
Safely Composable Type-Specific Languages

Cyrus Omar1, Darya Kurilova1, Ligia Nistor1, Benjamin Chung1,
Alex Potanin2, and Jonathan Aldrich1

1 Carnegie Mellon University, Pittsburgh, USA
2 Victoria University of Wellington, Wellington, New Zealand

{comar,darya,lnistor,bwchung,aldrich}@cs.cmu.edu,
alex@ecs.vuw.ac.nz

Abstract. Programming languages often include specialized syntax for
common datatypes (e.g. lists) and some also build in support for specific spe-
cialized datatypes (e.g. regular expressions), but user-defined types must use
general-purpose syntax. Frustration with this causes developers to use strings,
rather than structured data, with alarming frequency, leading to correctness, per-
formance, security, and usability issues. Allowing library providers to modularly
extend a language with new syntax could help address these issues. Unfortu-
nately, prior mechanisms either limit expressiveness or are not safely compos-
able: individually unambiguous extensions can still cause ambiguities when used
together. We introduce type-specific languages (TSLs): logic associated with a
type that determines how the bodies of generic literals, able to contain arbitrary
syntax, are parsed and elaborated, hygienically. The TSL for a type is invoked
only when a literal appears where a term of that type is expected, guaranteeing
non-interference. We give evidence supporting the applicability of this approach
and formally specify it with a bidirectionally typed elaboration semantics for the
Wyvern programming language.

Keywords: extensible languages, parsing, bidirectional typechecking, hygiene.

1 Motivation

Many data types can be seen, semantically, as modes of use of general purpose product
and sum types. For example, lists can be seen as recursive sums by observing that a
list can either be empty, or be broken down into a product of the head element and the
tail, another list. In an ML-like functional language, sums are exposed as datatypes and
products as tuples and records, so list types can be defined as follows:

datatype ’a list = Nil | Cons of ’a * ’a list

In class-based object-oriented language, objects can be seen as products of their in-
stance data and classes as the cases of a sum type [9]. In low-level languages, like C,
structs and unions expose products and sums, respectively.

By defining user-defined types in terms of these general purpose constructs, we im-
mediately benefit from powerful reasoning principles (e.g. induction), language support
(e.g. pattern matching) and compiler optimizations. But these semantic benefits often
come at a syntactic cost. For example, few would claim that writing a list of numbers
as a sequence of Cons cells is convenient:

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 105–130, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

106 C. Omar et al.

Cons(1, Cons(2, Cons(3, Cons(4, Nil))))

Lists are a common data structure, so many languages include literal syntax for
introducing them, e.g. [1, 2, 3, 4]. This syntax is semantically equivalent to the
general-purpose syntax shown above, but brings cognitive benefits both when writing
and reading code by focusing on the content of the list, rather than the nature of the
encoding. Using terminology from Green’s cognitive dimensions of notations [8], it
is more terse, visible and maps more closely to the intuitive notion of a list. Stoy, in
discussing the value of good notation, writes [31]:

A good notation thus conceals much of the inner workings behind suitable
abbreviations, while allowing us to consider it in more detail if we require:
matrix and tensor notations provide further good examples of this. It may be
summed up in the saying: “A notation is important for what it leaves out.”

Although list, number and string literals are nearly ubiquitous features of modern
languages, some languages provide specialized literal syntax for other common col-
lections (like maps, sets, vectors and matrices), external data formats (like XML and
JSON), query languages (like regular expressions and SQL), markup languages (like
HTML and Markdown) and many other types of data. For example, a language with
built-in notation for HTML and SQL, supporting type safe splicing via curly braces,
might define:

1 let webpage : HTML = <html><body><h1>Results for {keyword}</h1>
2 <ul id="results">{to_list_items(query(db,
3 SELECT title, snippet FROM products WHERE {keyword} in title))}
4 </body></html>

as shorthand for:

1 let webpage : HTML = HTMLElement(Dict.empty(), [BodyElement(Dict.empty(),
2 [H1Element(Dict.empty(), [TextNode("Results for " + keyword)]),
3 ULElement((Dict.add Dict.empty() ("id","results")), to_list_items(query(db,
4 SelectStmt(["title", "snippet"], "products",
5 [WhereClause(InPredicate(StringLit(keyword), "title"))]))))])])

When general-purpose notation like this is too cognitively demanding for comfort,
but a specialized notation as above is not available, developers turn to run-time mecha-
nisms to make constructing data structures more convenient. Among the most common
strategies in these situations, no matter the language paradigm, is to simply use a string
representation, parsing it at run-time:

1 let webpage : HTML = parse_html("<html><body><h1>Results for "+keyword+"</h1>
2 <ul id=\"results\">" + to_string(to_list_items(query(db, parse_sql(
3 "SELECT title, snippet FROM products WHERE ’"+keyword+"’ in title")))) +
4 "</body></html>")

Though recovering some of the notational convenience of the literal version, it is still
more awkward to write, requiring explicit conversions to and from structured represen-
tations (parse_html and to_string, respectively) and escaping when the syntax of the
data language interferes with the syntax of string literals (line 2). Such code also causes
a number of problems that go beyond cognitive load. Because parsing occurs at run-
time, syntax errors will not be discovered statically, causing potential run-time errors
in production scenarios. Run-time parsing also incurs performance overhead, particu-
larly relevant when code like this is executed often (as on a heavily-trafficked website).

Safely Composable Type-Specific Languages 107

But the most serious issue with this code is that it is highly insecure: it is vulnerable
to cross-site scripting attacks (line 1) and SQL injection attacks (line 3). For example,
if a user entered the keyword ’; DROP TABLE products --, the entire product database
could be erased. These attack vectors are considered to be two of the most serious secu-
rity threats on the web today [26]. Although developers are cautioned to sanitize their
input, it can be difficult to verify that this was done correctly throughout a codebase.
The best way to avoid these problems today is to avoid strings and other similar con-
veniences and insist on structured representations. Unfortunately, situations like this,
where maintaining strong correctness, performance and security guarantees entails sig-
nificant syntactic overhead, causing developers to turn to less structured solutions that
are more convenient, are quite common (as we will discuss in Sec. 5).

Adding new literal syntax into a language is generally considered to be the responsi-
bility of the language’s designers. This is largely for technical reasons: not all syntactic
forms can unambiguously coexist in the same grammar, so a designer is needed to
decide which syntactic forms are available, and what their semantics should be. For
example, conventional notations for sets and maps are both delimited by curly braces.
When Python introduced set literals, it chose to distinguish them based on whether the
literal contained only values (e.g. {3}), or key-value pairs ({"x": 3}). But this causes
an ambiguity with the syntactic form { } – should it mean an empty set or an empty
map (called a dictionary in Python)? The designers of Python avoided the ambiguity by
choosing the latter interpretation (in this case, for backwards compatibility reasons).

Were this power given to library providers in a decentralized, unconstrained manner,
the burden of resolving ambiguities would instead fall on developers who happened
to import conflicting extensions. Indeed, this is precisely the situation with SugarJ [6]
and other extensible languages generated by Sugar* [7], which allow library providers
to extend the base syntax of the host language with new forms in a relatively uncon-
strained manner. These new forms are imported transitively throughout a program. To
resolve syntactic ambiguities that arise, clients must manually augment the composed
grammar with new rules that allow them to choose the correct interpretation explic-
itly. This is both difficult to do, requiring a reasonably thorough understanding of the
underlying parser technology (in Sugar*, generalized LR parsing) and increases the
cognitive load of using the conflicting notations (e.g. both sets and maps) together be-
cause disambiguation tokens must be used. These kinds of conflicts occur in a variety
of circumstances: HTML and XML, different variants of SQL, JSON literals and maps,
or differing implementations (“desugarings”) of the same syntax (e.g. two regular ex-
pression engines). Code that uses these common abstractions together is very common
in practice [13].

In this work, we will describe an alternative parsing strategy that sidesteps these
problems by building into the language only a delimitation strategy, which ensures that
ambiguities do not occur. The parsing and elaboration of literal bodies occurs during
typechecking, rather than in the initial parsing phase. In particular, the typechecker
defers responsibility to library providers, by treating the body of the literal as a term of
the type-specific language (TSL) associated with the type it is being checked against.
The TSL definition is responsible for elaborating this term using only general-purpose
syntax. This strategy permits significant semantic flexibility – the meaning of a form

108 C. Omar et al.

like { } can differ depending on its type, so it is safe to use it for empty sets, maps and
JSON literals. This frees these common forms from being tied to the variant of a data
structure built into a language’s standard library, which may not provide the precise
semantics that a programmer needs (for example, Python dictionaries do not preserve
key insertion order).

We present our work as a variant of an emerging programming language called
Wyvern [22]. To allow us to focus on the essence of our proposal and provide the com-
munity with a minimal foundation for future work, the variant of Wyvern we develop
here is simpler than the variant we previously described: it is purely functional (there are
no effects other than non-termination) and it does not enforce a uniform access princi-
ple for objects (fields can be accessed directly), so objects are essentially just recursive
labeled products with simple methods. It also adds recursive sum types, which we call
case types, similar to those found in ML. One can refer to our version of the language
as TSL Wyvern when the variant being discussed is not clear. Our work substantially
extends and makes concrete a mechanism we sketched in a short workshop paper [23].

The paper is organized as a language design for TSL Wyvern:

– In Sec. 2, we introduce TSL Wyvern with a practical example. We introduce both
inline and forward referenced literal forms, splicing, case and object types and an
example of a TSL definition.

– In Sec. 3, we specify the layout-sensitive concrete syntax of TSL Wyvern with an
Adams grammar and introduce the abstract syntax of TSL Wyvern.

– In Sec. 4, we specify the static semantics of TSL Wyvern as a bidirectionally typed
elaboration semantics, which combines two key technical mechanisms:

1. Bidirectional Typechecking: By distinguishing locations where an expression
must synthesize a type from locations where an expression is being analyzed
against a known type, we precisely specify where generic literals can appear
and how dispatch to a TSL definition (an object with a parse method serving as
metadata of a type) occurs.

2. Hygienic Elaboration: Elaboration of literals must not cause the inadvertent
capture or shadowing of variables in the context where the literal appears. It
must, however, remain possible for the client to do so in those portions of the
literal body treated as spliced expressions. The language cannot know a priori
where these spliced portions will be. We give a clean type-theoretic formulation
that achieves of this notion of hygiene.

– In Sec. 5, we gather initial data on how broadly applicable our technique may be
by conducting a corpus analysis, finding that existing code often uses strings where
specialized syntax might be more appropriate.

– In Sec. 6, we briefly report on the current implementation status of our work.
– We discuss related work in Sec. 7 and conclude in Sec. 8 with a discussion of

present limitations and future research directions.

Safely Composable Type-Specific Languages 109

1 let imageBase : URL = <images.example.com>
2 let bgImage : URL = <%imageBase%/background.png>
3 new : SearchServer
4 def resultsFor(searchQuery, page)
5 serve(~) (* serve : HTML -> Unit *)
6 >html
7 >head
8 >title Search Results
9 >style ~

10 body { background-image: url(%bgImage%) }
11 #search { background-color: %darken(‘#aabbcc‘, 10pct)% }
12 >body
13 >h1 Results for <{HTML.Text(searchQuery)}:
14 >div[id="search"]
15 Search again: < SearchBox("Go!")
16 < (* fmt_results : DB * SQLQuery * Nat * Nat -> HTML *)
17 fmt_results(db, ~, 10, page)
18 SELECT * FROM products WHERE {searchQuery} in title

Fig. 1. Wyvern Example with Multiple TSLs

<literal body here, <inner angle brackets> must be balanced>
{literal body here, {inner braces} must be balanced}
[literal body here, [inner brackets] must be balanced]
‘literal body here, ‘‘inner backticks‘‘ must be doubled‘
’literal body here, ’’inner single quotes’’ must be doubled’
"literal body here, ""inner double quotes"" must be doubled"
12xyz (* no delimiters necessary for number literals; suffix optional *)

Fig. 2. Inline Generic Literal Forms

2 Type-Specific Languages in Wyvern

We begin with an example in Fig. 1 showing several different TSLs being used in a
fragment of a web application showing search results from a database. We will review
this example below to develop intuitions about TSLs in Wyvern; a formal and more
detailed description will follow. For clarity of presentation, we color each character by
the TSL it is governed by. Black is the base language and comments are in italics.

2.1 Inline Literals

Our first TSL appears on the right-hand side of the variable binding on line 1. The
variable imageBase is annotated with its type, URL. This is a named object type declaring
several fields representing the components of a URL: its protocol, domain name, port,
path and so on (below). We could have created a value of type URL using the general-
purpose introductory form new, which forward references an indented block of field and
method definitions beginning on the line after it appears:

1 objtype URL
2 val protocol : String
3 val subdomain : String
4 (* ... *)

1 let imageBase : URL = new
2 val protocol = "http"
3 val subdomain = "images"
4 (* ... *)

This is tedious. By associating a TSL with the URL type (we will show how later),
we can instead introduce precisely this value using conventional notation for URLs by
placing it in the body of a generic literal, <images.example.com>. Any other delimited

110 C. Omar et al.

form in Fig. 2 can equivalently be used when the constraints indicated can be obeyed.
The type annotation on imageBase (or equivalently, ascribed directly to the literal) im-
plies that this literal’s expected type is URL, so the body of the literal (the characters
between the angle brackets, in blue) will be governed by the URL TSL during the type-
checking phase. This TSL will parse the body (at compile-time) and produce an elabo-
ration: a Wyvern abstract syntax tree (AST) that explicitly instantiates a new object of
type URL using general-purpose forms only, as if the above had been written directly.

2.2 Splicing

In addition to supporting conventional notation for URLs, this TSL supports splicing
another Wyvern expression of type URL to form a larger URL. The spliced term is here
delimited by percent signs, as seen on line 2 of Fig. 1. The TSL chooses to parse code
between percent signs as a Wyvern expression, using its abstract syntax tree (AST) to
construct the overall elaboration. A string-based representation of the URL is never
constructed at run-time. Note that the delimiters used to go from Wyvern to a TSL are
controlled by Wyvern while the TSL controls how to return to Wyvern.

2.3 Layout-Delimited Literals

On line 5 of Fig. 1, we see a call to a function serve (not shown) which has type
HTML -> Unit. Here, HTML is a user-defined case type, having cases for each HTML tag as
well as some other structures, such as text nodes and sequencing. Declarations of some
of these cases can be seen on lines 2-6 of Fig. 3 (note that TSL Wyvern also includes
simple product types for convenience, written T1 * T2). We could again use Wyvern’s
general-purpose introductory form for case types, e.g. BodyElement((attrs, child)).
But, as discussed in the introduction, this can be cognitively demanding. Thus, we have
associated a TSL with HTML that provides a simplified notation for writing HTML, shown
being used on lines 6-18 of Fig. 1. This literal body is layout-delimited, rather than de-
limited by explicit tokens as in Fig. 2, and introduced by a form of forward reference,
written ~ (“tilde”), on the previous line. Because the forward reference occurs in a posi-
tion where the expected type is HTML, the literal body is governed by that type’s TSL. The
forward reference will be replaced by the general-purpose term, of type HTML, generated
by the TSL during typechecking. Because layout was used as a delimiter, there are no
syntactic constraints on the body, unlike with inline forms (Fig. 2). For HTML, this is
quite useful, as all of the inline forms impose constraints that would cause conflict with
some valid HTML, requiring awkward and error-prone escaping. It also avoids issues
with leading indentation in multi-line literals, as the parser strips these automatically
for layout-delimited literal bodies.

2.4 Implementing a TSL

Portions of the implementation of the TSL for HTML are shown on lines 8-15 of Fig. 3.
A TSL is associated with a named type using a general mechanism for associating a
statically-known value with a named type, called its metadata. Type metadata, in this

Safely Composable Type-Specific Languages 111

1 casetype HTML
2 Empty
3 Seq of HTML * HTML
4 Text of String
5 BodyElement of Attributes * HTML
6 StyleElement of Attributes * CSS
7 (* ... *)
8 metadata = new : HasTSL
9 val parser = ~

10 start <- ’>body’= attributes start>
11 fn (attrs, child) => Inj(‘BodyElement‘, Pair(attrs, child))
12 start <- ’>style’= attributes EXP>
13 fn (attrs, e) => ‘StyleElement((%attrs%, %e%))‘
14 start <- ’<’= EXP>
15 fn (e) => ‘%e% : HTML‘

Fig. 3. A Wyvern case type with an associated TSL

1 objtype HasTSL
2 val parser : Parser
3 objtype Parser
4 def parse(ps : ParseStream) : Result
5 metadata : HasTSL = new
6 val parser = (*parser generator*)
7 casetype Result
8 OK of Exp * ParseStream
9 Error of String * Location

10 casetype Exp
11 Var of ID
12 Lam of ID * Type * Exp
13 Ap of Exp * Exp
14 Inj of Id * Exp
15 ...
16 Spliced of ParseStream
17 metadata : HasTSL = new
18 val parser = (*quasiquotes*)

Fig. 4. Some of the types included in the Wyvern prelude

context, is comparable to class annotations in Java or class/type attributes in C#/F# and
internalizes the practice of writing metadata using comments, so that it can be checked
by the language and accessed programmatically more easily. This can be used for a
variety of purposes – to associate documentation with a type, to mark types as being
deprecated, and so on. Note that we allow programs to extract the metadata value of a
named type T programmatically using the form metadata[T].

For the purposes of this work, metadata values will always be of type HasTSL, an
object type that declares a single field, parser, of type Parser. The Parser type is an
object type declaring a single method, parse, that transforms a ParseStream extracted
from a literal body to a Wyvern AST. An AST is a value of type Exp, a case type that
encodes the abstract syntax of Wyvern expressions. Fig. 4 shows portions of the decla-
rations of these types, which live in the Wyvern prelude (a collection of types that are
automatically loaded before any other).

Notice, however, that the TSL for HTML is not provided as an explicit parse method
but instead as a declarative grammar. A grammar is specialized notation for defining
a parser, so we can implement a grammar-based parser generator as a TSL atop the
lower-level interface exposed by Parser. We do so using a layout-sensitive grammar
formalism developed by Adams [1]. Wyvern is itself layout-sensitive and has a grammar
that can be written down using this formalism, as we will discuss, so it is sensible to
expose it to TSL providers as well. Most aspects of this formalism are conventional.
Each non-terminal (e.g. the designated start non-terminal) is defined by a number of
disjunctive rules, each introduced using <-. Each rule defines a sequence of terminals
(e.g. ’>body’) and non-terminals (e.g. start, or one of the built-in non-terminals ID, EXP

112 C. Omar et al.

or TYPE, representing Wyvern identifiers, expressions and types, respectively). Unique
to Adams grammars is that each terminal and non-terminal in a rule can also have
an optional layout constraint associated with it. The layout constraints available are =

(meaning that the leftmost column of the annotated term must be aligned with that of
the parent term), > (the leftmost column must be indented further) and >= (the leftmost
column may be indented further). Note that the leftmost column is not simply the first
character, in the case of terms that span multiple lines. For example, the production
rule of the form A → B= C≥ D> approximately reads as: “Term B must be at the same
indentation level as term A, term C may be at the same or a greater indentation level as
term A, and term D must be at an indentation level greater than term A’s.” In particular,
if D contains a NEWLINE character, the next line must be indented past the position of the
left-most character of A (typically, though not always, constructed so that it must appear
at the beginning of a line). There are no constraints relating D to B or C other than the
standard sequencing constraint: the first character of D must be further along in the file
than the others. Using Adams grammars, the syntax of real-world languages like Python
and Haskell can be written declaratively.

Each rule is followed, in an indented block, by a spliced function that generates an
elaboration given the elaborations recursively generated by each of the n non-terminals
in the rule, ordered left-to-right. Elaborations are of type Exp, which is a case type
containing each form in the abstract syntax of Wyvern (as well as an additional case,
Spliced, that is used internally), which we will describe later. Here, we show how to
generate an elaboration using the general-purpose introductory form for case types (line
11, Inj corresponds to the introductory form for case types) as well as using quasiquotes
(line 13). Quasiquotes are expressions written in concrete syntax that are not evaluated
for their value, but rather evaluate to their corresponding syntax trees. We observe that
quasiquotes too fall into the pattern of “specialized notation associated with a type”:
quasiquotes for expressions, types and identifiers are simply TSLs associated with Exp,
Type and ID (Fig. 4). They support the Wyvern concrete syntax as well as an additional
delimited form, written with %s, that supports “unquoting”: splicing another AST into
the one being generated. Again, splicing is safe and structural, not string-based.

We can see how HTML splicing works on lines 12-15: we simply include the Wyvern
expression non-terminal EXP in our rule and insert it into our quoted result where appro-
priate. The type that the spliced Wyvern expression will be expected to have is deter-
mined by where it is placed. On line 13 it is known to be CSS by the declaration of HTML,
and on line 15, it is known to be HTML by the use of an explicit ascription.

3 Syntax

3.1 Concrete Syntax

We will begin our formal treatment by specifying the concrete syntax of Wyvern declar-
atively, using the same layout-sensitive formalism that we have introduced for TSL
grammars, developed recently by Adams [1]. Adams grammars are useful because they
allow us to implement layout-sensitive syntax, like that we’ve been describing, without
relying on context-sensitive lexers or parsers. Most existing layout-sensitive languages
(e.g. Python and Haskell) use hand-rolled context-sensitive lexers or parsers (keeping

Safely Composable Type-Specific Languages 113

1 (* programs *)

2 p → ’objtype’= ID> NEWLINE> objdecls> metadatadecl> NEWLINE> p=

3 p → ’casetype’= ID> NEWLINE> casedecls> metadatadecl> NEWLINE> p=

4 p → e=

5 metadatadecl → ε | ’metadata’= ’=’> e>

6 objdecls → ε

7 objdecls → ’val’= ID> ’:’> type NEWLINE> objdecls>

8 objdecls → ’def’= ID> ’(’> typelist> ’)’> ’:’> type> NEWLINE> objdecls>

9 casedecls → ε

10 casedecls → ID= (ε | ’of’> type>) NEWLINE> casedecls>

11

12 type → ID= | type= ’->’> type> | type= ’*’
> type>

13
14 e → e=

15 e → ˜e[’~’]= NEWLINE> chars>

16 e → ˜e[’new’]= NEWLINE> m>

17 e → ˜e[’case(’ e ’)’]= NEWLINE> r>

18
19 (* object definitions *)
20 m → ε

21 m → ’val’= ID> ’=’> e> NEWLINE> m=

22 m → ’def’= ID> ’(’> idlist> ’)’> ’=’> e> NEWLINE> d=

23
24 (* rules for case analysis (case types and products) *)
25 r → rc | rp

26 rc → ID= ’(’> ID> ’)’> ’=>’> e>

27 rc → ID= ’(’> ID> ’)’> ’=>’> e> NEWLINE> rc=

28 rp → ’(’= idlist> ’)’> ’=>’> e>

29
30 (* expressions containing zero forward references *)
31 e → ID=

32 e → e= ’:’> type>

33 e → ’let’= ID> (ε | ’:’> type>) ’=’> e> NEWLINE> e=

34 e → ’fn’= ’(’> idlist> ’)’> (ε | ’:’> type>) ’=>’> e>

35 e → e= ’(’> al> ’)’>

36 e → ’(’> al> ’)’>

37 e → e= ’.’> ID>

38 e → ’toast’= ’(’> e> ’)’>

39 e → ’metadata’= ’[’> ID> ’]’>

40 e → inlinelit=

41 al → ε | alnonempty
=

42 alnonempty → e= | e= ’,’> alnonempty
>

43 inlinelit → samedelims= | matcheddelims= | numlit=

44
45 (* expressions containing exactly one forward reference *)
46 ˜e[fwd] → fwd=

47 ˜e[fwd] → ˜e[fwd]= ’:’> type>

48 ˜e[fwd] → ’let’= ID> (ε | ’:’> type>) ’=’> e> NEWLINE>
˜e[fwd]=

49 ˜e[fwd] → ’let’= ID> (ε | ’:’> type>) ’=’>
˜e[fwd]> NEWLINE> e=

50 ˜e[fwd] → ’fn’= idlist> (ε | ’:’> type>) ’=>’> ˜e[fwd]>

51 ˜e[fwd] → ˜e[fwd]= ’(’> al> ’)’>

52 ˜e[fwd] → e= ’(’> ˜al[fwd]> ’)’>

53 ˜e[fwd] → ’(’> ˜al[fwd]> ’)’>

54 ˜e[fwd] → ˜e[fwd]= ’.’> ID>

55 ˜e[fwd] → ’toast’= ’(’> ˜e[fwd]> ’)’>

56 ˜al[fwd] → ˜e[fwd]= | ˜e[fwd]= ’,’> alnonempty
> | e= ’,’> ˜al[fwd]>

Fig. 5. Concrete syntax of TSL Wyvern specified as an Adams grammar. Some standard produc-
tions and precedence handling rules have been omitted for concision.

114 C. Omar et al.

1 objtype T
2 val y : HTML
3 let page : HTML->HTML = (fn(x) => ~)
4 >html
5 >body
6 <{x}
7 page(case(5 : Nat))
8 Z(_) => (new : T).y
9 val y = ~

10 >h1 Zero!
11 S(x) => ~
12 >h1 Successor!

objtype[T, (y[named[HTML]], ∅), ()]; ∅;
elet(easc[arrow[named[HTML],

named[HTML]]](elam(x.lit[>html
>body

<{x}])), page.
eap(page; ecase(easc[named[Nat]](lit[5])) {

erule[Z](_.eprj[y](easc[named[T](enew {
eval[y](lit[>h1 Zero!]); ∅})));

erule[S](x.lit[>h1 Sucessor!]); ∅
}))

Fig. 6. An example Wyvern program demonstrating all three forward referenced forms. The cor-
responding abstract syntax is on the right.

track of, for example, the indentation level using special INDENT and DEDENT tokens), but
these are more problematic because they could not be used to generate editor modes,
syntax highlighters and other tools automatically. In particular, we will show how the
forward references we have described can be correctly encoded without requiring a
context-sensitive parser or lexer using this formalism. It is also useful that the TSL for
Parser, above, uses the same parser technology as the host language, so that it can be
used to generate the quasiquote TSL for Exp more easily.

3.2 Program Structure

The concrete syntax of TSL Wyvern is shown in Fig 5. An example Wyvern program
showing several unique syntactic features of TSL Wyvern is shown in Fig. 6 (left).

The top level of a program (the p non-terminal) consists of a series of named type
declarations – object types using objtype or case types using casetype – followed by
an expression, e. Each named type declaration can also include a metadata declaration.
Metadata is simply an expression associated with the type, used to store TSL logic (and
in future work, other metadata). In the grammar, sequences of top-level declarations use
the form p= to signify that all the succeeding p terms must begin at the same indentation.
We do not specify separate compilation here, as this is an orthogonal issue.

3.3 Forward Referenced Blocks

Wyvern makes extensive use of forward referenced blocks to make its syntax clean.
In particular, layout-delimited TSLs, new expressions for introducing objects, and case

expressions for eliminating case types and tuples all make use of forward referenced
blocks. Fig. 6 shows these in use (assuming suitable definitions of Nat and HTML).

Each line in the concrete syntax can contain either zero or one forward references.
We distinguish these in the grammar by defining separate non-terminals e and ˜e[fwd],
where the parameter fwd is the particular forward reference form that occurs. Note
particularly the rule for let (which permits an expression to span multiple lines and so
can be used to support multiple forward references in a single expression).

Safely Composable Type-Specific Languages 115

ρ ::= θ; e
θ ::= ∅

| objtype[T, ω, e]; θ
| casetype[T, χ, e]; θ

τ ::= named[T] | arrow[τ, τ]

ω ::= ∅ | �[τ];ω
χ ::= ∅ | C[τ];χ

e ::= x
| easc[τ](e)
| elet(e;x.e)
| elam(x.e)
| eap(e; e)
| enew {m}
| eprj[�](e)
| einj[C](e)
| ecase(e) {r}
| etoast(e)
| emetadata[T]
| lit[body]

m ::= ∅
| eval[�](e);m
| edef[�](x.e);m

r ::= ∅
| erule[C](x.e); r

ê ::= x
| hasc[τ](ê)
| hlet(ê;x.ê)
| hlam(x.ê)
| hap(ê; ê)
| hnew {m̂}
| hprj[�](ê)
| hinj[C](ê)
| hcase(ê) {r̂}
| htoast(ê)
| hmetadata[T]
| spliced[e]

m̂ ::= ∅
| hval[�](ê); m̂
| hdef[�](x.ê); m̂

r̂ ::= ∅
| hrule[C](x.ê); r̂

i ::= x
| iasc[τ](i)
| ilet(i;x.i)
| ilam(x.i)
| iap(i; i)
| inew {ṁ}
| iprj[�](i)
| iinj[C](i)
| icase(i) {ṙ}
| itoast(i)

ṁ ::= ∅
| ival[�](i); ṁ
| idef[�](x.i); ṁ

ṙ ::= ∅
| irule[C](x.i); ṙ

Fig. 7. Abstract Syntax of TSL Wyvern programs (ρ), type declarations (θ), types (τ), external
terms (e), translational terms (ê) and internal terms (i) and auxiliary forms. Metavariable T ranges
over type names, � over object member (field and method) labels, C over case labels, x over
variables and body over literal bodies. Tuple types are a mode of use of object types, so they are
not included in the abstract syntax. For concision, we continue to write unit as () and pairs as
(i1, i2) in abstract syntax as needed.

3.4 Abstract Syntax

The concrete syntax of a Wyvern program, p, is parsed to a program in the abstract
syntax, ρ, shown in Fig. 7. Forward references are internalized. Note that all literal
forms are unified into the abstract literal form lit[body], including the layout-delimited
form and number literals. The body remains completely unparsed at this stage. The
abstract syntax for the example in Fig. 6 is shown to its right and demonstrates the key
rewriting done at this stage. Simple product types can be rewritten as object types in
this phase. We assume that this occurs so that we can avoid specifying them separately
in the remainder of the paper, though we continue to use tuple notation for concision.

4 Bidirectional Typechecking and Elaboration

We will now specify a type system for the abstract syntax in Fig. 7. Conventional type
systems are specified using a typing judgement written like Γ �Θ e : τ , where the
typing context, Γ , maps bound variables to types, and the named type context, Θ, maps
type names to their declarations. Such typing judgements do not fully specify whether,
when writing a typechecker, the type should be considered an input or an output. In

116 C. Omar et al.

some situations, a type propagates in from the surrounding syntactic context (e.g. when
the term appears as a function argument, or an explicit ascription has been provided),
so that we simply need to analyze e against it. In others, we need to synthesize a type
for e (e.g. when the term appears at the top-level). Here, this distinction is crucial:
a literal can only appear in an analytic context. Bidirectional type systems [28] make
this distinction explicit by specifying the type system instead using two simultaneously
defined typechecking judgements corresponding to these two situations.

To support TSLs, we need to also, simultaneously with this process, perform an
elaboration from external terms, which contain literals, to internal terms, i, the syntax
for which is shown on the right side of Fig. 7. Internal terms contain neither literals
nor the form for accessing the metadata of a named type explicitly (the elaboration
process inserts the statically known metadata value, tracked by the named type context,
directly). This manner of specifying a type-directed mapping from external terms to a
smaller collection of internal terms, which are the only terms that are given a dynamic
semantics, is related to the Harper-Stone elaboration semantics for Standard ML [10].
Note that both terms share a type system.

Our static semantics are thus formulated by combining these two ideas, forming a
bidirectionally typed elaboration semantics. The judgement Γ �Θ e � i ⇒ τ means
that under typing context Γ and named type context Θ, external term e elaborates to
internal term i and synthesizes type τ . The judgement Γ �Θ e � i ⇐ τ is analagous
but for situations where we are analyzing e against type τ .

4.1 Programs and Type Declarations

Before considering these judgements in detail, let us briefly discuss the steps leading
up to typechecking and elaboration of the top-level term, specified by the compilation
judgement, ρ ∼ Θ � i : τ , defined in Fig. 8. We first load the prelude, Θ0 (see Fig. 4),
then validate the provided user-defined type declarations, θ, to produce a corresponding
named typed context, Θ. During this process, we synthesize a type for the associated
metadata terms (under the empty typing context) and store their elaborations in the type
context Θ (we do not evaluate the elaboration to a value immediately here, though in
a language with effects, the choice of when to evaluate the term is important). Note
that type names must be unique (we plan to use a URI-based mechanism in practice).
Finally, the top-level external term must synthesize a type τ and produce an elaboration
i under an empty typing context and a named type context combining the prelude with
the named type context induced by the user-defined types, written Θ0Θ.

4.2 External Terms

The bidirectional typechecking and elaboration rules for external terms are specified
beginning in Fig. 9. Most of the rules are standard for a simply typed lambda calculus
with labeled sums and labeled products, and the elaborations are direct to a correspond-
ing internal form. We refer the reader to standard texts on type systems (e.g. [9]) to
understand the basic constructs, and to course material1 on bidirectional typechecking

1 http://www.cs.cmu.edu/~fp/courses/15312-f04/
handouts/15-bidirectional.pdf

http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf

Safely Composable Type-Specific Languages 117

ρ ∼ Θ � i : τ Θ ::= ∅ | Θ, T [δ, μ] δ ::= ? | ot[ω] | ct[χ] μ ::= ? | i : τ
�Θ0 θ ∼ Θ ∅ �Θ0Θ e � i ⇒ τ

θ; e ∼ Θ � i : τ
Compile

�Θ θ ∼ Θ

T /∈ dom(Θ) �Θ,T [?,?] ω ∅ �Θ,T [ot[ω],?] em � im ⇒ τm �Θ,T [ot[ω],im:τm] θ � Θ′

�Θ objtype[T, ω, em]; θ ∼ T [ot[ω], im : τm];Θ′ OT

T /∈ dom(Θ) �Θ,T [?,?] χ ∅ �Θ,T [ct[χ],?] em � im ⇒ τm �Θ,T [ct[χ],im:τm] θ � Θ′

�Θ casetype[T, χ, em]; θ ∼ T [ct[χ], im : τm];Θ′ CT

�Θ ω
� /∈ dom(ω) �Θ τ �Θ ω

�Θ �[τ];ω
M-decl �Θ χ

C /∈ dom(χ) �Θ τ �Θ χ

�Θ C[τ];χ
C-decl

�Θ τ
T [δ, μ] ∈ Θ

�Θ named[T]
Ty-named

�Θ τ1 �Θ τ2
�Θ arrow[τ1, τ2]

Ty-arrow

Fig. 8. Typechecking and elaboration of programs, ρ. Note that type declarations can only be
recursive, not mutually recursive, with these rules. The prelude Θ0 (see Fig. 4) defines mutually
recursive types, so we cannot write a θ0 corresponding to Θ0 given the rules above. For concision,
the rules to support mutual recursion as well as omitted rules for empty declarations are available
in a technical report [24].

for background. In our presentation, as in many simple formulations, all introductory
forms are analytic and all elimination forms are synthetic, though this can be relaxed in
practice to support some additional idioms.

The introductory form for object types, enew {m}, prevents the manual introduction
of parse streams (only the semantics can introduce parse streams, to permit us to enforce
hygiene, as we will discuss below). The auxiliary judgement Γ �T

Θ m � ṁ ⇐ ω
analyzes the member definitions m against the member declarations ω while rewriting
them to the internal member definitions, ṁ. Method definitions involve a self-reference,
so the judgement keeps track of the type name, T . We implicitly assume that member
definitions and declarations are congruent up to reordering.

The introduction form for case types is written einj[C](e), where C is the case name
and e is the associated data. The type of the data associated with each case is stored in
the case type’s declaration, χ. Because the introductory form is analytic, multiple case
types can use the same case names (unlike in, for example, ML). The elimination form,
ecase(e) {r}, performs simple exhaustive case analysis (we leave support for nested
pattern matching as future work) using the auxiliary judgementΓ �Θ r � ṙ ⇐ χ ⇒ τ ,
which checks that each case in χ appears in a rule in the rule sequence r, elaborating it
to the internal rule sequence ṙ. Every rule must synthesize the same type, τ .

The rule T-metadata shows how the appropriate metadata is extracted from the
named type context and inserted directly in the elaboration. We will return to the rule
T-toast when discussing hygiene.

118 C. Omar et al.

Γ �Θ e � i ⇒ τ Γ �Θ e � i ⇐ τ Γ ::= ∅ | Γ, x : τ

Γ �Θ e � i ⇒ τ

Γ �Θ e � i ⇐ τ
T-syn-to-ana

�Θ τ Γ �Θ e � i ⇐ τ

Γ �Θ easc[τ](e) � iasc[τ](i) ⇒ τ
T-asc

x : τ ∈ Γ
Γ �Θ x � x ⇒ τ

T-var
Γ �Θ e1 � i1 ⇒ τ1 Γ, x : τ1 �Θ e2 � i2 ⇒ τ

Γ �Θ elet(e1;x.e2) � ilet(i1;x.i2) ⇒ τ
T-let

Γ, x : τ1 �Θ e � i ⇐ τ2

Γ �Θ elam(x.e) � ilam(x.i) ⇐ arrow[τ1, τ2]
T-abs

Γ �Θ e1 � i1 ⇒ τ1 → τ2 Γ �Θ e2 � i2 ⇐ τ1
Γ �Θ eap(e1; e2) � iap(i1; i2) ⇒ τ2

T-ap

T 	= ParseStream T [ot[ω], μ] ∈ Θ Γ �T
Θ m � ṁ ⇐ ω

Γ �Θ enew {m} � inew {ṁ} ⇐ named[T]
T-new

Γ �Θ e � i ⇒ named[T] T [ot[ω], μ] ∈ Θ �[τ] ∈ ω

Γ �Θ eprj[�](e) � iprj[�](i) ⇒ τ
T-prj

T [ct[χ], μ] ∈ Θ C[τ] ∈ χ Γ �Θ e � i ⇐ τ

Γ �Θ einj[C](e) � iinj[C](i) ⇐ named[T]
T-inj

Γ �Θ e � i ⇒ named[T] T [ct[χ], μ] ∈ Θ Γ �Θ r � ṙ ⇐ χ ⇒ τ

Γ �Θ ecase(e) {r} � icase(i) {ṙ} ⇒ τ
T-case

Θ0 ⊂ Θ Γ �Θ e � i ⇒ τ

Γ �Θ etoast(e) � itoast(i) ⇒ named[Exp]
T-toast

T [δ, i : τ] ∈ Θ

Γ �Θ emetadata[T] � i ⇒ τ
T-metadata

Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ ∅ � ∅ ⇐ ∅ T-unit

Γ �Θ e � i ⇐ τ Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ eval[�](e);m � ival[�](i); ṁ ⇐ �[τ];ω

T-val

Γ, x : named[T] �Θ e � i ⇐ τ Γ �T
Θ m � ṁ ⇐ ω

Γ �T
Θ edef[�](x.e);m � idef[�](x.i); ṁ ⇐ �[τ];ω

T-def

Γ �Θ r � ṙ ⇐ χ ⇒ τ

Γ �Θ ∅ � ∅ ⇐ ∅ ⇒ τ
T-void

Γ, x : τ1 �Θ e � i ⇒ τ2 Γ �Θ r � ṙ ⇐ χ ⇒ τ2

Γ �Θ erule[C](x.e); r � irule[C](x.i); ṙ ⇐ C[τ1];χ ⇒ τ2
T-rule

Fig. 9. Statics for external terms, e. The rule for literals is shown in Fig. 10.

Safely Composable Type-Specific Languages 119

Θ0 ⊂ Θ T [δ, im : HasTSL] ∈ Θ parsestream(body) = ips
iap(iprj[parse](iprj[parser](im)); ips) ⇓ iinj[OK]((iast, i

′
ps))

iast ↑ ê Γ ; ∅ �Θ ê � i ⇐ named[T]

Γ �Θ lit[body] � i ⇐ named[T]
T-lit

Fig. 10. Statics for external terms, e, continued. This is the key rule (described below).

4.3 Literals

In the example in Fig. 3, we showed a TSL being defined using a parser generator based
an Adams grammars. As we noted, a parser generator can itself be seen as a TSL for
a parser, and a parser is the fundamental construct that becomes associated with a type
to form a TSL. The declaration for the prelude type Parser, shown in Fig. 4, shows
that it is an object type with a parse function taking in a ParseStream and producing a
Result, which is a case type that indicates either that parsing succeeded, in which case
an elaboration of type Exp is paired with the remaining parse stream (to allow one parser
to call another), or that parsing failed, in which case an error message and location is
provided. This function is called by the typechecker when analyzing the literal form,
as specified by the key rule of our system, T-lit, shown in Fig. 10. Note that we do
not explicitly handle failure in the specification, but in practice we would use the data
provided in the failure case to report the error to the user.

The rule T-lit operates as follows:

1. This rule requires that the prelude is available. For technical reasons, we include a
check that the prelude was actually included in the named type context.

2. The metadata of the type the literal is being checked against, which must be of type
HasTSL, is extracted from the named type context. Note that in a language with
subtyping or richer forms of type equality, which would be necessary for situations
where the metadata might serve other roles, the check that im defines a TSL would
perform this check explicitly (as an additional premise).

3. A parse stream, ips, which is an internal term of type named[ParseStream], is
generated from the body of the literal. This is an object that allows the TSL to read
the body and supports some additional conveniences, discussed further below.

4. The parse method is called with this parse stream. If it produces the appropriate
case containing a reified elaboration, iast (of type Exp) and the remaining parse
stream, i′ps, then parsing was successful. Note that we use shorthand for pairs in the
rule for concision, and the relation i ⇓ i′ defines evaluation to a value (the maximal
transitive closure, if it exists, of the small-step evaluation relation in Fig. 14).

5. The reified elaboration is dereified into a corresponding translational term, ê, as
specified in Fig. 11. The syntax for translational terms mirrors that of external
terms, but does not include literal forms. It adds the form spliced[e], representing
an external term spliced into a literal body.

The key rule is U-Spl. The only way to generate a translational term of this form
is by asking for (a portion of) a parse stream to be parsed as a Wyvern expression.
The reified form, unlike the translational form it corresponds to, does not contain

120 C. Omar et al.

i ↑ ê iid ↑ x

iinj[V ar](iid) ↑ x
U-Var

i1 ↑ τ i2 ↑ ê

iinj[Asc]((i1, i2)) ↑ hasc[τ](ê)
U-Asc

iid ↑ x i ↑ ê

iinj[Lam]((iid, i)) ↑ hlam(x.ê)
U-Lam

i1 ↑ ê1 i2 ↑ ê2

iinj[Ap]((i1, i2)) ↑ hap(ê1, ê2)
U-Ap

· · ·
body(ips)=body eparse(body)=e

iinj[Spliced](ips) ↑ spliced[e]
U-Spl

i ↑ τ
iid ↑ T

iinj[Named](iid) ↑ named[T]
U-N

i1 ↑ τ1 i2 ↑ τ2

iinj[Arrow]((i1, i2)) ↑ arrow[τ1, τ2]
U-A

Fig. 11. Dereification rules, used by rule T-
lit (above) to determine the translational
term encoded by the internal term of type
named[Exp]. We assume a bijection between
internal terms of type named[ID] (written iid)
and variables, type names and case and mem-
ber labels.

i ↓ i x ↓ iid

x ↓ iinj[V ar](iid)
R-Var

τ ↓ i1 i ↓ i2

iasc[τ](i) ↓ iinj[Asc]((i1, i2))
R-Asc

x ↓ iid i ↓ i′

ilam(x.i) ↓ iinj[Lam]((iid, i
′))

R-Lam

i1 ↓ i′1 i2 ↓ i′2
iap(i1; i2) ↓ iinj[Ap]((i′1, i2))

R-Ap

· · ·

τ ↓ i
T ↓ iid

named[T] ↓ iinj[Named](iid)
R-N

τ1 ↓ i1 τ2 ↓ i2

arrow[τ1, τ2] ↓ iinj[Arrow]((i1, i2))
R-A

Fig. 12. Reification rules, used by the
itoast (“to AST”) operator (Fig. 14) to per-
mit generating an internal term of type
named[Exp] corresponding to the value
of the argument (a form of serialization).

the expression itself, but rather just the portion of the parse stream that should be
treated as spliced. Because parse streams (and thus portions thereof) can originate
only metatheoretically (i.e. from the compiler), we know that e must be an external
term written concretely by the TSL client in the body of the literal being analyzed.
This is key to guaranteeing hygiene in the final step, below.

The convenience methods parse_exp and parse_id return a value having this
reified form corresponding to the first external term found in the parse stream (but,
as just described, not necessarily the term itself) paired with the remainder of the
parse stream. These methods themselves are not treated specially by the compiler
but, for convenience, are associated with ParseStream.

6. The final step is to typecheck and elaborate this translational term. This involves
the bidirectional typing judgements shown in Fig. 13. This judgement has a form
similar to that for external terms, but with the addition of an “outer typing context”,
written Γout in the rules. This holds the context that the literal appeared in, so that
the “main” typing context can be emptied to ensure that elaborations is hygienic,
as we will describe next. Each rule in Fig. 9 should be thought of as having a
corresponding rule in Fig. 13. Two examples are shown for concision.

Safely Composable Type-Specific Languages 121

Γ ;Γ �Θ ê � i ⇒ τ Γ ;Γ �Θ ê � i ⇐ τ

x : τ ∈ Γ
Γout;Γ �Θ x � x ⇒ τ

H-var
Γout;Γ, x : τ1 �Θ ê � i ⇐ τ2

Γout;Γ �Θ hlam(x.ê) � ilam(x.i) ⇐ arrow[τ1, τ2]
H-abs

· · ·
Γout �Θ e � i ⇐ τ

Γout;Γ �Θ spliced[e] � i ⇐ τ
H-spl-A

Γout �Θ e � i ⇒ τ

Γout;Γ �Θ spliced[e] � i ⇒ τ
H-spl-S

Fig. 13. Statics for translational terms, ê. Each rule in Fig. 9 corresponds to an analagous rule here
by threading the outer context through opaquely (e.g. the rules for variables and functions, shown
here). The outer context is only used by the rules for spliced[e], representing external terms that
were spliced into TSL bodies. Note that elaboration is implicitly capture-avoiding here (see Sec.
6).

i �−→ i · · ·
i �−→ i′

itoast(i) �−→ itoast(i′)
D-Toast-1

i val i ↓ i′

itoast(i) �−→ i′
D-Toast-2

Fig. 14. Dynamics for internal terms, i. Only internal terms have a dynamic semantics. Most
constructs in TSL Wyvern are standard and omitted, as our focus in this paper is on the statics.
The only novel internal form, itoast(i), extracts an AST (of type named[Exp]) from the value
of i, shown.

4.4 Hygiene

A concern with any term rewriting system is hygiene – how should variables in the
elaboration be bound? In particular, if the rewriting system generates an open term,
then it is making assumptions about the names of variables in scope at the site where
the TSL is being used, which is incorrect. Those variables should only be identifiable
up to alpha renaming. Only the user of a TSL knows which variables are in scope. The
strictest rule would simply reject all open terms, but this would then, given our setting,
prevent even spliced terms from referring to local variables. These are written by the
TSL client, who is aware of variable bindings at the use site, so this should be permitted.

Furthermore, the variables in spliced terms should be bound as the client expects.
The elaboration should not be able to surreptitiously or accidentally shadow variables
in spliced terms that may be otherwise bound at the use site (e.g. by introducing a
variable tmp outside a spliced term that “leaks” into the spliced term).

The solution to both of these issues, given what we have outlined above, is now quite
simple: we have constructed the system so that we know which sub-terms originate from
the TSL client, marking them as spliced[e]. These terms are permitted to refer only to
variables in the client’s context, Γout, as seen in the premises of the two rules pertaining
to this form (one for analysis, one for synthesis). The portions of the elaboration that
aren’t marked in this way were generated by the TSL provider, so they can refer only to
variables introduced earlier in the elaboration, tracked by the context Γ , initially empty.
The two are kept separate. If the TSL wishes to introduce values into spliced terms, it
must do so by via a function application (as in the TSL for Parser discussed earlier),
ensuring that the client has full control over variable binding.

122 C. Omar et al.

Γ �Θ i ⇒ τ Γ �Θ i ⇐ τ · · · T [ot[ω], μ] ∈ Θ Γ �T
Θ ṁ ⇐ ω

Γ �Θ inew {ṁ} ⇐ named[T]
IT-new

Fig. 15. Statics for internal terms, i. Each rule in Fig. 9 except T-metadata corresponds to an
analogous rule here by removing the elaboration portion. Only the rule for object introduction
differs, in that we no longer restrict the introduction of parse streams (internal terms are never
written directly by users of the language).

4.5 From Values to ASTs

By this formulation, elaborations containing free variables are always erroneous. In
some rewriting systems, a free variable is not an error, but are instead replaced with the
AST corresponding to the value of the variable at the generation site. We permit this
explicitly by including the form toast(e). This simply takes the value of e and reifies
it, producing a term of type Exp, as specified in Figs. 14 and Fig. 12. The rules for
reification, used here, and dereification, used in the literal rule above, are dual.

The TSL associated with Exp, implementing quasiquotes, can perform free variable
analysis and insert this form automatically, so they need not be inserted manually in
most cases. That is, Var(’x’) : Exp elaborates to x which is ill-typed in an empty con-
text, ’x’ : Exp produces the translational term htoast(spliced[x]), which will elaborate
to itoast(x) in the context where the quotation appears (i.e. in the TSL definition), thus
behaving as described without requiring that quotations are entirely implemented by
the language. This can be seen as a form of serialization and could be implemented as
a library using reflection or compile-time metaprogramming techniques (e.g. [20]).

4.6 Metatheory

The semantics we have defined constitute a type safe language. We will outline the key
theorems and lemmas here, referring the reader to an accompanying technical report for
fuller details [24]. The two key theorems are: internal type safety, and type preservation
of the elaboration process.

To prove internal type safety, we must define a bidirectional typing judgement for
the internal language, shown and described in Fig. 15 (by the external type preservation
theorem, we should never need to explicitly implement this, however). We must also
define a well-formedness judgement for named type contexts (not shown).

Theorem 1 (Internal Type Safety). If � Θ and ∅ �Θ i ⇐ τ or ∅ �Θ i ⇒ τ , then
either i val or i �→ i′ such that ∅ �Θ i′ ⇐ τ .

Proof. The dynamics, which we omit for concision, are standard, so the proof is by
a standard preservation and progress argument. The only interesting case of the proof
involves etoast(e), for which we need the following lemma.

Lemma 1 (Reification). If Θ0 ⊂ Θ and ∅ �Θ i ⇐ τ then i ↓ i′ and ∅ �Θ i′ ⇐
named[Exp].

Proof. The proof is by a straightforward induction. Analagous lemmas about reification
of identifiers and types are similarly straightforward. �

Safely Composable Type-Specific Languages 123

If the elaboration of a closed, well-typed external term generates an internal term of the
same type, then internal type safety implies that evaluation will not go wrong, achieving
type safety. We generalize this argument to open terms by defining a well-formedness
judgement for contexts (not shown). The relevant theorem is below:

Theorem 2 (External Type Preservation). If � Θ and �Θ Γ and Γ �Θ e � i ⇐ τ
or Γ �Θ e � i ⇒ τ then Γ �Θ i ⇐ τ .

Proof. We proceed by inducting over the the typing derivation. Nearly all the elabora-
tions are direct, so the proof is by straightforward applications of induction hypotheses
and lemmas about well-formed contexts. The only cases of note are:

– e = enew {m}. Here the corresponding rule for the elaboration is identical but
more permissive, so the induction hypothesis applies.

– e = emetadata[T]. Here, the elaboration generates the metadata value directly.
Well-formedness of Θ implies that the metadata term is of the type assigned.

– e = lit[body]. Here, we need to apply internal type safety as well as a mutually
defined type preservation lemma about translational terms, below.

Lemma 2 (Translational Type Preservation). If � Θ and �Θ Γout and �Θ Γ and
dom(Γout)∩ dom(Γ) = ∅ (which we can assume implicitly due to alpha renaming) and
Γout;Γ �Θ ê � i ⇐ τ or Γout;Γ �Θ ê � i ⇒ τ then ΓoutΓ �Θ i ⇐ τ .

Proof. The proof by induction over the typing derivation follows the same outline as
above for all the shared cases. The outer context is threaded through opaquely when
applying the inductive hypothesis. The only rules of note are the two for the spliced ex-
ternal terms, which require applying the external type preservation theorem recursively.
This is well-founded by a metric measuring the size of the spliced external term, written
in concrete syntax, since we know it was derived from a portion of the literal body. �
Moving up to the level of programs, we can prove the correctness of compilation theo-
rem below. Together, this implies that derivation of the compilation judgement produces
an internal term that does not go wrong.

Theorem 3 (Compilation). If ρ ∼ Θ � i : τ then � Θ and ∅ �Θ i ⇐ τ .

Proof. We simply need a lemma about checking type declarations and the result follows
straightforwardly.

Lemma 3 (Type Declaration). If �Θ0 θ ∼ Θ then � Θ0Θ.

Proof. The proof is a simple induction using the definition of � Θ (not shown).

4.7 Decidability

Because we are executing user-defined parsers during typechecking, we do not have a
straightforward statement of decidability (i.e. termination) of typechecking: the parser
might not terminate, because TSL Wyvern is not a total language (due to self-reference
in methods). Indecidability of typechecking is strictly for this reason. Typechecking

124 C. Omar et al.

of terms not containing literals is guaranteed to terminate. Termination of parsers and
parser generators has previously been studied (e.g. [15]) and the techniques can be ap-
plied to user-defined parsing code to increase confidence in termination. Few compilers,
even those with high demands for correctness (e.g. CompCert [17]), have made it a pri-
ority to fully verify and prove termination of the parser, because it is perceived that most
bugs in compilers arise due to incorrect optimization passes, not initial parsing.

5 Corpus Analysis

We performed a corpus analysis on existing Java code to assess how frequently there
are opportunities to use TSLs. As a lower bound for this metric, we examined String

arguments passed into Java constructors, for two reasons:

1. The String type may be used to represent a large variety of notations, many of
which may be expressed using TSLs.

2. We hypothesized that opportunities to use TSLs would often come when instanti-
ating an object.

Methodology. We ran our analysis on a recent version (20130901r) of the Qualitas
Corpus [33], consisting of 107 Java projects, and searched for constructors that used
Strings that could be substituted with TSLs. To perform the search, we used command
line tools, such as grep and sed, and a text editor features such as search and substitution.
After we found the constructors, we chose those that took at least one String as an
argument. Via a visual scan of the names of the constructors and their String arguments,
we inferred how the constructors and the arguments were intended to be used. Some
additional details are provided in the technical report [24].

Results. We found 124,873 constructors and that 19,288 (15%) of them could use TSLs.
Table 1 gives more details on types of String arguments we found that could be sub-
stituted with TSLs. The “Identifier” category comprises process IDs, user IDs, column
or row IDs, etc. that usually must be unique; the “Pattern” category includes regular
expressions, prefixes and suffixes, delimiters, format templates, etc.; the “Other” cate-
gory contains Strings used for ZIP codes, passwords, queries, IP addresses, versions,
HTML and XML code, etc.; and the “Directory path” and “URL/URI” categories are
self-explanatory.

Limitations. There are three limitations to our corpus analysis. First, the proxy that we
chose for finding how often TSLs could be used in existing Java code is imprecise. Our
corpus analysis focused exclusively on Java constructors and thus did not consider other
programming constructs, such as method calls, assignments, etc., that could possibly
use TSLs. We did not count types that themselves could have a TSL associated with
them (e.g. URL), only uses of Strings that we hypothesized might not have been Strings
had better syntax been available. Our search for constructors with the use of command
line tools and text editor features may not have identified every Java constructors present
in the corpus. Finally, the inference of the intended functionality of the constructor and

Safely Composable Type-Specific Languages 125

Table 1. Types of String arguments in Java constructors that could use TSLs

Type of String Number Percentage
Identifier 15,642 81%
Directory path 823 4%
Pattern 495 3%
URL/URI 396 2%
Other (ZIP code, password, query, 1,932 10%
HTML/XML, IP address, version, etc.)

Total: 19,288 100%

the passed in String argument was based on the authors’ programming experience and
was thus subjective.

Despite the limitations of our corpus analysis, it shows that there are many poten-
tial use cases where type-specific languages could be considered, given that numerous
String arguments appeared to specify a parseable format.

6 Implementation

Because Wyvern itself is an evolving language and we believe that the techniques herein
are broadly applicable, we have implemented the abstract syntax, typechecking and
elaboration rules precisely as specified in this paper, including the hygiene mechanism,
in Scala as a stable resource. We have also included a simple compiler from our rep-
resentation of internal terms, which includes explicit type information at each node,
to Scala source code. We represent both external terms and translational terms using
the same case classes, using traits to distinguish them when necessary. This code can
be used to better understand the implementation overhead of our mechanisms. The key
“trick” is to make sure that the typing context also maps each source variable to a unique
internal variable, so that elaboration of spliced terms is capture-avoiding. This code can
be found at http://github.com/wyvernlang/tslwyvern.

Wyvern itself also supports a variant of this mechanism. The Wyvern language is
an evolving effort involving a number of techniques other than TSLs, so the imple-
mentation does not precisely coincide with the specification presented herein. In par-
ticular, Wyvern’s object types and case types have substantially different semantics.
Moreover, Adams grammars do not presently have a robust implementation, so their
presentation here is merely expository. The top-level parser for Wyvern is instead pro-
duced by the Copper parser generator [36] which uses stateful LALR parsing to handle
whitespace. Forward references, such as the TSL tilde, the new keyword, and case ex-
pressions, are handled by inserting a special “signal” token into the parse stream at
the end of an expression containing a forward reference. When the parser subsequently
reads this signal token, it enters the appropriate state depending on the type of for-
ward reference encountered. TSL blocks are handled as if they were strings, preserving
all non-leading whitespace, and new and case expression bodies are parsed using their
respective grammars. Wyvern performs literal parsing during typechecking essentially

http://github.com/wyvernlang/tslwyvern

126 C. Omar et al.

as described, using a standard bidirectional type system. It does not enforce the con-
straints on parse streams and the hygiene mechanisms as of this writing. Some of the
API is implemented using a Java interoperability layer rather than directly in Wyvern.
This implementation does support some simpler examples fully, however (unlike the
implementation above, which does not have a concrete syntax at all). The code can be
found at http://github.com/wyvernlang/wyvern.

7 Related Work

Closely related to our approach of type-driven parsing is a concurrent paper by Ichikawa
et al. [11] that presents protean operators. The paper describes the ProteaJ language,
based on Java, which allows a programmer to define flexible operators annotated with
named types. Syntactic conflict is resolved by looking at the expected type. Conflicts
may still arise when the expected type matches two protean operators; in this case Pro-
teaJ allows the programmer to explicitly disambiguate, as in other systems. In contrast,
by associating parsers with types, our approach avoids all conflicts, achieving a stricter
notion of modularity at the cost of some expressiveness (we only consider delimited lit-
erals – these may define operators inside, but we cannot support custom operator syntax
directly at the top level). We also give a type theoretic foundation for our approach.

Another way to approach language extensibility is to go a level of abstraction above
parsing, as is done via metaprogramming and macro facilities, with Scheme and other
Lisp-style languages’ hygienic macros being the ’gold standard’ for hygiene. In those
languages, macros are written in the language itself and use its simple syntax – paren-
theses universally serve as expression delimiters (although proposals for whitespace as
a substitute for parentheses have been made [21]). Our work is inspired by this flex-
ibility, but aims to support richer syntax as well as maintain a static type discipline.
Wyvern’s use of types to trigger parsing avoids the overhead of invoking macros explic-
itly by name, and makes it easier to compose TSLs declaratively. Static macro systems
also exist. For instance, OJ (previously, OpenJava) [32] provides a macro system based
on a meta-object protocol, and Backstage Java [27], Template Haskell [30] and Con-
verge [34] also employ compile-time meta-programming, the latter with some support
for whitespace delimited blocks. Each of these systems provide macro-style rewriting
of source code, but they provide at most limited extension of language parsing. String
literals can be reinterpreted, but splicing is not hygienic if this is done.

Other systems aim at providing forms of syntax extension that change the host lan-
guage, as opposed to our whitespace-delimited approach. For example, Camlp4 [4] is a
preprocessor for OCaml that can be used to extend the concrete syntax of the language
with parsers and extensible grammars. SugarJ [6] supports syntactic extension of the
Java language by adding libraries. Wyvern differs from these approach in that the core
language is not extended directly, so conflicts cannot arise at link-time.

Scoping TSLs to expressions of a single type comes at the expense of some flexi-
bility, but we believe that many uses of domain-specific languages are of this form al-
ready. A previous approach has considered type-based disambiguation of parse forests
for supporting quotation and anti-quotation of arbitrary object languages [2]. Our work
is similar in spirit, but does not rely on generation of parse forests and associates gram-
mars with types, rather than types with grammar productions. This provides stronger

http://github.com/wyvernlang/wyvern

Safely Composable Type-Specific Languages 127

modularity guarantees and is arguably simpler. C# expression trees [19] are similar in
that, when the type of a term is, e.g., Expression<T->T’>, it is parsed as a quotation.
However, like the work just mentioned, this is specifically to support quotations. Our
work supports quotations as one use case amongst many.

Many approaches to syntax extension, such as XJ [3] are keyword-delimited in some
form. We believe that a type-directed approach is more seamless and natural, coinciding
with how one would build in language support directly. These approaches also differ in
that they either do not support hygienic expansion, or have not specified it in the simple
manner that we have.

In terms of work on safe language composition, Schwerdfeger and van Wyk [29] pro-
posed a solution that make strong safety guarantees provided that the languages comply
with certain grammar restrictions, concerning first and follow sets of the host language
and the added new languages. It also relied on strongly named entry tokens, as with key-
word delimited approaches. Our approach does not impose any such restrictions while
still making safety guarantees.

Domain-specific language frameworks and language workbenches, such as Spoofax
[14], Ensō [18] and others [35], also provide a possible solution for the language ex-
tension task. They provide support for generating new programming languages and
tooling in a modular manner. The Marco language [16] similarly provides macro defi-
nition at a level of abstraction that is largely independent of the target language. In these
approaches, each TSL is external relative to the host language; in contrast, Wyvern fo-
cuses on internal extensibility, improving interoperability and composability.

Ongoing work on projectional editors (e.g., [12,5]) uses a special graphical user in-
terface to allow the developer to implicitly mark where the extensions are placed in the
code, essentially directly specifying the underlying ASTs. This solution to the language
extension problem is of considerable interest to us, but remains relatively understudied
formally. It is likely that a type-oriented approach to projectional editing, inspired by
that described herein, could be fruitful.

We were informed by our previous work on Active Code Completion (ACC), which
associates code completion palettes with types [25], much as we associate parsers with
types. ACC palettes could be used for defining a TSL syntax for types in a comple-
mentary manner. In ACC that syntax is immediately translated to Java syntax at edit
time, while this work integrates with the language, so the syntax is retained with the
code. ACC supports more general interaction modes than just textual syntax, situated
between our approach and projectional editors.

8 Discussion

We have presented a minimal but complete language design that we believe is particu-
larly elegant, practical and theoretically well-motivated. The key to this is our organi-
zation of language extensions around types, rather than around grammar fragments.

128 C. Omar et al.

There are several directions that remain to be explored:

– TSL Wyvern does not support polymorphic types, like ’a list in our first example.
Were we to add support for them, we would expect that the type constructor (list)
would determine the syntax, not the particular type. Thus, we may fundamentally
be proposing type constructor specific languages.

– Similarly, TSL Wyvern does not support abstract types. It may be useful to include
the ability to associate metadata with an abstract type, much in the same way that
we associate metadata with a named type here.

– TSLs as described here allow one to give an alternative syntax for introductory term
forms, but elimination forms cannot be defined directly. There are two directions
we may wish to go to support this:
1. Pattern matching is a powerful feature supported by an increasing number of

languages. Pattern syntax is similar to term syntax. It may be possible for a
TSL definition to include parse functions for “literal-like” forms appearing in
patterns, elaborating them to pattern terms rather than expression terms.

2. Keywords are more useful when defining custom elimination forms (e.g. if
based on case). It may be possible to support “typed syntax macros” using the
same hygiene mechanisms we described here.

– We do not provide TSLs with the ability to diverge based on the type of a spliced
expression. This might be useful if, for example, our HTML TSL wanted to treat
spliced strings differently from other spliced HTML terms. For polymorphic types,
we might also wish to diverge based on the type index.

– We may wish to design less restrictive shadowing constraints, so that TSLs can
introduce variables directly into the scope of a spliced expression if they explicitly
wish to (bypassing the need for the client to provide a function for the TSL to call).
The community may wish to discuss whether this is worth the cost in terms of
difficulty of determining where a variable has been bound.

– We need to provide further empirical validation. This may benefit from the integra-
tion of TSLs into existing languages other than Wyvern.

– We need to consider broader IDE support – custom syntax benefits from custom
editor support, and it may be possible to design IDEs that dispatch to type metadata
in much the way the typechecker does in this paper. Our informal considerations of
existing IDE extension mechanisms suggests that this may be non-trivial.

Acknowledgements. We thank the anonymous reviewers, Joshua Sunshine, Filipe Mil-
itão and Eric Van Wyk for helpful comments and discussions, and acknowledge the
support of the United States Air Force Research Laboratory and the National Secu-
rity Agency lablet contract #H98230-14-C-0140, as well as the Royal Society of New
Zealand Marsden Fund. Cyrus Omar was supported by an NSF Graduate Research Fel-
lowship.

References

1. Adams, M.D.: Principled parsing for indentation-sensitive languages: Revisiting Landin’s
offside rule. In: Principles of Programming Languages (2013)

Safely Composable Type-Specific Languages 129

2. Bravenboer, M., Vermaas, R., Vinju, J.J., Visser, E.: Generalized type-based disambiguation
of meta programs with concrete object syntax. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 157–172. Springer, Heidelberg (2005)

3. Clark, T., Sammut, P., Willans, J.S.: Beyond annotations: A proposal for extensible Java (XJ).
In: Source Code Analysis and Manipulation (2008)

4. de Rauglaudre, D.: Camlp4 - Reference Manual (2003),
http://caml.inria.fr/pub/docs/manual-camlp4/

5. Diekmann, L., Tratt, L.: Parsing composed grammars with language boxes. In: Workshop on
Scalable Language Specification (2013)

6. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: library-based language extensi-
bility. In: Object-Oriented Programming Systems, Languages, and Applications (2011)

7. Erdweg, S., Rieger, F.: A framework for extensible languages. In: Generative Programming:
Concepts & Experiences (2013)

8. Green, T., Petre, M.: Usability analysis of visual programming environments: A ‘cognitive
dimensions’ framework. Journal of Visual Languages and Computing 7(2), 131–174 (1996)

9. Harper, R.: Practical Foundations for Programming Languages. Cambridge University Press
(2012)

10. Harper, R., Stone, C.: A Type-Theoretic Interpretation of Standard ML. In: Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press (2000)

11. Ichikawa, K., Chiba, S.: Composable user-defined operators that can express user-defined
literals. In: Modularity (2014)

12. JetBrains. JetBrains MPS – Meta Programming System,
http://www.jetbrains.com/mps/

13. Karakoidas, V.: On domain-specific languages usage (why DSLs really matter). Cross-
roads 20(3), 16–17 (2014)

14. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative specifi-
cation of languages and IDEs. In: Object-Oriented Programming Systems, Languages, and
Applications (2010)

15. Krishnan, L., Van Wyk, E.: Termination analysis for higher-order attribute grammars. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 44–63. Springer, Heidelberg
(2013)

16. Lee, B., Grimm, R., Hirzel, M., McKinley, K.S.: Marco: Safe, expressive macros for any lan-
guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 589–613. Springer, Heidelberg
(2012)

17. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM (2009)
18. Loh, A., van der Storm, T., Cook, W.R.: Managed data: Modular strategies for data abstrac-

tion. In: Onward! (2012)
19. Microsoft Corporation. Expression Trees (C# and Visual Basic),

http://msdn.microsoft.com/en-us/library/bb397951.aspx
20. Miller, H., Haller, P., Burmako, E., Odersky, M.: Instant pickles: Generating object-oriented

pickler combinators for fast and extensible serialization. In: Object Oriented Programming
Systems, Languages & Applications (2013)

21. Möller, E.: SRFI-49: Indentation-sensitive syntax (2005),
http://srfi.schemers.org/srfi-49/srfi-49.html

22. Nistor, L., Kurilova, D., Balzer, S., Chung, B., Potanin, A., Aldrich, J.: Wyvern: A simple,
typed, and pure object-oriented language. In: MechAnisms for SPEcialization, Generaliza-
tion and Inheritance (2013)

23. Omar, C., Chung, B., Kurilova, D., Potanin, A., Aldrich, J.: Type-directed, whitespace-
delimited parsing for embedded DSLs. In: Globalization of Domain Specific Languages
(2013)

http://caml.inria.fr/pub/docs/manual-camlp4/
http://www.jetbrains.com/mps/
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://srfi.schemers.org/srfi-49/srfi-49.html

130 C. Omar et al.

24. Omar, C., Kurilova, D., Nistor, L., Chung, B., Potanin, A., Aldrich, J.: Safely Composable
Type-Specific Languages. Technical Report CMU-ISR-14-106, Carnegie Mellon University
(2014)

25. Omar, C., Yoon, Y., LaToza, T.D., Myers, B.A.: Active code completion. In: International
Conference on Software Engineering (2012)

26. OWASP. OWASP Top 10 2013 (2013),
https://www.owasp.org/index.php/Top_10_2013-Top_10

27. Palmer, Z., Smith, S.F.: Backstage Java: Making a Difference in Metaprogramming. In:
Object-Oriented Programming Systems, Languages, and Applications (2011)

28. Pierce, B.C., Turner, D.N.: Local type inference. ACM Trans. Program. Lang. Syst. 22(1),
1–44 (2000)

29. Schwerdfeger, A.C., Van Wyk, E.R.: Verifiable composition of deterministic grammars. In:
Programming Language Design and Implementation (2009)

30. Sheard, T., Jones, S.: Template meta-programming for Haskell. ACM SIGPLAN No-
tices 37(12), 60–75 (2002)

31. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, Cambridge (1977)

32. Tatsubori, M., Chiba, S., Killijian, M.-O., Itano, K.: OpenJava: A Class-based Macro System
for Java. In: Cazzola, W., Houmb, S.H., Tisato, F. (eds.) Reflection and Software Engineering.
LNCS, vol. 1826, pp. 117–133. Springer, Heidelberg (2000)

33. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.:
Qualitas corpus: A curated collection of Java code for empirical studies. In: Asia Pacific
Software Engineering Conference (2010)

34. Tratt, L.: Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst. 30(6) (October 2008)

35. van den Brand, M.G.J.: Pregmatic: A Generator for Incremental Programming Environments.
PhD thesis, Katholieke Universiteit Nijmegen (1992)

36. Van Wyk, E.R., Schwerdfeger, A.C.: Context-aware scanning for parsing extensible lan-
guages. In: Generative Programming and Component Engineering (2007)

https://www.owasp.org/index.php/Top_10_2013-Top_10

	Safely Composable Type-Specific Languages
	1 Motivation
	2 Type-Specific Languages inWyvern
	2.1 Inline Literals
	2.2 Splicing
	2.3 Layout-Delimited Literals
	2.4 Implementing a TSL

	3 Syntax
	3.1 Concrete Syntax
	3.2 Program Structure
	3.3 Forward Referenced Blocks
	3.4 Abstract Syntax

	4 Bidirectional Typechecking and Elaboration
	4.1 Programs and Type Declarations
	4.2 External Terms
	4.3 Literals
	4.4 Hygiene
	4.5 From Values to ASTs
	4.6 Metatheory
	4.7 Decidability

	5 Corpus Analysis
	6 Implementation
	7 Related Work
	8 Discussion
	References

