
Representing numbers

as sums of two squares

Chapter 4

Pierre de Fermat

1 = 12 + 02

2 = 12 + 12

3 =

4 = 22 + 02

5 = 22 + 12

6 =

7 =

8 = 22 + 22

9 = 32 +

10 = 32 +

11 =
...

Which numbers can be written as sums of two squares?

This question is as old as number theory, and its solution is a classic in the
field. The “hard” part of the solution is to see that every prime number of
the form 4m + 1 is a sum of two squares. G. H. Hardy writes that this
two square theorem of Fermat “is ranked, very justly, as one of the finest in
arithmetic.” Nevertheless, one of our Book Proofs below is quite recent.

Let’s start with some “warm-ups.” First, we need to distinguish between
the prime p = 2, the primes of the form p = 4m + 1, and the primes of
the form p = 4m+3. Every prime number belongs to exactly one of these
three classes. At this point we may note (using a method “à la Euclid”) that
there are infinitely many primes of the form 4m+ 3. In fact, if there were
only finitely many, then we could take pk to be the largest prime of this
form. Setting

Nk := 22 · 3 · 5 · · · pk − 1

(where p1 = 2, p2 = 3, p3 = 5, . . . denotes the sequence of all primes), we
find that Nk is congruent to 3 (mod 4), so it must have a prime factor of the
form 4m+ 3, and this prime factor is larger than pk — contradiction.

Our first lemma characterizes the primes for which −1 is a square in the
field Zp (which is reviewed in the box on the next page). It will also give
us a quick way to derive that there are infinitely many primes of the form
4m+ 1.

Lemma 1. For primes p = 4m+1 the equation s2 ≡ −1 (modp) has two
solutions s ∈ {1, 2, . . ., p−1}, for p = 2 there is one such solution, while
for primes of the form p = 4m+ 3 there is no solution.

� Proof. For p = 2 take s = 1. For odd p, we construct the equivalence
relation on {1, 2, . . . , p− 1} that is generated by identifying every element
with its additive inverse and with its multiplicative inverse in Zp. Thus the
“general” equivalence classes will contain four elements

{x,−x, x,−x}

since such a 4-element set contains both inverses for all its elements. How-
ever, there are smaller equivalence classes if some of the four numbers are
not distinct:
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• x ≡ −x is impossible for odd p.

• x ≡ x is equivalent to x2 ≡ 1. This has two solutions, namely x = 1
and x = p− 1, leading to the equivalence class {1, p− 1} of size 2.

• x ≡ −x is equivalent to x2 ≡ −1. This equation may have no solution
or two distinct solutions x0, p − x0: in this case the equivalence class
is {x0, p− x0}.

For p = 11 the partition is
{1, 10}, {2, 9, 6, 5}, {3, 8, 4, 7};
for p = 13 it is
{1, 12}, {2, 11, 7, 6}, {3, 10, 9, 4},
{5, 8}: the pair {5, 8} yields the two
solutions of s2 ≡ −1 mod 13.

The set {1, 2, . . . , p−1} has p−1 elements, and we have partitioned it into
quadruples (equivalence classes of size 4), plus one or two pairs (equiva-
lence classes of size 2). For p− 1 = 4m+ 2 we find that there is only the
one pair {1, p−1}, the rest is quadruples, and thus s2 ≡ −1 (modp) has no
solution. For p− 1 = 4m there has to be the second pair, and this contains
the two solutions of s2 ≡ −1 that we were looking for. �

Lemma 1 says that every odd prime dividing a number M2 + 1 must be of
the form 4m+ 1. This implies that there are infinitely many primes of this
form: Otherwise, look at (2 · 3 · 5 · · · qk)2 + 1, where qk is the largest such
prime. The same reasoning as above yields a contradiction.

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Addition and multiplication in Z5

Prime fields

If p is a prime, then the set Zp = {0, 1, . . . , p− 1} with addition and
multiplication defined “modulo p” forms a finite field. We will need
the following simple properties:

• For x ∈ Zp, x �= 0, the additive inverse (for which we usually
write −x) is given by p− x ∈ {1, 2, . . . , p− 1}. If p > 2, then x
and −x are different elements of Zp.

• Each x ∈ Zp\{0} has a unique multiplicative inverse x ∈ Zp\{0},
with xx ≡ 1 (modp).
The definition of primes implies that the map Zp → Zp, z �→ xz
is injective for x �= 0. Thus on the finite set Zp\{0} it must be
surjective as well, and hence for each x there is a unique x �= 0
with xx ≡ 1 (modp).

• The squares 02, 12, 22, . . . , h2 define different elements of Zp, for
h = 	p

2
.
This is since x2 ≡ y2, or (x + y)(x − y) ≡ 0, implies that x ≡ y
or that x ≡ −y. The 1 + 	p

2
 elements 02, 12, . . . , h2 are called
the squares in Zp.

At this point, let us note “on the fly” that for all primes there are solutions
for x2 + y2 ≡ −1 (modp). In fact, there are 	p2
 + 1 distinct squares
x2 in Zp, and there are 	p2
 + 1 distinct numbers of the form −(1 + y2).
These two sets of numbers are too large to be disjoint, since Zp has only p
elements, and thus there must exist x and y with x2 ≡ −(1 + y2) (modp).
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Lemma 2. No number n = 4m+ 3 is a sum of two squares.

� Proof. The square of any even number is (2k)2 = 4k2 ≡ 0 (mod 4),
while squares of odd numbers yield (2k+1)2 = 4(k2+k)+1 ≡ 1 (mod 4).
Thus any sum of two squares is congruent to 0, 1 or 2 (mod 4). �

This is enough evidence for us that the primes p = 4m+3 are “bad.” Thus,
we proceed with “good” properties for primes of the form p = 4m+1. On
the way to the main theorem, the following is the key step.

Proposition. Every prime of the form p = 4m+1 is a sum of two squares,
that is, it can be written as p = x2+y2 for some natural numbers x, y ∈ N.

We shall present here two proofs of this result — both of them elegant and
surprising. The first proof features a striking application of the “pigeon-
hole principle” (which we have already used “on the fly” before Lemma 2;
see Chapter 27 for more), as well as a clever move to arguments “modulo p”
and back. The idea is due to the Norwegian number theorist Axel Thue.

� Proof. Consider the pairs (x′, y′) of integers with 0 ≤ x′, y′ ≤ √p, that
is, x′, y′ ∈ {0, 1, . . . , 	√p
}. There are (	√p
+ 1)2 such pairs. Using the
estimate 	x
 + 1 > x for x =

√
p, we see that we have more than p such

pairs of integers. Thus for any s ∈ Z, it is impossible that all the values
x′ − sy′ produced by the pairs (x′, y′) are distinct modulo p. That is, for
every s there are two distinct pairs

(x′, y′), (x′′, y′′) ∈ {0, 1, . . . , 	√p
}2

with x′ − sy′ ≡ x′′ − sy′′ (modp). Now we take differences: We have

For p = 13, 	√p
 = 3 we consider
x′, y′ ∈ {0, 1, 2, 3}. For s = 5, the sum
x′−sy′ (mod 13) assumes the following
values:

�
�x′
y′ 0 1 2 3

0 0 8 3 11

1 1 9 4 12

2 2 10 5 0

3 3 11 6 1

x′ − x′′ ≡ s(y′ − y′′) (mod p). Thus if we define x := |x′ − x′′|, y :=
|y′ − y′′|, then we get

(x, y) ∈ {0, 1, . . . , 	√p
}2 with x ≡ ±sy (mod p).

Also we know that not both x and y can be zero, because the pairs (x′, y′)
and (x′′, y′′) are distinct.

Now let s be a solution of s2 ≡ −1 (modp), which exists by Lemma 1.
Then x2 ≡ s2y2 ≡ −y2 (modp), and so we have produced

(x, y) ∈ Z2 with 0 < x2 + y2 < 2p and x2 + y2 ≡ 0 (modp).

But p is the only number between 0 and 2p that is divisible by p. Thus
x2 + y2 = p: done! �

Our second proof for the proposition — also clearly a Book Proof —
was discovered by Roger Heath-Brown in 1971 and appeared in 1984.
(A condensed “one-sentence version” was given by Don Zagier.) It is so
elementary that we don’t even need to use Lemma 1.

Heath-Brown’s argument features three linear involutions: a quite obvious
one, a hidden one, and a trivial one that gives “the final blow.” The second,
unexpected, involution corresponds to some hidden structure on the set of
integral solutions of the equation 4xy + z2 = p.
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� Proof. We study the set

S := {(x, y, z) ∈ Z3 : 4xy + z2 = p, x > 0, y > 0}.

This set is finite. Indeed, x ≥ 1 and y ≥ 1 implies y ≤ p
4 and x ≤ p

4 . So
there are only finitely many possible values for x and y, and given x and y,
there are at most two values for z.

1. The first linear involution is given by

f : S −→ S, (x, y, z) �−→ (y, x,−z),

that is, “interchange x and y, and negate z.” This clearly maps S to itself,
and it is an involution: Applied twice, it yields the identity. Also, f has
no fixed points, since z = 0 would imply p = 4xy, which is impossible.
Furthermore, f maps the solutions in

f

U

T

T := {(x, y, z) ∈ S : z > 0}

to the solutions in S\T , which satisfy z < 0. Also, f reverses the signs of
x− y and of z, so it maps the solutions in

U := {(x, y, z) ∈ S : (x− y) + z > 0}

to the solutions in S\U . For this we have to see that there is no solution
with (x−y)+z = 0, but there is none since this would give p = 4xy+z2 =
4xy + (x− y)2 = (x+ y)2.

What do we get from the study of f? The main observation is that since
f maps the sets T and U to their complements, it also interchanges the
elements in T \U with these in U\T . That is, there is the same number of
solutions in U that are not in T as there are solutions in T that are not in U
— so T and U have the same cardinality.

2. The second involution that we study is an involution on the set U :

g : U −→ U, (x, y, z) �−→ (x− y + z, y, 2y− z).

First we check that indeed this is a well-defined map: If (x, y, z) ∈ U , then
x − y + z > 0, y > 0 and 4(x − y + z)y + (2y − z)2 = 4xy + z2, so
g(x, y, z) ∈ S. By (x− y+ z)− y+(2y− z) = x > 0 we find that indeed
g(x, y, z) ∈ U .

Also g is an involution: g(x, y, z) = (x− y+ z, y, 2y− z) is mapped by g
to ((x − y + z)− y + (2y − z), y, 2y − (2y − z)) = (x, y, z).

U

g And finally g has exactly one fixed point:

(x, y, z) = g(x, y, z) = (x− y + z, y, 2y− z)

implies that y = z, but then p = 4xy + y2 = (4x+ y)y, which holds only
for y = z = 1 and x = p−1

4 .

But if g is an involution on U that has exactly one fixed point, then the
cardinality of U is odd.



Representing numbers as sums of two squares 23

3. The third, trivial, involution that we study is the involution on T that
interchanges x and y:

h : T −→ T, (x, y, z) �−→ (y, x, z).

This map is clearly well-defined, and an involution. We combine now our
knowledge derived from the other two involutions: The cardinality of T is
equal to the cardinality of U , which is odd. But if h is an involution on

T

h

On a finite set of odd cardinality, every
involution has at least one fixed point.

a finite set of odd cardinality, then it has a fixed point: There is a point
(x, y, z) ∈ T with x = y, that is, a solution of

p = 4x2 + z2 = (2x)2 + z2. �

Note that this proof yields more — the number of representations of p in
the form p = x2+(2y)2 is odd for all primes of the form p = 4m+1. (The
representation is actually unique, see [3].) Also note that both proofs are
not effective: Try to find x and y for a ten digit prime! Efficient ways to find
such representations as sums of two squares are discussed in [1] and [7].

The following theorem completely answers the question which started this
chapter.

Theorem. A natural number n can be represented as a sum of two squares
if and only if every prime factor of the form p = 4m + 3 appears with an
even exponent in the prime decomposition of n.

� Proof. Call a number n representable if it is a sum of two squares, that
is, if n = x2 + y2 for some x, y ∈ N0. The theorem is a consequence of
the following five facts.

(1) 1 = 12 + 02 and 2 = 12 + 12 are representable. Every prime of the
form p = 4m+ 1 is representable.

(2) The product of any two representable numbers n1 = x2
1+ y21 and n2 =

x2
2 + y22 is representable: n1n2 = (x1x2 + y1y2)

2 + (x1y2 − x2y1)
2.

(3) If n is representable, n = x2 + y2, then also nz2 is representable, by
nz2 = (xz)2 + (yz)2.

Facts (1), (2) and (3) together yield the “if” part of the theorem.

(4) If p = 4m + 3 is a prime that divides a representable number n =
x2 + y2, then p divides both x and y, and thus p2 divides n. In fact, if
we had x �≡ 0 (modp), then we could find x such that xx ≡ 1 (modp),
multiply the equation x2 + y2 ≡ 0 by x2, and thus obtain 1 + y2x2 =
1 + (xy)2 ≡ 0 (mod p), which is impossible for p = 4m + 3 by
Lemma 1.

(5) If n is representable, and p = 4m + 3 divides n, then p2 divides n,
and n/p2 is representable. This follows from (4), and completes the
proof. �
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Two remarks close our discussion:

• If a and b are two natural numbers that are relatively prime, then there are
infinitely many primes of the form am+ b (m ∈ N) — this is a famous
(and difficult) theorem of Dirichlet. More precisely, one can show that
the number of primes p ≤ x of the form p = am + b is described very
accurately for large x by the function 1

ϕ(a)
x

log x , where ϕ(a) denotes the
number of b with 1 ≤ b < a that are relatively prime to a. (This is
a substantial refinement of the prime number theorem, which we had
discussed on page 12.)

• This means that the primes for fixed a and varying b appear essentially
at the same rate. Nevertheless, for example for a = 4 one can observe a
rather subtle, but still noticeable and persistent tendency towards “more”
primes of the form 4m+3. The difference between the counts of primes
of the form 4m+3 and those of the form 4m+1 changes sign infinitely
often. Nevertheless, if you look for a large random x, then chances are
that there are more primes p ≤ x of the form p = 4m + 3 than of the
form p = 4m + 1. This effect is known as “Chebyshev’s bias”; see
Riesel [4] and Rubinstein and Sarnak [5].
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