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Abstract. Structural subtyping is an important notion for effective
static type analysis; it can be defined either axiomatically by a collection
of subtyping rules, or by means of set inclusion between type interpre-
tations, following the more intuitive approach of semantic subtyping,
which allows simpler proofs of the expected properties of the subtyping
relation.

In object-oriented programming, recursive types are typically inter-
preted inductively; however, cyclic objects can be represented more pre-
cisely by coinductive types.

We study semantic subtyping between coinductive types with records
and unions, which are particularly interesting for object-oriented pro-
gramming, and develop and implement a sound and complete top-down
direct and effective algorithm for deciding it. To our knowledge, this is
the first proposal for a sound and complete top-down direct algorithm
for semantic subtyping between coinductive types.

1 Introduction

Subtyping between structural types is an essential notion for effective static type
analysis of object-oriented languages, and, in particular, of dynamically typed
languages like JavaScript and Python.

In most cases the subtyping relation is defined axiomatically, then algorithms
have to be defined and proved to be (at least) sound and complete (if the relation
is decidable) w.r.t. the given axioms. Such approaches have some drawbacks:
since the relation is specified in an axiomatic way, it may fail to convey the right
intuition behind it, or it may not be completely clear whether the definition fully
captures such an intuition (that is, if the axiomatization is sound and complete
w.r.t. some intended model); furthermore, proving even simple properties, like
transitivity, may be quite hard.

Semantic subtyping has been proposed as a possible solution to these problems
for XDuce [13] and �Duce [12], two statically typed domain specific languages
expressly designed for type safe manipulation of XML documents. In semantic
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subtyping types are interpreted as sets of values, following the intuition that a
type specifies all possible values that an expression of that type may denote; con-
sequently, subtyping corresponds to set inclusion between type interpretations.
In this way, the definition of subtyping is more intuitive, and several properties
can be easily deduced (for instance, transitivity always holds trivially). Semantic
subtyping is particularly suited to naturally supports Boolean type constructors;
for instance, in terms of type interpretation Boolean disjunction and conjunction
correspond to union and intersection on sets of values. Boolean type constructors
(in particular union types) allow types and type analysis to be more precise, but
their expressive power makes the definition of a sound and complete decision
procedure for subtyping more challenging.

Another feature that complicates subtyping (but that is also indispensable)
is type recursion; syntactically, a recursive type corresponds to a regular (a.k.a.
rational) tree defined by a finite set of guarded syntactic equations. In the se-
mantic subtyping approach, semantic interpretation of recursive types requires
to consider the syntactic equations defining a type as semantics equations spec-
ifying sets of values; such equations can be interpreted either inductively or
coinductively. Let us consider, for instance, the recursive type τ defined by

τ = null ∨ 〈el:int , nx:τ 〉.

The type is the union of null , denoting the null reference, and 〈el:int , nx:τ〉, de-
noting all records equipped at least with the two fields el and nx having type int
and τ , respectively (that is, τ corresponds to a simple implementation of linked
lists of integer values). When we turn to consider the semantic interpretation of
τ , denoted by �τ�, because the Boolean type constructor ∨ corresponds to union
of values, we get the following recursive equation:

�τ� = {null} ∪ �〈el:int , nx:τ〉�

which is equivalent to the equation

�τ� = {null} ∪ {〈el �→ vel, nx �→ vnx, . . .〉 | vel ∈ �int� , vnx ∈ �τ�}

where 〈el �→ vel, nx �→ vnx, . . .〉 denotes a record value with fields el and nx asso-
ciated with values vel and vnx, and with possibly other fields. If such an equation
is interpreted inductively (hence, τ is the least solution), then all values v in
�τ� are inductive, and the operation v.nx.nx. . . . .nx is defined only for a finite
number of consecutive selections of field nx. If the equation is interpreted coin-
ductively (hence, τ is the greatest solution), then �τ� contains also coinductive
values v for which the operation v.nx.nx. . . . .nx is defined also for an infinite
number of consecutive selections of field nx; in other words, �τ� contains also
cyclic values.

To better outline the difference between the inductive and coinductive inter-
pretation of recursive types, let us consider the recursive type τ ′ defined by

τ ′ = 〈el:int , nx:τ ′〉.
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In this case we get the equation

�τ� = {〈el �→ vel, nx �→ vnx, . . .〉 | vel ∈ �int� , vnx ∈ �τ�}.
In this case the least solution of the equation is �τ� = ∅ (inductive interpreta-
tion), whereas the greatest solution is �τ� = V , with V 
= ∅; more precisely, V is
the set of all integer lists for which the operation v.nx.nx. . . . .nx is always correct
for an infinite number of consecutive selections of field nx. Therefore, whereas
τ ′ is not very useful if interpreted inductively, when interpreted coinductively it
specifies an interesting property that is verified by all cyclic lists.

As explained in the next section, the ability of representing cyclic values
(hence, to interpret recursive types coinductively) allow more precise type analy-
sis in all those situations where type correctness depends on the fact that objects
(or, more in generally, values) are cyclic. Furthermore, since termination cannot
be usually guaranteed through type analysis, and coinductive interpretations of
types contain both inductive and coinductive values, coinductive interpretation
of types leads to more expressive type systems.

Subtyping on coinductive types has been initially proposed by Amadio and
Cardelli [1] in the context of functional programming; subsequently, an equiva-
lent but more concise definition has been proposed by Brandt and Henglein [10].
In both approaches the subtyping relation is defined axiomatically (no semantic
subtyping) and Boolean type constructors are not considered.

Semantic subtyping has been extensively studied in the context of the lan-
guages XDuce and �Duce [13,12], but recursive types are interpreted inductively,
because values in those languages correspond to XML documents, hence they
cannot be cyclic. For XDuce the decision problem for the subtype relation re-
duces to the inclusion problem between tree automata, which is known to be
EXPTIME-complete [14]. Despite this negative result, it is still possible to de-
fine practical top-down algorithms which work directly on types, and are not
based on determinization of tree automata [14].

More recently, sound but not complete subtyping rules have been proposed
for coinductive types with records and unions [4,5] in the context of abstract
compilation. Subsequently, the problem of semantic subtyping has been proved
to reduce to the inclusion problem between tree automata also for the coinductive
case [9]; such a result has been generalized in the framework of coalgebras.
However, to our knowledge, no practical sound and complete algorithm has been
proposed for deciding semantic subtyping of coinductive types with Boolean type
constructors.

The main contribution of this paper is the definition of a practical top-down
algorithm for deciding semantic subtyping for coinductively interpreted types
in the presence of record and union types. Such an algorithm is derived by a
set of subtyping rules that is proved to be sound and complete w.r.t. semantic
subtyping. To do that we propose and use a new proof technique that can be
fruitfully used for proving soundness results for coinductively defined judgments
(or, dually, for proving completeness results for inductively defined judgments).
A prototype implementation of the algorithm has been developed and has been
made available.
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The rest of the paper is structured in the following way. Section 2 shows
how coinductive types allow more precise type analysis in the presence of cyclic
objects. Section 3 introduces basic definitions and results that are used in the
rest of the paper. Section 4 defines semantic subtyping for coinductive record and
union types, whereas subtyping rules and proofs of soundness and completeness
can be found in Section 5. Finally, Section 6 presents the algorithm derived from
the subtyping rules, and its prototype implementation, while Section 7 draws
conclusion and proposes directions for future work.

2 A Motivating Example

In this section we present an example which shows how coinductive types allow
more precise type analysis in the presence of cyclic objects. Let us consider the
Python code in Figure 1 implementing circular linked lists (with dummy header).

Let us focus on the definition of the private method getNode of class Node, and
try to find which type could be assigned to self for correctly type checking the
body of the method (in Python the first argument of a method, conventionally
called self, corresponds to this in Java).

Let us consider first the following possible candidate types:

τ1 = null ∨ 〈elem:τe, next:τ1〉
τ2 = 〈 〉 ∨ 〈elem:τe, next:τ2〉
τ3 = 〈elem:τe〉 ∨ 〈elem:τe, next:τ3〉

Since for this example we are not particularly interested in the specific type of
the elements of the lists, we assume that field elem has a certain unspecified
type τe.

Types τ1, τ2 and τ3 only differ for the base case: in τ1 and τ2 a sequence of
nodes is terminated by null, and by the empty record, respectively, whereas in
τ3 terminal nodes are represented by the record type 〈elem:τe〉.

Independently of their interpretation (either inductive, or coinductive), all
types do not allow correct typechecking of the body of getNode, because if
we assume that self, and, hence, the local variable n, has one of the tree types
defined above, then the statement n = n.next is not type correct, because access
of field next is not defined for the types null , 〈 〉, and 〈elem:τe〉.

Note that if we consider the analogous code for languages with nominal types
like Java, then the body of the method is correctly typechecked since this has
type Node, but in fact the code is not type safe, because in Java reference types
always include the null reference, and the type system does not check access to
the null reference (hence, well-typed code can throw the NullPointerException
exception).

Let us now consider the following type τ :

τ = 〈elem:τe, next:τ 〉
If self (and, hence, n) has type τ , then the body of getNode typechecks, because
now the statement n = n.next is type safe.
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class Node:
def __init__ (self ,elem):

self.elem = elem
self.next = self

def getNode (self ,index):
n = self
for i in range(0,index):

n = n.next
return n

class CircularList:
def __init__ (self):

self.head = Node(None)
self.size = 0

def __checkBounds(self ,index ,limit):
i f index < 0 or index >= limit:

raise IndexError("list index out of range")

def add(self ,index ,elem):
self.__checkBounds(index ,self.size+1)
n = self.head.getNode (index)
tmp = Node(elem)
tmp.next = n.next
n.next = tmp;
self.size+=1

def get(self ,index):
self.__checkBounds(index ,self.size)
return self.head.getNode (index +1).elem

Fig. 1. Implementation of circular linked lists in Python

This result is independent of the interpretation of τ ; however, as already
observed in the introduction, if τ is interpreted inductively, then we get �τ� = ∅;
but if the type of self is empty, then method getNode is useless, since no value
can be passed to it. Indeed, since �τ� = ∅, by semantic subtyping we have that
τ is subtype of any type, therefore any well-typed expression that can possibly
return a value, cannot have type τ , otherwise the type system would be unsound.

For instance, the return type of method __init__ of class Node (this is
similar to a Java constructor) cannot be τ , because, otherwise the expression
Node(elem) in method add would have the empty type τ , and this would not
be sound. As a consequence, class Node and CircularList could not be typed
if τ is interpreted inductively. On the contrary, if τ is interpreted coinductively,
then �τ� 
= ∅, and both classes can be successfully typechecked.

We conclude this section by observing that if self has type τ1, τ2 or τ3
as defined above, then method getNode can typecheck successfully if both the
following items are verified:

1. the statement n = n.next is guarded by a suitable test; for instance, if
self has type τ1, then n = n.next should be replaced by the statement
if(n != None): n = n.next (None is the equivalent of Java null);

2. type analysis has to be flow sensitive, and the type of n has to be narrowed
in the then branch of the if statement we introduced.
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Item 1 makes the code less efficient by adding a superfluous check that can be
avoided if we know that class Node is only used by class CircularList. Item
2 requires a more sophisticated type analysis; flow sensitive typing and type
narrowing are challenging tasks, especially in the presence of aliasing.

If self is assigned type τ (interpreted coinductively), then neither of the items
above are required.

3 Background

In this section we define record and union coinductive types and present defini-
tions and general results that will be used in the rest of the paper.

3.1 Types and Tree

In the rest of the paper we will deal with finitely branching trees which are al-
lowed to contain infinite paths. A formalization of such infinite trees has been
given by Courcelle [11]. In the rest of the paper by term we mean a finitely
branching trees which are allowed to contain infinite paths, where nodes corre-
spond to constructors, and the number of children of a node correspond to its
arity.

These trees will represent, either types, or proof trees.
The following proposition states a well-known property of regular terms [11,16].
A system of guarded equations is a finite set of syntactic equations of shape

X = e, where X is a variable, and e may contains variables, such that there
exist no subsets of equations having shape X0 = X1, . . . , Xn = X0.

A solution to a set of guarded equations is a substitution to all variables
contained in the equations that satisfies all syntactic equations.

Definition 1. A regular tree is a possibly infinite tree containing a finite set of
subtrees. A type is regular if it is a term that corresponds to a regular tree, that
is, it has a finite set of subterms.

Proposition 1. Every regular tree t can be represented by a system of guarded
equations.

We define types as all regular terms coinductively defined as follows:

τ ::= 0 | int | null | 〈f1:τ1, . . . , fn:τn〉 | τ1 ∨ τ2

A record type 〈f1: τ1 . . . fn:τn〉 is a finite map from field names to types,
therefore we implicitly assume that field names are distinct and their order is
immaterial. If τ is a record type, then dom(τ) denotes the set of its fields, τ(f)
the type associated with f (if f ∈ dom(τ)), and τ [f :τ ′] the update of record τ
with the association of field f to type τ ′.

Union type τ1 ∨ τ2 intuitively represents the union of the value of τ1 and
τ2 [8,15]. Type 0 is the empty type, and int represents the set �, and null
denotes the singleton set containing the null reference.
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Example 1. The type of all cyclic or non-cyclic integer lists can be defined by
the following guarded equation:

T = 〈elm:int , next:T 〉 ∨ null

The type is regular and has only the following four subterms:

T 〈elm:int , next:T 〉 int null

Example 2. Let us consider the terms Ti for all natural numbers i, defined by
the following system of infinite guarded equations:

T0 = null
Ti+1 = 〈pred: Ti〉 (for all i ≥ 0)

The type T0 ∨ T1 ∨ . . . ∨ Tn ∨ Tn+1 . . . is not a regular type.

We now introduce the notion of contractive type, which allows us to reject all
those types whose interpretation is not well-defined (see the example at the end
of Section 4 for the details).

Definition 2. A type is contractive if it does not contain infinite paths whose
nodes are all labeled by union types.

Example 3. The type T = T ∨ int is not contractive, because there exists an
infinite path whose nodes are all labeled by the union type T ∨ int .

∨
∨

∨
int

int

int

Example 4. The type T = 〈f : T ∨ int〉 is contractive because all infinite paths
have nodes that are alternatively labeled by a record and a union type.

〈f : 〉 ∨
〈f : 〉 ∨

〈f : 〉

int

int

In the rest of the paper all types are restricted to be regular and contractive.
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3.2 Principle of Induction and Coinduction

Let U denotes a set universe, and P(U) the powerset of U . Given a set of rules
defining a subset of U , the immediate consequence operator F is the endofunction
on the parts of U , that given a set of premises X , returns the set of consequences
immediately derivable from the rules.

Definition 3. Let X be a set in P(U). X is F-closed if F (X) ⊆ X; X is F-
consistent if X ⊆ F (X); X is a fixed point of F if X = F (X).

Theorem 1 (Tarski-Knaster)
Let F :P(U) → P(U) be monotone.

– The least fixed point (lfp) of F is the intersection of all F-closed sets.
– The greatest fixed point (gfp) of F is the union of all F-consistent sets.

We denote as lfp(F) the least fixed point of F and as gfp(F) the greatest fixed
point of F.

From the previous theorem the following induction and coinduction principles
can be derived.

Induction principle. Let p and q be two predicates over P(U), and let p be
inductively defined by a set of rules whose immediate consequence is F. If the
rules for p are closed w.r.t. predicate q, then ∀x ∈ U p(x) ⇒ q(x) holds. This
comes from the fact that by definition a rule is closed w.r.t. q iff the following
implication holds: if the premises satisfy q, then the conclusion satisfies q. Indeed,
this is equivalent to F ({x | q(x)}) ⊆ {x | q(x)}, which implies {x | p(x)} ⊆ {x |
q(x)} for the previous theorem.

Coinduction principle. Let p and q be two predicates over P(U), and let q be
coinductively defined by a set of rules whose immediate consequence is F. Let
us assume that the following property holds:
for all x ∈ U , if p(x) holds, then there exists a rule for q that can be applied to
a set of premises satisfying p to derive the consequence x. Then ∀x ∈ U p(x) ⇒
q(x) holds. This comes from the fact that the condition above is equivalent to
{x | p(x)} ⊆ F ({x | p(x)}), which implies {x | p(x)} ⊆ {x | q(x)} for the
previous theorem.

In the rest of the paper we will use the following convention: rules that have to
be interpreted inductively use thin lines, while rules that have to be interpreted
coinductively use thick lines.

4 Semantic Subtyping between Coinductive Types

We interpret types as sets of values. Values are all finite and infinite (but regular)
terms coinductively defined as follows (where i ∈ �):

v ::= i | null | 〈f1 �→ v1, . . . , fn �→ vn〉
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Analogously to record types, record values are finite maps from field names
to values, therefore we implicitly assume that field names are distinct and their
order is immaterial. The interpretation of types is coinductively defined by the
rules in Figure 2.

Thicker lines indicate that rules are interpreted coinductively, that is, also
infinite proof trees are considered; this is equivalent to considering the greatest
fixed-point of the function induced by the rules and corresponding to one step
of inference [16].

Note that a record value can belong to a record type with fewer fields, the
right-hand-side ellipsis in the record value indicates that the value is allowed to
contain more fields.

(null ∈)

null ∈ null
(int ∈)

i ∈ int
i∈� (l-or ∈)

v ∈ τ1

v ∈ τ1 ∨ τ2
(r-or ∈)

v ∈ τ2

v ∈ τ1 ∨ τ2

(rec ∈)

v1 ∈ τ1, . . . , vn ∈ τn

〈f1 �→ v1, . . . , fn �→ vn, . . .〉 ∈ 〈f1:τ1, . . . , fn:τn〉

Fig. 2. Value membership

For instance, the following tree is a proof for 〈f �→ 1〉 ∈ int ∨ 〈f :int〉.

(r-or ∈)

(rec ∈)

(int ∈)

1 ∈ int

〈f �→ 1〉 ∈ 〈f :int〉
〈f �→ 1〉 ∈ int ∨ 〈f :int〉

The following derivation for a non-contractive type motivates the definition
of contractivity introduced in the previous section (see Def. 2); consider the
regular type τ s.t. τ = τ ∨ int , and the following infinite proof containing just
applications of rules (l-or ∈):

(l-or ∈)

(l-or ∈)

...

null ∈ τ

null ∈ τ

Here we have a non-sound derivation as null ∈ τ derived above: τ corresponds
to an infinite union of int , and therefore its interpretation cannot contain the null
type. Non-contractive types can be correctly handled by introducing the notion
of contractive proof tree [4]. Since from contractive types only contractive proofs
can be derived, and non contractive types do not extend the expressive power1

of types, it is more convenient to restrict types to contractive ones.

1 Indeed, for any non contractive type there exists an equivalent contractive one.
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Definition 4. The interpretation of τ , is defined by �τ� = {v | v ∈ τ holds}.
Lemma 1. If τ = 0 then �τ� = ∅, that is, v 
∈ 0.

Proof. By definitions of membership rules we can not create a derivation for
v ∈ 0 then by Def. 4 �τ� = ∅.
Lemma 2. If τ = τ1 ∨ τ2 then �τ� = ∅ iff �τi� = ∅ ∀i ∈ 1..2, that is, v 
∈ τi ∀i ∈
1..2.

Proof.
⇒ By Def. 4 and by definitions of membership rules (�v .v ∈ τi holds) ∀τi ∈ 1..n,
that is, by Def. 4 �τi� = ∅ ∀ti ∈ τ .
⇐ By Def. 4 we have (�v .v ∈ τi holds) ∀τi ∈ τ , that is, by definitions of
membership rules we can not create a derivation for v ∈ τ then by Def. 4
�τ� = ∅.
Lemma 3. If τ = 〈f1:τ1, . . . , fn:τn〉 then �τ� = ∅ iff ∃i ∈ 1..n �τi� = ∅, that is,
∃i ∈ 1..n vi 
∈ τi.

Proof.
⇒ By Def. 4 and by definitions of membership rules ∃i ∈ 1..n. (�v .v ∈ τi holds),
that is, by Def. 4 ∃i ∈ 1..n �τi� = ∅.
⇐ By Def. 4 we have ∃i ∈ 1..n. (�v .v ∈ τi holds), that is, by definitions of
membership rules we can not create a derivation for v ∈ τ then by Def. 4
�τ� = ∅.

Given a type τ , and a set of types Ξ, the restriction of τ w.r.t. Ξ, denoted by
τ|Ξ , is coinductively defined as follows:

– τ|Ξ = τ , if τ ∈ {0, null , int};
– (τ1 ∨ τ2)|Ξ = τ1|Ξ ∨ τ2|Ξ , if τ1, τ2 
∈ Ξ;

– (τ1 ∨ τ2)|Ξ = null , if τ1 ∈ Ξ or τ2 ∈ Ξ;

– 〈f1:τ1, . . . , fn:τn〉|Ξ = 〈fi:τi|Ξ | 1 ≤ i ≤ n, τi 
∈ Ξ〉.
The restriction τ|Ξ removes from τ all types contained in Ξ; intuitively, if τ|Ξ

returns a type whose interpretation is empty, then it means that the emptiness
of τ can be proved without assuming any assumption on the types in Ξ (that
is, those types no longer need to be inspected; see Lemma 6). For this reason,
if either τ1 or τ2 are contained in Ξ, then τ1 ∨ τ2 cannot be proved empty, and,
therefore, the restriction (τ1 ∨ τ2)|Ξ returns a non empty type (for simplicity,
the null type is returned, but any other non empty type could be returned as
well). A similar reasoning applies to the case of record types.

In the following we show some examples of application of the restriction op-
erator.

For all types τ , τ|∅ = τ .
If τ1 is the type s.t. τ1 = 〈f :τ2〉, τ2 = 〈g:τ1, h:0〉, then τ1|{τ1} = 〈f :〈h:0〉〉,

τ2|{τ1} = 〈h:0〉, and τ1|{τ2} = 〈〉.
If τ3 is the type s.t. τ3 = τ4 ∨ 0, τ4 = 〈f :τ3〉, then τ3|{τ3} = 〈〉 ∨ 0, and

τ4|{τ3} = 〈〉.
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Lemma 4. If
�
τ|Ξ

�
= ∅, then �

τ|Ξ∪{τ}
�
= ∅.

Proof. It is sufficient to prove that if v ∈ τ|Ξ∪{τ}, then there exists v′ ∈ τ|Ξ . The
value v′ corresponds to ext(v, τ, Ξ, τ, v), where ext(v, τ, Ξ, τ ′, v′) is coinductively
defined as follows:

– ext(v, τ, Ξ, τ ′, v′) = v, if τ ∈ {null , int};
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = ext(v, τ1, Ξ, τ, v′), if τ1, τ2 
∈ Ξ, v ∈ τ1|Ξ∪{τ}
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = ext(v, τ2, Ξ, τ, v′), if τ1, τ2 
∈ Ξ, not v ∈ τ1|Ξ∪{τ},

and v ∈ τ2|Ξ∪{τ}
– ext(v, τ1 ∨ τ2, Ξ, τ, v′) = null if τ1 ∈ Ξ or τ2 ∈ Ξ
– ext(v, 〈f1:τ1, . . . , fn:τn〉, Ξ, τ, v′) =

〈fi �→ ext(v.fi, τi, Ξ, τ, v′) | 1 ≤ i ≤ n, τi 
∈ Ξ ∪ {τ}〉∪
〈fi �→ ext(v′, τ, Ξ, τ, v′) | 1 ≤ i ≤ n, τi = τ 〉

The proof can be concluded by proving by coinduction on the definition of
value membership that if v ∈ τ|Ξ∪τ ′ and v′ ∈ τ ′|Ξ∪τ ′ , then ext(v, τ, Ξ, τ ′, v′) ∈
τ|Ξ .

5 A Sound and Complete Inference System

In this section we define a system of coinductive subtyping rules and prove that
it is sound and complete with respect to the definition of semantic subtyping
given in Section 4.

Remark : Unless explicitly stated, in the rest of the section we only consider
regular and contractive types.

5.1 Type Normalization

The problem of defining a decision procedure for subtyping becomes simpler if
types are first normalized; such a normalization simplifies empty types, and is
driven by the following laws:

τ ∨ 0 = 0 ∨ τ = τ 〈. . . f :0 . . .〉 = 0

This normalization needs to be performed only once, before deciding subtyp-
ing; the subtyping rules, and the derived subtyping algorithm preserve this type
normalization, hence no further normalization steps are required.

We use the notation τ1 � τ2 to indicate that type τ1 is normalized to type
τ2; for instance, the judgment (int ∨ 0) ∨ (0 ∨ int) � int ∨ int holds. To see a
more involved example, let us consider the regular type defined by τ = 0 ∨
〈f :τ, g:0 ∨ 0〉; then, τ � 0 holds.

Normalization requires a decision procedure for testing emptiness of types;
non-emptiness is naturally specified by the coinductive rules in Figure 3.

Clearly, the primitive types int and null are not empty. A union type τ1 ∨ τ2
is not empty if at least one between τ1 and τ2 is not empty. A record type is
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int �∼= ∅ null �∼= ∅
τi �∼= ∅

τ1 ∨ τ2 �∼= ∅
i ∈ 1..2

τ1 �∼= ∅, . . . , τn �∼= ∅
〈f :τ1, . . . , fn:τn〉 �∼= ∅

Fig. 3. Non-emptiness of types

not empty if all types of its fields are not empty. Note that the rules must be
interpreted coinductively because in some cases infinite proof trees are required.
Consider for instance the type defined by τ = 〈f :τ 〉; if v = 〈f �→ v〉, then v ∈ τ ,
therefore τ 
∼= ∅ must hold. This can be proved by an infinite proof tree obtained
by repeatedly applying the rule for records.

Soundness and Completeness of the Judgment τ �∼= ∅. Before proving
that the judgment τ 
∼= ∅ is sound and complete w.r.t. the predicate �τ� 
= ∅, we
illustrate the new proof technique we propose and use; this is the same technique
that will be adopted for proving soundness and completeness of the subtyping
rules.

Soundness and completeness are expressed by the implications τ 
∼= ∅ ⇒ �τ� 
=
∅, and �τ� 
= ∅ ⇒ τ 
∼= ∅, respectively.

Since τ 
∼= ∅ is defined coinductively, completeness can be proved in a standard
way by coinduction on the rules defining τ 
∼= ∅, as explained in Section 3.
Unfortunately, the same technique cannot be adopted for proving soundness
(hence, for coinductive systems the difficult direction to prove is soundness,
whereas for inductive systems is completeness).

To prove soundness we first consider the equivalent implication (�τ� = ∅ ⇒
τ 
∼= ∅ does not hold) corresponding to a proof by contradiction; then we observe
that this implication can be proved if we split the implication in the following
two:

�τ� = ∅ ⇒ τ ∼= ∅ ⇒ (τ 
∼= ∅ does not hold) (1)

where τ ∼= ∅ is the complement judgment of τ 
∼= ∅ corresponding to testing type
emptiness. Now it seems we get stuck because if τ ∼= ∅ is defined inductively,
then the implication on the left hand side cannot be proved easily, whereas if
τ ∼= ∅ is defined coinductively, the same consideration applies for the implication
on the right hand side.

However, we still can have the cake and eat it too if we are able to define
the judgment τ 
∼= ∅ with an inference system whose inductive and coinductive
interpretation coincide (hence, there exists a unique fixed point which is both
the least and the greatest). A sufficient condition for this is that all proof trees
of the inference system are finite.

The complement judgment we are looking for is defined in Figure 4. We use
thin lines in the rules because it is sufficient to interpret the system inductively
to define the judgment, however if we interpret the rules coinductively we get
the same definition of emptiness for regular and contractive types.

Note that the only role of the set of types Ξ is to force the inductive and coin-
ductive interpretation of the rules in Figure 4 to coincide, as proved in Lemma 5.
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Ξ � 0 ∼= ∅
Ξ � τ1 ∼= ∅ Ξ � τ2 ∼= ∅

Ξ � τ1 ∨ τ2 ∼= ∅
Ξ ∪ {τ} � τi ∼= ∅

Ξ � τ ∼= ∅
τ = 〈f :τ1, . . . , fn:τn〉
τ 	∈ Ξ
i ∈ {1, . . . , n}

Fig. 4. Emptiness of types

To distinguish between the two interpretations we use the notations Ξ � τ ∼= ∅
and Ξ � τ ∼= ∅ to indicate judgments corresponding to the inductive and coin-
ductive interpretation of the rules, respectively.

Lemma 5. Ξ � τ ∼= ∅ implies Ξ � τ ∼= ∅.
Proof. A direct consequence of the fact that τ is regular (hence Ξ cannot grow
indefinitely) and contractive (hence the rule for union can be applied consecu-
tively only a finite number of times).

We can now prove the two implications in (1) on the left and right side,
respectively. The following two lemmas with Lemma 5 prove the soundness of
τ 
∼= ∅.

In Lemma 6 two different hypotheses are needed to ensure that the claim
holds. For instance, �〈f :0〉� = ∅, but {〈f :0〉} � 〈f :0〉 ∼= ∅ does not hold because
of the side condition of the rule for record types; in this case the hypothesis
τ 
∈ Ξ is not verified, but

�
τ|Ξ

�
= ∅ holds. As another example, if τ is s.t.

τ = 〈f :〈g:τ, h:0〉〉, then �τ� = ∅, but {〈g:τ, h:0〉} � τ ∼= ∅ does not hold (again,
because of the side condition of the rule for record types). In this case the
hypothesis τ 
∈ Ξ is verified, but

�
τ|Ξ

�
= ∅ does not hold.

Lemma 6. If τ 
∈ Ξ, and
�
τ|Ξ

�
= ∅, then Ξ � τ ∼= ∅.

Proof. By coinduction on the rules for Ξ � τ ∼= ∅. We only show the interesting
case for τ = 〈f1:τ1, . . . , fn:τn〉. By Lemma 4

�
τ|Ξ

�
= ∅ implies

�
τ|Ξ∪{τ}

�
= ∅.

Furthermore, if
�
τ|Ξ∪{τ}

�
= ∅, then by Lemma 3 and definition of τ|Ξ∪{τ}

when τ is a record type, there exists i ∈ {1, . . . , n} s.t.
�
τi|Ξ∪{τ}

�
= ∅, and

τi 
∈ Ξ ∪ {τ}. Since τ 
∈ Ξ by hypothesis, we can conclude by coinduction and
by using rule for record types.

Lemma 7. If Ξ � τ ∼= ∅, then τ 
∼= ∅ does not hold.

Proof. Easy induction on the rules defining Ξ � τ ∼= ∅.
Completeness of τ 
∼= ∅ can be easily proved by coinduction, as expected.

Lemma 8. �τ� 
= ∅ implies τ 
∼= ∅.
Proof. By coinduction on the rules for τ 
∼= ∅.

The following corollary simply derives the equivalence of �τ� 
= ∅ and τ 
∼= ∅
from the lemmas above; as a byproduct, we also get the equivalence of �τ� = ∅
and τ ∼= ∅.
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Corollary 1

1. τ 
∼= ∅ if and only if �τ� 
= ∅.
2. ∅ � τ ∼= ∅ if and only if �τ� = ∅.
Proof

1. soundness: Lemma 6 + Lemma 5 + Lemma 7; completeness: Lemma 8.
2. soundness: Lemma 8 + Lemma 7; completeness: Lemma 6 + Lemma 5 .

We are now ready to define type normalization. This is defined by the coin-
ductive rules in Figure 5.

(prim � )
τ � τ

τ∈{0,null,int} (or � )

τ1 � τ
′
1 τ2 � τ

′
2

τ1 ∨ τ2 � τ ′
1 ∨ τ ′

2

τ1 	∼= ∅
τ2 	∼= ∅

(r-or � )

τ1 � τ
′
1

τ1 ∨ τ2 � τ ′
1

∅�τ2∼=∅ (l-or � )

τ2 � τ
′
2

τ1 ∨ τ2 � τ ′
2

∅�τ1∼=∅

(rec � )

τ1 � τ
′
1, . . . , τn � τ ′

n

〈f1:τ1, . . . , fn:τn〉 � 〈f1:τ ′
1, . . . , fn:τ

′
n〉

〈f1:τ1,...,fn:τn〉�∼=∅

(e-rec � )

〈f1:τ1, . . . , fn:τn〉 � 0
∅�〈f1:τ1,...,fn:τn〉∼=∅

Fig. 5. Type normalization

The empty and primitive types normalize to themselves, whereas normalizing
a union type corresponds to coinductively normalizing its two subtypes, if they
are both non-empty, or just one in case the other is empty. For record types two
cases have to be distinguished: if 〈f1:τ1, . . . , fn:τn〉 
∼= ∅ holds (that is, τi 
∼= ∅
holds for all i ∈ {1, . . . , n}), then each subtype can be coinductively normalized
to get the final type 〈f1:τ ′1, . . . , fn:τ ′n〉. Otherwise the type normalizes to the
empty set.

The following claims show that the normalization relation � is actually a
total function, and that it preserves type interpretation.

Lemma 9. If τ 
∼= ∅ does not hold, then τ � 0.

Proof. See the extended version [2].

Theorem 2. For all τ there exists a unique type τ ′ such that τ � τ ′.

Proof. The proof uses Lemma 9 and Proposition 1. See the extended version [2].

Lemma 10. If τ � τ ′, and τ ′ ∈ {0, null , int}, then �τ� = �τ ′�.
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Proof. The proof uses Corollary 1. See the extended version [2].

Lemma 11. If τ � τ ′1 ∨ τ ′2, and v ∈ τ , then there exist τ1, τ2 s.t. τ = τ1 ∨ τ2,
and (τ1 � τ

′
1, and v ∈ τ1, or τ2 � τ

′
2, and v ∈ τ2).

Proof. The proof uses Corollary 1. See the extended version [2].

Theorem 3. For all τ , τ ′, if τ � τ ′, then �τ� = �τ ′�.

Proof. The proof uses Lemma 10 and Lemma 11. See the extended version [2].

Corollary 2. τ � 0 if and only if �τ� = ∅.
Proof. τ � 0 ⇒ �τ� = ∅ can be derived directly from Theorem 3. For the other
direction, if �τ� = ∅, then τ 
∼= ∅ does not hold by Corollary 1, therefore we can
derive τ � 0 directly from Lemma 9.

5.2 Subtyping Rules

In this section we define the rules for subtyping. In the rest of the paper we
assume that all types are normalized (besides being regular and contractive).
Subtyping rules are based on the identity between sets A ⊆ B∪C ⇔ A\B ⊆ C.

For instance, if one would like to prove that

〈f :null ∨ int〉 ≤ 〈f :null〉 ∨ 〈f :int〉 ∨ int

holds, then one can prove that 〈f :null ∨ int〉 \ 〈f :null〉 ≤ 〈f :int〉 ∨ int holds,
which in turn holds if (〈f :null ∨ int〉 \ 〈f :null〉) \ 〈f :int〉 ≤ int holds.

Now 〈f :null ∨ int〉 \ 〈f :null〉 = 〈f :(null ∨ int) \ null〉 = 〈f :int〉, and 〈f :int〉 \
〈f :int〉 = 0, hence we can conclude the proof because trivially 0 ≤ int holds.

Unfortunately, types are not closed w.r.t. complement. Even though this could
be formally proved2, for space reasons we only provides an informal argumenta-
tion.

Let us consider the two types τ and τ ′ introduced in Section 1:

τ = null ∨ 〈el:int , nx:τ 〉 τ ′ = 〈el:int , nx:τ ′〉

Since �τ� contains all values corresponding to either finite or infinite lists, while
�τ ′� contains all values corresponding just to infinite lists, we deduce that �τ� \
�τ ′� is the set of all values corresponding just to finite lists. If we assume that
types are closed w.r.t. complement, then there must exist a regular and contrac-
tive type τ ′′ s.t. �τ ′′� = �τ� \ �τ ′�, but no regular contractive type can have a
coinductive interpretation corresponding to the set of all values corresponding
to finite lists, because such a set is not a complete metric space for the standard
metric on infinite trees.

2 The proof relies on the property that for all regular and contractive types τ , �τ� is
a complete metric space for the standard metric on infinite trees.
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Given this negative result, we have to compute complement lazily, and extend
the syntax of types to introduce the complement3 type constructor, denoted by
−. Note that while − is a type constructor, \ denotes an operation that given
two types τ1 and τ2, returns a new type.

For instance int \ int = 0, and int \ 〈f :int〉 = int . However, when both types
are records the type returned by the complement is in general a extended type
containing the type constructor −. For instance, if we assume that fields f , g,
and h are all distinct, then 〈f :τ1, g:τ2〉 \ 〈f :τ3, h:τ4〉 returns the extended type

〈f :τ1 − τ3, g:τ2〉 ∨ 〈f :τ1, g:τ2, h?:− τ4〉
where h? denotes an optional field: record type 〈h?:− τ4〉 contains record values
which either do not have field h, or have field h with a value v s.t. v 
∈ �τ4�.

The reader can verify that

�〈f :τ1, g:τ2〉� \ �〈f :τ3, h:τ4〉� = �〈f :τ1 − τ3, g:τ2〉 ∨ 〈f :τ1, g:τ2, h?:− τ4〉� .
Indeed v ∈ �〈f :τ1, g:τ2〉� and v 
∈ �〈f :τ3, h:τ4〉� if and only if v has the two fields f
and g, where g is always associated with a value in �τ2�, whereas f is associated
either with a value in �τ1�, but not in �τ3�, or with a value in �τ1�, but then
either v does not have field h, or it has field h associated with a value not in
�τ4�. The definition of \ for record types is the generalization of the following
identity between sets:

(A1 × . . .×An) \ (B1 × . . .×Bn) =
(A1 \B1)×A2 × . . .×An ∪ . . . ∪ A1 × . . .×An−1 × (An \Bn).

Extended types are defined in Figure 6; note that the two definitions are strat-
ified: first types are defined coinductively, then extended types are inductively
defined on top of types.

π ::= τ | 〈f1:ρ1, . . . , fn:ρn, f ′
1?:�1, . . . , fk?:�k〉 | π1 ∨ π2

ς ::= ρ | � ρ ::= τ | ρ− τ � ::= −τ | �− τ

Fig. 6. Extended types

The meta-variable ρ corresponds to an extended type that can be associated
with a non optional field of an extended record type, and has shape ((τ0 − τ1)−
. . . τk), while the meta-variable � corresponds to an extended type that can be
associated with an optional field of an extended record type, and has shape
((−τ0 − τ1) − . . . τk); finally, the meta-variables ς has been introduced just for
practical reasons to avoid useless duplication for all cases where the expected
type can be either ρ or �.

Interpretation of extended types is defined in Figure 7 by a corresponding
extended judgment for membership v ∈e π and v ∈e ς (note that values are not

3 The constructor is overloaded since it denotes both unary absolute complement, and
binary relative complement.
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extended); as happens for extended types, the definitions of v ∈e π and v ∈e ς
are stratified over the definition of v ∈ τ : first v ∈ τ is defined coinductively,
then v ∈e π and v ∈e ς are inductively defined on top of v ∈ τ .

(emb ∈e)
v ∈e τ

v∈τ (l-or ∈e)
v ∈e π1

v ∈e π1 ∨ π2
ext(π1∨π2) (r-or ∈e)

v ∈e π2

v ∈e π1 ∨ π2
ext(π1∨π2)

(rec ∈e)

v(fi) ∈e ρi ∀ i ∈ {1, . . . , n}
f ′
j ∈ dom(v) ⇒ v(f ′

j) ∈e �j ∀ j ∈ {1, . . . , k}
v ∈e π

π = 〈f1:ρ1, . . . , fn:ρn,
f ′
1?:�1, . . . , f

′
k?:�k〉

ext(π)
{f1, . . . , fn} ⊆ dom(v)

(comp)
v ∈e ς

v ∈e ς − τ
v �∈τ (a-comp)

v ∈e −τ
v �∈τ

Fig. 7. Value membership for extended types

Rules defining v ∈e π are straightforward. We use the auxiliary predicate ext
on extended types s.t. ext(π) holds if and only if π is a proper extended type,
that is, there is no type τ s.t. τ = π. Such a predicate is used to avoid rule (emb
∈e) to overlap the other rules.

The complement operator is defined in Figure 8.

τ \ τ = 0 π \ 0 = π 0 \ τ = 0

τ \ τ ′ = τ if τ �= τ ′, τ ∈ {int ,null} and τ ′ �= τ1 ∨ τ2

π \ τ = π if π = 〈. . .〉 and τ ∈ {int ,null}
π \ τ = (

∨
f∈dom(π)∩dom(τ) π −f τ )

∨
(
∨

f∈dom(τ)\dom(π) π ∼f τ ) if π, τ = 〈. . .〉
where π −f τ = π[f :ρ− τ ′] if π = 〈. . . f :ρ . . .〉 τ = 〈. . . f :τ ′ . . .〉

π −f τ = π[f?:�− τ ′] if π = 〈. . . f?:� . . .〉 τ = 〈. . . f :τ ′ . . .〉
π ∼f τ = π[f?:− τ ′] if τ = 〈. . . f :τ ′ . . .〉

Fig. 8. Complement operator

The complement needs to be computed between an extended type π and a type
τ ; furthermore, both types cannot be union types except for the two corner cases
τ \ τ and 0 \ τ (anyway, as we will see, two subtyping rules allow elimination of
union types by splitting them, so that the complement operator can eventually
be used). All cases are straightforward, except for the last case involving two
record types which has been already explained by an example. In this case, the
type returned by π\τ is always a union of records, where the number n of records
equals the number of fields contained in τ . Note that if n = 0, then the returned
type is 0; for instance, 〈f :int〉\〈 〉 = 0. If n = 1, then a single record is returned:
for instance 〈 〉 \ 〈f :int〉 = 〈f?:− int〉, or 〈f :null〉 \ 〈f :int〉 = 〈f :null − int〉.
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Recall that the notation π[f :ρ−τ ′] (and, equivalently, π[f?:�−τ ′] and π[f?:−
τ ′]) denotes the record type updated by the association f :ρ − τ ′ (or f?:� − τ ′

and f?:− τ ′, respectively); note that in the sole case of the definition of π ∼f τ ,
this update is actually an addition since by definition f 
∈ dom(π).

The following lemmas are instrumental to prove the soundness and complete-
ness of the subtyping rules.

Lemma 12. If π \ τ = π′, then �π� \ �τ� = �π′�.

Proof. Routine verification.

Lemma 13. π is a record type s.t. �π� = ∅ if and only if there exist f , ρ, and τ
s.t. π has shape 〈. . . f :ρ− τ . . .〉, and �ρ− τ� = ∅.
Proof. It suffices to notice that by definition of the complement operator of
Figure 8, all types τ (hence, not extended) occurring in π comes from non-
extended record types which have been normalized, hence cannot be empty by
Corollary 2; furthermore, a record type π cannot be empty because of an optional
field f , since π can always contain all record values that do not have field f .

The subtyping rules are defined in Figure 9.

(empty ≤)

0 ≤ Ξ
(left-or ≤)

π1 ≤ Ξ π2 ≤ Ξ

π1 ∨ π2 ≤ Ξ
(r-or ≤)

π ≤ Ξ ∪ {τ1, τ2}
π ≤ Ξ ∪ {τ1 ∨ τ2}

τ1∨τ2 �∈Ξ

(comp ≤)

π′ ≤ Ξ

π ≤ Ξ ∪ {τ}
τ 	∈ Ξ
π \ τ = π′ (rec ≤)

τ ′ ≤ Ξ

〈. . . f :ρ− τ . . .〉 ≤ ∅
ρ−τ�τ ′−Ξ

Fig. 9. Subtyping rules

The subtyping judgment has shape π ≤ Ξ, where π is an extended type, and
Ξ is a finite set of non-extended types {τ1, . . . , τn} corresponding to the union
τ1 ∨ . . . ∨ τn (which collapses to 0 when n = 0, and to τ1 when n = 1). The
set Ξ is required for ensuring termination: union types in Ξ are lazily split and
reinserted in Ξ to avoid unbounded growth of union types with duplicate types.

Rules (left-or ≤) and (r-or ≤) are applied for splitting and eliminating union
types on both sides (this can always achieved with a finite number of applications
of the rules by virtue of contractivity); then rule (comp ≤) removes types from
the set Ξ. When finally the set Ξ is empty we get the judgment π ≤ ∅: if π = 0,
then we can conclude by rule (empty ≤); if π ∈ {null , int}, then no rule can be
applied and the judgment fails as expected; if π is a record type, then rule (rec
≤) tries to find a non optional field of type ρ− τ , and to check whether such a
type is empty.

The side condition in rule (rec ≤) is needed for normalizing the types of non
optional fields having shape ρ− τ : it transforms the type (. . . (τ − τ1) . . .)− τn)
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in the pair τ − ({τ1} ∪ . . . {τn}) (see the straightforward inductive definition in
Figure 10). This is essential for avoiding unbounded growth of union types (and,
consequently of types having shape ρ − τ) which may have duplicate types; for
instance, this would happen for the judgment τ1 ≤ {τ2}, where τ1 = 〈f :τ1, g:int〉
and τ2 = 〈f :τ2 ∨ τ2〉.

Splitting is performed lazily for two reasons: by running our prototype im-
plementation on numerous tests, we have realized that splitting all union types
contained in τ1 and τ2 before deciding τ1 ≤ τ2 (eager strategy) is less efficient
than a lazy strategy; anyway, when the eager strategy is followed, splitting has
to be performed repeatedly on the types π \ τ generated by rule (comp ≤).

ρ− τ � τ ′′ − Ξ

(ρ− τ )− τ ′ � τ ′′ − (Ξ ∪ {τ ′}) τ − τ ′ � τ − {τ ′}

Fig. 10. Normalization of ρ− τ

The following two lemmas are instrumental to the proofs of soundness and
completeness of the subtyping rules, and can be easily proved by induction on
the types ρ− τ .

Lemma 14. For all ρ, τ , there exist unique τ ′, Ξ s.t. ρ− τ � τ ′ − Ξ holds.

Lemma 15. If ρ− τ � τ ′ − {τ1, . . . , τn}, then �ρ− τ� = �τ ′ − (τ1 ∨ . . . ∨ τn)�.

Proofs of Soundness and Completeness of the Subtyping Rules. We
adopt the same technique used for proving the soundness of the judgment τ 
∼= ∅.
Therefore first we have to define the complement judgment (see Figure 11).

As for the case of the negation of the τ 
∼= ∅ judgment, the standard interpre-
tation of the rules is inductive (thin lines), but Lemma 16 shows that the use
of the set Ψ of extended types forces the inductive (judgment Ψ � π 
≤ Ξ) and
coinductive (judgment Ψ � π 
≤ Ξ) interpretation of the rules to coincide (when
we restrict judgments Ψ � τ 
≤ Ξ to finite sets Ξ).

Lemma 16. For all finite sets Ξ, Ψ � τ 
≤ Ξ implies Ψ � τ 
≤ Ξ.

Proof. It suffices to prove that any proof tree for Ψ � π 
≤ Ξ must be finite. To do
that, we first observe that, given π and Ξ, the cardinality of Ψ in the judgments
of the proof tree for Ψ � π 
≤ Ξ must be bounded. This can be proved by firstly
observing that Ψ contains only the record types that appear in the left-hand-side
of 
≤ in the judgments, that such record types have fields ranging over a finite set
(since we assume that initially τ and all types in Ξ are regular, and the set Ξ
is finite), and that for all types of shape ((τ0 − τ1)− . . . τk) associated with non
optional fields and generated by rule (comp 
≤), τ0 corresponds to a subterm of
the initial type π, whereas τ1, . . . , τk correspond to subterms of types contained
in the initial set Ξ.
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(prim �≤)
Ψ � τ �≤ ∅ τ∈{null,int} (l-l-or �≤)

Ψ � π1 �≤ Ξ

Ψ � π1 ∨ π2 �≤ Ξ
(r-l-or �≤)

Ψ � π2 �≤ Ξ

Ψ � π1 ∨ π2 �≤ Ξ

(comp �≤)
Ψ � π′ �≤ Ξ

Ψ � π �≤ Ξ ∪ {τ}
τ 	∈ Ξ
π \ τ = π′ (r-or �≤)

Ψ � π �≤ Ξ ∪ {τ1, τ2}
Ψ � π �≤ Ξ ∪ {τ1 ∨ τ2} τ1∨τ2 �∈Ξ

(rec �≤)
∀ f ∈ dom(π) π(f) = ρ− τ � τ ′ −Ξ ⇒ Ψ ∪ {π} � τ ′ �≤ Ξ

Ψ � π �≤ ∅
π = 〈. . .〉
π 	∈ Ψ

Fig. 11. Negation of subtyping

To prove that all proof trees are finite, we introduce the following measure
on the judgments of shape Ψ � π 
≤ Ξ defined on a Noetherian order, and show
that for every rule of Figure 11 the measure of its premises is always strictly less
than the measure of its consequence.

If B denotes an upper bound of the size of Ψ , then the measure of the judgment
Ψ � π 
≤ Ξ is defined by the quadruple (B−|Ψ |,max∨(Ξ),|Ξ|,max∨(π)), where | |
denotes cardinality, max∨(π) returns the length of the maximum path from the
root of π containing only union type constructors (this is always well-defined by
contractivity), and max∨(Ξ) =

∑
τ∈Ξ max∨(τ). If we consider the standard lexi-

cographic order (where the leftmost value is the most significant one) on quadru-
ples, then we obtain a Noetherian order, since trivially max∨(Ξ) ≥ 0,|Ξ| ≥ 0,
max∨(π) ≥ 0 and B − |Ψ | > 0 by virtue of the boundedness of Ψ sets.

We now prove that the measure of the premises of every rule is always strictly
less than the measure of its consequence.

Rule (comp 
≤): let (n1, n2, n3, n4) be the measure value for the consequence,
then the value for the premise is (n1, n2, n3 − 1, n′

4), and (n1, n2, n3 − 1, n′
4) <

(n1, n2, n3, n4);
Rules (l-l-or 
≤) and (r-l-or 
≤): let (n1, n2, n3, n4) be the measure value for

the consequence, then the value for the premise is (n1, n2, n3, n4 − 1), and
(n1, n2, n3, n4 − 1) < (n1, n2, n3, n4);

Rule (r-or 
≤): let (n1, n2, n3, n4) be the measure value for the consequence,
then the value for the premise is (n1, n2 − 1, n′

3, n4), and (n1, n2 − 1, n′
3, n4) <

(n1, n2, n3, n4);
Rule (rec 
≤): let (n1, n2, n3, n4) be the measure value for the consequence,

then the value for any premise is (n1 − 1, n′
2, n

′
3, n

′
4), and (n1 − 1, n′

2, n
′
3, n

′
4) <

(n1, n2, n3, n4).

Soundness is split into two implications, the first proved by coinduction, the
second by induction.

Lemma 17. Let Ψ be a set of extended types s.t. for all π′ ∈ Ψ , π′ is a record
type having shape 〈. . . f :ρ− τ . . .〉. Then π 
∈ Ψ and �π� 
⊆ �τ1 ∨ . . . ∨ τn� imply
Ψ � π 
≤ {τ1, . . . , τn}.
Proof. By coinduction on the rules of Figure 11 and case analysis on π.

If π = 0, then �π� 
⊆ �τ1 ∨ . . . ∨ τn� does not hold, therefore the implication
vacuously holds.
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If π = π1 ∨ π2, then �π� = �π1� ∪ �π2�, therefore if �π� 
⊆ �τ1 ∨ . . . ∨ τn�, then
either �π1� 
⊆ �τ1 ∨ . . . ∨ τn� or �π2� 
⊆ �τ1 ∨ . . . ∨ τn�, hence by coinduction we
can apply either rule (l-l-or 
≤) or (r-l-or 
≤) and conclude.

For the remaining cases we distinguish two subcases: either Ξ 
= ∅ or Ξ = ∅.
If Ξ 
= ∅ and π ∈ {null , int , 〈. . .〉}, then, by coinduction, rule (r-or 
≤) can be

applied if τn = τ ′ ∨ τ ′′, because �τ1 ∨ . . . ∨ (τ ′ ∨ τ ′′)� = �τ1 ∨ . . . ∨ τ ′ ∨ τ ′′�; if τn
is not a union type, then, by coinduction, rule (comp 
≤) can be applied because
there exists τ ′ s.t. π \ τn = τ ′ (π and τn are not union), �τ ′� = �π� \ �τn� by
Lemma 12, and �π� 
⊆ �τ1 ∨ . . . ∨ τn� implies �π� \ �τn� 
⊆ �τ1 ∨ . . . ∨ τn−1�.

If Ξ = ∅ and π ∈ {null , int}, then we can easily conclude by coinduction and
rule (prim 
≤).

If Ξ = ∅ and π is a record type s.t. �π� 
⊆ ∅; if there is no f , ρ, and τ ,
s.t. π has shape 〈. . . f :ρ− τ . . .〉, then we can conclude by coinduction and by
applying rule (rec 
≤) with no premises (note that the side condition π 
∈ Ψ
holds by hypothesis). Otherwise, by Lemma 13, for all f , ρ, and τ s.t. π has
shape 〈. . . f :ρ− τ . . .〉, we know that �ρ− τ� 
= ∅. Furthermore, by Lemma 14
there exist unique τ ′, Ξ s.t. ρ − τ � τ ′ − Ξ holds, and by Lemma 15, if Ξ =
{τ ′1, . . . , τ ′k}, then �ρ− τ� = �τ ′ − (τ ′1 ∨ . . . ∨ τ ′k)�, hence �τ ′ − (τ ′1 ∨ . . . ∨ τ ′k)� 
=
∅ which implies �τ ′� 
⊆ �τ ′1 ∨ . . . ∨ τ ′k�. Finally, if for all π′ ∈ Ψ , π′ is a record type
having shape 〈. . . f ′:ρ′ − τ ′′ . . .〉, then the same property holds for Ψ ∪ {π}, and
τ ′ 
∈ Ψ ∪ {π} holds because τ ′ is not an extended type. Hence we can conclude
by coinduction and rule (rec 
≤).

Lemma 18. If Ψ � π 
≤ Ξ, then π ≤ Ξ does not hold.

Proof. By induction on the rules defining Ψ � π 
≤ Ξ. We detail the proof only
for the most involved rule (rec 
≤). If π is a record, then the only applicable rule
for proving π ≤ ∅ is (rec ≤). If rule (rec 
≤) has no premises, then there is no
field having type of shape ρ− τ , hence rule (rec ≤) is not applicable. If rule (rec

≤) has premises, then for all fields of type ρ − τ we know that by Lemma 14
there exist exist unique τ ′, Ξ s.t. ρ − τ � τ ′ − Ξ, therefore by induction we
deduce that τ ′ ≤ Ξ does not hold, therefore rule (rec ≤) can never be applied,
and, hence, π ≤ ∅ does not hold.

Soundness trivially derives from the three previous lemmas.

Corollary 3 (Soundness). If π ≤ {τ1, . . . , τn}, then �π� ⊆ �τ1 ∨ . . . ∨ τn�.

Proof. It suffices to show that �π� 
⊆ �τ1 ∨ . . . ∨ τn� implies that π ≤ {τ1, . . . , τn}
does not hold. This can be proved directly by applying Lemma 17, Lemma 16,
and Lemma 18.

Completeness throws no surprise and can be proved with a standard proof by
coinduction on the subtyping rules.

Theorem 4 (Completeness). If �π� ⊆ �τ1 ∨ . . . ∨ τn�, then π ≤ {τ1, . . . , τn}
holds.

Proof. The proof uses Lemma 12, Lemma 13, Lemma 14 and Lemma 15. See
the extended version [2].
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6 A Sound and Complete Algorithm

We have proved that the subtyping rules in Figure 9 are sound and complete
w.r.t. the definition of semantic subtyping; however, such rules do not directly
specify an algorithm for deciding semantic subtyping between coinductive types.
In this section we show how it is possible to define a sound and complete algo-
rithm implementing such rules.

The algorithm is specified by the following recursive function subtype, which
is assumed to be invoked over normalized types; we omit the normalization
function that can be derived from the Figure 5 (the interested reader can refer
to the prototype implementation).

In order to decide whether π1 is a subtype of π2, function subtype must be
called with Ψ = ∅, π = π1, and Ξ = {τ2}.
// pre - condition: π and all types in Ξ are normalized
boolean subtype (Set <Pair <ExtType ,Set <Type >>> Ψ , ExtType π,Set<Type > Ξ) {

// rule (empty ≤)
i f (π==0)

return true
// termination condition

i f (∃ (π′, Ξ′) ∈ Ψ s.t. π′==π && Ξ′ ⊆ Ξ)
return true

// rule (right -or ≤)
while(∃ τ1, τ2 s.t. τ1 ∨ τ2 ∈ Ξ)

Ξ=(Ξ \ τ1 ∨ τ2) ∪ {τ1, τ2}
// rule (left -or ≤)
i f (∃π1, π2 s.t. π==π1 ∨ π2)

return subtype (Ψ , π1, Ξ) && subtype (Ψ , π2, Ξ)
// rule (comp ≤)
else i f (∃ τ ∈ Ξ) {

π′=π \ τ

Ξ′=Ξ \ {τ}
return subtype (Ψ ∪ {(π, {τ})},π′,∅) ||

Ξ′!=∅ && subtype (Ψ ∪ {(π,Ξ)},π′,Ξ′)
}

// rule (rec ≤)
else i f (π==〈. . .〉){

foreach f ∈ dom(π)
i f (∃ ρ, τ s.t. π(f)==ρ − τ ) {

ρ − τ � τ ′ − Ξ′

i f (subtype (Ψ ,τ ′,Ξ′))
return true

}
return false

}
else

// int ≤ ∅ and null ≤ ∅ do not hold
return false

}

The algorithm is derived from the rules in Figure 9, but also from the proof of
soundness; in particular, Lemma 17, and Lemma 16 show that if Ξ = {τ1, . . . , τn},
τ = τ1∨ . . .∨τn, and �π� 
⊆ �τ�, then failure of π ≤ Ξ is always finite (indeed, all
proofs for ∅ � π 
≤ Ξ are finite), whereas if �π� ⊆ �τ� holds, then the proof tree
for π ≤ Ξ could be infinite; however, Lemma 16 shows that such a proof tree is
always regular, hence we can use the complement of the side-condition π 
∈ Ψ of
rule (rec 
≤) to ensure termination for π ≤ Ξ.
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However, the presented algorithm differs from the inference system of Figure 9
for several details:

Order of rule application: as expected, the order in which rules can be applied
has been made deterministic. Rule (empty ≤) overlaps with (right-or ≤), and
(comp ≤), and is tried first, for obvious efficiency reasons. Rule (right-or ≤)
overlaps (besides (empty ≤)) only with (left-or ≤) (recall that π \ τ is only
defined when both π and τ are not union types, hence rule (comp ≤) does
not overlap with rules (right-or ≤) and (left-or ≤)), and it is applied first for
efficiency reasons: were rule (left-or ≤) be applied first, the applications of rule
(right-or ≤) would be uselessly duplicated for the two premises of (left-or ≤).
Rules (left-or ≤), (comp ≤), and (rec ≤) do not overlap, therefore the order in
which are considered is immaterial.

Termination condition: the termination condition used by the algorithm is an
improvement of that used in rule (right-or 
≤) for the definition of the judgment
Ψ � π 
≤ Ξ (obviously the termination condition has to be complemented). First,
such a termination condition is used for all rules defining π ≤ Ξ (except (empty
≤)), and not just for rule (rec ≤). When function subtype has to check whether
π ≤ Ξ holds, it first verifies (unless π = 0) whether the set Ψ already contains a
pair (π,Ξ ′) such that Ξ ′ ⊆ Ξ; this means that the algorithm is already checking
whether π ≤ Ξ ′ holds (that is, there is a corresponding call to subtype on the
stack) and if π ≤ Ξ ′ holds, then π ≤ Ξ holds as well; therefore, true can be
returned. If π ≤ Ξ does not hold, then π ≤ Ξ ′ does not hold as well, therefore
the corresponding call to subtype will eventually find a counter-example and
return false as expected.

Finally, new pairs are inserted in Ψ when rule (comp ≤) is applied; this is the
point where new types can be generated through the computation of π \ τ that
can contain extended record types with fields having types of shape ρ− τ ′; only
in this case the application of rule (rec ≤) can lead to a potentially infinite loop,
as shown by the proof of Lemma 16 (recall that if π is a record that does not
contain any field having type of shape ρ− τ ′, then rule (rec ≤) has no premises).
In this way, we give the algorithm more chances to prune the proof tree, and,
thus, to avoid combinatorial explosion, but we avoid indiscriminate insertion in
Ψ of all pairs corresponding to a call to subtype.

Optimization of rule (comp ≤): besides all optimizations explained above, we
have also implemented a more refined version of rule (comp ≤): before checking
that π \ τ ≤ Ξ \ {τ} holds, we verify whether π \ τ is already empty (thus,
π \ τ ≤ ∅ holds), to avoid useless applications of rule (comp ≤).

7 Conclusion

In this paper we have tackled the problem of defining a practical top-down
algorithm for deciding semantic subtyping for coinductively interpreted types in
the presence of record and union types.
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We have defined a set of coinductive subtyping rules, and proved that such a
set is sound and complete w.r.t. semantic subtyping; from such rules an algorithm
has been derived and implemented by a prototype written in Prolog.

As a byproduct, we have proposed and used a new proof technique that can be
fruitfully used for proving soundness results for coinductively defined judgments
(or, dually, for proving completeness results for inductively defined judgments).

We have shown with an example in Python how coinductive types allow more
precise type analysis in the presence of cyclic objects; furthermore, a complete
procedure for deciding subtyping makes the analysis even more precise. This
work can be directly applied to our previous work on abstract compilation for
object-oriented languages [4,3,6,7] to perform static global type analysis; the
types employed by abstract compilation are essentially the same studied here,
with the difference that the previously defined subtyping rules were sound but
not complete [5]. Actually, our prototype implementation supports the same
types as defined in our first work on coinductive types [4].

There are several directions for further research on this topic. To simplify the
technical details, in this paper we have considered non updatable records (that
is, record subtyping is covariant in the types of the fields), but for effectively
using our result in object-oriented languages, the subtyping algorithm has to be
extended to updatable records (that is, record subtyping is invariant in the types
of the updatable fields).

Besides updatable records there are other interesting extensions to the type
system and to the subtyping algorithm to obtain more precise type analysis;
in particular, the addition of polymorphic types would require a non trivial
extension of the subtyping algorithm to handle set of subtyping constraints with
type variables.
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A Artifact Description

Authors of the Artifact. Davide Ancona and Andrea Corradi.

Summary. We have developed a prototype implementation of the presented
algorithm in SWI Prolog; besides allowing rapid prototyping and conciseness,
Prolog has the advantage of offering native support for regular terms and uni-
fication, which is very useful for defining coinductively defined functions which
returns regular terms (consider for instance the problem of implementing type
normalization as defined in Figure 5.

Although the prototype has been developed as a proof of concept, and more
optimizations and an implementation in a more efficient programming language
should be considered, the numerous tests show that the algorithm is usable in
practice.

As an example of the performed tests, let us consider the following two types
τL, τEL, and τOL defined by the following equations:

τL = 〈el:int , nx:τL〉 ∨ null
τEL = 〈el:int , nx:〈el:int , nx:τEL〉〉 ∨ null
τOL = 〈el:int , nx:〈el:int , nx:τOL〉〉 ∨ 〈el:int , nx:null〉

Type τL corresponds to all integer lists, whereas τEL and τOL represent all
integer lists whose length (when finite) is even and odd, respectively. As expected,
the tests τEL ∨ τOL ≤ τL and τL ≤ τEL ∨ τOL succeed, whereas τL ≤ τEL and
τL ≤ τOL fail.

Content. The artifact package includes:

– README.txt: explanation of how the artifact works and how to use it.
– results.pdf: experimental results.
– src/contractive.pl: contractivity check.
– src/normalization.pl: type normalization as defined in the paper.
– src/plunit.pl: unit testing framework.
– src/subtype.pl: implementation of the main predicate subtype/2.
– src/tests.pl: tests for the subtype predicate and code to run the bench-

marks.

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code is available on
ftp://ftp.disi.unige.it/person/AnconaD/ECOOP14artifact.zip.

Tested Platforms. The artifact is known to work on any platform running
SWI Prolog (http://swi-prolog.org/) version 6.6.

License. GPL-2.0
(https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt)

MD5 Sum of the Artifact. fac97ebe56df60b35de45fe7a32ebd6f

Size of the Artifact. 162 KB

ftp://ftp.disi.unige.it/person/AnconaD/ECOOP14artifact.zip
http://swi-prolog.org/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
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