefore, to
explore larger search space than the methods evolving just a program. All the
experiments utilize a slightly modified version of NSGA-II algorithm. When
the individuals are compared, first, their functionality fitness component is com-
pared. If the value of this fitness component is the same for both the individuals,
the NSGA-II is carried out on other fitness components. Therefore the selection
prefers the individuals with the highest functionality.

4.1 Newton-Raphson Division

This experiment was chosen mainly to verify the ability of the new version of
framework to evolve solutions for iterative problems. We solved this task with a
modified version of CGP in [11].

Problem Description. Newton-Raphson iterative division is an algorithm that
finds the quotient of numbers N and D (0.5 ≤ D ≤ 1.0), iteratively. The main
principle of this algorithm lies in finding the reciprocal of the divisor D and
then multiplying it by N to find the desired quotient. The iterative expression
for finding the reciprocal is

Xi+1 = Xi +Xi(1−DXi) = Xi(2−DXi) (4)

This experiment was limited to finding the reciprocal of D such as in [11]. The
parameters of LGP used for this experiment are listed in Table 1. The fitness
function is defined as

fo =
1

∑s
i=1

∑nit

j=1
|Yij−Tij |

|Yij−1−Tij−1|
, (5)

Exploring the Search Space of Embedded Systems by GP 119

where s is the number of different target reciprocals (randomly generated), nit

is the number of iterations, Y is an output value and T is the expected value.

Table 1. LGP parameters used for Newton-Raphson division

Parameter Value

Population size 20
Max. generation count 100,000
Crossover probability 0.05
Mutation probability 0.7
Max. logical time 15,000
Max. program length 15
Modules used 2xADD, 2xMUL
s 10
nit 10

Results. After performing 200 independent runs the results were analyzed. A
solution was found in 17.5 % of runs and the computational effort needed to find
a solution with 99 % probability is 2.2×107. That is quite an interesting result, as
the computational effort of CGP was of the same magnitude, despite that CGP
search space was significantly smaller. After detailed analysis of all the solutions
it was found that all of them had a similar structure. The Newton–Raphson
expression was always found in an expanded form Xi+1 = Xi + Xi − XiDXi

and there was no solution which would utilize the constant 2. This result is not
surprising as CGP [11] produced the same one.

4.2 Finding the Maximum

This experiment was chosen to verify the ability of the framework to find various
(sequential and parallel) different solutions during one run of LGP.

Problem Description. The main goal is to find an architecture calculating the
maximum out of 8 input values. There are no further constraints on the number
of inputs or processing time. After providing all 8 input values, all successive
values will be zeroes and the zero flag of the input module will be set, so the
architecture can take appropriate action. The evolution parameters are listed in
Table 2. In this experiment a new module type was involved. The comparator
module (CMP) has two inputs and two outputs and when executed, it sends the
smaller value to the first output and the greater one to the second output. The
functionality fitness component is defined as the number of correct outputs from
16 semi–randomly generated 8–tuples.

Results. After performing 3,000 independent runs the results were analyzed.
Out of the total number of 3,000 runs over 62 % have successfully found a
solution, with the computational effort of 1,026,114. The evolution was able

120 M. Minarik and L. Sekanina

Table 2. Evolution parameters used for the Maximum experiment

Parameter Value

Population size 50
Max. generation count 20,000
Crossover probability 0.05
Mutation probability 0.7
Max. logical time 500
Max. program length 10
Modules used 8xIN, 8xCMP

to find various completely different solutions, including sequential and parallel
solutions. We have sorted the results by their area fitness and speed fitness.
The fitness values were scaled to range < 0, 100 > for better readability. The
nondominated solutions are depicted in Fig. 3.

80

85

90

95

100

30 40 50 60 70 80 90

Sp
ee

d
Fi

tn
es

s

Area Fitness

Fig. 3. The best fully–functional solutions of the maximum experiment

To show the progress of the evolution, two subsets of runs were selected. The
first subset contained only the runs, which led to a minimal area solution (the
rightmost ones in Fig. 3). Maximal values of the speed fitness and the area
fitness were considered and the average value for each generation was computed.
Fig. 4 shows that both speed fitness and area fitness grow rapidly during initial
generations and then drop. This is implied by the fact that the individuals with
higher functionality override other individuals even if they have higher speed
and area fitness. When the functionality reaches a satisfactory level, the area
fitness starts to grow, while the speed fitness still decreases. This corresponds to
the expected trade-off between the area and speed.

The second subset is composed of the runs, that led to solutions with maximal
speed. Fig. 5 shows that the speed fitness grows as expected, but after approx-
imately 10,000 generations the area fitness also grows, so it appears there is no
trade-off. After the investigation of the results we found out that the individuals
tend to use more resources than needed at the beginning and the resources are
optimized during later generations. The trade-off, however, still exists.

Another interesting fact discovered during the analysis was that some solu-
tions were general and could process an arbitrary number of values, whereas
other solutions were limited to 8 input values. The general solutions were likely

Exploring the Search Space of Embedded Systems by GP 121

88

90

92

94

96

98

60

65

70

75

80

85

90

0 5000 10000 15000 20000

Sp
ee
d
fit
ne

ss

Ar
ea

fit
ne

ss

Generation

Area Speed

Fig. 4. Fitness progress for minimal
area solutions

94

94,5

95

95,5

96

96,5

97

38
39
40
41
42
43
44
45

0 5000 10000 15000 20000

Sp
ee

d
fit
ne

ss

Ar
ea

fit
ne

ss

Generations

Area Speed

Fig. 5. Fitness progress for maximal
speed solutions

to appear among the solutions with smaller area, as the evolution had to develop
a loop to process all the inputs, whereas large area solutions could process all
the inputs by one instruction and then output the result.

4.3 Parity

This problem was chosen because it is one of typical problems solved using
various evolutionary circuit design techniques. Another reason was to find out,
whether some modifications speeding up the evaluation could be used.

Problem Description. In this experiment, the goal is to find an architecture,
which computes parity of the binary inputs provided. The parameters used for
the experiment were the same as in the previous case, but the comparator mod-
ules were substituted by XOR modules. The functionality fitness component in
this case was the number of correct outputs.

Results. After performing 3,000 independent runs of LGP we evaluated the
results and found out that the computational effort is 2,358,430. That was quite
interesting as this value is more than twice as large as in the previous experiment,
though the problem is quite similar and XOR modules have just one output,
whereas the comparator has two outputs.

After some investigation we recognized that problem is significantly influenced
by the definition of the fitness function. Because the XOR function gives just
two possible results for each input combination (i.e. 0 or 1), even bad solutions
can get quite high fitness. For example, when the output is zero all the time
during the simulation, half of the input combinations are evaluated as correct.
Therefore the right solution has to have a relatively high fitness value before it
is considered as better than some of the bad solutions. Despite these problems
many solutions with various area/speed trade-off were found. The parameters of
the best fully–functional solutions are depicted in Fig. 6.

Fig. 7 shows one of evolved solutions which is fast and resource consuming,
but optimized for n = 8 and does not process any subsequent inputs. On the

122 M. Minarik and L. Sekanina

72
73
74
75
76
77

20 30 40 50 60 70 80

Sp
ee

d
Fi

tn
es

s

Area Fitness

Fig. 6. The best fully–functional solutions of the parity experiment

other hand, the solution depicted in Fig. 8 is slower and less expensive. It is also
a general solution, as the inputs are loaded in a loop until there are no more
inputs available. The computational effort can hardly be compared with other
evolutionary techniques as they usually do not use the XOR module, but try
to force the evolution to compose the solution from NAND and NOR modules.
Such comparison will be one of our goals in the upcoming research.

IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

XOR1

XOR2

XOR3

XOR4

XOR5

XOR6

XOR7 REG3

EXEC MODS // Execute modules by topology
OUT reg3

HW Part

SW Part

Fig. 7. Parallel solution for parity

EXEC MODS // Execute modules by topology
JSMOD4 -1 // Repeat while the inputs are available
OUT reg2

HW Part

SW Part
IN4

XOR1
REG2

REG2

Fig. 8. Sequential solution for parity

5 Conclusions

In this paper, we extended our platform for development of small application-
specific digital embedded architectures by supporting variable module intercon-
nections and multiple input reading mechanisms. LGP was used to evolve a
program for the controller together with a suitable organization of hardware
modules. The proposed extension was evaluated by evolving a simple iterative
division algorithm. An important conclusion is that the platform can automati-
cally synthesize multiple implementations, including a purely sequential solution
and highly optimized parallel solutions, for a given specification

In our future research, we will deal with more complex iterative problems
and their evolution on the proposed platform. However, accelerating the whole
design process will be the first inevitable step.

Exploring the Search Space of Embedded Systems by GP 123

Acknowledgments. This work was supported by the Czech science foundation
project 14-04197S, Brno University of Technology project FIT-S-14-2297 and
the IT4 Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

1. Minarik, M., Sekanina, L.: Concurrent evolution of hardware and software for
application-specific microprogrammed systems. In: International Conference on
Evolvable Systems (ICES), IEEE Computational Intelligence, pp. 43–50 (April
2013)

2. Dick, R.P., Jha, N.K.: Mogac: a multiobjective genetic algorithm for hardware-
software cosynthesis of distributed embedded systems. IEEE Trans. on CAD of
Integrated Circuits and Systems 17(10), 920–935 (1998)

3. Shang, L., Dick, R.P., Jha, N.K.: Slopes: Hardware-software cosynthesis of low-
power real-time distributed embedded systems with dynamically reconfigurable
fpgas. IEEE Trans. on CAD of Integrated Circuits and Systems 26(3), 508–526
(2007)

4. Deniziak, S., Gorski, A.: Hardware/Software co-synthesis of distributed embedded
systems using genetic programming. In: Hornby, G.S., Sekanina, L., Haddow, P.C.
(eds.) ICES 2008. LNCS, vol. 5216, pp. 83–93. Springer, Heidelberg (2008)

5. Tempesti, G., Mudry, P.A., Zufferey, G.: Hardware/software coevolution of genome
programs and cellular processors. In: First NASA/ESA Conference on Adaptive
Hardware and Systems (AHS 2006), pp. 129–136. IEEE Computer Society (2006)

6. Cheang, S.M., Leung, K.S., Lee, K.H.: Genetic parallel programming: design and
implementation. Evol. Comput. 14(2), 129–156 (2006)

7. Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In:
Proc. of the International Conference on Genetic Algorithms and Their Applica-
tions, pp. 154–159. Lawrence Erlbaum Associates, Publishers, Pittsburgh (1985)

8. Üçoluk, G.: Genetic algorithm solution of the tsp avoiding special crossover and
mutation. Intelligent Automation & Soft Computing 8(3), 265–272 (2002)

9. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Berlin (2007)
10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–
197 (2002)

11. Minarik, M., Sekanina, L.: Evolution of iterative formulas using cartesian genetic
programming. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J.,
Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 11–20. Springer, Heidel-
berg (2011)

Enhancing Branch-and-Bound Algorithms

for Order Acceptance and Scheduling
with Genetic Programming

Su Nguyen, Mengjie Zhang, and Mark Johnston

Evolutionary Computation Research Group,
Victoria University of Wellington, Wellington, New Zealand

{su.nguyen,mengjie.zhang}@ecs.vuw.ac.nz,
mark.johnston@msor.vuw.ac.nz

Abstract. Order acceptance and scheduling (OAS) is an important
planning activity in make-to-order manufacturing systems. Making good
acceptance and scheduling decisions allows the systems to utilise their
manufacturing resources better and achieve higher total profit. There-
fore, finding optimal solutions for OAS is desirable. Unfortunately, the
exact optimisation approaches previously proposed for OAS are still very
time consuming and usually fail to solve the problem even for small in-
stances in a reasonable computational time. In this paper, we develop a
new branch-and-bound (B&B) approach to finding optimal solutions for
OAS. In order to design effective branching strategies for B&B, a new
GP method has been proposed to discover good ordering rules. The re-
sults show that the B&B algorithms enhanced by GP can solve the OAS
problem more effectively than the basic B&B algorithm and the CPLEX
solver on the Mixed Integer Linear Programming model.

Keywords: genetic programming, scheduling, branch-and-bound.

1 Introduction

Order acceptance and scheduling (OAS) deals with two key production plan-
ning and control decisions, which are acceptance/rejection and scheduling. The
goal of OAS is to optimise the use of manufacturing resources in make-to-order
manufacturing systems to improve the total profit and customer satisfaction
[1, 8]. This paper focuses on the OAS problem in single machine shops [1, 7–
9]. Particularly, we want to determine whether to accept or reject orders from
customers and how the accepted orders can be scheduled. Each order j in this
case is characterised by a release time rj , a processing time pj, a due date dj , a
weight/penalty wj , a maximum revenue ej, and a deadline d̄j . Before an order
j is processed, a (dependent) setup time si,j is needed if order j is processed
immediately after order i (s0,j is the setup time of order j when order j is pro-
cessed first in the schedule). If the order is completed before the due date dj ,
the profit prtj obtained from order j is the maximum revenue ej . Otherwise,
prtj is the remaining profit after deducting the penalty caused by the tardiness

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 124–136, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Enhancing Branch and Bound Algorithms for OAS with GP 125

Tj = max(0, Cj − dj) from ej , where Cj is the completion time of order j. Gen-
erally, the profit obtained by an order j can be calculated by prtj = ej − wjTj .
If orders are finished after their deadlines d̄j , no profit is gained and these or-
ders are rejected. The objective of this problem is to maximise the total profit
TPR =

∑

j∈A
prtj where A is the set of accepted orders. A Mixed Integer Linear

Programming (MILP) model of this problem can be found in [8].
OAS is more challenging than the traditional scheduling problems since not

only does the processing sequence of orders need to be determined, but also the
combination of accepted orders must be decided. Ghosh [2] proved that OAS
is NP-hard and previous works have shown that finding optimal solutions in
this case is very challenging, even for small instances [1, 12, 13]. Therefore, sev-
eral heuristics have been proposed to search for near optimal solutions for OAS.
Rom and Slotnick [11] developed a hybrid method in which solutions found by
a genetic algorithm (GA) are further improved by a local search heuristic. Oguz
et al. [8] developed a simulated annealing method (ISFAN) for the OAS prob-
lem with dependent setup times in customised packing material producers and
showed that their proposed method can find good solutions for large scale prob-
lem instances. Cesaret et al. [1] proposed a tabu search (TS) method to handle
the same OAS problem and the experimental results showed that the proposed
TS method outperformed ISFAN in most instances. Lin and Ying [4] developed
a hybrid artificial bee colony (ABC) method for OAS, in which an effective
iterated greedy local search heuristic is employed to enhance the quality of so-
lutions found by ABC. Genetic programming (GP) [3] has been also applied to
find reusable and effective scheduling rules to generate initial solutions for search
heuristics [7]. The experimental results show that the proposed GP method can
improve the effectiveness and efficiency of the search heuristics. Different repre-
sentations and evaluation schemes for OAS were later investigated by Park et
al. [9].

Although heuristics proposed in previous studies showed promising results,
the robustness of these heuristics is still debatable because of their stochastic
behaviours as well as the sensitivity of their parameters. For such critical ob-
jective functions such as the total profit, the difference between the optimal
solutions and near optimal solutions can be significant. For that reason, find-
ing optimal solutions, if possible, is desirable. Unfortunately, designing efficient
exact methods to deal with OAS is very difficult. For the OAS problem in this
study, solving the MILP model [1, 8] is very time consuming and can only be
used to solve small instances (up to 10 orders). For larger instances, MILP usu-
ally failed to find the optimal solutions within limited computation times (3600
seconds).

1.1 Goals

Branch and Bound (B&B) is a popular optimisation approach to finding opti-
mal solutions for scheduling problems. The efficiency of B&B depends on two
main factors: (1) the upper (lower) bounds and (2) the branching strategies [10].
The upper bound (for maximisation problems) is needed in B&B in order to

126 S. Nguyen, M. Zhang, and M. Johnston

determine whether a node should be further explored. A tighter bound will
help B&B eliminate nodes that cannot lead to optimal solutions. Meanwhile,
the branching strategy is very useful to decide which branches/nodes should be
explored first and indirectly improve the efficiency of B&B by quickly pruning
nodes. Although the fundamental idea of B&B is quite simple, designing an ef-
ficient B&B algorithm is very challenging. This paper proposes a new genetic
programming method to design branching strategies (BS) for the branch-and-
bound (B&B) algorithm to deal with the OAS problem with a single machine
and dependent setup times. Each individual in the proposed GP is an ordering
rule for the BS to determine the order of nodes to be explored.

The specific research objectives of this paper are as follows:

– Developing a new branch-and-bound algorithm for OAS.
– Developing a new GP method to design branching strategies for B&B.
– Evaluating the performance of newly generated B&B algorithms.

1.2 Organisation

The rest of this paper is organised as follows. Section 2 describes the general B&B
algorithm for OAS and the new GP method for designing branching strategies.
The performance of B&B algorithms enhanced by GP is compared to that of
the basic B&B and MILP in Section 3. Finally, we provide conclusions and
discussions for future research in Section 4.

2 Methodology

In this section, we first provide details of the proposed B&B for OAS, including
an upper bound and a basic branching strategy. Then, the description of the
proposed GP method for evolving branching strategies is presented.

2.1 Branch and Bound Algorithm for OAS

This section first provides the overall procedure for B&B and an illustrative
example to show how it works. Then, an upper bound and a branching strategy
in B&B will be discussed.

2.1.1 Basic Algorithm
Branch-and-bound is a popular optimisation approach in scheduling [10]. Basi-
cally, there are two important steps in B&B: (1) branching and (2) bounding. The
proposed B&B algorithm implicitly enumerates all candidate schedules where the
branching strategy and the bounding approach are used to prune/eliminate non-
optimal candidate schedules. The basic B&B algorithm proposed in this study
can be described as follows:

i. Initialise B&B with a root node containing an empty schedule; the node is
marked as unexamined. Set lower bound to −∞ .

Enhancing Branch and Bound Algorithms for OAS with GP 127

{}

{1,2,3,4,5}

{1}

{2,3,4,5}

{3}

{1,2,4,5}

{4}

{1,2,3,5}

{5}

{1,2,3,4}

UB = 20

UB = 18 UB = 16 UB = 20 UB = 12

{1,2}

{3,4,5}

UB = 17
{1,3}

{2,4,5}

UB = 12
{1,4}

{2,3,5}

UB = 15

{1,2,5}

{3,4}

UB = 17

Orders 3,4 cannot finish
before their deadlines

{1,2,5} TPR = LB = 16

UB < LB
No need to examine

UB < LB UB < LB

{4,1}

{2,4,5}

UB = 15
{4,2}

{1,3,5}

UB = 20
{4,3}

{1,2,5}

UB = 17
{4,5}

{1,2,3}

UB = 16

UB < LB UB < LB

{4,2,5}

{1,3}

UB = 18

Orders 1,3 cannot finish
before their deadlines

{4,2,5} TPR = 18 > LB
Update LB = 18

UB < LB

{1,5}

{2,3,4}

UB = 16

Fig. 1. Example of the proposed B&B algorithm

ii. Examine the bottom-left-most unexamined node of the search tree.
iii. Calculate the upper bound (the highest total profit that can be obtained)

for the node with its current partial schedule and unscheduled orders.
iv. If the upper bound is lower than the lower bound, the node will be pruned

(no longer explored).
v. If the upper bound is equal to the lower bound or there is no unscheduled

order, the partial schedule from the node is a final schedule and the lower
bound is updated if the total profit obtained from the considered schedule
is higher than the lower bound.

vi. If the upper bound is higher than the lower bound, apply the branching
strategy to generate child nodes by appending unscheduled orders into the
partial schedule of the parent node.

vii. Return to step ii until there is no unexamined node.

An example of how the proposed B&B solves an instance with five orders is
shown in Fig. 1. Each node is characterised by the partial solution in the upper
part and the unscheduled orders in the lower part. B&B starts with the root node
containing an empty schedule. The upper bound for the rooted node is 20 (see
the next section to see how an upper bound can be determined). Four branches
are added into the search tree (second level) by inserting an unscheduled order
into the empty schedule. The branch with order 2 is not considered because it is
too early to process this order (more details will be provided when we describes
the branching strategy). After further exploring the bottom-left-most nodes, we
obtained the first solution {1,2,5} with the total profit of 16, which is assigned
to the lower bound. With this lower bound, many unexamined nodes will be
discarded. After the solution {4,2,5} with the total profit 18 is found, there is no
unexamined node to explore and the B&B algorithm is terminated with {4,2,5}
as the optimal solution.

128 S. Nguyen, M. Zhang, and M. Johnston

2.1.2. Upper Bound
In their study, Oguz et al. [8] have proposed two upper bounds for OAS to
evaluate the performance of their proposed heuristics [1, 8]. The first bound
is generated by using their MILP model with the time limit of 3600 seconds
while the second bound is obtained by solving the linear programming (LP)
relaxation of the MILP strengthened with some additional valid inequalities.
Although these bounds are effective in some cases, they are too computationally
expensive to use within B&B. Therefore, we proposed a new simple and efficient
approach to determining an upper bound for OAS. This approach is motivated
by the observation that the OAS problem with a single machine is similar to
the conventional knapsack problem where a set of items are to be selected to
maximise the total value while the total weight does not exceed a given limit.
Given a set K of unscheduled orders at the decision moment t, a MILP of a
simplified OAS model is as follows:

maximise
∑

j∈L

e′jIj (1)

subject to: ∑

j∈L

p′jIj ≤ T (2)

Ij ∈ {0, 1} ∀j ∈ L (3)

where Ij are the decision variables, which determine whether each order j is
accepted (Ij = 1) or rejected (Ij = 0). All orders j ∈ K with C′

j < d̄j are included
in L where C′

j = max{rj , t}+mini∈K′{si,j}+ pj is the earliest completion time
of order j (K ′ = K ∪ {prev} and prev is the index of the previous order that
has just been finished). The modified profit e′j = ej − wj max{0, C′

j − dj} is
the highest profit that can be obtained by order j. The modified processing
time p′j = mini∈K′{si,j} + pj is the least time to process order j. Finally, T =

maxi∈K{d̄i}−min{t,mini∈K{ri}} is the total time budget to process all orders.
In this MILP model, only acceptance/rejection decisions are considered and

scheduling decisions are ignored. This simplified model is in the form of a knap-
sack problem which can be solved efficiently by some off-the-shelf optimisation
approaches. In this study, dynamic programming [6] is used to solve the knapsack
problem because it is effective in a wide range of problem instances. Other more
sophisticated and efficient optimisation approaches such as branch-and-bound
can also be used here to solve the knapsack problem. In our B&B, the upper
bound is the optimal objective value obtained from the knapsack problem plus
the total profit obtained from the scheduled orders in the partial solution. From
our experiments, the upper bound obtained from our knapsack model is usually
very close to those obtained from the LP relaxation and the MILP model of
OAS [1, 8], and its computational times are much lower.

2.1.3. Branching Strategy
In order to make B&B more efficient, we need to design a good branching
strategy. We apply these two rules:

Enhancing Branch and Bound Algorithms for OAS with GP 129

i. All orders that cannot be completed before their deadline will not be con-
sidered (C′

j < d̄j).
ii. Only considering orders that satisfy rj < EC or maxi∈K{si,j} > sprev,j ,

where EC is the earliest completion time of all remaining orders j ∈ K.

The first rule is quite straightforward because we do not want to consider
orders that cannot provide any profit. Meanwhile, the second rule tries to elim-
inate orders that are too early to be processed now. The first condition in this
rule is similar to that used to generate active schedules [10]. However, because of
the dependent setup times, the first condition becomes too strict and we need to
further check if the considered order can have lower setup times if it is processed
later. Therefore, we only ignore a node if the order appended to it fails to satisfy
these two conditions.

Another issue that needs to be considered is the order in which generated
nodes are to be visited. Unfortunately, there is currently no available approach
to help us effectively explore generated nodes for the OAS problem. In the basic
proposed B&B algorithm, the nodes will be explored based on their indices as
shown in Fig. 1. In this case, the nodes that contain appended orders with lower
indices will be examined earlier. However, this is not necessarily the most efficient
approach. For example, in Fig. 1, if the node containing order 4 as the first order
(the second level) is examined first, we can quickly obtain a very strong lower
bound that can help to eliminate many unexamined nodes. The information
of each order is very useful to decide which generated nodes in B&B should
be examined first. However, finding one good approach to decide the order of
nodes is not easy. In the next section, we will develop a new GP method to
automatically design branching strategies through evolving ordering rules.

2.2 The New GP Method

In order to develop an effective ordering rule, this study emphasises two princi-
ples: (1) good solutions need to be found by B&B as soon as possible and (2)
the nodes should be ordered in such a way that more potential nodes (leading
to better solutions) can be examined earlier. The first principle aims to find a
good lower bound (feasible solution) in order to prune nodes. Meanwhile, the
second principle will help avoid B&B from the worst case scenarios when optimal
candidate solution is at the end of the search. Previous studies [7, 9] have shown
that GP can evolve scheduling rules capable of generating very good solutions
for OAS. Therefore, rules evolved by GP is a promising approach to guide B&B
toward good solutions. In order to make these evolved rules further cope with
the second principle, the fitness function of GP will be designed to take into
account the robustness of order sequence generated by the evolved rules. Our
goal here is to use the solution (sequence in which orders are scheduled) found
by the evolved rules as the order in which B&B will explore generated nodes.
In the following sections, the representation and fitness function of the proposed
GP method are described.

130 S. Nguyen, M. Zhang, and M. Johnston

Table 1. Terminal and function sets for scheduling rules

Symbol Description Symbol Description

R release time rj P processing time pj
E revenue ej W penalty wj

S setup time sprev,j d due date dj
D deadline d̄j t current time
random number from 0 to 1

Function set +,−,×, % (protected division), IF

+

P %

E S

Assign priority

Each order
has been assigned

a priority ?

Go to the
next order

Select order j with the
highest priorityNo

Process order j

Build a list of active
orders which can

complete before their
deadlines

The list is
empty ?

Stop and calculate
objective values

Yes

Yes

Select the first
order in the list

No

Start

Fig. 2. Representation and evaluation of an evolved ordering rule

2.2.1. Representation
The rules evolved by GP are priority functions to calculate the priorities of orders
which determine the sequence in which orders are processed. In the proposed GP
method, we employ tree-based GP to evolve the ordering rules. Figure 2 shows
how an example rule (P+ E%S) is represented by GP and how it can be used to
solve an OAS instance. The function and terminal sets used to generate schedul-
ing rules are shown in Table 1. In this table, the protected division function %
returns a value of 1 when division by 0 is attempted. Function IF includes three
arguments and if the value from the first argument is greater than or equal to
zero, IF will return the value from the second argument; otherwise IF will return
the value from the third argument.

The procedure in Fig. 2 starts by building a list of unscheduled active orders
which can be processed before their deadlines. Then, the evolved rule calculates
the priority of each order in the list using the corresponding information of that
order. After priorities are assigned to all orders in the list, the order with the
highest priority will be processed (and certainly this order is accepted). The
current time of the schedule (ready time to process the next order) is adjusted.
The list of unscheduled active orders are updated and the procedure stops if no
order can be completed before its deadline.

Given a set L of unscheduled orders, an order j is called active if rj < t(Ω)
where t(Ω) = minj∈L

{

max{rj , t} + sprev,j + pj
}

. Only active schedules are
considered here in order to avoid wasting the available capacity of the machine.
It should be noted that active schedules generated in this case do not necessarily
contain the optimal schedule because of the dependent setup times. However,
it can help us find very good (near optimal) solutions. From our experiments,

Enhancing Branch and Bound Algorithms for OAS with GP 131

evolved rules that focus on active orders are more effective than those considering
all unscheduled orders [7].

2.2.2. Fitness Function
In order to measure the fitness of evolved rules, a set of training instances
I = {I1, I2, . . . , IN} is used. After an evolved rule is applied to solve an instance
Ik, we obtained a solution πk containing the processing sequence of all orders
(rejected orders are placed at the end of the sequence based on their indices).
It is noted that πk is also the order in which generated nodes in B&B will be
sorted. The fitness of evolved rules is determined as follows:

fitness =
1

|I| ×
∑

Ik∈I

AR(Ik) (4)

where

AR(Ik) =
TPR(πk)

UBIk

+ α
1

|πA
k | − 1

|πA
k |−1
∑

i=1

exp (−i)TPR(πi
k)

UBIk

(5)

In equation (5), πi
k is used to indicate a modified solution of πk which is

generated by putting the order at position i to the start of πk. For example, if
πk = {2, 3, 4, 5, 1}, the modified solution π2

k = {4, 2, 3, 5, 1} (noted that index
starts from 0). The sequence πA

k only contains the accepted orders in πk. If there
is one order in πA

k , AR(Ik) is equal to the first term in the equation (5). TPR(πk)
indicates the total profit obtained for the instance Ik with solution πk and UBIk

is the upper bound [1] of the instance Ik. The first term in equation (5) measures
the quality of solution generated by the rule for the instance Ik. This is to ensure
that evolved rules can generate good solutions. Meanwhile, the second term try
to determine the effectiveness of the generated solution if it is slightly modified.
The element exp (−i) is used in equation (5) to promote good solutions πi

k with
low i. Because the nodes with lower appended orders will be examined earlier,
we want these nodes will lead to good solutions such that the branching strategy
employing πk can help B&B search more efficiently. The coefficient α is used to
reflect the importance of modified solutions. It is noted that the second term in
equation (5) is the secondary criteria for further improving the effectiveness of
the ordering rule and the value of α will be set relatively low. In this case, the
better evolved rules are ones with higher fitness.

2.2.3. Parameter Settings
The GP method for designing branching strategies is developed based on the
ECJ20 library [5]. The parameter settings of the GP system used in the rest
of this study are shown in Table 2 and are commonly employed in the GP
literature [3]. The initial GP population is created using the ramped-half-and-
half method [3]. Tournament selection of size 7 is used to select individuals
for genetic operators and subtree mutation/crossover are used as the genetic
operators. The value of α in equation (5) is set to 0.001 based on our pilot
experiments.

132 S. Nguyen, M. Zhang, and M. Johnston

Table 2. Parameters of the proposed GP systems

Population Size 1000 Crossover rate 90% Mutation rate 5%
Reproduction rate 5% Generations 50 Max-depth 8

3 Computational Results

To measure the effectiveness of the new GP method, 30 independent runs of GP
are perform. This section presents the results of our experiments and analyses
the performance of the proposed B&B algorithms against MILP [1].

3.1 Datasets

The effectiveness of B&B is assessed by using the benchmark instances from
Casaret et al. [1]. These instances are generated based on tardiness factor τ and
due date range R (refer to Casaret et al. [1] for more details). The datasets
[1] contain different subsets (each has 10 instances) generated from different
combinations of τ and R and the number of orders n. For training, we use the
first five instances from each subset with 10 orders, τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
R ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to evaluate the fitness of evolved rules (125 instances
are used for training). Because both B&B and MILP are very time-consuming,
we only show the results for the sets with n = 10, 15 and 20. The time limit
for B&B algorithms to solve an instance is 300 seconds. The proposed B&B
algorithm is coded in Java and run on Intel i5, 3.10 GHz CPUs, 4 GB of RAM.
MILP is solved by using ILOG CPLEX 11.2 with the time limit of 3600 seconds
on a work station with a 3.00 GHz Intel Xeon processor and 4GB of RAM [1].

3.2 Results

Tables 3–5 show the results of B&B algorithms and MILP [1] for each subset
(with 10 instances). B&B-Basic indicates the B&B algorithm in which ordering
of nodes is simply based on the indices of orders as described in Section 2.1
and illustrated in Fig. 1. B&B-GP-Best is the B&B algorithm with the branching
strategy obtained by GP that results in the highest number of optimal solutions
(the number of instances solved to optimality). B&B-GP-Avg shows the average
performance of B&B algorithms using different branching strategies obtained
from 30 runs of GP. The columns avg and max show the average and maximum
deviation from the upper bound (%dev = 100 × (Obj − UB)/UB) across all
instances in the subset, where Obj is the best objective value found by an opti-
misation method and UB is the upper bound determined by LP relaxation and
MILP [1]. For the B&B algorithms, #opt and #node respectively show the num-
ber of optimal solutions found in the considered subset (maximum is 10) and the
average number of generated nodes in B&B until the optimal solutions are found
or the time limit is reached. The column time shows the average computational
time (in seconds) to solve an instance.

Enhancing Branch and Bound Algorithms for OAS with GP 133

Table 3. Performance of B&B algorithms on OAS datasets with n = 10

τ R B&B-GP-Avg B&B-GP-Best B&B-Basic MILP
avg max #opt #node time avg max #opt #node time avg max #opt #node time avg max time

0.1 0.1 0 0 10 1020 1 0 0 10 942 1 0 0 10 2430 1 0 0 1124
0.3 0 0 10 3172 1 0 0 10 3011 1 0 0 10 6281 1 0 0 1120
0.5 1 6 10 8211 1 1 6 10 9095 1 1 6 10 11537 1 1 6 1037
0.7 0 0 10 9739 1 0 0 10 9422 1 0 0 10 10703 1 0 0 435
0.9 0 0 10 5996 1 0 0 10 4540 1 0 0 10 5657 1 0 0 290

0.3 0.1 0 0 10 1061 1 0 0 10 1227 1 0 0 10 2123 1 0 0 466
0.3 0 0 10 1166 1 0 0 10 1029 1 0 0 10 2461 1 0 0 372
0.5 0 0 10 2260 1 0 0 10 2364 1 0 0 10 3036 1 0 0 257
0.7 0 0 10 5719 1 0 0 10 5639 1 0 0 10 6416 1 0 0 310
0.9 0 0 10 1764 1 0 0 10 1892 1 0 0 10 2115 1 0 0 118

0.5 0.1 0 0 10 362 1 0 0 10 327 1 0 0 10 711 1 0 0 22
0.3 0 0 10 987 1 0 0 10 991 1 0 0 10 1339 1 0 0 53
0.5 0 0 10 465 1 0 0 10 475 1 0 0 10 732 1 0 0 14
0.7 0 0 10 732 1 0 0 10 729 1 0 0 10 891 1 0 0 24
0.9 0 0 10 908 1 0 0 10 926 1 0 0 10 1126 1 0 0 27

0.7 0.1 0 0 10 111 1 0 0 10 109 1 0 0 10 174 1 0 0 1
0.3 0 0 10 107 1 0 0 10 103 1 0 0 10 200 1 0 0 2
0.5 0 0 10 234 1 0 0 10 239 1 0 0 10 339 1 0 0 2
0.7 0 0 10 183 1 0 0 10 188 1 0 0 10 263 1 0 1 2
0.9 0 0 10 202 1 0 0 10 195 1 0 0 10 372 1 0 0 2

0.9 0.1 0 0 10 60 1 0 0 10 60 1 0 0 10 82 1 0 0 1
0.3 0 0 10 67 1 0 0 10 67 1 0 0 10 89 1 0 0 1
0.5 0 0 10 103 1 0 0 10 103 1 0 0 10 134 1 0 0 1
0.7 0 0 10 111 1 0 0 10 116 1 0 0 10 175 1 0 0 1
0.9 0 0 10 151 1 0 0 10 154 1 0 0 10 213 1 0 0 1

Table 4. Performance of B&B algorithms on OAS datasets with n = 15

τ R B&B-GP-Avg B&B-GP-Best B&B-Basic MILP
avg max #opt #node time avg max #opt #node time avg max #opt #node time avg max time

0.1 0.1 2 3 10 108405 1 2 3 10 61262 1 2 3 10 316994 1 8 13 3600
0.3 3 6 10 4119010 11 3 6 10 3767099 9 3 6 10 4859117 14 7 17 3600
0.5 2 5 9 15533618 42 1 4 9 16230767 42 1 4 9 15202484 45 6 10 3600
0.7 1 4 10 10995587 35 1 4 10 7211281 22 1 4 10 15296636 51 7 21 3600
0.9 1 6 10 4976975 16 1 6 10 4178703 13 1 6 10 5057215 17 6 15 3242

0.3 0.1 3 6 10 139713 1 3 6 10 94154 1 3 6 10 264578 1 10 13 3600
0.3 4 11 10 607431 1 4 11 10 545395 1 4 11 10 962959 3 11 22 3600
0.5 4 7 10 2694645 8 4 7 10 2414528 6 4 7 10 3321530 10 11 22 3600
0.7 3 8 10 491326 1 3 8 10 583391 1 3 8 10 561581 2 11 20 3600
0.9 3 7 10 1004672 2 3 7 10 1011575 2 3 7 10 731211 2 9 16 3445

0.5 0.1 7 13 10 33087 1 7 13 10 33776 1 7 13 10 60940 1 12 18 3600
0.3 7 14 10 73634 1 7 14 10 75695 1 7 14 10 88676 1 11 15 3600
0.5 9 15 10 159159 1 9 15 10 171165 1 9 15 10 192966 1 15 26 3600
0.7 6 10 10 64091 1 6 10 10 66129 1 6 10 10 89755 1 7 12 3600
0.9 6 18 10 45511 1 6 18 10 45735 1 6 18 10 70822 1 7 18 3370

0.7 0.1 0 0 10 3778 1 0 0 10 3663 1 0 0 10 5628 1 0 0 84
0.3 0 0 10 6584 1 0 0 10 6472 1 0 0 10 9669 1 0 0 89
0.5 0 0 10 3805 1 0 0 10 3622 1 0 0 10 5417 1 0 0 101
0.7 1 8 10 6033 1 1 8 10 6042 1 1 8 10 7617 1 1 8 884
0.9 0 0 10 6104 1 0 0 10 6226 1 0 0 10 11060 1 0 0 289

0.9 0.1 0 0 10 541 1 0 0 10 547 1 0 0 10 761 1 0 0 1
0.3 0 0 10 600 1 0 0 10 625 1 0 0 10 953 1 0 0 1
0.5 0 1 10 1272 1 0 1 10 1240 1 0 1 10 1752 1 0 0 6
0.7 0 0 10 800 1 0 0 10 794 1 0 0 10 1555 1 0 0 4
0.9 0 0 10 1641 1 0 0 10 1591 1 0 0 10 2301 1 0 0 12

It is easy to see that B&B algorithms perform much better than MILP in
all cases. For n = 10, both B&B and MILP can find optimal solutions for all
instances. However, the computational time of B&B is much lower than that
of MILP. For such small instances, it takes B&B less than 1 second to find the
optimal solutions. Meanwhile, MILP may take more than 1000 seconds to solve
tricky instances (with low τ). When n = 15, MILP fails to find optimal solutions
within the time limit for most instances with τ lower than 0.7. In this case, B&B
still performs very well and can find optimal solutions for all instances except a

134 S. Nguyen, M. Zhang, and M. Johnston

Table 5. Performance of B&B algorithms on OAS datasets with n = 20

τ R B&B-GP-Avg B&B-GP-Best B&B-Basic MILP
avg max #opt #node time avg max#opt #node time avg max #opt #node time avg max time

0.1 0.1 1 3 10 13658310 53 1 2 10 9440054 36 2 7 9 26147948 105 11 19 3600
0.3 2 5 6 40558082 155 2 3 7 36188483 140 3 6 5 49206561 195 12 19 3600
0.5 2 5 0 64866528 290 1 3 2 59510571 242 4 7 0 66940410 300 10 22 3600
0.7 1 3 6 28051747 127 1 2 6 29553896 120 1 4 4 35049660 189 11 23 3416
0.9 1 4 7 16409171 93 1 3 7 17127944 90 1 5 4 30429387 211 7 15 3600

0.3 0.1 3 7 10 15023559 61 3 7 10 13222654 51 3 7 9 28025809 119 18 29 3600
0.3 4 8 4 56945685 238 3 6 5 48991975 194 5 13 2 62290211 278 14 21 3600
0.5 4 7 3 61971354 254 4 7 3 58650362 228 7 14 1 67713644 291 16 25 3600
0.7 2 7 1 53896214 290 2 7 1 56407825 285 3 9 0 51175478 300 12 25 3600
0.9 1 5 9 27466800 142 1 5 9 23677164 122 2 5 8 30044757 179 10 20 3445

0.5 0.1 4 5 10 2229492 9 4 5 10 2039746 7 4 5 10 3016267 13 13 30 3600
0.3 5 8 10 10539815 45 5 8 10 11350418 46 5 8 10 18157776 83 17 26 3600
0.5 5 9 10 9395168 43 5 9 10 10108685 43 5 9 10 10137940 51 16 23 3600
0.7 5 12 9 14646644 70 5 12 9 15162947 67 4 11 9 18253777 91 14 27 3600
0.9 5 11 10 7247546 29 5 11 10 7839154 29 5 11 10 7654847 37 12 21 3600

0.7 0.1 8 14 10 67560 1 8 14 10 67838 1 8 14 10 107048 1 12 26 3600
0.3 8 12 10 88794 1 8 12 10 90025 1 8 12 10 160970 1 10 14 3600
0.5 9 20 10 155301 1 9 20 10 160001 1 9 20 10 314440 1 10 27 3048
0.7 6 12 10 186287 1 6 12 10 193912 1 6 12 10 340532 1 8 20 2954
0.9 7 12 10 477830 2 7 12 10 477300 2 7 12 10 523932 2 10 17 3243

0.9 0.1 0 0 10 3427 1 0 0 10 3423 1 0 0 10 6171 1 0 0 2
0.3 0 1 10 8692 1 0 0 10 8592 1 0 0 10 15614 1 0 0 9
0.5 0 0 10 15432 1 0 0 10 15605 1 0 0 10 21609 1 0 0 80
0.7 0 0 10 35769 1 0 0 10 35988 1 0 0 10 51195 1 0 0 114
0.9 1 13 10 55474 1 1 13 10 56139 1 1 13 10 95111 1 1 13 467

single instance with τ = 0.1 and R = 0.5. For the instances with n = 20, MILP
performs poorly with τ lower than 0.9. Although B&B algorithms also have
trouble finding optimal solutions for instances with n = 20, the final solutions
found by B&B are much better than that of MILP. From the results in Tables
3–5, it is noted that the upper bound obtained by LP relaxation and MILP is
quite loose as the number of order n increases. For example, for instances with
τ = 0.5 and n = 15, it is easy to see that the gaps between the optimal solutions
and upper bound is still quite large (see avg and max). Given that our upper
bound is competitive with the upper bound from LP relaxation and MILP, we
still need to find a better and more efficient upper bound in order to improve
the performance of B&B.

Within the proposed B&B algorithms, the results show that the enhanced
B&B algorithms with branching strategies (partly) designed by GP are more ef-
ficient than the basic B&B algorithm in most instances. For n = 10, the enhanced
B&B algorithm normally generates fewer nodes in order to find optimal solu-
tions. For n = 15 and 20, we can see that the enhanced B&B algorithms take less
times to find optimal solutions. For instances with n = 20, the enhanced B&B
algorithms can find more optimal solutions than the basic B&B algorithm. This
is because more potential nodes are examined earlier, which avoids B&B from
wasting time examining non-optimal candidate schedule. Comparing B&B-GP-Avg
and B&B-GP-Best, we also see that the proposed GP method is quite robust be-
cause the average performance of the enhanced B&B algorithms are close to
that of the best enhanced B&B algorithm. Moreover, the fact that the ordering
rules trained from smaller instances (n = 10) can be reused effectively on larger
instances (n = 15, 20) suggests that the evolved ordering rules have good scal-
ability. Therefore, we believe that the proposed GP is a promising method in
order to improve the efficiency of B&B.

Enhancing Branch and Bound Algorithms for OAS with GP 135

4 Conclusions

This paper developed a new GP method to discover better branching strategies
for B&B to deal with the single machine OAS problem. The key difference be-
tween this paper and previous studies on using GP for scheduling problems is
that we try to improve the efficiency of an exact optimisation approach instead
of trying to improve the effectiveness (accuracy) of a heuristic approach. In this
case, the algorithm we try to design guarantees to provide optimal solutions if
the running time is long enough. The GP method proposed in this paper will
be especially useful for the cases in which finding optimal solutions are critical;
therefore, making the exact methods more efficient to cope with real-size prob-
lems is desired. The results from our experiments show that GP can enhance the
efficiency of the proposed B&B algorithms by designing better ordering rules in
the branching strategy.

The limitation of the proposed GP method is that the evolved rules only focus
on generating a predefined order used at all levels of B&B. However, if a given
partial solution is different from that predefined order, applying the predefined
order to sort generated nodes may not be effective. For this reason, it would be
more useful to design the ordering rule operating at the node level in order to
improve the effectiveness of B&B by adapting better with the partial solutions
and unscheduled orders. Moreover, it would be also interesting to examine the
possibility of using GP to design dominance rules [10] in B&B to further prune
nodes. Finally, it is important to further improve better and more efficient upper
bound of OAS in order to cope with large scale problems.

References

1. Cesaret, B., Oguz, C., Salman, F.S.: A tabu search algorithm for order acceptance
and scheduling. Computers & Operations Research 39(6), 1197–1205 (2012)

2. Ghosh, J.B.: Job selection in a heavily loaded shop. Computers & Operations
Research 24(2), 141–145 (1997)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

4. Lin, S.W., Ying, K.C.: Increasing the total net revenue for single machine order ac-
ceptance and scheduling problems using an artificial bee colony algorithm. Journal
of the Operational Research Society 64, 293–311 (2013)

5. Luke, S.: Essentials of Metaheuristics. Lulu (2009)
6. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-

tions. John Wiley & Sons, Inc., New York (1990)
7. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Learning reusable initial solu-

tions for multi-objective order acceptance and scheduling problems with genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B.
(eds.) EuroGP 2013. LNCS, vol. 7831, pp. 157–168. Springer, Heidelberg (2013)

8. Oguz, C., Sibel Salman, F., Bilginturk Yalcin, Z.: Order acceptance and schedul-
ing decisions in make-to-order systems. International Journal of Production Eco-
nomics 125(1), 200–211 (2010)

136 S. Nguyen, M. Zhang, and M. Johnston

9. Park, J., Nguyen, S., Zhang, M., Johnston, M.: Genetic programming for order
acceptance and scheduling. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 3261–3268 (2013)

10. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer (2008)
11. Rom, W.O., Slotnick, S.A.: Order acceptance using genetic algorithms. Computers

& Operations Research 36(6), 1758–1767 (2009)
12. Slotnick, S.A., Morton, T.E.: Selecting jobs for a heavily loaded shop with lateness

penalties. Computers & Operations Research 23(2), 131–140 (1996)
13. Slotnick, S.A., Morton, T.E.: Order acceptance with weighted tardiness. Comput-

ers & Operations Research 34(10), 3029–3042 (2007)

Using Genetic Improvement

and Code Transplants to Specialise a C++
Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, UK
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, VA, USA

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation,
Boolean satisfiability.

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more efficient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to

1 Solver available at: http://minisat.se/MiniSat.html.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 137–149, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

138 J. Petke et al.

a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

MiniSAT has been repeatedly improved by human programmers, through
three iterations of the MiniSAT-hack track of SAT solving competitions, or-
ganised biannually. Although GP has been applied to evolve particular SAT
heuristics [3], [16], MiniSAT code has never previously been the subject of any
automated attempt at improvement using genetic programming.

SAT solving has recently been successfully applied to Combinatorial Interac-
tion Testing (CIT) [4], [21], allowing us to experiment with GI for specialisation
to that problem domain. CIT is an approach to software testing that produces
tests to expose faults that occur when parameters or configurations to a system
are combined [22]. CIT systematically considers all combinations of parameter
inputs or configuration options to produce a test suite. However, CIT must also
minimise the cost of that test suite. The problem of finding such minimal test
suites is NP-hard and has attracted considerable attention [7, 8], [12], [20], [24].

SAT solvers have been applied to CIT problems [4], [21], but the solution
requires repeated execution of the solver with trial test suite sizes, making solver
execution time a paramount concern. We follow the particular formulation of
CIT as a SAT problem due to Banbara et al. [4], since it has been shown to be
efficient.

The primary contribution of this paper is the introduction of multi-
donor software transplantation and the result of experiments demonstrating that
GI can evolve human-competitive versions of a program specialised for a non-
trivial problem class. We demonstrate this by improving the 2009 incarnation of
MiniSAT. Section 2 introduces our approach to GI. Section 3 presents the set
up of our experiments, the results of which are described in Section 4. Section 5
briefly outlines related work and Section 6 concludes.

2 Genetic Improvement with Multi-donor
Transplantation and Specialisation

We introduce our approach to GI, which uses multiple authors’ code for trans-
plantation and specialises the genetically improved software for a specific appli-
cation domain (in this case CIT). We use a population-based GP. Our work is
based on the genetic improvement framework introduced by Langdon and Har-
man [17] with minor changes. Since we are using a different program, we update
the fitness function. We also do not target heavily-used parts of source code,
since our program is much smaller than in previous work. Finally, we modify
just one C++ file which contains the main solving algorithm. However, unlike
Langdon and Harman [17], we use multiple donors and focus on specialising the
program to improve it for a specific application domain.

Program Representation: We modify the code (in this case MiniSAT) at
the level of lines of source code. A specialised BNF grammar is used to create a
template containing all the lines from which new individuals are composed. Such
a template is created automatically and ensures that classes, types, functions and

Using GI and Code Transplants to Specialise a C++ Program 139

data structures are retained. For instance, opening and closing brackets in C++
programs are ensured to stay in the same place, but the lines between them can
be modified. Moreover, initialisation lines are also left untouched. An extract of
a template for MiniSAT is shown in Figure 1. The genome used in our GP is a
list of mutations (see below). Header files and comments are not included in our
representation.

<Solver_156> ::= "{\n"

<Solver_157> ::= "Clause* c = Clause_new(ps, false);\n"

<_Solver_158> ::= "clauses.push(c);"

<_Solver_159> ::= "attachClause(*c);"

<Solver_160> ::= "}\n"

Fig. 1. Lines 156–160 from the Solver.C MiniSAT file represented in our specialised
BNF grammar. Lines marked with Solver can be modified.

Code Transplants: We propose to evolve one program by transplanting and
modifying lines of code from other programs [15]. Thus our GP has access to
both the host program being evolved, as well as the donor program(s). We call
all the lines of code to which GP has access the code bank. The donor code
statements are then available for mutations of the host instance, but need not be
used in the same order. For example, our search may combine the first half of an
optimisation from one version of MiniSAT with the second half of an optimisation
from another and then specialise the resulting code to CIT problems. This re-use
and improvement of existing developer expertise is critical to the success of our
technique.

Mutation Operator: A new version of a program (i.e. a new individual) is cre-
ated by making multiple changes to the original program. Each such mutation is
either a delete, replace or copy operation. The changes are made at the level
of lines of source code, with a special case for conditional statements. A delete
operation simply deletes a line of code, a replace operation replaces a line of
code with another line of code from the code bank and copy operation inserts
a line of code from the code bank into the program. In the case of conditional
statements, we focus on and modify their predicate expressions.2 For instance,
the second part of a for loop (e.g., i<0) can only be replaced by the second part
of another for loop (e.g., i<10) and any if condition can be replaced with any
other if condition. Examples of the three mutation types are shown in Figure 2.

Crossover Operator: We choose to represent each individual as a list of muta-
tions with respect to the original, which we call the edit list. This representation
allows our technique to apply to programs of significant size [13], since we do not
keep the whole of each version of the program in memory — just a list of changes.
When creating individuals for the next generation, a crossover operation sim-
ply concatenates two individuals from the current population by appending one

2 In the case of a delete operation we replace the predicate expression with ‘0’ to
prevent compilation errors.

140 J. Petke et al.

<_Solver_159> # Delete line 159
<for3_Solver_533><for3_Solver_772> # Replace the 3rd part of the ‘for’

loop (i.e., loop variable increment)
in line 533 with the 3rd part of
the ‘for’ loop in line 772

<_Solver_806>+<_Solver_949> # Add line 949 in front of line 806

Fig. 2. Examples of the three types of mutations allowed

list to another. The first parent is chosen based on its fitness value while the
other is chosen uniformly among those individuals that compiled, as in previous
work [17].

Fitness Function: We evaluate the fitness of an individual in terms of a combi-
nation of functional properties (those related to software correctness) and non-
functional properties (those related to performance, quality of service, etc.) by
observing its performance on SAT instances. Before the GP starts, the training
set of SAT instances is divided into five groups by difficulty, which we meassure
in required solving time. In each generation one test case is sampled uniformly
from each group (or ‘bin’ following other terminology [17]) and all individuals
are run on the selected test cases. This sampling helps to avoid overfitting. To
evaluate an individual, the corresponding list of changes is applied to the original
and the resulting source code is compiled, producing a new SAT solver that can
then be executed (individuals that fail to compile are never selected).

To guide the GP search toward a more efficient version of the program, our
fitness function takes into account both solution quality and program speed.
For internal fitness calculations, efficiency is measured in terms of lines of code
executed based on simple counter-based program instrumentation. The use of
line counts (instead of CPU or wall-clock times) avoids environmental bias and
provides a deterministic fitness signal. For the final presentation of our empirical
results, timing measurements in seconds are also presented (see Section 4).

Selection: The GP process is run for a fixed number of generations (in our
case 20) with a fixed population size (in our case 100). In the initial population
each individual consists of a single mutation applied to the original program.
After the fitness of each of the individuals is calculated, the fittest half of the
population is chosen, filtered to include only those individuals that exceed a
threshold fitness value. We focus on exploiting high-quality solutions, and thus
our fitness threshold is set to select those individuals that either (1) return the
correct answer in all cases, or (2) return the correct answer in all but one case
and take no more than twice as long as the original solver.

Next, a set of offspring individuals is created using crossover on those selected
from the current population. Also a new mutation is added to each of the parent
individuals selected to create offspring. Both crossover and mutation are applied
with 50% probability. If mutation is chosen, one of the three operations (i.e.
replace, copy and delete) is selected with equal probability. If mutation and
crossover do not create a sufficient number of individuals for the next generation,

Using GI and Code Transplants to Specialise a C++ Program 141

new individuals are created consisting of one mutation (in practice, this occurs
38% of the time). Finally, the fitness of the newly-created individuals is calcu-
lated, as described previously, and the process continues until the generation
limit is reached.

Filtering: We have observed that many program optimisations are independent
and synergistic. As a result, we propose a final step that combines all mutations
from the fittest individuals evolved and retains all synergistic edits. This post-
processing step is simplified by our edit list representation and helps to ensure
that our final output benefits from more of the search space exploration con-
ducted by the GP. Exploring all subsets of edits is infeasible. Our prototype
implementation uses a greedy algorithm. Each mutation from the best individu-
als from all of our experiments is considered separately. We apply each operation
to the original program and evaluate its fitness. Next, we order the mutations by
their fitness value3 and iteratively consider these adding only those edits that do
not decrease fitness. Other efficient techniques, such as constructing a 1-minimal
subset of edits [30], are possible.

3 Experimental Setup

The main hypothesis investigated in this paper is:

Genetic improvement with transplantation finds faster CIT-specialised
MiniSAT versions than any developed by expert human programmers.

Host & Donor Programs: We evolve MiniSAT2-070721, in particular the
C++ file containing its main solving algorithm. This version was used as a ref-
erence solver in the first MiniSAT-hack competition, organised in 2009. Unless
otherwise noted, we use MiniSAT and MiniSAT2-070721 interchangeably. The
main solver algorithm involves 478 of the 2419 lines in MiniSAT. For our ex-
periments we use two donor programs, which altogether provide 104 new lines
of source code. The first donor is the winner of the MiniSAT-hack competition
from 2009, called “MiniSAT 09z”. We refer to this solver as MiniSAT-best09.
The second donor program is the “MiniSat2hack” solver, the best performing
solver from the competition when run on our CIT-specific benchmarks. Thus we
refer to this solver as MiniSAT-bestCIT. We also added all the donor code to
MiniSAT and ran this hybrid solver for comparison. We refer to this solver as
MiniSAT-best09+bestCIT.
Test Cases: Real-world SAT instances from the combinatorial interaction test-
ing area can take hours or even days to run. Thus we evaluate MiniSAT perfor-
mance on a set of synthetic CIT benchmarks. Using the encoding of Banbara
et al. [4], we translated 130 CIT benchmarks into SAT instances4. We kept the

3 Note that since each individual is represented by a list of edits (or mutations) and
at the filtering stage we consider one mutation in turn, we use the word ‘mutation’
and ‘individual’ interchangeably.

4 Benchmarks as well as the different MiniSAT versions are available by e-mail from
Justyna Petke at j.petke@ucl.ac.uk.

142 J. Petke et al.

number of values for each of the parameters the same in every instance. This
allows us to verify observed results against public catalogues of best known re-
sults [8]. We use one-third of these CIT benchmarks in the training set (which
is divided into five groups, as discussed in Section 25) and the rest in the ver-
ification set. We use execution time to define instance difficulty and divide the
training set into five groups based on that measure. The largest instances con-
tain over 1 million SAT clauses and MiniSAT is able to produce an answer for
each of these within 30 seconds.

Code Transplants: In our experiments the seeds of high-level human optimi-
sations targeting a generic benchmark set serve as donor code and are selected
and recombined with novel changes to produce a specialised host SAT solver.6

We conduct three sets of experiments, varying the code bank while holding the
rest of the GI process constant. The donor code is selected in turn from:

1. MiniSAT-best09;
2. MiniSAT-bestCIT;
3. MiniSAT-best09 and MiniSAT-bestCIT.

We compare our evolved solver with both the host and donor programs in each
of the experiments. We call our evolved solver MiniSAT-gp. Finally, we refer to
the solver that results from our postprocessing filtering step (see Section 2) as
MINISAT-gp-combined.

4 Results

To evaluate the efficacy of our technique, we evolve improved and specialised
versions of MiniSAT and compare them to human-improved SAT solvers in terms
of both runtime cost and solution quality. While internal fitness calculations are
measured in terms of lines of code executed, all final results are presented in
terms of CPU time data based on runs on a 1.6GHZ Lenovo 3000 N200 laptop
with an Intel Core 2 Duo processor and 2GB of RAM. The GP was run with a
population size of 100 and 20 generations.

In all experiments the compilation rate (using MiniSAT’s provided Makefile)
was high, between 79% and 81%. This high compilation rate results from our use
of a specialised BNF grammar for edits, preventing most syntax errors. Runtime
data reported in Table 1 is an average of 20 runs of each solver. The number of
lines of code executed in each of the runs stayed the same, while time variation
was less than 3%.

5 The first two groups contain the fastest running instances, while those that require
the longest time are in group five. Additionally, the second and fourth group contain
unsatisfiable instances only, while the first and third only satisfiable ones.

6 Adding a donor statement X to the code bank is equivalent, in terms of the search
space explored, to adding if (0) X to the input program in a preprocessing step.

Using GI and Code Transplants to Specialise a C++ Program 143

Table 1. Normalized runtime comparison of MiniSAT versions, based on averages over
20 runs. The first four solvers are human written, the last four were evolved by our
technique. The “Donor” column indicates the source of the donor code available in
the code bank. “Lines” indicates lines of code executed, “Time” indicates CPU time
executed (lower is better, all measurements normalized to original MiniSAT).

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00
MiniSAT-best09 — 1.46 1.76
MiniSAT-bestCIT — 0.72 0.87
MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95
MiniSAT-gp bestCIT 0.72 0.87
MiniSAT-gp best09+bestCIT 0.94 0.96

MiniSAT-gp-combined best09+bestCIT 0.54 0.83

4.1 Transplanting from MiniSAT-best09

When the code bank included lines from the original as well as the overall best
version of the solver from the MiniSAT-hack competition, GP produced a mu-
tated version of MiniSAT that was, on average, over 5% faster than the original
solver on CIT instances (see Table 1). None of the new code from MiniSAT-
best09 was selected by GP in the improved individual. We observe that the best
solver from the competition — which evaluated on a general, non-CIT bench-
mark suite — was not the most efficient one on the instances from the CIT
domain. In fact, the original MiniSAT without modifications was even faster
than the winner of the 2009 competition in this domain. It is thus not surpris-
ing that using donor code from MiniSAT-best09 did not admit the evolution of
efficient solvers specialised to the CIT domain.

Evolution achieved runtime improvement by switching off if and for loop
conditions. Also, execution times of certain for loops were decreased using re-
place operations. Table 2 shows all the mutations made in the fastest evolved
version of MiniSAT.

Table 2. Mutations in the genetically improved solver (with best09 as donor)

mutation mutated code changes

delete if statement condition 5
delete line of code 8
replace for loop condition 7
replace if statement condition 2
copy line of code 1

total 23

Among the evolved changes, an addition operation on a variable used solely for
statistical purposes was deleted, as were three assertions. The evolved changes
specialised MiniSAT to the CIT instances tested, but did not retain functionality

144 J. Petke et al.

for instances from other domains. For example, one deletion removed a memory
optimisation function, potentially increasing solver’s chance of running into an
out-of-memory error for larger instances.

4.2 Transplanting from MiniSAT-bestCIT

In the next experiment the GP code bank contained source code both from the
original MiniSAT solver as well as MiniSAT-bestCIT. The evolved version of
MiniSAT is, on average, 13% faster than the original solver (see Table 1). Given
that it usually takes hours or even days to run a SAT solver on real-world CIT
instances, such a performance improvement could have a noticeable impact.

The human-written MiniSAT-bestCIT solver also provides similar runtime
results — in fact, the performance of our evolved version and the human-written
version are not different in a statistically significant sense. The similarities can
be explained by the changes made by the GP process, shown in Table 3.

Table 3. Mutations occurring in the genetically improved solver

mutation mutated code changes

delete line of code 1
replace if statement condition 1

total 2

By replacing the if statement condition, the GP enabled a function that
contained 95% of the ‘new’ human-written lines from MiniSAT-bestCIT. The
other one-line deletion simply removed an assertion.

4.3 Transplanting from MiniSAT-best09 and MiniSAT-bestCIT

Finally, we allowed evolution to inject code from both MiniSAT-best09 and
MiniSAT-bestCIT. Runtime results are presented in Table 1: the best evolved
program achieved 4% runtime improvement over the original solver.

Table 4 shows the set of changes produced by genetic improvement. Lines
involved in about half of the mutations were never executed in the fastest ge-
netically modified program. Thus, GP essentially removed dead code. Moreover,
five assertions were removed as well as three updates to statistical variables.
In four cases parts of code were replaced with semantically-equivalent (but not
necessarily equally expensive) computations.

4.4 Combining Results

In the previous experiment the GP identified a ‘good change’: a one-line modifi-
cation that allowed 95% of the donor code to be executed. Even though the GP
process produced individuals containing such a change, other mutations within
all such individuals caused slower runtime or compilation errors. Our approach

Using GI and Code Transplants to Specialise a C++ Program 145

based on filtering holds out the promise of combining the best parts of all variants
discovered.

We started with the individual composed of one mutation (see Section 2)
with the best runtime performance, and iteratively added mutations from the
next performant individual. Only changes that do not reduce performance or
correctness are retained. The resulting ‘combined’ solver performs 17% faster
than the original MiniSAT and outperforms all other human-written solvers
considered by at least 4% (this difference is statistically significant, see Table 1).

In total, this version involved 56 evolved mutations. Eight among these were
one-line assertion removals. Details of all the mutations selected are presented
in Table 5.

By combining the synergistic optimisations found in the three best evolved
individuals, our approach produced the fastest specialised SAT solver for CIT
among all solvers developed by expert human programmers that were entered
into the 2009 MiniSAT-hack competition. On the 130 benchmark instances this
automatically-constructed solver performed better in 128 instances (in terms of
lines of code executed). In the other two cases it was only slightly worse.

However, since small benchmarks were chosen for the training set, the evolved
individual might not scale to larger problems. Manual inspection suggests that
optimisations relevant to large instances may not be retained, but a systematic
evaluation on separate instances is left to future work. However, we note that
the evolved individual retained required functionality on the two-thirds of the
instances that were held out for verification, even though it was only exposed to
the other third for testing.

5 Summary of Related Work

Genetic improvement has been successfully used to automate the process of
bug fixing [19]. GI has also been used to improve non-functional properties of
relatively small laboratory programs [23], [27,28,29], as well as larger real world
systems [17]. It has also been used to automatically migrate a system from one
platform to another [18].

In this previous work on genetic improvement, GP was concerned with a
single program; the program to be improved. Code is extracted, perhaps modified

Table 4. Mutations occurring in the genetically improved solver

mutation mutated code changes

delete if statement condition 10
delete line of code 30
delete for loop condition 10
replace for loop condition 10
replace if statement condition 4
replace line of code 6
copy line of code 5

total 75

146 J. Petke et al.

Table 5. Mutations occurring in the combination of the fastest genetically improved
solvers

mutation mutated code number of changes

delete if statement condition 9
delete line of code 22
delete for loop condition 6
replace for loop condition 8
replace if statement condition 3
replace line of code 4
copy line of code 4

total 56

and then reinserted back into the program at a different location. The focus of
the present paper on transplantation from multiple programs therefore denotes
an important departure from this previous literature. As a result of multiple
transplantation, GP is no longer concerned with a single program to be improved,
but multiple donor programs, from which code can be extracted to help guide
genetic improvement.

The idea of code transplantation using GP was proposed by Harman et al. [15],
but it has not hitherto been implemented, nor has it previously been demon-
strated to be useful in practice. We are the first to use GP to implement and
evaluate transplantation for genetic improvement.

The goal of improvement adopted by the present paper also differs from that
of previous work on genetic improvement, which focused on improving non-
functional properties, such as execution time [17], [23] and power consump-
tion [28]. It has also been used to migrate code [18] and to improve functional
properties (by fixing bugs) [2], [10], [13], [19]. In all of these scenarios, the full
functionality of the original program is to be retained; part of the fitness function
specifically checks for the absence of regression faults.

Instead we aim to specialise a program using genetic improvement; the full
functionality of the original program therefore need not be retained. In this way,
this specialisation-oriented genetic improvement is reminiscent of partial evalu-
ation [5, 6], [11], which also seeks to achieve automated program specialisation.
However, whereas partial evaluation uses meaning-preserving transformation to
‘hard wire’ parameter choices into code (thereby specialising it to those parame-
ter choices), we use genetic programming to search for transplants that specialise
a program to a class of inputs.

In preliminary experiments with MiniSAT [25] a varied set of instances from
SAT competitions were used. However, this approach led to only very modest
runtime improvements (up to 2%). We have significantly improved on this pre-
liminary work using multi-donor transplantation to achieve a human-competitive
17% improvement.

6 Conclusions

We evolved a specialised version of a C++ program using genetic improvement
with transplants. Previously, genetic programming has successfully been applied

Using GI and Code Transplants to Specialise a C++ Program 147

to improve software behaviour of various systems leading to significant speed-
ups. We investigated whether this could be achieved on a well-known software
system that has been engineered by many expert human programmers. We spe-
cialised this program for a particular hard problem class and used a novel idea
of code transplantation.

For our experiments we chose MiniSAT, a very popular Boolean satisfiabil-
ity (SAT) solver that has been thoroughly studied. The MiniSAT-hack track of
SAT competitions is specifically designed to encourage humans to make minor
changes to MiniSAT code that could lead to significant runtime improvements,
and hence lead to new insights into SAT solving technology. Thus this com-
petition provides a natural source of genetic material for code transplants, as
well as a natural baseline for assessing human-competitive results. We evaluated
how our automated approach applies to a particular application domain, namely
Combinatorial Interaction Testing.

Our fastest evolved MiniSAT version achieved 13% runtime improvement over
the original solver, similar to the best version of MiniSAT for CIT. By combining
the synergistic optimisations from our individuals we achieved a 17% runtime
improvement. For the CIT domain our evolved solver outperforms all of the
human-written solvers entered into that competition.

References

1. MiniSAT-hack track of SAT competition. In 2009 this was part of the 12th Inter-
national Conference on Theory and Applications of Satisfiability Testing (2009),
http://www.satcompetition.org/2009/

2. Arcuri, A., Yao, X.: A Novel Co-evolutionary Approach to Automatic Software
Bug Fixing. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2008), June 1-6, pp. 162–168. IEEE Computer Society, Hong Kong (2008)

3. Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP
hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer,
M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Heidelberg
(2008)

4. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating combinatorial test
cases by efficient SAT encodings suitable for CDCL SAT solvers. In: Fermüller,
C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 112–126. Springer, Hei-
delberg (2010)

5. Beckman, L., Haraldson, A., Oskarsson, O., Sandewall, E.: A partial evaluator, and
its use as a programming tool. Artificial Intelligence 7(4), 319–357 (1976)

6. Binkley, D., Danicic, S., Harman, M., Howroyd, J., Ouarbya, L.: A formal rela-
tionship between program slicing and partial evaluation. Formal Aspects of Com-
puting 18(2), 103–119 (2006)

7. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23(7), 437–444 (1997)

8. Colbourn, C.: Covering Array Tables (2013),
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

http://www.satcompetition.org/2009/
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

148 J. Petke et al.

10. Fry, Z.P., Landau, B., Weimer, W.: A human study of patch maintainability. In:
International Symposium on Software Testing and Analysis (ISSTA 2012), Min-
neapolis, Minnesota, USA (July 2012)

11. Futamura, Y.: Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 721–728 (1971)

12. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Engineer-
ing 16(1), 61–102 (2011)

13. Goues, C.L., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering (ICSE 2012), Zurich, Switzerland (2012)

14. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2012), Essen, Ger-
many (September 2012)

15. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse en-
gineering. In: Oliveto, R., Robbes, R. (eds.) 20th Working Conference on Reverse
Engineering (WCRE 2013), October 14-17. IEEE, Koblenz (2013)

16. Kibria, R.H., Li, Y.: Optimizing the initialization of dynamic decision heuristics
in DPLL SAT solvers using genetic programming. In: Collet, P., Tomassini, M.,
Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp.
331–340. Springer, Heidelberg (2006)

17. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation (to appear)

18. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

19. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21(3), 421–443 (2013)

20. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: effi-
cient test generation for multi-way combinatorial testing. Softw. Test., Verif. Re-
liab. 18(3), 125–148 (2008)

21. Nanba, T., Tsuchiya, T., Kikuno, T.: Constructing test sets for pairwise testing:
A SAT-based approach. In: ICNC, pp. 271–274. IEEE Computer Society (2011)

22. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Computing Sur-
veys 43(2), 11:1–11:29 (2011)

23. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Transactions on Evolutionary Computation 15(2), 166–182 (2011)

24. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detec-
tion with lower and higher strength combinatorial interaction testing. In: Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE 2013, pp. 26–36. ACM, Saint
Petersburg (2013)

25. Petke, J., Langdon, W.B., Harman, M.: Applying genetic improvement to Min-
iSAT. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 257–262.
Springer, Heidelberg (2013)

26. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009)

Using GI and Code Transplants to Specialise a C++ Program 149

27. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Trans. Graph. 30(6), 152 (2011)

28. White, D.R., Clark, J., Jacob, J., Poulding, S.: Searching for resource-efficient pro-
grams: Low-power pseudorandom number generators. In: 2008 Genetic and Evo-
lutionary Computation Conference (GECCO 2008), pp. 1775–1782. ACM Press,
Atlanta (2008)

29. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation 15(4), 515–538 (2011)

30. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Wang,
J., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp.
253–267. Springer, Heidelberg (1999)

ESAGP – A Semantic GP Framework
Based on Alignment in the Error Space

Stefano Ruberto1,2, Leonardo Vanneschi3, Mauro Castelli3, and Sara Silva2,4,5

1 GSSI, Gran Sasso Science Institute, INFN, 67100 L’Aquila, Italy
2 INESC-ID, IST, University of Lisbon, 1000-029 Lisbon, Portugal
3 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
4 LabMAg, FCUL, University of Lisbon, 1749-016 Lisbon, Portugal
5 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal

Abstract. This paper introduces the concepts of error vector and error space,
directly bound to semantics, one of the hottest topics in genetic programming.
Based on these concepts, we introduce the notions of optimally aligned individ-
uals and optimally coplanar individuals. We show that, given optimally aligned,
or optimally coplanar, individuals, it is possible to construct a globally optimal
solution analytically. Thus, we introduce a genetic programming framework for
symbolic regression called Error Space Alignment GP (ESAGP) and two of its
instances: ESAGP-1, whose objective is to find optimally aligned individuals,
and ESAGP-2, whose objective is to find optimally coplanar individuals. We also
discuss how to generalize the approach to any number of dimensions. Using two
complex real-life applications, we provide experimental evidence that ESAGP-2
outperforms ESAGP-1, which in turn outperforms both standard GP and geomet-
ric semantic GP. This suggests that “adding dimensions” is beneficial and encour-
ages us to pursue the study in many different directions, that we summarize in the
final part of the manuscript.

1 Introduction

In the last few years, researchers have dedicated substantial efforts to the integration
of semantic awareness in Genetic Programming (GP) [1]. For a review of the state of
the art in the field, the interested reader is referred to Chapter 3 of [2]. Very succinctly,
among the different studies that have been made, several are aimed at incrementing se-
mantic diversity in the evolving population (like for instance [3]). In some cases, studies
are “indirect”: standard GP genetic operators are used to produce new individuals, that
are only accepted and inserted into the new population if some semantic criterion is
satisfied (see for instance [4,5,6]). Also, new genetic operators have been defined that
act “directly” on the semantics of programs. For instance, [7] defines geometric seman-
tic operators, showing that they induce a unimodal fitness landscape for any problem
consisting in matching input data into known target values (like regression and classi-
fication). An efficient implementation of those operators is presented in [8]. Using this
implementation, several different applications have been tackled [9], suggesting a clear
advantage in incorporating semantic awareness directly in the GP search.

The work presented in this paper is strongly related to these last contributions, since
it directly incorporates semantic awareness in GP. Nevertheless, it does so from a differ-
ent perspective. Considering the definition of semantics as the vector of output values

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 150–161, 2014.
© Springer-Verlag Berlin Heidelberg 2014

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 151

of an individual on the training cases (as for instance in [4,5,7]), we first introduce the
concept of error vector of an individual. It simply consists in a translation of its se-
mantics by subtracting the vector of target values. In this way, we are able to define an
error space, where GP individuals are represented by their error vectors and the target
is represented by the origin of the Cartesian system. Then we introduce the concept of
optimally aligned individuals, i.e. a pair of individuals whose error vectors lie on the
same straight line intersecting the origin in the error space. Afterwards, we show that
this concept can be extended by, informally, “adding one dimension”, and this allows
us to introduce the concept of optimally coplanar individuals, i.e. a triple of individuals
whose error vectors lie on the same bi-dimensional plane intersecting the origin in the
error space. We show that given a pair (respectively a triple) of optimally aligned (re-
spectively optimally coplanar) individuals, it is possible to construct a globally optimal
solution analytically. With this result in mind, and with the goal of discovering whether
looking for optimally aligned or coplanar individuals is easier than directly looking for
an optimum, we present two new GP systems. We call the general framework Error
Space Alignment GP (ESAGP) and we present ESAGP-1, whose objective is to find
two optimally aligned individuals, and ESAGP-2, whose objective is to find three op-
timally coplanar individuals. We also discuss how to generalize the approach to any
number of dimensions. Finally, we present an experimental study in which ESAGP-1
and ESAGP-2 are compared with standard GP [1] (ST-GP from now on) and with ge-
ometric semantic GP as implemented in [8] (GS-GP from now on), on two complex
real-life applications in the field of drug discovery.

The paper is structured as follows: in Section 2 we introduce the concepts of er-
ror vector and error space, presenting the definition of optimally aligned individuals.
Section 3 presents ESAGP-1. In Section 4 we extend the notion of optimally aligned
individuals, introducing the concept of optimally coplanar individuals. We present
ESAGP-2 and then we discuss how to generalize the idea to any number of dimen-
sions. Section 5 contains our experimental study. The test problems are presented, the
experimental settings are specified and the results are shown and discussed. Finally,
Section 6 concludes the paper and suggests several possible directions for future work.

2 Alignment in the Error Space

Let X = {−→x1,
−→x2, ...,

−→xn} be the set of input data, or fitness cases, of a symbolic regres-
sion problem, and

−→
t = [t1, t2, ..., tn] the vector of the respective expected output or

target values (in other words, for each i = 1, 2, ..., n, ti is the expected output corre-
sponding to input −→xi). A GP individual (or program) P can be seen as a function that,
for each input vector −→xi returns the scalar value P (−→xi). Following [7], we call seman-
tics of P to the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be represented
as a point in a n-dimensional space, that we call semantic space. Remark that the target
vector

−→
t itself is a point in the semantic space and, in general, it does not correspond to

the origin of the Cartesian system (except for the very particular and rare case in which
the expected output is equal to zero for each fitness case).

We now introduce a new notion, clearly related to the one of semantics, that we call
error vector. The error vector of a GP individualP is the vector −→eP = −→sP −−→

t . It can be

152 S. Ruberto et al.

represented as a point in a n-dimensional space, that we call error space (even though
used for different purposes, a similar idea can be found in [10]). Each vector in the se-
mantic space is translated in the error space by subtracting

−→
t . So, the target is translated

in the error space into the origin of the Cartesian system. It is worth noticing that, once
we have the error vector of an individual P , it is immediate, for instance, to calculate
the root mean square error (RMSE) of P on training data (RMSE =

√∑n
i=1 e

2
i , where

ei is the ith coordinate of −→eP), a measure that is often used as fitness by standard GP
in symbolic regression problems (see for instance [1]). We now define a new concept,
whose importance will later become clear.

Definition 1. (Optimally Aligned Individuals). Two GP individuals A and B are op-
timally aligned if it exists a scalar constant k such that: −→eA = k · −→eB
In other words, two individuals A and B are said to be optimally aligned if their re-
spective error vectors are directly proportional, with a proportionality constant k. The
reason why we use the term “aligned” for such individuals becomes clear by looking at
Figure 1(a), where a simple bi-dimensional error space is represented. In this figure, A
and B are two optimally aligned individuals: the points that represent their respective
error vectors are aligned with each other and with the origin of the Cartesian system.

(a) (b)

Fig. 1. Part (a): Representation of a simple bi-dimensional error space. Individuals A and B are
optimally aligned, i.e. their respective error vectors are directly proportional. The angle between
the error vector of A (as well as B) and the one of C is θ. Part (b): A simple tri-dimensional error
space. We point out that it is possible to find a point m that is aligned with the error vectors of
any pair of individuals A and B and optimally aligned with a third individual C.

The concept of optimally aligned individuals is important in the context of this paper
because, given any two optimally aligned individuals, we can obtain a globally optimal
solution in a very simple way. Let A and B be two optimally aligned individuals. Then,
directly applying Definition 1, we have −→eA = k · −→eB . Applying the definition of error
vector, the previous equation can be rewritten as −→sA −−→

t = k · (−→sB −−→
t), from which

it follows that
−→
t = 1

1−k · −→sA − k
1−k · −→sB . This implies that, if we find two optimally

aligned individuals, whose syntactic structure we represent with A and B, and if we
know the proportionality factor k between their respective error vectors, then individual
whose syntactic structure is:

Popt =
1

1− k
·A− k

1− k
· B (1)

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 153

has a semantic vector that perfectly corresponds to target
−→
t , and thus it is a globally

optimal solution. Interestingly, this property holds independently from the quality (for
instance measured by means of the RMSE) of A and B: even two extremely “bad”
individuals (in terms of RMSE), if they are optimally aligned, can be used to produce a
globally optimal solution. As a direct consequence, the new objective of GP can now be
to find two optimally aligned individuals, instead of directly finding a globally optimal
solution.

This raises at least the following two questions: (1) How can we use GP to look
for a pair of optimally aligned individuals? (2) Is searching for two optimally aligned
individuals easier for GP than directly searching for a globally optimal solution? The
answer to question (1) is that several different strategies can be adopted. In this paper,
which to the best of our knowledge represents the first effort of using GP to look for
two optimally aligned individuals, we propose the ESAGP framework introduced in the
following sections. Section 6 contains a discussion of possible alternative strategies.
In order to answer question (2), we perform experiments where an instance of ESAGP,
whose goal is to find a pair of optimally aligned individuals, is compared with ST-GP [1]
and with GS-GP [8].

3 One Step Error Space Alignment GP: ESAGP-1

ESAGP-1 is based on the idea that GP should work with the objective of minimizing the
angle between the error vectors of pairs of individuals (looking for a pair for which this
angle is equal to zero). Figure 1(a) graphically represents the angle θ between the error
vectors of individuals A (as well as B) and C. Remembering that θ = arccos((−→eA ×−→eC)/(||−→eA|| · ||−→eC ||)) (where × represents the scalar product between two vectors and
||−→v || is the Euclidean norm of vector −→v) the angle between the error vectors of two
individuals is easy to calculate once we have their semantics. It is worth emphasizing
that the objective of ESAGP-1 is to find optimally aligned individuals, regardless of
their individual quality (for instance, as measured by the RMSE). To achieve this goal,
we follow two ideas: (1) all the individuals found during the evolution, and not only
the ones in the population at each generation, can be potential members of an optimally
aligned pair; (2) the search cannot be driven by a measure of distance to the target
in the semantic space (like the RMSE), but instead by a different fitness function that
promotes the discovery of optimally aligned individuals.

To implement idea (1), ESAGP-1 maintains an archive of all the “semantically new”
individuals that have been found during the GP run. Every time a new individual P is
generated, the algorithm checks whether it is optimally aligned with any of the indi-
viduals already in the archive. If it is not, P is added to the archive, unless the archive
already contains an individual with the same semantics, and the algorithm continues.
Otherwise, the algorithm terminates returning the newly found pair of optimally aligned
individuals. In Section 5 we present experimental results, reporting an RMSE value at
each generation for the ESAGP framework. That error is obtained like this: at each gen-
eration, we consider the pair of individuals (A,B) such that A belongs to the population
and B belongs to the archive, and such that the angle between −→eA and −→eB is minimum.
Then, we construct the individual that approximates an optimal solution by applying

154 S. Ruberto et al.

Equation (1). In order to do that, we need a value for the scalar constant k. Given that A
and B are not optimally aligned, −→eA and −→eB are not perfectly proportional, so k can only
be approximated. Let a1, a2, ..., an be the coordinates of−→eA and b1, b2, ..., bn the coordi-
nates of −→eB . In this work, we use as k the median of the values a1/b1, a2/b2, ..., an/bn.
We remark that this RMSE value is only calculated for comparing the results returned
by the ESAGP framework with ST-GP and GS-GP. It is never used for selection or in
any other way during the evolution.

To implement idea (2), ESAGP-1 uses a fitness function that has no relationship
with the distance to the target in the semantic space. To define this new fitness func-
tion, ESAGP-1 calculates a particular point in the error space, that we call center of
attraction, or simply attractor. The fitness of an individual is the angle between its er-
ror vector and the attractor, and it has to be minimized (in other words, small angles are
better than large ones). The attractor must be chosen in such a way to promote the evo-
lution of optimally aligned individuals. Our idea is to choose a point that, informally,
represents the majority of the individuals in a population, standing “in the middle of”
an area where most of the error vectors of the individuals in the population are found.
Therefore, the objective of the algorithm becomes driving the population towards this
central point. We use as attractor the following vector: −→a =

∑

P∈Pop
−→eP /||−→eP || where

Pop is the current population and ||−→v || is the Euclidean norm of vector −→v . In principle,
the attractor could be calculated only once in the beginning of the run, using the initial
population, or it could change dynamically during the run, for instance recalculating it
at each generation (or at prefixed intervals). We have evaluated both alternatives in a set
of preliminary experiments. The results suggested that modifying the attractor during
the run does not significantly affect the performance of the algorithm. For this reason,
in this paper we report the results obtained by fixing the attractor in the beginning of
the run, using the individuals in the initial population.

Besides the novel fitness function, another interesting characteristic that distin-
guishes ESAGP-1 from standard GP is the procedure that forms the pairs of individ-
uals for mating. ESAGP-1 uses a strategy that encourages semantic diversity, that we
call orthogonal coupling. Let d be the dimension of (i.e. the number of individuals be-
longing to) the population. Orthogonal coupling works by performing d independent
tournaments (using the standard tournament selection algorithm), allowing us to gener-
ate a repository of d parents. Subsequently, an iterative process is performed where, at
each iteration, one parent A is picked at random and its partner B is chosen as the indi-
vidual currently in the repository such that the angle between −→eA and −→eB is the closest
to 90°. A and B are then removed from the repository and the process iterated until the
repository is empty. Preliminary tests (not shown) have revealed that orthogonal cou-
pling does not help the performance of standard GP on the real-life problems tackled
here. However, when used with a preliminary implementation of ESAGP-1, it allowed
significant improvements. Thus we decided to use orthogonal coupling.

4 Two Steps Error Space Alignment GP: ESAGP-2

The main information we gathered from the experiments performed with ESAGP-1
(whose results are discussed in Section 5) is that searching for two optimally aligned

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 155

individuals is an easier task than directly searching for a globally optimal individual
(at least for the studied problems). This opens an array of new and promising ways
of easing the task of GP, and a question naturally arises: given two individuals whose
error vectors are not aligned with the origin of the Cartesian system, can we still use
them to build an optimal solution? Answering positively to this question is the main
objective of ESAGP-2. The idea is shown in Figure 1(b). Let us assume that we have
two individuals, like A and B in the figure, for which the straight line joining the error
vectors is not aligned with the origin of the Cartesian system. It is possible to find a
point −→m that lies on the straight line joining −→eA and −→eB and that is aligned with the
error vector of another individual C and the origin. This property holds for any three
points that lie on a bi-dimensional plane intersecting the origin. This allows us to extend
Definition 1 to the bi-dimensional case.

Definition 2. (Optimally Coplanar Individuals). Three GP individuals A, B and C
are optimally coplanar if the bi-dimensional plane on which −→eA, −→eB and −→eC lie also
intersects the origin of the Cartesian system in the error space.

Given three optimally coplanar individuals A, B and C, we can obtain an equation to
express target

−→
t , and consequently we can find a globally optimal solution analytically.

In fact, given that −→eA and −→eB are aligned with each other and with −→m, applying the same
reasoning as in Section 2, we can write: −→sA−−→n = w ·(−→sB−−→n), where −→n is the vector
that corresponds to −→m in the semantic space (i.e. −→m = −→n − −→

t) and w is a scalar
constant. Analogously, the following relationship holds between −→n and the semantics
of C: −→n −−→

t = k · (−→sC −−→
t), where k is a scalar constant. Now we can obtain −→n from

the first equation, replace it in the second one and solve it to obtain
−→
t . In this way, we

find: −→
t =

1

(1 − k)(1− w)
· −→sA − w

(1 − k)(1− w)
· −→sB − k

1− k
· −→sC (2)

Equation (2) can also be written in the following implicit form:

w · −→sB − w · k · −→sC + w · k · −→t − w · −→t + k · −→sC − k · −→t +
−→
t −−→sA = 0 (3)

Equation (3) can be used to find the scalar values k and w. In particular, let a1 and a2 be
two different coordinates of vector −→sA. Analogously, let b1 and b2 be the corresponding
coordinates of vector −→sB and c1 and c2 the corresponding ones in vector −→sC . We can
write the following system of equations:
{

w · b1− w · k · c1 + w · k · t1− w · t1 + k · c1− k · t1 + t1− a1 = 0

w · b2− w · k · c2 + w · k · t2− w · t2 + k · c2− k · t2 + t2− a2 = 0
(4)

Considering k and w as unknown values, we can solve the system in Equation (4),
obtaining:

k =
a1 · b2− a2 · b1− a1 · t2 + a2 · t1 + b1 · t2− b2 · t1

a1 · c2− a2 · c1− b1 · c2 + b2 · c1− a1 · t2 + a2 · t1 + b1 · t2− b2 · t1 (5)

w =
a1 · c2− a2 · c1− a1 · t2 + a2 · t1 + c1 · t2− c2 · t1
b1 · c2− b2 · c1− b1 · t2 + b2 · t1 + c1 · t2− c2 · t1 (6)

156 S. Ruberto et al.

At this point, the values of k and w obtained in Equations (5) and (6) can be replaced in
Equation (2), and this allows us to obtain a globally optimal solution (i.e. an individual
whose semantics is exactly equivalent to the target).

In order to write the system in Equation (4), we have to choose two particular co-
ordinates of −→sA, −→sB and −→sC . It is worth pointing out that, if A, B and C are optimally
coplanar, the obtained k and w are the same independently on the chosen pair of co-
ordinates. But given that this event is quite rare, and more often this situation is only
approximated, the choice of the coordinates may be important. Extending the approach
used by ESAGP-1, we exhaustively consider all the possible pairs of coordinates; for
each one of these pairs, we calculate the values of k and w as in Equations (5) and (6)
and the values used in Equation (2) to approximate a globally optimal solution are the
medians of these calculated values.

Basically, ESAGP-2 works as ESAGP-1 with the following two major differences:
(1) the attractor, this time, is not a straight line, but a bi-dimensional plane; (2) every time
a new individual P is generated, it is compared with all the possible pairs of individuals
in the archive, looking for a pair of individuals that are optimally coplanar with P .

To define the attractor (point (1)), ESAGP-2 calculates a plane that informally lies
“in the middle” of the error vectors of the individuals in the population. To do this, we
use a k-means clustering method [11] to partition the error vectors of the initial popu-
lation into two groups. Then we use the centroids of these two clusters to calculate the
attractor. In particular, the attractor is the (unique) bi-dimensional plane that intersects
these two centroids and the origin of the Cartesian system in the error space. The imple-
mentation of the k-means algorithm we have used is the one provided by the MATLAB
environment [12], in which we have used angles, instead of Euclidean distance or other
types of distances, for calculating the similarity between the vectors (this is an option
that MATLAB provides). All the other parameters of the k-means algorithm were set
to the default values of MATLAB. Once the attractor is defined, ESAGP-2 uses as fit-
ness the angle between the error vector of the individual and the attractor. In order
to calculate an angle between a vector and a plane, we use the SVD (Singular Value
Decomposition) method, exactly as presented in [13].

To control whether three optimally coplanar individuals have been found (point (2)),
every time a new individual P is generated, all the possible pairs of error vectors in
the archive are exhaustively analyzed and the bi-dimensional plane intersecting those
vectors and the origin of the Cartesian system is generated. Then we check whether −→eP
also belongs to that plane. Analogously to ESAGP-1, ESAGP-2 terminates if three op-
timally coplanar individuals are found. Otherwise, if the semantics of P is unique, P is
added to the archive and the algorithm continues.

Besides the previously mentioned differences between ESAGP-2 and ESAGP-1,
a third one exists: with ESAGP-2 it may happen that the size of the archive grows
considerably during the evolution, and the exhaustive analysis of all the pairs may
slow down the process excessively (a circumstance that we have never observed for
ESAGP-1 in our experiments). Thus, in ESAGP-2 we have limited the maximum size
of the archive using a predefined parameter M . When the number of individuals in the
archive reaches M , every time an individual must be added to the archive another one is
removed. The version we present in this paper removes the individual that has the largest

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 157

angle with the attractor. In our experiments, we have empirically observed that a good
compromise between computational speed and effectiveness of the method could be ob-
tained by setting M = 80. Thus, we have used this value here. However, the influence
of the archive size in the overall performance of the system has to be investigated more
deeply in the future.

Generalizing to μ Dimensions. If we compare the idea that inspired ESAGP-1 (graph-
ically represented in Figure 1(a)) with the one of ESAGP-2 (represented in Figure 1(b)),
we can informally say that the transition from ESAGP-1 to ESAGP-2 consisted in
“adding one dimension”: in ESAGP-1 we look for two points that must be aligned
on (i.e. must belong to) a straight line intersecting the origin of the Cartesian system; in
ESAGP-2 we look for three points that must belong to a bi-dimensional plane intersect-
ing the origin. Interestingly, this last property can also be seen as a composition of the
elementary property (alignment) that has to be respected on a straight line in ESAGP-1:−→eA, −→eB and −→m have to be aligned; −→m, −→eC and the origin must be aligned, too. It is not
hard to convince oneself that this process can be iterated (maintaining the same infor-
mal terminology, we could say that “more dimensions can be added”), up to a point in
which the number of used dimensions is equal to the number of fitness cases of the re-
gression problem we want to solve. In other words, for any μ between 1 and the number
of fitness cases, it is possible to define a GP system whose objective is to find μ + 1
individuals that belong to the same μ-dimensional hyperplane intersecting the origin (a
property that can also be seen as the composition of μ alignments), which we hypothet-
ically call ESAGP-μ. Although in this paper we focus on ESAGP-1 and ESAGP-2, as
a first step in this research path, the definition of a general strategy allowing us to ob-
tain an ESAGP-μ for any possible number of dimensions μ is an important part of our
current research (see Section 6). In that study, the issue of computational complexity
has to be carefully considered: both the complexity of the system of equations needed
to find the expression of the global optimum and the growth of the archive may become
serious problems as μ increases. Thus, while ESAGP-1 has a computational complex-
ity comparable to ST-GP and the one of ESAGP-2 can be easily controlled by limiting
the size of the archive, ESAGP-μ, for large values of μ, may turn out to have a large
computational cost, and implementation strategies to reduce it may be necessary.

5 Experimental Study

Test Problems. We have chosen two hard regression problems in the field of drug
discovery to test both ESAGP variants. The objective of these problems is the predic-
tion of two important pharmacokinetic parameters: human oral bioavailability (%F) and
median lethal dose (LD50), also called toxicity, of medical drugs. Both problems have
already been tackled by GP in published literature and for a discussion of them the
reader is referred to [14]. The %F (respectively LD50) dataset consists in a matrix of
260 (respectively 234) rows (instances) and 242 (respectively 627) columns (features).
Each row is a vector of molecular descriptor values identifying a drug; each column rep-
resents a molecular descriptor, except the last one, that contains the known target values
of the considered pharmacokinetic parameter. Both these datasets are freely available
from the GP benchmarks website, gpbenchmarks.org.

gpbenchmarks.org

158 S. Ruberto et al.

Experimental Settings. For each of the four GP variants (ST-GP, GS-GP, ESAGP-1,
ESAGP-2), 30 independent runs were performed, each using one of 30 different random
partitions of the dataset in training (70%) and test (30%) sets. In each run, for each gen-
eration we record the RMSE of the best individual on the training set, and the RMSE
of the same individual on the test set (and also the number of nodes of that individual).
The results we report are the median values of the 30 runs. All the runs used populations
of 100 individuals. Tree initialization was performed with the Ramped Half-and-Half
method [1] with a maximum initial depth of 6. The function set contained the four
binary arithmetic operators +, −, ∗, and / protected as in [1]. The terminal set con-
tained as many variables as the number of features of each dataset. Tournaments of
size 4 were used to select the parents of the new generation. To create new individuals,
ST-GP, ESAGP-1 and ESAGP-2 used standard (subtree swapping) crossover [1] and
(subtree) mutation [1] with probabilities 0.9 and 0.1, respectively. GS-GP used geomet-
ric semantic crossover [7] and geometric semantic mutation [7], each with probability
0.5 (the best setting according to [8]). Survival was elitist, as it always copied the best
individual into the next generation. ESAGP-1 and ESAGP-2 both used orthogonal cou-
pling as described in Section 3. For ESAGP-2 a maximum archive size M = 80 has
been used, while for ESAGP-1 no size limit was imposed for the archive.

Experimental Results. The results we have obtained are reported in Figure 2. For
all the experiments, tests of statistical significance were performed. In particular, the
Kolmogorov-Smirnov test has shown that, for all our experiments, the data were not
normally distributed and hence a rank-based statistic has been used. The Wilcoxon rank-
sum test for pairwise data comparison with Bonferroni correction has been used under
the alternative hypothesis that the samples do not have equal medians. Plots (a) and (b)
report the results obtained on the %F problem, respectively on the training and test set.
In both cases, the small inset in the upper right corner portrays the results of the evo-
lution during the first 50 generations. On these small plots we can see that ESAGP-2
outperforms ESAGP-1, which outperforms ST-GP and GS-GP on both training and test
sets. According to the Wilcoxon test, the differences at generation 50 are statistically sig-
nificant. However, as shown in [8,9], GS-GP is a powerful but slow method: geometric
semantic operators induce a unimodal fitness landscape, but also explore it with small
steps. Thus, for a fair comparison, the execution of GS-GP has to be continued for a num-
ber of generations larger than 50. The large plot (a) shows that on the training set ST-GP
and GS-GP at generation 350 find solutions of comparable quality to the ones found by
the ESAGP variants at generation 50 (these differences are not statistically significant).
The large plot (b) shows that on the test set the ESAGP variants in 50 generations find
results that are comparable with the ones found by GS-GP in 350 generations (the differ-
ences are not statistically significant) and even better (with statistical significance) than
the ones found by ST-GP in 350 generations. Interestingly, even if we allow GS-GPto run
for 2000 generations (not shown), the results obtained on the test set are not statistically
different from the ones obtained by the ESAGP variants in 50 generations. Summarizing,
the ESAGP variants are able to find results of comparable quality to GS-GP, but much
faster. Furthermore, ESAGP-2 outperforms ESAGP-1. As plots (c) and (d) show, similar
conclusions can be drawn also for the LD50 problem. More in particular, on the training
set (plot (c)) the results found by the ESAGP variants in 50 generations are comparable

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 159

100 200 300
30

35

40

45

50

55

60

Number of Generations

T
ra

in
in

g
E

rr
or

 (
%

F
)

10 20 30 40 50
30

35

40

45

50

55

60

100 200 300
30

35

40

45

50

55

60

Number of Generations

T
es

t E
rr

or
 (

%
F

) 10 20 30 40 50
30

35

40

45

50

55

60

(a) (b)

100 200 300

1800

2000

2200

2400

2600

Number of Generations

T
ra

in
in

g
E

rr
or

 (
LD

50
)

10 20 30 40 50

1800

2000

2200

2400

2600

100 200 300

1800

2000

2200

2400

2600

Number of Generations

T
es

t E
rr

or
 (

LD
50

)

10 20 30 40 50

1800

2000

2200

2400

2600

(c) (d)

0 10 20 30 40 50
0

50

100

150

200

250

300

Number of Generations

N
um

be
r

of
 N

od
es

 (
%

F
)

0 10 20 30 40 50
0

50

100

150

200

Number of Generations

N
um

be
r

of
 N

od
es

 (
LD

50
)

(e) (f)

Fig. 2. Plot (a) (respectively plot (b)) shows the evolution of the (median) best fitness on
the training (respectively test) set for the %F problem. The insets show an enlargement of
the plots for the first 50 generations. Plots (c) and (d) are analogous to plots (a) and (b),
but for the LD50 problem. Plot (e) (respectively plot (f)) shows the evolution of the (me-
dian) number of nodes of the best individual for the %F (respectively LD50) problem.
The legend for all the plots is: ESAGP−1 ESAGP−2 GS−GP ST−GP.

160 S. Ruberto et al.

(differences not statistically significant) with the ones returned by ST-GP in 50 gener-
ations, worse (in a statistically significant way) than the ones found by ST-GP in 350
generations, and better (in a statistically significant way) than the ones found by GS-GP
both in 50 and in 350 generations. On the test set (plot (d)) the results found by the ESAGP
variants in 50 generations are comparable (differences not statistically significant) with
the ones returned by ST-GP in 50 generations, and better (in a statistically significant
way) than the ones found by GS-GP in 50 generations and both ST-GP and GS-GP in
350 generations. Also, although the differences between ESAGP-1 and ESAGP-2 at gen-
eration 50 are not statistically significant, ESAGP-2 finds the best solutions faster and
thus it is, also in the case of the LD50 dataset, preferable. Plots (e) and (f) report the evolu-
tion of the number of nodes of the best individual and show that the solutions produced
by ESAGP-1 are (in a statistically significant way) smaller than the ones produced by
ESAGP-2, which are (in a statistically significant way) smaller than the ones produced
by ST-GP. Looking at the definition of geometric semantic operators [7], it is not diffi-
cult to see that, if stored in memory (something that the implementation proposed in [8]
does not), the individuals generated by GS-GP at generation 50 would have a length of
approximately1016 nodes (and this is the reason why the curve of GS-GP is not shown in
these plots). Summarizing, not only the ESAGP variants are able to find solutions of the
same quality as, or better than, GS-GP, much faster, but these solutions are also smaller,
which represents an additional and important advantage.

6 Conclusions and Future Work

We have introduced the notion of error vector, strongly related to semantics. Based on it,
we have presented the concepts of optimally aligned and optimally coplanar individuals
and we have shown that if two optimally aligned or three optimally coplanar individuals
are found, it is possible to construct a global optimum analytically. We have introduced
two new Genetic Programming (GP) variants, called ESAGP-1 and ESAGP-2, whose
objective is to find, respectively, optimally aligned and optimally coplanar individuals.
The experimental results, obtained on two complex real-life applications, suggest that
searching for optimally aligned or coplanar individuals is easier than directly searching
for a globally optimal solution, as most GP systems do. This work represents only a
first step in a research track that looks very promising and future work will be directed
to extend/improve the presented methods. Several paths can be followed, beginning
with a thorough evaluation of the effects that the different implementation options (e.g.
orthogonal coupling, archive size) have on the performance of ESAGP. Different al-
ternative methods to define the attractor should also be investigated. In particular, the
attractor can be the error vector of an individual (for instance the closest individual to
the point currently used as attractor). Thus, finding an alignment with the attractor al-
lows the immediate construction of an optimal solution. The possibility of designing
a variant that does not use any attractor also deserves to be studied. For instance, the
fitness of an individual could be the minimum angle between its error vector and the
ones of the individuals stored in the archive. We are currently designing a completely
different framework in which an individual is represented by a pair of expressions and
the fitness is equal to the angle between the error vectors of these two expressions. This
new framework can be more general and versatile than the one presented here, since

ESAGP – A Semantic GP Framework Based on Alignment in the Error Space 161

evolution is given complete freedom to produce aligned individuals in any area of the
error space, instead of focusing in the area of the attractor. Furthermore, this framework
is easily extendable to more than two dimensions, simply by using multi-dimensional
vectors of expressions as individuals. The results presented here seem to indicate that
“adding dimensions” is beneficial, therefore a general framework should allow the final
user to perform the evolutionary search in any desired number of dimensions. Even bet-
ter, the system could automatically search in the most promising number of dimensions.

Acknowledgments. The authors acknowledge projects EnviGP (PTDC/EIA-
CCO/103363/ 2008), MassGP (PTDC/EEI-CTP/2975/2012) and InteleGen
(PTDC/DTP-FTO/1747/2012), FCT, Portugal.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

2. Nguyen, Q.U.: Examining Semantic Diversity and Semantic Locality of Operators in Genetic
Programming. PhD thesis, University College Dublin, Ireland (July 18, 2011)

3. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic program-
ming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)

4. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In:
O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa,
A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg
(2008)

5. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic regression.
Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

6. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic program-
ming: The case for real-valued symbolic regression. In: Matousek, R., Nolle, L. (eds.) 15th
International Conference on Soft Computing, Mendel 2009, pp. 73–91 (2009)

7. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In:
Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

8. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric se-
mantic GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio,
A., Hu, T., Şima Etaner-Uyar, A., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216.
Springer, Heidelberg (2013)

9. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming
for real life applications. In: GP Theory and Practice. Springer (2013)

10. Martinez, Y., Naredo, E., Trujillo, L., Galvan-Lopez, E.: Searching for novel regression func-
tions. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 16–23 (2013)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
12. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)
13. Wedin, P.: On angles between subspaces of a finite dimensional inner product space. In:

Kagstrom, B., Ruhe, A., (eds.): Matrix Pencils. Lecture Notes in Mathematics, 263–285.
Springer (1983)

14. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for computational
pharmacokinetics in drug discovery and development. Genetic Programming and Evolvable
Machines 8, 413–432 (2007)

Building a Stage 1 Computer Aided Detector

for Breast Cancer Using Genetic Programming

Conor Ryan1, Krzysztof Krawiec2, Una-May O’Reilly2,
Jeannie Fitzgerald1, and David Medernach1

1 University of Limerick, Ireland
{Conor.Ryan,Jeannie.Fitzgerald,David.Medernach}@ul.ie

2 CSAIL, MIT, Cambridge, MA, USA
{KKrawiec,UnaMay}@csail.mit.edu

Abstract. We describe a fully automated workflow for performing
stage 1 breast cancer detection with GP as its cornerstone. Mammograms
are by far the most widely used method for detecting breast cancer in
women, and its use in national screening can have a dramatic impact
on early detection and survival rates. With the increased availability of
digital mammography, it is becoming increasingly more feasible to use
automated methods to help with detection.

A stage 1 detector examines mammograms and highlights suspicious
areas that require further investigation. A too conservative approach
degenerates to marking every mammogram (or segment of) as suspicious,
while missing a cancerous area can be disastrous.

Our workflow positions us right at the data collection phase such
that we generate textural features ourselves. These are fed through our
system, which performs PCA on them before passing the most salient
ones to GP to generate classifiers. The classifiers give results of 100%
accuracy on true positives and a false positive per image rating of just
1.5, which is better than prior work. Not only this, but our system can
use GP as part of a feedback loop, to both select and help generate
further features.

Keywords: Genetic Programming, Classification, Mammography.

1 Introduction

In national mammography screening, radiologists quickly examine the mammo-
grams of thousands of women to determine if there are early signs of a cancerous
growth, or a lesion that requires more attention. It is essential to discover signs
early, as survival is directly correlated with early detection [1]. In the event that
a closer inspection is required, the woman must be re-called. This is very stress-
ful to patients, and an overly conservative approach to screening can result in
disillusionment with the process, with women becoming less inclined to partici-
pate. This work aims to improve the early detection of true positives by evolving
detectors which, although accurate, are not overly conservative.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 162–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Building a Stage 1 CAD for Breast Cancer Using GP 163

Fig. 1. Mammograms. On the left is the MLO view, with benign microcalcifications
magnified, while in the middle is the CC view, with a cancerous mass magnified. Notice
the extra information in the background of the image, such as view labels. On the right
is the same CC view divided into segments; each segment is examined separately for
suspicious areas by the method proposed in this paper.

In general, most automated approaches to mammography divide the images
into segments [2] upon which their analysis is performed. Each segment is exam-
ined in turn for signs indicative of suspicious growths. This work takes a radi-
cally different approach by considering textural asymmetry across the breasts as
a potential indicator for suspicious areas. This is a reasonable approach because,
although breasts are generally physically (in terms of size) asymmetrical, their
parenchymal patterns (i.e., their mammographic appearance) and, importantly,
the texture of their mammograms, are typically relatively uniform [3].

The following section describes mammography and related work, while Sec-
tion 3 shows how we go from raw mammograms to GP classifiers. The specifics
of the GP experiments are detailed in section 4 and the results are in section 5.
We finish with the conclusions and future work in section 6.

2 Mammography

Routine mammographic screening, particularly at a national level, is by far the
most effective tool for the early detection and subsequent successful treatment
of breast cancer [3] [1]. Screening is usually performed on asymptomatic women
over a certain age (e.g. over 60 in most European countries) at regular periods,
typically every two or three years.

Two views of each breast are recorded. The craniocaudal (CC) view, which
is a top down view, and the mediolateral oblique (MLO) view, which is a side
view taken at an angle. See Figure 1 for examples of each view. The white areas
in the mammograms are made up of the parenchyma, which is essentially the

164 C. Ryan et al.

Fig. 2. A typical flowchart for Computer Aided Detection and Diagnosis. Stage 1 of the
process tries to detect suspicious areas with a high sensitivity, while Stage 2 attempts
to reduce the number of suspicious lesions without compromising the sensitivity.

functional tissue within the breast, while the black areas are made up of adipose
(non-functioning fatty) tissue which is transparent under X-rays.

The images are then examined by radiologists who look for masses and archi-
tectural distortions. A mass is defined in [4] as a space-occupying lesion that can
be seen in at least two views. Mammograms often contain calcifications, which
are tiny deposits of calcium (typically, but not always, benign) that show up as
bright spots in the images.

2.1 Computer-Aided Detection of Mammographic Abnormalities

Various levels of automation exist in mammography, which can generally be
divided into Computer-Aided Detection (CAD) and Computer-Aided Diagnosis
(CADx) [2]. In this work we concentrate exclusively on CAD. In particular, what
is known as Stage 1 detection.

A typical workflow for a computer-aided system is shown in Figure 2. The
first stage of CAD is to detect suspicious regions, which are then examined by
more specialised routines in the second stage. The output of this stage is a set
of Regions of Interest (ROIs) which are passed either to a radiologist or to a
CADx system which outputs the likelihood of malignancy. The involvement of
radiologists and/or later stages obviates the need for a perfectly understandable
system, as any diagnostic action is determined by them.

As with many medical applications, mammography demands near-perfection,
particularly in the identification of True Positives (TPs) which is measured as
the percentage of test cases containing cancerous areas identified. In general,
Stage 1 detectors are quite conservative [2] and often return a relatively high
False Positives per Image (FPI) rate, that is, the number of areas from an image
that are incorrectly identified as having cancerous masses.

The FPI rate is subsequently reduced by the stage 2 detectors. However, the
rate of FPI can have an impact on the speed and quality of stage 2 detectors, as
a too-conservative approach will degenerate to returning virtually every image.
Although this would return a perfect TP rate, the FPI rate would render the
system virtually useless.

Building a Stage 1 CAD for Breast Cancer Using GP 165

2.2 Feature Extraction

Mammograms are large (the images in this work are of the order 3600 × 5600
pixels) grey-scale images, so detection relies on the existence of features, which
describe various properties of the image. Features are typically extracted using
either area- or pixel-based measures. We focus exclusively on area-based features
in this paper as they are better suited to the identification of ROIs (because the
images are so large) than their pixel-based counterparts, which are best suited
for highly localized search. Section 3 below describes the features extracted.

2.3 Related Work

Although several CAD systems already exist, most are Stage 2 detectors [2] and
focus on particular kinds of masses, e.g. spiculated masses. Of the more general
systems, the best reported appears to be that of Li et al [5] with 97.3% TP and
14.81 FPI. Similar work by Polakowski [6] had a lower TP rate (92%) but with
a much lower FPI rate (8.39). Given the very low incidence of TPs, it isn’t clear
how statistically significantly better (if at all) the Li results are.

More recent work in mammography has been concerned with a combination
of feature selection and classification [7]. The most successful of these reports a
result of 96.3% accuracy, which, although impressive, does not give the break-
down between TPs and FPI. The standard method of reporting results is the
TP/FPI breakdown, which is what we will present.

GP has been used a handful of times in this area, most notably by [8] who
designed a Stage 2 cancer detector for the well known Wisconsin Breast Cancer
dataset, in which they used the features extracted from a series of Fine Needle
Aspirations (FNAs) and an evolved neural network. Ludwig and Roos [9] used
GP to estimate the prognosis of breast cancer patients from the same data set,
initially using GP to reduce the number of features, before evolving predictors.
Langdon and Harrison [10] took a different approach, using biopsy gene chip
data, but their system approached a similar level of automation.

Smaller scale work was conducted by [11] who examined a database of 57
images, each of which already had 22 features detected, and who used GP in
combination with various feature selection methods to reduce the dimensionality
of the problem. Microcalcifications were targeted by [12], in a CADx application,
where they took 128 × 128 pixel segments, each of which contained at least one
microcalcification and predicted the probability of it being malignant.

Most systems operate only at the Classification stage, although more recent
work also considers Feature Selection. As we generate our own features, we can
modify and parameterize them based on the analysis of our classifiers. While the
focus of this paper is on the classification system, because we extract the features
from the images ourselves, GP will eventually form part of a feedback loop,
instructing the system about what sorts of features are required. See section 6
for more details on this.

Most previous work relies upon previously extracted features, and all the
previous work mentioned above deals with a single breast in isolation (although

166 C. Ryan et al.

using segmentation and multiple views). Our work leverages the research by
Tabar [3] which indicates that, in general, both breasts from the same patient
have the same textural characteristics. Our hypothesis is that breasts that differ
texturally may contain suspicious areas.

3 Workflow

Part of the challenge in a project like this is to choose how to represent the
data. A typical mammogram used in this study is 3575 × 5532 pixels and 16
bit gray-scale, which is a challenging size of data to deal with. The following
workflow was created. Steps 1–5 are concerned with the raw images, while steps
6 and 7 use GP to build and test classifiers.

1. Separation (of breast from background)
2. Suppression of background
3. Segment breast
4. Feature extraction
5. Construct training data
6. Build classifier
7. Test classifiers

3.1 Separation

Figure 1 shows that much of the images consist of background, and clearly, this
must first be removed before calculating segments and extracting features. Re-
moving the background is a non-trivial task, partly because the non-uniformity
of breast size across patients, but also because of the difficulty in taking con-
sistent mammograms. Due to the pliable nature of the breasts and the manner
in which the mammograms are photographed (by squeezing the breast between
plates), even the same breast photographed twice on the same machine (after a
reset) is likely to look different.

3.2 Suppression of the Background

The background of the image is never perfectly homogeneous, and it includes at
least one tag letter indicating if the image is either a right or left breast. This is
often augmented by a string of characters indicating which view (CC or MLO)
was taken. These backgrounds need to be replaced with homogeneous ones to
correctly process the image in a later stage.

We used local thresholding with threshold defined as an average of mean and
median, calculated from each pixels circular neighborhood of radius 20. We em-
pirically determined that initializing the process by considering each horizontal
line, the 3 consecutive “above average” pixels (with x < 500) were part of the
breast (and pixels with the same coordinates and lower abscissa) is an efficient
method to detect the breast and suppress any possible problems linked to glitches
between the breast and the left border of the mammogram.

Building a Stage 1 CAD for Breast Cancer Using GP 167

3.3 Segmentation

Our approach is to divide each image into three segments, and to examine each
segment separately. As there can be more than one suspicious area in an image,
we return true for as many segments as the systems finds suspicious, meaning
that an image can have several positives returned. With Stage 1 detectors such
as ours, this is described by the FPI of an image, as discussed in section 2.3.

Of course, the maximum FPI is capped by the number of segments that the
breast is divided into. Using fewer segments means that the FPI will be lower,
but the cost is the detection of the TPs is substantially more difficult because
the area is larger.

We wanted to segment the breast into three parts of roughly similar size. One
is based around the nipple and one each for of the top and bottom of the rest of
the breast. Three segments is quite a small number, and this essentially makes
the task more difficult, as the closer the segment size is to the masses being
detected, the more different the segments will be from the rest of the breast.
However, for this paper, we do not experiment with smaller segment sizes.

The three segments intersect, to help reduce the possibility of a mass going
unnoticed. To realize the splitting, we first needed to have an idea of the position
of the nipple. In this case, we considered the furthest right non-background pixel
that was neither on the top 15% and not in the bottom 15% of the image and
its coordinate (nx, ny). We then used the line of the coordinate x = nx ∗ 6/7
to find the top non-background pixel (nx ∗ 6/7, ty) and the bottommost non
background pixel (nx ∗ 6/7, by) on this line. The three parts are then defined as
Nipple: x > nx/2, y < ty and y > by; Top: x > nx ∗ 6/7 and y > (by + ty)/2
and Bottom: x < nx ∗ 6/7 and y > (by + ty)/2.

Figure 1 gives an example of segments extracted using this technique.

3.4 Textural Features

To quantitatively describe the textural charactersitics of breast tissue, we cal-
culate a Grey Level Co-occurrence Matrix (CM) for each segment and for each
breast. Given a neighborhood relationship r, an element c(i, j) of a CM of image
f is the probability that a pixels p and its neighbor pixel q have brightness values
i and j respectively, i.e., Pr(r(p, q) ∧ f(p) = i ∧ f(q) = j). To keep the CM size
manageable, we first reduce the number of gray levels to 256 (from 65535 in the
original images) via linear scaling. Because textures in mammograms are often
anisotropic (directionally dependent), we independently calculate CMs for four
orientations corresponding to two adjacent and two diagonal neighbors. Next,
we calculate the 13 Haralick features [13], which reflect (among others) contrast,
entropy, variance, and correlation of pixel values. By doing this for each orien-
tation, we obtain 52 features per segment, which are subsequently passed to the
classifier. This part of processing is realized in Matlab [14].

Segments are rectangular and often extend beyond the breast, thus containing
some background. A CM calcuated from such a segment in a conventional way
would register very high values for black pixels (f(p) = 0 or f(q) = 0) and so

168 C. Ryan et al.

distort the values of Haralick features. One cannot simply ignore black pixels, as
many images contain large sections of adipose tissue, which appears as black in
mammograms and, which is in its own right useful information. Therefore, prior
to calculating the CM, we increase by one the intensity of every pixel within the
breast, using the information resulting from the segmentation stage (see previous
subsection). The pixels that already had the maximal value retain it (this causes
certain information loss, albeit negligible one, as there are typically very few
such pixels). Then, once the CM has been calculated, we simply “hoist” the CM
up and to the left to remove the impact of the unmodified background pixels.

Feature Selection The neighbourhood of the CM can be varied, such that
the calculation is conducted on pixels further away from each other, but, each
extra neighbourhood examined results in another 52 features per segment. Here,
we only examine a neighbourhood of 1. A preliminary analysis using PCA re-
vealed that virtually all variance resides in the Haralick entropy features, so we
discarded the remaining ones and let GP focus on entropy features.

4 Experimental Setup

This work employs University of South Florida Digital Database for Screening
Mammography (DDSM) [15] which is a collection of 43 “volumes” of mam-
mogram cases. A volume is a collection of mammogram cases (typically about
80-100 different patients) and can be classified as either normal, positive, benign
or benign without callback. All patients in a particular volume have the same
classification.

The incidence of positives within mammograms is roughly 5 in 1000 1, giving
a massively imbalanced data set. To ensure that our training data maintains a
more realistic balance, we deliberately select only a single volume. We use cases
from the cancer 01 and three of the normal volumes (volumes 1 to 3). We
do not use any images from either the benign or benign without callback
volumes in this instance, although if this work were to be extended, one would
expect cases from those volumes to be classified as positives as they contain
something that is at least suspicious.

This results in a total of 370 cases, 80 of which contain cancerous growths
(which we call positive in the following). However, if one were to consider these
as individual breasts, which is reasonable, given that each is examined indepen-
dently (i.e. most, but not all, patients with cancerous growths do not have them
in both breasts), then the number of non-cancerous images increases by a fac-
tor of around 3 – two for each non-cancerous case and one for most cancerous
growths. Thus, we obtain two different distributions, one for the non-segmented
views (80 positives (P), and 690 negatives, (N)), and and one for the segmented
ones (81 Ps and 2272 Ns). The number of Ps increases because in one case the
cancerous growth appeared in two segments of a breast; because the segments
overlap, both were tagged as P.

1 The actual incidence over a patient’s lifetime is closer to 1 in 7 [16].

Building a Stage 1 CAD for Breast Cancer Using GP 169

Table 1. The setups employed. Each was generated from the same data set.

Name Ps Ns Description

B1S1V1 80 690 One breast, 1 segment, 1 view; uses CC view only
B1S2V2 80 690 One breast, 2 segments, 2 vies; uses both CC and MLO views
B1S3V1 81 2272 One breast, 3 segments, 1 view; as B1S2V1, but with three segments
B2S4V1 81 2272 Two breasts, 4 segments, 1 view; both CC views, two segments each

There are a total of four segments for each image: one for the entire image
(A), and one for each of the three segments (At, Ab, An). However, when it comes
to processing the data, we wish to be able to exploit the differences between the
segment and the rest of the breast (i.e. between A and Ax) but also between
the opposite breast and the corresponding segment, say B and Bx. Thus, each
training instance becomes A,Ax, B,Bx, R, where R is the diagnosis for that
segment. Notice that this means in a breast that contains one suspicious area,
we generate two non-suspicious areas, as well as generating three times as many
Ns as we initially had. Note that changing the perspective from mammograms to
segments changes the distribution of decision classes, as each negative mammo-
gram contributes three negative segments, but also, each positive mammogram
contributes two negative segments (typically, only one segment contains can-
cerous growth). The imbalance in the data was handled in all cases by using
Proportional Individualised Random Sampling [17].

Based on this dataset, we consider several setups by varying the number
of breasts, views and segments taken into account (see Table 1). The following
terminology is used: BXSYVZ, where X is the number of breasts, Y the number
of segments and Z the number of views. In the cases where there is just one view
(B1S1V1, B2S2V1) we use the CC views, while in the cases where the breast
has been segmented, the system attempts to classify whether or not the segment
has a suspicious area or not. In particular, B2S2V1 is a special setup which
investigates the use of asymmetry. It uses solely on the CC view; the segment
chosen from the opposing breast (i.e. not the one being investigated) is the same
corresponding segment to the one chosen in the breast under investigation.

4.1 GP Setup

All experiments used a population 200 individuals, running for 100 generations,
with a crossover rate of 0.8 and mutation rate of 0.2. The minimum initial
depth was 4, while the maximum depth was 17. The instruction set was small,
consisting of just +,−, ∗,%. The tree terminals (leaves) fetch the PCA features
as defined in Section 3.4, with four available per segment. All runs were repeated
30 times.

To transform a continuous output of a GP tree into a nominal decision (Posi-
tive, Negative), we binarize it using the method described in [18], which optimizes
the binarization threshold individually for each GP classifier.

170 C. Ryan et al.

Fig. 3. (Left) AUC for population mean, averaged over three cross validation folds.
Not shown are the best-of-generation results, which show that all but B1S1V1 are not
statistically significantly different. (Right) Average size of individuals. Notice that the
most feature-rich set up (B2S4V1) produces the smallest individuals.

We employed NSGA-II [19] as the selection and replacement strategy, with
the MuLambda ratio set to 0.5 (i.e., all parents and offspring are merged into
one mating pool before running Pareto-based selection). We balanced three
fitness objectives, where AUC is a the area under ROC, calculated using the
Mann-Whitney [20] test:

– Objective 1: FP Rate;
– Objective 2: 1−TP Rate;
– Objective 3: 1−AUC.

5 Results

We performed three-fold cross-validation (CV, [21]) for all setups and show the
changes of AUC over generations in Figure 3, averaged over CV folds. The left
inset plots the AUC of best-of-generation individual, and the right the AUC
objective averaged over the entire population. The results suggest that simply
increasing the number of views or segments gives a huge boost to performance.
In fact, in B1S1V1, even the best individual returned Positive on virtually all
cases, except, rather ironically as shown in Table 2, some of the Negatives. This
shows that simply returning P for any input is not a reasonable strategy.

The best AUC plots appear to show that there is little evolution in terms
of the best individual, and indeed, there is a quite gentle slope, but there is
improvement. Furthermore, there is considerable exploration of the Pareto front,
which exists in three dimensions. Finally, the crucial figures, of course, are the
TP and FPI counts for the test set, which we report in Table 2. Two of our
setups yielded individuals that correctly classified 100% of the cancerous cases.
The best of these was the individual trained to view breast asymmetry, and it
returned just 1.5 FPI. Although not a perfect comparison as the same image data
isn not available, contrast this with the results reported in section 2.3 with scores

Building a Stage 1 CAD for Breast Cancer Using GP 171

Table 2. TP and FPI rates obtained by best-of-run classifiers when applied to test
data (average and maximum (best) over cross validation folds)

Dataset Avg. TP Avg FPI Best TP Best FPI

B1S1V1 100% 0.92 89% 3
B1S2V2 94% 0.65 97% 1.75
B1S3V1 95% 0.65 100% 1.75
B2S4V1 95% 0.60 100% 1.5

of 97% TP and FPIs of 4-15. The individuals produced by GP are actually quite
small and were surprisingly understandable, although their content is beyond
the scope of this paper. On average, the smallest individuals were produced by
B2S4V1, even though this set up had the highest number of terminals.

6 Conclusions and Future Work

We have presented an entire workflow for automated mammogram analysis with
GP at its core. Our system operates with raw images, extracts the features and
presents them to GP, which then evolves classifiers. The result is a Stage 1
cancer detector that achieves 100% accuracy on unseen test data from the USF
mammogram libary, with only 1.5 FPI.

The experimental set up that had the lowest FPI was the one that compared
both entire breasts, the segment under investigation and the corresponding seg-
ment from the other breast, showing that we successfully leveraged textural
breast asymmetry as an potential indicator for cancerous growths. Breast asym-
metry will exist in both views. Our current best results only use one view (CC);
the clear next step is employ both views.

One minor limitation of this work is that all the cancers examined came from
the same volume. However, it is reasonable to assume that for any automated
system, a classifier will be generated for a specific type of X-ray machine used by
a screening agency. Digital mammograms come in the DICOM [22] format which
contains much meta-data, including the specific machine and location where the
mammogram was taken. This means that it is feasible to produce machine-
specific classifiers which are trained to deal with the particular idiosyncracies
of various machines. However, our next step will be to train the system across
multiple volumes to test the impact on the TP/FPI scores.

Most prior work examines just a single step in the typical workflow, i.e. the
classification step, assuming the existence of previously selected features and
concentrating on extracting the best possible results from those features. We
are, however, positioned to leverage the ability of GP to produce solutions that
are in some way human-readable, and treat GP as part of the workflow, rather
than the entire focus of the work. This means that, as the work progresses, we can
create a feedback loop which examines the GP individuals to ascertain which
terminals (features) are most useful, and extract more information related to

172 C. Ryan et al.

those from the data. This is possible because data acquisition is also part of our
workflow; this is a system that accepts raw mammograms and outputs marked
ROIs.

GP is the essential element of the workflow, as it is responsible for synthe-
sizing the classifier by processing the previously selected and transformed image
features. For this paper, feature selection was conducted through PCA, which
dramatically reduced the number of features, and pointed to entropy as the key
feature. However, one major advantage we have over most researchers is that, be-
cause we control the entire workflow, we can easily generate new CMs with larger
neighbourhoods. Current work is examining the ways in which GP is combining
them and initial results are very positive; these results will then be compared
with other machine learning systems, specifically SVMs and C4.5, to investigate
the specific impact that GP has, particularly as the number of features increase.

Our segments are relatively large. While we were still able to maintain a 100%
TP rate with them, there is a case to be made for examining smaller segments,
as the smaller these are, the better it is for the later stage.

Finally, although the Haralick textural measures are powerful, they are not
the only features that have been used in image analysis. Our system also extracts
Hu invariants [23] and Local Binary Patterns [24]; we will use GP to combine
these with the Haralick features to further decrease the FPI.

Acknowledgments. C. Ryan acknowledges support from the Science Founda-
tion of Ireland and the Irish-U.S. Fulbright Comission. K. Krawiec acknowledges
financial support from the Polish-U.S. Fulbright Commission and from grants
no. DEC-2011/01/B/ST6/07318 and 91507.

References

1. Tabar, L., et al.: A new era in the diagnosis of breast cancer. Surgical Oncology
Clinics of North America 9(2), 233–277 (2000)

2. Sampat, M., Markey, M., Bovik, A.C.: Computer-aided detection and diagnosis in
mammography. In Bovik, A.C., (ed.): Handbook of Image and Video Processing.
Elsevier Academic Press (2010)

3. Tot, T., Tabar, L., Dean, P.B.: The pressing need for better histologic-
mammographic correlation of the many variations in normal breast anatomy. Vir-
chows Archiv 437(4), 338–344 (2000)

4. American College of Radiology: ACR BIRADSMammography, Ultrasound & MRI,
4th edn. American College of Radiology, Reston (2003)

5. Li, H., et al.: Computerized radiographic mass detection part i: Lesion site selection
by morphological enhancement and contextual segmentation. IEEE Trans. Med.
Imag. 20, 289–301 (2001)

6. Polakowski, W.E., Cournoyer, D.A., Rogers, S.K.: Computer-aided breast cancer
detection and diagnosis of masses using difference of gaussians and derivative-based
feature saliency. IEEE Trans. Med. Imag. 16, 811–819 (1997)

7. Ganesan, K., et al.: Decision support system for breast cancer detection using
mammograms. Proceedings of the Institution of Mechanical Engineers, Part H:
Journal of Engineering in Medicine 227(7), 721–732 (2013)

Building a Stage 1 CAD for Breast Cancer Using GP 173

8. Ahmad, A.M., Khan, G.M., Mahmud, S.A., Miller, J.F.: Breast cancer detection us-
ing cartesian genetic programming evolved artificial neural networks. In: Soule, T.,
et al. (eds.) GECCO 2012: Proceedings of the Fourteenth International Conference
on Genetic and Evolutionary Computation Conference, Philadelphia, Pennsylva-
nia, USA, July 7-11, pp. 1031–1038. ACM (2012)

9. Ludwig, S.A., Roos, S.: Prognosis of breast cancer using genetic programming. In:
Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part IV. LNCS,
vol. 6279, pp. 536–545. Springer, Heidelberg (2010)

10. Langdon, W., Harrison, A.: Gp on spmd parallel graphics hardware for mega bioin-
formatics data mining. Soft Computing 12(12), 1169–1183 (2008)

11. Nandi, R.J., Nandi, A.K., Rangayyan, R., Scutt, D.: Genetic programming and
feature selection for classification of breast masses in mammograms. In: 28th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS 2006, New York, USA, pp. 3021–3024. IEEE (August 2006)

12. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification
of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

13. Haralick, R., et al.: Texture features for image classification. IEEE Transactions
on Systems, Man, and Cybernetics 3(6) (1973)

14. MATLAB: version 8.2 (R2012a). MathWorks Inc., Natick, MA (2013)
15. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital

database for screening mammography. In: Yaffe, M. (ed.) Proceedings of the Fifth
International Workshop on Digital Mammography, pp. 212–218. Medical Physics
Publishing (2001)

16. Kerlikowske, K., Grady, D., Barclay, J., Sickles, E.A., Eaton, A., Ernster, V.: Posi-
tive predictive value of screening mammography by age and family history of breast
cancer. Journal of the American Medical Association 270, 2444–2450 (1993)

17. Fitzgerald, J., Ryan, C.: A hybrid approach to the problem of class imbalance. In:
International Conference on Soft Computing, Brno, Czech Republic (June 2013)

18. Fitzgerald, J., Ryan, C.: Exploring boundaries: optimising individual class bound-
aries for binary classification problem. In: Proceedings of the Fourteenth Interna-
tional Conference on Genetic and Evolutionary Computation Conference, GECCO
2012, pp. 743–750. ACM, New York (2012)

19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

20. Stober, P., Yeh, S.T.: An explicit functional form specification approach to estimate
the area under a receiver operating characteristic (roc) curve, vol. 7 (2007),
http://www2.sas.com/proceedings/sugi27/p226--227.pdf7

21. Geisser, S.: Predictive Inference. Chapman and Hall, New York (1993)
22. Whitcher, B., Schmid, V.J., Thornton, A.: Working with the DICOM and NIfTI

data standards in R. Journal of Statistical Software 44(6), 1–28 (2011)
23. Hu, M.: Visual pattern recognition by moment invariants. Trans. Info. Theory IT-8,

179–187 (1962)
24. Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture mea-

sures with classification based on kullback discrimination of distributions. In: Pro-
ceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR
1994), pp. 582–585. IEEE (1994)

http://www2.sas.com/proceedings/sugi27/p226--227.pdf7

NEAT, There’s No Bloat

Leonardo Trujillo, Luis Muñoz, Enrique Naredo, and Yuliana Martínez

Tree-Lab, Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería
Eléctrica y Electrónica, Instituto Tecnológico de Tijuana, Blvd. Industrial y Av. ITR

Tijuana S/N, Mesa Otay C.P. 22500, Tijuana B.C., México
{leonardo.trujillo,lmunoz}@tectijuana.edu.mx,

{enriquenaredo,ysaraimr}@gmail.com
www.tree-lab.org

Abstract. The Operator Equalization (OE) family of bloat control
methods have achieved promising results in many domains. In partic-
ular, the Flat-OE method, that promotes a flat distribution of program
sizes, is one of the simplest OE methods and achieves some of the best
results. However, Flat-OE, like all OE variants, can be computation-
ally expensive. This work proposes a simplified strategy for bloat control
based on Flat-OE. In particular, bloat is studied in the NeuroEvolution
of Augmenting Topologies (NEAT) algorithm. NEAT includes a very
simple diversity preservation technique based on speciation and fitness
sharing, and it is hypothesized that with some minor tuning, speciation
in NEAT can promote a flat distribution of program size. Results indi-
cate that this is the case in two benchmark problems, in accordance with
results for Flat-OE. In conclusion, NEAT provides a worthwhile strategy
that could be extrapolated to other GP systems, for effective and simple
bloat control.

Keywords: NEAT, Bloat, Operator Equalization.

1 Introduction

Situating genetic programming (GP) within the larger machine learning com-
munity, it is evident that GP still suffers from some theoretical and practical
issues that have limited its acceptance as a general problem solving tool [1].
Concretely, GP is seen as an inefficient search method, since it has a large com-
putational overhead and produces highly complex or uninterpretable solutions.
These inefficiencies are mostly related to two underlying problems in standard
GP algorithms. Firstly, most GP systems search directly within the space of syn-
tactic expressions, making it difficult to explicitly analyze the fitness landscape
or search gradient. To address this, some researchers are now considering other
spaces that are concurrently sampled during a GP search, such as semantic space
[2] and behavioral space [3–5]. Secondly, given that GP employs a variable length
representation, it is severely hampered by the effects of the bloat phenomenon.
Indeed, bloat can be seen as the main cause of the high computational costs and
unnecessary complexity of evolved solutions. Because of this, bloat has been the

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 174–185, 2014.
© Springer-Verlag Berlin Heidelberg 2014

NEAT, There’s No Bloat 175

topic of much research, that ranges from theoretical analysis to heuristic bloat
control [6].

Recently, the bloat control method called Operator Equalisation (OE) has
shown promise [7], given its theoretically sound foundation and outstanding
results, summarized in the recent paper by Silva et al. [8]. OE is reviewed in the
following section, for now let us state that the main idea behind OE methods
is that of explicitly enforcing a specific distribution of program size at each
generation. Early works on OE focused on determining the best distribution that
would allow the GP search to find nearly optimal solutions without incurring
bloat. However, while different size distributions have been used, a recent paper
by Silva [9] suggested that the best distribution might also be the simplest, a
flat distribution of program size.

Building on these insights, this paper studies bloat from a different but related
view point. This work considers a GP-like system designed to evolve neural net-
works (NNets), called NeuroEvolution of Augmenting Topologies (NEAT) [10].
While NEAT is a popular algorithm within the evolutionary computation (EC)
community, it is normally not considered as a GP algorithm. However, the dif-
ferences between what might be considered a standard GP and NEAT are slight.
Moreover, while the differences are small, their effects can be substantial. In par-
ticular, NEAT indirectly enforces restraints on the program size distribution by
employing speciation and fitness sharing during the search. While the original in-
tent was to protect structural innovations and promote an incremental evolution
of solution complexity, this work hypothesizes that an indirect consequence is
that it generates a (nearly) flat distribution of program size. Therefore, based on
the results from Silva [9], it follows that NEAT should also perform a bloat-free
search.

Therefore, the experimental work presented here is aimed at illustrating that
NEAT does not bloat, in accordance with the conclusions of [9]. Moreover, as
it will be described below, this is achieved by very simple and widely known
methods within the EC community, speciation and fitness sharing. Finally, while
previous papers have speculated or assumed that NEAT might actually have
some intrinsic bloat control properties, this paper is the first (to the authors
knowledge) that explicitly studies bloat in NEAT and attempts to determine
under what circumstances can NEAT evolve without bloat.

The rest of the paper proceeds as follows. Section 2 reviews bloat related re-
search and the OE family of methods. Afterwards, NEAT is presented in Section
3 and the hypothesis of this work is outlined. Section 4 presents the experimental
work and summarizes the main results. Finally, concluding comments and future
work are outlined in Section 5.

2 Bloat

Bloat is normally defined as the increase in average program size without a
proportional increase in fitness. This definition is quite fuzzy, but in general we
can state that bloat occurs when the best fitness stagnates while the average

176 L. Trujillo et al.

program size continues to grow. In what follows, we provide a brief overview of
related research; for a more detailed survey see [6, 8].

2.1 Causes of Bloat and Bloat Control Methods

As stated before, bloat has been one of the main areas of GP research, and
also represents one of its most intriguing open challenges [1]. The most well
established explanation regarding the causes of bloat is the fitness-causes-bloat
theory (FCBT), developed by Langdon and Poli [11]. The FCBT is based on the
fact that: a) there is a many-to-one mapping from syntactic space to semantic or
fitness space; and b) there are exponentially more large programs with a given
fitness than small ones. Hence, if a particular fitness value is desired, there is
a tendency towards larger, or bloated, programs during a GP search, simply
because there are more large programs than small ones. Indeed, stating that the
search for fitness is the main cause of bloat is by now uncontroversial, since it
is basically the underlying factor in all major theories of bloat [6]. Moreover,
recent work suggests that a GP search that does not consider fitness explicitly
can in fact avoid bloat by promoting solution novelty [12, 5].

Currently, one of the most useful theories that describe the bloating process is
the crossover bias theory (CBT), developed by Dignum and Poli [13]. Focusing on
standard Koza style GP, the CBT states that bloat is produced by the effect that
subtree mutation has on the tree size distribution. While the average size of trees
is not affected by crossover, the size distribution is. Subtree crossover produces
a large number of small trees, which for most problems achieve very low fitness.
Therefore, selection will favor larger trees, causing an increase in the average tree
size within the population, effectively bootstrapping the bloating effect. Given
the insights provided by the CBT, Dignum and Poli [7] proposed the Operator
Equalisation bloat control method, that focuses on explicitly controlling the
distribution of program sizes at each generation. OE has produced impressive
results in several benchmark and real-world problems, and the original proposal
has lead to a family of related methods [8]. Despite the success of OE, there are
several concerns with the method. For instance, it relies on a computationally
expensive process of generating, evaluating and in many cases rejecting program
trees that do not fit the target distribution. Moreover, recent results suggest that
some of the underlying assumptions in OE may not be justified, as discussed
below.

2.2 The Secret Behind Operator Equalization

Silva attempted to develop a stripped down OE method, that would be simpler,
with a lower computational cost, while also preserving the main properties of
OE [9]. However, the proposed simplified approximation failed at controlling
bloat. The reason for this appears to lie in a contradiction of OE with the CBT.
Since the CBT suggests that small individuals are harmful to the evolutionary
process, OE methods tend to promote target size distributions that exclude
such individuals. However, while the methods are designed to promote such

NEAT, There’s No Bloat 177

distributions, in practice OE does not actually fit them. In fact, [9] shows that OE
tends to produce uniform or flat distributions, with a roughly similar proportion
of trees of different sizes, from small to large trees. This lead Silva to propose the
Flat-OE variant, where a flat target is sought, and experimental results suggest
that Flat-OE can control bloat while not compromising the quality of the evolved
solutions.

The original strategy by Silva in [9] seems quite reasonable: determine the
underlying properties of OE and develop an approximate algorithm that satisfies
these properties. The proposal was to use Brood recombination [14] and dynamic
limits [6] as the general ingredients underlying OE. While this combination failed,
it did so because the underlying assumptions behind what OE was actually
doing were wrong. However, the general strategy merits further attention; i.e.,
develop an approximate version of OE that is based on computationally simpler
methods. In this paper, the same strategy is adopted, but instead of attempting
to reproduce the original OE algorithms, the goal is to focus on Flat-OE. To do
so, our proposal is to step out of the traditional GP framework, and study an
algorithm that is widely used in other EC areas.

3 NeuroEvolution of Augmenting Topologies

The main contribution of this work is to study bloat in a GP algorithm that
approximates the basic functionality of Flat-OE by inducing a flat distribution
of program size. The algorithm studied here is NeuroEvolution of Augmenting
Topologies (NEAT), developed by Stanley and Miikkulainen [10]. While NEAT
was originally proposed as an algorithm to automatically generate neural net-
works (NNets), it should in fact be considered as a GP variant. Moreover, NEAT
is constructed in such a way that it is able to promote a size distribution that ap-
proximates that of Flat-OE, something that is shown in the experimental section
of this paper. Moreover, NEAT accomplishes this using simple and well-known
EC methods. In what follows, NEAT is presented and its most relevant details
are discussed. Additionally, care is taken to convince the reader that the general
approach followed by NEAT fits in nicely within the GP paradigm, and that as
such, it is a relevant object of study from the GP point of view.

3.1 NEAT Features

In their original paper, Stanley and Miikkulainen present NEAT as a variable
length genetic algorithm that explicitly encodes the topology and set of connec-
tion weights of a NNet [10]. The basic NEAT algorithm can be broken down into
the following main features or components.

The first main ingredient of NEAT is its reliance on a special variable length
representation. The genome is conceptually divided in two segments: the first
contains node genes that specify the set of input, output and hidden nodes of
the network; while the second segment contains the set of connection or synaptic
genes, that specify the input and output node of each connection and its respec-
tive weight. To allow search operations that are coherent between NNets of

178 L. Trujillo et al.

different sizes, NEAT includes historical markings for each synaptic connection.
In this way, when crossover is performed between two parent NNets, that can
have different network topologies, the connection genes are first aligned based on
these historical markings, identifying the shared structure between both parents
(nodes and connections). Matching genes between two parents are randomly in-
herited from either parent, but any disjoint or excess genes are inherited from
the most fit parent. Moreover, the connection weights are also inherited after
a crossover operation. One thing that NEAT does not evolve is the activation
functions, these are set a priori for all hidden and output nodes.

Second, since NEAT is designed to search for NNets, the variable length repre-
sentation encodes graph structures. Other search operators include a parameter
(weight) mutation, and structural mutations that can either add nodes or add
connections. This set of search operators is unusual, in the sense that they al-
ways produce offspring of equal or larger size than the parents, a configuration
that promotes code growth.

Third, NEAT encourages an incremental evolution of solution complexity
(size). The initial population only contains NNets that share the same mini-
mal topology, in most cases this is a fully connected feedforward NNet with no
hidden neurons and random connection weights. NEAT assumes that the best
way to perform the search is to start with the simplest NNets, and progressively
build complexity through the search operators. In this way, if the problem can
be solved by a parsimonious NNet the search might be able to find it early on,
and only if it fails will the search progress to larger topologies.

Finally, NEAT incorporates a scheme that protects topological innovation. At
the beginning of the run all of the individuals share the same initial structure,
and the search focuses on improving the connection weights of the networks.
The search operators progressively add structural elements (node or connection)
to the base topology, and each time a new node and/or connection is generated
its weight is instantiated randomly. This causes a problem, because a randomly
generated connection with a randomly set weight will, with high probability,
have a destructive effect on fitness. However, it is reasonable to assume that an
increase in structural complexity might be required to solve difficult problems;
therefore, there is a need to protect these structural innovations so they are
not discarded by selection. NEAT accomplishes this by using speciation based
on topological similarities and fitness sharing [15], where the fitness of each
individual is penalized based on its similarity with other individuals. The key
element in the NEAT proposal is the use of a problem specific distance measure
δ, based on the topological similarities between two NNets expressed by the
number of disjoint genes D and excess genes G between them, given by

δ =
c1 ·G+ c2 ·D

N
+ c3 ·W , (1)

where W is the average weight difference of matching genes, N is the number of
genes in the larger genome, and cx are linear parameters.

NEAT, There’s No Bloat 179

3.2 NEAT, GP and Bloat

The last point of the preceding section is key to the bloat discussion and how
NEAT relates to Flat-OE. It can be argued that grouping NNets based on topol-
ogy is not the best way to promote a diverse set of functional behaviors [16].
Nevertheless, speciation based on topological similarities can promote a diverse
population of network topologies; i.e. a diverse population of network shapes
and, most importantly, sizes. Therefore, NEAT provides a promising algorith-
mic approximation to the main strategy underlying Flat-OE. If the previous
observation is correct then we should expect NEAT to evolve bloat free. This is
the focus of the experimental work in this paper, evaluate if NEAT bloats on
standard benchmark problems. Before turning to the experimental setup and
results, lets first contextualize NEAT within the broader GP paradigm.

GP can be defined as a variable length evolutionary algorithm that evolves
syntactic expressions that are interpreted as simple computer programs, func-
tions, operators or models. On the other hand, NEAT is a variable length evo-
lutionary algorithm that evolves graph structures which represent NNets. From
this general perspective, we can state that NEAT is a special form of GP, where
evolved solutions express instances from a narrow class of functions, those that
can be represented as NNets. However, the results obtained with NEAT can
provide useful insights to the GP paradigm as a whole, just as any other exper-
imental work done with other common GP variants.

Additionally, it is important to mention that it has been previously hypoth-
esized that NEAT might intrinsically control bloat1. For instance, it was specu-
lated that the crossover operator might in some way discourage bloat; however
this is probably incorrect, since in every case crossover will produce offspring that
are at least as large as their parents, while also incurring a decrease in fitness due
to the structural modifications which tend to be highly destructive. Speciation
has also been identified as a possible bloat control mechanism, however, as will be
shown in the experimental work, the original NEAT implementation does present
bloat, and care must be taken in adequately parameterizing NEAT. Therefore,
this work is the first to identify a proper bloat-free NEAT configuration, and
the first to extensively and explicitly evaluate NEAT from the perspective of the
bloat phenomenon.

4 Experiments

The goal of the experimental work is to determine if NEAT can evolve without
bloating. Since NEAT is a fairly complex and intricate algorithm, we employ the
freely available Java implementation2 which closely follows the original NEAT

1 To the authors knowledge, the only explicit discussion of this issue is given in the
official NEAT website http://www.cs.ucf.edu/~kstanley/neat.html

2 http://nn.cs.utexas.edu/?jneat

http://www.cs.ucf.edu/~kstanley/neat.html
http://nn.cs.utexas.edu/?jneat

180 L. Trujillo et al.

Table 1. Parameter settings used in the experimental setup for NEAT and Bloat-Free
NEAT (BF-NEAT)

Parameters NEAT BF-NEAT
Weight mutation power 2.5 9.0
Recurrent probability 1.0 0.1
Disjoint parameter c1 1.0 0.5
Excess coefficient c2 1.0 1.0
Weight coefficient c3 0.4 0.0
Compatibility threshold δmin 3.0 9.0
Age significance 1.0 9.0
Survival threshold 0.2 0.8
Population size 200 200
Drop-off age 50 1000

algorithm published in [10] 3. To evaluate the algorithm, two standard bench-
mark problems are used, the XOR problem and 3-bit parity problem, which
are both distributed as part of the Java library. NEAT performance is analyzed
using fitness, and the total size of the solutions, given by the number of nodes
in each solution. To visually analyze NEAT behavior, the results are presented
using three types of plots. Firstly, plots that show how the actual distribution
(histogram) of program size evolves over time, considering the number of indi-
viduals and the number of species of a certain size that are present within the
population at each generation; in the case of species size, this is determined by
the average of all individuals that belong to a species. Secondly, classic conver-
gence plots of best solution fitness and best solution size w.r.t. generations, to
compare different algorithm configurations. Finally, all of the results presented
below are averages of thirty independent runs.

One of the main limitations with NEAT is that it uses a large set of parame-
ters. Therefore, NEAT is tested using the parameter values suggested in [10]; see
second column of Table 14. Figure 1 presents plots that summarize the perfor-
mance on the XOR problem, considering the size distribution at each generation.
Figure 1a shows the distribution of individuals based on the number of nodes and
1b shows the distribution of species. First, it is clear that the size distribution of
NEAT is biased toward larger programs at each generation, as small programs
are quickly replaced by larger ones, this leads to an evident bloating effect during
the run. Similarly, Figure 2 presents the same analysis for the Parity problem,
exhibiting similar trends.

3 While there are many open implementations of NEAT available, many of them are
modified or simplified variants of the original algorithm, and it is not straightforward
to determine what consequences these modifications, no matter how slight, can have
on the search dynamics.

4 Some parameters were omitted due to size limitations, these are kept with their
default values.

NEAT, There’s No Bloat 181

(a) Individuals distribution (b) Species distribution

Fig. 1. Evolution of Size for NEAT on the XOR problem: a) Size distribution of indi-
viduals based on number of nodes; b) Size distribution of species based on number of
nodes

(a) Individuals distribution (b) Species distribution

Fig. 2. Evolution of Size for NEAT on the Parity problem: a) Size distribution of
individuals based on number of nodes; b) Size distribution of species based on number
of nodes

At first, these results suggest that NEAT cannot promote a flat distribution
of program size; i.e. does not run bloat-free. Therefore, NEAT is reparametrized
as shown in the third column of Table 1, this NEAT configuration is called
bloat-free neat or BF-NEAT. The main changes are justified as follows.

– First, c3 = 0 because W is not relevant to a speciation process that needs to
promote size diversity.

– Second, c1 = 0.5 and c2 = 1, focusing the speciation condition on the number
of excess genes, which are the most relevant when considering code growth.

– Third, the parameter mutation power controls the range of possible values for
connection weights; this is increased to 9, allowing the search to thoroughly
explore each NNet topology.

– Fourth, the age significance parameter is increased w.r.t the original imple-
mentation, which protects new individuals and species. Note that doing so
slightly encourages program growth, since the search operators will always
produce larger NNets.

182 L. Trujillo et al.

(a) Individuals distribution (b) Species distribution

Fig. 3. Evolution of Size for BF-NEAT on the XOR problem: a) Size distribution of
individuals based on number of nodes; b) Size distribution of species based on number
of nodes

(a) Individuals distribution (b) Species distribution

Fig. 4. Evolution of Size for BF-NEAT on the Parity problem: a) Size distribution of
individuals based on number of nodes; b) Size distribution of species based on number
of nodes

– Fifth, survival threshold defines the percentage of the best individuals that
can reproduce, using a small value makes the search process more greedy,
potentially biasing the search in other ways.

– Sixth, the parameter dropoff age eliminates under-performing species every
certain number of generations; however according with FlatOE size diversity
should not be lost during the run.

With these modifications, the same experiments are repeated for BF-NEAT,
evaluating its performance on XOR and Parity, the results are shown in Figures
3 and 4. In this case, the effects of the new parameters are clear, a flatter dis-
tribution of program sizes is exhibited, and the bloating effect is substantially
curtailed. Additionally, Figures 5 and 6 compare the performance of NEAT and
BF-NEAT, on the XOR and Parity problems respectively. Figures 5b and 6b
show how solution size evolves, and Figures 5c and 6c show how the best fitness
evolves. From these figures it is possible to state that solution size is greatly
reduced in BF-NEAT, without compromising solution quality.

NEAT, There’s No Bloat 183

0 100 200 300 400 500
7

8

9

10

11

12

13

14

15

16

Generations

F
it

n
es

s

NEAT
BF NEAT

(a) Best Fitness

0 100 200 300 400 500
0

5

10

15

20

25

30

35

Generations

N
o

d
es

NEAT
BF NEAT

(b) Nodes

Fig. 5. Performance on the XOR problem: a)Best Fitness and b)Number of Nodes

0 100 200 300 400 500
24

26

28

30

32

34

36

38

40

42

44

Generations

F
it

n
es

s

NEAT
BF NEAT

(a) Parity NEAT vs. BF NEAT Fintness

0 100 200 300 400 500
5

10

15

20

25

30

Generations

N
o

d
es

NEAT
BF NEAT

(b) Parity NEAT vs. BF NEAT Nodes

Fig. 6. Performance on the Parity problem: a)Best Fitness and b)Number of Nodes

4.1 Discussion

In general, the initial results are encouraging, suggesting that the hypothesis of
this work is correct, NEAT can be executed without bloat by promoting a close
to uniform distribution of program size. Let us now analyze what might be the
main causes for these results. To do so, we consider each of the NEAT features,
and analyze what, if any, might be their influence.

First, NEAT uses a graph representation, which by itself has no intrinsic
bloat controlling properties. Second, maybe the search operators are designed
to discourage code growth. However, the original NEAT algorithm only used
search operators that promoted an increase in size, which is highly unusual in
GP. Nonetheless, NEAT can be configured to run bloat free.

Third, NEAT starts off evolution with the smallest possible topology that
considers all of the input elements or terminals. According to the CBT, this can
encourage bloat, since small solutions will normally exhibit below average fitness.
Moreover, by starting with the smallest possible size of individuals, populations

184 L. Trujillo et al.

can only increase in size for NEAT to explore the search space. Hence, it appears
that this feature is not responsible for controlling bloat.

This leaves us with the final feature of the NEAT algorithm, specification
based on topology or size. Basically, speciation in NEAT can be configured to
promote the survival of solutions of different sizes. In other words, it can promote
a uniform, or flat, distribution of program sizes. The experimental results confirm
this hypothesis, which are coherent with the performance exhibited by Flat-OE.
However, it is also crucial to understand that this behavior cannot be obtained
using NEAT out-of-the-box, since the original set of NEAT parameters and values
were not designed to explicitly control bloat.

5 Concluding Remarks and Future Work

This paper studies the bloat phenomenon in GP, following the insights provided
by the Flat-OE method. What previous results suggest is that by preserving di-
versity within the population, bloat can be substantially controlled [9]. Moreover,
this general idea has been confirmed by other works, where the search is guided
based on solution novelty instead of solution quality [12, 5]. In this work, bloat is
studied using NEAT, which explicitly incorporates speciation techniques based
on the topology of the evolved solutions. Results are encouraging, the simple
speciation process controls bloat effectively, when an adequate parametrization
of the algorithm is provided. In particular, the algorithm should explicitly pro-
mote species formation based on differences related to solution size and allow
the search to promote exploration, without easily rejecting smaller, and older,
individuals. Future work will focus on extrapolating the lessons learned in this
study to a more common GP system, such as tree-based GP or linear GP. In
these cases, care will need to be taken to define a proper similarity measure, and
an extensive evaluation in diverse domains should be carried out. Nevertheless,
it appears that bloat control might be simple to implement and promote using
the insights provided by NEAT.

Acknowledgments. Funding provided by CONACYT (Mexico) Basic Science
Research Project No. 178323, DGEST (Mexico) Research Projects No.5149.13-P
and TIJ-ING-2012-110 and IRSES project ACoBSEC from the European Com-
mission. Second, third and fourth authors are supported by CONACYT (Mexico)
scholarships, respectively No. 302526, No. 232288 and No. 226981.

References

1. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic pro-
gramming. Genetic Programming and Evolvable Machines 11(3-4), 339–363 (2010)

2. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg
(2012)

NEAT, There’s No Bloat 185

3. Naredo, E., Trujillo, L., Martínez, Y.: Searching for novel classifiers. In: Krawiec,
K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS,
vol. 7831, pp. 145–156. Springer, Heidelberg (2013)

4. Naredo, E., Trujillo, L.: Searching for novel clustering programs. In: Proceeding
of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference, GECCO 2013, pp. 1093–1100. ACM, New York (2013)

5. Trujillo, L., Naredo, E., Martínez, Y.: Preliminary study of bloat in genetic pro-
gramming with behavior-based search. In: Emmerich, M., et al. (eds.) EVOLVE -
A Bridge between Probability, Set Oriented Numerics, and Evolutionary Compu-
tation IV. AISC, vol. 227, pp. 293–305. Springer, Heidelberg (2013)

6. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

7. Dignum, S., Poli, R.: Operator equalisation and bloat free gp. In: O’Neill, M.,
Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa,
A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer,
Heidelberg (2008)

8. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13(2), 197–238 (2012)

9. Silva, S.: Reassembling operator equalisation: a secret revealed. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO
2011, pp. 1395–1402. ACM, New York (2011)

10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

11. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Proceedings of the Second On-
line World Conference on Soft Computing in Engineering Design and Manufactur-
ing, pp. 13–22. Springer (1997)

12. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

13. Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program
sizes in tree-based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A.,
Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp.
193–204. Springer, Heidelberg (2007)

14. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear
Jr., K.E. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cam-
bridge (1994)

15. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the Second International Conference on
Genetic Algorithms and their Application, pp. 41–49. Erlbaum Associates Inc.,
Hillsdale (1987)

16. Trujillo, L., Olague, G., Lutton, E., Fernández de Vega, F., Dozal, L., Clemente,
E.: Speciation in behavioral space for evolutionary robotics. Journal of Intelligent
& Robotic Systems 64(3-4), 323–351 (2011)

The Best Things Don’t Always Come

in Small Packages:
Constant Creation in Grammatical Evolution

R. Muhammad Atif Azad and Conor Ryan

CSIS Department, University of Limerick, Ireland
{atif.azad,conor.ryan}@ul.ie

http://bds.ul.ie

Abstract. This paper evaluates the performance of various methods
to constant creation in Grammatical Evolution (GE), and validates the
results against those from Genetic Programming (GP). Constant cre-
ation in GE is an important issue due to the disruptive nature of ripple
crossover, which can radically remap multiple terminals in an individ-
ual, and we investigate if more compact methods, which are more simi-
lar to the GP style of constant creation (Ephemeral Random Constants
(ERCs), perform better.

The results are surprising. The GE methods all perform significantly
better than GP on unseen test data, and we demonstrate that the stan-
dard GE approach of digit concatenation does not produce individuals
that are any larger than those from methods which are designed to use
less genetic material.

Keywords: Grammatical Evolution, Constants, Symbolic Regression,
Genetic Programming, Digit Concatenation.

1 Introduction

Typically, symbolic regression finds a function to explain a given data set. In
traditional Machine Learning [1] this involves optimising the parameters of a pre-
defined objective function using an Artificial Neural Network (ANN), Support
Vector Machine (SVM) or some other numerical method. These methods work
efficiently partly because, with a known target function, they only explore the
parameter space to minimise the error between expected and predicted outputs.

Genetic Programming (GP) takes symbolic regression to another level: it ex-
plores both the space of functions and the associated parameters (constants)
simultaneously. Therefore, finding suitable numeric constants is essential to how
GP performs. However, GP typically does not involve specialised mechanisms
for optimising numeric constants. Instead, GP uses ephemeral random constants
(ERCs) [2], that randomly initialise numeric terminal nodes in a GP population.
Thereafter, genetic operators recombine and filter out (possibly erroneously)
these ERCs. The combined tasks of optimising structure and constants can be
very difficult: for example Keijzer [3] noted that given a target function of 100+x2

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 186–197, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://bds.ul.ie

Constant Creation in Grammatical Evolution 187

such that x ∈ [−1, 1], GP approximated the numeric constant 100 but lost the
genetic material to encode x2. To combat this, Keijzer proposed linear scaling,
a form of linear regression to optimise the slope and intercept of evolving GP
functions to assist GP. Other proposals include numerical methods [4][5] as well
as specialised mutation operators [6][7].

This paper investigates methods for evolving constants in Grammatical Evo-
lution (GE) [8] on a number of problems from the symbolic regression domain.
GE is a genetic programming system that maps a genotype, a linear string of 8
bit integers termed codons, to a functional expression from a language of choice,
which is defined by a context free grammar (CFG). Usually, GE uses digit con-
catenation [9] to evolve constants. In this method, a string of GE codons select
the constant defining rules from a grammar to yield the desired constant.

Since digit concatenation uses several codons to produce a number, that num-
ber can change when passed onto offspring, unlike a number encoded in a more
compact way, i.e. as in GP. This is due to the so-called ripple effect of GE
crossover, [10] which propagates changes to genetic material from left to right.
We compare digit concatenation to two other compact methods that do not
require several codons to encode a constant: these are, a GE version of ERCs
called persistent random constants (PRCs) [9] and a codon injection method that
directly converts a GE codon into a floating point value.

This work goes further than previous studies which focused on evolving so-
lutions which were a single constant [11–13], because, as [6] notes, optimising
constants alongside mathematical functions is a different challenge and, we be-
lieve, more relevant to the GP community. One early related work [9] showed
the utility of digit concatenation to a few instances of Binomial-3 problem [14];
here we also consider other problems. Moreover, we compare different methods
both with and without linear scaling and also compare against the benchmark
results from GP because GP is commonly used for symbolic regression. Finally,
previous work solely compared training results; instead, we also consider un-
seen test data as well as genome lengths of the individuals to ascertain if the
compact methods breed relatively more predictive and compact genomes.

The results show that GP consistently outperforms GE on training data;
however, on the test data, GE, regardless of the constant creating method, does
better. However, among themselves, the various GE methods perform equally
well on all the criteria. Notably, the genome lengths with digit concatenation are
no greater than those with the compact methods. Moreover, using GP-like PRCs
does not bridge the gap in training results of GP and GE, which suggests that
the key difference between GP and GE is how the respective genetic operators
behave. We also conclude that the compact methods are not effectively compact,
give our reasons for that and give directions for further work.

The rest of the paper is organised as follows: section 2 gives a background to
constant creating methods in GE and builds a motivation to this study; section 3
describes the experimental setup, presents the results and discusses the lessons
we can learn from these results; finally, section 4 concludes the paper.

188 R.M.A. Azad and C. Ryan

2 Background

Digit concatenation with GE [11] [9] requires a CFG with appropriate rules for
generating numeric constants. For example, with the grammars below and a rule
<expr> ::= <const> | -<const>, cat-UnLtd can, in theory, encode any real
constant, whereas cat-0-to-5 limits the values to the domain (−5, 5).

cat-UnLtd: cat-0-to-5:

<const> ::= <cat>.<cat> <const>::= <fdig>.<cat>

<cat> ::= <cat><digit>|<digit> <cat> ::= <cat><digit> | <digit>

<digit>::= 0 | 1 | 2 | 3 | 4 <fdig> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9 <digit> ::= 0 | 1 | 2 | ... | 9

This approach has some side effects. First, the number of codons GE takes
to encode a constant is equal to the number of digits in it. Later, crossover can
break the constant so that it does not pass on to the offspring intact. This is
unlike as in GP, where an ERC is atomic. Thus, a stronger causality exists in
GP, where offspring are likelier to resemble their parents. In fact, as noted in [6],
a small number of ERCs quickly dominate the population, with many appearing
multiple times in later generations. This is what initially motivated us to ask
if GE can benefit from a more GP-like approach, as it appears as though GP
first settles on the constants and then builds structure (functions) around them.
Second, GE is free to encode a greater number of digits than that allowed by
the underlying machine architecture, and as the machine ignores these additional
digits, they provide a bloating opportunity. Thus, the next question is: does digit
concatenation produce longer genomes than those with an ERC type approach?

To answer these questions we consider two compact representations for GE
constants. The first, termed persistent random constants (PRCs) [11] embeds
randomly generated constants (from a given range) inside the grammar as alter-
native choices. A single codon can pick a constant by selecting the corresponding
rule. Previously digit concatenation outperformed PRCs when the objective was
to evolve a single constant [11]. As the second method, we consider a codon injec-
tion method [15], whereby when the non-terminal <const> is read, the following
8 bit codon value is converted into a floating point value in a given range. As in
[12, 13], only a single codon produces a numeric constant.

While previous work investigated evolving a fixed constant, this paper con-
cerns the more traditional symbolic regression. We check if compact represen-
tations are effectively more compact: that is, whether these methods produce
higher fitness and smaller genomes. We also note results on unseen data to see
if any method produces better predictive models.

3 Experiments

For the best fit individual we note: score on training data (best fitness); score on
unseen (test) data; and genome length. We record genome lengths to compare
which method requires more genetic material. Digit concatenation takes multiple

Constant Creation in Grammatical Evolution 189

codons to create a single constant (unless the constant has just a single digit);
likewise, multiple PRCs may combine to create a constant. We record these
statistics every generation and present their mean values over 100 independent
runs. Moreover, we also record all the statistics with linear scaling.

Also, we use results for GP as a benchmark. Clearly, GP differs from GE in
many ways: the genetic representation and genetic operators differ; consequently,
we expect some difference in performance. However, since GP is more widely used
for symbolic regression, we consider its results to validate the performance of GE.
We want to see if the difference in performance is consistent (GP is always better
or worse than GE), and whether using a relatively more GP-like approach with
PRCs bridges the gap in performances of GP and GE.

We consider five different constant creating methods for GE. These are (leg-
ends in brackets): digit concatenation with constants from an infinite real do-
main (cat-UnLtd); digit concatenation with absolute values of constants limited
to (0, 5) (cat-0-to-5); 50 and 25 persistent random constants embedded in the
grammar (50-PRC-0-to-5 and 25-PRC-0-to-5) also derived from (0, 5); and the
codon injection method that directly decodes a GE codon into a numeric value
(codon-0-to-5). All these methods can also generate negative numbers.

The respective grammars incorporate problem specific input variables and
arithmetic operators in a prefix notation.

3.1 Problem Suite and Evolutionary Parameters

All experiments use a population size of 500, roulette wheel selection, steady
state replacement and crossover with a probability of 0.9. For GE, we use the
conventional [8][16] bit wise mutation with a probability of 0.01, while for GP,
we use point mutation with a standard probability value of 0.1 [2]. We use
ramped half and half initialisation for GP with an initial maximum tree depth
of 4; for GE we use the grammatical counterpart of this initialisation termed
sensible initialisation [16]. Sensible initialisation uses a context free grammar to
generate derivation trees for GE using a ramped half and half approach. We use
a maximum initial depth of derivation trees of 10 (which is larger than 4 for GP)
since a big derivation tree can still yield a small abstract syntax tree and GE
grows trees at a slower rate than with standard GP [9].

Although we do not constrain tree sizes or maximum depth for GP (and GE),
in the experiments reported here the average tree size for GP never exceeds 250;
this is well below the maximum size allowed by a commonly used maximum tree
depth of 17 for binary trees. Another side effect of a maximum tree depth is
that it can prohibit extremely deep skinny trees. Deep skinny trees can encode
a particularly non-linear behaviour which may promote overfitting the training
data if the functions set contains unary transcendental functions [17]; however,
we only use binary arithmetic functions in this study.

We use six different problems from the symbolic regression domain here. As
Keijzer [3] notes, choosing a good set of problems for testing symbolic regression
is difficult in the absence of an established set of benchmarks. Like Keijzer, we
use the following problems from previous work on symbolic regression.

190 R.M.A. Azad and C. Ryan

f(x) = 0.3xsin(2πx) (1)

f(x) = 1 + 3x+ 3x2 + x3 (2)

f(x, y) = 8/(2 + x2 + y2) (3)

f(x, y) = x4 − x3 + y2/2− y (4)

f(x, y) = x3/5 + y3/2− y − x (5)

f(x1, · · · , x10) = 10.59x1x2 + 100.5967x3x4 − 50.59x5x6 + 20x1x7x9 + 5x3x6x10(6)

(1) comes from [18]; (2), also termed as Binomial-3, is a scalably difficult problem
for GP [14] and has been investigated with GE [9]; (3), (4) and (5) come from
[4]; and (6), referred to as Poly-10 in the figures in this paper, is a version of a
difficult problem described in [19]. The dimensionality of these problems varies
between 1 and 10 and their difficulty to GP type approaches also varies as is
visible from the scales of the best fitness plotted in Fig. 1.

We use a variant of the standard one point crossover for GE termed effective
crossover [15]. Since the entire lengths of GE chromosomes may not be used
for mapping, the non-mapping regions in GE chromosomes can grow larger and
larger; this transforms crossover into a duplication operator as crossing over in
the non-mapping regions does not innovate in the phenotype space. Therefore,
the effective crossover restricts the crossover point to within the mapping regions.

As noted in [3], protected division (and protected operators in general) can
lead GP to producing models that do not generalise well to unseen data; there-
fore, we do not use protected division. Instead, in the case of a division by zero,
we penalise the offending individual by assigning it the worst fitness value of 0.0.

All the GE experiments use libGE [15], while the GP experiments use TinyGP1.
Evolutionary runs terminate after completing 50 generations.GPuses 50 constants
from the domain (−5, 5) and like GE, only uses arithmetic operators.

For each problem, we randomly initialise input variables between −1.5 and 1.5
and generate 100 data points. We randomly choose 50 data points for training
and an equal number of data points for testing on unseen data (test data).

3.2 Results

Figures 1-4 plot the results of the experiments. The x-axis consistently cor-
responds to 50 generations. The training and test scores are sums of squared
errors (SSE) normalised between 0.0 and 1.0 (1.0 being the ideal score) as fol-
lows: score = 1

1+SSE . Each sampled point in the plots depicts an average over
100 independent runs. As in [20], the 95% confidence limits of the error bars at
each point are computed as follows: X ± 1.96 σ√

n
, where X and σ are the mean

and standard deviation of n observations; n = 100 represents the number of runs
in this case. We can be 95% confident that the statistical population lies within
these limits, and that a lack of overlap with another error bar means that the
corresponding populations are different.

1 http://cswww.essex.ac.uk/staff/rpoli/TinyGP/

http://cswww.essex.ac.uk/staff/rpoli/TinyGP/

Constant Creation in Grammatical Evolution 191

 0.97

 0.972

 0.974

 0.976

 0.978

 0.98

 0.982

 0.984

 0.986

 0 10 20 30 40 50

0.3xsin(2pix): Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

F
itn

es
s

Binomial 3: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0 10 20 30 40 50

8 by 2+x2+y2: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50

F
itn

es
s

x4-x3+y2-y: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50

x3+y3-y-x: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10 20 30 40 50

F
itn

es
s

Poly-10: Best Fitness

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 1. This figure plots mean of best fitness achieved per generation for all the prob-
lems. No GE setup wins or loses consistently. On four problems, GP is significantly
better than any GE method.

Figures 1-3 plot the results for experiments without using linear scaling. Fig.
1 plots the best fitness on training data and shows that none of the GE constant
creating setups stands out consistently. In fact, various GE methods do quite
similarly. Moreover, GP does at least as well as GE (and usually better). Also,
using the PRCs does not bring GE any closer to GP.

Of particular interest is cat-UnLtd: unlike all other methods, GE chooses
from an infinite domain of constants. Except for problem (6), a domain of [-5,5]
is suitable and even advantageous. However, cat_UnLtd does no worse than the

192 R.M.A. Azad and C. Ryan

other GE methods, suggesting that the larger range of constants available (and
the correspondingly larger search space) poses no extra difficulty.

For problem (6) we also tried a domain of [-49,49] to assist methods other
than cat-UnLtd in approximating important constants of 100 and 50 but even
that did not change the relative performances; owing to space constraints we
can not reproduce those results in this paper. Results also do not show that the
brittle nature of constants with digit concatenation when facing crossover is a
disadvantage any more than that with compact methods: both cat_UnLtd and
cat-0-to-5 perform competitively with respect to the compact methods.

Fig. 2 plots the results for the same individuals as in Fig. 1 on the unseen data.
Again, no single GE method stands out. GP, however, changes behaviour on the
unseen data: unlike on the training data where GP performed at least as well as
GE methods, it now performs only at most as well as GE methods, and some
times significantly worse. Again, using PRCs does not affect GE significantly.

Next, we check if digit concatenation costs more by requiring longer genomes.
Fig. 3 plots the genome lengths for the best fit individuals and shows that again
digit concatenation is no worse than the compact methods. Moreover, while GP
genomes clearly grow towards the end of the runs, the lengths of GE genomes
remain relatively stable after an initial growth or drop. Note that GE genomes
encode derivation trees instead of abstract syntax trees (ASTs) in GP. However,
the set of leaves of a GE derivation tree can be interpreted as an AST and this
AST can be much smaller than the corresponding derivation tree; hence, at the
end of the runs the ASTs encoded by GE derivation trees are smaller than those
produced by GP even when the genome lengths are similar.

Next, we consider results with linear scaling. Due to space restrictions, we
present results only on test data; we only summarise the results on training data
and omit those on genome lengths because their relative trends are quite similar
to those without linear scaling.

While, as expected, linear scaling helps improve best fitness for all the setups
during training, the relative performances of various GE methods remain mutu-
ally competitive. Also, with linear scaling, the gap in the performance of GP and
GE narrows towards the end of the run; however, again, none of the compact
methods performs consistently better or worse than digit concatenation.

The scores on test data in Fig. 4 are also similar to those without linear
scaling: again, all of the various GE setups perform competitively; similarly, GP
performs at most as well as GE on the unseen data.

3.3 Discussion

The results from section 3.2 show that with the given evolutionary parameters
and data sets, GE performs equally well with a variety of constant creating
methods; however, GE differs significantly from GP. We only compared with GP
to check if there is enough reason to improve GE so it can match the more widely
prevalent method, that is, GP. The best fitness results, particularly without
linear scaling, show that GP trains better than GE; however, it does so at the cost
of degrading test set results. This is not altogether surprising given the growing

Constant Creation in Grammatical Evolution 193

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

0.3xsin(2pix): Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50

sc
or

e

Binomial 3: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 10 20 30 40 50

8 by 2+x2+y2: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50

sc
or

e

x4-x3+y2-y: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

x3+y3-y-x: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 10 20 30 40 50

sc
or

e

Poly-10: Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 2. This figure plots mean of Test Score per generation corresponding to Best-Fit
individuals reported in Figure 1. No GE setup wins or loses consistently. On three
problems, performance consistently degrades for GP.

GP literature which aims to improve performance on unseen data [17] [18]. What
is surprising, however, is that GE does so much better, at least on these problems.

The real focus of this work, however, is on comparing various constant creating
methods with GE. Digit concatenation is natural and easy to implement with
GE; however, it can take many codons to encode a single constant. As a result,
GE has to find a right sequence of codons and then ensure that crossover does not
break that sequence. Moreover, with the ripple crossover [10] in GE, constants
can not always transfer intact from the parent to offspring. However, the results

194 R.M.A. Azad and C. Ryan

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

0.3xsin(2pix): Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50

Le
ng

th

Binomial 3: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

8 by 2+x2+y2: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

Le
ng

th

x4-x3+y2-y: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

x3+y3-y-x: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50

Le
ng

th

Poly-10: Genome Length of Best Fit

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 3. This figure plots the mean genome lengths of the best fit individuals reported
in Figure 1. No GE setup maintains significantly different lengths.

here show that the compact methods (PRCs and codon injection) do not train
better than digit concatenation; this agrees with results in [9] [11]. However, on
a greater set of problems, we additionally find that compact methods produce
neither smaller genomes (surprisingly) nor better test set results.

The question then is: why does digit concatenation work as well as the other
methods? There can be two reasons. First, even with the compact methods if
the desired constant is not available, evolution combines various constants to get
the right one. Thus, PRCs, or ERCs in GP, are not always less breakable with
crossover. Secondly, [21, pp151-153] showed for a symbolic regression problem

Constant Creation in Grammatical Evolution 195

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50

0.3xsin(2pix): scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

sc
or

e

Binomial 3: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50

8 by 2+x2+y2: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50

sc
or

e

x4-x3+y2-y: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50

x3+y3-y-x: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0 10 20 30 40 50

sc
or

e

Poly-10: scaling : Best Fit on Test Data

cat-UnLtd
cat-0-to-5

GP
50-PRC-0-to-5
25-PRC-0-to-5

codon-0-to-5

Fig. 4. (With Linear Scaling): this figure plots mean of Test Score per generation for
the Best-Fit individuals. No GE setup wins or loses consistently.

that crossover mostly produces offspring with significantly worse fitness values.
Also, [6] showed that even with a careful numeric mutation that only slightly
changes the constants in a GP tree, crossover does no better than with random
mutation that uniformly replaces a constant from within a given range. Despite
that GP trains well in this paper. This suggests that passing constants from the
parents to offspring is not crucial to GP: after all, even a constant ideal for a
parent may be totally unsuitable for the offspring.

Therefore, to improve the performance of GE on symbolic regression there are
two ways forward. First, find a crossover operator that recombines individuals in

196 R.M.A. Azad and C. Ryan

a more favourable way, although this issue is not unique to just GE. The second
is to assist the genetic operators with numerical methods such as in [3] [4] [5].

4 Conclusions

This paper compares the so-called digit concatenation method of creating con-
stants in Grammatical Evolution with what this paper calls the compact meth-
ods to creating constants. The paper raises two questions: first, whether the
constants with digit concatenation are so brittle against crossover that taking a
more GP-like approach to constants with compact methods improves the perfor-
mance of GE; and second, whether digit concatenation breeds longer genomes
than those with compact methods. The results from the problems considered in
this paper suggest that the answer to both the aforementioned questions is a
resounding no. Because compact representations may also have to synthesise a
constant when a suitable one is not available, we hypothesise that these constants
are also not robust enough to outperform digit concatenation.

A fascinating result is that, although GP outperforms GE on training data,
GE actually does substantially better on unseen test data.

The next steps in this research will be to do further critical evaluation of the
performance of GE on test data, as well as its ability to generalise. In particular,
work such as [17] [18] should be added to GE to ascertain if GE enjoys the same
benefits that GP does from them. Finally, given that the desruptive nature of
GE’s crossover appears to be extremely valuable for generalisation, we propose
creating a GP equivalent, GPRipple, which will have the same operation.

References

1. Mitchell, T.M.: Machine learning. McGraw Hill, New York (1996)
2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)
3. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-

ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

4. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient
search of numeric leaf values. In: Spector, et al. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2001), July 7-11, pp. 155–
162. Morgan Kaufmann, San Francisco (2001)

5. McKay, B., Willis, M., Searson, D., Montague, G.: Non-linear continuum regres-
sion using genetic programming. In: Banzhaf, et al. (eds.) Proceedings of GECCO
1999, Orlando, Florida, USA, July 13-17, vol. 2, pp. 1106–1111. Morgan Kaufmann
(1999)

6. Ryan, C., Keijzer, M.: An analysis of diversity of constants of genetic programming.
In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 404–413. Springer, Heidelberg (2003)

7. Evett, M., Fernandez, T.: Numeric mutation improves the discovery of numeric con-
stants in genetic programming. In: Koza, et al. (eds.) Genetic Programming 1998:
Proceedings of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, July 22-25, pp. 66–71. Morgan Kaufmann (1998)

Constant Creation in Grammatical Evolution 197

8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

9. Byrne, J., O’Neill, M., Hemberg, E., Brabazon, A.: Analysis of constant creation
techniques on the binomial-3 problem with grammatical evolution. In: Tyrrell, et
al. (eds.) 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway,
May 18-21, pp. 568–573. IEEE Computational Intelligence Society, IEEE Press
(2009)

10. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genetic Programming and Evolvable Machines 4(1), 67–93 (2003)

11. Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolu-
tion. International Journal of Innovative Comput. and Applic. 1(1), 23–38 (2007)

12. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: Evolving nu-
merical constants in grammatical evolution with the ephemeral constant method.
In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 110–124.
Springer, Heidelberg (2011)

13. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: A new ap-
proach for generating numerical constants in grammatical evolution. In: Krasnogor,
et al. (eds.) GECCO 2011: Proceedings of the 13th Annual Conference Companion
on GECCO, Dublin, Ireland, July 12-16, pp. 193–194. ACM (2011)

14. Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A.,
Chaudhri, O.A., Polito II, J.A.: What makes a problem GP-hard? Analysis of
a tunably difficult problem in genetic programming. Genetic Programming and
Evolvable Machines 2(2), 165–191 (2001)

15. Nicolau, M., Slattery, D.: libGE - Grammatical Evolution Library (2006)
16. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry,

A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic
and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (July
2003)

17. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. on Evolutionary Computation 13(2), 333–349 (2009)

18. Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the
bias/variance tradeoff - introductory investigations. In: Poli, R., Banzhaf, W.,
Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS,
vol. 1802, pp. 76–90. Springer, Heidelberg (2000)

19. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa,
E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

20. Costelloe, D., Ryan, C.: On improving generalisation in genetic programming. In:
Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP
2009. LNCS, vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

21. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming –
An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco (1998)

Asynchronous Evolution

by Reference-Based Evaluation:
Tertiary Parent Selection and Its Archive

Tomohiro Harada1,2 and Keiki Takadama1

1 The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, Japan

2 Research Fellow of the Japan Society for the Promotion of Science DC, Japan
harada@cas.hc.uec.ac.jp, keiki@inf.uec.ac.jp

http://cas.hc.uec.ac.jp

Abstract. This paper proposes a novel asynchronous reference-based
evaluation (named as ARE) for an asynchronous EA that evolves indi-
viduals independently unlike general EAs that evolve all individuals at
the same time. ARE is designed for an asynchronous evolution by ter-
tiary parent selection and its archive. In particular, ARE asynchronously
evolves individuals through a comparison with only three of individuals
(i.e., two parents and one reference individual as the tertiary parent).
In addition, ARE builds an archive of good reference individuals. This
differ from synchronous evolution in EAs in which selection involves com-
parison with all population members. In this paper, we investigate the
effectiveness of ARE, by applying it to some standard problems used in
Linear GP that aim being to minimize the execution step of machine-code
programs. We compare GP using ARE (ARE-GP) with steady state (syn-
chronous) GP (SSGP) and our previous asynchronous GP (Tierra-based
Asynchronous GP: TAGP). The experimental results have revealed that
ARE-GP not only asynchronously evolves the machine-code programs,
but also outperforms SSGP and TAGP in all test problems.

Keywords: Genetic programming, asynchronous evolution, machine-
code program.

1 Introduction

In general Evolutionary Algorithms (EAs) typified as Genetic Algorithm (GA) [1]
and Genetic Programming (GP) [2] evolve individuals (solutions) by repeating a
generation step. This approach waits for evaluations of all individuals and gener-
ates a next population through the parent selection and the individual deletion.
This requires that all individuals are evaluated at the same time, i.e., it requires to
wait for the slowest evaluation of a certain individual when the evaluation time of
individuals differ from each other, which consumes a heavy computational time. To
tackle this problem, asynchronous approaches have recently been proposed [3][4],
that evolves individuals independently, i.e., individuals do not have to wait for the

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 198–209, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://cas.hc.uec.ac.jp

Asynchronous Evolution by Reference-Based Evaluation 199

evaluations of other individuals. As GP employing the asynchronous approach, we
have proposed TAGP (Tierra-based Asynchronous Genetic Programming) [5] as
one kind ofmachine-codeGP based on the idea of a biological simulator, Tierra [6].
The advantages employing the asynchronous approach for machine-code GP are
summarized as follows: (1) it can continue to evolve individuals (programs) even if
individuals cannot complete their evaluation (e.g., due to an infinite loop), because
it is not required to wait for the evaluation of all individuals, and (2) it increases
the chance of selecting quickly evaluated individuals by evolving them immediately
after completing their evaluations.

Our previous research [5] reported that TAGP can asynchronously evolve the
machine-code programs even if they include loop structure. However, TAGP has
the following two essential problems: (1) Unlike general EAs, TAGP cannot guar-
antee to select good individuals as the parents from a population, which prevents
performance improvements, (2) since TAGP selects individuals as the parents or
deletes them depending on a threshold based on an absolute evaluation, it is dif-
ficult to properly evolve individuals in the case that a proper threshold cannot be
determined.

Toovercome theseproblems, this paper proposesanovel asynchronous reference-
based evaluation (named as ARE) for an asynchronous EA by tertiary parent se-
lection and its archive, which not only inherits the advantage of TAGP but also
overcomes its weak points.

In particular, in ARE, an archive mechanism employed which preserves good
individuals to improve the performance. Parent are selected and individuals are
deleted asynchronously through a comparison of the two parents with the ter-
tiary parent that is randomly selected from an archive of good individuals. This
step checks whether two parents are bad individuals. This is called a reference-
based evaluation, a relative evaluation, which does not require a threshold as
an absolute evaluation like TAGP. To investigate the effectiveness of ARE, this
paper applies it to the Linear GP problems and compares GP using ARE (ARE-
GP) with steady-state GP (SSGP) [7] as the synchronous GP and with TAGP
as the asynchronous GP.

This paper is organized as follows. Section 2 introduces TAGP that we pro-
posed and explains its problems. Section 3 proposes the novel asynchronous
reference-based evaluation for an asynchronous EAs. Section 4 conducts the ex-
periments for comparing the results of ARE-GP with those of SSGP and TAGP,
and discuss their results. Finally, our conclusion is given in Section 5.

2 Tierra-Based Asynchronous Genetic Programming

2.1 Overview

TAGP(Tierra-basedAsynchronousGeneticProgramming) [5] is a kindofmachine-
code GP employing the asynchronous approach. TAGP is based on the idea of a bi-
ological simulator, Tierra [6]. It uses a system like Tierra to evolve programs that
solves given tasks. Unlike Tierra, TAGP introduces fitness and executes parent se-
lection and mechanisms that delete individuals based on fitness.

200 T. Harada and K. Takadama

Fig. 1. An illustration of TAGP

2.2 Algorithm

Fig 1 shows an illustration of TAGP, while Algorithm 1 explains it further. In
Algorithm 1, ind indicates an individual just after evaluation, ind.f and ind.facc
respectively indicate the fitness and a fitness accumulated through a repeated
evaluation process of ind, and MAX POP indicates the maximum population
size. All individuals are stored in a queue named as reaper queue. Firstly, each
individual is evaluated in (pseudo-)parallel (step 1), and it accumulates its fit-
ness to ind.facc, when its evaluation completes (step 2). If its accumulated fit-
ness exceeds a certain threshold (e.g., the maximum fitness in Algorithm 1),
the threshold is subtracted from the accumulated fitness and it generates off-
spring(step 3-6). For example, if the accumulated fitness of ind1 and ind3 exceed
the threshold (the maximum fitness), they generate offspring in the genetic op-
erators as shown in Fig. 1. And if ind has the maximum fitness and it is better
than the individual that previously has the maximum fitness, ind is replicated as
an elite individual without any genetic operations in order to preserve the good
individuals in the population (step 7-12). For example, if ind3 has the maximum
fitness, it is replicated as the elite individual as shown in Fig. 1. The position
of each individual in the queue changes depending on whether an individual can
generate offspring or not. If an individual generate offspring, its position in the
queue shifts toward lower (step 5), otherwise its position shifts toward upper
(step 17). For example, in Fig. 1, since ind1 and ind3 generate their offspring,
their positions in the queue shift toward lower, while since ind2 cannot gener-
ate offspring, its position shifts toward upper. If the population size exceeds the
maximum population size, the reaper queue mechanism removes the individual
located at the top in the reaper queue (step 13-14). For example, when three
offspring are added as shown in Fig 1, three individuals at the top of the reaper
queue is removed.

The main feature of TAGP is summarized as follows: (1) Each individual
in TAGP can be asynchronously evolved without waiting for other evaluation
because the parents are selected to evolve their offspring only depending on their
accumulated fitness, i.e., such parent selection is executed when the accumulated
fitness of an individual exceeds a certain threshold, and (2) the reaper queue
mechanism in TAGP can remove an individual that requires huge evaluation

Asynchronous Evolution by Reference-Based Evaluation 201

Algorithm 1. An algorithm of TAGP

1. Evaluating fitness of ind (ind.f)
2. ind.facc ← ind.facc + ind.f
3. if ind.facc ≥ fmax then
4. ind.facc ← ind.facc − fmax

5. Shifting the position of ind toward lower
6. Generating offspring of ind
7. if ind.f = fmax then
8. if ind.f is better than indelite.f then
9. Replicate ind without genetic operations

10. end if
11. indelite ← ind
12. end if
13. if Population size>MAX POP then
14. Removing the individual at the top of the queue
15. end if
16. else
17. Shifting the position of ind toward upper
18. end if

time or does not complete its evaluation (e.g., because of an infinite loop) before
completing its evaluation.

3 Asynchronous Reference-Based Evaluation

This paper proposes a novel asynchronous reference-based evaluation (named as
ARE) for an asynchronous EA, which not only inherits the advantages of TAGP
but also overcomes the problems of TAGP. In this section, we firstly explain the
main concept of ARE, and then its algorithm.

3.1 Concept

The main concept of ARE is based on (1) the preservation of good individu-
als (i.e., archive) and (2) the deletion of bad individuals with quick evaluation
with the relative evaluation which does not require a threshold as an absolute
evaluation like in TAGP. Regarding the first issue (i.e., the good individuals
preservation), it is generally difficult to guarantee to preserve the good individ-
ual in a population due to an asynchronous manner, which means that good
individuals are not always to be selected as parents for an evolution. To keep
good individuals, the archive is employed to preserve good individuals in ARE
while deleting the individuals that (a) have low fitness or (b) require a huge
evaluation time (or do not complete their evaluation). From the viewpoint of
the low fitness, if the individuals are worse than the reference individual (de-
scribed in the next paragraph), they become candidates for the deletion. From
the viewpoint of the huge evaluation time, on the other hand, the reaper queue

202 T. Harada and K. Takadama

Fig. 2. An illustration of ARE

is employed to determine the individual that should be deleted using the same
mechanism as TAGP.

Regarding the second issue (i.e., the deletion of bad individuals with quick
evaluation with the relative evaluation), what should be noted here is that, in
the asynchronous evaluation, the individuals that have high fitness are regarded
as good like the general EAs, while individuals that complete their evaluation
are also regarded as good. However, the individuals that quickly complete their
evaluation do not always have good fitness. Due to such a feature, the individ-
uals with quick evaluation are preferentially selected as parents regardless of
its fitness. This results in the population being filled with offspring generated
by such parent, and it is easy to fall into local optima through this kind of an
evolution. To avoid such a situation, all individuals are compared with a high
fitness individual that has already completed its evaluation. This is called the
tertiary or reference individual. If they are worse than the reference individual,
they are not selected as parents. This contributes to selecting the good individ-
uals by excluding bad individuals whose evaluation time is short. In ARE, an
evaluation based on a comparison with a reference individual is called as rela-
tive evaluation, which does not require a threshold as an absolute evaluation.
Concretely, the parent selection and the individual deletion are asynchronously
executed to evolve individuals through a comparison of the offspring with the
reference individual.

Finally, the main difference between ARE and TAGP is summarized as follows:
(1) TAGP requires the accumulated fitness and the selection threshold fmax,
while ARE does not require these conditions, i.e., any fitness function in ARE
can be employed like general EAs. This means that ARE can be applied to the
problems where an optimal solution is unknown, and (2) TAGP does not have
the archive mechanism, while ARE has it to guarantee to maintain the good
individuals in the archive. This mechanism increases the selection pressure for
better individuals by excluding bad individuals.

3.2 Algorithm

Fig. 2 shows an illustration of ARE, while Algorithm 2 explains it further. In
Algorithm 2, ind indicates an individual just after evaluation. All individuals

Asynchronous Evolution by Reference-Based Evaluation 203

Algorithm 2. An algorithm of ARE

1. Evaluating fitness of ind (ind.f)
2. S ← ind
3. if |S| = 2 then
4. Randomly selecting indref from archive
5. C ← S ∪ {indref}
6. Selecting two individuals from C and generating offspring
7. Adding offspring into the bottom of the reaper queue
8. Replacing indref with an individual in S that is better than indref
9. Removing individuals in S that is worse than indref in the probability Pd

10. if Population size>MAX POP then
11. Removing individuals depending on the reaper queue
12. end if
13. S ← φ
14. end if

are stored in either the reaper queue or the archive. Like TAGP, in ARE, the in-
dividuals are evaluated in (pseudo-)parallel (step 1), and the parent individuals
are selected when two individuals complete their evaluations (here we call them
temporally-selected individuals). One of the unique aspects of ARE, is that par-
ent selection is done by the tournament selection from the temporally-selected
individuals (S in Algorithm 2) and the reference individual (indref in Algo-
rithm 2) that is randomly selected from the archive (step 4-6) (Note that two
individuals (not three) are selected in TAGP). This mechanism guarantees that
individuals with high fitness will be mated with. After the parent selection, the
two offspring generated from the two selected parents are added into the bottom
of the reaper queue (step 7).

Other unique aspects of ARE are the use of an archive mechanism that pre-
serves good individuals and the deletion mechanism limit the archive size. In
order to determine the individuals that should be archived or should be deleted,
the temporally-selected individuals are compared with the reference individual.
If one of the temporally-selected individuals is better than the reference individ-
ual, it is archived and the reference individual change its position to the bottom
of the reaper queue alternatively (step 8). To maintain the diversity of the indi-
viduals in the archive, if the better temporally-selected individual already exists
in the archive and the reference individual is unique in the archive, they are not
replaced each other. For example, if ind1 is better than indref , ind1 is archived
and indref is added to the bottom of the reaper queue as shown in Fig. 2. This
mechanism guarantees to preserve the good individuals in the archive. On the
other hand, if the temporally-selected individuals are worse than the reference
individual, they are removed from the reaper queue with a certain probability Pd

(step 9) (This deletion is called fitness deletion, and the probability Pd is called
fitness deletion probability). For example, if ind2 is worse than indref , ind2 is
removed from the reaper queue with the probability Pd with the fitness deletion
as shown in Fig 2.

204 T. Harada and K. Takadama

If the temporally-selected individuals are not removed and the population size
exceeds the maximum population size, the reaper queue mechanism removes the
individual located at the top of the reaper queue (step 10-11) (Afterward this
deletion is called reaper deletion). For example, when two offspring are added
but only one individual (ind2) is removed as shown in Fig. 2, one individual at
the top of the reaper queue is additionally removed with the reaper deletion.

What should be noted here is that the fitness deletion probability Pd deter-
mines the ratio between the fitness deletion and the reaper deletion. In partic-
ular, when Pd is higher, the fitness deletion is increasingly executed, while the
reaper deletion is decreasingly executed. On the other hand, when Pd is lower,
the fitness deletion is decreasingly executed, while the reaper deletion is increas-
ingly executed. Since a lot of individuals are removed before their evaluations
completes if the reaper deletion increases, Pd can control how long the reaper
deletion waits for the individuals that require long evaluation time.

4 Experiment

4.1 Settings

To investigate the effectiveness of ARE, we apply ARE to Linear GP (LGP) [8][9]
using the machine code which we used in our previous research, and conduct ex-
periments to compare GP using ARE (ARE-GP) with steady-state GP (SSGP) [7]
as the asynchronous GP and TAGP as the asynchronous GP. The reason why we
employ LGP is that an individual (program) in LGP has variable length chro-
mosome and evaluation time of each individual generally differ from each other.
Furthermore, since a machine-code program has probability to include the loop
structure, individuals that include the infinite loop and do not complete their
evaluation can be generated.

Our machine-code programs use the instruction set of the PIC10 [10] embed-
ded processor developed by Microchip Technology Inc. It has 33, 12 bit instruc-
tions. These include addition, subtraction, Boolean logic, bitwise, and branch
instructions. It does not include multiplication. For this reason, multiplication
has to be achieved by repeating addition and bitwise operations in loop struc-
tures. A program can use any of 16 general purpose registers and one register
(named working register). Each register consists of 32bits.

Test problems in this experiment are shown in Table 1. The problems are clas-
sified two types, one is Arithmetic problems that requires numeric calculations,
and another is Boolean problem that requires logical calculation. In particu-
lar since Arithmetic problems require multiplication that is achieved with loop
structures, they has high probability to generate programs that include infinite
loops. In this experiment, the aim is to evolve program that minimize the time
taken by the execution step by starting from an initial program that completely
accomplishes the given task.

Asynchronous Evolution by Reference-Based Evaluation 205

Table 1. Test problems in this experiment

Arithmetic #data

A1 f(x) = x4 + x3 + x2 + x 16
A2 f(x) = x5 − 2x3 + x 16
A3 f(x) = x6 − 2x4 + x2 16
A4 f(x, y) = xy 25

Boolean #data

B1-2 {5,8}bit-Parity {32,256}
B3-4 {5,7}bit-DigitalAdder {32,128}
B5 6bit-Multiplexer 64
B6 7bit-Majority 128

Table 2. Parameters

Parameter value Parameter value

#evaluations 106 Crossover rate 0.7
Max. program size 256 Mutation rate 0.1

Pop. size 100 Insertion rate 0.1
fmax 100 Deletion rate 0.1

The following fitness functions are respectively employed for Arithmetic and
for Boolean:

farith = fmax − 1

n

n∑

i=1

|ŷi − y∗i | (1)

fbool = fmax − 2

n

n∑

i=1

δ(ŷi, y
∗
i), δ(x, y) =

{

1 x = y

0 x �= y
, (2)

where ŷi indicates the ith output value of a program, while y∗i indicates the ith

target value. Note that the reason why the sum of difference is subtracted from
fmax is that TAGP employs the parent selection depending on the accumulated
fitness. Although ARE-GP and SSGP do not require such transformation, this
experiment uses same fitness function. Individuals are compared in order of (1)
fitness, (2) execution step, and (3) program size.

Common parameters in all GPs are shown in Table 2. The crossover combines
two programs at two different crossover point, while the mutation randomly
changes one random instruction in a program. The instruction insertion inserts
one random instruction into random point, while the instruction deletion remove
one random instruction from a program. In SSGP, the maximum execution step
is set to 50, 000, and if a program does not complete in this limit, its fitness is
evaluated as −∞.

All experiments start from filling the population with an initial program. Each
experiment is conducted 30 independent trials, and we evaluate GPs regarding
the average execution step after the maximum number of evaluations.

4.2 Results

Table 3 shows the average execution step of the best program in the population
after the maximum number of evaluations. In Table 3, all results are normal-
ized by the average execution step of TAGP, i.e., the result of TAGP is 1 in

206 T. Harada and K. Takadama

Table 3. Averages of the minimum execution step after the maximum evaluations
(normalized by the result of TAGP). ARE-GP changes the archive size as {5, 10, 20,
30}.

Problem SSGP ARE-GP
archive size

5 10 20 30

A1 1.415 0.852 0.860 0.960 1.018
A2 1.429 0.881 0.883 0.964 1.120
A3 1.463 0.863 0.934 1.026 1.173
A4 0.976 0.881 0.872 0.919 0.903

Problem SSGP ARE-GP
archive size

5 10 20 30

B1 0.954 0.974 0.956 0.993 1.019
B2 1.007 0.991 0.979 0.986 1.023
B3 1.055 0.972 0.967 0.985 0.986
B4 1.024 0.965 0.953 0.965 0.968
B5 1.582 0.864 0.901 0.924 0.918
B6 1.174 0.891 0.909 0.820 0.990

Table 4. Averages of the minimum execution step after the maximum evaluations
(normalized by the result of TAGP). ARE-GP changes the fitness deletion probability
Pd as {0.1, 0.3, 0.5, 0.7, 0.9}, and the archive size is 5 (Pd = 0.5 is the same as Table. 3).

Problem ARE-GP
fitness deletion probability Pd

0.1 0.3 0.5 0.7 0.9

A1 2.273 0.880 0.852 0.817 0.868
A2 2.401 0.881 0.881 0.863 0.836
A3 2.607 0.886 0.863 0.862 0.880
A4 3.615 3.615 0.881 0.931 1.132

Problem ARE-GP
fitness deletion probability Pd

0.1 0.3 0.5 0.7 0.9

B1 0.974 0.976 0.974 0.954 0.942
B2 1.018 0.973 0.991 0.956 0.982
B3 0.977 0.973 0.972 0.988 0.979
B4 0.965 0.958 0.965 0.963 0.955
B5 0.857 0.883 0.864 0.887 0.891
B6 0.890 1.025 0.891 0.965 0.917

all problems, and the best result (the shortest execution step) in each prob-
lem is indicated as bold style. In ARE-GP, we confirm different archive sizes
5, 10, 20, and 30. From these results, it is easily confirmed that ARE-GP can
asynchronously evolve programs using only relative evaluation and without the
thresholds required in TAGP. Furthermore, it is revealed that ARE-GP outper-
forms TAGP in all problems. In particular small archive size such as 5 and 10
reliably gives better performance. The reason why large archive size such as 30
is not good is that since ARE avoids overlap of programs in the archive, low
fitness programs remain in the archive and the selection pressure depending on
the reference program decreases. From this fact, it is indicated that the archive
size should be set as small size.

To verify the effect of the difference of the fitness deletion probability Pd, we
confirm different probability 0.1, 0.3, 0.5, 0.7, and 0.9. Here the archive size is set
as 5, and Pd = 0.5 results the same as the previous one. The results are shown
in Table 4, where all results are also normalized by the result of TAGP, and the
best result in each problem is indicated as bold style.

From these results, it is revealed that high fitness deletion probability such
as Pd ≥ 0.5 is effective in most problems, while, in all Arithmetic problems,

Asynchronous Evolution by Reference-Based Evaluation 207

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

%
 o

f
th

e
fi

tn
es

s
de

le
tio

n

#evaluation (x1000)

pr=0.9
pr=0.7
pr=0.5
pr=0.3
pr=0.1

(a) Arithmetic 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

%
 o

f
th

e
fi

tn
es

s
de

le
tio

n

#evaluation (x1000)

pr=0.9
pr=0.7
pr=0.5
pr=0.3
pr=0.1

(b) Boolean 1

Fig. 3. Percentage of the fitness deletion, where the archive size is 5, and Pd = 0.5

small probability Pd = 0.1 is worse than the results of TAGP. Actually, these
cases hardly evolve programs from the initial program. Arithmetic problems
requires loop structures to achieve multiplication, in particular Arithmetic 2
include double loops to calculate xy. If the loop structures are broken with
the genetic operation, offspring lose the loops and they quickly complete their
evaluation. Such programs succumb to reaper deletion so most programs that
include loops are removed before their evaluation. To wait loop calculation and
to remove programs that are evaluated to quickly, we have found a high fitness
deletion probability to be effective.

As mentioned above, the fitness deletion probability Pd determines the ratio
between the fitness deletion and the reaper deletion. Fig. 3 shows the change of
the ratio of the fitness deletion that is calculated as %cp = #delcp/(#delcp +
#delrp), where pcp indicates the percentage of the fitness deletion, while #delcp
and #delrp respectively indicate the number of the fitness deletion and the reaper

208 T. Harada and K. Takadama

deletion in a certain evaluations. In Fig. 3, the horizontal axes show the number
of evaluations, while the vertical axes show the percentage of the fitness deletion.
Each line shows the average %cp in the case that Pd = {0.1, 0.3, 0.5, 0.7, 0.9}.
Note that although these figures only show the results of Arithmetic 1 and
Boolean 1, we confirm same trend in all other problems in each problem type.

From these results, the fitness deletion probability can controls the ratio of
two deletions. In particular, when the fitness deletion probability is low, the ratio
of the fitness deletion is low, while it is high, the ratio of the fitness deletion is
high. This indicates that ARE can consider how long the reaper queue deletion
waits for the individuals that require huge computational time by changing the
fitness deletion probability. In Arithmetic problems, the percentage of the fit-
ness deletion is lower in the early stage of evolution even if the fitness deletion
probability is high. At this stage, programs that are better than the archive is
easily evolved, so the replacement between a temporally-selected program and
an archived program often occurs. For this reason, even if the fitness deletion
probability is high, the reaper deletion is executed in the early evolution because
of decreasing the fitness deletion.

5 Conclusion

This paper proposed a novel asynchronous reference-based evaluation (named
as ARE) for an asynchronous EA that evolves individuals independently unlike
general EAs that evolve all individuals at the same time. ARE is designed for an
asynchronous evolution by tertiary parent selection and its archive. In particular,
ARE asynchronously evolve individuals through a comparison with only three of
individuals (i.e., two parents and one reference individual as the tertiary parent)
unlike synchronous evolution which involves a comparison with all population
members. ARE improves its performance by archiving good individuals as the
reference individual. To investigate the effectiveness of ARE, this paper applies
it to the Linear GP (LGP) problems. We have conducted experiments that aim
to minimize the execution step of machine-code programs. An experiment com-
parison of ARE-GP with steady-state GP (SSGP) as the synchronous GP and
our previous GP (Tierra-based asynchronous GP: TAGP) as the asynchronous
GP, produced the following implications: (1) ARE-GP asynchronously success-
fully evolved machine-code programs, showing that ARE-GP does not require
the thresholds of TAGP, (2) ARE-GP outperformed TAGP in all test problems,
in particular, smaller archive size in ARE-GP reliably gives better performance

What should be noticed here is that these results have only been obtained from
one type of problem, i.e., Linear GP. Therefore, further careful qualifications and
justification, such as an analysis of results using other general LGP problems such
as symbolic regression or classification problem, are needed to extend the range
of application of ARE to other EA domain. Such important directions must be
pursued in the near future in addition to the following future research: (1) the
parallelization under the ARE framework because the asynchronous approach is
suitable for the parallelization; and (2) an adaptation of the fitness deletion rate

Asynchronous Evolution by Reference-Based Evaluation 209

Pd and the archive size depending on the evolution degree or the diversity of the
population because these parameters gives a big influence to the performance of
ARE.

Acknowledgments. This work was supported by Grant-in-Aid for JSPS Fel-
lows Grant Number 249376.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

2. Koza, J.: Genetic Programming On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

3. Lewis, A., Mostaghim, S., Scriven, I.: Asynchronous multi-objective optimisation
in unreliable distributed environments. In: Lewis, A., Mostaghim, S., Randall,
M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 51–78.
Springer, Heidelberg (2009)

4. Glasmachers, T.: A natural evolution strategy with asynchronous strategy updates.
In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO 2013, pp. 431–438. ACM, New York (2013)

5. Harada, T., Takadama, K.: Asynchronous evaluation based genetic programming:
Comparison of asynchronous and synchronous evaluation and its analysis. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 241–252. Springer, Heidelberg (2013)

6. Ray, T.S.: An approach to the synthesis of life. Artificial Life II XI, 371–408 (1991)
7. Reynolds, C.W.: An evolved, vision-based behavioral model of coordinated group

motion. In: Proc. 2nd International Conf. on Simulation of Adaptive Behavior, pp.
384–392. MIT Press (1993)

8. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic programming: an
introduction: on the automatic evolution of computer programs and its applica-
tions. Morgan Kaufmann Publishers Inc., San Francisco (1998)

9. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, vol. 117. Springer
(2007)

10. Microchip Technology Inc.: PIC10F200/202/204/206 Data Sheet 6-Pin, 8-bit Flash
Microcontrollers. Microchip Technology Inc. (2007)

Behavioral Search Drivers
for Genetic Programing

Krzysztof Krawiec1,� and Una-May O’Reilly2

1 Poznan University of Technology, 60-965 Poznań, Poland
2 Computer Science and Artificial Intelligence Laboratory,

MIT, Cambridge, MA, USA

Abstract. Synthesizing a program with the desired input-output be-
havior by means of genetic programming is an iterative process that
needs appropriate guidance. That guidance is conventionally provided
by a fitness function that measures the conformance of program output
with the desired output. Contrary to widely adopted stance, there is no
evidence that this quality measure is the best choice; alternative search
drivers may exist that make search more effective. This study proposes
and investigates a new family of behavioral search drivers, which inspect
not only final program output, but also program behavior meant as the
partial results it arrives at while executed.

1 Introduction

A typical optimization problem can be formalized as p∗ = argminp∈P f(p),
where f is the objective function being optimized (minimized for the sake of this
paper), and P is the space of candidate solutions (programs in the case of ge-
netic programming, GP). When searching the entire space P is computationally
infeasible, a heuristic search algorithm is used to find a solution p̂ that brings
f(p̂) − f(p∗) as low as possible. The heuristic employs f to drive the search
process; in particular, in evolutionary computation it is common to use f as the
fitness function.

Employing the objective function in its original form as such search driver
appears natural, as it clearly defines the search goal. However, finding an opti-
mal solution is the ultimate goal of the algorithm, the reaching of which depends
on the decisions made in particular iterations of the search process. To succeed,
a search algorithm should make the right decisions in possibly all iterations.
Putting that into evolutionary terms, it should promote solutions that are evolv-
able, i.e. likely to turn into better solutions in subsequent iterations. However,
evolvable solutions are not necessarily preferred by the objective function, as it
typically has no insight into the prospective quality of a candidate solution.

We argue that using objective function as a search driver is not always de-
sirable and that better alternatives exist. In GP, additional information can be
gathered from program behavior, meant as partial outcomes it arrives at during
execution, and used to promote evolvable programs. In [1] we proposed a specific
� Work conducted as a visiting scientist at CSAIL, MIT.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 210–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Behavioral Search Drivers for Genetic Programing 211

variant of such behavioral evaluation, termed Pattern-Guided Genetic Program-
ming (PANGEA), and demonstrated its strengths on a set of benchmarks. Here,
we present a rationale for and detailed analysis of behavioral evaluation.

2 Background

A GP task is a set T of tests (fitness cases). A test is a pair (x, y), where x is
the input to be fed into a program, and y is the desired output. In general, xs
and ys can be arbitrary objects, however we limit our interest here to synthesis
of Boolean functions, so x is a vector of values of Boolean input variables, and
y is a Boolean desired output.

The fitness of a program p is a measure of the conformance of its output with
the desired outputs. For each test (x, y) ∈ T , p is provided with input x and
executed, returning output which we denote as p(x). We say that p solves test
(x, y) if p(x) = y. The fitness of a program is simply the number of tests it does
not solve, i.e.:

f(p) = |{(x, y) ∈ T : p(x) �= y}|. (1)

For Boolean problems we will prefer a more concise vector formulation. The
desired outputs of tests in T can be gathered into a vector called target t, and
the outputs produced by p for tests from T into its semantics s(p). Then, fitness
is the Hamming distance between program semantics and target:

f(p) = |s(p)− t|. (2)

The fitness defined in this way is obviously minimized fitness, and a program
p solves a task if f(p) = 0.

3 Motivation

A good search algorithm should be able to find an optimal solution (or a de-
cent suboptimal solution) given limited computational resources. To this aim,
the objective function it employs should convey the information about (e.g., be
proportional to) the number of steps required to reach the goal (an optimal so-
lution). By ‘step’ we will mean in the following a single application of a search
operator (here: mutation).

Unfortunately, conventional fitness functions used in GP (Eq. 2) do not meet
this expectation. To illustrate this, consider the example shown in Table 1. Col-
umn t defines the target of a 3-argument Boolean function synthesis task. The
next column presents the outputs (semantics) of a program p0 =(x1 and (x2 or
x3)) which happens to be an optimal solution to this problem. By mutating p0
(replacing the and instruction with the or instruction, as underlined) we ob-
tain program p1, which commits error 4 on this task (according to Hamming
distance). By mutating p1 again, we obtain p2, whose error amounts to 2.

Let us now revert this process and assume that p0 has not been found yet, and
p1 and p2 are two candidate solutions (e.g., individuals in a population in an evo-
lutionary run). Because p2 commits smaller error than p1, a conventional based

212 K. Krawiec and U.-M. O’Reilly

Table 1. An exemplary sequence of two mutants p1, p2 obtained from program p0 via
one-point mutations (marked in bold)

x1 x2 x3 t p0 p1 p2

(x1 and (x2 or x3)) (x1 or (x2 or x3)) (x1 or (x2 and x3))
0 0 0 0 0 0 0
0 0 1 0 0 1 0
0 1 0 0 0 1 0
0 1 1 0 0 1 1
1 0 0 0 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1
Objective function f : 0 4 2

fitness function will favor it over p1. This is unfortunate, because p2 requires two
mutations to reach p0, while for p1 one mutation is sufficient1.

The example illustrates the problem signaled in the Introduction. The objec-
tive function is by definition the right yardstick for assessing program quality.
However, in general it does not correlate well with the number of search steps to
the optimum, and so it is not necessarily the best means to predict the ‘prospec-
tive’ quality of a candidate solution and drive the search process. In the following
we demonstrate that, at least for domains like GP, alternative search drivers can
be defined that prove better in that respect.

4 Behavioral Evaluation of Programs in GP

Behavioral evaluation can be explained by starting with conventional fitness,
which is the discrepancy between program output (the value returned by the
root node in case of tree-based GP) and the desired output, aggregated over
the tests (Eq. 2). Behavioral evaluation, in contrast, takes into account not only
the final program output, but also program behavior meant as the intermediate
values returned by program subexpressions. In this paper we consider tree-based
GP2, so we collect the values calculated by the k topmost nodes of program tree,
i.e., the k first nodes when traversing the program tree in breadth-first order (if
the tree happens to be smaller, we use all tree nodes). These values, collected
for all tests in T , form a |T | × k table. The ith table column corresponds to the
ith node in the tree and thus forms a feature that describes program behavior
at that point of its execution. In particular, the first feature corresponds to the
root node and thus captures the output of entire program p(x).

We then extend this table by an extra column, which holds the search target t.
The extended table forms a training set that defines a task of supervised machine
learning from examples, with t serving as a decision attribute. A classifier v is
induced from this set and the properties of that classifier are used to define the
1 In general, another optimal solution p∗ �= p0, s(p

∗) = t may exist that can be reached
from p2 through a single mutation. This however does not invalidate this argument.
We will return to this issue when explaining our sampling procedure.

2 In [1], we employed an analogous procedure to gather behavioral features from linear
programs written in the Push language.

Behavioral Search Drivers for Genetic Programing 213

behavioral fitness of the evaluated program p. We then define behavioral fitness
as an aggregate of three components:
1. The conventional objective, i.e., the error committed by the program, f(p),
2. The complexity c(v(p)) of the classifier v(p) induced from the training set,
3. The error e(v(p)) the classifier v commits on the training set.

The rationale behind taking into account the latter two components is as follows.
The trained classifier maps (perfectly or not) the program behavior (captured in
the features) onto the desired program output. In an ideal case, its predictions
perfectly match the desired output and thus e(v) = 0. The closer that error is to
zero, the more we can claim that the features (and indirectly program behavior)
relate to the desired output.

However, classifier error does not tell the whole story about the relatedness
between program behavior and the desired output, because the classifier can
itself be more or less complex. Consider two programs for which the induced
classifiers commit the same error. If one of them is simpler than the other, then
we can claim that the behavior of the corresponding program is closer related to
the desired output. In the case of decision trees used in [1] and here, complexity
can be conveniently expressed as the number of decision tree nodes.

The key motivation for behavioral evaluation is that relatedness may convey
information about the prospective quality of a program. Low error and/or low
complexity indicate that program arrives at intermediate results (captured in
features) that can be mapped onto the desired output, and thus a small number
of transformations (e.g, mutations) can turn it into an optimal program. Con-
ventional fitness function is insensitive to this aspect of program characteristics,
as it observes only the final program outcome and measures only its direct match
with the desired output.

5 The Experiment

In following we examine several behavioral search drivers by considering the
particular measures defined in the previous section (f , c, e) separately and in
aggregation. We are primarily interested in how well a search driver correlates
with the expected number of search steps that a program p needs to undergo to
reach the search target t, i.e., to arrive at the descendant p′ such that s(p′) = t.

To avoid bias towards a specific set of GP tasks (e.g., commonly used bench-
marks), we consider a large sample of tasks. For Boolean tasks with tests enu-
merating all combinations of input variables, there is one-to-one correspondence
between tasks and targets, so we will use these terms interchangeably.

Sampling Procedure. To carry out the analysis, we would ideally consider a
sample of programs with known distances from a given target, where by distance
we mean the minimal number of mutations required to reach the optimum.
Obtaining such data is however computationally challenging, as distance is the
length of the shortest sequence of mutations, and the number of such sequences
grows exponentially with program size. Moreover, as we intend to consider many
targets, relying on distance becomes technically infeasible.

214 K. Krawiec and U.-M. O’Reilly

Algorithm 1. The pseudocode of the function generating a single random walk
in the space of programs. The result is a list of programs of length n+ 1, where
each program is a mutant of its predecessor.
1: function RandomWalk(n)
2: p0 ←RandomProgram()
3: walk ← (p0)
4: for i← 1 . . . n do
5: repeat
6: pi ←Mutate(pi−1)
7: until pi �= p0
8: walk ← append(walk, pi)

9: return walk
10: end function

Due to this limitation, we abandon the use of minimal number of steps in
favor of the expected number of steps. We generate a random program, assume
that it defines a target (GP task), and run a random walk from that program
using single-point mutation as a search operator. We chose this search operator
as it introduces minimal change possible (compared to, e.g., subtree-replacing
mutation). Such a random walk can be seen as a search process in reverse (albeit
not explicitly driven by any search driver).

The sampling procedure is shown in Algorithm 1. RandomWalk generates a
starting program p0 by calling the RandomProgram function (which is guar-
anteed to return a program with non-trivial, i.e., non-constant, semantics). The
program defines a target t = s(p0). p0 is then mutated n times, and the ordered
list of mutants representing the walk is returned by the function upon its com-
pletion. However, mutants are not allowed to be syntactically identical with the
starting program of the walk (i.e., a walk is not allowed to turn into a cycle; see
line 7 of the algorithm). Without this constraint, some walks would return to
the starting point, and regularities in the results would be harder to notice.3

RandomWalk does not guarantee that i is the smallest number of mutations
required to transform the starting program p0 into the ith program of the walk,
pi (and vice versa); a shorter sequence of mutations connecting p0 and pi may
exist. Also, RandomWalk does not ensure that i is the smallest number of
mutations that have to be applied to pi in order to reach the target t. A shorter
sequence of mutations may exist that transforms pi into a yet another program
p′ �= p0 such that s(p′) = s(p0) = t.

By relying on random walks (and thus on the expected rather than the mini-
mal number of mutations), in the following experiment we are able to consider
large programs composed of up to 255 tree nodes (tree depth limit 7), which
with four instructions leads to search space cardinality of the order of 4255.

3 Note however that we allow a walk to revisit any other search point except for the
target. This is our deliberate design choice to make the walks behave analogously to
a search process, which may cycle, however it terminates when it reaches the target.

Behavioral Search Drivers for Genetic Programing 215

Table 2. The parameters of experimental setup

Instruction set: nonterminals: and, or, nand, nor
Instruction set: terminals: up to 12 input variables
Program generation (RandomProgram) ramped half-and-half
Minimal tree size 23 (minimal binary tree using 12 variables)
Maximal tree size 255 (full binary tree of depth 7)
Mutation operator (Mutate) single point mutation
Walk length 16

Experimental Setup. We compare the characteristics of different search drivers
on the domain of Boolean function synthesis (Table 2). The search operator used
to generate our random walks is single point mutation, which selects a random
node in a program tree and replaces it with another instruction of the same
arity. We chose this operator as it introduces a minimal change in program code
and thus may be likened to single bitflip mutation in genetic algorithms. The
instruction set thus does not contain the ‘not’ instruction, because it cannot be
modified using single point mutation. Terminals are not mutated, so the set of
active variables and the target t remain unchanged in a given random walk.

The RandomWalk procedure (Algorithm 1) used to generate programs is
ramped half-and-half (RHH) with ramp set to depth 7. As all instructions are
binary, half of the programs in the sample (those generated by the ‘full’ part of
RHH) are full binary trees of depth 7, with 127 leaves, which makes them likely
to use all or almost all input variables. For the programs generated using the
‘grow’ case of RHH, we impose a lower size limit of 2∗12−1 = 23 nodes, so that
even the smallest programs have the chance to use all 12 input variables. This
limit is also essential for generating sufficiently long random walks (for small
trees, a walk generated using single point mutation is doomed to return to the
starting point quickly, when it exhausts all combinations of instructions).

The behavioral search drivers (Section 4) gather 15 features from program ex-
ecution and use J4.8 decision tree inducer to build a classifier [2][3] (an unpruned
tree is used, i.e., option -U). Note that this learning method is insensitive to the
ordering of attributes, so for instance swapping the arguments of a commutative
instruction in a program does not affect its behavioral evaluation.

A random walk’s starting program may happen to use all input variables, but
is not guaranteed to do so. The input variables that are absent in the starting
program become irrelevant for a walk. Thus, although the total number of vari-
ables is 12, even a one-variable task may occur in the sample (the zero-variable
trivial tasks are rejected at the spot). For every task we determine the number
of effective variables, and in the following we factor the results for tasks with
variable number varying from 6 to 12 (we assume that tasks with five or fewer
variables are too trivial to reveal the kind of regularities we search for). In this
way, we avoid aggregation over tasks with different numbers of variables, which
would make interpretation of results more difficult.

Absolute (raw) Values of Search Drivers. In this experiment we observe
how the search drivers vary along random walks. We compare the search drivers

216 K. Krawiec and U.-M. O’Reilly

0
5

1
0

1
5

2
0

2
5

3
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

6 variables

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

8 variables

0
1
0
0

2
0
0

3
0
0

4
0
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

10 variables

0
5
0
0

1
0
0
0

1
5
0
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

12 variables

Fig. 1. Search drivers as a function of the number of mutations, for tasks with 6, 8, 10,
and 12 relevant variables. f : program error, c: classifier complexity, e: classifier error.
Whiskers mark 10% of standard deviation.

presented in Section 4: program error (f), and the behavioral measures: the
complexity of the classifier induced from program behavior (c), and the classifier
error (e). We first build a sample of random walks by calling RandomWalk
100, 000 times. For every walk, we iterate over its elements (mutated programs),
and apply every search driver to them, assuming that the target is defined by
the first program in the walk (t = s(p0)). We factor the results by the number
of relevant variables in a problem.

Figure 1 presents the search drivers as functions of the number of mutations,
averaged over the walks in the sample. Let us emphasize that, while these aver-
aged curves are clearly monotonic, the search drivers for individual walks most
often are not: a subsequent mutation is likely to decrease the value of the driver
(as illustrated in the example in Section 3). Thus, the variance of the raw data
is very high: the whiskers show only 10% of standard deviation. Presenting in-
dividual walks would make the figures completely illegible.

As mutations accumulate, the features gathered from the behavior of a pro-
gram become less related to the target, so the classifier has to be more complex

Behavioral Search Drivers for Genetic Programing 217

(increasing c) to correctly predict the desired output, and it tends to commit
more errors (increasing e). Depending on problem size, the behavioral search
drivers grow simultaneously (which happens here for problems with 8 and 10
variables4), or individually: for the small problems (6 variables) the classifier
is often perfect (e = 0), while for the difficult ones (12 variables) building a
well-performing classifier becomes impossible so c levels-off. However, at least
one of them keeps rising with the subsequent mutations, and in this sense they
complement each other. This suggests that c and e can be aggregated to form
a compound search driver that would monotonically increase with the number
of mutations and avoid stagnation. Given the relative comparison of standard
deviations, there is a chance that such compound driver could be less prone to
leveling-off than the conventional fitness function f , but this analysis cannot be
deemed conclusive in this respect.

The decision tree classifiers are very small on average (search driver c), even
for tasks that involve more input variables. This can be explained by strong inter-
dependencies between features collected from GP subexpressions. For instance,
consider a program that contains a compound expression (p1 and p2), and that
this expression and its subexpressions p1, p2, are behavioral features used by
our approach. If a given decision tree node uses the compound expression, the
features p1 and p2 will be always true in the ‘positive’ branch of that node, and
the tree induction algorithm will not use them in that part of the tree.

Correlation Analysis. Above we analyzed the absolute values of search drivers.
However, what matters in practice is often only whether a search driver increases
or decreases with the expected number of mutations to target, particularly when
the search is driven by relative comparisons of candidate solutions (e.g., tourna-
ment selection). Thus, here we analyze how search drivers qualitatively correlate
with the number of accumulated mutations.

We use the sample of walks generated in the previous experiment. First, we
factor it with respect to the number of relevant variables. Next, we plot the
Spearman correlation coefficient between a search driver and the number of
mutations from all data points with up to l mutations, where l = 1..16. We
choose the Spearman coefficient as it relies on ranks and thus cares only about
the qualitative differences between values (as argued above). Effectively then,
a point with abscissa l in the graphs shows correlation coefficient for random
walks trimmed to length l.

The results, shown in Fig. 2, are partially consistent with the absolute values
shown in Fig. 1. As mutations accumulate, the correlation coefficients for f and c
deteriorate, as these search drivers tended to levels-off the most in Fig. 1 (except
for c for 6 variables). The classifier error e however maintains relatively stable
correlation along the walk, though it is rather low compared to the remaining
drivers (so low that for 6 variables the plot is out of plotting range). Overall, the
behavioral drivers start becoming competitive and often provide better correla-
tion than f , Interestingly, they frequently do so for long random walks, which

4 The growth of c is barely visible due to the range of vertical axis.

218 K. Krawiec and U.-M. O’Reilly

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

6 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

8 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

10 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

c

e

12 variables

Fig. 2. Spearman coefficient between the number of mutations in a walk and search
drivers, for walks of different total length (horizontal axis). Whiskers mark 0.99-
confidence intervals.

looks particularly attractive, as it suggest that they may provide better search
gradient far from the target.

The new result in comparison to Fig. 1 is that c and e are largely uncorrelated
(if they were, their plots would have to be similar). This suggests, even more
than Fig. 1, that c and e may complement each other in a nontrivial way.

Correlation Analysis for Compound Search Drivers. As the individual
search drivers saturate after a number of mutations (Fig. 1), we do not expect
any of them alone to be a useful search driver, so here we try to aggregate them.

Direct additive aggregation of our search drivers would be unjustified, as c is
the number of tree nodes, while f and e are expressed in tests (and c is typically
much smaller, see Fig. 1). To provide a common platform for these quantities, we
resort to information theory and attempt to estimate the amount of information
conveyed by these components. For simplicity, rather than calculating the exact
number of bits required to encode f , e, and c, we simply pass each of them

Behavioral Search Drivers for Genetic Programing 219

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

lg(f)+lg(c)

lg(f)+lg(e)

lg(c)+lg(e)

lg(f)+lg(c)+lg(e)

6 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

lg(f)+lg(c)

lg(f)+lg(e)

lg(c)+lg(e)

lg(f)+lg(c)+lg(e)

8 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

lg(f)+lg(c)

lg(f)+lg(e)

lg(c)+lg(e)

lg(f)+lg(c)+lg(e)

10 variables

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f

lg(f)+lg(c)

lg(f)+lg(e)

lg(c)+lg(e)

lg(f)+lg(c)+lg(e)

12 variables

Fig. 3. Spearman correlation between the number of mutations in a walk and aggre-
gates of search drivers, for walks of different total length (horizontal axis). Whiskers
mark 0.99-confidence intervals.

through a logarithm, meant as a rough measure of information content (see,
e.g., [4] for considerations on exact formulas).

We consider compound measures constructed from all combinations of f , c,
and e, and show them in Fig. 3, with the plot for f repeated after Fig. 2 for ref-
erence5. Comparison of these plots to individual search drivers in Fig. 2 clearly
suggests that fusing the behavioral search drivers is beneficial. For all combi-
nations of components, correlation is not worse, and often better, than that for
conventional fitness f . In particular, the aggregate that consistently (i.e., for all
considered numbers of variables) provides the highest or close to the highest
correlation involves all components (lg(f) + lg(c) + lg(e)), which corroborates
the outcomes we obtained with PANGEA [1].

The 0.99-confidence intervals clearly indicate that the compound search drivers
are in most cases significantly better than the conventional fitness function f .
However, what can be the potential implications for the efficiency of a search
5 We skip the logarithmic transform for f , as it is monotonic so it cannot affect ranking,

and thus has no effect on Spearman correlation.

220 K. Krawiec and U.-M. O’Reilly

algorithm? A thorough answer to this question requires a separate investigation;
for Push programs behavioral evaluation dramatically improved search efficiency
[1]. Here we can demonstrate how the behavioral search drivers extend the reach
of effective learning gradient. For instance, for the 10-variables problems, fitness
function has correlation of 0.51 for walks of length 8, while lg(f) + lg(c) + lg(e)
provides roughly the same correlation for walks up to length 16. In other words,
the behavioral search driver maintains roughly the same capability of estimating
solution’s distance from the target for programs that are more than twice as far
from it. As the number of programs that can be reached by a random walk grows
exponentially with walk length, the ‘basins of attraction’ for behavioral search
drivers can be much greater than for the conventional fitness function.

The correlation coefficients for behavioral fitness functions are greater than
those for conventional fitness, yet still far from perfect. However, attaining full
correlation is unrealistic, as it requires the ability to perfectly predict the num-
ber of mutations required to reach the optimum. Nevertheless, all correlations
reported here are statistically significant: the control values obtained by permu-
tation testing are well below 0.1 (null hypothesis: no interrelationship).

6 Related Work
The approach presented here is novel in its attempt to exploit program’s internal
behavior for search efficiency. However, there are examples of using alternative,
non-behavioral search drivers in GP, the most notable being implicit fitness
sharing [5] and its extensions [6].

The way in which we investigated the various performance measures resembles
the studies on fitness-distance correlation (e.g., [7]). However, the performance
measures under scrutiny here included not only conventional fitness, but also
the behavioral drivers. Also, we relied on the expected number of search steps,
rather than a distance, as a measure of anticipated computational effort.

The MDL principle has been used in GP means of controlling the trade-off
between model complexity and accuracy. For instance, Iba et al. [8] used it to
prevent bloat in GP by taking into account the error committed by an individual
as well as the size of the program. A few later studies followed this research
direction (see, e.g. [9]).

By focusing mostly on the effects of program execution (the partial outcomes
reflected in trace features) rather than on syntax, behavioral evaluation can be
seen as following the recent trend of semantic GP, initiated in [10]. Interestingly,
it also resembles evolutionary synthesis of features for machine learning and
pattern/image analysis tasks [11]. However, here the classifier serves only as a
scaffolding for evolution; it is supposed to provide ‘gradient’ when the program
output alone is unable to do so.

7 Conclusion

We demonstrated that behavioral search drivers provide more reliable informa-
tion about the expected number of mutations needed to reach the optimum.

Behavioral Search Drivers for Genetic Programing 221

Given two candidate solutions, behavioral evaluation is more likely to predict
correctly which of them requires fewer modifications to reach the search tar-
get, which has obvious implications for search efficiency. Also, by providing a
more comprehensive information of program’s prospective quality, it extends the
effective learning gradient further from the target, and promotes evolvability.

The presented results characterize the domain of Boolean functions, and ab-
stract from any specific task in that domain. Given the analogous results ob-
tained with with a different program representation and for non-Boolean prob-
lems [1], we hypothesize that behavioral evaluation can be potentially leveraged
in different genres of GP.

Acknowledgments. The authors thank the reviewers for rich feedback and con-
structive suggestions. Both authors acknowledge support from the Li Ka Shing
Foundation, and K. Krawiec acknowledges support from the Polish-U.S. Ful-
bright Commission and from grants no. DEC-2011/01/B/ST6/07318 and 91507.

References

1. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Blem, C., et al.
(eds.) GECCO 2013: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, Amsterdam, The Netherlands, pp.
949–956. ACM (2013)

2. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann (1992)
3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
4. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description

length principle. Inf. Comput. 80(3), 227–248 (1989)
5. Smith, R., Forrest, S., Perelson, A.: Searching for diverse, cooperative populations

with genetic algorithms. Evolutionary Computation 1(2) (1993)
6. Krawiec, K., Lichocki, P.: Using co-solvability to model and exploit synergetic

effects in evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6239, pp. 492–501. Springer, Heidelberg (2010)

7. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance
correlation as a difficulty measure in genetic programming. Evolutionary Compu-
tation 13(2), 213–239 (2005)

8. Iba, H., Sato, T., de Garis, H.: System identification approach to genetic pro-
gramming. In: Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, Orlando, Florida, USA, vol. 1, pp. 401–406. IEEE Press (1994)

9. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic pro-
gramming. Evolutionary Computation 3(1), 17–38 (1995)

10. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

11. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE Transactions on Evolutionary Computation 11(5), 635–650 (2007)

Cartesian Genetic Programming:

Why No Bloat?

Andrew James Turner and Julian Francis Miller

Electronics Department, University of York
Heslington, York, YO10 5DD, UK

{andrew.turner,julian.miller}@york.ac.uk

Abstract. For many years now it has been known that Cartesian Ge-
netic Programming (CGP) does not exhibit program bloat. Two possible
explanations have been proposed in the literature: neutral genetic drift
and length bias. This paper empirically disproves both of these and thus,
reopens the question as to why CGP does not suffer from bloat. It has
also been shown for CGP that using a very large number of nodes consid-
erably increases the effectiveness of the search. This paper also proposes
a new explanation as to why this may be the case.

1 Introduction

Bloat, the uncontrolled growth in program size, is a serious issue for Genetic
Programming (GP) that has received much study [1] [2]. However, bloat does
not appear in Cartesian Genetic Programming (CGP) [3]. In the literature there
are two possible theories as to why CGP does not exhibit bloat; Neutral Genetic
Drift (NGD) [3] and length bias [4]. This paper introduces both of these theories
and then proceeds to empirically disprove them by removing the underlying
assumptions each of them make. This leaves us with no explanation for the lack
of bloat in CGP and opens the topic for further investigation.

The investigations also show that there is an evolutionary pressure to increase
the program size when the current program size is insufficient1 to solve a given
task. Conversely we find empirically that there is no evolutionary pressure to
decrease the program size if the current program size is much larger than re-
quired to solve a given task. It therefore appears that using large program sizes
is not detrimental to CGP, in keeping with previous results [5] which show it
is actually beneficial. A new hypothesis is presented as to why this is the case.
When subject to a mutation operator, using a large number of nodes causes, on
average, the fitness of an individual to vary by a lesser degree than when using
a smaller number of nodes. Using a large number of nodes has smoothed out the
fitness landscape making it easier to navigate. This accords with the desirabil-
ity of synonymous redundancy in representations introduced by Goldberg and
Rothlauf who propose that genotype representations should have the property
that mutational neighbours represent similar phenotypes [6].

1 This is compatible with the length bias theory [4] as is discussed later.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 222–233, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Cartesian Genetic Programming: Why No Bloat? 223

The remainder of the paper is as follows: Section 2 describes CGP, Section 3
discusses bloat and past theoretical work surrounding bloat and CGP, Section
4 describes a series of experiments which empirically investigate the described
theories with the results given in Section 5 and finally Sections 6 and 7 provide
a discussion and closing conclusions.

2 Cartesian Genetic Programming

CGP [7] [8] is a form of GP which represents computational structures as di-
rected, usually acyclic graphs indexed by their Cartesian coordinates. Each node
may take its inputs from any previous node or program input. The program out-
puts are taken from the output of any internal node or program inputs. This
structure leads to many of the nodes described by the CGP chromosome not
contributing to the final operation of the phenotype, these inactive, or “junk”,
nodes have been shown to greatly aid the evolutionary search [5] [9] [10].

The nodes described by CGP chromosomes are arranged in a rectangular
r × c grid of nodes, where r and c respectively denote the user-defined number
of rows and columns. In CGP, nodes in the same column are not allowed to
be connected together. It is important to note that any architecture (limited
by the number of nodes) can be constructed by arranging the nodes in a 1 × n
format where the n represents the maximum number of nodes (columns). Using
this representation the user does not need to specify the topology, which is then
automatically evolved along with the program.

C0,0

C0,a

F0
n

F1
n+1

Cr-1,0

Cr-1,a

Fr-1
n+r-1

C1,0

C1,a

Cr,0

Cr,a

Fr
n+r

Fr+1
n+r+1

C2r-1,0

C2r-1,a

F2r-1
n+2r-1

Cr+1,0

Cr+1,a

Ccr,0

Ccr,a

Fcr
n+cr

Fcr+1
n+cr+1

C(c+1)r-1,0

C(c+1)r-1,a

F(c+1)r-1
n+(c+1)r-1

Ccr+1,0

Ccr+1,a

0

1

n-1

O0

Om

O1

F0C0,0 C0,a F1C1,0 C1,a F(c+1)r-1C(c+1)r-1,0 C(c+1)r-1,a O0O1 Om

Fig. 1: Depiction of a Cartesian Genetic Programs structure with chromosome
encoding below, taken from [8]

Figure 1 gives the general form of a CGP showing that a CGP chromosome
can describe multiple input multiple output programs with a range of node
transfer functions and arities. In the chromosome string, also given in Figure 1,
Fi denote the function operation at each node, Ci index where the node gathers

224 A.J. Turner and J.F. Miller

its inputs and each Oi denote which nodes provide the outputs of the program.
It should be noted that CGP is not limited to only one data type, it may be
used for Boolean values, floats, images, audio files, videos etc. CGP generally
uses the Evolutionary Strategy (ES) algorithm (1 + λ)-ES. In this algorithm
each generation contains 1+λ candidates and the fittest is chosen as the parent.
The next generation is formed by this parent and λ offspring obtained through
mutation of the parent. It is important to note that if no offspring are fitter
than the parent, but at least one has the same fitness as the parent, then the
offspring is chosen as the new parent. In CGP, the λ value is commonly set
as four. The connection genes in the chromosomes are initialised with random
values that obey the constraints imposed by the CGP structural parameters r
and c. The function genes are randomly chosen from the allowed values in the
function lookup table. The output genes Oi are randomly initialised to refer to
any node or input in the graph. The standard mutation operator used in CGP
works by randomly choosing valid alleles at a randomly chosen gene locations.
The reason why both a simple operator and a simple evolutionary algorithm are
so effective is related to the presence of non-coding genes. Simple mutations can
connect or disconnect whole sub-programs. For a more detailed description of
CGP see [8].

3 Bloat and CGP

Bloat can be defined as “program growth without (significant) return in terms
of fitness” [11], that is, if program length is increasing disproportionately to fit-
ness improvements then bloat is said to be occurring. This definition has been
formally stated as a metric which measures the amount of bloat on any given
generation [12]. Here we use a variation on this bloat equation is given in Equa-
tion 1:

B(g) =
N(g)

D(g)
, N(g) =

Â(g)− Ā(0)

Ā(0)
, D(g) =

F̄ (0)− F̂ (g)

F̄ (0)
(1)

Where B(g) is the bloat at generation g, Â(g) is the number of active nodes used
by the fittest member of the population at generation g, Ā(0) is the average
number of active nodes used by the population at generation 0, F̄ (0) is the
average fitness of the population at generation 0 and F̂ (g) is the fitness of the
fittest member of the population at generation g. Equation 1 holds when the
target is to minimise the fitness to zero. When the fitness is to be maximised the
fitness values can be amended by subtracting the current fitness from the target
fitness; thus transforming the problem into a minimisation task. The equation
effectively gives the ratio of increase in program size to improvement in fitness. If
the program size is increasing disproportionately to fitness then the bloat value
will also increase, thus indicating bloat.

Cartesian Genetic Programming: Why No Bloat? 225

The bloat equation given in [12] was adapted here to show the amount of bloat
exhibited by the fittest member of the population; as opposed to the average
bloat of the population. There are two reasons for this alteration: 1) CGP uses a
(1 + λ)-ES without crossover, and so the only solution of interest is the current
fittest. 2) The small population sizes typically used by CGP leads to very noisy
average active nodes and fitness values which are hard to analyse graphically.

Figure 2 gives three examples of the unaltered bloat metric when used by the
original authors; see [12] for further details of their experiments. As can be seen
in Figure 2, bloat is easily detected by a high continuous increase in the bloat
metric.

(a) f(x) = log(x) (b) %F (c) LD50

Fig. 2: The bloat metric comparing standard GP (light gray) and DynOpEq GP
(black) on (a) symbolic regression and (b)(c) two real world classification tasks.
Images taken from [12].

Although CGP uses fixed size genotypes, each genotype can encode pheno-
types (programs) of different lengths. This is because many of the genes in the
genotypes are typically inactive or “junk” and are therefore not decoded into the
phenotype. If bloat occurred in CGP it would via a disproportionate increase
in active nodes with respect to fitness. The following subsections introduce two
theories found in the literature which have been proposed to explain why CGP
does not bloat.

3.1 Neutral Genetic Drift

One of the many theories surrounding why GP in general suffers from bloat is the
drift hypothesis [13]. The drift hypothesis goes as follows. When a population is
trapped in a local optimum many of the parents children will have the same or
very similar fitness. A method often used by GP is to replace parents with their
children if their fitness is equal or very similar; with the aim to improve genetic

226 A.J. Turner and J.F. Miller

diversity and to escape local optima with future mutations. If adding or removing
a small number of nodes does not lessen the fitness of the child then the child
may be larger or smaller respectively. Additionally it has been shown that for
a given chromosome size there exist more solutions with the same fitness which
are larger than smaller [14]. Therefore there exists an evolutionary pressure to
increase the size of the program when trapped in local optima.

It is argued in [3] that CGP does not suffer from bloat due to the inactive
genes causing NGD [15]. Their argument is that when a population is trapped in
a local optimum the majority of the mutations which do not cause a reduction
in fitness will be mutations affecting inactive genes; as opposed to active genes.
Mutating inactive genes cannot alter the program size, therefore CGP does not
increase in length. However mutating inactive genes alone cannot help the pop-
ulation escape the local optima, but the activation of previously inactive genetic
material can. This effect is strengthened when the inactive genetic material is
continuously changing as it causes the possible phenotypes one mutation away
to also continuously change; meaning that a wide area of the search space can be
sampled generation to generation. The term given to this continuously changing
inactive genetic material is NGD and it is this, coupled with non-coding genes,
which is thought to be the cause of CGP not exhibiting bloat.

3.2 Length Bias

Length bias offers an alternative argument for why CGP does not suffer from
bloat [4]. Length bias shows that nodes positioned closer to the chromosome in-
puts are much more likely to be active than those positioned nearer the outputs.
This is because when CGP encodes feed-forward (acyclic) networks each node
can only gather its inputs from previous nodes i.e. those closer to the inputs.
This means that nodes closer to the inputs have a higher probability of being
active; as the probability of any given node being an active node is directly pro-
portional to the number of nodes which can connect to that node. This results
in a higher concentration of active nodes towards the inputs. This bias towards
small networks is why CGP does not suffer from bloat.

4 Experiments

The aim of the experiments presented is to identify if NGD, length bias or
another factor is responsible for the lack of bloat in CGP. This is achieved by
removing the main assumption behind each theory as to why CGP does not
suffer from bloat. For the NGD theory this is achieved by preventing NGD from
occurring and for the length bias theory this is achieved by removing the length
bias. The results obtained on each task are also compared to a neutral search,
to ensure that the fitness functions used are not producing a pressure to create
small programs.

All of the experiments are investigated using the six bit parity and the Pagie1
[16] symbolic regression tasks. The parity task uses AND NAND OR and NOR

Cartesian Genetic Programming: Why No Bloat? 227

node functions2 and the fitness is calculated as the number of incorrect outputs
produced when all possible inputs are swept. The Pagie1 task, Equation 2, uses
+ − × % en and ln(|n|) node functions and the fitness is calculated as the sum
of the absolute differences between the correct and actual outputs when both
inputs are swept from −5 to 5 in 0.4 increments. In all cases, unless otherwise
stated, the following parameters are used: (1+4)-ES, three percent probabilistic
mutation3, one hundred columns, one row and allowed ten thousand generations
before terminating the search. Each experiment is repeated fifty times in order
to produce reliable averages.

y(x1, x2) =
1

1 + x−4
1

+
1

1 + x−4
2

(2)

4.1 Regular CGP

The first experiment is to apply regular unaltered feed-forward CGP to the two
tasks. This is to confirm the result that CGP does not exhibit bloat [3] and
provide results to which the other experiments can be compared against.

4.2 No Neutral Genetic Drift

The NGD theory as to why CGP does not suffer from bloat is reliant upon
CGP actually exhibiting NGD. NGD can be prevented in CGP by only allowing
active genes to be mutated. This causes the inactive genetic material to become
static and thus cannot drift. Inactive nodes can still become active however if
an active node connects to them when mutated. By only allowing active genes
to be mutated, CGP is functionally equivalent but without NGD.

If CGP without NGD is shown not to exhibit bloat then NGD cannot be the
cause of CGP not bloating. Conversely if CGP without NGD is shown to exhibit
bloat then NGD must be the cause of CGP not bloating.

Interestingly the method of only allowing active genes to be mutated has the
opposite goal of accumulating mutation [17], a CGP mutation method designed
to heighten NGD.

4.3 Recurrent CGP

The length bias theory as to why CGP does not suffer from bloat is reliant upon
CGP exhibiting a length bias. Length bias occurs as nodes can only connect to
previous nodes in the network. However, if this restraint is removed then length
bias no longer applies. This restraint can be removed by placing no restrictions
on where each node can gather its inputs i.e. by allowing recurrent as well as
feed forward connections. This form of CGP is referred to as recurrent CGP as
it allows for recurrent connections. Allowing recurrent connections means that

2 The XOR gate is omitted to increase the difficulty of the tasks.
3 Where each gene is mutated with a given probability.

228 A.J. Turner and J.F. Miller

the probability of a given node being active is no longer a function of its position
within the genotype. Therefore length bias has been removed.

The implementation of recurrent CGP is identical to that of feed-forward CGP
except that no restraints are placed on where each node can connect its inputs.
Under these conditions it is possible for a node to be used as an input to another
node before it has calculated its own output value. Therefore, before each fitness
evaluation all of the active nodes are initialised to output zero. During the fitness
functions the outputs are read from the program in the same way as for regular
feed-forward CGP: 1) apply a set of inputs 2) update every active node once
from inputs to outputs (allowing the clocked feedback) 3) the program results
are read from the output nodes.

If recurrent CGP does not suffer from bloat then the cause of feed-forward
CGP not exhibiting bloat cannot be due to length bias. However if recurrent
CGP does suffer from bloat then the cause of feed-forward CGP not exhibiting
bloat must be due to length bias.

4.4 Neutral Search

It is possible that the fitness functions used to investigate bloat may themselves
produce a pressure to create small program sizes; for instance if they require
small program sizes to solve the given task. Although this is unlikely, it should
be investigated and found to be untrue in order for the results of the other
experiments to be valid.

This is achieved by comparing the percentage of active nodes used by the
six bit parity and Pagie1 tasks with the percentage used by a neutral search.
A neutral search is where the fitness is set to zero regardless of the programs
functionality i.e. it is a neutral fitness landscape. If it is shown that the six
bit parity and Pagie1 tasks use a lower percentage of active nodes than that
used by a neutral search then it would indicate that these tasks are applying an
evolutionary pressure to produce small program sizes which could be responsible
for CGP not bloating.

In order to make a fair comparison between the percentage of active nodes
used by neutral search and the six bit parity and Pagie1 tasks, the number of
inputs and outputs of the evolved programs must be consistent. That is, when
comparing neutral search to the six bit parity task the neutral search must also
evolve solutions with six inputs and one output; and equivalently for the Pagie1
task. This is because the number of inputs and outputs is likely to influence the
percentage of active nodes.

The experiment is investigated for 1, 5, 10, 50, 100, 500 and 1000 nodes
(columns with rows set to one), to identify if the results vary over a range of
topology limits.

5 Results

The results of the described experiments are now presented. In all but the neu-
tral search experiments, the results are given graphically showing the fitness,

Cartesian Genetic Programming: Why No Bloat? 229

number of active nodes and bloat values of the best member of the population
at each generation averaged over the fifty runs. The bloat value is calculated
using Equation 1. The technique is identified as bloating if the bloat value rises
continuously throughout evolutionary time.

5.1 Regular CGP

The results of applying regular feed-forward CGP to the six bit parity and Pagie1
tasks are given in Figure 3. Here it can be seen that CGP is not exhibiting bloat
during evolution with the bloat value actually falling in the six bit parity case.
Although it can be seen that the number of active nodes does increase over
evolutionary time, it does so only when the fitness also improves and is therefore
not bloat as defined in Section 3.

The initial high values of bloat seen in Figure 3 for the six bit parity task is
thought to be because of the high increase in active nodes during the beginning
of the search. It appears that the initial randomly generated chromosomes have
too few active nodes to solve the task. This causes a sharp increase in the number
of active nodes during the first few generations. This appears in the bloat value
until these additional active nodes causes a significant increase in fitness at which
point the bloat value starts to fall.

0 2000 4000 6000 8000 10000
30

40

50

F
itn

es
s

0 2000 4000 6000 8000 10000
0

20

40

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
0

10

20

Generation

B
lo

at

(a) Six Bit Parity

0 2000 4000 6000 8000 10000
0

500

1000

F
itn

es
s

0 2000 4000 6000 8000 10000
10

15

20

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
−1

0

1

Generation

B
lo

at

(b) Pagie1

Fig. 3: Regular feed-forward CGP

5.2 No Neutral Genetic Drift

The results of applying CGP without NGD are given in Figure 4 for both the
six bit parity and Pagie1 tasks. Here it can be seen that CGP without NGD is
still not exhibiting bloat and so NGD cannot be the cause of CGPs lack of bloat.

5.3 Recurrent CGP

The results of applying recurrent CGP are given in Figure 5 for both the six
bit parity and Pagie1 tasks. Here it can be seen that recurrent CGP is still not
exhibiting bloat and so length bias cannot be the cause of CGPs lack of bloat.

230 A.J. Turner and J.F. Miller

0 2000 4000 6000 8000 10000
30

40

50
F

itn
es

s

0 2000 4000 6000 8000 10000
0

20

40

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
0

10

20

Generation

B
lo

at

(a) Six Bit Parity

0 2000 4000 6000 8000 10000
0

500

1000

F
itn

es
s

0 2000 4000 6000 8000 10000
10

15

20

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
−1

0

1

Generation

B
lo

at

(b) Pagie1

Fig. 4: Feed-forward CGP without NGD

0 2000 4000 6000 8000 10000
20

40

60

F
itn

es
s

0 2000 4000 6000 8000 10000
70

75

80

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
0

0.1

0.2

Generation

B
lo

at

(a) Six Bit Parity

0 2000 4000 6000 8000 10000
0

500

1000

F
itn

es
s

0 2000 4000 6000 8000 10000
75

80

85

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
−0.1

0

0.1

Generation

B
lo

at

(b) Pagie1

Fig. 5: Recurrent CGP

5.4 Neutral Search

Figure 6 gives a comparison between the percentage of active nodes, over a
range of available nodes4, for the neutral and guided search problems5. The
figure clearly shows that for small numbers of available nodes the percentage of
active nodes used by the guided searches far exceeds the percentage used by the
neutral searches. However, for higher numbers of available nodes the percentage
of active nodes used by the guided searches approach that used by the neutral
searches. Therefore it can be concluded that the six bit parity and Pagie1 tasks
are not producing an evolutionary pressure to create small program sizes and are
therefore not responsible for the observed lack of bloat in the previous results.

4 Where available nodes refers to the product of the rows and columns. As rows was
always set as one however available nodes and columns are equivalent.

5 Where a guided search is the opposite to a neutral search i.e. toward a real task.

Cartesian Genetic Programming: Why No Bloat? 231

0 200 400 600 800 1000
0

20

40

60

80

100

Num Nodes

%
 A

ct
iv

e
N

od
es

6 Bit Parity
Neutral Search

(a) Six Bit Parity

0 200 400 600 800 1000
0

20

40

60

80

100

Num Nodes

%
 A

ct
iv

e
N

od
es

Pagie1
Neutral Search

(b) Pagie1

Fig. 6: Regular feed-forward CGP applied to the two tasks and equivalent neu-
tral searches

6 Discussion

As is seen in Section 5.2, CGP without NGD does not exhibit bloat and so
NGD is unlikely to be the cause of CGP not exhibiting bloat. However it is
important to note that this result does not suggest that the presence of inactive
genes themselves are not responsible. It was shown in Section 5.3 that recurrent
CGP also does not suffer from bloat, and as length bias only applies to feed-
forward CGP it therefore cannot be the cause of CGP not exhibiting bloat. It
was also shown in Section 5.4 that the tasks used to study CGP and bloat did
not themselves produce a bias towards small program lengths; strengthening the
conclusions.

Interestingly it is reported in [4] that CGP struggles to increase the number
of active nodes during evolution even when a given task requires it; due to
length bias. In Section 5.4 however it can be seen that CGP consistently used
more active nodes on both tasks than for the neutral searches when given a low
number of available nodes. This indicates that CGP is increasing the number of
active nodes when the task requires it. This effect is also seen in the increasing
number of active nodes during evolution in Sections 5.1 and 5.2. This however is
in keeping with the results found in [4] which investigated the effect of length bias
in extreme cases where it was required that CGP used a very high percentage of
active nodes; here the experiments were for real tasks typical of the applications
of CGP.

It has been shown previously for CGP that using a large number of available
nodes aids the search considerably [5]. This was thought to be because large
numbers of available nodes produced a high percentage of inactive nodes aiding
the search through NGD. However it was later shown in [4] that length bias
causes very few inactive nodes to be present among the active nodes, weakening
the effect. Interestingly, the results given in Section 6 show that when CGP is
allowed a very large number of nodes there is no evolutionary pressure to use less

232 A.J. Turner and J.F. Miller

active nodes than that used by a neutral search i.e. there is no pressure to increase
smaller program sizes. Based on this result the authors propose an alternative
explanation. Consider a genotype for which the phenotype consists of a small
number of active nodes, any single connection gene mutation is likely to have a
large effect on the operation of that phenotype. If however a genotype encodes
a phenotype with a high number of active nodes, any single connection gene
mutation is likely, on average, to have a much smaller effect on the operation
of the overall phenotype. Therefore, using a high number of nodes creates a
search space in which the fitness changes more gradually with a given number of
connection gene mutations. This smoother search space is likely to be easier for
evolution to navigate and hence make for a more efficient search. The reason this
does not result in CGP evolving larger and larger program sizes is because these
larger programs are not fitter, they are more evolvable and therefore there is no
direct pressure to increase the program size. However, this hypothesis currently
has no empirical evidence and is left for future investigation.

Another interesting result is that recurrent CGP outperformed feed-forward
CGP on the six bit parity task6; a task which does not require recurrent con-
nections. This is due to the fixed order of inputs applied to each circuit when
evaluating the fitness function. Recurrent CGP was producing the correct out-
puts based on the current inputs and previous inputs, not on the current inputs
alone. Although these evolved circuits would therefore not operate correctly as
parity generators, it does show the ingenuity of evolution and how using recur-
rent programs for feed-forward tasks can provide an unexpected, albeit unfair,
advantage.

7 Conclusion

Although this paper does not give a possible cause of CGP not exhibiting bloat,
it does help disprove two previous explanations found in the literature; namely
NGD and length bias. Additionally it has been shown that CGP increases the
number of active nodes when a given task requires it; although this effect has
limitations as shown in [4]. A new hypothesis has also been presented as to
why using large numbers of available nodes is beneficial for CGP. That is, using
large program sizes could help smooth out the search space making for easier
navigation.

References

1. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14(3), 309–344 (2006)

2. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

6 After ten thousand generations feed-forward CGP scored an average fitness of 49.22
whereas recurrent CGP scored an average fitness of 58.62.

Cartesian Genetic Programming: Why No Bloat? 233

3. Miller, J.: What bloat? Cartesian genetic programming on Boolean problems. In:
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers,
pp. 295–302 (2001)

4. Goldman, B.W., Punch, W.F.: Length bias and search limitations in Cartesian ge-
netic programming. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 933–940. ACM (2013)

5. Miller, J., Smith, S.: Redundancy and computational efficiency in Cartesian genetic
programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174
(2006)

6. Rothlauf, F., Goldberg, D.E.: Representations for Genetic and Evolutionary Algo-
rithms. Physica-Verlag (2002)

7. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

8. Miller, D.J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
9. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital

Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

10. Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape.
In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg
(2001)

11. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to ge-
netic programming (2008), Published via, http://lulu.com and freely available
at http://www.gp-field-guide.org.uk

12. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pp. 877–884. ACM (2010)

13. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines 3(3), 283–309 (2002)

14. Langdon, W., Soule, T., Poli, R., Foster, J.: The evolution of size and shape.
Advances in Genetic Programming 3, 163 (1999)

15. Kimura, M.: The neutral theory of molecular evolution. Cambridge University
Press (1984)

16. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming
needs better benchmarks. In: Proceedings of the Fourteenth International Confer-
ence on Genetic and Evolutionary Computation Conference, pp. 791–798. ACM
(2012)

17. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B.
(eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013)

http://lulu.com
http://www.gp-field-guide.org.uk

On Evolution of Multi-category Pattern

Classifiers Suitable for Embedded Systems

Zdenek Vasicek and Michal Bidlo

Brno University of Technology,
Faculty of Information Technology,
IT4Innovations Centre of Excellence

Brno, Czech Republic
{vasicek,bidlom}@fit.vutbr.cz

Abstract. This paper addresses the problem of evolutionary design of
classifiers for the recognition of handwritten digit symbols by means
of Cartesian Genetic Programming. Two different design scenarios are
investigated – the design of multiple-output classifier, and design of mul-
tiple binary classifiers. The goal is to evolve classification algorithms
that employ substantially smaller amount of operations in contrast with
conventional approaches such as Support Vector Machines. Even if the
evolved classifiers do not reach the accuracy of the tuned SVM classifier,
it will be shown that the accuracy is higher than 93% and the number
of required operations is a magnitude lower.

1 Introduction

Classification represents one of the important problems related to the appli-
cations of pattern recognition. In general, multi-category pattern classification
problem relates to the classification of a given feature vector presented on the
classifier’s input to one of the finite number of classes. The common approach is
to reduce this problem into multiple binary (i.e. two-class) classification prob-
lems [1]. The classifier then consists of several binary classifiers identifying the
presence of a specific property in the feature vector. The binary classifiers can
distinguish between (i) one of the labels and the rest or (ii) between every pair
of classes. The first method is known as one-versus-all approach and the classifi-
cation of new instances is performed by a winner-takes-all strategy, in which the
classifier with the highest output function assigns the class. The second method
is denoted as one-versus-one approach. The classification is done by a max-wins
voting strategy, in which every classifier assigns the instance to one of the two
classes, then the vote for the assigned class is increased by one, and finally the
class with the most votes determines the instance classification.

To learn a classifier, supervised machine learning is usually applied in prac-
tice. This approach involves a set of samples of annotated data; e.g. a set of
images with known content. Among others, Neural Networks and Support Vec-
tor Machines (SVM) represent the most popular approaches nowadays [2].

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 234–245, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Multi-category Classifiers Suitable for Embedded Systems 235

There are two design objectives in practice. Typically, the goal is to optimize
the reliability of the classification process, i.e. maximize the probability indicat-
ing how sure the result can be considered to be put in the (correct) class. This
is done via accuracy. Another important objective is complexity of a resulting
classifier which can include the number of features needed to be supplied to the
classifier, the size of the classifier model, or the average number of operations
required to classify a given input. This objective is important especially for mid-
performance or low-performance embedded systems where the classification time
plays a significant role.

Various, usually application-specific, methods for performing the classification
task were published in literature. Apart from the traditional approaches, bio-
inspired algorithms were applied to solve various pattern recognition problems.
For example, Multiple Network Cartesian Genetic Programming was applied to
the classification of mammogram images [3]. The authors demonstrated that
theirs method is able to correctly classify patterns as being malignant or benign
despite the fact that no pre-processing was applied. While the paper focuses
on a common design objective, i.e. maximization of the classifier’s accuracy,
Kowaliw et al. proposed to apply Cartesian Genetic Programming (CGP) to
the automated discovery of features for an image classification problem [4]. In
particular, the recognition of nuclear inclusions was investigated.

Recognition of handwritten digits is a typical multi-category pattern clas-
sification problem. The feature vector can be represented by the sub-sampled
digitized image of a digit to be classified, however, to improve the precision
of the classifier the image is usually preprocessed (e.g. normalized, descaled,
etc.). As the variety of handwriting styles represents the main challenge of the
character classification, the preprocessing mitigating the variability of the input
symbols is believed to be an essential part of the successful systems. However,
it was shown that there can be developed methods requiring minimal amount of
pre-processing before performing the recognition itself. For example, Convolu-
tional Neural Network was introduced to cope with the variability of handwritten
characters [5].

The drawback of the popular pattern recognition systems is the high amount
of nontrivial, mostly floating-point, operations that have to be performed to
accomplish the recognition. This disadvantage forces the designers to make a
compromise and utilize simpler recognition algorithm exhibiting lower precision.
The evolvable hardware community demonstrated that very efficient and some-
times also patentable implementations of physical designs can be obtained using
evolutionary computation. For example, evolutionary design of non-linear image
filters is a typical application in which the evolutionary approaches have a great
potential to produce solutions that can compete with conventional designs or
even produce significantly better results [6]. It was shown that the evolved fil-
ters exhibit better quality in terms of detail preservation, noise suppression as
well as implementation cost in FPGA.

If we analyze the published evolutionary designed classifiers dealing with
recognition of handwritten characters, we can identify that (i) simplified input

236 Z. Vasicek and M. Bidlo

in form of binary images is utilized, and (ii) the obtained accuracy is, unfortu-
nately, far from accuracy of the conventional approaches. Jin applied CGP at
the gate-level to the recognition of letters encoded using 5x6 bits [7]. Rehman
and Khan developed a hardware system for fast recognition of handwritten char-
acters [8]. In this case, CGP was utilized to evolve a circuit consisting of 1-bit
morphological multiplexers.

The goal of this paper is to introduce a method for the evolutionary design
of classifiers suitable for software as well as hardware implementation on the
systems with a limited amount of available resources. The aim is to provide an
approach that allows designers to construct classifiers exhibiting the trade-off
between accuracy and complexity of the computation. Design of multi-category
classifiers of handwritten digit symbols was chosen as a case study. This classifier
represents a basic component of our target application. The evolutionary design
is conducted using CGP, similarly to the aforementioned approaches. However,
functional level CGP operating with 8-bit operands is applied in this paper.

The paper is organized as follows. Section 2 briefly introduces CGP. Section 3
describes the proposed method. Section 4 summarizes the experimental setup.
Section 5 presents and discusses the obtained results. Concluding remarks are
given in Section 6.

2 Cartesian Genetic Programming

In this work we will apply Cartesian Genetic Programming which represents a
variant of genetic programming having the ability to encode arbitrary cyclic as
well as acyclic graph structure using a linear string of integers [9].

2.1 Representation

To represent a candidate solution having ni primary inputs (input variables)
and no primary outputs, the CGP utilizes a set of nodes arranged in nc columns
and nr rows. Each node can perform one function taken from an a priori given
finite set of functions Γ . A specific interconnection of the elements gives rise to
a functional circuit.

A candidate solution is encoded using a sequence of integers specifying (i)
functions of the nodes, (ii) interconnection of the nodes, and (iii) connection of
the primary outputs. The primary inputs as well as the output of each node
in the grid have assigned a unique integer (index) . The functions of the nodes
are also identified by integer values. Then, the CGP encoding consists of nc ·
nr triplets (i1, i2, f) followed by a single tuple (o1, o2, . . . , ono) consisting of no

integers. Each triplet encodes the connection of one CGP node and contains:
(1) input index i1, (2) input index i2, and (3) index of the performed function
f . The input indices determine which nodes’s outputs (or primary inputs) are
connected to this node. The no-tuple at the end specifies the indices of nodes
where the primary outputs are connected to. Usually, the following restriction to
the interconnection is applied. Each node can be connected either to the output
of a node placed in previous l columns or to one of the primary inputs.

Multi-category Classifiers Suitable for Embedded Systems 237

2.2 Search Algorithm

The search in the search space is conducted using evolutionary strategy [9]. The
population consists of a finite number of λ + 1 chromosomes. Usually λ is set
to 4. Each chromosome encodes single candidate solution. The first population
is generated randomly at the beginning of evolution. In order to create a new
population, the fittest individual is selected as a new parent and by applying a
point mutation operator λ offspring are generated. The steps of the evolution
loop are repeated until either a satisfactory solution is found or a maximal
number of generation is reached.

3 Evolutionary Design of Classifiers

Let us consider a classification problem consisting of c different categories. A
single classification network that produces a single output determining index of
the class the input instance belongs to (i.e. that produces a number in range
0 to c− 1) can be utilized. However, the classification network having c binary
or c real-valued outputs is utilized in practice. In this case, each output pro-
duces a likelihood that a given input data belongs to the corresponding class.
Alternatively, the problem of multi-category classification can be decomposed
to several binary classifiers working in parallel respecting the aforementioned
one-versus-all or one-versus-one approach.

N

classifier 0

classifier 1

classifier 8

classifier 9

N

Classifier 0

Fig. 1. Recognition of handwritten digits using (i) classifier network with ten outputs
(left), and (ii) set of binary classifiers (right)

Both approaches will be evaluated in this paper. In particular we will be inter-
ested in (i) the direct evolution of a classifier circuit with c outputs, and (ii) the
evolution of c binary classifiers distinguishing between one of the c classes and
the rest. In both cases, the goal of the EA is to find a graph structure (circuit)
that inputs a feature vector and produces single or multiple values determining

238 Z. Vasicek and M. Bidlo

the membership of an input instance to a given class. To minimize the com-
plexity of software as well as hardware implementation of resulting classifier,
we restrict the data types to 8-bit integer values only. Then, the 8-bit output
value calculated by the evolved classifiers is interpreted as follows. Zero value
indicates that it is definite that the input instance does not belong to a given
class, while the maximum value (i.e. 255) informs that it is definite that the
processed instance belongs to a given class.

Let us look in more detail at the problem of evolutionary design of handwritten
digits recognizer. Let W be width and H be height of the input image. Then, the
first design scenario (denoted as C10) involves a design for a single circuit with
W ×H inputs and ten outputs. The structure of the corresponding classifier is
depicted in Figure 1. Each of the outputs provides 8-bit value. The output with
the highest value determines the class.

The second design scenario (C1) consists of the following steps. Firstly, a
set of binary classifiers needs to be created. This step involves to evolve single
output circuits with W × H inputs. Then, the fittest solution for each class is
determined. Finally, the chosen solutions form ten groups that are utilized in
the resulting classifier. The structure of the classifier is shown in Figure 1.

It is supposed that a single evolutionary designed classifier will not be able
to provide the required accuracy. Hence to increase the overall performance,
we can combine more evolved solutions together. This principle is applicable to
both design scenarios. The advantage of the evolutionary design is that each
evolutionary run usually produces a solution that works on a different principle.

The class the input image belongs to is determined as follows. The output
value of each group is obtained as a sum of the outputs of the classifiers within
each group. Then the group that obtained the highest score identifies the class
of the input instance. If there are two or more outputs with the same maximal
score, the input instance is not classified to any of ten classes. Note that another
scheme can be applied in this case – for example we can chose the first class or
we can chose one of the classes having maximal score randomly.

To design the required classifiers, the fitness value of the candidate classifiers
is calculated as follows. Let s denote the index of an input sample and Cs the
output of the classifier for the sample s. If the given input sample belongs to
the category that ought to be recognized by the classifier, then the expected
output value Es = 255, otherwise Es = 0. The fitness value is calculated as the
mean absolute difference (i.e. mean error) of the expected value and the value
provided by the classifier for each of the Ntr training samples as expressed by
the following equation.

f =
1

Ntr

Ntr∑

s=1

|Es − Cs|

The goal of the evolutionary algorithm (EA) is to minimize f . Note that the
absolute value corresponds to the sum of separately calculated differences for
each output for C10.

Multi-category Classifiers Suitable for Embedded Systems 239

4 Experimental Setup

The classification problem is defined as follows. There are ten classes correspond-
ing with ten handwritten digits 0–9 represented using a feature vector consisting
of 196 attributes encoded as 8-bit integers. The feature vector is obtained from
a down-sampled gray-scale image (W = 14, H = 14).

Fig. 2. Randomly picked samples from the training set of MNIST database

In order to evolve the classifiers, the MNIST database consisting of 70 000
isolated and labeled handwritten digits is utilized [10]. This database is divided
into a training set of 60 000 and a test set of 10 000 digits. The digits are
normalized to gray-scale images with 28×28 pixels. An example of some training
samples is shown in Figure 2.

Table 1. The list of functions that can be implemented in each CGP node

index function description index function description

F0 255 constant F6 x� 2 division by 4

F1 x identity F7 x+ y addition

F2 255− x inversion F8 x+S y addition with saturation

F3 max(x, y) maximum F9 (x+ y)� 1 average

F4 min(x, y) minimum F10 (x > 127) ? y : x conditional assignment

F5 x� 1 division by 2 F11 |x− y| absolute difference

The parameters of the evolutionary system were chosen as follows. The CGP
array consists of 100 (200, for first design scenario, i.e. C10) nodes arranged as a
single row. The maximal value of the l-back parameter is used. Each node can be
configured to one of the functions whose list is shown in Table 1. The functions
operate over 8-bit integers. The goal of the EA is to find a program that processes
196 8-bit input attributes and produces a single (or ten for scenario C10) 8-bit
output(s).

The evolutionary strategy utilized to search through the search space works
with the population consisting of 5 individuals. The mutation operator modifies

240 Z. Vasicek and M. Bidlo

up to 5 randomly selected genes. For the scenario C10, 100 independent evolu-
tionary runs were performed. For the scenario C1, 100 independent evolutionary
runs were performed for each class. The evolution was stopped if the maximal
number of generations (25 · 106) was reached.

In order to speedup the evolution, we implemented an approach that was
proposed in [11]. The experiments were carried out on a cluster of computers
consisting of Intel Xeon X5670 2.4 GHz processors. The preliminary experiments
showed that the number of candidate solutions evaluated within a time period
increased more than 25 times. Approximate 150 candidate solutions can be eval-
uated within one second. The 8-bit training data occupies approx. 10 Mbytes of
memory.

5 Experimental Results

Firstly, let us consider the scenario C10. The results of the evolutionary design
of the classifiers are summarized in Table 2. Table contains average fitness value
(i.e. the mean error per training sample as defined in Section 3), its standard
deviation, and the worst and best fitness value. In order to evaluate the conver-
gence of evolutionary design process, the parameters are shown also during the
evolutionary process – i.e. at multiples of 5 · 106 evaluated generations. All the
values are calculated from 100 independent evolutionary runs. It can be deter-
mined, that there is an exponential dependency between the number of evaluated
generations and the average fitness value. The improvement in the fitness value
decreases with the increasing number of evaluated generations.

Table 2. The average (fav), best (fbst) and worst (fwst) fitness value with standard
deviation (fstd) after a certain number of evaluated generations for C10

parameter

generations fav fstd fbst fwst

5.0 · 106 143.8 12.2 113.7 166.3

10.0 · 106 132.1 13.3 96.6 156.8

15.0 · 106 127.8 12.6 95.2 154.1

20.0 · 106 125.2 12.7 94.4 154.1

25.0 · 106 123.2 12.3 93.7 153.7

The results for the second scenario, in which the goal was to design ten bi-
nary classifiers, are summarized in Table 3 which contains average mean error
and its standard deviation for each of ten classes. The average values are calcu-
lated from 100 independent evolutionary runs performed independently for each
class. Similarly to the previous design scenario, we can identify the exponentially
dependency between average fitness value and number of generations. We can
also identify that the difficulty of the evolutionary design of a classifier depends

Multi-category Classifiers Suitable for Embedded Systems 241

Table 3. The average fitness value and standard deviation (emphasized) after a certain
number of evaluated generations for C1

digit

generations 0 1 2 3 4 5 6 7 8 9

5.0 · 106 2.07 2.47 5.56 6.68 5.84 6.90 2.75 6.39 8.64 8.28

1.29 4.72 1.74 1.91 1.31 2.39 0.81 2.50 1.83 4.21

10.0 · 106 1.32 1.09 4.44 5.48 4.97 5.66 2.25 5.16 7.34 6.50

0.80 0.39 1.37 1.25 0.99 1.83 0.46 2.43 1.59 3.37

15.0 · 106 1.00 0.89 4.02 4.96 4.62 5.17 2.06 4.50 6.71 5.57

0.77 0.33 1.23 0.96 0.94 1.67 0.45 2.22 1.41 2.44

20.0 · 106 0.86 0.77 3.83 4.69 4.35 4.90 1.95 4.13 6.45 5.18

0.76 0.30 1.17 0.97 0.88 1.47 0.43 2.12 1.31 2.31

25.0 · 106 0.74 0.74 3.79 4.60 4.31 4.74 1.91 3.96 6.41 5.10

0.51 0.29 1.18 0.95 0.88 1.41 0.43 2.03 1.31 2.32

on a target object whose presence should be identified. The programs evolved
for classification of digits 0, 1 and 6 exhibit significantly lower mean error than
those for rest of the classes.

If we compare the parameters of the evolved programs, we can identify, that
the binary classifiers exhibit approx. four times lower mean error. While the
average mean error per a single output is 12.5 (fav/10) for C10, the average
mean error per a single output is 3.63 (average from values in the last but one
row of Table 3) for C1.

The parameters of three best evolved solutions are given in Table 4. For each
evolved solution, three parameters are given: (i) fitness value calculated using

Table 4. Fitness value (fbst), number of utilized operations (nops) and number of
utilized attributes of feature vector (nfea) of three fittest solutions

digit

parameter 0 1 2 3 4 5 6 7 8 9

fbst1 0.10 0.17 1.47 2.10 2.30 1.91 0.54 1.27 3.44 2.81

nops1 58 72 75 67 77 61 68 78 81 76

nfea1 37 43 41 43 54 41 42 49 51 48

fbst2 0.10 0.20 1.86 2.18 2.81 2.32 0.84 1.40 3.93 2.90

nops2 38 58 85 76 69 82 58 83 77 75

nfea2 25 36 54 49 44 40 36 52 53 48

fbst3 0.10 0.26 2.07 2.82 2.88 2.42 0.90 1.49 4.18 3.01

nops3 48 47 76 79 65 69 76 76 70 81

nfea3 33 32 50 49 45 44 50 45 41 47

242 Z. Vasicek and M. Bidlo

the training set, (ii) the number of operations, i.e. utilized nodes employed in the
computation, and (iii) the number of features that are involved in computation.
The number of the employed features corresponds with the number of primary
inputs utilized by CGP nodes. If we compare the evolved solutions for a certain
class (i.e. the same digit), we can identify that different programs consisting
of various number of operations and utilizing different number of features are
employed. It confirms the well-known feature of evolutionary design that each
evolutionary run has the ability to produce different solution. In our case it
represents a benefit, as this could be beneficial when an ensemble of classifiers
is assembled.

Fig. 3. Utilization of feature vector’s attributes by the best evolved binary classifiers
detecting the presence of one class. The attributes that contribute to the classifier’s
output are marked using crosses. The digits on the background were obtained by av-
eraging all the training data for a given digit.

Figure 3 shows which features are utilized by the best evolved classifiers whose
parameters are summarized in Table 4. To obtain the coverage we evaluated the
best evolved solutions. It can be seen that the arrangement of the features follows
the shape of the digits except of digit 5. The evolution probably determined that
the attributes situated in upper right part of the image sufficiently determine

de f d i g i t 0 b s t 2 (f) :
v0 = F11(f124, f82) ; v1 = F3(f116, f115) ; v2 = F3(v0, f157) ; v3 = F4(f101, f120)
v4 = F8(f81, v1) ; v5 = F5(f145) ; v6 = F8(f144, v2) ; v7 = F3(v5, v6)
v8 = F8(f105, f170) ; v9 = F10(v7, v4) ; v10 = F11(f101, v3) ; v11 = F3(f119, f91)
v12 = F9(v10, f89) ; v13 = F4(v11, v9) ; v14 = F3(f19, v8) ; v15 = F9(f127, f20)
v16 = F8(v15, v14) ; v17 = F4(v12, v16) ; v18 = F11(v9, v13) ; v19 = F11(v17, v12)
v20 = F3(f36, f108) ; v21 = F4(v18, v19) ; v22 = F8(v21, v21) ; v23 = F4(f95, v22)
v24 = F4(v20, f93) ; v25 = F10(v22, v9) ; v26 = F4(v25, v24) ; v27 = F7(v26, v26)
v28 = F8(f72, f67) ; v29 = F3(v27, v23) ; v30 = F3(v28, f65) ; v31 = F0()
v32 = F4(v30, v29) ; v33 = F8(v32, v32) ; v34 = F8(v33, v33) ; v35 = F8(v34, v34)
v36 = F8(v35, v35) ; v37 = F10(v36, v31)
return v37

Fig. 4. One of the best evolved classifiers for classification of digit 0

Multi-category Classifiers Suitable for Embedded Systems 243

Table 5. Parameters of C10 classifiers constructed using the fittestN evolved classifiers

classifier N nops nfea nhit nmiss nuncls precision recall

C10-1 1 171 78 7 709 1 481 810 0.842 0.771

C10-3 3 514 128 8 410 1 537 53 0.855 0.841

C10-5 5 874 152 8 484 1 476 40 0.861 0.848

C10-7 7 1 244 161 8 740 1 238 22 0.881 0.874

C10-9 9 1 619 167 8 727 1 258 15 0.880 0.873

C10-15 15 2 716 170 8 885 1 111 4 0.892 0.888

this digit. The rest of the attributes probably helps to improve the precision. One
should expect that digit 0 could be identified using a few attributes situated near
the center of the image detecting the presence of hole. Evolutionary designed
classifiers, however, somehow follow the shape of the digit.

Figure 4 shows structure of the evolved classifier for the classification of digit
0 exhibiting the fitness value fbst2. The discovered program consists of 38 opera-
tions. It means that 38 CGP nodes were active while the rest of the nodes (i.e. 62)
were not involved in computation of the output value. As it can be determined
from code or image in second row and first column of Figure 3, the evolved clas-
sifier utilizes the knowledge of 25 attributes. The attributes of the feature vector
are denoted as fi, where 0 ≤ i ≤ 195. Functions F3 (maximum), F4 (minimum)
and F8 (saturated addition) represent the most frequent operations involved in
the computation.

5.1 Evaluation of the Evolved Classifiers

In order to evaluate quality of the evolved classifiers and compare the proposed
design scenarios, the discovered solutions were executed on test part of MNIST
database consisting of 10 000 samples. The results obtained for the first design
scenario - design of a classifier with 10 outputs - are summarized in Table 5. The
first row includes parameters of the best evolved solution, the rest of the rows
contains parameters of classifiers constructed as combination of N best evolved
classifiers. The output of each utilized classifier is combined according to the
description given in Section 3. Note that a relative strict approach was chosen;
if two or more outputs exhibit the same highest output value, the sample is
categorized as unclassifiable.

Table 5 includes the number of operations (nops) and utilized attributes of
a feature vector (nfea) involved in the computation, the number of correctly
and incorrectly classified samples (nhits, nmiss), the number of unclassifiable
samples (nuncls), precision and recall. Note that the precision is the ability of
the classifier not to label as positive a sample that is negative, while the recall
is the ability of the classifier to find all the positive samples. The accuracy (hit
rate) of the best evolved C10 classifier denoted as C10-1 is 77.1%. The average
accuracy calculated from all of 100 evolutionary runs is 65.99%. Unfortunately,

244 Z. Vasicek and M. Bidlo

Table 6. Parameters of C1 classifiers constructed using the fittest N evolved classifiers

classifier N nops nfea nhit nmiss nuncls precision recall

C1-1 10 688 149 8 606 490 904 0.946 0.861

C1-3 30 2 126 173 9 190 581 229 0.940 0.919

C1-5 50 3 511 180 9 289 589 122 0.940 0.929

C1-7 70 4 944 186 9 343 587 70 0.941 0.934

C1-9 90 6 337 188 9 358 583 59 0.941 0.936

C1-15 150 10 489 191 9 359 618 23 0.938 0.936

the accuracy increases only slightly with the increasing number of the utilized
classifiers N . If N = 15, the accuracy is about 4.7% higher than accuracy of
single evolved classifier; the number of operations increases approx. five times.

Table 6 summarizes the parameters for the second design scenario - design of
binary classifiers. Note that the number of utilized classifiers N is in multiples
of 10, because 10 evolved binary classifiers must be combined together to obtain
a complete multi-class classifier network. Comparing to the parameters given in
Table 5, the number of employed operations increased substantially. Single C1-1
classifier requires approx. the same amount of operations as C10-15 consisting
of 15 instances. However, the classifiers constructed as a combination of binary
classifiers exhibit significantly better accuracy. The classifier C1-5 combining 50
binary classifiers provides the accuracy of 92.9%. This accuracy is achievable as
the evolved binary classifiers exhibit near 98% hit rate in average.

To compare the results with conventional approach, SVM with RBF kernel
was applied to the same training data. The obtained accuracy was 98.21%. The
parameters of SVM was chosen as follows C = 23, γ = 2−5. The model of SMV
was obtained using libSVM. The values of the attributes were normalized to
the range (0,1). The best SVM parameters C and γ were obtained using Cross-
validation and Grid-search approach. Even if it is hard to compare the number
of operations directly, we can make an estimate based on the number of utilized
SVs and number of nonzero coefficients. The trained SVM model uses 7 477 SVs,
and contains 441 907 coefficients in total. From this point of view, the proposed
classifiers require only a fraction of operations to determine result. Moreover,
they do not need to normalize the input data to produce a result.

6 Conclusion

We presented an evolutionary method for the design of multi-category classifiers
by means of CGP. Two different design scenarios were investigated: the evolu-
tionary design of (i) a classifier with 10 outputs and (ii) set of binary classifiers.
The goal was to evolve programs for the recognition of handwritten digit sym-
bols that require reasonable amount of computation resources. To improve the
accuracy, the possibility of combination of more classifiers was investigated.

Multi-category Classifiers Suitable for Embedded Systems 245

Even if the evolved classifiers do not reach the accuracy of the tuned SVM
classifier, it was shown that the accuracy is higher than 93%. However, the
number of required operations and their complexity represents one of the main
advantage of the designed classifiers. While the SVM classifier utilizes hundreds
thousands of floating point operations, our classifiers use a few thousands of sim-
ple 8-bit operations. It means that the evolved classifiers are more advantageous
for software as well as hardware realization.

In overall, the proposed method can be considered as successful. As we didn’t
investigate multiple criteria during the selection of the best evolved solutions,
we believe that the accuracy should be even better. This represents potential
objective for the future research.

Acknowledgments. This work was supported by the Czech science foundation
project 14-04197S.

References

1. Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empir-
ical study. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS,
vol. 3541, pp. 278–285. Springer, Heidelberg (2005)

2. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

3. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification
of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

4. Sekanina, L., Harding, L.S., Banzhaf, W., Kowaliw, T.: Image Processing and CGP.
Natural Computing Series, pp. 181–215. Springer (2011)

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. of the IEEE 86(11), 2278–2324 (1998)

6. Vasicek, Z., Bidlo, M., Sekanina, L., Glette, K.: Evolutionary design of efficient
and robust switching image filters. In: Proc. of the 2011 NASA/ESA Conference
on Adaptive Hardware and Systems, pp. 192–199. IEEE Computer Society (2011)

7. Jin, W., Bin-bin, T., Chang-hao, P., Gai-hui, L.: Statistical method-based evolvable
character recognition system. In: IEEE International Symposium on Industrial
Electronics, pp. 804–808 (2009)

8. Rehman, A., Khan, G.M.: Polymorphic circuit design for speedy handwritten char-
acter recognition using cartesian genetic programming. In: Proc. of the 2011 Fron-
tiers of Information Technology, pp. 79–84. IEEE Computer Society, Washington,
DC (2011)

9. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)
10. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database,

http://yann.lecun.com/exdb/mnist

11. Vaš́ıček, Z., Slaný, K.: Efficient phenotype evaluation in cartesian genetic pro-
gramming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 266–278. Springer, Heidelberg (2012)

http://yann.lecun.com/exdb/mnist

Author Index

Agapitos, Alexandros 1, 61
Arnaldo, Ignacio 13
Azad, R. Muhammad Atif 186

Bidlo, Michal 234
Brabazon, Anthony 1

Castelli, Mauro 48, 150
Cerda-Jacobo, Jaime 37

Fitzgerald, Jeannie 162

Gaucel, Sébastien 25
Graff, Mario 37
Graff-Guerrero, Ariel 37

Harada, Tomohiro 198
Harman, Mark 87, 137
Heywood, Malcolm I. 75

Ingalalli, Vijay 48

Johnston, Mark 124

Kampouridis, Michael 61
Kattan, Ahmed 1, 61
Keijzer, Maarten 25
Kelly, Stephen 75
Krawiec, Krzysztof 162, 210

Langdon, William B. 87, 137
Lutton, Evelyne 25

Mart́ınez, Yuliana 174
McDermott, James 1, 100
Medernach, David 162
Miller, Julian Francis 222
Minarik, Milos 112
Muñoz, Luis 174

Naredo, Enrique 174
Nguyen, Su 124

O’Neill, Michael 1
O’Reilly, Una-May 13, 162, 210

Petke, Justyna 137

Ruberto, Stefano 150
Ryan, Conor 162, 186

Sekanina, Lukáš 112
Silva, Sara 48, 150

Takadama, Keiki 198
Tonda, Alberto 25
Trujillo, Leonardo 174
Turner, Andrew James 222

Vanneschi, Leonardo 48, 150
Vasicek, Zdenek 234
Veeramachaneni, Kalyan 13

Weimer, Westley 137

Zhang, Mengjie 124

	Preface

	Organization

	Table of Contents

	Oral Presentations
	Higher Order Functions for Kernel Regression
	1 Introduction
	2 Kernel Regression
	3 Higher Order Functions
	4 Method
	4.1 Wrapper Approach to the Evolution of Distance Measures
	4.2 Experiment Design

	5 Results Analysis
	6 Conclusion and Future Work
	References

	Flash: A GP-GPU Ensemble Learning System
for Handling Large Datasets

	1 Introduction
	2 Related Work: Accelerating GP with GPUs
	3 The Core GP Learner
	3.1 Mean Squared Error and Pearson Correlation on GPUs
	3.2 Individual Level Parallelism

	4 Flash - The GP-GPU Ensemble Learning System
	4.1 GP Instances
	4.2 Generating a Fused Model

	5 Experimental Setup
	5.1 Million Song Dataset Year Prediction Challenge
	5.2 Ensemble Configurations

	6 Results
	6.1 Prediction Error Analysis
	6.2 Prediction Error vs. GP Instances
	6.3 Runtime Analysis

	7 Conclusions and Future Work
	References

	Learning Dynamical Systems
Using Standard Symbolic Regression

	1 Introduction
	2 Background
	2.1 Genetic Programming and Symbolic Regression
	2.2 Differential Equations and First-Order Approximation

	3 Proposed Approach
	4 Case Study
	5 Experimental Results
	5.1 Noise-Free Data
	5.2 Absolute Noise
	5.3 Noise 5%
	5.4 Noise 10%

	6 Results Discussion
	7 Conclusions and Future Works
	References

	Semantic Crossover
Based on the Partial Derivative Error

	1 Introduction
	2 Semantic Crossover Based on Partial Derivative Error
	2.1 Backpropagation
	2.2 Selecting the Crossing Points

	3 Results
	4 Conclusions
	References

	A Multi-dimensional Genetic Programming Approach for Multi-class Classification Problems
	1 Introduction
	2 Related Work
	3 Formulation of Multi-dimensional GP
	4 Algorithm
	5 Experimental Analysis
	5.1 Data Sets
	5.2 Experiments with GP Classifiers
	5.3 Comparison with Various Classifiers

	6 Conclusions and Future Directions
	References

	Generalisation Enhancement via Input Space Transformation: A GP Approach
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Trees Return Multiple Outputs
	3.2 FitnessMeasure

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Results

	5 Conclusions
	References

	On Diversity, Teaming, and Hierarchical Policies:
Observations from the Keepaway Soccer Task

	1 Introduction
	2 Related Work
	3 Hierarchical Symbiotic Policy Search
	3.1 Symbiont
	3.2 Variation Operators
	3.3 Selection Operator
	3.4 Constructing Hierarchical Policies
	3.5 Fitness and Diversity

	4 Results
	5 Conclusion
	References

	Genetically Improved CUDA C++ Software
	1 Introduction
	2 Source Code: StereoCamera
	3 Example Stereo Pairs from Microsoft’s I2I Database
	4 Pre- and Post- Evolution Tuning and Post Evolution Minimisation of Code Changes
	5 Alternative Implementations
	5.1 Avoiding Reusing Threads: XHALO
	5.2 Parallel of Discrepancy Offsets: DPER

	6 Parameters Accessible to Evolution
	6.1 Fixed Configuration Parameters

	7 Evolvable Code
	7.1 Initial Population
	7.2 Weights
	7.3 Mutation
	7.4 Crossover
	7.5 Fitness
	7.6 Selection

	8 Results
	8.1 GP Better Than Random Search

	9 Evolved Tesla K20c CUDA Code
	10 Conclusions
	References

	Measuring Mutation Operators’
Exploration-Exploitation Behaviour
and Long-Term Biases

	1 Introduction
	1.1 Reader’s Guide

	2 Related Work
	3 Statistics on Markov Chains
	4 Experiments
	4.1 Experimental Setup
	4.2 Measuring Exploration-Exploitation Behaviour
	4.3 Exploration-Exploitation Behaviour and Search Space Coverage
	4.4 Exploration-Exploitation Behaviour and Performance
	4.5 Stationary Distributions

	5 Conclusions
	5.1 Limitations
	5.2 Future Work

	References

	Exploring the Search Space of Hardware /
Software Embedded Systems by Means of GP

	1 Introduction
	2 Previous Work
	2.1 Hardware
	2.2 Software

	3 Proposed Extensions
	3.1 Evolvable Hardware Topology Related Changes
	3.2 Input Modules
	3.3 Problem Encoding and Search Method

	4 Experimental Results
	4.1 Newton-Raphson Division
	4.2 Finding the Maximum
	4.3 Parity

	5 Conclusions
	References

	Enhancing Branch-and-Bound Algorithms
for Order Acceptance and Scheduling
with Genetic Programming

	1 Introduction
	1.1 Goals
	1.2 Organisation

	2 Methodology
	2.1 Branch and Bound Algorithm for OAS

	3 Computational Results
	3.1 Datasets
	3.2 Results

	4 Conclusions
	References

	Using Genetic Improvement
and Code Transplants to Specialise a C++
Program to a Problem Class

	1 Introduction
	2 Genetic Improvement with Multi-donor Transplantation and Specialisation
	3 Experimental Setup
	4 Results
	4.1 Transplanting from MiniSAT-best09
	4.2 Transplanting from MiniSAT-bestCIT
	4.3 Transplanting from MiniSAT-best09 and MiniSAT-bestCIT
	4.4 Combining Results

	5 Summary of Related Work
	6 Conclusions
	References

	ESAGP – A Semantic GP Framework Based on Alignment in the Error Space
	1 Introduction
	2 Alignment in the Error Space
	3 One Step Error Space Alignment GP: ESAGP-1
	4 Two Steps Error Space Alignment GP: ESAGP-2
	5 Experimental Study
	6 Conclusions and Future Work
	References

	Building a Stage 1 Computer Aided Detector
for Breast Cancer Using Genetic Programming

	1 Introduction
	2 Mammography
	2.1 Computer-Aided Detection of Mammographic Abnormalities
	2.2 Feature Extraction
	2.3 Related Work

	3 Workflow
	3.1 Separation
	3.2 Suppression of the Background
	3.3 Segmentation
	3.4 Textural Features

	4 Experimental Setup
	4.1 GP Setup

	5 Results
	6 Conclusions and Future Work
	References

	NEAT, There’s No Bloat
	1 Introduction
	2 Bloat
	2.1 Causes of Bloat and Bloat Control Methods
	2.2 The Secret Behind Operator Equalization

	3 NeuroEvolution of Augmenting Topologies
	3.1 NEAT Features
	3.2 NEAT, GP and Bloat

	4 Experiments
	4.1 Discussion

	5 Concluding Remarks and Future Work
	References

	Posters
	The Best Things Don’t Always Come
in Small Packages:
Constant Creation in Grammatical Evolution

	1 Introduction
	2 Background
	3 Experiments
	3.1 Problem Suite and Evolutionary Parameters
	3.2 Results
	3.3 Discussion

	4 Conclusions
	References

	Asynchronous Evolution
by Reference-Based Evaluation:
Tertiary Parent Selection and Its Archive

	1 Introduction
	2 Tierra-Based Asynchronous Genetic Programming
	2.1 Overview
	2.2 Algorithm

	3 Asynchronous Reference-Based Evaluation
	3.1 Concept
	3.2 Algorithm

	4 Experiment
	4.1 Settings
	4.2 Results

	5 Conclusion
	References

	Behavioral Search Drivers for Genetic Programing
	1 Introduction
	2 Background
	3 Motivation
	4 Behavioral Evaluation of Programs in GP
	5 TheExperiment
	6 Related Work
	7 Conclusion
	References

	Cartesian Genetic Programming:
Why No Bloat?

	1 Introduction
	2 Cartesian Genetic Programming
	3 Bloat and CGP
	3.1 Neutral Genetic Drift
	3.2 Length Bias

	4 Experiments
	4.1 Regular CGP
	4.2 No Neutral Genetic Drift
	4.3 Recurrent CGP
	4.4 Neutral Search

	5 Results
	5.1 Regular CGP
	5.2 No Neutral Genetic Drift
	5.3 Recurrent CGP
	5.4 Neutral Search

	6 Discussion
	7 Conclusion
	References

	On Evolution of Multi-category Pattern
Classifiers Suitable for Embedded Systems

	1 Introduction
	2 Cartesian Genetic Programming
	2.1 Representation
	2.2 Search Algorithm

	3 Evolutionary Design of Classifiers
	4 Experimental Setup
	5 Experimental Results
	5.1 Evaluation of the Evolved Classifiers

	6 Conclusion
	References

	Author Index

