
Some irrational numbers Chapter 8

Charles Hermite

“π is irrational”

This was already conjectured by Aristotle, when he claimed that diameter
and circumference of a circle are not commensurable. The first proof of
this fundamental fact was given by Johann Heinrich Lambert in 1766. In
fact, Lambert even showed that tan r is irrational for rational r �= 0; the
irrationality of π follows from this since tan π

4 = 1. Our Book Proof is
due to Ivan Niven, 1947: an extremely elegant one-page proof that needs
only elementary calculus. Its idea is powerful, and quite a bit more can be
derived from it, as was shown by Iwamoto and Koksma, respectively:

• π2 is irrational and

• er is irrational for rational r �= 0.

Niven’s method does, however, have its roots and predecessors: It can be
traced back to the classical paper by Charles Hermite from 1873 which
first established that e is transcendental, that is, that e is not a zero of a
polynomial with rational coefficients.
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Before we treat π we will look at e and its powers, and see that these are
irrational. This is much easier, and we thus also follow the historical order
in the development of the results.

To start with, it is rather easy to see (as did Fourier in 1815) that e =∑
k≥0

1
k! is irrational. Indeed, if we had e = a

b for integers a and b > 0,
then we would get

n!be = n!a

for every n ≥ 0. But this cannot be true, because on the right-hand side we
have an integer, while the left-hand side with
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which is approximately b
n , so that for large n it certainly cannot be integral:

It is larger than b
n+1 and smaller than b

n , as one can see from a comparison
with a geometric series:
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Geometric series

For the infinite geometric series

Q = 1
q
+ 1

q2
+ 1

q3
+ · · ·

with q > 1 we clearly have

qQ = 1 + 1
q
+ 1

q2
+ · · · = 1 +Q

and thus

Q =
1

q − 1
.

Now one might be led to think that this simple multiply–by–n! trick is not
even sufficient to show that e2 is irrational. This is a stronger statement:√
2 is an example of a number which is irrational, but whose square is not.

From John Cosgrave we have learned that with two nice ideas/observations
(let’s call them “tricks”) one can get two steps further nevertheless: Each of
the tricks is sufficient to show that e2 is irrational, the combination of both
of them even yields the same for e4. The first trick may be found in a one

Liouville’s paper

page paper by J. Liouville from 1840 — and the second one in a two page
“addendum” which Liouville published on the next two journal pages.

Why is e2 irrational? What can we derive from e2 = a
b ? According to

Liouville we should write this as

be = ae−1,

substitute the series
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and then multiply by n!, for a sufficiently large even n. Then we see that
n!be is nearly integral:
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)
is an integer, and the rest
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)
is approximately b

n : It is larger than b
n+1 but smaller than b

n , as we have
seen above.

At the same time n!ae−1 is nearly integral as well: Again we get a large
integral part, and then a rest
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)
,
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and this is approximately (−1)n+1 a
n . More precisely: for even n the rest is

larger than − a
n , but smaller than

−a
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(n+ 1)2
− 1
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− · · ·

)
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(
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n

)
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But this cannot be true, since for large even n it would imply that n!ae−1 is
just a bit smaller than an integer, while n!be is a bit larger than an integer,
so n!ae−1 = n!be cannot hold. �

In order to show that e4 is irrational, we now courageously assume that
e4 = a

b were rational, and write this as

be2 = ae−2.

We could now try to multiply this by n! for some large n, and collect the
non-integral summands, but this leads to nothing useful: The sum of the
remaining terms on the left-hand side will be approximately b 2

n+1

n , on the

right side (−1)n+1a 2n+1

n , and both will be very large if n gets large.

So one has to examine the situation a bit more carefully, and make two little
adjustments to the strategy: First we will not take an arbitrary large n, but
a large power of two, n = 2m; and secondly we will not multiply by n!,
but by n!

2n−1 . Then we need a little lemma, a special case of Legendre’s
theorem (see page 10): For any n ≥ 1 the integer n! contains the prime
factor 2 at most n − 1 times — with equality if (and only if) n is a power
of two, n = 2m.

This lemma is not hard to show: 	n2 
 of the factors of n! are even, 	n4 
 of
them are divisible by 4, and so on. So if 2k is the largest power of two
which satisfies 2k ≤ n, then n! contains the prime factor 2 exactly⌊n
2
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times, with equality in both inequalities exactly if n = 2k.

Let’s get back to be2 = ae−2. We are looking at

b
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and substitute the series
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For r ≤ n we get integral summands on both sides, namely
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where for r > 0 the denominator r! contains the prime factor 2 at most
r − 1 times, while n! contains it exactly n − 1 times. (So for r > 0 the
summands are even.)

And since n is even (we assume that n = 2m), the series that we get for
r ≥ n+ 1 are

2b
( 2
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+

4
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8
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resp.
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)
.

These series will for large n be roughly 4b
n resp. − 4a

n , as one sees again by
comparison with geometric series. For large n = 2m this means that the
left-hand side of (1) is a bit larger than an integer, while the right-hand side
is a bit smaller — contradiction! �

So we know that e4 is irrational; to show that e3, e5 etc. are irrational as
well, we need heavier machinery (that is, a bit of calculus), and a new idea
— which essentially goes back to Charles Hermite, and for which the key
is hidden in the following simple lemma.

Lemma. For some fixed n ≥ 1, let

f(x) =
xn(1− x)n

n!
.

(i) The function f(x) is a polynomial of the form f(x) =
1

n!

2n∑
i=n

cix
i,

where the coefficients ci are integers.

(ii) For 0 < x < 1 we have 0 < f(x) < 1
n! .

(iii) The derivatives f (k)(0) and f (k)(1) are integers for all k ≥ 0.

� Proof. Parts (i) and (ii) are clear.
For (iii) note that by (i) the k-th derivative f (k) vanishes at x = 0 unless
n ≤ k ≤ 2n, and in this range f (k)(0) = k!

n!ck is an integer. From f(x) =

f(1−x) we get f (k)(x) = (−1)kf (k)(1−x) for all x, and hence f (k)(1) =
(−1)kf (k)(0), which is an integer. �

Theorem 1. er is irrational for every r ∈ Q\{0}.

� Proof. It suffices to show that es cannot be rational for a positive integer
s (if e

s
t were rational, then

(
e

s
t

)t
= es would be rational, too). Assume

that es = a
b for integers a, b > 0, and let n be so large that n! > as2n+1.

Put
The estimate n! > e(n

e
)n yields an

explicit n that is “large enough.”

F (x) := s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x) ∓ · · · + f (2n)(x),

where f(x) is the function of the lemma.
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F (x) may also be written as an infinite sum

F (x) = s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x)∓ · · · ,

since the higher derivatives f (k)(x), for k > 2n, vanish. From this we see
that the polynomial F (x) satisfies the identity

F ′(x) = −s F (x) + s2n+1f(x).

Thus differentiation yields

d

dx
[esxF (x)] = sesxF (x) + esxF ′(x) = s2n+1esxf(x)

and hence

N := b

∫ 1

0

s2n+1esxf(x)dx = b [esxF (x)]
1
0 = aF (1)− bF (0).

This is an integer, since part (iii) of the lemma implies that F (0) and F (1)
are integers. However, part (ii) of the lemma yields estimates for the size
of N from below and from above,

0 < N = b

∫ 1

0

s2n+1esxf(x)dx < bs2n+1es
1

n!
=

as2n+1

n!
< 1,

which shows that N cannot be an integer: contradiction. �

Now that this trick was so successful, we use it once more.

Theorem 2. π2 is irrational.

� Proof. Assume that π2 = a
b for integers a, b > 0. We now use the

polynomial

F (x) := bn
(
π2nf(x)− π2n−2f (2)(x) + π2n−4f (4)(x)∓ · · ·

)
,

which satisfies F ′′(x) = −π2F (x) + bnπ2n+2f(x).

π is not rational, but it does have “good
approximations” by rationals — some
of these were known since antiquity:

22
7

= 3.142857142857...
355
113

= 3.141592920353...
104348
33215

= 3.141592653921...

π = 3.141592653589...

From part (iii) of the lemma we get that F (0) and F (1) are integers.
Elementary differentiation rules yield

d

dx

[
F ′(x) sin πx− πF (x) cos πx

]
=

(
F ′′(x) + π2F (x)

)
sinπx

= bnπ2n+2f(x) sinπx

= π2anf(x) sinπx,

and thus we obtain

N := π

∫ 1

0

anf(x) sinπxdx =
[ 1
π
F ′(x) sin πx− F (x) cos πx

]1
0

= F (0) + F (1),

which is an integer. Furthermore N is positive since it is defined as the
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integral of a function that is positive (except on the boundary). However,
if we choose n so large that πan

n! < 1, then from part (ii) of the lemma we
obtain

0 < N = π

∫ 1

0

anf(x) sinπxdx <
πan

n!
< 1,

a contradiction. �

Here comes our final irrationality result.

Theorem 3. For every odd integer n ≥ 3, the number

A(n) :=
1

π
arccos

(
1√
n

)
is irrational.

We will need this result for Hilbert’s third problem (see Chapter 10) in the
cases n = 3 and n = 9. For n = 2 and n = 4 we have A(2) = 1

4 and
A(4) = 1

3 , so the restriction to odd integers is essential. These values
are easily derived by appealing to the diagram in the margin, in which the
statement “ 1

π arccos
(

1√
n

)
is irrational” is equivalent to saying that the

polygonal arc constructed from 1√
n

, all of whose chords have the same
length, never closes into itself.

1√
n

0 1

We leave it as an exercise for the reader to show that A(n) is rational only
for n ∈ {1, 2, 4}. For that, distinguish the cases when n = 2r, and when n
is not a power of 2.

� Proof. We use the addition theorem

cosα+ cosβ = 2 cos α+β
2 cos α−β

2

from elementary trigonometry, which for α = (k + 1)ϕ and β = (k − 1)ϕ
yields

cos (k + 1)ϕ = 2 cosϕ cos kϕ − cos (k − 1)ϕ. (2)

For the angle ϕn = arccos
(

1√
n

)
, which is defined by cosϕn = 1√

n
and

0 ≤ ϕn ≤ π, this yields representations of the form

cos kϕn =
Ak
√
n
k
,

where Ak is an integer that is not divisible by n, for all k ≥ 0. In fact,
we have such a representation for k = 0, 1 with A0 = A1 = 1, and by
induction on k using (2) we get for k ≥ 1

cos (k + 1)ϕn = 2
1
√
n

Ak
√
n
k
− Ak−1
√
n
k−1

=
2Ak − nAk−1
√
n
k+1

.

Thus we obtain Ak+1 = 2Ak − nAk−1. If n ≥ 3 is odd, and Ak is not
divisible by n, then we find that Ak+1 cannot be divisible by n, either.
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Now assume that

A(n) =
1

π
ϕn =

k

�

is rational (with integers k, � > 0). Then �ϕn = kπ yields

±1 = cos kπ =
A�
√
n
�
.

Thus
√
n
�
= ±A� is an integer, with � ≥ 2, and hence n |

√
n
�
. With√

n
� |A� we find that n divides A�, a contradiction. �
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