
Every large point set

has an obtuse angle

Chapter 17

Around 1950 Paul Erdős conjectured that every set of more than 2d points
in Rd determines at least one obtuse angle, that is, an angle that is strictly
greater than π

2 . In other words, any set of points in Rd which only has acute
angles (including right angles) has size at most 2d. This problem was posed
as a “prize question” by the Dutch Mathematical Society — but solutions
were received only for d = 2 and for d = 3.

For d = 2 the problem is easy: The five points may determine a convex
pentagon, which always has an obtuse angle (in fact, at least one angle of
at least 108◦). Otherwise we have one point contained in the convex hull
of three others that form a triangle. But this point “sees” the three edges of
the triangle in three angles that sum to 360◦, so one of the angles is at least
120◦. (The second case also includes situations where we have three points
on a line, and thus a 180◦ angle.)

Unrelated to this, Victor Klee asked a few years later — and Erdős spread
the question — how large a point set in Rd could be and still have the
following “antipodality property”: For any two points in the set there is a
strip (bounded by two parallel hyperplanes) that contains the point set, and
that has the two chosen points on different sides on the boundary.

Then, in 1962, Ludwig Danzer and Branko Grünbaum solved both prob-
lems in one stroke: They sandwiched both maximal sizes into a chain of
inequalities, which starts and ends in 2d. Thus the answer is 2d both for
Erdős’ and for Klee’s problem.

In the following, we consider (finite) sets S ⊆ Rd of points, their convex
hulls conv(S), and general convex polytopes Q ⊆ Rd. (See the appendix
on polytopes on page 69 for the basic concepts.) We assume that these sets
have the full dimension d, that is, they are not contained in a hyperplane.
Two convex sets touch if they have at least one boundary point in common,
while their interiors do not intersect. For any set Q ⊆ Rd and any vector
s ∈ Rd we denote by Q+s the image of Q under the translation that moves
0 to s. Similarly, Q − s is the translate obtained by the map that moves s
to the origin.

Don’t be intimidated: This chapter is an excursion into d-dimensional
geometry, but the arguments in the following do not require any “high-
dimensional intuition,” since they all can be followed, visualized (and thus
understood) in three dimensions, or even in the plane. Hence, our figures
will illustrate the proof for d = 2 (where a “hyperplane” is just a line), and
you could create your own pictures for d = 3 (where a “hyperplane” is
a plane).
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Theorem 1. For every d, one has the following chain of inequalities:

2d
(1)

≤ max
{
#S |S ⊆ Rd, �(si, sj , sk) ≤ π

2 for every {si, sj , sk} ⊆ S
}

(2)

≤ max

⎧⎨⎩#S

∣∣∣∣∣∣
S ⊆ Rd such that for any two points {si, sj} ⊆ S
there is a strip S(i, j) that contains S, with si and sj
lying in the parallel boundary hyperplanes of S(i, j)

⎫⎬⎭
(3)
= max

{
#S

∣∣∣∣∣S ⊆ Rd such that the translates P − si, si ∈ S, of
the convex hull P := conv(S) intersect in a common
point, but they only touch

}
(4)

≤ max

{
#S

∣∣∣∣S ⊆ Rd such that the translates Q + si of some d-
dimensional convex polytope Q ⊆ Rd touch pairwise

}
(5)
= max

⎧⎨⎩#S

∣∣∣∣∣∣
S ⊆ Rd such that the translates Q∗ + si of some
d-dimensional centrally symmetric convex polytope
Q∗ ⊆ Rd touch pairwise

⎫⎬⎭
(6)

≤ 2d.

� Proof. We have six claims (equalities and inequalities) to verify. Let’s
get going.

(1) Take S := {0, 1}d to be the vertex set of the standard unit cube in Rd,
and choose si, sj , sk ∈ S. By symmetry we may assume that sj = 0 is
the zero vector. Hence the angle can be computed from

cos�(si, sj , sk) =
〈si, sk〉
|si||sk|

which is clearly nonnegative. Thus S is a set with |S| = 2d that has no
obtuse angles.

(2) If S contains no obtuse angles, then for any si, sj ∈ S we may define
Hij+si and Hij+sj to be the parallel hyperplanes through si resp. sj that
are orthogonal to the edge [si, sj ]. Here Hij = {x ∈ Rd : 〈x, si−sj〉 = 0}
is the hyperplane through the origin that is orthogonal to the line through
si and sj , and Hij + sj = {x + sj : x ∈ Hij} is the translate of Hij

that passes through sj , etc. Hence the strip between Hij + si and Hij + sj
consists, besides si and sj , exactly of all the points x ∈ Rd such that the
angles �(si, sj ,x) and �(sj , si,x) are nonobtuse. Thus the strip contains
all of S.

si

sj

Hij + si

Hij + sj
(3) P is contained in the halfspace of Hij + sj that contains si if and only
if P −sj is contained in the halfspace of Hij that contains si−sj : A prop-
erty “an object is contained in a halfspace” is not destroyed if we translate
both the object and the halfspace by the same amount (namely by −sj).
Similarly, P is contained in the halfspace of Hij + si that contains sj if
and only if P −si is contained in the halfspace of Hij that contains sj−si.

Putting both statements together, we find that the polytope P is contained
in the strip between Hij +si and Hij +sj if and only if P −si and P −sj
lie in different halfspaces with respect to the hyperplane Hij .
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This correspondence is illustrated by the sketch in the margin.
si

sj

Hij + si

Hij + sj

P

P − sj

si − sj

0

P − si

sj − si

Hij

Furthermore, from si ∈ P = conv(S) we get that the origin 0 is contained
in all the translates P − si (si ∈ S). Thus we see that the sets P − si
all intersect in 0, but they only touch: their interiors are pairwise disjoint,
since they lie on opposite sides of the corresponding hyperplanes Hij .

(4) This we get for free: “the translates must touch pairwise” is a weaker
condition than “they intersect in a common point, but only touch.”
Similarly, we can relax the conditions by letting P be an arbitrary convex
d-polytope in Rd. Furthermore, we may replace S by −S.

(5) Here “≥” is trivial, but that is not the interesting direction for us. We
have to start with a configuration S ⊆ Rd and an arbitrary d-polytope
Q ⊆ Rd such that the translates Q + si (si ∈ S) touch pairwise. The
claim is that in this situation we can use

Q∗ :=
{
1
2 (x− y) ∈ Rd : x,y ∈ Q

}
instead of Q. But this is not hard to see: First, Q∗ is d-dimensional, convex,
and centrally symmetric. One can check that Q∗ is a polytope (its vertices
are of the form 1

2 (qi−qj), for vertices qi, qj of Q), but this is not important
for us.

Now we will show that Q+ si and Q+ sj touch if and only if Q∗+ si and
Q∗ + sj touch. For this we note, in the footsteps of Minkowski, that

(Q∗+si) ∩ (Q∗ + sj) �= ∅

⇐⇒ ∃ q′i, q′′i , q′j , q′′j ∈ Q : 1
2 (q

′
i − q′′i ) + si =

1
2 (q

′
j − q′′j ) + sj

⇐⇒ ∃ q′i, q′′i , q′j , q′′j ∈ Q : 1
2 (q

′
i + q′′j ) + si =

1
2 (q

′
j + q′′i ) + sj

⇐⇒ ∃ qi, qj ∈ Q : qi + si = qj + sj

⇐⇒ (Q + si) ∩ (Q+ sj) �= ∅,

where in the third (and crucial) equivalence “⇐⇒” we use that every q ∈ Q
can be written as q = 1

2 (q + q) to get “⇐”, and that Q is convex and thus
1
2 (q

′
i + q′′j ),

1
2 (q

′
j + q′′i ) ∈ Q to see “⇒”.

Thus the passage from Q to Q∗ (known as Minkowski symmetrization) pre-
serves the property that two translates Q+ si and Q+ sj intersect. That is,
we have shown that for any convex set Q, two translates Q+si and Q+sj
intersect if and only if the translates Q∗ + si and Q∗ + sj intersect.

The following characterization shows that Minkowski symmetrization also
preserves the property that two translates touch:

Q+ si and Q+ sj touch if and only if they intersect, while Q+ si
and Q+ sj + ε(sj − si) do not intersect for any ε > 0.

sj − si ε(sj − si)

(6) Assume that Q∗ + si and Q∗ + sj touch. For every intersection point

x ∈ (Q∗ + si) ∩ (Q∗ + sj)
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we have
x− si ∈ Q∗ and x− sj ∈ Q∗,

thus, since Q∗ is centrally symmetric,

si − x = −(x− si) ∈ Q∗,

and hence, since Q∗ is convex,
1
2 (si − sj) =

1
2 ((x− sj) + (si − x)) ∈ Q∗.

We conclude that 1
2 (si+sj) is contained in Q∗+sj for all i. Consequently,

for P := conv(S) we get

Pj :=
1
2 (P + sj) = conv

{
1
2 (si + sj) : si ∈ S

}
⊆ Q∗ + sj ,

which implies that the sets Pj =
1
2 (P + sj) can only touch.

Scaling factor 1
2

, vol(Pj) =
1
8

vol(P )

Finally, the sets Pj are contained in P , because all the points si, sj and
1
2 (si + sj) are in P , since P is convex. But the Pj are just smaller, scaled,
translates of P , contained in P . The scaling factor is 1

2 , which implies that

vol(Pj) =
1

2d
vol(P ),

since we are dealing with d-dimensional sets. This means that at most 2d

sets Pj fit into P , and hence |S| ≤ 2d.

This completes our proof: the chain of inequalities is closed. �

. . . but that’s not the end of the story. Danzer and Grünbaum asked the
following natural question:

What happens if one requires all angles to be acute rather than
just nonobtuse, that is, if right angles are forbidden?

They constructed configurations of 2d − 1 points in Rd with only acute
angles, conjecturing that this may be best possible. Grünbaum proved that
this is indeed true for d ≤ 3. But twenty-one years later, in 1983, Paul
Erdős and Zoltan Füredi showed that the conjecture is false — quite dra-
matically, if the dimension is high! Their proof is a great example for the
power of probabilistic arguments; see Chapter 44 for an introduction to the
“probabilistic method.” Our version of the proof uses a slight improvement
in the choice of the parameters due to our reader David Bevan.

Theorem 2. For every d ≥ 2, there is a set S ⊆ {0, 1}d of 2	
√
6
9

(
2√
3

)d

points in Rd (vertices of the unit d-cube) that determine only acute angles.

In particular, in dimension d = 34 there is a set of 72 > 2·34 − 1 points
with only acute angles.

� Proof. Set m := 	
√
6
9

(
2√
3

)d
, and pick 3m vectors

x(1),x(2), . . . ,x(3m) ∈ {0, 1}d

by choosing all their coordinates independently and randomly, to be either
0 or 1, with probability 1

2 for each alternative. (You may toss a perfect coin
3md times for this; however, if d is large you may get bored by this soon.)
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We have seen above that all angles determined by 0/1-vectors are nonob-
tuse. Three vectors x(i),x(j),x(k) determine a right angle with apex x(j)
if and only if the scalar product 〈x(i)− x(j),x(k) − x(j)〉 vanishes, that
is, if we have

x(i)� − x(j)� = 0 or x(k)� − x(j)� = 0 for each coordinate �.

We call (i, j, k) a bad triple if this happens. (If x(i) = x(j) or x(j) =
x(k), then the angle is not defined, but also then the triple (i, j, k) is
certainly bad.)

The probability that one specific triple is bad is exactly
(
3
4

)d
: Indeed, it

will be good if and only if, for one of the d coordinates �, we get

either x(i)� = x(k)� = 0, x(j)� = 1,
or x(i)� = x(k)� = 1, x(j)� = 0.

This leaves us with six bad options out of eight equally likely ones, and a
triple will be bad if and only if one of the bad options (with probability 3

4 )
happens for each of the d coordinates.

The number of triples we have to consider is 3
(
3m
3

)
, since there are

(
3m
3

)
sets of three vectors, and for each of them there are three choices for the
apex. Of course the probabilities that the various triples are bad are not
independent: but linearity of expectation (which is what you get by averag-
ing over all possible selections; see the appendix) yields that the expected

number of bad triples is exactly 3
(
3m
3

) (
3
4

)d
. This means — and this is the

point where the probabilistic method shows its power — that there is some

choice of the 3m vectors such that there are at most 3
(
3m
3

) (
3
4

)d
bad triples,

where

3
(
3m
3

) (
3
4

)d
< 3 (3m)3

6

(
3
4

)d
= m3

(
9√
6

)2 ( 3
4

)d ≤ m,

by the choice of m.

But if there are not more than m bad triples, then we can remove m of the
3m vectors x(i) in such a way that the remaining 2m vectors don’t contain
a bad triple, that is, they determine acute angles only. �

The “probabilistic construction” of a large set of 0/1-points without right
angles can be easily implemented, using a random number generator to “flip
the coin.” David Bevan has thus constructed a set of 31 points in dimension
d = 15 that determines only acute angles.

Appendix: Three tools from probability

Here we gather three basic tools from discrete probability theory which
will come up several times: random variables, linearity of expectation and
Markov’s inequality.
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Let (Ω, p) be a finite probability space, that is, Ω is a finite set and p = Prob
is a map from Ω into the interval [0, 1] with

∑
ω∈Ω p(ω) = 1. A random

variable X on Ω is a mapping X : Ω −→ R. We define a probability space
on the image set X(Ω) by setting p(X = x) :=

∑
X(ω)=x p(ω). A simple

example is an unbiased dice (all p(ω) = 1
6 ) with X = “the number on top

when the dice is thrown.”

The expectation EX of X is the average to be expected, that is,

EX =
∑
ω∈Ω

p(ω)X(ω).

Now suppose X and Y are two random variables on Ω, then the sum X+Y
is again a random variable, and we obtain

E(X + Y ) =
∑
ω

p(ω)(X(ω) + Y (ω))

=
∑
ω

p(ω)X(ω) +
∑
ω

p(ω)Y (ω) = EX + EY.

Clearly, this can be extended to any finite linear combination of random
variables — this is what is called the linearity of expectation. Note that it
needs no assumption that the random variables have to be “independent”
in any sense!

Our third tool concerns random variables X which take only nonnegative
values, shortly denoted X ≥ 0. Let

Prob(X ≥ a) =
∑

ω:X(ω)≥a

p(ω)

be the probability that X is at least as large as some a > 0. Then

EX =
∑

ω:X(ω)≥a

p(ω)X(ω) +
∑

ω:X(ω)<a

p(ω)X(ω) ≥ a
∑

ω:X(ω)≥a

p(ω),

and we have proved Markov’s inequality

Prob(X ≥ a) ≤ EX

a
.
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