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Abstract. The traditional ACID properties for transactions are not
always appropriate in service-oriented environments. Instead, it is often
preferable to “relax” the transactional guarantees, reducing isolation or
atomicity to ensure acceptable performance at a reasonable cost. Existing
standards require providers to constantly offer a fixed level of transaction
support to each client that requests a particular service. We present a
mechanism that allows providers to dynamically alter the level of trans-
action support offered on a per-service-call basis. Further, we engineer a
cost-based model, based on πt−calculus, that allows clients to automat-
ically reason about workflows consisting of service requests with various
levels of transaction support. The viability of this scheme is tested with
a Web Services transactions simulator, with results indicating potential
benefits for both clients and service providers.
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1 Introduction

In service-oriented environments, such as that offered by Web Services, clients
use messages to send service requests to providers. The respective providers
then respond either that the request was successful, or that the service was not
performed. However, it is often the case that no single provider offers a service
that completely satisfies a client’s requirements. Instead, clients frequently have
a need to combine multiple services, possibly from different providers, into a
single workflow.

When combining multiple services into a single workflow, it is possible that
some services will fail to complete successfully. However, since the client sees its
workflow as a single task, the failure of one service may affect the rest of the
workflow. For example, when booking a holiday, there is no point in booking a
hotel in the destination city if the client is unable to book a flight to take them
there.

One possible technique that can be used to ensure correct behaviour of client
workflows is transactions. Transactions combine services provided by multiple,
possibly completely unrelated, parties into a single action, with well-defined
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behaviour whenever a part of the transaction fails. While traditional transactions
offer strong guarantees of atomicity or isolation, the restraints these guaran-
tees require are often considered unacceptable in service-oriented environments.
Instead, weaker guarantees are often preferred [1,2].

However, different clients may have different views as to which transactional
guarantees are important for a given service call. Further, since client work-
flows can include services from multiple unrelated providers, different levels of
transaction support may need to be combined to ensure the client achieves an
acceptable result. In this paper we describe a technique that allows providers
to dynamically change the level of transaction support they offer for a partic-
ular service, and a means for clients to reason about such dynamic workflows.
A simulator [3] is used to show the viability of this approach.

2 Motivating Example

Consider a public screen shared by multiple companies to display various pieces
of information content. The screen provides a Web Service that allows clients
to book time on the display. Further, consider a client that wishes to use the
screen to inform the public of sporadically-changing data. The client is notified
whenever new data are available, and can then use a Web Service to access the
data. That data can be passed to a Web Service offered by a render farm to
convert it into a visualisation suitable for the public screen. Each Web Service
has a cost associated with its use.

On notification that new data are available, the client can retrieve the data,
pass the data to the render farm, and display the visualisation at the time the
client has the public screen booked. Since the data are updated sporadically,
the client cannot book the display in advance, but can only attempt to do so
when new data are released. However, since there is a fee associated with each
Web Service, the client would prefer to only retrieve and render the data if it is
guaranteed time on the display. Similarly, the client would not wish to retrieve
the new data if ever the render farm was too busy to process the client’s request.

The client can use service composition to achieve its aim of only retrieving
data if the render farm is available, and only attempting either action if the
screen can be booked, if each of the providers offers suitable levels of transaction
support. However, different clients using the shared screen may not all have
identical transactional requirements.

3 Service Composition Platforms

It is often the case that no single service in a service-oriented environment com-
pletely meets a client’s needs. Thus it is often necessary for clients to com-
bine multiple services, possibly from multiple providers, to complete the desired
actions. Chakraborty and Joshi [4] identify five issues that must be provided
by a comprehensive service composition platform so that such dynamic service
compositions can be formed. Those requirements are:
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Service Discovery. Before multiple services can be combined into a service
composition, it is necessary to find a service or services that can perform the
required tasks. Service discovery requires semantic information so the system
can automatically determine which services (or combination of services) offer
the functionality that is required by the client. This issue is beyond the scope
of this paper, but efforts in the Semantic Web are making such discovery
possible for Web Services.

Uniform Information Exchange Infrastructure. Different services may
operate in different ways (e.g. taking different parameters, or returning infor-
mation differently), but a service composition platform should abstract over
these differences. With Web Services, it is possible to define an abstract ser-
vice [5] that knows how to interact with each of the different services that
offer similar functionality. This abstract service, when requested by a client,
contacts actual providers, converting the client’s request into the form that
is understood by each particular provider, receiving any response(s), and
returning them to the client in a uniform format.

Adaptiveness. To allow true adaptiveness, it must also be possible to dynam-
ically compose services when necessary to provide required functionality [6].
One approach to implementing dynamic compositions is to have semantic
contracts with each provider [7]. Then, by utilising a good service discovery
mechanism, an abstract service that performs its own service composition
could be created to provide the functionality required by the client.

Service Coordination and Management. To combine multiple services into
a single composition, it is necessary to be able to communicate with each of
the services in the composition to ensure their correct behaviour.

Fault Tolerance and Scalability. The system should correctly handle faults,
and efficiently use the resources it has available.

Transactions allow multiple actions to be combined into a seemingly single
action, can be arbitrarily nested, and each nested transaction can specify how it
handles errors. Thus, it is possible to provide the service coordination and man-
agement and fault tolerance and scalability requirements of a good service com-
position platform by supporting transactions in the Web Services environment.

4 Web Services Transactions

Transactions typically provide the ACID properties of Atomicity, Consistency,
Isolation, and Durability. However, in service-oriented environments, complete
support for ACID properties is often undesirable. In these environments, trans-
actions typically have a much longer execution time than is experienced in tradi-
tional transaction systems. The different services involved in a transaction may
be offered by completely autonomous providers, and communication between
these providers already increases the duration of any transaction. The inde-
pendence of each provider means they will often be unwilling to reduce their
autonomy to such an extent that complete ACID support is possible. Thus,
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certain reductions to the ACID properties are typically supported in service-
oriented environments, such as replacing atomicity with semantic atomicity [1],
or offering tentative holds [2].

Most Web Services transactions standards are limited in their ability to allow
clients to combine services with different transactional guarantees into a single
workflow [8]. Mikalsen et al. introduce a new way to ensure transactional reli-
ability in the Web Services environment. Their technique allows providers to
indicate the “transactional attitude” of the provider for each service it provides;
that is, the kind of transactional support that the provider offers for the ser-
vice. Clients also indicate their transactional attitude by utilising a Web Service
to create and manage a pre-defined transactional pattern. Once providers and
clients have specified their transactional attitudes, middleware is used to auto-
matically manage the context and transactional interaction between a client and
a set of providers.

With transactional attitudes, a provider must specify the level of transaction
support it offers along with its service definition. This makes it impossible for
the provider to alter the level of transaction support it offers for a particular
service. In some cases, different clients may require different levels of transac-
tional support for a particular service. Paul et al. [9,10] suggest a method that
allows providers to dynamically alter the level of transaction support on offer
for a particular service. In this paper, we further argue this point, and describe
a formal model that allows arbitrarily complex client workflows to utilise such
enhanced transactional properties.

5 Engineering Dynamic Transactions

When providers offer a service, there is a level of transactional support they offer
along with that service. In the simplest case, there is no explicit transactional
support offered; the service either completes successfully or fails. More advanced
cases allow the provider to deliver information or guarantees to a client before the
client utilises the service, or allow the client to perform the operation but later
cancel it if required. This section discusses the levels of transactional support
that a provider can offer.

On examining the possible reductions, it becomes apparent most can be
described using a combination of five basic operations that can be requested by
a client [3]:

Enquire. Allows the client to query whether a request would currently be suc-
cessful, without any guarantee that a later request will succeed.

Prepare. Allows the client to query whether a request would currently be suc-
cessful and, if so, guarantees that any such request sent by the client within
a timeout period will succeed. On receipt of a successful reply, the client has
the option to cancel the request, which relieves the provider of its responsi-
bility to guarantee the resources to the client.

Commit. Performs the client’s request. This is the only required operation for
a service.
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Compensate. Performs actions to undo a previously committed request, pro-
vided that the call to compensate is received within a timeout period.

Callback. Allows a provider to notify a client that has previously received a
response from the provider, in the circumstance that the provider’s situa-
tion has changed, that a revision of the provider’s previous response is now
available.

Using these five operations, a traditional ACID transaction can be described
as a Prepare/Commit pattern with an infinite timeout for the Prepare stage.
Similarly, semantic atomicity is provided by having the provider offer a Com-
mit/Compensate pattern, and support for tentative holds is achieved through
an Enquire/Callback/Commit pattern.

The concept of resilience [11] cannot be described using these operations.
However, replacing concrete services with abstract services [5] can allow resilience
in a way that is transparent to both clients and service providers. Clients use the
abstract services rather than the services offered by the concrete providers, and
the abstract service acts as a broker between all the providers offering alternative
services. These abstract services can thus be used in transactions described by
the operations defined above.

On becoming aware of the transactional pattern supported by a provider
for a particular interaction, a client utilises the service by following through the
states depicted in Fig. 1. The interaction begins in the Initial state, and a change
in state occurs when the client sends a message to the provider, or the provider
sends a message to the client. Before entering this state, the client receives a
contract from the provider indicating the level of transaction support that will
be supplied for the requested service (see Sect. 5.1).

From the Initial state, the client can choose to accept or reject the contract.
If the client rejects the contract, then the interaction transitions to the Failed
state. Otherwise the interaction moves into the Active state. From the Active
state, either party can cancel the interaction, moving it to the Failed state. Other
options from the Active state allow the client to request either enquire, prepare,
or commit operations.

In the case that an enquire request is sent, the provider may reply that the
request was successful (indicating that the provider can currently successfully
complete the activity), which moves the interaction to the EnquirySuccessful
state. If, on the other hand, the provider replies that the enquiry is unsuccessful
(indicating that the provider cannot currently complete the required activity
successfully), the interaction moves to the EnquiryFailed state. From either of
these states, the client can initiate a new enquiry, though any enquiry callbacks
remove the need as they transition the client between the EnquiryFailed and
EnquirySuccessful states without requiring a new request. Similarly to behaviour
in the Active state, either party can cancel the interaction from the EnquiryFailed
and EnquirySuccessful states, or the client can request the prepare and commit
operations.

When a prepare request is sent, the provider can either send a cannotCom-
plete reply to indicate that the prepare has not occurred, or a prepared message
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Fig. 1. State transition diagram for a client’s processing of an activity. Solid lines
represent messages sent by the client. Dashed lines represent messages sent by the
service provider. Dotted lines indicate client-side only transitions. Values in parentheses
represent the associated cost to the client.

to indicate that the prepare has been performed successfully. On receipt of a
cannotComplete message, the client can either acknowledge the failure, moving
to the Failed state, or, if applicable, wait for a call back from the provider and
then send another prepare request. If the prepare is completed successfully, the
client can choose to either cancel the activity, or request to commit.

After a request to commit, the provider can either perform the requested
service successfully, or indicate that it cannot be completed at the current time.
If the commit request was sent from the Prepared state then the second option
should not be possible, as the prepare operation guarantees that a later call to
commit will succeed. On receipt of a committed message, the interaction moves
to the Committed state. With compensation support, the client can choose to
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either close the interaction, moving it to the Successful state, or compensate the
activity, moving to the Failed state. If the provider indicated that it could not
complete the commit operation, the interaction moves to the Failed state unless
the provider sends a callback to the client to indicate that the commit operation
would now succeed.

Finally, from the Successful state, the client may choose to take some action
to undo the operation performed by the provider, without the provider’s knowl-
edge. In this case, the provider would believe that the interaction completed
successfully, while the client would see it as a failure. This allows the client to
compensate the action performed by the provider even when the provider does
not support compensation. For example, if the client is requesting an item from
the provider that has already shipped to the client, the client could immediately
dispose of the item to effectively have it appear as though the operation failed.

5.1 Provider Contracts

When a provider receives a request from a client, it must decide on the level of
transactional support it wishes to provide to the client. The provider may be
willing to support more than one possible level of transaction support, but at
this stage will not know which level would be preferable for any particular client.

Once the provider has decided on the level of transaction support it is willing
to provide, it must notify the client of the decision. This can be achieved by
having the client first request the level of transactional support that the provider
is willing to offer for a given service request [10]. The provider must then inform
the client of any transactional interaction patterns it is willing to provide for
that service request, by sending contract offers describing the level(s) of support
the provider is willing to support. The client must then agree to one of these
contracts before the service request can be handled in the required transactional
manner. If the client does not agree with the initial patterns offered by the
provider, it may wish to renegotiate with the provider until both sides have
found a level of transactional support they are willing to accept [10]. Once the
client has accepted one of the offers from the provider, the interaction continues
following the pattern specified in the agreed-upon contract.

5.2 Combining Contracts

Once the client begins accepting agreements from various service providers, it
must choose how to proceed. The client can achieve this by prioritising those yet-
to-be-completed activities in its workflow, and determining whether the risk of
performing the next stage of the first activity in the prioritised list is acceptable.
If the risk is acceptable, then the client performs the next stage of the first
activity.

When the client deems the risk of performing the next stage of the first
activity to be too great, behaviour depends on the activity being performed. If
the client thinks it likely that waiting will reduce the risk, the client may choose
to wait. Otherwise, if there is an alternate activity that can replace the current
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activity, the client may choose to cancel the current activity and replace it with
the alternative. If the risky activity is optional for the success of the workflow,
then the client may choose to cancel the activity. If, however, the activity is
necessary and none of the previous options are available, the client must cancel
its workflow.

In order to allow a client to calculate risk, it is assumed that the client has
knowledge of a price for each action it performs. This could be prescribed by
a provider, for example as part of the contract, by specifying a particular price
for each of the five supported basic transaction operations (enquire, prepare,
commit, compensate, callback) [10].

To allow the client to make decisions based on these costs, it is assumed
the client has a maximum budget it is willing to spend to have its workflow
complete successfully, and a maximum budget it does not want to exceed should
the workflow fail. It is possible that a cost to the client could be multidimensional.
For example, if a client orders a physical item from a provider, it will have to
pay the provider as well as have storage space for the item. The model presented
here assumes a single-dimensional cost, though this could be extended to more
dimensions by specifying a cost for each action in each dimension.

A contract identifying the level of transaction support that a provider will
offer to a client for a particular service call, and the cost for this support, can
be defined as a tuple (enq , ecb, eth, pre, pcb, com, ccb, cmp), where:

enq ∈ R is the cost of an enquiry operation.
ecb ∈ {0, 1} specifies whether the provider may call back after an unsuccessful

enquire operation if the enquiry would now be successful.
eth ∈ {0, 1} specifies whether the provider may call back if a tentative hold on

an item is revoked.
pre ∈ R is the cost of a successful prepare operation.
pcb ∈ {0, 1} specifies whether the provider may call back after an unsuccessful

prepare request if the prepare would now be successful.
com ∈ R is the cost of a successful commit operation.
ccb ∈ {0, 1} specifies whether the provider may call back after an unsuccessful

commit request if the commit would now be successful.
cmp ∈ R is the cost of a successful compensate operation.

To support the client’s undoing of a successfully completed interaction with-
out the provider’s knowledge, it is also necessary for the client to specify a cost
undo ∈ R to indicate the cost to compensate a completed interaction on the
client’s side. For each cost, a value of ∞ indicates that the associated operation
is not supported by the interaction. It is also possible to use a contract to specify
time out behaviour for an interaction. However such details are beyond the scope
of this paper, in which it is assumed that time outs never occur.

Figure 1 indicates which transitions trigger a cost to the client. Using this
information, a client can determine the minimal cost required for an interaction
to complete in the Successful state, and the maximum cost required to move the
interaction into the Failed state. Table 1 displays the success and fail costs for
each state.
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Table 1. Costs required for a client to guarantee the completion of an interaction.
success defines the minimal cost required to transition to the Successful state, and fail
defines the maximum cost necessary to transition to the Failed state.

State success fail

Initial com 0

Active com 0

Enquired enq + com enq

EnquiryFailed com 0

EnquirySuccessful com 0

Preparing com max {0, pre}
NotPrepared com 0

PrepareCallback com 0

Prepared −pre + com 0

Committing com max {com + min {undo, cmp}, 0}
NotCommitted com 0

CommitCallback com 0

Committed 0 min {undo, cmp}
Compensating ∞ cmp

Successful 0 undo

Failed ∞ 0

Client workflows typically combine multiple interactions with multiple
providers. Using a system inspired by πt-calculus [12], we describe a workflow
W as:

W � done (success)
| abort (failure)
| W |W (parallel)
| W ;W (sequence)
| W,W (alternative)
| (p)(s, c, u) (client interaction)

where done and abort are activities that respectively indicate the successful or
unsuccessful completion of a workflow. The parallel operation W |W executes
two workflows in parallel, with no guarantee as to which will complete first.
In contrast, the sequence operator W ;W guarantees that the workflow on the
right will only succeed if the workflow on the left succeeds first. The alternative
operator W,W means that the workflow succeeds if either the workflow on the
left succeeds and the one on the right fails, or, given the first workflow’s failure,
the second workflow succeeds (i.e. only one of the two ever succeeds).

The final operation is a client interaction, (p)(s, c, u). p is a unique identifier
for a client’s interaction with a provider; s is the current state of the interaction,
which can be any of the states in Fig. 1; c is a contract as defined above; and u



46 D. Paul and F. Henskens

success((p)(s, c, u)) = success(s) fail((p)(s, c, u)) = fail(s)

success(done) = 0 fail(done) = ∞
success(abort) = ∞ fail(abort) = 0

success(V |W ) = success(V ) + success(W ) fail(V |W ) = fail(V ) + fail(W )

success(V ;W ) = success(V ) + success(W ) fail(V ;W ) = fail(V ) + fail(W )

success(V,W ) = min{success(V ) + fail(W ), fail(V,W ) = fail(V ) + fail(W )

fail(V ) + success(W )}

Fig. 2. The minimal success and maximal failure cost of a workflow.

is the undo cost to the client to move the interaction from the Successful state
to the Failed state.

Given the above definition, and workflows V,W,X, the following structural
congruences hold:

V |W ≡ W |V V, (W,X) ≡ (V,W ),X
V |(W |X) ≡ (V |W )|X V ; (W ;X) ≡ (V ;W );X

done|W ≡ W done;W ≡ W

abort|abort ≡ abort abort; abort ≡ abort

abort,W ≡ W W,abort ≡ W

Seven of these congruences are directly analogous to those in πt−calculus [12].
The remaining three specify that , is associative and that abort is an identity
to the operation.

Using this definition of workflows, it is possible to calculate the minimal
success cost, success, and maximal failure cost, fail of a workflow as specified in
Fig. 2.

The success or failure cost of an interaction with a particular provider is the
success or failure cost of the interaction as defined in Table 1. done represents
the successful completion of a workflow interaction, and thus has a success cost
of 0 and a failure cost of ∞ (as it is not undoable). Similarly, abort represents a
failure of the workflow, so its failure cost is 0 and its success cost is ∞. Both the
success and failure costs of workflows performed in parallel (V |W ) or in sequence
(V ;W ) are simply the sums of associated costs of each component included in
the workflow. Alternatives such as (V,W ) are successful whenever exactly one of
the alternatives succeeds, making the minimum success cost the minimum cost
required to have one of the alternatives fail and the other succeed. The failure
cost of alternatives is the sum of the failure cost of each component, as both
must fail for the alternatives to fail.

By combining the client’s success and fail budgets with the costs calculated
by the above success and fail functions, a client is able to determine whether its
workflow can succeed. Each workflow begins with the client having not accepted
any of the provider-offered contracts and, since the fail cost of an interaction
from the Initial state is always 0, it is guaranteed that the client can initially
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cancel the workflow without exceeding its failure budget. The client then chooses
the next action to perform by ensuring that the action will not cause the cost of
the workflow to exceed the client’s success or failure budgets.

For a single client interaction, the set of possible next steps is specified by the
transitions in Fig. 1 (with some transitions being removed if the contract does not
support them. For example, if pcb = 0 then the transition from NotPrepared to
PrepareCallback is removed). The next step progresses the workflow by changing
the state of the interaction, while keeping the contract and undo cost constant. If
the next step requires a provider-generated message, the client’s action is to wait
for that message to arrive. When a number of client interactions are combined
in a workflow, the possible next steps are the union of the possible next steps
for each interaction in the workflow.

The client begins by considering all of the possible actions that can be per-
formed from its current state. Each of these actions has a possible cost (as
displayed in Fig. 1) and moves one of the client interactions in the workflow to
a new state. If the cost of a potential action, plus the success or fail cost of
the resultant workflow, exceeds the success or failure budget (respectively), that
action is removed from the set of possible actions. In this way, the client creates
a set of possible actions it can perform, given the current state of its workflow,
which will not exceed the client’s budgets.

The aim of the client is firstly to complete the workflow successfully, by
reducing it to done. If that becomes impossible then the aim shifts to completing
the transaction by reducing it to abort . The client thus chooses an action, from
its set of possible actions, to bring it closer to one of these outcomes. Once an
action has been performed, the client uses structural congruences to simplify the
workflow as much as possible. The client also uses the following reduction rules:

– Any client interaction that is in the Failed state is replaced with abort .
– Any workflow that has no alternatives, and all client interactions in the Suc-
cessful state, is replaced with done.

The first rule indicates that a failed interaction is equivalent to abort , since
they are both failures. The second rule ensures that any sequence or set of
workflows running in parallel succeeds if each client interaction in the workflow
succeeds. Further, since the structural congruence rules only remove an alter-
native if it is abort , the restriction on alternatives ensures that, for each set of
alternatives, exactly one alternative succeeds.

By following this strategy, the client is assured that it will only ever perform
an action that will not exceed its budgets. However, the client can still optimise
the strategy for its own purposes. Once the client has determined the set of pos-
sible actions for its current state, the client can choose which action to perform
based on other criteria. For example, the client may choose the next action that
minimises either the success or fail cost of the workflow. Regardless of how the
action is chosen, the client performs the action, which moves the workflow to a
new state. The client then repeats the process for the new workflow state, until
the workflow is complete.



48 D. Paul and F. Henskens

Note that, while this work borrows from the algebraic laws of πt−calculus [12],
this system augments these laws with client reasoning about the individual inter-
actions included in its combined workflow. Thus the presented system is not a
process calculus, but instead a tool to allow client reasoning. In particular, a client
only requires a model of its own workflow and a knowledge of the required trans-
actional behaviour of the providers it is using to allow its reasoning, whereas most
process calculi require a complete description of not only all service providers that
may be used by the client, but also of any other clients that may utilise those
provider’s services while the first client’s workflow is still processing [13]. By thus
reducing the complexity of the model, it is possible for a client to guarantee its
correct behaviour, rather than having the system grow to a size that such analy-
sis become intractable (as in [14]).

6 Simulation

Web Services transactions have been shown to be very different from traditional
transactions. Multiple parties work together to achieve a client’s aims, but still
wish to remain autonomous. Further, the different service providers may have
different levels of transactional support, making verification and testing of dif-
ferent transaction schemes very complex. While theoretical analysis is essential
to ensure that transaction schemes work correctly, these models (e.g. [14,15]) do
not easily allow comparison between different transaction techniques. In partic-
ular, these models make it difficult to determine which transaction schemes are
best suited for certain conditions, applications, or environments.

Instead, simulation can be used to provide an indication of practical results.
In simulation, some or all of a system is abstracted so that only the features
important to the current investigation are tested. When simulating Web Ser-
vices transactions, details such as the networking topology, the timing of events,
and the actual services being used can be abstracted. This can allow intricate
comparison of various transaction strategies, by allowing the parameters of inter-
est to be studied while ensuring that all other factors are kept constant.

Most available Web Services simulation environments replace a Web Service
with a simple, usually local, program that sends and responds to messages in
a way that is appropriate to the service being simulated [3]. However, when
examining Web Services transactions, further abstraction can occur [3]. Messages
are not required to be sent in the exact same format as with real services; it is
only the transaction interaction patterns that need to be simulated. A simulator,
based on the model introduced in Sect. 6, that models transaction flow rather
than message flow, has been described previously [3,10].

The simulator accepts a description of the scenario to process, which includes
details of the providers and clients to simulate. Provider information describes the
number of resources available from each provider, cost information for accessing
those resources, and the availability of abstract providers that provide resilience
for the simulation. Client definitions contain a description of a workflow, which
consists of a sequence of activities to be performed, and specifies whether success-
ful completion of each activity is required, or if the workflow is successful when
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at least one of the included activities succeeds. An activity can either be a work-
flow or a service call. Finally, the scenario description contains timing information
to specify the length of time that messages take to be sent between the different
participants in the system being modelled.

The simulator also accepts various parameters to specify the level of trans-
action support offered by the various service providers, and the risk-taking
behaviour of the clients. These parameters can be changed independently of the
scenario description, and any changes to results can be directly attributed to
these changed values. The level of transaction support offered by providers is
specified based on the five operations described in Sect. 5 and, when combined
with abstract services, this allows providers to utilise all of the reductions to
the standard ACID properties. Client risk-taking behaviour is specified using
budgets, as described in Sect. 5.2.

The simulator models the passing of messages between the various partici-
pants in the simulated scenario. Each provider tracks the state of its resources
to ensure the provider can support any transactional contract it offers to a
client. Clients similarly monitor their interactions with providers to track the
progress through their workflows, and to determine the next action the client
should take. By tracking all messages sent through the simulator it is possible
to extract details such as whether a particular client’s workflow succeeded or
failed, and the cost for that outcome, or the number of a provider’s resources
that were utilised, and the amount it was paid.

Thus, by defining appropriate scenarios, it is possible to use the simulator to
measure the way different transactional support from providers, or different risk-
taking behaviour of clients, affects the outcome of the simulation. The following
section will describe a scenario, based on the preceding motivating example, to
demonstrate the effects of using a dynamic transaction scheme rather than a
scheme in which the transaction support offered by each provider remains fixed.

7 Results

The Web Services transactions simulator described in Sect. 6 was used to validate
the dynamic transaction model introduced in Sect. 5. The validation experiment
was based on the motivating example described in Sect. 2.

According to the scenario, the display system offered either 100 or 1000
time units for clients to book. A total of 500 clients, each requiring between
1 and 5 time units, were included in the simulation. Each client had a success
budget that allowed for successful completion of both the display booking and
the other required services. 100 of the clients were given a fail budget of 0,
meaning that they would only perform an action that required payment if success
was guaranteed. The remaining clients had a budget that allowed either the
booking of the display to fail while the other actions succeeded, or for the other
actions to succeed and the booking of the display to fail. The other services
were modelled as a service that was successful 80% of the time, with no special
transaction support, giving a sufficient error rate to allow comparison of different
transactional support levels.
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Three different levels of transactional support offered by the display book-
ing service were simulated. The first level provided semantic atomicity, allowing
clients to book a time unit and then later cancel that booking without charge.
The second level offered tentative holds. When granted a tentative hold, 50%
of the clients immediately converted that tentative hold into a booking, and
then attempted the other services. The remaining 50% retained the hold and
attempted the other services, only confirming the booking if the other services
completed successfully. The final level of transaction support was a variable
scheme which offered semantic atomicity until 50% of the time units had been
booked, and then offered tentative holds instead. This final level was only pos-
sible with dynamic transaction support.

Assuming the data service is data, the rendering service render , and the
visualisation service display , and each has a cost per service call of 1, the system
can be modelled as follows. Each client has a success budget of 4, a fail budget
of 0 or 2 (as specified above), and the following workflow:

(data)(Initial, c1,∞); ((render)(Initial, c2,∞)|(display)(Initial, c3,∞))

where c1, the contract for the data service, is (∞, 0, 0,∞, 0, 1, 0,∞), c2, the
contract for the render service is similarly (∞, 0, 0,∞, 0, 1, 0,∞), and c3, the
contract for the display service, is (∞, 0, 0, 0, 0, 2, 0,∞) if semantic atomicity is
offered, or (0, 0, 0,∞, 0, 2, 0,∞) if tentative hold is offered.

The results for these simulations can be seen in Table 2. The first column indi-
cates the level of transaction support that was offered by the display-booking
service. The “Offered” and “Booked” columns give, respectively: the number of
time units that the provider offered to clients; and the number of time units that
were actually booked. The “Succeeded”, “Failed”, and “Penalised” columns indi-
cate, respectively: the number of client workflows that completed successfully;
the number of client workflows that failed with neither the display booking nor
the other services requiring payment; and the number of client workflows that
failed with either the display booking service or the other services completing
successfully (and thus requiring payment). The “Reserved Time” column indi-
cates the total length of time during which the provider held resources for a
client that later cancelled its request (i.e. the time resources were withheld from
other clients, ultimately unnecessarily).

Table 2. Results of simulation based on motivating example.

Transactionality Offered Booked Succeeded Failed Penalised Reserved Time

Semantic atomicity 100 100 42 458 0 119

Tentative hold 100 100 48 420 32 0

Variable 100 100 44 444 12 76

Semantic atomicity 1000 963 393 107 0 1350

Tentative hold 1000 805 330 130 40 0

Variable 1000 914 367 112 21 588
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When only 100 time units were offered, each time unit was booked by a
client. This is unsurprising, as the large number of clients compared to the
available resources meant that each time unit was highly contended. In contrast,
when 1000 time units were offered, more time units were booked when semantic
atomicity was offered. This is because the clients with a 0 fail budget would
only attempt their workflow if such a level of transactional support was offered.
However, as can be seen from the “Reserved Time” column, semantic atomicity
places a higher burden on the service provider, as the provider must ensure that
a completed action can be undone until the client determines whether or not it
will compensate the booking, whereas tentative holds have no such restrictions.
Using the variable scheme, the provider obtained results that were a compromise
between only offering tentative holds and only offering semantic atomicity.

From the point of view of clients, the benefits of better transactional support
can be seen in the “Penalised” column of Table 2. Tentative holds give no future
guarantee about the state of resources, so a client may commit one part of its
workflow, but have the tentative hold expire before completing the booking. In
contrast, when semantic atomicity is offered, the client can perform the action
before attempting the rest of its workflow. If any part of the workflow later fails,
the performed action can be compensated to allow completion without penalty.
Thus, no clients failed with a penalty when the display provider offered semantic
atomicity, though, as can be seen by the “Reserved Time” column, transactions
did take longer to be processed. The use of the variable scheme reduced the
number of clients that were forced to pay for an incomplete workflow compared
to when only tentative holds were used, and the average transaction length was
shorter than when only semantic atomicity was offered.

8 Conclusions

Service-oriented environments have different transactional requirements to tra-
ditional transaction systems. Reductions to the ACID properties are often used
to help retain autonomy for service providers while still offering an acceptable
level of service for clients. In some cases, it is desirable to dynamically alter
the level of transaction support offered for a particular service as the provider’s
environment changes, but the level of transaction support is typically specified
along with the definition of the service.

This paper describes a technique whereby providers offer transactional con-
tracts to clients on a per-service-call basis. Once a provider and client agree upon
a level of transaction support, the client can include that service call in its work-
flow. A formal model, inspired by πt-calculus, was presented to allow automated
reasoning about arbitrarily complex client workflows. This model allows a client
to ensure its workflow has an acceptable outcome.

A Web Services transactions simulator was developed to allow the investiga-
tion of different transactional strategies. By varying the offered level of trans-
action support, the provider was able to better balance the strength of the
transactional guarantees it supported and the number of clients that completed
successfully, offering benefits to both clients and service providers.
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