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Abstract. The use of shared mutable state, commonly seen in object-oriented
systems, is often problematic due to the potential conflicting interactions between
aliases to the same state. We present a substructural type system outfitted with a
novel lightweight interference control mechanism, rely-guarantee protocols, that
enables controlled aliasing of shared resources. By assigning each alias sepa-
rate roles, encoded in a novel protocol abstraction in the spirit of rely-guarantee
reasoning, our type system ensures that challenging uses of shared state will
never interfere in an unsafe fashion. In particular, rely-guarantee protocols ensure
that each alias will never observe an unexpected value, or type, when inspecting
shared memory regardless of how the changes to that shared state (originating
from potentially unknown program contexts) are interleaved at run-time.

1 Introduction

Shared, mutable state can be useful in certain algorithms, in modeling stateful systems,
and in structuring programs. However, it can also make reasoning about a program
more difficult, potentially resulting in run-time errors. If two pieces of code have ref-
erences to the same location in memory, and one of them updates the contents of that
cell, the update may destructively interfere by breaking the other piece of code’s as-
sumptions about the properties of the value contained in that cell—which may cause
the program to compute the wrong result, or even to abruptly terminate. In order to mit-
igate this problem, static type systems conservatively associate an invariant type with
each location, and ensure that every store to the location preserves this type. While
this approach can ensure basic memory safety, it cannot check higher-level protocol
properties [1, 4, 5, 13, 20] that are vital to the correctness of many programs [3].

For example, consider a Pipe abstraction that is used to communicate between two
parts of the program. A pipe is open while the communication is ongoing, but when
the pipe is no longer needed it is closed. Pipes include shared, mutable state in the
form of an internal buffer, and abstractions such as Java’s PipedInputStream also
dynamically track whether they are in the open or closed state. The state of the pipe
determines what operations may be performed, and invoking an inappropriate operation
is an error: for example, writing to a closed pipe in Java results in a run-time exception.

Static approaches to reason about such state protocols (of which we follow the type-
state [7, 22, 28, 29] approach) have two advantages: errors such as writing to a closed
pipe can be avoided on the one hand, and defensive run-time tests of the state of an
object can become superfluous on the other hand. In typestate systems, abstractions ex-
pose a more refined type that models a set of abstract states representing the internal,
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changing, type of the state (such as the two states above, open and closed) enabling the
static modular manipulation of stateful objects. However, sharing (such as by aliasing)
these resources must be carefully controlled to avoid potentially destructive interfer-
ence that may result from mixing incompatible changes to apparently unrelated objects
that, in reality, are connected to the same underlying run-time object. This work aims to
provide an intuitive and general-purpose extension to the typestate model by exploiting
(coordination) protocols at the shared state level to allow fine-grained and flexible uses
of aliased state. Therefore, by modeling the interactions of aliases of some shared state
in a protocol abstraction, we enable complex uses of sharing to safely occur through
benign interference, interference that the other aliases expect and/or require to occur.

Consider once more the pipe example. The next two code blocks implement simpli-
fied versions of the pipe’s put and tryTake functions. Although each function operates
independently of the other, internally they share nodes of the same underlying buffer:

// protocol: Empty⇒ Filled; none
put = fun( v : Value ).

// Empty shared node, oldlast, to be filled with node
// containing tagged (#) empty record, {}, as ‘Empty’
let last = new Empty#{} in
let oldlast = !buffer.tail in // is Empty

// tags pair of ‘v’ and ‘last’ as ‘Filled’
oldlast := Filled#{ v , last };
buffer.tail := last

end // last cell is now reachable from head&tail
end // oldlast cell unreachable from tail

// rec X.( Empty⇒ Empty; X ⊕ Filled⇒ none )
tryTake = fun().
let first = !buffer.head in
case !first of
Empty#_ → NoResult#{}

| Filled#[ v , next ] → // does not return
delete first; // ownership to the protocol
buffer.head := next;
Result#v

end
end

By distributing these functions between two aliases, we are able to create independent
producer and consumer components of the pipe that share a common buffer (modeled
as a singly-linked list). Observe how the interaction, that occurs through aliases of the
buffer’s nodes, obeys a well-defined protocol: the producer alias (through the put func-
tion) inserts an element into the last (empty) node of the buffer and then immediately
forfeits that cell (i.e. it is no longer used by that alias); while the consumer alias (using
tryTake) proceeds by testing the first node and, when it detects it has been Filled

(thus, when the other alias is sure to no longer use it), recovers ownership of that node,
which enables the alias to safely delete that cell (first) since it is no longer shared.

1.1 Approach in a Nutshell

Interference due to aliasing is analogous to the interference caused by thread interleav-
ing [15,33]. This occurs because mutable state may be shared by aliases in unknown or
non-local program contexts. Such boundary effectively negates the use of static mecha-
nisms to track exactly which other variables alias some state. Therefore, we are unable
to know precisely if the shared state aliased by a local variable will be used when the
execution jumps off (e.g. through a function call) to non-local program contexts. How-
ever, if that state is used, then the aliases may change the state in ways that invalidate
the local alias’ assumptions on the current contents of the shared state. This interfer-
ence caused by “alias interleaving” occurs even without concurrency, but is analogous
to how thread interleaving may affect shared state. Consequently, techniques to reason
about thread interference (such as rely-guarantee reasoning [17]) can be useful to rea-
son about aliasing even in our sequential setting. The core principle of rely-guarantee
reasoning that we adapt is its mechanism to make strong local assumptions in the face
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of interference. To handle such interference, each alias has its actions constrained to fit
within a guarantee type and at the same time is free to assume that the changes done by
other aliases of that state must fit within a rely type. The duality between what aliases
can rely on and must guarantee among themselves yields significant flexibility in the
use of shared state, when compared for instance to invariant-based sharing.

We employ rely-guarantee in a novel protocol abstraction that captures a partial view
of the use of the shared state, as seen from the perspective of an alias. Therefore, each
protocol models the constraints on the actions of that alias and is only aware of the re-
sulting effects (“interference”) that may appear in the shared state due to the interleaved
uses of that shared state as done by other aliases. A rely-guarantee protocol is formed by
a sequence of rely-guarantee steps. Each step contains a rely type, stating what an alias
currently assumes the shared state contains; and a guarantee type, a promise that the
changes done by that alias will fit within this type. Using these small building blocks,
our technique allows strong local assumption on how the shared state may change,
while not knowing when or if other aliases to that shared state will be used—only how
they will interact with the shared state, if used. Since each step in a protocol can have
distinct rely and guarantee types, a protocol is not frozen in time and can model differ-
ent “temporal” uses of the shared state directly. A protocol is, therefore, an abstracted
perspective on the actions done by each individual alias to the shared state, and that is
only aware of the potential resulting effects of all the other aliases of that shared state.
A protocol conformance mechanism ensures the sound composition of all protocols to
the same shared state, at the moment of their creation. From there on, each protocol is
stable (i.e. immune to unexpected/destructive interference) since conformance attested
that each protocol, in isolation, is aware of all observable effects that may occur from
all possible “alias interleaving” originated from the remaining aliases.

Our main contribution is a novel type-based protocol abstraction to reason about
shared mutable state, rely-guarantee protocols, that captures the following features:

1. Each protocol provides a local type so that an alias need not know the actions that
other aliases are doing, only their resulting (observable) effect on the shared state;

2. Sharing can be done asymmetrically so that the role of each alias in the interaction
with the shared state may be distinct from the rest;

3. Our protocol paradigm is able to scale by modeling sharing interactions both at
the reference level and also at the abstract state level. Therefore, sharing does not
need to be embedded in an ADT [18], but can also work at the ADT level without
requiring a wrapper reference [15];

4. State can be shared individually or simultaneously in groups of state. By enabling
sharing to occur underneath a layer of apparently disjoint state, we naturally support
the notion of fictional disjointness [9, 16, 18];

5. Our protocol abstraction is able to model complex interactions that occur through
the shared state. These include invariant, monotonic and other coordinated uses.
Moreover, they enable both ownership transfer of state between non-local pro-
gram contexts and ownership recovery. Therefore, shared state can return to be
non-shared, even allowing it to be later shared again and in such a way that is com-
pletely unrelated to its previous sharing phases;

6. Although protocol conformance is checked in pairs, arbitrary aliasing is possible
(if safe) by further sharing a protocol in ways that do not conflict with the initial
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sharing. Therefore, global conformance in the use of the shared state by multiple
aliases is assured by the combination of individual binary protocol splits, with each
split sharing the state without breaking what was previously assumed on that state;

7. We allow temporary inconsistencies, so that the shared state may undergo inter-
mediate (private) states that cannot be seen by other aliases. Using an idea similar
to (static) mutual exclusion, we ensure that the same shared state cannot be in-
spected while it is inconsistent. Such kind of critical section (that does not incur in
any run-time overhead) is sufficiently flexible to support multiple simultaneously
inconsistent states, when they are sure to not be aliasing the same shared state.

With this technique we are able to model challenging uses of aliasing in a lightweight
substructural type system, where all sharing is centered on a simple and intuitive pro-
tocol abstraction. We believe that by specializing our system to typestate and alias-
ing [1, 27] properties we can offer a useful intermediate point that is simpler than the
full functional verification embodied in separation logic [6,25] yet more expressive than
conventional type systems. Our proofs of soundness use standard progress and preser-
vation theorems. We show that all allowed interference is benign (i.e. that all changes
to the shared state are expected by each alias) by ensuring that a program cannot get
stuck, while still allowing the shared state to be legally used in complex ways. Besides
expressing the programmer’s intent in the types, our technique also enables a program
to be free of errors related to destructive interference. For instance, the programmer
will not be able to wrongly attempt to use a shared cell as if it were no longer shared,
or leave values in that shared cell that are not expected by the other aliases of that cell.

Section 2 introduces the language but leaves its sharing mechanisms to Section 4,
after an overview of the type system. Section 5 discusses technical results, and Section
6 additional examples. The paper ends with Sections for related work and conclusions.

2 Pipe Example

Our language is based on the polymorphic λ-calculus with mutable references, im-
mutable records, tagged sums and recursive types. Technically, we build on [22] (a
variant of L3 [1] adapted for usability) by supporting sharing of mutable state through
rely-guarantee protocols. As in L3, a cell is decomposed in two components: a pure ref-
erence (that can be freely copied), and a linear [14] capability used to track the contents
of that cell. Unlike L3, by extending [22] our language implicitly threads capabilities
through the code, reducing syntactic overhead. To support this separation of references
and capabilities, our language uses location-dependent types to relate a reference to its
respective capability. Therefore, a reference has a type “ref t” to mean a reference to
a location t, where the information about the contents of that location is stored in the
capability for t. Our capabilities follow the format “rw t A” meaning a read-write capa-
bility to location t which, currently, has contents of type A stored in it. The permission
to access, such as by dereference, the contents of a cell requires both the reference and
the capability to be available. Capabilities are typing artifacts that do not exist at run-
time and are moved implicitly through the code. Locations (such as t) must be managed
explicitly, leading to constructs dedicated to abstracting and opening locations.
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Pipes are used to support a consumer-producer style of interaction (using a shared
internal buffer as mediator), often used in a concurrent program but here used in a
single-threaded environment. The shared internal buffer is implemented as a shared
singly-linked list where the consumer keeps a pointer to the head of the list and the
producer to its tail. By partitioning the pipe’s functions (where the consumer alias uses
tryTake, and the producer both put and close), clients of the pipe can work inde-
pendently of one another, provided that the functions’ implementation is aware of the
potential interference caused by the actions of the other alias. It is on specifying and
verifying this interference that our rely-guarantee protocols will be used.

1 let newPipe = fun( _ : [] ). Γ = : [] | Δ = ·
2 open <n,node> = new Empty#{} in Γ = : [], node : ref n, n : loc | Δ = rw n Empty#[]
3 share (rw n Empty#[]) as H[n] || T[n]; Γ = ... | Δ = T[n],H[n]
4 open <h,head> = new <n, node::H[n]> in

Γ = ...,head : ref h, h : loc | Δ = T[n], rw h ∃p.(ref p :: H[p])
5 open <t,tail> = new <n, node::T[n]> in

Γ = ...,tail : ref t, t : loc | Δ = rw t ∃p.(ref p :: T[p]), ...
6 < rw h exists p.(ref p :: H[p]), // packs a type, the capability to location ’h’
7 < rw t exists p.(ref p :: T[p]), // packs a type, the capability to location ’t’
8 { // creates labeled record with ’put’, ’close’ and ’tryTake’ as members
9 put = fun( e : int :: rw t exists p.(ref p :: T[p]) )./∗...shown in Section 4...∗/,

19 close = fun( _ : [] :: rw t exists p.(ref p :: T[p]) )./∗...∗/,
26 tryTake = fun( _ : [] :: rw h exists p.(ref p :: H[p]) )./∗...∗/
47 } :: ( rw h exists p.(ref p :: H[p]) * rw t exists p.(ref p :: T[p]) ) > >
48 end
49 end
50 end

The function creates a pipe by allocating an initial node for the internal buffer, a
cell to be shared by the head and tail pointers. The newly allocated cell (line 2)
contains a tagged (as Empty) empty record ({}). In our language, aliasing information
is correlated through static names, locations, such that multiple references to the same
location must imply that these references are aliases of the same cell. Consequently,
the new construct (line 2) must be assigned a type that abstracts the concrete location
that was created, ∃t.( ref t :: rw t Empty#[] ), which means that there exists some fresh
location t, and the new expression evaluates to a reference to t (“ref t”). We associate
this reference with a capability to access it, using a stacking operator ::. In this case the
capability is rw t Empty#[], representing a read and write capability to the location t,
which currently contains a value of type Empty#[] as initially mentioned. On the same
line, we then open the existential by giving it a location variable n and a regular variable
node to refer that reference. From there on, the capability (a typing artifact which has
no actual value) is automatically unstacked and moved implicitly as needed through the
program. For clarity, we will manually stack capabilities (such as on line 4, using the
construct e :: A where A is the stacked capability), although the type system does not
require it. On line 3, the type system initially carries the following assumptions:

Γ = : [] , node : ref n , n : loc | Δ = rw n Empty#[]

where Γ is the lexical environment (of persistent/pure resources), and Δ is a linear typ-
ing environment that contains all linear resources (such as capabilities). Each linear
capability must either be used up or passed on through the program (e.g. by returning
it from a function). The contents of the reference node are known statically by looking
up the capability for the location n to which node refers (i.e. “rw n Empty#[]”).
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Capabilities are linear (cannot be duplicated), but aliasing in local contexts is still
possible by copying references. All copies link back to the same capability using the
location contained in the reference. However, when aliases operate in non-local con-
texts, this location-based link is lost. Thus, if we were to pack node’s capability before
sharing it, it would become unavailable to other aliases of that location. For instance,
by writing 〈n, node :: rw n Empty#[]〉we pack the location n by abstracting it in an ex-
istential type for that location. The packed type now refers a fresh location, unrelated
to its old version. Instead, we share that capability (line 3) by splitting it in two rely-
guarantee protocols, H and T1. Each protocol is then assigned to the head and tail

pointers (lines 4 and 5, respectively), since they encode the specific uses of each of
those aliases. The protocols and sharing mechanisms will be introduced in Section 4.

The type of newPipe is a linear function (�) that, since it does not capture any
enclosing linear resource, can be marked as pure (!) so that the type can be used without
the linear restriction. On line 6 we pack the inner state of the pipe (so as to abstract the
capability for t as P, and the one for h as C), resulting in newPipe having the type:

newPipe : !( []� ∃C.∃P.( ![ ... ] :: C ∗ P ) )

where the separate capabilities for the Consumer and Producer are stacked together in a
commutative group (∗). In this type, C abstracts the capability rw h ∃p.(ref p :: H[p]),
and P abstracts rw t ∃p.(ref p :: T[p]). Finally, although we have not yet shown the
implementation, the type of the elided record ([...]) contains function types that should
be unsurprising noting that each argument and return type has the respective capabilities
for the head/tail cells stacked on top (similarly to pre/post conditions, but directly
expressed in the types). Therefore, those functions are closures that use the knowledge
about the reference to the head/tail pointers from the surrounding context, but do not
capture the capability to those cells and instead require them to be supplied as argument.

[ put : !( int :: P� [] :: P ),
close : !( [] :: P� [] ),
tryTake : !( [] :: C� NoResult#([] :: C) + Result#(int :: C) + Depleted#[] ) ]

Therefore, put preserves the producer’s capability, but close destroys it; while the
result of tryTake is a sum type of either Result or NoResult depending on whether
the still open pipe has or not contents available, or Depleted to signal that the pipe was
closed (and therefore that the capability to C vanished). Observe that the state that the
functions depend on is, apparently, disjoint although underneath this layer the state is
actually shared (but coordinated through a protocol) so that (benign) interference must
occur for the pipe to work properly—i.e. it is fictionally disjoint [9, 16, 18].

3 Type System Overview

We now present the type system. Non-essential details are relegated to [21, 22]. For
consistency, we include all sharing mechanisms but leave their discussion to Section 4.

1 As a brief glimpse, T is “rw n Empty#[] ⇒ ( rw n Node#R ⊕ rw n Closed#[] ); none”
which relies on n containing Empty#[], ensures n then contains either Node#R or Closed#[],
and then loses access to n. Both “⇒” and “;” (and R) will be discussed in detail in Section 4.
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ρ ∈ Location Constants (Addresses) t ∈ Location Variables p ::= ρ | t
l ∈ Labels (Tags) f ∈ Fields x ∈ Variables X ∈ Type Variables

v ::= ρ (address)
| x (variable)
| fun(x : A).e (function)
| 〈t〉 e (universal location)
| 〈X〉 e (universal type)
| 〈p, v〉 (pack location)
| 〈A, v〉 (pack type)
| {f = v} (record)
| l#v (tagged value)

e ::= v (value)
| v[p] (location application)
| v[A] (type application)

| v.f (field)
| v v (application)
| let x = e in e end (let)
| open 〈t, x〉 = v in e end (open location)
| open 〈X, x〉 = v in e end (open type)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of l#x→ e end (case)
| share A0 as A1 || A2 (share)
| focus A (focus)
| defocus (defocus)

Note: ρ is not source-level. Z for a possibly empty sequence of Z. Tuples, recursion, etc. are encoded as idioms, see [22].

Fig. 1. Values (v) and expressions (e)

The (let-expanded [26]) grammar is shown in Fig. 1. The main deviations from stan-
dard λ-calculus are the inclusion of location-related constructs, and the sharing con-
structs (share, focus and defocus).

We use a flat type grammar (Fig. 2) where both capabilities (i.e. typing artifacts
without values, which includes our rely-guarantee protocols) and standard types (used
to type values) coexist. Our design does not need to make a syntactic distinction be-
tween the two kinds since the type system ensures the proper separation in their use.
We now overview the basic types, leaving the rely and guarantee types to be presented
in the following Section together with the discussion on sharing. Pure types !A enable a
linear type to be used multiple times. A� A′ describes a linear function of argument A
and result A′. The stacking operation A :: A′ stacks A′ (a capability, or abstracted capa-
bility) on top of A. This stacking is not commutative since it stacks a single type on the
right of ::. Therefore, ∗ enables multiple types to be grouped together that, when later
stacked, allow that type to list a commutative group of capabilities2. Both ∀ and ∃ offer
the standard quantification, over location and type kinds, together with the respective
location/type variables. [f : A] are used to described labeled records of arbitrary length.
A ref p type is a reference for location p noting that the contents of such a reference are
tracked by the capability to that location and not immediately stored in the reference
type. recursive types, that are automatically folded/unfolded through subtyping rules
(see Fig. 4 and (t:Subsumption) on Fig. 3), are also supported. Sum types use the form
tag#A to tag type A with tag. Alternatives (⊕) model imprecision in the knowledge of
the type by listing different possible states it may be in. none is the empty capability,

2 Note that while A0 :: (A1 :: A2) and A0 :: (A2 :: A1) are not (necessarily) subtypes, capability
commutation is always possible with ∗ such that A0 :: (A1 ∗ A2) <:> A0 :: (A2 ∗ A1).
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A ::= !A (pure/persistent)
| A� A (linear function)
| A :: A (stacking)
| A ∗ A (separation)
| [f : A] (record)
| X (type variable)
| ∀X.A (universal type quantification)
| ∃X.A (existential type quantification)
| ∀t.A (universal location quantification)
| ∃t.A (existential location quantification)

| ref p (reference type)
| rec X.A (recursive type)
| ∑i li#Ai (tagged sum)
| A ⊕ A (alternative)
| A & A (intersection)
| rw p A (read-write capability to p)
| none (empty capability)
| A⇒ A (rely)
| A; A (guarantee)

Note:
∑

i li#Ai denotes a single tagged type or a sequence of tagged types separated by +, such as “t#A + u#B + v#C”.

Separation, sum, alternative and intersection types are assumed commutative, i.e. without respective subtyping rules.

Fig. 2. Types and capabilities

while rw p A is the read-write capability to location p (a memory cell currently con-
taining a value of type A). Finally, an A&A′ type means that the client can choose to use
either type A or type A′ but not both simultaneously.

Our typing rules use typing judgments of the form: Γ | Δ0 
 e : A � Δ1 stating that
with lexical environment Γ and linear resources Δ0 we assign the expression e a type A
and produce effects that result in Δ1. The typing environments are as follows:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location variable assertion)
| Γ, X : type (type assertion)

Δ ::= · (empty)
| Δ, x : A (linear binding)
| Δ, A (capability/protocol)
| ΔG, A0; A1 � Δ (defocus-guarantee)

where ΔG syntactically restricts Δ to not include a defocus-guarantee (a sharing feature,
see Section 4.3). Suffices to note that this restriction ensures that defocus-guarantees are
nested on the right of � and that, at each level, there exists only one pending defocus-
guarantee. ΔG is also used to forbid capture of defocus-guarantees by functions and
other constructs that can keep part of the linear typing environment for themselves.

The main typing rules are shown in Fig. 3, but the last four typing rules are only dis-
cussed in Section 4. All values (which includes functions, tagged values, etc.) have no
resulting effect (·) since, operationally, they have no pending computations. Allocating
a new cell results in a type, ∃t.( ref t :: rw t A ), that abstracts the fresh location that
was created (t), and includes both a reference to that location and the capability to that
location. To associate a value (such as ref t) with some capability (such as the capabil-
ity to access location t), we use a stacking operator ::. Naturally, to be able to use the
existential location, we must first open that abstraction by giving it a location variable
to refer the abstracted location, besides the usual variable to refer the contents of the
existential type. Reading the content of a cell can be either destructive or not, depending
on whether its content is pure (!). If it is linear, then to preserve linearity we must leave
the unit type ([]) behind to avoid duplication. By banging the type of a variable binding,
we can move it to the linear context which enables the function’s typing rule to ini-
tially consider all arguments as linear even if they are pure. Functions can only capture
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Γ | Δ0 
 e : A � Δ1 Typing rules, (t:*)

(t:Ref)

Γ, ρ : loc | · 
 ρ : ref ρ � ·
(t:Unit)

Γ | · 
 v : [] � ·
(t:Pure-Read)

Γ, x : A | · 
 x : !A � ·
(t:Linear-Read)

Γ | x : A 
 x : A � ·
(t:Pure)
Γ | · 
 v : A � ·
Γ | · 
 v : !A � ·

(t:Pure-Elim)
Γ, x : A0 | Δ0 
 e : A1 � Δ1

Γ | Δ0, x : !A0 
 e : A1 � Δ1

(t:Tag)
Γ | Δ 
 v : A � ·

Γ | Δ 
 l#v : l#A � ·

(t:Loc-Pack)
Γ | Δ 
 v : A{p/t} � ·
Γ | Δ 
 〈p, v〉 : ∃t.A � ·

(t:New)
Γ | Δ0 
 v : A � Δ1

Γ | Δ0 
 new v : ∃t.(ref t :: rw t A) � Δ1

(t:Delete)
Γ | Δ0 
 v : ∃t.(ref t :: rw t A) � Δ1

Γ | Δ0 
 delete v : ∃t.A � Δ1

(t:Function)
Γ | ΔG , x : A0 
 e : A1 � ·

Γ | ΔG 
 fun(x : A0).e : A0 � A1 � ·

(t:Application)
Γ | Δ0 
 v0 : A0 � A1 � Δ1 Γ | Δ1 
 v1 : A0 � Δ2

Γ | Δ0 
 v0 v1 : A1 � Δ2

(t:Dereference-Pure)
Γ | Δ0 
 v : ref p � Δ1 , rw p !A

Γ | Δ0 
 !v : !A � Δ1, rw p !A

(t:Dereference-Linear)
Γ | Δ0 
 v : ref p � Δ1, rw p A

Γ | Δ0 
 !v : A � Δ1, rw p []

(t:Assign)
Γ | Δ0 
 v1 : A0 � Δ1

Γ | Δ1 
 v0 : ref p � Δ2, rw p A1

Γ | Δ0 
 v0 := v1 : A1 � Δ2, rw p A0

(t:Alternative-Left)
Γ | Δ0,A0 
 e : A2 � Δ1
Γ | Δ0,A1 
 e : A2 � Δ1

Γ | Δ0,A0 ⊕ A1 
 e : A2 � Δ1

(t:Intersection-Right)
Γ | Δ0 
 e : A0 � Δ1,A1
Γ | Δ0 
 e : A0 � Δ1,A2

Γ | Δ0 
 e : A0 � Δ1, A1&A2

(t:Case)
Γ | Δ0 
 v :

∑
i li#Ai � Δ1

Γ | Δ1, xi : Ai 
 ei : A � Δ2 i ≤ j

Γ | Δ0 
 case v of l j#x j → e j end : A � Δ2

(t:Loc-App)
p : loc ∈ Γ

Γ | Δ0 
 v : ∀t.A � Δ1

Γ | Δ0 
 v[p] : A{p/t} � Δ1

(t:Forall-Loc)
Γ, t : loc | ΔG 
 e : A � ·
Γ | ΔG 
 〈t〉 e : ∀t.A � ·

(t:Loc-Open)
Γ | Δ0 
 v : ∃t.A0 � Δ1

Γ, t : loc | Δ1, x : A0 
 e : A1 � Δ2

Γ | Δ0 
 open 〈t, x〉 = v in e end : A1 � Δ2

(t:Let)
Γ | Δ0 
 e0 : A0 � Δ1

Γ | Δ1, x : A0 
 e1 : A1 � Δ2

Γ | Δ0 
 let x = e0 in e1 end : A1 � Δ2

(t:Subsumption)
Δ0 <: Δ1 Γ | Δ1 
 e : A0 � Δ2

A0 <: A1 Δ2 <: Δ3

Γ | Δ0 
 e : A1 � Δ3

(t:Cap-Elim)
Γ | Δ0, x : A0, A1 
 e : A2 � Δ1

Γ | Δ0, x : A0 :: A1 
 e : A2 � Δ1

(t:Cap-Stack)
Γ | Δ0 
 e : A0 � Δ1,A1

Γ | Δ0 
 e : A0 :: A1 � Δ1

(t:Cap-Unstack)
Γ | Δ0 
 e : A0 :: A1 � Δ1

Γ | Δ0 
 e : A0 � Δ1,A1

(t:Focus-Rely)
A0 ∈ A

Γ | A0 ⇒ A1 
 focus A : [] � A0,A1 � ·
(t:Defocus-Guarantee)

Γ | Δ0,A0,A0; A1 � Δ1 
 defocus : [] � Δ0,A1, Δ1

(t:Frame)
Γ | Δ0 
 e : A � Δ1

Γ | Δ0 �− Δ2 
 e : A � Δ1 �− Δ2

(t:Share)
A0 � A1 || A2

Γ | Δ,A0 
 share A0 as A1 || A2 : [] � Δ,A1,A2

Note: all bounded variables of a construct must be fresh in the respective rule’s conclusion.

Fig. 3. Static semantics (selected typing rules, see [21] for the rest)
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A0 <: A1 Subtyping on types, (st:*)

(st:ToLinear)

!A <: A

(st:Unfold)

rec X.A <: A{rec X.A/X}
(st:Fold)

A{X/rec X.A} <: rec X.A

(st:Rec)
A0 <: A1

rec X.A0 <: rec X.A1

(st:Sum)
∑

i li#Ai <: l′#A′ +
∑

i li#Ai

(st:Alternative)

A0 <: A0 ⊕ A1

(st:Intersection)

A0&A1 <: A0

Δ0 <: Δ1 Subtyping on deltas, (sd:*)

(sd:Star)

Δ, A0, A1 <:> Δ, A0 ∗ A1

(sd:Var)
Δ0 <: Δ1 A0 <: A1

Δ0, x : A0 <: Δ1, x : A1

(sd:Type)
Δ0 <: Δ1 A0 <: A1

Δ0, A0 <: Δ1, A1

(sd:None)

Δ <:> Δ,none

Fig. 4. Subtyping rules (selected, see [21] for the rest)

a ΔG linear environment to ensure that they will not hide a pending defocus-guarantee
(and similarly on ∀ abstractions), since our types do not express such pending opera-
tion. Stacking, done through (t:Cap-Elim), (t:Cap-Stack) and (t:Cap-Unstack) enables
the type system to manage capabilities in a non-syntax directed way, since they have no
value nor associated identifier. The (t:Case) rule allows the set of tags of the value that is
to be case analyzed (v) to be smaller than those listed in the branches of the case (i ≤ j).
This conditions is safe because it amounts to ignoring the effects of those branches, in-
stead of being overly conservative and having to consider them all. These branches are
not necessarily useless since, for instance, they may still be relevant on alternative pro-
gram states (⊕). (t:Alternative-Left) expresses that if an expression types with both
assumptions, A0 and A1, then it works with both alternatives. (t:Intersection-Right) is
similar but on the resulting effect of that expression.

Finally, (t:Subsumption) enables expressions to rely on weaker assumptions while
ensuring a stronger result than needed. This rule is supported by subtyping rules (a
selection is shown in Fig. 4) that follow the form A0 <: A1 stating that A0 is a subtype
of A1, meaning that A0 can be used wherever A1 is expected. Similar meaning is used for
subtyping on linear typing environments,Δ0 <: Δ1. Among other operations, these rules
enable automatic fold/unfold of recursive types, as well as grouping (∗) of resources.

4 Sharing Mutable State

The goal is to enable reads and writes to a cell through multiple aliases, without re-
quiring the type system to precisely track the link between aliased variables. In other
words, the type system is aware that a variable is aliased, but does not know exactly
which other variables alias that same state. In this scenario, it is no longer possible to
implicitly move capabilities between aliases. Instead, we split the original capability
into multiple protocol capabilities to that same location, and ensure that these multiple
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protocols cannot interact in ways that destructively interfere with each other. Such rely-
guarantee protocol accounts for the effects of other protocols (the rely), and limits the
actions of this protocol to guarantee that they do not contradict the assumptions relied
on by other aliases. This allows independent, but constrained, actions on the different
protocols to the same shared state without destructive interference. However, it also
requires us to leverage additional type mechanisms to ensure safety, namely:

(a) Hide Intermediate States. A rely-guarantee protocol restricts how aliases can use
the shared state. However, we allow such specification to be temporarily broken pro-
vided that all unexpected changes are private, invisible to other aliases. Therefore, the
type system ensures a kind of static mutual exclusion, a mechanism that provides a
“critical section” with the desired level of isolation from other aliases to that same
state. Consequently, other shared state that may overlap with the one being inspected
simply becomes unavailable while that cell is undergoing private changes. Although
this solution is necessarily conservative, we avoid any run-time overhead while pre-
serving many relevant usages. To achieve this, we build on the concept of focus [11]
(in a non-lexically scoped style, so that there is also a defocus) clearly delimiting the
boundary in the code of where shared state is being inspected. Thus, on focus, all other
types that may directly or indirectly see inconsistencies must be temporarily concealed
only to reappear when those inconsistencies have been fixed, on defocus.

(b) Ensure That Each Individual Step of the Protocol Is Obeyed. In our system,
sharing properties are encoded in a protocol composed of several rely-guarantee steps.
As discussed in the previous paragraph, each step must be guarded by focus since pri-
vate states should not be visible to other aliases. Consequently, the focus construct
serves not only to safeguard from interference by other aliases, but also to move the
protocol forward through each of its individual steps. At each such step, the code can
assume on entry (focus) that the shared state will be in a given well-defined rely state,
and must ensure on exit (defocus) that the shared state satisfies a given well-defined
guarantee state. By characterizing the sequence of actions of each alias with an appro-
priate protocol, one can make strong local assumptions about how the shared state is
used without any explicit dependence on how accesses to other aliases of that shared
state are interleaved. This feature is crucial since we cannot know precisely if that same
shared state was used between two focus-defocus operations.

4.1 Specifying Rely-Guarantee Protocols

We now detail our rely and guarantee types that are the building blocks of our protocols.
To clarify the type structure of our protocols, we define the following sub-grammar of
our types syntax (Fig. 2) with the types that may appear in a protocol, P.

P ::= rec X.P | X | P ⊕ P | P & P | A⇒ P | A; P | none

A rely-guarantee protocol is a type of capability (i.e. has no value) consisting of
potentially many steps, each of the form AC ⇒ AP. Each such step states that it is
safe for the current client to assume that the shared state satisfies AC and is required
to obey the guarantee AP, usually of the form A′C; A′P which in turn requires the client
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to establish (guarantee) that the shared state satisfies A′C before allowing the protocol to
continue to be used as A′P. Note that our design constrains the syntactical structure of
these protocols through protocol conformance (Section 4.2), not in the grammar.

Pipe’s Protocols. We can now define the protocols for the shared list nodes of the pipe’s
buffer. Each node follows a rely-guarantee protocol that includes three possible tagged
states: Node, which indicates that a list cell contains some useful data; Empty, which
indicates that the node will be filled with data by the producer (but does not yet have any
data); and finally Closed, which indicates that the producer has sent all data through
the pipe and no more data will be added (thus, it is the last node of the list).

Remember that the producer component of the pipe has an alias to the tail node of
the internal list. Because it is the producer, it can rely on that shared node still being
Empty (as created) since the consumer component will never be allowed to change that
state. The rely-guarantee protocol for the tail alias (for some location p) is as follows:

rw p Empty#[]⇒ ( rw p Node#R ⊕ rw p Closed#[] ); none

This protocol expresses that the client code can safely assume (on focus) a capability
stating that location p initially holds type Empty#[]. It then requires the code that uses
such state to leave it (on defocus) in one of two possible alternatives (⊕) depending on
whether the producer chooses to close the pipe or insert a new element to the buffer. To
signal that the node is the last element of the pipe, the producer can just assign it a value
of type Closed#[]. Insertions are slightly more complicated because that action implies
that the tail element of the list will be changed. Therefore, after creating the new node,
the producer component will keep an alias of the new tail for itself while leaving the
old tail with a type that is to be used by the consumer. In this case, the node is assigned
a value of type Node#R, where R denotes the type [ int , ∃p.( ref p :: H[p] ) ] (a pair
of an integer and a reference to the next shared node of the buffer, as seen from the head
pointer). Regardless of its action, the producer then forfeits any ownership of that state
which is modeled by the empty capability (none)3 to signal protocol termination.

We now present the abbreviations H and T, the rely-guarantee protocols that govern
the use of the shared state of the pipe as seen by the head and tail aliases, respectively.
Note that since we intend to apply the same protocol over different locations, we use
“Q � ∀p.A” as a type definition (Q) where we can apply a location without requiring ∀
to be a value, such as location q in Q[q]. The T and H types are defined as follows:

T � ∀p.( E⇒ ( N ⊕ C ) )
H � ∀p.( rec X.( N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X ) )

where N is an abbreviation for a capability that contains a node “rw p Node#R”, C is
“rw p Closed#[]” and E is “rw p Empty#[]”. The T type was presented in the para-
graph above, so we can now look in more detail to H. Such a protocol contains three
alternatives, each with a different action on the state. If the state is found with an E
type (i.e. still Empty) the consumer is not to modify such state (i.e., just reestablish
E), and can retry again later to check if changes occurred. Observe that the remaining
two alternatives have a none guarantee. This models the recovery of ownership of that

3 We frequently omit the trailing “; none” for conciseness.
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〈A, P〉 → 〈A′, P′〉 Step, (step:*)

(step:None)

〈A,none〉 → 〈A,none〉
(step:Step)

〈A0, A0 ⇒ A1; P〉 → 〈A1, P〉
(step:Alternative-P)
〈A0, P0〉 → 〈A1, P2〉

〈A0, P0 ⊕ P1〉 → 〈A1, P2〉

(step:Alternative-S)
〈A0, P0〉 → 〈A2, P1〉 〈A1, P0〉 → 〈A2, P1〉

〈A0 ⊕ A1, P0〉 → 〈A2, P1〉
(step:Subsumption)
A0 <: A1 P0 <: P1 〈A1, P1〉 → 〈A2, P2〉 A2 <: A3 P2 <: P3

〈A0, P0〉 → 〈A3, P3〉

Fig. 5. Protocol stepping rules

particular node. Since the client is not required to reestablish the capability it relied on,
that capability can remain available in that context even after defocus.

Each protocol describes a partial view of the complete use of the shared state. Conse-
quently, ensuring their safety cannot be done alone. In our system, protocols are intro-
duced explicitly through the share construct that declares that a type (in practice limited
to capabilities, including protocols) is to be split in two new rely-guarantee protocols.
Safety is checked by simulating their actions in order to ensure that they preserve the
overall consistency in the use of the shared state, no matter how their actions may be
interleaved. Since a rely-guarantee protocol can subsequently continue to be split, this
technique does not limit the number of aliases provided that the protocols conform.

4.2 Checking Protocol Splitting

The key principle of ensuring a correct protocol split is to verify that both protocols
consider all visible states that are reachable by stepping, ensuring a form of progress.
Protocols are not required to always terminate and may be used indefinitely, for instance
when modeling invariant-based sharing. However, regardless of interleaving or of how
many times a shared alias is (consecutively) used, no unexpected state can ever appear
in well-formed protocols. Thus, the type information contained in a protocol is valid
regardless of all interference that may occur, i.e. it is stable [17, 32].

Technically, the correctness of protocol splitting is ensured by two key components:
1) a stepping relation, that simulates a single use of the shared state through one focus-
defocus block; and 2) a protocol conformance definition, that ensures full coverage of
all reachable states by considering all possible interleaved uses of those steps. Thus,
even as the rely and guarantee conditions evolve through the protocol’s lifetime, pro-
tocol conformance ensures each protocol will never get “stuck” because the protocol
must be aware of all possible “alias interleaving” that may occur for that state.

The stepping relation (Fig. 5) uses steps of the form 〈A, P〉 → 〈A′, P′〉 expressing
that, assuming shared state A, the protocol P can take a step to shared state A′ with resid-
ual protocol P′. Due to the use of ⊕ and & types in the protocols, there may be multiple
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different steps that may be valid at a given point in that protocol. Therefore, protocol
conformance must account for all those different transitions that may be picked.

We define protocol conformance as splitting an existing protocol (or capability) in
two, although it can also be interpreted as merging two protocols. Regardless of the
direction, the actions of the original protocol(s) must be fully contained in the resulting
protocol(s). This leads to the three stepping conditions of the definition below.

Definition 1 (Protocol Conformance). Given an initial state A0 and a protocol γ0, such
protocol can be split in two new protocols α0 and β0 if their combined actions conform
with those of the original protocol γ0, noted 〈A0 , γ0 �� α0 || β0〉. This means that
there is a set S of configurations 〈A , γ �� α || β〉 closed under the conditions:

1. The initial configuration is in S: 〈A0 , γ0 �� α0 || β0〉 ∈ S
2. All configurations take a step, and the result is also in S.

Therefore, if 〈A , γ �� α || β〉 ∈ S then:
(a) exists A′, α′ such that 〈A, α〉 → 〈A′, α′〉, and for all A′, α′, 〈A, α〉 → 〈A′, α′〉

implies 〈A, γ〉 → 〈A′, γ′〉 and 〈A′ , γ′ �� α′ || β〉 ∈ S.
(b) exists A′, β′ such that 〈A, β〉 → 〈A′, β′〉, and for all A′, β′, 〈A, β〉 → 〈A′, β′〉

implies 〈A, γ〉 → 〈A′, γ′〉 and 〈A′ , γ′ �� α || β′〉 ∈ S.
(c) exists A′, γ′ such that 〈A, γ〉 → 〈A′, γ′〉, and

for all A′, γ′, 〈A, γ〉 → 〈A′, γ′〉 implies either:
– 〈A, α〉 → 〈A′, α′〉 and 〈A′ , γ′ �� α′ || β〉 ∈ S, or;
– 〈A, β〉 → 〈A′, β′〉 and 〈A′ , γ′ �� α || β′〉 ∈ S.

The definition yields that all configurations must step (i.e. never get stuck) and that
a step in one of the protocols (α or β) must also step the original protocol (γ) such that
the result itself still conforms. Conformance ensures that all interleavings are coherent.
This also means that each protocol “view” of the shared state can work independently in
a safe way — even when the other aliases to that shared state are never used. Ownership
recovery does not require any special treatment since it just expresses that the focused
capability is not returned back to the protocol, enabling it to remain in the local context.

We now apply protocol conformance to our running example, as follows:

A : E
γ : rec X.( E ⇒ E; X & ( E ⇒ N ⊕C ; ( N ⇒ none ⊕ C ⇒ none ) ) )
α : E ⇒ N ⊕C (Tail protocol)
β : rec X.( E ⇒ E; X ⊕ N ⇒ none ⊕ C ⇒ none ) (Head protocol)

Therefore, applying the definition yields the following set of configurations, S:

〈E , rec X.( E ⇒ E; X & ( E ⇒ N ⊕C; ( N ⇒ none ⊕ C ⇒ none ) ) ) ��
E ⇒ C ⊕ N || rec X.( E ⇒ E; X ⊕ N ⇒ none ⊕ C ⇒ none )〉 (1)

The initial configuration.
by step on γ (subtyping for &) with E ⇒ E; X and same with β, using (step:Alternative-P).

〈N ⊕C , N ⇒ none ⊕ C ⇒ none ��
none || rec X.( E ⇒ E; X ⊕ N ⇒ none ⊕C ⇒ none )〉 (2)

by step on (1) with γ (subtyping for &) with E ⇒ N ⊕C; ... and similarly using α.
〈none , none �� none || none〉 (3)

by step on (2) with γ and β using (step:Alternative-S).
S is closed (up to subtyping, including unfolding of recursive types).
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Regardless of how the use of the state is interleaved at run-time, the shared state
cannot reach an unexpected (by the protocols) state. Thus, conformance ensures the
stability of the type information contained in a protocol in the face of all possible “alias
interleaving”. There exists only a finite number of possible (relevant) states, meaning
that it suffices for protocol conformance to consider the smallest set of configurations
that obeys the conditions above. Since there is also a finite number of possible inter-
leavings resulting from mixing the steps of the two protocols, there are also a finite
number of distinct (relevant) steps. Effectively, protocol conformance resembles a form
of bisimulation or model checking (where each protocol is modeled using a graph) with
a finite number of states, ensuring such process remains tractable.

In the following text we use a simplified notation, of the form A � A′ || A′′, as
an idiom (defined in [21]) that applies protocol conformance uniformly regardless of
whether A is a state (for an initial split) or a rely-guarantee protocol (to be re-split and
perhaps extended). The missing type is inferred by this idiom.

Example. We illustrate these concepts by going back to the pipe’s protocols. We intro-
duced the protocols for the head and tail aliases through the share construct:

3 share (rw n Empty#[]) as H[n] || T[n];

which is checked by the (t:Share) typing rule, using protocol conformance, as follows:

A0 � A1 || A2

Γ | Δ, A0 
 share A0 as A1 || A2 : [] � Δ, A1, A2
(t:Share)

With it we share a capability (A0) by splitting it in two protocols (A1 and A2) whose
individual roles in the interactions with that state conform (�). Consequently, the con-
clusion states that, if the splitting is correct, then in some linear typing environment
initially consisting of a type A0 and Δ, the share construct produces effects that replace
A0 with A1 and A2 but leave Δ unmodified (i.e. it is just threaded through).

The next examples show conformance in a simplified way, with only the state and
the two resulting protocols of a configuration. Remember that E is the abbreviation for
rw q Empty#[] that, just like the abbreviations C and N, were defined above. Thus, the
use of the share construct on line 3 yields the following set of configurations, S:

〈E � rec X.( N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X ) || E⇒ ( N ⊕ C )〉 (1)
〈N ⊕ C � rec X.( N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X ) || none〉 (2)
〈none � none || none〉 (3)

The definition is only respected if E is the state to be shared by the protocols. If
instead we had shared, for instance, C we would get the next set of configurations:

〈C � rec X.( N⇒ none ⊕ C⇒ none ⊕ E⇒ E ; X ) || E⇒ ( N ⊕ C )〉 (1)
〈none � none || E⇒ ( N ⊕ C )〉 (2)

The set above does not satisfy our conformance definition. Both the state in config-
uration (1) and none in (2) are not expected by the right protocol. Thus, those con-
figurations are “stuck” and cannot take a step. Although splittings are checked from a



Rely-Guarantee Protocols 349

high-level and abstracted perspective, their consequences link back to concrete invalid
program states that could occur if such invalid splittings were allowed. For instance, in
(2), it would imply that the alias that used the right protocol would assume E on focus
long after the ownership of that state was recovered by some other alias of that cell.
Consequently, such behavior could allow unexpected changes to be observed by that
alias, potentially resulting in a program stuck on some unexpected value.

4.3 Using Shared State

Using shared state is centered on two constructs: focus (that exposes the shared state of
a protocol) and defocus (that returns the exposed state to the protocol), combined with
our version of the frame rule (Section 4.4). We now describe how focus is checked:

A0 ∈ A

Γ | A0 ⇒ A1 
 focus A : [] � A0, A1 � ·
(t:Focus-Rely)

In general, focus may be applied over a disjunction (⊕) of program states and expected
to work on any of those alternatives. By using A, the programmer can list the types that
may become available after focus, nominating what they expect to gain by focus.

focus results in a typing environment where the step of the protocol that was focused
on (A0 ⇒ A1) now has its rely type (A0) available to use. However, it is not enough
to just make that capability available, we must also hide all other linear resources that
may use that same shared state (directly or indirectly) in order to avoid interference
due to the inspection of private states. To express this form of hiding, the linear typing
environments may include a defocus-guarantee. This element, written as A � Δ, means
that we are hiding the typing environmentΔ until A is satisfied. Therefore, in our system,
the only meaningful type for A is a guarantee type of the form A′; A′′ that is satisfied
when A′ is offered and enables the protocol to continue to be use as A′′. Although the
typing rule shown above only includes a single element in the initial typing environment
(and, consequently, the defocus-guarantee contains the empty typing environment, ·),
this is not a limitation. In fact, the full potential of (t:Focus-Rely) is only realized when
combined with (t:Frame). Together they allow for the non-lexically scoped framing of
potentially shared state, where the addition of resources that may conflict with focused
state will be automatically nested inside the defocus-guarantee (�). Operationally share,
focus, and defocus are no-ops which results in those expressions having type unit ([]).

Γ | Δ0, A′, A′; A′′ � Δ1 
 defocus : [] � Δ0, A′′, Δ1
(t:Defocus-Guarantee)

The complementary operation, defocus, simply checks that the required guarantee type
(A′) is present. In that situation, the typing environment (Δ1) that was hidden on the
right of � can now safely be made available once again. At the same time, the step of the
protocol is concluded leaving the remainder protocol (A′′) in the typing environment.
Nesting of defocus-guarantees is possible, but is only allowed to occur on the right of �.
Note that defocus-guarantees can never be captured (such as by functions, see Fig. 3 of
Section 3) and, therefore, pending defocus operations cannot be forgotten or ignored.
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Example. We now look at the implementation of the put and close functions to exem-
plify the use of focus and defocus. Both functions are closures that capture an enclosing
Γ where t is a known location such that tail has type ref t. T was defined above as:
∀p.(rw p Empty#[]⇒ rw p Node#R ⊕ rw p Closed#[]) where R is a pair of an inte-
ger and a protocol for the head, H (whose definition, given above, is not important here).

9 put = fun( e : int :: rw t exists p.(ref p :: T[p]) ).

Γ = ...,tail : ref t, t : loc, e : int | Δ = rw t ∃p.(ref p :: T[p])
10 open <l,last> = new Empty#{} in Γ = ...,last : ref l, l : loc | Δ = ..., rw l Empty#[]
11 open <o,oldlast> = !tail in Γ = ..., oldlast : ref o | Δ = rw t [], rw l Empty#[], T[o]
12 focus (rw o Empty#[]); Δ = ..., rw o Empty#[], (rw o Node#R) ⊕ (rw o Closed#[]); none � ·
13 share (rw l Empty#[]) as H[l] || T[l]; Δ = ...,T[l],H[l], ...
14 oldlast := Node#{ e, <l,last::H[l]> }; Δ = ...,rw o Node#R, ...
15 defocus; Δ = rw t [], T[l], none
16 tail := <l, last::T[l]> Δ = rw t ∃p.(ref p :: T[p])
17 end
18 end,
19 close = fun( _ : [] :: rw t exists p.(ref p :: T[p]) ).

Γ = ...,tail : ref t, t : loc, : [] | Δ = rw t ∃p.(ref p :: T[p])
20 open <l,last> = !tail in Γ = ...,last : ref l, l : loc | Δ = rw t [], T[l]
21 delete tail; Δ = T[l]
22 focus (rw l Empty#[]); Δ = rw l Empty#[], (rw l Node#R) ⊕ (rw l Closed#[]); none � ·
23 last := Closed#{}; Δ = rw l Closed#[], (rw l Node#R) ⊕ (rw l Closed#[]); none � ·
24 defocus Δ = ·
25 end,

The put function takes an integer stacked with a capability for t. The capability is
automatically unstacked to Δ. Since we are inserting a new element at the end of the
buffer, we create a new node that will serve as the new last node of that list. On line
11, the oldlast node is read from the tail cell by opening the abstracted location it
contains. Such location refers a protocol type, for which we must use focus (line 12) to
gain access to the state that it shares. Afterwards, we modify the contents of that cell by
assigning it the new node. This node contains the alias for the new tail as will be used
by the head alias. The T component of that split (line 13) is stored in the tail. The
defocus of line 15 completes the protocol for that cell, meaning that the alias will no
longer be usable through there. Carefully note that the share of line 13 takes place after
focus. If this were reversed, then the type system would conservatively hide the two
newly created protocols making it impossible to use them until defocus. By exploiting
the fact that such capability is not shared, we can allow it to not be hidden inside � since
it cannot interfere with shared state. close should be straightforward to understand.

4.4 Framing State

On its own, (t:Focus-Rely) is very restrictive since it requires a single rely-guarantee
protocol to be the exclusive member of the linear typing environment. This happens
because more complex applications of focus are meant to be combined with our version
of the frame rule. Together they enable a kind of mutual exclusion that also ensures that
the addition of any potentially interfering resources will forcefully be on the right of �
(thus making them inaccessible until defocus). The typing rule is as follows:
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Γ | Δ0 
 e : A � Δ1

Γ | Δ0 �− Δ2 
 e : A � Δ1 �− Δ2
(t:Frame)

Framing serves the purpose of hiding (“frame away”) parts of the footprint (Δ2) that
are not relevant to typecheck a given expression (e), or can also be seen as enabling
extensions to the current footprint. In our system, such operation is slightly more com-
plex than traditional framing since we must also ensure that any such extension will not
enable destructive interference. Therefore, types that may refer (directly or
indirectly) values that access shared cells that are currently inconsistent due to pend-
ing defocus cannot be accessible and must be placed “inside” (on the right of �) the
defocus-guarantee. However, statically, we can only make such distinction conserva-
tively by only allowing types that are non-shared (and therefore that are known to
never conflict with other shared state) to not be placed inside the defocus-guarantee.
The formal definition of non-shared is in [21], but for this presentation it is sufficient
to consider it as pure types, or capabilities (rw p A) that are not rely-guarantee protocols
and that whose contents are also non-shared. This means that all other linear types (even
abstracted capabilities and linear functions) must be assumed to be potential sources of
conflicting interference. For instance, these types could be abstracting or capturing a
rely-guarantee protocol that could then result in a re-entrant inspection of the shared
state.

To build the extended typing environment, we define an environment extension (�−)
operation that takes into account frame defocus-guarantees up to a certain depth. This
means that one can always consider extensions of the current footprint as long as any
added shared state is hidden from all focused state. By conservatively hiding it behind
a defocus-guarantee, we ensure that such state cannot be touched. This enables locality
on focus: if a protocol is available, then it can safely be focused on.

Definition 2 (Environment Extension). Given environments Δ and Δ′ we define en-
vironment extension, noted Δ �− Δ′, as follows. Let Δ = Δn, Δs where n-indexed envi-
ronments only contains non-shared elements and s-indexed environments contain the
remaining elements (i.e. all those that may, potentially, include sharing). Identically,
assume Δ′ = Δ′n, Δ′s. Extending Δ with Δ′ corresponds to Δ �− Δ′ = Δn, Δ

′
n, Δ
′′
s where:

(a) Δ′′s = Δs0 , A � ( Δs1 �− Δ′s ) if Δs = Δs0 , A � Δs1

(b) Δ′′s = Δs, Δ
′
s otherwise.

that either (a) further nests the shared part of Δ′ deeper in Δs1 ; or (b) simply composes
Δ′ if the left typing environment (Δ) does not carry a defocus-guarantee.

Although the definition appears complex, it works just like regular environment com-
position when Δ′ does not contain a defocus-guarantee, i.e. the (b) case. The complexity
of the definition arises from the need to nest these structures when they do exist, which
results in the inductive definition above. In that situation, we must ensure that any po-
tentially interfering shared state is placed deep inside all previously existing defocus-
guarantees, so as to remain inaccessible. This definition is compatible with the basic
notion of disjoint separation, but (from a framing perspective) allows us to frame-away
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defocus-guarantees beyond a certain depth. Such state can be safely hidden if the un-
derlying expression will not reach it (by defocusing).

The definition allows a (limited) form of multi-focus. For instance, while a defocus
is pending we can create a new cell and share it through two new protocols. Then,
by framing the remaining part of the typing environment, we can now focus on one
of the new protocols. The old defocus-guarantee is then nested inside the new defocus-
guarantee that resulted from the last focus. This produces a “list” of pending guarantees
in the reverse order on which they were created through focus. Through framing we can
hide part of that “list” after a certain depth, while preserving its purpose.

Example. We now look back at the focus of line 12. To better illustrate framing, we
consider an extra linear type (that is not non-shared), S , to show how it will become
hidden (on the right of �) after focus. We also abbreviate the two non-shared capabilities
(“rw t []” and “rw l Empty#[]”)4 as A0 and A1, and abbreviate the protocol so that it does
not show the type application of location o. With this, we get the following derivation:

E ∈ E

Γ | E⇒ (N ⊕ C) 
 focus E : [] � E, (N ⊕ C); none � · (3)

Γ | (E⇒ (N ⊕ C)) �− S , A0, A1 
 focus E : [] � (E, (N ⊕ C); none � ·) �− S , A0, A1

(2)

Γ | E⇒ (N ⊕ C), S , A0, A1 
 focus E : [] � E, ((N ⊕ C); none � S ),A0, A1

(1)

where (1) - (Environment Extension), (2) - (t:Frame), and (3) - (t:Focus-Rely).
Note that frame may add elements to the typing environment that cannot be instanti-

ated into valid heaps. That is, the conclusion of the frame rule states that an hypothesis
with the extended environment typechecks the expression with the same type and result-
ing effects. Not all such extensions obey store typing just like such typing rule enables
adding multiple capabilities to one same location that can never be realized in an actual,
correct, heap. However, our preservation theorem ensures that starting from a correct
(stored typed) heap and typing environment, we cannot reach an incorrect heap state.

4.5 Consumer Code

We now show the last function of the pipe example, tryTake:

26 tryTake = fun( _ [] :: rw h exists p.(ref p :: H[p]) ). Δ = rw h ∃p.(ref p :: H[p])
27 open <f,first> = !head in Δ = rw h [] , (N[ f ]⇒ none) ⊕ (C[ f ]⇒ none) ⊕ (E[ f ] ⇒ E[ f ] ; ...)

[a] Δ = rw h [], N[ f ] ⇒ none [b] Δ = rw h [], C[ f ]⇒ none [c] Δ = rw h [], E[ f ]⇒ E[ f ] ; ...
28 focus C[f], E[f], N[f]; // same abbreviations that were defined above

[a] Δ = ..., N[ f ], none; none � · [b] Δ = ..., C[ f ], none; none � · [c] Δ = ..., E[ f ], E[ f ] ; ... � ·
29 case !first of

30 Empty#_ → [c] Δ = rw h [] , rw f [] , rw f Empty#[]; ... � ·
31 first := Empty#{}; // restore linear type

[c] Δ = rw h [] , rw f Empty#[] , rw f Empty#[]; ... � ·
32 defocus; // the next assignment must occur after defocus and just on this branch

[c] Δ = rw h [] , H[ f ]
33 head := <f,first::H[f]>; [c] Δ = rw h ∃p.(ref p :: H[p])
34 NoResult#{} : NoResult#([] :: rw h ∃p.(ref p :: H[p])) //assume auto stacked [c] Δ = ·
35 | Closed#_ → [b] Δ = rw h [] , rw f [] , none; none � ·
4 Note that the content of each capability can be made non-shared by subtyping rules.
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36 delete first; [b] Δ = rw h [] , none; none � ·
37 delete head; [b] Δ = none; none � ·
38 defocus; [b] Δ = ·
39 Depleted#{} : Depleted#[] [b] Δ = ·
40 | Node#[element,n] → //opens pair

[a] Δ = rw h [] , rw f [] , n : ∃p.(ref p :: H[p]) , none; none � ·
41 delete first; [a] Δ = rw h [] , n : ∃p.(ref p :: H[p]) , none; none � ·
42 head := n; [a] Δ = rw h ∃p.(ref p :: H[p]) , none; none � ·
43 defocus; [a] Δ = rw h ∃p.(ref p :: H[p])
44 Result#element : Result#(int :: rw h ∃p.(ref p :: H[p])) // assume auto stacked [a] Δ = ·
45 end
46 end

The code should be straightforward up to the use of alternative program states (⊕).
This imprecise state means that we have one of several different alternative capabilities
and, consequently, the expression must consider all of those cases separately. On line
28, to use each individual alternative of the protocol, we check the expression sepa-
rately on each alternative (marked as [a], [b], and [c] in the typing environments), cf.
(t:Alternative-Left) in Fig. 3. Our case gains precision by ignoring branches that are
statically known to not be used. On line 29, when the type checker is case analyzing the
contents of first on alternative [b] it obtains type Closed#[]. Therefore, for that al-
ternative, type checking only examines the Closed tag and the respective case branch.
This feature enables the case to obey different alternative program states simultane-
ously, although the effects/guarantee that each branch fulfills are incompatible.

5 Technical Results

Our soundness results (details in [21]) use the next progress and preservation theorems:

Theorem 1 (Progress). If e0 is a closed expression (and where Γ and Δ are also closed)
such that Γ | Δ0 
 e0 : A � Δ1 then either:

– e0 is a value, or;
– if exists H0 such that Γ | Δ0 
 H0 then 〈 H0 || e0 〉 �→ 〈 H1 || e1 〉.

The progress statement ensures that all well-typed expressions are either values or, if
there is a heap that obeys the typing assumptions, the expression can step to some other
program state — i.e. a well-typed program never gets stuck, although it may diverge.

Theorem 2 (Preservation). If e0 is a closed expression such that:

Γ0 | Δ0 
 e0 : A � Δ Γ0 | Δ0 �− Δ2 
 H0 〈 H0 || e0 〉 �→ 〈 H1 || e1 〉
then, for some Δ1 and Γ1 we have: Γ0, Γ1 | Δ1 �− Δ2 
 H1 Γ0, Γ1 | Δ1 
 e1 : A � Δ

The theorem above requires the initial expression e0 to be closed so that it is ready
for evaluation. The preservation statement ensures that the resulting effects (Δ) and type
(A) of the expression remains the same throughout the execution. Therefore, the initial
typing is preserved by the dynamics of the language, regardless of possible environment
extensions (�− Δ2). This formulation respects the intuition that the heap used to evaluate
an expression may include other parts (Δ2) that are not relevant to check that expression.
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We define store typing (see [21]), noted Γ | Δ 
 H, in a linear way so that each heap
location must be matched by some capability in Δ or potentially many rely-guarantee
protocols. Thus, no instrumentation is necessary to show these theorems.

Destructive interference occurs when an alias assumes a type that is incompatible
with the real value stored in the shared state, potentially causing the program to become
stuck. However, we proved that any well-typed program in our language cannot become
stuck. Thus, although our protocols enable a diverse set of uses of shared state, these
theorems show that when rely-guarantee protocols are respected those usages are safe.

6 Additional Examples

We now exemplify some sharing idioms captured by our rely-guarantee protocols.

6.1 Sharing a Linear ADT

Our protocols are capable of modeling monotonic [12,24] uses of shared state. To illus-
trate this, we use the linear stack ADT from [22] where the stack object has two possible
typestates: Empty and Non-Empty. The object, with an initial typestate E(mpty), is ac-
cessible through closures returned by the following “constructor” function:

!( ∀T. []� ∃E.∃NE. ![ push : T :: E ⊕ NE � [] :: NE,
pop : [] :: NE� T :: E ⊕ NE,

isEmpty : [] :: E ⊕ NE� Empty#([] :: E) + NonEmpty#([] :: NE),
del : [] :: E� [] ] :: E )

Although the capability to that stack is linear, we can use protocols to share it. This
enables multiple aliases to that same object to coexist and use it simultaneously from
unknown contexts. The following protocol converges the stack to a non-empty types-
tate, starting from an imprecise alternative that also includes the empty typestate.

( NE ⊕ E )⇒ NE ; rec X.( NE⇒ NE ; X )

Monotonicity means that the type becomes successively more precise, although each
alias does not know when those changes occurred. Note that, due to focus, the object
can undergo intermediate states that are not compatible with the required NE guarantee.
However, on defocus, clients must provide NE such as by pushing some element to the
stack. The protocol itself can be repeatedly shared in equal protocols. Since each copy
will produce the same effects as the original protocol, their existence is not observable.

6.2 Capturing Local Knowledge

Although our types cannot express the same amount of detail on local knowledge as
prior work [4, 18], they are expressive enough to capture the underlying principle that
enables us to keep increased precision on the shared state between steps of a protocol.

For this example, we use a simple two-states counter. In it, N encodes a number that
may be zero and P some positive number, with the following relation between states:
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N � Z#[] + NZ#int P � NZ#int (note that: P <: N, vital to show conformance)

We now share this cell in two asymmetric roles: IncOnly, that limits the actions of the
alias to only increment the counter (in a protocol that can be shared repeatedly); and
Any, an alias that relies on the restriction imposed by the previous protocol to be able
to capture a stronger rely property in a step of its own protocol. Assuming an initial
capability of rw p N, this cell can be shared using the following two protocols:

IncOnly � rec X.( rw p N⇒ rw p P ; X )
Any � rec Y.( rw p N⇒ rw p P ; rw p P⇒ rw p N ; Y )

Thus, by constraining the actions of IncOnly we can rely on the assumption that Any
remains positive on its second step, even when the state is manipulated in some other
unknown program context. Therefore, on the second step of Any, the case analysis can
be sure that the value of the shared state must have remained with the NZ tag between
focuses. Note that the actions of that alias allow for it to change the state back to Z.

6.3 Iteratively Sharing State

Our technique is able to match an arbitrary number of aliases by splitting an existing
protocol. Such split can also extend the original uses of the shared state by appending
additional steps, if those uses do not destructively interfere with the old assumptions.

This example shows such a feature by encoding a form of delegation through shared
state that models a kind of “server-like process”. Although single-threaded, such a sys-
tem could be implemented using co-routines or collaborative multi-tasking. The overall
computation is split between three individual workers (for instance by each using a
private list containing cells with pending, shared, jobs) each with a specific task. A
Receiver uses a Free job cell and stores some Raw element in it. A Compressor pro-
cesses a Raw element into a Done state. Finally, the Storer removes the cells in order to
store them elsewhere. In real implementations, each worker would be used by separate
handlers/threads, triggered in unpredictable orders, to handle such jobs.

We also show how we can share multiple locations together, bundled using ∗, by each
job being kept in a container cell while the f lag (used to communicate the information
on the kind of content stored in the container) is in a separate cell. The raw value is
typed with A and the processed value has type B. The types and protocols are:

F � rw f Free#[] ∗ rw c [] R � rw f Raw#[] ∗ rw c A D � rw f Done#[] ∗ rw c B

Receiver � F⇒ R
Compressor � rec X.( F ⇒ F; X ⊕ R⇒ D )

Storer � rec X.( F ⇒ F; X ⊕ rec Y.( R⇒ R; Y ⊕ D⇒ none ) )

The protocol for the Receiver is straightforward since it just processes a free cell
by assigning it a raw value. Similarly, Compressor and Storer follow analogous ideas
by using a kind of “waiting” steps until the cell is placed with the desired type for the
actions that they are to take (note how Storer keeps a more precise context when the
state is not F, even though it is not allowed to publicly modify the state). To obtain these
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protocols through binary splits, we need an intermediate protocol that will be split to
create the Compressor and Storer protocols. The initial split (of F) is as follows:

F � Receiver || rec X.( F⇒ F; X ⊕ R⇒ none )

The protocol on the right is then further split, and its ownership recovery step further
extended with additional steps, to match the two new desired protocols:

rec X.( F ⇒ F; X ⊕ rec Y.( R⇒ R; Y & R⇒ D; D⇒ none ) ) � Compressor || Storer

The Receiver alias never needs to see how the other two aliases use the shared state.
Although the second split is independent from the initial one, protocol conformance
ensures that it cannot cause interference by breaking what Receiver initially relied on.

7 Related Work

We now discuss other works that offer flexible sharing mechanisms. Although there are
other interesting works [1, 2, 4, 5, 7, 31] in the area, they limit sharing to an invariant.

In Chalice [19], programmer-supplied permissions and predicates are used to show
that a program is free of data races and deadlocks. A limited form of rely-guarantee
is used to reason about changes to the shared state that may occur between atomic
sections. All changes from other threads must be expressed in auxiliary variables and
be constrained to a two-state invariant that relates the current with the previous state,
and where all rely and guarantee conditions are the same for all threads.

Several recent approaches that use advanced program logics [9,10,23,30,32] employ
rely-guarantee reasoning to verify inter-thread interference. Although our approach is
type-based rather than logic-based, there are several underlying similarities. Concurrent
abstract predicates [9] extend the concept of abstract predicates [23] to express how
state is manipulated, supporting internally aliased state through a fiction of disjointness
(also present in [16,18]) that is based on rely-guarantee principles and has similarities to
our own abstractions. Their use of rely-guarantee also allows intermediate states within
a critical section, which are immediately weakened (made stable) to account for possi-
ble interference when that critical section is left. Although our use of rely-guarantee is
tied to state (be it references or abstracted state), not threads, our protocols capture an
identical notion of stability through a simpler constraint that ensures all visible states
are considered during protocol conformance. Another modeling distinction is that our
interference specification lists the resulting states (from interference), not the actions
that can (or cannot [10]) occur from external/unknown sources.

Monotonic [12, 24] based sharing enables unrestricted aliasing that cannot interfere
since the changes converge to narrower, more precise, states. Our protocols are able
to express monotonicity. However, since the rely and guarantee types of a step in the
protocol must describe a finite number of states, we lack the type expressiveness of [24].
We believe this concern is orthogonal to our core sharing concepts, and is left as future
work. We are also capable of expressing more than just monotonicity. For instance, due
to ownership recovery, a cell can oscillate between shared and non-shared states during
its lifetime, and with each sharing phase completely unrelated to previous uses.
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Gordon et al. [15] propose a type system where references carry three additional
type components: a predicate (for local knowledge), a guarantee relation, and a rely
relation. They handle an unknown number of aliases by constraining the writes to a
cell to fit within the alias’ declared guarantee, similarly to how rely-guarantee is used
in program logics to handle thread-based interference. Although they support a limited
form of protocol (and their technique can generally be considered as a two-state proto-
col), their system effectively limits the actions allowed by each new alias to be strictly
decreasing since their guarantee must fit within the original alias’ guarantee. Since we
support ownership recovery of shared state, a cell can be shared and return to non-shared
without such restriction. Unlike ours, their work does not allow intermediate inconsis-
tent states since all updates are publicly visible. In addition, their work requires proof
obligations for, among other things, guarantee satisfaction while we use a more straight-
forward definition of protocol conformance that is not dependent on theorem-proving.
However, their use of dependent refinement types adds expressiveness (e.g. their pred-
icates capture an infinite state space, while our state space is finite) but increases the
challenges in automation, as typechecking requires manual assistance in Coq.

Krishnaswami et al. [18] define a generic sharing rule based on the use of frame-
preserving operations over a commutative monoid (later shown to be able to encode
rely-guarantee [8]). The core principle is centered on splitting the internal resources of
an ADT such that all aliases obey an invariant that is shared, while also keeping some
knowledge about the locally-owned shared state. By applying a frame condition over
its specification, their shared resources ensure that any interference between clients is
benign since it preserves the fiction of disjointness. Thus, local assumptions can interact
with the shared state without being affected by the actions done through other aliases
of that shared state. The richness of their specification language means that although
it might not always be an obvious, simple or direct encoding, protocols are likely en-
codable through the use of auxiliary variables. However, our use of a protocol paradigm
presents a significant conceptual distinction since we do not need sharing to be anchored
to an ADT. Therefore, we can share individual references directly without requiring an
intermediary module to indirectly offer access to the shared state, but we also allow
such uses to exist. Similarly, although both models allow ownership recovery, our pro-
tocols are typing artifacts which means that we do not need an ADT layer to enable
this recovery and the state of that protocol can be switched to participate in completely
unrelated protocols, later on. Their abstractions are also shared symmetrically, while
our protocols can restrict the available operations of each alias asymmetrically. Addi-
tionally, after the initial split, our shared state may continue to be split in new ways.
Finally, we use focus to statically forbids re-entrant uses of shared state, while they use
dynamic checks that diverge the execution when such operation is wrongly attempted.

8 Conclusions

We introduced a new flexible and lightweight interference control mechanism, rely-
guarantee protocols. By constraining the actions of an alias and expressing the effects
of the remaining aliases, our protocols ensure that only benign interference can occur
when using shared state. We showed how these protocols capture many challenging
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and complex aliasing idioms, while still fitting within a relatively simple protocol ab-
straction. Our model departs from prior work by, instead of splitting shared resources
encoded as monoids, offering an alternative paradigm of “temporal” splits that model
the coordinated interactions between aliases. A prototype implementation, which uses a
few additional annotations to ensure typechecking is decidable, is currently underway5.
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