
Cauchy’s rigidity theorem Chapter 14

Augustin Cauchy

A famous result that depends on Euler’s formula (specifically, on part (C)
of the proposition in the previous chapter) is Cauchy’s rigidity theorem for
3-dimensional polyhedra.

For the notions of congruence and of combinatorial equivalence that are
used in the following we refer to the appendix on polytopes and polyhedra
in the chapter on Hilbert’s third problem, see page 69.

Theorem. If two 3-dimensional convex polyhedra P and P ′ are
combinatorially equivalent with corresponding facets being congru-
ent, then also the angles between corresponding pairs of adjacent
facets are equal (and thus P is congruent to P ′).

The illustration in the margin shows two 3-dimensional polyhedra that are
combinatorially equivalent, such that the corresponding faces are congru-
ent. But they are not congruent, and only one of them is convex. Thus the
assumption of convexity is essential for Cauchy’s theorem!

� Proof. The following is essentially Cauchy’s original proof. Assume
that two convex polyhedra P and P ′ with congruent faces are given. We
color the edges of P as follows: an edge is black (or “positive”) if the
corresponding interior angle between the two adjacent facets is larger in P ′

than in P ; it is white (or “negative”) if the corresponding angle is smaller
in P ′ than in P .

The black and the white edges of P together form a 2-colored plane graph
on the surface of P , which by radial projection, assuming that the origin
is in the interior of P , we may transfer to the surface of the unit sphere.
If P and P ′ have unequal corresponding facet-angles, then the graph is
nonempty. With part (C) of the proposition in the previous chapter we find
that there is a vertex p that is adjacent to at least one black or white edge,
such that there are at most two changes between black and white edges (in
cyclic order).

Now we intersect P with a small sphere Sε (of radius ε) centered at the
vertex p, and we intersect P ′ with a sphere S′ε of the same radius ε centered
at the corresponding vertex p′. In Sε and S′ε we find convex spherical
polygons Q and Q′ such that corresponding arcs have the same lengths,
because of the congruence of the facets of P and P ′, and since we have
chosen the same radius ε.
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Now we mark by + the angles of Q for which the corresponding angle
in Q′ is larger, and by − the angles whose corresponding angle of Q′ is
smaller. That is, when moving from Q to Q′ the + angles are “opened,”
the − angles are “closed,” while all side lengths and the unmarked angles
stay constant.

From our choice of p we know that some + or − sign occurs, and that in
cyclic order there are at most two +/− changes. If only one type of signs
occurs, then the lemma below directly gives a contradiction, saying that one
edge must change its length. If both types of signs occur, then (since there

− −

+Q:

Q′:
are only two sign changes) there is a “separation line” that connects the
midpoints of two edges and separates all the + signs from all the − signs.
Again we get a contradiction from the lemma below, since the separation
line cannot be both longer and shorter in Q′ than in Q. �

Cauchy’s arm lemma.

If Q and Q′ are convex (planar or spherical) n-gons, labeled as in
the figure,

q1 qn

Q : Q′ :

q′2

q′1
q′n

α′3
q2

qn−1
q′n−1

α3 αn−1
α′n−1

α2
α′2

such that qiqi+1 = q′iq
′
i+1 holds for the lengths of corresponding edges for

1 ≤ i ≤ n− 1, and αi ≤ α′i holds for the sizes of corresponding angles for
2 ≤ i ≤ n− 1, then the “missing” edge length satisfies

q1qn ≤ q′1q′n,

with equality if and only if αi = α′i holds for all i.

It is interesting that Cauchy’s original proof of the lemma was false: a con-
tinuous motion that opens angles and keeps side-lengths fixed may destroy
convexity — see the figure! On the other hand, both the lemma and its
proof given here, from a letter by I. J. Schoenberg to S. K. Zaremba, are
valid both for planar and for spherical polygons.

� Proof. We use induction on n. The case n = 3 is easy: If in a triangle
we increase the angle γ between two sides of fixed lengths a and b, then the
length c of the opposite side also increases. Analytically, this follows from
the cosine theorem

c2 = a2 + b2 − 2ab cosγ

in the planar case, and from the analogous result

cos c = cos a cos b+ sin a sin b cos γ

in spherical trigonometry. Here the lengths a, b, c are measured on the
surface of a sphere of radius 1, and thus have values in the interval [0, π].
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Now let n ≥ 4. If for any i ∈ {2, . . . , n − 1} we have αi = α′i, then the
corresponding vertex can be cut off by introducing the diagonal from qi−1

to qi+1 resp. from q′i−1 to q′i+1, with qi−1qi+1 = q′i−1q
′
i+1, so we are done

by induction. Thus we may assume αi < α′i for 2 ≤ i ≤ n− 1.

qi

αi

Now we produce a new polygon Q∗ from Q by replacing αn−1 by the
largest possible angle α∗n−1 ≤ α′n−1 that keeps Q∗ convex. For this we
replace qn by q∗n, keeping all the other qi, edge lengths, and angles from Q.

If indeed we can choose α∗n−1 = α′n−1 keeping Q∗ convex, then we get
q1qn < q1q

∗
n ≤ q′1q′n, using the case n = 3 for the first step and induction

as above for the second.

q1 qn

q1 q∗n

Q:

α∗n−1

αn−1

Q∗:

Otherwise after a nontrivial move that yields

q1q
∗
n > q1qn (1)

we “get stuck” in a situation where q2, q1 and q∗n are collinear, with

q2q1 + q1q
∗
n = q2q

∗
n. (2)

Now we compare this Q∗ with Q′ and find

q2q
∗
n ≤ q′2q′n (3)

by induction on n (ignoring the vertex q1 resp. q′1). Thus we obtain

q2

Q∗ :

q1 q∗n

α∗n−1

q′1q′n
(∗)
≥ q′2q′n − q′1q

′
2

(3)

≥ q2q
∗
n − q1q2

(2)

= q1q
∗
n

(1)

> q1qn ,

where (∗) is just the triangle inequality, and all other relations have already
been derived. �

We have seen an example which shows that Cauchy’s theorem is not true
for nonconvex polyhedra. The special feature of this example is, of course,
that a noncontinuous “flip” takes one polyhedron to the other, keeping the
facets congruent while the dihedral angles “jump.” One can ask for more:

Could there be, for some nonconvex polyhedron, a continuous
deformation that would keep the facets flat and congruent?

It was conjectured that no triangulated surface, convex or not, admits such
a motion. So, it was quite a surprise when in 1977 — more than 160 years
after Cauchy’s work — Robert Connelly presented counterexamples: closed
triangulated spheres embedded in R3 (without self-intersections) that are
flexible, with a continuous motion that keeps all the edge lengths constant,
and thus keeps the triangular faces congruent.
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A beautiful example of a flexible sur-
face constructed by Klaus Steffen: The
dashed lines represent the nonconvex
edges in this “cut-out” paper model.
Fold the normal lines as “mountains”
and the dashed lines as “valleys.” The
edges in the model have lengths 5, 10,
11, 12 and 17 units.

The rigidity theory of surfaces has even more surprises in store: Idjad
Sabitov managed to prove that when any such flexing surface moves, the
volume it encloses must be constant. His proof is beautiful also in its use
of the algebraic machinery of polynomials and determinants (outside the
scope of this book).

References

[1] A. CAUCHY: Sur les polygones et les polyèdres, seconde mémoire, J. École
Polytechnique XVIe Cahier, Tome IX (1813), 87-98; Œuvres Complètes, IIe
Série, Vol. 1, Paris 1905, 26-38.

[2] R. CONNELLY: A counterexample to the rigidity conjecture for polyhedra, Inst.
Haut. Etud. Sci., Publ. Math. 47 (1978), 333-338.

[3] R. CONNELLY: The rigidity of polyhedral surfaces, Mathematics Magazine 52

(1979), 275-283.

[4] I. KH. SABITOV: The volume as a metric invariant of polyhedra, Discrete
Comput. Geometry 20 (1998), 405-425.

[5] J. SCHOENBERG & S.K. ZAREMBA: On Cauchy’s lemma concerning convex
polygons, Canadian J. Math. 19 (1967), 1062-1071.


	Cauchy’s rigidity theorem



