Representing numbers Chapter 4
as sums of two squares

1 =1*+0
I Which numbers can be written as sums of two squares? 2 =1"+17
3 =
4 =22+0°
This question is as old as number theory, and its solution is a classicin the 5 — 92 4 12
field. The “hard” part of the solution is to see that every prime number of g —
the form 4m + 1 is a sum of two squares. G. H. Hardy writes that this 7
two square theorem of Fermat “is ranked, very justly, as one of the finest in 8
arithmetic.” Nevertheless, one of our Book Proofs below is quite recent. 9
10

Let’s start with some “warm-ups.” First, we need to distinguish between
the prime p = 2, the primes of the form p = 4m + 1, and the primes of
the form p = 4m + 3. Every prime number belongs to exactly one of these
three classes. At this point we may note (using a method “a la Euclid”) that
there are infinitely many primes of the form 4m + 3. In fact, if there were
only finitely many, then we could take p; to be the largest prime of this
form. Setting

—_
—_

N, = 22.3.5--.pp,—1

(where p1 = 2, p2 = 3, p3 = 5, ...denotes the sequence of all primes), we
find that N}, is congruent to 3 (mod4), so it must have a prime factor of the
form 4m + 3, and this prime factor is larger than p;, — contradiction.

Our first lemma characterizes the primes for which —1 is a square in the FPierre de Fermat
field Z,, (which is reviewed in the box on the next page). It will also give
us a quick way to derive that there are infinitely many primes of the form

4m + 1.
Lemma 1. For primes p = 4m + 1 the equation s> = —1 (mod p) has two
solutions s € {1,2,...,p—1}, for p = 2 there is one such solution, while

for primes of the form p = 4m + 3 there is no solution.

B Proof. For p = 2 take s = 1. For odd p, we construct the equivalence
relation on {1,2,...,p — 1} that is generated by identifying every element
with its additive inverse and with its multiplicative inverse in Z,. Thus the
“general” equivalence classes will contain four elements

{$ , X, T, T }
since such a 4-element set contains both inverses for all its elements. How-

ever, there are smaller equivalence classes if some of the four numbers are
not distinct:
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For p = 11 the partition is
{1,10},{2,9,6,5},{3,8,4,7};
forp = 13itis
{1,12},{2,11,7,6},{3,10,9,4},
{5, 8}: the pair {5, 8} yields the two
solutions of s> = —1 mod 13.
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Addition and multiplication in Zs

Representing numbers as sums of two squares

e 1 = —x is impossible for odd p.

e = xis equivalent to 22 = 1. This has two solutions, namely x = 1
and z = p — 1, leading to the equivalence class {1,p — 1} of size 2.

e 1 = —xis equivalent to 22 = —1. This equation may have no solution
or two distinct solutions xg, p — xo: in this case the equivalence class

is {xo,p — @0}

Theset {1,2,...,p—1} has p— 1 elements, and we have partitioned it into
quadruples (equivalence classes of size 4), plus one or two pairs (equiva-
lence classes of size 2). For p — 1 = 4m + 2 we find that there is only the
one pair {1, p— 1}, the rest is quadruples, and thus s?> = —1 (mod p) has no
solution. For p — 1 = 4m there has to be the second pair, and this contains
the two solutions of s> = —1 that we were looking for. ]

Lemma I says that every odd prime dividing a number M2 4 1 must be of
the form 4m + 1. This implies that there are infinitely many primes of this
form: Otherwise, look at (2-3-5--- qk)2 + 1, where gy, is the largest such
prime. The same reasoning as above yields a contradiction.

Prime fields

If p is a prime, then the set Z,, = {0, 1, ..., p — 1} with addition and
multiplication defined “modulo p” forms a finite field. We will need
the following simple properties:

e For z € Z,, x # 0, the additive inverse (for which we usually
write —z) is givenby p —x € {1,2,...,p— 1}. If p > 2, then x
and —z are different elements of Z,,.

e Eachz € Z,\{0} has a unique multiplicative inverse = € Z,\{0},
with zz = 1 (mod p).
The definition of primes implies that the map Z, — Z,, 2 — 2
is injective for  # 0. Thus on the finite set Z,\{0} it must be
surjective as well, and hence for each x there is a unique = # 0
with zz = 1 (mod p).

e The squares 02,12, 22 ... h? define different elements of Z,, for
h=3).
This is since 22 = y?, or (z + y)(x — y) = 0, implies that x = y
or that z = —y. The 1 + [} ] elements 0%,1%, ..., h? are called
the squares in Z,,.

At this point, let us note “on the fly” that for all primes there are solutions
for 22 + y* = —1(modp). In fact, there are | )| + 1 distinct squares
2% in Zy, and there are |} | + 1 distinct numbers of the form —(1 + y?).
These two sets of numbers are too large to be disjoint, since Z,, has only p
elements, and thus there must exist  and y with 22 = —(1 + y?) (mod p).
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Lemma 2. No number n = 4m + 3 is a sum of two squares.

B Proof. The square of any even number is (2k)? = 4k% = 0 (mod4),
while squares of odd numbers yield (2k+1)? = 4(k*+k)+1 = 1 (mod 4).
Thus any sum of two squares is congruent to 0, 1 or 2 (mod4). (|

This is enough evidence for us that the primes p = 4m + 3 are “bad.” Thus,
we proceed with “good” properties for primes of the form p = 4m + 1. On
the way to the main theorem, the following is the key step.

Proposition. Every prime of the form p = 4m + 1 is a sum of two squares,
that is, it can be written as p = x2 +y? for some natural numbers x,y € N.

We shall present here two proofs of this result — both of them elegant and
surprising. The first proof features a striking application of the “pigeon-
hole principle” (which we have already used “on the fly”” before Lemma 2;
see Chapter 27 for more), as well as a clever move to arguments “modulo p”
and back. The idea is due to the Norwegian number theorist Axel Thue.

B Proof. Consider the pairs (z',y’) of integers with 0 < z/,y" < ,/p, that
is, z’,y" € {0,1,..., |\/p]}. There are (|/p] + 1)? such pairs. Using the
estimate |x] + 1 > x for z = ,/p, we see that we have more than p such
pairs of integers. Thus for any s € Z, it is impossible that all the values
a2’ — sy’ produced by the pairs (z,y’) are distinct modulo p. That is, for
every s there are two distinct pairs

(@), (2",y") € {0,1,...,[vp]}?

with ' — sy’ = 2" — sy” (modp). Now we take differences: We have
' — 12" = s(y’ — y"”) (modp). Thus if we define z = |2/ — 2"|, y =

ly" — "], then we get

(z,y) €{0,1,...,[/p]}* with = +sy(modp).

Also we know that not both = and y can be zero, because the pairs (2, y")
and (z”,y") are distinct.

Now let s be a solution of s> = —1 (modp), which exists by Lemma 1.
Then 22 = 5?y? = —y? (mod p), and so we have produced

(z,y) € Z*> with 0<az?+y*> <2 and 2?+y*=0(modp).

But p is the only number between 0 and 2p that is divisible by p. Thus
x% 4+ y? = p: done! O

Our second proof for the proposition — also clearly a Book Proof —
was discovered by Roger Heath-Brown in 1971 and appeared in 1984.
(A condensed “one-sentence version” was given by Don Zagier.) It is so
elementary that we don’t even need to use Lemma 1.

Heath-Brown’s argument features three linear involutions: a quite obvious
one, a hidden one, and a trivial one that gives “the final blow.” The second,
unexpected, involution corresponds to some hidden structure on the set of
integral solutions of the equation 4zy + 22 = p.
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For p = 13, |\/p] = 3 we consider
z',y € {0,1,2,3}. For s = 5, the sum
x' — sy’ (mod 13) assumes the following

values:

!
oo o1 2 3

T

o]0 8 3 11
1 1 9 4 12
2 12 10 5 0
3 13 11 6 1
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B Proof. We study the set
S = {(v,y,2) €Z® :day+ 22 =p, x>0, y>0}

This set is finite. Indeed, # > 1 and y > 1 impliesy < % and x < %. So
there are only finitely many possible values for z and y, and given x and y,
there are at most two values for z.

1. The first linear involution is given by
f:S_>Sv (m,y,z)»—>(y,x,—z),

that is, “interchange x and y, and negate z.” This clearly maps S to itself,
and it is an involution: Applied twice, it yields the identity. Also, f has
no fixed points, since z = 0 would imply p = 4xy, which is impossible.
Furthermore, f maps the solutions in

T = {(z,y,2) € S:2>0}

to the solutions in S\T, which satisfy z < 0. Also, f reverses the signs of
x — y and of z, so it maps the solutions in

U = {(z,y,2)€S:(x—y)+2>0}

to the solutions in S\U. For this we have to see that there is no solution
with (z—y)+2z = 0, but there is none since this would give p = 4xy+22 =
doy + (x —y)* = (x +y)*

What do we get from the study of f? The main observation is that since
f maps the sets 7" and U to their complements, it also interchanges the
elements in 7\U with these in U\T. That is, there is the same number of
solutions in U that are not in T" as there are solutions in 7" that are not in U
— so T and U have the same cardinality.

2. The second involution that we study is an involution on the set U:
g:U—>U7 (xayvz)'—>(m_y+zay72y_z)'

First we check that indeed this is a well-defined map: If (x,y, z) € U, then
r—y+2z>0y>0and4(x —y+2)y+ 2y — 2)? = day + 22, so
g(z,y,2) € S.By (x —y+2) —y+ (2y — z) = x > 0 we find that indeed
g(x,y,2) € U.

Also g is an involution: g(z,y, z) = (x —y + 2, ¥y, 2y — z) is mapped by g
(@ —-—y+2)—y+Qy—2),y,2y - (2y —2) = (2,9, 2).

And finally g has exactly one fixed point:

(mayvz) = g(l‘,y,Z) = (x—y‘f‘Z,yaZy—Z)

implies that y = z, but then p = 4xy + y* = (4x + y)y, which holds only
fory=z=1andz = pll.
But if g is an involution on U that has exactly one fixed point, then the

cardinality of U is odd.
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3. The third, trivial, involution that we study is the involution on 7' that
interchanges x and y:

h:T—T, (z,y,2)— (y,z,2).

This map is clearly well-defined, and an involution. We combine now our
knowledge derived from the other two involutions: The cardinality of T is
equal to the cardinality of U, which is odd. But if & is an involution on
a finite set of odd cardinality, then it has a fixed point: There is a point
(z,y,z) € T with z = y, that is, a solution of

p=42® + 2% = (22)* + 22 O

Note that this proof yields more — the number of representations of p in
the form p = 22 + (2y)? is odd for all primes of the form p = 4m + 1. (The
representation is actually unique, see [3].) Also note that both proofs are
not effective: Try to find  and y for a ten digit prime! Efficient ways to find
such representations as sums of two squares are discussed in [1] and [7].
The following theorem completely answers the question which started this
chapter.

Theorem. A natural number n can be represented as a sum of two squares
if and only if every prime factor of the form p = 4m + 3 appears with an
even exponent in the prime decomposition of n.

B Proof. Call a number n representable if it is a sum of two squares, that
is, if n = 22 + y? for some z,y € Ny. The theorem is a consequence of
the following five facts.

(1) 1 = 12 +0% and 2 = 12 + 12 are representable. Every prime of the
form p = 4m + 1 is representable.

(2) The product of any two representable numbers n; = x? + 42 and ny =
x3 + y3 is representable: ning = (w122 + y1y2)% + (12 — T291)2.

(3) If n is representable, n = x2 + 12, then also nz2 is representable, by
nz? = (v2)% + (y2)2.

Facts (1), (2) and (3) together yield the “if”” part of the theorem.

4) If p = 4m + 3 is a prime that divides a representable number n =
22 4 92, then p divides both z and y, and thus p? divides n. In fact, if
we had z # 0 (mod p), then we could find x such that zz = 1 (mod p),
multiply the equation 22 + y? = 0 by 22, and thus obtain 1 + 3222 =
1 + (zy)?> = 0(modp), which is impossible for p = 4m + 3 by
Lemma 1.

(5) If n is representable, and p = 4m + 3 divides n, then p2 divides n,
and n/p? is representable. This follows from (4), and completes the
proof. |
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On a finite set of odd cardinality, every
involution has at least one fixed point.
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Two remarks close our discussion:

e If @ and b are two natural numbers that are relatively prime, then there are
infinitely many primes of the form am +0b (m € N) — this is a famous
(and difficult) theorem of Dirichlet. More precisely, one can show that
the number of primes p < zx of the form p = am + b is described very
accurately for large x by the function o (1a) 10‘; ,» Where ¢(a) denotes the
number of b with 1 < b < q that are relatively prime to a. (This is
a substantial refinement of the prime number theorem, which we had
discussed on page 12.)

e This means that the primes for fixed a and varying b appear essentially
at the same rate. Nevertheless, for example for a = 4 one can observe a
rather subtle, but still noticeable and persistent tendency towards “more”
primes of the form 4m + 3. The difference between the counts of primes
of the form 4m 4 3 and those of the form 4m + 1 changes sign infinitely
often. Nevertheless, if you look for a large random z, then chances are
that there are more primes p < x of the form p = 4m + 3 than of the
form p = 4m + 1. This effect is known as “Chebyshev’s bias”; see
Riesel [4] and Rubinstein and Sarnak [5].
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